Double Band Mobile & Handheld

DOUBLE YOUR PLEASURE
DOUBLE YOUR BANDS

Dual Band Radios from ICOM!
Double your operating pleasure with Icom's new dual band IC-3210 mobile and IC-32AT handheld FM transceivers. Each unit incorporates a wealth of special features and options designed to move you into the forefront of today's expanded 2-meter and 440MHz activity. Icom dual banders: the FM enthusiasts dream rigs!

Wideband Coverage. Both the IC-3210 and IC-32AT receive 138 to 174MHz including all NOAA weather channels, transmit 140 to 150MHz including MARS/CAP, and operate 440 to 450MHz. Total coverage of today's hottest FM action!

Full Duplex Operation. Simultaneously transmit on one band while receiving on the other for incomparable dual band autopatching!

20 Memories. Store any combination of standard or odd repeater offsets and subaudible tones.

Powerful! The IC-3210 delivers 25 watts output on both bands. The IC-32AT is five watts output on both bands. Selectable low power for local use on both units.

Programmable Band and Memory Scanning. Includes easy lockout and recall of various memories. Exceptional flexibility!

Repeater Input Monitor Button. Opens the squelch and checks Tx offset simultaneously.

Priority Watch. Monitor any channel for calls while continuing operation on another frequency.

Optional Beeper. Monitors for calls with your subaudible tone, then gives alerting beeps.

Double Your Bands with Icom's dual band IC-32AT handheld and IC-3210 mobile, and double your operating pleasure on 2-meters and 440MHz.

ICOM
First in Communications
ICOM America, Inc. 2983-19th Ave. N.E., Bellevue, WA 98004 Customer Service Hotline (206) 454-7619
3150 Premier Drive, Suite 126, Irving, TX 75063 - 1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349
ICOM CANADA, A Division of ICOM America, Inc., 3071 - 45 Road, Unit B, Richmond, BC V6X 2T4 Canada
All stated specifications are subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
FOUR user selectable operating modes and a 90 number autodialer make Private Patch V the ONLY choice!

SELECT AN OPERATING MODE USING THE BUILT-IN KEYBOARD.

1. SIMPLEX SAMPLING PATCH
Private Patch V achieves a level of sampling patch performance unobtainable in any other product. Crucial to performance is the noise squelch filter. Compare our five pole filter to the competition's two pole filter. Advanced software algorithms perform noise correlation tests which result in greater useable range than the competition. Nine selectable VOX enhancement ratios allow you to vary performance from straight sampling to highly VOX enhanced. (sampling rate decreased while the land party is speaking). The mobile is in full control and can break-in at any time.

2. SIMPLEX VOX PATCH
VOX mode offers superb simplex operation with any radio, including synthesized and relay switched models. VOX mode has other advantages too. 1. A linear amplifier can be used to extend straight simplex range. 2. You can operate through any remotely located repeater to greatly extend range. 3. If desired you can connect Private Patch V to the MIC and speaker jack of your radio. NO INTERNAL CONNECTIONS ARE REQUIRED. Control is maintained automatically with built-in dial tone detection, busy signal detection and fully programmable activity and time out timers. An optional electronic voice delay board eliminates first word clipping with slow switching radios.

3. DUPLEX PATCH
Select duplex mode when connecting Private Patch V to your existing repeater or duplex base station. Many features including semi-duplex privacy mode are user programmable. The mobile is in full control at all times.

4. REPEATER CONTROLLER
Private Patch V will convert any receiver and transmitter into an outstanding performing repeater with duplex autopatch. Features such as repeater on/off code, hangtime, activity timer time, CW ID interval etc. are fully user programmable. Private Patch V is the right choice for your club system.

Private Patch V is a totally new concept in automatic phone patches. A built-in keyboard and menu driven display allow you to customize all modes, features, and functions specifically to your application.

Private Patch V can be a sampling patch today. A VOX patch tomorrow. And a repeater controller next year!

You may never need another patch again.

COMPARE THESE FEATURES.

- 90 phone number autodialer
- Last number redial
- Regenerated tone/pulse dialing
- Toll restrict: 1st and 2nd digit restrict, prefix lockout and digit counting
- 1-5 digit connect/disconnect code
- 2-5 digit secret toll override code
- User programmable CW ID
- Remote hook flash
- Auto disconnect on dialtone/busy signals
- Telephone remote base
- Remote controlled relay (relay optional)
- Lightning protected

Call or write today for your FREE brochure.

CONNECT SYSTEMS INC.
23731 Madison St. Torrance, CA 90505
Phone: (213) 373-6803

CSI is a registered trademark of Connect Systems. Inc.
Affordable DX-ing!

TS-140s
HF transceiver with general coverage receiver.

Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140s HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of "look-alike" transceivers!

- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz. (Receiver specifications guaranteed from 500 kHz to 30 MHz.) Modifiable for HF MARS operation. (Permit required)
- All modes built-in. LSB, USB, CW, FM and AM.
- Superior receiver dynamic range. Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.
- New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRM to non-participants.
- Famous Kenwood interference reducing circuits. IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC, and FM squelch.
- M. CH/VFO CH sub-dial. 10 kHz step tuning for quick QSY at VFO mode, and UP/DOWN memory channel for easy operation.
- Selectable full (QSK) or semi break-in CW.
- 31 memory channels. Store frequency, mode and CW wide/narrow selection. Split frequencies may be stored in 10 channels for repeater operation.
- RF power output control.
- AMTOR/PACKET compatible!
- Built-in VOX circuit.
- MC-43S UP/DOWN mic. included.

Optional Accessories:
- AT-130 compact antenna tuner
- AT-250 automatic antenna tuner
- HS-5/HS-6/HS-7 head-phones
- IF-232C/IF-10C computer interface
- MA-5/VP-1 HF mobile antenna (5 bands)
- MB-430 mobile bracket
- MC-43S extra UP/DOWN hand mic
- MC-65 (8-pin) goose neck mobile mic
- MC-60A/MC-80/MC-85 desk mics
- PG-2S extra DC cable
- PS-430 power supply
- SP-40/SP-50B mobile speaker
- SP-430 external speaker
- SW-100A/SW-200A/SW-2000 SWR/power meters
- TL-922A 2 kW PEP linear amplifier (not for CW QSK)
- TU-8 CITSS tone unit
- YG-455C-1 500 Hz deluxe CW filter, YK-455C-1

New 500 Hz CW filter.

TS-680s
All-mode multi-bander
- 6m (50-54 MHz) 10 W output plus all HF Amateur bands (100 W output).
- Extended 6m receiver frequency range 45 MHz to 60 MHz. specs guaranteed from 50 to 54 MHz.
- Same features of the TS-140S except optional VOX (VOX-4 required for VOX operation).
- Preamplifier for 6 and 10 meter band.

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
FEATURES

9 An NE602-based QRP Transceiver for 20-Meter CW
Rick Littlefield, K1BQT

20 The Weekender:
Going Digital
William Schreiber, NH6N

24 A Two-Loop 10-Hz Step
40-70 MHz Synthesizer
Luiz C.M. Amaral, PY1LL and
Carlos Alexandre C. Mathias

34 Collector Matching Networks
Mark Bacon, K29J

43 Writing the Technical Article
Joe Carr, K4IPV

48 VHF/UHF World:
DX Records on 50 MHz and Above
Joe Reisert, WI1JR

62 Elmer's Notebook:
Transistors and How They Work
Tom McMullen, W1SL

68 A 3456-MHz Linear Transverter
Dave Mascaro, WA3JUF

83 Practically Speaking:
Parts for Antenna Tuners and
Linears... Plus a Correction
Joe Carr, K4IPV

88 The Weekender:
A Simple Signal Source for
903 MHz
Jerry Hinshaw, N6JH

103 Ham Radio Techniques:
A Balun for 10 Meters
Bill Orr, W6SAI

See page 31 for the winners of
November's handheld radio
contest.

DEPARTMENTS

Backscatter 4 Ham Mart 94
Comments 6 DX Forecaster 96
Short Circuits 31 New Products 106, 107
Ham Notebook 32 Advertiser's Index 110
Flea Market 92 Reader Service 110

January 1989
A recent editorial in the *Boston Globe* about radio spectrum pollution and its effects on the field of Radio Astronomy hit a very familiar chord. Radio spectrum pollution is a problem that is shared by far more than those in the field of Radio Astronomy. Almost all users of the radio waves, both passive (those who listen) and active (those who transmit a signal) have suffered from noise pollution of one form or another.

Due to the very nature of their science, Radio Astronomers are far more susceptible to noise problems. The signals that they are receiving are so weak, that it’s nearly impossible to describe to the layman the technology that must be used. It may be hard to believe, but a car passing a receiving point at the wrong time could invalidate weeks of work.

The *Globe’s* editorial suggested that the solution to the problem would only cost a few dollars. That is, unfortunately, incorrect. It went on to say that Congress should explore whether legislation may be necessary to encourage, or even require, manufacturers to install filters that would reduce the noise pollution caused by electrical equipment of all kinds.

Interference problems have plagued Radio Amateurs and other radio users for years. Studies conducted by a number of trade organizations have shown, time and time again, that interference caused to home TVs, radios, and VCRs, is caused by poor design in these devices and a lack of simple, easy-to-install filters! The manufacturers have been unwilling to incorporate changes due to the cost — a $1 fix times millions of devices totals up to millions of dollars — that the consumer will ultimately pay for. To me, the thought that they will install “noise filters” to protect Radio Astronomers is ludicrous.

Radio Amateurs spend hundreds of dollars engineering their stations to meet FCC specifications. Even so, they are still blamed for interference to consumer electronic devices — a problem that is created in the unit itself. Attempts by Radio Amateur lobbyists to get FCC or Congressional relief, have so far been unsuccessful.

While I would like to believe that there is a simple solution to the problem, it will be far more difficult to effect. The utopian view that Congress can solve all problems is just a dream. The answer lies, instead, in proper design and manufacturing techniques, along with firm standards of performance for consumer electronic devices mandated by the FCC.

J. Craig Clark Jr., N1ACH
Double Take!

TM-621A/721A

144/220 and 144/450 MHz FM Dual Banders

Once again, Kenwood brings you another Dual Bander First! The TM-621A is the first 144/220 MHz FM Dual Bander. The Kenwood TM-621A and TM-721A (144/450 MHz) redefine the original Kenwood "Dual Bander" concept. The wide range of innovative features includes a dual channel watch function, selectable full duplex operation, 30 memory channels, extended frequency coverage, large multi-color dual digital LCD displays, programmable scanning, and more!

- Extended receiver range (138.000-173.995 MHz) on 2 m; 70 cm coverage is 438.000-449.995 MHz; 1-1/4 m coverage is 215-229.995 MHz. (Specifications guaranteed on Amateur bands only. Two meter transmit range is 144-148 MHz. Modifiable for MARS/CAP. Permits required.)
- Separate frequency display for "main" and "sub-band."
- Call channel function. A special memory channel for each band stores frequency offset, and sub-tone of your favorite channel. Simply press the CALL key, and your favorite channel is selected!

- 30 multi-function memory channels. 14 memory channels and one call channel for each band store frequency, repeater offset, CTCSS, and reverse. Channels "A" and "B" establish upper and lower limits for programmable band scan. Channels "C" and "D" store transmit and receive frequencies independently for "odd splits."
- 45 Watts on 2 m, 35 watts on 70 cm, 25 watts on 1-1/4 m. Approx. 5 watts low power.
- Automatic Band Change (A.B.C.) Automatically changes between main and sub-band when a signal is present.
- Dual watch function allows VHF and UHF receive simultaneously.
- Programmable memory and band scanning, with memory channel lock-out and priority watch function.
- Balance control and separate squelch controls for each band.
- Dual antenna ports.
- TM-621A has auto offset.
- Full duplex operation.
- CTCSS encode/decode selectable from front panel or UP/DWN keys on microphone. (Encode built-in, optional TSU-6 needed for decode.)
- Each function key has a unique tone for positive feedback.
- Illuminated front panel controls and keys.
- 16 key DTMF mic. included.
- Handset/remote control option (RC-10).
- Frequency (dual) lock.
- Supplied accessories: 16-key DTMF hand mic., mounting bracket, DC cable.

Optional Accessories:

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
COMMENTS

Challenge your knowledge

Dear HR

I’ve been a HR subscriber since my return from Vietnam in late 1968. You have always given me the kinds of technical articles that were on the leading edge of technology. Both in my hobby (ham radio) and in my former occupation (junior college teacher), I have been able to draw upon your magazine for a source of ideas, challenges to my expertise, and enjoyment in the challenging field of electronics. I like the idea of “Elmer’s Notebook” to help newcomers discover what some (or most) of us internalized long ago.

To use a worn, trite phrase, “Keep up the good work.”

Richard B. Bridges, WB5GSA,
APO New York 09757

Technical competence compromised

Dear HR:

For the past several days the Cable News Network has been showing interviews with and comments about a survey of Americans concerning their knowledge of geography. Almost nobody knew the locations of Central America or Massachusetts. Very, very few knew the population of the United States. The terrible ignorance is appalling and immediately brings the politicians to their rostrums, snarling, “We MUST do something about this!"

And now I see more letters whining about being given MORE beneficial communication handouts. Could it be that the one, basic and fundamental reason that these people cry for easier examinations (or none at all) is that there is a provable and colossal ignorance loose in the land? Is it necessary to have easier test standards because hardly anyone can successfully pass an examination that used to be routinely given to high school teenagers thirty years ago? When I passed my Class B examination and thirteen word per minute code test 41 years ago, was I more intelligent than some college level student of today? Perhaps.

Let me point out that Amateur Radio is not a service to the average person on the street. Amateurs are licensed “in the public interest” and let us not allow the same word-twisting go on here as happens with the First Amendment. We assist in fire and flood, tornado and earthquake — we do not order pizzas or pass the word to your secretary that you’ve decided to have that extra martini. By all means, get a cellular telephone — that’s just what they are for. The FCC experiment on 27 Megacycles to allow the citizenry to have access to their own, unmolested HF communications speaks loudly for itself. Those of you who believe that the future of Amateur Radio stands in harm’s way are probably right. But is the answer to heap the spectrum with electronic effluvium in an attempt to disguise a little bit of communication knowledge — or to raise the level of technical competence to a point where it can be recognized and rewarded?

I don’t believe that one would have to hire the best market survey company in the country to discover that a majority of amateurs find $2500 a rather steep price for a piece of ham gear — entrance level or not! I started out with a single 6L6 and a surplus crystal. But not today! Your kid doesn’t want a Model-A, he wants a Mercedes Benz! The makers of soldering irons are going the way of the buggy whip manufacturers. Change the motherboard! It’s much more of a challenge to break laws, social and moral — and all of us tired old people sit and wonder why the young people aren’t just flocking to join the Amateur Radio ranks. Better start a stamp collection, brudder.

Joe Weite, KH6GDR,
Ferndale, Western Australia

Latest issue...

Great!...but..

Dear HR:

Hey guys! Great new September issue, but...I can’t read the parts list on page 20 or LOTUS information on page 32 (fig. 2 and 3). Any chance of seeing it in larger print?

Thanks and good luck.

Sam Popkin, K2DNR,
Tucson, Arizona 85747

Full size copies of programs and parts lists are available for an SASE.

Ed.

Is zone 29 rare in contests?

Dear HR:

I enjoy giving zone 29 to United States stations during contests where zones count as multipliers.

However, over the past few years during each contest I have noticed that nearly every time I call a strong W station, he is calling CQ contest again, without having made a contact. Perhaps my Australian drawl or accent puts stations off?

Honestly, most stations do not allow time for me to give my callsign.

If I do make a contact, most U.S. stations are very happy to have zone 29 as a new multiplier and they say so. So, please all you contest stations look for the VK6 and leave enough time between calls.

By the way, there are only about 900 VK6 stations altogether and probably 4 or 5 active contesters!

Graham Rogers, VK6RO,
Ferndale, Western Australia
Four to Go!

TM-221A/321A/421A/521A
144/220/450/1300 MHz

The Hottest Selling Compact FM Mobile Transceivers

The all-new TM-221A, TM-321A, TM-421A and TM-521A FM transceivers represent the "New Generation" in Amateur radio equipment. The superior Kenwood GaAs FET front end receiver; reliable and clean RF amplifier circuits, and new features all add up to an outstanding value for mobile FM stations!

The optional RC-10 handset/control unit is an exciting new accessory that will increase your mobile operating enjoyment!

- TM-221A receives from 138-173.995 MHz. This includes the weather channels! Transmit range is 144-148 MHz. Modifiable for MARS and CAP operation. (MARS or CAP permit required.)

- TM-321A covers 220-224.995 MHz, TM-421A covers 438-449.995 MHz, and the TM-521A covers 1240-1300 MHz. (Specifications guaranteed for Amateur band use only.)

- Built-in front panel selection of 38 CTCSS tones. TSU-5 programmable decoder optional.

- Amplified front panel controls - makes operating a snap!

- 16 key DTMF hand mic., mic. hook, mounting bracket, and DC power cable included.

- Selectable frequency steps for quick and easy tuning.

- Packet radio compatible!

- Programmable band scanning with memory scanning and memory channel lock-out.

- New amber LCD display.

- Kenwood non-volatile operating system. All functions remain intact even when lithium battery back-up fails. (Lithium cell memory back-up, est. life 5 yrs.)

- 14 full-function memory channels store frequency, repeater offset, sub-tone frequencies, and repeater reverse information. Repeater offset on 2 m is automatically selected. There are two channels for "odd split" operation.

- Super compact: approx. 1-1/2"Hx5-1/2"Wx7"D.

- Microphone test function on low power.

- High quality, top-mounted speaker.

- Rugged die-cast chassis and heat sink.

Optional Accessories:
- RC-10 Multi-function handset remote controller
- PG-4G Extra control cable for second transceiver
- PS-50/PS-430 DC power supplies
- TSU-5 Programmable CTCSS decoder
- SW-100A Compact SWR/power/volt meter (18-150 MHz)
- SW-100B Compact SWR/power/volt meter (80-500 MHz)
- SW-200A SWR/power meter (18-150 MHz)
- SW-200B SWR/power meter (140-450 MHz)
- SW-200C SWR/power meter (450-1300 MHz)
- SW-201D SWR/power meter (140-450 MHz)
- SW-202E SWR/power meter (1300-4500 MHz)
- SW-203F SWR/power meter (4500-12000 MHz)
- SWT-1 Compact 2 m antenna tuner (200 W PEP)
- SWT-2 Compact 70 cm antenna tuner (200 W PEP)
- SWC-4 1200 MHz Directional coupler
- SP-40 Compact mobile speaker
- SP-50B Mobile speaker
- PG-2N Extra DC cable
- PG-3B DC line noise filter
- MC-60A, MC-80, MC-85 Base station mics.
- MC-55 (8-pin) Mobile mic. with gooseneck and time-out timer
- MA-4000 2 m/70 cm dual band antenna with duplexer (mount not supplied)
- MB-201 Extra mobile mount

Specifications and prices subject to change without notice or obligation.

Complete service manuals are available for all Kenwood transceivers and most accessories.

RC-10 Remote Controller
For TM-221A/321A/421A/521A.

Optional telephone-style handset remote controller RC-10 is specially designed for mobile convenience and safety. All front panel controls (except DC power and RF output selection) are controllable from the RC-10. One RC-10 can be attached to a combination of two transceivers with the optional PG-4G cable. When two transceivers are connected to the RC-10, cross band, full duplex repeater operation is possible. (A control operator is needed for repeater operation.)
Radio Magazine

TAPR designed modem in speeds including 170.425 and 800 Hz exctt AMTOR than the other modems tested. MFJ-1278 Performance hardware compatible. $19.95 each.

You'll find the most user friendly of all multi-modes. It's menu driven for ease of use and command driven for speed.

A high resolution 20 LED tuning indicator lets you tune in signals fast in any mode. All you have to do is center a single LED and you're precisely tuned in to within 10 Hz -- and it shows you which way to tune!

Plus you get 32K RAM, KISS for TCP/IP, high performance HF/VHF/CW modes, software selectable dual radio ports, AC power supply and AC modems.

All you need to join the fun is an MFJ-1278, your rig and any computer of your choice. You can also get a random code generator that'll help you copy CW faster.

Weather FAX:

You'll be fascinated as you watch WEFAX signals blossom into full fledged weather maps on your Epson or IBM graphics compatible printer.

Automatic lets you set it and leave it for no hassle printing.

You can save FAX pictures and WEFAX maps to disk if your terminal program lets you save ASCII files to disk.

Pictures and maps can be saved to disk or printed to screen in real time or from disk if you have an IBM or Macintosh with the MFJ Starter Pack.

You can transmit FAX pictures right off disk and have fun exchanging and collecting them.

Slow Scan TV:

The MFJ-1278 introduces you to the exciting world of slow scan TV.

You can print slow scan TV pictures on any IBM or Epson graphics compatible printer. If you have an IBM or Macintosh you can print to screen and save to disk with the MFJ Starter Pack.

You can transmit slow scan pictures right off disk. If your terminal program lets you save ASCII files you can save pictures from over-the-air QSOs.

You can transmit and receive 8.5, 12, 17, 24, and 36 second black and white format SSTV pictures using two levels.

Contest Memory Keyer

Nothing beats the quick response of a memory keyer during a heated contest.

You'll score valuable contest points by controlling QSOs so fast you'll leave your competition behind. And you can snag rare DX by slipping in so quickly you'll catch everyone by surprise.

Message memories let you store contest call, name, QTH, rig info -- everything you used to repeat over and over.

You get tambio operation, automatic incrementing serial numbering, weight control to penetrate QRM and more.

More Features

Turn on your MFJ-1278 and it sets itself to match your computer baud rate. Select your operating mode and the correct modem is automatically selected.

Plus... printing in all modes, threshold control for varying band conditions, tune-up command, lithium battery backup, RS-232 and TTL level serial ports, watch dog timer, terminal and AFSK outputs, output level control, speaker jack, key paddle jack, test and calibration software. 2-80 at 4.9 MHz, 32K EPROM, and socketed ICs. FCC approved. 9x1 1/2 in. 12x 11 in. 110V AC.

Get yours today and join the fun crowd!

New Firmware Update

A new KISS/AMTOR/Navtex Firmware update is available to MFJ-1278 owners. MFJ's powerful update is the most reasonably priced multi-mode upgrade by any manufacturer. Contact your dealer or MFJ for yours today!

MFJ Packet Radio

MFJ-1274
$139.95

MFJ-1270B
$119.95

MFJ-1278
$199.95

MFJ-1284
$249.95

MFJ-1283
$249.95

MFJ-1282
$249.95

MFJ-1281
$249.95

MFJ-1280
$249.95

MFJ-1279
$249.95

MFJ-1278B
$249.95

MFJ-1277
$249.95
A complete QRP station that slips into your coat pocket

I've recently seen several small projects using the Sigmetics NE602 Gilbert Cell mixer. I first used the NE602 in the “Micro-20 Receiver,” a simple 20-meter superhet. Additional experience and helpful feedback from other builders encouraged me to carry my exploration a bit further. Here's a complete QRP 20-meter transceiver which presses the NE602 into service as a transmit mixer.

Three modules contain the transceiver circuitry. The 3.25” × 1.7” receiver board is a new version of my original “micro-20” project, with several refinements for improved performance. The transmitter board is the same size as the receiver and is designed to deliver the QRP “legal” limit of 5-watts output. Other transmitter features are: high-Z keying, semi-QSK T/R switching, and provisions for adjustable CW off-set and sidetone monitoring. A CW filter board narrows receiver i-f and audio passbands for serious CW work. All of this fits into a 1.75” × 4.0” × 4.0” Ten-Tec TG-type cabinet.

Receiver description

The receiver schematic is shown in fig. 1. This is a conventional single-conversion design incorporating some of the more desirable aspects of past projects. The theory of operation has been presented elsewhere, but several refinements deserve mention. First, RF bandpass filter L1, L2 has been changed to improve out-of-band rejection. Second, the i-f was changed from 9 to 10 MHz. This lets you use inexpensive computer-clock crystals for the i-f filter and BFO. I added an optional BFO modification to ensure sufficient BFO tuning range when these crystals are used.

In the audio/AGC section, I dropped S-meter circuitry in favor of adding a trimpot for AGC threshold. Along the same line, I adjusted AGC drive to eliminate overshoot on extremely strong signals. Good AGC performance is important because receive circuitry remains “live” during transmit to monitor the CW signal.

The NE602 operating voltage was reduced slightly to improve operating characteristics, and VFO tank L3 was changed to resonate in the required 4.0-MHz range. Finally, I reconfigured the VFO tuning to cover only the bottom 100 kHz of the band.

Transmitter description

Figure 2 shows the transmitter module. This board contains RF circuitry and switching for semi-QSK operation. Transmit mixer U1 samples the 4-MHz VFO signal generated in the receiver and mixes it with an internal 10-MHz oscillator to produce 14-MHz output. Transmit-offset is set by netting the 10-MHz LO. This arrangement eliminates the need to shift receiver BFO frequency during transmit and allows the receiver to be used as a sidetone monitor.

Keying is accomplished by switching the 12-volt supply line to U1. This is done by Q1, a DC switch which also activates relay controller Q2. Q1 presents a high-Z load to the handkey or keyer. Q2 functions as an FET relay driver for K1. An RC circuit on the gate of Q2 sets semi-QSK hold time. The values specified provide a delay of about 1 second. They can be adjusted if you wish. K1 supplies + 12 volts Vdc to Q3 and Q4 during transmit, and switches the antenna.

Q3 functions as a tuned-output buffer/driver which boosts U1’s output to the required level for driving Q4. Class-C final amplifier Q4 delivers 4.5-5.0 watts output into a 50-ohm load with a Vc of 12 volts (somewhat...
greater output with a Vc of 13.8 volts). The PA collector tab is mounted to the transceiver case for cooling. T1, a 4:1 balun, transforms the output of Q4 to 50 ohms. Harmonic filtering is provided by a 5-element low-pass filter.

Filter description

The CW filter module, shown in fig. 3, actually houses two discrete circuits. The first is a 4-pole Cohn crystal bandpass filter identical to the one prescribed for the receiver. This connects in place of C21 on the receiver board and acts as a “post filter” for the i-f amplifier. The second element is a two-stage 700-Hz active bandpass filter installed between the product detector and audio amplifier (in place of C26). Distributing filtering throughout the system this way increases selectivity and, at the same time, reduces broadband noise generated in each stage. It also reduces the opportunity for ringing. The result is a very quiet and tight receiver — two important qualities for chasing serious DX, or pulling fellow QRP operators through noise and QRM.

Construction

Because this project employs two identical four-pole Cohn bandpass filters, your first task is to obtain eight 10,000-MHz crystals that resonate near the same frequency. Design bandwidth for the filter is about 1 kHz, so your matched set should resonate within 100 Hz of each other in a test oscillator (tolerance is 1/10th the desired bandwidth). The exact frequency of oscillation isn’t critical, as long as the crystals you select cluster...
around some center frequency. It's my experience that 20 crystals from the same batch will yield eight close enough to do the job. If your crystals are spread over a wider range, the filters will work — they'll just be a bit broader.

All board layouts assume 1/4-watt resistors and monolythic bypass capacitors with 0.1" lead spacing. Board layout is tight, but construction is straightforward. If you have the proper tools plus some experience working on contemporary solid-state equipment, you should have no trouble building this rig. It's good practice to dope all toroid inductors and secure them to the board with glue. Double-check part locations and component polarities.

The receiver parts layout is shown in fig. 4. The most difficult job is winding VFO inductor L3; no. 32 wire is thin, and may break if pulled too tightly. I wound this coil on a 0.25" plastic form (FM receiver type) with the slug removed. It helps to mount the form before winding, and to secure windings in place immediately with clear nail.
polish. There are mounting holes for a CirKit 13-mm shield can (0.5" x 0.5" x 0.75"), but other shields will work.

You must install two jumpers on the back side of the receiver board. Fabricate TP-1 (test pin) from any discarded lead end. It’s good practice (though not essential) to tie the cases of Y1-Y4 together with a common ground lead once they are soldered in place. Remember to omit C20 and C26 if you plan to install the external CW filter before initial testing.

Figure 5 shows the transmitter layout. A cutout is nibbled in the board to permit access to Q4’s tab mount. To install Q4, first nip off the center lead (collector), then mount the device on the back side of the board as shown. Next, temporarily install a solder lug on the collector tab. This will help when you mount T1.

