Featured this month...

A Simple DC Amp for your Meter
The Battle of the Beams: Part 1
The NO5H All-band Dipole

June Weekenders
Solid-State Switching the Midland 13-509
and
A Motorized Agitator for your PC Boards
Dual Band Radios from ICOM!
Double your operating pleasure with Icom's new dual band IC-3210 mobile and IC-32AT handheld FM transceivers. Each unit incorporates a wealth of special features and options designed to move you into the forefront of today's expanded 2-meter and 440MHz activity. Icom dual banders: the FM enthusiasts dream rigs!

Wideband Coverage. Both the IC-3210 and IC-32AT receive 138 to 174MHz including all NOAA weather channels, transmit 140 to 150MHz including MARS/CAP, and operate 440 to 450MHz. Total coverage of today's hottest FM action!

Full Duplex Operation. Simultaneously transmit on one band while receiving on the other for incomparable dual band autopatching!

20 Memories. Store any combination of standard or odd repeater offsets and subaudible tones.

Powerful! The IC-3210 delivers 25 watts output on both bands. The IC-32AT is five watts output on both bands. Selectable low power for local use on both units.

Programmable Band and Memory Scanning. Includes easy lockout and recall of various memories. Exceptional flexibility!

Repeater Input Monitor Button. Opens the squelch and checks Tx offset simultaneously.

Priority Watch. Monitor any channel for calls while continuing operation on another frequency.

Optional Beeper. Monitors for calls with your subaudible tone, then gives alerting beeps.

Double Your Bands with Icom's dual band IC-32AT handheld and IC-3210 mobile, and double your operating pleasure on 2-meters and 440MHz.
EIMAC's new DX champion!
The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1221
TS-790A
Satellite Transceiver

The new Kenwood TS-790A VHF/UHF all-mode tri-band transceiver is designed for the VHF/UHF and satellite "power user." The new TS-790A is an all-mode 144/450/1200 MHz transceiver with many special enhancements such as Doppler shift compensation. Other features include dual receive, automatic mode selection, automatic repeater offset selection for FM repeater use, VFO or quick step channel tuning, direct keyboard frequency entry, 59 memory channels (10 channels for separate receive and transmit frequency storage), multiple scanning and multiple scan stop modes. The Automatic Lock Tuning (ALT) on 1200 MHz eliminates frequency drift. Power output is 45 watts on 144 MHz, 40 watts on 450 MHz, and 10 watts on 1200 MHz. (The 1200 MHz section is an optional module.)

- High stability VFO. The dual digital VFOs feature rock-stable TCXO (temperature compensated crystal oscillator) circuitry, with frequency stability of ±3 ppm.
- Operates on 13.8 VDC. Perfect for mountain-top DXpeditions!
- The mode switch confirms USB, LSB, CW, or FM selection with Morse Code.
- Dual Watch allows reception of two bands at the same time.
- Automatic mode and automatic repeater offset selection.
- Direct keyboard frequency entry.
- 59 multi-function memory channels. Store frequency, mode, tone information, offset, and quick step function. Ten memory channels for "odd split."
- CTSS encoder built-in. Optional TSU-5 enables sub-tone decode.
- Memory scroll function. This feature allows you to check memory contents without changing the VFO frequency.

- Multiple scanning functions. Memory channel lock-out is also provided.
- ALT—Automatic Lock Tuning—on 1200 MHz eliminates drift!
- 500 Hz CW filter built-in.
- Packet radio terminal.
- Interference reduction controls: 10 dB RF attenuator on 2m, noise blanker, IF shift, selectable AGC, all mode squelch.
- Other useful controls: RF power output control, speech processor, dual muting, frequency lock switch, RIT.
- Voice synthesizer option.
- Computer control option.

Optional Accessories:
- PS-31 Power supply
- UT-10 1200 MHz module
- VS-2 Voice synthesizer unit
- TSU-5 Programmable CTSS decoder
- IF-232C Computer interface
- MC-60A/MC-80/MC-85 Desk mics
- HS-5/HS-6 Headphones
- MC-43S Hand mic
- PG-2S Extra DC cable
APRIL WINNERS

Congratulations to Kenneth L. Frank, WB5AKI, our April sweeps winner, and Bryan Bergeron, NU1IN, author of April's most popular WEEKENDER — "Easy Antenna Access For Urban Apartment Dwellers." Both will receive a copy of The Radio Handbook by Bill Orr, W6SAI.

Our WEEKENDER sweepstakes ends with our April winners. Thanks to everyone who sent in cards. Your comments have been invaluable to us!

Terry Northup, KA1STC
VIEW FROM THE TOP

By the time you get this magazine, the 1989 Dayton Hamvention™ will be a distant memory. However, as I sit here and write today, Dayton is just a week away.

For those of you who've never been to Dayton, it's truly one of the most interesting experiences you'll ever have. Plan to go someday. You'll have the time of your life. The Hamvention is three jam-packed days of the best forums, displays, and opportunities to meet people from around the world. I've run across friends I haven't seen in twenty years, and connected faces to voices from far off DX locations.

If you didn't make Dayton this year, try to set aside time to go next year. It really is one of the most enjoyable events on the ham calendar!

NO-CODE SURVEY RESULTS
An Even Split: 50% for, 50% against

WOW! Did we get a lot of mail.

March's editorial discussed the concept of a no-code license and asked for responses from you, our readers. Quite a few of you took the time to either send a QSL card with a simple statement or write long thoughtful responses. From simple "Yes!" or "No!" answers, to four-page letters detailing your positions, you sure let us have it with both barrels.

Of the responses we received, there was an even 50-50 split of opinion. The last time no-code was discussed in 1983, the responses to our editorial ran 20 to 1 against a no-code license. What has changed in our hobby over the last few years and what does it mean?

First of all, no-code as a license class won't be the panacea for Amateur communications. It's, however, a step recognizing that not everyone who would like to be a ham wants to learn the Morse code. As currently envisioned, a no-code licensee's privileges would be for bands above 50 MHz only. Many of you are under the impression that there would be a below 30 MHz no-code license. That is simply not the case.

A number of you feel strongly that CW acts as a "lid filter," or a way to weed out undesirable potential new hams. That's what they told me about pledges a fraternity in college — going through it would make a better brother out of me. I didn't buy it then and I don't today. Hazing has all but been eliminated from our society. Most of us recognize that it's better to stimulate a person with positive motivation than with "trials" and tests, or hurdles to overcome.

Several of you commented that there is already (for all intents and purposes) a no-code license — CB. However, CBers are not hams and are missing all of the benefits that we, as hams, share. Besides, CB radio was never intended to be an outlet for casual communications.

A significant number of letters commented on the fact that CW is fun. While I agree wholeheartedly, I know many good hams who hate CW and, after passing the General class exam, never want to see a key again.

On the pro no-code side, the general trend supported the realization that not everyone who wants to be a ham wants to learn the code. In this light, most felt that a VHF or UHF only no-code license would be a good idea. No one suggested that a no-code license be a freebie or giveaway ticket. Some suggested that the no-code exam be made harder than the current Extra exam. Others felt that a license on par with either the current Novice or Technician class license was in order.

So, what's next? There have been several very interesting developments. On March 16, 1989, the Space Coast Amateur Technical Group in Melbourne, Florida made a formal filing with the FCC for a no-code license. At almost the same time, the ARRL No-Code Study Committee made a proposal to the Executive Committee for a new license class without a code requirement. The ARRL Board will discuss this step further at their July meeting. If it is adopted as policy, the Board may direct League counsel to draft and submit a proposal for a no-code license to the FCC by this fall.

The bottom line is that a no-code license won't result in an explosion in new Amateur Radio licenses. It will, however, provide another path for bringing people into the hobby. It then becomes incumbent upon us to get others interested in Amateur Radio.

One rap made by several writers was that no-code is nothing but an attempt by the Amateur Radio industry to increase the number of licensees in order to enhance their profit margins. Nothing could be further from the truth. The accusers fail to recognize that many of us in the business are long-time hams ourselves. While we may be in business to make a profit, that is not the sole force that drives us. Many of us are driven by our love for the hobby and our desire to ensure that there is a future for Amateur Radio. It's often very difficult to separate the emotional from the rational when it comes to Amateur Radio.

Time, the ARRL, the FCC, and the rest of us will determine whether or not there will be a no-code license. If you're currently against no-code, please ask yourself if you're being fair to those who want to be hams without learning the code. There are people out there with much to offer for whom the code would not be a vital communications skill. Who knows what benefits they could bring to our hobby if we were to encourage them?

de N1ACH
TM-701A

Dual Bander

The TM-701A combines two radios into one compact package. You get 25 watts on 2 meters and 70cm, 20 memory channels, tone encoder built-in, multiple scanning, auto repeater offset selection on 2 meters, and a host of additional features!

- 20 multi-function memory channels. 20 memory channels allow storage of frequency, repeater offset, CTCSS frequency, frequency step, and tone On/Off status, CTCSS and REV, providing quick and easy access during mobile operation.
- 25W on 2m and 70cm.
- Selectable full duplex-cross band (Telephone style) operation.
- Easy-to-operate front panel layout.
- Multi-function DTMF Mic. supplied. Controls are provided on the microphone for CALL (Call Channel), VFO, MR (Memory Call) or to change the memory channel, and a programmable function key. The programmable key can be used to control one of the following functions on the radio: MHz, T. ALT, TONE, REV, BAND, or LOW power.
- Easy-to-operate illuminated keys. A functionally designed control panel with individually backlit keys increases the convenience and ease of operation during nighttime use.

Optional full-function remote controller (RC-20).
A full-function remote controller using the Kenwood bus line may be easily connected to the TM-701A and mounted in any convenient location. The new controller is capable of operating all front panel functions.
- Built-in dual digital VFO's. a) Frequency step selection (5, 10, 15, 20, 12.5, 25kHz) b) Programmable VFO The user-friendly programmable VFOs allow the operator to select and program variable tuning ranges in 1 MHz band increments.
- Programmable call channel function. The call channel key allows instant recall of your most commonly used frequency data.
- Programmable tone encoder built-in.
- Tone alert system—for true quiet monitoring. When activated this function will cause a distinct beeper tone to be emitted from the transceiver for approximately 10 seconds to signal the presence of an incoming signal.
- Easy-to-operate multi-mode scanning.
 a) VFO scan Band scan, Programmable band scan.
 b) Memory scan plus programmable memory channel lock-out
 c) Dual scan Dual call channel scan, Dual memory scan, Dual VFO scan.
 d) Scan stop modes Time operated scan (TO), Carrier operated scan (CO)
 e) Scan direction
 f) Alert When the AL switch is depressed memory channel is scanned for activity at approximately 5 second intervals.
- MHz switch.
- Lock function.
- Repeater reverse switch.

Optional Accessories
- RC-20 Full-function remote controller
- RC-10 Multi-function remote controller
- IF-20 Interface unit handset
- MC-44 Multi-function hand mic.
- MC-44DM Multi-function hand mic. with auto-patch
- MC-48C 16-key DTMF hand mic.
- MC-55 8-pin mobile mic.
- MC-60A/80/85 Desk-top mics.
- MA-700 Dual band (2m/70cm) mobile antenna (mount not supplied)
- SP-41 Compact mobile speaker
- SP-50B Mobile speaker
- PS-430 Power supply
- PS-50 Heavy-duty power supply
- MB-201 Mobile mount
- PG-2N Power cable
- PG-3B DC line noise filter
- PG-4H Interface connecting cable
- PG-4J Extension cable kit
- TSU-6 CTCSS unit
Self portrait

Dear HR

RE: the February issue, WHAT A GREAT COVER!!!!
I am a broadcast engineer, have been a ham for 36 years, and do a great deal of design and repair work. I am completely at home around electronics.

I recently bought a state-of-the-art rig, and my expression upon spreading out the circuit diagram was almost EXACTLY the same as the person depicted on the cover. With all my years of experience, it took me about an hour to figure out where the signal came in, and went out. I still haven't figured out much in between.

Keep up the good work on a good magazine.
Walter Boller, W9OBG/7, Olalla, Washington 98359

Voice versus packet racket

Dear HR

An electronic plague has descended upon Amateur Radio. Long-standing nets and discussion groups have been pushed out of existence by the agonizing, screeching tide of packet racket. Large numbers of those who might well be the majority in our hobby now find it impossible to monitor their favorite frequency because a packet station has plopped down on it or near it. Who can stand that piercing sound that has been likened to that of fingernails on a blackboard?

A typical example is found when monitoring 144.9 MHz. This frequency has been used for fast-scan TV liaison for over thirty years. It is important for signal reports, homing-in antennas, and guiding transmitter/modulator adjustments. An S-9 packet signal on 144.905, while not even moving the meter on adjacent channels, breaks through and can be heard 10 kHz up and down. The worst part is that the RF burst lasts longer and blocks all but the strongest voice signals on 144.9.

When I first read about packet in QST, it was described as the ultimate in space-age technology. Economy in use of the spectrum was the keynote in this discussion, due to its inherent speed and accuracy. This allows a large number of operators to be serviced by one system. What it really amounted to, in my cases, was a new justification for having spent hundreds of dollars on a computer that started gathering dust after the novelty had worn off. Although most Hams can talk well and many can even chew gum at the same time, this great store of wit and wisdom had to be digitized, dehumanized, and stored in libraries called bulletin boards. I guess it goes along with the inability to listen and write: a product of our "space-age" school systems.

In any case, the basic pleasures of Amateur Radio, hearing a voice from afar, sensing its emotions, its unique sounds, are being bittered. It is bad enough to lose frequencies to commercial interests, but it is much worse to have them rendered unlistenable by your own group. This could be the final assault in which Amateur Radio, like all the great empires, falls from within.

John Shelley, WA1IAO, N. Granby, Connecticut 06060

Another viewpoint

Dear HR

Today I received my February 1989 issue of HAM RADIO, and I just completed reading AA6FW's comments concerning youth and ham radio. I am especially interested because I am the author of the August 1988 letter that mentioned "gimmies and wanna be's..." you referred to.

I agree with several of your viewpoints:
1. Yes, radio seems no longer to be a mysterious mechanism to most people.
2. Yes, perhaps many ham radio operators are senior citizens that clump to 80 meters and BS about nothing.
3. Yes, perhaps many hams do not appreciate growth.
4. Yes, incentive must come from more than the ARRL.
5. Yes, perhaps, a no-code license will be incentive for newcomers to ham radio.

However, I challenge many of the arguments used to support these viewpoints. My letter last summer expressed my concerns about the few numbers of younger people being licensed. I appreciate that my perspective will always be one-sided. Nevertheless, it's been my experience that incentive has to come from within.

This is apparent in the workplace and at home. I am an engineer with many years in the IC construction business. The latest craze in productivity is "taking ownership." That's great from the manager's position. My experience, with peers, subordinates, and business contacts, has been that this ownership has to already be in place and active: it cannot be forced. I cannot (and do not) expect the same results I would get if that ownership were sincere.

The same is true with ham radio. This hobby has and always will provide technical challenges and satisfaction for those willing to move forward. The old saying, "You can take a horse to water but you can't make him drink," is appropriate. I worked with high school kids a few years in a program (Explorer's Group) involving them with the wonders of engineering and science. Either they are interested or they are not.
Two in the Hand!

TH-75A
2m/70cm Dual Band HT

The new TH-75A Dual Band HT from Kenwood is here now! Many of the award-winning features in our dual band mobile transceivers are designed into one hand-held package.

- Dual Watch function allows you to monitor both bands at the same time.
- 1.5 watts on 2 meters and 70cm: 5 watts when operated on 12 VDC (or PB-8 battery pack).
- Large dual multi-function LCD display.
- 10 memory channels for each band stores frequency, CTCSS, repeater offset, frequency step information, and reverse. A lithium battery backs up memories. Two memories for "odd split" operation.
- Selectable full duplex operation.
- Extended receiver range: 141-163.995 and 438-449.995 MHz; transmit on Amateur band only. (Modifiable for MARS and CAP. Permits required. Specifications guaranteed on Amateur bands only.)
- Uses the same accessories as the TH-25AT (except soft cases).
- Volume and balance controls, plus separate squelch controls on top panel.
- Super easy-to-use! For example, to recall memory channel, just push the channel number!
- CTCSS encode/decode built-in!
- Automatic Band Change (ABC). Automatically switches between main and sub band when signal is present.
- Automatic offset selection on 2 meters.
- Tone alert system for quiet monitoring. When CTCSS decode is on, the tone alert will function only when a signal with the proper tone is received.
- Four ways to scan, including dual memory scan, with time operated or carrier operated scan stop modes, and priority alert.
- Automatic battery saver circuit extends battery life.

Supplied accessories: Dual band rubber-flex antenna, PB-6 battery pack, wall charger, belt hook, wrist strap, water resistant dust caps.

Optional Accessories
- PB-5 7.2 V, 200 mAh NiCd pack for 1.5 W output
- PB-6 7.2 V, 600 mAh NiCd pack
- PB-7 7.2 V, 1100 mAh NiCd pack
- PB-8 12 V, 600 mAh NiCd for 5 W output
- PE-9 7.2 V, 600 mAh NiCd with built-in charger
- BC-10 Compact charger
- BC-11 Rapid charger
- BT-6 6-cell AA battery case
- DC-1/PG-2V DC adapter
- HMC-2 Headset with VOX and PTT
- SC-22 and SC-23 Soft case
- SMC-30/31 Speaker mics
- WR-1 Water resistant bag

Specifications and prices subject to change without notice or obligation. Complete service manuals are available for all Kenwood transceivers and most accessories.
Here is the finest 3 KW PEP Tuner money can buy with roller inductor, dummy load, new peak reading meter, antenna switch, balun and more...

MFJ-989C

SWR and the widest matching range possible from 1.8-30 MHz.

You get a new lighted peak and average reading Cross-Needle SWR/Wattmeter with a new more accurate directional coupler.

You get a giant two core balun wound with teflon wire for balanced lines and a 6-position antenna switch with extra heavy switch contacts.

Its compact 10x4x4x15 inch cabinet fits right into your station.

You get a 50 ohm 300 watt dummy load for tuning your exciter, a tilt stand for easy viewing and a 3-digit turns counter plus a spinner knob for exact inductance control. Add $10.00 s/h.

2-knob Differential-T™ Tuner

MFJ-986

The new MFJ-986 Differential-T™ 3 $269.95 QW PEP 2 knob Tuner has a differential capacitor to make tuning foolproof and easier than ever. It ends constant returning with broadband coverage and gives you minimum SWR at only one best setting. Covers 1.8-30 MHz.

2-knob Tuner has a variable inductor that takes the fear out of your SWR down to absolute minimum. It matches anything continuously balanced and coax.

MFJ-940C

The MFJ-940C gives you more precise matches than any tuner that uses two tappered inductors. Why? Because you get two continuously variable capacitors that give you infinitely more positions than the limited number on switched coils. This gives you the precise control you need to get your SWR down to a minimum. After all, isn't that why you need a tuner? Covers 1.8-30 MHz.

You also get MFJ's lighted 2 color Cross-Needle SWR/Wattmeter, 6-position antenna switch, 50 ohm 300 watt dummy load and a built-in balun - all in a compact 10x3x7 inch cabinet that fits right into your station. Meter light requires MFJ-1312, $9.95.

MFJ's best 300 watt PEP tuner you get an MFJ tuner that has earned a reputation for being able to match just about anything - one that is highly perfected and has years of proven reliability.

MFJ-945C

Don't leave home without this mobile tuner! Have an uninterrupted trip as the MFJ-945C extends your antenna bandwidth and eliminates the need to stop, go out and adjust your mobile whip. You can operate anywhere in a band and get low SWR. You'll get maximum power out of your solid state or tube rig and it'll run cooler and last longer.

Small 8x2x6 inches uses little room. SWR/Wattmeter and convenient placement of controls make tuning fast and easy while in motion. 300 watts PEP output, efficient airwound inductor, 1000 volt capacitors. Mobile mount, MFJ-20, $3.00.

144/220 MHz VHF Tuners

MFJ-921 $99.95

MFJ's new VHF tuners cover both 2 Meters and the 220 MHz bands. They handle 300 watts PEP and match a wide range of impedances for coax fed antennas. SWR/Wattmeter. 8x2x1x3 in.

MFJ-920, $49.95. No meter. 4x2x1x3 inches.

MFJ-996C

For a few extra dollars, the MFJ-996C lets you use your barefoot rig now and have the capacity to add a 1.5 KW PEP linear amplifier later. Covers 1.8-30 MHz.

You get two husky continuously variable capacitors for maximum power and minimum SWR. And lots of inductance gives you a wide matching range.

You get MFJ's new peak and average reading Cross-Needle SWR/Wattmeter with a new directional coupler for more accurate readings over a wider frequency range. It reads forward/reflected power in 200/50 and 200/500 watt ranges. Meter lamp is front panel switched and requires MFJ-1312, $9.95.

Has 6-position antenna switch and a tellow wound balun with ceramic feedthru insulators for balanced lines. 10x4x4x17.8 inches. Add $10.00 s/h.

MFJ's smallest Versa Tuner

MFJ-901B $59.95

The MFJ-901B is our smallest - 5x2x6 inches - (and most affordable) 200 watt PEP tuner - when both space and your budget is limited.

Good for matching solid state rigs to lines. It matches whips, dipoles, vees, random wires, verticals, beams, balanced and coax lines from 1.8-30 MHz. Efficient airwound inductor. 4x1 balun.

For your nearest dealer or to order

800-647-1800

- 1 year unconditional guarantee
- 30 day money back guarantee (less s/h) on orders from MFJ
- Free catalog Add $5.00 s/h (except as noted)
I chuckled as I read the comments about not being able to find someone to talk to. With half a million hams in this country? My face flushed as I read about (you) not having much to say to a person (as me) on the air because of my “wanna be’s” letter. Oh well.

The expectations placed on kids today (from my very middle-class and former welfare-recipent position) are overpowering and sometimes unrealis- tic. Couple this with today’s amazing feats that are taken for granted, along with life being taken for granted, and suddenly ham radio is uninteresting. However, incentive and support are the key ingredients to get more youth into ham radio. How about joining a club and getting involved with youth to show them examples of ham radio and its challenges.

Lawrence Caracciolo, N3CCW, Federal Way, Washington

Thoughtful response
Dear HR

I would like to respond, in part, to the letter by Harry Helms, AA6FW, which was in the February issue.

To begin with, I can see that there has been a stagnation in membership in our fraternity. I agree that it is a good idea to take every opportunity to involve new people in Amateur Radio.

Mr. Helms complains that Amateur Radio has been “curmudgeonized.” Then he says that he has a hard time finding anyone “stateside” with whom he can have a ragchew. May I submit that Mr. Helms has become somewhat of an elitist. Why does he believe that those who defend the need for a code require- ment should have an Extra class license? I freely defend the code requirement and recognize that it is a discipline, even though I dislike using CW intensely. Those who wish to upgrade should do that which is necessary. Others, such as myself, will occasionally use CW on the low bands, or not, as they desire.

I find offensive the implication that because I started in Amateur Radio with a conditional license, that license is tainted. My licenses cover a period of over twenty-five years. During that time, I have assisted in a number of emergencies and tried to be helpful to other Amateurs.

I have never considered it my place to judge them.

Jerome W. Silverstein, K3FKI, Verona Pennsylvania 15147

Reading the “small” print
Dear HR

Please accept my compliments for your work with Ham Radio. I have gotten the magazine for many years and keep them all as a very valuable source of reference in most ham matters. There have through the years been some outstanding articles, like the series on Yagi Antennas by W2PV and now lately Ron Todd’s “Pathfinder” (which gives me a lot of pleasure to operate and gave me a lot of fun to implement). “Pathfinder: Part 11” was easy as you printed the program with letters large enough for my 67 year old vision to see without a magnifying glass. The second part was tougher due to the “magnifying glass” print. But don’t worry also the sun has its spots (fortunately).

So thanks again for a fine job.

Bo Stjernberg, SM6ASD, Goteborg, Sweden

Invitation to Authors
ham radio welcomes manuscripts from readers. If you have an idea for an article you’d like to have considered for publication, send for a free copy of the ham radio Author’s Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

Ham Radio's Bookstore
Greenville, NH 03048
(603) 878-1441

Ham Radio/June 1989
A SIMPLE DC AMPLIFIER
FOR YOUR METER

By Yardley Beers, W0JF, 740 Willowbrook Road, Boulder, Colorado 80302

By connecting a simple amplifier to one of those old meters you probably have in your shack, you can enjoy a device that gives a full scale deflection for a couple of millivolts or a few microamperes. You can assemble such an amplifier using a common op amp circuit and easily obtained components. If you are unfamiliar with op amps, building this amplifier can be educational as well.

A meter with this kind of amplifier has many uses in the shack. If you connect a diode between its terminals and use a foot or two of loose wire as an antenna, it becomes a sensitive field strength meter. You can improve the sensitivity by using an RF choke and bypass capacitor as shown in Figure 1, but these components aren't often required.

You might also find this meter helpful for adjusting QRP equipment. You need some deflection on your meter to know if your adjustments are making things better or worse. Adding this amplifier to your meter makes it possible to study leaks in shielding. When connected to a tuned circuit, it can be used to identify harmonics. The modified meter can also be used as a sensitive bridge balance detector.

This meter and amplifier arrangement can demonstrate a number of effects not usually part of Amateur experience. If you connect a diode in a transparent case to the meter, you'll often find that the diode is sensitive to light, while the meter deflection is of opposite polarity to that produced by RF. (The moral here is that circuit boards with such diodes should be shielded from light.) The meter can also be used to demonstrate thermoelectric effects using ordinary metals, even though there's a bad impedance mismatch between a thermocouple and the amplifier input. Take a piece of copper wire and a piece of aluminum wire and twist one end of each together. Connect the other ends to the amplifier input, with the copper wire attached to the positive terminal. The meter will deflect when you heat the junction gently with a soldering iron. If you use special thermocouple wire, it's possible to get a deflection simply by pinching the junction between your fingers.

I have found these meters useful in working with my homemade QRP microwave demonstration setup. The 1N34s and some surplus diodes have considerable response at 2.4 GHz, but not as much as microwave hot carrier diodes. The 1N914s aren't sensitive to this radiation, or to light. I don't have a microwave oven, but I believe a proper diode connected to one of these meters could detect leaks in the shielding.

The focus of this article is on the use of op amps as DC amplifiers. These amplifiers can also be used to amplify AC signals at millivolt levels. At higher levels the amplifiers overload, and the output approaches zero. They are especially effective when the signal source has a high impedance and the load has a low impedance. I connected a pair of 8-ohm headphones through one of them to the output of a broadcast band crystal receiver. With the amplifier turned off, I could hear nothing. With it on, I heard several stations with excellent volume.

Op amp fundamentals

An op amp is a high-gain amplifier with two input terminals. Voltage applied to the noninverting input terminal gives an output voltage of the same polarity. Voltage applied to inverting input terminal gives an output voltage of the opposite polarity. Internal negative feedback tries to make the voltage between the input terminals zero. The output voltage is proportional to the difference between the voltages that would occur between these terminals in the absence of this feedback.

In many applications, one of the input terminals is tied to ground and the input voltage is applied to the other input terminal. In the application used here the input signal is connected between the noninverting input and ground. External negative feedback is established by connecting a resistor (Rf) between the output and inverting input terminals and a resistor (Rs) from the inverting input to ground. If the open loop gain of the amplifier is very high the voltage gain is:

\[G = 1 + \frac{R_f}{R_s} \]
Diode detector circuit.

FIGURE 1

Basic circuit for operational amplifier.

FIGURE 2

Circuit for LM324 Operational amplifier.

If you use very large values of Rf, the amplifier becomes unstable. The maximum usable value depends a little on the input resistance. With Rs = 1 k, I find the maximum practical value for Rf in both circuits is about 100 k. This means the maximum theoretical value of G is about 100. The measured experimental values are close to this value.

In principle, the output voltage is zero when the voltage between the input terminals is zero — regardless of the resistance between these terminals. The LM324 amplifier in **Figure 3** is designed to produce zero output under these conditions; the LM741 circuit in **Figure 4** contains an adjustment for controlling this "zero offset." In either case, the output voltage doesn't remain zero for large input resistances and the amplifier may become unstable. Consequently, I've placed a resistor (Rp) in parallel with the input to prevent the meter from going off scale when the input terminals are open circuited.

The input resistance looking into the op amp is very high — on the order of megohms. This means the resistance looking into the terminals of the circuits shown in **Figures 3 and 4** is essentially that of Rp. The output resistance is very low (less than 1 ohm).

Moving coil meter fundamentals

The op amp's performance depends on the properties of the meter it's used with. I based my assumptions on a meter that has a full scale deflection for 1-mA input and a resistance of 200 ohms. This meter can measure current or voltage, depending on the values of the resistances present in the circuit to which it's connected. In electronic circuits these values are in thousands of ohms, and it's appropriate to connect the meter in series with some portion of the circuit and use it to measure current. In very low resistance circuits (like those composed of thermocouples), you may think of this meter as one for measuring voltage and requiring 200 mV for full scale deflection.

Power is the fundamental quantity determining the deflection. Replacing the moving coil with another coil having the same external dimensions but more turns of inner wire decreases the current required for full scale deflection. At the same time, it needs less voltage because the resistance is higher. Using the simplifying assumption that in both cases the space occupied by the insulation on the wire is negligible, you can see that the change in current compensates for the change in voltage while the power is exactly the same — 200 μW. Therefore, obtaining maximum meter deflection involves an impedance-matching problem.

Response time is one property of the meter that I've overlooked. Replacing the coil with one that has larger external dimensions increases the sensitivity. But because the coil contains more mass, the needle moves more slowly. An alternative is to replace the original spring with one that isn't as stiff. This increases both sensitivity and response; but, the meter also becomes more sensitive to vibration.

Selecting a meter to use with the op amp

Meter selection isn't terribly critical. A voltage gain of about 100 and a very low output resistance are central properties of the op amp. The meter can thus be considered a millivoltmeter. You'll get the greatest sensitivity from a meter that requires the fewest millivolts for full scale deflection. However, the ICs have a rated maximum output current on the order of 20 mA, and it appears that a meter with a full scale deflection for a current of this size would be optimum.

I checked the millivolt calibrations of a number of different meters with full scale current ratings between 0.2 and 25 mA. Contrary to what I said before, there was very little difference. All the meters gave a full scale deflection at about 200 mV, within a factor of 2 or so. Apparently my previous assumptions don't apply. Instead, it seems the manufacturers have adjusted the parameters of their meters to make this voltage difference a design objective. However, meters with lower current ratings can save battery drain.

You may wish to build two tip jacks into the unit and use a meter from your shack (a volt ohmmeter switched to a milliam-
pere scale, for instance). If you want a very compact instrument, you can use a surplus tuning meter.

Circuit for the LM324 op amp

The chip containing the LM324 op amp has four units. The circuit in Figure 3 uses only one of them. This circuit is identical to Figure 2 except for the inclusion of the input resistor Rp, the battery, and an on/off switch.

The LM324 offers you the simplicity of using a battery with one polarity and wide voltage flexibility. As I said before, it is supposed to be balanced so that it has zero output for zero voltage input — regardless of the external resistance connected to it. In practice this balance isn’t perfect, and I’ve introduced the resistance Rp = 27 k to keep the output voltage within reason. You might want to try other values. The input voltage for full scale output is about 2 mV. The corresponding current is this voltage divided by the value of Rp, or about 0.07 μA. With the 1-mA, 200-ohm output meter this corresponds to a current gain of 14,000. The input power is 0.140 μW, while output power is 0.2 mW. The power gain is 1,400,000 or about 61 dB.

This circuit is simpler than that of the LM741. You pay for that simplicity by giving up a good method of controlling the zero offset. The power and current gains are limited by the relatively low value of Rp. One way to control the zero offset would be to connect a variable bucking voltage in series with the input, dispensing with Rp. If this were calibrated, the meter could be used as a null indicator and the unknown voltage would be equal to the bucking voltage.

Circuit for the LM741 op amp

The LM741 requires power supply voltages of both polarities with respect to ground. I use a single 9-volt battery with a voltage divider (R1 and R2 in Figure 4). By making R1 variable, I have incorporated a method for controlling the zero offset. (Another way is to connect a potentiometer to pins 1 and 5, which are not used in this circuit.)

The ability to control the zero offset makes it practical to use a higher resistance for Rp = 1 meg. With the same voltage gain value of 100, the current for full scale output is now 0.002 μA, and the current gain is 10,000. The power input is 4 μW, and the power gain is 50,000,000 or 77 dB.

Construction methods

This project allows for great flexibility in construction methods. I’ve built two LM324 amplifiers and one LM741. One is housed in a meter case with a 3-inch meter. A second is in a 1-1/2” x 2” x 3-1/8” mini box with pin jacks for the meter. The third is mounted in a sardine can with tip jacks for the meter. (There’s room to mount a surplus tuning meter.) All three contain 9-volt batteries.

The IC is hard wired into the circuit and supported from other components by its leads. You may want to mount a terminal strip in the box along with one or two insulated terminals in the LM324 circuit. Using the LM741 requires a terminal strip with four or five insulated terminals because of the voltage divider.

Calibration

Accurate calibration isn’t required in many applications. However, you can obtain a calibration by using the circuit shown in Figure 5. In this circuit resistors Ra and Rb are in series across known voltage V1 (conveniently supplied by a flashlight cell), and voltage V2 is across Rb and applied to the input of the amplifier. Rb should be small (I use 1 ohm). Ra is adjusted to give a full scale reading. Find the value of Ra with an ohmmeter. The voltage at the input is: \(Vb \times V1/(Ra + Rb) \).

The same scheme can be used with the amplifier turned off for determining the millivolt calibration of the meter. The voltage gain is given by the ratio of the two values of Ra, if the value of Rb is small by comparison.

You can obtain the current calibration from the voltage calibration and the known value of Rp. You can also find it directly by using the voltage divider circuit. To do so, connect a known resistance Rm — on the order of megohms — between the voltage divider and the input of the amplifier; then adjust Ra for full scale deflection. Assuming that the voltage across the terminals of the IC is negligible when compared with V2, the current for full scale deflection is V2/Rm.

Refinements

I have given the details for a simple construction project which creates a compact instrument. There are a number of refinements you can add to make this device more useful.

- You can build the detector shown in Figure 1 into the box that holds the op amp. It can be disconnected by an SPST switch in series with the diode. The presence of the choke...
TWO OF AMERICA'S MOST POPULAR FM STATIONS.

No wonder Yaesu's FT-212R Series and FT-4700RH mobiles are so popular.

Not only are the features unique and plentiful. The operation hassle-free. And the mounting options flexible. But also, each radio now features a built-in PL board. Plus you choose the optional mic that best fits your operating and budget needs.

FT-212R SERIES. MOBILES THAT DOUBLE AS ANSWERING MACHINES.

FT-4700RH. DUAL-BAND PERFORMANCE, REMOTE-HEAD DESIGN.

Mount the FT-4700RH almost anywhere—the "brains" on your dash, visor, or door; the "muscle" under your seat. 50 watts on 2 meters, 40 watts on 70 cm. Full crossband duplex. Simultaneous monitoring of each band, complete with independent squelch settings on the main and secondary bands. Built-in PL encode/decode. 9 memories (each band). Extended receive. Reverse repeater shift. High/low power switch. Patch cord for remote mounting. Bright LCD display. Backlit controls. Choice of optional mic. More.

Want more information? Call (800) 999-2070 toll-free. Or ask your dealer about Yaesu's FT-212R Series and FT-4700RH mobiles today. Two of America's favorites.

YAESU USA 17210 Edwards Road, Cerritos, CA 90701
(213) 404-2700. REPAIR SERVICE: (213) 404-4884.
PARTS: (213) 404-4847.

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc. Specifications guaranteed only within amateur bands.
INTRODUCING A NEW GENERATION IN ROTATORS!

OR-2300 (Prototype shown)

Introducing a new generation in rotators! Orion's intense research and development has produced a rotator for today and into the Twenty First Century.

