In this issue...

Building a Digital Filter
Easy Monitor Receiver for 2 Meters
Multiband Speech Processor
The Convoluted Loop

Ham Weekenders:

5.5 GHz Antenna Access for Urban Apartment Dwellers
HF GaAsFET Doubler
DOUBLE YOUR PLEASURE
DOUBLE YOUR BANDS

Dual Band Radios from ICOM!
Double your operating pleasure with Icom's new dual band IC-3210 mobile and IC-32AT handheld FM transceivers. Each unit incorporates a wealth of special features and options designed to move you into the forefront of today's expanded 2-meter and 440MHz activity. Icom dual banders: the FM enthusiasts dream rigs!

Wideband Coverage. Both the IC-3210 and IC-32AT receive 138 to 174MHz including all NOAA weather channels, transmit 140 to 150MHz including MARS/CAP, and operate 440 to 450MHz. Total coverage of today's hottest FM action!

Full Duplex Operation. Simultaneously transmit on one band while receiving on the other for incomparable dual band autopatching!

20 Memories. Store any combination of standard or odd repeater offsets and subaudible tones.

Powerful! The IC-3210 delivers 25 watts output on both bands. The IC-32AT is five watts output on both bands. Selectable low power for local use on both units.

Programmable Band and Memory Scanning. Includes easy lockout and recall of various memories. Exceptional flexibility!

Repeater Input Monitor Button. Opens the squelch and checks Tx offset simultaneously.

Priority Watch. Monitor any channel for calls while continuing operation on another frequency.

Optional Beeper. Monitors for calls with your subaudible tone, then gives alerting beeps.

Double Your Bands with Icom's dual band IC-32AT handheld and IC-3210 mobile, and double your operating pleasure on 2-meters and 440MHz.
LOOKING FOR AN AUTOPATCH OR REPEATER CONTROLLER?

<table>
<thead>
<tr>
<th>Feature</th>
<th>Private Patch V</th>
<th>510SA-II</th>
<th>510SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-dialer</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Last number redial</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hook flash</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Programming keyboard</td>
<td>Built-in</td>
<td>Plug-in</td>
<td>None</td>
</tr>
<tr>
<td>Programming digital display</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Noise filter</td>
<td>5 pole</td>
<td>2 pole</td>
<td>2 pole</td>
</tr>
<tr>
<td>Regenerated DTMF dialing</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DTMF decode LED</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Selectable VOX simplex, sampling simplex,</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>duplex and repeater controller operating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of keyboard selectable sampling</td>
<td>8</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>mode VOX enhancement ratios</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Operates through repeaters</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Method of connection to base radio</td>
<td>Internal</td>
<td>Internal</td>
<td>Internal</td>
</tr>
<tr>
<td>or External</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU program memory</td>
<td>8k</td>
<td>2k</td>
<td>2k</td>
</tr>
<tr>
<td>Busy signal disconnect</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Dialtone disconnect</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Selectable three digit repeater mode on/off</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remotely controllable internal aux relay</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Optional CTCSS board available</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Optional voice delay board available</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Warranty</td>
<td>1 Year</td>
<td>6 Mo.</td>
<td>6 Mo.</td>
</tr>
</tbody>
</table>

When you compare Private Patch V to the competition, the choice is clear!

ADDITIONAL FEATURES

- USER PROGRAMMABLE CW ID
- DIAL ANY PRE-SELECTED NUMBER BY PRESSING THE MIC BUTTON FIVE TIMES.
- COMPLETE PATCH STATUS BEEPS
- FRONT PANEL STATUS LCD
- HALF DUPLEX PRIVACY MODE (with beeps)
- SELECTABLE CONNECT CODE 1-5 DIGITS
- SELECTABLE TOLL OVERRIDE CODE 2-5 DIGITS
- SELECTABLE DISCONNECT CODE 1-5 DIGITS
- SELECTABLE TOLL RESTRICTION:
 - First digit lockout
 - Prefix lockout
 - Digit counting
- SELECTABLE ACTIVITY/TIMEOUT TIMERS
- RINGOUT
 (Receive your calls in the mobile)
- RING COUNTING
 (Ringout alerts after pre-selected no. of rings)
- REMOTE BASE
 (Use your base radio from any telephone)
- LAND TO MOBILE SELECTIVE CALLING
- INTERNALLY SQUELCHED AUDIO
- MOV LIGHTING PROTECTORS
- SELECTABLE TONE OR PULSE DIALING

Note built-in programming keyboard and digital display just above keyboard.

CONNECT SYSTEMS INC.

2064 Eastman Ave. #113 • Ventura, CA 93003
Phone (805) 642-7184 • FAX (805) 642-7271
Dual Band Afford-ability!

TM-701A Dual Bander

The TM-701A combines two radios into one compact package. You get 25 watts on 2 meters and 70cm, 20 memory channels, tone encoder built-in, multiple scanning, auto repeater offset selection on 2 meters, and a host of additional features!

- 20 multi-function memory channels. 20 memory channels allow storage of frequency, repeater offset, CTCSS frequency, frequency step, and Tone On/Off status, CTCSS and REV, providing quick and easy access during mobile operation.
- 25W on 2m and 70cm.
- Selectable full duplex-cross band (Telephone style) operation.
- Easy-to-operate front panel layout.
- Multi-function microphone supplied. Controls are provided on the microphone for CALL (Call Channel), VO, MR (Memory Call or to change the memory channel) and a programmable function key. The programmable key can be used to control one of the following on the radio; MHz, T. ALT, TONE, REV, BAND, or LOW power.
- Easy-to-operate illuminated keys. A functionally designed control panel with individually backlighted keys increases the convenience and ease of operation during night-time use.
- Optional full-function remote controller (RC-20). A full-function remote controller using the Kenwood bus line may be easily connected to the TM-701A and mounted in any convenient location. The new controller is capable of operating all front panel functions.
- Built-in dual digital VFO's.
 a) Frequency step selection (5, 10, 15, 20, 12.5, 25KHz)
 b) Programmable VFO The user friendly programmable VFOs allow the operator to select and program variable tuning ranges in 1 MHz band increments.
- Programmable call channel function. The call channel key allows instant recall of your most commonly used frequency data.
- Programmable tone encoder built-in.
- Tone alert system—for true quiet monitoring. When activated this function will cause a distinct beeper tone to be emitted from the transceiver for approximately 10 seconds to signal the presence of an incoming signal.
- Easy-to-operate multi-mode scanning.
 a) VFO scan
 b) Memory scan plus programmable memory channel lock-out
 c) Dual scan
 d) Scan stop modes
 e) Scan direction
 f) Alert
 g) Frequency step
 h) Offset
 i) Tone alert system
 j) Memory scan
 k) Memory scan plus programmable memory channel lock-out
 l) Dual scan
 m) Scan stop modes
 n) Time operated scan (TO)
 o) Carrier operated scan (CO)

Optional Accessories

- RC-20 Full-function remote controller
- RC-10 Multi-function remote controller
- IF-20 Interface unit handset • MC-44 Multi-function hand mic. • MC-44DM Multi-function hand mic. with auto-patch • MC-48B 16-key DTMF hand mic. • MC-55 8-pin mobile mic. • MC-60A/80/85 Desk-top mics. • MA-700 Dual band (2m/70cm) mobile antenna (mount not supplied) • SP-41 Compact mobile speaker • SP-50B Mobile speaker • PS-430 Power supply • PS-50 Heavy-duty power supply • MB-201 Mobile mount • PG-2N Power cable • PG-3B DC line noise filter • PG-4H Interface connecting cable • PG-4J Extension cable kit • TSU-6 CTCSS unit

Kenwood

Kenwood U.S.A. Corporation Communications & Test Equipment Group P.O. Box 27245, 2201 E. Dominguez Street Long Beach, CA 90807-5745 Kenwood Electronics Canada Inc. P.O. Box 1075, 959 Gana Court Mississauga, Ontario, Canada L4T 4C2
FEATURES

9 Building a Digital Filter
Paul Selwa, NB9K

18 The Weekender: Easy Antenna Access for Urban Apartment Dwellers
Bryan Bergeron, NUI

23 Practically Speaking: Light Metal and Other Topics
Joe Carr, K4IPv

28 Easy Monitor Receiver for 2 Meters
Courtney Hall, WASSNZ

32 Multiband Speech Processor
Robert Wilson, KL7SA

39 Analog Panel Meters
Hugh Wells, W6WTU

55 Ham Radio Techniques: Antenna Projects for Spring
Bill Orr, W6SAI

65 The Weekender: UHF GaAsFET Doubler
Norman J. Foot, WA9HUV

79 A Remote Driver/Controller for a Two-antenna System
William L. Schreiber, NH6N

89 The Convoluted Loop
Ted Hart, W5QJR

100 Elmer’s Notebook: Voltage-variable Capacitors
Tom McMullen, W1SL

See page 74 for the winners of February’s Weekender contest.

DEPARTMENTS

Backscatter 4

Comments 6

New Products 34, 109, 117

Ham Notebook 72

DX Forecaster 110

Flea Market 112

Ham Mart 114

Advertiser’s Index 118

Reader’s Service 118

April 1989
Changes...1989 update

Close to a year ago, we set out to make Ham Radio the number one magazine in the Amateur Radio field. It's been a long, difficult process fraught with pitfalls and setbacks, but we are well on our way.

It will take time to reach our goal, but we can do it with your help. The children's story "The Little Engine That Could" reflects HR's aspirations. The competition is tough. We know we must work very hard at tailoring the magazine's content to please you. That's why we've been asking you, our readers, what you think of our changes. The responses to our reader surveys and evaluation cards have been outstanding. Over 95 percent of you approve of what we've been doing. To be fair, there are those of you who aren't happy. We hope that in time, we can win you over too!

To our effort to serve you, we pay strict attention to all reader comments. In the past two years, your letters to us have asked for MORE PROJECTS and CONSTRUCTION please! And so we began the process of redirecting HR to fill your needs in that area. This process isn't easy. As many of you already know or are learning, it's often difficult to get parts. It's also difficult to get authors to write about their construction projects. We do feel that we have an excellent group of authors writing for us now, but there's always room for more.

HR is a reflection of you, our reader. While a significant number of you are technically oriented and look to HR for electronic information, you're also Hams — men and women who take their love of radio and communications home every night. Some of you do little but tinker and test. Others are "die-hard" contestants who can't wait for the next major event. Some of you bemoan the departure of tubes. Others are immersed in the latest digital state-of-the-art electronics. In short, your interests run from Alpha to Omega.

When Jim Fisk, W1DTY and Skip Tenney, W1NLB, started Ham Radio in 1967, their goal was to mail a magazine that stayed away from politics and delivered nothing but the best in technical Amateur Radio subjects. During it's first ten years, HR met that goal. Unfortunately, Jim's untimely death in 1980 upset the formula and it's taken us a few years to get back on track. Under Rich Rosen's, K2RR, guidance HR once again re-established itself as the Amateur's technical magazine. Now Marty Durham, NB1H, Bob Wilson, WA1TKH, and Terry Northup, KA1STC, are working very hard to ensure HR includes only the very best technical articles every month.

Our new look, created by local graphic artist Ann Desmarais, is designed to make HR more readable. While consistency is safe, a design change was necessary. HR looked like it was locked in a 1968 time warp. The new logo is a bold statement of HR's commitment to quality. The inside layout is clean and easy to read. The type was selected to compliment the text and other material, not fight it. The page layout was modified to take maximum advantage of the space on each page. The only complaint we've received about our graphics changes is that some of you find them too drastic, too bold. The bars over the figures are distracting to a few readers. Others have told us they find the bars help them locate and identify figures and schematics. We'll keep working to refine these changes to meet your needs.

So what's the bottom line? You've asked us to not become a clone of the other magazines. HR has met that goal. By staying in our niche of construction and projects, HR can continue to deliver what you want. But we need and want your comments. Write, call, look us up at Hamfests — TALK to us! Keep letting us know what you like and dislike. This is your magazine. Tell us how can we make it better for YOU!

Craig Clark, N1ACH
This HT Has it All!

TH-215A/315A/415A
Full-featured Hand-held Transceivers

Kenwood brings you the greatest hand-held transceiver ever! More than just "big rig performance," the new TH-215A for 2 m, TH-315A for 220 MHz, and TH-415A for 70 cm pack the most features and the best performance in a handy size. And our full line of accessories will let you go from ham shack to portable to mobile with the greatest of ease!

- Wide receiver frequency range. Receives from 141-163 MHz. Includes the weather channels! Transmits from 144-148 MHz. Modifiable to cover 141-151 MHz (MARS or CAP permit required).
- 5, 2.5, or 1.5 W output, depending on the power source. Supplied battery pack (PB-2) provides 2.5 W output. Optional NiCd packs for extended operation or higher RF output available.
- CTCSS encoder built-in. TSU-4 CTCSS decoder optional.
- 10 memory channels store any offset, in 100-kHz steps.
- Odd split, any frequency TX or RX, in memory channel "0."
- Nine types of scanning! Including new "seek scan" and priority alert. Also memory channel lockout.
- Intelligent 2-way battery saver circuit extends battery life. Two battery-saver modes to choose, with power saver ratio selection.
- Easy memory recall. Simply press the channel number!
- 12 VDC input terminal for direct mobile or base station supply operation. When 12 volts applied, RF output is 5 W! (Cable supplied!)
- New Twist-Lok Positive-Connect locking battery case.
- Priority alert function.
- Monitor switch to defeat squelch. Used to check the frequency when CTCSS encode/decode is used or when squelch is on.

- Large, easy-to-read multi-function LCD display with night light.
- Audible beeper to confirm keypad operation. The beeper has a unique tone for each key. DTMF monitor also included.
- Supplied accessories: Belt hook, rubber flex antenna, PB-2 standard NiCd battery pack (for 2.5 W operation), wall charger, DC cable, dust caps.

Optional Accessories:
- PB-1: 12 V, 800 mAh NiCd pack for 5 W output
- PB-2: 8.4 V, 500 mAh NiCd pack (2.5 W output)
- PB-3: 7.2 V, 800 mAh NiCd pack (15 W output)
- PB-4: 7.2 V, 800 mAh NiCd pack (15 W output)
- BT-5 AA cell manganese/alkaline battery case
- BC-7 rapid charger for PB-1, 2, 3, or 4
- BC-8 compact battery charger
- SC-30 speaker microphone
- SC-12, 13 soft cases
- RA-3, 5 telescoping antennas
- RA-38 StubbyDuk antenna
- TSU-4 CTCSS decode unit
- VB-2620B, 2m, 25 W amplifier (4.4 W input)
- LH-4, 5 leather cases
- MB-4 mobile bracket
- BH-5 swivel mount
- PG-20 extra DC cable
- PG-3D cigarette lighter cord with filter

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
I note an apparent shift to computer program coverage relating to the “clones.” There is usually a statement or at least an inference that no great problem should exist in converting BASIC programs to other machines, and this is probably true. However, in view of the popularity of the C-64 in the ham fraternity, would it not be thoughtful to include an already “converted” C-64 version?

Thanks for listening.

John E. Runninger, WB2LCP, Rome, New York 13440

Great February Cover

Dear HR

The February Ham Radio cover was great. Haven’t seen anything like it since the days of Phil Gildersleeve and Clyde Darr of early QST days… Congrats!

Bruce Kelley, W2ICE, American Wireless Association, Inc., Holcomb, New York 14469

The last hurrah

Dear HR:

It isn’t often one hears a ham on the air performing outstanding services for other hams. I know of one who gives of himself tirelessly, without letting up; without regard to his personal health or equipment he’s steadfastly at his key, carrying out his mission. Most surely, the deity had called upon him to fulfill his destiny at the controls of his station.

It happened early one January morning around 1300 GMT on 7005 kHz during the Mellish Reef DXpedition operation. His signal was strong and his fist rang out in flawless CW, “UP 5..UP 5!” And occasionally, to remind us of our humble beginnings in radio, he would embellish, “UP 5..UP 5 LiD!” Oh, if only to have had him for an Elmer in another time. I could tell he was becoming fatigued; this monumental task was taking its toll. His timing became ragged and he was not coming down on his key precisely when the DX operator started sending, resulting in many operators being able to hear Mellish Reef coming back to their call. I knew he wouldn’t be able to keep up the frantic pace. It was kind of like the death throes of Kipling’s Gunga Din, the immortal regimental bugler. In a last hurrah of “UP 5..UP 5”, with tongue lolling, finals red hot, his hand slipped off the key and his signal drifted off.

Seldom can we pay tribute to such an operator, an enduring essence of QRM, virtually a pure flux of Hertzian generated disturbance. Wherever you are, out there in the QSB, here’s to you, “traffic cop!” You’re a better man than I am!

Don Longacre, NW2V, Caledonia, New York 14423
#1 Rated HF!

TS-940S

Competition class HF transceiver

TS-940S—the standard of performance by which all other transceivers are judged. Pushing the state-of-the-art in HF transceiver design and construction, no one has been able to match the TS-940S in performance, value and reliability. The product reviews glow with superlatives, and the field-proven performance shows that the TS-940S is "The Number One Rated HF Transceiver!"

- 100% duty cycle transmitter. Kenwood specifies transmit duty cycle time. The TS-940S is guaranteed to operate at full power output for periods exceeding one hour. (14.250 MHz, CW, 110 watts.) Perfect for RTTY, SSTV, and other long-duration modes.
- First with a full one-year limited warranty.
- Extremely stable phase locked loop (PLL) VFO. Reference frequency accuracy is measured in parts per million!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-43S UP/DOWN hand mic
- MC-60A, MC-80, MC-85 deluxe base station mics
- PC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-8 pan display
- SW-2000A and SW-2000 SWR and power meters
- IF-232C/IF-10B computer interface
- Complete all band, all mode transceiver with general coverage receiver. Receiver covers 150 kHz-30 MHz. All modes built-in: AM, FM, CW, FSK, LSB, USB.
- Superb, human engineered front panel layout for the DX-minded or contesting ham. Large fluorescent tube main display with dimmer, direct keyboard input of frequency, flywheel type main tuning knob with optical encoder mechanism all combine to make the TS-940S a joy to operate.
- One-touch frequency check (T-F SET) during split operations.
- Unique LCD sub display indicates VFO, graphic indication of VBT and SSB Slope tuning, and time.
- Simple one step mode changing with CW announcement.
- Other vital operating functions. Selectable semi or full break-in CW (QSK), RIT/XIT, all mode squeal, RF attenuator, filter select switch, selectable AGC, CW variable pitch control, speech processor, and RF power output control, programmable band scan or 40 channel memory scan.

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90801-5745

KENWOOD...pacesetter in Amateur Radio
Here is the finest 3 KW PEP Tuner money can buy with roller inductor, dummy load, new peak reading meter, antenna switch, balun and more...

The MFJ-989C is not for everyone. However, if you do make the investment you get the finest 3 KW PEP tuner money can buy - one that will give you a lifetime of use, one that takes the fear out of high power operation and one that lets you get your SWR down to absolute minimum.

The MFJ-989C is a compact 3 KW PEP roller inductor tuner with a new peak reading Cross-Needle SWR/Wattmeter. The roller inductor lets you get your SWR down to absolute minimum. With three continuously variable components - two massive 6 KV capacitors and a high inductance roller inductor - you get precise control over SWR and the widest matching range possible from 1.8-30 MHz.

You get a new lighted peak and average reading Cross-Needle SWR/Wattmeter with a new more accurate directional coupler. You get a giant two core balun wound with teflon wire for balanced lines and a 6-position antenna switch with extra heavy switch contacts. Its compact 10 1/4x4 1/2x1 1/2 inch cabinet fits right into your station. You get a 50 ohm 300 watt dummy load for tuning your exciter, a tilt stand for easy viewing and a 3-digit turns counter plus a spinner knob for exact inductance control. Add $10.00 s/h.

2-knob Differential-TM Tuner

The new MFJ-986 Differential-TM 3 KW PEP 2 knob Tuner has a differential capacitor giving lower losses and more watts out. It matches everything continuously from coax to random lines, and at only one best setting. Covers 1.8-30 MHz.

The roller inductor lets you tune your SWR down to absolute minimum. A 3-digits turns counter lets you quickly return to your favorite frequency.

You get an MFJ's new peak and average reading Cross-Needle SWR/Wattmeter with a new directional coupler for more accurate readings over a wider frequency range. It reads forward/reflected power in 200/50 and 2000/500 watt ranges. Meter lamp is front panel switched and requires MFJ-1312, $9.95.

A new current balun for balanced lines reduces frequence radiation and forces equal currents into antenna halves that are not perfectly balanced for a more concentrated, stronger signal. Add $10.00 s/h.

MFJ's Fastest Selling Tuner

The MFJ-941D is MFJ's fastest selling MFJ-941D 300 watt PEP antenna tuner. Why? $109.95 Because it has more features than tuners costing much more and it matches everything continuously from 1.8-30 MHz.

It matches dipoles, vee, verticals, mobile whip, random wire, balanced and coax lines.

SWR/Wattmeter reads forward/reflected power in 30 and 300 watt ranges. Antenna switch selects 2 coax lines, direct or through tuner, random wire, balanced line or tuner bypass. Efficient airwound inductor gives lower losses and more watts out. Has 4:1 balun. 1000 V capacitors. 10x3x7 inches.

MFJ's Random Wire Tuner

MFJ-16010 $39.95

You can operate all bands anywhere with any transmitter when you let the MFJ-16010 turn any random wire into a transmitting antenna. Great for apartment, motel, camping operation. Install a wire anywhere! Tunes 1.8-30 MHz. 200 watts PEP. Ultra small 2x3x4 in.

MFJ's Best 300 Watt Tuner

The MFJ-949C gives you more precise matches than any tuner that uses two tapped inductors. Why? Because you get two continuously variable capacitors that give you infinitely more positions than the limited number on switched coils. This gives you the precise control you need to get your SWR down to a minimum. After all, isn't that why you need a tuner? Covers 1.8-30 MHz.

You also get MFJ's lighted 2 color Cross-Needle SWR/Wattmeter, 6-position antenna switch, 50 ohm 300 watt dummy load and a built-in balun - all in a compact 10x3x7 inch cabinet that fits right into your station. Meter light requires MFJ-1312, $9.95.

With MFJ's best 300 watt PEP tuner you get an MFJ tuner that has earned a reputation for being able to match just about anything - one that is highly perfected and has years of proven reliability.

MFJ's Mobile Tuner MFJ-949C $89.95

Don't leave home without this mobile tuner! Have an uninterrupted trip as the MFJ-949C extends your antenna bandwidth and eliminates the need to stop, go out and adjust your mobile whip.

You can operate anywhere in a band and get low SWR. You'll get maximum power out of your solid state or tube rig and it'll run cooler and last longer. Small 8x2x6 inches uses little room. SWR Wattmeter and convenient placement of controls make tuning fast and easy while in motion. 300 watts PEP output, efficient airwound inductor, 1000 volt capacitors. Mobile mount, MFJ-20. $3.00.

144/220 MHz VHF Tuners MFJ-921 $69.95

MFJ's new VHF tuners cover both 2-Meters and the 220 MHz bands. They handle 300 watts PEP and match a wide range of impedances for coax fed antennas. SWR/Wattmeter. 8x2/2x3 inches. MFJ-920, $49.95. No meter. 4/9x2/2x3 inches.

MFJ's Artificial RF Ground

You can create an artificial RF ground and eliminate RF "bites", feedback, TVI and RFI when you let the MFJ-931 resolute a random length of wire and turn it into a tuned counterpoise. The MFJ-931 also lets you electrically place a far away RF ground directly at your rig - no matter how far away it is - by tuning out the reactance of your ground connection wire.

Barefoot/1.5 KW Linear Tuner

MFJ-982C $239.95

For a few extra dollars, the MFJ-982C lets you use your barefoot rig now and have the capacity to add a 1.5 KW PEP linear amplifier later. Covers 1.8-30 MHz.

You get two husky continuously variable capacitors for maximum power and minimum SWR. And lots of inductance gives you a wide matching range.

You get MFJ's new peak and average reading Cross-Needle SWR/Wattmeter with a new directional coupler for more accurate readings over a wider frequency range. It reads forward/reflected power in 200/50 and 2000/500 watt ranges. Meter lamp is front panel switched and requires MFJ-1312, $9.95.

Has 6-position antenna switch and a tiltrig wound balun with ceramic feedthrough insulators for balanced lines. 10x4x4/14 7/8 inches. Add $10.00 s/h.

MFJ's smallest Versa Tuner MFJ-901B $59.95

The MFJ-901B is our smallest - 5x2x6 inches - and most affordable 200 watt PEP tuner when both space and your budget is limited. Good for matching solid state rigs to lines.

It matches whips, dipoles, vees, random wires, verticals, beams, balanced and coax lines from 1.8-30 MHz. Efficient airwound inductor. 4 1/2 balun.

For your nearest dealer or to order
800-647-1800

1 year unconditional guarantee • 30 day money back guarantee (less s/h) on orders from MFJ • Free catalog • Add $5.00 s/h (except as noted)
BUILDING A

DIGITAL FILTER

FIR filter features guaranteed phase linearity

By Paul Selwa, NB9K, 61 East Tilden Drive, Brownsburg, Indiana 46112

Digital filters provide high-performance designs with properties that can’t be provided by analog filters. These properties include: stability, no tweaking, repeatability, insensitivity to temperature, and the guaranteed linear phase response of Finite Impulse Response (FIR) filters. This last characteristic is required in narrow bandpass filters for phase-shift encoded digital data like that used on the Mode-S transponder in the Phase 3C satellite.

Digital filters aren’t new, but it’s only recently that the inexpensive ICs needed to build them have become available. The main hardware impediment has been the lack of low-cost digital multipliers. In software, the problem has been the lack of inexpensive programs to determine the filter’s coefficients. Optimal filter designs require extensive iterations and aren’t practical for manual calculation.

This article provides information about the construction of FIR digital filters. You can construct the hardware if you have a general knowledge of digital techniques. I can provide you with a program which calculates the coefficients for FIR filters of up to 128 taps.

FIR filters

There are various types of digital filters; the FIR filter is the most useful. This filter is unconditionally stable and has guaranteed linear phase response. It’s resistant to the effects of noise, because any noise components are in the filter only until a new set of data samples has been taken. It’s also the type of digital filter least sensitive to the effects of the precision (length) of the filter coefficients.

IIR filters

The other popular digital filter is the Infinite Impulse Response (IIR) filter. Because a portion of an IIR filter’s output is fed back into the filter, any disturbance at the output is partially present in all subsequent outputs until the filter is deliberately cleared and the process is repeated. Another concern with IIR filters is their highly nonlinear phase response. For phase-dependent modes of communication, like phase-shift encoded data in digital transmission, the data may be garbled and no subsequent filtering will completely remove the distortion.

FIR filter construction

A FIR filter consists of the following sections:

- A low-pass filter (LPF) limits the bandwidth of the signal. This is called an anti-aliasing filter.
- An analog-to-digital converter (ADC). It may need to be preceded by a sample-and-hold circuit if its conversion time is long.
- A data memory that saves the digitized samples of the signal. Data is often saved in two’s complement (2C) form for compatibility with hardware multipliers.
- A set of filter coefficients that are used to multiply the data memory’s samples. These are often called filter taps and are usually stored in 2C form.
- An accumulator that contains the sum-of-product terms that are generated by multiplying the data memory contents by the filter’s coefficients.
- A multiplier chip, or a processor with multiplying capability. Multiplier accumulators (MACs) are common.
- A digital-to-analog converter (DAC) to change the filter’s digital output word to an analog signal.
- A low-pass filter to remove clock noise from the DAC’s output. It is called a reconstruction filter and has the same bandwidth as the anti-aliasing filter.
- A controller to coordinate the actions of these pieces of hardware. It can be as simple as a PROM, containing control bits with a counter to read out the PROM’s words sequentially, or it can be an actual digital signal processor like the Texas Instruments TMS32010 with its own program.
You can build a compact system, like the TI-based system shown in fig. 1, with a few LSI chips. This version requires an assembled program for the TMS32010 processor. The coefficients are in the program PROM and the data memory is on the processor chip. The anti-aliasing filter, the ADC, the DAC, and the reconstruction filter are in the TLC32040.

A more efficient implementation for home assembly consists of two GE chips made for FIR applications. The ISP9128 is a FIR controller and the ISP9210 is a MAC. These two chips do most of the work for you. The approximate cost of this pair is $80.

Aliasing

Any digital filter has a bandwidth limitation that’s set by the sampling rate of the input ADC. To prevent aliasing, the sampling frequency must be at least twice the bandwidth of the anti-aliasing filter. The folding frequency is defined as exactly one-half the sampling rate and is theoretically the maximum frequency that the filter can handle without aliasing problems. This frequency is often referred to as the Nyquist frequency or rate. It’s called the folding frequency because the sampler’s output frequency components have mirror symmetry around that frequency.

When a signal is being sampled at a given rate, the signal’s components are duplicated above and below each harmonic of the sampling frequency, just as they would appear as sidebands of AM transmitters operating at those frequencies.

The only one you need to worry about is the fundamental sampling frequency. If you have a sampling rate of 10,000 Hz and a signal of 1000 Hz you’d get spurious outputs from the sampler at 9000 Hz (10,000 – 1000 Hz) and at 11,000 Hz (10,000 + 1000 Hz), in addition to the baseband signal of 1000 Hz. If you raised the input signal’s frequency to 4999 Hz, the sampler would produce sideband components at 5001 Hz and at 14,999 Hz, and also preserve the 4999-Hz baseband signal. At an input frequency of 5000 Hz you’d be unable to distinguish between the real signal and the sideband of 5000 Hz (10,000 – 5000 Hz) from the sampling signal’s carrier. As you further increase the input frequency, the lower sideband copy of the input signal takes on the alias of a lower frequency input signal. That’s why the LPF precedes the ADC.

Anti-aliasing filters

These filters can be passive or active. While the theoretical cut-off frequency of the LPF can be at the folding frequency, any practical filter has finite rolloff. You can’t get away with using a sampling rate that’s barely twice the highest frequency component you pass through the LPF. Practical anti-aliasing filters have cut-off frequencies of approximately one-third the sampling rate, so the LPF’s response will be down 40 dB or more at the folding frequency. For voice communications that require bandwidths of 2500 Hz, you’ll see sampling rates of 8000 Hz or greater. For other modes, like CW which needs no more than 1000-Hz response, you can get away with a sampling frequency of 3000 to 5000 Hz.

A poor choice of anti-aliasing filter can upset your FIR system’s operation. If you depend on the inherent linear phase response of the FIR structure, use a linear phase (flat group delay) LPF for anti-aliasing and for the reconstruction filter. An easy way to obtain flat group delay is to use the EXAR XR-1003/1004 – a switched-capacitor low-pass Bessel filter. These filters preserve the information in phase-shift encoded data. Another advantage of using switched-capacitor filters is that you can divide the sampling clock to drive the LPF and you’ll automatically be in the correct ratio with respect to the sampling rate. That may not be important in a system using a single sampling rate, but for a dynamically reconfigurable system you won’t have to worry that the anti-aliasing LPF is at the wrong bandwidth.

FIGURE 1

One-chip digital signal processor implementation.
ADC

The ADC is one of the simpler system blocks, but distortion is introduced in the converted number — called the \(\sin(X)/X \) error — where \(X = \pi \cdot \text{input frequency/sampling frequency} \). The ratio \(\sin(X)/X \) is equal to 1 for \(X = 0 \) (DC signal), and gradually drops to zero when the input frequency is equal to the sampling frequency. The loss at the Nyquist frequency is 3.9 dB, as shown in fig. 2. For normal communications work, the relative response across the audio band is of little importance; you can ignore this factor without a problem. This is especially true if the sampling rate is high with respect to the anti-aliasing filter’s cutoff, because the loss from the \(\sin(X)/X \) rolloff is small. You can obtain a first-order correction by pre-emphasizing the input signal to the ADC.

Filter coefficients

The stored data samples are all multiplied one-for-one by their corresponding filter coefficients, between the acquisition of each successive data sample. The product of each multiplying operation is accumulated and the resulting sum-of-products is a data word that’s output by the filter, until the next output value is calculated.

The FIR design program calculates filter-coefficient sets for up to 128 tap filters. Depending on the sampling rate you choose, you may not be able to do all the multiply accumulate (MAC) cycles between two successive data samples. This means you’ll either have to shorten the filter’s length or build faster MAC hardware. The design program allows a total of five bands including stopbands plus passbands. The fancier the filter’s operation, the longer the time for the filter to define these bands. You’ll need fast hardware for the most elaborate types of filters. But it’s easy to build the low-pass, single bandpass, notch, and high-pass filters with moderate filter time length.

The program first calculates a coefficient set for a filter having unity gain (zero dB). While these tap weights will produce a working filter, the number set may not use your system’s full 8 or 16-bit capability unless it can handle floating point math. After locating the tap weights for the zero-dB filter, the program finds the largest value of fixed-point hardware’s mathematical range. For example, the largest coefficient might not require the most significant 2 bits in the system. In that case, you’d get one-fourth the signal level from the filter that the hardware is capable of producing. The scaling process results in a filter with the same frequency response, but with something other than zero-dB gain. The gain figure is printed in the output listing, just ahead of the scaled tap values. In this example the scaled filter would have 12-dB gain.

The results are printed in floating point decimal and in fractional 2C hexadecimal. If you don’t want to use the entire 16 bits of the hex coefficients, simply start at the highest (left-most) bit and use the number of bits you want. This 2C notation is used almost universally in computers and in MAC hardware. The 2C part refers to the technique used to encode bipolar binary numbers in which the most significant bit of the number is the sign bit \((0 = \text{plus}, 1 = \text{minus})\). The “fractional” part refers to the fact that the total of the remaining bits have a positive value less than 1. This number approaches unity more closely as the length of the 2C number increases. The value of a 2C tap from this filter program will be equal to:

\[
-1 \cdot (\text{sign bit}) + (\text{positive value of the remaining bits})
\]

with the left-most remaining bit having a value of +0.5, the next having a value of +0.25, and so on.

FIR filter operation

Suppose you need a length 5 FIR filter. The program will calculate the filter’s coefficients, which are symmetrical around the center value (the third in this case). If you’ve chosen an even number of coefficients the symmetry will still exist, but without a unique central value. The coefficients are labeled in the program’s output and must be used in sequence. In this example, the data memory will be length 5. It will always be the same length as the number of taps in the digital filter. The five most recent data samples will be multiplied by the five coefficients as shown in eqn. 1. To make notation easy, I’ll refer to the data samples as \(D1-Dx \), to the coefficients as \(C(1)-C(5) \), and to the outputs as \(O1-Ox \) (see fig. 3). The first usable filter output is produced after the fifth data sample is taken.

\[
O1 = D1 \cdot C(5) + D2 \cdot C(4) + D3 \cdot C(3) + D4 \cdot C(2) + D5 \cdot C(1)
\]

For \(x = 3 \).

The output value \(O1 \) is placed in the output DAC. Calculation stops until the sixth data sample appears. It replaces the sample \(D1 \) (i.e., the oldest sample) and then calculates the second output. In all cases, the new data sample replaces the oldest stored data sample.
O2 = D2·C(5) + D4·C(3) + D5·C(2) + D6·C(1)
(2)

Output sample O2 is placed into the output DAC. Again the filter waits for the next data sample (which replaces sample D2), then calculates the third output sample.

O3 = D3·C(5) + D4·C(4) + D5·C(3) + D6·C(2) + D7·C(1)
(3)

This process is continued, and the filter produces outputs at the same rate as the incoming samples. Note that the filter operates on the most recent data samples only (five in this example), and the older ones are written over in the data memory as more recent samples are taken. No portion of a noisy data sample remains in the filter; the FIR structure, compared with an IIR filter, is insensitive to noise. The process of shifting the data relative to the coefficients doesn’t have to be an actual data shift in memory. You can accomplish the same effect by using counters as data pointers to place new samples and to retrieve the samples for the MAC operation.

Output data

The multiplication of two signed 16-bit words produces a 32-bit product in which two identical sign bits appear. Take the top 16 bits as your result, after you perform a left shift of one position to remove the redundant sign bit. Some multiplier chips automatically perform this function. Many times, the accumulator used in building an output value has more than 16 bits of resolution (like our example). Thus an intermediate value that exceeds its 16-bit capacity wouldn’t cause overflow and a false result by a "wraparound" from the maximum number, past zero, to a smaller number. When the total sum-of-products is finished for a given output sample, some product terms may have been negative and some positive; this helps prevent overflow. Any filter can be overloaded, so scale your inputs properly to avoid problems.

You may have to change the 32-bit result back into a simple binary code for the output DAC. Do this by inverting the sign bit position of the sum-of-products. This shifts the 32-bit number to a value between zero and the maximum value your data variable can achieve.

Controlling the filter

If the filter is built of separate pieces instead of a FIR controller chip or a one-chip digital signal processor with its own program, you’ll have to generate the control program in a PROM or use some other method to produce a “state machine.” This is a little tedious, but not difficult. You must determine how many separate bits are needed to drive the control inputs for the ADC, data RAM, coefficient PROM, MULTIPLIER, DAC and other elements of the system. The PROM data readout will be sequential, because a counter will be used to drive the address inputs of the chip. At each new address, you’ll program 1 bit to perform the control functions required at that time interval. As the counter runs through its range, the logic signals to control the various parts of the filter will be read out. To avoid problems from address or data skew, use a register at the PROM data outputs to clean up the data. This will cause a one-clock cycle delay in the filter activity, but that’s no problem. The first two locations in the PROM can be all zeros to get everything set up. Think of the bits as a method of defining sequential events, without consideration of active high or active low control states. Make all bits represent active high events inside the PROM; if you need an active low output, invert the bit outside the PROM. This technique is less prone to error than if the PROM contents directly...
ElMAC Tubes Provide Superior Reliability at radio station KWAV — over 131,000 hours of service!

Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 15 years of continuous duty!

Ken says, "In spite of terrible power line regulation, we've had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!"

Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don't want. More operating time and less downtime!

EIMAC backs their proven tube reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Quality is a top priority at EIMAC, where our 50-year charter is to produce long-life products. And our products are backed by the most comprehensive and longest warranty offered in the industry. Send for our free Extended Warranty Brochure which covers this program in detail: Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221
Now 9 store buying power

Effective March 1, 1989

Ege has joined the

Ham Radio Outlet

Nationwide Team

Coast to Coast

This gives you even better response with low-low outlet prices & rapid deliveries coast to coast.

See our toll free numbers below

All Major Brands in Stock Now!

Anaheim, CA 92801
2620 W. La Palma
(714) 761-3033, (213) 860-2040
Between Disneyland & Knott's Berry Farm

Atlanta, GA 30340
6071 Buford Hwy
(404) 263-0250
Larry, Mgr. WD4AGW
Donivia, 1 mi. north of I-285

Burlingame, CA 94010
999 Howard Ave.
(415) 342-5757
George, Mgr. WB6DSV
5 miles south on 101 from SFO

Oakland, CA 94606
2210 Livingston St.
(415) 534-5757
Rich, Mgr. W5MYB
5800 at 23rd Ave. Ramp

Phoenix, AZ 85015
1092 W. Camelback Rd.
(602) 242-3515
Bob KF6RUH, Gary WB6TSY, Mgr.
East of Hwy. 17

Salem, NH 03079
211 N. Broadway
1-800-444-0447
Curtis, Mgr. WB4KZL
28 miles north of Boston exit 1-93

San Diego, CA 92123
5375 Kearny Villa Rd.
(619) 569-8900
Tom, Mgr. K6R6X
Hwy. 154 & Clairemont Mesa Blvd.

Woodbridge, VA 22181
14800 East America Drive
1-800-444-4799
John, Mgr. WB4CGL
Exit 54, 1 1/2 South to US RT 1

Call any time zone 800 number during business hours from coast to coast.

Tell 'em you saw it in HAM RADIO!
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz
10 MTR, 6 MTR, 220 MHz & 1.2 GHz
10 MEMORIES
ARE YOU READY FOR 1.2 GHz OPERATION?

BULLETIN
ICOM has joined the
HAM RADIO OUTLET
NATIONWIDE TEAM

NOW LOCATED IN
SALEM, NH
WOODBRIDGE, VA

THIS GIVES YOU EVEN BETTER RESPONSE WITH
LOW-LOW OUTLET PRICES
AND RAPID DELIVERIES
COAST TO COAST.

All Major Brands in Stock Now!

Call any time zone 800 number during business hours from coast to coast.

CALL TOLL FREE
IN CALIFORNIA CALL STORE NEAREST YOU

PUBLIC SERVICE ANNOUNCEMENT

WORLDWIDE DISTRIBUTION

ege has joined the
Ham Radio Outlet
Nationwide Team

NOW
 STORE BUYING POWER

9

HIGH GRADE

IOM IC-761

HF SUPERIOR GRADE
TRANSCEIVER
SALE! CALL FOR PRICE

A Models 25W, H Models 100 W
IC-275A/275H, 138-174 MHz
IC-375A ☐ SALE $7995
IC-475A/475H, 430-450 MHz

LOW PRICE!

IOM IC-735

100 W, 100 KHz-30 MHz
Dual VFO Receiver
CALL FOR LOW, LOW PRICE

IOM IC-781

THE ULTIMATE
150 W, ALL-BAND
HF TRANSCEIVER
GREAT PRICE!

IOM IC-900

MULTI-BAND MOBILE

YOU CAN OPERATE SIX BANDS
WITH ONE CONTROLLER!
2 MTR 25/45/5W, 440 MHz
10 MTR, 6 MTR, 220 MHz & 1.2 GHz
10 MEMORIES
ARE YOU READY FOR 1.2 GHz OPERATION?

IOM HAND-HELD
VHF/UHF

IC-03AT
REG. 4455
SALE $5995

IC-02AT ☐ IC-2AT
2MTR
IC-03AT ☐ IC-3AT
220 MHz
IC-04AT ☐ IC-4AT
440 MHz

IC-3210
2M/440 MHz
25/5 WATT EXTENDED RX RANGE
DUAL BAND FM TRANSCEIVER
GREAT PRICE

ANAHEIM, CA 92801
2920 W. La Palma
(714) 781-3033, (213) 850-2040
Between Disneyland &
Knotts Berry Farm

BURLINGAME, CA 94010
2771 Howard Ave.
(650) 342-5757
George, Mgr. W8BD1S
5 mins south on 101 from SFO

OAKLAND, CA 94606
2220 13th Ave.
(415) 534-5757
Rich, Mgr. W7WFF
Is 860 of 22nd Ave. Ramp

PHOENIX, AZ 85015
1373 W. Camelback Rd.
(602) 242-3015
Bob, Shop Mgr., Gary W8FYL, Mgr.
East of Hwy. 17

SALEM, NH 03079
254 N. Broad St.
(603) 444-0947
Curtis, Mgr. W6AJK
20 miles north of Boston exl 1-952

SAN DIEGO, CA 92123
5375 Kearny Villa Rd.
(619) 560-6000
Tom, Mgr. K8MK
Hwy. 15 & Clairemont Mesa Blvd.

WOODBRIDGE, VA 22191
14803 Old America Drive
(703) 444-7499
John, Mgr. W8ATX
Exit 54, F IBM North to US RT 1

Call toll free including Hawaii. Phone Hrs: 7:00 am to 5:30 p.m. Pacific Time, California, Arizona and Georgia customers call or visit nearest store.

Reader Service CHECK-OFF Page 118

April 1989
You'll be hard-pressed to beat the performance of Yaesu's new FT-411 handheld.

Let Yaesu's "next generation" handheld lighten your load! Picking up where our popular FT-209R Series left off, the 2-meter FT-411 will amaze with its astounding array of features!

Not bad for a handheld measuring just 55(w) x 32(d) x 139(h) mm (the same size as our FT-23R Series HTs)!

Friendly operation. For operating convenience, the FT-411's keypad features a "do-re-mi" audible command verification. Both the display and keypad can be backlit (brightly!) for night operation at the push of a button. A rotary channel selector allows fast manual tuning. Or key in the frequency directly. Operate VOX (with YH-2 headset option). Plus you get a battery saver to conserve power while monitoring. And a (defeatable) automatic power off feature that shuts down your radio if you forget to turn it off!

High power capability. The FT-411 comes equipped with the 2.5-watt, 600-mAh FNB-10 battery pack. Try our optional FNB-12 5-watt, 500-mAh pack or tiny FNB-9 2.5-watt, 200-mAh pack. Or get 6 watts output by applying 13.8-volts DC from an external power supply.

Swap options with Yaesu's FT-23R Series. Our rugged best-seller's chargers, batteries, and microphones are fully compatible with the FT-411. The FT-23R is the perfect companion for the FT-411, and at a great price!

Try out an FT-411 today. Ask for it now at your local Yaesu dealer. Or call 1-800-999-2070 for a free brochure. And experience the legendary Yaesu HT performance!

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847. Prices and specifications subject to change without notice. Specifications guaranteed only within amateur bands.
create both high and low active logic. In practice, this method takes several PROMs operating in parallel to create enough control bits.

Using the FIR design program

After the program starts, it prompts you for a file name so it can store the filter's parameters on disk. Entries are made in an interactive mode. The file includes all your entries, and all numeric and graphic outputs. There's a compressed graph to give you an idea of the filter's response curve. This curve covers one CRT screen, with a vertical scale of 5 dB per line. A detailed graph in 1-dB steps is also available. A portion of a sample problem output is shown in fig. 4.

FIGURE 4

![Graph](image)

Frequency response of the 5-band sample problem.

Sample problem

As an example of the type of filter you can build, consider a filter of length 128, which passes the first three voice formants. The bands are defined as 0-250, 375-700, 825-1400, 1525-2500, and 2625-3750 Hz. The sampling rate is 7500 Hz. The maximum of the stopband response is below -40 dB, with the deepest notch reaching -80 dB. The numeric outputs and stopband data below -45 dB are deleted to compress the figure.

A smaller version of this program is available from Public Brand Software, Inc., P.O. Box 51315, Indianapolis, Indiana 46251. This version, on their disk HR11.0, will create filters of maximum length 10. The full-featured version is available only from the author, for $45.00. (Indiana residents add 5-percent state sales tax.)
THE WEEKENDER

Easy antenna access for urban apartment dwellers

This article is dedicated to those urban HF operators who, because of security or other restrictions, have been unable to have constant access to a good receiving antenna.

My typical operating procedure on the HF bands is to listen to the activity on each band, then attach the appropriate loading coil to a loaded vertical antenna mounted on a pipe on my balcony. Sometimes I simply want to hear the latest solar activity forecast on WWV or catch the news from the BBC. Because I live in an apartment building with brick walls and aluminum-framed windows, this operation normally requires several trips through a sliding-glass door that leads to the balcony. Blasts of cold air entering my small apartment are side effects in the winter.

Confronted with this dilemma (and complaints from my XYL), I sought a solution that would eliminate the outdoor excursions for receive only applications or at least limit the ones required to begin HF operation. The most direct solution, drilling holes in either the brick wall or an aluminum window frame for a coaxial feedthrough, isn’t allowed by my landlord.

I tried using a window antenna, but the it proved unsatisfactory. It was impossible to secure the window properly against burglars with the antenna installed. Anyway, the antenna I tried is designed for wooden window frames, and must be insulated from an aluminum window mount. I tried using a block of wood drilled to accommodate coaxial cable and wedged in the window frame, but this also resulted in an unacceptable security risk. Because of my location on the ground floor and the construction of the apartment building (an effective Faraday shield!), an indoor antenna proved useless — even for WWV reception.

It occurred to me that I might try coupling RF from an external antenna through my window, adapting a method similar to those used in some mobile window-mount VHF antennas. The schematic in fig. 1 shows the basic concept involved in what I call the “window coupler.” The coaxial cable from my receiver (an ICOM R-71A) is connected, through coupling capacitor C1, to an external coaxial cable that feeds a “stealth” dipole antenna. The window cross section in fig. 2 shows the details of the window coupler. Notice that coupling capacitor C1 is formed by two strips of aluminum foil mounted exactly opposite each other, on either side of and along the width of the window. The single-pane glass of the window forms the dielectric of C1. The two parallel foil strips, each 3/8" x 48", form the capacitor’s plates. The braids of both the internal and external coaxial cables are connected to

By Bryan Bergeron, NU1N, 30 Gardner Road, Apartment 1G, Brookline, Massachusetts 02146

Schematic diagram of the window coupler. An effective RF connection is provided through coupling capacitor C1.

FIGURE 1

- TO ANTENNA
- RG/58
- Window Coupler
- C1
- RG/58
- TO RECEIVER
Window cross-section showing the details of coupling capacitor construction. The center conductor of each coaxial cable is connected to parallel foil strips with the aid of adhesive connectors designed for connecting the foil to burglar alarm systems. The braids of each cable are connected to the aluminum window frame.

Parts list

- Adhesive-backed foil—Radio Shack part no. 49-502 (120 foot roll—$5.99)
- Adhesive connectors—Radio Shack part no. 49-504 (3 pair for $2.59)
- Krylon Acrylic Spray Coating, Crystal Clear no. 1301 (about $3)
- Silicone sealer

The aluminum window frame is grounded through the short length of coaxial braid connected directly to a 6-foot copper ground rod (see fig. 3).

Both the adhesive-backed aluminum foil and adhesive-backed connectors used for building the coupling capacitor are available from Radio Shack. Adhesive foil and connectors, designed originally for burglar alarm systems, make for a quick and aesthetically pleasing installation (see fig. 3). To keep the outside connections clean and free of corrosion, make sure that you cover the coaxial connection with a small amount of silicone sealer. To prevent the foil from deteriorating, I sprayed the outside strip with a thin layer of clear acrylic spray coating. Clear fingernail polish or clear enamel will work as well.

The window coupler performs magnificently as a means of providing a connection to an external receive antenna. There's no detectable degradation in received signal strength on the HF bands when using it, com-
Hi PRO
VHF-UHFRepeaters

Superior Receiver and Transmitter Specifically Designed for Repeater Service.

See You At Dayton!
Booth #403

Hi Pro Receivers

Features:
- High Sensitivity
- Superior rejection
- Double sided mil spec G.10 fiberglass boards
- Extremely stable operation
- Excellent adjacent channel rejection
- Squelch circuit designed for critical repeater use
- Small size
- Choice of palettes
- Wide selection of frequency ranges
- Separate open collector COR output
- Separate tone control squelch input
- Separate tone control output
- Discriminator meter output
- Signal level meter output
- Multi channel capability, up to 6 channels
- Multiple Voltage Regulation
- Available with precision grade high stability crystal
- Selectable CO.S. high or low output
- 1 year warranty

Specifications:
- Sensitivity: 12 dB Smad (EA Method) 0.25 w
 20 db quieting method 0.30 w
- Selectivity: EIA two signal method
 Standard - 15 kHz - 80 dB
 - 30 kHz - 130 dB
 Optional Narrow - 15 kHz - 100 dB
 - 30 kHz - 130 dB
- Spurious Response: 85 dB
- Intermodulation: 70 dB
- Modulation Acceptance: Standard - 50 kHz
 Narrow - 50 kHz
- Squelch Sensitivity: 0.10 to 0.20 uV
- Frequency Response: 2 to 3 dB at 6 dB/octave
 deviation from 3000 kHz, 1000 Hz reference
- Audio Output: (8 ohm speaker) 2 watts max
 5% distortion at 1.5 watts max
- RF input impedance: 50 ohms
- Frequency Range:
 V.H.F. 130-150 MHz, 144-175 MHz, 220-250 MHz
 U.H.F. 406-450 MHz, 450-490 MHz
- Operating Voltage: 11 to 14.5 VDC
 13.8 VDC nominal
- Current: 90 mA nominal squelched
- Size: 3¼ W x 6" L x 14 H
- Duty Cycle: 100% at 50% C
- Operating Temp.: -30 C to +60 C

Ask about our Computer Control System, and Microcontrol Auto Patch, and Repeater Kits.

Write or call for our complete catalog.

Maggiori Electronic Laboratory
600 WESTOWN RD., WEST CHESTER, PA 19382
pared with a direct connection to my dipole antenna. Now I have constant access to WWV and the shortwave bands. I can listen for band openings at the wee hours of the morning or late at night without disturbing my family, compromising the security of our apartment, or incurring the wrath of my landlord.

Now the obvious question: Is the window coupler any good for transmission? Well, I’ve made several contacts through the coupler with an ORP rig (an HW-8) on 15 meters. With an MFJ-900 Transmatch and a long-wire antenna attached immediately to the outside foil strip, I’ve been able to achieve an SWR ratio of less than 1.3:1 across the CW segment of the 15-meter band. Because the foil strips are so thin, I haven’t tried to transmit through the window coupler with my Swan 500 — for fear of vaporizing the aluminum foil! For high-power applications, you might want to try extending the strip in an “L” shape, or use several strips in parallel.

I hope that you enjoy this simple and easy to build window coupler. Let me know if you have any questions and/or enjoy using the system.

Article 6

Ham Radio

RF Power Amplifiers

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5” and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE Systems
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. MHz</th>
<th>Input</th>
<th>Output</th>
<th>NF-dB</th>
<th>Gain-dB</th>
<th>DC +Vdc</th>
<th>Power</th>
<th>RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>050G</td>
<td>50-54</td>
<td>1</td>
<td>170</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>28</td>
<td>UHF</td>
</tr>
<tr>
<td>0510G</td>
<td>50-54</td>
<td>10</td>
<td>170</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
</tr>
<tr>
<td>140G</td>
<td>144-148</td>
<td>2</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
</tr>
<tr>
<td>141G</td>
<td>144-148</td>
<td>10</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
</tr>
<tr>
<td>211G</td>
<td>220-225</td>
<td>10</td>
<td>130</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
<td>21</td>
<td>UHF</td>
</tr>
<tr>
<td>212G</td>
<td>220-225</td>
<td>10</td>
<td>130</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
<td>16</td>
<td>UHF</td>
</tr>
<tr>
<td>441G</td>
<td>420-450</td>
<td>10</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>N</td>
</tr>
<tr>
<td>442G</td>
<td>420-450</td>
<td>10</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>N</td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete G suffix on model #). All units cover full amateur band — specify 10 MHz bandwidth for 420-450 MHz amplifier.

Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28V), Commercial, etc. also available — consult factory.
BACK TO BASICS — — But far more advanced — —

The AR-501, triple mode CW terminal in a small package, is a powerful gear to practice and play with. For the Novice, SWL and Amateur radio operators it detects Morse code between 5 to 30 WPM. Just plug the AR-501 to your receiver to start translating the Morse code onto full 32 character LCD display. Very simple and easy to operate. You ask; for code practice?, both receive and transmit? Yes, the AR-501 does just that. It will improve your cord reception and keying technique at the speed you want. More? it operates as an electronic keyer both standard and iambic. More Yet? How about a printer port? You bet. the AR-501 provides parallel printer port for hard copy. You can Log the QSO, and Practice. It will help you immeasurably. We even offer a standalone Nicad operated thermal printer as an option.

ACCESSORIES AVAILABLE: CC-501 Parallel printer cable — $30.00/DPU-411 Standalone Thermal printer with 8K buffer.—$235.00

ORDERING INFORMATION: For fastest service, call 800-523-6366 from 9 A.M. to 4 P.M. P.S.T. Send mail orders to: ACE Communications, Inc. 22511 Aspan Street, Lake Forest, CA 92630. VISA and MasterCard orders and certified or cashier's check or money order shipped within 48 hours of receipt. Rush service by UPS/Overnight, UPS/2nd Day Air and Federal Express is available at extra shipping charges. Purchase orders accepted from Government agencies. CA residents add 6% sales tax. COD is $5.00 extra. WARRANTY INFORMATION: The AR-501 covered by One Year Warranty. Extended warranty service available at the following rates: 3 Years—$25.00, 2 Years—$15.00. SATISFACTION GUARANTEE: If, for any reason, the ORIGINAL PURCHASER, is not satisfied with the unit purchased, a full refund of the purchase price will be issued if the unit and all accessories are returned to us UNDAMAGED WITHIN 25 DAYS of the date of original purchase (Invoice date). This policy excludes any additional freight that may be incurred, and in no event modifies or limits the limited warranty.
Light metal and other topics

The oscilloscope (shown in photo A) is an instrument that lets you examine a waveform appearing on the screen of its cathode ray tube (CRT). Most of you are aware of the oscilloscope's usefulness in examining low-frequency waveforms, but you may not know that the instrument is also helpful at RF frequencies. At one time, most oscilloscopes were limited to frequency responses of 500 kHz or less. Just a decade ago high-frequency oscilloscopes were costly items that found extensive use only in commercial applications. Few Amateur Radio operators owned scopes at all — much less high-frequency ones. But that situation is changing. A number of manufacturers offer low-cost oscilloscopes that provide vertical bandwidths of 20, 50, or even 100 MHz. While not exactly in the "low-cost" category, these instruments are well within the range of many Amateurs.

This month I'll look at a method for placing either detected or raw RF on the input of an oscilloscope. I used an Amateur HF dummy load, a Drake DL-1000 (see photo B), as the basis for my measurement system. The modified internal circuit of the DL-1000 is shown in fig. 1. The main load is a 1000-watt, 50-ohm non-inductive resistor element mounted between the center pin of an SO-239 "UHF" coaxial connector (J1) and ground. The 1000-watt rating of the DL-1000 is based on a relatively short duty cycle, and that's appropriate for most Amateur Radio applications. If you need to run more power, or to operate into the load for more than a couple of minutes, Drake provides a cutout on the rear panel of the dummy load to accommodate a blower fan for forced air cooling.

I added two sampling elements to the internal circuitry of the DL-1000. I constructed both of 1/8-inch (3.18 mm) brass tubing. This tubing, available in hobby and model shops, is inexpensive and easily worked with a hacksaw or jeweler's saw. I terminated each sampling element in a 220-ohm, 1-watt resistor at the "cold" end. I connected the sampling element used to drive the RF sample port directly to the BNC jack (J3).

It's possible to use a wire loop, instead of the brass rods, for the sampling element. Build a 1-inch (2.54 cm) loop consisting of several turns of no. 14 solid insulated wire. Connect one end of the loop to the output jack (J2 or J3), and the other end to the resistor termination. (I've found that resis-
Tor terminations aren't strictly necessary when using loops, so you might want to try connecting the loops between the output jack and ground first.

You also connect the detected output (J2) to a brass rod sampling element, which is terminated in a 220-ohm resistance. However, there's a detector/rectifier network at the output end that demodulates the RF signal to produce a DC signal proportional to the RF power level. You can use this port for measuring RF power in CW (sinusoidal) waveforms, or looking at the waveform modulation on a low-frequency oscilloscope.

Photos C and D show the construction of the modified DL-1000. The internal structures appear in photo C, while the connectors at the output end are shown in photo D. The detected output connector is an RCA phono jack; the raw RF sample is a BNC jack. I used two different connectors; this makes it easier to tell them apart. But there's no reason why you can't use the same connector — either BNC (preferred) or RCA phono jack — for both. I wouldn't try an SO-239 UHF coaxial connector (used for the RF input to the load) for either the RF sample or detected outputs. It's possible that it could be mistaken for the main RF power input, with potentially disastrous results. A ground connector is also provided on the end plate. I haven't used it for anything yet, but it seemed like a good thing to have available.

Photos E, F, and G show several outputs from the RF sampling jack. These waveforms were taken from the

FIGURE 1

Schematic of the modified DL-1000.
one application of brass stock in an electronics construction project. If you’re into construction, especially RF projects, check out your local hobby shop. There are a lot of supplies, tools, and vision aids for those who do their building from the ground up. Of particular interest to electronic builders is the light metal brass stock. These are hollow rods, solid rods, square rods, rectangular rods, and flat plate sheets from strips of only 1/4 inch to sheets 4 inches wide.

Photos H and I show an application for the hollow brass rods mentioned earlier. In fact, the small rods in photos H and I were cut from the same piece of stock as the rods used in the dummy load. The project is a monimatch type of VSWR coupler. It was intended for use inside an antenna tuning unit that I’m building.

A monimatch uses two short transmission line segments parallel to, and coupled with, the main transmission line segment. Pieces of ordinary perfboard support the transmission line segments at either end. One end of each coupler section is terminated in carbon composition resistors, while the other ends are terminated in 1N60 germanium diodes and 0.001-µF feed-through bypass capacitors. There’s nothing unusual about the design, except for the use of the brass rods as the transmission line and coupler segments.

I selected two sizes of brass stock. To determine the larger one, I took an SO-239 coaxial connector to the hobby shop and found a size that fit snugly over the solder connector of the center pin. Sheet stock solders well, and can be worked easily with ordinary tools. I use scissors, lightweight sheet metal shears, and assorted other tools to work the brass. In one of my other lives I’m an amateur jewelry maker, and have found some interesting metalworking tools in jewelers’ supply catalogues and local lapidary stores. Two of the best are the jeweler’s saw and the parallel jaw pliers. The jeweler’s saw is like a jigsaw with a very fine blade. (Buy a sleeve of spares— they break easily!) It lets you make very precise cuts and oddball shapes in metals. The parallel jaw pliers look like other pliers, but the jaws are designed to remain parallel to each other through the entire range of motion. This feature allows you to bend metal easily in straight lines, with straight edges. These pliers are especially nice when making shields for RF projects. On one project, I bent a 1-inch strip of brass stock at three points to form a rectangular shield around an RF receiver front-end circuit. I was then able to use a piece of wider sheeting for the shield cover.

An RF shield is most effective when it’s continuous. I know an electronics engineer with a lot of experience in microwave design. He once designed a transmitter and specified cabinet screws every 3/8 inch. But the wizened mechanical engineer who worked for the company felt he had used too many, and reduced the num-
ASTRON POWER SUPPLIES

- **HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE**

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- **INPUT VOLTAGE**: 105-125 VAC
- **OUTPUT VOLTAGE**: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- **rippLe** Less than 5mv peak to peak (full load & low line)
- **Also available with 220 VAC input voltage**

SOLID STATE ELECTRONICALLY REGULATED
- **INPUT VOLTAGE**: 105-125 VAC
- **OUTPUT VOLTAGE**: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- **rippLe** Less than 5mv peak to peak (full load & low line)
- **Also available with 220 VAC input voltage**

INSIDE VIEW — RS-12A

19” x 5½ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 x 19 x 8</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 19 x 12</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 x 19 x 12</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 x 6 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 x 6 x 9</td>
<td>7</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 x 6 x 10</td>
<td>9</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>4 x 7 x 10</td>
<td>11</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 x 11</td>
<td>13</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 10</td>
<td>18</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 10</td>
<td>22</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>27</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 x 6 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 x 6 x 9</td>
<td>7</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 x 6 x 10</td>
<td>9</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>4 x 7 x 10</td>
<td>11</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 x 11</td>
<td>13</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 10</td>
<td>18</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 10</td>
<td>22</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>27</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>@13.8VDC @5VDC</td>
<td>12</td>
<td>4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>12</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-12M

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRM-35M</td>
<td>15</td>
<td>35</td>
<td>5 x 19 x 12</td>
<td>38</td>
</tr>
<tr>
<td>VRM-50M</td>
<td>37</td>
<td>50</td>
<td>5 x 19 x 12</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-S SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 x 10</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 x 10</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 8</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>18</td>
</tr>
</tbody>
</table>

Continuous ICS

- Switchable volt and Amp meter
- Separate volt and Amp meters

VS-12M

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>@13.8VDC @5VDC</td>
<td>12</td>
<td>4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>12</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

Variable rack mount power supplies

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRM-35M</td>
<td>15</td>
<td>35</td>
<td>5 x 19 x 12</td>
<td>38</td>
</tr>
<tr>
<td>VRM-50M</td>
<td>37</td>
<td>50</td>
<td>5 x 19 x 12</td>
<td>50</td>
</tr>
</tbody>
</table>

Built in speaker

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 x 10</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 x 10</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 8</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>18</td>
</tr>
</tbody>
</table>
ber to one every 4 inches. Hal ordered the new cabinet drilled and tapped according to original specifications. When the work was done, he set up a spectrum analyzer near the transmitter and called the mechanical engineer over for a little demonstration. With each screw he removed, the level of the signal on the spectrum analyzer rose higher and higher. Hal's point (aside from "don't mess with my designs") was that a lot of fasteners are needed to make the shielding effective. Of course, a continuous seam is even better.

You can fashion brass sheet stock into a box (or whatever shape you require) for shielding purposes. Instead of solder tacking the thing together, which will work mechanically, use a soldering gun or heavy iron to draw a solder bead along all seams. This makes it essentially RF proof. Doing this is a bit tricky, so be prepared to use alligator clips (or one of those "third hand" bench aids) to hold things steady while you work. If you shop for any of the tools I mentioned, pick up a spool of iron binding wire, too. Jewelers use this wire to bind things together while soldering. Solder tack the pieces of your project together using a small, 25-75 watt soldering pencil. Once the solder-tacked assembly is ready, use a heavier soldering gun (like the Weller D-440) to draw the bead around the edges. Be careful to fill in the gaps in the seam.

Conclusion
The Amateur Radio builder has a large array of electronic components and tools at his disposal. There are also many tools and supplies available from other hobbies and vocations — like the brass stock favored by model builders and the tools used by amateur jewelers. If you like electronic project construction, then go for it!

I can be reached at POB 1099, Falls Church, Virginia 22041; I'd like to hear your comments and suggestions for this column.
Want to monitor the 2-meter band and part of the VHF-Hi band on the same receiver? Want to do it for less than $20? Read on.

I’ve found an inexpensive way to monitor 2 meters. Simply use a modified Radio Shack weather radio; all you need to do is add a jumper wire.

The receiver

I used Radio Shack weather radio catalog no. 12-181B; it’s the one housed in a 3-inch cube. It normally sells for $17.95, but sometimes it’s on sale for as low as $12.95. Radio Shack also sells some other crystal-controlled weather radios, but this modification won’t work on them.

You get a lot of radio for your money in the 12-181B. It’s a double-conversion superheterodyne with a fixed-tuned RF amplifier stage. The intermediate frequencies (IF) are 9.7 MHz* and 455 kHz. It’s designed for use with narrowband FM signals only. Inside the IF integrated circuit (a Motorola MC3357) there’s a five-stage limiter amplifier. This circuit clips off amplitude modulation when the 9.7-MHz IF signal is 5 µV or more. You won’t hear any modulation from AM signals, even though their carriers will quiet the background noise. The 9-volt battery must deliver about 20 mA to the receiver during normal listening conditions.

This radio is designed to tune only the frequencies of the National Weather Service broadcast stations which operate on 162.40 through 162.55 MHz. In order to receive the 2-meter band, you must increase the tuning range to cover the frequencies from 163 MHz or higher down to 144 MHz or below.

The modification

Receiver tuning is done with a 10-k potentiometer which varies the reverse-bias voltage across a voltage-variable capacitance diode. This diode, also called a tuning diode, is connected across the coil in the first local oscillator. The frequency produced by this oscillator mixes with the incoming signal frequency; the difference between the two frequencies is the first IF of 9.7 MHz. As the reverse-bias voltage across the diode increases, the diode’s capacitance becomes smaller. Maximum diode capacitance occurs when the reverse-bias voltage is zero. To make the receiver tune to lower frequencies (down to 144 MHz or below) you must increase the capacitance across the oscillator coil. To do this, decrease the reverse-bias voltage applied to the tuning diode.

Figure 1 is a partial schematic diagram of the receiver circuit showing the first mixer stage, which incorporates the first local oscillator. L5 is the oscillator coil and D3 is the tuning diode. Adjusting VR-2 varies the reverse-bias voltage across D3; this tunes the receiver to different frequencies. R4 is a resistor whose value is selected at the factory to produce the desired tuning range for the weather broadcast frequencies. Connecting a jumper wire across R4 lets you reduce the reverse-bias voltage across the tuning diode to zero volts. This gives the tuning diode its maximum capacitance and tunes the local oscillator frequency low enough for 2-meter reception. The high-frequency end of the tuning range will be the same as it was before the modification.

I found a few discrepancies between the schematic furnished with the radio and the actual circuit. Although Radio Shack’s schematic shows a range of 47 to 150 k for R4, its value was 27 k in the unit I purchased. The

* I don’t know why the first IF is 9.7 MHz instead of the standard value of 10.7 MHz, but the Radio Shack service manual for the weather radio says it’s 9.7 MHz.
Realistic, America's premier brand of scanners, CB radios and satellite TV systems, introduces the HTX-100. It's the perfect first rig for a beginning Ham and a superb 10-meter mobile radio for any amateur. Compact, yet loaded with "big rig" features you want.

Pushbutton Memory Tuning
An easy-to-program memory stores 10 favorite frequencies and mike-mounted pushbuttons permit safe and easy up/down frequency selection while you drive. A front-panel lock control prevents accidental frequency changes. You can fine-tune reception with the ±1.5 kHz RIT control. Coverage is 28.0 to 29.6999 MHz, USB or CW. Convenient semi break-in keying and CW sidetone are built in.

Selectable Power Output
You can select 25-watt or 5-watt QRP power output from the front panel. The HTX-100 has a backlit LCD frequency display with mode and tuning-step indicators. You also get a 5-step LED signal/RF power meter, noise blanker, hefty 3-watt audio output, high-quality built-in speaker, front-panel headphone jack and a rear-panel jack for adding an external speaker.

Join the Action on "10"
With improving band conditions and new Novice voice and digital privileges, the 10-meter fun is just beginning. Be a part of it with this affordable, top-quality transceiver! #19-1101. Only $259.95, available today at our store near you.

Exclusively at
Radio Shack
The Technology Store™
A DIVISION OF TANDY CORPORATION

Price applies at participating Radio Shack stores and dealers.

FREE 184-Page Radio Shack Catalog! Write Dept. 381, 300 One Tandy Center, Fort Worth, TX 76102
Reader Service CHECK—OFF Page 118

April 1989 29
Partial schematic of Radio Shack Weather Radio, showing jumper modification needed for 2-meter hamband reception.

How to do it

Turn off the radio by pressing the touch bar. Collapse the antenna to its shortest length. Remove the bottom cover by pressing the latch toward the center of the cover and lifting it out. Disconnect and remove the battery.

Next, loosen but do not remove the antenna mounting screw (see fig. 2 for the screw’s location). Remove the four screws located in the deeply recessed holes of the case. Push the antenna mounting screw into the corner of the case, so that the head of the screw will pass through the large hole. Then separate the case from the receiver, while guiding the battery connector through the opening provided.

Cut a 1-inch length of hookup wire and remove 1/8-inch insulation from each end. Solder the wire to the circuit side of the printed circuit board as shown in fig. 3. Take care that solder points sticking up from the board
don't puncture the insulation of the hookup wire.

Put the radio back in its case, while guiding the battery connector and the antenna mounting screw through the appropriate holes. Replace the four screws which hold the case on. Position the antenna mounting screw into its slot and tighten. Connect the battery and place it in its nest. Reattach the bottom cover.

Now extend the antenna and turn on the radio. Tune in a weather broadcast and mark this point on the tuning knob with a dot of paint. This point should be near one end of the tuning range. You should find some 2-meter activity near the other end of the tuning range. When you do, mark the tuning knob with another color dot of paint.

That should do it. The fixed-tuned RF amplifier is still tuned to the 162-MHz weather frequencies, so sensitivity won't be optimum at the 2-meter frequencies. It is, however, adequate for casual monitoring. I believe any improvement gained by adding tuning controls to the RF stage wouldn't be enough to justify the effort. Good listening!

article D

HAM RADIO

Convert a Radio Shack TRC-218 AM CB handheld, model 21-1638A to 14286 Khz., the 20 meter SPAM frequency. RF output 1-2 watts, receive sensitivity 0.8uv for 10db S+N/N. Just plug in 2 crystals, replace and add capacitors only, and tune up!

Send check or money order for $79.95 to:

Boucher Electronics

WB3ELL

P.O. Box 334

Erie, PA 16512-0334

HAM RADIO

CUSTOM CRYSTALS

Crystals for many applications

For over 37 years, ICM has manufactured the finest in quartz crystals for every conceivable purpose.

A wide selection of holders are available to fit most any requirement. Our computer database contains crystal parameters for thousands of equipment types.

Need crystals for communications, telemetry, industrial, or scientific applications? Let ICM's sales department assist you to determine which type of crystal is best for you.

Can we solve your crystal problem?

For special purpose crystals, special holders, special sizes, call our crystal sales department. We will be pleased to provide recommended data.

ICM

International Crystal Manufacturing Co., Inc.

P.O. Box 26330, 701 W Sheridan, Oklahoma City, OK 73126-0330

Phone (405) 236-3741

Telex 747-147

Facsimile (405) 235-1904

_April 1989 _
MULTIBAND SPEECH PROCESSOR

By Robert Wilson, KL7ISA, Box 34298, Bethesda, Maryland 20817

A n audio processor is a circuit between the microphone and the radio frequency modulator in a transmitter's audio system. A properly designed processor gives a real boost to your transmitter. A 1.5-kW PEP Amateur station can run an effective 12 kW to its antenna with the addition of a multiband speech processor.

I've designed a simple SSB speech processor built with parts from the local radio store. This processor will give your signal about a 6 to 9-dB increase in signal readability or "punch" in the presence of noise or interference.

Communications speech processors should make the spoken word more intelligible in the presence of noise. These processors don't necessarily need to retain a natural sound, as would a processor designed for broadcast use. According to John Birch, W3JB, Chief of Audio Engineering for the Voice of America, there's a big difference between the various types of processors. Their design is based on the kind of sound a station desires and the particular function it requires.

I found that processing is more efficient if you break the voice down into several different voice bands. This lets you optimize, clip, and adjust each band separately for the required level. Then the signals are added together and clipped once more. The output gain is equalized to the unprocessed microphone level, and the processed audio is sent to the transmitter.

It's easy to build a speech processor like mine. The schematic is shown in fig. 1; it's constructed using a "perfboard" layout. I bought all my parts at the local Radio Shack, but sometimes had to series resistors together to get the correct values. I used high quality 0.01-µF film capacitors to determine frequency. I kept all leads as short as possible to avoid RF pickup, and shielded the input and output audio leads for the same reason. My circuit incorporates the well-known "tack together and solder blob" style. A real printed circuit board would speed things up a lot and assure that there are no errors.

Upon completion, I checked the circuit to make sure there were no shorts and that it followed exactly the schematic I had drawn. As a finishing touch, I mounted the speech processor in a metal project box with silicone glue, checking for unwanted grounds to the box.