Install four jumpers on the back side of the module. Omit the jumper from K1 to C23 if you plan to run the PA directly off a 13.8-volt power source (Q4 is a class C stage, so Vc can remain connected during receive). Also, note that R9 is tuck-soldered to the back side of the

PARTS LIST

Transmitter Module

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4, C13</td>
<td>0.1 µF 50V</td>
<td>Monolithic</td>
</tr>
<tr>
<td>C5, C9, C12, C14, C15, C16</td>
<td>0.1 µF 50V</td>
<td>Monolithic</td>
</tr>
<tr>
<td>C22</td>
<td>1 µF 50V</td>
<td>Monolithic</td>
</tr>
<tr>
<td>C2</td>
<td>1 µF 50V</td>
<td>Monolithic</td>
</tr>
<tr>
<td>C6</td>
<td>0.1 µF</td>
<td>NPO</td>
</tr>
<tr>
<td>C7</td>
<td>0.1 µF</td>
<td>NPO</td>
</tr>
<tr>
<td>C8, C11, C18</td>
<td>0.1 µF 50V</td>
<td>Monolithic</td>
</tr>
<tr>
<td>C10, C12, C19, C20</td>
<td>0.22 µF</td>
<td>Silver Mica</td>
</tr>
<tr>
<td>C21</td>
<td>10 µF 1/2W tantalum dip or electrolytic</td>
<td></td>
</tr>
</tbody>
</table>

Inductors

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>20 turns no. 28 on T30-2 2-turn link on center</td>
</tr>
<tr>
<td>L2</td>
<td>20 turns no. 28 on T30-2 winter tapped 2-turn link on cold end</td>
</tr>
<tr>
<td>L3-L4</td>
<td>12 turns no. 24 on T27-2 spread over 80 percent of form</td>
</tr>
<tr>
<td>L5</td>
<td>12 turns braid no. 24 on F47-1</td>
</tr>
<tr>
<td>L6-L7</td>
<td>12 turns no. 26 on F70-2</td>
</tr>
</tbody>
</table>

Resistors (all 1/4-watt)

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>47k</td>
</tr>
<tr>
<td>R2, R3</td>
<td>10k</td>
</tr>
<tr>
<td>R4</td>
<td>2.2k</td>
</tr>
<tr>
<td>R5</td>
<td>1k</td>
</tr>
<tr>
<td>R6, R7</td>
<td>470</td>
</tr>
<tr>
<td>R8</td>
<td>4.7</td>
</tr>
<tr>
<td>R9</td>
<td>33</td>
</tr>
</tbody>
</table>

Semiconductor

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>5602</td>
</tr>
<tr>
<td>Q2, Q6</td>
<td>2N3906</td>
</tr>
<tr>
<td>Q7</td>
<td>BD-170 (Radio Shack)</td>
</tr>
<tr>
<td>Q3, Q4</td>
<td>2N3926A</td>
</tr>
<tr>
<td>Q4</td>
<td>MRF-476 (Motorola)</td>
</tr>
<tr>
<td>D1-D2</td>
<td>1N4148 switching diode</td>
</tr>
<tr>
<td>Y1</td>
<td>9995 MHz series resonant, 0.2" lead spacing</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>200µF flat pack 12 volt radio (Radio Shack)</td>
</tr>
<tr>
<td>70-220 insulated mounting kit (Q4)</td>
<td></td>
</tr>
</tbody>
</table>

CW Filter Module

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C6</td>
<td>1 µF 50V monolithic or 0.1 µF 12 volt electrolytic</td>
<td></td>
</tr>
<tr>
<td>C2-C5</td>
<td>0.001 µF 100 volt mylar film or equivalent</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.01 µF</td>
<td>NPO</td>
</tr>
<tr>
<td>C8</td>
<td>0.1 µF</td>
<td>NPO</td>
</tr>
<tr>
<td>C9-C13</td>
<td>0.1 µF</td>
<td>Silver Mica</td>
</tr>
</tbody>
</table>

Resistors (all 1/4-watt).

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R4</td>
<td>68k</td>
</tr>
<tr>
<td>R2-R3</td>
<td>24k</td>
</tr>
<tr>
<td>R3-R6, R4-R7</td>
<td>1k</td>
</tr>
<tr>
<td>R5-8</td>
<td>22k</td>
</tr>
<tr>
<td>R9</td>
<td>1k</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>1450 (top amp)</td>
</tr>
<tr>
<td>Y1-Y2</td>
<td>4 (10.000 MHz series resonant 100 Hz match)</td>
</tr>
</tbody>
</table>

SMILE! YOU'RE ON TV

Only $299

Designed and built in the USA Value + Quality from over 25 years in ATV...W6ORG

With our all in one box TC70-1, 70cm ATV Transceiver you can easily transmit and receive live action color and sound video just like broadcast TV. Use any home TV camera or VCR by plugging the composite video and audio into the front VHS 10 pin or rear phono jacks. Add 70cm antenna, coax, 13.8 Vdc and TV set and you are on the air...it's that easy!

TC70-1 has >1 watt p.e.p. with one xtal on 439.25, 434.0 or 426.25 MHz, runs on 12-14 Vdc @ .5A, and hot GaAsfet downconverter tunes whole 420-450 MHz band down to ch3. Shielded cabinet only 7x7x2.5". Transmitters sold only to licensed amateurs, for legal purposes, verified in the latest Callbook or with copy of license sent with order. Call or write now for our complete ATV catalog including downconverters, transceivers, linear amps, and antennas for the 70, 33, & 23cm bands.

(818) 447-4565 m-f 8am-5:30pm pst. Visa, MC, COD

P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006

With our all in one box TC70-1, 70cm ATV Transceiver you can easily transmit and receive live action color and sound video just like broadcast TV. Use any home TV camera or VCR by plugging the composite video and audio into the front VHS 10 pin or rear phono jacks. Add 70cm antenna, coax, 13.8 Vdc and TV set and you are on the air...it's that easy!

TC70-1 has >1 watt p.e.p. with one xtal on 439.25, 434.0 or 426.25 MHz, runs on 12-14 Vdc @ .5A, and hot GaAsfet downconverter tunes whole 420-450 MHz band down to ch3. Shielded cabinet only 7x7x2.5". Transmitters sold only to licensed amateurs, for legal purposes, verified in the latest Callbook or with copy of license sent with order. Call or write now for our complete ATV catalog including downconverters, transceivers, linear amps, and antennas for the 70, 33, & 23cm bands.

(818) 447-4565 m-f 8am-5:30pm pst. Visa, MC, COD

P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006

For your Home

OUTFIT A DX’PEDITION FOR YOUR HOME

Kenwood TS-140S includes hand mic...$949
Kenwood PS-430/ac power supply...$195
G5RV complete antenna...$50
Bench BY-1 keyer paddle...$65
Nye Keyer EK-001...$84

list price...$1333
YOUR Madison DX’pedition Price...$1195

SAY $138!!!

OPTIONAL ACCESSORIES:

- MC-80 desk mic...$79
- 500 Hz CW filter...$94

AMATEUR TELEVISION

SMILE! YOU'RE ON TV

Only $299

Designed and built in the USA Value + Quality from over 25 years in ATV...W6ORG

With our all in one box TC70-1, 70cm ATV Transceiver you can easily transmit and receive live action color and sound video just like broadcast TV. Use any home TV camera or VCR by plugging the composite video and audio into the front VHS 10 pin or rear phono jacks. Add 70cm antenna, coax, 13.8 Vdc and TV set and you are on the air...it's that easy!

TC70-1 has >1 watt p.e.p. with one xtal on 439.25, 434.0 or 426.25 MHz, runs on 12-14 Vdc @ .5A, and hot GaAsfet downconverter tunes whole 420-450 MHz band down to ch3. Shielded cabinet only 7x7x2.5". Transmitters sold only to licensed amateurs, for legal purposes, verified in the latest Callbook or with copy of license sent with order. Call or write now for our complete ATV catalog including downconverters, transceivers, linear amps, and antennas for the 70, 33, & 23cm bands.

(818) 447-4565 m-f 8am-5:30pm pst. Visa, MC, COD

P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006

PARTS LIST

CW Filter Module

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C6</td>
<td>1 µF 50V monolithic or 0.1 µF 12 volt electrolytic</td>
<td></td>
</tr>
<tr>
<td>C2-C5</td>
<td>0.001 µF 100 volt mylar film or equivalent</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.1 µF</td>
<td>NPO</td>
</tr>
<tr>
<td>C8</td>
<td>0.1 µF</td>
<td>NPO</td>
</tr>
<tr>
<td>C9-C13</td>
<td>0.1 µF</td>
<td>Silver Mica</td>
</tr>
</tbody>
</table>

Resistors (all 1/4-watt).

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R4</td>
<td>68k</td>
</tr>
<tr>
<td>R2-R3</td>
<td>24k</td>
</tr>
<tr>
<td>R3-R6, R4-R7</td>
<td>1k</td>
</tr>
<tr>
<td>R5-8</td>
<td>22k</td>
</tr>
<tr>
<td>R9</td>
<td>1k</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>1450 (top amp)</td>
</tr>
<tr>
<td>Y1-Y2</td>
<td>4 (10.000 MHz series resonant 100 Hz match)</td>
</tr>
</tbody>
</table>
The 3CX1200A7 continues the EIMAC tradition of serving AMATEUR RADIO.

EIMAC was right there to meet Ham requirements of 1500 watts PEP with its 3CX1200A7 tube. Leading manufacturers count on its proven performance and reliability.

Low-cost power for small spaces
The rugged 3CX1200A7 takes size into consideration and, by design, is recommended as a single, low-cost alternative for a pair of EIMAC 3-500 Z tubes for new amplifier designs.

General Specifications
The EIMAC 3CX1200A7 is a high-mu, compact, forced air cooled triode for zero-bias class AB2 amplifiers.
- 2.9" dia. x 6.0" long
- Plate dissipation: 1200 watts
- Glass chimney SK-436 available
- Standard EIMAC SK-410 socket available

More information is available on the new EIMAC 3CX1200A7 tube from Varian EIMAC, or any Electron Device Group worldwide sales organization.

Varian EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
Telephone: 801-972-5000

varian
eimac salt lake division
board. Because the VFO line connects to the front side of the board, you must install a pin in the hole next to C6.

Constructing the CW filter module is easy — just follow the parts layout in fig. 6. If you substitute something other than 1 percent mylar-film precision capacitors for C2-C5, it is critical that you screen them with a capacitance bridge and select four values within 1 percent of each other. C9-C13 must be 100-volt silver micas; larger 500-volt types won’t fit on the board.

Packaging

Any box can be used to house the transceiver. I built mine into a Ten-Tec TG box; fig. 7 shows the layout. My first prototype sported several switches for various functions, an S-meter, plus an array of status LEDs. While these options were simple to add, I found they contributed little to operation and needlessly complicated internal wiring. For my final layout, I opted for utter simplicity — a volume control and a tuning knob. One of my prototypes does have a small speaker built into the top. This is nice for casual listening, but when I settle in for some serious operating, the ‘phones go on!

Choosing the right VFO tuning capacitor is important; it’s the control you’ll use most. Radiokits sells a 50-pF ball-bearing capacitor with a built-in 6:1 drive perfect for QRP projects like this one. You can attach a simple pointer or concentric dial plate to the inner shaft for a frequency indicator. I recommend installing this — and all cabinet-mounted components and parts — before mounting the boards. Also, wire the 7812 voltage regulator.

Mount the transmitter module to the back panel of your cabinet with 3/16” spacers and no. 4-40 hardware. This provides sufficient clearance for the MRF-476 to seat between the board and back panel. Six mounting points (with four in the PA section) ensure a respectable RF ground for the single-sided pc board. Mount the receiver to the bottom of the case on similar spacers. Leave enough room on the right-hand side for mounting the CW filter module. This is positioned vertically and held in place by a stiff solder lug bent to form a 90-degree bracket. Note the location of the 7812 regulator — all heat-generating components are kept as far from VFO circuitry as possible to ensure stability.
You're In A Separate "Class" With The SB-1400 Transceiver

The world is at your fingertips with the NEW Heath SB-1400 All-Mode Transceiver featuring dual VFOs and 20 memory channels. With a price tuned into your budget, the SB-1400 is an assembled SSB/CW/AM and optional FM transceiver that delivers 100W of PEP output on all nine HF amateur bands, with 100kHz-30MHz general coverage reception.

The SB-1400 is the latest addition to Heath Company's full line of amateur radio equipment - everything you need to complete your ham shack.

Heath Company also carries an extensive line of other electronic products. From computers to television sets, from test instruments to stereos, every Heathkit® product - kit and assembled - is backed by 40 years of dedicated attention to design, quality and durability.

For a FREE Heathkit catalog, send in your QSL card, mail the coupon below, or call 24 hours a day TOLL FREE:

1-800-44-HEATH (1-800-444-3284)

Yes, send me a FREE Heathkit Catalog.
Send to: Heath Company, Dept. 122-734
Benton Harbor, Michigan 49022

Name ____________________________
Address ____________________________ Apt. _________
City ________________________________
State ____________________________ Zip _________

AM-451R1 A subsidiary of Zenith Electronics Corporation
Heath Company
Do the Hop; up to 2400 Baud Packet!
Faster is Better;
Speedy 2400 Baud

Faster is better for files.
2400 baud is twice as fast for files as formerly speedy 1200 baud, reducing chances for error during transmission. And speeding along long data strings, which helps keep the airwaves open. And you can still select 300 or 1200 baud in seconds.

New!
VERY Special Suggested Price

Normal suggested retail for our KPC-2400™ unit was $329.00. The new breakthrough suggested retail is just $199.00! A 40% savings!

FREE Kantronics' FASTFILE™

FASTFILE™ is a powerful terminal program for PCs and compatibles that performs neat, fast file transfers.
You'll receive FASTFILE free, but you should also look at its big brother, PACFILE™, an exclusive Kantronics file transfer program for only $29.95.

Advanced Feature List
The KPC-2400 is not only the fastest packet on four rubber feet, but has all these "Designed and Built in the U.S.A." features:

*Watchdog timer
*Personal Packet Mailbox™
*WEFAX command
*Software-selectable 300/1200/2400 baud rate
*KA-NODE™
*TCP/IP compatibility
*32K RAM

Also "built in" is Kantronics' incomparable commitment to service. So there's no better time than now to get into Packet. Jump in or up with the Kantronics KPC-2400™!
Component placement and pc board layout for the transmitter.

Interconnections carrying RF or i-f signals use miniature shielded cable. (Spiral-wound lavaliere microphone cable is especially easy to work with.) Remember to ground shields at one end only. The shielded lead between the receiver VFO and transmit mixer adds capacitance to the VFO’s LC circuit. Keep this as short as possible (ground shield at the receiver end). The keying line and all audio lines are unshielded. Use stiff bus wire to connect the receiver module to the VFO capacitor.

Alignment

Set up the receiver. Connect a voltmeter to TP-1, and set trimpot R16 for a reading of 5 volts. Next, check the VFO and BFO for oscillation (using a general coverage receiver or counter). Adjust VFO calibration (C7) to cover from 4.0 MHz to between 4.070 and 4.1 MHz (20-meter CW range). To obtain this, you may need to substitute or add fixed capacitance. Set the BFO (C23) for 9998.5 — about 1.5 kHz below the filter’s center frequency. This ensures acceptable rejection of the unwanted sideband. When the BFO is set, adjust T1 for an audible peak in background noise. Finally, connect an antenna or terminated signal generator, and peak C1 and C3 for maximum sensitivity.

To tune the transmitter, connect a power meter and dummy load, and key the transmitter. Set C8 for an audible sidetone of around 1.5 kHz. Finally, adjust C11 and C16 for maximum output. Tuning should be smooth and sharp, without erratic peaks or other indications of instability.

Now make one final adjustment. In theory, offset should equal the audible sidetone frequency (i.e., the beat between the two 10-MHz LOs). In fact, the NE602 VFO has a habit of pulling a few hundred Hz during transmit — probably due to a load change when the circuit is keyed. Although unsettling, this effect is apparently harmless — there’s no audible chirp. To compensate for the shift, send a string of dashes on your station transceiver and tune it in on the QRP rig (700 Hz note). Then key the QRP rig and adjust C8 for a corresponding 700-Hz note on the station transceiver. My sidetone note is around 1.5 kHz with offset adjusted to 700 Hz.

Before concluding, I should add a word about filter terminations. Theoretically, Cohn filters must be terminated at their characteristic impedance to provide optimal response. In practice, I find the impact of a mismatched port often looks worse on the scope than it sounds on the radio. By way of illustration, one of my
transceivers has resistively terminated filters and the other doesn’t. In side-by-side comparisons, I can’t hear the difference. Nevertheless, if you wish to go the extra step, here’s how. First, take two 470-ohm resistors and carefully solder a 0.01 monolithic capacitor in series with each. On the back of the receiver board, tack-solder one of these from pin 4 of U1 to ground. On the CW filter board, tack the other from the output side of the filter to ground. Now, take a third 470-ohm resistor and tack it from the input side to ground. That’s all there is to it.

Conclusion

I owe special thanks to several builders who have written and shared their experiences with the NE602. Ed Pacyna, W1AAZ, deserves special credit for some of the information offered in this article. I also want to thank Radiokit for their ongoing support and encouragement.

Although billed as a double-balanced mixer, be aware that the NE602 is not “state of the art” for HF applications. It’s a high-Z device with lots of gain and a third-order intercept of only −15 dBm, so it’s prone to stray pick-up and occasional symptoms of intermodulation distortion. On the other hand, the NE602 has many attributes. It has a very low noise figure, needs no external LO circuitry and a minimum of external parts, comes in a small package with low power consumption, and is inexpensive. For the QRP microphile, these are very attractive pluses!

When it comes to actual operation, the rig itself is a lot of fun to use. Interference caused by overload is minimal and rarely a problem. I especially like having the built-in creature comforts of a good AGC, CW filter, sinewave sidetone, and semi-QSK switching (as opposed to full QSK). On the transmit side, running a full “QRP gallon” (5 watts output) ensures plenty of action. (My first on-air test landed a QSO with Nick, UV3DN, just outside of Moscow.) Best of all, the transceiver’s small size means you can set it up anywhere. I presently have one in the office (a benefit of owning the company). My business partner refers to it as “the magic paperweight we use to talk to the Russians.” People think he’s kidding.

A complete parts kit (including pc boards and enclosure) is available from Radiokit for $124.95. A set of pc boards is $8.95. Ed.

References

6. Radiokit, Box 973, Pelham, New Hampshire 03076.

Article A

Ham Radio
Realistic, America's premier brand of scanners, CB radios and satellite TV systems introduces the HTX-100, the perfect first rig for a beginning Ham and a superb 10-meter mobile radio for any amateur. It's compact, yet loaded with "big rig" features.

Pushbutton Memory Tuning
An easy-to-program memory stores 10 favorite frequencies and mike-mounted pushbuttons permit safe and easy up/down frequency selection while you drive. A front-panel lock control prevents accidental frequency changes. You can fine-tune reception with the ±1.5 kHz RIT control. Coverage is 28.0 to 29.6999 MHz, USB or CW. Convenient semi break-in keying and CW sidetone are built in.

Selectable Power Output
You can select 25-watt or 5-watt QRP power output from the front panel. The HTX-100 has a backlit LCD frequency display with mode and tuning-step indicators. You also get a 5-step LED signal/RF power meter, noise blanker, hefty 3-watt audio output, high-quality built-in speaker, front-panel headphone jack and a rear-panel jack for adding an external speaker.

Join the Action on "10"
With improving band conditions and new Novice voice and digital privileges, the 10-meter fun is just beginning. Be a part of it with this affordable, top-quality transceiver! Only $259.95 and in stock today at our store near you.

Exclusively at
Radio Shack
The Technology Store™
A DIVISION OF TANDY CORPORATION

Price applies at participating Radio Shack stores and dealers

FREE 184-Page Radio Shack Catalog! Write Dept. 375, 300 One Tandy Center, Fort Worth, TX 76102
Going digital

Like many hams, I'd been eyeing the numerous articles and gadgets designed to lead us into the modern century and go digital. Upgrading to digital involved spending a considerable sum of money, because I really couldn't do it at all without a computer and a terminal node controller (TNC). My engineering training drove me to research the abundant literature, try out each potential choice, and then look for the best price.

COMPUTER SHOPPER Magazine offered the widest possible selection of inexpensive computers, usually IBM clones. Armed with this information, I made a foray into the numerous computer stores in Silicon Valley and found exactly what I needed at a surprisingly low price.

A display at a recent ARRL convention featured all of the TNCs operating side by side. For various reasons, I liked the AEA PK 232 PAKRATT best and bought it.

Back home I was anxious to hook up the thing to my VHF and HF rigs and get on the air. As it turned out it's not like hooking up a toaster. You have to acquire or fabricate an RS-232 cable to connect the PAKRATT to the serial port of your computer. In the instruction book, AEA explains that only 10 of the available 25 pins in the socket/cable should be connected. You also have to make up the two special cables that link the two rigs. There are plugs for the TNC end, but simply bare wires on the other.

By William Schreiber, NH6N, 73-4327 Imo Street, Kailua-Kona, Hawaii 96740
The PAKRATT, in its latest configuration, comes with a special "Communications Program" on a floppy disk. Two EPROMs inside the box allow you to boot up and use the system.

I finally had the whole thing connected and fired up the VHF rig. It worked like a charm, except when I used my Heath keyer on CW. (More on that later.) Unfortunately, the HF rig didn't work at all in any mode. After several calls to AEA, I concluded that the SSB crystal filter in my KENWOOD TS 180 was rolling off the audio at too low a frequency for the mark and space signals to reach the 232.

For several years I've been using the various ham satellites — mostly on CW where possible. But the uplink for OSCAR 10 and 13 is VHF and, as I said, I couldn't get CW out of the PAKRATT using my keyer. This TNC has a single CW output plug; I had it connected to the HF rig. Obviously, I had to do something to permit CW operation from either rig without having to disconnect cables.

A similar problem arises when the rigs are connected to the TNC in the approved manner, which involves using their microphone input plugs. If you want to shift back to normal mike usage, you have to disconnect the cables to the TNC. The idea of having to connect and disconnect cables and plugs didn't thrill me. I like things to be as convenient as possible, so I designed a simple interface box. This permits me to have everything permanently connected, and also lets me change from normal rig(s) operation to the new digital mode at the flip of a switch.

All it takes are two relays, a couple of toggle switches, and a slew of plugs and cables. The interface box ends up looking like a spaghetti factory gone wild — as you can see in the front view (photo A) and the rear view (photo B). Photo C shows an inside bottom view. The container was built from double-sided circuit board soldered together. Dimensions were $4" \times 2.75" \times 3"$. Its
Schematic of the interface box.
I'd finally gotten through a string of beads on all wires entering or leaving the box.

Before I did this, all sorts of strange things took place. They were caused by RF getting into the wrong places via the interlace box.

Parts for this project are available from ALL Electronics or Radio Shack. See the parts list for more information.

Both programs:
- Are for the IBM PC and Compatibles
- Copy ALL known fax speeds (HF and Satellite)
- Record, Display, and Print 1280 samples per fax line
- Printer Copy in 2 or 4 shades
- ALL data may be saved on disk
- ALL display views may be saved on disk
- Output to color or gray-scale (not monochrome) monitors
- Recording length depends upon computer memory (up to 840K)
- Include complete instructions

MF2.2 is for the CGA computer system (320 x 200 pixels) and records in 2 or 4 colors or shades.

MF3.2 is for the EGA computer system (640 x 350 pixels) and records in 2, 4, 8, or 16 colors or shades.

Both Programs see all recorded data. With MF2.2 this is done with 3 picture sizes, full size, ¼ size (magnified), and ½ size (magnified). MF3.2 uses full size and ½ size (magnified).

Price $49 for either program ($20 for previous MF buyers), post paid in US, Canada, & Mexico. Add $3 for air mail elsewhere. No credit cards.

Ask for detailed information.

Demo Disk showing sample views, $2, post paid in US, Canada, and Mexico. Add $1 for air mail elsewhere. Specify CGA or EGA disk.

Note: Depending upon your radio, you may need to make some changes in the microphone connections. You can also adapt this idea for use with other TNCs. Ed.

Article B

HAM RADIO
A TWO-LOOP 10-HZ STEP 40-70 MHZ SYNthesizer

By Luiz C. M. Amaral, PY1LL, Rua Dom Casmurro, 51, Jacarepagua, Rio de Janeiro, 22753, Brazil, and Carlos Alexandre C. Mathias

Achieve good image rejection without sacrificing resolution, tuning speed, locktime, and stability

Using a 40-70 MHz local oscillator is generally accepted as a means of achieving good image rejection in modern HF design. The frequency stability and accuracy of such an oscillator is achieved through synthesis. Often contradictory design requirements are high resolution, tuning speed, low noise output, spectral purity, low power consumption, small volume, and low price. Most of the designs use many loops to obtain small step resolution. This article shows a method to overcome this difficulty.

The algorithm

Normally, unless special techniques are employed, the step size is equal to the reference source frequency. Figure 1 shows a block diagram of such a loop. You must use a low reference frequency to provide high resolution. However, with step sizes less than 1 kHz, locking time and close-in noise are degraded. For instance, to achieve 10-Hz resolution in the 40-70 MHz range, it is usually necessary to use four or five loops.

Figure 2 illustrates a two-loop block diagram that meets the combined requirements. To achieve short locking times and low noise output it is necessary to use substantially high reference frequencies — e.g., 10 kHz. If we put \(F_{r1} = 9.99 \) kHz and \(F_{r2} = 10 \) kHz in fig. 2, we can rewrite eqn. 1, \(F_0 = F_2 - F_1 \), from fig. 2 as:

\[
F_0 = (M \times 10 - N \times 9.99) \text{ kHz} = [10 \times M - (10 - 0.01) \times N] \text{ kHz} = [10 \times (M - N) + 0.01] \times N \text{ kHz}
\]

where \(N \) and \(M \) are as defined in eqn. 1.

To make 10, 100, or 1,000-kHz steps (or their multiples), change only the divider, \(M \). For steps of 10, 100, or 1,000 kHz, using a 40-70 MHz local oscillator is generally accepted as a means of achieving good image rejection in modern HF design. The frequency stability and accuracy of such an oscillator is achieved through synthesis. Often contradictory design requirements are high resolution, tuning speed, low noise output, spectral purity, low power consumption, small volume, and low price. Most of the designs use many loops to obtain small step resolution. This article shows a method to overcome this difficulty.

The algorithm

Normally, unless special techniques are employed, the step size is equal to the reference source frequency. Figure 1 shows a block diagram of such a loop. You must use a low reference frequency to provide high resolution. However, with step sizes less than 1 kHz, locking time and close-in noise are degraded. For instance, to achieve 10-Hz resolution in the 40-70 MHz range, it is usually necessary to use four or five loops.

Figure 2 illustrates a two-loop block diagram that meets the combined requirements. To achieve short locking times and low noise output it is necessary to use substantially high reference frequencies — e.g., 10 kHz. If we put \(F_{r1} = 9.99 \) kHz and \(F_{r2} = 10 \) kHz in fig. 2, we can rewrite eqn. 1, \(F_0 = F_2 - F_1 \), from fig. 2 as:

\[
F_0 = (M \times 10 - N \times 9.99) \text{ kHz} = [10 \times M - (10 - 0.01) \times N] \text{ kHz} = [10 \times (M - N) + 0.01] \times N \text{ kHz}
\]

where \(N \) and \(M \) are as defined in eqn. 1.

To make 10, 100, or 1,000-kHz steps (or their multiples), change only the divider, \(M \). For steps of 10, 100, or 1,000 kHz, using a 40-70 MHz local oscillator is generally accepted as a means of achieving good image rejection in modern HF design. The frequency stability and accuracy of such an oscillator is achieved through synthesis. Often contradictory design requirements are high resolution, tuning speed, low noise output, spectral purity, low power consumption, small volume, and low price. Most of the designs use many loops to obtain small step resolution. This article shows a method to overcome this difficulty.