HIGH PERFORMANCE FEATURES

- Proven Worm Gear Drive
- Compact—Fits Popular Towers
- Flex-Mount
- Built-In Thrust Bearing
- Massive Mast Clamps
- Standard Hole Pattern
- Self-Centering Guide
- Stainless Steel Hardware
- Made In U.S.A.
- 1 Year Warranty
- 35 Square Feet
- Easy Reading Control Box
- AND MORE!

For More Details Contact Your Local Dealer Or Orion
(Available Mid Summer)

ORION BUSINESS INTERNATIONAL, INC.

P.O. Box 9577 Canoga Park, CA 91309 U.S.A.
Tel: (818) 888-4927 Fax: (818) 888-5112 Telex: 697-4899

and bypass capacitor aren't likely to affect the amplifier's use in other applications.

- Figures 3 and 4 suggest that the feedback resistor \(R_f \) is a continuously variable resistor. There are times when you may want to reduce the gain, but have reproducible settings. I suggest using a tap switch with fixed resistors valued at 1 k, 3.3 k, 10 k, 33 k, and 100 k corresponding to approximately 10-dB changes in gain. If the switch has some extra positions, you might use one of them for a 220 or 330-k resistor.

- There's a gap in sensitivities with high-resistance input sources. With the amplifier off, the input is too small to give a detectable reading at some input levels. With the amplifier on, and with the lowest gain setting, the meter is off scale. For convenience, switch in some resistors in shunt with the amplifier input to bridge this gap. You'll have to experiment to find the specific values needed for a particular circumstance.

- You might want to add a reversing switch, especially if you plan to use the amplifier with inputs of both polarities. Add the switch at the input for the LM324 amplifier, and insulate both input terminals from ground. When the internal zeroing action is working correctly, the circuit won't respond to signals of the incorrect polarity. The meter refuses to deflect at all, rather than deflect backwards. If you're using the LM741 amplifier, place the reversing switch at the output, where it can be useful in adjusting the balance.

- As I suggested earlier, you might build a calibrated source of bucking voltage into the input of an LM324 amplifier.

Conclusion

Beginners should find this article a helpful introduction to op amps. Op amps have wide applications. While they are most often used as some form of DC amplifier, they may also be used as AC amplifiers. Such amplifiers should have blocking capacitors. It's more feasible to cascade AC amplifiers because the zero offset of one stage is not amplified by the next. If you use feedback networks with capacitors, the op amp becomes a very effective filter.

These are topics discussed in many current magazine articles as well as the references given below. For beginners, I recommend Reference 3. For an advanced treatment read Reference 5. It contains internal circuit diagrams of the LM324 and LM741 amplifiers along with data on their ratings. For practical circuits using operational amplifiers in diverse applications, I suggest Reference 6. For a discussion of the zero offset problem and some of the improved op amp chips now available, see Reference 7. Reference 8 and 9 are useful survey articles on op amps.

REFERENCES

2. The ARRL Handbook, any recent edition

Choice Selection.

Now you can have it all! Take all the qualities you've come to depend on in our programmable CTCSS tone equipment: Astonishing Accuracy, Instant Programming, Unequaled Reliability, and add full spectrum tone versatility, multi-tone capability without diodes, a reprogrammable memory... It's our new harvest of CTCSS tone equipment.

The choice is yours! If standard CTCSS EIA tones do not suit your taste, select any 32 tones of your liking from 15.0 Hz to 2550.0 Hz. And if you change your mind, no problem; the memory can be changed in your shop with our HHP-1 programmer, or at our factory for free. Your working tone is accessed by a simple DIP switch, so there's no fussing with counters or other test equipment.

Call today toll-free and find out more about this fresh new flexibility in tone signalling, and don't forget to ask about multi-tone switching without cumbersome diode networks or binary switches.

It's all brought to market by the people who introduce the freshest ideas in tone signalling, and of course our customary same day shipping and one year warranty apply.

TS-32P CTCSS ENCODER-DECODER Based on the time proven TS-32, the industry standard for over a decade. The TS-32P gives you the added versatility of a custom, changeable memory base. A low price of $57.95 makes it an even sweeter deal.

SS-32P ENCODER Based on the equally popular SS-32 encoder. Available for CTCSS, or audible burst tones up to 6550.0 Hz. Price is $28.95.

SS-32SMP SUB-MINIATURE ENCODER Our smallest encoder for handheld applications. Now you can satisfy that customer that needs to access multiple repeater sites with a radio that has precious little space inside. At $27.95, the price is small too.

HHP-1 HANDHELD PROGRAMMER For programming the 32 memory locations in any of our new programmable products, including our SD-1000 Two-Tone Sequential decoder. The HHP-1 is battery operated for field use, and will program ANY 32 tones from 15.0 to 6550.0 Hz in 1 Hz increments. Price is $199.95.
huge pileups, big city QRN, no spare parts, and a long way to anywhere. You probably couldn't find a better test of the new SB-1400 All-Mode Transceiver than Heath's expedition to Taipei in the Republic of China.

When working DX, you need sensitivity to dig for the weak ones, but still need dynamic range so the guy down the block doesn't clobber you in the middle of a QSO. Sure, the SB-1400 worked the S9 + 30 signals, but out of the pile-ups it also worked a number of stateside stations running 5 watts or less! And that's not bad for a short path distance of 7600 miles!

SB-1400
A proven transceiver.
The technology that worked the world can work for you, too, in your own ham shack. The SB-1400 is a fully assembled all-band, all-mode (FM optional), continuous duty, 100-watt transceiver. It incorporates an impressive general coverage receiver with dual VFOs for split operation and 20 memories to store your favorite frequencies. The unit includes standard SSB filter plus a narrowband 500 Hz CW filter and wideband AM filter. It also features clarifier (RIT), front panel AGC, noise blanker, all mode squelch, 20 dB attenuator, computer interface, and a clean, "operator preferred" front panel layout.

The transceiver's PA is cooled by a quiet, thermostatically controlled internal fan and is enclosed in its own diecast aluminum heat-sink chamber, which allows for full power operation in CW, SSB, FM and RTTY, AMTOR, SSTV, and Packet.

Heath offers you more.
In addition to the SB-1400, Heath offers a full line of pre-assembled or build-it-yourself amateur radio equipment to completely outfit your ham shack or upgrade your system.
You can also prepare for your next exam (Novice, Technician, General, Advanced or Extra class) with Heath study courses.
Finally, as a Heath-equipped ham, you can get answers to your technical questions from our tech consultants, who are licensed ham operators, on the Heath Tech Assistance line.
For more information on the SB-1400 or Heath's complete line of amateur radio equipment, call for a FREE catalog: 1-800-44-HEATH (1-800-444-3284)

Best to start with. Best to stay with.
Heath Company
Benton Harbor, Michigan 49022
©1989, Heath Company.
A subsidiary of Zenith Electronics Corporation.
SOLID-STATE SWITCHING THE MIDLAND 13-509

By Nick Ciarallo, VE2HOT, 85 Celtic Drive, Beaconsfield, Quebec H9W-3M6

If you have a Midland 13-509, you might have the same problem I had. About two years ago, the TX/RX relay was on its way out and was driving me crazy! The radio transmitted intermittently, so I suspected the relay. It looked hopeless and I decided to trash it. I've seen articles on solid-state switching for other radios, but nothing for the famous 13-509. So, as they say, I had to "roll my own." Because I would be removing the relay, I had to make sure the circuit would do what the relay did. That is:

- Supply +12 volts to the transmitter and the PIN diode switch when keyed.
- Supply the receiver with +12 volts when unkeyed.
- Handle the RF switching.

How it works

When the radio is keyed, the RF switch has to show the transmitter a short circuit (or something close to it) to the antenna. At the same time, the switch must isolate the receiver's sensitive front-end components from the transmitter's high-power signal. When the radio is keyed, both PIN diodes are turned on (see Figure 1). The first PIN (CR1) provides a low-impedance path for the transmitter to load into the antenna; the second PIN (CR2) is essentially a short circuit at the receiver input. The coax between the receiver and antenna acts like an impedance transformer because it's a quarter wavelength long at 223 MHz. This makes the short circuit caused by PIN diode CR2 at the receiver input look like a high impedance at the antenna. When you unkey the radio and put the switch in receive mode, both PIN diodes are removed from the circuit because they no longer have any bias current. The antenna now sees a high-impedance path to the transmitter and a short circuit to the receiver. Consequently, none of the received signal is passed to the receiver.
The 13-509 PIN diode switch schematic. Note the unused inputs of the 74C14 are connected to ground.

absorbed by the transmitter's output circuitry and there's no loss of receiver sensitivity. If you want to know more about PIN diodes and PIN switches, OA4KO/YV5 has written an excellent article on the subject.¹

The design

First, I removed the relay. Then I measured the current requirements for the transmitter and receiver. The switched 12-volt line that feeds the transmitter supplies everything except the driver and final. The current drawn by these stages is about 200 mA. The receiver draws 140 mA at full volume, unsquelched. The PIN diode switch requires 60 mA (a little less than the relay). Armed with this information, I was ready to design the DC switching circuit. The most convenient way to do the switching was to start with a hex inverter to provide the appropriate levels, and then buffer the outputs to supply the required current. I selected a 74C14. Because the current demands for the radio aren't very large, you can use small transistors. I used 2N2907s and they worked just fine. Empirically select the resistor that determines the bias current for the PIN diodes. The resistor you use depends on which diodes you choose. Almost any PIN diode will work; just make sure it can handle the power. Don't shy away from ones that look like 1N914s; they can probably handle a hundred watts. Check the specs!

The transformer

The coaxial transformer for 223 MHz is 8.75" long and

<table>
<thead>
<tr>
<th>PARTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPACITORS</td>
</tr>
<tr>
<td>2 0.01 µF</td>
</tr>
<tr>
<td>5 0.001 µF</td>
</tr>
<tr>
<td>1 470 pF/SM</td>
</tr>
<tr>
<td>RESISTORS</td>
</tr>
<tr>
<td>1 180/1 watt</td>
</tr>
<tr>
<td>1 430/1 watt</td>
</tr>
<tr>
<td>2 1 k</td>
</tr>
<tr>
<td>2 1.5 k</td>
</tr>
<tr>
<td>3 10 k</td>
</tr>
<tr>
<td>INDUCTORS</td>
</tr>
<tr>
<td>1 0.68 µH</td>
</tr>
</tbody>
</table>

is made from RG-174 mini coax. Make sure the 50-ohm section is the proper length. If you cut a piece of coax that is 10" long and strip off and separate 1/2" from each end, the actual 50-ohm section will be 9 inches. The formula for determining the coaxial cable length is as follows:

\[\frac{1946}{F_0} = L \]

where \(F_0 \) is the frequency in MHz, and \(L \) is the length in inches

for 66-percent velocity factor coax

example: \(\frac{1946}{223.0} = 8.73" \)

round off to 8.75"
Transmitter PIN diode installation. There are "strip line" inductors for SWR protection circuit. Again, note there is no excess lead length where the RG-174 connects to the PIN diode.

Installation

I mounted the PIN diode and coupling cap for the receiver across the antenna input terminals on the receiver strip (see Photo A) and ran the quarter-wave coaxial transformer over to the antenna connection, where the relay was to be. I installed the PIN diode for the transmitter on the foil side of the board near the relay location, after the "strip line inductor" which couples RF to a second strip line inductor located next to it (see Photo B). These inductors are actually parallel traces on the pc board, used to couple RF to the diode that detects reflected power for the VSWR protection circuit. My last addition was a capacitor right at the antenna connector. I used a 470-pF silver mica unit. You must install this cap to prevent the +12 volt (TX) switched line from supplying the antenna with DC. In my tests, this capacitor didn't affect the performance of the radio in any way.

I built the logic circuit on a small piece of perfboard. The relay pads provide all the connections necessary for the solid-state switch. Make sure you tie all unused inputs of the 74C14 to ground and bypass the chip by placing a 001-μF capacitor across its supply pins. Keep all RF connections as short as possible.

Photo C shows the solid-state switch just before installation. I used double-sided tape to mount the completed circuit in the compartment at the back of the radio where the relay used to be. Photo D shows the circuit mounted with double-sided tape.

Results

Your radio will switch quickly after you make these modifications. I measured 20 ms to full power, which is an improvement on an already fast-switching radio. Receiver sensitivity improved and the radio is now quieter since I've removed what had become (in my radio, anyway) a very lossy relay. The same holds true for the transmitter.

The power output increased 4 watts. This 4-watt difference equates to the removal of about 1.6 dB of insertion loss! Since the RX/TX turnaround time is faster, you can use the radio for high-speed packet linking without worrying that the relay will die in mid-January at your remote repeater site. After over two years of daily service with this modification installed, my radio hasn't given me any problems.

Final note

I'd like to hear from anyone with suggestions and/or modifications for this circuit. If you have questions about the circuit and its installation, send me an SASE and I'll try to answer you as fast as possible. I'd like to thank Jean-Guy Deschênes, VE2BEY; Henry Szczawinski, VE2BJR; Ben Soo; and Dino Moriello, VE2FSA, for their help in putting this article together. If you have a question that you feel can be answered on packet, I can be reached at NA2B.

REFERENCES

1. Luis E. Suarez, OA4K0YV, "Make the Switch to PIN Diodes," 73 October 1986; pages 28-32
The newest in the line of rugged *spectrum analyzers* from AVCOM offers amazing performance for only $2,675.

AVCOM'S new **PSA-65A** is the first low cost general purpose portable spectrum analyzer that's loaded with features. It's small, battery operated, has a wide frequency coverage and is accurate - a *must* for every technician's bench. Great for field use too.

The **PSA-65A** covers frequencies thru 1000 MHz in one sweep with a sensitivity greater than -90 dBm at narrow spans. The **PSA-65A** is ideally suited for 2-way radio, cellular, cable, LAN, surveillance, educational, production and R&D work. Options include frequency extenders to enable the **PSA-65A** to be used at SATCOM and higher frequencies, audio demod for monitoring, log periodic antennas, carrying case (AVSAC), and more.

Want to expand your technical horizons and become skilled at using Spectrum Analyzers — the most powerful and versatile RF instruments in existence today?

AVCOM's **PSA-65A** is an ideal instrument to accomplish these goals. It's basic enough to begin with and sophisticated enough to keep pace with you as your technical requirements grow. Write, fax or call AVCOM for more information on this or on our other fine microwave and related products.

AVCOM

BRINGING HIGH TECHNOLOGY DOWN TO EARTH

500 SOUTHLAKE BOULEVARD • RICHMOND, VIRGINIA 23236 • 804-794-2500
FAX: 804-794-8284, TLX: 701-545
COAX REVISITED

We were jammed in the tail of the A-20 (Boston) attack bomber, electrical cables and steel control wires all around us. It was pitch black except for the beam of my flashlight. The noise was deafening. Herbie, W6KJT, leaned against me and shouted in my ear, "Feel the cable!" I did as he told me and found that the coax cable was very warm to the touch. I knew the cable was running hot because of the RF in it. I had just turned on the aircraft transmitter a few moments before and locked the key. Then we had crawled to the back of the fuselage to determine the condition of the coax feeding the antenna.

"That's only 100 watts in the cable," he yelled. "Come along with me!" We squirmed forward, dropped into the bomb bay of the fuselage, and slid to the cement floor of the factory. I turned off the transmitter on my way out of the aircraft.

The A-20 production line stretched, plane after plane until it disappeared at the back of the Douglas Aircraft assembly plant. At the far end of the line, the skeleton frames of the A-20s were attacked by gangs of riveters whose tools made an ear-splitting din — like that of a thousand machine guns. As the planes progressed along the line, their wings, engines, landing gear, and other major parts were added. By the time an aircraft reached the point on the line where we were standing (next to the huge hangar doors) it was complete, loaded with radio and navigation equipment, and almost ready for flight testing.

It was mid-summer 1941 and the building was hot. Herbie dusted himself off and led me to the radio room at the side of the building. "Starting right now, on plane number 386, we stop using this old copolene-insulated coax line and start using some new coax called WC-549. It has a brand-new polyethylene inner dielectric and is rated for use at 400-watts power up to 200 megacycles!"

Two hundred megacycles! I looked at the new coax, glistening in its black jacket. Just the thing for my post-war ham rig! W6KJT grinned as he read my thoughts. He pointed to a large box full of interesting devices. "New style coax plugs and receptacles! The military nomenclature is PL-259 for the plug and SO-239 for the socket. There's also a splice adapter. When all of this stuff gets on the market after the war, ham radio will never be the same again!"

I agreed. But how much would this new, efficient coax line cost? Maybe hams wouldn't be able to afford it! The low-loss coax didn't become available for civilian use until 1946 when the military dumped miles of it on the surplus market (see Figure 1). It sold from two to five cents a foot, depending upon the quantity ordered. In the interim, the Army-Navy RF Cable Coordinating Committee had standardized the cable at 52-ohms impedance, defined its characteristics and had renamed it RG-8/U. (The nomenclature described it in the military cable procurement list: "RG" stood for "Radio Guide," the number "eight" indicated the serial number of the particular cable type, and the "U" stood for "Utility" service.)

A companion, smaller diameter, low-power cable (RG-58/U), was also manufactured during the war in vast quantities. It was available as surplus at a comparable low price. I was so carried away with enthusiasm that I bought a 500-foot roll of each cable type.

It was a whole new ball game for Amateur Radio. The transition from open-wire line to coax was difficult, but it paid important dividends once television became popular and we had to deal with TVI problems. The wartime development of the SWR meter also provided Amateurs with a quick and meaningful readout of antenna operation.

During the fifties, military coax sys-

FIGURE 1

Military surplus coaxial cable sold for from two to five cents in 1946.
tems underwent another major modification. HF and VHF systems were standardized on a 50-ohm impedance level. Because the venerable RG-8/U was a 52-ohm cable, it was obsolete and would be dropped from the military inventory to be supplemented by an equivalent 50-ohm line, RG-213/U. The smaller companion cable RG-58/U (53.5 ohms) was dropped in favor of the interim RG-58A/U (50 ohms) and the new RG-58C/U (50 ohms). That was the end of the matter, or so it seemed.

Today's coax confusion

The military cable change opened the door for the manufacture and sale of "RG-8 type" coax cable of questionable quality bearing a seemingly authentic military acceptance number. Any outfit with a secondhand cable-making machine could grind out cheap RG-8 type cable made to any specification. The unsuspecting purchaser, seeing the look-alike cable at an attractive price, was often conned into thinking he was getting a high-grade product. Not so! Some RG-8/U and RG-8A/U cables are still made to the old military specifications by reputable manufacturers, but a lot of today's RG-8/U isn't.

It’s easy to make a cheap coax line. Copper creates the major material cost; the cost can be reduced when there is less than the optimum number of fine wires in the outer braid and the braid’s weave is looser. The inner conductor can be made of smaller gauge wire, or can have less wires than in the approved coax. The inner insulation can be made of reclaimed or substandard material and the outer jacket can be made of inferior vinyl that has pinholes. The alignment between inner conductor and outer shield may be imperfect. Finally, the rigid inspection and testing given to approved cable types may be entirely absent.

You may not notice results of using cheap coax right away. The first thing you’ll find is that it’s difficult to place a PL-259 plug on the coax. Good coax has a 97-percent shield coverage. This means that only 3 percent of the shield area is open; the remainder is composed of small copper wires. Less expensive coax may have as little as 75-percent shield coverage, leaving 25 percent of the shield area open. This plays havoc when you try to solder a coax plug on the cable. As soon as the shield wires are hot enough to solder, the polyethylene inner insulation melts and squirts out between the wire interstices, making soldering almost impossible.

It’s okay to use this cheap cable at the lower frequencies (like 160 and 80 meters), providing you can solder on the coax fittings. Loss is low and overall shielding is adequate. It’s not a good idea to use solderless coax plugs to overcome the soldering problem — but that’s another story.

When copper is eliminated in a cheap cable, the cable characteristics change. The 75-percent shield coverage of the cable results in a characteristic impedance of about 60 ohms! Velocity of propagation is also higher and averages 78 percent, as contrasted with 66 percent for the approved line. This can get you into big trouble if you’re cutting quarter-wave line sections to formula and not bothering to check line length with a dip meter.

In the VHF region, the cheap coax doesn’t fully isolate the inner conductor from the outside environment. This diminishes the good electrical isolation quality of the cable.

How can you tell good coax from the cheap stuff? One way is to weigh 100 feet of the line. RG-213/U or good RG-8/U weighs about 11 pounds. The cheaper line may weigh as little as 8 pounds per 100 feet.

“Foam” coax

A new type of coax line appeared on the market in the fifties. The inner dielectric, called "cellular polyethylene," contains many tiny bubbles. The cable is slightly more flexible than an equivalent one with a solid dielectric, and has substantially less loss in the VHF region than common solid dielectric coax. Below 50 MHz, however, there's only a slight advantage in using foam coax for Amateur operations.

A lower loss cable for VHF/UHF use has inner insulation composed of a thick polyethylene insulating thread that wraps around the center conduc-
1927-1989
HENRY RADIO... 62 years of dedication to the best of amateur equipment... still a leader in amateur radio

There are a lot of good reasons. We know that we have provided the kind of equipment and service that thousands of amateurs have come to expect. They keep coming back. We'll do our best to see to it that they, and you, have every reason for coming back.

* A large inventory of fine equipment from the world's leading manufacturers.
* A knowledgeable staff dedicated to amateur radio.
* A complete line of accessories.
* A well stocked repair shop staffed by experienced technicians.
* We take trade-ins and sell used equipment.
* Generous discounts on cash purchases.
* We carry our own financing.

Some of the names we stock include:

HENRY • TEMPO • KENWOOD • ICOM • YAESU • ADVANCED RECEIVER RESEARCH • AEA • ALINCO • AMECO • AMPHENOL ANTRONIC • AOR • ARRL • ASTRON • BEARCAT • BECKMAN • BENCHER • BIRD • BUTTERNUT • CES • CENTURIAN • COMM SPEC • CONNECT SYSTEMS • CREATE • CUSHCRAFT • DAIWA • DIGIMAX • DOKEY • EIMAC • FANON • GRUNDIG • HAL • HEIL • HUSTLER • HY GAIN • KANTRONICS • LANDWEHR • LARSEN • MFJ • MICRO • CONTROL SPECIALTIES • MIRAGE/KLM • NVE • PALOMAR • PIPO • SANGEAN • SIMPSON • SONY • SWITCHCRAFT • TECHNICAL BOOKS • TRAC • TRIEX • TRIPPILITE • TUBES • TX/RX • UNADILLA • VIBROPLEX • WIRE/COAX

Ham Radio/June 1989
Popular types of “50-ohm” coax lines. Approximate weight is in pounds per 100 feet. The cable impedance is Z and the velocity of propagation is V.P. The Military Standard is given where applicable. The inner dielectric is either solid polyethylene (P) or cellular polyethylene (foam). The percentage of shield coverage is given.

<table>
<thead>
<tr>
<th>Coax</th>
<th>Weight per 100 ft</th>
<th>Z</th>
<th>V.P.</th>
<th>Conductor inner/outer</th>
<th>Mil. Std.</th>
<th>Dielectric</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG-8/U</td>
<td>11.5</td>
<td>52</td>
<td>66</td>
<td>A</td>
<td>JAN-C-17A</td>
<td>P</td>
</tr>
<tr>
<td>RG-8/A/U</td>
<td>11.5</td>
<td>52</td>
<td>66</td>
<td>A</td>
<td>MIL-C-17D</td>
<td>P</td>
</tr>
<tr>
<td>RG-8/U</td>
<td>11.0</td>
<td>50</td>
<td>78</td>
<td>B</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>RG-8/X</td>
<td>8.5</td>
<td>57</td>
<td>78</td>
<td>A</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>RG-8M (min)</td>
<td>4.1</td>
<td>50</td>
<td>78</td>
<td>C</td>
<td>J</td>
<td>F</td>
</tr>
<tr>
<td>RG-213/U</td>
<td>11.5</td>
<td>50</td>
<td>66</td>
<td>A</td>
<td>MIL-C-17D</td>
<td>P</td>
</tr>
<tr>
<td>RG-58/U</td>
<td>3.2</td>
<td>53.5</td>
<td>66</td>
<td>D</td>
<td>K</td>
<td>F</td>
</tr>
<tr>
<td>RG-58/A/U</td>
<td>2.9</td>
<td>53</td>
<td>66</td>
<td>D</td>
<td>L</td>
<td>-</td>
</tr>
<tr>
<td>RG-58/C/U</td>
<td>2.9</td>
<td>50</td>
<td>66</td>
<td>E</td>
<td>K</td>
<td>MIL-C-17D</td>
</tr>
<tr>
<td>RG-58/M</td>
<td>2.9</td>
<td>50</td>
<td>78</td>
<td>F</td>
<td>M</td>
<td>-</td>
</tr>
</tbody>
</table>

The inner conductor is defined as:
- A—13 AWG 7 strands no. 21 solid copper
- B—11 AWG 7 strands no. 19 solid copper
- C—16 AWG 19 strands no. 29 solid copper
- D—26 AWG 19 strands 0.0071 diameter solid copper
- E—20 AWG 19 strands x 0.0071 diameter solid copper
- F—20 AWG 19 strands no. 32 solid copper

The outer shield is defined as:
- G—Bare copper, 97-percent shield coverage
- H—Bare copper, 90-percent shield coverage
- J—Bare copper, 95-percent shield coverage
- K—Tinned copper, 95 percent shield coverage
- L—Bare copper, 78-percent shield coverage
- M—Tinned copper, 96-percent shield coverage
Radio conditions getting better!

In my September 1988 column I discussed ionospheric readings made at the Maui, Hawaii Ionospheric Station by Steve, KH6SB. One of the charts shown depicted the average value of F2 reflection measured by a pulsing technique on a vertical path. The chart was for a 24-hour time period, averaged each month since 1946.

Figure 3 shows the same measurements plotted over a 7-hour period, corresponding to the daylight hours. This provides a more realistic picture as the higher frequency bands are usually closed to F2 skip during the hours of darkness.

The chart is especially meaningful as the sunspot cycle continues to rise. It shows that DX conditions are at their best during mid-February through mid-May. A second period of good DX activity falls during the period of mid-September through mid-November.

DX conditions during the winter aren’t bad, but they are limited by the short span of daylight. Summer DX conditions, on the other hand, are poor from mid-May through mid-September. If you want to take a vacation or work on your antenna, this is the time to do it!

The “Dead Band” contest

I want to express my appreciation to all who write me in regard to these little tests of expertise. I appreciate your support and kind remarks. I’m sorry I can’t reply to each of you in person. I’d like to extend a hearty “thank you” to all who took the time to write.

Seasonal change in ionospheric reflection averaged monthly since 1946, as observed by KH6SB at the Maui (Hawaii) Ionospheric Station. Measurements were made during daylight hours (1100 to 1700 HST) on vertical angle of reflection. Maximum Usable Frequency (MUF) is about three times higher than measured reflection frequency (FoF2) shown. The MUF has been highest during months of March, October, and November, regardless of sunspot cycle number. Low point of the MUF is reached in July. (Measurements taken mid-month intervals.)

or two down the coax line. This prevents moisture from entering the end of the hose and being drawn up into the coax by capillary action.

It takes almost as long to read this as it does to make the joint. Try one of these simple devices out on your next Field Day antenna!

Radio conditions getting better!

In my September 1988 column I discussed ionospheric readings made at the Maui, Hawaii Ionospheric Station by Steve, KH6SB. One of the charts shown depicted the average value of F2 reflection measured by a pulsing technique on a vertical path. The chart was for a 24-hour time period, averaged each month since 1946.

Figure 3 shows the same measurements plotted over a 7-hour period, corresponding to the daylight hours. This provides a more realistic picture as the higher frequency bands are usually closed to F2 skip during the hours of darkness.

The chart is especially meaningful as the sunspot cycle continues to rise. It shows that DX conditions are at their best during mid-February through mid-May. A second period of good DX activity falls during the period of mid-September through mid-November.

DX conditions during the winter aren’t bad, but they are limited by the short span of daylight. Summer DX conditions, on the other hand, are poor from mid-May through mid-September. If you want to take a vacation or work on your antenna, this is the time to do it!

The “Dead Band” contest

I want to express my appreciation to all who write me in regard to these little tests of expertise. I appreciate your support and kind remarks. I’m sorry I can’t reply to each of you in person. I’d like to extend a hearty “thank you” to all who took the time to write.

Seasonal change in ionospheric reflection averaged monthly since 1946, as observed by KH6SB at the Maui (Hawaii) Ionospheric Station. Measurements were made during daylight hours (1100 to 1700 HST) on vertical angle of reflection. Maximum Usable Frequency (MUF) is about three times higher than measured reflection frequency (FoF2) shown. The MUF has been highest during months of March, October, and November, regardless of sunspot cycle number. Low point of the MUF is reached in July. (Measurements taken mid-month intervals.)

or two down the coax line. This prevents moisture from entering the end of the hose and being drawn up into the coax by capillary action.

It takes almost as long to read this as it does to make the joint. Try one of these simple devices out on your next Field Day antenna!
ASTRON POWER SUPPLIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

RM SERIES

RS-A SERIES

RS-M SERIES

VS-M AND VRM-M SERIES

RS-S SERIES

19" × 5 1/4 RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5% × 19 × 12%</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5% × 19 × 12%</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5% × 19 × 12%</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 × 4% × 5%</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3% × 6% × 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3% × 6% × 7%</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3% × 6% × 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 × 7% × 10%</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 × 7% × 10%</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 \frac{3}{4} × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 × 7% × 10%</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 \times 10%</td>
<td>18</td>
</tr>
<tr>
<td>RS-25A</td>
<td>25</td>
<td>35</td>
<td>5 \times 11 × 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 \times 13% × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

- Switchable volt and Amp meter

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps) @13.8VDC</th>
<th>ICS* (Amps) @13.8VDC</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>2</td>
<td>4 \times 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>4</td>
<td>5 \times 10%</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>7</td>
<td>5 \times 11 × 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>10</td>
<td>6 \times 13% × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters • Output Voltage adjustable from 2-15 volts • Current limit adjustable from 1.5 amps to Full Load

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>3</td>
<td>7</td>
<td>4 × 7% × 10%</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 \times 7% × 10%</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 \times 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 \times 10%</td>
<td>18</td>
</tr>
</tbody>
</table>

- Built in speaker

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
Packet operators are often called upon to give demonstrations to public officials or Amateur Radio groups. Because of the small screen, everyone has to crowd around to see what's going on. Small computer screens create difficulties for sight-impaired hams as well.

There are large-screen (and even projection) TVs available, but most equipment designed for off-the-air television reception has only a 4.5-MHz video bandpass and is unable to display the "normal" 80 columns. (Commodore and Apple default to 40 columns because many people use ordinary television sets as monitors.)

The serious computer user needs a piezoelectric buzzer in place of the scope for infrared detection. The encoded binary information emitted from a hand controller will modulate the buzzer's tone. I mounted the phototransistor in an LED bezel. You can also install it in the barrel of an old pen (with a length of RG-162 going back to the remaining circuitry) for probing around infrared sources in shaft encoders and other tight areas.

The detector saturates when used outdoors during the daytime. A small 3 or 4-inch tube placed in front of the phototransistor will reduce incidental pickup.

Peter J. Bertini, K1ZJH
Continued Coverage Antennas

Model AC 1.8-30
- SWR Max< 1.4:1 average from 1.8 to 30 MHz
- Can be installed in approximately 80 ft space
- Ideal for commercial services for multi frequency operation without the need for antenna tuners or additional antennas
- Handles 1.8 kW, 2 kW PEP ICAS
- Higher power models available on special order. Contact your dealer or factory
- U.S. Patent No. 4,511,858

Model AC 3.5-30
- SWR less than 2:1 from 3.5 to 30 MHz
- Complete assembled, Balun terminated with standard 50-239 connector
- Power capability 1.8 kW - 2 kW PEP ICAS. Higher power model is available on special order.
- Designed for 50 ohm feeding
- Weather proof balun and balancing network
- Only 90 feet long
- U.S. Patent No. 4,423,423

PC HF Facsimile 4.0 $99

The best computer FAX system just got better!

A complete facsimile reception system for the IBM PC or Compatible. Receives up to 16 intensity levels.

- Includes:
 - Demodulator
 - Software
 - Frequency List
 - Features:
 - Print on Epson, HP Laser Jet
 - Disk Save, Zooming, Image processing
 - Unattended Image Capture and much more

Software Systems Consulting
1303 S. Ola Vista, San Clemente, CA 92672
(714) 498-5784

ARE Communications

Add HF To Your IC-R7000

With ARE’s New — “2 in 1” Kit

EXCLUSIVE TO ARE COMMUNICATIONS

500Hz to 2GHz CONTINUOUS receive in one unit. Using the ICR7000 multimode receiver, this kit makes the "2 in 1" ICR7000HF Receiver the most versatile scanner available today. Because of the enormous frequency coverage, the ICR7000HF has 200 mode sensitive channels for increased flexibility.

With excellent strong handling characteristics, using a direct fed Double Balance Mixer, the need for a pre-amp is unnecessary.

Available from stock, the new ICR7000HF kit. Complete with installation instructions.

Only $149.00 including shipping.

Phone London 0044 1 997 4476 or fax 0044 1 991 2565, quoting your credit card number (Master Card/VISA/American Express) and shipping details for immediate attention.

DEALER INQUIRIES WELCOME

ARE Communications Limited, 6 Royal Parade, Hanger Lane, Ealing, London W5A 1ET, England
Fax 01-991-2565
Tel 01-997-4476
THE BATTLE OF THE BEAMS

PART 1

By D. V. Pritchard, G4GVO, 55 Walker Dr., Leigh on Sea, Essex SS9 3QT, England

1940...Now, nearly 50 years from those near-disastrous days, how many of us remember (or even know of) the debt of gratitude owed to one man who confounded the radio experts and overcame officialdom to earn Churchill’s praise as the man who “broke the bloody beams” — who went on to unravel the secrets of German radar and Hitler’s “V weapons,” the V1 pilotless flying bomb (the ‘doodlebug’) and the V2 rocket?

Born in London in 1911, R. V. Jones was educated at St. Jude’s, Herne Hill, and later at the Elementary School in Sussex Road, Brixton, where he won a scholarship to Alleyn’s School, Dulwich. Awarded an Open Exhibition in 1929 to Wadham College, Oxford, he worked in the Clarendon Laboratory under Professor Lindmann (later Lord Cherwell and Winston Churchill’s wartime Scientific Adviser), where he turned his talents to infrared detection — an interest he was to pursue for the next 30 years.

In 1939, he was appointed Scientific Officer to the Military Intelligence Service (MIG) to find out what the Germans were doing in the way of applying science to warfare. In early 1940, he came to believe that they had a radio-navigation system by which they hoped to bomb accurately at night.

Knickebein—the crooked leg

From captured documents found in crashed German aircraft he came across the word Knickebein, or “crooked leg.” The Germans’ code names were informative — this one even sounded like a beam. But what kind was it?

Then two prisoners of war were overheard to speak of something called X-Gerät, or ‘secret apparatus;” evidently it was something used in an aircraft, and involved radio pulses. A thriller could hardly have a more intriguing title, but what was X-Gerät — and was it the same as Knickebein? Deeply interested, Jones pressed his Intelligence sources for more information and in March was rewarded with the navigator’s notes from a shot-down Heinkel. Navigational Aid: Radio Beacons working on Beacon Plan “A.” Additionally from 0600hr Beacon Dühnen. Light Beacon after dark. Knickebein from 0600hr on 315°.

Shortly afterwards, a cooperative prisoner said that Knickebein was a beam so narrow and exact that two of them could pinpoint a target with an accuracy of less than a kilometer. He also added that Knickebein was in some ways similar to X-Gerät, assuming that we were familiar with both systems!