This speech processor is almost foolproof. It's possible to turn all four pots to maximum, plug in any low-impedance mike, and obtain fair results. For best results, get a noise-canceling power microphone (Radio Shack has them) and plan to dedicate it to this processor. The noise-canceling mike prevents background noise from increasing and blanking out the desired weak voice signal sounds. For best operation, tune the processor for your own voice, microphone, transmitter, and same general size of speaker where you expect your signals to be received. After your final tuning, lock the controls and forget them. They are personalized and shouldn't need to be touched again.

I found that the Radio Shack amplified microphone required special RFI suppression to operate in my high-powered mobile station. I opened the case and placed a very small 0.001-µF ceramic disk capacitor between terminals 9 and 10 on the pc board. (This capacitor must clear the side of the case or it will be impossible to reclose the microphone properly.)

The tune-up procedure requires rotating all four controls to maximum. Plug the processor output into your mike jack and your transmitter into a dummy load, or use a dead band for tune-up. Set the modulation control on the transmitter for normal output level on voice peaks. Now with the help of a friend or a second receiver, tune in your own signal. If possible, try a speaker the same size you'd expect most DX operators to use.

Try adjusting the low-frequency band control first, using a standard test sentence like "the quick brown fox jumped..." This band contains most of the power audio frequencies, but it's not the band that contains most of the intelligence. Be very critical of what you
Schematic diagram of the multiband speech processor.

hear. Use the criterion, "Can I understand this signal better in the presence of noise?" not "This signal sounds more natural!" Adjust the high-band control using the same criterion. Finally, adjust the mid-band control if necessary. You'll probably need two or three adjustment sessions before final control lockdown.

When you're through tuning the three band level controls, your voice may sound a bit harsh, but not particularly strident. If you have an oscilloscope, you can turn the processor off and measure the microphone audio peaks. Look only for the peaks — the processor will change the audio density greatly. The change shows up clearly on the scope. Now you can compare the results of processed audio with the unprocessed audio simply by switching between the two. The results should be remarkable even to an untrained ear.

At 1 kW my mobile station is considerably larger than most, but I still need lots of effective power to compete with fixed stations running 1.5-kW PEP and using beam antennas. That's why I added the multiband speech processor in line with the microphone. I set the transmitter modulation control to run full power with the processor turned on. Power peaks in this situation are about the same with the processor on or off. When I switch it off, my signals are unusable in the presence of noise or QRM — but with the processor on I can compete with the crowd. I believe it adds a good 6 to 9 dB to the effective power of my station under these conditions. This boost is the equivalent of 8 kW or 3 S-units. It certainly makes a difficult transmitting situation easier and helps me work mobile DX.

Reference

Ham Radio

April 1989
Ultra-compact IC-725 HF transceiver

ICOM has introduced the compact IC-725 HF transceiver. The all-mode IC-725 features:

- USB/LSB/CW transmitting and receiving, AM receiving, optional module no. UI-7 for FM transmit/receive, and AM transmit
- Twenty-six tunable memories with band stacking registers
- DDS (Direct Digital Synthesizer) system
- Built in AH-3 controller. (Optional AH-3 automatic antenna tuner available.)
- Three scanning systems: programmable, memory, and selected mode
- Priority watch
- 105-dB dynamic range receiver
- 160 through 10-meter operation. Short-wave reception from 30 kHz to 33 MHz.

The suggested retail price of the IC-725 is $949. For more information contact ICOM America, Inc., 2380 116th Ave. NE, PO Box C-90029, Bellevue, Washington 98009-9029.

Circle #301 on Reader Service Card.

High power, special purpose baluns

RADIO WORKS has three new types of baluns. The B1-2K and B1-4K Utility baluns are low-loss, broadband, 1:1, "current-type" 50-ohm baluns with large, saturation-resistant ferrite cores. Controlled winding reactance gives a nearly flat VSWR curve from 160 to 10 meters. Power rating is 1500 watts for the B1-2K and 4 kW for the B1-4K. All connections are soldered and leads from the internal transmission line brought outside the case for direct connection to the antenna wire. Each balun is completely potted. They are designed for use in wire antenna systems. The price is $15.95 for the B1-2K and $19.95 for the B1-4K.

The RemoteBalun® mounts outside where it connects to a balanced transmission line. A short length of low-loss coaxial cable connects the ballun to a Transmatch. Power rating is 1.5 kW in low-duty cycle CW and SSB applications; the price is $27. Optional interconnect coaxial cables with connectors are available.

The C-series (Stick Balun®) line is for retrofit applications in existing wire antennas and beams. The C1-2K enhances antenna operation by improving transmission line isolation and balance. The Stick Balun is a low-loss design with high transmission line isolation. Windind reactance is 1100 ohms at 3.5 MHz. Power rating is 1.5 kW and the core saturation resistance is high. Phase delay is 2.6 degrees at 3.5 MHz. There are 75-ohm models available for use with the quarter-wave matching sections. The price for the C1-2K and C75-2K is $15.95. Higher power models are available.

For more information or a catalog, write the RADIO WORKS at Box 6159, Portsmouth, Virginia 23703.

Circle #302 on Reader Service Card.

Voltage surge protection

American Voltage Products surge protection devices provide the home and commercial user with equipment protection at optimum dollar value.

The VSS-1 is for use on any 120-Vac single or three-phase distribution panels and clamps at 160 Vac while providing 70,000 watts and three-leg protection. The unit comes with 18-inch leads and protects computers, VCRs, stereo equipment, typewriters, fax machines, TVs, telephone systems, etc. The VSS-1 protects the equipment and allows the user to extend the life of the service. It is available in 120-Vac 1-phase, 230-Vac 3-phase, 120-230-Vac 1-phase, 240-Vac 3-phase, and 480-Vac 3-phase models.

Circle #303 on Reader Service Card.

Full remote frequency control with FC-900 Interface

Advanced Computer Controls, Inc. announces the new FC-900 Interface, supported by several of its repeater controllers. The FC-900 Interface permits use of the ICOM IC-900 transceiver band units as remote base and link transceivers. The system approach is cost effective as only the band units are needed, not the ICOM fiber optic controller and interfaces. Hookup is simple.

Full remote frequency control is available through Touch-Tone commands. Amateur frequencies are supported on six bands from 29 to 1300 MHz.

Remote bases and links let you extend the range of the repeater, link it to other repeaters for emergency and public service use, and benefit from the site elevation on all bands.

The price of the FC-900 Interface is $225. An optional programmable CTCSS encoder is $25. For more information contact Advanced Computer Controls, Inc., 2356 Walsh Avenue, Santa Clara, California 95051.

Circle #304 on Reader Service Card.

Two new repeater modules

Hamtronics, Inc. has announced two new products for building VHF and UHF repeaters. The COR-4 COR/CWID module is a low-power unit which combines all the features of the CWID and COR-3 (including courtesy beep) in one 3" x 7" module. This new unit uses CMOS logic and an EPROM for programming. Introductory price is $99 for the kit or $159 wired and tested.

The TD-3 Subaudible Tone Decoder/Encoder can be used with any subaudible tone on Hamtronics or most other receivers. It has repeater service features (like remote on/off capability when used with TD2 Touch-tone module). The price is $24 for the kit, $69 wired and tested.

For a catalog on the entire line of repeater modules send $1 to Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14468-9535.
NEW BOOKS

ARRL ANTENNA BOOK
by Jerry Hall, K1TD. NEW 15th Edition
The all new 15th edition of this antenna classic represents over
two years of hard work by editor K1TD. It's doubled in size too
--from over 300 to over 700 pages big! 950 figures and charts
cover just about every subject imaginable. Some of the highlights
are: Chapters on Loop antennas, multi-band antennas, low
frequency antennas, portable antennas, VHF and UHF systems,
coupling the antenna to the transmitter and the antenna, plus p-l-
one of many more. Like the 1988 HANDBOOK and new OPERATING
MANUAL, the new ANTENNA BOOK is going to be a smash hit.
Order yours today. 15th edition 900 + pages ©1988
AR-AM Softbound $17.95

NOVICE ANTENNA NOTEBOOK
by Doug DeMaw W1FB
Novices have long wondered what is the best all around antenna
for them to install. Until now, this was a difficult question to
answer. Aimed at the newly licensed Ham, DeMaw writes for the
non-engineer in clear concise language with emphasis on easy-to-
build antennas. Readers will learn how antennas operate and
what governs performance. Also great reading for all levels of
Amateur interest. 1st Edition ©1988
AR-NAN Softbound $7.95

THE 1989 ARRL HANDBOOK
FOR THE RADIO AMATEUR (Avail. late Oct. 1988)
Revised and updated with the latest in Amateur technology, now
is the time to order your very own copy of the world famous ARRL
HANDBOOK. In addition to being the definitive reference volume
for your Ham shack, there are plenty of projects for every interest
in Amateur Radio - from antennas for every application to the
latest state-of-the-art projects - you'll find it all in the 1989
HANDBOOK. Order now and we will ship as soon as the books
arrive from the printer. They make perfect gifts for the holiday
season for your hard to buy for Ham friends or for yourself. Over
1100 pages ©1988
AR-HB89 Hardbound $20.95

N6RJ's ELECTRONIC SECOND OP
for MS-DOS computers
by Jim Raftery N6RJ
The world famous SECOND OP is now available in a state-of-the-
art computerized data base. This program, written for MS-DOS
computers, is a must for DXers, contesters and all Amateurs
interested in reliable DX communication. Data can be displayed
either in columnar format or in full screen displays. Unknown
callsigns can be entered and compared to the ITU callsign allocation
for easy identification. There's plenty more too such as:
postal rates, beam headings and QSL bureaus to name just a few.
Great program to have in your shack. Order yours today.
©1988 MS-DOS computers 5¼ and 3½ versions available.
Please specify your order
CB-RJ (MS-DOS Computers) $59.95

1989 AMATEUR CALLBOOKS
(Available late November 1988)
NORTH AMERICAN EDITION
Fully updated and edited to include all the latest FCC and foreign
government callsigns and addresses for Hams in North America.
Includes plenty of handy operating aids such as time charts, QSL
bureau addresses, census information and much more. Calls
from Northern Canada to tropical Panama. Now is the time to buy
a new Callbook when you'll get the most use out of your invest-
ment ©1988
CB-US89 Softbound $25.95

INTERNATIONAL EDITION
QSL's are a very important part of our hobby. All sorts of
awards, including the coveted DXCC, require confirmation of con-
tact before the award can be issued. Of special interest, ad-
dresses are being added daily for Hams in the USSR and other
countries. While in no means complete, it is a start and will be of
tremendous help in getting QSLs. Handy operating aids round
out this super book value ©1988
CB-F89 Softbound $28.95

BUY 'EM BOTH SPECIAL
Reg. $54.90 Only $49.95
SAVE $4.95

Please enclose $3.50 shipping & handling.
(800) 341-1522
(ORDERS ONLY)
NEW BOOKS

PASSPORT TO WORLD BAND RADIO 1989 Edition
Brand new and fully revised, SWL's everywhere will want a copy for their library. Expanded to 416 pages, the book now includes a bigger and better Buyer's guide, an interview with James Michener, an exciting real life drama of one SWL's escape from Iran plus much more. Also includes all the latest broadcast schedules from countries around the world. You're up-to-date if you have a copy of this new book by your radio. 416 pages 1989 Edition (C) 1988

IBS-RD189 Softbound $14.95

MASTERS PACKET RADIO: the hands on guide by Dave Ingram K4TWJ
Packet radio continues to grow at a rate that boggles the mind. This new book appeals to all levels of packet radio enthusiasts from novices to experts alike. Full of illustrations and written in a simple, easy-to-understand style. Topics covered include: a basic primer, home computers and data communications terminals, a survey of equipment available, how to set up a station plus much more. Great compliment to the other packet books available. 208 pages (C) 1988 1st edition

22567 Softbound $12.95

THE ARRL SATELLITE ANTHOLOGY
Taken from the pages of the "Amateur Satellite News" column in QST this includes the latest information available on OSCARs 9 through 13 as well as the Russian RS satellites. Full coverage is given to Phase III, OSCAR 10 and 13 satellites. Also includes an unpublished article detailing UoSAT-OSCAR 11 operation. Digital modes, tracking, antennas, RUDAK, microprocessor processing of telemetry plus much more is contained in this valuable new volume. 112 pages (C) 1988

AR-SA Softbound $4.95

22nd CENTRAL STATES VHF SOCIETY CONFERENCE PAPERS
Papers in this book were submitted for the 1988 Central States VHF Society meeting. Includes: Microwave EME, predicting 144 MHz "Es" openings, matching versus noise figure trade-offs in pre-amps, 902 MHz transverter, power amplifier and antennas, how to measure your own K index plus much more. A must for the active VHF'er. (C) 1988

AR-2255 Softbound $11.95

GENIUS AT RIVERHEAD a profile of H. H. Beverage
by Alberta Wallen
Born at the very beginning of the radio age, Harold Beverage is one of radio's pioneers. Most know him from his development of the Beverage or wave type receiving antenna. Learn about the career of this brilliant engineer in this easy-to-read biography. Starting with GE in 1917 and moving to RCA in 1920, Beverage was involved in some of the most exciting aspects of radio. Of particular interest is a reprint of the famous November 1927 OST article describing the wave antenna. Includes 30 photos. 130 pages (C) 1988

NH-BEV Hardbound $15.95

THE "GROUNDS" FOR LIGHTNING & EMP PROTECTION
by Roger Block. PolyPhaser Corporation
Here's a subject that has never really been fully covered in Amateur literature. This 116 page text contains a comprehensive analysis of proper grounding and protection against lightning and other EMP disasters. Includes information for all kinds of electronic gear: radios, telephones, computers, Ethernet, CATV, TVRO, and security systems to name just a few. Of special interest to HAMS are chapters on low inductance grounds and connections, guy anchor grounding, and how to ground inside the shack. Every Ham should have a copy. 1st edition 116 pages (C) 1987

PP-GLEP Softbound $19.95

Please enclose $3.50 shipping & handling.

HAM RADIO
(603) 878-1441
GREENVILLE, N.H. 03048
(800) 341-1522 (ORDERS ONLY)
VIA DATATEL 800~
Wide Dynamic Range and Low Distortion – The Key to Superior HF Data Communications

- Dynamic Range > 75 dB
- 400 to 4000 Hz
- BW Matched to Baud Rate
- BER < 1×10^{-5} for S/N = 0 dB
- 10 to 1200 Baud
- Linear Phase Filters

ST-8000 HF Modem

Real HF radio teleprinter signals exhibit heavy fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm, not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX Tones
- Split or Transceive TX/RX
- CRT Tuning Indicator
- RS-232C, MIL-188C, or TTL Data
- 8, 600, or 10K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, 44-440 Hz
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- 3.5" High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784
DUAL ON THE HWY.

When it comes to power, price and performance, nothing can catch Alinco's DR 510T mobile dual bander. Forty-five watts on VHF and thirty-five watts on UHF put more power under your dash. And there's nobody else on the road who can match our two-year limited warranty.

The DR 510T gives you cross band/full duplex, 37 standard subaudible tones, encode/decode and an internal duplexer. It also has CAP and MARS modification capability.* Not to mention all the features needed for a complete home system. And, as an extra added dimension, it can be modified to operate as a portable repeater.

Take an Alinco DR 510T out for a "test drive." You'll see why it leaves everything else in the dust.

Call (213) 618-8616 for your nearest local dealer.

ALINCO
2070 S. Western Ave., Ste. 104, Toluca Lake, CA 91020

*Power not required.
ANALOG PANEL
METERS

Take advantage of
analog panel meter
benefits

By Hugh Wells, W6WTU, 1411 18th Street, Manhattan Beach, California 90266

Even though most electronic devices are digital these days, analog meters are still popular. You can find them at garage sales, swap meets, surplus outlets, and in many Amateurs’ junkboxes. There’s a good, reasonably priced selection to choose from. Panel meters were designed as single-application indicators, but you can easily convert them to other uses with external circuitry.

Because some meters have unusual markings, many shoppers bypass valuable ones at swap meets in lieu of those that look more familiar. A meter’s value lies in its sensitivity and its ability to adapt to a new use, regardless of its original scale markings. If you’re careful, you can change scale markings on non-hermetically sealed meters and increase the instrument’s versatility.

The more you understand about a specific instrument, the easier it is to use. My computer program* helps me develop external circuit values to meet new applications for my panel meters, using the techniques that follow.

Theory

Meters are used to measure voltage, current, resistance, power, RPM, temperature, and other electrical and electro-mechanical functions. Each converts a function to an electrical signal, and then to a pointer position on the meter scale. There are many types of meters that provide indications of an electrical quantity. Analog panel meters are current operated (versus electrostatic). Current-operated meters work as a result of electromagnetic motor action, where the mechanical movement of a pointer is proportional to a magnetic force. The force develops between a permanent magnet and the magnetic field created around a coil of wire through which a current flows.

Two of today’s popular meter movements use electromagnetic motor action: the plunger (moving iron) and the D’Arsonval type. The D’Arsonval uses a moving coil, and is preferred because of its indication sensitivity and repeatability. The plunger-type meter is more suitable for applications where the accuracy of an indication is unimportant.

The D’Arsonval meter uses a horseshoe magnet with its open ends close together, creating a magnetic gap. Soft iron pole pieces with semicircular ends are fitted to the ends of the magnet to narrow the gap, and create a uniform magnetic-field pattern that translates to a linear-scale indication. The semicircular ends face each other, forming a round gap area. Some meter manufacturers cut the pole pieces on a bias. This creates a nonlinear function which satisfies a particular application. The majority of pole pieces are cut straight to provide linear indications. A round piece of soft iron is mounted

A New Spectrum Analyzer From AVCOM!!!

The newest in the line of rugged spectrum analyzers from AVCOM offers amazing performance for only $2,675.

AVCOM'S new PSA-65A is the first low cost general purpose portable spectrum analyzer that's loaded with features. It's small, battery operated, has a wide frequency coverage and is accurate - a must for every technician's bench. Great for field use too.

The PSA-65A covers frequencies thru 1000 MHz in one sweep with a sensitivity greater than -90 dBm at narrow spans. The PSA-65A is ideally suited for 2-way radio, cellular, cable, LAN, surveillance, educational, production and R&D work. Options include frequency extenders to enable the PSA-65A to be used at SATCOM and higher frequencies, audio demod for monitoring, log periodic antennas, carrying case (AVSAC), and more.

Can't wait to find out more about this revolutionary new AVCOM Spectrum Analyzer? Then see us at the SPACE/STTI Las Vegas Show, March 21-23, THE INTERNATIONAL MOBILE COMMUNICATION EXPO in Las Vegas, March 29-31, or Dayton HAMVENTION, April 28-30. Write, fax or call AVCOM for brochure and specifications sheet.

AVCOM
BRINGING HIGH TECHNOLOGY DOWN TO EARTH

500 SOUTHLAKE BOULEVARD • RICHMOND, VIRGINIA 23236 • 804-794-2500
FAX: 804-794-8284, TLX: 701-545
between the semicircular pole pieces, concentrating the field pattern within the gap.

A moving coil, made of many turns of small diameter wire wound into a rectangular shape, is mounted lengthwise around the center pole piece. Some coils are wound onto an aluminum frame/bobbin; others have no bobbin. In either case, the coil must be lightweight, with a shape that lets it move freely in the gap between magnet and center pole.

Pointed-wire pins called pivots are mounted (usually cemented) to the coil in the axis of rotation, along with spiral springs and an aluminum pointer. The pivots provide a low-friction bearing surface for the coil. In some meters the coil is mounted with a taut band instead of pivots. The taut band reduces the bearing-surface friction and improves indication accuracy and repeatability. A twist in the taut band creates the return spring function provided by the spiral springs used with pivots. The complete coil assembly is called a meter movement.

Internal resistance

Wound wire makes up the coil portion of the movement. The wire has a resistance depending on wire diameter and length. The completed coil has an internal resistance (R_m), which you need to consider during all external circuit calculations. There are some applications (like voltmeters) where R_m is small compared to the multiplier resistance and can be disregarded. Meter applications involving a shunt (an ammeter, for instance) require that R_m be considered in the external resistance calculation.

Generally the value of R_m is unknown, but you can determine it using an indirect measurement method. Attempting to measure R_m by direct means (as with an ohmmeter) could cause excessive current or voltage to be applied to the meter coil and damage it. An indirect measurement method is shown in fig. 1. This method involves adjusting R_1 for a full-scale deflection of M_1 with a voltage source (E). Resistor R_2 is then attached in parallel with M_1 and decreased in value until M_1 indicates exactly one-half the full-scale value.

You may need to adjust R_1 slightly to maintain the same total current indicated by M_1 while at full scale. Meter M_2 is an indicator ensuring that total current remains constant as you adjust R_1 and R_2. In theory, the resistance of R_2 is exactly equal to R_m, and the combined current of R_2 and M_1 is equal to the original M_1 full-scale current. You can measure the resistance of R_2 with an ohmmeter for the value of R_m, after disconnecting it from M_1. The indirect method yields a reasonably accurate value of R_m, suitable for external circuit calculations.

Table 1 shows a listing of R_m values developed empirically from meters of different current ranges and manufacturers. You may use the table values to estimate R_m as a function of current. However, there's no specific value of R_m suitable for all meters of a specific current range. The actual R_m value varies by manufacturer, full-scale current value, strength of the magnet, gap spacing, and the number of turns and diameter of wire on the coil. Identifying an R_m value to within 20 percent of actual is usually sufficient for most Amateur applications, but a closer value may improve calibration accuracy. You can correct the meter calibration error introduced by an estimate of R_m when selecting your external resistors.

Accuracy

An instrument's measurement accuracy depends on many factors. These are functions of manufacturing tolerances and external circuitry. The typical accuracy of a D'Arsonval panel meter is 2 percent. That tolerance degrades to 3 to 5 percent with the addition of external multiplier resistors and rectifiers. Meter accuracy is normally determined at the full-scale value, and the resulting error is applied to all remaining scale indications. Some measurement applications require an accurate single-point indication. A 2-percent full-scale instrument with low-pivot friction and repeatable pointer positioning can yield a single-point calibration accuracy of 0.5

![FIGURE 1](image)

Technique for measuring internal resistance.

<table>
<thead>
<tr>
<th>I_m</th>
<th>R_m (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20 µA</td>
<td>4000</td>
</tr>
<tr>
<td>50 µA</td>
<td>1200</td>
</tr>
<tr>
<td>100 µA</td>
<td>850</td>
</tr>
<tr>
<td>200 µA</td>
<td>600</td>
</tr>
<tr>
<td>500 µA</td>
<td>150</td>
</tr>
<tr>
<td>1 mA</td>
<td>76</td>
</tr>
<tr>
<td>2 mA</td>
<td>60</td>
</tr>
<tr>
<td>5-10 mA</td>
<td>16</td>
</tr>
</tbody>
</table>
percent or better. But, you should consider other points on the same scale as having an accuracy depending on the full-scale tolerance value — not equivalent to the single-point calibration accuracy.

Sensitivity

You can define meter sensitivity by either full-scale current or ohms-per-volt value. Meter sensitivity is most commonly defined in ohms-per-volt. It’s determined by the amount of resistance that must be used in series with the meter to cause a full-scale deflection when 1 volt is applied. For instance, a 1-mA meter has a sensitivity of 1000 ohms per volt, and a 50-µA meter has 20,000 ohms per volt. Disregard the internal resistance (R_m) value when determining sensitivity.

Applications

Whether you can use a meter directly depends on its application and the external circuit in which it’s placed. Few panel meters are used without external circuitry. Resistors are added externally for DC applications; resistors and rectifiers are added for AC use. You may use a bridge rectifier in a metering circuit to satisfy a nonpolarized DC application. The changes in scale factor result from the addition of the rectifier.

DC voltmeter

To use a panel meter as a voltmeter (see fig. 2), you’ll need a series-connected resistor (R_1) to reduce the current to the desired amount. Determine the value of R_1 by:

$$R_1 = \frac{E}{I_m} - R_m$$ \hspace{1cm} (1)

where

- R_1 = multiplier resistor value
- R_m = internal resistance of M
- I_m = full-scale meter current
- E = desired full-scale voltage value

A single multiplier resistor satisfies the need to measure voltages less than the full-scale value. Switching additional resistors into the circuit for R_1 lets the meter function over different voltage ranges. I’ve shown two multiple-range circuit techniques. **Figure 3A** shows a switch used to select an independent value of R_1 for each desired range; **fig. 3B** shows stacked incremental resistor values. Determine the value of each resistor by using eqn. 1 for fig. 2. Now you can determine the value of each resistor sequentially, after calculating R_1. (R_m is usually disregarded.) Define each additional range resistor by calculating the total resistance value, then subtracting from it the sum of the previously determined values (see eqn. 2).

$$R_x = \frac{E_{Range}}{I_m} - (R_m + R_1\cdots R_d)$$ \hspace{1cm} (2)

where

- R_x = total multiplier resistance value
- E_{Range} = desired full-scale range voltage
- I_m = full-scale meter current
- R_m = internal resistance
- $R_{1:d}$ = incremental-range resistance value

You can consider tradeoffs when selecting one rang-
Compact Breakthrough!

TH-25AT/45AT
New Pocket Portable Transceivers

The all-new TH-25 Series of pocket transceivers is here! Wide-band frequency coverage, LCD display, 5 watt option, plus...

- Frequency coverage: TH-25AT: 141-163 MHz (Rx); 144-146 MHz (Tx). (Modifiable for MARS/CAP Permits required.)
- TH-45AT: 430-450 MHz.
- Automatic Power Control (APC) circuit for reliable RF output and final protection.
- 14 memories, two for any "odd split" (5 kHz steps).
- Automatic offset selection (TH-25AT).
- 5 Watts from 12 VDC or PB-8 battery pack.
- Large multi-function LCD display.
- Rotary dial selects memory, frequency, CTCSS and scan direction.
- T-ALERT for quiet monitoring. Tone Alert beeps when squelch is opened.
- Band scan and memory scan.
- Automatic "power off" circuit.
- Water resistant.
- CTCSS encoder/decoder optional (TSU-6).

Supplied Accessories: StubbyDuk, PB-6 battery pack for 2.5 watts output, wall charger, belt hook, wrist strap, water resistant dust caps.

Optional accessories:
- PB-5 72 V 200 mAh NiCd pack for 2.5 W output
- PB-6 72 V 600 mAh NiCd pack
- PB-7 72 V 1100 mAh NiCd pack
- PB-8 12 V 600 mAh NiCd for 5 W output
- PB-9 72 V 600 mAh NiCd with built-in charger
- BC-10 Compact charger
- BC-11 Rapid charger
- BT-6 AAA battery case
- BC-1/PB-2V DC adapter
- HMC-2 Headset with VOX and PTT
- SC-14, 15, 16 Soft cases
- SMC-30/31 Speaker mics
- TSU-6 CTCSS decade unit
- WR-1 Water resistant bag

KENWOOD USA CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features, and prices are subject to change without notice or obligation.
Early Reservation Information

- General Chairman, Bill McNabb, WD8SAY
- Asst. General Chairman, Ed Hillman, N8ALM

1989 Deadlines
Award Nominations: March 15
Lodging: April 7
License Exams: March 26
Advance Registration and banquet:
 USA - April 4
 Canada - March 31

Flea Market Space:
Spaces will be allocated by the Hamvention committee from all orders received prior to February 1. Express Mail NOT be necessary.
Notification of space assignment will be mailed by March 15, 1989.

Information
General Information: (513) 433-7720
 or, Box 2205, Dayton, OH 45401
Lodging Information: (513) 223-2612
 (No Reservations By Phone)

License Exams
Novice thru Extra exams scheduled Saturday and Sunday by appointment only. Send FCC form 610 (Aug. 1985 or later) - with requested elements shown at top of form, copy of present license and check for prevailing ARRL rates (payable to ARRL/VEC) to: Exam Registration, 8830 Windbluff Point, Dayton, OH 45458

Advance Registration Form
Dayton Hamvention 1989
Reservation Deadline - USA-April 4, Canada-March 31
Flea Market Reservation Deadline: February 1

Enclose check or money order for amount indicated and send a self addressed stamped envelope.

Please Type or Print your Name and Address clearly.

Name ___________________________ Address ___________________________
City ___________ State _____ Zip _____

How Many

| Admission | 5 | @ $10.00* | $_____
| Grand Banquet | 5 | @ $20.00** | $_____
| Women's Luncheon | 5 | @ $7.00 | $_____
| Flea Market | Max. 3 spaces | $25/1 space | $50/2 adjacent
| Admission ticket must | | $150/3 adjacent | $_____

be ordered with flea market tickets Total $_____

* $12.00 at door ** $22.00 at door, if available

Make checks payable to - Dayton HAMVENTION
Mail to - Dayton Hamvention
Box 2205
Dayton, OH 45401
Choose Kantronics™
the Leader in RF Data Communications.

"Great unit and Super Great Technical Service!!"
— Bruce Claggett - KB4ZAX

"Have always heard good things about Kantronics. Thought I'd try you out. Like it alot so far!"
— Eric J. Marang - WD8KNL

Kantronics sets the industry standards for service.

"Your support of my KPC-1™ was a major factor in this purchase (of a new KAM™). Thanks, and keep up the Good Work!"
— Art Skufca - KC8XA

"I like (my) KPC-2™ and wanted an all-mode TNC (the KAM™). I like the service I've had from Kantronics."
— Scott Thomas - N6LGB

"I've been very happy with your product; both quality and support I've received."
— Oscar Fick, Jr. - W1MBR

Kantronics has the features others are still "working on."

"Good Unit. I hope Kantronics keeps their software updated as they've done in the past. I like that."
— Bill Gutschmidt - N8ICT

"Please express my appreciation to your co-workers for the wonderful, new toy you've made for me!"
— Myron A. Calhoun - WØPBV

A reputation for excellent technology.

"I received the KAM™...as a present...however, I would like to avail of its warranty, although it seems remote that I would ever need to have it repaired within its warranty period considering the excellent and unquestionable quality control your company has over its products."
— Monino S. Duque - DU1BJD

"I hooked it up, and it works fine - thanks for a nice product."
— J. D. Wileman - KA5VJN

Kantronics
RF Data Communications Specialists
1202 E. 23 Street Lawrence, Kansas 66046
(913) 842-7745

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech - voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

Mark 4 is the performance leader at repeater sites for emergency warnings, club news bulletins, and DX around the world. Only Mark 4 gives you Message Master™ real speech - voice alerts. Create unique ID and tail messages, and the readout of received signal strength, deviation, and frequency error are stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

SUPER PERFORMANCE BATTERIES

SUPER ICOM
SUPER ICOM BP-7S, 13.2 volts, 900ma, more capacity than the Icom BP-7, 5w output.
SUPER ICOM BP-8S, 9.6 volts, 1200ma, 50% more capacity than the Icom BP-8.
Both are rapid base charge only, or slide in wall charger, 4 inches high. BP-7S or BP-8S, $99.00

SUPER KENWOOD
SUPER KENWOOD PB-25SBP-25S, 8.4 volts, 900 ma, double the capacity of the PB-25/PB-26 for the 2500/ 2600/3500/3600. Charge with either the standard wall charger or drop in charger, 3 inches high. $65.00.

SUPER YAESU
SUPER YAESU FNB-4SH, 12 volts, 1000ma, double the capacity of the Yaesu FNB-4, 5 watt output. Rapid charge only. $71.00.
SUPER YAESU FNB-3S, 9.6 volts, 1200ma, triple the capacity of the Yaesu FNB-3. 3.5 watt output. Rapid or wall charge. $60.00.
Both are perfect for the 03, 09 and 727 series radios and are 4 inches high.
Inserts for:
Kenwood PB-25, 25SH, 26
Exact replacement FNB-2 Nicad pack for Yaesu FT-1041R/207R/2057R/707R
$29.00
Icom BP-3 $22.00
Icom BP-5 (500ma) $30.00
Icom BP-7 (500ma) $35.00
Icom BP-8 $34.00
Add $4.00 shipping & handling for first pack. CT residents add 7% tax.
Complete line of NICAD packs for Icom, Kenwood, Yaesu, Tempo, SanteC, Arden, Cordless Telephones, Alkaline, Nicad, and Gel-Cells. All NICAD packs include a 1 year guarantee. Commercial Radio Packs also available. For all your battery needs, write or call today for a complete catalog. Dealer inquiries invited.
Made by Hams for Hams

Electronic Repair Center
Servicing
Amateur Commercial Radio
The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.
SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400
Ammeter circuits. (A) Shunt multiplier. (B) Series and shunt multiplier.

Depending on each individual series resistor. For fig. 3B, the scale accuracy depends on the resistor tolerance of each lower range value in the stack. Perhaps the main advantage of fig. 3B over fig. 3A occurs when the meter is used to measure high voltage. If you use carbon resistors, you must consider — and not exceed — the voltage breakdown of each. Typical carbon resistors have a maximum safe voltage drop depending on their physical size. This may be translated to wattage: 1/4 watt = 100 volts, 1/2 watt = 300 volts, 1 watt = 500 volts.

Ammeter

An ammeter differs from a voltmeter in that it's connected in series with the external circuit, rather than in parallel. The ammeter is placed in series with a voltage source and its load circuit; this allows the meter to indicate the current drawn by the load. A shunt is placed in parallel with the meter coil, so only a portion of the external current flows through the coil. The amount that flows through the meter is a linear indication of the total current. The remaining current flows through a shunt resistor as shown in fig. 4A.

When you calculate the shunt value, you must know the full-scale current value, internal resistance, and the shunt current. Determine the shunt resistance by

$$I_{Rs} = I_c - I_m$$

$$R_s = \frac{R_m \times I_m}{I_{Rs}} \quad (3)$$

where

- R_s = shunt resistance
- R_m = internal resistance of M
- I_m = full-scale meter current
- I_{Rs} = shunt current
- I_c = external circuit current

As the circuit current to be measured becomes very large (as compared with the meter-coil current), the resistance of the shunt becomes very small — sometimes too small to be easily managed. Solve this problem by adding a resistor in series with the meter. This allows it to function as a voltmeter. It will then measure the voltage drop across the shunt, as shown in fig. 4B. Although the meter is measuring voltage, its scale is calibrated in current. Assume that a current of 10 A is flowing through an R_s value of 1 ohm. $E = 10$ volts by Ohm's Law, and you'd select a value of R_1 which would provide a full-scale indication of 10 volts (10 A) on the meter.

Multi-ranging an ammeter requires a current-scale switching method theoretically involved in selecting a value of the shunt resistor for each current range. However, it's better to perform the range switching in the low-current circuits where switch-contact resistance has the least effect on the resulting indication. With R_s as a single fixed resistor, you may select values of R_1 to provide a multi-range capability.

Ohmmeter

An ohmmeter indicates the resistance of an unknown circuit or circuit element. Because it is a resistance detector, the ohmmeter can also be used to check circuit con-
continuity. Sometimes knowing if the circuit is continuous is more important than knowing its resistance value.

The ohmmeter is essentially a voltmeter with an internal, rather than external, voltage source (see the series type in fig. 5). The pot (SP) and resistor R1 make up the multiplier resistor allowing the voltage source to drive the meter to full scale. A fine-current adjustment, made with the pot, lets you obtain a full-scale indication when Rx (eqn. 2) is equal to zero. The scale calibration on a series ohmmeter is the reverse of that on a voltmeter scale. The Rx = 0 point is at full scale, with discernible measurement values read more easily in the upper three-fourths of the scale. (The scale values are usually too compressed in the lower quarter of the scale and provide only an approximation.)

Placing an unknown resistor (Rk) in series with the ohmmeter circuit causes a decrease in total current. The new lower current value is then translated to a resistance value for Rk on the meter scale.

When selecting circuit-component values and calibrating the ohmmeter scale, make several assumptions for the sake of convenience. After you’ve determined the total multiplier-resistance value for the circuit, assume that the working portion of the pot value is 10 percent of the total. To allow for pot adjustments, select the pot’s total resistance to be 15 percent of the total circuit resistance.

Develop scale values for an ohmmeter through an iterative process by decreasing the meter current in increments and calculating Rk at each increment. The equation for determining a value of Rk is

\[R_k = R_i \frac{I_1 - I_2}{I_2} \]

(4)

where

- \(R_k \) = unknown resistance value
- \(R_i \) = total circuit resistance (when \(R_k = 0 \))
- \(I_1 \) = full-scale circuit current
- \(I_2 \) = circuit current value when \(R_k > 0 \)

You can establish a multi-ranging capability for an ohmmeter by selecting the source voltage and full-scale meter current for the desired resistance range. Choosing a high-voltage source and a low meter current will provide a high-resistance measurement range. Likewise, increasing the circuit current through Rx will lower the measurable range. Many circuit designs have been developed for multi-ranging an ohmmeter. I’ll discuss three examples.

Example 1. You can make a very low range ohmmeter by modifying the circuit of fig. 5. The unknown is in parallel with the meter coil, instead of in series with it. If the meter Rm, is 100 ohms, the measurable range of Rx is from zero to about 500 ohms with 100 ohms at mid-scale. Placing a shunt across the meter and raising circuit current further reduces the Rx range to perhaps 0 to 50 ohms with 25 ohms at mid-scale. Placing Rx in parallel with the meter coil causes the ohmmeter scale to indicate that Rx is equal to infinity at full scale, instead of the normal zero at full scale for a series type.

Example 2. By adding a high-voltage source and compensating R1 value to the circuit shown in fig. 5, you can extend the measurable Rx range to several megohms.