The algorithm

Normally, unless special techniques are employed, the step size is equal to the reference source frequency. Figure 1 shows a block diagram of such a loop. You must use a low reference frequency to provide high resolution. However, with step sizes less than 1 kHz, locking time and close-in noise are degraded. For instance, to achieve 10-Hz resolution in the 40-70 MHz range, it is usually necessary to use four or five loops.

Figure 2 illustrates a two-loop block diagram that meets the combined requirements. To achieve short locking times and low noise output it is necessary to use substantially high reference frequencies — e.g., 10 kHz. If we put \(F_{r1} = 9.99 \) kHz and \(F_{r2} = 10 \) kHz in fig. 2, we can rewrite eqn. 1, \(F_0 = F_2 - F_1 \), from fig. 2 as:

\[
F_0 = (M \times 10 - N \times 9.99) \text{ kHz} = [10 \times M - (10 - 0.01) \times N] \text{ kHz} = [10 \times (M - N) + 0.01] \times N \text{ kHz}
\]

where \(N \) and \(M \) are as defined in eqn. 1.

To make 10, 100, or 1,000-kHz steps (or their multiples), change only the divider, \(M \). For steps of 10, 100, or 1,000 kHz, using a 40-70 MHz local oscillator is generally accepted as a means of achieving good image rejection in modern HF design. The frequency stability and accuracy of such an oscillator is achieved through synthesis. Often contradictory design requirements are high resolution, tuning speed, low noise output, spectral purity, low power consumption, small volume, and low price. Most of the designs use many loops to obtain small step resolution. This article shows a method to overcome this difficulty.

The algorithm

Normally, unless special techniques are employed, the step size is equal to the reference source frequency. Figure 1 shows a block diagram of such a loop. You must use a low reference frequency to provide high resolution. However, with step sizes less than 1 kHz, locking time and close-in noise are degraded. For instance, to achieve 10-Hz resolution in the 40-70 MHz range, it is usually necessary to use four or five loops.

Figure 2 illustrates a two-loop block diagram that meets the combined requirements. To achieve short locking times and low noise output it is necessary to use substantially high reference frequencies — e.g., 10 kHz. If we put \(F_{r1} = 9.99 \) kHz and \(F_{r2} = 10 \) kHz in fig. 2, we can rewrite eqn. 1, \(F_0 = F_2 - F_1 \), from fig. 2 as:

\[
F_0 = (M \times 10 - N \times 9.99) \text{ kHz} = [10 \times M - (10 - 0.01) \times N] \text{ kHz} = [10 \times (M - N) + 0.01] \times N \text{ kHz}
\]

where \(N \) and \(M \) are as defined in eqn. 1.

To make 10, 100, or 1,000-kHz steps (or their multiples), change only the divider, \(M \). For steps of 10, 100, or 1,000 kHz, using a 40-70 MHz local oscillator is generally accepted as a means of achieving good image rejection in modern HF design. The frequency stability and accuracy of such an oscillator is achieved through synthesis. Often contradictory design requirements are high resolution, tuning speed, low noise output, spectral purity, low power consumption, small volume, and low price. Most of the designs use many loops to obtain small step resolution. This article shows a method to overcome this difficulty.

The algorithm

Normally, unless special techniques are employed, the step size is equal to the reference source frequency. Figure 1 shows a block diagram of such a loop. You must use a low reference frequency to provide high resolution. However, with step sizes less than 1 kHz, locking time and close-in noise are degraded. For instance, to achieve 10-Hz resolution in the 40-70 MHz range, it is usually necessary to use four or five loops.

Figure 2 illustrates a two-loop block diagram that meets the combined requirements. To achieve short locking times and low noise output it is necessary to use substantially high reference frequencies — e.g., 10 kHz. If we put \(F_{r1} = 9.99 \) kHz and \(F_{r2} = 10 \) kHz in fig. 2, we can rewrite eqn. 1, \(F_0 = F_2 - F_1 \), from fig. 2 as:

\[
F_0 = (M \times 10 - N \times 9.99) \text{ kHz} = [10 \times M - (10 - 0.01) \times N] \text{ kHz} = [10 \times (M - N) + 0.01] \times N \text{ kHz}
\]

where \(N \) and \(M \) are as defined in eqn. 1.
10 AMP SOLID STATE RELAYS
ELECTROL# S2181
CONTROL:
Rated 5.5 to 10 Vdc
(will operate on 3-32 Vdc).
LOAD: 10 amp @ 240 Vac
2 1/4" X 1 3/4" X 7/8"
CAT# SSRLY-10B $9.50 each
QUANTITY DISCOUNT
10 for $85.00 • 25 for $175.00
50 for $300.00 • 100 for $500.00

STROBE KIT
Variable rate strobe kit, flashes between 60 to 120 times per minute. Will
operate on either 6 or 12 Vdc depending upon how you wire the circuit.
Comes complete with P.C. board and instructions for easy assembly.
CAT# STROBE-1 $7.50 each

CASSETTE MECHANISM
Alpine cassette transport mechanism. Includes stereo tape head,
Mitsubishi # MET-3RF28 13.2 Vdc
motor, belt, pulleys, capstan, fast-
forward, rewind and eject actuator.
Does not include amplifier section.
6 1/2" X 5 1/4" X 1 3/4".
CAT# CMC-5 $7.50 each
10 for $65.00

PIEZIO WARNING DEVICE
Murata Erie # PK84-440
High pitched audible alarm. Oper-
ates on 2-20 Vdc @ 20 ma. 1" high
x 7/8" dia. P.C. board mount.
CAT# PBZ-64 $1.75 each

XENON TUBE
1" long flash tube with 3 1/2" red and
black leads. Ideal for electronic flash or strobe projects.
CAT# FLT-3 2 for $1.00

NICKEL-CAD BATTERIES
(RECHARGEABLE)
SPECIAL! AAA SIZE
Panasonic # 15AAU
1.2 volt @ 180 Mah
CAT# NCB-AAU $1.50 each
10 for $13.50 • 100 for $125.00

WIDE BAND AMPLIFIER
NEC# UPC1651G. 1200 kHz @ 3 db.
Gain: 16db @ 1-500 Hz. 5 volt operation.
Small package 4mm dia. X 2.5 mm thick.
CAT# UPC-1651 2 for $1.00
10 for $4.50 • 100 for $35.00

N-CHANNEL MOSFET
IRF-511 TO-220 case
CAT# IRF 511 $1.00 each • 10 for $6.00
LARGE QUANTITY AVAILABLE

CALL OR WRITE
FOR OUR FREE
CATALOG OVER 4000 PARTS!

CASSETTE MECHANISM
Alpine cassette transport mechanism. Includes stereo tape head,
Mitsubishi # MET-3RF28 13.2 Vdc
motor, belt, pulleys, capstan, fast-
forward, rewind and eject actuator.
Does not include amplifier section.
6 1/2" X 5 1/4" X 1 3/4".
CAT# CMC-5 $7.50 each
10 for $65.00

MAIL ORDERS TO:
ALL ELECTRONICS
P.O. BOX 567
VAN NUYS, CA 91408
TWX-51010163 (ALL ELECTRONIC)
OUTSIDE THE U.S.A.
SEND $2.00 POSTAGE FOR A CATALOG!!

ORDER TOLL FREE
800-826-5432
INFO: (818)904-0524
FAX: (818)781-2653
MINIMUM ORDER $10.00
QUANTITIES LIMITED
CALIF. ADD SALES TAX
USA: $3.00 SHIPPING
FOREIGN ORDERS INCLUDE SUFFICIENT
SHIPPING. NO C.O.D.

January 1989 25

OUTSIDE THE U.S.A.
SEND $2.00 POSTAGE FOR A CATALOG!!

ORDER TOLL FREE
800-826-5432
INFO: (818)904-0524
FAX: (818)781-2653
MINIMUM ORDER $10.00
QUANTITIES LIMITED
CALIF. ADD SALES TAX
USA: $3.00 SHIPPING
FOREIGN ORDERS INCLUDE SUFFICIENT
SHIPPING. NO C.O.D.
Hz (or their multiples), you have to change the values of N and M to maintain M = N unchanged.

For instance, if you need a step 30 Hz up, increase N by 3 (3 × 0.01 = 0.03 kHz) and M by 3. So,

\[
F_{\text{initial}} = [10 \times (M - N) + 0.01 \times N] \text{kHz}
\]

\[
F_{\text{final}} = [10 \times (M + 3 - (N + 3)) + 0.01 \times (N + 3)] \text{kHz}
\]

\[
\text{Step} = F_{\text{initial}} - F_{\text{final}} = 0.03 \text{kHz} = 30 \text{Hz}
\]

Derivation of design equations

One of the problems of 40-70 MHz synthesis using one loop is the rather high relative range: 30 MHz in a 40-MHz VCO. One of the advantages of the present method is that you can use two VCOs in a higher VHF band, making the relative range a minor problem (In our units we have used F1 at 160-200 MHz and F2 at 120-130 MHz, both single loops.)

Now let's derive the design equations for these arrangements. Remembering that the output frequency is a seven-digit decimal number (e.g., 47,936.42 kHz), put:

\[
F_o = 10,000 \times A6 + 1,000 \times A5 + 100 \times A4 + 10 \times A3 + A2 + 0.1 \times A1 + 0.01 \times A0 \text{ (in kHz)}
\]

Similarly the division factors N and M may be written, as they are integers:

\[
F_{\text{initial}} = 10,000 \times N4 + 1,000 \times N3 + 100 \times N2 + 1,000 \times N3 + 10,000 \times N4
\]

\[
F_{\text{final}} = 10,000 \times M4 + 1,000 \times M3 + 100 \times M2 + 1,000 \times M3 + 10,000 \times M4
\]

Using eqn. 2 you have:

\[
10,000 \times A6 + 1,000 \times A5 + 100 \times A4 + 10 \times A3 + A2 + 0.1 \times A1 + 0.01 \times A0 = 10 \times (M0 - N0 + 10 \times (M1 - N1) + 100 \times (M2 - N2) + 1,000 \times (M3 - N3) + 10,000 \times (M4 - N4)) + 0.01 \times (N0 + 10 \times N1 + 100 \times N2 + 1,000 \times N3 + 10,000 \times N4)
\]

Equating the corresponding terms you have:

a) M4 = N4 = 0
b) M3 - N3 = A6
c) M2 - N2 = A5
d) M1 - N1 + N4 = A4
e) M0 - N0 + N3 = A3
f) N2 = A2
gh) N1 = A1

Because the Ai are given numbers, you have eight equations with ten unknowns to determine Ni and Mi. This gives you two degrees of freedom to locate the ranges of F1 and F2. (You must establish values for two parameters, so choose N4 at first.) If the values you choose for N4 (and M4) are too high, the dividers (which can be preset) may fail to operate and the noise performance will be poor because of the great division factor. But if N4 is too small, you'll have problems with the relative range of the VCO. In the present case, a good choice will be 1 for N4 (and M4).

The range of F1 (N loop) is 10 MHz because, to cover 9.99 kHz (the maximum step not covered by the M loop alone) in steps of 10 Hz, we have 1,000 channels with 9.99 kHz of reference frequency, which gives 10 MHz. So, the F2 (M loop) range is 10 MHz + 30 MHz (range of the output) = 40 MHz.

The other degree of freedom permits you to fix the value of N3. Choose 2 for this (meaning that with N4 = 1, for = 10-MHz range, we have F1 ranging from 120 to 130 MHz, and, consequently, F2 ranges from 120 + 40 = 160 to 130 + 70 = 200 MHz. These frequencies are convenient enough for the dividers and relative ranges of the VCOs

Now rewrite the expressions of N and M using eqn. 3 and the chosen values for N3, N4, and M4:

\[
F_{\text{initial}} = 10,000 \times N4 + 1,000 \times N3 + 100 \times N2 + 10 \times N1 + N0 \text{ or,}
\]

\[
N = 12,000 + 100 \times A2 + 10 \times A1 + A0
\]

\[
F_{\text{final}} = 10,000 \times M4 + 1,000 \times M3 + 100 \times M2 + 10 \times M1 + M0 = 10,000 \times (A6 + 2) + 100 \times (A5 + A2) + 10 \times (A4 - 1 + A1) + (A3 - 2 + A0) \text{ or,}
\]

\[
M = 11,988 + 1,000 \times A6 + 100 \times (A5 + A2) + 10 \times (A4 + A1) + (A3 + A0)
\]

As the output ranges from 40,000.00 to 69,999.99 kHz, the value of A6 may be 4, 5, or 6. A5, A4, A3, A2, A1, and A0 may be 0 to 9. Now it’s possible to calculate the exact ranges of N, M, F1, and F2:

a. Minimum N: A2 = A1 = A0 = 0.

From eqn. 4: \(N_{\text{min}} = 12,000 \).

b. Minimum F1: \(F_{1\text{min}} = 9.99 \times N_{\text{min}} = 119,880 \text{ kHz} \).

From eqn. 4: \(N_{\text{max}} = 12,999 \).

d. Maximum F1: \(F_{1\text{max}} = 9.99 \times N_{\text{max}} = 129,860.01 \text{ kHz} \).

e. Minimum M: A6 = 4; A5 = A4 = A3 = A2 = A1 = A0 = 0.

From eqn. 5: \(M_{\text{min}} = 15,988 \).

f. Minimum F2: \(F_{2\text{min}} = 10 \times M_{\text{min}} = 159,880 \text{ kHz} \).

g. Maximum M: A6 = 6; A5 = A4 = A3 = A2 = A1 = A0 = 9.

From eqn. 5: \(M_{\text{max}} = 19,986 \).

h. Maximum F2: \(F_{2\text{max}} = 10 \times M_{\text{max}} = 199,860 \text{ kHz} \).

For example, suppose that you want to synthesize an output of 56,721.98 kHz. Then A6 = 5, A5 = 6, A4 = 7, A3 = 2, A2 = 1, A1 = 9 and A0 = 8.
Hi PRO
VHF-UHF Repeaters

Superior receiver and transmitter specifically designed for repeater service.

Adjustable transmitter power, from 1 to 25 watts minimum output with extremely cool operation... Automatic battery back up system capability with battery charging and reverse polarity protection... Now with a full compliment of indicators and status lights... 100% duty cycle... Advanced repeater squelch no chopping, popping, or annoying repeater key ups during lightning storms... Die cast aluminum R.F. enclosures... Small size 5¾ x 19 x 13"... High quality long life design.

Amateur discounts available

Hi Pro Receivers

Features:
- High sensitivity
- Superior rejection
- Double sided mil spec G-10 fiberglass boards
- Extremely stable operation
- Excellent adjacent channel rejection
- Squelch circuit designed for critical repeater use
- Small size
- Choice of passbands
- Wide selection of frequency ranges
- Separate open collector C.O.S. output
- Separate tone control squelch input
- Separate tone control output
- Discriminator meter output
- Signal level meter output
- Multi channel capability. Up to 6 channels
- Multiple voltage regulation
- Available with precision grade high stability crystal
- Selectable C.O.S. high or low output
- 1 year warranty

Specifications:
- Sensitivity: 12 dB Sned (EIA Method) 0.25 µv.
- Selectivity: EIA two signal method
 Standard: 15 kHz 80 dB
 Optional Narrow: 15 kHz 100 dB
- Spurious Response: -85 dB
- Modulation Acceptance: Standard 60 kHz
 Narrow 50 kHz
- Squelch Sensitivity: 0.10 to 0.20 µv
- Frequency Response: -2 to -3 dB of 6 dB octave
- Audio Output: (to 8 ohm speaker) 2.0 watts max.
- 5% distortion at 1.5 watts max
- Rt input impedance: 50 ohms
- Frequency Range: V.H.F. 130-150 MHz, 144-175 MHz, 220-250 MHz.
 U.H.F. 440-450 MHz, 450-490 MHz
- Operating Voltage: -11 to -14.5 V.D.C.
- Current: 90 mA nominal squelched
- Size: 3%/ W x 6½ L x 1¼ H
- Duty Cycle: 100% at 60°C
- Operating Temp. Range: -30°C to -60°C

Meets or Exceeds All Published Specifications.

Maggiore Electronic Laboratory
600 Westtown Rd., West Chester, Pa. 19382

January 1989 27
ASTRON POWER SUPPLIES

- Heavy Duty
- High Quality
- Rugged
- Reliable

SPECIAL FEATURES
- Solid State Electronically Regulated
- Fold-Back Current Limiting Protects Power Supply from excessive current & continuous shorted output
- Crownbar Over Voltage Protection on all Models except RS-3A, RS-4A, RS-5A.
- Maintain Regulation & Low Ripple at low line input voltage
- Heavy Duty Heat Sink
- Chassis Mount Fuse
- Three Conductor Power Cord
- One Year Warranty - Made in U.S.A.

PERFORMANCE SPECIFICATIONS
- Input Voltage: 105-125 VAC
- Output Voltage: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- Ripple Less than 5mV peak to peak (full load & low line)
- Also available with 220 VAC input voltage

INSIDE VIEW — RS-12A

MODEL RS-50A

MODEL RS-50M

MODEL VS-50M

RM SERIES

19'' × 5 1/4 RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5¼ × 19 × 8¼</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5¼ × 19 × 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5¼ × 19 × 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

* Separate Volt and Amp Meters

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3⅛ × 4⅛ × 5½</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3⅛ × 6⅛ × 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3⅛ × 6⅛ × 7 ¼</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>4 × 7 × 10 ½</td>
<td>10</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 × 7 × 10 ½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>10</td>
<td>10</td>
<td>4 × 8 × 10 ¼</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4⅛ × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4⅛ × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5⅛ × 9 × 10 ½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5⅛ × 11 × 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6¼ × 13¼ × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

* Separate Volt and Amp Meters

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4⅛ × 8 × 9</td>
<td>13</td>
</tr>
</tbody>
</table>

* Switchable volt and Amp meter

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>4⅛ × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5⅛ × 9 × 10½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5⅛ × 11 × 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6¼ × 13¼ × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

* Separate Volt and Amp Meters
* Output Voltage adjustable from 2-15 volts
* Current limit adjustable from 1.5 amps to Full Load

VS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5⅛ × 19 × 12½</td>
<td>38</td>
</tr>
<tr>
<td>VRM-35M</td>
<td>37</td>
<td>50</td>
<td>5⅛ × 19 × 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

* Variable rack mount power supplies

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4⅛ × 7⅛ × 10¼</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4⅛ × 7⅛ × 10¼</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4⅛ × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5⅛ × 9 × 10½</td>
<td>18</td>
</tr>
</tbody>
</table>

* Built in speaker

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
Using eqns. 4 and 5 you have:

\[N = 12,000 + (100 \times 1) + (10 \times 9) + 8 \text{ or, } N = 12,198 \]

and

\[M = 11,988 + (1,000 \times 5) + (100 \times (6 + 1)) + (10 \times (7 + 9)) + (2 + 8) \text{ or, } \\
M = 17,858 \]

So, \(F_1 = 9.99 \times 12,198 = 121,858.02 \text{ kHz} \) and \(F_2 = 10 \times 17,858 = 178,580 \text{ kHz} \).

It works because \(F_0 = F_2 - F_1 = 56,721.98 \text{ kHz} \).

The algorithm shows that this is a type of synthesis which is convenient to implement with microprocessor control. The calculations become even more involved when two-modulus prescalers are used within the loops.

The complete design

Our particular assembled unit has been built according to the block diagram in fig. 3. The PLL blocks each include one two-modulus prescaler. We used MC-12016\(^6 \), 40/41 type; we have built them with MC-145156\(^6 \) PLLs. However, if you use the MC-145158, the reference frequency problem may be easier to solve by entering only one reference in both loops (e.g. 9,990 MHz — and programming the reference dividers with 999 for the M loop and 1,000 for the N loop). We’ve used the PD phase detector output (from the phase comparator of the PLL) to avoid operational amplifiers in the control lines. The resulting reference rejection has been better than 60 dB down.

Now let’s analyze each block of fig. 3:

a. VCO 1 and 2: Because their frequencies fall in the VHF range, the low noise J-FET, like the U-310 (or the plastic J-310 family), is a convenient transistor choice. \(^7^9\) If you don’t plan to pretune, take care in your layout and choice of components to permit VCO 1 to cover its 40-MHz range.

b. Buffers 1, 2, 3, 6, and 7 may employ bipolar transistors like the BFY-90 for low noise, high isolation, and broadband operation. Buffer 5 may be a dual-gate MOS-FET — try the MFE-521 or 3N-217. For buffer 4 use a high output level broadband linear transistor (a BFW-16A) to get a suitable signal power for the mixer LO input.

c. We chose an SRA-1 bridge diode double-balanced mixer from Mini Circuits to get a very low spurious response. This is very difficult to obtain using other types of mixing devices. For this purpose we’ve had to “clean” both LO and RF port signals concerning harmonic content with RF filters 1 and 2. Two resistor pads have been used to couple both signals to the mixer under correct resistive impedance (50 \(\Omega \)).

d. A BFY-90 stage presents the correct resistive load to the mixer (50 \(\Omega \)). Its output passes a third RF filter to block the harmonic power (now generated by the mixer itself) and drives the final (BFW-16A) amplifier stage through another BFY-90 stage. This gives a high-level power (\(\approx 12 \text{ dBm} \)) to the first mixer of the receiver. RF filter number 4 maintains the output free from harmonics.

Final comments

This article presents an algorithm rather than a circuit design. The synthesizer itself may be built using all the standard techniques for low noise operation, like in-loop mixing for lowering the division factors, low noise phase comparators (HEF-4750\(^6 \), series from MULLARD), and pretuned systems to get quieter varactor control. All these techniques are fully described in the literature\(^2,3\) so we won’t discuss them here. The only point we’d like
HITACHI SCOPES AT DISCOUNT PRICES

V-212
$379
List $560
Save $181

V-425
List $995
$835

V-1060
List $1595
$1,285

DC to 40MHz
Dual Channel
CRT Readout
Cursor Meas
DC Offset
Alt Magnifier
Compact Size

20MHz Dual Trace Oscilloscope
All Hitachi scopes include probes, schematics and Hitachi's 3 year guarantee on parts and labor. Many accessories available for all scopes.

20MHz Dual Trace Oscilloscope
$349
MO-1251

* 6" CRT
* Built in component tester
* TV Sync

SCOPE PROBES
P-1 165MHz, 1x, 10x
P-2 100MHz, 1x, 10x
$19.95
$23.95

Scope probes available for all scopes.

ELENC0 PRODUCTS AT DISCOUNT PRICES

20MHz Dual Trace Oscilloscope
$498
MO-1252

* High luminance 6" CRT
* 1mV Sensitivity
* 6KV Acceleration Voltage
* 10ns Rise Time
* X-Y Operation on 2 Axis
* Delayed Triggering Sweep

35MHz Dual Trace Oscilloscope

New! Autoranging DMM
M-5000
$45

9 Functions
Memory and Data hold
1/2% basic acc
3½ digit LCD

New! AC Clamp-On
Current Adapter
ST-265
$22

0-1000A AC
Works with most DMMs

New! Bench DMMS
M-3500
$125
3½ digit
1% acct

M-4500
$175
4½ digit
0.5% acct

50MHz Logic Probe
LP-700
$23

Logic Pulser LP-600
$23

Solderless Breadboards

Digital Capacitance Meter
CM-1550
$58.95

9 Ranges
1pf-20,000uf
5% basic acc
Zero control

Digital LCR Meter
LC-1800
$138

Measures
Capacitors
Resistors
Auto zero

Low Cost Multimeter
M-1600
$25

3½ digit LCD
1% DC Accy
10A Scale

Digital Function Generator
AF-8016
$239

FREQ:
1KHz to 40MHz

Four-Function Frequency Counters
F-1000 1.2GHz
$259

F-1000 120MHz
$179

Frequency, Period, Totalize,
Self Check with High Stabilized Crystal Oven
Oscillator, 8 digit LED display

NEW!

"GREAT IDEA" FUNCTION BLOCK FOR EASY BREADBOARDING

All bix interlock to make your design work a snap. You can change the configuration

WE WILL NOT BE UNDERSOLD!
We will not be undersold in the US. Call or write for other types.

C & S SALES INC.
1245 Rosewood, Deerfield, IL 60015
(800) 292-7711 (312) 541-0710

15 Day Money Back Guarantee
2 Year Warranty
WRITE FOR FREE CATALOG

January 1989

119
to emphasize is that the higher the division factors, the poorer the close-in noise, because the noise from reference is multiplied by a greater number and we have a worse signal-to-noise ratio at the phase comparator. So, without in-loop mixing (or another equivalent technique to diminish N and M), special care must be taken with crystals and crystal oscillators to minimize in-band noise. 9

Concerning stability and accuracy, note that 10 Hz in 200 MHz means 0.05 ppm, so that the use of simple "non-mastered" reference sources doesn't seem to make sense.

Conclusions

We've presented a method to synthesize three million 10-Hz channels (40-70 MHz) with a reference-to-step ratio of 1,000 by using only two loops. We have used the frequency difference between the two loops, but the sum may be used in the same manner as long as you take care that the spurious and harmonic signals don't fall within the output band region.

References

Article C

HAM RADIO

NOVEMBER WINNERS

Congratulations to Alan Unangst, W3CR7, our November sweeps winner and L.B. Cebik, W4RNL, author of November's most popular WEEKENDER "Improving Operation with the MFJ 989 Transmatch." Both will receive a handheld radio. To enter for January's drawing, send in the evaluation card bound into this issue, or submit a WEEKENDER project. You could be our next winner! Ed.

Correct address

The address given for Hal Silverman, W3HWC, in the October 1988 issue (page 63) is incorrect. If you wish to contact Hal, his current address is: 14004 Harrisville Road, Mt. Airy, Maryland 21771.
Clean ATV the modern way

Why do Amateur TV signals cause interference, while the interference from million-watt commercial TV stations is insignificant? Commercial TV stations use highly efficient transmitting systems, because any interference would be devastating to many other services and expensive in terms of power wasted. Most hams use the double-sideband method shown in the spectrum of fig. 1A. This method conforms to the latest trend of using a small self-contained package, with few “bells and whistles”.

In the past, ATV enthusiasts would heap together a mixture of homebrew and surplus equipment from TV stations. Their shacks looked as if 747s had crashed into them — twice. That was enough to keep many of us from getting involved. Today with VCRs, cameras, and computers in almost every home (and TV sets in half the rooms), you don’t need to add much to receive and transmit state-of-the-art signals.

Modulators that generate a vestigial sideband signal (VSB) at low VHF frequencies are readily available and inexpensive. The output has the color and sound sidebands “locked in” at a low RF level. When transverted upward to UHF, the lower sidebands are inserted again by way of the mixing process. This signal is still below 1 watt and can now be filtered, using helical resonators, for the final cleanup. Compare

FIGURE 1

Simplified television spectra.

fig. 1A with fig. 1D. When a filter is used to remove the lower sideband of a high-power UHF signal, both insertion loss and losses from SWR can be quite high. That, coupled with the additional connector losses, can cause undue strain on the final amplifiers. The most obvious benefit of the VSB method is that the AFT in the average TV set locks on. Sound and color also lock in on strong or weak signals.

With a double-sideband signal (unless it’s quite strong), you must tune out the picture to hear the sound. Figures 1E and 1F show brackets whose width represents the 6-MHz ideal bandwidth of a TV set, and how the AFT will (essentially) center on the energy of the signal. Real sets are much narrower. Figure 1F also shows the 435-MHz satellite segment that may suffer interference from a 439.25-MHz double-sideband signal. This information is extremely important if you choose 421.25 MHz for the carrier; there is danger of transmitting out of the band.

A VCR has a modulator that transmits a fairly good VSB signal. The output can be the channel 3 or 4 signal required by the transverter. The VCR makes a perfect control point for your ATV station. Although the operating format varies from model to model, all operations are accessible on the VCR. A separate video selector switch that feeds the VCR’s VIDEO-in jack can connect any desired source. Many transverters and amplifiers idle with little current drain when excitation is removed; this simplifies transmitter switching. However, you must switch your antenna separately.

Figure 2 shows a comprehensive ATV station using a transverted VSB signal. I’ve also shown an alternative transmitting system that uses only a modulator. But, try using a VCR if you have one; it’s a valuable video source. The VHF amplifier brings the 0.3-μW (5 mV) VCR output signal up to the 1 mW level required by the transverter. You can use a channel amplifier (for feeding apartment houses), or one or more of the multiset driver units called rabbits.

Some of the control buttons are shown at the bottom of the VCR block. The names appearing on the
A comprehensive ATV station using a transverted VSB signal.