From the wreck of another Heinkel, a diary was rushed to Jones. It read: March 5. Two-thirds of flight on leave. Afternoon training on Knickebein, collapsible boats, etc.

By this time, the cryptographers at Bletchley Park had performed a near miracle by breaking the German Enigma code. One of the intercepted messages from a German aircraft was sent to Jones: Knickebein, Kleve, is confirmed at position 53°24’ north and 1° west. This meant that the aircraft had reported receiving the beam a few miles south of Retford in Nottinghamshire, and Kleve (where Anne of Cleves came from) was on the nearest German soil to England.

But, clearly, there had to be two beams: one along which the bomber flew, and another one — a marker beam — to tell the pilot when he was approaching his target. Evidence of this second beam arrived a few days later in yet more salvaged papers from a crashed Heinkel. Long-range Radio Beacon: Knickebein (Bredstedt) 54°39’, 8°57’, Knickebein (Kleve) 51°47’, 5°6’.

So Bredstedt in Schleswig-Holstein was the source of the second beam!

Amateurs and experts

Obviously beams less than a kilometer wide at well over 300 km called for very high frequencies — possibly something in the centimetric region. And although this part of the spectrum was in some use at the time, the power generated by valves then available was very low. Certainly the German system suggested they had overcome the problem. (It was only later that we discovered that German radar had been operating on 50 cm since about 1930!)

However, Rowley Scott-Farnie, G5FI (then a signals officer in RAF Intelligence), showed Jones a report by T. L. Eckersley (the country’s leading propagation expert), in which Eckersley had computed the possible range of a 20-cm transmitter sited in the Hartz Mountains. If the calculations were correct, the signals would bend round the earth and might well be heard by a bomber at 20,000 feet over England. This...
information, together with the evidence he had already collected, prompted Jones to alert Professor Lindemann to the possibility that the Germans had a narrow-beam system for bombing the country. Lindemann naturally countered with the objection that the frequencies they would have to use could not possibly bend round the earth, but Jones produced Eckersley’s calculations and told him that indeed they could.

But how were the Germans doing it? Inspection of captured aircraft revealed nothing unusual and the radio equipment seemed perfectly normal — certainly nothing in the way of centimetric receivers. He pressed for yet more information, especially from the prisoner-of-war interrogation centers. Did their aircraft carry special receivers for beam reception? Had we missed something?

Quite correctly the prisoners admitted nothing. But at one center a prisoner was overheard to tell his friend that no matter how hard we looked for the equipment we would never find it. This startled Jones, for it implied that it was under our very noses and therefore we would never see it. Methodically he sifted through the captured equipment, but the only item that fit the bill was the receiver marked E Bl 1 (Empfänger Blind 1) — Blind Landing Receiver Type 1 — which was used by both the RAF and the Luftwaffe for blind landing on the Lorenz Beam System.

The Lorenz System, however, only had a range of about 8 km at best, unless the Germans had somehow dramatically increased its range. Knowing that Farnborough had evaluated the equipment, he inquired if there was anything unusual about the receiver.

“No,” came the reply. “But since you mention it, the receiver is many times more sensitive than they would ever need for blind landing.”

Could that be it? Dr. Jones spoke to Lindemann, who drafted a note to Churchill. He wrote: “There seems some reason to suppose that the Germans have some type of radio device with which they hope to find their targets.”

Churchill initialed the note and sent it to the Air Minister, adding: “This seems most intriguing and I hope you will have it thoroughly examined.”

A committee of inquiry was formed and Squadron Leader R. S. Blucke was put in charge of flying operations. Three Ansons were fitted with suitable receivers and flown by Lorenz-trained pilots. Rowley, GSFI, told Jones that the German preset frequencies were likely to be 30, 31.5, and 33.3 MHz, and sure enough a few days later a scrap of paper recovered from yet another crashed aircraft read: Knickebein (Kleve) 31.5.

On June 20 a Heinkel was shot down. The radio operator had bailed out, had torn his notes into shreds, and was actually burying them when he was captured. An Intelligence NCO unearthed them, gummed them together, and sent them to London: VHF. Knicke 54°38’17” N, 8°56’8” E; 51°0’30” N, Eeqms., Stolberg 30 mcs; Kleve 51°47’N, 6°2’E, 55°N, 2°Eeqms., 31.5 mcs.

This seemed to confirm the existence of another Knickebein installation at Stolberg and in Schleswig-Holstein. It also confirmed Scott-Farnie’s guesses about the frequencies. Yet after two flights the Ansons failed to find the beams.

Was Jones wrong after all? Many thought so. Sir Henry Tizard was skeptical (and fell from Churchill’s favor as a result). Air Chief Marshal Dowding was doubtful, and Air Chief Marshal “Bomber” Harris was scathing. Other military and scientific brains looked askance at the young man who questioned established wisdom. Then, suddenly, Jones was summoned to a meeting at Downing Street.

Thinking the message was one of Scott-Farnie’s practical jokes, he arrived half an hour late to find the meeting already in progress. A galaxy of talent confronted him. Churchill sat on one side of the table flanked by Lindemann on his left and Beaverbrook on his right. Facing them was Sir Archibald Sinclair (the Air Minister), Sir Cyril Newall (Chief of the Air Staff), Sir Henry Tizard, Watson-Watt, and Portal and Dowding (Commanders-in-Chief of Bomber and Fighter Commands). Breathing his apologies to the Prime Minister, Jones took his place at the end of the table. An argument was taking place — did the beams exist or didn’t they? Soon Jones realized that nobody in the room knew as much about the matter as he did. Suddenly Churchill snapped a question at him, and feeling he couldn’t answer it out of context Jones said, “Would it help, sir, if I told you the story right from the start?” Churchill seemed somewhat taken aback but then replied, “Well yes, it would.”

For the next 20 minutes Jones outlined his evidence. As he later recalled: “although I was not conscious of my calmness at the time, the very gravity of the situation somehow seemed to generate the steady nerve for which it called. Although I was only 28, and everyone else around the table much my senior in every conventional way, the threat of the beams was too serious for our response to be spoilt by nervousness on my part.”

When he had finished, an air of incredulity filled the room. Sir Henry Tizard demanded to know why the Germans should use a beam anyway, assuming such a thing was possible. Our own pilots found their targets very well by astro-navigation. (They didn’t! Author.) Others round the table seemed doubtful. But Churchill was convinced and asked Jones what should be done.

“I told him that the first thing was to confirm their existence by discovering and flying along the beams for ourselves, and that we could develop a variety of countermeasures ranging from putting a false cross-beam for making the Germans drop their bombs early, to using forms of jamming ranging from crude to subtle.”

With a typical “Let this be done at once!” Churchill then turned round and tore a strip off the Air Ministry for their tardiness.

And expert amateurs

Elated at having convinced the Prime Minister, Jones dashed away to attend a conference in the office of the Director of Signals, Air Commodore Nutting, to discuss the possibility that the Germans might exploit pulse techniques as navigational aids. T. L. Eckersley was to give evidence. However, because Eckersley disagreed with Jones’s findings, the subject reverted to Knickebein.

But what about those propagation calculations? Oh, those! Eckersley pooh-poohed them; he didn’t believe them himself. He was only trying to demonstrate how far the signals might go under certain conditions. He thought he had been stretching theory too far, and doubted if signals in the 30-MHz band would curve round the earth.

The Ansons had failed to detect the beams during their previous flights and another one was due that evening. In order to cancel it the Principal Deputy-Director of Signals,
HITACHI SCOPES AT DISCOUNT PRICES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-212</td>
<td>20MHz Dual Trace Oscilloscope</td>
<td>$419</td>
</tr>
<tr>
<td></td>
<td>Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delayed Sweep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRT Readout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cursor Meas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC Offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alt Magnifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compact Size</td>
<td></td>
</tr>
</tbody>
</table>

List $560
Save $141

ELENCO PRODUCTS AT DISCOUNT PRICES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-425</td>
<td>20MHz Dual Trace Oscilloscope</td>
<td>$835</td>
</tr>
<tr>
<td></td>
<td>Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delayed Sweep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRT Readout</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cursor Meas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC Offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alt Magnifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compact Size</td>
<td></td>
</tr>
</tbody>
</table>

List $995
List $1595

SCOPE PROBES

- **P-1 65MHz, 1x, 10x** $19.95
- **P-2 100MHz, 1x, 10x** $23.95

Fits all scopes with BNC connectors.

Digital Capacitance Meter

CM-1550

- **1000 pF, 1pF, 100F**
- **5% basic accuracy**
- **Zero control with case**

- **$58.95**

Digital LCR Meter

LC-1801

- **$125**

Measures coils 1uf-200uf, caps 1pF-100uf, 10A.

Solderless Breadboards

- **M-1600**
- **$25**
- **3½ digit LCD**
- **1½ DC Acc.**
- **Auto zero/ polarity**

- **$9610 Resistor Blox**
- **47 ohm to 1M ohm 10% pot**
- **$9620 Capacitor Blox**
- **47pF to 10MF**

10MHz XT 100% IBM® Compatible

- **$595**
- **MODEL PC-1000**
- **5 Year Warranty**
- **$9610 Resistor Blox**
- **47 ohm to 1M ohm 10% pot**
- **$9620 Capacitor Blox**
- **47pF to 10MF**

Digital Triple Power Supply

XP-765

- **$249**
- **0-20V at 1A**
- **0-20V at 1A**
- **0.5V at 5A**

Quad Power Supply

XP-580

- **$59.95**
- **2-20V at 2A**
- **12V at 1A**
- **5V at 3A**
- **5V at 5A**

15 Day Money Back Guarantee

C & S SALES INC.

1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (312) 541-3710

WRITE FOR FREE CATALOG
Every preamplifier is precision aligned on ARR's Hewlett Packard HP8720A/HP346A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are RF switched (for use with transceivers) and 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7-1/2% sales tax, C.O.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or Inline preamplifier today and start hearing like never before!

Advanced Receiver Research
Box 1242 • Burlington, CT 06013 • 203 582-9409

ICOM

VHF Communications
280 Tiffany Avenue
Jamestown, New York 14701
PH. (716) 664-6345

industrial Quality REPLACEMENT BATTERIES FOR COMMUNICATIONS
Nickel-Cadmium, Alkaline, Lithium, etc.

Repair Packs For
ICOM, KENWOOD, YAESU, SANTEC, AZDEN, TEMPO, CORDLESS PHONES... AND MORE!

NEW! I.C.E. PACK $49.95

E.H. YOST & CO.
EVERETT H. YOST K9DX
7344 TETIVA RD
SAUK CITY, WI 53583
ASK FOR CATALOG

16 (08) 643-3194

32 Ham Radio/June 1989
Group Captain O. G. Lywood, picked up the phone saying, "Well, we have here the greatest expert on radio propagation in the country and he says the beam theory is all wrong. We’ve wasted a lot of time and let’s not waste any more. This evening’s flight should be canceled!" But Dr. Jones stood his ground. Pointing out that Eckersley’s evidence had neutralized itself because he had said one thing a few months before and now said something quite different, and that enough evidence already existed to convince him, he demanded that Eckersley’s statement should be ignored. He also told Lywood that if the flight was cancelled he would "jolly well let the Prime Minister know who had countermanded his orders." Lywood backed down.

From the Chair, Air Commodore Nutting demanded: "And what do we do if we find the beams?" Quietly Jones whispered to Rowley Scott-Farnie, "Go out and get tight!"

Black night and bright dawn

Dr. Jones went home to spend one of the most miserable nights of his life. "Had I, after all, made a fool of myself and misbehaved so spectacularly in front of the Prime Minister? Had I jumped to false conclusions? Had I fallen for a great hoax by the Germans? Above all, had I arrogantly wasted an hour of the Prime Minister’s time when Britain was about to be invaded or obliterated from the air?"

It was a beautiful summer’s night — the shortest night of a terrible year for Britain — when Flight-Lieutenant Bulton and Corporal Mackie climbed aboard their Anson and flew over the area between Huntingdon and Lincoln. Neither had been told the Knickebein story, but merely to search for beams with Lorenz characteristics. Suddenly on the Hallicrafters receiver they heard signals on 31.5 MHz. Dots!

The aircraft swung to the north. Still dots. Then a continuous note, and later, as expected, a zone of dashes. When the dashes ceased, Bulton and Mackie began intently to plot the beam. The following afternoon Bulton’s report was on Jones’s desk:

1. **There is a narrow beam** (approximately 400 to 500 yards wide) passing through a position 1 mile south of Spalding, having dots to the south and dashes to the north, on a bearing of 104° (284°).
2. The carrier frequency of the transmissions on the night of 21/22 June was 31.5 mc/s, modulated at 1150 cycles and similar to Lorenz characteristics.
3. **There is a second beam** having similar characteristics but with dots to the north and dashes to the south synchronized
The Lorenz System

In 1932, Dr. E. Kramer of the German Lorenz Company began to develop a high-frequency blind landing system on pre-set frequencies between 30 and 33.5 MHz, continuous wave modulated at 1150 Hz. The beacon transmitter and its associated antenna system stood at the end of a runway and had a range of 3 to 5 km (sometimes more depending on conditions) even though the transmitter developed 500 watts. The output was fed to a single dipole, to the left and right of which and at a quarter-wave spacing was a single reflector cut at its center point. A relay was used to alternately close and open the reflector, as shown in Figure 1, whereupon a beam was generated at an angle left and right of the driven element composed of dots to one side and dashes to the other (see Figure 2). These alternating beams partially overlapped each other centrally to give a narrow zone of about 3° angle in which the dots and dashes were heard as a single note, telling the pilot he was on the correct approach (see Figure 3 and 4). A simple presentation unit was also provided in the cockpit which showed the course deviation on a meter; a form of range measurement was furnished by an S-meter arrangement.

Two additional transmitters were employed to aid landing (Figure 5). At a point 3 km before the runway was an early-approach system on 38 MHz with a power of 5 watts, but having a slower keying rate and a lower modulation note. The second system was comprised of a transmitter at 300 meters before the runway, with a higher key rate and modulation tone. Both these systems operated a lamp on the presentation unit to give further visual indication.

The accompanying aircraft receiver was known as the EB 1 (Blind Landing Receiver 1), which was developed from the earlier EBE receiver. The system was made available to Lufthansa in 1934 and the aircraft were fitted with vertical rod antennas, usually quarter-wave whips. Later, the Luftwaffe produced a specification for what was to be called the Blind Landing System FuB 1, and which required two separate receivers — the EB 1 for signals in the range 30 to 33.3 MHz, and the EBL 2 for 38 MHz. All multi-engined aircraft of the Luftwaffe were fitted with these up to 1941.

As war seemed inevitable, Dr. Lohmann of Telefunken developed a much larger system which was called FuS An 721 in 1938. This was an antenna array of metal girders 30 meters high and 90 meters long which revolved on a circular iron track. In the middle was a 50-watt transmitter for 30 to 33.3 MHz. The framework supported 16 vertical wire dipoles and reflectors and was arranged as an angle of 165° (looking down on the array), so that eight two-element antennas were in each leg of the framework. From this “broken neck” appearance, geknickten in German, came the code name Knickebein.

Details of the transmitters and receivers used are, unfortunately, no longer in existence. However, the antenna lobes were similar to those shown in Figure 6, except that the narrow equisignal zone was ±0.3° wide and the keying of the dash/dot system had a ratio of 1:7. The improved receiver, another mark of the EB 1 known as the FuB 1, could receive the beam at a range of 500 km and a height of 6500 meters. The principle was that the main beam was directed at a tar-

with the southern beam, apparently passing through a point near Beeston on a bearing lying between 60°+ and less than 104°.

In other words the director beam was aimed at Derby where the Rolls Royce factory produced engines for the RAF — as Jones had suspected. The impact of Fulton’s report on the meeting that afternoon may well be imagined. Jubilation was in the air. Even “Daddy” Nutting was skipping round the room in delight. All doubts were now dispelled and countermeasures could go ahead urgently.

In the midst of the revelry Scott-Farnie buttonholed Jones: “Remember what you said yesterday?”
So they bowled across to a pub to celebrate.
This is an Amateur Radio License

This is an Amateur Television License

That's right, they are exactly the same. Your technician or higher class amateur radio license gives you the right to own and operate your own amateur television station.

It's Easy....

If you can operate a video camera, you can operate the new AEA Model FSTV-430. The FSTV-430 transceiver connects to the video output of your camera and transmits and receives live or taped video. You can even use two cameras for studio-like operation from your shack.

Fast Scan Television with the new FSTV-430 from AEA gives you live, color television that rivals broadcast quality. In fact, the AEA Vestigial Sideband (VSB) technique is similar to that used by broadcasters.

Inexpensive....

The video camera or camcorder you bought is the most expensive part of a fast scan television system. The AEA Model FSTV-430 is the only transceiver you need. Connect the camera, a 430 MHz antenna, (an amplifier if you want stronger signals) and you're on the air.

And Fun....

Think about it. You can share more than just conversation with your amateur friends. Show your friends the new transceiver you bought, that special antenna project you're working on, or just chew the fat.

For more information on the FSTV-430 and other exiting amateur television products, please contact Advanced Electronic Applications, Inc.
P.O.Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Retail $499.95
Amateur Net $439.95
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech — voice readout of received signal strength, deviation, and frequency error — 4-channel receiver voting — clock time announcements and function control — 7-helical filter receiver — extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MARK 4CR

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

MICRO CONTROL SPECIALTIES

Division of Kendecom Inc.

23 Elm Park, Groveland, MA 01834 (508) 372-3442

TELEX 4932256 Kendecom

FAX 508-373-7304

QEX

The ARRL Experimenters' Exchange and AMSAT Satellite Journal

QEX is a no-nonsense Amateur Radio magazine that will provide you with a monthly supply of useful technical information. As an exchange, it is written by and for serious experimenters.

Feature articles cover a wide variety of subjects such as VHF-microwave, analog and digital design, software, space experiments, propagation research, construction projects and so forth. Articles are presented in the same language used by experimenters.

Because QEX is an exchange, regular reader input and participation is welcomed; here's your chance to make your contribution. If you're an active experimenter working close to the state of the art and want to "network" with others, you need QEX and QEX needs you.

Monthly. For 12 issues to ARRL members: US. $10; Canada and Mexico by first class mail $18; Elsewhere by airmail $36. Non-members add $10 to these rates.

LOGWRITE™

Bring your station into the computer age with LOGWRITE, the menu driven, user friendly logging program written by Ed Troy (N0VY). LOGWRITE is the perfect accessory for the complete ham station. It simplifies your operation and gives you the competitive edge in contesting and DXing. LOGWRITE works with all IBM PC's and compatibles.

LOGWRITE's unique split screen feature allows for simultaneous logging and text processing. Logging features include:

- Instant call sign or prefix search
- Print, Edit, or View records
- Plenty of room for notes & addresses
- Automatic time/date stamping

Text processor features automatic word wrap, backspace correction, and scrolling. Throw away your pen and paper!

To order your copy of LOGWRITE, complete with instructions manual, and pay $24.95 (PA residents add $1.50 sales tax). Airway Consulting

P.O. Box 536, Readingham, PA 19912

(215) 345-7884

Or call 1-800-641-5656 ext. 54 to order with Visa, MasterCard. (Please specify 3.5 or 5-25 inch floppy.)
The principle of the Lorenz blind landing system.

get, and the pilot knew he was on course when a continuous note appeared in the receiver. If he strayed to the left, a preponderance of dots was heard; a swerve to the right produced dashes.

By 1940, ten smaller versions of Knickebein had been built which required only a circular track of 45 meters in diameter. Each leg of the angled frame contained only four sets of vertical two-element arrays, which were broadbanded to tune between 30 and 33.3 MHz by construction from wide-diameter tubing. The range was almost the same in practice as the large Knickebein, although the main beam width was wider at $\pm 0.6^\circ$.

As already mentioned, when in use the main beam was directed at the target, and at a predetermined point some distance before the target was reached it was overlapped by a second beam on a different frequency. This told the pilot his distance in kilometers from his objective. Figure 6 shows the method in more detail.

Although no details remain of the receivers used, it is known that they were t.f types and, as will be seen later, very susceptible to jamming. For this reason a Dr. W. Kloepfer of Lorenz developed a superhet, the EBL 3 H, which needed only slight preparation as it used the same p.s.u. as its predecessor and fitted the same cabinet. This was tunable over a number of channels from 1 to 34 in the spectrum 30 to 33.3 MHz, and could receive the Knickebein transmissions at the same height and range as the earlier model.

Pulling the Crooked Leg

A special unit was set up to counter the beams (which were code named Headaches) under the command of Wing Commander E. B. Addison of No. 80 Wing at Radlett. The technical design of the countermeasures was the responsibility of Dr. Robert Cockburn of the Telecommunications Research Establishment at Worth Matravers. Both organizations were accorded the highest priority.

Receivers were placed on top of the masts of certain stations of the Chain Home RDF (radar) system, and the unlucky operators in these dizzy crow's-nests were connected by telephone with Fighter Command Headquarters at Bentley Priory.

Professor Jones records how he, too, spent a night on top of one of these towers — listening to the signals which Ekersley had said could not be heard even by a bomber at 20,000 feet over England. "When about dusk the German beams were switched on, the men in the towers would be able to pick them up and let us know, for instance, if a beam was going between tower 'A' and tower 'B.' That would give us a clue to the beam's position, and one of our chaps would go up in an Anson and fly back and forth until he picked up the beam, which could then be plotted."

The first jammers were diathermy sets used by hospitals to cauterize wounds. These were requisitioned and tuned to the Knickebein frequencies. Although they only emitted a mush
NEMAL ELECTRONICS

*Complete Cable Assembly Facilities MIL-STD-45208
*Commercial Accounts welcome - Quantity pricing * Same day shipping most orders
*Factory authorized distributor for Alpha, Belden, Kings, Times Fiber

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

HARDLINE 50 OHM
FXA12 1/2" Aluminum Black Jacket............. 89c/ft
FLC12 1/2" Cablewire corr. copper bkr jacket..... 1.59/ft
FLC78 7/8" Cablewire corr. copper bkr jkt........ 4.25/ft
NM12CC N corr. 1/2" corr copper m/l............. 25.00
NM119CC N corr. 7/8" corr copper m/l............. 54.00

COAXIAL CABLES (per ft)
1100 BELDEN 9013 very low loss............. 55
1192 RG6/U 95% shield low loss foam 11g.... 36
1110 RG6 95% shield mini 8... 17
1130 RG213/U 95% shield mil spec NCV flat... 39
1140 RG214/U dbi shield mil spec............. 1.85
1705 RG142/U dbi shield silver, teflon ins... 15.00
1310 RG171/U 50 ohm 5000 watt dbi shield... 98
1450 RG174/U 50 ohm 1000 watt dbi shield... 14

CONNECTORS-MADE IN USA
NE270 Type N plug for Belden 9013........... $3.95
NE271 Type N jack for Belden 9013............. 4.95
PL259AM Amphenol PL259................. 0.80
PL259TS PL259 teflon ins silver plated...... 1.59
PL258AM Amphenol female-female (barrel). 1.65
UG175/U0176 reducer for RG58/59 (specify).... 23
UG212DS N plug for RG212/124 Silver......... 3.35
UG309 N jack to PL259 adapter, teflon...... 6.50
UG144A SC230 to N plug adapter, teflon...... 8.50
UG255 SO239 to BNC plug adapter, Amphenol. 4.29
SO239AM UHF chassis mil receptacle,Amphenol. 89
UG8EC BNC plug RG58. 223. 142

GROUND STRAP-GROUND WIRE (per ft)
G311 3/8" bunched copper braid.............. 40
G312 1/2" bunched copper braid.............. 50
G520 1-1/2" heavy bunched copper braid....... 200
H806 bga insulated stranded wire............ 39
AW14 14ga stranded Antenna wire CCS........ 14

ROTOR CABLE-8 CONDUCTOR
BC1822 B-10ga and 9-22ga.............. 25
BC1820 B-10ga and 9-20ga.............. 39

Prices do not include shipping. S3 minimum. Visa/Mastercard $30 min, COD add $3.00
Call or write for complete price list. Nema's new 40 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $.40 with credit against next ordering.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161
(305) 893-3924 Telex 6975377 24hr FAX (305)896-8178

Hi-Performance Dipoles

Antennas that work! Custom assembled to your center feed or broad band variable feed. High gain omnidirectional rotators available. For improving commercial reception, ham or any use. Contact us for a quote. Order now before the season is over.

Call or write for information.

Box 356
Mineral, Virginia 23117

Tell 'em you saw it in HAM RADIO!
of signals, it was thought that they had some effect on the beams. Installed mainly in police stations, they were switched on when ordered by No. 80 Wing.

Fortunately we had acquired the Lorenz license before the war, so Lorenz transmitters were modified and strategically placed, as were “Meacons,” or mock beacons. The Luftwaffe, with more than 80 radio beacons at their disposal in Germany and occupied Europe, began to find radio navigation an ever-increasing problem. But it was Cockburn’s jammers (code named Aspirins) that were most effective. Immensely powerful, they flooded the beams with dashes and the German pilots, flying into their own dash zones, would steer to find the equisignal only to find Cockburn’s dashes. They would continue turning until they found a dot zone (and Cockburn’s dashes), which often synchronized into a false equisignal.

It was several months before the German pilots had the courage to tell Goering that Knickebein was useless. As it was, our cities suffered severe mauling from the Luftwaffe. Who knows how much worse the loss of life and property our other major cities have heard of Professor R. V. Jones.

Today one wonders how many Londoners and citizens of our other major cities have heard of Professor R. V. Jones.

Figure 6

The antenna pattern of the Knickebein array.

AMATEUR TELEVISION

SMILE! YOU’RE ON TV

Only $299

Designed and built in the USA Value + Quality from over 25 years in ATV... W6ORG

With our all in one box TC70-1 70cm ATV Transceiver you can easily transmit and receive live action color and sound video just like broadcast TV. Use any home TV camera or VCR by plugging the composite video and audio into the front VHS 10 pin or rear phono jacks. Add 70cm antenna, coax, 13.8 Vdc and TV set and you are on the air...it’s that easy!

TC70-1 has >1 watt p.e.p. with one xtal on 439.25, 434.0 or 426.25 MHz, runs on 12-14 Vdc @ 5A, and hot GaAsFet downconverter tunes whole 420-450 MHz band down to ch3. Shielded cabinet only 7x7x2.5”. Transmitters sold only to licensed amateurs, for legal purposes, verified in the latest Callbook or with copy of license sent with order.

Call or write for our complete ATV catalog including downconverters, transceivers, linear amps. and antennas for the 70, 33, & 23cm bands.

(818) 447-4565 m-f 8am-5:30pm pac. Visa, MC, COD

P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006

1.2M-1.5M PARABOLIC DISH/FEED DOWN CONVERTER to 2 Meters

- RCP, LCP, or Linear Polarization
- LNA—NF—1.5dB, G—22dB
- Preselector Filter—Machined 4-Pole Combline
- Microstrip Mixer on high dielectric alumina
- Local Oscillator—Heater Stabilized. +30ppm for CW/SSB
- Down Converter mounted in feed assembly for optimum performance

Frequencies available: 1.296-1.691 GHz. Mode—S—3.456GHz
- Feed Down Converter Assemblies are interchangeable in common feed mount.
- 1.2 Meter or 1.5 Meter Spun Aluminum Dish has mtg. hardware for 1.5” mast.
- Feed Antenna has +5dBiGain, selectable polarization.

PRODUCT PRICE LIST

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDDC-1</td>
<td>595.00</td>
</tr>
<tr>
<td>WDDC-1.5</td>
<td>895.00</td>
</tr>
<tr>
<td>WCFA-(freq)</td>
<td>335.00</td>
</tr>
<tr>
<td>WDDA-(1req)</td>
<td></td>
</tr>
<tr>
<td>WLNA-(freq)</td>
<td>150.00</td>
</tr>
<tr>
<td>WMCF-(freq)</td>
<td>40.00</td>
</tr>
<tr>
<td>WHMM-(freq)</td>
<td>200.00</td>
</tr>
<tr>
<td>WDC-(freq)</td>
<td>225.00</td>
</tr>
<tr>
<td>WCFA-(freq)</td>
<td>335.00</td>
</tr>
<tr>
<td>WDDC-(freq)</td>
<td>595.00</td>
</tr>
</tbody>
</table>

All Products Shipped UPS except Parabolic Dish shipped by Truck— Freight Collect
LINEAR TUNING
WITH A WAR SURPLUS CAPACITOR

Precision dials
based on
frequency measurements

By John Pivnichny, N2DCH, 3824 Pembrooke
Lane, Vestal, New York 13850

Modern commercial transceivers have linear tuning
scales. Whether these scales are analog or digital,
each revolution of the main tuning knob covers
a fixed number of kilohertz across the tuning range. Linear
analog tuning is done with specially designed capacitors that
aren't available to Amateur transceiver builders. I think a first-
class homebrew design should have this capability, and this
article explains how to add it inexpensively.

Capacitor fundamentals

Consider a variable capacitor constructed as shown in Fig-
ure 1A. Capacitance change is made by a horizontal move-
ment rather than a rotary motion. As the movable plate slides
to the right by an amount X, the capacitance at the terminals
(C) decreases an amount ΔC from its value C₀, which is present
when the movable plate is at its left-most position (fully
meshed).
In equation form:
C = C₀ − ΔC
or C = C₀ − kX
(1)
(2)
The constant k represents the change in capacitance per unit
movement in X. Equation 1 is plotted in Figure 2A and:

k = \frac{C}{X}
(3)
The amount of change depends upon the size of the plates
and the spacing. But because the movable plate has straight
sides, the value of k is fixed across the whole tuning range. This

is linear capacitance and it's well known that it won't produce
linear tuning. The high frequencies will be compressed at the
right edge of the dial.

Obviously the capacitance is changing too quickly at the
high-frequency end of the dial. Figure 1B shows an improve-
ment. The rectangular movable plate has been replaced by
a triangle of height h and base b. The terminal capacitance
now depends upon the area of the meshed triangle. The tri-
gle's base and the height change with horizontal motion X.
In equation form:

C = \frac{1}{2} (b - X) (h - \frac{h}{b} X)
(4)
C = \frac{1}{2} (bh - 2hX + \frac{h}{b} X^2)
(5)

Equation 5 (plotted in Figure 2B) shows that the capaci-
tance changes more slowly at the high-frequency end of the
dial, due to the parabolic shape represented by Equation 5.
LOW BAND DX-ING COMPUTER PROGRAMS
by John Derwidera, OA4UN - 30 programs for Apple II, MS-DOS, Commodore C-128 and Kaypro CPM Computers
Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: short and series input, network design, helix transformer, short network design, SWR calculation, plus 11 more! General ham programs include: sunrise/sunset, great circle distances, grayside, vertical antenna design program, sunrise calender plus 9 more! © 1986.
- UN-Apple II $39.95
- UN-MS (MS-DOS) $39.95
- UN-CPM/Kaypro $39.95
- UN-C-128 (COMMODORE C128) $39.95
- UN-MAC (MACINTOSH) $49.95
- UN-C64 (COMMODORE C64) $39.95

NRJ's ELECTRONIC SECOND OP for MS-DOS computers, V1.91
by Jim Rafferty, NRJ
The world famous SECOND OP is now available in a state-of-the-art computerized data base. This program, written for MS-DOS computers, is a must for DXers, contesters and all amateurs interested in reliable DX communication. Data can be displayed either in columnar format or in full screen display. Unknown callsigns can be entered and compared to the IFFI callsigns - ideal for easy identification. There's plenty more too such as: postal rates, beam headings and QSL bureaus to name just a few. Great program to have in your shack. Order yours today! © 1988 MS-DOS version. 3/4 level. Please specify your version.
- CB-NJ (MS-DOS Computers) $59.95

HAM DATA

MASTERC LOG New Version
Master Log creates a file of 2100 individual records with up to 13 different entries per record. It can do a search and select based on frequency, mode and keep track of DXCC and WAS status, prints QSL labels and can search its whole file in less than 5 seconds! Complete documentation is included to help you learn and use this truly state-of-the-art logging program. © 1988.
- CHD-ML (For C-64) $28.95

SUPER LOG
Super Log gives you all the advantages of a computerized data base without significantly changing the traditional log format. Super Log also allows you to print out either selected contacts or the whole log. Will print QSLs.
- CHD-SL (For C-64) $19.95

CONTEST LOG
This disk contains four different contest programs, ARRL Sweepstakes, Field Day, Universal WW Contest log, plus a dupe checking routine. Automatically enters date, time, band and serial number for each contact. When the contest is over, the program will print your results listing all dupes and sorted contacts in sequential order with notes and necessary information as well as complete statistics at the bottom of the page.
- CHD-CL (For C-64) $24.95

DX EDGE MS-DOS AND C-64 software
Particularly helpful in determining long path and grey line openings. Super fast and simple. Features make this program a treat to use. The MS-DOS version also includes a close up icon for detailed examination, a field calculator and a great circle bearing. All call sign prefixes and country name are included in the data base to use for easy searching of locations. MS-DOS version also color compatible. Requires 2 disk drivers, 348K of memory, Hercules, CGA or EGA graphics and DOS 2.1 or later.
- DXN-DOS (IBM or compatible computers) $34.95
- DXN-C64 (C-64 computer) $34.95
- DXN-DX (alide version) $22.95

HAM RADIO'S BOOKSTORE

Please enclose $3.75 shipping and handling.

Greenville, NH 03048
(603) 878-1441

TELEX hy-gain
TELEX COMMUNICATIONS, INC.
Data for rectangular, A, and triangular, B, capacitor plates. Capacitance scale is arbitrary.

Unfortunately, this isn’t exactly the curve necessary for a linear frequency scale, but now you have the background to get there.

Think of the top edge of the movable plate as representing an equation with the X axis starting at the right edge and going left. This reversal is necessary because frequency increases as capacitance decreases. The Y coordinate is given by the height of the variable plate at each X coordinate.

The equations are:
rectangle: \(Y = h \) for \(0 < X < b \) (6)

triangle: \(Y = h - \frac{h}{b} X \) for \(0 < X < b \). (7)

They are shown in Figure 3A and 3B and represent the plate shapes of Figure 1 — except for that of the X axis in its normal position (i.e., going right).

Figure 3 gives the slopes (actually the negatives of the slopes) of the data plotted in Figure 2. You can get the shape of the movable plate for any capacitance equation of Figure 2 by taking the slope, as shown in Figure 3.

You want a capacitance equation that produces linear tuning. For a parallel LC-tuned circuit the resonant frequency is given by:

\[f = \frac{1}{2\pi\sqrt{LC}} \] (8)

Solving for \(C \):

\[C = \frac{1}{4\pi^2fL} \] (9)

If the frequency increases linearly, the capacitance must decrease as the reciprocal of the square of the frequency. Suppose you want to cover the 3 to 4-MHz range. This is a 1:1.333 frequency ratio. Figure 4 shows how the capacitance must change across the frequency range. Note the shape of the curve; the correct one will be the curve corresponding to Figure 2 for linear tuning over a 1:1.333 ratio.

The capacitance curve will be the same for any 1:1.333 tuning ratio. The exact range will be set by inductance L, whether it’s 3 to 4 or 6 to 8 MHz. However, another tuning ratio will require a different Figure 4 curve.

This means that you can only build a linear frequency tuning capacitor for one frequency ratio. These types of capacitors are specified by their minimum and maximum capacitances and frequency ratios. But you may require a certain fixed capacitor in parallel with the tuning capacitor to achieve the correct curve from Figure 4. It’s possible to design a linear frequency capacitor to allow for stray or feedback capacitance from the oscillator circuit.
AL-80A LINEAR AMPLIFIER

The AL-80A will provide a signal output that is within 1/2 "S" unit of the signal output of the most expensive amplifier on the market—and at much lower cost.

The Ameritron AL-80A combines the economical 3-500Z with a heavy duty tank circuit to achieve nearly 70% efficiency from 160 to 15 meters. It has wide frequency coverage for MARS and other authorized services. Typical drive is 85 watts to give over 1000 watts PEP SSB and 850 watts CW RF output. A new Pi-L output circuit for 80 and 160 gives full band coverage and exceptionally smooth tuning.