Example 3. In fig. 6 a typical series ohmmeter circuit has a shunt in parallel with the meter to raise the external circuit current. You can switch the shunt in and out to provide an X1 and X0 range capability. In this example, I’ve provided circuit values for analyzing the currents involved. With the shunt in place, the external current will have been raised over the meter current by a factor of 10. At Rx = 0, 10 mA will flow through the external circuit and 1 mA will flow through the meter, providing a current ratio of 10:1. The value of current difference between the meter and the external circuit will flow through the shunt (i.e., 9 mA). The resulting resistance-measuring range will be from 0 to 5000 ohms with 450 ohms at mid-scale. With the shunt removed, the measurable range will be 0 to 50,000 ohms with 4500 ohms at mid-scale.

AC voltmeter

You can also use a DC panel meter to measure AC voltages by adding a rectifier to the metering circuit. Measurement values will be different from those with DC because of the rectifier, and because the meter movement will respond only to the average current. Assuming a sine waveform and a half-wave rectifier, the current flow through the meter coil will be about 63 percent of the peak value for one-half cycle. On the other half cycle, the current will be zero. The meter movement will average the two values, producing a pointer position
The TEMPO MPP1
...a unique new mobile data printer, includes a packet controller and a 13.6 VDC printer that interfaces with any mobile radio. In a recent user test it proved to have about twice as much audio level range tolerance as other TNCs. It is also an ideal unit for emergency work and a commercial version is perfect for dispatching service, emergency and police vehicles.

HAL Communications’ ST-7000
HF-Packet Modem...a high performance modem designed specifically for 300 baud HF-Packet. It offers no-compromise performance to assure optimum operation under the most demanding signal conditions. Techniques developed for government and military use are used in the ST-7000 AGC-controlled AM signal processing provides a wide dynamic range. All filters and detectors are optimized for 300 baud HF-Packet. It offers the 200 Hz shift mode and a wider 600 Hz shift mode, each supported by separate 6-pole input filters and a 40 db AGC system.

The PK-232 by AEA
...the only controller offering Morse Code, Baudot, ASCII, AMTOR, Packet, and facsimile Transmission & Reception plus the ability to monitor the new Navtex marine weather and navigational system...7 modes in one controller. The PK-232 makes any RS-232 compatible computer or terminal the complete amateur digital operating position. All decoding, signal processing and protocol software is on ROM. Only a simple terminal program (like those used with telephone modems) is required to interface the PK-232 with your computer. Watch for the new and exciting AEA FSTV-430. Have fun on amateur TV!

Obviously, we can fill in a system that you have already started. Or we can furnish a complete system to fit your needs and budget. For example, here’s some suggestions for the amateur just entering the exciting field of data communications, or for the amateur who wants the best available.

NO. 1 For the fun (and very affordable) mode, VHF Packet, AEA PK-88 with personal mailbox, 8K programmable memory and TCP-1 P compatibility. For serious 20 M world-wide DXing on Packet, 200 or 600 Hz shift...add the superb HAL ST-7000.

NO. 2...top of the line! The HAL ST-8000 or HAL ST-6000 and AEA’s PK-232...the winning combination. You can’t do better for all-mode, all-band enjoyment of hi-speed data communications.

If you have any questions concerning these units, or would like to discuss your requirements with a knowledgeable specialist, please call and ask for George Sanso, AB6A. We also carry a large selection of excellent commercial products for data communications and emergency systems as well as a complete inventory of amateur equipment and linear power amplifiers.
equivalent to 45 percent of the root-mean-square (equivalent DC) input. The scale would be calibrated in
rims.
When you use a bridge rectifier, both half cycles will
cause coil current to flow, allowing the pointer position
to move to the equivalent of 90 percent of the rms input.
This is twice that of a half-wave rectifier. Again, the scale
would be calibrated in rms.
Calculate the series multiplier resistance used with
either rectifier using the following equations.
Half-wave rectifier:

\[
R_1 = \frac{0.45 \times E_{\text{rms}}}{I_m} - R_m
\]

(5)

Bridge rectifier:

\[
R_1 = \frac{0.9 \times E_{\text{rms}}}{I_m} - R_m
\]

(6)

where

- \(R_1 \) = multiplier resistor value
- \(E_{\text{rms}} \) = full-scale rms voltage value
- \(I_m \) = full-scale meter current
- \(R_m \) = internal resistance of M

The actual multiplier resistance value must be reduced
by the series-forward resistance value of the rectifiers,
or by an alternative method of subtracting the forward
rectifier drop from \(E_{\text{rms}} \) for the calculation.

Figure 7 shows half-wave and bridge rectifier circuits
commonly used with DC meters for making AC voltage
measurements. You use two diodes in the half-wave
application, with \(\text{CR}_1 \) allowing current to flow through
the meter. Diode \(\text{CR}_2 \) conducts on the alternate half
cycle, preventing the voltage across the meter rectifier
from rising to the source voltage. A high-reverse diode
voltage could cause a sufficient leakage current to flow,
resulting in meter indication errors. The two diodes, each
conducting on alternate half cycles, keep the reverse
voltage drop across the other diode to a small value. This
means the reverse breakdown voltage of the diodes can
be much less than the voltage being measured. Typical-
ly, the diode peak reverse voltage (PRV) is in the range
of 25 to 100 volts.

Diodes have a square law forward-conduction curve
which, if allowed, would cause the meter’s scale values
to be nonlinear, particularly at low points on the meter
scale. In an attempt to maintain measurement scale
linearity, diode conduction currents are kept fairly high,
placing the operating point on the vertical (nearly linear)
portion of the diode’s forward-conduction curve. Increase
the diode current by shunting the meter, thereby lowering the sensitivity value. An AC voltmeter
will have a sensitivity of 5 or 10 k per volt. However, if
the basic meter sensitivity is less than 5 k, additional
meter shunting is seldom necessary.

Computer program

The computer program mentioned earlier was writ-
ten on an Atari in BASIC. I developed it around the
circuits I’ve described to ease the implementation of
panel meters for new applications. I’ve tried to keep
the code general to accommodate the many BASIC
dialects in use. A few dialects will require minor
changes to the code for accommodation, and the fol-
lowing comments are provided to assist you in mak-
ing those changes. For those dialects not able to han-
dle LPRINT statements, you may use an OPEN
statement followed by PRINT. Should you run into a
situation where the dialect won’t handle a variable con-
taining two-letter alpha characters, try changing the
It's a lesson you learn very early in life. Many can be good, some may be better, but only one can be the best. The PK-232 is the best multi-mode data controller you can buy.

1 Versatility

The PK-232 should be listed in the amateur radio dictionary under the word Versatile. One data controller that can transmit and receive in six digital modes, and can be used with almost every computer or data terminal. You can even monitor Navtex, the new marine weather and navigational system. Don't forget two radio ports for both VHF and HF, and a no compromise VHF/HF/CW internal modem with an eight pole bandpass filter followed by a limiter discriminator with automatic threshold control.

The internal decoding program (SIAM™) feature can even identify different types of signals for you, including some simple types of RTTY encryption. The only software your computer needs is a terminal program.

2 Software Support

While you can use most modem or communications programs with the PK-232, AEA has two very special packages available exclusively for the PK-232...PC Pakratt with Fax for IBM PC and compatible computers, and Com Pakratt with Fax for the Commodore 64 and 128.

Each package includes a terminal program with split screen display, QSO buffer, disk storage of received data, and printer operation, and a second program for transmission/reception and screen display of facsimile signals. The IBM programs are on 5-1/4" disk and the Commodore programs are plug-in ROM cartridges.

3 Proven Winner

No matter what computer or terminal you plan to use, the PK-232 is the best choice for a multi-mode data controller. Over 20,000 amateurs around the world have on-air tested the PK-232 for you. They, along with most major U.S. amateur magazines, have reviewed the PK-232 and found it to be a good value and excellent addition to the ham station.

No other multi-mode controller offers the features and performance of the PK-232. Don’t be fooled by imitations. Ask your friends, or call the local amateur radio store. We’re confident the PK-232 reputation will convince you that it’s time to order your very own PK-232.

Call an authorized AEA dealer today. You deserve the best you can buy, you deserve the PK-232.

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Brings you the Breakthrough!
SONY
ICF-2010
RECEIVER
Air: 116-136 MHz
FM: 76-108 MHz
AM: 150 kHz-30 MHz
$344.95
Cash or Check Price

Tel-Com
Electronic Communications
NEW ENGLAND'S FACTORY-
AUTHORIZED SALES & SERVICE
FOR
KENWOOD
Also displaying the popular accessories needed to complete a HAM STATION . . .
ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • ALINCO
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • TOKYO HY-POWER LABS
• TRAC KEYERS • VIBROPLEX • WELZ • ETC.

DATONG
FL-3
• Automatic notch filter
• Removes carriers in less than 2 seconds
• No distortion to audio
FANTASTIC!

OPEN SIX DAYS A WEEK VISA MASTERCARD WELCOMED
Telephone 508/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1½ miles from Rte. 495 (Exit 31) toward Groton, Mass.

SYNTHESIZED SIGNAL GENERATOR

MODEL SG-100F
MADE IN USA
$429.95 delivered

• Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
• Accuracy +/− 1 part per 10 million at all frequencies
• Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
• External FM input accepts tones or voice
• Spurs and noise at least 60 dB below carrier
• Output adjustable from 5-500 mV at 50 Ohms
• Operates on 12 Vdc @ ½ Amp
• Available for immediate delivery • $429.95 delivered
• Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
• Call or write for details • Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.

BLACK DACRON® POLYESTER ANTENNA ROPE
• UV-PROTECTED
• HIGH ABRASION RESISTANCE
• REQUIRES NO EXPENSIVE POTTING HEADS
• EASY TO TIE & UNTIE KNOTS
• EASY TO CUT WITH OUR HOT KNIFE
• SIZES: 3/32" 3/16" 5/16"
• SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.
Dealer Inquiries Invited

Vanguard Synthetic Textiles, Inc.
2472 Eastman Ave., Building 21
Ventura, California 93003
(805) 686-7903

PC HF FACSIMILE $79.95
A complete facsimile reception system for your IBM PC or compatible. Receive grayscale images in up to 16 shades or pseudo color depending upon your graphics card and printer.

Includes:
Demodulator 50 Page Manual
Software Tutorial Cassette

Requires:
HF receiver Graphics card
PC with 320K Serial port

Software Systems Consulting
1303 S. Ola Vista
San Clemente, CA 92672
(714) 498-5784
second letter of the variable to a number. The same change must be made to all like variables within the program. Each line of code containing an equation has been given a REMark statement to clarify the function or action being taken. You may disregard the REM statements when entering the code into the computer, although they can be helpful if you need to debug the program.

I’ve placed all INPUT statements on the right end of the line. For some dialects, the INPUT may be moved to the left end of the line, eliminating the PRINT command.

For the AC-voltmeter calculation, the program provides the option of loading the diode rectifier for meters having a sensitivity greater than 5 k/Volt. When loaded by the program, the meter shunt and multiplier values are given for a sensitivity of 5 k/Volt. The program assumes that you’ll use silicone diodes as rectifiers, and that their forward-conduction voltage drop is 0.7 volt. If you use copper oxide, germanium, or other rectifier types instead, the D value in lines 1390 and 1400 should be changed accordingly.

The program is a series of function/calculation blocks driven from a menu. The menu provides a GOTO command call for the function selected. Upon completing the function, the program returns to the menu for your next action. I’ve also included printout samples from each block. You can use these samples to determine proper program operation. With the exception of the ohmmeter scale calculations and resulting printer output, all calculations and printouts are to the screen. The ohmmeter portion of the program provides the scale marking (calibration) as it applies to the relative coil-current value. The tabulated output makes the scale-marking task much easier.

Internal resistance is an important factor in most calculations. It should not be ignored until you know its effect on the results of calculations. The computer program requests an Rm value for nearly every function. If the value is unknown, use either a value from table 1 or enter 100 ohms.

Bibliography

Article F

HAM RADIO
THE TOUCH OF CLASS...

Your projects deserve a good looking enclosure and we have them. All metal or metal and plastic combinations in virtually all shapes and sizes. The unique “Constructo” series features a selectable height chassis, or the use of multiple chassis decks. Whether your project is a "week-ender" or a mind boggler, add the touch of class.

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter
- Expandable to 32 Channel by Just Adding Cards
- Continuous Voting
- LED Indicators of COR and Voted Signals
- Built in Calibrator
- Remote Voted Indicators Printed Out
- 49 x 6 Double Sided Gold Plated 44 Pin Card
- Remote Discharge Inputs
- MORE

Built, tested and calibrated with manual
$350.00

Telephone interface now available
For more information call or write:
DOUG HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

THE KIF0 12 element
144 MHz YAGI

EME - TROPO - WEAK SIGNAL

MODEL KFO-12-144

ELECTRICAL SPECIFICATIONS:
- Gain: 120 dB
- 8 F0-144 beams: 2 x 17 deg.
- 16 F0-12 beams: 2 x 15 deg.
- Subelement arrangement: 16 F0-12 Plane 18 dB
- 48 F0-12 Plane 15 dB
- Feed ratio: 22:1
- VSWR: 1.12:1

MECHANICAL SPECIFICATIONS:
- Length: 12 ft. 4 in.
- Width: 4 in.
- Glass cover: 0.025 - 0.035
- Mounting: 8-Pin D-Sub
- Q100: 5% Tolerance
- Stainless steel hardware: oxidized finish
- Elements: 12 Aluminum rod

$134.95

ALSO AVAILABLE
- KFO-12B 20 FO-20-1K, FO-25-1K and FO-30-1K
- STACKING FRAMES: POWER DIVIDERS

We supply those hard to find parts for the home builder.
- R-7000 Widespan Panadapter especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 Mhz. Uncover unknown elusive signals. Complete with all cables. 90 day warranty. $349.95 Shipped. Pa. res. add 6%.

GTI Electronics
RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

RUTLAND ARRAYS
- 1703 Warren Street • New Cumberland, PA 17070
- (717) 774-5296
- T/0 P.M. EST
- Dealer inquiries invited

Send for your free copy of our complete catalog.

TEN-TEC
Highway 411 E.
Sevierville, TN 37862
615-453-7172

April 1989
Antenna projects for spring

It's a little too early for serious antenna work in most parts of the country. But spring will soon be here and it's time to start thinking about all those great DX antennas you're going to erect! Here are some interesting antenna projects you readers have sent to me.

The AG9C horizontal loop antenna

I think the loop antenna has more interesting variations than any other! Bob Morrison, AG9C, has had excellent DX results with a full-wave horizontal delta loop that he uses on 40, 20, and 15 meters "as is," and with a tuner on 80, 30, and 10 meters (fig. 1). The only materials you need are about 139 feet of no. 14 copper-weld wire, a 4:1 balun, a few insulators, and a length of 50-ohm coax line.

Bob examined the antenna radiation pattern at 7, 10, 14, 21, and 28 MHz using the MININEC3 computer program with the Sommerfield-Norton option. He assumed a 20 foot height and poor ground ($k = 5$, and $\Gamma = 0.002$ siemens/meter). In general, Bob found that gain patterns are more omnidirectional than those of similar dipoles. "The design is very forgiving," Bob comments. "Loop antenna patterns remain excellent when side lengths are unequal and/or the three corners have unequal heights."

Bob's observed SWR readings on the loop (taken through 100 feet of RG-58/U) are:

- 40 meters—1.55 at 7.0 MHz, 2.4 at 7.3 MHz; 20 meters—1.2 at 14.0 MHz, 1.7 at 14.35 MHz; 15 meters—1.38 at 21.0 MHz, 1.70 at 21.45 MHz; 10 meters—2.7 at 28.0 MHz, 3.7 at 28.5 MHz, 5.9 at 29.0 MHz, and 3.6 at 29.7 MHz.

You can move the minimum SWR point in the 10-meter band by changing the total length of the wire in the loop 6 inches at a time.

Bob says the loop can be used on 80 and 30 meters by adding an antenna tuner in the station. The input impedance of the loop on 80 meters is very high, as it is at a half-wave resonance. The mismatch at the balun causes high SWR and considerable power loss in the balun and coax line. Nevertheless, a tuner easily matches the feedline to the transmitter. Antenna radiated power is reduced, but adequate, over the CW portion of the 80-meter band.

The two-radial ground plane revisited

In my October column I mentioned that two radials seem sufficient for an elevated ground-plane antenna. Along this line, Gunter Hoch, DL6WU, wrote to me about a two-element "ground-plane Yagi" he observed atop a nearby United States Army depot. The antenna is shown in fig. 2. It consisted of a quarter-wave folded radiator and a reflector mounted over a pair of radials. He estimated from the size that it was cut for a frequency near the 2-meter band.

This is an interesting concept. With a couple of remote-controlled relays at the antenna it would be possible to switch quickly from a vertically polarized ground-plane Yagi to a two-element, horizontally polarized...
Table: Receiver Preamps

<table>
<thead>
<tr>
<th>Device</th>
<th>Freq. Range (MHz)</th>
<th>N.F. (dB)</th>
<th>Gain (dB)</th>
<th>1 dB Comp. (dBm)</th>
<th>Device Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P28VD</td>
<td>28-30</td>
<td><1.1</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P50VD</td>
<td>50-54</td>
<td><1.3</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P50VDC</td>
<td>50-54</td>
<td><0.5</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P144VD</td>
<td>144-148</td>
<td><1.5</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P144VDA</td>
<td>144-148</td>
<td><1.0</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$37.95</td>
</tr>
<tr>
<td>P144VDC</td>
<td>144-148</td>
<td><0.5</td>
<td>24</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P220VD</td>
<td>220-225</td>
<td><1.8</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>P220VDA</td>
<td>220-225</td>
<td><1.2</td>
<td>15</td>
<td>0</td>
<td>DGFET</td>
<td>$37.95</td>
</tr>
<tr>
<td>P220VDC</td>
<td>220-225</td>
<td><0.5</td>
<td>20</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>P432VD</td>
<td>420-450</td>
<td><1.8</td>
<td>15</td>
<td>-20</td>
<td>Bipolar</td>
<td>$32.95</td>
</tr>
<tr>
<td>P432VDA</td>
<td>420-450</td>
<td><1.1</td>
<td>17</td>
<td>-20</td>
<td>Bipolar</td>
<td>$49.95</td>
</tr>
<tr>
<td>P432VDC</td>
<td>420-450</td>
<td><0.5</td>
<td>16</td>
<td>+12</td>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
</tbody>
</table>

Every preamplifier is precision aligned on ARR's Hewlett Packard HP8920A/HP3484A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are rf switched (for use with transceivers) and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7.75% sales tax. C.O.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or inline preamplifier today and start hearing like never before!

Advanced Receiver Research

Box 1242 • Burlington, CT 06013 • 203 582-9409

ADVANCED MICROPROCESSOR TROUBLESHOOTING TECHNIQUES

Enhance your digital troubleshooting skills with this new 3-day course. You will learn the latest tips and techniques for troubleshooting all microprocessor-based systems.

Fee is $795.00. Call or write for brochure with full details and current schedule.

1989 SPRING SCHEDULE

- April 12-14 — Chicago
- April 18-20 — Atlanta
- April 25-27 — Dayton
- July 24-25 — Washington, D.C.

MICRO SYSTEMS INSTITUTE

Garnett, Kansas 66032

(913) 898-4695

PC Slow Scan $149.95

A complete slow scan television station for your IBM PC or compatible. Send and receive images in up to 10 shades of gray depending upon your graphics card and printer.

Includes:
- Demodulator
- Modulator
- 75 Page Manual
- Software
- Tutorial Cassette

Requires:
- Ham transceiver
- PC with 640K Parallel Port
- Graphics Card
- Tape Recorder
- Serial port

Slow Scan Formats:
- 8.12,17,23,34,36,48,72 sec

Software Systems Consulting

1303 S. Ola Vista
San Clemente, CA 92672

(714) 498-5784

SEE OUR PULLOUT CATALOG

Pages 59-62

John J. Meshna, Jr., Inc.
conventional Yagi. The horizontal elements are cut to serve as a driven element and a reflector — just the ticket for a single antenna to work mobile stations (vertically polarized) and over-the-horizon DX (often horizontally polarized). I’ll leave the details up to you!

DL6WU has submitted VHF Yagi data for inclusion in the *ARRL VHF Manual*.

FIGURE 2

Quarter-wave folded radiator is fed at F. Vertical elements are mounted above quarter-wave horizontal radials. (Courtesy DL6WU)

What is the correct radial length?

I mentioned some comments by Collin Stiteler, KE6VZ, about the correct length for ground-plane radials in my March column. Collin has raised another interesting question: “Many how-to-do-it articles on ground planes suggest that you make the radials something like 5 percent longer than the radiator. Why is this? Other articles call for radials equal in length to the radiator. If there are sufficient radials, they approximate a horizontal disc conductor. Should the radius of this disc be equal to, or 5 percent greater than the length of the radiator?”

Collin thinks that resonant radials should actually be a little shorter than the length of the radiator, not longer (as is occasionally stated), since the radials approach a “fat” conductor, or disc. The physical length of a “fat” conductor is less than that of a “thin” one for a given frequency, and Collin suggests that this rule should also apply to resonant radials.

This is an intriguing thought. I’ve always cut my radials to the same length as that of the radiator. Once I built a 21-MHz ground plane with radials 5 percent longer than the radiator. I couldn’t notice any difference in operation or SWR measurements, as compared with an earlier, conventional ground plane. This leads me to think that radial length is unimportant (within 5 percent), at least in the HF region. Any comments on this question?

“Torching the Cat” and other exploits

I received a letter from “Doc” Sayre, N7AVK, who most assuredly deserves membership in the Antenna Experimenter’s Club. Doc writes, “Fashioning a sky wire is truly exciting. I have loaded rain gutters on 160 meters (torching the cat in the process), fir trees on 15 meters (the nail gets hot and you shouldn’t drive it in very deep for best results!), an all-band well casing about 160 feet deep, and an unusual buried run of two 4-0 insulated aluminum wires about 1/4 mile long that works amazingly well on 80 and 160 meters.” He concludes, “If you’re not thinking and improvising, then you’re just taking up space!”

Good show, Doc!

The gamma loop fed vertical antenna

In *The Radio Amateur Antenna Handbook* I described an interesting DX antenna (shown in fig. 3). It consists of a half-wave vertical dipole fed at the bottom with a “ground independent” feed system.

The antenna shows about 1.8-dB gain over the classic ground-plane antenna and requires no radials. Feed-line isolation is very good.

The feed system provides a match between the high-impedance end of the dipole and a low-impedance coax line. A parallel-tuned circuit will work. A low-loss design consists of a large, horizontally mounted single-turn coil in parallel with a high-voltage capacitor. The combination is resonant at the antenna’s design frequency.

FIGURE 3

Vertical dipole fed with parallel tuned circuit at base. L-C circuit resonates at middle of band of choice. (Courtesy Radio Publications, Inc.)
John O’Brien, W2YYI, has solved the mechanics of making a waterproof tuned circuit and a high-voltage capacitor of inexpensive materials (see fig. 4). He makes the antenna and resonating coil out of soft, 1/2-inch, thin-wall copper tubing available from hardware and home improvement stores. The assembly is put together with a soldering torch.

In my original design, I achieved an impedance match by tapping the coax line on the single-turn inductor at the appropriate point. John, on the other hand, uses a gamma match system. I think his method is the better of the two. The gamma capacitor is made of a section of RG-8/U coax cut to length and inserted in the copper tubing. The shield of the coax is attached to the shell (ground) of the coax receptacle. The center conductor is soldered to the gamma wire, which is tapped by a tubing clamp on the coil near the base of the antenna. The gamma wire is a length of PVC insulated house wire, or bare copper wire.

The antenna is adjusted for lowest SWR on the feedline by moving the two clamps along the coil. Clamp A is adjusted for frequency and clamp B is adjusted for the best impedance match. John notes that bending the gamma wire closer to, or further away from, the loop also affects the SWR.

Finally, John says you can make a “cheap and dirty” equivalent by substituting wire for the antenna and the loop, and making the capacitor out of a piece of double-sided pc board!

The W4TDI “Carolina Windom” array

In the May 1988 column I discussed the Carolina Windom antenna, which seems to be enjoying some popularity. In brief, it’s a multiband antenna fed with a stub and balun, which operates on more than one ham band. Ray Hoffman, W4TDI, making a virtue out of necessity, erected a version of the Carolina Windom between two trees only about 75 feet apart (see fig. 5). It was impossible to erect a 132-foot
INDUSTRIAL GRADE PRINTER

Heavy duty industrial grade No. 781. Con- tronics printers. These print 80 columns wide at 132 CPS. As they stand they print upper case only, but recognize lower case and print in 5 x 7 dot matrix. They will print lower case by changing one of the socketed prongs and we are trying to obtain copies of the up- per/upper case prin. They utilize the standard 36 pin Centronics parallel interface. Each one has an adjustable width tractor feed. If the printer does not receive data for one minute they will automatically go into a stand by mode. They run on 115VAC, 60 Hz. All are whole and intact. We will throw in for free the paper rack accessories (while they last).

IBM® Compatible Flat Screen Monitor

We just bought a bunch of classy looking IBM® compatible TTL monitors. They were made by Samsung (5125A/471). The monitors utilize a flat, 12” amber high contrast, non- glare CRT. Some of the nice features of this item are: high resolution 80 x 25 character display, fully enclosed and come with a tilt & swivel base. The TTL level signals are input thru a sub D type connector. The monitors run on standard US house current. 95% of them are in their original factory cartons. They are tagged as having minor defects. We have looked over a few of them for you and found them to be in perfect condition. We guarantee the CRT’s are unbroken and will not have burn marks on them. The original selling price of this very handsome unit was over $125.00 each including the tilt/swivel base. We offer it with the CRT guaranteed OK, as mentioned above. We will also provide a schematic.

AS IS” Complete with Schematic. Shpg. Wt. 20 Lbs. MOT-17 $37.50

LASER TUBE AND POWER SUPPLY

This is a great laser assembly for experimenting purposes. Part of it consists of a ½ mW laser tube, high voltage power supply, four ½ inch round surface mirrors, beam splitter and a laser de-modulator all on a rugg- ed cast aluminum chassis. Parts included, but not shown includes a 5 amp gel cell transformer, line filter, and 450V power supply assembly to fire the laser. These units were removed from Pioneer laser disc players.

These were working when removed from ser- vice but due to the nature of such products and shipping, we cannot guarantee they are functional.

Shpg. Wt. 60 Lbs. SPL 3378/51 $55.00

Enhanced 101 Key IBM Compatible Keyboards

A “Key” U.S. manufacturer recently released his excess inventory of IBM® and X-T 410 compatible “key” boards. They can also be used in the enhanced XT and AT systems by reassigning the DIP switches accordingly. We are pro- ficient in advertising the manufacturers highly respected name, and the name tags have been removed from the cases, but it does appear on the encoder board. These boards feature 101 keys, separating control & numeric keys. In addition, 12 function keys are added to take advantage of state of the art software packages and a LED control panel is provided along with snap on self locking legs. Most of them are in new condition. Some are slightly used. All of them are in excellent working and excellent physical condition. Most of them in their original factory cartons. We supply a schematic and operators guide with each one.

Shpg. Wt. 5 Lbs. Kybd 11 $39.00 2/75.00

5 AMP GEL CELLS

The full packs came in a sturdy plastic enclosure.

Shpg. Wt. 5 Lbs. SPL 1075-51 .95

MONITOR FLOAT ARM

Monitor Float Arm is the easiest way to keep your monitor off your desk yet within reach. Just push your monitor aside to clear your desk. Swing it over to the proper working position when you want to use it. It can all be down with one hand because the Float Arm is pneumatically controlled and balanced to effortlessly float your monitor where you want it.

Shpg. Wt. 10 Lbs. SPL 322-51 .299.95

PARTS GALORE ASSEMBLY

Pictured below is a high reliability power supply. It contains many very useful and expensive parts. We must offer these parts to you individually because due to the agreement with the manufacturer we cannot sell the unit intact.

POWER SUPPLY REGULATOR BOARD

Consists of LM 223 IC regulator or equivalent. TIP 32 transistor, 6 amp bridge, 12000 uf, 50V capacitor. LM 34012 regulator, a star 6V buzz, 2 sockets to hold the smaller 2 bands which consist of LM 39 IC, reg, TIP 32 X 145u, 4.10k 10 turn pot, tantalums, and loads of other parts.

Shpg. Wt. 2 Lbs. SPL 2748-51 $3.50

TRANSFORMER made by Signal or Aerospace Systems. Input: 110/220VAC, Output: 24v, 3a, 10v, 2a

Shpg. Wt. 3 Lbs. SPL 1661-51 $15.00

DUAL POWER TRANSISTORS ASSEMBLY 2N2924 or equivalent high power switching X-sheets rated at 300V/250 30 amps, 175 watts silicon NPN which must be inserted into each mounted in an aluminum housing in 3 rows. They include。

Shpg. Wt. 0.5 Lbs. SPL 2762-51 $17.50

FAN similar in size and speed to IMC Slim

Mino Boxer, 115VAC. 50/60Hz. 30 CFM

Shpg. Wt. 1 Lb. SPL 231A-51 $3.75

Finger Guard for above. 2ins Plated.

Shpg. Wt. 0.5 Lbs. SPL 3630 $0.50

Cord for above fan

Shpg. Wt. 0.2 Lbs. SPL 2756G $0.35

CASE aluminum chassis rubber feet and carry- ing handle. 9”x5”x9”

Shpg. Wt. 2 Lbs. SPL 1075-51 $7.50
We have some new 115 VAC Rotron Whisper Fans. These run super quiet and deliver 57-80 CFM depending on the model available. Current list price is over $21.00. New and surplus prices.

Shpg. Wt. 3 Lb. SPL 210B-48 $9.00

AC cord w/ special plug to fit connectors on above fans.
Shpg. Wt. 1 Lb. SP 275EG $0.35

RECHARGEABLE N-Cell

We acquired a bunch of used "N" size nickel cadmium batteries. The output is 1.25VDC. The end on one side has a point on it, as shown in the photo. We have tested a bunch of these and they seem to be OKAY.
Shpg. Wt. 2 oz. SP-149-51 $1.00

BUSS TRON WATERPROOF FUSEHOLDERS

Tron HEB AA in the line fuse holders are easy to use and completely enclose the fuse protecting it against damage from water, weather, salt spray, corrosive fumes, etc. TRON HEB fuseholders are easy to install. The size "A" crimper terminals will accept one #14, 12, 10 or 8 solid or stranded wire. They accept 13/32" New, factory boxed Miller No. W-230E. Runs on 12 VDC. SPST contacts are rated for 1 amp. Contacts are normally open.
Shpg. Wt. 2 oz. SP-788-51 $1.00

NEW, FACTORY BOXED MILLER

New, factory boxed Miller No. 99H PC RF chokes. Rated as follows: 100mH, 473 ohms max., 0.138 MHz, minimum Q at frequency, 29 at 79 KHz, 50 ma maximum. List Price over $4.50 each.
Shpg. Wt. 4 oz. H-48A-52 $0.75

SOLID STATE RELAY

New, factory boxed by Magnecraft. Their part No. W-230E. Runs on 12 VDC. SPST contacts are rated for 1 amp. Contacts are normally open.

Shpg. Wt. 2 oz. SP-788-51 $1.00

5-28 VDC 6 AMP Regulated Power Supply

Pictured above is the heart of a very versatile power supply. When modified and used in conjunction with the optional parts listed below you can build yourself a super power supply for short money. We provide a schematic showing how to simply add the optional components to complete the supply.

CASE: Shown elsewhere in this brochure.
Shpg. Wt. 2 lbs. SPL 107-52 $7.50

Twist On Male

BNC CONNECTOR

No. CPFI UG88-2 for RG-59 & 62U
These BNC connectors are very easy to use as they do not require any soldering or need any special tools. Cable attachment is achieved by a tapered and threaded opening which makes it easy to twist the connector onto the cable braid and jacket insuring a good grounding and a high integrity termination. Constructed of nickel plated brass.
Shpg. Wt. 3/4 Lb. H-58B-50 $2.25 each

CERAMIC TRANSMITTING CAPS

For hi volt, hi freq circuits such as xmters induction heaters, welders, x ray, great for making up your own bug killer unit. Our price almost for free when you find they cost about $5 each on the open market. Due to being surplus you get 'em at bargain prices.

GLC-91 $1.00
UHF MALE PANEL M-359 $1.00
UG-175 for RG-58 $35¢
UG-176 for RG-59 $35¢
Double Male 2.25
UHF-F/PANEL 1" LONG ONE NUT MOUNT 52-239NL $9.95
UG 274 BNC T $4.00

12 VDC MUFFIN FAN

Great Window Defogger for Cars, Vans, Trucks!

This fan is very hard to find in the surplus market, and usually very expensive ($50 or more!). We came across some shiny, new (removed from unused equipment), metal framed ones from Panaflex. The 12vdc, 0.45A, input is thru 6" color coded leads. Great as a window defogger in automotive use, or in photovoltaic applications. No more once these are gone.
Shpg. Wt. 2 Lbs. SPL-417A-37 $17.00 ea.
40 CHANNEL CB RADIO
Panasonic

Late model radio made for Chrysler Corp. Very compact, solid state. 12 volt operation. Channel display vacuum fluorescent 2 digits Line of LED's display signal strength. Looks like an excellent rig for 10 meter conversion. These passed 'quality control' at the factory. But due to clumsy handling by the installers in the US, they suffered slight damage and from what we can see the display may be cracked, the flat tape connecting it may have been pinched, or the end mount on the LED board broke on the mounting end due to too much pressure applied on installing. All items simple to correct. If the display (-channel) is bad, you could index the channel switch knob. Audio output requires small am outboard. This was normally drawn from the accompanying am/fm radio. Controls are on the front panel of the CB. We furnish schematics. Shipping wt. 3 lbs.

SPL-152-21, was $16.00, now only $10.00 each!

IN-LINE FUSE HOLDER

New in-line fuse holders for 3 AG size fuses. Overall length is 20". The leads are black and the holders are translucent. Shpg. Wt. 4 oz. SP-140A 525.0 60

STOLEN COMPUTER TERMINALS

As you can see broken down this terminal has loads of parts. Please buy whole units and save yourself big bucks, and us from taking them apart.

RECTIFIERS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Volts Amps</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUES2604*</td>
<td>200</td>
<td>20 $1.00</td>
</tr>
<tr>
<td>Bridge</td>
<td>200</td>
<td>2.50</td>
</tr>
</tbody>
</table>

* DUAL Rectifier in a 3/2 Case.

AM FERRITE ANTENNAE

We have another sample of our tax dollars at work. Uncle Sam has recently released these very high quality, weatherproof, push to talk mini-microphones. Each one has a coil cord that can stretch out 10 feet. For extended use of the cord a spring strain relief is standard. A U229/U connector contains 5 gold plated pins to insure a high integrity electrical connection. We provide you with a schematic of the microphone so that you can rewire them for marine radio use. The were originally made* for use with the PRC-25 and the PRC-77 transceivers. Used, good condition.

Sh. Wt. 2 Lbs. SPL-10 51 $8.00

STUD DIODES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Volts Amps</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR 862</td>
<td>200</td>
<td>40 $1.00</td>
</tr>
<tr>
<td>70HC040*</td>
<td>40</td>
<td>75 $2.75</td>
</tr>
<tr>
<td>51HC045*</td>
<td>45</td>
<td>60 $2.50</td>
</tr>
</tbody>
</table>

"Schotky type" diode.

TRANSISTORS

<table>
<thead>
<tr>
<th>Volts</th>
<th>Amps</th>
<th>Watts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF150</td>
<td>100</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>DTS423</td>
<td>400</td>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>MJ 802</td>
<td>100</td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>MJ1000</td>
<td>60</td>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>2N3055</td>
<td>60</td>
<td>15</td>
<td>115</td>
</tr>
<tr>
<td>MJ11016</td>
<td>120</td>
<td>30</td>
<td>200</td>
</tr>
</tbody>
</table>

STOLEN COMPUTER TERMINALS

When you buy one of these fantastic parts values you should feel guilty for stealing it at such a CHEAP price! We bought 50 computer terminals that are still in their original factory cartons. These terminals were highly specialized devices using extrem high quality, highly reliable components. They are loaded with extremely useful parts. You can buy the whole terminal for the rock bottom price of $45.00 or just buy the parts you want.