FIGURE 2

front of the VCR are inside the block. The actual functions, as they relate to ATV system operation, are listed below the block. The format for my unit, a Toshiba, allows VHF excitation control from the VHF-out jack using the TV/VCR or PLAY switch. In VCR mode (indicator lit), the internal modulator is energized and fed video from a tape—or whatever is fed to the VIDEO-in jack. A running tape overrides external video until you push the stop button.

To stop transmitting, push the TV/VCR switch again. The indicator light will go out. In this mode, a sufficiently strong signal from a down-converter entering the VHF-in jack, could pass through the VCR, and excite the transverter. When used in this way, with proper filtering, the VCR can become a repeater—but it requires two antennas. To be more specific, VHF-out follows VHF-in when in TV mode, and follows tape (or VIDEO-in) in VCR mode. However, VIDEO-out follows a tape if one is running; if a tape isn’t playing, it follows VIDEO-in.

I’ve used a Hamtronics transverter for both 432-MHz sideband and ATV. It worked well in both situations, but I had some difficulty with the tune-up. Then I found a note that recommended tuning the UHF amplifier section with an accurate signal generator fed in through the coupling capacitor at the mixer output. Do this before tuning the local oscillator train to prevent mistaking the wrong output from the mixer—or the local oscillator frequency itself—for the desired one. If you don’t have access to a reliable signal generator, order a completely wired and aligned board. If a high-power channel 3 or 4 station is close by, opt for a crystal on the channel that you don’t have in your area. This will minimize interference. Also, don’t mistake oscillations in the VHF line amplifier for trouble in the transverter.

With the great wealth of video devices available today, there’s no lack of interesting material to transmit. Keep family home movies to a minimum and remember that copyrighted tapes are taboo. There are many interesting events, in Amateur Radio and other hobbies, to tape and present. Of course, there are so few of us skilled in the art of presentation that it would be rare to find a tape warranting over five minutes of air time. Though NASA and USWS material is (in a way) owned by the public, you usually need to contact them for a letter of authorization. Music is still illegal in Amateur Radio transmissions and should be edited out of any tapes you show.

References
1. TV RF modulator, UM 1285-8, Radio Shack 277-221
4. Single channel VHF amplifier, Jerrold SMA-11, (1st Channel number) can be sweep-tuned for any low VHF channel.
5. P.C. Electronics PA-5, 10-watt power module.

John Shelley, WA1IAO

Article D

Ham Radio

SHORT CIRCUIT HOTLINE

Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM — Eastern time — before you begin construction. We’ll let you know of any changes or corrections that should be made to the article describing your project.

(See Publisher’s Log, April, 1984, page 6, for details.)

603-878-1441

WEATHER SOFTWARE

ACCU-WEATHER FORECASTER is a menu driven program that allows the user to tap into ACCU-WEATHER’S extensive computerized database. Maps, graphs, pictures, charts, and narrative descriptions are just part of what can be downloaded to your computer. Several different services are available from ACCU-WEATHER. Price varies with the service and time of day that the computer is accessed. Add $3.50 for shipping and handling.

□ MC-IBM $89.95
□ MC-MAC $89.95

Please add $3.50 for shipping and handling.

ham
radio
GREENVILLE, NH 03048
BOOKESTORE

603-878-1441

January 1989
Tips for designing matching networks

For many, access to Computer Aided Design (CAD) software packages has rekindled interest in designing matching networks and filters for specific applications. Some years ago, I was involved in comparing the frequency response — bandwidth and stopband attenuation — of collector matching networks commonly used in bipolar transistor PAs. For the single HF bands, a lot of Amateur designers choose a narrow-band common-emitter amplifier which couples RF through matching networks at the input and output of the active device; it's still the favorite for VHF.

Power and attenuation

One way to find the response of a matching network is to compute the input impedance Z_{in} of the network (or network-harmonic filter combination) at regular (or logarithmically spaced) frequency steps. Many CAD programs (including mine) simplify the matching network step by step to the simplest series-equivalent circuit (R_{in} and X_{in} in series) and evaluate $Z_{in} = R_{in} + jX_{in}$. This sort of analysis (known as network reduction) is tedious when done by hand, but is well suited to a computer. Using Z_{in}, calculate the current flowing into the network which leads to the response and the relative power dissipated in the load. This approach doesn't require a lot of computer memory and is suitable for small programmable calculators. Several years ago I wrote programs for a TI 58; it still handles my matching network calculations.\(^1\)

In the following algorithm, the relative power P_L drawn by the load of a PA is

$$P_L(dB) = P_T + IL$$

(1A)

Where P_T is the relative power output of the PA (drawn at the network input) and IL is the dissipative insertion loss of the network (or network-harmonic filter combination). Since IL is negative, P_L is less than P_T by the amount of dissipative loss. The series-equivalent collector output impedance is $Z_{se} = R_{se} + jX_{se}$ and $Z_{in} = R_{in} + jX_{in}$ is the series-equivalent input impedance of the collector matching network. The impedance relationships are shown in fig. 1. Maximum output power (0 dB relative power) is drawn when $Z_{in} = Z_{se}^*$, the complex conjugate of the collector output impedance. The bandwidth of the amplifier is defined as the frequency interval for which the relative power holds within -1 dB of maximum. Many designers consider -1 dB a practical limit for the power curve. This limit corresponds to a return loss at the collector of -8.0 dB or a VSWR of 2.32.

A number of CAD programs include the IL of the net-
work or filter, some at a considerable level of sophistication. Below 30 MHz, you can approximate the inductive reactance of the coil by dividing the frequency for which the network is tuned by the calculated (or measured) 3 dB bandwidth of the network.

The network-filter combination is made up of the internal impedance of the transistor (often in parallel-equivalent form). It is small in high-power transistors (usually less than 5 ohms), and its reactance can be capacitive below 100 MHz.

The computer program used for power output also lends itself to the analysis of the stopband attenuation of the collector matching network (or network-harmonic filter combination). The attenuation at the load is A_L (dB) = $A_m + IL$, where A_m (the mismatch attenuation) is computed with an equation of the same form as eqn. 1B, with the source impedance Z_s replacing Z_{se}. $Z_s = R_s + jX_s$. The mismatch input usually sees Z_{se}.

The collector output resistance R_{so} is a large-signal parameter. Use the DC collector voltage and the desired output power for calculations below 30 MHz. Many PA transistor manufacturers supply data for both R_{so} and X_{se} (often in parallel-equivalent form). R_{so} is small in high-power transistors (usually less than 5 ohms), and X_{se} is usually capacitive below 100 MHz.

The computer program for power output also lends itself to the analysis of the stopband attenuation of the collector matching network (or network-harmonic filter combination). The attenuation at the load is A_L (dB) = $A_m + IL$, where A_m (the mismatch attenuation) is computed with an equation of the same form as eqn. 1B, with the source impedance Z_s replacing Z_{se}. $Z_s = R_s + jX_s$. The mismatch input usually sees Z_{se}.

The collector output resistance R_{so} is a large-signal parameter. Use the DC collector voltage and the desired output power for calculations below 30 MHz. Many PA transistor manufacturers supply data for both R_{so} and X_{se} (often in parallel-equivalent form). R_{so} is small in high-power transistors (usually less than 5 ohms), and X_{se} is usually capacitive below 100 MHz.

The computer program used for power output also lends itself to the analysis of the stopband attenuation of the collector matching network (or network-harmonic filter combination). The attenuation at the load is A_L (dB) = $A_m + IL$, where A_m (the mismatch attenuation) is computed with an equation of the same form as eqn. 1B, with the source impedance Z_s replacing Z_{se}. $Z_s = R_s + jX_s$. The mismatch input usually sees Z_{se}.

The collector output resistance R_{so} is a large-signal parameter. Use the DC collector voltage and the desired output power for calculations below 30 MHz. Many PA transistor manufacturers supply data for both R_{so} and X_{se} (often in parallel-equivalent form). R_{so} is small in high-power transistors (usually less than 5 ohms), and X_{se} is usually capacitive below 100 MHz.

The computer program used for power output also lends itself to the analysis of the stopband attenuation of the collector matching network (or network-harmonic filter combination). The attenuation at the load is A_L (dB) = $A_m + IL$, where A_m (the mismatch attenuation) is computed with an equation of the same form as eqn. 1B, with the source impedance Z_s replacing Z_{se}. $Z_s = R_s + jX_s$. The mismatch input usually sees Z_{se}.
bution of the 3-μH collector choke (which causes a 6.6 percent increase in R_{se}). I know a 3-μH collector choke for a 7-MHz PA may raise a few eyebrows, but I chose a low inductance to avoid low-frequency resonances with output network capacitance which can lead to instabilities. The choke reactance, over 130 ohms at 7 MHz, doesn’t cut into the output power significantly. With Z_{se} (and Z_{in}) calculated at regular frequency steps above and below the frequency for which the PA is tuned, you can use eqn. 1 to compute a power curve and -1 dB bandwidth.

To determine the stopband response, you’ll need a simple, tractable model to calculate the source impedance Z_s. As I mentioned, the internal collector resistance R_{int} in an AB class PA is in the kilohm range. In fact, R_{int} is so much higher than the collector choke resistance that R_{int} can be considered invisible. This leaves the bypassed collector choke as the source impedance (see fig. 3). That is, $Z_s = Z_{scol} = R_{col} + jX_{col}$, where the series-equivalent loss resistance of the choke is $R_{col} = X_{col}/Q_u$. With the $3pF$, $Q_u = 100$ collector choke, the choke impedance at 7 MHz is $Z_{col} = 1.319 + j131.9$ ohms, because $X_{col} = 2\pi f L_{col}$ and $R_{col} = X_{col}/Q_u$. Since R_{col} and X_{col} are directly proportional to the frequency, the impedance can be easily scaled to any frequency. For example, R_{col} and X_{col} at the second harmonic are just twice their values at 7 MHz. Now determine the stopband response with Z_s in place of Z_{se} in eqn. 1, just as you determined the power curve.

Designing the matching networks

The low-pass collector matching networks designed for the MRF422 PA are shown in figs. 4A through 4E. (The capacitive voltage divider, fig. 4D, actually has a pseudo-bandpass response.) These networks transform the 50-ohm load impedance to $Z_{in} = 4.66 + j4.18$ ohms at 7 MHz. The 3-element networks come from formulas in Hayward and DeMaw’s *Solid State Design* and the ARRL Handbook. These formulas assume a pure (non-reactive) input resistance, and lossless coils and capacitors. First, component values are calculated giving $R_{in} = 4.66$ ohms at 7 MHz with a 50-ohm resistive load and a loaded Q of 4. Next, the network input reactance is adjusted to + j4.18 ohms to compensate for the output reactance of the active device, $X_{se} = - j4.18$ ohms. The adjustment involves adding 4.18 ohms to the calculated reactance of the series inductances in fig. 4A through 4C. The capacitive voltage divider (CVD, fig. 4D) has a shunt input capacitor. Here it’s easier to use the parallel-equivalent output capacitance (2426 pF for the MRF422 with the effect of L_{col} included) and subtract 2426 pF from the calculated value of the shunt input capacitor at 7 MHz.

If you’re not interested in insertion loss, you’re finished with the 3-element designs. To observe the effect of imperfect coils (as I did), you need to input the unloaded Q of the coil(s) and the other network parameters into the analysis program. I used coils with a Q_u of 175 for the networks in fig. 4. Imperfect coils will throw off the design Z_{in}. I use a repetitive procedure of systematically adjusting element reactances and recomputing input impedance until I obtain the desired Z_{in} again. Don’t change the input series coil or shunt capacitor — the elements you already modified for collector output reactance. These elements are also determined by the chosen Q, of the network. Changing the remaining two elements will always regenerate the desired Z_{in}.

You need to take a different tack when designing the 4-element tandem-L network (TL, fig. 4E). There aren’t

FIGURE 3

Equivalent circuit of the source impedance Z_s seen by the collector matching network of a class AB common-emitter amplifier.

$X_{col} = 2\pi f L_{col}, L_{col}$ is the collector choke. $R_{col} = X_{col}/Q_u$.

FIGURE 4

Collector matching networks. (A) symmetrical T (LCL). (B) controlled-Q L (COL). (C) unsymmetrical T (LCC). (D) capacitive voltage divider (CVD). (E) tandem L (TL). Element values are to match a 50 ohm load to the MRF422 collector load impedance, 4.66-4j.18 ohms at 7 MHz. Design Q is 4 for the 3-element networks, 3.66 for the TL. (F) A half wave low-pass filter (HWF). $Q_u = 175$ for all coils.
any simple, exact formulas which allow you to independently choose the bandpass shape and the design Q. Fortunately you can calculate the end elements X₁ and X₄ for any desired bandpass and Q, and this leads to preliminary values for the inner elements X₂ and X₃.

The TL network in fig. 4E was designed for an optimally flat (Butterworth) response with a constant voltage (zero output resistance) source — a reasonable approximation for a transistor with an output resistance of a few ohms, like the MRF422. If the input-end Q of the TL is defined as $Q_{in} = X_{1}/R_{in}$ and the load-end Q is $Q_{load} = R_{L}/X_{4}$, the parameter indexing a maximally flat response is $Q_{in}/Q_{load} = 2$. The design Q for this network is $Q_{in} + Q_{load} = 3.55$. These two conditions are solved for Q_{in} and Q_{load}, from which X_{1} and X_{4} are calculated. A ratio Q_{in}/Q_{load} between 1 and 2 gives a broader hammock-shaped response, if some passband ripple is allowable. For TL networks with a Q_{in}/Q_{load} of 2 or less, $X_{2} = -X_{1}$ and $X_{3} = -X_{4}$. (Watch the signs!) Now add 4.18 ohms to X_{1} to compensate for the MRF422 output capacitance, and compute the input impedance with the preceding network elements. Systematically adjust X_{2} and X_{3} to steer Z_{in} to the design value, 4.66 + j4.18 ohms for the MRF422.

Figure 4F shows a half-wave harmonic filter which yields $Z_{in} = Z_{load} = 50 + j0$ ohms at 7 MHz and reduces harmonics 20 dB or more. The name half wave is derived from the impedance characteristics of the filter. Like a half wavelength of transmission line, the half-wave filter reproduces at its input (with a 180-degree phase delay) whatever load impedance is coupled into it at the design frequency.

Frequency response curves

Both the relative power output of the PA and the stopband attenuation of the output circuits are referenced to 0 dB at the frequency for which the PA is tuned, and plotted versus frequency on the same graph. This combined power and attenuation curve (which I call a composite response curve) yields information at a glance on the width and shape of the power curve (assuming constant drive level and device gain), and harmonic rejection.

Figure 5 illustrates two composite response curves for the MRF422 PA. One is for a 3-element matching network (LCC, fig. 4C) and the other for the 4-element TL network of fig. 4E. Both matching networks are tied to the half-wave harmonic filter. These curves show clearly the large increase in harmonic attenuation when going from the low to the high-frequency edge of the 0, -1 dB power curve. For example, in the LCC-HWF response, the second harmonic attenuation A_{2} corresponding to the low-frequency edge at 6.15 MHz, is only -40 dB (at 12.3 MHz). A_{2} corresponding to the high-frequency edge at 7.9 MHz is 18 dB greater at -58 dB. Allowing for a second harmonic level of -12 dB in the amplifier, the apparent differences in bandwidth and filter shape and the design Q. For example, in the LCC-HWF response, the second harmonic attenuation A_{2} of -21 dB and an A_{3} of -32 dB.

Composite response curves for TL-HWF and LCC-HWF PA output network-harmonic filter combinations. Amplifier is a 75-watt class AB MRF422 tuned for 7 MHz. Expanded P_{1} scale for relative power output is at right.

According to the -48 dB criterion, the operating range of the MRF422 PA with a TL-HWF circuit is 6.2 to 8.1 MHz. The relative width of this range is 27 percent — sufficient to cover the whole 75/80-meter band, or to bridge two adjacent bands between 14 and 30 MHz. (We're assuming that the response doesn't change drastically when the amplifier is tuned for a different frequency — an assumption I have found to be generally true.) With the TL-HWF combination, the power curve is at least 37 percent wider, while the harmonic rejection is several dB better than with the 3-component networks.

The main features of all of the composite responses are summarized in table 1. The -1 dB bandwidth decreases as the operating Q increases, while the insertion loss and harmonic attenuation increase. If Q_{op} instead of Q_{1} is fixed for the various 3-component networks, the apparent differences in bandwidth and filtering ability practically vanish. For example, in addition to the CQL, the LCL, LCC, and CVD matching networks with $Q_{op} = 4.9$ in the MRF422 PA all have a second harmonic attenuation A_{2} of -21 dB and an A_{3} of -32 dB.

FIGURE 5

![Composite response curves for TL-HWF and LCC-HWF PA output network-harmonic filter combinations. Amplifier is a 75-watt class AB MRF422 tuned for 7 MHz. Expanded P_{1} scale for relative power output is at right.](image-url)
TABLE 1

<table>
<thead>
<tr>
<th>Matching network or matching network</th>
<th>Passband response (0.1 dB)</th>
<th>IL (dB)</th>
<th>A1 (dB)</th>
<th>A2 (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-pass filter</td>
<td>(MHz)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCL</td>
<td>6.1-7.6</td>
<td>-0.143</td>
<td>-25.7</td>
<td>-40.0</td>
</tr>
<tr>
<td>CQL</td>
<td>6.2-7.8</td>
<td>-0.123</td>
<td>-21.1</td>
<td>-32.4</td>
</tr>
<tr>
<td>LCC</td>
<td>6.1-7.9</td>
<td>-0.122</td>
<td>-18.4</td>
<td>-29.2</td>
</tr>
<tr>
<td>CVD</td>
<td>6.2-8.1</td>
<td>-0.096</td>
<td>-12.8</td>
<td>-18.3</td>
</tr>
<tr>
<td>TL</td>
<td>4.9-9.1</td>
<td>-0.129</td>
<td>-29.7</td>
<td>-49.8</td>
</tr>
<tr>
<td>LCL-HWF</td>
<td>6.3-7.5</td>
<td>-0.242</td>
<td>-46.4</td>
<td>-88.5</td>
</tr>
<tr>
<td>CQL-HWF</td>
<td>6.2-7.8</td>
<td>-0.221</td>
<td>-49.4</td>
<td>-77.3</td>
</tr>
<tr>
<td>LCC-HWF</td>
<td>6.1-7.9</td>
<td>-0.221</td>
<td>-48.9</td>
<td>-77.6</td>
</tr>
<tr>
<td>CVD-HWF</td>
<td>6.2-8.0</td>
<td>-0.197</td>
<td>-41.4</td>
<td>-63.3</td>
</tr>
<tr>
<td>TL-HWF</td>
<td>5.5-8.0</td>
<td>-0.226</td>
<td>-59.9</td>
<td>-97.3</td>
</tr>
</tbody>
</table>

(The attenuation of the TL network depends on the passband width as well as the Q.)

Conclusion

Which collector matching network is best for an MRF422 PA? Because the composite responses of the 3-element networks are much the same for a given operating Q, the choice hinges on practical concerns like the ease of tuning and component values and ratings. Some networks — notably the CQL and CVD — are less suitable for medium- and high-power PAs. The series leg capacitors are 3000 pF or larger because of the large impedance transformation, and must carry a large current (3.5 amperes in the CQL). These networks are better suited to PAs in the 10 to 15-watt range, where both capacitance (for a given Q) and current are lower. The other networks, the LCL, LCC, and TL, are workhorses for PAs in the MRF422 class. Of these, the LCC is perhaps the most popular. It has only one coil and built-in DC blocking. The TL network is more difficult to tune (a spectrum analyzer and tracking signal generator are usually required to achieve the desired bandpass curve).

Even a modest programmable calculator can be used to design and analyze matching networks in conjunction with reactive sources and loads. I hope this article piques your interest in this important area.

References

1. For copies of TI 58/59 matching network analysis programs send $1.00 and an SASE to the author.
9. Ibid., pages 51-53.

Article E HAM RADIO
NEW BOOKS

ARRL ANTENNA BOOK
by Jerry Hall, K1TD. NEW 15th Edition
The all new 15th edition of this antenna classic represents over two years of hard work by editor K1TD. It’s doubled in size too—from over 300 to over 700 pages! 950 figures and charts cover just about every subject imaginable. Some of the highlights are: Chapters on Loop antennas, multi-band antennas, low-frequency antennas, portable antennas, VHF and UHF systems, coupling the antenna to the transmitter and the antenna, plus p-i-e-n-y more. Like the 1988 HANDBOOK and new OPERATING MANUAL, the new ANTENNA BOOK is going to be a smash hit. Order yours today. 15th Edition 900+ pages ©1988
AR-AM Softbound $17.95

NOVICE ANTENNA NOTEBOOK
by Doug DeMaw W1FR
Novices have long wondered what is the best all around antenna for them to install. Up until now, this was a difficult question to answer. Armed at the newly licensed Ham, DeMaw writes for the non-engineer in clear concise language with emphasis on easy-to-build antennas. Readers will learn how antennas operate and what governs performance. Also great reading for all levels of Amateur interest. 1st Edition ©1988.
AR-NAN Softbound $7.95

THE 1989 ARRL HANDBOOK
FOR THE RADIO AMATEUR (Avail. late Oct. 1988)
Revised and updated with the latest in Amateur technology, now is the time to order your very own copy of the world famous ARRL HANDBOOK. In addition to being the definitive reference volume for your Ham shack, there are plenty of projects for every interest in Amateur Radio — from antennas for every application to the latest state-of-the-art projects — you’ll find it all in the 1989 HANDBOOK. Order now and we will ship as soon as the books arrive from the printer. They make perfect gifts for the holiday season for your hard-to-buy for Ham friends or for yourself. Over 1100 pages ©1988
AR-HB89 Hardbound $20.95

N6RU’s ELECTRONIC SECOND OP
for MS-DOS computers
by Jim Raftery N6RU
The world famous SECOND OP is now available in a state-of-the-art computerized data base. This program, written for MS-DOS computers, is a must for DXers, contesters and all Amateurs interested in reliable DX communication. Data can be displayed either in columnar format or in full screen displays. Unknown call signs can be entered and compared to the ITU call sign allocation for easy identification. There’s plenty more too such as: postal rates, beam headings and QSL bureau to name just a few. Great program to have in your shack. Order your’s today ©1988 MS-DOS computers. 5¼ and 3½ versions available. Please specify on your order.
CB-RJ (MS-DOS Computer) $59.95

1989 AMATEUR CALLBOOKS
(Available late November 1988)
NORTH AMERICAN EDITION
Fully updated and edited to include all the latest FCC and foreign government call signs and addresses for Hams in North America. Includes plenty of handy operating aids such as time charts. QSL bureau addresses, census information and much more. Calls from Northern Canada to tropical Panama. Now is the time to buy a new Callbook when you’ll get the most use out of your investment. ©1988
CB-US89 Softbound $25.95

INTERNATIONAL EDITION
QSL’s are a very important part of our hobby. All sorts of awards, including the coveted DXCC, require confirmation of contact before the award can be issued. Of special interest, addresses are being added daily for Hams in the USSR and other countries. While in no means complete, it’s a start and will be of tremendous help in getting QSL’s. Handy operating aids round out this super book value. ©1988
CB-R89 Softbound $28.95

BUY ‘EM BOTH SPECIAL
Reg. $54.90 Only $49.95
SAVE $4.95

Please enclose $3.50 shipping & handling.

(800) 341-1522
(ORDERS ONLY)
NEW BOOKS

PASSPORT TO WORLD BAND RADIO 1989 Edition
Brand new and fully revised, SWL's everywhere will want a copy for their library. Expanded to 416 pages, the book now includes a bigger and better buyer's guide; an interview with James Michener, an exciting real life drama of one SWL's escape from Iran plus much more. Also includes all the latest broadcast schedules from countries around the world. You're up-to-date if you have a copy of this new book by your radio. 416 pages 1989 Edition ©1988
185-RO89
Softbound $14.95

MASTERING PACKET RADIO: the hands on guide
by Dave Ingrum K4TWJ
Packet radio continues to grow at a rate that boggles the mind. This new book appeals to all levels of packet radio enthusiasts from novices to experts alike. Full of illustrations and written in a simple, easy-to-understand style. Topics covered include a basic primer, home computers and data communications terminals, a survey of equipment available, how to set up a station plus much more. Great compliment to the other packet books available. 208 pages ©1988 1st edition
22567
Softbound $12.95

THE ARRL SATELLITE ANTHOLOGY
Taken from the pages of the "Amateur Satellite News" column in QST. Includes the latest information available on OSCARS 9 through 13 as well as the Russian RS satellites. Full coverage is given to Phase III, OSCAR 10 and 13 satellites. Also includes an unpublished article detailing Usat-OSCAR 11 operation. Digital modes, tracking, antennas, RUDAK, microcomputer processing of telemetry plus much more is contained in this valuable new volume. 112 pages ©1988
AR-SA
Softbound $4.95

22nd CENTRAL STATES VHF SOCIETY
CONFERENCE PAPERS
Papers in this book were submitted for the 1988 Central States VHF Society meeting. Includes Microwave EME, predicting 144 MHz ES openigns, matching versus noise figure trade offs in pre-amp, 902 MHz transverter, power amplifier and antennas, how to measure your own K index plus much more. A must publication for the active VHFer ©1988
AR-22CS
Softbound $11.95

GENIUS AT RIVERHEAD a profile of
H.H. Beverage
by Alberta Wallen
Born at the very beginning of the radio age. Harold Beverage is one of radio's pioneers. Most know him from his development of the Beverage or wave type receiving antenna. Learn about the career of this brilliant engineer in this easy to read biography. Starting with GE in 1917 and moving to RCA in 1920, Beverage was involved in some of the most exciting aspects of radio. Of particular interest is a reprint of the famous November 1922 QST article describing the wave antenna. Includes 35 photos. 130 pages ©1988
NH-BEV
Hardbound $15.95

THE "GROUNDS" FOR LIGHTNING &
EMP PROTECTION
by Roger Black, PolyPhaser Corporation
Here's a subject that has never really been fully covered in Amatuer literature. This 116 page text contains a comprehensive analysis of proper grounding and protection against lightning and other EMP disasters. Includes information for all kinds of electronic gear: radios, telephones, computers, Ethernet, CATV, TVRO, and security systems to name a few. Of special interest to Hams are chapters on low inductance grounds and connections, guy anchor grounding, and how to ground inside the shack. Every Ham should have a copy. 1st edition 116 pages ©1987
PP-GLEP
Softbound $19.95

Please enclose $3.50 shipping & handling.

HAM RADIO
(603) 878-1441
GREENVILLE, N.H. 03048

DATATEL 800™
(800) 341-1522
(ORDERS ONLY)
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check your customers’ repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

<table>
<thead>
<tr>
<th>Group A</th>
<th>67.0 XZ</th>
<th>91.5 ZZ</th>
<th>118.8 2B</th>
<th>156.7 5A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>71.9 XA</td>
<td>94.8 ZA</td>
<td>123.0 3Z</td>
<td>162.2 5B</td>
</tr>
<tr>
<td></td>
<td>74.4 WA</td>
<td>97.4 ZB</td>
<td>127.3 3A</td>
<td>167.9 6Z</td>
</tr>
<tr>
<td></td>
<td>77.0 XB</td>
<td>100.0 1Z</td>
<td>131.8 3B</td>
<td>173.8 6A</td>
</tr>
<tr>
<td></td>
<td>79.7 SP</td>
<td>103.5 1A</td>
<td>136.5 4Z</td>
<td>179.9 6B</td>
</tr>
<tr>
<td></td>
<td>82.5 YZ</td>
<td>107.2 1B</td>
<td>141.3 4A</td>
<td>186.2 7Z</td>
</tr>
<tr>
<td></td>
<td>85.4 YA</td>
<td>110.9 2Z</td>
<td>146.2 4B</td>
<td>192.8 7A</td>
</tr>
<tr>
<td></td>
<td>88.5 YB</td>
<td>114.8 2A</td>
<td>151.4 5Z</td>
<td>203.5 M1</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

<table>
<thead>
<tr>
<th>Group B</th>
<th>TEST TONES:</th>
<th>TOUCH TONES:</th>
<th>BURST TONES:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600</td>
<td>697</td>
<td>1209</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>770</td>
<td>1336</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>852</td>
<td>1477</td>
</tr>
<tr>
<td></td>
<td>2175</td>
<td>941</td>
<td>1633</td>
</tr>
<tr>
<td></td>
<td>2805</td>
<td>1018</td>
<td>2100</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

Model TE-64 $79.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547/California: (714) 998-3021
Early Reservation Information

General Chairman, Bill McNabb, WD8SAY
Asst. General Chairman, Ed Hillman, N8ALN

Giant 3 day flea market • Exhibits
License exams • Free bus service
CW proficiency test • Door prizes

Flea market tickets and grand banquet tickets are limited. Place your reservations early, please.