Size: 15½"D x 14"W x 8"H. Wgt. 52 lbs.

AL-1200 LINEAR AMPLIFIER

3CX1200 TUBE

Full legal output with 100 watts drive

AL-1500 LINEAR AMPLIFIER

8877 TUBE

Full legal output with 65 watts drive

The cooling system in both amplifiers keeps the tube safely below the manufacturers ratings even when operating at 1500 watts output with a steady carrier. The filament supply has inrush limiting to insure maximum tube life.

Size: 18½"D x 17"W x 10"H. Wgt. 77 lbs.

AL-84 LINEAR AMPLIFIER

The Ameritron AL-84 is an economical amplifier using four 5M6 tubes to develop 400 watts output on CW and 600 watts PEP on SSB from 160 through 15 meters. Drive required is 70 w typical, 100 w max. The passive input network presents a low SWR input to the exciter. Power input is 900 watts. The AL-84 is an excellent back-up, portable or beginner's amplifier.

Size: 11½"W x 6"H x 12½"D. Wgt. 24 lbs.

ATR-15 TUNER

The Ameritron ATR-15 is a 1500 watt "T" network tuner that covers 18 through 30 MHz in 10 dedicated bands. Handles full legal power on all amateur bands above 18 MHz.

Five outputs are selected from a heavy duty antenna switch allowing the rapid choice of three coaxial lines, one single terminal feed or a balanced output. An internal balun provides 11 or 41 ratios (user selectable) on the balanced output terminals.

A peak reading wattmeter and SWR bridge is standard in the ATR-15. It accurately reads envelope powers up to 2KW.

Size: 6"H x 13¼"W x 16½"D. Wgt. 14 lbs.

RCS-4 FOR CONVENIENT INSTALLATION

No control cable required. Selects one of four antennas. VSWR: under 11 to 1 from 1.8 to 30 MHz. Impedance: 50 ohms. Power capability: 1500 watts average, 2500 watts PEP maximum.

Available at your dealer. Send for a catalog of the complete AMERITRON line.

RCS-8V FOR SPECIAL APPLICATIONS

Selects up to five antennas. Loss at 150 MHz: less than 1 db. VSWR: under 1.2 to 1 DC to 250 MHz. Impedance: 50 ohms. Power capability: 5 kW below 30 MHz, 1 kW at 150 MHz.

For more information: (601) 323-9715 • Technical inquiries: (419) 531-3024
You've bought our replacement batteries before...
NOW YOU CAN BUY DIRECT FROM US, THE MANUFACTURER!

JUNE SPECIAL!

ICOM-8(S) Complete Battery Pack.
An additional 10% OFF Special introductory offer for all orders received in June.

SPECIAL: CAMCORDER BATTERY
Panasonic's equivalent — PB-80 — $40.00. An additional 10% savings over normal pricing.
Look for JULY special.

ICOM
CM2, PB2 7.2v @ 500MAH
CM5, PB5 10.8v @ 500MAH
SUPER 7S & 8S
13.2v @ 1100MAH
9.6v @ 1200MAH
(base charge only - 1” longer)
Introductory Offer!
SUPER 7S & 8S - $54.95 each

YAESU/MAXON
* FNB-10 7.2v @ 600MAH
* FNB-12 12v @ 500MAH
* FNB-10(S) 7.2v @ 1000MAH
* same size case as FNB-12
Introductory Offer!
P4W 11v @ 500MAH - $22.63
FNB-2 11v @ 500MAH - $22.63

CUSTOM MADE BATTERY PACKS & INSERTS
Made to your specifications.
Introductory Offer!
KENWOOD INSERTS
PB-21 - $13.75, PB-25 - $20.00,
PB-26 - $20.00
ICOM INSERTS
BP-5 - $23.00, BP-3 - $18.95,
BP-7, BP-8

SOURCE FOR ALL YOUR COMMUNICATION BATTERY REPLACEMENT NEEDS.
W & W ASSOCIATES
29-11 Parsons Boulevard, Flushing, N.Y. 11354
WORLD WIDE DISTRIBUTORSHIPS AVAILABLE. PLEASE INQUIRE.
In U.S. & Canada Call Toll Free (800) 221-0732 • IN NYS (718) 961-2103 • Telex: 51060 16795 • FAX: (718) 461-1978

KENWOOD

WACOM DUPLEXERS
Our Exclusive Bandpass-Reject Duplexers
With Our Patented
\[B_p, B_c, \text{CIRCUIT}^\circ \text{FILTERS} \]
provide superior performance especially at close frequency separation
Models available for all commercial and ham bands within the frequency range of 30 to 960 MHz.

CALL
817/848-4435

GALLATIN RADIO SUPPLY
Expert repair of Ehrhorn ALPHA 76A, 374A, 78 and 77D series amplifiers.
Also specializing in state-of-the-art repair and modification of the Collins KWM/HF-380 series radios. Latest up-dates available. Factory Authorized. You won’t believe the improvement in your radio when it gets back!

Call for more information or to schedule your work.
Gallatin Radio Supply
Attn: Kirby Van Horn
P.O. Box 60064
Houston, Texas 77205
(713) 320-2324

Authorized MADISON Electronics repair facility.
Equation 10 data shows shape of capacitor plate to give capacitance curve of Figure 4.

To determine the plate shape needed to give the capacitance curve of Figure 4, take the derivative of Equation 9:

\[
\frac{dC}{dF} = \frac{-1}{2\pi^2 f^3}
\]

The top edge of the capacitor must vary as the reciprocal of the cube of the frequency (ignore the negative sign).

This curve is plotted in Figure 5 for the 1:1.333 frequency ratio. The inductance is used to set the exact frequency range once again. The analysis gets more complex if you’re removing a final amount of capacitance to allow for circuit capacitance. It can be done, but I won’t discuss that process in this article.

You could trace Figure 5, place the tracing on a piece of sheet metal, cut out one or more plates, and use them to construct a linear frequency tuning capacitor with horizontal motion. I haven’t tried this yet; maybe one of you will. What about a rotary capacitor? The mathematics are analogous using polar coordinates. I haven’t included it here, but the principles are the same. Like the linear frequency tuning capacitor, a rotary linear frequency capacitor is good for only one frequency ratio. That ratio can be scaled to any range by inductance selection, and the variable capacitor may allow for a fixed external capacitance in the oscillator circuit.

Now that the background is out of the way, I’ll describe how to build an oscillator using a precision variable capacitor available at little or no cost.

Tuning capacitor

The 35 to 150-pF main tuning capacitor from ARC 5 WWII command-set transmitters is one of the finest variable capacitors available to Amateurs. It is still listed in Fair Radio Sales catalogs. You can buy the capacitor alone or purchase the whole transmitter (not all of them come complete). The same capacitor seems to have been used for the 2.1 to 3.3 to 4.4 to 5.3, 5.3 to 7, and 7 to 9.1-MHz models. Actually, the transmitters contain two similar capacitors. The only difference between them is that the front one, used for tuning the final amplifier, has a dial drive attached. Many old-timers may still have these caps in their junkboxes. The capacitor is shown in Photo A.

A worm drive with an anti-backlash gear moves the adjustable plates. Exactly 96 turns of the shaft take the capacitor through 360 degrees. Of course, you can only use a maximum of 180 degrees; I recommend slightly less to avoid errors at the beginning and end.

In capacitors with the dial drives, the worm drive moves the plates while another set of anti-backlash gears rotates the dial. Exactly 99 turns of the shaft move the dial through 720 degrees, or two revolutions. Because of this difference, you shouldn’t rotate the capacitor 360 degrees. The dial will be off by three turns of the shaft after it revolves twice.

An examination of the dials shows that they’re not linear. For example, 3.7 turns of the main shaft move the dial from 3.4 to 4.1 MHz, but 3.2 turns are needed to move it from 5.2 to 5.3 MHz. Photo B shows two representative dials.

Because these capacitors have excellent gear drives, I decided to determine just how far off they would be for typical Amateur tuning ranges. After all, 7.0 to 9.1 MHz is a pretty wide range for Amateur use. Even a capacitor with linear capacitance plates can give a fairly good approximation of linear frequency over a small frequency ratio. The plates on this capacitor are closer to linear frequency; there is a smaller radius at the high-frequency (minimum capacitance) end than at the low-frequency one.

Frequency error

I mounted a circular protractor on the dial drive in place of the surplus dial and took frequency measurements every 10 degrees from 0 to 300. The protractor was placed at the point...
where the plates were fully meshed (330 degrees). I used a homebrew frequency counter to take readings to the nearest 5 kHz. The raw data is shown in Table 1.

The oscillator circuit is shown in Figure 6. I chose values and adjusted the inductance for the feedback capacitors, Cx, and coupling capacitor to cover a 4 to 5.3-MHz range.

The plot of frequency versus dial rotation shown in Figure 7 looks good, but this kind of plot can be misleading. Very large, inherent errors of greater than 10 kHz are present. There are measurement errors based on how accurately the dial is positioned in reference to the 10-degree marker on the protractor scale. There's also a ±2.5-kHz error; I recorded the frequency only to the nearest 5 kHz when I could have taken it to the nearest Hz with this counter.

I used a curve-fit technique to minimize or average out the measurement errors. Drawing a straight line (mathematically) through the data points minimizes the frequency error between the raw data points and the straight line. This is referred to as linear least-square curve fitting because the sum of the squares of the errors is minimized.

Using a straight line like this is the best way to match a linear dial over the frequency ratio selected. You can adjust the oscillator circuit's "fixed" capacitor and inductor to achieve the same deviation from a linear dial that you'd get from the

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test data taken to determine dial position and frequency of a surplus WWII command-set capacitor.</td>
</tr>
<tr>
<td>Dial Position</td>
</tr>
<tr>
<td>(degrees)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>170</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>260</td>
</tr>
<tr>
<td>270</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>290</td>
</tr>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

Oscillator circuit used for frequency-error measurements.

Plot of frequency versus dial rotation looks linear but can be misleading. Measurement errors are minimized using a curve-fit technique as in Figure 10.

Plot of frequency error versus dial rotation. A least-squares curve fit minimizes errors.
deviations between the measured data and the best straight-line fit. Figure 8 shows a plot of the deviations for the 4 to 5.3-MHz range. It’s easier to see how far off a linear dial will be with the plot in Figure 8 than it is with the one in Figure 7.

At the low end of the dial the error starts off positive; that is, the actual frequency will be about 10 kHz higher than indicated on the dial. In the center the error is 10 kHz negative, and at the high-frequency end it’s 10 kHz positive again. At two points the frequency will match the dial reading exactly. The parabolic nature of the error curve is rather ragged in appearance, undoubtedly due to the measurement errors indicated earlier.

Numerous computer programs are available for curve-fit calculations. Some sophisticated calculators have this feature. You can do the calculations yourself using a simple calculator and the formulas from a math or statistics textbook. I recommend using a computer; even the smallest personal computer can handle the calculations. Some programs can also calculate higher order curves, in addition to straight-line fits.

I smoothed the ragged appearance of the error curve in Figure 8 in two ways. For actual frequency measurements, I took more care in positioning the dial directly under a cross hair while recording the frequency to the nearest 1-kHz reading. In addition, I made a second-order curve fit to the raw data. Because the error curve seems to have a parabolic shape, a second-order curve (parabola) fits the raw data quite well.

Figure 9 shows the error curve for a straight-line fit to the raw data of Table 2. I took frequency readings to the nearest kilohertz for each single turn of the main shaft. I made 49 turns and selected the 42 center readings to eliminate errors at the ends of the capacitor range. My readings covered about 300 degrees of the main dial, including the 3746 to 4083-kHz range. Figure 10 shows the plot of raw data versus a square fit (parabola), along with the resulting error. There’s a less than 1-kHz error; the random scatter indicates the fit is as good as possible and is probably limited by measurement errors.

Using the smoothed raw data (parabola), I can find the best straight-line fit to determine the error from a linear dial. Figure 11 shows the result of my calculation. Now compare Figure 11 with Figure 10 and you’ll see that raggedness introduced by the measurement error has been removed; however, the basic error remains. This basic error results from the incorrect shape of the capacitor plates used over the particular frequency ratio in Table 2.

How does the error for this type of precision-tuning capacitor change with the frequency ratio covered? True straight-line frequency capacitors are designed for only one frequency ratio. Does this capacitor have a ratio where the error will be at its lowest?

<table>
<thead>
<tr>
<th>Frequency readings between 3746 and 4083 kHz taken to produce error as a function of capacitor shaft rotation in Figure 10.</th>
<th>Turning</th>
<th>Frequency</th>
<th>Turning</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(turns)</td>
<td>(kHz)</td>
<td>(turns)</td>
<td>(kHz)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3746</td>
<td>26</td>
<td>3950</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3750</td>
<td>27</td>
<td>3958</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3756</td>
<td>28</td>
<td>3965</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3763</td>
<td>29</td>
<td>3972</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3772</td>
<td>30</td>
<td>3979</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3780</td>
<td>31</td>
<td>3986</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3789</td>
<td>32</td>
<td>3993</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3798</td>
<td>33</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3807</td>
<td>34</td>
<td>4006</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3816</td>
<td>35</td>
<td>4013</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3824</td>
<td>36</td>
<td>4020</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3833</td>
<td>37</td>
<td>4026</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3842</td>
<td>38</td>
<td>4032</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3850</td>
<td>39</td>
<td>4039</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3858</td>
<td>40</td>
<td>4044</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3867</td>
<td>41</td>
<td>4051</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3874</td>
<td>42</td>
<td>4057</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3882</td>
<td>43</td>
<td>4063</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3890</td>
<td>44</td>
<td>4069</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3898</td>
<td>45</td>
<td>4074</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3906</td>
<td>46</td>
<td>4078</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3913</td>
<td>47</td>
<td>4083</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3921</td>
<td>48</td>
<td>4085</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3929</td>
<td>49</td>
<td>4083</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3936</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3944</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Smoothed raw data (parabola) is used to find the best straight-line fit to determine the error from a linear dial.

More measurements

I tried a variety of tuning ratios using the procedure just described. I selected fixed capacitors from 50 to 500 pF and investigated frequency ratios from less than 1.1:1 to over 1.3:1. My tuning range was about 200 kHz to over 1300 kHz at the center dial frequency of 4.6 MHz. I calculated the percentage error by dividing the error at the dial center by the tuning range. As I mentioned previously, you can make the error small for almost any capacitor by restricting the tuning range. Calculating the percentage error, however, highlights the true error of the capacitor.

The results are shown in Figure 12. Note that the error is positive at the dial center for ratios below 1.25:1 and negative for ratios above. This reverses the parabolas of Figures 8 and 9. As it turns out, the best ratio is 1.25:1. The error here seems to be very close to zero. In fact it's less than 0.1 percent.

Practical use

With errors this small, you can construct high-performance linear tuning dials. For example, a 500-kHz range can be covered with less than 0.5-kHz error. You could also use the circular protractor degree markings to cover the 300 kHz from 1.2 to 1.5 MHz.

Transceiver builders are interested in the 4.8 to 6-MHz range. By using just the top 5.5 to 6 MHz, you can build a nice master VFO. It's also possible to make a remote VFO for use with the popular commercial transceivers. Precision linear dials are practical for Amateur measuring instruments like signal generators and R-X bridges. I'm sure you can find many more applications.

I have one suggestion that should make your transceiver front panel layout more attractive. Mount the capacitor at an angle so the main shaft is aligned directly below the center of the dial as shown in Figure 13.

Conclusion

The theory of linear tuning capacitors led me to explore the use of surplus capacitors in Amateur applications. I've given construction details for practical precision dials. Remember that it's important to select a 1.25:1 frequency ratio for 300 degrees rotation of the main dial.

Transceiver application.

I still don't know why the original dials from WWII gear are nonlinear. They appear to use a 1.32:1 frequency ratio. Was the capacitor designed for one ratio, but used with another? Was it a trial-and-error procedure that was put aside too soon? I'd like to hear from anyone who knows what happened.

19th ANNUAL INDIANAPOLIS HAMFEST™
And CENTRAL DIVISION ARRL CONVENTION
And COMPUTER SHOW
July 8-9, 1989
Marion County Fairgrounds — Gates open 6:00 AM both days
2 Full Days of: Commercial Exhibitors, Large Flea Market, Hourly Awards, Forums
FREE: Parking, Kids Awards, Camping, Women's Awards
Indiana's Largest Electronic Flea Market, Amateur Radio and Computer Display

INDIANAPOLIS HAMFEST, P. O. Box 11776, Indianapolis, IN 46201
For Information Call: (317) 356-4451
If You Want the Most Advanced TNC Today...

In 26 countries around the world, tens of thousands of amateurs know that Kantronics is the leader in bringing tomorrow's technology to their stations today. They also know they will always be among the first to incorporate just-introduced features and modes with Kantronics software and firmware updates.

And, they know that Kantronics is unique in its ability to seek out, develop and incorporate the most advanced features into each of five different TNC models before anyone else. Why? Because every program Kantronics writes, and every unit Kantronics designs and produces are born right here at the factory in the U.S.A.

Meet Your Mailman

In this age of telco LANS, E-mail and FAX, you will know you have mail in your Personal Packet Mailbox™ when your KAM "STA" LED is blinking. New firmware level 2.85 has also added a handy automatic mailbox user-connect. So save your computer and monitor life by turning them off when you are away, and never miss a beat on the airwaves.

Version 2.85 KAMs have increased Packet Cluster™ compatibility, KA-NODE™ path preservation, KA-NODE recognition of the “NET” nodes and HF baud rates from 50 through 300! And there are three new mailbox commands: List Mine, Read Mine and Kill Mine.

and Tomorrow...

Will the Real Dual-Port Please Stand Up?

Read our lips. The KAM™ is the only true dual-port when it comes to packet. Your Personal Packet Mailbox™ is accessible from both HF and VHF! Version 2.85 has dual-port compatibility with RLI/MBL boards and KISS mode for both ports. You can monitor HF and VHF packet operations at the same time. Users can even gateway from HF to VHF (or in reverse) through your KAM.

Kantronics All-Mode™ (KAM) has Packet, WEFAX, ARQ, FEC, RTTY and CW reception. But we have five models to suit your particular taste. Ask your dealer for the best choice today...and tomorrow.
OUTLET IN THE WORLD

Now
STORE BUYING POWER

9

MA-40
40' TUBULAR TOWER
$995 $629

MA-550
55' TUBULAR TOWER
$1369 $999

TX-455
55' FREESTANDING CRANK-UP
$249

Towers rated to EIA specifications. Other models at great prices in stock for quick delivery.

PK-232 Multi-mode Data Controller

- New IBM Fax Screen Display Program Available
- Transmit/Receive on Six Modes
- CW/RTTY/ASCII/AMTOR/Packet/FAX
- IBM and Commodore terminal programs available
- Radio Ports for HF and VHF

In Stock for Quick Delivery
Free Shipment

Kantronics/KAM

True dual port - simultaneous HF/VHF packet operation
- Personal Bulletin Board
- RTTY/ASCII/AMTOR/CW/Weather Fax
- Programmable MARK and SPACE tones
- Terminal programs for PC compatibles and Commodore
- WEFAX programs for PC, Commodore, and Macintosh

One-year Warranty CALL FOR LOW, LOW PRICE

All Major Brands in Stock Now!

Call any of our 800 numbers coast to coast from most parts of the country.

CALL TOLL FREE
IN CALIFORNIA CALL STORE NEAREST YOU

1-800-854-6046
1-800-444-7927
1-800-444-4799
1-800-444-0047

VISA MasterCard

Toll free including Hawaii. Phone Hrs. 7:00 am to 5:30 p.m. Pacific Time. California and Georgia customers call or visit nearest store. California, Arizona, Georgia and Virginia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
100W, 100kHz to 30MHz
HF ALL BAND TRANSCiever
Dual VFO system
SALE! CALL FOR PRICE

THE ULTIMATE
150 W, ALL BAND
HF TRANSCiever
GREAT PRICE!

YOU CAN OPERATE SIX BANDS
WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz, 10 MTR 8 MTR
220 MHz & 1.2 GHz 10 MEMORIES
ARE YOU READY FOR
1.2 GHz OPERATION?

HOW MUCH IS IT?
FREE SHIPMENT!

CALL TOLL FREE
IN CALIFORNIA CALL STORE NEAREST YOU
1-800-854-6046 1-800-444-7927 1-800-444-4799 1-800-444-0047

Toll free including Hawaii. Phone Hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store.

Call any of our 800 numbers coast to coast from most parts of the country.

All Major Brands in Stock Now!
Quartz Crystals for Industrial Equipment/Instrumentation
- Microprocessor control
- Computers/Modern
- Test/Masurement
- Medical

General Communications
- Channel element Service (HF/URH)
- Land Mobile 2-way
- Marine
- Aircraft
- Security
- Monitors/Scanners/Pagers

Amateurs2-Meter/General Coverage
CB/Hobbies/Experimenter

Quartz Crystals for Industrial Application
Incorporating special printed circuitry, Crytek offers a complete line of quartz crystals designed and manufactured by the latest automated technology. Custom designed or "off-the-shelf," Crytek meets the need, worldwide. Write or call today!

ANTENNA ANALYSIS
The new MN program will analyze almost any antenna made of wire or tubing. Compute forward gain, P.I.R. beamwidth, sidelobes, current, impedance, VSWR, nearfields, far-fields, in free space or over realistically-modeled earth. Plot antenna radiation patterns on your graphics screen. MN can compute the interaction among several nearby antennas. The 5-1/4" MN disk contains over 100 files, including libraries of antennas and plot files, a file editor, and extensive documentation. MN is an enhanced, easy-to-use version of MININEC for IBM-PC. $75 ($80 CA & foreign).

YAGI OPTIMIZER
The remarkable new YO program automatically adjusts Yagi element lengths and spacings to maximize forward gain, optimize pattern, and minimize SWR. Radiation patterns at band center and edges are updated on your screen during optimization. YO is extremely fast, computing several trial Yagi designs per second with 8087. YO is a complete Yagi design package for IBM-PC, containing models for gamma and hairpin matches, element tapering, mounting plates, and frequency scaling. A library of Yagi files and extensive documentation are included. $90 ($95 CA & foreign).

To order, send a check to:
Brian Breezy, RRST, 597-1/2 Taquer, VA 22084

Say you saw it in ham radio!

Invitation to Authors
Ham radio welcomes manuscripts from readers. If you have an idea for an article you’d like to have considered for publication, send for a free copy of the ham radio Author’s Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

2x4Z BASE REPEATER ANTENNA

The highest gain dual band base/repeater antenna

High power 200 watts

Center frequency
146.500 MHz
446.500 MHz

Gain:
VHF - 8.2dB
UHF - 11.5dB

VSWR - 1.2 or less

Connector:
N type female

Lightning Protection
Grounded direct

Length: 16 ft.
Weight: 5 lbs. 3 oz.
Wind load: 90 MPH
Mounting: Up to 2 in.
 Mast
Can simulcast on both bands

Waterproof Connecting Joints

UPS Shipable

Amateur Special

1275 North Grove St.
Anaheim, Calif. 92806
(714) 630-4541
Cable: Natcolglaz
Fax (714) 630-7024
Practically Speaking

Joe Carr, K41PV

PART 1
HIGH-FREQUENCY DIPOLE ANTENNAS

Last month I discussed the basic ingredients of the dipole antenna. This antenna has acquired an undeservedly poor reputation in an era of multiband beams and other costly antennas. When installed correctly (which is easy to do), the dipole turns in a credible performance. In fact, some poorly constructed (or designed) commercial three-element beam antennas perform only as well as a dipole at the same height. The dipole antenna performs well for the money, time, and brainpower invested. This month I'll take a second look at this antenna and discuss how you might go about tuning one. I'll also describe dipole variants like the broadbanded and loaded dipoles.

Tuning the dipole antenna

There are two issues to address when tuning an antenna (any antenna, not just the dipole): resonance and impedance matching. Although they are frequently treated in the literature as the same issue, they are not. In this article I'll deal primarily with the process of tuning the antenna to resonance. Not all antennas are resonant, but the dipole is.

There's a lot of misinformation on antenna tuning. Perhaps much of what is believed is a result of using VSWR as the indicator of both resonance and impedance matching. Many people honestly (but erroneously) believe that the VSWR can be "tuned out" by adjusting the feedline length. That myth probably derives from the fact that voltage or current-sensing instruments are used for VSWR measurement, and these are affected by transmission line length. But the problem lies in the instruments; it's not a fact of radio physics. Another factor which leads to confusion is that varying the line length may provide an impedance transformation that matches the antenna to the transmitter, but doesn't address the point that the antenna is off resonance and therefore less efficient.

There's only one proper way to tune a dipole antenna — adjust the length of the antenna elements. You don't adjust the transmission line. As I mentioned when discussing construction methods last month, you leave the electrical connections at the center insulator unsoldered so you can make these adjustments.

The minimum point in the VSWR curve is the resonance indicator. Figure 1 shows a graph of VSWR versus frequency for several different cases. Curve A represents a disaster — a high VSWR across the band. The actual VSWR value may be anything from about 35:1 to 10:1 (or thereabouts), but the cause is the same. The antenna is either open or shorted, or is so far off resonance that it appears open or shorted to the VSWR meter.

Curves B and C represent antennas that are resonant within the band of interest. Curve B represents a broadbanded antenna that's relatively flat across the band, and doesn't exhibit excessive VSWR until the frequency is outside the band. Curve C is also resonant within the band, but this antenna has a lot higher Q than curve B. In the simplest sense the broadbanded antenna is best, but that statement is true only if broadness is not purchased at the expense of efficiency. Resistive losses tend to broaden the antenna frequency response but also reduce its effectiveness. The antenna is effectively "broadbanded," as seen by the transmitter, by the addition of the equivalent of a power-absorbing resistor at the feedpoint. Again, it's undesirable if this broadbandedness is purchased at the cost of increased loss.

Curves D and E in Figure 1 are resonant outside the band of interest. The D curve is resonant at a frequency on the low side of the band, making that dipole too long. In this case you need to shorten the antenna to raise the resonant point inside the band. Curve E represents an antenna that's resonant outside the upper limit of the band; this antenna is too short and must be lengthened. Because the antenna is frequently too short, cut the elements longer than necessary at first.

How much you cut depends on two factors: how far the resonant point is from the desired frequency, and which band you're working on. The second requirement results from the fact that the "frequency per unit" length varies from one band to another. Let's look at an example of how to calculate this figure. The procedure is simple:

- Calculate the length required for the upper end of of the band.
- Calculate the length required for the lower end of the band.
- Calculate the difference in lengths for upper and lower ends of the band.
- Calculate the width of the band in kilohertz by subtracting the difference between the upper frequency limit and the lower frequency limit.

Ham Radio/Jun 1989 53
VSWR versus frequency for several cases.

- Divide the length difference by the frequency difference; the result is in kilohertz per unit length.

Example

Calculate the frequency change per unit of length for 80 and 15 meters.

Solution:

For 80 meters (3.5 to 4.0 MHz):
\[L_{ft} = \frac{468}{4} \text{ MHz} = 117 \text{ feet} \]
\[L_{ft} = \frac{468}{3.5} \text{ MHz} = 133.7 \text{ feet} \]
Difference in length: 133.7 feet - 117 feet = 16.7 feet.

Frequency difference: 4000 kHz - 3500 kHz = 500 kHz.

Calculate frequency/unit length: 500 kHz/16.7 feet = 30 kHz/foot.

For 15 meters (21.0 to 21.45 MHz):
\[L_{ft} = \frac{468}{21.45} = 21.82 \text{ feet} \]
\[L_{ft} = \frac{468}{21} = 22.29 \text{ feet} \]
Difference in length: 22.29 feet - 21.82 feet = 0.47 feet.

Convert to inches: 0.47 feet x 12 inches/foot = 5.64 inches.

Frequency difference: 21,450 kHz - 21,000 kHz = 450 kHz.

Calculate frequency/unit length: 450 kHz/5.64 inches = 80 kHz/inch.

The frequency change per foot at 80 meters is small, but even small changes can result in very large frequency shifts at 15 meters. You can calculate approximately how much to add or subtract from an antenna under construction using this kind of calculation. If, for example, you design an antenna for the so-called "international net frequency" on 15 meters (21,390 kHz), but find the actual resonant point is 21,150 kHz, then the frequency shift required is 21,390 - 21,150, or 240 kHz. To determine how much to add or subtract (as a first guess):

- The factor for 15 meters is 80 kHz/inch, which is the same as saying 1 inch/80 kHz.
- The required frequency shift is 240 kHz.
- Therefore:
 \[\text{Length change} = 240 \text{ kHz} \times \frac{1 \text{ inch}}{80 \text{ kHz}} \]
 \[\text{Length change} = 3 \text{ inches} \]

Each side of the antenna must be adjusted by half the length calculated above, or 1.5 inches. Because the first resonant frequency is less than the desired one, you should shorten the length by 1.5 inches. Once the length is correct (as proven by the VSWR curve), solder the connections at the center insulator to make them permanent, and hoist the antenna back to operating level.

You can see the difference between resonance and impedance matching in the value of the VSWR minimum. While the minimum indicates the resonant point, the value of that minimum is a measure of the relationship between the feedpoint impedance of the antenna and the characteristic impedance of the transmission line. Last month you learned that:

\[Z_o > R_r: \quad \text{VSWR} = \frac{Z_o}{R_r} \quad \text{(1)} \]
\[Z_o < R_r: \quad \text{VSWR} = \frac{R_r}{Z_o} \quad \text{(2)} \]

Where:

- \(Z_o \) is the coaxial cable characteristic impedance.
- \(R_r \) is the radiation resistance of the antenna.

Although knowing the VSWR won't tell you which situation is true, you'll know that there's a high probability that one of them is. Experiment to find which is the case. Of course, if the VSWR is less than about 1.5:1 or 2:1 then forget about it; the improvement isn't generally worth the expense and cost. When the transmission line is coupled to a transmitter that's equipped with a tunable output network (most tube-type transmitters or final amplifiers), it can accommodate a relatively wide range of reflected antenna impedances. But modern solid-state final amplifiers tend to be a little more picky about the load impedance. For these transmitters a coax-to-coax antenna-tuning unit (ATU) is needed.

Other dipoles

So far I’ve discussed classic dipoles with half-wavelength single conductor radiator elements connected to a coaxial transmission line. This type of antenna is most often installed horizontally a half wavelength above the ground (or wherever convenient if that's impossible). Next I'll take a look at other forms of dipoles. Some of these are equal in every way to the horizontal dipole, others are basically compensation antennas used when a proper dipole isn't practical.

Inverted-V dipole

The inverted-V dipole is a half-wavelength antenna fed in the center like a dipole. By definition, the inverted-V is merely a variation on the dipole theme. In this antenna (Figure 2) the center is elevated as high as possible above ground, but the ends droop very close to the surface. Angle
"a" can be almost any convenient angle greater than 90 degrees. Most inverted-V antennas use an angle of about 120 degrees. This antenna provides a compromise when a dipole can't be used. Many operators believe it's a better performer on 40 and 80 meters in cases where the dipole can't be mounted at a half wavelength (64 feet or so).

Sloping the antenna elements down from the horizontal to an angle (Figure 2) effectively lowers the resonant frequency. This means the antenna will need to be shorter than a dipole for any given frequency. There's no absolutely rigid equation for calculating the overall length of the antenna elements. Although the concept of "absolute" length doesn't hold for regular dipoles close to the ground, it's even less viable for the inverted-V. There is, however, a rule of thumb you can use for a starting point — make the antenna about 5 percent shorter than a dipole for the same frequency. Try cutting the antenna to the length required for a regular dipole on the same frequency and trim from there, using the tuning procedure.

$$L = \frac{468}{F_{MHz}} \text{ feet}$$ \hspace{1cm} (3)

After determining the approximate length, find the actual length with the same cut-and-try method used to tune the dipole in the previous section.

Sloping the elements changes the feedpoint impedance of the antenna and narrows its bandwidth. You'll need to make some adjustments as a result. You might want to use an impedance-matching scheme at the feedpoint, or an antenna tuner at the transmitter.

Sloping dipole ("sloper" or "slipole")

The sloping dipole in Figure 3 is popular with operators who need a low angle of radiation but don't have a large area for their antenna installation. Various texts call this antenna the sloper or the slipole. I use the term slipole to distinguish this antenna from a sloping vertical. But whatever you call it, it's a half-wavelength dipole with one end at the top of a support and the other end close to ground, fed in the center by coaxial cable.

Some operators like to hang four sloping dipoles from the same mast pointing in different directions (Figure 4). A single four-position coaxial cable switch lets you switch a directional beam on different headings that favor various locations.

Broadbanded dipoles

It is rarely discussed that the length/diameter ratio of the conductor used for the antenna element is a factor in determining antenna bandwidth. In general, a large cross-sectional area makes the antenna more broadbanded. In some cases, using aluminum tubing instead of copper wire for the antenna radiator is advisable. Tubing is a viable solution on the higher frequency bands. Aluminum tubing is inexpensive, lightweight, and easily worked with common tools. You can make a rotatable directional dipole with ordinary aluminum tubing. But as
Several slopers supported from a common mast give directional characteristics.

the frequency decreases, the weight becomes greater. This is because the tubing is longer and must be of greater diameter for structural strength.

Aluminum tubing is impractical on 80 meters and nearly impractical on 40. Yet it's at 80 meters that you find a significant problem (especially with certain older transmitters). The band is 500 kHz wide, and older transmitters often lack the tuning range for the entire band. Three basic solutions to the problem of wide bandwidth dipole antennas are: the folded dipole, the bowtie dipole, and the cage dipole.

Figure 5A shows the folded dipole antenna. It’s basically two half-wavelength conductors shorted together at the ends and fed in the middle of one of them. The folded dipole is usually constructed from 300-ohm television antenna twin-lead transmission line. Because the feedpoint impedance is nearly 300 ohms, you can use the same type of twin lead for the transmission line. The folded dipole exhibits excellent wide bandwidth properties, especially on the lower bands.

For a folded dipole the transmitter has to match the 300-ohm balanced transmission line, which is a disadvantage. Unfortunately, most modern radio transmitters are designed to feed coaxial cable transmission line. Although you can place an antenna tuner at the transmitter end of the feedline, it’s also possible to use a 4:1 balun transformer at the feedpoint (Figure 5B). This arrangement makes the folded dipole a reasonable match to 52 or 75-ohm coaxial cable transmission line.

Another method for broadbanding the dipole is to use two identical dipoles fed from the same transmission line arranged to form a “bowtie,” as shown in Figure 6. Using two identical dipole elements on each side of the transmission line increases the conductor cross-sectional area, so the antenna has a slightly improved length/diameter ratio.

The bowtie dipole was popular in the 1930s and '40s; it was the basis for the earliest television receiver antennas. (TV signals are 3 to 5 MHz wide and require a broadbanded antenna.) This antenna was also popular during the 1950s as the so-called “Wonder Bar” antenna for 10 meters. Some are still in use, but the antenna's
5 AMP GEL CELLS

The full packs came in a sturdy plastic enclosure.

16 Cells, 30 VDC in a flat plastic enclosure
Shng wt. 3.1 lbs. SPL-24B-52 $40.00
12 Cells, 24 VDC
Shpg wt. 4 lbs SPL-336B-52 $35.00
6 Cells, 12 VDC
Shpg wt. 2 lbs. SPL-20TB-52 $18.00
3 Cells, 6 VDC
Shpg wt. 1 lb. SPL-11B-52 $10.00

PARTS GALORE ASSEMBLY

Pictures below is a high reliability power supply. It contains many very useful and expensive parts. We must offer these parts to you without delay, due to the agreement with the manufacturer that we can not sell the unit intact. This unit is IBM compatible.