WHOLE TERMINAL

Sh. Wt. 50 Lbs.
SPL-308B-51 $45.00
15" TTL green monitor by CDI
110/220 input 1200 lines @ 15mHz DC bandwidth to 35 mHz w/schematic.
Sh. Wt. 21 Lbs.
MOT-18- $20.00
Condor Power Supply No.
KFT201 + 5VDC @ 15A; dual +12VDC @ 1A each 75 watts max.
Sh. Wt. 5 Lbs.
PS-188-51 $20.00
15" Flat screen monitor by CDI
110/220 input 1200 lines @ 15mHz DC bandwidth to 35 mHz w/schematic.
Shp. Wt. 6 Lbs.
KYBD-12 $10.00

John J. Meshna Jr., Inc.
SURPLUS ELECTRONICS

19 Allerton St. P.O. Box 8062
E. Lynn, Massachusetts 01940
Tel. (617)595-2275
Fax. (617)595-4680
$20.00 Minimum Order
SONALERT
The sonalerts we offer are Mallory part No. SMB428. They are rated to run continuously on 4.5VDC 3VDC @ 2 - 14mA. The sound level is from 64 to 78 @ 2.900 Hz. Speaker contact
issues. Unused. Shpg. Wt. 8 oz. $9.25

Hi-Volt Supply
Used. In voltage power supply. We do not know what they were originally used in. The high voltage nature of this device should spark your imagination. The input 115VAC, 60 Hz, output is 13.5
KvDC at 0.1mlA. Shpg. Wt. 5 lbs. PS-37-51 $12.00 each

Photo Flash Board
FIG. A; 1.7/8" overall length. 1.5" inches of the shaft is threaded. 1/4x20 thread. Chrome plated steel. Rubber pad on foot measures 3/4" diameter. Some maybe slightly rusty. Overall condition is good. Sold in pairs. Shpg. Wt. 4 oz. SP-212-1 $0.75/pc. FIG. B; 1 3/8" overall length. 7/8 of the shaft is threaded. 63/32" by 8" chrome covered foot. Sold in bag of four units. Shpg. Wt. 1 lb. EP-100000 standard. FIG. C; 1 3/4" overall length. 19/32 of the shaft is threaded. 8x32 thread. 5/8" cloth covered foot. Sold in bags of 4 units. Shpg. Wt. 1 lb. SP-142C-1 $1.00/bag

Ecco Strip Switches
Unused Ecco strip switches still in tubes. Hexagonal. Output: 0.15 Adjusting them is accomplished by your thumb or a screwdriver. Size 13/16"x3/4"x3/8". Shpg. Wt. 4 oz. SP-431-3 $1.00

Dual 3.5mm Plug/Cord Assembly
This is a very nice audio grade cable made by Sony. The braided shielding cord is just over 3 ft. long. Each end has a molded 3.5 mm plug on it with a strain relief. Copper core, grey. Shpg. Wt. 1/2 lb. SP-1028-1 $0.75

RCA Audio/Video Jack Strips
RCA jacks are the standard in home audio and video equipment. If you are building, modifying, or repairing any pieces of equipment these are very handy to have around. Our offering has 10 RCA jacks on a phenolic strip which can easily cut, should you not need all 10 for your project. Condition: carefully removed from unused equipment. Shpg. Wt. 4 oz. SP-1338C-1 $0.00/10

Antenna
New telescopic antenna made for Panasonic TV perfect for various uses such as Ham radio CB sets, walkie talkers, AM/FM radios, and of course for TV sets which the kids are always breaking. Antenna telescopes into a 6 inch length and extends up to 42 inches (which seems almost magical!) Shpg. Wt. 1 lb. SP-338-1 $2.00

Electro Luminescent Panels
There is a lot going on with electro-luminescent technology and we have an inexpensive way for you to get into experimenting with it. We can offer you EL panels and DC to AC inverters. The panels are all unused. The size is 4.5" x 2.18". When power is applied they glow an eerie green. The use of the DC to AC module allows them to be used on 6 to 12VDC. The output of the modules is 80 VAC to 115VAC, 400 Hz. This allows them to run at peak brightness and efficiency. They will run on 110V at reduced brightness but there are inherent dangers when using line voltage and caution should be used. Complete with hook up diagram. EL Panel. Shpg. Wt. 4 oz. H-373 $3.50 Power Module Shpg. Wt. 4 oz. H-69C $2.50

Banner Strips

Variable Rate Strobe Kit
We provided you with all the parts necessary, including the PC board and schematic so that you can make your own strobe. When finished it will run on 4 to 6 VDC. The power can be either from batteries or a wall adapter of about 200 mA. Shpg. Wt. 1 lb. SP-225-1 $7.00

Ice Cube Relay (115VAC)
These 115 VAC, 5 amp contact rating relays are so named because they are close to the size of an ice cube. We have different types as listed below. These normally sell for up to $10.00 each. Relays come with covers, not shown. Fig. A; 2PDT. Shpg. Wt. 4 oz. SP-328-1 $1.25 Fig. B; 4PST. Shpg. Wt. 4 oz. SP-155B-1 $1.75 Fig. C; 2P2T. Shpg. Wt. 4 oz. SP-273A-1 $1.50

Solid State Relay
This 24VDC relay runs on 3.5 to 6V DC. SPST no contact. Rated at 240VAC @ 2 amps. N.O. List Price $15.00. Cropdol part 716124. Unused. Shpg. Wt. 2 oz. SP-113B-1 $2.50

Control Signal Relay
These unused 24VDC, 4PST (2 make before break) general purpose relays have contacts rated for 2 amps. The relays have solder terminal lugs with a mounting stud. If desired, they can be plugged up into a socket (not sup
plied). List price is over $14.50 each. Shpg. Wt. 1/4 lbs. SP-214-1 $1.75

Soldierless Stack-Up Banana Plugs
We have a bunch of these banana plugs in yellow and green. Loosening the grass set screw allows insertion of your test lead. The banana plugs can be stacked by inserting them through hole in plug as pictured. Similar to Providence part No. 11-1362. New. surplus. Please specify yellow or green. Shpg. Wt. 2 oz. SP-3008-1 $0.90

Rheostats
We have four different rheostats. Figures A & B have bushings with mounting and locking nut and are screwdriver adjustable. Figure C has a 1 5/8" long shaft and can be adjusted by hand or screwdriver. Figure D has a 3/8" x 1/4" long shaft for knob mounting. List price is over $15.00 each. Shpg. Wt. 1 lb. SP-2708-1 $2.00 Shpg. Wt. 1 lb. SP-0703-1 approx. .25

Memory Batteries
Varta is the manufacturer of this particular nickel cadmium battery. It consists of a quarter sized button cells stacked one on top of another. The cells are heat shrink covered together. Steel legs w/PC leads are soldered on. We can not find the Varta part No. 171005 to get an exact spec on it, but our guess is 3.6V @ 22mA. The size is 5/8" x 1/4". Unused, excellent condition. Shpg. Wt. 4 oz. SP-134A-1 $2.50

AA Rechargeable Battery Packs
A large manufacturer of portable telephones has just released to us a bunch of nickel cadmium battery packs. From what we can learn, if a phone comes back for any reason, the first thing the technician does is replace the battery regardless of the phone failure. This lot of batteries is a mixed bag, but is priced accordingly. The packs contain 3 AA size cells with solder tabs on them. We will provide you with a sheet showing how to rejuvinate batteries of this type. The packs are rated at 3.75VDC at 500ma. Shpg. Wt. 1/2 lb. SP-120-51 $2.00

Sprague Dual 15 Amp Filter
The diagram on this hefty line filter shows 2 RC networks for ultra cleaning of EMI. It has dual inputs and outputs, for filtering both sides of line voltage. Each one is NEW and made by Sprague. Shpg. Wt. 2 lbs. SP-45C-1 $5.00

Electrostatic Shielding Tape
Scotch No. 1245 We have 100 rolls of new Scotch brand copper foil shielding tape. The tape has a conductive adhesive backing which will stick to almost any clean surface. It comes in 18 yard rolls. Sold per foot. This应该 be a fast sell-out. Compare our low price to the regular price of $11.00 roll. Shpg. Wt. 1 lb. SP 430-52 $2.00

Memory Batteries
Varta is the manufacturer of this particular nickel cadmium battery. It consists of a quarter sized button cells stacked one on top of another. The cells are heat shrink covered together. Steel legs w/PC leads are soldered on. We can not find the Varta part No. 171005 to get an exact spec on it, but our guess is 3.6V @ 22mA. The size is 5/8" x 1/4". Unused, excellent condition. Shpg. Wt. 4 oz. SP-134A-1 $2.50

Rheostats
We have four different rheostats. Figures A & B have bushings with mounting and locking nut and are screwdriver adjustable. Figure C has a 1 5/8" long shaft and can be adjusted by hand or screwdriver. Figure D has a 3/8" x 1/4" long shaft for knob mounting. List price is over $15.00 each. Shpg. Wt. 1 lb. SP-2708-1 $2.00 Shpg. Wt. 1 lb. SP-0703-1 approx. .25

Memory Batteries
Varta is the manufacturer of this particular nickel cadmium battery. It consists of a quarter sized button cells stacked one on top of another. The cells are heat shrink covered together. Steel legs w/PC leads are soldered on. We can not find the Varta part No. 171005 to get an exact spec on it, but our guess is 3.6V @ 22mA. The size is 5/8" x 1/4". Unused, excellent condition. Shpg. Wt. 4 oz. SP-134A-1 $2.50

John J. Meshna Jr., Inc. SURPLUS ELECTRONICS
19 Allerton St. P.O. Box 8082 E. Lynn, Massachusetts 01940
Tel. (617)595-2275 * to C.O.D.'s
FAX. (617)595-4680 * $20.00 Minimum Order

184
piece of wire on his property and keep it reasonably out of sight. He made his antenna 66 feet long and then dropped the two ends down vertically. The horizontal portion of the antenna is 75 feet above ground. He uses a feedline a half wavelength long on 75 meters, and the antenna works well on all bands between 80 and 10 meters without an auxiliary tuner.

W4TDI's antenna was, by chance, broadside to Europe. He found that, while working well on 75 meters in all directions, it did a great job into New York on 40-meter skeds with W2TBZ. But the big surprise was on 20 meters! Ray found he was getting exceptional signal reports on that band; Europeans said he had an "outstanding" signal. During the Russian DX contest he worked 26 stations in a row on the first call, in competition with the "big guns."

Ray felt these results were not in keeping with a conventional "all-band" antenna and he could only assume the excellent reports were caused by the antenna's unusual configuration. He generalized that the currents in the two vertical sections were in phase on 20 meters, resulting in two half-wave verticals in phase — separated by a full wavelength. This provides a cloverleaf pattern with two lobes perpendicular to the plane of the antenna and two lobes in the antenna plane. Gain is modest, perhaps 3 dB. But, because of antenna height, the angle of radiation is quite low.

Feeling he had stumbled onto something unusual, Ray built a 160-meter version of the antenna. It worked well on 160 meters, and results were very good on 75 meters. His most impressive results were achieved on 40 meters, and the antenna even worked on 20 meters — but not as well as the smaller version.

Ray is very enthusiastic about this simple antenna and is anxious to hear from anyone who tries it.

The Dead Band Quiz

Answers are still trickling in for the locomotive/hornet quiz given in the October column. Judging from the number of replies (over 400 to date), you all appreciate a challenge.

The quiz on parsing the National Anthem was a dismal failure. Either you all got an "F" in English composition and were too bashful to enter, or weren't interested in this quiz! The sentence structure contains the subject "you", the verb "can see" and the object "what". Kudos to Tim Bratton, K5RA; Joe Vogt, W5JF; Jack Wells, KØYPE; John Peak, KE6HS; Eric Nichols, KL7AJ; Harry Johnson, NV7K. All of you go to the head of the class!

Last month's Dead Band Quiz

K4IHP's Black Box has five terminals. The resistance between any two terminals is 1 ohm. Figure 6 shows the connections within the box. Okay?

W3DZH's jar filled with transistors required a little brainstorming. If you have the March column in front of you, consider this:

A direct attack on the problem gets far too complex. It's actually easier to solve another problem instead, and then go back to the original.

Consider the leftover transistors: one if dividing by 2, two if dividing by 3, three if dividing by 4, four if dividing by 5, five if by 6 and six if by 7.

The key to the solution is to ask yourself the question, "What if there had been one more transistor in the jar?"

Aha! If this is so, then the number of transistors would have been evenly divisible by 2, 3, 4, 5, 6, and 7. That number is the least common multiple of those integers, $2 \times 3 \times 4 \times 5 \times 6 \times 7$, which is 420. But of course, that's not the way it was — the smallest number of transistors Our Hero had was one less than that, or 419 devices! Q.E.D.

Thanks to Joe Caffrey, W3DZH, for that brainbuster.

A new Dead Band Quiz

Consider two pieces of RG-8/U coax cable connected as shown in fig. 7. One length is an electrical half-wave long, the other is an electrical quarter-wave long. Note that the inner conductors are connected at the joint A-B, but the outer shields are not. What is the impedance between the two outer shields (points A and B)?

Consider the leftover transistors: one if dividing by 2, two if dividing by 3, three if dividing by 4, four if dividing by 5, five if by 6 and six if by 7.

The key to the solution is to ask yourself the question, "What if there had been one more transistor in the jar?"

Aha! If this is so, then the number of transistors would have been evenly divisible by 2, 3, 4, 5, 6, and 7. That number is the least common multiple of those integers, $2 \times 3 \times 4 \times 5 \times 6 \times 7$, which is 420. But of course, that's not the way it was — the smallest number of transistors Our Hero had was one less than that, or 419 devices! Q.E.D.

Thanks to Joe Caffrey, W3DZH, for that brainbuster.

A new Dead Band Quiz

Consider two pieces of RG-8/U coax cable connected as shown in fig. 7. One length is an electrical half-wave long, the other is an electrical quarter-wave long. Note that the inner conductors are connected at the joint A-B, but the outer shields are not. What is the impedance between the two outer shields (points A and B)?

Send your QSL card with your answer to me at Box 7508, Menlo Park, California 94025. I'll give the solution in a future column. Good luck, and see you on the low end.

References

Article G
Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Business.

KENWOOD

- Antennas
- CD1000, CD105, CD105A, CD1500, CD1550, CD2000, CD2050
- CD2000A, CD2050A, CD2050D, CD2050F
- CD2000K, CD2050K, CD2050L, CD2050M

Budwig ANT. Products
- WAREHOUSE DC-9900 Digital Hookup Monitor
- FLUTE 77 Mulimeter

We give you the Best in Amateur and Commercial Radios. Call us, it's worth a try. K812/3-9392 and Jan K9XVR.
To obtain low noise and high performance from a VHF, UHF, or microwave downconverter you need to use a high-level, low-noise local oscillator (LO). It's common practice to connect the output of a crystal oscillator directly to the LO terminals of a 2-meter converter. If the operating frequency is 145 MHz and the IF is 28 MHz, the crystal would operate at 117 MHz. My Oscar 13 downconverter operates this way.

On the other hand, a 432-MHz converter needs 10 dBm of 404-MHz oscillator power developed from a 101-MHz crystal followed by two frequency doublers, like those described by W1JR. A 1296-MHz converter needs a 1152-MHz LO if the first IF is 144 MHz. For this you can use a direct-frequency synthesizer like the one described in my UHF VCO article. A 2304-MHz converter with a 144-MHz IF requires a 2160-MHz LO. You can obtain this by multiplying the output of a 1080-MHz phase-locked loop (PLL) by 2.

More often than not, it's difficult to obtain sufficient LO power at 2160 MHz and above without the aid of step-recovery diodes (SRDs) and cavity resonators. Avoid this kind of complexity by using a GaAsFET frequency multiplier like the one I've described here.

Description

The UHF doubler provides over 10 dBm of output power anywhere in the band from 1800 to 3000 MHz, when driven from a 7-dBm signal in the 900 to 1500-MHz range. It's intended primarily for use as the LO in a downconverter but it has many other uses.

The performance of MESFETs and MMICs as frequency doublers up to 24 GHz has been investigated. Varactors or SRDs, normally needed for multiplication, aren't required. The FET simply operates as a nonlinear amplifier; harmonics generated when the gate is driven into conduction are amplified by the drain circuit. The DC current requirements for a FET doubler are only about 28 mA.

I used a 2 to 10 GHz Avantek AT-12570 small-signal GaAsFET for my doubler; other types will work as well. While I limited my experimental circuits to about 3000 MHz, the device should operate up to 10 GHz or higher, if required. You may wish to cascade two of these doublers to provide a 10-dBm LO signal for a 3.4 or 5.8-GHz converter.

Performance

The input circuit of the UHF FET doubler operates at 1080 MHz, with the output circuit centered at 2160 MHz. However, performance is very broadband as shown in fig. 1.

Nominal \(I_{\text{dss}} \) is specified on the manufacturer's data sheet as 80 mA. I operated the doubler with sufficient drive to achieve approximately 28 mA of average drain current. \(I_{\text{dss}} \) is highest at band center because the input circuit provides the best match to 50 ohms.

Feedthrough of the driving signal into the output is reduced only slightly by the filtering characteristic of the output microstrip circuit. Without additional filtering, the fundamental signal may be only 3 dB below the desired output level. I added a tunable trap circuit consisting of a 0.5 to 5.5-pF piston trimmer and a 1" long, 1/8" wide copper strap connected in series to ground, as illustrated in fig. 2. With the trap installed, fundamental output level was -40 dBm, while the third and fourth harmonics were 27 and 33 dB, respectively, below the desired signal. Since my requirement was for narrowband (fixed frequency) use, the trap was the obvious choice. For broadband operation, a bandpass or high-pass filter could be used instead.

By Norman J. Foot, WASHUV, 293 East Madison Avenue, Elmhurst, Illinois 60126

FIGURE 1

Doubler power output for \(P_{\text{in}} = 7 \) dBm.
NEW! AZIMUTH WEATHER STAR
A Power-Packed Micro Weather Computer for Your Station...

Reads Wind Speed (MPH/KPH) • Hi & Low Winds • Wind Direction • Rainfall
Temperature (Present-Hi-Low) • Wind Chill • Scans All!

Get the famous Azimuth Weather Zone Dual Zones 24 Hour Station Clock
Displays Local & World 15 Cities Zones! Retail Value $29.95

Enjoy Our SPECIAL FREE BONUS
Order Today!

FREE BONUS OPTIONS
1. Optional Run Gage Just $4.95
2. Optional Alarm

Your SPECIAL FREE BONUS
Order Today!

ACT NOW! SEND TODAY!

NEW! SUPER LONG PLAY TAPE RECORDERS
12 Hour Model — $119.00
USES D-120 TAPE

Modaf1ed Panasonic Slimline, high quality AC-DC recorders provide &
continuous hours of quality
recording & playback on
each side of cassette for a
total of 24 hours.

- In-Built features include:
 - Voice control
 - Digital timer
 - 1/4" x 4" tape

PHONE RECORDING ADAPTER
Records calls automatically. All Solid state.
legs connect to your telephone.

$39.95

VOX, VOICE ACTIVATED CONTROL SWITCH

Solid state SELF contained. Adjustable sensitivity. Voices or other
sounds automatically activate and
record remote recorder. $28.50

Order today! Send your phone number and $42.00 to:

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777

EVERY ISSUE of
HAM RADIO now available on microfiche!

The entire run of Ham Radio Magazine (March, 1968 thru last year) is ready to
ship to you in one, easy to use format.
Our 24x microfiche is easy to read and
very compact. We offer a hand held
reader for $75, and a desk model for
$200. Libraries have these readers.
As a bonus, you will receive Ham
Radio Horizons (3/77 thru 12/80) free.
Everything is included, front cover to
back - ads too!
Annual updates will be offered for $10.
Send $185 payment (visa/mc accepted) to:

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777

Every address is available on microfiche at:

HAM RADIO

If possible let us know four to six weeks
before you move and we will make sure
your HAM RADIO Magazine arrives on
schedule. Just remove the mailing label
from this magazine and affix below.
Then complete your new address (or any
other corrections) in the space provided
and we'll take care of the rest.

Thanks for helping us to serve you better.

Mailing Address:

Name

Address

State

Zip

Affix Label Here

Here's my new address:

Name

Address

City

State

Zip

Call

MAIL TODAY!

AMateur Radio

AMR 10
FIGURE 2

All capacitors are chips, except C6. L1 4T on 1/16 ID no. 28 enamel copper wire, slightly spaced. J1 and J2 are E. F. Johnson 142-0298-001 SMA connectors.

FIGURE 3

Schematic diagram, GaAsFET doubler.

Design

The FET doubler is etched on double copper-laminated epoxy fiber glass (G-10) pc board material. One side is used as a ground plane; the RF circuit traces are etched on the other side. Through grounds are made by passing no. 26 tinned copper busbar through ground holes and soldering on both sides.

I calculated the RF circuits with the aid of a computer program I developed for the 1296-MHz preamplifier published in Ham Radio Magazine. I obtained
the scattering parameters from the manufacturer's data sheet. Despite the fact that the doubler isn't a "small-signal" device, it needed very little trimming to optimize its performance.

One of the doubler's important features is its stability. Because input and output circuits are an octave apart in frequency, there's little (if any) likelihood that feedback will cause instability. As a precaution against out-of-band feedback, I equipped both the gate and drain DC return circuits with ferrite beads.

The doubler schematic is shown in fig. 2. Figure 3 shows the power supply. Artwork for the board is shown in figs. 4 and 5. Negative gate voltage is supplied from a common 12-Vdc source with an IC7660 voltage inverter. This is identical to the circuit I used in my 1296-MHz low-noise preamplifier article. The circuit protects against FET damage should the negative supply fail.

Tune up

Before installing the FET, connect a 150-ohm resistor temporarily between drain and ground. Apply 15 volts to the DC input terminal and adjust trimpot R5 for 3.0 Vdc across the resistor. Remove the resistor and install the FET, taking the usual precautions against static charge.

Next, apply 15 Vdc between the DC input terminal and ground. Then, with the input RF drive power shut off, adjust gate-bias pot R3 until the drain just begins to draw current. This isn't a critical adjustment, because when RF power is applied the drain current will increase to a value depending on the level of drive power. I suggest that you set the drive power to a level that produces a FET drain current of about 30 mA. Although higher drive levels will produce higher drain current and more power output, don't exceed \(I_{dss}/2 \).

PARTS LIST

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C7</td>
<td>220-pF chip</td>
<td></td>
</tr>
<tr>
<td>C2, C4</td>
<td>470-pF chip</td>
<td></td>
</tr>
<tr>
<td>C3, C5</td>
<td>1000-pF chip</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Erie 0.5-5.5 pf</td>
<td>glass piston trimmer</td>
</tr>
<tr>
<td>C8, C9</td>
<td>0.1 35-volt tantalum</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>0.1 12-volt monolithic</td>
<td></td>
</tr>
<tr>
<td>C11, C12</td>
<td>10/16-volt electrolytic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>50 k</td>
<td>ten-turn trimpot</td>
</tr>
<tr>
<td>R5</td>
<td>10 k</td>
<td>ten-turn trimpot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1.5 k 1/8 watt</td>
<td>5 percent</td>
</tr>
<tr>
<td>R2</td>
<td>10 ohms 1/4 watt</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>3.9 k 1/4 watt</td>
<td>5 percent</td>
</tr>
<tr>
<td>R6</td>
<td>4.7 k 1/4 watt</td>
<td>5 percent</td>
</tr>
<tr>
<td>R7</td>
<td>1.5 k 1/4 watt</td>
<td>5 percent</td>
</tr>
<tr>
<td>R8</td>
<td>43 k 1/4 watt</td>
<td>5 percent</td>
</tr>
<tr>
<td>R9</td>
<td>100 k 1/4 watt</td>
<td>5 percent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solid-state Devices</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>78L12 regulator</td>
<td></td>
</tr>
<tr>
<td>U2</td>
<td>ILC7660 inverter</td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>1N754</td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td>1N740</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>Avantek AT12570-5 GaAsFET</td>
<td></td>
</tr>
<tr>
<td>Q2, Q3</td>
<td>2N2369A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1, J2</td>
<td>EFJ 142-0298-001</td>
<td>SMA connector</td>
</tr>
<tr>
<td>FB1, FB2, FB3</td>
<td>FB-101</td>
<td>ferrite bead</td>
</tr>
<tr>
<td>pc board</td>
<td>eight-pin IC socket</td>
<td></td>
</tr>
</tbody>
</table>

Note that the FET doubler includes a 10-ohm resistor in series with the drain circuit and 3-Vdc supply. Assess drain current by measuring the voltage across this resistor. The total current drain will be about 40 mA. You can control the output power by adjusting input drive level.
Now receive or leave messages with other local hams using the 16k Bulletin Board featured on the smallest TNC available — the Heathkit® HK-21 Packet Packet.
The BBS operates under your call with simple commands like Send or Write a message. Kill a message and read the File messages currently on the system. And the HK-21 Packet Packet is fully TNC-2 compatible. Hookup is easy. Plug in supplied cables instantly to most computer via RS-232 and you’re ready to call a fast-growing number of packet hams.
The HK-21 Packet Packet requires only a single 12 VDC @ 40mA power source or as little as 29mA from an optional HKA-21, internally mounted 4.8 volt, 120 mAh, NICAD battery.

The Heathkit® HK-21 Packet Packet — $219.95 (Amateur list price)
To order, call 1-800-253-0570

For information on Heath's complete line of amateur radio products call 1-800-44 HEATH for your FREE Heathkit® catalog.

Best to start with. Best to stay with.
Heath Company
Benton Harbor, MI 49022
hippachiSCOPESATDISCOUNTPRICES

V-212
$399
List $560
Save $161

20MHz Dual Trace Oscilloscope
All Hitachi scopes include probes, schematics and Hitachi's 3 year guaranty on parts and labor. Many accessories available for all scopes.

V-425
List $995
$835

V-1060
List $1595
$1,285

- DC to 40MHz
- Dual Channel
- CRT Readout
- Cursor Meas.
- DC Offset
- Alt Magnifier
- Compact Size

- DC to 100MHz
- Dual Channel
- Delayed Sweep
- CRT Readout
- Sweep Time
- Autoranging
- Trigger Lock
- 2mV Sensitivity

ELENCO PRODUCTS AT DISCOUNTPRICES

20MHz Dual Trace Oscilloscope

FREE DMM
with purchase of
MO-1251/1252 Scope

35MHz Dual Trace Good to 50MHz

$495
MO-1252
- High luminance 6" CRT
- 1mV Sensitivity
- 6KV Acceleration Voltage
- 10ms Rise Time
- X/Y Operation • Z Axis
- Delayed Triggerring Sweep

- 50% larger display
- 100% of professional level

Top quality scopes at a very reasonable price. Contains all desired features. Two 1x, 10x probes, diagrams, and manual two year warranty.

- 6" CRT
- Built-in component tester
- TV Sync X-Y Operation

- Dual Channel
- CRT Readout
- Delayed Sweep
- Autoranging

 Autoranging DMM
M-5000
$45
- 9 Functions
- Memory and data hold
- 1% basic accuracy
- 3½ digit LCD

True RMS 4½
Digit Multimeter
M-7000
$135
- .05% DC accuracy
- .1% Resistance with freq. counter and deluxe case

- Multimeter with capacitance and transistor tester

Multimeter Capacitance
and Transistor Tester
$55 CM-1500
- Reads Volts, Ohms, Current, Capacitors, Transistors and Diodes with Case

- Digital Capacitance Meter
CM-1550
$58.95
- 9 Ranges
- 1pF-20,000uF
- 5% basic accuracy
- Zero control with case

- Digital LCR Meter
LC-1801
$125
- Measures coils 1uH-200H
- Capi 1pF-1000pF
- Res. 0.1-20M

- Solderless Breadboards
- Low Cost Multimeter
M-1600
$25
- 3½ digit LCD
- 1% DC Acc
- 10A Scale
- Auto zero
- Polarity

- Wide Band Signal Generators
- 3½ Digit Probe Type DMM

SG-9000 $129
- RF Freq 100K-450MHz
- AM Modulation of 1KHz
- Variable RF output

SG-9500 with Digital Display
and 150MHz built-in Freq Ch $249

- Digital Triple Power Supply
- Quad Power Supply
- Function Generator

XP-765
$249
- 0-20V at 1A
- 0-20V at 1A
- 5V at 5A

XP-580
$59.95
- 2-20V at 2A
- 12V at 1A
- 5V at 3A
- 5V at 5A

- 10MHz XT 100% IBM Compatible

XP-575 without meters $39.95
5 Year Warranty

- FREE spreadsheet and word processor

15 Day Money Back Guarantee
2 Year Warranty
WRITE FOR FREE CATALOG

WE WILL NOT BE UNDERSOLD!
UPS Shipping: US 5%
($10 Max) IL Res., 7% Tax

C & S SALES INC.
1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (312) 541-0710

April 1989

April 1989
Conclusions

This simple but effective UHF GaAsFET doubler exhibits power gain. It provides over 10-mW output over nearly an octave band. As I suggested earlier, it may be possible to design the circuit for operation up to and beyond X-band* by using the same technique. In my application, the doubler operates as the LO driving a balanced mixer in my 2304-MHz converter. If you have questions regarding this or similar applications, send a no. 10 SASE to the author.

References

7. Transistor Data Sheet, AT-12570-5, Avantek Inc., 3175 Bowers Avenue, Santa Clara, California 95051.

*5200–11,000 MHz. — Ed.

Component layout on groundplane artwork.

AMATEUR TELEVISION

SMILE! YOU'RE ON TV

Only $299

Designed and built in the USA
Value + Quality from over 25 years in ATV...W6ORG

With our all in one box TC70-1 70cm ATV Transceiver you can easily transmit and receive live action color and sound video just like broadcast TV. Use any home TV camera or VCR by plugging the composite video and audio into the front VHS 10 pin or rear phono jacks. Add 70cm antenna, coax, 13.8 Vdc and TV set and you are on the air...it's that easy!

TC70-1 has >1 watt p.e.p. with one xtal on 439.25, 434.0 or 426.25 MHz, runs on 12-14 Vdc @ .5A, and hot GaAsfet downconverter tunes whole 420-450 MHz band down to ch3. Shielded cabinet only 7x7x2.5". Transmitters sold only to licensed amateurs, for legal purposes, verified in the latest Callbook or with copy of license sent with order.

Call or write now for our complete ATV catalog including downconverters, transceivers, linear amps, and antennas for the 70, 33, & 23cm bands.

(818) 447-4565 m-f 8am-5:30pm pst. Visa, MC, COD

P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006
Tom (W6ORG)
Maryann (WB6YSS)
Ferrite beads as antenna and tower guy isolators

One of the nagging questions about antenna systems is the possibility of pattern degradation resulting from current flow on guys, feedlines, and even the antenna support tower. It's standard practice to cut the guy into pieces about a quarter wavelength long at the highest operating frequency and place strain insulators between the pieces. This cuts the coupling to a low value, effectively preventing appreciable current on the guy and stopping guy radiation. While the solution works, no one seems happy with it - largely because of fears of reduced strength, and the work it involves. Many try using a balun in the hope that it will solve any feedline problem, but tower radiation is almost always accepted "as is."

I found an easy solution to all of these problems. Simply use ferrite isolators, usually as beads. This technique was first described as a balun by Walt Maxwell, W2DU. It's easily extended to any problem involving unwanted current flow.

It isn't necessary to have a perfectly isolated insulator. For example, suppose a guy section is a half wave long at the operating frequency. It would have a resistance at the current node of about 70 ohms. Placing enough beads on the guy at the high current point to increase the impedance to 700 ohms would cut the current to 1/10, and the power radiated by the guy to 1/100 of its original value. Even cutting the current to 1/3 of its original value would be helpful.

The exact number of beads you'll need depends on the operating frequency, and the size and type of the beads. (See the W2DU article, and the latest ARRL Antenna Handbook for design curves and data.) Anywhere from three to ten beads would be a good start, assuming you're using a material that has a fairly high \(\mu \) at the operating frequency. Ten to 25 beads would be the most that are really beneficial.

It isn't necessary to cut guys (or coax feeders) loose to slide beads over the end on systems already in use. Split beads and shapes are available, and do nearly as well. (See the manufacturer's literature for information.)

Another possible solution is to use ferrite beads, instead of insulators, on the antenna itself. Suppose you want to use the top guy of the tower as a sloper. Put a number of beads at the top end of the guy close to the tower. Place more beads a half (or quarter) wave down the guy, and feed as for a normal sloper. (If you are using high power, you may find it necessary to use very low loss material for the first few beads. This will avoid heat problems.) Building slopers and delta loops in this way is a snap, even for towers which are already up.

Towers themselves are more of a problem, because of their size and parallel paths through the structure. For low frequencies, liberated TV yokes and sweep transformer cores are good - and readily available. They're usually so cheap (free) that you can be generous with placement. For best results, the ferrite should enclose each tower member, but it helps to just lay the ferrite close to the member.

You can calculate ferrite position by using the quarter-wave rule, or you can measure the guy/coax/tower resonance with a grid dip meter. The easy way is to make up a few special coils for the dipper. Each should be triangular in shape and about 20 inches on a side for low frequencies, or 6 inches per side for the higher bands. Solid Teflon™ insulated wire is ideal, but standard house wire works well. Use your frequency meter rather than trying to make a calibration curve.

To get close coupling, place the side of the triangle away from the dipper body close to the conductor. Tune for dips as usual. After you find the resonances, put some ferrite into the place that looks best, and check again. The dip may have disappeared, or shown a marked decrease. (If you can decrease the dip to at least 1/10 of its original value, you should be in good shape.) Sometimes moving the ferrite helps; at other times more ferrite is necessary. The goal is to have no appreciable dips at or close to operating frequencies. It's also a good idea to check harmonic frequencies, and to eliminate any such resonances if found.

After you've placed the beads, use weatherproof tape or silicone rubber to hold the ferrite in place and protect it from weather.

References
2. R. P. Haviland, W4MB
Improving clock setting for the HW-5400

I finally decided that there must be a better way to set the clock on my Heath HW-5400-01 power supply. My method of setting the time with a long pin or toothpick had to go! I also wanted to be able to set the clock to WWV to the nearest second. Here’s my solution.

You’ll need three small momentary SPST push-button switches. A set of Radio Shack no. 275-1574 or equivalent is fine. First, disassemble the power supply’s front panel. Next, drill out the two holes on the front panel, grill, and escutcheon (they’re labeled SW201 and SW202), and one extra hole an inch to the right of SW202 for the “seconds” display switch. See fig. 1 for placement. (Remember to remove the metal switch springs from the display circuit board.) Mount the switches through the panel and grill, placing the escutcheon on last to cover the mounting nuts. Bend the tabs of the new SW201 and SW202 switches so they clear the circuit board. Connect one side of all three switches together and then to the 14-volt source by inserting the wire through the slot of SW202 on the circuit board. Solder the wire to the silver foil.

Pressing the seconds switch displays the “ones” minute digit and both seconds digits. Simultaneously pressing “seconds” and “fast set” lets you reset the seconds to zero without a minute carryover. To ensure an accurate setting to WWV, simply set the clock a minute ahead, press seconds, fast set, and hold the setting until WWV catches up — then release. Viola! Precise clock settings to the nearest second.

Dexter King, AB4DP

A tricky RFI solution

When the XYL said I was interfering with the broadcast receiver, I was stunned. After all, I thought I had solved just about every problem caused by my transmitter — even operating full power on all bands. “Are you sure?” I said.

“Well, it has been more than 50 years since you tried to teach me the code, but I can still follow the key clicks well enough to make out W2YW. And, that new renewal you got from Gettysburg says you are W2YW — so, yes, I am sure.”

The receiver was an eight-band Federal Model 881000 and it was picking up key clicks on a few spots in the broadcast band. One of them was at 1390 kHz — the QRG of one of her favorite stations to sleep by, because it’s an all-talk station. The interference occurred when I operated on 15 meters, and with all the activity now on 15, I simply had to find a solution.

First, I wound some no. 24 dual zipper cord on a 1/2” ferrite rod 5” long, slipped it under the battery pack compartment, and wired it into the AC line. This was no help. I was on the right track but headed in the wrong direction.

Next, I tried a Kenwood R2000, using a piece of bell wire thrown out the window for an antenna. No sign of any key clicks, but the wife turned that solution down saying it had “just too many buttons.” Now what?

With the Federal receiver switched to battery and the line cord pulled, it still picked up the key clicks.

The solution was simple, but took a little doing to find. An extension cord was plugged into the other half of the wall duplex outlet where the offending receiver was connected. This fed two desk lamps and an electric clock. Pulling the extension cord killed the click. Evidently the two lamps, extension cord, and clock made up an antenna that was picking up the 15-meter signal and creating a more intense RF field around the receiver. The loop stick in the receiver picked this up.

I didn’t have any more ferrite material, so I dug through my junk and found an RF high-voltage transformer from an old, old TV set. I cut off all the windings with a hacksaw and wound another extension cord around three sides of the ferrite form. I plugged the makeshift choke into the wall outlet, plugged the line cord feeding the lamps and clock into the output end of the choke, and all my clicks were solved. As I said earlier, I was on the right track with the line filter. The trouble was, I was in the wrong place!

John Labaj, W2YW

FEBRUARY WINNERS

Congratulations to Teddy Coggin, WD4CWV, our February sweeps winner and John Pivinchyn, N2OCH, author of February’s most popular WEEKENDER — “High-Impedance Rotary Step Attenuator.” Both will receive a copy of The Radio Handbook by Bill Orr, W6SAI. To enter for April’s drawing, send in the evaluation card bound into this issue, or submit a WEEKENDER project. You could be our next winner! Ed.
"You're miles ahead with Larsen." Rick Woodsome, Communications Consultant

When the directors of the Coors International Bicycle Classic needed a sophisticated mobile communications system, they turned to communications consultant Rick Woodsome. As a communications specialist, Woodsome knows what it takes to make a communication system work.

That's why he turned to Larsen Antennas.

"You don't pull off the largest sports event in the Western Hemisphere without good communication. And you don't have good communication without the right equipment.

"Larsen antennas were instrumental in making last summer's Coors Classic an overwhelming success. They were key to our entire communication network.

"Without Larsen, it would have been uphill all the way."

Rick Woodsome

Larsen Antennas
The Amateur's Professional
See your favorite amateur dealer or write for a free amateur catalog.