Flea Market Tickets
A maximum of 3 spaces per person (non-transferable). Tickets (valid all 3 days) will be sold IN ADVANCE ONLY. No spaces sold at gate. Vendors MUST order registration ticket when ordering flea market spaces.

Special Awards
Nominations are requested for 'Radio Amateur of the Year,' 'Special Achievement' and 'Technical Achievement' awards. Contact: Hamvention Awards Chairman, Box 964, Dayton, OH 45401.

License Exams
Novice thru Extra exams scheduled Saturday and Sunday by appointment only. Send FCC form 610 (Aug. 1985 or later) - with requested elements shown at top of form, copy of present license and check for prevailing ARRL rates (payable to ARRL/VEC) to: Exam Registration, 8830 Windbluff Point, Dayton, OH 45458

1989 Deadlines
Award Nominations: March 15
Lodging: April 7
License Exams: March 26
Advance Registration and banquet:
• USA - April 4
• Canada - March 31
Flea Market Space:
Spaces will be allocated by the Hamvention committee from all orders received prior to February 1. Express Mail NOT be necessary! Notification of space assignment will be mailed by March 15, 1989.

Information
General Information: (513) 433-7720
or, Box 2205, Dayton, OH 45401
Lodging Information: (513) 223-2612
(No Reservations By Phone)

Lodging
Please write to Lodging, Dayton Hamvention, Chamber Plaza, 5th & Main Streets, Dayton, OH 45402 or refer to our 1988 Hamvention program for lodging information which includes a listing of hotel/motels located in the surrounding areas of Dayton. Reservations for the surrounding area will then become the responsibility of the individual.

Flea Market Tickets
A maximum of 3 spaces per person (non-transferable). Tickets valid all 3 days will be sold IN ADVANCE ONLY. No spaces sold at gate. Vendors MUST order registration ticket when ordering flea market spaces.

Advance Registration Form
Dayton Hamvention 1989
Reservation Deadline - USA-April 4, Canada-March 31
Flea Market Reservation Deadline: February 1

Enclose check or money order for amount indicated and send a self addressed stamped envelope. Please Type or Print your Name and Address clearly.

Name __
Address __
City __________________ State _____ Zip ________

How Many
Admission _______ @ $10.00* $_____
(Valid all 3 days)
Grand Banquet _______ @ $20.00** $_____
Women's Luncheon _______ @ $7.00 $_____
(Saturday) _______ @ $7.00 $_____
(Sunday) _______ @ $7.00 $_____
Flea Market _______ $25/1 space $50/2 adjacent
(Max. 3 spaces) $150/3 adjacent $_____
Admission ticket must be ordered with flea market tickets
* $12.00 at door ** $22.00 at door, if available

Make checks payable to - Dayton HAMVENTION
Mail to - Dayton Hamvention
Box 2205
Dayton, OH 45401
While advertisers are the lifeblood of a magazine, and editors (and other staff) are the internal organs, the sinew and muscle are the non-staff freelance writers who contribute material to the magazine. That writer could be you! In this article I'm going to share some of what I've learned in the two decades since an Amateur Radio publication accepted my first article.

First, let's get one matter straight right away. Technical writing is only a skill, and it's a skill that can be learned by almost anyone who has the brains to get an Amateur license. It is not an arcane art practiced by some specially talented mystical elite, but rather it's an attainable skill. And, you don't have to be an English major to do a good job (I made a "D" the first semester of college English 101 and flunked the third semester flat). I've written more than 50 books and 300 magazine articles, many of them for *Ham Radio*.

Slant

Not all articles are suited to all publications. The difference is what the trade calls "slant." This term refers to the point of view taken by the article in reference to the type of readers who buy the magazine. The same topic can sometimes be sold to several different magazines if the slant is different, the timing is different, and the magazines aren't generally in competition with each other.

The slant is merely your effort to aim the article at the readers of a particular magazine. Every editor can tell you something about his readers. You can also get a good idea of the readership by studying recent issues of the magazine. Using this information, you can "home in" on the types of article the magazine will buy. Although a few editors issue "want lists," most of them will tell you that they don't know what they want "but I'll recognize it when I see it."

Article format

There are several types of articles that appear in this magazine. Some are technical tutorial pieces, some are construction projects, and some are "how-to" pieces. Let's take a look at the basics of the how-to article. The common denominator for all how-to articles is that they offer instruction and advice. This definition covers a lot of territory, including most practical technical articles. There is no fixed universal format for all how-to pieces; almost any format will work some of the time. But there is one format that almost always works, so if you're a new writer, you might want to follow it until you have a little experience. The format, which I learned both at a writer's conference and from the editor of another Amateur publication, is called the "Tell-'Em-Cubed" method. Just follow this outline:

Tell 'em what you're gonna tell them.
Tell them.
Tell them what you told them.

The first "tell them" should be no more than about three paragraphs, and may be only one short paragraph. This "tell 'em what you're gonna tell them" segment must grab — and hold — the reader's attention, and convince him to continue reading. The main body of the article is the "tell them" portion and should occupy the bulk of the space. Finally, there's the "tell them what you told them" section for a quick (one to three paragraphs) summing up. Use it to highlight the main points, especially those that should be remembered.

For electronics articles there is a modified "Tell-'Em" format (which I call the "Ham Writer's Eight-Fold Way"):
Tell 'em what you're gonna tell them.
Tell what it's gonna do for them.
Tell them how it works.
Tell them how to build it.
Tell them how to test it.
Tell them how, when, and where to use it (as appropriate).
Tell them how to modify or adapt it for other applications.
Tell them what you told them.

Of course, not all of these elements need be included in every article, but it does represent a stylistic shopping list.

Writing the piece

Most successful authors prepare at least an informal outline for the article. This road map needn’t be as formal as one for an English class; it’s simply a guide to ensure that all bases are covered — and are covered in logical order. The outline keeps you on the right track.

Each major topic in your article deserves at least a paragraph. A major mistake novice writers make is to mix several topics in the same paragraph. If your outline is written to the paragraph level, you probably won’t fall into this trap and your article will flow more naturally.

Another common mistake is to include too many topics in a single article. A magazine article is a capsule of information on a specific, usually quite narrow, topic. After my initial success in a ham magazine, I sent a manuscript to Jay Phipps, the editor of Electronic Servicing. Jay apparently saw something good in that mess of a manuscript, because he took the time to write a four-page bit of fatherly advice (not something one learns to expect from busy editors). He pointed out that there were at least four different articles in that one nine-page manuscript. When I finished rewriting the piece, it actually had five buried topics. Jay bought all five, just in time for Bonnie and me to get married.

How long should your article be? The quick-draw response is “long enough to tell the story,” but (while true) that’s not the practical answer. Take a look at the articles in HR. Most of them fall into a relatively narrow range of lengths that fit their format. In general, an article should be 5 to 10 double-spaced, typewritten pages with 2 to 6 illustrations. HR publishes longer pieces, and certainly some shorter pieces, but in general those that are bought fall in the mid-range. If you feel strongly that an article needs a long treatment, write to the editor and make a proposal for either a long article or a multipart one. If the topic strikes the editor’s fancy, you might get a no-obligation “speculative” go-ahead.

Preparing the manuscript

When you prepare the manuscript for your article, keep in mind that a real, live, warm-blooded editor must read and work with your piece. Prepare the manuscript to make his job easier. I’ve seen a lot of potential writers over the years who’d get fewer rejection slips if they did a better job of manuscript preparation. If an author is too sloppy to do the mechanical job correctly, the editor might get the idea that he’s a little sloppy with the facts as well.

Editors require typewritten manuscripts, so don’t even think about sending in a handwritten piece. Your typewriter or computer printer should be in good repair, and print well. If you don’t have access to a typewriter or computer, there are secretarial services that can do the job. Dot-matrix submissions are accepted by most publishers, but only if they are easily readable. An editor spends a lot of time every day reading, so a washed-out, low-resolution dot-matrix submission might just go unread. A “near letter quality” dot-matrix printer with a fresh ribbon will produce an acceptable product.

Type the final manuscript on 8-1/2 x 11 inch plain white 20# paper. Don’t use colored paper, or paper with rules. If you’re sending a computer printout, be sure to use a middle to high grade of paper. The cheap stuff (which costs only a little less than the good stuff) leaves a coarse, ragged edge that annoys editors.

Don’t send a manuscript that includes a lot of hand corrections. In general, most professional writers will retype a page if more than three minor corrections appear on it — and even then only if they use a typewriter instead of a personal computer word processor. Most editors don’t mind if a typewritten submission has a few legible hand corrections, but don’t overdo it.

When the manuscript is finished, bind the pages together with a single paper clip, not a staple. Also paper clip the illustrations to the text. In a technical article, the pictures are as much a part of the manuscript as the text, so don’t forget them. Send the manuscript flat in a large manila envelope; don’t bend it over and force fit it into a standard no. 10 business envelope.

(Note: A little word of advice for new writers. If you want to hear Terry Northup scream in anguish all the way from New Hampshire, just forget to place a list of captions on the illustrations package!)

Illustrations

“A picture is worth a thousand words” says an old cliche. That old saw might be true in some cases, but when you’re being paid on a per page basis, a picture is worth about 200 words. The real value of the picture, however, is that it enhances the article and makes it easier to follow. In fact, for technical articles, the picture might make it possible in the first place. A picture, in that case, isn’t worth a thousand words — it’s priceless.

Your illustrations don’t have to be drawn profession-
ally. Pencil drawings are acceptable, but must be done in a way that can be interpreted by the magazine's artist. Use some sort of coarse grid graph ("quadrilled") paper, or an engineering sketch pad for your drawings. The latter are green or yellow tablets that are blank (with border) on one side and gridded on the other. The grid lines show through to the blank side enough to guide you in making the sketch, but do not appear on the picture.

The basic requirement for illustrations is that they be understood by the editor and the artist. The line drawing should be neatly done and contain all necessary information. For schematics, that requirement includes component values and semiconductor device type numbers. Keep in mind that there are different drawing practices in effect at different magazines. For example, HR uses "CR1" for the first diode in a circuit, not "D1." Also, they use the chassis ground symbol unless an actual earth ground is intended. Study HR illustrations to see which symbols they use.

Photographs are also very useful for illustrating the technical article. There are some general guidelines for taking photos. Don't use low-cost 110 or disk format films. Use 35-mm or larger (e.g., 120 or 220 size) film, even if you have to borrow a camera. The old 126 cartridge film (basically a form of 35-mm film in an Instamatic® cartridge) is useful if you have a good quality camera. Use black and white film like: Verichrome Pan, Panatomic-X, Plus-X, Tri-X or their equivalents. Do not use color print film. Some magazines can sometimes use slides, but check with the editor before you hang your piece on a color transparency. A photo laboratory can make a black and white print from your slide by shooting a black and white internegative from your transparency. The print should be glossy, with borders (you may have to ask for them), and be either 4 x 5, 5 x 7, or 8 x 10 inches. Keep in mind that 35-mm negatives may not reproduce well as 8 x 10s. Place your photo in a celluloid "page protector." These are available at office supply stores for about 50 cents each. Tape the photo to the inside paper in a way that keeps the tape off the print. (See why you need to order bordered prints instead of the borderless type that's now standard?)

The "standard" lens that comes with most 35-mm cameras has a fixed focal length on the order of 48 to 55 mm. It's almost useless for anything but snapshots without an add-on device like a macro (close-up) lens, close-up bellows, or close-up rings. I use several different lenses for my pictures: a 28-80 mm Zoom Macro, a 70-210 mm Zoom Macro, a 50-mm "snapshot" lens fitted to a close-up bellows for really close-up shots, and 105-mm Macro lens. What's a "Macro" lens? Basically, it's one that lets you do close-up photography, that's all. While photographers may have a more rigorous definition, the point of owning a Macro lens is to allow you to focus closer than the standard 2:3 feet common on non-Macro lenses.

Conclusion

There are any number of reasons why you might want to write a technical article: it pays money, it brings recognition, it helps the Amateur Radio hobby, and it's a heckuva lot of fun. And guess what? YOU CAN DO IT!

Reference

Article F

H AM RADIO

PC HF FACSIMILE $79.95

A complete facsimile reception system for your IBM PC or compatible. Receive grayscale images in up to 16 shades or pseudo color depending upon your graphics card and printer.

Includes:

Demodulator
50 Page Manual
Software
Tutorial Cassette
Requires:
HF receiver
PC with 320K
Graphics card
Serial port

Software Systems Consulting
1303 S. Ola Vista
San Clemente, CA 92672
(714) 498-5784

Wideband Preamplifier 10-1000 Mhz

GTI Electronics
RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION

Dealers Inquiries Invited

January 1989
NYE Takes the fear out of full power antenna tuners, and the guesswork out of PEP measurement with these two MUST SEE PRODUCTS!!

MB-V-A

Discover this durably built, feature packed MB-V-A Antenna tuner. You'll find operating conveniences that make antenna tuning a snap and value engineered to do the job over wide operating ranges. Compare quality, features and the NYE VIKING TWO YEAR WARRANTY.

RFM-003

Get correct easy to read measurements of PEP for SSB, AM, and Pulse along with full time completely automatic SWR display with this unique Power Monitor System. Two models to choose from: The RFM-003 for 3KW indication and The RFM-005 for 5KW.

CHECK THE FEATURES:

- **Pi Network. Low Pass** Pi Network tuning 1.8-30 MHz. Heavy duty silver plated continuously variable inductor with 25.1 vernier dial. 7000 volt variable capacitor and 10,000v switch selected fixed capacitors on output side. Tunes 40-2000 ohms loads. Good Harmonic suppression!
- **Automatic SWR.** Hands free metering of SWR. No reset or calibration needed. Separate power meter—300 or 3000 w t.s. automatically switched. Easy to read 2.5" recessed and back-lighted taut band meters.
- **Antenna Switch.** PUSH-BUTTON antenna switching to (4) antennas (2 coax single wire and twin lead). Coax bypassed on first coax output. We designed this switch to take the power. Rated at 10KV and 20 amps.
- **3 KW Balun.** Triller wound triple core torroid gives balanced output to twin feeder from 200 to 1000 ohms and unbalanced output down to 20 ohms.
- **Maximum Power Transfer.** Match your transmitter output impedance to almost any antenna system for maximum power transfer. Amplifiers only run at their designed Q when properly matched.
- **Model Options.** MB-IV-A1 includes all MB-V-A features less antenna switch and balun. MB-IV-A2 is identical to MB-IV-A1 with the addition of a triple core balun.
- **1.8 MHz will not tune on some antennas.**

- **(3) Modes — Peak Average and Peak and Hold with a unique non-drift Sample & Hold Analog memory circuit.**
- **(2) Ranges — Automatically switched power scales to 5 KW.**
- **Fully Automatic SWR — Full time meter displays ratios directly without drift.**
- **Built-in ALO — Protect your amplifier tube investment with this fast acting lockout.**
- **Remote Couplers — Six feet remotes the interchangeable calibrated couplers.**
- **True RMS Conversion — H.F. couplers use forward biased full wave detection.**
- **Rugged Construction — Heavy gauge aluminum construction. Top quality glass epoxy PCB. This meter is built to last.**
- **Accuracy — Guaranteed to ± 5% F.S.**
- **Warranty — TWO FULL YEARS.**
- **Added Features — Switchable reverse power all mode metering — Full status LED Display — Adjustable ALO is switchable SWR/REFL power — Heavy duty Nicad batteries charged by the applied RF for the field and a charger is supplied for fast charging and backlighting of the taut band meters for the ham shack.**

OTHER NYE VIKING PRODUCTS

Phone Patches — Electronic and Memory Keyers — Squeeze Keys — Straight Keys — Code Practice Sets — SWR Wattmeter for the blind — Low Pass Filters — All Band Antennas and more...

ASK FOR A FREE FULL LINE CATALOG.

TO ORDER, CALL YOUR FAVORITE DEALER

Amateur Electronic Supply Barry Electronics
Ham Radio Outlet C-Comm
Henry Radio Ross Distributing
Madison Electronics Quement Electronics
EGE LaCue Communications
R&L Electronics Ham Station
rf enterprises

Wm. M. Nye Co. Inc.
1614 130th Ave. N.E.
Bellevue, WA 98005
TEL: (206) 454-4524
FAX: (206) 453-5704

Tell 'em you saw it in HAM RADIO!
KENWOOD
RZ-1
RECEIVER
500 kHz - 905 MHz
$509.95
CASH OR
CHECK PRICE

MA.

KENWOOD
AUTHORIZED SALES & SERVICE
FOR

NEW ENGLAND'S FACTORY-
AUTHORIZED SALES & SERVICE
FOR

KENWOOD
ICOM

Also displaying the popular accessories needed to complete a HAM STATION . . .

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • ALINCO
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • TOKYO HY-POWER LABS
• TRAC KEYERS • VIBRPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK VIS A M WELCOMED

Telephone 508/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1 1/4 miles from Rte. 495 (Exit 31) toward Groton, Mass.

SONY
ICF-2010
RECEIVER
Air: 116-136 MHz
FM: 76-108 MHz
AM: 150 kHz-30 MHz
$344.95
Cash or Check Price

IF YOU BUY, SELL OR COLLECT OLD RADIOS; YOU NEED...

ANTIQUE RADIO CLASSIFIED
Antique Radio’s
Largest-Circulation
Monthly Magazine
FREE SAMPLE COPY!
Classifieds - Ads for Parts & Services
Articles - Auction Prices- Flea Market Info.
Also: Early TV, Ham Equip., Books, Telegraph,
Art Deco, 40’s & 50’s Radios & more...
Free 20-word ad each month. Don’t miss out!
6-Month Trial - $11.
1-Year: $19 ($28 by 1st Class)
Foreign by air - Canada: $30; Mexico: $26; Other: $55.
A.R.C., P.O. Box 2-A4, Carlisle, MA 01741

The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut Verticals
Butternut’s HF verticals use highest-Q tuning circuits (no lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
• 80 40 30 20 15 and 10 meters
• Automatic bandswitching
• Add-on kit for 17 and 12 meters available now
• 10 ft tall

Model HF2V
• Designed for the low-band DXer
• Automatic bandswitching on 80 and 40 meters
• Add-on units for 160 and 30 or 20 meters
• 32 foot tall - may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure

Butternut Electronics Co
405 East Market
Lockhart, Texas 78644

127
DX records on 50 MHz and above

Many HFers have worked all the current DXCC countries. Some DXers have even worked and confirmed all current countries on the ARRL DXCC list on 20 meters. Eventually someone will work all current countries on all HF bands; the radio propagation is available.

Several Amateurs presently operating on 50, 144, and 432 MHz claim DXCC totals of 50 to 95 countries on these bands. One day, perhaps in the next few years, 6 and 2-meter DXCC will become a reality using a combination of F2, TE, Es, and EME propagation. But it probably won’t be possible to work all current DXCC countries on 50 MHz or above — at least not in a normal lifetime. Even EME has its limitations!

There are many reasons precluding this achievement. Each IARU region has different and often incompatible frequency assignments above 29.7 MHz. The main impediment to working “long-haul” DX above 50 MHz is that the propagation modes required for DX are seldom available, except via EME. Those Amateurs that operate above 50 MHz have had to establish a different “yardstick” to measure performance against their peers.

For many years North American VHF/UHFers worked hard to attain a WAS or WAC award. “Locators” were sought in Europe. The ARRL VUCC (VHF/UHF Century Club) award has been a standard since 1983.

Yet even these awards are not a good measurement of an Amateur’s capabilities on the frequencies above 50 MHz. Your actual location on the earth has a great bearing on your maximum DX possibilities. Tables were compiled of the longest DX worked on each Amateur band above 144 MHz. This worked up to a point, but soon became ineffective once someone worked across a special exclusive propagation path (i.e., from California to Hawaii, across the Mediterranean Sea, or the Great Australian Bight).

I started publishing a table with a different twist — one that recognized DX achievements in North America, based on the “suspected” propagation mode used. I also developed similar worldwide and EME tables.

This new table first appeared in “VHF/UHF World” in 1985 and has changed many times. It’s been improved and expanded with each new frequency, propagation mode, and claim. I’ve also added six-digit grid squares. The latest update appeared in “VHF/UHF World” of June 1988.

Why the emphasis on VHF DX?

Many Amateurs move up to the VHF frequencies to improve local coverage; they do it to ragchew, or pass traffic with little or no QRM. These operators want to avoid DX and all its trappings! Still others enjoy the vast networks of VHF/UHF packet and FM repeaters, especially for wide area mobile coverage and emergency traffic.

Many 2-meter and above users are often unaware that they can work DX on these bands. They think that working beyond line-of-sight (LOS), or perhaps over 50 miles, isn’t possible except in rare instances — and then only with an enormous antenna and lots of experience.

Those Amateurs who operate the VHF/UHF frequencies seriously know that coverage is possible out to several hundred miles at almost any time of the day or night using CW or SSB, moderate power (50-100 watts), a Yagi with an honest gain of greater than 10 dB, and a receiver with a low noise figure (less than 3 dB).

VHF/UHF DX must be quantified. On 6 meters there are several propagation modes not commonly available on 2 meters and above. The mode of propagation is often difficult to determine because many contacts involve a “mixed” propagation mode (combinations of F2, Es, TE, MS, or backscatter).

Long-path contacts have been reported during the rare times when F2 propagation is present on 6 meters. In
ANTENNAS

KLM
World Class Antennas for the Serious Amateur!
KT34A...
$395.00 KT34A...
$395.00
Monobanders: 60-10 Meters!
High Performance VHF & UHF antennas.

HY-GAIN

TH7DXS
Explorer-14
TH5MK2S
THUJS
Monobanders
204 BAS 203 BAS 205 BAS
155 BAS 153 BAS 105 BAS
103 BAS 66 BAS

VHF, OSCAR & VERTICAL ANTENNAS!
NEW! High Performance 144 & 432 MHz Antennas. Call For Prices!

WINTER SPECIAL! The "A3S."
The Popular A3 with Stainless Steel Hardware at a Special Price.
A3S
A744 Add-on Kit
A35K & A45K Stainless Kits
AV3 & AV5 Verticals
AP8 & APR 18
40-CD 2 ALM 40 Mtr. Beam
Monobander For 15 & 20 in Stock!
617-868 Mtr. BOOMER
A50-5, A50-7
A147.1, A147.2
210VB & 230WB 15 & 30 el 2 Mtr.
AOP-1 Satellite System
4218X5 & 3218 for 144-146 MHz
2208, 4248 BOOMERS.

YAESU

FT-757 GXL
All Mode Transceiver

FT-727
Dual Band Handheld

FT-212 RH
2 Meter Mobile

AMPLIFIERS & TUNERS

NYE-VIKING
MBV-A
MAGNUS SOLID STATE HF LINEAR AMPS

MFJ
KEYERS
ACCESSORIES

ANNIVERSARY
AMPERAGE
DIODES
SSB ELECTRONIC & MICROWAVE MODULS TRANSVERTERS, PREAMPS, & ACCESSORIES. CALL!

TOWERS

HY-GAIN
Crank-up, self-supporting, galvanized steel towers.
SS rated at 8 ft. HD at 18 ft.
HG-37SS
HG-54HD
CALL FOR PRICES
HG-52SS
HG-70HD

ROHN
Self-supporting Ratings: HDX at 18 ft, HBX at 10 ft, BB at 6 ft.
HBX 40
CALL
HDX 40
HBDX 48
CALL
HBDX 56
CALL

Galvanized steel with bolt and rotor plate.
Today's best buy. Freight additional but you save with our volume shippers' discount!

GUIDED TOWER SECTIONS:
25G, 45G, 55G Sections and All Accessories!
Stock Call for Current Prices.

FOLD-OVER TOWERS:
FK-2545
FK-2555
FK-2568
FK-3064

Prices 10% higher in western states.

ROOF TOWERS & CLIMBING BELTS...CALL!
TOWER HARDWARE
Guywire: 3/16EHS / 1/4 EHS, per ft.
CAB Laminate: 3/16 / 1/4...
Turbine!: 3/16 / 1/4...

Earth Anchor: 4 ft. Screws...

Guy Insulators: 500 D502...

PHILLYSTRAN GUY SYSTEMS
HPTG-2100-4000-8700 Cable.
Cables Ends: 9001L 9002L 100...
Socketless Tapping Cords...

WIRE & CABLE

Belden Coax
9913 Low loss $0.45/fi.
RG-6X(9258)...
0.20
RG-213U(267)...
0.46
RG-8U(8237)...
0.38
RG-58U(8258)...
0.15
RG-8U(8241)...
0.40
RG-58U(8241)...
0.16

450 Ohm Ladder Line...

COPPERWELD ANTENNA WIRE
Solid: 12 ga. 0.10
14 ga. 0.10

14 ga. 0.08

Plus Wide Selection Baluns, Insulators, Accessories

AMPHONIC CONNECTORS
PL-259: st/5 or st/6...
0.89 / 0.25 / 1.45
U-12 (8281) Type N Male...
2.96
T's, adaptors, jacks, & BNC in stock!

COAX AVAILABLE IN PRECUT LENGTHS WITH CONNECTORS ATTACHED.

1 COAXIAL SWITCHES

ANDREW HELIAX & CONNECTORS
1/4" LDF-540...
CALL
7/8" LDF-550...
CALL

THANK YOU AND HAPPY HOLIDAYS TO OUR CUSTOMERS AROUND THE WORLD
RALPH-K1R, GEORGE-AO6S, GWEN-WD0DZL, RANDY-KA6VVO, MEL, CHERYL, AND BRIAN

rf enterprises
HCR Box 43
Merrifield, MN 56465
(Located at Jcn. Co. 3 & 19)
MARK 4CR

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (508) 372-3442

TELEX 4932256 Kendecom
FAX 508-373-7304

CQ... ORLANDO HAMCATION

Calling all hams!

Build your next vacation around the southland's most popular Hamfest, at the hub of the greatest entertainment and activity center in the east.

Hamcation only minutes away from Florida's main attractions!

* Disney World * EPCOT Center
* Sea World * Wet n' Wild * Water Mania * Boardwalk & Baseball
* Church Street Station * Gatorland Zoo

AT ORANGE COUNTY CIVIC CENTER (at INTERSTATE 4, EXIT 29)

ARRL
Northern Florida Section Convention
April 7th, 8th, 9th — 1989

NOW BIGGER & BETTER THAN EVER!

REGISTRATION

$6.00 Advance (Until March 15th)

$8.00 at the door

Children under 12 Free!

“C'mon down and enjoy our Southern Hospitality”

24 hour RV sites at nearby campground.
Continuous Forums Saturday and Sunday
FCC EXAMS Sunday at 9:00 am
FREE Novice Exam - all others 14.00
Form 610 provided. Register for exams on Saturday. Bring credits and license.

EXPANDED INDOOR SWAP TABLES ($25.00 for all three days)
Commercial Exhibit Areas

Watch this space for more details next month!

For General Information & Tickets - Registrants and Exhibitors contact:
Hamcation Information • P.O. Box 547811, Orlando, FL 32854

ORLANDO HAMCATION & COMPUTER SHOW
Sponsored by: Orlando Amateur Radio Club, Inc.
these contacts, the direction of propagation between stations is reversed and the signals cover distances exceeding half the earth’s diameter or 12,430 miles (20,000 km). Because of their rarity, claimed 6-meter records and above? The reasons are many but exceeding half the earth’s diameter or the signals cover distances there.” But that’s not enough of an answer.

So why the emphasis on DX on VHF and above? The reasons are many but the old saw still applies: “Because it’s there.” But that’s not enough of an answer.