POWER SUPPLY REGULATOR BOARD

The transformer is a Eupec Toshiba TIP 32 X, 4.10K 10 turn Pots, tantalums, and loads of other parts. This consists of LM 123 IC regulator and equivalent, 120V, transformer and 6 amp bridge, 10,000 uf, 50V capacitor. TheXmlAttribute si...
SAVE TIME and MONEY with THE HAZER

Bring things down for safety and convenience.

Never climb your tower again with this elevator system. Antennas and rotation mount on HAZER, complete system frames tower in vertical upright position. Safety lock system operates while raising or lowering. Never can fall.

Complete kit includes winch, 100 ft. of cable, hardware and instructions. For Rohn 20 and 25 G Towers.

Hazer 2-Heavy duty alum. 12 sq. ft. load $211.95 ppd.
Hazer 3-Stand. 12 sq. ft. load $223.95 ppd.
Hazer 4-Heavy galv. 16 sq. ft. load $279.95 ppd.

NEW for ROHN 45 and 55 Towers

Hazer 8-Heavy duty galv. 16 sq. ft. load CALL
Ball Thrust Bearing $8.25 for any of above $69.50 ppd. Send for free details of aluminum towers specifically engineered for use with the Hazer. Two sizes: M-13 (13" wide) and M-14 (18" wide). All borched construction, no welds. Easy to install hing base, walk up erection. Complete tower UPS or air liftage shipable Pre-assembled or kit form.

 Satisfaction guaranteed. Call today and charge to Visa, MasterCard, or mail check or money order.

GLLEN MARTIN ENGINEERING INC.
Rte 3, Box 322
Boonville, MO 65233
(816) 862-2734 FAX 816-862-7200

NEW!
The classic "Antenna Bible" now in a thoroughly-revised, much-enlarged edition

ANTENNAS
2nd edition
by John Kraus, W8JK
Ohio State University

Covers both theory and its applications to practical systems. Over 1000 illustrations and nearly 600 worked examples and problems. Over 100 new topics Complete with design formulas, tables and references
917 pages, hardcover. $51.95
Add $2.50 per book for shipping and handling U.S., $5.00 elsewhere.

CYGNUS-QUASAR BOOKS
P.O. Box 53, Powell, Ohio 43065
Tel. 614-548-7935

Where's the Beam?

There's a 2-meter antenna with real DX punch hidden in your garage. You can't see it, and your neighbors can't either. But the DX beam is there. How about a low-profile 90/100/20 or 60/30/15 meter beam? Or a pair of DX grabbing monitors for the 10's? All easily fit the bookcase from 52" x 56" Unobtrusive DX Gain antennas for 60 thru 10,

Fully adjustable * Install Fast * Fixed Portable

Work DX without killing the neighbors

20 1800
20 950
40 700
50 500
70 360
80 260
90 160
95 75
98 38
15

Cage dipole. Popularity has faded. The ends are spread to approximately 11 percent of the total length.

The cage dipole (Figure 7) is similar to the bowtie in concept, if not construction. Again, the idea is to connect several parallel dipoles extending from the same transmission line in an effort to increase the apparent cross-sectional area. But with the cage dipole, spreader disk insulators keep the wires separated. The insulators can be built from Plexiglas™, lucite, or ceramic. They may also be made of materials like wood that's properly treated with varnish, polyurethane, or any other material that prevents water-logging. The spreader disks are held in place with wire jumpers (see inset to Figure 7) soldered to the main element wires.

Some bowtie and cage dipole builders make the elements slightly different lengths. This "stagger tuning" method forces one dipole to favor the upper end of the band and the other to favor the lower end. The overall result is a slightly flatter frequency response characteristic across the entire band. On the cage dipole, with four half-wavelength elements, it should be possible to overlap even narrower sections of the band in order to create an even flatter characteristic.

Shortened dipoles

The half-wavelength dipole is too long for some applications — espe-

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate inductance reactances as a function of the percentage of half wavelength represented by the shortened radiator.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent of half wavelength</th>
<th>Coils at feedpoint (ohms)</th>
<th>Coils at middle of radiator (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1800</td>
<td>2800</td>
</tr>
<tr>
<td>30</td>
<td>950</td>
<td>1800</td>
</tr>
<tr>
<td>40</td>
<td>700</td>
<td>1300</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>950</td>
</tr>
<tr>
<td>60</td>
<td>360</td>
<td>700</td>
</tr>
<tr>
<td>70</td>
<td>260</td>
<td>500</td>
</tr>
<tr>
<td>80</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>90</td>
<td>75</td>
<td>160</td>
</tr>
<tr>
<td>95</td>
<td>38</td>
<td>80</td>
</tr>
<tr>
<td>98</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>
PLUG INTO PACKET!

Simple and Easy.
Here's the easiest packet radio yet, you don't even have to buy a TNC to join the digital revolution. Just let your PC do the work. Plug a PC Packet Adapter into any expansion slot and get on the air in minutes, just like an expert. And you'll still be able to use the PC for other work! The complete VHF system is only $139.95!

Sophisticated, Too.
When you've mastered the basics, use the PC Packet Adapter for simultaneous dual-band HF/VHF, multiconnect, BBS, TCP/IP, DXer's PacketCluster, 2400 baud (and higher). Even use the Developer's Package to write your own packet application.

Software Included.
Unlike others, DRSSI includes all the software you need. The THS terminal package has split screen, file save/send, binary file transfer, print, scroll, review and more.

2400 BAUD
Many areas are upgrading their packet nets to this higher speed. DRSSI's M-24 modem for 2400 baud connects simply with no modifications to your rig and lets you operate both 1200 and 2400 simultaneously with your present radio. Step up to this new speed for just $79.95, today!

Call or Write for complete Product Catalog

DRSSI
2065 Range Road
Clearwater, FL 34625
ORDERS: 1-800-999-0204

GET A BIRD'S EYE VIEW
From GrafTrak II™ and your IBM® PC

GrafTrak II™ provides real-time graphic display of a flat projection map which moves under the selected satellite(sat)/Sun/Moon/star coverage circle and updates once per second. Features include spherical projection views, graphic screen dumps to an IBM Epson(OE) or HP LaserJet Series II printer, selectable bottom grid intervals, disk command files, automatic control of antenna rotators with full 180 degree elevation, coverage swath display for weather sat, multiple range circles, automatic sat switching, real-time ground track display, and against angle display.

Silicon Ephemeris™ provides tabular data output to the screen, printer, or disk file for the following operating modes: 1 observer(s) to 16 sat, 16 obs to 1 sat, window between 2 obs and 1 sat, rise and set times for 16 sat, Ascendant for Sun and Moon, 16 obs to Sun/Moon, schedule for 1 obs to Moon, window between 2 obs and Moon, schedule for 1 obs to Sun, and optical visibility schedule.

The package includes an editor program used to construct and modify satobs data base files. In addition, a program to update data base files from bulletin boards, complete source code for a compatible satob and receiver control program and several other utilities are included.

Requires an IBM PC, PCXT, PC/AT, or true compatible, an IBM Color/Graphics Monitor Adapter or true compatible, optional but recommended 8087 math coprocessor, minimum 512K RAM, DOS 2.0 or later, and either two 360K floppy drives or one 360K floppy and one hard drive: the programs are not copy protected.

The complete package is $395 (List Price). Call for quotation. Check, money order, MasterCard, or VISA accepted.

Silicon Solutions, Inc. • P.O. Box 742546 • Houston, Texas 77274-2546 • (713) 777-3057

IBM® is a registered trademark of IBM Corporation
GrafTrak II and Silicon Ephemeris are trademarks of Silicon Solutions, Inc.
NEW PRODUCTS ANNOUNCEMENTS

New Preamps
1/LNA 0.7 dB N.F. 12 19.2 2 MHz $140
16/LNA 0.6 dB N.F. 20 MHz 169 GHz $140
SLNA 1.2 dB N.F. 10 dB 2-2.7 GHz $150

New Wideband Power Amplifiers
2070 PA 3w in 70w out 1240-1300 MHz $100
3200 PA 3w in 33w out 1240-1300 MHz $350
3210 PA 1w in 16w out 3500 MHz $450

Above antennas kits. Assembled available.
Add $5 UPS with West of the Mississippi.

MICROWAVE LINEAR AMPLIFIERS SSB, ATY, REPEATER, OSCAR
2316 PA 1w in 18w out 1240-1300 MHz $250
2335 PA 10 in 35w out 1240-1300 MHz $315
3151 PA 1w in 20w out 900-2000 MHz $245
3525 PA 10 in 40w out 900-300 MHz $330

NEW PRODUCT ANNOUNCEMENTS
New Loop Yagi
1455 LY Loop Yagi 169 MHz $200
958 LY Loop Yagi 2304 MHz $200 $80
Above antennas assembled and tested.

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LG

BEAM ANTENNA HANDBOOK

ALL ABOUT VERTICAL ANTENNAS
Theory, design, construction, operation —are fully covered. Here’s what this exciting book covers. Horizontal vs vertical—which is best? Top loaded and helical antennas, 5 high efficiency Marconi antennas for 80 and 160, verticals and TV—Is there a problem? The effects of ground on vertical antennas and how to make an effective ground system, the Bobtail beam, construction data for 25 different antennas, matching circuits of all descriptions—which is best, plus P-L-E-N-T-Y more! 1st edition, 192 pages. $1895

RADIO HANDBOOK 23rd Edition
Here are some of the highlights of this exciting new edition: New easy-to-use charts for Chebyshev and elliptic filter configurations, new data on power MOS-FETS, how to use state-of-the-art OP-AMPS, and home computer RTTY to name just a few examples. New projects include: GaAsFET preamps for 902 and 1296 MHz, easy-to-build audio CW filter, Economy two 3500 MHz, 160 meter amplifier, multiband amp using two 3CX800A's, and a deluxe amplifier with the 3CX1200A tube. New antenna projects include: efficient Marconis for 160 and 80 meters, computer generated dimensions for Yagis, and a 2 meter slot beam. Get your copy today. 23 edition © 1985

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers vertical, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. ©1976 1st edition.

Please enclose $3.75 for shipping and handling.

HAM RADIO
GREENVILLE, NH 03048

BOOKSTORE
(603) 878-1441

IF YOU ARE INTO ELECTRONICS AND SAVING MONEY IS IMPORTANT TO YOU, THEN YOU OWE IT TO YOURSELF TO TRY NUTS & VOLTS MAGAZINE. DISCOVER WHY THOUSANDS OF SMART PEOPLE NATIONWIDE TURN TO NUTS & VOLTS EACH MONTH TO MEET THEIR ELECTRONIC NEEDS. WHETHER YOU'RE BUYING, SELLING, OR JUST TRYING TO LOCATE THOSE UNIQUE OR HARD-TO-FIND ITEMS, FIND OUT HOW NUTS & VOLTS CAN HELP!

SUBSCRIBE TODAY!

[] CHECK [] MONEY ORDER [] VISA [] MC

Name ____________________________
Address ____________________________
City ____________________________ Zip ____________________________
State ____________________________ Card No. ____________________________ Exp. Date ____________________________

CALL FOR ADVERTISING INFORMATION DISTRIBUTOR INQUIRIES INVITED

A National Publication For The Buying And Selling Of Electronic Equipment
The tuner overcomes the bad effects on the transmitter, but doesn’t alter the basic problem. Only a variable inductor in the antenna will do that. (At least one commercial loaded dipole once used a motor-driven inductor at the center feedpoint.)

Photos A and B show two methods for making a coil-loaded dipole antenna. Photo A shows a pair of commercially available loading coils designed for this purpose. These coils are for 40 meters, but other models are also available. The inductor in Photo B is a section of B&W Miniductor connected to a standard end or center insulator. No structural stress is assumed by the coil; all forces are applied to the insulator.

![Commercial loading coils.](Photo A)

![Homebrew loading coil based on B&W Miniductor.](Photo B)

Coil-loaded dipole: a) coils at feedpoint; b) coils at 50-percent point.

Standard inductive reactance equation \(X_L = 6.28 \, \text{FL} \) to the form:

\[
L_{\mu H} = \frac{X_L \times 10^6}{6.28 \, F}
\]

Where:

- \(L_{\mu H} \) is the required inductance in microhenries.
- \(F \) is the frequency in hertz (Hz).
- \(X_L \) is the inductive reactance calculated from Table 1.

Example

Calculate the inductance required for a 60-percent antenna operating on 7.25 MHz. The table requires a reactance of 700 ohms for a loaded dipole with the coils in the center of each element (Figure 8B).

Solution:

\[
L_{\mu H} = \frac{X_L \times 10^6}{6.28 \, F} \\
L_{\mu H} = \frac{(700)(10^6)}{(6.28)(7,250,000)} \\
L_{\mu H} = 7 \times 10^6 / 468 = 15.4 \, \mu H
\]

The calculated inductance is approximate and may have to be altered by cut-and-try methods.

The loaded dipole antenna is very sharply tuned. Because of this, you must either confine operation to one segment of the band or provide an antenna tuner to compensate for the sharpness of the bandwidth characteristic. However, efficiency drops markedly far from resonance, even with a transmission line tuner. The tuner overcomes the bad effects on the transmitter, but doesn’t alter the basic problem. Only a variable inductor in the antenna will do that. (At least one commercial loaded dipole once used a motor-driven inductor at the center feedpoint.)

Conclusion

The dipole antenna is easy to design, easy to build, and well behaved enough that even novice builders can make it work successfully, and well. Go for it!
COMPUTERIZE YOUR SHACK

YAESU 747, 757GX, 757GXII, 767, 9600.
KENWOOD TS 140, 440, 940, 680, R5000.
ICOM R71A, R7000, 735, 751A, 761, 781, AND ALL VHF, UHF, CI-V.

DRIVERS FOR RADIOS ARE MODULAR.

JRC NRD 525.

COMPLETE PROGRAM ENVIRONMENT.

MENU DRIVEN AND DESIGNED FOR EASE OF USE.

SCAN FUNCTION ADDED TO RADIOS THAT DO NOT SUPPORT IT.

ERGONOMICALLY DESIGNED FOR EASE OF OPERATION.

MOST FUNCTIONS REQUIRE SINGLE KEYSTROKES.

PROGRAM COLOR CODED FOR EASE OF USE. ALTHOUGH WILL STILL RUN IN A MONOCHROME SYSTEM.

MENUS FOR THE FOLLOWING:
AMATEUR HF—AMATEUR VHF—AMATEUR UHF
AM BROADCAST—FM BROADCAST—TELEVISION BROADCAST
SHORT WAVE BROADCAST
AVIATION HF(SSB)—AVIATION VHF—AVIATION UHF
HIGH SEAS MARINE—VHF MARINE
MISCELLANEOUS HF—VHF—UHF
MOST POPULAR FREQUENCIES ALREADY STORED
ADDITIONAL LIBRARIES AVAILABLE
COMPLETE LOGGING FACILITY

ALL FREQUENCY FILES MAY BE ADDED TO, EDITED OR DELETED

AVAILABLE FOR IBM PC, AT, AT 8086 256K RAM 1 SERIAL PORT AND 1 FLOPPY MINIMUM

PROGRAM WITH INITIAL LIBRARIES
RS-232 TO TTL INTERFACE ONLY NEEDED IF DON'T HAVE MANUFACTURERS INTERFACE
EXTERNAL INTERFACE ALLOWS 4 RADIOS
INTERNAL PC INTERFACE W/1 SERIAL & 1 RADIO PORT
SPECTRUM ANALYZER MODULE (CALL FOR PRICE)
COMPLETE SYSTEMS INCL: RADIO, INTERFACE, COMPUTER, AVAILABLE (CALL FOR PRICE)

DATA COM, INT.
8081 W. 21ST LANE
HIALEAH, FL 33016
AREA CODE (305) 822-6028

WEATHER SOFTWARE

ACCU-WEATHER FORECASTER is a menu driven program that allows the user to tap into Accu-Weather's extensive computerized database. In addition to Accu-Weather's forecasts, you can get hourly updates from National Weather Service Offices nationwide.

Maps, graphs, pictures, charts, and narrative descriptions are just part of what can be downloaded to your MS-DOS computer. To save telephone and hook-up charges, tell your computer first exactly what information you want. Then call ACCU-WEATHER; the computer will download the files you want and save them to disk. Information can be obtained for the entire United States or a specific geographical region.

Several different services are available from ACCU-WEATHER. Price varies with the service and time of day that the computer is accessed. Add $3.50 for shipping and handling.

☐ MC-IBM $89.95
☐ MC-MAC $89.95

Please add $3.50 for shipping and handling

Every month Monitoring Times brings everything you need to make the most of your general coverage transceiver: the latest information on international broadcasting schedules, frequency listings, international DX reports, propagation charts, and tips on how to hear the rare stations. Monitoring Times also keeps you up to date on government, military, police and fire networks, as well as tips on monitoring everything from air-to-ground and ship-to-shore signals to radioteletype, facsimile and space communications.

ORDER YOUR SUBSCRIPTION TODAY before another issue goes by. In the U.S., 1 year, $18; foreign and Canada, 1 year, $26. For a sample issue, send $2 (foreign, send 5 IRCs). For MC/VISA orders ($15 minimum), call 1-704-837-9200.

MOVING?
KEEP HAM RADIO COMING...

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

HAM RADIO
Greenville, NH 03048

Thanks for helping us to serve you better.
SIMPLE 75-OHM HARDLINE
TO 50-OHM MATCH

Put those CATV cable ends to use!

J. S. Gurske, K9EYY, 7240 Highway Y, Lodi, Wisconsin 53555

Have you ever measured the amount of RF power going into a coax feedline at, say, 2 meters and then measured the amount of RF coming out the other end? I did and I was amazed! I had about half the power at the far end of a 100-foot length of RG-8 cable. When I tried RG-58 coax, I had a power loss of about 75 percent. I didn't really believe my measurements, so I went to the coax tables. The tables list 100 feet of RG-8 coax (silver-plated center conductor with silver-plated double-shield outer braid) as having a loss at 150 MHz of about 2.5 dB. If you add a little more, because of connectors or standing wave ratio, you can easily approach 3 dB. That 3 dB reduces the signal power by one-half. In other words, if you have a 3-dB loss and 100 watts going into the coax, the 3 dB will cause a loss of 50 watts in the line. This means that the remaining power going to the antenna is 50 watts. Quite a price to pay! The RG-58 is even worse. The tables list its loss factor as 6 dB. Your 100 watts would be reduced by half and then by half again (or 75 percent), leaving 25 watts to appear at the other end of the cable. This, of course, assumes there are no other losses.

At about the time I was making these measurements and checking my data, the local cable operator gave me a "tag end" of 3/4" hardline. I heard that aluminum hardline was superior to RG-8 coax. The tables show a 1/2 dB loss at 150 MHz, over a 100-foot length.

I wanted to know how to match my 50-ohm equipment to the 75-ohm hardline. I remembered that a quarter-wave matching transformer was a possibility and looked up the formula for the impedance of the quarter-wave section. It was stated as follows:

$$Z_o = \sqrt{Z_1 \times Z_2}$$ \hspace{1cm} (1)

where:
- Z_o = impedance of the line
- Z_1 = the 50-ohm coax
- Z_2 = the 75-ohm hardline

Solving for:

$$Z_o = \sqrt{50 \times 75} = \sqrt{3750} = 61.2\ \text{ohms}$$ \hspace{1cm} (2)

In other words, you'd need a coax with an impedance of 61.2 ohms to make a quarter-wave matching transformer.

At this point I shrugged my shoulders and was about to look for some other solution, because 61.2-ohm coax isn't what you'd call a standard item. Then I remembered that several hams in our area use copper pipe to make transformers. I had heard that they were easy to build for VHF and UHF ham communications. Using the ARRL Handbook, I found the formula for calculating the sizes of the inner and outer conductors for air-dielectric coax.

Calculations

The basic formula for calculating the inner diameter of the outer conductor and the outer diameter of the inner conductor is listed as follows:

$$Z_o = 138 \log D/d$$

where:
- Z_o = impedance of the line
- D = inner diameter of the outer conductor
- d = outer diameter of the inner conductor

Since you already know that Z_o is 61.2 ohms, you can rearrange the formula to solve for D, for example:

$$Z_o = 138 \log D/d$$

Substituting the appropriate numbers you find:

$$D = 10^{\left(\frac{Z_o}{138}\right)} \log d$$ \hspace{1cm} (3)

$$D = 10^{\left(\frac{61.2}{138}\right)} \log d$$ \hspace{1cm} (4)
Detailed layout of the components used in the construction of a quarter-wave matching transformer for 75 to 50-ohm coax.

Expanded view of the quarter-wave matching transformer.

If you arbitrarily select 3/16" brass tubing (available at most hobby shops) for the inner conductor, you can solve for the larger conductor as follows:

\[
D = 10 \left[\frac{6.2}{138} \right] + (-0.7270) = (0.4435) + (-0.7270)
\]
\[
D = 10(-0.2835)
\]
\[
D = 0.5205 \text{ or just over } 1/2".
\]

This means that if you use 3/16" brass tubing for the inner conductor, you can use 1/2" copper pipe for the outer conductor. But what length should the transformer be? I wanted to use 147.225 MHz so I used the formula:

\[
\frac{234}{\text{freq. MHz}} \text{ or } \frac{234}{147.225} = 1.589 \text{ feet or } 19 \text{ inches}
\]

\[
\begin{array}{|l|c|}
\hline
\text{DESCRIPTION} & \text{QUANTITY} \\
\hline
3/16-inch brass tubing & 4 pieces \\
Small tubing to fit inside the above & 1 piece \\
1/2-inch copper pipe & 2 pieces \\
20 inches long & 2 pieces \\
1/2-inch female pipe & 2 pieces \\
to 1/2-inch copper adapter & 2 pieces \\
1/2-inch couplings & 2 pieces \\
Teflon for bushings inside copper pipe & 2 pieces \\
Noalox compound to prevent corrosion between the aluminum hardline and copper pipe (from electrical shops) & 2 pieces \\
Coaxial chassis mounts to be modified to fit into the-copper couplings & 2 pieces \\
\hline
\end{array}
\]
ICF-2010
RECEIVER
Air: 116-136 MHz
FM: 76-108 MHz
AM: 150 kHz-30 MHz
$344.95
Cash or Check Price

Package Deal—June Only
Kenwood TS-440S
w/autotuner & handmike
YK-88C CW Filter
Astron RS-20M Metered
Power Supply
FREE SHIPPING
$1,449

Factory-less,
jumper-less,
ROM-less programming.

With the new S-COM 5K Repeater
Controller, you'll be able to configure
your repeater remotely—using DTMF
commands. Only the 5K offers this
capability for just $195, wired and tested.

S-COM Industries
P.O. Box 1718
Loveland, CO 80539
(303) 663-6000
PacComm

9600 Baud Packet System

Introducing the next generation in packet performance: A complete line of affordable 9600 baud packet equipment to support both network nodes and local packet users. The modem is based on PacComm’s successful 9600 baud commercial modem design (exclusively licensed from James Miller, G3RUH). It is a high performance FSK design using innovative signal processing techniques to comply with FCC bandwidth limitations on the 6 and 2 meter amateur bands as well as higher frequencies. The modem connects to the radio internally and may not be suitable for use with all existing radios.

Other packet manufacturers plan to offer equipment compatible with the PacComm 9600 Packet System.

MODEM CARD - Add on internal modem card for TNC-2 and clones, and all PacComm TNCs. $99.95 fully tested and ready to install. (Avail. Now)

EXTERNAL MODEM - Encased 9600 baud modem with front panel LED displays and cabling for most popular packet controllers including the PK-232. $329.95 to $399.95 (Avail. in May)

COMPLETE HIGH SPEED PACKET UNIT - Integrated digital transceiver, packet TNC, and 9600 baud modem ready to attach to your computer and terminal and antenna.

$449.95 to $519.95 (Avail. in June)

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter

- Expandable to 32 Channels by Just Adding Cards
- Continuous Voting
- LED Indicators of OIR and Voted Signals
- Built-in Calendar
- Remote Voted Indicators Pinned Out
- 0 to 6 Double Sided Gold Plated 44 Pin Card
- Remote Disable Inputs

$350.00

Built, tested and calibrated with manual.

Telephone interface now available

For more information call or write:

DOUG HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871
Construction

To begin, measure the exact size of the inner diameter of the outer conductor you'll be using. Consult Table 1 to find the corresponding brass center conductor. The brass tubing at the hobby store is sized so that the next smaller one slides snugly into the larger size. This is ideal for lengthening the tubing from the 12" standard lengths to whatever length you need. When you purchase the four pieces of brass tubing for the inner conductor, be sure to purchase one length of the next smaller size. Then you can sweat solder small lengths inside the larger brass tubes to make them longer.

The parts list covers most of the major items needed to build two quarter-wave matching transformers. You'll want to construct one matching section for each end of the hardline. (See Figure 1.) Here's the procedure I used to build the transformers.

- Trim both ends of the hardline back so that approximately 1/2" of the center conductor extends beyond the outer sheath. Carefully clean any plastic foam residue from the center conductor. The center conductor is copper plated. Be sure to leave the copper plating intact or you'll be unable to sweat solder the brass tubing to the center conductor.
- Run a 1/2" pipe-threading die onto each end of the hardline. The threads won't be very deep because the hardline is a little under size.
- Select a coax chassis mount and turn it down in a lathe (or file it) to remove the flange. This lets the coax barrel fit snugly inside the 1/2" copper coupling. Make two of these. I use N-type coax fittings, but UHF types work well also.
- Carefully remove the center conductor from the coax barrel. Some of these are held in with split washers; others are merely "press" fit, and some are swaged. If swaged, cut the swaging so the inner conductor and insulator slide out of the barrel (see Figures 1, 2, and 3).
- Splice two pieces of the 3/16" brass tubing together using a 1" length of the smaller diameter brass tubing which slides inside this tubing. Sweat solder the joint; then fit the coax center conductor into one end of the 3/16" tubing. You might have to construct a bushing. Sweat solder this inner coax conductor to the brass tubing.
- Cut the other end of the brass tubing to the correct length. Measure from one end of the brass tube to the other. (Do not include the length of the coax center conductor in this measurement.)
- Make a Teflon™ spacer to slide tightly over the tubing and inside the outer conductor (the 1/2" copper pipe). Sweat solder the brass tubing to the inner conductor of the hardline. See Figures 1 and 2.
- Temporarily thread the adapter onto the hardline. Cut a 1/2" copper pipe to approximately 20", then slide one end into the adapter. Slide the copper coupling over the other end of the 1/2" copper pipe. Carefully measure the distance between the end of the brass tubing and the area in the coupling where the coax barrel will be placed. Figure 1 shows how the coax barrel should fit into the copper coupling. The brass tube should be up against the plastic insulation on the hardline on one end, and the coax inner insulator properly located in the coax barrel at the other end. Trim the copper pipe to exact length at this time. Double check to make sure everything fits together exactly as shown in Figure 1 and 2.
- Solder the copper pipe to the female pipe to copper adapter. Spread Noalox™ on the aluminum hardline threaded area and thread the adapter onto the hardline. Tighten the adapter on the hardline, being careful not to bend or otherwise distort the hardline. It's easy to strip the threads because they aren't deep. Be careful! Tape this connection to help keep moisture out of the joint.
- Assemble the copper coupling, coax insulator, center conductor, and coax barrel into final configuration. Sweat solder the copper coupling to the copper pipe and the coupling to the coax barrel.

This completes the transformer. As I said before, you'll need one of these assemblies at each end of the 75-ohm hardline. When I checked the power going into the cable and compared it with the power coming out the other end, I couldn't detect more than about 2 watts of loss over the 100-foot length. This was a far cry from my earlier measurements. I've used the system for over four years with no deterioration.

It was worth the small effort it took to build these quarter-wave matching sections. The 75-ohm hardline is cheap and the transformer makes it usable with 50-ohm devices. I hope you'll have the same good results. If I can be of any help, please send an SASE.

I want to thank my friend Rob Mayer who helped me rearrange the basic formulae when I got into trouble with logs.

Ham Radio/June 1989 67
A MOTORIZED AGITATOR FOR YOUR PRINTED CIRCUIT BOARDS

When I first began making printed circuit boards, I placed the unetched board and etching solution in a glass container and agitated the contents by hand. Although the instructions for the ferric chloride etchant indicated a normal etching time of 15 to 20 minutes, I found that it took my boards considerably longer to etch completely — often as long as an hour.

There are three reasons for the extended etching time: (1) the thickness of the copper on the board, (2) the temperature of the etching solution, and (3) the fact that etching time increases noticeably as the etching solution nears the end of its useful life or point of exhaustion. I can't control the thickness of the copper, but I can control the other two variables. To increase the temperature of the etching solution, I place the glass container in a pan of warm water (approximately 100°F). I choose to be a little frugal with the etching solution, because I discard it immediately after use. The rule of thumb is to use 1 ounce of ferric chloride for each square inch of copper, but you can alter this rule depending on copper thickness.

I suspect that my etching times are long because I like to get the maximum out of the etchant. I don't like to discard etchant that's only 50 percent exhausted. The long time required makes it quite a chore to agitate the boards and solution by hand. I mentioned in a previous article on making pc boards1 that a motorized agitator was one of my next projects. The motorized agitator shown in Photo A is an easy, one-evening project. There's nothing difficult or fancy about its construction.

Motorized agitator showing simple construction. Rubber inner-tube strips were glued to platform to keep container used for etching from slipping.

Details for making a simple crank for installation on the timing motor.
ICOM KENWOOD YAESU

HF Equipment

<table>
<thead>
<tr>
<th>Model</th>
<th>List</th>
<th>Juns</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-781 Super Deluxe HF Rig</td>
<td>$5995.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-765 New, Loaded with Features</td>
<td>3149.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-735 Gen. Cvg Cvxr</td>
<td>1099.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-75A Gen. Cvg Cvxr</td>
<td>1699.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-725 New Ultra-Compact Cvxr</td>
<td>949.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-575A 10w/6m Cvxr</td>
<td>1399.00</td>
<td>Call $</td>
</tr>
</tbody>
</table>

Receivers

<table>
<thead>
<tr>
<th>Model</th>
<th>List</th>
<th>Juns</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-R7000 25-1300 MHz Recvr</td>
<td>1199.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-R17A 100 kHz-30 MHz Recvr</td>
<td>999.00</td>
<td>Call $</td>
</tr>
</tbody>
</table>

VHF

<table>
<thead>
<tr>
<th>Model</th>
<th>List</th>
<th>Juns</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICF-225/40 New 25/45w Mobiles</td>
<td>509.539</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-275/40 50/100w All Mode Base</td>
<td>1299.139</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-295/40 25/45w, FM Mobiles</td>
<td>499.499</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-8AT, New 7w HT</td>
<td>429.95</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-900 Six Band Mobile</td>
<td>639.00</td>
<td>Call $</td>
</tr>
</tbody>
</table>

UHF

<table>
<thead>
<tr>
<th>Model</th>
<th>List</th>
<th>Juns</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICF-475/40 25/75w All Modes</td>
<td>1399.159</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-48A FM Mobile 25w</td>
<td>509.00</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-48A, New 6w HT</td>
<td>449.95</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-504 FM HT</td>
<td>440.00</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF-32AT Dual Band Handheld</td>
<td>929.95</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-321 Dual Band Mobile</td>
<td>739.00</td>
<td>Call $</td>
</tr>
</tbody>
</table>

220 MHZ

<table>
<thead>
<tr>
<th>Model</th>
<th>List</th>
<th>Juns</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-375A All Mode, 25w Base Sta.</td>
<td>1399.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-38A 25w FM Cvxr</td>
<td>489.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-37A FM Mobile 25w</td>
<td>499.00</td>
<td>Call $</td>
</tr>
</tbody>
</table>

1.2 GHz

<table>
<thead>
<tr>
<th>Model</th>
<th>List</th>
<th>Juns</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-12GAT Super HT</td>
<td>529.95</td>
<td>Call $</td>
</tr>
</tbody>
</table>

ICOM IC-37A

List $499.95

Sale $269.95

Super Special: Include a copy of your Amateur License and receive an additional $20 discount. Only $249.95

List $349.95 NOW $259.95

U.S. AMATEUR RADIO MAIL LISTS

Labels, floppy disks, CD-ROM, mag tape.

- Newly licensed hams
- All upgrades
- Updated each week

BUCKMASTER PUBLISHING

Route 3, Box 56
Mineral, Virginia 23117
703/894-5777 visa/mc 800/282-5628

Reader Service CHECK—OFF Page 98
1989 RADIO AMATEUR CALLBOOKS

NORTH AMERICAN EDITION

Fuly updated and edited to include all the latest FCC and foreign government calligns and addresses for Hams in North America. Includes charts for Ham operators such as time charts, QSL bureau addresses, census information and much more. Calls from Northern Canada to tropical Panama. Now it is time to buy a new Callbook when you’ll get the most use out of your investment. ©1988 1672 pages

INTERNATIONAL EDITION

QSL is a very important part of our hobby. All sort of awards, including the coveted DXCC, require confirmation of contact before the award can be issued. Special interest was given for every effort in getting QSL’s. If you operate from antennas for every application to the latest state-of-the-art projects — you’ll find it all in the 1989 HANDBOOK Over 1100 pages ©1988.