IN USA: Larsen Electronics, Inc., 11611 N.E. 50th Avenue, P.O. Box 1799, Vancouver, Washington 98668 (206) 573-2722.
IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6th Avenue, Vancouver, B.C. V5Y 1K3 (604) 872-8517.
PACKET

MASTER PACKET RADIO: the hands on guide
by Dave Ingraham, K4TWJ
Appeals to all levels of packet radio enthusiasts from novices to experts alike. Full of illustrations and written in a simple, easy-to-understand style. Topics covered include: a basic primer, home computers and data communications terminals, a survey of equipment available, how to setup a station plus much more. 208 pages. © 1988 1st edition © 1988
Softbound $12.95

YOUR GATEWAY TO PACKET RADIO
by Stan Horzepa, WA1LOU
Beginners will find the complete easy-to-understand explanation of packet operation. Full of helpful hints and tips that come from thousands of hours of on-the-air experience. 268 pages. © 1987
AR-PKT
Softbound $9.95

THE PACKET RADIO HANDBOOK
by Jonathan Mayo, KR3T
Providing you with packet basics, this book progresses through the inner workings and operational aspects of packet to a look at future technology still in development stages. Also includes: using bulletin boards, traffic handling on packet, modulation methods, and networking principles. mnemonics, protocols (both AX.25 and VADOD) and a thorough discussion of the various TNCs and accessories available. © 1987 1st Edition 218 pages.
T-2772
Softbound $14.95

ARRL COMPUTER NETWORKING CONFERENCES 1-4
Written during the formative years of Packet development, these papers (too numerous to mention them all) cover: theory, practical applications, protocols, software and hardware subjects. You also get a complete up-to-date collection of all published "Gateway"... the ARRL Packet Radio newsletter. As big as the ARRL HANDBOOK. © 1985 over 1000 pages.
AR-CN6 Softbound $17.95

5th COMPUTER NETWORKING CONFERENCE PAPERS © 1986
AR-CN5 Softbound $9.95

6th ARRL COMPUTER NETWORKING CONFERENCE © 1987
August 1987
AR-CN6 Softbound $9.95

7th ARRL COMPUTER NETWORKING CONFERENCE © 1988
AR-CN7 Softbound $11.95

INTRODUCTION TO PACKET RADIO
by Phil Anderson, WBX1
This book contains a broad overview of packet radio for the beginner. Simple technical discussions are designed to inform, not scare the beginner. © 1988 58 pages 1st Edition IPR
Softbound $2.95

PACKET COMMAND
by Buck Rogers, K4ABT
This book is a basic look at packet radio from the inside out. Simple commands are grouped together with simple easy-to-understand explanations. © 1986 58 pages 1st Edition KT-PC
Softbound $2.95

ADVANCED PACKET
by Buck Rogers, K4ABT
This book looks at the more advanced side of packet operation. Includes: 2400 baud data transfer, TDX, and VEDIX, packet cluster information and more. © 1988 58 pages 1st Edition KT-AP
Softbound $2.95

DIGITAL COMMUNICATIONS WITH AMATEUR RADIO
special AEA editors by Jim Grobb, K6EI
Starts with a basic review of digital communications and techniques and includes a complete description of what packet radio is all about. TNCs, operating modes, networking are all fully covered in easy-to-understand terminology. Also covered are accessories, innovations and interesting organizations you can join. © 1988, 1st Edition, 160 pages AEA-PKT
Softbound $9.95

Please enclose $3.50 shipping and handling.

HAM RADIO'S BOOKSTORE
Greenville, NH
03048
(603) 878-1441

Tell 'em you saw it in HAM RADIO!
ANNOUNCES

THE NEXT GENERATION

The amplifiers you have been waiting for!

DESIGNED FOR QUALITY AND VALUE!

Every effort has been made in the design of these amplifiers to offer the highest specifications possible, provide the ultimate in reliability, and still keep prices affordable. Compare these amps with all others on the market! You'll be glad you waited for the NEX T generation of solid-state amplifiers from MIRAGE/KLM!

144 MHz Amplifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>Power In</th>
<th>Power Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1016-G</td>
<td>10W</td>
<td>160W</td>
</tr>
<tr>
<td>B-3016-G</td>
<td>30W</td>
<td>160W</td>
</tr>
<tr>
<td>B-215-G</td>
<td>2W</td>
<td>150W</td>
</tr>
</tbody>
</table>

220 MHz Amplifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>Power In</th>
<th>Power Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1012-G</td>
<td>10W</td>
<td>120W</td>
</tr>
<tr>
<td>C-3012-G</td>
<td>30W</td>
<td>120W</td>
</tr>
<tr>
<td>C-211-G</td>
<td>2W</td>
<td>110W</td>
</tr>
</tbody>
</table>

13.8 vDC

New protection circuitry automatically reduces the output power to prevent damage to output transistors and even returns the amplifier to full power automatically when problem is cleared!

New GaAs-FET pre-amp designs provide gain of over 25 db and a noise figure of less than .6 db!

Picture this... You know your station... You are at home with your gear... all the knobs, switches, meters... QSY's are no big deal, you could do them in your sleep (and you probably have!).

Now, picture this... It's contest time, multi-op... do you worry about your gear?... NO! At least not your amps... your station amps are bullet-proof. Point and shoot, no tune, no touch. From 160 meters to 70 cm...

YOUR AMPS ARE MIRAGE!

Each of the four following amplifiers provide...

- Bullet-proof, thermal shutdown... VSWR shutdown... over-current shutdown...
 - 120% ICAS duty cycle... air-cooled... fan hood available...
 - Active cooling kit available for 100% key-down duty cycle.
- Available with or without power supply... power supply rated 100% duty cycle.

TWO 144-MHz Amplifiers

Finally, a ruggedized high-speed RF switching relay that takes the punishment SSB-op's demand... 5mS or less typical switch-time...

- Dual-gate GaAs MES-FET pre-amp... 22 db typical gain.
- Wide, dynamic range for overload protection... 1 db compression > +4 dbm.
- Available with power supply... power supply rated 100% duty cycle.

30W in - 300W out

| Linear curve: 1W - 30W, 45W max |
| 13.8 vDC | 32 amps max. |
| 440 watts (DC) | 68% efficiency |

30W in - 600W out

24v DC

TWO H-F Amplifiers

(Awaiting FCC Type-Acceptance)

The Band-Pass filter allows wideband performance while meeting FCC specifications...

1.8 - 4.0 MHz 9 - 15 MHz 4.0 - 9.0 MHz 15 - 50 MHz

Typical harmonic - 50 dB

50W in - 800W out

| 13.8 vDC |
| 1,215 watts (DC) | 88 amps |
| Available with power supply |

50W in - 1,500W out

| 48.0 vDC |
| 110/220 - 50/60 cycles |
| Auto-Band switch Vacuum Relay |
| Full QSK 100% key-down forever |
| Power Supply included |
Introducing the next generation in packet performance: A complete line of affordable 9600 baud packet equipment to support both network nodes and local packet users. The modem is based on PacComm's successful 9600 baud commercial modem design (exclusively licensed from James Miller, G3RUH). It is a high performance FSK design using innovative signal processing techniques to comply with FCC bandwidth limitations on the 6 and 2 meter amateur bands as well as higher frequencies. The modem connects to the radio internally and may not be suitable for use with all existing radios.

Other packet manufacturers plan to offer equipment compatible with the PacComm 9600 Packet System.

MODEM CARD - Add on internal modem card for TNC-2 and clones, and all PacComm TNCs... $99.95 fully tested and ready to install. (Avail. Now)

EXTERNAL MODEM - Encased 9600 baud modem with front panel LED displays and cabling for most popular packet controllers including the PK-232... $159.95. (Avail. late April)

HIGH SPEED DIGITAL RADIO - Digital transceiver consisting of digital 2-5 watt RF deck and 9600 baud modem... $329.95 to $399.95 (Avail. in May)

COMPLETE HIGH SPEED PACKET UNIT - Integrated digital transceiver, packet TNC and 9600 baud modem ready to attach to your computer or terminal and antenna... $449.95 to $519.95 (Avail. in June)

PacComm • 3652 West Cypress Street • Tampa, Florida 33607

Please send info on: [] FREE Catalog

Name ___________________________ Address ___________________________

State Zip Cards Exp Date

MONEY BACK GUARANTEE: Add $4.00 shipping handling per order. FL residents add 6% sales tax.

FAX: 813-872-8696
A REMOTE DRIVER/CONTROLLER FOR A TWO-ANTENNA SYSTEM

By William L. Schreiber, NH6N, 73-4327 Imo Street, Kailua-Kona, Hawaii, 96740

Set azimuth and elevation from the comfort of your shack

This article describes a simple light-duty, dual-rotator assembly that allows you to set the azimuth and elevation of two lightweight, low wind load antennas by remote control. It's ideally suited for satellite operation, with uplink and downlink antennas each requiring different orientation.

A variety of rotators — including one that combines azimuth and elevation in a single housing — are readily available. Because I wanted an azimuthal rotator with a silent control box, I chose a Winegard TV rotator that cost about $40. For elevation, I decided to use the approach that had been so successful in my solar panel sun tracker. That plan involved using a 12-volt DC Mazda windshield wiper motor (about $3 at the junkyard) and a 2-foot length of threaded 1/2-inch steel rod. A 3-inch flexible coupling was used to compensate for mechanical misalignment. I tried using a 3-inch piece of auto heater hose and two hose clamps initially, but the combination of sun and mechanical stress caused this arrangement to fail after about six months.

The elevation assembly consists of two 6 x 8-inch pieces of 1/4-inch aluminum plate connected by a 1-inch piano hinge. A 5-foot long x 2-inch diameter fiberglass rod (manufactured by KLM) is used as the boom and an antenna is mounted at each end. The boom is rotatable through 90 degrees with a lead screw mechanism like the one in the solar panel setup. The other plate (which becomes the base) has a floor flange bolted to it; a 2 foot length of 1-inch water pipe is screwed into the flange. The pipe is then attached to the Winegard rotator which is bolted to the mast.

The windshield wiper motor is bolted to another 6 x 8-inch piece of 1/4-inch thick aluminum plate which is attached to the opposite side of the base plate by another 1-inch piano hinge. This assembly permits the motor to move up and down as it turns the lead screw and offers further compensation for mechanical misalignment (see photos).
THE QSL BOOK!
Continuing a 68 year tradition, we bring you three new Callbooks for 1989, bigger and better than ever!

The North American Callbook lists the calls, names, and address information for 495,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists 500,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1989 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1, 1989, this combined Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

Every active amateur needs the Callbook! The 1989 Callbooks will be published December 1, 1988. Order early to avoid disappointment (last year's Callbooks sold out). See your dealer now or order directly from the publisher.

- North American Callbook incl. shipping within USA $29.00
 incl. shipping to foreign countries 35.00
- International Callbook incl. shipping within USA $32.00
 incl. shipping to foreign countries 38.00
- Callbook Supplement, published June 1st incl. shipping within USA $13.00
 incl. shipping to foreign countries 14.00

SPECIAL OFFER
- Both N.A. & International Callbooks incl. shipping within USA $58.00
 incl. shipping to foreign countries 68.00

Illinois residents please add 6 1/2% tax. All payments must be in U.S. funds.

RADIO AMATEUR CALLBOOK INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA

Tel: (312) 234-6600
Antenna mounted part of elevation control. VHF/UHF antenna.

PHOTO B

Side view of elevation drive with windshield-wiper motor attached.

It takes about 3 minutes for the antennas to go from 0 to 90 degrees elevation. There’s a potential problem here, however, with the antennas not visible from the station: they could be inadvertently driven below 0 degrees or above 90 degrees, and this could destroy the system. To prevent this, and to make the system as foolproof as possible, I installed two Microswitch limit switches at each extreme of elevation travel. One causes an LED (RS-276-036) to blink in the shack just before the whole system hits bottom or top; the other activates an antenna-mounted timer and relay that automatically reverses the motor for 30 seconds.

A circuit built for this purpose is shown in fig. 1. A manually-triggered monostable that uses an LM555 is employed. When the first limit switch is activated, a ground is placed on a blinking LED in the station, signaling the operator to reverse the motor control switch promptly. If the operator doesn’t respond quickly enough, a second switch is activated, powering up the timer and causing the relay to change state and reverse the motor. This continues for about 30 seconds, which should be plenty of time for the operator to recognize the error. The 555 times out, the relay releases, and regular motor control can now occur.

April 1989
Elevation control + indicator.

The whole assembly is bolted to the lower antenna mounting plate and encased in a 3 x 5 x 2-inch weather-tight plastic box.

elevation angle indicator

This design provides a simple, reliable elevation angle indicator. Instead of choosing an old-fashioned analog meter, I opted for a bank of LEDs.

A nice circuit for this indicator (fig. 2) is one originally intended for use as a voltmeter and described in the *National Linear Data Book.* The driver IC is available from Radio Shack (No. 276-1707) or other vendors. The LEDs, also from Radio Shack (276-081), come in a nice ten-element block. Controls P1 and P2 adjust the point at which the bottom and top LEDs activate. It’s necessary to set these alternately as the antenna is elevated and depressed, so that the array starts at 0 degrees rather than 90 degrees, and also so that the whole array is lit at maximum elevation and unlit at minimum. This takes a bit of juggling back and forth, as well as setting the antenna pot so that it covers a full 90 degrees before it hits the stops. Doing this isn’t as complex as it sounds, but does require two people: the operator in the station and a helper at the antenna.

Right front view of elevation drive at maximum elevation showing fiberglass rod support for antenna. Also shown is electronics box with limit switch control circuit.
Huge pileups, big city QRN, no spare parts, and a long way to anywhere. You probably couldn't find a better test of the new SB-1400 All-Mode Transceiver than Heath's expedition to Taipei in the Republic of China.

When working DX, you need sensitivity to dig for the weak ones, but still need dynamic range so the guy down the block doesn't clobber you in the middle of a QSO. Sure, the SB-1400 worked the S9 + 30 signals, but out of the pile-ups it also worked a number of stateside stations running 5 watts or less! And that's not bad for a short path distance of 7600 miles!

SB-1400

A proven transceiver.

The technology that worked the world can work for you, too, in your own ham shack. The SB-1400 is a fully assembled all-band, all-mode (FM optional), continuous duty, 100-watt transceiver. It incorporates an impressive general coverage receiver with dual VFOs for split operation and 20 memories to store your favorite frequencies. The unit includes standard SSB filter plus a narrowband 500 Hz CW filter and wideband AM filter. It also features clarifier (RIT), front panel AGC, noise blanker, all mode squelch, 20 dB attenuator, computer interface, and a clean, "operator preferred" front panel layout.

The transmitter's PA is cooled by a quiet, thermostatically controlled internal fan and is enclosed in its own diecast aluminum heat-sink chamber, which allows for full power operation in CW, SSB, FM and RTTY, AMTOR, SSTV, and Packet.

Heath offers you more.

In addition to the SB-1400, Heath offers a full line of pre-assembled or build-it-yourself amateur radio equipment to completely outfit your ham shack or upgrade your system.

You can also prepare for your next exam (Novice, Technician, General, Advanced or Extra class) with Heath study courses.

Finally, as a Heath-equipped ham, you can get answers to your technical questions from our tech consultants, who are licensed ham operators, on the Heath Tech Assistance line.

For more information on the SB-1400 or Heath's complete line of amateur radio equipment, call for a FREE catalog: 1-800-44-HEATH (1-800-444-3284)

Best to start with. Best to stay with.

Heath Company
Benton Harbor, Michigan 49022
©1989, Heath Company.
A subsidiary of Zenith Electronics Corporation.

“Thanks for the new country (Taiwan)! Your Heath gear sounds great!”

K3YGU, Maryland
The World Famous
MOSLEY MODEL TA-33M
YOU CAN CHANGE YOUR
TA-33 TO A TA-34!!

TA33/34 FEATURES
- 2 KW P.E.P.
- NO MEASURING
- 2 YEAR WARRANTY
- EASY, ASSEMBLY
- ALL STAINLESS STEEL HARDWARE
- CAN ADD BOTH 12 & 40 or 30 METERS
- LOW SWR

SWR/Frequency Curves
Model TA-33

MOSLEY PRO-57/67

PRO 57-67 FEATURES
- Covers 10/12/15/17/20 Meters
- PRO-67 has 2 Elements on 40 Meters
- Monobander Performance!
- Dual Driven Elements Add Gain
- 7 Elements on a 24 Foot Boom
- 2.5 KW DC-CW, 5 KW PEP-SSB
- Broadbanded — VSWR 1.5:1 or Better!
- Easy Assembly, NO MEASURING!!!!
- Very Rugged Construction
- All Stainless Hardware Standard
- 2 Year Warranty

YOU MAY NOW ALSO PURCHASE MOSLEY ANTENNAS DIRECT
FROM THE FACTORY. FOR A FREE CATALOG ON OUR COMPLETE
LINE OF ANTENNAS OR TO ORDER, PLEASE CALL OR WRITE.

OUTSTANDING PERFORMANCE
with MOSLEY ANTENNAS

1344 BAUR BOULEVARD, ST. LOUIS, MO 63132

NOW ALL THESE ANTENNAS ARE UPS SHIPPABLE
Here's YOUR chance to comment on this issue of HR and enter our monthly radio drawing. Carefully read all the articles in this issue. Then, rate each article in this issue. Also let us know what you think of our changes to the magazine. Each article is marked with a letter on the last page.

Article

Article	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	
I LIKE IT																				
OK																				
SORRY, NO.																				

1. Are you employed in the electronics industry: □ Yes □ No
2. If so, what field: □ RF □ Digital □ Analog □ Computer
3. Do you affect purchasing decisions for your company: □ Yes □ No
4. Is Ham Radio: □ too technical □ just right □ not technical enough

NAME

ADDRESS

CITY

STATE

ZIP

APRIL 89

Subscribe to HAM RADIO today. Tap into Amateur Radio's #1 technical and building journal. You'll also save $7.05 off the newsstand price ($30 per year)! Fill out this card and mail it in.

For even more prompt service, call TOLL FREE (800) 341-1522, MasterCard, VISA and Bill Me orders accepted. Phone lines open Monday thru Friday 8 a.m. to 9 p.m. Please, orders only.

□ Bill me □ Payment enclosed

Name ____________________________

Address __________________________

City ____________________________ State __________________________

□ Check if this is a renewal APRIL 1989

Please allow 4-6 weeks for delivery of first issue.

FOREIGN RATES: Europe via Air Forwarding Service $40 per year. All other countries $31.00 per year.

For FREE literature or more information, first locate the company number at the bottom of the ad. Circle the appropriate number on this card, affix postage and drop into the mail. We'll hustle your request off to the companies you are interested in.

HAM RADIO Reader Service

<table>
<thead>
<tr>
<th>101</th>
<th>113</th>
<th>125</th>
<th>137</th>
<th>149</th>
<th>161</th>
<th>173</th>
<th>185</th>
<th>197</th>
<th>209</th>
<th>221</th>
<th>233</th>
<th>245</th>
<th>257</th>
<th>269</th>
<th>281</th>
<th>293</th>
<th>305</th>
<th>317</th>
<th>329</th>
<th>341</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>114</td>
<td>126</td>
<td>138</td>
<td>150</td>
<td>162</td>
<td>174</td>
<td>186</td>
<td>198</td>
<td>210</td>
<td>222</td>
<td>234</td>
<td>246</td>
<td>258</td>
<td>270</td>
<td>282</td>
<td>294</td>
<td>306</td>
<td>318</td>
<td>330</td>
<td>342</td>
</tr>
<tr>
<td>103</td>
<td>115</td>
<td>127</td>
<td>139</td>
<td>151</td>
<td>163</td>
<td>175</td>
<td>187</td>
<td>199</td>
<td>211</td>
<td>223</td>
<td>235</td>
<td>247</td>
<td>259</td>
<td>271</td>
<td>283</td>
<td>295</td>
<td>307</td>
<td>319</td>
<td>331</td>
<td>343</td>
</tr>
<tr>
<td>104</td>
<td>116</td>
<td>128</td>
<td>140</td>
<td>152</td>
<td>164</td>
<td>176</td>
<td>188</td>
<td>200</td>
<td>212</td>
<td>224</td>
<td>236</td>
<td>248</td>
<td>260</td>
<td>272</td>
<td>284</td>
<td>296</td>
<td>308</td>
<td>320</td>
<td>332</td>
<td>344</td>
</tr>
<tr>
<td>105</td>
<td>117</td>
<td>129</td>
<td>141</td>
<td>153</td>
<td>165</td>
<td>177</td>
<td>189</td>
<td>201</td>
<td>213</td>
<td>225</td>
<td>237</td>
<td>249</td>
<td>261</td>
<td>273</td>
<td>285</td>
<td>297</td>
<td>309</td>
<td>321</td>
<td>333</td>
<td>345</td>
</tr>
<tr>
<td>106</td>
<td>118</td>
<td>130</td>
<td>142</td>
<td>154</td>
<td>166</td>
<td>178</td>
<td>190</td>
<td>202</td>
<td>214</td>
<td>226</td>
<td>238</td>
<td>250</td>
<td>262</td>
<td>274</td>
<td>286</td>
<td>298</td>
<td>310</td>
<td>322</td>
<td>334</td>
<td>346</td>
</tr>
<tr>
<td>107</td>
<td>119</td>
<td>131</td>
<td>143</td>
<td>155</td>
<td>167</td>
<td>179</td>
<td>191</td>
<td>203</td>
<td>215</td>
<td>227</td>
<td>239</td>
<td>251</td>
<td>263</td>
<td>275</td>
<td>287</td>
<td>299</td>
<td>311</td>
<td>323</td>
<td>335</td>
<td>347</td>
</tr>
<tr>
<td>108</td>
<td>120</td>
<td>132</td>
<td>144</td>
<td>156</td>
<td>168</td>
<td>180</td>
<td>192</td>
<td>204</td>
<td>216</td>
<td>228</td>
<td>240</td>
<td>252</td>
<td>264</td>
<td>276</td>
<td>288</td>
<td>300</td>
<td>312</td>
<td>324</td>
<td>336</td>
<td>348</td>
</tr>
<tr>
<td>109</td>
<td>121</td>
<td>133</td>
<td>145</td>
<td>157</td>
<td>169</td>
<td>181</td>
<td>193</td>
<td>205</td>
<td>217</td>
<td>229</td>
<td>241</td>
<td>253</td>
<td>265</td>
<td>277</td>
<td>289</td>
<td>301</td>
<td>313</td>
<td>325</td>
<td>337</td>
<td>349</td>
</tr>
<tr>
<td>110</td>
<td>122</td>
<td>134</td>
<td>146</td>
<td>158</td>
<td>170</td>
<td>182</td>
<td>194</td>
<td>206</td>
<td>218</td>
<td>230</td>
<td>242</td>
<td>254</td>
<td>266</td>
<td>278</td>
<td>290</td>
<td>302</td>
<td>314</td>
<td>326</td>
<td>338</td>
<td>350</td>
</tr>
<tr>
<td>111</td>
<td>123</td>
<td>135</td>
<td>147</td>
<td>159</td>
<td>171</td>
<td>183</td>
<td>195</td>
<td>207</td>
<td>219</td>
<td>231</td>
<td>243</td>
<td>255</td>
<td>267</td>
<td>279</td>
<td>291</td>
<td>303</td>
<td>315</td>
<td>327</td>
<td>339</td>
<td>351</td>
</tr>
<tr>
<td>112</td>
<td>124</td>
<td>136</td>
<td>148</td>
<td>160</td>
<td>172</td>
<td>184</td>
<td>196</td>
<td>208</td>
<td>220</td>
<td>232</td>
<td>244</td>
<td>256</td>
<td>268</td>
<td>280</td>
<td>292</td>
<td>304</td>
<td>316</td>
<td>328</td>
<td>340</td>
<td>352</td>
</tr>
</tbody>
</table>

APRIL 89
in fact, it's still much wider in practice than the 9 degrees represented by a single LED.

My station operates almost entirely from a 12-volt storage battery kept charged by a photovoltaic (PV) panel. There’s no reason why you can’t get by with regular 120-volt service.

References

All that’s needed to actuate the circuit is a variable source of DC representing elevation angle. A clever way to do this appeared in the Amateur press several years ago. A good-quality linear potentiometer is mounted in a waterproof box on the elevation part of the antenna. The potentiometer shaft has a 1/2-pound lead fishing weight attached; this keeps the shaft vertical no matter what elevation angle occurs. Feed the pot with 12 volts DC on one end, ground the other, and pick off the elevation-dependent voltage from the center tap. This goes to pin 5 of the LM 3914 driver IC, where it’s conditioned and trimmed to light the LEDs progressively.

I opted for ten LEDs to indicate 9 degrees each, which might be too coarse for a purist. It’s a simple matter, however, to cascade as many LEDs as desired; a circuit for this purpose is included in reference 2.

While the antennas have a rather narrow beamwidth,
If you are monitoring only voice shortwave stations, you are missing half the action! Thousands of shortwave stations transmit in non-voice modes such as Morse code, various forms of radiotelegraph (RTTY) and facsimile (FAX). The Universal M-7000 will permit you to easily decrypt and decode these transmissions. Simple connections to your shortwave receiver and video monitor will enable you to monitor with the most sophisticated surveillance decoder available. No computer is required. See the world of shortwave excitement you have been missing. Requires 115 or 230 VAC. Six month limited warranty.

Universal M-7000 Introductory Pricing:
- Standard M-7000 .. $ 999.00
- With Real Time Clock Option $1059.00
- With Video FAX Option $1089.00
- With Clock & Video FAX Option $1129.00
- Shipping/Handling (USA) $ 11.00

ANTENNA ANALYSIS
The new MN program will analyze almost any antenna made of wire or tubing. Compute forward gain, F/B, beamwidth, sidelobes, current, impedance, SWR, nearfields, and far-fields, in free space or over realistically-modeled earth. Plot antenna radiation patterns on your graphics screen. MN computes the interaction among several nearby antennas. The 5-1/4" MN disk contains over 160 files, including libraries of antenna and plot files, a file editor, and extensive documentation. MN is an enhanced, easy-to-use version of MININEC for IBM-PC. $75 ($80 CA & foreign).

YAGI OPTIMIZER
The remarkable new YO program automatically adjusts Yagi element lengths and spacings to maximize forward gain, optimize pattern, and minimize SWR. Radiation patterns at head center and edges are updated on your screen during optimization. YO is extremely fast, computing several thousand Yagi designs per second with 8087. YO is a complete Yagi design package for IBM-PC containing models for gamma and hairpin matches, element tapering, mounting plates, and frequency scaling. A library of Yagi files and extensive documentation are included. $90 ($95 CA & foreign).

To order, send a check to:
Brian Beasley, K8BST, 567-1/2 Taylor, Via, CA 92084
THE CONVOLUTED LOOP

Here's a small, very efficient, low-band radiator

By Ted Hart, W5QJR, P.O. Box 334, Melbourne, Florida 32902

A small loop antenna can provide excellent performance for both transmitting and receiving. The convoluted loop in fig. 1 is a single conductor configured to produce two orthogonal loops. This results in an antenna with high performance, small size, and an almost ideal radiation pattern for operation at the low end of the HF spectrum. The antenna is designed for mounting at ground level over a small counterpoise; its height is less than 0.04 wavelength.

Theory

Table 1 lists the equations developed to define the convoluted loop. The computer program at the end of this article is based on these equations.

The efficiency of any antenna is defined as the ratio of the radiated power to input power. This is conveniently expressed as the radiation resistance divided by the sum of the radiation resistance plus loss resistance. Because small antennas are characterized by low radiation resistance, efficiency is a major concern. On the other hand, large antennas have a high radiation resistance compared with the loss in the antenna conductor.

The radiation resistance for a small loop antenna is dependent on the area enclosed by the conductor and the operating frequency. The antenna will become self-resonant if the conductor length is greater than 1/3 wavelength due to distributed capacity. This sets the maximum length of the conductor. The equations

FIGURE 1

Physical layout of the "convoluted loop."
Satellite TV is still full of the wonderment that made it so popular in the early '80s. The tinkerers are there, the programming is there, and never has the cost of becoming a dish owner been so low.

So, how do you find out about this exciting entertainment?

Through publications devoted specifically to satellite TV, that's how!
reflect the fact that a single conductor forms two loops for this antenna. When a reflecting screen is placed under the loop, the effective area of the loop doubles because of the image concept. In the equation for area, the multiplier of 4 covers both the dual loops and their reflected images. For a square loop design, each side of one loop is the total conductor length divided by 8. The maximum area is achieved for a given conductor length when the conductor is circular. The area is reduced to 87 percent for an octagon and to 78 percent for a square, when compared with a circle. For mechanical simplicity, a square loop with a reflecting screen is used for the example in this article.

The small loop area results in low values of radiation resistance. The primary component of loss resistance results from the loss in the conductor; a small component is due to ground loss, which will be discussed later. Therefore, a low-loss conductor is required. To minimize loss, use copper pipe. The equation for loss resistance includes skin effect loss for copper pipe, which varies as a function of frequency.

Although efficiency is a major design parameter for any antenna, the Q of the antenna must be considered for small high-efficiency ones. Large diameter conductors allow the Q to be sufficiently high to affect the instantaneous bandwidth in such a way that it may be too narrow for the type of modulation desired. High Q is also an indication of very high voltages across the tuning capacitor. Small conductors, which have higher loss resistance, will produce lower Q and lower efficiency. For this reason, it's necessary to make tradeoffs in the design of the convoluted loop for a particular application. For most applications in the HF frequency range, 3/4-inch copper pipe (9/10 inch outside diameter) is a reasonable compromise. Figure 2 presents efficiency versus frequency for various size conductors, indicating only small improvements for larger, more expensive, copper pipe.

The equations for inductance and distributed capacity are based on data derived from convoluted loops of varied sizes at various frequencies—primarily between 1.8 and 10 MHz. The tests were performed on the latest version of MININEC3. They have been derived for 3/4-inch copper pipe and square loops only. Once the inductance and distributed capacity have been calculated, the convoluted loop is considered a simple resonant circuit. This lets you calculate the inductive reactance and the tuning capacitor value. Multiply the equation for inductance by a value of 1.13 to cover the effect of the matching network. The matching network is an autotransformer type of match, having both series and mutual inductance.

You can calculate the Q of the antenna once you know the inductance and resistance. Divide the standard equation for Q by 2 to include the effect of the transmitter/receiver loading; it's the system Q that is important, not the Q of the antenna as a stand-alone component. The calculated bandwidth of the antenna is ±3 dB bandwidth, assuming a perfect match (VSWR = 1.0:1) at resonance. At the 3-dB frequencies the calculated VSWR is 5.1:1 and the resistance and reactance values are equal, resulting in a 45-degree phase shift of the equivalent resonant circuit.

The voltage across the tuning capacitor is a function of the transmitter power and the antenna impedance. Despite the fact that the voltage can be very high, it's not excessive for available tuning capacitors. Although vacuum variables are preferred, the spacing for an air variable is calculated based on 75,000 volts per inch spacing.
Antenna evaluation

Figure 3

Figure 4

Figure 5
A 120-foot dipole at 60 feet for 4 MHz. Azimuth pattern at an elevation angle of 10 degrees over sandy soil.

The long sides of the loop, formed to the inside of the loop antenna orthogonal to the loop that includes the tuning capacitor. The spacing between the feeder and loop conductor and the length of the feeders determine the feedpoint impedance. Once you've soldered the ends of the feeders, bending the feeders to vary the spacing will let you achieve a very low VSWR. This is only one of many ways to feed this antenna; I find it the most convenient.

The loop develops a very high magnetic field. If the loop is placed close to ferrous metal, like reinforcing material in concrete, some rain gutters, or antenna towers, RF energy will be coupled into the ferrous material. This reflects a change of impedance into the loop, increasing its loss resistance and decreasing its efficiency. Because of its magnetic properties, the convoluted loop isn't sensitive to electrostatic fields (the major cause of reception of man-made noise). You'll notice a significant improvement in signal-to-noise reception in noisy areas. In theory, the value is 26 dB. As a result of the high Q, the antenna serves as a preselect filter prior to the receiver. This improves reception in the presence of impulse noise, especially from lightning during thunderstorm activity.

Earlier I suggested that the antenna should be used in conjunction with a counterpoise. Figures 3, 4, and 5 present radiation patterns derived from MININEC3 for a 10-foot tall convoluted loop operating at 4 MHz with a counterpoise made of 120 radials — each having a length equal to twice the height of the antenna. Because you're dealing with the reflected energy only (not conducted energy), the radials don't need to be connected to the loop. All patterns presented in this article are over a ground with a dielectric constant of 10 and a conductivity of 0.002 siemens, representing

A 120-foot dipole at 60 feet for 4 MHz. Elevation pattern cut in plane of dipole over sandy soil.

A 40-meter convoluted loop using 120 quarter-wavelength radials over typical earth.
60 foot vertical antenna with 120 quarter-wavelength radials. Elevation cut at 4 MHz.

FIGURE 10

Example of the prompts encountered when running the program for determining the parameters of a convoluted loop.

Antenna performance for various total conductor lengths. Tuning capacitor values are indicated in pF at various points on each conductor’s line.

sand soil in Florida. The patterns are based on antennas with perfect conductors. Actual patterns can be determined by reducing the pattern gain by the efficiency calculated for a particular size antenna. Figures 6, 7, and 8 are presented for comparison based on a dipole over the same ground. Figure 9 is a convoluted loop at 7 MHz over 120 1/4-wavelength radials, and fig. 10 is a 1/4-wavelength vertical with 120 1/4-wavelength radials, given for comparison.

It's important to note (see fig. 9) that hemispherical coverage is achieved, allowing the antenna to be used for both local and long range communications. As a result of its magnetic properties, a loop antenna produces significant radiated energy at low elevation.
FT-747GX
- 100 Watts of Economical Performance
- Dual VFO's, 20 Memories
- Receives from 100 kHz-30 MHz
- Built-in CW Filter + More

FT-212 RH
- 2 Meter Mobile
- Optional, Internal Digital Voice Recorder
- RX 138-174 MHz
- TX 144-148 MHz
- 45 Watts Output
- FT-712 RH Available for 70cm

IC-32AT
- New Dual Band HT
- RX 138-174 MHz
- TX 140-150 MHz
- 5 Watts Output on Both Bands
- Full Duplex & 20 Memories

IC-228A
- 25 Watt, 2 Meter FM Mobile
- RCV 138-174 MHz
- TX 140-150 MHz
- 20 Memories

Kantronics
- Packet, WEFAX, ASCII, AMTOR, RTTY, CW
- Simultaneous Operation on HF and VHF

ALINCO
- DR-110T
- NEW 2 Meter Mobile
- 45 Watts Output
- 14 Memories with Standard Encode/Decode Subaudible Tones
- CAP and MARS Modifiable

DATONG/ GILFER for better listening
DATONG AUTOMATIC FILTERS/BLANKERS
CLEAN UP RECEPTION FL-3 Audio Filter provides 12 poles of tunable filtering to dig out weak signals, remove interference automatically. Easy to connect. $229.95 (+ $4). Model SRB2. Woodpecker Blanket blanks out Russian radar interference automatically. $169.95 (+ $2.50).

ALINCO
- DF-910
- 9 Watt, 2 Meter Mobile
- RCV 138-174 MHz
- TX 140-150 MHz
- 20 Memories

GTI Electronics
- Wideband Preamplifier 10-1000 MHz
- Dual GaasFet low noise preamplifier for HF, UHF or VHF systems. Just perfect for the R-7000. Excellent for Spec Analyzers, Scanners, etc. Gain 20 Db +/- 1 Db, -3 Db at 2 & 1100 MHz. 1 Db compression of >10 Dbm. Intercept points > 45 Dbm. New shipped price of only $124.95. Pa. residents please add 6% state tax.

Reader Service CHECK—OFF Page 118
ANTENNA BOOKS

BEVERAGE ANTENNA HANDBOOK
by Victor Misek, W1WCR
Misek delves deep into the secrets of the single wire Beverage and SVA (Steerable Wave Antenna) with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Transformer design information for both termination and feedline matching is completely revised. ©1987 96 pages 2nd Edition
[Softbound $14.95]

HF ANTENNAS FOR ALL LOCATIONS
by L.A. Moxon, G8XN
As a rule, Amateurs in the U.K. are subject to more restrictive regulations. As a result, they have done extensive work on optimizing performance of less than full sized antennas. This book is divided into two parts. Part I covers theory and how antennas work. Part II puts theory into practice with beams, wire arrays, mobile and portable antennas plus much more. ©1982, 1st Edition
[Softbound $14.95]

TRANSMISSION LINE TRANSFORMERS
by Jerry Sevick, W2FMI
Contains a complete explanation and discussion of transmission line transformers and how to use them. Written by one of the experts in the field—this book is full of helpful information. ©1987 1st Edition 144 pages
[Softbound $9.95]

YAGI ANTENNA DESIGN
by Dr. James Lawson, W2PV
W2PV was known worldwide as one of the most knowledgeable experts on antenna design and optimization. This book is full of his current working "trade secrets." Eight chapters cover performance calculations, Simple Yagi antennas, Yagi antenna performance optimization, Loop Antennas, The effects of ground, Stacking, Practical design, and Practical Amateur Yagi antennas. Every Ham should get a copy for their shelf. ©1985 1st Edition
[Hardbound $14.95]

THE AMATEUR RADIO VERTICAL HANDBOOK
by Cpl. Paul H. Lee, USN (Ret.), NSPL
Based upon the author's years of work with a number of different vertical antenna designs, you'll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for simple 1/4 and 5/8 wave antennas as well as broadband and multi-element directional antennas. ©1984, 2nd Edition
[Softbound $9.95]

W1FB'S ANTENNA NOTEBOOK
by Doug DelMaw, W1FB
Antennas have been one of DelMaw's passions in Amateur Radio. He has worked with countless designs of all shapes and configurations. This fully illustrated book gives you how-to instructions on a number of different wire and vertical antennas. Also includes information on radial systems, tuners, baluns and impedance transformers. ©1987, 120 pages
[Softbound $7.95]

ARRL ANTENNA COMPENDIUM
by ARRL Staff
QST gets far more antenna articles than it can publish. This collection is taken from the best submissions and represents a wide range of subjects—from quads and loops to general information about the field. This book has 70 articles. ©1985 1st Edition
[Softbound $9.95]
angles. This also confirms that there is very little ground loss for this antenna.