There are many other reasons to "seek out" DX on the higher frequencies. Successful record-breaking VHF/UHF DXing requires a unique knowledge of radio propagation and a certain amount of luck. But even the routine fallouts of VHF and above DXing are tremendous. A few that come to mind are:

- Discovering new modes of radio propagation.
- Determining the maximum capabilities of each propagation mode. (This includes the optimum times, days, and years and the necessary weather conditions, if applicable.)
- Choosing the optimum transmission mode (CW/SSB/FM, etc.) for each mode of propagation.
- Finding operating techniques that maximize data throughput.
- Unearthing equipment improvements like more stable local oscillators, lower noise weak signal receivers, efficient higher gain antennas with low side/grating lobes, and more efficient transmitters.

References 1 through 6 describe most of the known radio propagation modes available above 50 MHz. By familiarizing yourself with these references you can determine the capabilities and limitations of each mode, and try to expand upon them.

Determining the optimum equipment, operating techniques, and transmission mode greatly improves DXing results. For instance, CW is still the best weak signal technique — especially where only low data rates (like EME) are required. CW was used in the early days of meteor scatter propagation, but SSB is now widely used because it improves productivity by increasing the data rate.

In the "good old days" Amateurs used FM to great advantage on microwave LOS communications. Schemes like polaplexers circumvented the need for high stability oscillators. State-of-the-art (SOA) improvements in local oscillator technology have increased the popularity of CW and SSB, and microwave records are falling like stones.

Most improvements resulted from the hard work of VHF and above weak signal DXers who wanted to develop the SOA in equipment, increase propagation knowledge, and set new DX records. We now have Amateurs using CW and SSB all the way up through 47 GHz?

How are DX records broken?

This isn’t a simple question. In most cases it’s quite a challenge to break an existing DX record, and that takes a serious effort. You may need new equipment with greater capabilities than are presently available. Special locations and weather may also be required.

In other cases, an existing VHF and above DX record has actually been broken by accident, sometimes without the knowledge of either one or both of the new record holders! The fallback in this case may be great, as a new propagation mode or method is discovered to extend an existing record.

If you decide to challenge a DX record, examine carefully the existing records shown on the tables in this column. Study the characteristics of the particular propagation mode and record you expect to challenge. Finally, develop a plan of attack.

Each VHF and above DX record is listed by frequency and propagation mode with the callsigns of the record holders, grid locator, date, mode, and the actual DX attained in miles and kilometers. The DX shown is calculated using the best available information.

The distance shown on the tables is based on a “spherical” earth model. This is by far the most common distance determination method used by Amateurs because it employs simple mathematics and straightforward computer programs.

Spherical earth calculations have some inaccuracies depending on whether one or both of the stations are near the earth’s equator or poles. The greater the distance involved, the greater the inaccuracies — but they probably never exceed about 44 miles (70 km) worst case.

In the future, I expect to convert the DX record tables to a different mathematical formula using an “ellipsoidal” earth model. This will improve record accuracy, but I doubt if anyone will lose or gain a claim!

I haven’t converted to this more accurate method because few Amateurs seem to have used, or have access to, these more sophisticated models. A changeover at this time could cause confusion, and make it difficult to compare records.

In the meantime, if you’d like to try it, The Radio Amateur’s World Atlas describes a computer program for determining ellipsoidal earth distances. I can’t testify to its accuracy at this time, but hope to do so shortly.

My DX record information comes from the VHF/UHF/SHF Record Verification Forms you submit. (The form was shown on table 4 of last June’s “VHF/UHF World” column.) I retain all claim forms for my record file. The grid locator shown on the records is derived from this information. This means the DX shown may not be the same as what you’d calculate using some of the new computer programs based on the center of center DX between two grid squares.

It’s very important that all record information you send be as complete as possible. Accuracy is the key. I try to include as much new information as possible on each new DX record submitted at the end of each “VHF/UHF World” column. This helps new record challengers gain...
insight into the required equipment and parameters. More on this shortly.

New DX records

Generally speaking, it's rare when more than two VHF and above DX records are broken in a single month. Usually it's easy to summarize the new ones at the end of the column. But, so many DX records have been broken lately that it's been tough to keep up with the influx of telephone calls and paperwork. In the last few months, some of the same records have been broken three or more times! I finally decided that the fair thing to do was devote this month's column and the next to those records that have arrived recently, and have been fully documented.

This record DX activity is a great testimonial to the interest in and health of the VHF and above frequencies, as well as the challenges and advancement in the SOA. Who says we aren't utilizing our present frequencies adequately?

New ionospheric records

I've tried to find some way to arrange this new record material in an orderly fashion, but it's difficult. New records are coming in faster than I can get them out to you. I decided to break the new records into four separate categories: ionospheric, tropospheric, EME, and light waves.

144 MHz. For many years the North American 2-meter sporadic-E DX record was a "single-hop" contact. In the early 1980s there were probable "double-hop" contacts with some ducting. Then, in the June 1987 VHF contest, the first clear double-hop 2-meter contact was made in North America.

Now I've authenticated a new record that extends the 1987 one considerably. On June 6, 1988, at about 0230 UTC, stations in Alabama were working Colorado stations on 144.2-MHz SSB. Then, at about 0235 UTC, John Howard, KB4WM, Childrensburg, Alabama (EM63TG) worked Merle Cox, W7YOZ, Kirkland, Washington (CM87VR) for a new DX record of approximately 2106 miles (3,389 km).

At 0237 UTC KB4WM broke his own record by working Larry Logan, NF7X, Everett, Washington (CN87VX) for an approximate distance of 2111 miles (3,397 km). This was followed at 0250 UTC by Dale Peterson, WA4CQG, Auburn, Alabama (EM72FO) who jumped on frequency, worked W7YOZ, and extended the record even further. So, unless I hear to the contrary, the latest 2-meter sporadic-E record stands at 2172 miles (3495 km).

Both WA4CQG and W7YOZ were running about 400 to 500 watts on SSB with four 16-element and one 14-element Yagis, respectively. Signals were Q5, but only around the S4-5 level.

Remember that these contacts were still not coast to coast. A further extension, perhaps by as much as 500 miles, is still possible. Any challenges to this great opening?

220 MHz. Now let's look at the meteor scatter records. The first case involves 135 cm. This band is usually devoid of meteor scatter activity, except during the Perseids meteor shower. This year was no exception.

This year's Perseids shower was generally rated as poor — surely poorer than last year — by most 135-cm aficionados. This didn't dampen anyone's enthusiasm, but it did decrease longer distance contacts. They were few and far between.

But, after five years of trying to work each other, W1JR, Chelmsford, Massachusetts (FN42HN) finally completed a meteor scatter contact on 220.1-MHz SSB with Ron Roche, K0ALL, Fargo, North Dakota (EN16OU) between 0500 and 0700 UTC on August 13, 1988 during one of several marathon sessions. We completed the contact by piecing together many short and relatively weak SSB bursts, none lasting more than a single call set at my end.

Both stations were running 600 to 1000 watts with single long boom Yagis. K0ALL was also on one end of the previous 135-cm meteor scatter record. Ironically, we increased the dis-
tance over that record by only one mile!

If you examine the table in reference 3, you'll note a peculiar difference. The new record appears to be shorter than the previous one. But, before you suspect collusion, note that K0ALL's grid square has changed.

When Ron rechecked his latitude and longitude after our contact he found out that they were listed incorrectly in the past. Anyway, the distance from K0ALL to W1JR is still one mile further than the distance from K0ALL to K1WHS, the previous record. This points out only too clearly the importance of verifying your longitude and latitude with the greatest of care.

Enough said.

432 MHz. After several years of trying, I've finally verified the exact location of W0LER who was on one end of the longest documented 70-cm meteor scatter contact. As a result, that record distance has increased about two miles and will be reflected in the updated table.

Tropospheric records. Warmer weather typically brings good tropospheric propagation in North America. It also encourages lots of expeditions to the seacoast and the mountaintops. Expect to see lots of record attempts during these months.

This year was no exception. In fact, I think I was aware of more record attempts this past summer than a year ago — despite the fact that it's getting more difficult to find a record to break. Many of these expeditions were successful.

220 MHz. The tropospheric record on this band stood for a long time but it has now been broken. On September 9, 1988 there was some peculiar tropospheric ducting from Arkansas to some of the mountaintop stations in New England. Those of us who live at lower elevations in New England listened carefully, but the signals were going right over our heads!

At the same time hurricane Florence was whirling around just south of New Orleans, Louisiana. This apparently contributed to the very high barometric pressures in the Northern and East-
A. Microwave Associates 10 GHz Gunnplexer. Two of these transceivers can form the heart of a 10 GHz communication system for voice, video, or data transmission, not to mention mountain-top DXing! MA87141-1 (pair of 10 GHz transceivers) $281.95. Higher power units (up to 200 mW) available. B. Microwave Associates 24 GHz Gunnplexer. Similar characteristics to 10 GHz unit. MA87820-4 (pair of 20 mW transceivers) $739.20. C. This support module is designed for use with the MA87141 and MA87820 and provides all of the circuitry for a full duplex audio transceiver system. The board contains a low-noise, 30 MHz receiver, modulators for voice and mic operation, Gunn diode regulator and varactor supply. Meter outputs are provided for monitoring received signal levels, discriminator output and varactor tuning voltage. RXMRV02D0 assembled and tested $119.95. D. Complete, ready to use communication system for voice or mic operation. Ideal for repeater linking. A power supply capable of delivering 13 volts dc at 250 mA for a (10 mW version), microphones, and headphone and/or loudspeaker are the only additional items needed for operation. The Gunnplexer can be removed for remote mounting to a tower or 2 or 4 foot parabolic antenna. TR16GA (10 GHz, 10 mW) $398.95. Higher power units available. TR54GA (24 GHz, 20 mW) $639.95. Also available: rod, 2 and 4 foot parabolic antennas, Gunn, varactor and detector diodes, search and lock systems, oscillator modules, waveguide, flanges, etc. Call or write for additional information. Let ARR take you higher with quality 10 and 24 GHz equipment!

NEMAL ELECTRONICS

*Complete Cable Assembly facilities MIL-STD-452B8
*Commercial Accounts welcome - Same day shipping most orders
*Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub heat shrink, heat shrink, cable ties, high voltage connectors.

<table>
<thead>
<tr>
<th>HARDLINE 50 OHM</th>
<th>CONNECTORS-MADE IN USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA12 1/2" Aluminum Black Jacket ... $6.95</td>
<td>NE720 Type N plug for Belden 9013 ... $3.95</td>
</tr>
<tr>
<td>PFA12 1/2" Cablewire corr. copper bkt jet ... 1.65/ft</td>
<td>NE723 Type N jack for Belden 9013 ... 4.95</td>
</tr>
<tr>
<td>PFA75 7/8"/F Cablewire corr. copper bkt jet ... 3.04/ft</td>
<td>PL250 standard UHF plug for RGA-213 ... 65</td>
</tr>
<tr>
<td>NM12GC N corr 1/2" corr copper m/t ... 25.00</td>
<td>PL250AM Amphenol PL259 ... 80</td>
</tr>
<tr>
<td>NM79CC N corr 7/8" corr copper m/t ... 54.00</td>
<td>PL259TS PA259 teflon ins/jumper plated ... 1.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COAXIAL CABLES (per ft)</th>
<th>PL259AM Amphenol femalefemale (barrel) ... 1.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180 BELDEN 9013 very low loss ... 52</td>
<td>UG175/UG176 reducer for RG58/59 (specify) ... 22</td>
</tr>
<tr>
<td>1100 RGB/U 95% shield low loss foam 17ga ... 36</td>
<td>UG2105 N plug for RG174/214 SIW ... 3.25</td>
</tr>
<tr>
<td>1170 RGB/U 90% shield (mini 8) ... 17</td>
<td>UG533B N jack to PL259 adapter, teflon ... 6.50</td>
</tr>
<tr>
<td>1130 RG211/1 99% shield mil spec NCV jkt ... 36</td>
<td>UG1249 SO239 to N type plug adapter, teflon ... 6.50</td>
</tr>
<tr>
<td>1140 RG214/1 dbl silver shield mil spec ... 1.56</td>
<td>UG1265 SO239 to BNC plug adapter, Amphenol ... 3.29</td>
</tr>
<tr>
<td>1705 RG1429/1 dbl silver shield, teflon ins ... 1.56</td>
<td>SO209AM UHF chassis mt receptacle,Amphenol ... 8.90</td>
</tr>
<tr>
<td>1310 RG317/1 U 50 ohm 5000 watt dbl shield ... 86</td>
<td>GROUND STRAP-GROUND WIRE (per ft)</td>
</tr>
<tr>
<td>1450 RG317/4 U 100 ohm mil spec ... 14</td>
<td>GS36 3/8" tinned copper braid ... 0.40</td>
</tr>
<tr>
<td>ROTOR CABLE-8 CONDUCTOR</td>
<td>GS12 1/2" tinned copper braid ... 0.50</td>
</tr>
<tr>
<td>BC1602 2-10ga and 82-22ga ... 0.39</td>
<td>GS2000 1/2"/2" heavy tinned copper braid ... 2.00</td>
</tr>
<tr>
<td>BC1620 2-10ga and 8-20ga ... 0.39</td>
<td>HWG6S 6ga insulated stranded wire ... 2.00</td>
</tr>
<tr>
<td>BC1640 2-10ga and 8-20ga ... 0.39</td>
<td>AW114 14ga stranded Antenna wire CCS ... 1.14</td>
</tr>
</tbody>
</table>

Prices do not include shipping. $3 minimum, Visa/Mastercard $30 min, COD add $3.00

Call or write for complete price list. NEMAL’s new 36 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $4 with credit against next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161
(305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

At 0340 UTC Dave Olean, K1WHS, West Lebanon, Maine (FN43MK) and Rick Roderick, K5UR, Cabot, Arkansas (EM35WA) worked on 2 meters with good signals. Then they moved up to 220 MHz and quickly worked each other on CW at 0346 UTC with 559 to 579 signals.

The distance, 1267 miles (2039 km), is an extension of 85 miles over the previous record. Dave was running 1500 watts to four 17-element "Boomers" stacked vertically; Rick was running about 135 watts to a single Yagi of the same type.

3456 MHz. When you move up into the microwave bands, especially above 2450 MHz, it takes lots of luck to find a distant station at a record distance. Expeditions are usually organized to break the DX records. On August 7, 1988 Loren Libby, KX80/0, traveled up to the top of Pike’s Peak, Colorado (DM78KU) at 14,110 feet above sea level (see photo A)! At 1700 UTC he completed a CW contact on the 9-cm band with Dan Osborne, WB5AFY, Vernon, Texas (EM041D) for a new DX record of 455.5 miles (733 km). Signals were 8 to 12 dB out of the noise in a 2-kHz bandwidth. Loren was running 13.5 watts into a 32-inch diameter dish and Dan was running a TWT at 250 watts to a 6-foot dish.

5760 MHz. Jim Crew, WA51CW, and Larry Nichols, W5UGO, were also out traveling. In July, they were in the South Central states working portable on the 5-cm band. They regularly use 4-foot dishes for record attempts, but this time they decided to think big. Both brought along 10-foot dishes on trailers!

On July 9, 1988, Jim set up near Boise City, Oklahoma (DM865SR) and contacted Larry operating near Sand Springs, Oklahoma (EM16WD) on 5760 MHz using SSB — a new record distance of about 351 miles (564 km). The power was 5 watts with 10-foot dishes at each end. Signals were 30 dB over S9, despite a thunderstorm near the midpoint between their stations.
It's a lesson you learn very early in life. Many can be good, some may be better, but only one can be the best. The PK-232 is the best multi-mode data controller you can buy.

1 Versatility

The PK-232 should be listed in the amateur radio dictionary under the word Versatile. One data controller that can transmit and receive in six digital modes, and can be used with almost every computer or data terminal. You can even monitor Navtex, the new marine weather and navigational system. Don't forget two radio ports for both VHF and HF, and a no compromise VHF/HF/CW internal modem with an eight pole bandpass filter followed by a limiter discriminator with automatic threshold control.

The internal decoding program (SIAM™) feature can even identify different types of signals for you, including some simple types of RTTY encryption. The only software your computer needs is a terminal program.

Facsimile Screen Display

2 Software Support

While you can use most modem or communications programs with the PK-232, AEA has two very special packages available exclusively for the PK-232...PC Pakratt with Fax for IBM PC and compatible computers, and Com Pakratt with Fax for the Commodore 64 and 128.

Each package includes a terminal program with split screen display, QSO buffer, disk storage of received data, and printer operation, and a second program for transmission/reception and screen display of facsimile signals. The IBM programs are on 5-1/4" disk and the Commodore programs are plug-in ROM cartridges.

3 Proven Winner

No matter what computer or terminal you plan to use, the PK-232 is the best choice for a multi-mode data controller. Over 20,000 amateurs around the world have on-air tested the PK-232 for you. They, along with most major U.S. amateur magazines, have reviewed the PK-232 and found it to be a good value and excellent addition to the ham station.

No other multi-mode controller offers the features and performance of the PK-232. Don't be fooled by imitations. Ask your friends, or call the local amateur radio store. We're confident the PK-232 reputation will convince you that it's time to order your very own PK-232.

Call an authorized AEA dealer today. You deserve the best you can buy, you deserve the PK-232.

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Brings you the Breakthrough!
7 STORE BUYING POWER

REG. $349.95
SALE 259.95
Plus Shipping

PK-232 Multi-mode Data Controller
- NEW IBM Fax Screen Display Program Available
- Transmit/Receive on Six Modes
- CW/RTTY/ASCII/AMTOR/Packet/PAKX
- IBM and Commodore terminal programs available
- Radio Ports for HF and VHF
In Stock for Quick Delivery
Free Shipment

KENWOOD
TM-721A DUAL BANDER
2 MTR/70 cm
45w 35w
EXTENDED RECEIVING RANGE (2 m)

TM-621A DUAL BANDER
2 MTR/220 MHz
45w 25w
AUTOMATIC OFFSET CALL FOR LOW, LOW PRICE

PARAGON 585
- Ten-Tec Q50 cw, real FMX and sideband audio
- Select any filter in any mode
- TX 160 through 10 meters • All mode superiority
- RX 100 kHz to 30 MHz • A premier HF rig

TITAN 425
- Pair 3CX800A • External Power Supply
- Performance at legal limit
- 3 MS QSK, 1.6 to 22 MHz • Assures “Loaf Along”
- With authorized modification through 29.989 MHz
IN STOCK NOW! FREE SHIPMENT!

CONCEPTS
VHF/UHF SOLIDSTATE AMPLIFIERS
Contemporary design, quality and a 5 year warranty
on parts and labor.
6 months on the RF Final transistors.
All amplifiers have GaAsFET receive pre-amps and high SWR shutdown protection.

Ham Radio Outlet
LARGEST HAM OUTLET IN THE WORLD

WORLDWIDE DISTRIBUTION
CALL FOR HOLIDAY SPECIALS

H 7

January 1989
7 STORE BUYING POWER

ICOM IC-761
HF SUPERIOR GRADE TRANSCIEVER
SALE! CALL FOR PRICE

ICOM IC-781
The ultimate 150 W, ALL BAND HF TRANSCIEVER
GREAT PRICE!

ICOM IC-900
MULTI-BAND MOBILE
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz. 10 MTR, 6 MTR, 220 MHz & 1.2 GHz. 10 MEMORIES ARE YOU READY FOR 1.2 GHz OPERATION?

COAST TO COAST
FROM STORE NEAREST YOU

ICOM IC-275A/275H, 138-174 MHz
IC-475A/475H, 430-450 MHz
LOW PRICE!

ICOM IC-735
100 W, 100 KHz-30 MHz Dual VFO Receiver
CALL FOR LOW, LOW PRICE

ICOM IC-R7000
25 MHz-1300 MHz SCANNING RECEIVER
GREAT PRICE!

ICOM IC-3210
138-174 MHz
DUAL BAND FM TRANSCEIVER
GREAT PRICE

SALE!
CPLL FCP
PRICE:

SALE!
A Models 25W, H Models 100 W
IC-275A/275H, 138-174 MHz
IC-475A/475H, 430-450 MHz

SALE!
Dual VFO Receiver

SALE!
SCANNING RECEIVER

Rapid Deliveries

HAND-HELD VHF/UHF IC-02AT
2 MTR Mini Hand held Low Sales Price
IC-02AT IC-2AT 2 MTR
IC-03AT IC-3AT 220 MHz
IC-04AT IC-4AT 440 MHz

All Major Brands in Stock Now!

OUTSIDE CALIFORNIA CALL TOLL FREE (800) 854-6046
INSIDE CALIFORNIA CALL STORES DIRECT
Toll free including Hawaii. Phone hrs: 7:00 am to 5:30 pm Pacific Time. California, Arizona and Georgia customers call or visit nearest store.

STORE HOURS
10 AM-5:30 PM
CLOSED SUNDAYS
This photograph shows Loren Libby, KXOO, operating from the top of Pike's Peak near Colorado Springs, Colorado while setting the new 3456-MHz DX record.

One of the participants in the new 5760-MHz DX records was WASICW using his 10-foot "portable" dish setup near Moses, New Mexico.

The 10- and 4-foot dishes setup by WSUUGO near Sand Springs, Oklahoma.

Not satisfied with their record and the strong signals, Jim drove further westward to a location near Moses, New Mexico (DM86LR). Then about 1200 UTC on July 10, 1988, he worked Larry again for another new DX record at a distance of about 377.4 miles (607 km). Signals were 30 dB over S9. Larry then tried a 4-foot dish and signals dropped to 10 dB over S9. Still not satisfied, Larry changed his antenna to a small test horn and signals were still S9!

Then at 1256 UTC Jim broke the new record once more. This time he contacted Scott Brilhart, N5JJZ, Broken Arrow, Oklahoma (EM26CB) — a new record distance of 404 miles (650 km). Signals were S9 on SSB. Scott has a 4-foot dish and runs 5 watts. Photos B, C, & D show some of the setups used to make these new DX records.

10 GHz. Meanwhile, 3-cm expeditions were operating on both the Eastern and Western United States coasts. On July 10, 1988, a group of San Diego microwavers set out to break a new DX record using wideband FM (WBFM) on 10.250/10.280 GHz. The southern end of the path was operated by N6CW/XE2GDK, K9VV/XE1FX, WA5LIG/XE2GBO, K6JYO, and N6XQ operating at various locations on Baja California Sur, Mexico (DM10/DM11).

Operating under the callsign XE2GDK and running at only 10 mW of WBFM into a 4-foot dish, they worked W6OYJ at 80 miles, WB6NOA at 176 miles, W6KGS at 216 miles, N6CA at 265 miles, and W6CPL at 280 miles.

Next XE2GDK operated from San Quinton, Mexico (DM201), and worked N6CA/6 just north of Santa Barbara, California (DM04) at a distance of 356 miles. A few minutes later XE2GDK worked their longest DX, Gary Field, N6CA/6 at 176 miles. N6CA/6 was running 15 mW into a 19-inch dish.

All the stations in these tests were operating Gunnplexers® full duplex using 30-MHz i-fs. While these contacts weren’t DX records, they were WBFM records and came pretty close
to the narrowband record. Stay tuned; there’s more to this story.

Other California 3-cm narrowband enthusiasts were out trying to extend the 1987 mountaintop records. On August 6, 1988 at 1156 UTC (4:56 AM PDT), Bruce Erickson, WB7ABP/P on Bonanza King Mountain, California (DM04MS) — one end of the previous DX record — completed a CW contact with Lynn Rhymes, WB7ABP/P on Palos Verdes, and antennas as small as a 17-dB gain horn!

Not to be outdone, Chip then moved north to Beverly Hills, California (DM04SC) to an elevation of 2000 feet ASL and tried to extend his record. At 2200 UTC the record was extended to 522 miles! Signals were up to 25 dB out of the noise on peaks.

Meanwhile, Gary Field, NN6W/6 was operating near Santa Ynez Park, California (CM94XK) at a 3000-foot elevation and heard XE2GFH most of the day. However, XE2GFH couldn’t copy him well enough on voice to complete a contact.

Finally at 0004 UTC on September 11, they made a complete contact using MCW for a new 3-cm DX record of 595.3 miles (958 km). Gary was running 15 mW with a 30-inch dish. These primarily over water extended contacts bring up an important point. For some time I’ve been wrestling with a few critics about the differences in my designation of ducting and tropo as shown on the North American records table between 144 and 1296 MHz.

I feel strongly that contacts that are at least 75 percent over water have an unfair advantage on 2 meters and above, because low-attenuation ducting is often present (not to mention the normal superior refraction index over large bodies of water). The path from California to Hawaii is the principal example. For this reason, I have treated over-water contacts as a separate category to avoid discouraging or competing directly with overland tropospheric records.

To further clarify this point, I’ll be modifying the tables slightly. The tropo records previously shown will remain, but they’ll be reclassified as Tropo OL (over land). Those contacts shown as ducting (which are at least 75 percent over water), will now be designated as Tropo OW (over water).

This, in effect, will open up a new category for records on all bands above 1300 MHz. But, in order to qualify for the tropo OW record, you’ll have to exceed the distance of the tropo OL record on the respective band. Fair enough? I invite your comments.

47 GHz. Meanwhile, during the ARRL UHF contest, the microwavers up in the Northwestern United States were also active and trying to beat their own 47-GHz record. Tom Hill, WA3RMX/7, set up at Crater Lake, Oregon (CN82VV) and the Tektronix Radio Club operating as K7AU0/7 (W7ADV, K7RUN, and W7AGF, operators) was on Mt. Ashland, Oregon (CN82PB). Both stations were at approximately 7300 feet ASL.

At first there was cloud cover at Mt. Ashland and no signals were copied. However, at 2145 UTC on August 6, 1988 the clouds lifted, the path was visually clear, and CW reports were exchanged. Shortly thereafter, the signals increased in strength and SSB communications were used.

The equipment involved was all designed and built by Tom Hill using a combination of surplus, new, and homebrew components and converters. At Crater Lake the power was 3.5 mW to a 28.5-inch dish. At Mt. Ashland the power was 4.3 mW into an 18-inch dish. Both stations operated on 47.040035 GHz (USB).

This new DX record is quite an achievement. The distance is 65.4 miles (105.2 km) — a significant increase over the previous one. In addition, this record exceeded the old worldwide record by about 25 percent. The contact was made using narrowband systems and on SSB. It’s probably the highest frequency where two-way communication has ever been conducted using SSB, especially at this distance.

Summary

This month I’ve discussed how VHF/UHF and above DX records are made, along with their relative impor-
tance to Amateur Radio and the SOA. I also reviewed some of the most recent record-breaking contacts using ionospheric and tropospheric propagation.

Next month's column will discuss recent EME and light wave DX records. At the conclusion of February's column, I'll give you the latest updated DX record tables.

Final notes: Some important matters such as "band plans" and the restructuring of our 220 to 225-MHz band have recently occurred, but will have to wait until later. In the meantime, please examine the present ARRL band plan for the 220 to 225-MHz band (shown in recent *ARRL Repeater Directories*). You'll notice that I reserved the spectrum from 222.0 to 222.3 MHz when I chaired the writing of this band plan back in 1978! In the event that the FCC does remove the 220 to 222-MHz portion of the band, and if no Amateurs violate the existing band plan, 222 to 222.3 MHz would still be available for "protected" weak signal operation away from FM repeaters.

Feedback: In the October 1988 column of "VHF/UHF World" two graphs were mistakenly reversed, changing the meaning of the information that followed. To correct this, interchange graphs "C" and "D" in fig. 1 on page 72.

Important VHF/UHF events:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 21</td>
<td>± 1 month. Winter peak of sporadic-E propagation</td>
</tr>
<tr>
<td>December 22</td>
<td>Predicted peak of the Ursids meteor shower at 0330 UTC</td>
</tr>
<tr>
<td>January 4</td>
<td>Predicted peak of the Quadrantids meteor shower at 0030 UTC</td>
</tr>
<tr>
<td>January 6</td>
<td>New moon</td>
</tr>
<tr>
<td>January 10</td>
<td>EME perigee</td>
</tr>
<tr>
<td>January 14-16</td>
<td>ARRL VHF sweepstakes contest</td>
</tr>
</tbody>
</table>

References

Article G

HAM RADIO

CUSTOM CRYSTALS

Crystals for many applications

For over 37 years, ICM has manufactured the finest in quartz crystals for every conceivable purpose.

A wide selection of holders are available to fit most any requirement. Our computer database contains crystal parameters for thousands of equipment types.