ANTENNAS by John Kraus, W6JK

Kraus’s classic antenna book has been extensively revised and up-dated to reflect the latest state-of-the-art in antenna design and theory. Includes over 1,000 illustrations and nearly 600 worked examples and problem solutions Chapters cover basic concepts, point sources and point source arrays, dipoles, helixes, broadband and frequency independent antennas, special applications and tons more of information. Also includes 5 appendices: reference tables, computer programs, books and video tapes, answers to problems and a problem supplement. College level text for the Amateur. 2nd edition 517 pages ©1988 Mh-35422 HARDBOUND $59.95

ALL ABOUT VHF AMATEUR RADIO by BR Oror, W6SAI

Are you ready for exciting 6 meter DX’ing during the next Sunspot peak? Tired of 20 meters and looking for a new operating challenge? Why not try the bands above 30 MHz! BR’s new book is full of helpful information, tips and ideas to get you out of the VHF/UHF operation. Propagation, antennas, repeaters, Microwave, OSCAR, SARS more all are fully covered in BR’s famous, easy-to-read style. Also includes helpful section on TVI and low to suppress it. ©1988, 1st Edition... SF-6H $11.95

1989 WORLD RADIO TV HANDBOOK

Every SWL or radio enthusiast should have a copy of this book by then operating position. It’s loaded with all the latest calligns, frequencies and other important information for radio and TV broadcasting around the world. Covers LF, MF, shortwave and TV services. Also has equipment reviews and other special features ©1988, 43 Edition... GL-WR1585 $19.95

USER’S NOTEBOOK by Buck Rogers, K4ABT

This new book has been put together by CO’s Packet editor and packet pioneer, Buck Rogers, K4ABT. Written with the beginner in mind, the Packet Notebook is full of handy tips, hints and suggestions on how to get the most out of your packet system. Includes a brief history, how to get started, section, standards, flow control and information on radio to TRC to computer interconnections for just about every radio. Good book to have on every packeteer’s desk. ©1989 1st edition. 132 pages

1989 ANTENNA BUYER’S GUIDE edited by Peter O’Deil, W6BO, CMQ Magazine

Looking for the latest in antennas? It’s all here in the CO Antenna Buyer’s Guide. Crowed full of articles, product information and a who’s who section listing all of the antenna manufacturers and importers. Get your’s now and get to work on your 1989 antenna projects before — winter comes! ©1989

GOLDEN CLASSICS OF YESTERYEAR

A collection of Rigs, Circuits and Keys by Dave Ingram, K4WVU

Ingram’s new book helps you recapture the fun and excitement of Amateur Radio’s past in this special collection of circuits, rigs and circuits. Fully updated and added to for Hams of all levels. FCC approved unlikely to be found elsewhere. ©1989, 60 pages, 1st Edition MFJ-573 $9.95

OSCAR — Satellite Review

by Dave Ingram, K4WVU

This anthology of critical reviews from CO is full of important-to-have OSCAR information. Also includes up-to-date additions and late-breaking news from the satellite world. Written in Ingram’s straight forward, easy-to-read style, this book will get you up and running with the minimum of hassle. Includes OSCAR “quick start” helped design to get you on OSCAR today. ©1989, 1st edition, 44 pages. MFJ-411 $7.95

GRAY LINE DX ADVANTAGE (MS-0DS Computers)

Great computerized tool for predicting Gray line openings. Displays the overhead position of the sun as it passes over a detailetd view of each earth’s surface. Displays UTC time in any 4 QTH’s. Includes high speed mode, portable and computer interfaces. This handy operating aid will help you tremendously as you work towards DXCC honor roll! MFJ-GL (MS-0DS Computers only) $29.95

AMATEUR RADIO STUDY GUIDES (MS-0DS Computer and VHS tape)

by Bob Lantz, N4S1

Studying for Amateur exams sure has changed alot in the last twenty years! Using your computer and VCR, you can get callign instruction right in your own house. Latest FCC exam syllabus used for each course Software Tape Novice BL-KS $14.95 BL-NT $19.95

Technember BL-TS $14.95 BL-IT $19.95

General BL-GS $14.95 BL-GT $19.95

Advanced BL-AS $14.95 BL-AT $24.95

Extra BL-ES $18.95 BL-ET $24.95

THE ARRL ELECTRONIC Data Book

by Doug DeMaw, W1RQ

Have you ever found yourself searching for the conversion factor between meters and feet, the diameter of 30 AWG wire or any other obscure fact? It’s drive you nuts! THE ARRL’s new DATA BOOK was written with the ham in mind. Noted amateur author DeMaw gives you the benefit of his years of experience in this handy reference manual. Fully updated and adds even more of the latest information every ham needs at their fingertips. Useful for all Hams, RF engineers, technicians and experimenters ©1989, 2nd Edition. AR-DB $11.95

UFH COMPLEMENTS III and IV

Edited by K. Weiner, DJ9HO

This is one of the most long awaited books in Amateur Radio. It represents over two years of work and contains more than one theory — it’s chock full of practical, tested designs from some of Europe’s most noted hams. Subjects covered include notch filters and hams, IF preselector, wideband filters, and receive and convert, amplifiers and much more. This book is guaranteed to be a best seller. Order yours today. (This book is imported and supplies will vary due to shipping delays) ©1989 1st Edition. KWH-U2F3 $29.95

1989-1990 ARRl REPEATER DIRECTORY

Includes all the latest repeater listings available. Lists 13,000 repeaters. 2, 200 digipeaters. and 475 beacon stations from 14 MHz to 24 GHz. Get your copy of this new book today. ©1989 AR-RR $4.95

ARRL CODE TAPES

Your new set of code tapes from the ARRL. Each set consists of two 90 minutes cassettes and gives you almost 3 full hours of practice Great way to study when you can’t get on the air.

AR-1 5-10 WPM $9.95

AR-2 10-15 WPM $9.95

AR-3 15-20 WPM $9.95

AR-4 13-14 WPM $9.95

THE FABULOUS RADIO NBD

by Brandon Wentworth, K4QAM

Here is the story of one of W1’s most important radio stations. Written from the first hand stories and actual experiences of the men who operated NBD. Includes technical descriptions of the equipment and antennas. Great history reading ©1984 1st edition. 34 pages SH-NBD $4.95

NEWNES Radio Amateur and Listener’s Pocket Book by Steven Money, DF3FX

WIRELESS ANTENNA HISTORY

A vertical design primer by Walter Schultz, K3DF

Starts with a well written history of radio’s beginnings. Nine chapters cover radio from the first pioneers through the beginnings of radio astronomy. The vertical primer is a complete section on how to design, build and operate a vertical antenna. Full of explanations and handy hints not found elsewhere. ©1988, 1st edition. 140 pages

GL-DV $16.95

HINTS AND KINKS for the Radio Amateur edited by KECH & AKTM

This is the tenth collection of ideas taken from QST’s most popular column. Hints and Kinks. Other’s hands on experience can save you hours with suggestions on how to “build a better mousetrap” Includes ideas on station accessories, operating, computers, antennas, ship secrets and much more! Great new edition — 1989 12th edition AR-RK $4.95

AMATEUR CALLBOOK SUPPLEMENT

Includes all the latest calligns and address changes for hams around the world. Information arrival to getting coveted QSL’s from rare DX stations. This is the only way to be fully up-to-date. Over 300 pages ©1989 CB-SUP89 $9.95

Please enclose $3.75 for shipping and handling
Closeup of crank and slot mechanism.

The heart of the project is the timing motor. I used a 4-rpm motor from my junkbox (an Olson Electronics special for about 79 cents). There are several suitable timing motors available from H & R Corporation, 401 E. Erie Avenue, Philadelphia, Pennsylvania 19134, for less than $10. Another source is JERRYCO, Inc., 601 Linden Place, Evanston, Illinois 60202. Other hobby and surplus suppliers may have suitable low rpm motors. I don't think you want to go over about 6 rpm because you want to agitate the solution, not slosh it.

The motor is connected to a rocking platform by a crank and slot mechanism. Figure 1 shows how the crank was made and attached to the motor. Photo B shows how the crank is connected to a slotted bracket on the end of the rocking platform. I used aluminum angle stock for the ends and side brackets, and secured them to the Masonite platform with pop rivets. A couple of rubber strips from an old inner tube added to the rocking platform keeps the tray or dish from slipping during agitation.

Using the agitator

I have found that it's important to change the position of the etchant container several times during agitation to prevent uneven or incomplete etching. You may also wish to keep the solution warm. I've found that a heat lamp positioned above the solution would be more than adequate. This motorized agitator makes it easy to monitor the progress of the board etching, and saves a lot of tedious hand agitation.

REFERENCES

1. WC Chmnger, K3OF, “EZ PCBs,” 73, August 1987, page 43
HELIUM BALLOON ATV
LAUNCHED OVER INDIANA

ATV technology reaches new heights

William J. Brown, WB8ELK, 12536 T 77, Findlay, Ohio 45840

On June 4, 1988 at 8:58 a.m. CDT, W9PRD (Bob), WB9IHS (Chuck), and I launched a helium balloon Amateur Radio experiment from a grass airstrip 8 miles northwest of Greensburg, Indiana. The balloon package consisted of a 1-watt ATV transmitter (Wyman Research), a computer video I.D. generator with two graphics screens timed in sequence (Elktronics VDG-1), and a half-watt 2-meter FM transmitter sending out a CW I.D.

The balloon system was made up of a 6-foot weather balloon (Kaysam 105G), a recovery parachute, aluminum foil for FAA radar, and the 3-1/4 pound transmitter setup. The 2-meter antenna was a quarter-wave vertical whip; the ATV antenna was an omni-horizontal KS8J “beachball” antenna with two loops at right angles to each other. The beachball antenna is somewhat directional and has a deep null off the back. As a result, there were deep fades in the ATV picture as the balloon and its cargo spun around. We determined the overall spin rate of the balloon package throughout the flight by observing these fades. The spin rate varied from one revolution every 20 seconds up to four revolutions per second. We plan to eliminate the fading in future flights by using a phasing line to feed one of the loops, making it a true omnidirectional antenna.

A combination of cold temperatures and battery failure caused a WB8ELK flight the previous August to stop transmitting at 70,000 feet, so we started a search for improved insulation and batteries. To better protect the equipment, we made a styrofoam package 2-1/2 inches thick and painted black to absorb solar radiation. Then, WB9IHS found some lithium cell batteries. These SAFT LX 2649 C cells are designed to withstand low pressure and low temperatures. We used ten cells (two chains of five cells). After 8-1/2 hours of continuous drain at 700 mA they still had over 3 hours of life left!

Quite a few ATV’ers from central Indiana were on hand to help us launch the balloon. Larry, WB9YAJ, established a live linkup to the Indianapolis ATV repeater from the airstrip so that anyone within repeater range could view the launch activities. The weather was perfect. When we began inflating the balloon inside an aircraft hanger at 8:30 a.m., there was only a light wind and skies were crystal clear. Mother Nature didn’t let us off that easy, however; the winds increased to over 20 mph just a few minutes before launch. Since the balloon was already fully inflated and the winds were fast approaching impossible launch speeds, we decided to send it up before the situation worsened. The balloon flailed around wildly, narrowly missing the hangar door, a telephone pole, and several other sharp objects as we carried our gear about 200 feet onto the center of the runway. Suddenly, the wind died down and the balloon floated straight up lifting the transmitter package off on its journey.

The Indianapolis “Fox Hunters” club had volunteered to be the ground tracking team. They filled six cars and headed off on a chase across southern Indiana, armed with all kinds of direction-finding gear for 2 meters and 70 cm. We were able to watch the balloon for 15 minutes as it headed quickly towards the southwest, rising about 750 feet per minute. Bill, WB9SBY, filmed the launch from a small chase plane for the first few minutes, but the balloon quickly gained altitude on them. We had hoped for some bigger chase planes, but they were all grounded with maintenance problems.

In York, Pennsylvania, WA3USG (Rick) chaired a 40-meter net on 7.155 MHz; N9CJD (George) ran an 80-meter net on 3.871 MHz. The nets received over 80 check-ins and reception reports during the flight. Stations in over nine states received the balloon signals which covered most of the Midwest and part of the South. Operators reported 5-meters “pegged” out to nearly 300 miles in all directions. There were many reports of reception on handhelds and scanners over...
WE SHIP WORLDWIDE
Barry Electronics Corp.
WORLD WIDE AMATEUR RADIO SINCE 1950
Your one source for all Radio Equipment!

See You June 4th—HOSARC, Queens, NY
June 28th, Radio Central (Speech),
Shoreham, L.I., NY

I

21 2-925-7000
Los Precios Mas Bajos
en Nueva York
WE SHIP WORLDWIDE!

KITTY SAYS: WE ARE NOW OPEN 7 DAYS A WEEK.
Saturday & Sunday 10 to 5 P.M.
Monday-Friday 9 to 6:30 P.M.
Come to Barry's for the best buys in town.

ONV Safety belts-in stock

FT-767GX, FT-757GXII, FT-747GX,
FRG-8800, FT-736R, FRG-9600,
FT-4700RH, FT-212/712RH, FT-470

LS540/SAT, R-5600, R-2000, TS-940 SAT, TM
231A/431A, TM-2570A/50A/430A, TR-751A,
Kenwood Service Repair, TM-721A, TS-711/811A,
TM530A, TH205AT, TH215A, TM-621A,
TM31A, TS140S, TS680S, R2-1, TS-790A

KENTWOOD

ATENNAS
A/S, AES, Cuchty, Hy-Gain,
Hustler, KLM, METZ, Mosley,
MODUBOX, TONA, Butternut,
Multi-Band

RF Concepts

Computer Interfaces
Stocked: MFJ-1270B
MFJ-1274, MFJ-1224, AEA
PK-88, MFJ-1278, PK-232

ALINCO

DJ-500T, DR-110T

FREQUENCY COUNTERS:
1MHz - 1.5GHz

COMMERCIAL & HAM
REPEATERS STOCKED.
WRITE FOR QUOTES!

MOTOROLA AUTHORIZED DEALER
KACHINA COMMUNICATIONS DEALER

AUTHORIZED

SONY

DEALER

DIGITAL FREQUENCY COUNTERS
Opto Electronics model 1300H, 0-1300MHz

Long range Wireless Telephone for export in stock

BENCH PADDLES,
BALUNS, LOW PASS FILTERS
IN STOCK

MIRAGE AMPLIFIERS
ASTRON POWER SUPPLIES
Saxton Wire & Cable, Int'l Wire

OX KEYERS STOCKED

COMMERCIAL RADIOS STOCKED: ICOM, Motoro-
la, MAXON, Standard, Yaesu.
We serve municipalities, businesses, Civil
Defense, etc. Portables, mobiles, bases, repea-
ters...

MAIL ALL ORDERS TO: BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012 (FOUR BLOCKS NORTH OF CANAL ST.)

New York City's
LARGEST STOCKING HAM DEALER
COMPLETE REPAIR LAB ON PREMISES

FOR THE BEST BUYS IN TOWN CALL:
212-925-7000
Los Precios Mas Bajos en Nueva York
WE SHIP WORLDWIDE!

ICOM

IC-47A, 751A, 781, 26A/H, 38A, 48A, Micro24,
R-7000, IC-375A, 725A/H, 3210A, 475A,
H-735, IC-900, IC-228H, IC-725, IC-448A

SMART PATCH
CES Simplex Autopatch 510 SA Will Patch FM
Transceiver To Your Telephone. Great For
telephone Calls From Mobile To Base. Simple
To Use- 510SAA/510SSAI

PRIVATE PATCH V, Duplex 8000

TUNERS STOCKED:
NYE MBV-13 Kilewatt Tuner

MOTOROLA RADIO
MOTOROLA AUTHORIZED DEALER

MFJ-989C
SHORTWAVE RECEIVERS
STOCKED

Ten-Tec Tuner 229B

COMET ANTENNAS
STOCKED

HEIL EQUIPMENT IN STOCK

SANGEAN Portable Shortwave Radios

Hy-Gain Towers & Antennas, and
Rоторs will be shipped direct to
you FREE of shipping cost

AMERITRON AUTHORIZED DEALER

MAIL ALL ORDERS TO: BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012 (FOUR BLOCKS NORTH OF CANAL ST.)

New York City's
LARGEST STOCKING HAM DEALER
COMPLETE REPAIR LAB ON PREMISES

"Aqui Se Habla Espanol!"
BARRY INTERNATIONAL TELEX 12-7670
MERCHANDISE TAKEN ON CONSIGNMENT
FOR TOP PRICES

Monday-Friday 9 A.M. to 6:30 P.M.
Thursday to 8 P.M.
Saturday & Sunday 10 A.M. to 5 P.M. (Free Parking)

COMMERCIAL RADIOS STOCKED: ICOM, Motoro-
la, MAXON, Standard, Yaesu. We serve munic-
ipalities, businesses, Civil Defense, etc. Portables,
mobiles, bases, repea-
ters...

ALL SALES FINAL

WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS
HAM DEALER INQUIRIES INVITED. PHONE IN YOUR ORDER & BE REIMBURSED
COMMERCIAL RADIOS STOCKED & serviced on premises.

Amateur Radio Courses Given On Our Premises, Call
Export Orders Shipped Immediately. TELEX 12-7670

FAX: 212-925-7001
KENWOOD
TS-790A
★ ALL MODE ★
TRI-BAND
TRANSCEIVER

• Sensitive receiver
• 45 watts on 144 MHz
40 watts on 440 MHz
10 watts on 1.2 GHz
(with optional module)
• High stability VFO
• Dual watch receiver
Listen to two bands simultaneously
• Priority alert
• Narrow CW filter
• Packet terminal

SUGGESTED RETAIL
$1995
MADISON'S LOW PRICE
CALL!
Optional 1.2 GHz Module
List $549...CALL
1-800-231-3057

BRIDGES * HAMSPHERE

• Coming soon to a shack near you.
• Signals from space.
• Catch some free.
• We know how.
• You can too!
• Join AMSAT
• Free brochure for SASE

AMSA
PO BOX 27
WASHINGTON, DC 20044

Ham Radio/June 1989
the same area. W0RPK (Ralph) in Indiana, Iowa was the farthest station to report. He picked up the 2-meter signal at 450 miles. VE3JO and VE3ZK in London, Ontario observed sync bars and a brief, locked picture at a distance of 400 miles. At one point, WB0QCD (Mike) had a P3 to nearly P4 picture at 340 miles. W8YCS near Cleveland had a P2 at 334 miles. W8KQG reported a P5 during most of the flight from over 100 miles. In fact, we received several P5 reports from over 100 miles. WB8MSU (Joe) received P4 signals in full color from 220 miles. Levels of P3 to P4 were seen over 250 miles away by KB9FO (Henry) and N9AB (Andy) in the Chicago area. A brief P5 report came in from K9MTE (Jim) from over 270 miles!

The balloon reached its maximum altitude of 115,000 feet about 2-1/2 hours into the flight. With the exception of an intermittent relay on the 2-meter transmitter, everything was still operating well. We took several internal temperature readings which indicated that the new insulation was working. The temperature was actually over 90°F inside and never seemed to drop below 60 degrees at any time during the flight.

The balloon burst at 11:27 a.m. CDT and started down. Our first indication of the plunge was the rapid fading and flutter on the ATV signal when the package started spinning. The most distant receiving stations started losing the signal rapidly. We estimate that in the near vacuum of 115,000 feet, the package probably dropped at speeds of nearly 700 mph until it was slowed by the parachute at around 50,000 feet. The balloon landed at 11:54 a.m. CDT, after falling for 27 minutes.

Because the jet stream was directly over southern Indiana, the chase team had a real challenge. At times the balloon had been speeding along at over 100 mph. In what might be their "ultimate" fox hunt, the tracking crews were nearly 30 miles from the balloon when it landed. The crews made a dedicated search across a large portion of southern Indiana; the three remaining cars finally got a good fix on the 2-meter signal at 4 p.m. They were about 10 miles north of their quarry when the 2-meter relay stuck again, killing the signal. But as they drove on through a small town, they heard a very weak signal when the package started spinning. The transmitter package was dangling about 20 feet off the ground, still sending out its ATV picture! Paul hooked it with a sapling and brought everything back intact. The balloon landed a mile east of English, Indiana, right in the middle of the Hoosier National Forest, a distance of 86 miles from the launch site!

Except for the fact that the beachball loop antenna now looks like a pair of coat hangers because of its tree landing, the transmitter package will be ready for a repeat flight with a live TV camera. A future fight will carry the first airborne ATV Repeater. The repeater will have a 434 MHz input and 910.25 MHz output; it has the potential of linking up two stations nearly 700+ miles apart!

Special thanks go to everyone who participated in this event. I'd like to thank W9NTP (Don), who let us use his lab very early in the morning on launch day to work on the transmitter package. Don also provided us with the "Mission Control" station where NQ9Q (Brian) and I tracked the balloon. WB9IHS was a great help in choosing the battery system. He also provided up to the minute weather and wind forecasts from the weather bureau via the FAA radio club. Thanks to W9DUU and the Indianapolis Fox Hunters, and of course to W9PRD. His incredible optimism allowed him to predict months in advance that we would have a near perfect launch on June 4 at 9:00 a.m.

I hope these balloon flights will help to increase ATV activity and give us an idea of the possibilities for ATV aboard space shuttles or stations. And who knows, with the experienced launch team we've put together, maybe NASA will give us a chance to help launch the shuttle!

Editor's Note: On January 21, 1989, WB8ELK launched a fifth balloon which carried a small black and white Sony video camera and an Eklutronic color video identifier. The balloon rose to a peak height of just over 100,000 feet sending live video pictures of the southern California desert and the curvature of the earth from the edge of space. Bill is considering making his next balloon flight a full ATV repeater!

REFERENCES

AN RTTY CONVERTER

Almost instant gratification for radioteletype buffs

By Peter Doherty, W1UO, P.O. Box 7252, Greenville, North Carolina 27835

RTTY (radioteletype) has certainly changed in the past few years. Gone are the days of those monstrous mechanical machines, the Model 15, 19, and 28. How many remember the clickety-clack of the old model 15 as it copied the latest W1AW bulletin, sounding like the wire room of some major news network? Well, the whirring of gears and the printing of rolls of hard copy have been replaced by the silence of integrated circuits in the personal computer. Radioteletype has moved from the mechanical into the electronic realm.

One thing hasn't changed, though. The tones that are detected on your receiver can't key your computer directly, just as they can't key a Teletype® machine directly. Likewise, typing on your keyboard won't generate the tones your transmitter needs. As in years past, this is the job of the terminal unit (TU) or converter; MODEM (MOdulator DEModulator) is the modern vernacular.

There are many classic TUs from the vacuum tube era. Old-timers will remember the W2PAT, W2JAV, and the Twin-City converters. How many of you built the one-tube converter and keyer (5763 and 6U8) that appeared in the Radio Amateur's Handbook for so many years? The vacuum tube TU has been replaced by integrated circuits that do a better job with less power. Two chips made by EXAR, the XR2206 and the XR2211, replace the 5763 and 6U8. Despite their simplicity, the chips do a surprisingly good job of generating and demodulating RTTY tones. This terminal unit is meant for the beginner or casual RTTY operator who doesn't want to spend a couple of hundred dollars on a little-used converter.

Transmitter converter

The transmitter converter is built with an EXAR monolithic function generator chip, the XR2206. The generator tone frequency is determined by C6 and R1 or R2 (see Figure 1). Depending on the state of pin 9 on the XR2206, R1 or R2 is part of the frequency-determining circuit. For instance, with pin 9 high, R1 is in the circuit and a 2295-Hz space tone is generated. With pin 9 low, R2 sets the mark tone to 2125 Hz. Potentiometer R4 sets the output level of the audio tones at pin 2.

U3a acts as a buffer and inverter between the outside world and the XR2206 chip. Inverters are handier than straight buffers in this application; they make it easier to invert logic signals so that tones and LEDs run "right side up." LED CR1 blinks in time with the incoming data from the computer. You can see when the computer has finished sending, so that you don't switch to receive prematurely. R3 sets the distortion of the chip to a nominal value. If you're a purist you may want to substitute a 500-ohm potentiometer and adjust it for minimum distortion on an audio analyzer. Then you can plug the audio tones into an HF SSB or VHF/FM rig.

Figure 1 also shows a simple push-to-talk (PTT) interface for use between your computer and radio. PTT data from the computer is buffered and inverted by U3C and drives Q1 and RY1. I opted for a reed relay here because many rigs have different keying voltage requirements, and the reed relay will key just about any rig. If you find that your software is in the receive mode but the PTT relay is keyed, simply add another 7404 inverter in series with U3C to get the PTT signal right side up.

The converter is powered by a plug-in 12-volt DC supply. The 7805 IC regulates this voltage to 5 volts for use by the XR2211 and 7404.

Receiver converter

The receiver converter in Figure 2 is designed around the EXAR XR2211 FSK (frequency shift keyer) demodulator chip. Audio from the receiver's speaker or phone jack is routed to pin 2 of the XR2211 through C7. Audio from the transmitter converter can also be applied to this point through a test switch to test the transmit/receive converter combination. C9 and R16 set the center frequency of the converter. For mark/space tones of 2125/2295 Hz the center frequency is 2210 Hz. Resistor R14 or R15 in series with R13 set the bandwidth of the
FIGURE 1

Schematic of the transmit converter portion of the circuit.

TABLE 1

<table>
<thead>
<tr>
<th>Receiver modem calculations</th>
<th>Transmitter modem calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125/2295 Hz, 170-Hz Shift</td>
<td>F1 = 2295 Hz F2 = 2125 Hz</td>
</tr>
<tr>
<td>Center frequency</td>
<td>Choose a value for R1 and R2</td>
</tr>
<tr>
<td>fo = (2125+2295)/2 = 2210 Hz</td>
<td>R1 and R2 = 10 k (8.2 k + 5-k pot)</td>
</tr>
<tr>
<td>Choose value of R16</td>
<td>Calculate C6</td>
</tr>
<tr>
<td>R16 = 20 k (18 k + 5-k pot)</td>
<td>C6 = 1/(R1 × fo)</td>
</tr>
<tr>
<td></td>
<td>= 1/(10000 × 2295)</td>
</tr>
<tr>
<td>Calculate C9</td>
<td>= 0.0000000044</td>
</tr>
<tr>
<td>C9 = 1/(fo × R16)</td>
<td>= 0.047 μF (standard value)</td>
</tr>
<tr>
<td>= 1/(2210 × 20000)</td>
<td>Check values of R1 and R2</td>
</tr>
<tr>
<td>= 0.0000000026</td>
<td>R1 = 1/(C6 × fo)</td>
</tr>
<tr>
<td>= 0.022 μF</td>
<td>= 1/(0.0000000047 × 2295)</td>
</tr>
<tr>
<td>Calculate Rshift (R13 + R14)</td>
<td>= 9.27 k</td>
</tr>
<tr>
<td>Rs = R16/(fo/FSK shift)</td>
<td>R2 = 1/(0.0000000047 × 2125)</td>
</tr>
<tr>
<td>= 20000(2210/85) = 520 k</td>
<td>= 10.01 k</td>
</tr>
<tr>
<td>= 20000(2210/170) = 260 k</td>
<td>R1 and R2 fall within</td>
</tr>
<tr>
<td>= 20000(2210/425) = 104 k</td>
<td>range of 8.2-k resistor</td>
</tr>
<tr>
<td>= 20000(2210/650) = 52 k</td>
<td>and 5-k pot</td>
</tr>
<tr>
<td>Calculate C12</td>
<td></td>
</tr>
<tr>
<td>C12 = C9/4</td>
<td>All values are rounded to nearest standard component values.</td>
</tr>
<tr>
<td>= 0.005 μF</td>
<td></td>
</tr>
</tbody>
</table>
Design notes

It's easy to design the converter for other frequencies. Table 1 gives most of the necessary formulas. I've worked these calculations for frequencies of 2125/2295-Hz and 170-Hz shift. Just substitute the new audio tones and shift, and select the nearest standard component values. The potentiometers give you some leeway in the selection of the frequency-determining capacitors. Note that the signals to and from the converter are transistor-transistor logic (TTL) level; that is, 0 and 5 volts. If your computer uses different levels, like RS-232 (-12 and +12 volts), you must change these voltages before applying them to the converter. For the RS-232, a set of 1488/1489 line driver/receiver chips designed for this purpose will do the job. An even better choice would be the Maxim MX232, as this chip doesn't require an external negative bias supply. You can find information on using these chips in their data specification sheets.

Construction

All the components to build the converter are available from Radio Shack, Jameco, or Digi-Key. For the best frequency stability, choose polystyrene or some other stable type for frequency-determining capacitors C6 and C9. These are sometimes hard to find; check the flea markets. I have used Mylar™ capacitors with good results. R1a, R2a, and R16a should be ten-turn pots to allow precise setting of the tone frequencies. The backlash of a normal pot will drive you crazy!

I built my converter (see Photos A and B) on a Radio Shack prototype board and mounted it in one of their little metal cases. I mounted variable shift potentiometer R14 in the center of the front panel. Four LEDs, indicating lock, mark, space, and TX data are mounted on one side of the front panel. On the other side I put the four switches for power, normal/reverse, variable/170-Hz shift, and test. The wiring is audio level and not too critical. You may want to consider using ferrite beads or bypass capacitors, or both, on the computer leads to keep

FIGURE 2

Schematic of the receive converter portion of the circuit.

XR2211; hence the shift of the RTTY signal to receive.

R15 copies a fixed shift of 170 Hz; potentiometer R14 allows you to copy shifts from 85 to 850 Hz. This comes in handy when you leave the Amateur bands to explore RTTY on the commercial bands. CR3 indicates if the phase-locked loop (PLL) is locked onto the RTTY signal, CR4 shows that a space signal is being received, and CR5 indicates the same for the mark signal. Data out is routed through a SPDT switch making normal/reverse data available. This is helpful on the commercial bands, as many stations use tones inverted with respect to the Amateur standard.

Design notes

It's easy to design the converter for other frequencies. Table 1 gives most of the necessary formulas. I've worked these calculations for frequencies of 2125/2295-Hz and 170-Hz shift. Just substitute the new audio tones and shift, and select the nearest standard component values. The potentiometers give you some leeway in the selection of the frequency-determining capacitors. Note that the signals to and from the converter are transistor-transistor logic (TTL) level; that is, 0 and 5 volts. If your computer uses different levels, like RS-232 (-12 and +12 volts), you must change these voltages before applying them to the converter. For the RS-232, a set of 1488/1489 line driver/receiver chips designed for this purpose will do the job. An even better choice would be the Maxim MX232, as this chip doesn't require an external negative bias supply. You can find information on using these chips in their data specification sheets.

Construction

All the components to build the converter are available from Radio Shack, Jameco, or Digi-Key. For the best frequency stability, choose polystyrene or some other stable type for frequency-determining capacitors C6 and C9. These are sometimes hard to find; check the flea markets. I have used Mylar™ capacitors with good results. R1a, R2a, and R16a should be ten-turn pots to allow precise setting of the tone frequencies. The backlash of a normal pot will drive you crazy!

I built my converter (see Photos A and B) on a Radio Shack prototype board and mounted it in one of their little metal cases. I mounted variable shift potentiometer R14 in the center of the front panel. Four LEDs, indicating lock, mark, space, and TX data are mounted on one side of the front panel. On the other side I put the four switches for power, normal/reverse, variable/170-Hz shift, and test. The wiring is audio level and not too critical. You may want to consider using ferrite beads or bypass capacitors, or both, on the computer leads to keep...
the computer interference out of your radio and vice versa. I didn’t find this necessary in my application.

Lacking a better method, I typed the front panel label on heavy card stock and attached it to the front panel with wide, transparent packing tape. It’s crude but effective. I just couldn’t picture myself squeezing all those rub-on letters into such a small place.

Alignment

The easiest way to align the transmitter section is with a frequency counter. Connect pin 1 of the 7404 to 5 volts through a 1-k pull-up resistor (pin 9 of the XR2206 goes low) and adjust R2a for the mark tone of 2125 Hz. Ground pin 1 of the 7404 (pin 9 of XR2206 goes high) and adjust R1a for a space frequency of 2295 Hz. If your software has inverted mark/space tones, adjust R1a for the mark tone and R2a for the space tones.

If you don’t have a frequency counter, you can use an audio source of known calibration and an oscilloscope. A calibrated converter from a friend would be a good source. Feed the calibrated tone into the horizontal amplifier and feed the uncalibrated tone into the oscilloscope vertical amplifier. Now adjust the proper pot in the converter until the pattern becomes a perfect circle, indicating that the tones are the same frequency. Do this for the mark and then the space frequencies. (These oscilloscope patterns are called Lissajous figures; the technique is described in any radio handbook.)

To calibrate the receiver, first set the fixed/variable switch to the fixed position. Next, connect an ohmmeter to read the combined resistance of R13 and R14. Adjust R14 to full resistance (a combined total of 520 k) and mark the front panel knob for 85-Hz shift. Now adjust R14 for a total of 260 k and mark the panel for 170-Hz shift. A resistance of 104 k equals a shift of 425 Hz and a resistance of 52 k equals a shift of 850 Hz. These are the most commonly used shifts on the shortwave bands. (This adjustment isn’t very important.) With the fixed/variable switch in the fixed position and no signal present, disconnect C8, short pin 2 to pin 10 of the XR2211, and attach a frequency counter to pin 3. Set the frequency to the center frequency (2210 Hz) with potentiometer R16a. Remove the short and reconnect C8. As before, if you don’t have a frequency counter, feed a known RTTY signal into the input and adjust R16a for a clean copy on your computer.
Operation

Once the tones are adjusted in the transmit portion, the only other adjustment you need to make is to the output level. R4 takes care of this. Set your software into the transmit mode and feed the tones into the mic jack of your transceiver through the appropriate connector. You should be in LSB mode. Set R4 to midscale. Now adjust the mic gain on your rig, along with R4 for the proper RF output level on your transceiver. Remember that RTTY is a 100-percent duty cycle mode, and many transceivers are not designed for continuous output. You may have to back down on the output until you attain a safe level. In an FM radio you just have to adjust R4 until you reach the proper deviation without clipping in the mic circuit.

To tune in an RTTY signal, first check out the ham bands around 3.6 or 14.1 MHz where most signals will be operating 170-Hz shift. As you tune through an RTTY signal, the PLL lock, mark, and space lights will flicker. As you approach the center of the signal, the PLL lock light will suddenly glow with full brilliance. The mark and space lights should be flickering evenly. A slight adjustment of the VFO on your receiver will result in copy on your computer screen.

If the lock light is lit and the mark/space lights are flickering but you don’t have clean copy, try the normal/reverse switch. If you are properly tuned to an RTTY signal that’s not keying, the PLL lock and mark lights should be lit. If you’re new to RTTY, it will take a while to get the hang of tuning in the signals. It may also take a while to get all the software and converter connections running right side up, using the proper options of your software and/or inverters in your converter. On FM, it’s only a matter of adjusting R16a on the receiver converter until clean copy occurs while receiving an RTTY signal.

When you start cruising the shortwave bands in search of commercial stations, operation will take a little more savvy. Here are a few hints. You probably won’t know the shift of the shortwave station. Tune in the signal until the tones sound “about right.” Flip the fixed/variable shift switch to variable. Then rock the variable shift potentiometer until the PLL lock lights and the mark/space lights blink evenly. Odds are good that the station will be running one of the standard shifts marked on the front panel. Now it’s time to try the normal/reverse switch and different speeds in your software. After a short time, you’ll be able to recognize the shift, the speed, and whether the RTTY signal is in Baudot or ASCII simply by the sound.

Concluding remarks

If you’re just interested in listening, it’s not necessary to build the transmit section. The receive converter is a simple device. It won’t rival a full blown unit with separate mark and space filters. However, it does a good job on the crowded Amateur bands — as long as the interference isn’t too severe. Commercial stations tend to operate on clear channels, so the results with these have been very good. Of course, the quiet environment of VHF/FM is the ideal situation for this converter. Despite the fact that an RTTY contest on 20 meters on a Sunday afternoon will probably crush the little converter, I’ve had many enjoyable QSOs on both 20 and 80 meters in less than clear channel situations. I have also used it to copy bulletins in ASCII from W1AW. I use this converter with a Commodore 64 and Kantronics Hamsoft Software. Gone is the mechanical thunder of the Model 15.
THE NO5H ALL-BAND DIPOLE

Easy to build, easy to move antenna

Gary L. Elliott, NO5H, 41200 Highway 933, Prairieville, Louisiana 70769

My line of work requires that I move to a new location every four or five years. This means I’m continually taking down or putting up antennas. As a result of this, I am always looking for a wire-type antenna that’s easy to construct and get working.

I enjoy working all the HF bands from 160 through 10 meters and do most of my operating on 160 and 40 meters. My goal was to design a coax-fed dipole antenna that was simple to build and fit into a 198-foot space.

Description

My antenna design is neither new nor unique. But I’ve never seen it written up in any of the Amateur publications.

I built a 3/2-wavelength dipole cut for the center of the 40-meter band and fed with 75-ohm CATV coax through a half-wave matching section of 300-ohm open-wire line. Why a 3/2 antenna cut for 40 meters? I wanted an antenna that would operate on 160 meters as a dipole, and in an inverted “V” configuration. I didn’t want to resort to traps or to tying the feeder wires together, as you would when using a short dipole as a “T”-type antenna. I wanted the advantage of a dipole, in a length shorter than full dipole size.

If the antenna I’ve described sounds like a G5RV-based design, it should. The G5RV is also a 3/2-type dipole, except that Louis Varney, G5RV, designed his dipole to a 3/2 wavelength at a frequency of 20 meters. Like the G5RV, my antenna is an all-band 160 through 10 design, but it has certain advantages because of the longer length of the dipole. This longer length allows full-dipole and/or long-wire performance on all bands from 160 through 10 meters; you don’t need to tie the feeders together for 160-meter operation.

Operation

The NO5H antenna operates in the following configurations on the accompanying bands:
- shortened half-wave dipole on 160 meters
- two half waves in phase on 75 meters
- a 3/2-wavelength dipole on 40 meters
- two full waves in phase on 30 meters
- two long wires each 3/2 wavelengths long on 20 meters
- two long wires each 2 full wavelengths long on 15 meters
- two long wires each 5/2 wavelengths long on 12 meters
- two long wires each 3 full wavelengths long on 10 meters

All-band coverage (including the two usable WARC bands) is achieved easily with this simple antenna configuration.

Construction

The flat-top portion of the antenna is 203’ long; each half of the flat top is 101’6” in length. The formula I used is:

\[L = \frac{1451.4}{f \text{ (MHz)}} \]

The matching section is made from 53’6” of 300-ohm twin lead with a velocity factor of 82 percent (in my case). When the formula is used this way it becomes:

\[L = \frac{468}{f \text{ (MHz)}} \times .82 \]

I used a run of 75-ohm CATV RG-6 coax to the antenna tuner in the station.