On-the-air tests, in comparison with other antennas, have confirmed the performance of the convoluted loop and verified the performance indicated by the patterns derived from MININEC3. Measurements on the antenna also confirm the accuracy of the equations. A sample run of the computer program is shown in fig. 11, to assist those who want to develop a convoluted loop antenna for a particular application. Figure 12 presents a set of data run from the program.

The convoluted loop is a result of efforts to design a high-performance antenna requiring very little space. I hope others will modify this design (perhaps by putting a "twist" to the conductor) and achieve an antenna design that's truly nondirectional.

References

Article K

HAM RADIO

MICROWAVE MODULES EQUIPMENT
Use your existing HF or VHF rig on other VHF or UHF bands.

<table>
<thead>
<tr>
<th>RECEIVE CONVERTERS</th>
<th>LINEAR TRANSVERTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMc 144-29(HP)</td>
<td>MMI 144-28</td>
</tr>
<tr>
<td>MMc 435-28(S)</td>
<td>MMI 220-38</td>
</tr>
<tr>
<td>MMc 435-ATV</td>
<td>MMI 435-28(S)</td>
</tr>
<tr>
<td>MMx 1296-144</td>
<td>MMx 1296-144</td>
</tr>
<tr>
<td>MMx 1691-137</td>
<td>MMx 1296-144</td>
</tr>
<tr>
<td>$ 95</td>
<td>$ 280</td>
</tr>
<tr>
<td>$ 110</td>
<td>$ 310</td>
</tr>
<tr>
<td>$ 120</td>
<td>$ 399</td>
</tr>
<tr>
<td>$ 260</td>
<td>$ 499</td>
</tr>
<tr>
<td>$ 330</td>
<td>$ 415</td>
</tr>
</tbody>
</table>

ANTENNAS

<table>
<thead>
<tr>
<th>LOOP YAGIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>137 Wx: 1296-LY</td>
</tr>
<tr>
<td>137 Wx: 1296-LY</td>
</tr>
<tr>
<td>2M</td>
</tr>
<tr>
<td>10X Yagi-2M</td>
</tr>
<tr>
<td>10X Yagi-2M</td>
</tr>
<tr>
<td>70 cm: 70MMB26</td>
</tr>
<tr>
<td>70 cm: 70MMB26</td>
</tr>
<tr>
<td>900 MHz: 1268-XTN</td>
</tr>
<tr>
<td>900 MHz: 1268-XTN</td>
</tr>
<tr>
<td>$ 90</td>
</tr>
<tr>
<td>$ 85</td>
</tr>
<tr>
<td>$ 65</td>
</tr>
<tr>
<td>(Order converter extra)</td>
</tr>
<tr>
<td>$ 65</td>
</tr>
<tr>
<td>$ 60</td>
</tr>
<tr>
<td>(for increasing gain)</td>
</tr>
<tr>
<td>(for increasing gain)</td>
</tr>
</tbody>
</table>

See us at DAYTON Booths 66 & 67

Send 75¢ (3 stamps) for detail speciies of all VHF & UHF items and K6V crystal filters.

Prices subject to change without notice.

SPECTRUM
INTERNATIONAL, INC.
Post Office Box 1084
Concord, MA 01742, U.S.A.
LOW BAND DX-ING COMPUTER PROGRAMS
by John Daveldere, ON4UN - 30 programs for Apple II, MS-DOS, Commodore C-128 and Kaypro CPCs
Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: shunt and series inputs, network design, feedline transformer, shunt network design, SWR calculation, etc. A must for DXers!

COVERS:

- Path loss for maximum usefulness
- Callsigns include: shunt and series inputs, network design, feedline transformer, shunt network design, SWR calculation, etc.

PROGRAMS:

- Master Log: creates a file of 2100 individual records with up to 13 different entries per record. It can do a search and select based upon time, frequency, mode and keeps track of DXCC and WAS status, print QSL labels and can search its whole file in less than 5 seconds! Complete documentation is included to help you learn and use this truly state-of-the-art logging program. © 1986

- Super Log: gives you all the advantages of a computerized data base without significantly changing the traditional log format. Super Log also allows you to print out either selected contents or the whole log. Will print QSLs.

- Contest Log: This disk contains four different contest programs: ARRL Sweepstakes, Field Day, Universal VHF Contest log, plus a dupe checking routine. Automatically enters data, time, band and serial number for each contact. When the contest is over, the program will print your results listing all dups and scored contacts in serial sequence with all the necessary information as well as completed score at the bottom of the page.

- Master Log: New Version

- Super Log

- Contest Log

Please enclose $3.50 shipping and handling.

Greenville, NH 03048 • (603) 878-1441
ATTENTION: WOMEN WHO Sought EMPLOYMENT WITH THE VOICE OF AMERICA (VOA), THE UNITED STATES INFORMATION AGENCY (USIA), OR THE UNITED STATES INTERNATIONAL COMMUNICATION AGENCY (USICA) BETWEEN OCTOBER 8, 1974 AND NOVEMBER 16, 1984.

YOU MAY BE A VICTIM OF SEX DISCRIMINATION ENTITLED TO A MONETARY AWARD AND A POSITION WITH THE AGENCY.

UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA

CAROLEE BRADY HARTMAN, et al.,

Plaintiffs,

v.

CHARLES Z. WICK,

Defendant

Civil Action No. 77-2019
Judge Charles R. Richey

PUBLIC NOTICE

On November 16, 1984, the United States District Court for the District of Columbia found in this class action lawsuit that the United States Information Agency (USIA or the Agency), including the Voice of America (VOA), is liable for sex discrimination against female applicants for the following positions at the Agency. The USIA was also formerly known as the United States International Communication Agency (USICA). On January 19, 1988, the court issued its opinion ordering relief in a variety of forms to potential class members. Accordingly, this case is now in the remedial phase.

JOBS COVERED

Specifically, the Court has found that the Agency has discriminated against women in hiring in the following jobs:

- Electronic Technician (Occupational Series 856)
- Foreign Language Broadcaster (Occupational Series 1048)
- International Radio Broadcaster (Other) (Occupational Series 1001)
- International Radio Broadcaster (English) (Occupational Series 1001)
- Production Specialist (Occupational Series 1071)
- Writer/Editor (Occupational Series 1069)
- Foreign Information Specialist/Foreign Affairs Specialist/Foreign Service Information Officer/Foreign Service Officer (Occupational Series 1055 and 130)
- Radio Broadcast Technician (Occupational Series 3940)

WHO IS INCLUDED

All women who sought employment with the Agency in any of the jobs listed above between October 8, 1974 and November 16, 1984 and were not hired may be eligible for relief. Also included are those women who were discouraged from applying for these positions during that time period. Even those women subsequently hired by the Agency in some capacity may be entitled to participate in the remedial phase of this case.

Women who sought employment with the Agency as Foreign Service Officers or Foreign Service Information Officers may be eligible for different kinds of relief depending upon the date of application and whether they sought employment at the entry level or mid-level. Women who sought employment with the Agency as entry level Foreign Service Officers or Foreign Service Information Officers in the years 1974-1984 may use the procedure outlined below. Women who sought employment with the Agency as mid-level Foreign Service Officers or Foreign Service Information Officers in the years 1978-1984 cannot use the procedure outlined below, since the Court has ordered an alternative form of relief for them and selected women in this group will be notified individually as to their rights.

RELIEF AVAILABLE AND HOW TO OBTAIN IT

Relief available to class members may include a monetary award and/or priority consideration for a current position with the Agency. If you think you may be entitled to relief, you must obtain a claim form, complete it fully, and return it to counsel for the plaintiff class, Bruce A. Fredrickson, Esq., Webster & Fredrickson, 1819 H Street, N.W., Suite 300, Washington, D.C. 20006 (202) 659-8515, postmarked no later than July 15, 1989.

You may obtain a claim form in person and/or in writing from several sources: counsel for the plaintiff class, whose address is listed above; in person at USIA, Front Lobby, 301-4th Street, S.W., Washington, D.C. (8:15am-5:00pm), Office of Personal Management (OPM), Federal Job Information Center (First Floor, Room 422), 1900 E Street, N.W., Washington, D.C. (9:00am-5:00pm), or from USIA offices throughout the country; in writing, VOA-Hartman, P.O. Box 400, Washington, D.C. 20004. You should carefully consider all questions on the claim form, sign it, and return it to counsel for the plaintiff. Do not, under any circumstances, return the claim form to the Judge, the Clerk, or the Court. The Judge, the Clerk and the Clerk of the Court will not accept the claim forms and will not forward claim forms to plaintiff's counsel.

PROCESSING OF CLAIMS

The process for handling claims has not been finally decided. Thus far, the Court has ordered that responding class members demonstrate their potential entitlement to relief at an individual hearing to be scheduled at a later date. However, the Court has reserved the right to reconsider this procedure in the event the number of claims filed makes this approach unmanageable.

Should individual hearings be used, you will be fully informed as to the date and time of your hearing. Moreover, you will be entitled to legal representation by counsel for the plaintiff class or his designee at no cost to you. Legal counsel will discuss your claim with you prior to your hearing, help you prepare your case and represent you at your hearing. You may, of course, retain your own attorney to represent you, if you so desire.

At the individual hearing, you will be asked to demonstrate your potential entitlement to relief by showing that you applied for one or more of the covered positions during the period October 8, 1974 and November 16, 1984 and that you were rejected, or that you were discouraged from applying. Evidence may be required in the form of testimony, documents, or both. Once you have demonstrated these facts, USIA is required to prove, by clear and convincing evidence, that you were not hired for each position for which you applied for a legitimate, non-discriminatory reason, such as failure to possess requisite qualifications. Should USIA make such a showing, you would then be entitled to demonstrate that the Agency's reason is merely a cover for sex discrimination or unworthy of belief.

Following the hearing, the Presiding Official will decide whether you are entitled to relief and, if so, what relief is appropriate. You may be entitled to wages and benefits you would have earned if you had been hired (back pay) from the date of your rejection until the date relief is approved. Under the law, back pay is offset by earnings you may have had during the period. In addition, you may be found to be entitled to front pay (that is, compensation into the future until an appropriate position is afforded you). Similarly, you may be found to be entitled to priority consideration for employment with the Agency. If hired, you may further be entitled to retroactive seniority with the associated benefits and the value of any promotions you would likely have had if you had not suffered discrimination.

REQUIRED STEPS TO FILE YOUR CLAIM

To participate in the remedial phase, you must fully complete the claim form and return it, POSTMARKED NO LATER THAN July 15, 1989, to counsel for the plaintiff class. Your failure to do so will result in your losing all rights you may have in this lawsuit. If you have questions about your rights or procedures available to you, you may contact counsel for the plaintiff class:

Bruce A. Fredrickson
Webster & Fredrickson
1819 H Street, N.W., Suite 300
Washington, D.C. 20006
(202)659-8515

October 4, 1988

Date

/s/ Judge Charles R. Richey

United States District Court
Judge Charles R. Richey

April 1989
Voltage-variable capacitors

I'm planning a column for the near future about oscillators and what makes them work. For now I'd like to talk about one of the components used in many oscillators — a diode that acts like a variable capacitor. I thought a review of how this diode works would be useful. You may think that because it doesn't look like a capacitor, it can't act like one. But some variable capacitors can have an appearance completely different from those of earlier days and still pass the test.

For high-power use (in the power-amplifier stages of a transmitter or in an antenna-matching network, for example) the mechanically variable capacitor with its tolerance of high voltages is still the only way to go. For receiver RF amplifier stages or frequency-synthesized variable-frequency oscillators (VFOs), a little speck of plastic and metal will perform the same function as a mechanically variable capacitor — in far less space. They have other advantages as well.

How do they do that?

To understand how the process works, a physics lesson is in order. In earlier discussions of semiconductor devices like bipolar and field-effect transistors, I spoke of how they are made up of two types of material: P-type (with a scarcity of electrons) and N-type (with a surplus of electrons). These two kinds of materials can be put together to form a diode, as shown in fig. 1. Conductive leads are attached to each end to allow current flow from external sources and devices. The barrier or junction between the two materials is very thin, and a small voltage (0.6 volts for silicone devices) overcomes its resistance and permits current flow. Germanium devices require less voltage (typically 0.2 volts) to allow conduction.

It's necessary to apply forward bias to the diode to obtain conduction when you want to rectify some AC, isolate a DC source, or whatever. But things start to get interesting when you apply reverse bias to the diode.

To go back to the basic physics of the device for a moment, it's the junction (or barrier) region that's important. When the two types of semiconductor material are attached to each other, a small number of electrons from the N-side cross the barrier and fill some of the vacancies on the P-side. These vacancies are often called "holes," but they're not really holes — they're atoms that have one less electron compared with the other atoms around them. These are the "impurity" atoms that were mixed in with the basic silicon or germanium when the alloy was formed.

Over on the N-side of the barrier, some impurity atoms have an extra electron compared with those surrounding it — hence the "surplus" of electrons. When enough surplus electrons from the N-side "cross over the fence" to fill the vacancies on the P-side, the semiconductor material close to the fence on both sides has neither surplus tenants nor vacancies. (This kind of material is called type "I," for intrinsic, which is another way of saying it reverted to its original number of electrons before the impurities were mixed in.)

Take a look at fig. 2 and see what you have now. There are two types of semiconductor material, with an insulator layer in between. It's beginning to look like a basic capacitor — two conductors separated by an insulator or dielectric. Now, let's see if acts like one.
RAMSEY ELECTRONICS
Quality Test Gear & Electronic Kits for Professionals and Hobbyists

COM-3
- $2495.00
- The communications service monitor works harder for less.
- Introducing COM-3... the new service monitor designed by service technicians for service technicians. It works harder and less—giving you advanced testing capabilities with a very affordable price.

PS-2 4-CHANNEL SUPERPREAM
- $499.95
- Mfr. list $599.95
- 40W & 60W Power Amplifiers
- 100% solid state
- Greater power
- Less weight
- Total four channels
- Mfr. list $899.95

ALL NEW KITS
- **PR-2 COUNTER PREAMP**
 - The PR-2 is ideal for measuring waveforms of 20 MHz range.
 - 40W & 60W power amplifiers

PS-2 4-CHANNEL SUPERPREAM
- $499.95
- Mfr. list $599.95
- PS-2, 4000,000 Hz Carrier

FREQUENCY COUNTERS
- PS-100 1.5 GHz PRESELECTOR
 - Extends the range of your present counter to 1.5 GHz. 100 MHz step.

ACCESSORIES FOR COUNTERS
- Telfor FIRST OR BNC style.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE
- **MINI KITS—EASY TO ASSEMBLE—FUN TO USE**

AIRCRAFT RECEIVER KIT
- **SHORTWAVE RECEIVER KIT**

RADIO
- **840 & 800 MHz HAM RECEIVERS**
 - Sensitivity: 13 µV/µV NBFM, 10 µV/µV WBFM

MINI KITS—EASY TO ASSEMBLE—FUN TO USE
- **NEW MINIKITS—NEW MINIKITS**

NEW MINIKITS—NEW MINIKITS
- **2 MTR & 220 BOOSTER AMP**
 - Here's a great booster for any 2 meter or 220 MHz hand-held unit. This power boost delivers over 30 watts of output allowing you to hit the repeaters full capacity while the low noise preamplifier remarkably improves reception.
 - Ramsey Electronics has sold thousands in 2 meter and 2-meter kits with new power completely tested and tested for 2 meter as well 220 MHz units. Both have all the features of the high priced boosters at a fraction of the cost.

PHONE ORDERS CALL
- 716-586-3950

FAX
- 716-586-4754

RAMSEY ELECTRONICS, INC., 2575 Baird Rd., Penfield, N.Y. 14526
Every month Monitoring Times brings everything you need to make the most of your general coverage transceiver: the latest information on international broadcasting schedules, frequency listings, international DX reports, propagation charts, and tips on how to hear the rare stations. Monitoring Times also keeps you up to date on government, military, police and fire networks, as well as tips on monitoring everything from air-to-ground and ship-to-shore signals to radioteletype, facsimile and space communications.

ORDER YOUR SUBSCRIPTION TODAY before another issue goes by. In the U.S., 1 year, $18; foreign and Canada, 1 year, $26. For a sample issue, send $2 (foreign, send 5 IRCs). For MC/VISA orders ($15 minimum), call 1-704-837-9200.

MONITORING TIMES
Your authoritative source, every month.
P.O. Box 98 A
Brasstown, N.C. 28902

AMATEUR TELEVISION

SURVIVES 100,000 FT. FALL
KPRA 1 WATT ATV XMTR ON 434 MHZ WORKED PERFECTLY IN WBBELK LIVE CAMERA BALLOON THROUGH 100,000 FT AND BACK TO CONTINUE RUNNING EVEN AFTER FREE FALL IMPACT IN THE MOJAVE DESERT! VIDEO SEEN FOR 300 MILES.

KPRA-E board $169
Shouldn’t your ATV transmitter be as reliable? Weather you want to put one in a balloon, R/C model, Robot, use as portable ATV xmr or get one in our ready to go TX70-1 for the shack, with P.C. Electronics you see the best! Companion receiving downconverter board TVC-2G $49, or ready to go in a cabinet - TVC-4G $89.

TX70-1 XMTR $259

THE ATV TWINS
Hams, Call or Write for our latest catalog of ATV gear! Transmitters sold only tTech or higher licensed amateurs verified in latest Callbook or copy of new license. 5/89

(617) 447-4565 Mon-Fri 8am-5:30pm pst. Visa, MasterCard
P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006

1 YR - $22.95
2YRS - $38.95
3 YRS - $49.95
Prices U.S. only

Please have your charge card ready.

DATATEL 800
800-341-1522
Weekdays 8 AM - 9 PM EST
Saturdays 9 AM - 5 PM EST
IN MAINE CALL COLLECT (207) 236-2896
OUR 800 NUMBER IS FOR SUBSCRIPTION ORDERS ONLY!

For Errors or Change of Address
CALL ham radio direct at
(603) 878-1441 8-5 EST
When a voltage is applied to the diode, more electrons are available to fill more vacancies, causing the barrier region to grow. This effectively changes the amount of insulation (dielectric) between the two conductors.

Add some voltage and...

When an external source of electrons is connected to the junction (from a battery or power supply, for instance) the resulting pressure (also known as voltage) lets more electrons cross the barrier and fill some vacancies, as shown in fig. 3. To put it another way, the crowd along the fence is getting bigger. This is the same as putting a bigger insulator (dielectric) between the two plates of the capacitor. If this were an air-dielectric capacitor, you’d get the same effect by moving the plates farther apart. So now you have a variable-dielectric capacitor. Is this thing beginning to act like a capacitor? Sounds like it!

Can we control it?

Because this capacitor changes its dielectric in response to applied voltage, and since a change in dielectric equates to a change in capacitance, it is a variable capacitor. From here it should be easy to control the capacitance, as shown in fig. 4.

To demonstrate the principle, connect a potentiometer across a power supply (a 9-volt battery in this case). You’ll need a means of detecting the capacitance change in order to get proof that it works. My ancient capacitance meter doesn’t do well with values below 50 pF, so I came up with the scheme in fig. 5. L1 and CR1 comprise a tuned circuit that you check with a grid-dip meter. (My meter uses a vacuum tube, so it’s still a “grid” dipper. A transistor or FET dipper will work equally well). L1 is ten turns of no. 22 enameled wire close wound on a 1/4-inch form, and CR1 is the diode being tested. R1 is a variable resistor that controls the voltage applied to the diode, and R2 is a current-limiting device — in case something should short. C1 is a large-value bypass capacitor, which completes the RF path in the tuned circuit and isolates the meter from the circuit.

I placed the dip meter as far away as I could from the tuned circuit while still getting an indication on its meter. This prevents overloading the circuit with RF, which could cause CR1 to act like a regular diode instead of a variable-capacitance diode. Then I measured the voltage applied to the diode and checked the frequency. I changed the voltage and took another frequency reading. Figure 6 is a graph of my results. The first diode I tested was a prototype designed for use in AM broadcast band circuits, marked

![Figure 3](image3.png)

When a voltage is applied to the diode, more electrons are available to fill more vacancies, causing the barrier region to grow. This effectively changes the amount of insulation (dielectric) between the two conductors.

![Figure 4](image4.png)

A variable voltage applied to the diode will cause the barrier region, and thus the capacitance, to change in response to the voltage.

![Figure 5](image5.png)

If you don’t have a capacitance meter capable of reading values down to 10 pF or less, you can test the principle with this setup. Components are explained in the text.

![Figure 6](image6.png)

A plot of voltage versus frequency shows the results. A plot for a diode (1N963) not designed for use as a VVC (voltage-variable capacitor) is also shown. Its limited range is shown by the “knee” at -6 volts.
H160. I also tried two other types designed for voltage-variable capacitance use, the MV832 and MV839.

According to theory, almost any diode will act like a variable-capacitance diode to some degree, so I grabbed a 1N963 from my junkbox and wired it into the circuit to see what would happen. The results are also shown in fig. 6.

It became quite evident during this test that it’s important to use a diode designed for the job. The 1N963 has a lower Q than the other diodes. I knew this because the “dips” at resonance were very shallow and broad in frequency. The MV832 also showed the same behavior, but not as severely as the 1N963. The MV832 has a smaller capacitance change than the others, as shown by its position on the graph. It should work well in the VHF region. The other diodes produced dips at resonance that were quite sharp, as expected of high-Q devices.

It appears that theory has triumphed again. You have a variable capacitor that can be controlled by a potentiometer and voltage source. This opens up a lot of possibilities, and eliminates those fussy shaft couplers that were always so hard to align with the dial drive on the front panel of your VFO. All the normal precautions about shielding, temperature compensation, anti-vibration protection, and the like still apply, however. A VFO circuit must be mechanically stable, no matter what type of capacitor you use. All diodes change characteristics with temperature; these will too, to some extent. It’s not critical in many circuits, but this trait will be noticeable in a VFO.

And that’s what makes a voltage-variable capacitor (sometimes known as a varicap) work. When my notebook item about oscillators appears in a later issue, you’ll understand what that funny-looking diode is doing in the middle of things.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
AND GIVES YOU TO AS STANDARD EQUIPMENT!

KIT, ONLY $675
WIRED $975
VHF OR UHF

FEATURES:
* SENSITIVITY SECOND TO NONE! GaAsFET front end on vhf models gives 12dB SINAD of 0.12uV (vhf), 0.15uV (uhf). UHF model 0.25uV std, 0.1uV with optional helical resonator preamp.
* SELECTIVITY THAT CAN'T BE BEAT! Both 8-pole xtal filter & ceramic filter for >100dB at only 12kHz. Helical resonator front end to combat desense & intermod.
* CLEAN, STABLE TRANSMITTER, up to 18W output standard: 50W
* Courtesy beep,
* Full mltters
* Selectivity:
* VHF
* Call

LNG(*)&
GaAs FET PREAMP
ONLY $59!
Wired/used

FEATURES:
* Very Low Noise: 0.7dB VHF, 0.8dB UHF
* High Gain: 13-20dB, depending on frequency
* Wide Dynamic Range: to resist overload
* Stable: new-type dual-gate GaAs FET
* Specify tuning range desired: 26-30, 46-56,
137-150, 150-172, 210-230, 400-470, or 800-960 MHz.

NEW COR-4 kit. Complete COR and CWID all on one board for easy construction. CMOS logic for low power consumption. Many new features. EPROM programmed; specify call letters.$59

NEW TD-3 SUBAUDIBLE TONE DECODER/ENCODER kit...$24

LNW(*)&
MINIATURE GaAs FET PREAMP
ONLY $24/kit.
$39 Wired/used

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-1/8"L x 3/4"H. Easily mounts in many radios.
* Specify tuning range desired: 25-35, 35-55, 55-90, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNS(*)&
IN-LINE PREAMP
ONLY $79/kit.
$99 Wired/used

GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W.
* Specify tuning range desired: 300-175, 200-240, or 400-500 MHz

ACCESSORIES

COR-3 REPEATER CONTROLLER kit. Features adjustable tail & time-out timers, solid-state relay, courtesy beep, and local speaker amplifier$49

CWID kit. Diode programmed, adjustable tone, speed, and timer, to go with COR-3...$59

DE-202 FSX DEMODULATOR kit. For receive end of link. ...$39

9600 BAUD DIGITAL RF LINKS
Low-cost packet networking system, consisting of new MOD-96 Modem and special versions of our 225 or 450 MHz FM Transmitters and Receivers. Interface directly with most TNC’s. Fast, diode-switched PAs output 15 or 50W. Call for info on the right system for your application!

RECEIVING CONVERTERS

Our 25th Year

hamtronics, inc
65-H MOUL ROAD-HILTON NY 14468-9535
Phone: 716-392-9430
Hamtronics is a registered trademark
PLUG INTO PACKET!

Simple and Easy.
Here's the easiest packet radio yet, you don't even have to buy a TNC to join the digital revolution. Just let your PC do the work. Plug a PC Packet Adapter into any expansion slot and get on the air in minutes, just like an expert. And you'll still be able to use the PC for other work! The complete VHF system is only $139.95!

Sophisticated, Too.
When you've mastered the basics, use the PC Packet Adapter for simultaneous dual-band HF/ VHF, multiconnect, BBS, TCP/ IP, DXer's PacketCluster, 2400 baud (and higher). Even use the Developer's Package to write your own packet application.

Software Included.
Unlike others, DRSI includes all the software you need. The THS terminal package has split screen, file save/send, binary file transfer, print, scroll, review and more.

2400 BAUD

Many areas are upgrading their packet nets to this higher speed. DRSI's M-24 modem for 2400 baud connects simply with no modifications to your rig and lets you operate both 1200 and 2400 simultaneously with your present radio. Step up to this new speed for just $79.95, today!

Call or Write for complete Product Catalog

MULTI-ROTATING ANTENNAS
ONE TOWER

with the POWERFUL TIC General Ringrotor

- Steel Ring Construction
- Steel Gear Assembly
- Analog Or Digital Position Feedback System
- Lower Rotor Position Results
- In Fewer Lightening Strikes
- Individual Rotation
- Phased Arrays

RINGROTORS (*New For '89)
*12½" Face Tower $529.00
*18" Face Tower $559.00
28" Face Tower $954.00
(PRICES SUBJECT TO CHANGE WITHOUT NOTICE)

TIC General
P.O. Box 1, 302 E. 3rd
THIEF RIVER FALLS, MN 56701
CALL: 1-800-423-6417 or (218) 681-1291
SEE US AT DAYTON

antenneXe
"The Magazine For Antenna Experimenters"
IF YOU -
- Have a lousy mobile signal on all bands?
- Need an inexpensive beam for 10 meters?
- Unsure about using vert vs horiz antenna?
- Need a low noise antenna for 160 meters?
- Want to design an antenna just for you?
- Need a program for design and plotting?
- Need to solve a unique problem?
- Know the best antenna for hamsats, etc.?
- Need a disguised mobile antenna?
- Want a cheap automatic coupler system?
- Just want to learn more about antennas?

THEN SUBSCRIBE TO - antenneXe
12 MONTHLY ISSUES is only $11.97 for USA and possessions. $17.00 foreign.

antenneXe
PO. Box 8995 Dept. 19
Corpus Christi, TX 78412

Tell 'em you saw it in HAM RADIO!
PLAN YOUR SPRING ANTENNA WORK NOW!

THE ARRL ANTENNA BOOK Written by members of the ARRL Technical Department staff and sixteen well-known outside authors, all of whom have done much to contribute to the state-of-the-art in antenna and transmission line theory and practice. The recently published 15th Edition presents the best and most highly regarded information on antenna fundamentals, propagation, transmission lines, Yagis and quads, as well as all of the popular wire antenna designs. You’ll find antennas for limited space, portable, mobile, VHF, UHF, microwave and space communications. Contains over 700 pages and 987 figures. Chapter lineup: Safety First, Antenna Fundamentals, The Effects of Earth, Selecting Your Antenna System, Loop Antennas, Multielement Arrays, Broadband Antennas, Log Periodic Arrays, Yagi Arrays, Quad Arrays, Long Wire and Traveling Wave Antennas, Direction Finding Antennas, Portable Antennas, Mobile and Maritime Antennas, Repeater Antennas Systems, VHF and UHF Antenna Systems, Antennas for Space Communications, Spacecraft Antennas, Antenna Materials and Accessories, Antenna Supports, Radio Wave Propagation, Transmission Lines, Coupling the Transmitter to the Line, Antenna and Transmission Line Measurements, Smith Chart Calculations, Topical Bibliography on Antennas, Glossary and Abbreviations. Edited by Gerald L. Hall, K1TD, QST Associate Technical Editor. Copyright 1988, #2065 $18*.

YAGI ANTENNA DESIGN is based on the series in Ham Radio Magazine by the late Dr. James L. Lawson, W2PV. Jim designed and built a highly competitive and successful Amateur Radio contest station. 210 pages cover the following subjects: Performance Calculations, Simple Yagis, Performance Optimization, Loop Antennas, Ground Effects, Stacking, Practical Designs, Designs for 7 through 28 MHz. Hardcover, Copyright 1986. #0410 $15*.

NOVICE ANTENNA NOTEBOOK At last, an antenna book written for the beginner! Don’t let the lack of an antenna keep you from getting on the air. With this book you can choose which wire, vertical or beam antenna suits your needs, and you’ll be ready for all of the fun of seeing that the antenna you put up really works! Contains pictorial drawings that show dimensions for Novice and Technician band use. Written by W1FB in his usual plain language style that makes him so popular as a QST author. Copyright 1988, #2073 $8*.

ANTENNA COMPENDIUM We don’t have room for all of the good antenna articles that are submitted to QST; so we have packed this volume with new material on verticals, quads, loops, Yagis, reduced-size antennas, baluns, Smith Charts, antenna polarization and other interesting subjects. 176 pages, Copyright 1985. #0194 $10*.

LOW BAND DXING John Devoldere, ON4UN completely explores the 160, 80, and 40-meter bands. A large portion of this book is devoted to propagation characteristics and design and building of efficient antennas for these bands. 210 pages, Copyright 1987, #047X $10*.

HF ANTENNAS FOR ALL LOCATIONS was written by L.A. Moxon, G6XN for the RSGB. Contains 264 pages of practical antenna information. This book is concerned primarily with small wire arrays, but you’ll find descriptions of some aluminum antennas as well. Copyright 1982, #R576 $15*.

TRANSMISSION LINE TRANSFORMERS At last there is a source of practical design data covering the use of these devices for both commercial and amateur applications. Written by Dr. Jerry Sevick, W2FMI, this book covers types of windings, core materials, fractional-ratio windings, efficiencies, multwinding and series transformers, baluns, limitations at high impedance levels and test equipment. Hardcover, 128 pages, Copyright 1987. #0471 $10*.

W1FB’S ANTENNA NOTEBOOK Not everyone has a great deal of real estate to put up a forest of aluminum. Doug DeMaw tells how to get the best performance out of unobtrusive wire antennas and verticals and how to build tuners and SWR bridges. 122 pages, Copyright 1987, #0488 $8* For shipping and handling add $2.50 ($3.50 for insured parcel post or UPS)—please specify.
Measure Up With Coaxial Dynamics
Model 81000A RF Directional Wattmeter

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL C W. power in Coaxial transmission lines. 81000A is comprised of a built-in line section, direct reading 3-scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty.

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 98-0630

Service and Dependability...A Part of Every Product.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 98-0630

Service and Dependability...A Part of Every Product.

SAFETY and CONVENIENCE.

Never climb your tower again with this elevator system. Antennas and rotator mount on HAZER, complete system turns tower in vertical upright position. Safety lock system operates while raising or lowering. Never can fall.

Complete kit includes winch, 100 ft. of cable, hardware and instructions. For Rohn 20 and 25 G Towers.

HAZER 2 Heavy duty alum. 12 sq. ft. load $301.45 pdd.
HAZER 3 Standard alum. 30 ft. load $323.75 pdd.
HAZER 4 Heavy galv. steel 16 sq. ft. load $201.45 pdd.

NEW for ROHN 45 and 55 Towers

HAZER 5 Heavy duty galv. steel 16 sq. ft. load CALL

Ball Throttle Bearing 19-25 for any of above $44.00 pdd.

Send for free details of aluminum towers specifically engineered for use with the Hazer. Two sizes, M-15 (15' wide) and M-18 (18' wide). All bolted construction, no welds. Easy to install Hinge base, walk up erection. Complete tower UPS or air height shipable. Pre-assembled or kit form.

Satisfaction guaranteed. Call today and charge to Visa, MasterCard or mail check or money order.

GLEN MARTIN ENGINEERING INC.
Rte 3, Box 322
Boonville, MO 65233
(816) 882-2734 FAX 816-882-7200

116

VHF-UHF POWER DIVIDERS

RF power dividers provide the best way to feed in phase and at the same time reduce losses to a minimum. Coupling 144 and 1296 MHz, series of VHF-UHF power dividers in an RF device designed for a long service life with low SWR and broad operating bandwidth.

Excluded aluminum body with a durable enamel finish in addition to silicon sealing at connector flanges results in a ruggedized unit for all array installations. Available with N-type connectors only; these units are unconditionally guaranteed for 2 years.

MODEL CONFIG. PRICE
144-2P (2 ports) $54.00
144-4P (4 ports) $61.00
220-2P (2 ports) $53.00
220-4P (4 ports) $60.00
430-2P (2 ports) $51.00
430-4P (4 ports) $59.00
520-2P (2 ports) $51.00
520-4P (4 ports) $59.00
1296-2P (2 ports) $52.00
1296-4P (4 ports) $60.00

SHIPPING NOT INCLUDED

STRODSBERG ENGINEERING CO.
P.O. Box 7973 • Shreveport, LA 71117 • USA
Phone: (318) 865-0523

117

MADISON SHOPPER

CALL FOR ORDERS
1 (800) 231-3057
1 (713) 520-7300 OR 1 (713) 520-0550
TEXAS ORDERS CALL COLLECT
FAX 1 (713) 771-7759

ALL ITEMS ARE GUARANTEED OR SALE PRICE REFUNDED

New Icom IC-781

Call for trade
Kenwood TH215A, TH25AT

Included in your old unit.

Call

TS 790A Super 2 Meter 70 cm Rig
1.2 GHz Option available
Call

IC-765

ICOM External relay box
Call

IC-765

Specific Radio and Amp
Call

IC-765

HEI BM10 Boom Mike, wired 8 pin
69.00

HEI HM5 Desk Mike
62.00

KYE MBSA Tuner
56.00

Alpha Delta Transistor HV
33.00

C5 Private Patch V
469.00

Amerco PT 3 Pro Amp
99.00

Larsen 2 meter on glass
49.95

Anteco 2M VHF. Mag. Mount, Comp
2.50

Van Gordon GSP
44.00

Bird 43, elements stock
Call

Thousands of panels meters
3.95 up CALL

Belden 9913, 8267, 8214 Stock
Call

New Ten Tec Omnith DIX ng extraordinary
1895.00

MICA Capacitors
Call

Amero SWR Bridge 3.0 MHz
19.95

815SP PL259 Silverplate (Amphenol)
1.50

82-61 N Male (Amphenol)
3.50

82-201 1006 N Male (9913)
3.50

Double Female UHF
1.00

UG176 RG174 each 40

Surplus Elbow PL259-SO239 each $1

Receiving tubes 50-90% off list price
Call

Suntec Boom Mike/Headset (fits ICOM)
Call

Rohn SA 250 67 (67 inside arm)
each 125.00

STUPH

Throat Mike (new mil surplus)
5.00

ANSI 1 600 B Headphones (new mil surplus)
5.00

New Demo Units for Sale

Kenwood RH-500
849.00

ICOM R-71A
849.00

USED EQUIPMENT

All equipment: used, clean, with 90 day warranty and 30 day trial. Six months full trade against new equipment. Sale price refunded if not satisfied.

(800) 231-3057

POLICIES

Minimum order $10.00. Mastercard, VISA, or C.O.D. All prices FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call anytime to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty.
Bird and Belden products in stock. Call today.

MADISON Electronics Supply

3621 FANNIN
HOUSTON, TEXAS 77004

109
New for remote antenna switching

Comtelk announces the new RCB-5 Remote Control Box — a five-position coaxial switch for remote antenna switching from one feedline.