Need crystals for communications, telemetry, industrial, or scientific applications? Let ICM's sales department assist you to determine which type of crystal is best for you.

Can we solve your crystal problem?

For special purpose crystals, special holders, special sizes, call our crystal sales department. We will be pleased to provide recommended data.

International Crystal Manufacturing Co., Inc.

P.O. Box 26330, 701 W Sheridan, Oklahoma City, OK 73126-0330
Phone (405) 236-3741
Telex 747-147
Facsimile (405) 235-1904

NEW!
The classic "Antenna Bible" now in a thoroughly-revised, much-enlarged edition

ANTENNAS
2nd edition
by John Kraus, W8JK
Ohio State University

Covers both theory and its applications to practical systems. Over 1000 illustrations and nearly 600 worked examples and problems. Over 100 new topics. Complete with design formulas, tables and references.

917 pages, hardcover. $51.95
Add $2.50 per book for shipping and handling U.S., $5.00 elsewhere.

CYGNUS-QUASAR BOOKS
P.O. Box 85, Powell, Ohio 43065
Tel. 614-548-7895

ICOM
IC-781 New Deluxe HF Rig $5995.00 Call S
IC-761 Loaded With Extras 2699.00 Call S
IC-755 Gen. Cvg Xcvr 1099.00 Call S
IC-743 Gen. Cvg Xcvr 1099.00 Call S
IC-755A 10/6m Xcvr 1399.00 Call S

Receivers
IC-9700 25-3000 MHz Recy S 1199.00 Call S
IC-971A 100 kHz-30 MHz Recy S 999.00 Call S

VHF
IC-228A New 25w Mobile 509.00 Call S
IC-228H New 45w Mobile 539.00 Call S
IC-755A All Mode Base 150w 1299.00 Call S
IC-755A All Mode Base 100w 1399.00 Call S
IC-28A FM Mobile 25w 489.00 Call S
IC-41A FM Mobile 45w 499.00 Call S
IC-2GAT, New 7W HT 429.95 Call S
IC-2AT FM HT 319.00 Call S
IC-2AT FM HT, HP 420.00 Call S
IC-2AT Micro HT 329.00 Call S
IC-800 Six Band Mobile 639.00 Call S

UHF
IC-475A All Mode 25w 1399.00 Call S
IC-475H All Mods 15w 1599.00 Call S
IC-48A FM Mobile 25w 509.00 Call S
IC-4G4T, New 6w HT 449.95 Call S
IC-4AT FM HT 349.00 Call S
IC-45AT 440 FM HT 449.00 Call S
IC-320A FM 2w/70cm 25w 649.00 Call S
IC-32AT Dual Band Handheld 629.95 Call S
IC-3210 Dual Band Mobile 1BA Call S

220 MHZ
IC-357A All Mode, 25w, Base Sla. 1399.00 Call S
IC-36A 25w FM Xcvr 469.00 Call S
IC-37A FM Mobile 25w 499.00 Call S
IC-3AT FM HT 349.00 Call S
IC-3AT Deluxe HT 449.00 Call S

1.2 GHz
IC-121A All Mode 10w 1269.00 Call S
IC-120F, 10w Mobile 699.00 Call S
IC-12AT Deluxe 1w HT 473.00 Call S

KENWOOD

TS-940S

FT-767GX

VARIABLE INDUCTORS

NO TUNERS!
NO RADIALS!
NO RESISTORS!
NO COMPROMISE!

THREE EXCELLENT REVIEWS JUST DON'T HAPPEN BY CHANCE.

CALL US FOR A FREE CATALOGUE.

Sept. 23, 1985.
Transistors and how they work

Transistors have been with us long enough that almost everyone has had some exposure to them in electronic equipment of one type or another. Almost any piece of radio gear around today contains some of these devices. Many new Amateur transceivers are totally dependent upon some transistors or semiconductors for their operation. When these devices first became commercially feasible, many articles were published explaining how the tiny bits of metal and plastic worked and what was inside their miniscule packages. I won’t go into the “conventional” explanation involving holes, electron pairs, valence bonds, and all the rest — we’re not interested in building transistors, just understanding how they work.

Transistor types

Transistors are divided into two basic classes: bipolar and field effect. I’ll stick with bipolar types for this month, and look at field-effect transistors some other time. (There are several variations on these themes — devices called MOSFETs, IGFETs, junction transistors, unijunction transistors, mesa transistors, planar transistors, etc. I’ll just cover the basic types here.)

In the bipolar transistor category, there are two types once again: NPN and PNP. These type designations reflect the makeup of the layers of semiconductor material in the transistor. Figure 1 shows the schematic symbols for NPN and PNP transistors, plus the most common pin arrangements for either type. Knowing which is which can help when you’re troubleshooting a piece of equipment without a schematic. I’ve always used a couple of trick phrases to identify them and note the appropriate polarity of their supply voltage.

How do they work?

Bipolar transistors are current-amplifying devices. This means that a current made to flow into their input terminal (see base current in fig. 2) will directly affect the flow of current in the output circuit (the collector and associated components). Both base and collector currents flow through a common element, the emitter. The names of the emitter and collector elements describe what they do — the emitter emits electrons, and the collector collects them. But what in the world is a “base?”

This term comes from an early transistor design in which a base layer of semiconductor material was deposited...
AL-8OA LINEAR AMPLIFIER

The AL-8OA will provide a signal output that is within 1/2 "S" unit of the signal output of the most expensive amplifier on the market—and at much lower cost.

The Ameritron AL-8OA combines the economical 3-500Z with a heavy duty tank circuit to achieve nearly 70% efficiency from 160 to 15 meters. It has wide frequency coverage for MARS and other authorized services. Typical drive is 85 watts to give over 1000 watts PEP and 850 watts CW RF output. A new P-I-L output circuit for 80 and 160 gives full band coverage and exceptionally smooth tuning.

Size: 153/4"D x 14"W x 8"H. Wgt: 52 lbs

AL-1200 LINEAR AMPLIFIER

3CX1200 TUBE

Full legal output with 100 watts drive

AL-1500 LINEAR AMPLIFIER

8877 TUBE

Full legal output with 65 watts drive.

The cooling system in both amplifiers keeps the tube safely below the manufacturer’s ratings even when operating at 1500 watts output with a steady carrier. The filament supply has inrush limiting to insure maximum tube life.

Size 18½"D x 17"W x 10"H. Wgt 77 lbs

AL-84 LINEAR AMPLIFIER

The Ameritron AL-84 is an economical amplifier using four 6M6 tubes to develop 400 watts output on CW and 600 watts PEP on SSB from 160 through 15 meters. Drive required is 70 w typical, 100 w max. The passive input network presents a low SWR input to the exciter. Power input is 900 watts. The AL-84 is an excellent back-up, portable or beginner’s amplifier.

Size: 11½"W x 6"H x 12½"D. Wgt: 24 lbs

ATR-15 TUNER

The Ameritron ATR-15 is a 1500 watt "T" network tuner that covers 18 through 30 MHz in 10 dedicated bands. Handles full legal power on all amateur bands above 18 MHz.

Five outputs are selected from a heavy duty antenna switch allowing the rapid change of three coaxial lines, one single terminal feed or a balanced output. An internal balun provides 11 or 41 ratios (user selectable) on the balanced output terminals.

A peak reading wattmeter and SWR bridge is standard in the ATR-15. It accurately reads envelope powers up to 2KW.

Size: 6"H x 13¼"W x 16"D. Wgt: 14 lbs

RCS-4 FOR CONVENIENT INSTALLATION

No control cable required.
Selects one of four antennas.
VSWR: under 11 to 1 from 1.8 to 30 MHz
Impedance: 50 ohms
Power capability: 1500 watts average, 2500 watts PEP maximum.

Available at your dealer. Send for a catalog of the complete AMERITRON line.

Remote COAX Switches

Selects up to five antennas.
Loss at 150 MHz: less than 1 dB
VSWR: under 12 to 1 DC to 250 MHz
Impedance: 50 ohms
Power capability: 5 kW below 30 MHz, 1 kW at 150 MHz.

RCS-8V FOR SPECIAL APPLICATIONS

Selects up to five antennas.
Loss at 150 MHz: less than 1 dB
VSWR: under 12 to 1 DC to 250 MHz
Impedance: 50 ohms
Power capability: 5 kW below 30 MHz, 1 kW at 150 MHz.

9805 Walford Avenue • Cleveland, Ohio 44102
For more information: (601) 323-9715 • Technical inquiries: (216) 651-1740
on some type of insulator, and then a slightly different type of material was deposited on the base layer to form the emitter and collector. The emitter and base layers function very much like a diode — in fact, some applications use the diode action of these two layers as part of a circuit design. One that comes to mind is a temperature-compensating circuit that maintains the correct bias in a power-amplifier circuit.

Transistors are low-impedance devices because they operate on current flow. This may be a new experience for those familiar with the old vacuum-tube technology. The input to the grid of a tube is high impedance, usually in the thousands of ohms. It’s not unusual for the input impedance to a power transistor circuit to be in the single digits, or even less than 1 ohm. Even low-power amplifiers for audio or RF signals can have input impedances in the range of tens to hundreds of ohms.

This is where circuit designers earn their keep. Instead of a simple parallel-resonant circuit, you need a series-resonant circuit with a low-impedance output, or a combination of L/C networks that will provide impedance matching and selectivity at the same time. Considering the savings in space and power consumption, it’s a very good tradeoff.

An experiment

All this looks good on paper, but what happens when you hook one of these devices up? I decided to try a simple experiment to find out. (I did the same thing with Ohm’s law years ago. I found a precision 1-ohm resistor and hooked it to a 1-volt supply to see if Georg was right. He was!)

The transistors I used are garden-variety types available from fleamarkets, supply houses, or mail-order firms in plastic packs of 10 or 20 for $1. My package was marked “2N2222 equivalent.” I used common AA cells as the power source, along with a couple of milliammeters and a handful of clip leads.

I first tried to see if the emitter/base part of a transistor was really a diode. Using the hookup shown in fig. 3, I measured the current flow with the positive voltage connected to the base through a 100-ohm current-limiting resistor. Sure enough, a small current began to flow as I changed the value of R1 to place voltage on the base. The current was approximately 20 μA at 0.45 volt and increased with voltage up to the point where 0.7 volt produced 2 μA of current. I stopped there rather than risk burning out the base/emitter junction. I then reversed the voltage polarity; the current flow was almost nonexistent. Increasing the voltage up to the full 3 volts of the supply produced only 30 μA. Diode action was confirmed. (You can perform this same experiment using an ohmmeter if you’re sure which lead of the meter has the positive (+) voltage.)

Now that you’ve explored the base/emitter theory, it’s time to try the rest of the device. It takes a few more clip leads, a second milliammeter, and another resistor. The setup is shown in fig. 4. (I always use current-limiting resistors or fuses when experimenting — major meltdowns on the workbench are messy and the smoke sets off alarms all over the house!)

I found that increasing the current through the base by varying the value of R1 does indeed cause current to flow in the collector circuit. Two mA of collector current flowed with 20 μA of base current. Increasing the base current up to 100 μA caused a collector current of 45 mA. I stopped at that point because the transistor was getting warm to the touch. Figure 5 is a graph of base current versus collector current.

Once again, the theory seems to fit what the experiment has shown. (Or is it the other way around?) — Bipolar transistors are current-manipulating devices. Where does the name “bipolar” come from? There are two kinds of material in the makeup of the transistor: P-type and N-type. The arrangement of those two types in the “sandwich” determines whether the device is PNP or NPN.

I performed the same experiment on an equally unknown PNP transistor and, once again, it worked just as the theory said it would. I had to reverse

![FIGURE 3](image-url)

The base/emitter junction can be tested with this setup. For most small transistors, the meter can be 0—100 μA. Check for reverse leakage by reversing the polarity, just as in a diode.

![FIGURE 4](image-url)

Setup used for checking collector current versus base current. The base-current meter was 0-100 μA, and the collector-current meter was a switchable VOM on the 0-10 and 0-100 mA ranges.

![FIGURE 5](image-url)

A plot of base current and collector current measured using the setup of fig. 4. Be aware that some exotic UHF or low-noise transistors can’t stand this type of test. If you experiment, use inexpensive or surplus devices.

(continued on page 100)
An Absolute Must for Every Amateur's Radio Station! Gives You Important Changing Weather Conditions That Can Be Critical To Your Antenna System!

Protect your antenna system and home.

A must in every shack. Now you can scan heavy Wind Gusts... Wind Direction... Temp Hi/Lo and more! Get your own computerized weather station at an incredibly low, affordable price.

The New Azimuth Weather Star by Digital is a high quality power-packed weather computer, just loaded with features. Gives you accurate weather data... right in your shack... at a touch of a finger.

Created with the latest CMOS micro-chip technology.

You Get All These Exciting FEATURES with the TWR3:

- HANDY, COMPACT SIZE: 8½" x 2½" x 1½"
- LARGE, EASY TO READ LCD READOUT
- WIND SPEED—Calculates pulses from full function anemometer included with system.
- WIND DIRECTION—Wind-sensing weather vane relays direction to computer.
- HIGH/LOW—Tracks highest Wind Gusts plus high/low external temperature at the touch of a button.
- PROGRAMMABLE SCAN—Lets you select & display functions you need.
- OPERATES ON BATTERY OR AC POWER

YOUR TWR3 SYSTEM COMES COMPLETE WITH: Anemometer & Wind Vane made of high impact, Ultra Violet resistant plastic, with stainless steel bearings & shaft for years of trouble free service. Forty feet of cable lead-in with connectors. External temperature sensor. Mounting hardware & Clock.

GET THESE EXTRA OPTIONS—DKS-22/Desk Stand Crafted in Beautiful Stainless Steel. BP 3 Rechargeable Ni-Cad Battery Pack. AC Power Adapter (PS12). Rain Gauge (RG3). And it's MADE IN AMERICA! YOUR SATISFACTION GUARANTEED! Or return in 10 days for a complete refund.

1 YEAR Limited WARRANTY from Manufacturer!

CALL TOLL-FREE (800) 882-7388
Or FAX Your Order 213-473-2325

ALSO AVAILABLE AT HENRY RADIO & ALL HAM RADIO OUTLETS!
NOVEX
DM4061 Dip Meter every ham needs one
A must for every ham shack - check coils, tank circuits, antennas, use as RF generator, internal modulation, look for hums or 1.5 - 200 MHz plug-in coils
only $79.95 + $4 S&H

SWR-3P SWR/Power/Field Strength
- Measures output/SWR, while at the air
- 10 & 100 watt scales
- 1.7 to 150 MHz
- SO 239 connectors
- 5' whip antenna
only $19.95 + $4 S&H

PM330 RF Power Meter/Dummy Load
- 1.8 to 300 MHz
- 50 ohms "N" connector
- 5/20/120 watt ranges
- measures your HF & VHF power output
only $99.95 + $4 S&H

FC5750 Counter know your transmit frequency
- 10 Hz to 150 MHz
- 7 digits
- Accurate to + 1 count
- Give time 1 to 5 sec.
- HF & VHF inputs
- Excellent for audio
- AC power adapters PAP included
only $129.95 + $4 S&H

THE RACK IS BACK
GO VERTICAL

- save space - go vertical
- organize your room
- get the professional look
- have finger tip access to your radio
- keep your equipment safe and clean
- hide all the ugly wires
- protect your investment

NOVEX rack mounts are standard EIA 19 inch size aluminum panels and are optionally equipped with handles and/or forward facing speakers.

Now available for most ICOM, KENWOOD, and YAESU radios and accessories.

Prices start at a low $79.95 each.

NOVEX
RF Signal Generator/Counter
- 3 - 150 MHz
- Harmonics to 450 AM modulation
- XTAL input/check
- Digital readout
NOVEX SG4162AD only $294.95 + $4 S&H

AF Audio/Generator/Counter
- 10 Hz - 1 MHz
- Sine - sq wave
- Low distortion
- 8V RMS output
- Digital readout
NOVEX AG2603AD only $294.95 + $4 S&H

Function Generator
- Sine, sq, triangle
- 5 Hz - 3 MHz
- DC offset
- 20 Vpp output
- 120 VAC power
- includes test leads
- Ext inputs can control AM (VCA) or HF & VHF outputs
- FM (VCF) and produce AM, FM, sweep, ASK
- or FSK signals
NOVEX FG2020A only $149.95 + $4 S&H

ARD 9100 SUPER ROTATOR
Exclusively Distributed by EEB
The Rotator for the Big Guns

- Computer/Remote Control
- Rotating torque: 10,000 inch lbs
- Braking torque: 24,000 inch lbs
- Vertical load: 2,000 lbs
- Mast size: 2.5 - 3.5 inch O.D.
- Motor: 1/3 HP 120/220V 50/60Hz
- Rotation speed: 1 RPM
- Weight: 230 lbs
- Size: 15 x 25 x 15 inch
List $439.50
Call for Quote

CRIS 6000 COMPUTER/RADIO INTERFACE SYSTEM.
IBM PC OR COMPATIBLE.
Starting at $349.95

- Auto Log/Sort 800 memories
- Log Date/Time/Freq/Mode (Opt Signal Strength)
- Build your own data base
- Scan Bands/Freq/Service
- Auto create a local database
- Key stroke set radio to memory channel
- Unlimited logging on disc
- Spectrum analysis option
- Free Newsletter subscription-Call

ARD 230 SERIES AMPLIFIER

List $549.50
Call for Quote

- Cool 1500 watts output always available
- All HF Bands 1.8 - 21 MHz (10MT user install)
- 50 - 80 watts drive for full output
- Harmonic Supp -45dB INTMOD -35 dB
- Completely automatic Full QSK
- Micro processor controlled/protected
- Remote AMP up to 250 ft from controller
- Export and Commercial Versions available
- AMP only 14 x 22 x 13 inch 86 lbs

SU8000 SPECTRAL DISPLAY UNITS (SDU) Allow user to "SEE" up and down the band for activity or lack of. You won't miss anything.
- Sweep width: 50 KHz - 10 MHz
- Input: 10.7 MHz
- Direct plug-in to RT7000 w/ mods
- Variable sweep rate
- 3 inch CRT
- 120V 50/60Hz
Introductory Price $595.

Orders: 800-368-3270
Electronic Equipment Bank
516A Mill St. NE, Vienna, VA 22180

Local & tech info
703-938-3350

(Just minutes from Washington, DC)

Tell 'em you saw it in HAM RADIO!
Satellite TV is still full of the wonderment that made it so popular in the early ‘80s. The tinkerers are there, the programming is there, and never has the cost of becoming a dish owner been so low.

So, how do you find out about this exciting entertainment?

Through publications devoted specifically to satellite TV, that’s how!

OnSat
America’s Weekly Guide To Satellite TV

OnSat is unsurpassed for the most up-to-date listings of satellite programming. Dr. Dish, Mailbag, and the Transponder Service Watch are all geared to help you make the best use of your satellite TV system. A sample issue can be obtained for only $1.

STV Guide

The Complete Monthly Guide To Satellite TV

STV Guide contains over 300 pages of programming information, product reviews, home troubleshooting, and information about satellite TV. A sample issue can be obtained for only $2.

Both OnSat and STV Guide contain listings for over 120 channels and Prime Time Grids for over 50 channels. Subscribe to either the weekly OnSat or the monthly STV Guide for only $48 per year.

To start receiving the best in satellite TV guides and information, call toll-free (800) 234-0021. VISA® and MasterCard® accepted.
A 3456 MHz LINEAR TRANSVERTER

By Dave Mascaro, WA3JUF, RD 1 Box 467, Ottsville, Pennsylvania 18942

In the past few years Amateur microwave activity in the United States has increased dramatically. Many operators active on 1296 MHz have put their stations on the 2304-MHz band. Stations work 10-GHz SSB/CW, as well as wide-band FM with Gunnplexers®. There’s more commercial equipment available for all bands up to 10 GHz. Homebrewers are using surplus TV receive only (TVRO) and outdated commercial equipment to build up to the next higher band, 3456 MHz.

As with other bands up to 2304 MHz, the main modes of communications on 3456 MHz are CW and SSB. There are many ways to generate RF power on this band — both CW and linear. Frequency multipliers with step recovery diodes (SRD) and active multipliers are used for CW, FM, beacon transmitters, and local oscillators. You can use linear transverters for SSB/CW and all other modes, just like on the 50 through 2304 MHz bands.

Figure 1 shows the block diagram of a 144 to 3456-MHz transverter. The transverter transmit and receive mixers use a common local oscillator at 3312 MHz. The 144-MHz transmit i-f is mixed with the local oscillator to produce 3456-MHz transmit signals. During reception, the 3456-MHz receive signals are mixed with the local oscillator to produce the 144-MHz receive i-f signals. A 2 or 3 section interdigital filter follows the transmit mixer to attenuate out the local oscillator and image frequencies.

I didn’t use a 144-MHz i-f post amplifier after the receive mixer. Unlike the 28-MHz “front end” in an HF transceiver that is normally used for a transverter, modern 2-meter transceivers have good front ends with plenty of gain. A post amplifier only makes the resting S-meter readings higher. The system noise figure is established in the 3456-MHz LNA.

Receive portion
Receive signals from the antenna relay are amplified by one-half of a modified TV receive only low-noise amplifier (TVRO LNA). The other half is used in the transmit portion of the transverter. My first modification involved installing an SMA antenna connector in place of the waveguide antenna input. Normally a scalar-type feed horn is attached.
directly to the LNA when used in a satellite receiving system. A feedthrough cap is also installed to bring +15 Vdc into the LNA housing without using an external bias-T attached to the output “N” connector.

Split TVRO LNA

The greater than 50-dB gain LNA is modified again to make two separate three-stage amplifiers. The amplifier I use is the Amplica model ACD 305331 (90 degree) LNA. The 305331 LNA has two GaAsFET stages followed by four bipolar stages and a filter. Figure 2 shows the “split-in-half” LNA. The transmit amplifier portion provides greater than 20-dB gain. There is greater than 30-dB gain and a 2-dB system noise figure in receive mode.

I modified the LNA by wiring two miniature 50-ohm Teflon® coax cables fitted with SMA male connectors into the amplifier between the third (Q3) and fourth (Q4) stages. The two coax cables should be long enough to go from inside the LNA and connect to the receive and transmit mixers in your transverter. Cut away the microstrip at the interstage DC blocking capacitor to create a gap in the line. Solder a 10-pF chip cap to the output line of stage Q3. This becomes the receive amplifier output. The existing DC blocking chip capacitor becomes the input of the transmit amplifier chain.

Open the other compartment of the LNA. Drill two holes and run the miniature coax through the holes into the compartment. Now drill two small holes in the pc board beside each of the two DC blocking capacitors to pass the coax cable center conductors. Solder the center conductors to the blocking chip caps and solder the shield of each cable to the ground plane at the point where the cable goes through the pc board. The shield relieves strain on the cable, so the chip caps don’t break. Apply a dab of RTV or silicone bathtub seal where the cables go through the housing to increase the strain relief and moisture proof the LNA.

You now have two separate amplifiers. The stability of the receive front end is maintained because the input isolator is still intact. It’s okay to leave the +15 Vdc applied to the LNA; the front end won’t oscillate into the open antenna relay during transmit. The LNA has an on-board 7812 voltage regulator, so you can use input voltages from 15 to 28 Vdc.

The receive amplifier output feeds the RF port of the receive mixer. The Mini-

![Figure 2](image_url)

A split TVRO LNA showing two separate 3-stage amplifiers.

![Figure 3](image_url)

The 2-stage 3466-MHz linear amplifier.

January 1989

69
Circuits ZFM-4212 and ZAM-42 are suitable mixers because they are fitted with SMA connectors. The pc board mounted PAM-42 is also a good 3456-MHz mixer. I used the Anzac MD-169 (normally pc board mounted). I enclosed it in a homemade brass housing fitted with SMA connectors.

You can peak the receive amplifier in a noise figure set-up by tweaking the miniature trimmers mounted throughout the LNA. Gain can be maximized at 3456 MHz.

Another application for a split LNA in a transverter involves using one half to amplify the very low output of a 3312-MHz schottky diode multiplier for the local oscillator, and the other half to amplify the transmit mixer SSB output. Try using a second modified 50-dB TVRO LNA for the receive amplifier. This approach worked very well for me.

Transmitter stages

You can use the same type of mixer for the transmitter as you did for the receiver. I used the MD-169. The output of the transmit mixer (usually –10 dBm or so) is amplified by the second half of the split LNA, which provides +10 dBm (10 mW) output. The three bipolar stages and filter provide an excellent linear amplifier for low-level signals.

Two-stage linear amplifier

A two-stage linear amplifier, providing 20-dB gain and +27 dBm (500 mW) power output at 1-dB compression, follows the modified TVRO amplifier. The amplifier is shown in fig. 3. It was built into one enclosure to eliminate two SMA connectors, and to reduce its overall size. The amplifier is built on 1/32” Teflon double-sided pc board (Er = 2.55), using microstrip matching networks (see figs. 4 and 5). Although the two stages are etched on one pc board and housed in the same enclosure, you can build two separate amplifiers. The DC blocking capacitor (C5) is mounted in a 50-ohm line; the two stages could be separated at this point. Use DC blocking capacitors on the input and output of both stages.

Make all DC and RF grounds low inductance paths through to the ground plane side of the Teflon pc board. Do this by putting multiple rivets through to the ground side. Another method is to cut small slits into the board with an Xacto® knife, and insert and solder strips of copper foil on both sides. All the amplifiers I build for 1296 MHz and up are constructed from milled-out brass housings. I solder the Teflon pc board into the brass enclosure, and mill two slots in the brass housing to accommodate the flanges of the two transistors. The bypass capacitors and tuning trimmers are mounted on the pc board close to the board edges. This allows direct connection to the brass housing and provides good DC and RF grounding. Holes drilled in the brass box enable you to externally tune the unit with a plastic tuning tool.

The input and output connectors of an amplifier should also be soldered to the ground plane side of the pc board. In my amplifier, I attached the two SMA connectors to the brass box with 2-56 screws and then soldered them permanently. I performed this step on a hot plate when I soldered the pc board in place. You could also solder the connectors on the ends of the pc board in a “launcher” configuration with the center pins of the connectors mounted and soldered parallel to the microstrip.

*Mini Circuits, P. O. Box 166, Brooklyn, New York 11235, (718) 934-4500.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE
PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

KIT, ONLY $675
WIRED $975
VHF OR UHF

FEATURES:
• SENSITIVITY SECOND TO NONE! GaAs FET front end on vhf models gives 12dB SINAD of 0.12uV (vhf), 0.15uV (220). UHF model 0.25uV std., 0.1uV with optional helical resonator preamp.
• SELECTIVITY THAT CAN'T BE BEAT! Both 8-pole xtal filter & ceramic filter for > 100dB at only ±12kHz. Helical resonator front end to combat desense & intermod.
• CLEAN, STABLE TRANSMITTER, up to 18W output standard; 50W with accessory power amplifier.
• FCC TYPE ACCEPTED for commercial high band and uhf.
• Courtesy beep, field-programmable CWID, flutter-proof squelch, automatic frequency control to compensate for off-frequency transmitters (all standard features).
• Full range of options available, such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

HIGH PERFORMANCE TRANSMITTERS & RECEIVERS FOR REPEATERS
AUDIO & DIGITAL LINKS, TELEMETRY, ETC.

• FM EXCITERS:
 Kits $99, Wt $179. 2W continuous duty. TCXO & xtal oven options available.
• TA51 for 10M, 6M, 2M, 150-174, 220 MHz.
• TA451 for uhf. FCC type accepted for commercial bands.
• Call for latest information on 980 MHz transmitters.
• VHF & UHF AMPLIFIERS. For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $79.

• R144/R220 FM RECEIVERS for 2M, 150-174, or 220 MHz. GaAs FET front end, 0.12uV sensitivity! Both crystal & ceramic filters plus helical resonator front end for exceptional selectivity: > 100dB at ±12kHz (best available anywhere)! Flutter-proof squelch. AFC tracks transmitters. Kit $149, Wt $229.

• R451 UHF FM RCVR. Similar to above. Tuned line front end, 0.25uV sensitivity. (0.1uV with optional hel. res. preamp). Kit $149, Wt $229.
• R901 FM RCVR for 900 MHZ. Triple-conversion, GaAs FET front end, 0.2uV sensitivity. Kit $169, Wt $259.
• R76 ECONOMY VHF FM RCVR for 10M, 6M, 2M, 220. Without hel res or afc. Kits only $129.
• Weather satellite & AM Aircraft receivers also avail.