This antenna design has some unique features that set it apart from similar antennas. I use CATV RG-6 coax with 100-percent aluminum shield,* along with a long shank F-type cable connector at both ends of the coax. The F-type connector requires the use of a compound jaw crimping tool. The antenna is as simple to build as any other dipole, and using F-type connectors on the coax makes the assembly process even easier.

*Radio Shack, RG-6 CATV coax pin 276-1324.
Once the 203' flat top is laid out and the center insulator installed, attach the 53'6" matching section by soldering it in place at the center insulator. I installed an SO-239 chassis connector at the other end of the matching section. One wire of the matching section is soldered to the center pin and the other to a solder lug bolted to one of the corner mounting holes. The connection needs to be sealed from the weather by whatever means you generally use. I installed a long shank F-type connector** on the end of the RG-6 coax and coiled the coax into a 6" diameter 11-turn choke coil. Then I attached a female F to PL-259 adaptor*** to the F connector on the RG-6 coax. This lets you run the coax to the station antenna tuner after the antenna is raised to its operating position. When you connect the coax at the station end it's good to allow a little extra; you may have to shorten the coax run a bit if you encounter a hard-to-load condition on one band. Figure 1 gives dimensional details for the antenna.

Some of you many wonder why I used CATV-type RG-6 coax and F connectors for an Amateur antenna project. The better quality RG-6 has the same loss per hundred feet as RG-213 coax and lower loss than RG-8X coax at a cheaper price per foot than the others. RG-6 cable is also 100 percent shielded. The coax has an aluminum shield which is not intended to be soldered, and that's why I used the F connector. Using this connector at the 200-watt level hasn't presented a problem. In fact, using the crimp on the long shank F connector makes trimming the lead-in much easier if a loading problem occurs on one of the bands in use.

I think we all need to be more innovative when it comes to antennas and feed systems. Those who operate at VHF and UHF learned long ago to use CATV hardlines and cables because of the lower loss. Fifty ohms doesn't have to be the magic number for most applications. Many stations now use antenna tuners or rigs with built-in tuners to control the SWR that their solid-state rigs feed into. So don't be afraid to give other cables or connectors a try; you may find that they do make antenna projects easier and more fun.

Conclusion

The antenna can be mounted either as a horizontal dipole or an inverted V. In my case, the antenna is in the inverted Vee configuration with the apex at about 50 feet and the ends of the antenna about 10 feet off the ground.

Does it work? Comparisons with my regular G5RV show improvements on all bands. The greatest are seen on 30 through 10 meters. On 40 and 80 meters I find that the improvement depends on the distance and propagation of the signal being received.

One thing I can't stress enough is that both this design and the G5RV require the use of an antenna tuner. Take time to read Louis Varney's comments on the G5RV design in the ARRL Antenna Compendium, Volume One.4 Even at the 3/2 design frequency with the half-wave matching section, the feedpoint impedance is still a little over 100 ohms. On the other bands the feedpoint impedance varies because of the complex loads presented by the antenna, resulting in the need for an antenna tuner. My design and the G5RV are efficient all-band antennas that can be coax fed.

REFERENCES

3. Louis Varney, G5RV, ibid., page 89.
4. Louis Varney, G5RV, ibid., pages 86-90.

WHAT'S THE BIGGEST ISSUE IN HAM TV TODAY?

THE NEXT ISSUE OF AMATEUR TELEVISION QUARTERLY

- ACCURATE reporting
- TECHNICAL information
- VALUABLE content
- QUALITY production

SUBSCRIPTIONS:

1 Year $15 U.S., $20 Canada, $25 Elsewhere

1545 Lee Street, Suite 73
Des Plaines, Illinois 60018
(312) 298-2269

Ham Radio/June 1989 83
PRODUCT REVIEW

Ameritron RCS-4 and RCS-8V

Over the last ten years, the price of coaxial cable has jumped significantly due to the high cost of raw materials. Hams with long, multiple feedlines know how expensive several runs of coax can be.

However, Ameritron has two ways to overcome this problem. The RCS-4 will switch four antennas and doesn’t require extra cabling to operate. The RCS-8V switches five antennas and requires an external control cable.

The RCS-4 is elegant in its simplicity. The relay box contains three relays that are switched by voltages fed through the coaxial feedline. With no voltage present, the antenna selected is no. 4. As you switch to the other antennas from the control box, either DC +, DC −, or AC is fed into the coax to turn on the appropriate antenna relay.

Three 0.01μF capacitors and a radio frequency choke isolate the station from the antennas at the control box and the relay voltages from the antenna lines. The three relays have 10-A contacts and are rated at 50-ms switching time. A small air spark gap is mounted on the relay box circuit board to bleed off any static charges that could accumulate. Additional lighting protection is recommended through coax loops on all feedlines.

To use the RCS-4, insert the control box into your shack’s feedline just before it goes outside and connect the relay box to the end of the feedline. Connect your antennas to the relay box and you’re ready to go! The antenna selector switch has red LEDs that indicate which antenna is selected. Make sure that the relay box is installed with the connectors down and that you do not attempt to further weatherseal the unit. Water will accumulate if you do, and eventually the unit will have problems. The relay box can be mounted anywhere that’s convenient for you. Its rugged construction ensures you’ll have minimal problems after installation.

Insertion loss is less than 0.05 dB under 30 MHz and the insertion VSWR is under 1.1:1 from 1.8 to 30 MHz. The unit is designed to handle 1500 watts and 2500 watts PEP maximum. One word of warning — never attempt to switch while transmitting. If you do, you risk losing the switch.

The RCS-8V gives you several advantages over the RCS-4. It will handle greater power; it’s rated at 4 kW below 30 MHz (1 kW PEP at 148 MHz), and works from 1.8 to 220 MHz with negligible insertion loss and only a slight additional loss at 450 MHz. This greater flexibility is gained through use of an external control line to switch antennas.

You can use any wire to control the switch. As long as the conductor to ground return resistance is less than 80 ohms, the unit will operate normally. Five or 8-conductor rotor wire is usually the easiest to get and use. To set up the switch connect at least a 5-conductor control cable between the relay box and the control box in the shack. (Make sure that the wires are connected in proper sequence.)

The RCS-8V gives you the ability to select more than one antenna at a time. For instance, if you’re running stacked beams, you can wire the switch to select either the upper or lower antenna or for additional gain, or both antennas at the same time. The switch can also be used to select either five antennas for one rig or five rigs for one antenna. Versatility is limited only by your needs.

The RCS-8V will switch in less than 50 ms and uses heavy-duty 10-A rated relays. The relays are isolated so that you can switch two antennas simultaneously. However, I recommended that you ground the antennas when they’re not in use. Ameritron provides the information on how to modify your switch.

These two products are constructed from high quality rugged parts and will give years of service. The relay boxes for both the RCS-4 and RCS-8V are made from steel enclosures for 100-percent shield coverage and TV/RFI protection. Whatever your needs, one of these two switches will work for you. See your local Ameritron dealer for more information.

Circle #302 on Reader Service Card.

Cushcraft A4S four-element, HF Triband Yagi antenna

Looking for an antenna to maximize your signal on 20 through 10 meters? Cushcraft’s A4S four-element tribander is more than up to the task.

In keeping with Cushcraft’s history of high-performance HF Yagis, the A4S is a true winner. Offering triband coverage with three elements each on 10, 15, and 20 meters, the A4S has been optimized to provide excellent

(continued on page 86)

Digitar’s Model PCW Weather Station

Now you can have your own advanced computer weather station.Digitar’s Model PCW automatically monitors and tracks local weather conditions on your MS-DOS computer.

The weather station comes with a wind vane and speed sensor and all mounting hardware. Also included are two remote temperature sensors, a plug-in computer card, basic operating software, 12 volts AC power adapter, and complete documentation. The PCW’s VLSI on-board microprocessor generates instant weather data on the computer screen. It shows current temperature (inside/outside); barometric pressure; wind speed, chill, gust, and direction; high and low temperature over a 24-hour period; and clock calendar. An optional rain collector is also available.

The PCW has programmable alarm set points for time, high wind speed, and high and/or low temperature. When any set points are reached, the PCW card sounds an alarm (even when the computer is shut off) using its own power supply.

The optional PCWPRO software package, an advanced controller, makes the PCW weather station a sophisticated monitoring and data logging program. It can display each function in graphic form and saves data to disk on the hour and half hour. Both the PCW and the PCWPRO can be placed in the computer’s background to allow use of your PC for other functions, such as logging QSO’s or word processing. You can return to it by typing a user-selected key sequence.

The instructions were extremely easy to follow, explaining in simple terms how to configure the board to work with your PC. The PCW plug-in board accommodates different computer configurations.

The enhanced PCWPRO software is designed with open architecture and pre-defined system calls. User-written programs may be designed to interface the PCW Weather Station with other computer applications.

The PCW weather station sells for $299, the PCWPRO enhanced software for $99.95, and the optional RG-2 rain collector for $49.95. All are available from A/muth Communications, Corp., 11845 W. Olympic Blvd., Suite 1100, Los Angeles, California 90064.

Circle #301 on Reader Service Card.

84 Ham Radio/June 1989
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

KIT, ONLY $675
WIRED $975
VHF OR UHF

FEATURES:
* SENSITIVITY SECOND TO NONE! GaAsFET front end on vhf models
 provides 12dB SINAD of 0.12uV (vhf), 0.15uV (220). UHF model
 0.25uV std, 0.1uV with optional helical resonator preamp.
* SELECTIVITY THAT CAN'T BE BEAT! Both 8-pole xtal filter &
 ceramic filter for >100dB at only <12kHz. Helical resonator front
 end to combat desense & intermod.
* CLEAN, STABLE TRANSMITTER, up to 18W output standard; 50W
 with accessory power amplifier.
* FCC TYPE ACCEPTED for commercial high band and uhf.
* Courtesy beep, field-programmable CWID, flutter-proof squelch,
 automatic frequency control to compensate for off-frequency transmis-
 sions (all standard features).
* Full range of options available, such as autopatch, phone line or
 radio remote control, sub-audible tones, duplexers.

HIGH PERFORMANCE TRANSMITTERS & RECEIVERS FOR REPEATERS
AUDIO & DIGITAL LINKS, TELEMETRY, ETC.

* FM EXCITERS:
 Kits $99, Wht $179. 2W continuous duty. TCXO &
 xtal oven options available.
 * Ta51 for 10M, 6M, 2M,
 150-174, 220 MHz.
 * TA451 for uhf.
 * FCC type accepted for commercial bands.
 * Call for latest information on 900 MHz transmitters.
* VHF & UHF AMPLIFIERS. For FM, SSB, ATV. Output from 10
 to 50 Watts. Several models, kits starting at $79.

* R144/R220 FM RECEIVERS for 2M, 150-174, or 220 MHz.
 GaAs FET front end, 0.12uV Sensitivity!
 Both crystal & ceramic filters plus helical resonator
 front end for exceptional selectivity: >100dB at 12kHz
 (best available anywhere!)
 * R851 UHF FM RCVR. Similar to above. Tuned line front end,
 0.25uV sens. (0.1uV with optional hel. res. preamp). Kit $149,
 Wht $229.
 * R901 FM RCVR FOR 900 MHZ. Triple-conversion, GaAs FET front
 end, 0.2uV sens. Kit $169, Wht $259.
 * R78E ECONOMY VHF FM RCVR for 10M, 6M, 2M, 220. Without hel
 res or afc. Only kits $129.
 * Weather satellite & AM Aircraft receivers also avail.

HGHER RESONATOR RECEIVERS
Providing better preamps and GaAs FETs at a fraction of the cost
of comparable units!

GaAs FET PREAMPS
at a fraction of the cost of comparable units!

LNG- (*)(*)
GaAs FET PREAMP
ONLY $59/Wired/-tested
FEATURES:
* Very Low Noise: 0.7dB VHF, 0.8dB UHF
* High Gain: 13dB, depending on frequency
* Wide Dynamic Range: to resist overload
* Stable: new type dual-gate GaAs FET
 * Specify tuning range desired: 26.30, 46.56, 137.150, 150-172, 210-230, 400-470, or 800-960 MHz.

LNW- (*)(*)
MINIATURE GaAs FET PREAMP
ONLY $24/kit, $39 Wired/TESTED
GaAs FET Preamp
similar to LNG, except designed for low cost
& small size. Only 5/8"W x 1-5/8"L x 3/4"H.
Easily mounts in many radios.
 * Specify tuning range desired: 25-35, 35-55, 55-80, 80-100, 100-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNS- (*)(*)
IN-LINE PREAMP
ONLY $79/kit, $99 Wired/TESTED
GaAsFET Preamp
with features similar to LNG series, except automatically switches out of
line during transmit. Use with base or mobile transceivers up to 25W.
 * Specify tuning range desired: 120-175, 200-240, or 400-500 MHz.

ACCESSORIES

COR-3 REPEATER CONTROLLER
Kit. Features adjustable tail & line-out timers, solid-state relay, courtesy beep, and
local speaker amplifier. $49

CWD kit. Diode programmed, adjustable tone, speed, and timer,
to go with COR-3 $59

NEW COR-4 kit. Complete COR
and CWD all on one board for
easy construction. CMOS logic
for low power consumption.
Many new features. EPPROM pro-
grammed; specify call letters. $99

NEW TD-3 SUBAUDIBLE TONE
DECODER/ENCODER kit... $24

TD-2 DTMF DECODER/CONTROL-
ker kit. Full 16 digits, with
toll-call restrictor, programmable.
Can turn 5 functions on/off. Great
for selective calling, tool $76

AP-3 AUTOPATCH kit. Use with
above for repeater autopatch.
Reverse patch and phone line
remote control are std. $79

AP-2 SIMPLEX AUTOPATCH
Timing Board kit. Use with above
for simplex operation $39

MO-202 FSK DATA MODULA-
TOR kit. Used to run 1200 baud
digital signals through any fm
transmitter with full handshakes.
Radio link computers, telemetry
gear, etc. $39

DE-202 FSK DEMODULATOR
kit. For receive end of link $39

9600 BAUD DIGITAL RF LINKS.
Low-cost packet networking
system, consisting of new MO-56.
Modem and special versions of
our 220 or 450 MHz FM Trans-
mitters and Receivers. Interface
directly with most TNCs. Fast,
diode-switched PAs output 15 or
50W. Call for info on the right
system for your application!

RECEIVING CONVERTERS

DE-202 FSK DEMODULATOR
kit. For receive end of link $39

DE-202 FSK DEMODULATOR
kit. For receive end of link $39

See catalog for full line of 2w transmitting
converters for vhf & uhf. Kits only $78

Linear Amplifiers avail. up to 50 w.

hamtronics, inc.
65-H MOUL ROAD • HILTON NY 14468-9535
Phone: 716-392-9430

Our 26th Year
Steel hose clamps and bolts provided to come straightforward when you use the antenna forward. Antennas may be modeled within, width, length, and noise-reducing power cord. The maximum power rating is 2000 watts PEP. Construction of the A4S is simple and straightforward when you use the instructions included with the antenna. The 18-foot boom comes in three 6-foot sections. The stainless steel hose clamps and bolts provided to pin the sections prevent boom rotation. The elements are constructed of telescoping lengths of aluminum, weatherproof traps, and stainless steel hardware for a rugged and durable installation. It took us just under an hour to put the antenna together.

Replacing HAM RADIO's 12-year-old antenna with the new A4S took only a half hour. The A4S weighs 37 pounds and can be handled easily by one person. A light and manageable antenna is always a joy for working on a tower and the A4S is no exception for ease of installation.

Cushcraft also has an add-on kit available for 40 and 30 meters. The additional traps are installed at the end of the driven element.

The kit is then set for either 40 or 30 meters. Our old Cushcraft antenna had always held its own, both in DX pileups and in state-side OSOs. The new A4S has demonstrated that it is capable of maintaining the performance tradition. Band conditions permitting, I was effortlessly able to work anything I heard. If you are looking for good performance, the A4S is an excellent choice. Retail price is $525.

Circle #303 on Reader Service Card.

NEW PRODUCTS

UI-7 FM module for IC-725 and noise-reducing power cord

The UI-7 is an FM module which allows AM transmit with the IC-725 transceiver. Suggested retail price is $71.99.

Also available is the CP-11, a cigarette lighter power cord with a built-in noise reduction filter. Suggested retail price is $18.99.

Contact ICOM America Inc., 2380 116th Avenue N.E., PO Box C-90029, Bellevue, Washington 98009-9029.

Circle #304 on Reader Service Card.

New Software for MN and Yagi

The new MN (enhanced version of the U.S. Navy's MININEC) program for IBM-PC and compatible computers will analyze almost any antenna made of wire or tubing. MN computes antenna forward gain, front-to-back ratio, beam width, sidelobes, angle of radiation, current, impedance, SWR near fields, and far fields. Antennas may be modeled in free space or over real earth. It plots antenna radiation patterns in polar or rectangular form on CGA, EGA, or HGC graphics screens. Hard copies of the plots may be made for nearby antennas or structures, allowing detailed analysis of stacked arrays. The 5-1/4 inch MN disk contains over 100 files, including libraries of antenna and plot files, a file editor, and documentation. The program costs $75 ($80 in Canada and foreign countries).

YO Yagi Optimizer Software

The new YO program for IBM-PC and compatible computers automatically adjusts the element lengths and spacings of a Yagi design to maximize forward gain, optimize pattern, and minimize SWR. Radiation patterns at the center and edges of a band, and a scale drawing of the antenna, are plotted on CGA, EGA, or HGC graphics screens during optimization. Hard copies of the plots may be made on dot-matrix printers. YO computes several trial designs per second for small Yagis, with an optional math co-processor chip installed. Yagis of up to 50 elements may be modeled. The YO design package includes models for gamma and harpin matching networks, element tapering, mounting plates, and frequency scaling. A library of Yagi files and documentation are included. The program costs $90 ($95 in Canada and foreign countries).

These programs are available from Brian Beezley, K6STI, 507-1/2 Taylor Street, Vista, California 92084.

MFJ Offers Two New Books

MFJ offers two new books by Dave Ingram, K4TWJ.

In Golden Classics of Yesteryear, you'll find real-life tales and information on transmitters, receivers, favorite circuits, telegraph keys, bugs, and other ham radio topics. It contains easy-to-build weekend projects from the 1920s, '30s, '40s, and '50s.

K4TWJ even shows you how to build a classic "Talent" — an early DX memory keyer that requires no power supply or other electronic parts and works like a champ. Ingram, a collector of classic radio gear, shows you how to collect, restore, and operate it.

OSCAR Satellite Reuse is an anthology of CO magazine articles about setting up and operating various types of OSCAR stations for working DX, as well as Japanese and Russian satellites. Each article is followed by an update and ready-to-use frequency conversion charts for all satellite modes. There are tracking notes for OSCAR 13, OSCAR 10, Japanese JO-12, and Russian RS-10/RS-11.

K4TWJ even shows you how to work the Russian robot on RS-10 and exactly how to receive a QSL card confirming this rare DX!

There's a quick-start guide for newcomers and an equipment review section. Also included is an up-to-date Keplerian data for computerized tracking programs.

For more information contact MFJ Enterprises, Inc., PO Box 494, Mississippi State, Mississippi 39762. Phone: (601) 323-5869. To order call toll free (800) 647-1800.

Circle #305 on Reader Service Card.

Davis RF

Davis RF has a new wire for dipole and long wire antenna applications. This wire's custom made for strength and will not stretch under normal ham applications, including counterweights. The wire is no. 14, multistranded copper. It will not kink or unravel, is extremely flexible, can be tied in knots, and is easy to solder.

A complete catalog of antenna parts is available from Davis RF, Box 230 Carlisle, Massachusetts 01741. Phone: (508) 369-1738.

Circle #306 on Reader Service Card.
IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...

ANTIQUE RADIO CLASSIFIED

Antique Radio's Largest-Circulation Monthly Magazine
FREE SAMPLE COPY!
Classifieds: Ads for Parts & Services
Articles: Auction Prices-Flea Market Info.
Also: Early TV, Ham Equip., Books, Telegraph, Art Deco, 40's & 50's Radios & more...
Free 20-word ad each month. Don't miss out!
6-Month Trial - $11.
1-Year: $19 (28 by 1st Class)
Foreign by air: Canada: $30; Mexico: $28; Other: $55.
A.R.C., P.O. Box 2-44, Carlisle, MA 01741

Electronic Repair Center
Servicing
Amateur Commercial Radio
The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.
SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400

LOW BAND DX'ING
by John Devoldere ON4UN
Now Available! The new, 2nd edition of the definitive book on Low Band DX'ing. Based upon years of practical on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations—dipoles, inverted V's, phased arrays and Beverages—they're all in this book. Also covered: propagation, transmitters, receivers, operating, software and an extensive Low Band bibliography. Going to be a best seller! Get yours today. ©1987 2nd Edition 200 pages
$39.95 ea.
$44.90 ($54.90 for Mac)

BUY EMBoth
SPECIAL OFFER
Book & Software Reg. $49.90
($59.90 for Mac)
Just $44.90 ($54.90 for Mac)
UN-MSO (specify computer) $44.90
UN-MSO Macintosh Special $54.90

SavE $5
Please enclose $3.75 shipping & handling

LOW BAND DX'ING
COMPUTER PROGRAMS
by John Devoldere, ON4UN, for Apple IIe/c, MS-DOS, Commodore C-128 Apple Macintosh and Kaypro CPM Computers
Here's a collection of 30 super programs written by ON4UN. Just about every interest included in this book. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations. The new, 2nd edition of the definitive book on Low Band DX'ing. Based upon years of practical on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations—dipoles, inverted V's, phased arrays and Beverages—they're all in this book. Also covered: propagation, transmitters, receivers, operating, software and an extensive Low Band bibliography. Going to be a best seller! Get yours today. ©1987 2nd Edition 200 pages
$39.95 ea.
$44.90 ($54.90 for Mac)

Get your message across... even when no one is listening.
HT's, or wire a separate cable into your mobile or base VHF or UHF rig. Connect your computer via RS-232 and you're ready to call a fast-growing number of packet hams.

The HK-21 Pocket Packet requires only a single 12 VDC@40mA power source or as little as 29mA from an optional HKA-21-1, internally mounted 4.8 volt, 120 mA, NICAD battery.
The Heath® HK-21 Pocket Packet - $219.95 (Amateur net price)
To order, call 1-800-253-0570

Also: Early TV, Ham Equip., Books, Telegraph, Amateur Commercial Radio
The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

Send personal check with order, we ship same day First Class. 30-day money back warranty. Quantity discounts.
What will the sporadic E propagation conditions be as the maximum of solar cycle 22 approaches? From May through September radiation from the nearly overhead sun generates high ion densities in the lower ionosphere that support short-skip propagation — including multiple short skips. The geomagnetic field clusters these ions into cloud-like patches known as sporadic E (E_s). These patches form a thin layer of intense ionization in the E region about 60 miles up. A patch gives a strong, mirror-like signal reflection over skip distances of 600 to 1200 miles. This lasts for perhaps an hour.

The frequency and magnitude of Sporadic E occurrences are functions of geographical location. The best locations for summer E_s openings are on either side of the geographic equator, at the point where the geomagnetic equator is farthest away. This condition occurs in the Northern Hemisphere in Southeast Asia (best) and the Mediterranean (next best). In the Southern Hemisphere it occurs in South America. The highest frequency propagated by E_s tends to occur at noon. Since the E_s patch is embedded in the regular E layer, it tends to track the E maximum ion density throughout the day, season, and sunspot cycle. This summer you can expect an increase in the E layer as an E_s base for higher maximum usable frequencies (MUFs) over a 1200-mile hop. This increase will give base MUFs of 51 to 57 MHz this year, so 6-meter openings should be really good. The highest probability of occurrence is near sunrise and again around sunset.

These two E_s characteristics affect short-skip openings differently. Openings on the higher frequency bands occurred around local noon; the lower bands tend to have openings near sunrise and sunset. This characteristic is nearly constant over the sunspot cycle so there should be the same number of low to midlatitude E_s openings, but the MUF is up for better DX. More about E_s next month.

Last-minute forecast

Openings on the higher frequency bands (10 to 30 meters) are expected to be best the last two weeks of the month. At the same time, signal strengths will be lower than normal. Both are conditions of the increased MUF from the 27-day solar cycle maximum expected at that time. Solar flare geomagnetic disturbances are expected around the 19th and 27th; another disturbance may result from thin corona near the 9th. These will lower the MUF by 15 to 25 percent. Because these effects are worse on evening paths, the lower frequency bands will experience more fading and much lower signal strengths. Otherwise, the lower bands should be best the second week of June.

The moon will be full on June 19th and at perigee (its closest approach) on June 28th. Summer solstice is on the 21st at 1100 UTC. The Aquarid meteor shower starts about the 8th, peaks around the 28th, and lasts until about August 7th. The maximum radio-echo rate will be 34 per hour.

Band-by-band summary

Six meters will provide occasional openings to South Africa and South America around noon time via short-skip E_s propagation. There will be long-skip conditions on 10 meters in the afternoon during the peak times of the 27-day solar cycle. Otherwise, look for sporadic E short-skip and multihop openings around local noon for DX on this band. (Evening transequatorial openings usually don't occur in the summertime.) Twelve, 15, and 17 meters (almost always open to some southern part of the world) will be the main daytime DX bands. Operate on 12 first and then move down to 15. DX is considered 5000 to 7000 miles on these bands. There may be some long, one-hop transequatorial propagation paths occurring early in the month.

Twenty, 30, and 40 meters will support DX propagation from most areas of the world during the daytime and into the evening hours on most days. DX on these bands may be either long skip to 2500 miles or short skip E_s to 1250 miles per hop. There are many good hours of DXing ahead because the days are longer.

Thirty, 40, 80, and 160 are all good for nighttime DX. Although the background thunderstorm noise will be noticeable, these bands are still quiet enough to provide good DX-working conditions. Sporadic E propagation may be a contributing factor toward enhanced conditions at local sunset, and will occur more often during the next three months.
<table>
<thead>
<tr>
<th>JUNE</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
</tr>
<tr>
<td>01</td>
</tr>
<tr>
<td>02</td>
</tr>
<tr>
<td>03</td>
</tr>
<tr>
<td>04</td>
</tr>
<tr>
<td>05</td>
</tr>
<tr>
<td>06</td>
</tr>
<tr>
<td>07</td>
</tr>
<tr>
<td>08</td>
</tr>
<tr>
<td>09</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

WESTERN USA

MID USA

EASTERN USA
<table>
<thead>
<tr>
<th>State</th>
<th>Company Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 Drew Street, Clearwater, FL 33575</td>
<td>(813) 461-4267</td>
<td>West Coast's only full service Amateur Radio Store. Hours Mon-Fri. 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>California</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>621 Commonwealth Ave, Orlando, FL 32803</td>
<td>(305) 894-3238</td>
<td>Hours Mon-Fri. 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>Colorado</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 Keeaumoku Street, Honolulu, HI 96814</td>
<td>(808) 949-5564</td>
<td>Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Ten-Tec, Fluke, Belden, Astron, etc.</td>
</tr>
<tr>
<td>Colorado</td>
<td>ALLIED APPLIANCE & RADIO</td>
<td>4253 South Broadway, Englewood, CO 80110</td>
<td>(303) 761-7305</td>
<td>1 (800) 321-7305 Orders only Rocky Mt Amateur/Shortwave Specialists, Ten-Tec, Yaesu, JRC-NRD, Sony, MFJ, KLM, and other fine gear. New and used. Visa/MC. Antennas, books, discount prices too!</td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS</td>
<td>500 Ledyard St. (South), Hartford, CT 06114</td>
<td>(203) 527-1861</td>
<td>Call today. Friendly one-stop shopping at prices you can afford.</td>
</tr>
<tr>
<td>Delaware</td>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>3208 Concord Pike, Wilmington, DE 19803</td>
<td>(302) 478-2757</td>
<td>Delaware’s Friendliest Ham Store.</td>
</tr>
<tr>
<td>Delaware</td>
<td>DELAWARE AMATEUR SUPPLY</td>
<td>71 Meadow Road, New Castle, DE 19720</td>
<td>(302) 328-7728</td>
<td>One mile off I-95, no sales tax.</td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 Drew Street, Clearwater, FL 33575</td>
<td>(813) 461-4267</td>
<td>Clearwater Branch.</td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 Keeaumoku Street, Honolulu, HI 96814</td>
<td>(808) 949-5564</td>
<td>Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Ten-Tec, Fluke, Belden, Astron, etc.</td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>78 South State Street, P.O. Box 234, Preston, ID 83263</td>
<td>(208) 852-0830</td>
<td>Mon. 9-2, Tues.-Fri. 9-6, Sat. 9-2 Stock All Major Brands Over 7000 Ham Related Items on Hand.</td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. Milwaukee Avenue, Chicago, IL 60630</td>
<td>(312) 637-5191</td>
<td>Hours: 9:30-5:30 Mon., Tues., Wed. & Fri.; 9:30-8:00 Thurs., 9:00-3:00 Sat.</td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION</td>
<td>220 N. Fulton Avenue, Evansville, IN 47710</td>
<td>(800) 523-7731</td>
<td>ICOM, Yaesu, Ten-Tec, Cushcraft, Hy-Gain, AEA & others.</td>
</tr>
<tr>
<td>Maine</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 Drew Street, Clearwater, FL 33575</td>
<td>(813) 461-4267</td>
<td>Clearwater Branch.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>TEL-COM, INC.</td>
<td>675 Great Road, Rte. 119, Littleton, MA 01460</td>
<td>(508) 486-3400</td>
<td>The Ham Store of New England. You Can Rely On.</td>
</tr>
<tr>
<td>Missouri</td>
<td>MISSOURI RADIO CENTER</td>
<td>102 NW Business Park Lane, Kansas City, MO 64150</td>
<td>(800) 821-7323</td>
<td>Missouri: (816) 741-8118 ICOM, Kenwood, Yaesu Same day service, low prices.</td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. Rancho Drive, Las Vegas, NV 89106</td>
<td>(702) 647-3114</td>
<td>Dale Porray: “Squeak,” AD7K Outside Nev: 1 (800) 634-6227 Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 Drew Street, Clearwater, FL 33575</td>
<td>(813) 461-4267</td>
<td>Clearwater Branch.</td>
</tr>
</tbody>
</table>
NEW YORK
BARRY ELECTRONICS
512 Broadway
New York, NY 10012
(212) 925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
280 Tiffany Avenue
Jamestown, NY 14701
(716) 664-6345
Open 8:00 AM til 5:30 PM

OHIO
AMATEUR ELECTRONIC SUPPLY
28940 Euclid Avenue
Wickliffe, OH 44092 (Cleveland Area)
(216) 585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours Mon.-Fri. 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 Edwards Road
Cincinnati, OHIO 45209
(513) 531-4499
Mon.-Sat. 10AM-9PM, Sun. 12Noon-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 Aida Drive
Reynoldsburg (Columbus), OH
43068
(614) 666-4267

Pennsylvania
HAMTRONICS.
Div. of Trevose Electronics
4033 Brownsville Road
Trevose, PA 19047
(215) 357-1400
Same Location for over 30 Years

TEXAS
K COMM dba THE HAM STORE
5707A Mobud
San Antonio, TX 78238
(512) 680-6110
(800) 344-3144
Stocking all major lines. San Antonio's Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: Mon.-Fri. 10-6; Sat. 9-3

Dealers:
YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.

PC Slow Scan $149.95
A complete slow scan television station for your IBM PC or compatible. Send and receive images in up to 10 shades of gray depending upon your graphics card and printer.
Includes:
- Demodulator Modulator 75 Page Manual
- Software Tutorial Cassette
Requires:
- Ham transceiver PC with 640K Parallel Port
- Graphics Card Tape Recorder Serial port
Slow Scan Formats: 6, 12, 17, 23, 34, 36, 48, 72 sec.

Software Systems Consulting
1303 S. Ola Vista
San Clemente, CA 92672
(714) 498-5784

R-7000 Widespan Panadapter
Panadapter especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 Mhz. Uncover unknown elusive signals. Complete with all cables, & 90 day warranty. $349.95 Shipped. Pa. res. add 6%.

GTT Electronics
RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032
PART 1
VISUAL AIDS — OSCILLOSCOPES

One of the most useful aids for determining how electronic circuitry works or troubleshooting faulty equipment is something which can be used to examine the signals present at various points. Signals and waveforms weren’t very complex early in the electrical age, and one instrument used to “look” at waveforms involved projecting a beam of light. This “oscillograph” device used a tiny mirror affixed to an armature. A narrow beam of light was focused on the mirror. When the armature was excited by a waveform the light beam reflected from the vibrating mirror would trace a pattern on a ground glass screen, a nearby wall, or photographic film. The frequency response of this system was limited by the mechanical inertia of the armature and mirror.

When waveforms became more complex (as with higher audio and low-range radio frequencies), the mechanical device was useless. The oscilloscope picked up where the oscillograph left off. The heart of the oscilloscope is the cathode-ray tube (CRT) which, in addition to being an excellent test instrument, is also the basis for many other essential inventions — including radar “scopes,” television sets, and most computer screens.

The oscilloscope’s principle of operation is amazingly similar to the mirror-type device — except that the moving part is not a mirror, but electrons with no inertia to hamper the faithful reproduction of waveforms. As shown in Figure 1, the CRT can present information along three axes.

Before getting into a discussion about generating and deflecting the electron beam, I’d like to talk about how you can see the waveform on the front face (screen) of the tube even though the electron beam is invisible. The inside surface of the tube front is coated with a “phosphor” material which emits light when electrons strike it. At first the phosphor emitted only green light, and that was the standard color of oscilloscope traces for years. White phosphors were eventually perfected and used in early black-and-white television sets. Some specialized yellow screens were popular in early radar “scopes.” Some of these phosphors would glow long after the electron beam had moved on to another spot. This characteristic is called “per- sistence.” It’s beneficial in some uses and detrimental in others. The technique of using phosphors that would glow red, green, and blue was also developed. These phosphors were the precursors of present-day color television receivers and multi-color computer monitors.

The electron gun

No, it’s not the latest arcade game; it’s the device that starts electrons on their path toward the screen of the tube. The interior of the CRT is a vacuum, so electrons can be pulled off the surface of a heated cathode by the charge on a nearby electrode — just as they are in amplifier tubes used in other applications. One difference is that the first electrode has a small hole in it. While many electrons are pulled off the cathode and strike the electrode, others pass through the hole and continue toward the screen. The voltage on this first electrode (G1 in Figure 2) determines the intensity of the beam. Other electrodes (F1, F2, and F3 in Figure 2) accelerate and focus the beam of electrons so that it strikes the screen as a tiny spot. This whole assembly fits near the base, in the narrow neck of the tube, and is called the electron gun.

The glass shell of the tube flares out to support the screen of the CRT. This gives it a funnel-like shape. The inside surface of this flared part is usually coated with a conductive material connected to a high-voltage source of very low current capacity. This voltage keeps the electron beam tightly packed on its way to the screen and prevents electrons from “bouncing back” (secondary emission) when they hit the screen. Otherwise, stray electrons would distort the image. When used in an oscilloscope, the beam is almost always deflected by an electrostatic charge on the deflection plates, as shown in Figure 2. One pair of plates is mounted along the horizontal axis (HP1, HP2), and another pair along the vertical axis (VP1, VP2). For

FIGURE 1

The usefulness of an oscilloscope is greatly determined by the cathode-ray tube (CRT) and its ability to show signals in two axes, vertical and horizontal. The third axis, bright and dark, enhances its utility as a test instrument.
YOUR HAM DOLLAR GOES FURTHER AT...

CALL OR WRITE FOR SPECIAL QUOTE

When it comes to
FAST DELIVERY, HONEST DEALING and
PROMPT, DEPENDABLE SERVICE, back-up
We don't just advertise it — WE GIVE IT!

we'll treat you

CALL US NOW!