The RCB-5’s inside console control box selects from one to five antennas at once; the weatherproof outside switchbox contains five high-powered DPDT relays with gold-plated contacts. The RCB-5 can be used as a standard five-position remote control coaxial switchbox or to control stacked arrays. Optional wideband Toroidal Impedance Transformers (TIT2 or TIT3) for 50 to 100 ohms or 50 to 150 ohms are available for stacking two or three Yagis, respectively. All relays have 5 kW-rated gold-plated contacts. VSWR is below 1.05:1 up to 144 MHz. The outside switchbox uses 18-gauge steel with a zincate coating, a gold-chromate rustproof finish, and is dip-painted black. The inside console control box has a scratchproof Lexan™ front panel template. LEDs have diffusion covers. The switching knob has positive action with 15-degree detent positions.

The RCB-5 comes with 250 QSL cards, and is priced at $139.95 plus $12 shipping and handling. (Add 10 percent outside the U.S.) TIT2 or TIT3 comes in a weatherproof box with SO-239 IN and OUT for $199.50.

For further information contact Comtelk, PO Box 202, Hopkinton, Massachusetts 01748.

Compact Amplified Speaker

Naval Electronics, Inc. has introduced the HTS-1 Amplified Speaker with features for use with handheld radios. The HTS-1 is compact, with a 3.5-inch speaker and 10-dB internal amplifier.

The HTS-1 is powered from internal batteries, or any external voltage from 6 to 15 Vdc through a DC jack. It has a built-in NiCd battery charger and an automatic shutoff that kills power to the amplifier when there’s no audio input (receiver squelched). When switched off manually, the amplifier is bypassed and the input jack has a direct connection to the speaker.

The HTS-1 has a tilted base for desk mounting. A special mobile harness is available for mounting the unit on the inside of a car door. A 5-foot cable with mini-plugs and a stereo-to-monaural converter is included. A free stereo cable is available if you order two units for use with a personal stereo system. The cost is $29.95.

Printers communicate by packet radio

QWINT DATA, Inc. has announced a new packet radio modem option. It’s packaged as an internal module with the QWINT terminal. The RDM1200 lets you send and receive written messages over radio links.

Characters are sent and received in the form of audio frequency tones. To provide error-free messages over radio, the modem includes a high-speed 7.37-MHz microprocessor, with these features:
- Synchronous HDLC protocol
- Automatic error detection and correction
- Multi-user networks
- Repeater capability
- Compatibility with HF, VHF, and UHF

The QWINT terminal may be interfaced with most voice radio transceivers. A jack and cable are provided. The radio modem connects to the microphone and speaker jacks of the voice radio. It also provides a digital output for controlling PTT circuitry, for switching into transmit mode under control of the packet radio protocol.

For more information contact QWINT DATA, Inc., 3455 Commercial Avenue, Northbrook, Illinois 60062.

ACB-4 phased array switchbox

Comtelk introduces the ACB-4 phased array switchbox with controller. It allows gain and directivity from a vertical array by dividing power and phase among 2 or 4-element arrays. You supply the antennas and cables.

The ACB-4 has two boxes. The outside switchbox, installed near the antenna array, contains the 90-degree quadrature hybrid, 180-degree phase reversal transformer (both in toroidal form), and relay switching matrix. Four feedlines are attached to the antenna elements for a “4-Square” array: two are used for a 2-element array. Three-conductor control cable and feedline run back to the shack. Gain for the 4-square is about 5.8 dB with F/B typically 15 to 25 dB, depending on angle of arrival. Metal cabinets are 18-gauge steel, with anti-rust zincate and gold-cromate finish, dip painted black. Relays use 5-k gold-plated contacts. The inside console control box has a scratchproof Lexan™ front panel template. The beam direction knob has positive click positions and no end stop, for continuous turning in any direction. The ACB-4 comes with complete instructions for installing ground-mounted verticals, ground-plane type verticals, or half-wave verticals with the unit. The price is $295, plus $12 shipping and handling. (Add 10 percent outside the U.S.) Contact Comtelk, PO Box 202, Hopkinton, Massachusetts 01748.

Printers communicate by packet radio

QWINT DATA, Inc. has announced a new packet radio modem option. It’s packaged as an internal module with the QWINT terminal. The RDM1200 lets you send and receive written messages over radio links.

Characters are sent and received in the form of audio frequency tones. To provide error-free messages over radio, the modem includes a high-speed 7.37-MHz microprocessor, with these features:
- Synchronous HDLC protocol
- Automatic error detection and correction
- Multi-user networks
- Repeater capability
- Compatibility with HF, VHF, and UHF

The QWINT terminal may be interfaced with most voice radio transceivers. A jack and cable are provided. The radio modem connects to the microphone and speaker jacks of the voice radio. It also provides a digital output for controlling PTT circuitry, for switching into transmit mode under control of the packet radio protocol.

For more information contact QWINT DATA, Inc., 3455 Commercial Avenue, Northbrook, Illinois 60062.

Circle #307 on Reader Service Card.

ACB-4 phased array switchbox

Comtelk introduces the ACB-4 phased array switchbox with controller. It allows gain and directivity from a vertical array by dividing power and phase among 2 or 4-element arrays. You supply the antennas and cables.

The ACB-4 has two boxes. The outside switchbox, installed near the antenna array, contains the 90-degree quadrature hybrid, 180-degree phase reversal transformer (both in toroidal form), and relay switching matrix. Four feedlines are attached to the antenna elements for a “4-Square” array: two are used for a 2-element array. Three-conductor control cable and feedline run back to the shack. Gain for the 4-square is about 5.8 dB with F/B typically 15 to 25 dB, depending on angle of arrival. Metal cabinets are 18-gauge steel, with anti-rust zincate and gold-cromate finish, dip painted black. Relays use 5-k gold-plated contacts. The inside console control box has a scratchproof Lexan™ front panel template. The beam direction knob has positive click positions and no end stop, for continuous turning in any direction. The ACB-4 comes with complete instructions for installing ground-mounted verticals, ground-plane type verticals, or half-wave verticals with the unit. The price is $295, plus $12 shipping and handling. (Add 10 percent outside the U.S.) Contact Comtelk, PO Box 202, Hopkinton, Massachusetts 01748.

Circle #307 on Reader Service Card.

Printers communicate by packet radio

QWINT DATA, Inc. has announced a new packet radio modem option. It’s packaged as an internal module with the QWINT terminal. The RDM1200 lets you send and receive written messages over radio links.

Characters are sent and received in the form of audio frequency tones. To provide error-free messages over radio, the modem includes a high-speed 7.37-MHz microprocessor, with these features:
- Synchronous HDLC protocol
- Automatic error detection and correction
- Multi-user networks
- Repeater capability
- Compatibility with HF, VHF, and UHF

The QWINT terminal may be interfaced with most voice radio transceivers. A jack and cable are provided. The radio modem connects to the microphone and speaker jacks of the voice radio. It also provides a digital output for controlling PTT circuitry, for switching into transmit mode under control of the packet radio protocol.

For more information contact QWINT DATA, Inc., 3455 Commercial Avenue, Northbrook, Illinois 60062.

Circle #307 on Reader Service Card.

GP21X Ginpole Kit

IXX Equipment, Ltd. offers the new GP21X Ginpole Kit for stamped open leg-type towers. Clamps adjust to fit the tapering tower sections and can be spaced any distance apart. A standard IXX pulley is furnished; the pipe is customer supplied. The price of the kit is $199.50. Immediate shipping is available.

For more information contact IXX Equipment, Ltd., PO Box 9, Oak Lawn, Illinois.

Circle #308 on Reader Service Card.
Spring thunderstorm noise

Received noise sometimes spoils the best DX openings. There are many types of noise. The Russian woodpecker or the ham rig down the street are two examples of radio emitters, which can cause interference. Atmospheric, or thunderstorm, noise is more common. Like the DX signal, these noises are often propagated by the ionosphere. Other noise may come from a local factory or a badly maintained power line. Of all of these, strong local atmospheric noise is perhaps the most disagreeable at this time of year. Here’s how it happens.

Spring storms occur in the Northern Hemisphere in March and April. Fronts of warm and cold air generate the first major thunderstorms of the year, with fast-moving cold fronts producing particularly potent thunderstorms. As a storm front approaches your area, you’ll begin to hear a significant increase in the noise level. You’ll start to notice this increase at a one-hop distance (about 600 to 1200 miles) when the storm front is west of your location. You can reduce the received noise a few dB by using a directional antenna like a rotating Yagi or a phased vertical array. Determine the noise direction and work DX in the opposite orientation, or do your best to null it out using a directional tradeoff between signal and noise strengths. Antennas with a low take-off angle (TOA) at the operating frequency are best because this noise normally arrives at angles greater than 30 degrees.

As the front gets closer, the noise level usually decreases until it’s within a groundwave’s distance (about 50 miles). Now you’ll hear loud individual discharges. A horizontally polarized antenna is the best radiator to use to lower the noise as much as possible. As the storm approaches, its sounds become part of the “local noise.” As it moves away its noise decreases, then increases again as the front reaches the one-hop distance point a day or so later. The directional low TOA antenna is helpful once again.

Cold fronts usually travel about 40 miles per hour, so it could take 15 to 30 hours to reach one-hop distance — averaging almost a day’s frontal travel time before coming to (westerly) and after leaving (easterly) your station. If you watch the TV weather news daily, you can track the storm and note how its noise affects your operations. As the storm comes into the one-day-before position, there’s a corresponding increase in noise. When it passes over your ham shack the next day, it will cause intense static crashes. As you watch the storm approach the day-after position, you’ll notice some lingering noise before all’s quiet again. It should remain quiet until the next storm comes your way. When looking for rare DX, you can save time by tracking storms. This will help you pinpoint when and where the most favorable listening conditions are likely to occur.

Last-minute forecast

The first and last weeks of the month should be times of high solar flux, resulting in higher MUF than the rest of the month. There’s also a probability of solar flares, if the rise or fall of flux is over ten units per day — an April trait. The high MUFs will enhance DX conditions to the southern countries. The openings may be transequatorial DX openings toward late evenings (2200 local time), and during geomagnetic-ionospheric disturbances expected near the 5th through the 8th, the 16th, and the 26th. The lower night or daytime short-skip bands should be best the second and third weeks during times of lower solar flux, with its lower signal absorption. MUFs will come down nearer these bands and produce strong signals. During the disturbed days (and particularly nights), signals may be weak and variable (QSB) but from interesting DX countries. This is also an April trait.

The perigee of the moon’s orbit (for moonbounce DX) is on the 5th, with the moon showing full phase on the 21st. There will be a short meteor shower (the Lyrid) on April 20th to the 22nd, with a rate of five per hour — hardly much help for meteor scatter DX. But a bigger shower (the Aquarid) starts before the end of April, peaks on May 5th, and ends in mid-May. Its rate should be 10 to 30 per hour.

Band-by-band summary

Ten, 12, 15, and 17 meters, the day-only DX bands, will be open midday to early evening almost every day to southern areas of the world. The openings on the higher of these bands will be shorter (if they occur at all), closer to local noon, and will provide a possibility of transequatorial openings.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>AR EAST</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>EUROPE</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>CARIBBEAN</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>J. AMERICA</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>OCEANIA</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>JAPAN</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

April 1989
COMMODORE/AMIGA CHIPS (eg. 6461-512 $56, 6523-810 $50, 6502 $30, 6800 $25, 6510 $20, 1615 $12, 1284 $75). OFFERS WANTED. OLD SERIES-$15. 5 BEN. PARG. DIAGNOSTICS. HARD TO FIND ITEMS. Authorized service center for FAST REPAIRS, low cost (eg. C64-S41 plus UPS. Heavy duty power supplies $45. C64-627 $95 plus UPS. Kasara Microsystems (Division of OEP). Runtime HW/KVY Power Drive, Derby Point, NY 10860, 1-800-248-2983 (outside NY) or 914-942-2225.

THE NATIONAL HAM SHOP. A bi-monthly buy, sell, trade publication (starting in April). Ads are quickly answered and published. Subscription rate is $10 per year. Send SASE (45 cents) to: A. AES ENGINEERING, 2521 W ELECTRONIC (subject to our editing) on a space available basis only. Repeat insertions of mission allowed.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, NH 03887.

COMMUNICATIONS BATTERIES: Clone Packs! Ready-for-use COMMON DUTY WITH SHAPE, COLORS. Five patch minimum. Free sample, prices and information. job for sample copy. $13 for one year (24 issues) PO Box 2057, Glen Ely, N.J. 08028-0007. Dept. HR, Sale, pale 91815.

HAM TRADER SHEETS. In our 27th year. Buy, sell, swap ham radio gear. Published twice a month. Ads quickly answered. No charge for those who want only information. No SASE for sample copy. $13 for one year (24 issues) PO Box 2057, Glen Ely, N.J. 08028-0007. Dept. HR, Sale, pale 91815.

COMMERCIAL TIMES. A specific PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.

NEW YORK TIMES. A monthly. $1.00 per year. PO Box 10738, Elwood, NY 10461.
MINNESOTA: April 15. The Lake Region Amateur Radio Club in 20. All the antennas are on the 300-meter band, with more.

NEW JERSEY: April 15. “Flamengest Harmst” sponsored by the Hunterdon Central High School Field. Admission: $4; advance $3. All the antennas are on the 300-meter band, with more.

NEW YORK: April 15. “Flamengest Harmst” sponsored by the Hunterdon Central High School Field. Admission: $4; advance $3. All the antennas are on the 300-meter band, with more.

CONNECTICUT: April 16. The 6th annual Southamptont Amateur Radio Club’s Flea Market, Southamptont National Guard Armory, 590 Woodford Street, Southamptont. Admission: $2; children under 12 admitted free. 6 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (203) 862-9271.

COLORADO: April 2. The Longmont ARC is sponsoring a combined Hamfest and Computer Swap, Boulder County Fairgrounds, Longmont. 8 AM to 3 PM. For information call (303) 677-5219.

CITATION: April 6. An annual Ham assembling sponsored by the Ham Radio Station, Church Street North, Pickington, Jackson. Sponsored by the South Park and Pickington ARC’s. Admission: $4. Vendors tables $7 plus 10% plus donation to match for $10 plus donation thereafter. Sale at 10 a.m. 20% of sales. For information call (614) 224-4646.

MASSACHUSETTS: April 16. The last day to sign up for the 11th annual Swagfest, Circle B Recreation Center, Highway 90, Cedarburg, 8 a.m. to 1 p.m. Admission: $200; under 12 free. 3 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (414) 534-9296.

MASSACHUSETTS: April 16. The 11th annual Swagfest, Circle B Recreation Center, Highway 90, Cedarburg, 8 a.m. to 1 p.m. Admission: $200; under 12 free. 3 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (414) 534-9296.

MASSACHUSETTS: April 16. The 11th annual Swagfest, Circle B Recreation Center, Highway 90, Cedarburg, 8 a.m. to 1 p.m. Admission: $200; under 12 free. 3 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (414) 534-9296.

MASSACHUSETTS: April 16. The 11th annual Swagfest, Circle B Recreation Center, Highway 90, Cedarburg, 8 a.m. to 1 p.m. Admission: $200; under 12 free. 3 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (414) 534-9296.

MASSACHUSETTS: April 16. The 11th annual Swagfest, Circle B Recreation Center, Highway 90, Cedarburg, 8 a.m. to 1 p.m. Admission: $200; under 12 free. 3 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (414) 534-9296.

MASSACHUSETTS: April 16. The 11th annual Swagfest, Circle B Recreation Center, Highway 90, Cedarburg, 8 a.m. to 1 p.m. Admission: $200; under 12 free. 3 table space $15, $20 for 3 tables $15, $30 for 4 tables $20, $35 for 5 tables $30, $40 for 6 tables $40. For information call (414) 534-9296.
Ham Radio’s guide to help you find your local

California

A-TECH ELECTRONICS
1033 HOLLYWOOD WAY
BURBANK, CA 91505
(818) 845-9203
New Ham Store and Ready to Make a Deal!

JUN’S ELECTRONICS
3519 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Colorado

ALLIED APPLIANCE & RADIO
4253 SOUTH BROADWAY
ENGLEWOOD, CO 80110
(303) 761-7305
Rocky Mts Amateur/Shortwave Specialists, Ten-Tec, Yaesu, JRC-NRD, Sony, MFJ, KLM, and other fine gear. New and used, Visa/MC.
Antennas, books, discount prices too!

Colorado Comm Center
525 EAST 70TH AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7377
(800) 227-7373
Stocking all major lines
Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware’s Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Sanatec, KDK, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33757
813-481-4267
Clearwater Branch
West Coast’s only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
(812) 422-0231
ICOM, Yaesu, Ten-Tec, Cushcraft, Hy-Gain, AEA & others.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Kantronics. Full service dealer.
M-F 10-7

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
508-486-3400
508-486-3040
The Ham Store of New England You Can Rely On.

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323
Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

New Hampshire

RIVENDELL ELECTRONICS
8 LONDON DERRY ROAD
DERRY, NH 03038
603-434-5371
Hours M-S 10-5; THURS 10-7
Closed Sun/Holidays

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
New Jersey

ABARIS SYSTEMS
275 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
AFRL, Astatic, Astron, B&W, Belden, Bencher, Hustler, Kenwood, Larsen, RF Concepts, Tonna and much, much more! Tues-Fri 10 am-7:30 pm
Thurs 10 am-9:00 pm
Sat 10 am-4:00 pm
VISA/MA

KJI ELECTRONICS
65 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389
Gene K2KJI

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
280 TIFFANY AVENUE
JAMESTOWN, NY 14701
716-664-6345
Open 8:00 AM till 5:30 PM. Evenings, Saturday and Sunday by appointment. Western New York's finest Amateur dealer. Featuring ICOM "The World System."

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSO ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

K COMM dba THE HAM STORE
5707A MOBUD
SAN ANTONIO, TX 78238
512-880-6110
800-344-3144
Stocking all major lines. San Antonio's Ham Store. Great Prices - Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 362-0290
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

AMATEUR ELECTRONIC SUPPLY, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

IN SAT COMM ANTENNA DESIGN
Apertures to 15meters

ADD A VOICE TO
ITC-32

SP-1 Speech Processor

With the SP-1 Speech Synthesizer your ACC ITC-32 controller will sound exactly like an RC-85/850, for a lot less money. The SP-1 directly connects to the ITC-32 and is transparent to system operation when the ITC-32 personality PROM is programmed to support the Digitalker interface. Nearly 200 words, numbers and letters are included as standard. Uses an 8-bit parallel interface with strobe and handshake. Use with any external device which uses simple parallel interface. Includes on-board audio mixer to make interfacing a snap. $145 PP. Please request information packet.

Gary Gaugler, N6OJ
7970 Twin Rocks Rd Loomis, CA

ANTENNAS

NEW!
The classic "Antenna Bible" now in a thoroughly-revised, much-enlarged edition

ANTENNAS
2nd edition
by John Kraus, W8JK
Ohio State University
Covers both theory and its applications to practical systems. Over 1000 illustrations and nearly 600 worked examples and problems. Over 100 new topics. Complete with design formulas, tables and references. 917 pages, hardcover. $51.95
Add $2.50 per book for shipping and handling U.S., $5.00 elsewhere.

CYGNUS-QUASAR BOOKS
P.O. Box 85, Powell, Ohio 43065
Tel. 614-548-7895

April 1989 115

© 1989 Progressive Home, Inc. All rights reserved. No part of this publication may be reproduced in any form without permission from the publisher.
Choice Selection.

Now you can have it all! Take all the qualities you've come to depend on in our programmable CTCSS tone equipment: Astonishing Accuracy Instant Programming, Unequaled Reliability, and add full spectrum tone versatility, multi-tone capability without diodes, a reprogrammable memory...It's our new harvest of CTCSS tone equipment.

The choice is yours! If standard CTCSS EIA tones do not suit your taste, select any 32 tones of your liking from 15.0Hz to 255.0Hz. And if you change your mind, no problem; the memory can be changed in your shop with our HHP-1 programmer, or at our factory for free. Your working tone is accessed by a simple DIP switch, so there's no fussing with counters or other test equipment.

Call today toll-free and find out more about this fresh new flexibility in tone signalling, and don't forget to ask about multi-tone switching without cumbersome diode networks or binary switches.

It's all brought to market by the people who introduce the freshest ideas in tone signalling, and of course our customary same day shipping and one year warranty apply.

TS-32P CTCSS ENCODER-DECODER Based on the time proven TS-32, the industry standard for over a decade. The TS-32P gives you the added versatility of a custom, changeable memory base. A low price of $57.95 makes it an even sweeter deal.

SS-32P ENCODER Based on the equally popular SS-32 encoder. Available for CTCSS, or audible burst tones up to 6550.0Hz. Price is $28.95.

SS-32SMP SUB-MINIATURE ENCODER Our smallest encoder for handheld applications. Now you can satisfy that customer that needs to access multiple repeater sites with a radio that has precious little space inside. At $27.95, the price is small too.

HHP-1 HANDHELD PROGRAMMER For programming the 32 memory locations in any of our new programmable products, including our SD-1000 Two-Tone Sequential decoder. The HHP-1 is battery operated for field use, and will program ANY 32 tones from 15.0 to 6550.0Hz in .1Hz increments. Price is $199.95.
Antennas and mounts from Valor Enterprises

The Model PAQM “communications extender” mobile, 2-meter VHF antenna provides mini-quarter-wave reception. It installs easily with a 2-inch magnetic mount, 12 feet of cable, and a BNC connector (supplied). The unit can also be modified for 220 and 450 MHz.

Model PA270, two-plus-two, is a dual-band antenna for 146 and 450 MHz. It includes silver-plated spring-loaded contacts and plated spring-loaded contacts and will work on scanner radio UHF/VHF bands.

The Model PUC-450 UHF collinear gain antenna features silver-plated spring loaded contacts and 100-watt rated Motorola base. This unit has a 450 to 470-MHz frequency range.

New TS-430 tuning upgrader

International Radio and Computers, Inc. announces the TS-430 Tuning Upgrader.

The TS-430s have just two manually selected tuning speeds: 19 kHz per tuning knob revolution and 100 kHz per revolution when the step button is depressed. The tuning upgrader adds a slower fine-tuning speed of 2.5 kHz per revolution. The upgrader requires three above-board solder connections and two plug-in connections.

The tuning upgrader also operates when the step button is depressed. In this mode, it automatically selects between 25-KHz per revolution and 100-KHz per revolution; the switchover point occurs at approximately 0.8 turns per second.

The unit uses low-drain CMOS circuitry, comes wired and tested, and has a 6-month warranty. The price is $34.50 plus $5 shipping and handling in the U.S., $15 elsewhere. Use Reference no. 215.

The TS-430 is available from International Radio and Computers, Inc., 751 South Macedo Boulevard, Port St. Lucie, Florida 34983.

Tower standoff brackets

IIIX Equipment, Ltd. offers tower standoff brackets. These brackets let you mount two or three large antennas, 40 inches off the tower face. Attachment clamps are adjustable to fit up to 4-inch tower legs; the brackets are drilled to fit 25G, 45G, and 55G towers. Bracket arms can be spaced any distance apart to accommodate the antennas. Brackets are hot-dipped galvanized and the necessary hardware is supplied. The brackets are available in two and three antenna models. The SO-12 Standoff Bracket (for two antennas) is $115.50 and the SO-13 Bracket (for three antennas) is $144.50. The brackets are shipped by UPS.

For more information contact IIIX Equipment, Ltd., PO Box 9, Oak Lawn, Illinois 60454.

New switch for lightning protection

MFJ Enterprises, Inc. presents its new MFJ-1704 four-position antenna switch with lightning protection for $59.95.

PCSP-1 power cord surge supressor

American Voltage Products, Inc. has introduced the PCSP-1 power cord, offering built-in surge protection for standard computers and electronic equipment. Unlike plug-in surge protectors, the PCSP-1 is less likely to be destroyed by furniture movement or unauthorized removal.

The PCSP-1 has 210,000 watts of protection. All three legs are protected and the unit glows while in operation. The PCSP-1 sells for under $20.

For more information contact American Voltage Products, Inc., 18 Morse Drive, Essex Junction, Vermont 05452.

UAI-20 repeater audio interface

Creative Control Products has added the UAI-20 Universal Audio Interface board to its line. It is a repeater and link audio mixer featuring CTCSS decode, DTMF mute, and line monitor mix control.

Audio inputs consist of repeater, link, control receiver, CW tone, CTCSS tone, and an auxiliary input for other audio sources. Audio outputs include: repeater, link, and a DTMF output for the DTMF decoder on your controller.

Control inputs consist of repeater Carrier, CW Tone, CTCSS, and an auxiliary output from your controller for the link mute function. The CTCSS decoder output switches to the selected output level upon receiving the correct CTCSS tone.

The UAI-20 has an audio filter, which removes the sub-audible tone from the repeater receiver audio path. Automatic muting of the repeater receiver is provided when the selected CTCSS tone hasn’t been decoded. CTCSS tones are selected by configuring the 6-position DIP switch to the appropriate CTCSS frequency.
The NEXT Generation
MufMap II

"This is the most advanced propagation program that I have seen for radio amateur use. Its graphics are superb, and band openings are displayed on a world map in a manner previously only available in very advanced professional programs."
- George Jacobs, W3ASK, CQ Magazine Propagation Editor

Now you can see world wide propagation conditions from your QTH at a glance! MufMap indicates all 10m, 15m, and 20m openings on a map of the world.

- organize your operating time for contesting, network traffic, scheduling, etc.
- study effects of time of day, season, and solar activity on propagation.

Automatically combine a series of MufMaps to form a MufMovie. These show how propagation changes throughout the day, season, or level of solar activity.

HARDWARE REQUIREMENTS
MufMap runs on the IBM PC/XT/PS2 and compatibles with at least 256K RAM and Hercules, CGA, EGA, or VGA graphics. Supports the 8087 too.

ORDERING INFORMATION
MufMap is priced at just $69. VISA, MasterCard, and personal checks are accepted. Hercules support add $20. Just call or write to place your order.

Base(2)Systems
2534 Nebraska #1, Saginaw MI 48601 or call (517)777-5613 for VISA/MC

ADVERTISER’S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to Ham Radio Reader Service, I.C.A., P.O. Box 2588, Woburn, MA 01801.

Name:
Address:
City:
State:
Zip:

Reader Service #: PAGE #
141 - Ace Communications, Monitor Div. 80
187 - Advanced Computer Controls 27
165 - Advanced Receiver Research 56
157 - AEA 69
158 - Aerospace 38
183 - ALINCO 66
160 - AMC Sales, Inc. 96
110 - AMSAT 106
123 - Antennax 69
140 - Antique Radio Classified 80
199 - ARRL 107
189 - Astrolog Corp 26
182 - AVCOM of Virginia 40
159 - Azimuth 66
* Banker & Williamson 21
* Barry Electronics 64
133 - Barry Kuster, W2UP 95
108 - Base (2) Systems 69
156 - Bigal Company 31
185 - Boucher Electronics 88
163 - Buckmaster Publishing 64
151 - Buckmaster Publishing 66
151 - Buckmaster Publishing 73
154 - C&K Sales 96
118 - Coaxial Dynamics 109
200 - CIE 66
188 - Communication Concepts, Inc 27
193 - Communications Specialists 116
152 - Computeradio 73
146 - Crystal Crystals 76
197 - CSI 1
114 - Cygnus-Quasar Books 115
171 - Datacom, International 53
* Dayton Hamvention 44
170 - Doug Hall Electronics 54
139 - Down East Microwave 87
120 - DRRI 100
* Engineering Consulting 90
202 - Epsilon Company 80
115 - Findex Worldwide 115
157 - Gallatin Radio Supply 69
113 - Gary Gaugler, N60JU 115
132 - Gitter Shortwave 96
168 - GTR Electronics 54
134 - GTR Electronics 95
184 - HAL Communications Corp 37
194 - Ham Radio Outlet 14.15
* Ham Radio's Bookstore 76, 80, 90, 96, 97, 98
* The Ham Station 95
* Hamtronics, NY 105
* Hamtronics, PA 106
* Heath Company 69
* Heath Company 83
178 - Henry Radio 49
198 - ICOM America, Inc. CII
* International Crystal Mfg Co, Inc 31
144 - International Radio 78
147 - Jensen Tools, Inc. 76
150 - Junt's Electronics 78
181 - Kantronics 45
136 - KCom, The Ham Store 88
* Kenwood USA Corporation 2, 5, 7, 43, CIV
161 - Kiren Corporation 64
149 - Larsen Antennas 75

CALL
109 - Madison Electronics Supply
* Maggore Electronic Laboratory
117 - Glenn Martin Engineering, Inc.
164 - John J. Meshia Jr. Inc. 59, 60
196 - MFJ Enterprises
179 - Micro Control Specialties
121 - Micro Systems Institute
145 - Mirage Communications
107 - Missouri Radio Center
128 - Monitoring Times
137 - Mosley Electronics
125 - Motron Electronics
127 - NCG
* * Nema Electronics
130 - Nuts & Volts
106 - OIF/Teledyne
155 - P.C. Electronics ?
143 - Pac-Com Packet Radio Systems, Inc.
153 - Palomar Engineers
180 - Penfield Inc
139 - Radio Amateur Callbook
186 - Radio Shack
129 - Ramsey Electronics, Inc.
126 - The RF Connection
162 - Rutland Arrays
162 - Rutland Arrays
127 - Software Systems
122 - Software Systems
131 - Spectrum International
116 - Stridsburg Engineering Co.
136 - SY/OnSat
175 - Synthetic Textiles, Inc.
191 - TE Systems
173 - Tel-Com
167 - Ten-Tec
201 - TIC General
* U.S. Information Agency
172 - Unadilla Antenna Mfg Co
182 - Universal Radio
174 - Vanguard Labs
195 - Vanian EMAC
166 - VHF Communications
142 - W & W Associates
112 - WJOIN Antennas
148 - Wi-Comm Electronics Inc
192 - Wolfman
105 - Yaesu USA
199 - Yaesu USA
124 - E H Yost Co.

PRODUCT REVIEW/New PRODUCT
304 - Advanced Computer Controls
303 - American Voltage Products Inc
315 - American Voltage Products, Inc
305 - ComTel
309 - ConTel
316 - Creative Control Products
* Hamtronics, NY
301 - ICOM America Inc
308 - IX Equipment Ltd
314 - IX Equipment Ltd
313 - International Radio & Computers
312 - MFJ Enterprises
306 - Naval Electronics Inc
307 - SWINT Data Inc
302 - The Radio Works
311 - Valor Enterprises Inc.
NEW

POCKET SIZE

SIZE: 4" H x 3.5" W x 1" D
MADE IN USA

#TA-100S

Small enough to fit into a shirt pocket, our new 1.3 GHz and 2.4 GHz, 8 digit frequency counters are not toys. They can actually outperform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1300H/A makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

#1300H/A Model 1300H/A 1-1300 MHz counter with preamp sensitivity: <1 mV
27MHz to 450MHz includes Ni-Cad batteries and AC adapter $169.95

#2400H Model 2400H 10-2400 MHz microwave counter includes Ni-Cad batteries and AC adapter $299.95

#CCA Model CCA counter/counter, for debugging, ultra sensitive, <50 micro volts at 150MHz to 1-600 MHz with adjustable threshold, RF indicator LED. Includes Ni-Cad batteries and AC adapter $299.95

ACCESSORIES:

#T1-100S Telescoping RF pick-up antenna with BNC connector $12.00

#P-100 Probe, direct connection 50 ohm, BNC connector $20.00

#CC-12 Carrying case, gray vinyl with zipper opening. Will hold a counter and #TA-100S antenna. $10.00

FLA (305) 771-2050 ORDER FACTORY DIRECT 1-800-327-5912

OPTOELECTRONICS INC.

5821 N.E. 14th Avenue Ft. Lauderdale, Florida 33334

OPTOELECTRONICS INC.

FREQUENCY COUNTERS

TO 2.4 GHZ

8 LED DIGITS • 2 GATE TIMES
ALUMINUM CABINET
INTERNAL NI-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY

AC-DC • PORTABLE OPERATION

ORDER FACTORY DIRECT

OPTOELECTRONICS INC.

5821 N.E. 14th Avenue Ft. Lauderdale, Florida 33334

ORDERS TO US AND CANADA ADD 5% OF TOTAL ($2 MIN, $10 MAX)
FLORIDA RESIDENTS ADD 6% SALES TAX, COD FEE $2
FOREIGN ORDERS ADD 15%
A high-performance HF rig... with a great receiver and full-power transmitter. Light in weight and low in price.

This is Yaesu's FT-747GX.

Whether you're a novice or a veteran, it's a great way to start. And a great way to go.

DX ready. The 747 packs a full 100-watt RF punch on 160 to 10 meters, with continuous receive from 100 kHz to 30 MHz.

And its control panel is refreshingly simple. So you can hop around the band fast to nail those DX stations. While other guys are warming up their amplifiers, you can be working the DX!

Multimode versatility. The FT-747GX is ready to go on LSB, USB, CW, and AM. With provision for the FM-747 FM unit—great for watching 10-meter repeaters.

You get 20 memories to store frequency and mode. Dual VFOs with split frequency operation for DX petition work. And manual band scan plus auto-resume memory scan via the microphone up/down buttons.

Great receiver. Utilizing a directly-driven mixer, the FT-747GX receiver features superb overload protection. You also get factory installed narrow CW and AM filters. A one-touch noise blanker. All mode squelch. RIT. And a 20 dB attenuator for local QSOs.

Lightweight construction. Housed in a metallized high-impact plastic case, the FT-747GX weighs in at about 7 1/2 pounds! With the loudspeaker mounted on the front panel for maximum audio transfer. And internal heatsinking for the transmitter, rated at full power for FM, packet, RTTY, SSTV, and AMTOR when used with a heavy-duty power supply.

Discover the price/performance leader. Check out Yaesu's low-cost FT-747GX at your Yaesu dealer today. Because now, Yaesu puts priceless DX into your price range.

Yaesu USA 7210 Edwards Road, Corrales, CA 90701

Fill your logbook.

Without emptying your pocketbook.

Stacked in Your Favor!

TM-231A/431A/531A

FM Mobile Transceiver

Looking for a compact transceiver for your mobile VHF and UHF operations? KENWOOD has a compact rig for each of the most popular VHF/ UHF bands.

- 20 multi-function memory channels. 20 memory channels allow storage of frequency, repeater offset, CTCSS frequency, frequency step, Tone On/Off status, CTCSS and REV.
- High performance—high power! 50W (TM-231A), 35W (TM-431A) with a 3 position power switch (high, medium, low).
- Optional full-function remote controller (RC-20).

A full-function remote controller using the KENWOOD bus line, model RC-20, may be easily connected to the TM-231A/431A/531A and can be mounted in any convenient location. Using the IF-20 interface the RC-20 may be connected to four mobile transceivers (TM-231A/431A/531A or the TM-701A).

- Multi-function microphone supplied. Controls are provided on the microphone for CALL, (call channel), VFO, MR (memory recall or change the memory channel) and a programmable key. The programmable key can be used to control one of the following functions on the radio: MHZ, T, ALT, TONE, REV, DRS, LOW or MONITOR.
- Easy-to-operate illuminated keys. A functionally designed control panel with backlight keys increases the convenience and ease of operation during night-time use.
- Auto repeater offset on 144 and 220 MHz.
- Built-in digital VFO.
 a) Selection of the frequency step (5, 10, 20, 50, 125, 25kHz)
 b) Programmable VFO

The user-friendly programmable VFO allows the operator to select and program variable tuning ranges in 1 MHz band increments.

- Programmable call channel function. The call channel key allows instant recall of your most commonly used frequency data.
- Selectable CTCSS tone built-in.
- Tone alert system—for true “quiet monitoring.” When activated this function will cause a distinct beeper tone to be emitted from the transceiver for approximately 10 seconds to signal the presence of an incoming signal.
- Easy-to-operate multi-mode scanning. Band scan, Program band scan, Memory scan plus programmable memory channel lock-out, with time operated or carrier operated stop.
- Priority alert.
- DRS (Digital recording system). The optional DRU-1 can store received and transmitted messages for up to 32 seconds, allowing the operator to quickly check or return any call using the tone alert system.
- Automatic lock tuning function (TM-531A).
- Repeater reverse switch.

Optional Accessories

- RC-20 Full-function remote controller
- RC-10 Multi-function remote controller
- IF-20 Interface unit handset
- DRU-1 Digital recording unit
- MC-44 Multi-function hand mic.
- MC-44DM Multi-function hand mic. with auto-patch
- MC-48B 16-key DTMF hand mic.
- MC-55 8-pin mobile mic.
- MC-60A/80/85 Desk-top mics.
- MA-700
- MA-700
- MA-700

Dual band (2m/70cm) mobile antenna (mount not supplied) + SP-41 Compact mobile speaker + SP-50B Mobile speaker + PS-430 Power supply + PS-50 Heavy-duty power supply + MB-201 Mobile mount + PG-2N Power cable + PG-3B DC line noise filter + PG-4H Interface connecting cable + PG-4J Extension cable kit + TSU-6 CTCSS unit

KENWOOD U.S.A. CORPORATION
COMMUNICATIONS & TEST EQUIPMENT GROUP
P.O. BOX 22745, 2201 E. Dominguez Street
Long Beach, CA 90801-5745

KENWOOD ELECTRONICS CANADA INC.
P.O. BOX 1075, 959 Gana Court
Mississauga, Ontario, Canada L4T 4C2

Specifications and prices subject to change without notice or obligation.
Complete service manuals are available for all Kenwood transceivers and most accessories.