In 1937, Stan Burghardt (W9IT), because of his intense interest in amateur radio, began selling and servicing amateur radio equipment in conjunction with his radio parts business. We stand proud of this long-lasting tradition of Honest Dealing, Quality Products and Dependable "S-E-R-V-I-C-E"!

Above all, we fully intend to carry on this proud tradition with even more new product lines plus the same "fair" treatment you've come to rely on. Our reconditioned equipment is of the finest quality with 30, 60 and even 90-day parts and labor warranties on selected pieces. And always remember:

— WE SERVICE WHAT WE SELL —

AEA B&W Hustler Nye
Alinco Bencher Jerold/Delhi
Ameco Bird Kantronics Ten-Tec
Ameriton Butternut Kenwood Rohn
Amphenol Centurion Larsen Telex/Hygain
Amp Supply CES MFJ Unadii/Reyco
Antenna Specialists Cushcraft Mirage/KLM
Astron Daiwa Moseley Yaesu

Write today for our latest Bulletin/Used Equipment List.

5-1000 MHz PREAMPLIFIERS

<table>
<thead>
<tr>
<th>NF</th>
<th>G</th>
<th>P(1 dB)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLA20M*</td>
<td>2dB</td>
<td>15dB</td>
<td>0dBm</td>
</tr>
<tr>
<td>WLA21M</td>
<td>3</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>WLA22M</td>
<td>4</td>
<td>11</td>
<td>0dBm</td>
</tr>
<tr>
<td>WLA23M</td>
<td>5</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>WLA24M</td>
<td>3</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>WLA25M</td>
<td>5</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>WLA26M</td>
<td>6</td>
<td>21</td>
<td>24</td>
</tr>
</tbody>
</table>

Add $4 for S&H; "BW 1-500 MHz"

WILAM TECHNOLOGY, Div. of
WI-COMM ELECTRONICS INC.
P.O. Box 5174, MASSENA, N.Y. 13662
(315) 769-8334

THE K1FO 22 ELEMENT 432 MHZ YAGI

INTERESTED?

Model FO-22-432
ATV version is available

Electrical Specifications
- 31.5 dB Gain
- 1.5 W, 50 Ohms
- Walkaround, 90°
- 1.7 kHz Bandwidth
- 445 MHz
- Flatness
- 15 kHz Intermodulation

Mechanical Specifications
- 36.5" Height
- 16.5" Width
- 16.0" Overall
- Weight: 5 lbs
- Made in USA

Also Available
- FO-16-220, FO-25-342, FO-33-432, FO-11-440
- Power Dividers, Stackinig Frames

RUTLAND ARRAYS
1703 Warren Street, New Conshohocken, PA 19428
(215) 774-5290

Reader Service CHECK—OFF Page 98
The basic components of a CRT. It contains elements that change the intensity of the electron beam (G1), focus the beam (F1, F2, F3), deflect the beam (VP1, VP2, HP1, HP2), and help maintain the focus and intensity (the interior coating or screening).

The horizontal and vertical circuits needed to drive a CRT. The amplifiers are quite complex; they must amplify signals from DC to several MHz, and do so without distortion or a decrease in gain.

Example, when a positive voltage is placed on the right plate and a negative voltage is placed on the left plate, the beam is deflected from left to right across the screen. The vertical plates function in the same manner. The signal from the vertical or horizontal amplifier circuitry is applied to the deflection plates 180 degrees out of phase, just as in a push-pull amplifier for audio or radio frequency use. This combination lets you control the position of the spot anywhere on the screen to trace even the most complex waveforms.

The third axis

An interesting new capability is added to the instrument when you start controlling a third variable — the brightness of the spot on the screen. By changing the voltage on the first electrode after the cathode (G1), you can control the intensity of the electron beam. You can make the spot brighter or dimmer, or extinguish it altogether. Turning the beam off is called blanking, and is useful in getting rid of "retrace" lines. To illustrate what this does for you, try a simple experiment. Grab a sheet of paper and a pencil. Place the point of the pencil near the left edge of the paper and move it to the right. Make the line wavy as you go, and stop just short of the right edge of the paper. Now, without lifting the pencil off the paper, move it directly back to the starting point. This last line is the retrace line, created when the electron beam returns to its starting point after each trace across the screen. By turning the beam off when it starts its retrace, you avoid making a distracting line across the waveform you’re looking at. This blanking voltage can also be modulated with a series of sawtooth waves, allowing you to break the waveform on the screen into dotted or dashed lines as an aid in determining time duration (or frequency) of the signal. This is also how the light and dark areas of a television image are produced on the screen. The beam is modulated by a complex video waveform that reproduces the image formed in the TV camera.

Electromagnetic (or just "magnetic") deflection of the electron beam is widely used in radar scopes and television receiver CRTs. Magnetic deflection has an interesting trait. The beam is deflected at right angles to the field between the coils. Therefore, the coils that deflect the beam right and left are mounted in a vertical plane. It's costly to mount electrostatic plates inside the tube and bring connections out through the glass wall. This is why television receivers universally use the relatively inexpensive electromagnetic deflection.

Other circuitry

A useful test instrument requires several circuits in addition to the basic CRT (see Figure 3). The voltage that deflects, or sweeps, the spot across the screen must be a waveform with a jagged shape like teeth on a saw — a sawtooth wave. Special oscillator and shaping circuits develop this waveform, and the frequency can be varied allowing different rates of sweep to look at a wide range of signal frequencies. The sweep can also be "triggered" on and off, allowing you to "catch" just one particular signal when it occurs. For example, perhaps you are looking at a 5 volts DC line, and want to see any noise or hum that rises to 5.5 volts. Set the trigger point to just below 5.5 volts, and any noise of that amplitude which appears on the line will cause the 'scope to start a trace and show the signal. This feature is often used when you take a photograph of the waveform on the screen. The trigger can be fired manually or automatically to produce just one sweep while the camera shutter is open.

An amplifier is usually required to boost any input signal up to a level that will deflect the beam vertically. This circuit, called a vertical amplifier or verti-
Distortion can be caused by poor vertical amplifier response. The original squarewave at A is degraded as shown at B. The poor response also causes the corners to be rounded when the horizontal portion starts or stops.

An oscilloscope requires various voltages for operation, and the power supply is accordingly complex. It must supply a range of positive voltages for the accelerating and focusing anodes, and for the brightness control. Positive voltage is required for the deflecting anodes, and a very high voltage is placed on the interior conductive coating. This voltage, sometimes called the "ultraviolet" voltage, varies from near 2000 volts in common oscilloscopes up to 20,000 or 30,000 volts in some television receivers. The current is in microamperes and not directly lethal, but contact with it will usually cause severe muscle reaction which can result in physical injury.

As you can see, the oscilloscope is an extremely versatile instrument. A meter's pointer is a one-axis device which indicates amplitude, and that is exactly what the vertical axis of a CRT does. The horizontal sweep circuit in an oscilloscope introduces another axis which lets you look at a waveform over a specific period of time. The brightness control introduces a third axis that hides retrace lines, and lets you trace an image on the screen. In part 2, I'll look at another visual aid, the light-emitting diode (LED), and some of its uses.

For further reading:

If you'd like to learn more about the workings and uses of oscilloscopes, I recommend Oscilloscopes, by Rien van Erk, McGraw-Hill, 1978. It's an excellent, well-illustrated tutorial. In
FLEA MARKET

RATES
Noncommercial ads 10¢ per word; commercial ads 60¢ per word payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS
Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space-available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY
No special layout or arrangements are available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE
15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

BEGINNER'S RADIO CLEARANCE HOUSE.
On a space available basis, we are going to offer you, OUR SUBSCRIBER, free of charge, a chance to find a home for your used equipment with a new Ham. Please send us a short description of what you want to sell along with price, name, address and phone number. We'll run it once in a special section of the classified ads under the heading of BEGINNER'S RADIO CLEARANCE HOUSE. Please try to limit your ad to 20 words or less.

RATES
National Radio Manual and NRIC-2000 factory parts lists index. SASE. Max Fuchs, 1 Plymouth Lane, Swampscott, MA 01907

CUSTOM MADE EMBROIDERED PATCHES.

ELECTRONIC COURSES.
Ham RT-3100 welded $10, RF sig

100 OGL CARDS $2.83. $3 thereafter. Grid square printed free. Supplies limited with current QST Callbook Free samples. SHF Printing. K9KW, Box 508, Rockton, IL 61072.

FOR SALE: Browning Golden Eagle Mark IV AM/SSB citizen's band receiver. Superb performance—tube-type double con

volution. Controls are in excellent condition. Can be loaded with crystal controlled. Use on CB, reuse for 10 meters, or use as tunable IF for 2 meter, satellite or microwave receiver. Missing top cover, otherwise complete and works with antenna. $35. Peter Ferrand, W2DQL, 65 Atherton Avenue, Nashua, NH 03060.

SCHEMATICS, Devices, modules and components. Catalog $1.00 C.O.D. Write, Mr. ALLISON, box 38, Newmarket, 5146 Angus Blair Way, Las Cruces, N.M. 88001.

NSRR/KX6: Anyone who has worked me as KX6 has worked an illegal station. Anyone hearing that call please notify me immediately. W2XEE. (305) 820-4369.

WANTED: G.E. Master-Pro UHF 250 watt base station or amplifier with power supply or amplifier alone. KXR3U, (313) 697-8888.

FOR SALE: IC-2AT 5/4 whip, rubber duck antenna, IC-8B4, IC-8B3’s with charger. $200. Marion Hatfield, POB 199, Gilsum, NH 03448.

UHF PARTS.
Gake Fets, mics, ccpp caps, leadfish, teflon pdc’s, 900-800 trimmers. Monobouly quality preamps. Electric sequencer boards. SASE for complete list or call (313) 753-4581 evenings. MICROWAVE COMPONENTS, PO Box 129, Motor, MI 49763.

WANTED: Ten Tec OPR transceivers. Signalator audio amplifier S20/530 RX-10 receiver. Modules MX1, AX1, Argonaut and power supply. Russ Olmsted, 608 West Thompson Lane, Mt. Pleasant, MI 48858.

COMMODE-128 PROGRAM available to track the Ama

ateurs. Uses Keperian data supplied by NASA free. Program operates simultaneously. Program also sup

ports printing schedules and predictions for satellites. Use to track and mark it to the Cosmosat. SAT-128B, $28.50 includes shipping. Other information on this or other programs for the C128, requires a business size SASE. Red Winstead, WY1A, PO Box 50, Biddeford, Maine 04005.

WANTED: 32X32 matrix, 30XTL, and 304TL tubes. KF6W, 45300 Royal King, City CA 93930.

OXERS—CUSTOMIZED PRINTOUT of antenna headings cal

culated for your location. List includes over 650 worldwide loc

ations. SASE (LEUSS) 475, 200 East Main, callign 312 $12. 95 U.S. B tender Henderson, VE2ZJ, 23 Daermest PI SE. Indiana, Canada T2J BP5, (613) 278-2088.

HANDICAPPED NOVICE needs HF equipment donated—

OFFICIAL MILITARY-TYPE ID TAGS.
"Dog Tags" 1" Custom

ized with your Call Letters, 5 different seventeen space lines $20 nickel plated chain included $4 29 postpaid. JPW EN

TERPRISES. PO Box 353, Logan, Utah 84321.

MAGAZINES WANTED.
"Microwave Systems News" (MSN). "HP Design," "PC/COM (Power Conversion & Intelligent Motion)" and "QEX" (October 80)press. Call collect 516-742-4504 (Ontario) after 6 PM Eastern time.

IMRA International Mission Radio Association helps mission

aries, Episcopal loaned. Weekday net, 14 285 to 225. 6 PM Eastern. Nine hundred Amateurs in 40 countries. Rev. Tho

mas Sabe, S.J., University of Scranton, Scranton, PA 18510.

QUAD ANTENNAS 10-12-15 meters $139.95. 15-20 meters $225.95. 20-24 meters $229.95. 24-28 meters $239.95. We carry Bolt Antennas, RD 2, Volant, WA 99182. (509) 599-2421.

"SOME UNPUBLISHED THEORIES" and "MORE FOR The Ra

dio Amanzio" by Luminado. Includes wattmeter, moroni

match, balun, etc. From R.L. Phi-baqian. Publisher: $10 pdd. POB 70, Logosee, NY 14753.

BACK ISSUES OF HAM RADIO. Have most issues since 1969 to 1974. Mint condition. $3.00 for single issues. WNGG, 319-377-3565.

HAM TRADER YELLOW SHEETS. In our 27th year. Buy, sell, swap ham radio gear. Published twice a month. Ads quickly circulate—no long wait for results. Send SASE for sample copy, $13 for one year (24 issues). PO Box 2057, Allen, TX 75013 or PO Box 15134, Deer Park, Sa

tle, WA 98115.

VHF-UHF-SHF. Large list. West Coast VHFer, POB 685, Holbrook, AZ 86025.

CHASSIS & CABINET KITS.
SASE. K3WK, 512 Harmony Road, Meriden, CT 06450.

ANALOG AND RF CONSULTING for the San Francisco Bay area. Commercial and military circuit and systems. John Lang, Ph. D., N6BY 733-6239.

RTTY JOURNAL—Now in our 36th year. Read about RTTY. "Early Days", "T10", "The FCC No 1", "RTTY QSO" and much more. Your subscription to RTTY JOURNAL includes a copy of "RTTY in CENTRAL AMERICA". 9085 La Casita Ave., Fountain Valley, CA 92708.

RUBBER STAMPS: 3 lines $5.00 PPD. Send check or MO to G.L. Pierce, 5221 Binkdale Way, San Diego, CA 92117. SASE brings information.
COMING EVENTS

Activities — "Places to go . . ."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUCEMENTS WHAT YOU WOULD LIKE US TO INCLUDE: HAMFEST LOCATION, CLASSES, EXAMS, MEETINGS, FLEA MARKETS, ETC. IF YOU HAVE WHEELCHAIR ACCESSIBLE INFORMATION IT WOULD BE GREATLY APPRECIATED BY OUR FRIENDS WITH LIMITED PHYSICAL ABILITY.

May 21: ILLINOIS: Hamfest sponsored by the Kanekee Area Radio Society, Will County Fairgrounds, Peotone, 8-3. For information, contact P.O. Box 34, Harlington, KS 67053.

June 4: NEW YORK: Hall of Science Hamfest sponsored by the Hall of Science Science Center, Techfair at 3:00 PM. For information, call (718) 486-2233.

June 10: PENSYLVANIA: Firecracker Hamfest sponsored by the Harrisburg ARC, Breckinridge Picnic Grounds, Harrisburg, Sunday, June 10th, 10 AM to 5 PM. Contact Dave C. Clevenger, K1GZC, (717) 393-3643.

June 29: NORTH CAROLINA: 2nd annual Hamfest and Computer Fair sponsored by the Forsyth ARC, Dixie Classic Field, Winston-Salem, NC. 9 AM to 3 PM. For contact, phone Jim Rodgers, N1DRI, POB 11361, Winston-Salem, NC 27116. (336) 780-2493.

July 12: COLORADO: Superfest "XI", Larimer County Fairgrounds, Loveland. 8 AM to 4 PM. For information, call (303) 667-5308.

July 12: KENTUCKY: "Ham-O-Rama '99" sponsored by the Northern Kentucky ARC, Erlanger Lions Park, Gates open 8 AM. For more information or registration, call (502) 425-3757.

July 12: OHIO: The Goodyear ARC's 22nd annual Hamfest and family picnic, Wingfoot Lake Park near Akron. Flea market and swap. 8 AM to 4 PM. For tickets, call 330-331-3058.

July 18-19: MINNESOTA: Amateur Fair '99, NEW LOGO. Free admittance Saturday, $10.00 for information, tickets write to Amateur Fair '99, PO Box 29031, Brooklyn Center, MN 55429, (612) 529-3533.

July 16: ALBERTA: Annual Picnic sponsored by the Central Alberta Radio League, Burbank Campsite. Contact P. Fitzgerald, VE8GQ (403) 746-2621 or D. Miller, VE8UK, (403) 818-4813. "F-PM".

July 16: MICHIGAN: 14th annual Swap Shop sponsored by the Straits Area ARC Petoskey, 8 AM to 1 PM. For information, Irene, NH6BT (816) 539-8986 or Clark, KA8TIL (816) 582-6455.

July 16: NEW JERSEY: 18th annual Hamfest sponsored by the Raritan Valley Radio Club, Columbia Park, Dunellen. Sits 8 AM to 5 PM. For information, Karl, KA9SM (201) 763-4494 or John, W4SC (201) 956-5070.

July 16: WISCONSIN: Hamfest sponsored by the Central Wisconsin Radio Amateurs, Student Center, University of Wisconsin, Stevens Point, 9 AM to 5 PM. Free admission. For information Art Wysocki, N8DCA, 3364 April Lane, Stevens Point, WI 54481. (715) 344-2844.

July 16: MICHIGAN: Monroe Hamfest sponsored by the Monroe County Radio Club, Monroe County Fairgrounds, 5 PM. All buildings are wheelchair accessible and all parking lots are. Contact Leigh, K8EIA, 2001 Ida-Mayberry Rd, Monroe, MI 48161. (313) 867-3663.

July 16: MARYLAND: Father's Day Hamfest sponsored by the Frederick ARC, Frederick County Fairgrounds 8 AM to 4 PM. For information Dave Dukovic, N8BDW, 1728 Lime- stone Lane, Frederick, MD 21701. For direction, call (301) 676-4702.

July 16: CALIFORNIA: Santa Maria Radio Swapfest, Union Oil Co New Life Picnic Grounds, just south of Santa Maria. Gates open 9 AM. Talk in 1:00 PM. For information Hank Korcz, VP/SW3M, 917 Anthony Way, Lompoc, CA 93436. (805) 736-1761.

July 2: PENNSYLVANIA: Murgas ARC Hamfest, ice-A-Rama, business SASE for certificate to EKCC. Starts 8 AM. Contact Mike Benish, K3SSE, Bx 214, RFD 1, Pittsston, PA 18643. (717) 338-8683.

July 8: WISCONSIN: Swapfest sponsored by the South Milwaukee American Legion Post 43, 9227 South Shepard Avenue, Oak Creek, 7 AM to 2 PM. For details about South Milwaukee ARC, POB 103, Souh Milwaukee, WI 53172-1012.

July 9-9: INDIANA: 19th annual ARRL Division Convention and Hamfest, Marion County Fairgrounds, Indianapolis. Gates open 6 AM both days. For information (317) 256-4451.

July 9: PENNSYLVANIA: 4th annual Hamfest sponsored by the North Hills ARC, Northcrest Public Library, 300 Cumber- land Road, Pittsburgh. 8 AM to 4 PM. For information SASE to Bob Fry, N3DQ, 9621, Presidential Drive, Allison Park, PA 15121. (412) 367-2393.

October 1: NORTH CAROLINA: JARFEST '99, Benson American Legion Complex, 513 N Benson NC 27504. 8 AM to 4 PM. SASE to Johnstone Amateur Radio Society, PO Box 1154, Smithfield, NC 27577. (919) 934-0486, 949-5479.

OPERATING EVENTS

"Things to do . . ."

July 9: The East Pasco Amateur Society will operate a special event station ABANL to commemorate the centennial of Dade City, Florida. Operation starts daily at 10 AM. Send QSL and business SASE to ABANL, PO Box 942, Dade City, FL 33442-0942.

July 10: The Tusco ARC, New Philadelphia, Ohio, will operate W8ZS 1700 UTC from New Towne mall to celebrate the 60th anniversary of the AFQ to promote public interest in Amateur Radio. For QSL SASE to W8ZS, PO Box 725, New Philadelphia, OH 44663.

July 16: Chicago: The Amoco ARC will operate special event station N8CA 1600 UTC, June 17 to 0100 UTC, to commemorate the 100th anniversary of the incorporation of Amoco Co. Phone, CW and packet 80-10 and VHF. For special QSL SASE to Amoco ARC, Mail Code 0602, 200 E Randolph Drive, Chicago, IL 60601.

July 16: The Prince Georges Ham Radio Emergency Service, Maryland will operate a special event station at the Prince Georges Worlds Fair. 1500 UTC June 17 to 0200 UTC June 18. This year marks the 25th anniversary of Prince Geo- rges County. For a special QSL card send QSL card and SASE to PGARES, PG EOP, 7911 Archer Street, Landover, MD 20786.

July 1: Colorado Six Meter Invitational Net is sponsoring an activity day contest: Exchange callign, name, grid square and SIN number or 50 MHz; Send logs by July 15 to N8KI, 8629 Fenton St. Arvada, CO 80003. Please SASE.

July 4: High Plans ARC will operate K7TV at historic Fort Laramie from 0002Z July 4 to 0002Z July 5. For QSL send business SASE to K7TV, 111 Camyo Del Ray, Torrington, WY 82240.

LAUREL ARC monthly (except December) Amateur exam sess- ions at Laurel High School. Latest exam registration is required. Call (301) 725-1212, Laurel Manor Radio Club, 8576 Laurel Dale Drive, Laurel, MD 20707.

NORTH COAST ARC 1998 LICENSE EXAMS. 12:30 PM, Saturday, February 11, 1 April, 15, June, 10, August 12, October 8, December 14. 9 N. Olmsted Community Cabin, 5 of Lorain Rd. in N. Park. Volunteers thru extra. Available to all, 145.20 repeater. For information Dan Saram, K8BIA, 13551 Rademaker Blvd, Brookpark, OH 44142. 267-5063 or Paul- line Wells, KASFGE, Rick Wells, K8SO, 777-9450/779-8999.

AMATEUR RADIO CLASSES: For those people interested in obtaining a Novice (basic level) Ham license or upgrading to TechGeneral. Classes in cooperation with QRA Radio Club, will sponsor Amateur Radio Communications classes evenings at Cleveland High School starting MARCH 7, 1999. For further information contact: Frank Masucci, KB1PN, 136 Grove Street, Chelsea, MA 02150. Please en- close your telephone number.

THE MIT UHF REPEATER ASSOCIATION and the MIT Ra- dio Society offer monthly HAM EXAMS. All classes Novice to Extra. Wednesday, JUNE 21, 7 PM, MIT Room 1-150, 77 Mass Avenue, Cambridge, MA. Reservations requested 2 days in advance. Contact Ron Hoffman at (617) 484-2098. Exam 5:40. Bring a copy of your current license (if any), two forms of picture ID, and a completed form 610 available from the FCC in Quincy, MA (617) 770-4023.

GIFT IDEA

NOW BACK IN STOCK

HAM RADIO LOG BOOKS

back by popular demand!

Room for over 2100 QSO—that's over twice as many as the other log books. For contestants, each page contains 30 QSO's for easy counts. You also get the latest up-to-date frequency spectrum chart. ITU call sign list and ARRL DXCC list. Spiral bound to lay flat on your desk. Unquestionably the best log book value around. 1988.

HR-LB-001—Spiralbound $2.95
HR-3L-BIG Special Buy 3 Save 22%—Get 3 $6.95
Please add $3.75 for shipping and handling.
Continuing a 68 year tradition, we bring you three new Callbooks for 1989, bigger and better than ever!

The North American Callbook lists the calls, names, and address information for 495,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists 500,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1989 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1, 1989, this combined Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

Every active amateur needs the Callbook! The 1989 Callbooks will be published on December 1, 1988. Order early to avoid disappointment (last year's Callbooks sold out). See your dealer now or order directly from the publisher.

North American Callbook
- incl. shipping within USA $29.00
- incl. shipping to foreign countries 35.00

International Callbook
- incl. shipping within USA $32.00
- incl. shipping to foreign countries 38.00

Callbook Supplement, published June 1st
- incl. shipping within USA $13.00
- incl. shipping to foreign countries 14.00

SPECIAL OFFER
- Both N.A. & International Callbooks
 incl. shipping within USA $58.00
 incl. shipping to foreign countries 68.00

Illinois residents please add 6% tax. All payments must be in U.S. funds.

RADIO AMATEUR CALLBOOK INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA
Tel: (312) 234-6600

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name:
Address:
City:
State:
Zip:

* Please contact this advertiser directly. Please use before July 31, 1989.

READER SERVICE # PAGE # READERS SERVICE # PAGE #
112 - Ace Communications, Monitor Div. 36 1174 - Madison Electronics Supply 95
114 - Advanced Receiver Research 32 1159 - Madison Electronics Supply 44
119 - AEA 35 1144 - Morphy Radio 1154 - Antennex 32
123 - Aerospace 36 1194 - Ameritron 50
* Amateur Television Quarterly 83 138 - John J. Meshia Jr., Inc. 57
143 - AMS, Inc. 59 103 - MFJ Enterprises 8
129 - Amcron, Inc. 43 137 - NCR 52
161 - AMAT 74 104 - Nems Electronics 38
141 - Antennas West 58, 66, 74 148 - Optoelectronics 100
116 - Antennex 32 1105 - Orlando Hi-Tech 14
166 - Antique Radio Classified 87 125 - P.C. Electronics 39
111 - A.R.E. Communications 28 1152 - Pac-Comm Packet Radio System, Inc. 66
121 - AIRFLY 36 1176 - Palomar Engineers 69
110 - Astron Corp. 26 1157 - Radio Amateur Callbook 98
107 - AVCOM of Virginia 20 163 - Ramsey Electronics, Inc. 80
109 - Azimuth Communications Corp. 25 153 - T.F. Connection 1157
* Barker & Williamson 28 150 - Rutland Arrays 65, 93
* Bary Electronics 73 1168 - Software Systems 91
160 - Bilal Company 74 1151 - Stridsburg Engineering Co. 65
125 - Buckmaster Publishing 38 1164 - STVDOnSat 81
* Buckmaster Publishing 66 169 - Synthetic Textiles, Inc. 91
156 - Buckmaster Publishing 69 148 - Tel-Comm 65
162 - Buckmaster Publishing 74 128 - Telex Communications, Inc. 71
171 - Burghardt Amateur Center 93 158 - Unadilla Antenna Mfg Co 71
113 - C.S.S. Sales 31 149 - S-COM Industries 65
106 - Communications Specialists 15 59 - Silicon Solutions 59
167 - Computeradio 87 112 - Software Systems 28
117 - Creative Control Products 30 168 - Software Systems 91
135 - Crystal Crystals 52 151 - Stridsburg Engineering Co. 65
140 - Cygnus Quasar Books 58 119 - Synradio Corp 84
146 - Datacom, International 62 115 - VHF Communications 32
144 - Doug Hall Electronics 66 130 - W & J Associates 44
142 - DRSI 59 124 - WRNINN Antennas 38
* Engineering Consulting 71 131 - Wacom Products Inc. 44
132 - Gallatin Radio Supply 44 172 - Win-Comm Electronics Inc. 93
170 - G7I Electronics 91 127 - Wilmanco 39
134 - Ham Radio Outlet 50, 51 130 - W & J Associates 39
* Ham Radio's Bookstore 39 178 - Yaeus USA 13
* The Ham Station 38 178 - Yaeus USA 13
165 - Hamtronics, NY 85 118 - E.H. Yosi Co 32
* Hamtronics, PA 87
* Heath Company 87
* Heath Company 16
108 - Henry Radio 23
101 - ICOM America, Inc. 31
* Indianapoish Hamfest 48
* Juns Electronics 69
133 - Kantronics 49
136 - KComm. The Ham Store 52
* Kenwood USA Corporation 2, 5, 7, CIV

PRODUCT REVIEW/NEW PRODUCT
302 - Ameritron 84
301 - Azimuth Communications Corp. 84
* Brian Blyeley, KESTI 86
303 - Cushcraft Corp 84
306 - Davis RF 86
304 - ICOM America Inc. 86
305 - MFJ Enterprises 86
Dependable Service
At the Right Price... Everytime

MasterCard—VISA—Discover

Missouri Radio Center

Istwood

TS-940 "DX-CELLENGE"
- All Band, All Mode Transceiver
- Direct Keyboard Entry
- Engineered for the DX-Minded
- Its Got It All!

FT-767GX
- HF/ VH/VHF BASE STATION
- Add Optional 6m, 2m & 70cm Modules
- Dual VFO’s
- Full CW Break in
- Lots More Features

IC-765 NEW HF TRANSCIEVER
- Built-in Automatic Antenna Tuner and Power Supply
- 99 Memories • 100 W Output
- 160-10M General Coverage Receiver
- Band Stacking Registers

Kentwood

ICOM"NEW!

FT-767GX
- HF/ VH/VHF BASE STATION
- Add Optional 6m, 2m & 70cm Modules
- Dual VFO’s
- Full CW Break in
- Lots More Features

ICOM"NEW!

IC-725 NEW ULTRA COMPACT HF TRANSCIEVER
- USB/ LSB/ CW, AM Receive
- Optional Module for AM Transmit and FM TX/RX
- 160-10M Operation • 100W Output
- Receive 30 kHz to 33 MHz
- 26 Memories with Band Stacking Registers

Kenwood

TS-140S AFFORDABLE DX-ing!
- HF Transceiver With
- General Coverage Receiver
- All HF Amateur Bands
- 100 W Output
- Compact, Lots of Features

Yaesu

FT-736R VHF-UHF BASE STATION
- SSB, CW, FM on 2 Meters
- Optional 50 MHz, 220 MHz or 1.2 GHz
- 25 Watts Output on 2 Meters, 220 and 70 cm
- 10 Watts Output on 6 Meters and 1.2 GHz • 100 Memories

Complete Terminal Unit for
Morse, Baudot, ASCII, AMTOR
NOW ½ PRICE
CLOSEOUT SPECIAL
ONLY $169, DELIVERED
Software Available
Call Now—Don’t Delay

Kantronics

TM-231A 2 METER FM MOBILE
- 50 Watts Output
- 20 Multi-Function Memories
- Selectable CTCSS Tone Built-in
- Operate 4 Mobile Rigs with Optional IF-20 Interface and RC-20 Controller

KT-Series Mono-Band Radios
10-15-29-30-40-60M MODELS
SAVE BIG $$
Best Price and Complete Selection
Call Today!

Alinco

ALD-24T 2m/70cm Dual Band Mobile
$449.00 Delivered
25w, 21 Memories, Dual VFO’s
At an Unbeatable Price!

ICOM

IC-2GAT 2 Meter & 440 Handhelds
- IC-2GAT RX 138-174 MHz
- TX 140-150 MHz
- 7 Watts
- IC-4GAT 440-450 MHz
- 6 Watts

MFJ SALE

IC-32AT SUPER DUAL BAND FM HANDHELD
- 5 Watts on Both Bands
- Receive 138-174 MHz
- 440-450 MHz
- Stores Standard and Odd Offsets

Kantronics...

ASTRON

ICOM

Kenwood...

102 N.W. Business Park Lane Kansas City, MO 64150
Send SASE For Used List
Call Toll Free—9am - 6pm Mon.-Fri. 9am - 2pm Sat.
In Missouri Call—816-741-8118
MOST ORDERS SHIPPED SAME DAY

DAIWA • HUSTLER

HYGAIN • ICOM
STOP LOOKING! THE FREQUENCY COUNTER YOU NEED IS HERE NOW!

Take a good look at the model 2210 hand held that does it all. Frequency Range is from 10 Hz to over 2.2 GHz covering audio through microwave. Literally DC to day light with extraordinary sensitivity and accuracy. The 2210 is now in demand by technicians, engineers, law enforcement officers, private investigators, two-way radio operators, scanner hobbyists, and amateur radio operators. Call us today to order yours.

Sensitivity

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 KHz</td>
<td>< 5 mv</td>
</tr>
<tr>
<td>100 MHz</td>
<td>< 3 mv</td>
</tr>
<tr>
<td>450 MHz</td>
<td>< 3 mv</td>
</tr>
<tr>
<td>850 MHz</td>
<td>< 3 mv</td>
</tr>
<tr>
<td>1.3 GHz</td>
<td>< 7 mv</td>
</tr>
<tr>
<td>2.2 GHz</td>
<td>< 30 mv</td>
</tr>
</tbody>
</table>

Separate high impedance and 50 ohm amplifier circuits, two ranges, two gate times, dual crystal oscillator design. 8 LED digits, aluminum case, internal Ni-Cad batteries, 1 ppm accuracy, AC-DC portable operation. AC adapter-charger included. Full line of probes, antennas, and carry case is available. We manufacture the 2210 in the U.S. and have over 15 years of service, quality, experience and dedication that you can count on.

OPTOELECTRONICS INC.
5821 N.E. 14th Avenue
Fort Lauderdale, Florida 33334
FLA (305) 771-2050
FAX (305) 771-2052

Orders to U.S. and Canada add 5% to total ($2 min, $10 max)
Florida residents add 6% sales tax. COD fee $3.
Foreign orders add 15%
OUR COMPLETE LINE OF PORTABLE POWER TOOLS.

When you're talking Yaesu handhelds, power takes on many meanings.
Like maximum RF output. Sophisticated microprocessor control. Deceptively simple operation. Even cost savings—as most accessories are interchangeable throughout the line.
Added up, it's no wonder amateurs choose Yaesu HTs more than any others.

FT-470. DUAL-BAND OPERATION PERFECTED.

FT-411 SERIES. MAXIMUM SINGLEBAND PERFORMANCE.

FT-23R SERIES. SMALL, SMART, RUGGED.

Want more information? Call (800) 999-2070 toll-free. Or ask your dealer about Yaesu's FT-470, FT-411 and FT-23R Series handhelds. The power in handheld performance.

YAESU USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700. REPAIR SERVICE: (213) 404-4884. PARTS: (213) 404-4847

YAESU

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc. Specifications guaranteed only within amateur bands.
"DX-citing!"

TS-440S Compact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"—that special feeling you get every time you turn the power on!

- Covers All Amateur bands
- General coverage receiver tunes from 100 kHz - 30 MHz. Easily modified for HF MARS operation.
- Direct keyboard entry of frequency
- All modes built-in USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code.
- VS-1 voice synthesizer (optional)

- Superior receiver dynamic range
- Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range. (500 Hz bandwidth on 20 m)
- 100% duty cycle transmitter
- Super efficient cooling permits continuous key-down for periods exceeding one hour.
- RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)
- 5 IF filter functions
- VOX, full or semi break-in CW

- Dual SSB IF filtering
- A built-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- AMTOR compatible
- Adjustable dial torque
- 100 memory channels
- Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.
- TU-8 CTCSS unit (optional)
- Superb interference reduction
- IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XTT, and optional filters limit QRM.
- MC-43S UP/DOWN mic. included
- Computer Interface port

Optional accessories:
- AF-440 internal auto. antenna tuner (80 m – 10 m)
- AF-250 external auto. tuner (60 m – 10 m)
- AT-130 compact mobile antenna tuner (60 m – 10 m)
- 88SN 2.4 kHz/1.8 kHz SSB filters
- MC-60A/80A/85 desk microphones
- MC-55 (BP) mobile microphone
- HS-4/6/87 headphones
- SP-4150/50

Kenwood takes you from HF to OSCAR!

10 m) • IF-232C/IC-10 level translator and modem IC kit • PS-50 heavy duty power supply • PS-430/PS 30 DC power supply • SP-430 external speaker • MB-430 mobile mounting bracket • YK-88C/88CN 500 Hz/70 Hz CW filters • YK-88S mobile speakers • MA-5/VP-1HF 5 band mobile helical antenna and bumper mount • TL-922A 2 kw PEP linear amplifier • SM-220 station monitor (no pan display) • VS-1 voice synthesizer • TU-8 CTCSS tone unit • PG-2C extra DC cable.

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.

KENWOOD U.S.A. CORPORATION
COMMUNICATIONS & TEST EQUIPMENT GROUP
PO. BOX 22745, 2201 E. Dominguez Street
Long Beach, CA 90801-5745

KENWOOD ELECTRONICS CANADA INC
PO. BOX 1075, 959 Gana Court
Mississauga, Ontario, Canada L4T 4C2