FCC TYPE-ACCEPTED TRANSMITTERS & RECEIVERS AVAILABLE FOR BROADBAND & UHF. CALL FOR DETAILS.

Send $1 for 36 page catalog by return mail. (Send $2.00 or 4 IRCs for overseas mailing)

Order by phone or mail • Min $3 S & H per order

Use Visa, Mastercard, Check, or UPS CODE.

GaAs FET PREAMPS at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $59!
Wired/Unwired

FEATURES:
• Very Low Noise: 0.7dB VHF, 0.8dB UHF
• High Gain: 13-20dB, depending on range
• Wide Dynamic Range: to resist overload
• Stable: new-type dual-gate GaAs FET

* Specify tuning range desired: 25-35, 35-55, 55-90, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNW -(*) MINIATURE GaAs FET PREAMP
ONLY $24/kit.
$39 Wired/Unwired

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-5/8"L x 3/4"H. Easily mounts in many radios.

* Specify tuning range desired: 25-35, 35-55, 55-90, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNS -(*) IN-LINE PREAMP
ONLY $79/kit.
$99 Wired/Unwired

GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with voice or mobile transceivers up to 25W.

* Specify tuning range desired: 120-175, 200-240, or 400-500 MHz.

HELICAL RESONATOR PREAMPS

Low-noise preamps with helical resonators reduce intermod & cross-band interference in critical applications. MODEL HRA - (*) $49 vhf, $84 uhf.

NEW HIGH-SPEED DIGITAL RF LINKS

You’ve waited a long time for a simple, reliable, low-cost 9600 baud PACKET NETWORKING system. Now you’ve got it! Our new MO-96 MODEM and direct FSK Transmitters and Receivers for 220 or 440 MHz interface directly with most TNC’s. Fast data switched PA’s output 15 or 50W. Call for complete info on the right system for your application.

ACCESSORIES

• COR-3 Kit. Control units and audio mixers needed to make a repeater. Tail & time-out units, local spkr ampl, courtesy beep $49.
• CWID Kit. Field programmable, timers, the works $59.
• TD-2 DTMF DECODER/CONTROLLER Kit. Full 16 digits, switches 5 functions, toll call restrictor, programmable, much more. Great for selective calling tool $79.
• AP-3 AUTOPATCH Kit. Use with above for repeater autopatch. Reverse patch and phne line remote control std. $79.
• SD-2 SIMPLEX AUTOPATCH TIMING BOARD Kit. Use with above for simplex autopatch $39.
• MO-202 FSK DATA MODULATOR Kit. Run up to 1200 baud digital signals through any fm transmitter with full handsakes. Radio link computers, telemetry gear, etc. $39.
• DE-202 FSK DATA DEMODULATOR Kit for rcvr end of link $39.

RECEIVING CONVERTERS

See catalog for full line of 2w transmitting converters for hf & uhf. Kits only $78. Linear Amplifiers avail. up to 50 w.

hamtronics, inc.
65-H MOUL ROAD • HILTON NY 14468-9535
Phone:716-392-9430 hamtronics® is a registered trademark

Our 25th Anniversary
NEW! SUPER LINEAR ANTENNA SYSTEM

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FREQUENCY</th>
<th>GAIN</th>
<th>POWER</th>
<th>LENGTH</th>
<th>USE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-2x4z</td>
<td>146 MHz</td>
<td>8.2 dB</td>
<td>200 W</td>
<td>154”</td>
<td>Base</td>
<td>$192.85</td>
</tr>
<tr>
<td></td>
<td>446 MHz</td>
<td>11.5 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-1243E</td>
<td>446 MHz</td>
<td>8.5 dB</td>
<td>100 W</td>
<td>48”</td>
<td>Base</td>
<td>$85.95</td>
</tr>
<tr>
<td>CA-901</td>
<td>1.2 GHz</td>
<td>10.1 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146/446/1.26 GHz</td>
<td>3/6/8.4 dB</td>
<td>150 W</td>
<td>3.5”</td>
<td>Base</td>
<td>$91.55</td>
</tr>
<tr>
<td>CFC-771</td>
<td>900-930 MHz</td>
<td>7.14 dB</td>
<td>50 W</td>
<td>4”</td>
<td>Base</td>
<td>$97.40</td>
</tr>
<tr>
<td>CA-1221S</td>
<td>1260/1300 MHz</td>
<td>15.5 dB</td>
<td>100 W</td>
<td>7.8”</td>
<td>Base</td>
<td>$151.90</td>
</tr>
<tr>
<td>CA-2422S</td>
<td>2400/2450 MHz</td>
<td>15.3 dB</td>
<td>100 W</td>
<td>4”</td>
<td>Base</td>
<td>$173.55</td>
</tr>
</tbody>
</table>

NEW! SWR Power Minimeters

<table>
<thead>
<tr>
<th>CM</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>144 - 150 MHz</td>
<td>$62.50</td>
</tr>
<tr>
<td>300</td>
<td>200 - 230 MHz</td>
<td>$62.50</td>
</tr>
<tr>
<td>400</td>
<td>420 - 460 MHz</td>
<td>$62.50</td>
</tr>
<tr>
<td>900</td>
<td>900 - 930 MHz</td>
<td>$93.50</td>
</tr>
<tr>
<td>1200</td>
<td>1200 - 1300 MHz</td>
<td>$93.50</td>
</tr>
</tbody>
</table>

Specifications and prices subject to change without notice or obligation.

NEW! VHF COMMUNICATIONS 280 Tiffany Avenue Jamestown, New York 14701 PH. (716) 664-6345

CADDELL COIL CORP. 35 Main Street Poultney, VT 05764 802-287-4055

BATTERIES

Nickel-Cadmium, Alkaline, Lithium, Etc. **INDUSTRIAL QUALITY**

YOU NEED BATTERIES? WE'VE GOT BATTERIES! CALL US FOR FREE CATALOG

E.H. YOST & Co.

EVERETT H. YOST KB9X1

734 TETIVIA RD

SAUK CITY, WI 53573

ASK FOR FREE CATALOG

(608) 643-3194
Here's how.

Please fill out the Magazine evaluation card and mail it to us. We'll tabulate all the responses to see what you do and do not like.

There will be a drawing of evaluation cards. The person whose card is picked will win an Orr Handbook. Help us make the best Amateur magazine even better.

Also, each month the author of the most popular WEEKENDER will also be given a Bill Orr Handbook.
Please enter my subscription

BUSINESS REPLY CARD
First Class Permit No. 1 Greenville, NH
Postage Will Be Paid By Addressee

HAM RADIO
Greenville, NH 03048

READER SERVICE CENTER
P.O. BOX 2558
WOBURN, MASS. 01888

ATTN: Reader Service Dept.
Resistors are 1/4 watt except where noted

C16,20,21 10 ufd/35 Vdc electrolytic
C23,24 1 ufd/35 Vdc Tantalum
D1 1N5240BP 10 V/500 mw zener diode
R1 20 Q 1/2 watt
R2,3 2 0 1/2 watt
R5 10 KjO miniature pc mount pot
R7 100 Q miniature pc mount pot
U1 LM317T Positive regulator
U2 LM337T Negative regulator
FB Ferrite beads

Bias sources for the 2-stage 3456 MHz linear amplifier. Both regulators are mounted on a heatsink with mica insulators, shoulder washers, and heatsink compound.

Amplifier biasing

The first amplifier stage (Q1) is a common emitter Thomson SD 1850 transistor,* operated as a Class A amplifier. The SD 1850 can be used as a 150-mW Class A linear amplifier from 432 to 3456 MHz. Q1 uses standard zener diode biasing. The second stage (Q2) is a Thomson SD 1801 transistor (a 1 to 2 watt/1 to 3 GHz CW transistor). Q2 is a common base transistor (operating Class AB), and requires a negative voltage for bias in addition to the 28-Vdc collector supply.

I have forward biased many common base devices in the past — many are being used on 1296 and 2304 MHz. In most cases linearity is as good as with a common emitter amplifier. Because microwave power output is at a premium, Amateurs running common base linear amplifiers usually run them closer to power saturation (P_{sat}), rather than in the linear region. This is why the amplifier may sound slightly rough. Other than a few local SSB ragchews, most communications on 2304 and 3456 MHz are on CW.

Low-power devices like the 1-watt SD 1801 are easy to bias linearly. Higher power devices like an SD 1597 transistor** require a little more care and a higher current bias source. A common base linear amplifier requires mainly that the bias source be of very low impedance. This is true for the -5 Vdc supply, as well as the associated components of the LM337T regulator. Use an LM337K for higher power common base amplifiers. The regulator in a TO-3 style case is capable of higher power dissipation.

The two bias sources in fig. 6 were made on an etched G-10 double-sided pc board (shown in the figs. 7 and 8). All Thomson transistors are available through:

*SGS-Thomson Microelectronics, Commerce Drive, Montomeryville, Pennsylvania 18936, (215) 362-8500
All Thomson transistors are available through:

**The SD1597 is a Thomson 25 watt/l296 MHz transistor for Amateur applications.

THE ARRL REPEATER DIRECTORY

Interested in packet radio? The 1988-1989 ARRL Repeater Directory is for you. This is the most complete compilation of digipeaters ever. There are over 1400 listed! The regular repeater user will find over 13,000 listings plus band plans, addresses of frequency coordinators and CTCSS (PL) tone chart. Available at your dealer or directly from ARRL for $5.00 plus $2.50 for shipping and handling ($3.50 for UPS.)

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN ST.
NEWINGTON, CT 06111

NEW SUPER LONG PLAY TAPE RECORDERS
12 Hour Model — $119.00
USES D-120 TAPE

Pocket size. Available at your dealer or directly from ARRL for $5.00 plus $2.50 for shipping and handling ($3.50 for UPS.)

PHONE RECORDING ADAPTER

Records calls automatically. All Solid state connects to your telephone jack and loop. Soldering when phone is lifted. $24.95*

WAX VOICE ACTIVATED CONTROL SWITCH

Solid state. Self contained. Adjustable sensitivity listens automatically. Voice or other sounds activates it. Uses either solid state or remote mike maker. Add about $25.50.

Digital Voice Recorder

AMERICAN SALES INC. Dept. H 3353 Linden St., Rm. 329, Downers Grove, IL 60515, Phone 800-8519

January 1989
non-ground holes must be "cleared" on the unetched side to prevent component shorting. Begin by drilling the non-ground holes. Remove the copper by counterboring the holes with an oversized bit. Set the depth of the hole to about half the pc board thickness. Drill the ground holes last to prevent confusion about which holes get cleared. Solder components or wiring connected to ground on both sides of the board, as indicated by an "x" in fig. 8.

Solder the ground plane side of the pc board directly to the ground posts of feedthrough capacitors C2, C7, C8, and C13 as shown in fig. 8. Do this so that the bypass capacitors C14, C15, C16, C17, C18, and C20 will be close to the amplifier (where they will bypass RF most effectively). Use small-gauge tinned wire to connect the bias board to the feedthrough capacitors.

Two power-supply voltages (+28 Vdc and -5 Vdc) are supplied to the board. You can also build a power supply that provides all the positive voltages for a complete transverter (including this bias board). An LM317T (U1) supplies a variable collector voltage for Q1. Adjust the collector voltage without power input (P_m), until the 18-Vdc zener diode conducts and biases on Q1. Set the optimum current while tuning the amplifier for power output.

I used an LM337T (U2) as the negative bias source for the output stage (Q2). The output voltage of U2 is halved by voltage divider R2-R3, because 1.2 Vdc is about as low as a three-terminal regulator will go. Note that the -5 Vdc supply must have a floating negative terminal. Peak the idling current while tuning for power output. The -5 Vdc is applied to the amplifier bias board during transmit only. This minimizes heating and possible oscillations into the open antenna relay during receive.

If maximum rather than linear power output (for a rover rig, for example) is a requirement, you could operate the second stage Class C with greater than 1-watt power output. This would eliminate the negative power supply (possibly a 6-volt Gel cell or lantern battery). You'd ground the emitter of Q2 by connecting RFC2 to ground. The microstrip dimensions would stay the same and the stage would be tuned up in the same manner as a linear one.

Tune-up

While I was tuning my amplifier, the two piston trimmer capacitors peaked at minimum capacitance. To bring the trimmers into range, I had to trim off some of the microstrip capacitors with an Xacto knife. I'd used the microstrip dimensions for some single amplifiers that I designed and built earlier. Not going out to 50-ohm connectors interstage produced slightly different impedance matching. Other than this, the amplifier came right up to power and gain expectations. The artwork in fig. 5 reflects the microstrip dimension changes.

To tune this amplifier and most of others I've built, I used the following equipment: a Wavetek 2005 RF generator, HP435B power meters, and an HP spectrum analyzer (part of an RF test.
station at Thomson). You'll need an RF generator and a "real" power meter to check linearity. Do this by changing the
P_in in 1-dB steps, while looking for the same change in the output. Use the spectrum analyzer to check gain and linearity. Also look for spurious responses.

Now, set the quiescent current (idling current without power input). Attach a 50-ohm load to both the input and output connectors. Adjust both bias adjust pots (R5 and R7) for minimum voltage as measured on the output of U1 and U2. Do this before making connections to the amplifier, to prevent transistor damage. Adjust the Q1 collector current to 80mA with a current meter connected in series with the 20-ohm resistor (R1). Next, adjust the collector current of Q2 to 50mA with a current meter in series with the collector supply feed-through capacitor (C13).

Apply 5 mw of 3456-MHz RF to the amplifier input, with a power meter and spectrum analyzer attached to the output. Adjust the two trimmers (while looking at the analyzer and power meter) for maximum output.

The two-stage amplifier will produce maximum power output with 10 to 12 mW of drive. You can readjust the idling current on each stage slightly, under power output conditions for either maximum gain or maximum power output. It's possible to adjust the idling current of Q1 for 80 to 110 mA, and for Q2 up to 65 mA, for proper operation. The total current at 28 Vdc will be 200 to 250 mA when the two-stage amplifier is running at maximum power output.

My two-stage amplifier performed as follows:

- Power output at 1 dBc + 27.6 dBm (580 mW)/Gain = 19.8 dB
- P_sat + 29.3 dBm (850 mW)/Gain = 18.9 dB

Local oscillator

The local oscillator is probably the most important part of a transverter. It sets the transverter's frequency stability. The i-f frequency is usually very stable and accurate, because it's almost always a commercially made transceiver. Of course, all we're really interested in is the short-term stability. The actual frequency operated on at 3456 MHz can vary many kHz over normal temperature ranges. If you need the exact frequency (i.e., for schedules), use a frequency counter. If a 3.5-GHz counter is unavailable, measure a lower frequency stage of the local oscillator chain on a UHF counter. The 3312-MHz local oscillator frequency will give the 3456-MHz transmit/receive frequency.

The local oscillator in my transverter starts out with a surplus 400-MHz telemetry transmitter strip, which uses a temperature-compensated crystal oscillator. You can find surplus crystal-controlled strips at flea markets; they make stable microwave local oscillator sources.

Step recovery diode multiplier

The 400-MHz module (crystalled up for 414 MHz) drives a X8 step recovery diode (SRD) multiplier (fig. 9). The multiplier functions as follows: A pi-network input circuit is used between the 414-MHz module and the SRD, to provide some impedance matching into the diode at 414 MHz. The output of the pi-network (C3) connects directly to the input of the SRD holder. The SRD provides a comb output, consisting of many harmonics of the 414-MHz driving signal. The RF is coupled into the 4-pole comb filter, which filters out the wanted signal (3312 MHz). Dual SMA connectors on the filter output provide the local oscillator signal to both mixers in the transverter.

Most SRDs are packaged without wire leads and require special clamp-type holders for mounting and heat sinking. You can make a brass housing to hold the SRD and provide output coupling into the 4-pole comb filter that follows. Figure 10 shows the SRD holder. Clamp the step recovery diode between part no. 4 (the RF input/output connection) and part no. 6 (a 1/4-20 brass set screw). Use a dab of heat sink compound where the SRD mounts into part no. 6; this aids thermal conduction to the main housing. I made the brass diode holder on a milling machine to fit into the input end of the comb filter. You can make a functional unit with ordinary hand tools.

Depending on the SRD, you can make the 1/4-20 brass set screw (part no. 6) with the appropriate mounting hole. Some SRDs have 3-48 UNC threaded posts that would screw into part no. 6. You could use a glass-packaged SRD by making a Teflon spacer with the glass diode mounted in the center. Fold the wire leads over at both ends and clamp the Teflon spacer into the diode holder.

Attach the SRD holder to the comb filter as in fig. 11. It's possible to use an interdigital filter, but a comb filter is easier to mount and tune up because the tuners are on one side. A comb filter uses the same dimensions as an interdigital type, but is configured with all the tuning elements on the same side. I used all brass construction. The end walls are 1/4" thick brass stock. Drill holes for the four filter poles, and on the opposite side for the four tuning screws. Solder two SMA connectors to the sheet brass covers. Attach the two covers with 2-56 x 3/16" screws to hold the filter together while soldering all joints on a hot plate.

After you've built the filter, attach the SRD holder to it with 2-56 x 3/16" screws. Use a small piece of sheet brass as a mounting platform for the pi-network input circuitry. Attach this assembly to the filter so the SRD input connection (part no. 3) is in close proximity to the trimmer capacitor (C3) of the input circuitry.
Apply the 414-MHz RF to the SRD/filter assembly. Adjust the input network and the filter for maximum power output with a power meter attached on one output port, and a 50-ohm load and spectrum analyzer on the other. Use a spectrum analyzer during tune-up to ensure a clean local oscillator output. Adjust the output coupling probe by threading it in or out of part no. 4. First loosen part no. 3, then tighten it which supplies an adjustable collector optimized. You’ll need to adjust tor output. Adjust the output coupling probe by threading it in or out of part no. 4. You can change the 414-MHz drive to ensure a clean local oscillator output after the output coupling is tune-up using an connector. The two outputs will be within 1 dB of each other - more than sufficient to properly supply a local oscillator output. You can take two different levels off the power output with a power meter for the local oscillator chain. In addition, the center pin of an SMA connector provides coupling = 15 dB down on any comb or interdigital-type filter. For example, the center pin of an SMA connector provides coupling = 15 dB down from a normally connected output.

There are a number of combinations for the local oscillator chain. In addition to what’s shown in the block diagram, you could also generate 3312 MHz using a 1-GHz local oscillator strip (crystalled for 1104 MHz) driving an active tripler to 3312 MHz. There are a few sources for stable crystal-controlled 1-GHz local oscillator chains.*

Active frequency multiplier

Figure 12 shows the x 3 to 3312 MHz multiplier. The active device is an SD 1801 transistor (Q1). The multiplier is built on 1/32" Teflon double-sided pc board (Er = 2.56) and mounted in a brass carrier (shown in fig. 13). The multiplier is connected to a five-section interdigital filter.12 I used an SMA connector on the input instead of the SRD holder. The input connector is tapped at 0.25" from the cold end of the input pole.

The multiplier and filter are connected in the transverter with a small piece of UT-141 semi-rigid coax. The exact length of the cable seems to have an effect on the performance of the multiplier. Try different lengths of intercon-

*Down East Microwave, Box 2310, RR #1, Troy, Maine 04987. (207)948-2741. (W3HQF sells the LMW Electronics, mini LO, Universal Local Oscillator kit.) SSB Electronics, 152 MHz Local oscillator chain for their 2304 MHz transverter, crystallized and returned to 1104 MHz.
necting cable to provide the best match into the filter. The multiplier and filter are effectively one stage and are tuned as such. Again, a power meter is attached to one output, and a 50-ohm load and spectrum analyzer to the other. After tuning the filter for maximum power output at 3312 MHz, you can adjust the 1104-MHz drive level to provide the proper level outputs for the two mixers.

Here’s how the multiplier operates. The input of Q1 is tuned to 1104 MHz (or 1152 MHz in a 3456-MHz beacon transmitter). The output is tuned to 3312 MHz (or 3456 MHz). An interdigital filter removes the fundamental and second harmonic frequencies and also provides two outputs for the two transverter mixers. The typical performance of the tripler and filter with one output is 30-mW power input at 1104 MHz (or 1152 MHz), which produces 40 to 60 mW output. P_in of 50 mW produces greater than 100 mW. When running the multiplier on 15 Vdc, I’ve seen +23 dBm (200 mW) out of one of these units.

You could use this for a beacon transmitter. The 3312-MHz (3456 MHz) outputs are very clean; all unwanted harmonics are down greater than 45 dB and all non-harmonically related signals are down greater than 60 dB.

I-F and DC switching

It’s necessary to have some means of switching the i-f transmit and receive lines when connecting the 2-meter transceiver to the 3456-MHz transverter. You’ll also need a keying circuit to control the transmit/receive of the transverter. This requires one of two different hookups — depending on whether the 2-meter i-f will be a transceiver or another transverter (an MMT-144/28, for example*).

Two-meter transverter as an i-f

Separate receive and transmit connectors are available on the MMT-144 transverter. The i-f output of the receive mixer is connected to the 144-MHz receive port on the 2-meter transverter. On the transmitter side, you must insert an attenuator between the transmit output (nominally 10 watts) of the 2-meter i-f and the 3456-MHz transmit mixer (see fig. 14). Adjust the i-f drive level to the

*Microwave Modules Ltd., Liverpool, England, makes a complete line of VHF/UHF transverters.
I-f attenuator and adjustable RF control.

transmit mixer as follows: Turn the RF control (R5) CCW (maximum attenuation). Attach a power meter to the output of the 3456 transverter. Put the 3456-MHz transverter into the transmit mode and apply the 10 watts of drive. Adjust the RF control (R5) for a maximum power output at 3456 MHz. Reduce the 2-meter RF: it should show a decrease in the 3456-MHz output. If there’s no reduction in power output, the mixer is being overdriven and you must insert additional attenuation in front of the RF control.

It’s important that the i-f radio be operated at its normal output level, and not with the gain or CW control turned down. The RF control in the transverter is adjusted to match the i-f level, not vice versa. This ensures that the transverter will never be overdriven, even when the i-f radio’s gain controls are adjusted improperly. The procedure is correct for any transverter system.

Two-meter transceiver for the i-f

Figure 15 shows a Pin diode RF switch that provides switching for the 2-meter IF during transmit and receive. The i-f transceiver is connected to the Pin diode switch; this gives two separate ports similar to the outputs of the 2-meter transverter described earlier. The RF attenuators* and RF control are also used in this installation. The i-f drive adjustment is the same as if you were using a transverter. Don’t make changes in the RF drive with the 2-meter transceiver in the “low power” position or you’ll be asking for trouble.

DC control circuits

Control the 3456-MHz transverter with “hard keying.” Use RF sensing only as a last resort. Hard keying is simple. Take a transmit voltage off the i-f radio — either via an accessory jack, or by going inside and soldering a wire to a resistor lead. You just need a voltage between 5 and 18 volts on transmit at a few milliamps of current. Check your radio’s schematic to determine where to look with a voltmeter. Figure 16 shows a DC switching circuit that provides 12 volts on transmit to control the Pin diode switch in fig. 15. The 12 volts will also key your 3456-MHz transverter control circuits and power supply.

DC switching circuit, controlled by the i-f transceiver in the transmit mode.

Antenna relays

You can use antenna change-over relays manufactured by Transco Products, Inc. (and other manufacturers) at 3456 MHz. Look for surplus relays at flea markets. Some have specially made connectors designed for the military. Unfortunately, matching connectors usually aren’t available. I use a Transco latching-type relay, P/N 82132-909C. It cost me $5.00 at a flea market. The connectors resembled an SMA female jack, but had male center pins. I removed the threaded-in connectors and installed female SMA connectors. Insertion loss, measured at 3456 MHz, is 0.1 dB; isolation is greater than 60 dB. Surplus relays manufactured by Electronic Specialty Company are usually good for 3456 and 5760 MHz.

Conclusion

The design for this transverter is relatively simple. A few basic components are all you need to build a “bare-bones” unit for mountaintop work. Besides the local oscillator, two mixers and the “split” TVRO LNA will get you on the air. You can use manual transmit-receive change-over (moving a coax cable between RF ports) with good results, as speed isn’t usually a requirement. Microwatt transmitters and diode receivers are adequate for most line-of-sight communications. You can always add fancy switching and higher power output later.

You can use some of the component designs for other microwave projects. For example, the SRD multiplier is suitable for a beacon transmitter. The HP 5082-0320 diode is capable of much more power output at 3456 MHz than is used in this transverter. It’s possible to find other 1 to 5-watt SRDs that will fit into the same holder. Try using the active multiplier for the output or driver of a beacon transmitter. Adjusting the collector voltage and RF power input for maximum yields 200 to 300-mW power output.

This transverter is one of many possible designs. * Microwave enthusiasts in other parts of the country are using surplus phase-locked sources for their local oscillators. TVRO mixers are also in service. GaAsFETS and surplus tube-type amplifiers are being used for the transmitters. There’s also an assortment of TVRO, surplus, and homebrew GaAsFET receivers at work.

The majority of activity on this band comes from mountain-topping stations and local QSOs. Many stations will soon be on the 3.4-GHz band, and QSOs similar to 2304 MHz will be commonplace. Besides the parabolic antennas normally used on the microwave bands, the loop Yagi is becoming a popular antenna for 3456 MHz.**

*The ARRL Handbook
**Down East Microwave, Box 2310, RR #1, Troy, Maine 04687, (207) 948-3741 sells loop Yagi antennas for all bands 902-3456 MHz.

References

Article 1

HAM RADIO

RELY ON JAN FOR 3-WAY HELP:

1. TECHNICALLY CORRECT CRYSTALS TO YOUR SPECS.
2. QUICK TURNAROUND WITH HUGE INVENTORY, PROMPT SERVICE, AND OUR EMERGENCY ORDER PLAN.
3. LOW PRICES.

QUARTZ CRYSTALS FOR TWO-WAY — INDUSTRY MARINE — AMATEURS SCANNERS — CBs MICROPROCESSORS

FOR FREE CATALOG, CALL OR WRITE:
JAN CRYSTALS
PO. BOX 06017
FORT MYERS, FL 33906
(813) 936-2397

SINCE 1965

TOLL-FREE: 1-800-237-3063
IN FLORIDA: 1-800-226-XTAL
FAX ORDERS: 1-813-936-3750

January 1989 81
Barry Electronics Corp.
World Wide Amateur Radio Since 1950

Your one source for all Radio Equipment!

For the best buys in town call:
212-925-7000
Los Precios Mas Bajos en Nueva York
WE SHIP WORLDWIDE!

WE SHIP WORLDWIDE

Kitty Says: We are now open 7 days a week:
Saturday & Sunday 10 to 5 P.M.
Monday-Friday 9 to 6 P.M. Thurs. to 8 P.M.

Come to Barry's for the best buys in town.

ONV Safety belts-in-stock

FT-767GX, FT-757GXII, FT-311 RM,
FRG-8800, FT-736, FRG-9600,
FT-4700RH, FT-212/712RH.

ICOM
IC-771A, 751A, 761, 28A/H, 38A, 48A, Micro214,
R-7000, IC-761, IC-375A, 275A/H, 3210A, 475A/
H, 735, IC-900, IC-228H

SMART PATCH
Ces Simplex Autopatch 510 SA Wall Patch FM
Transceiver To Your Telephone Great For
Telephone Calls From Mobile To Basic Simple
To Use. 510SA/510SAII

PRIVATE PATCH Y, Duplex 8000

TUNERS STOCKED:
NYE MBV-A3 Killowatt TUNER

KitteY Says: We are now open 7 days a week:
Saturday & Sunday 10 to 5 P.M.
Monday-Friday 9 to 6:30 PM Thurs. to 8 PM

Come to Barry's for the best buys in town.

WITH THE BEST BUYS IN TOWN.
Parts for antenna tuners and linears...plus a correction

One of the delights of writing for a magazine like *Ham Radio* is receiving reader mail. Sometimes I get brickbats either for not covering a pet topic, or covering it in a way that someone doesn’t like. I also get kudos and congratulations for covering a topic well, or covering one that other magazines seem to overlook. But let me make a mistake, and my mailbox fills up in a hurry — *HR* readers are a sharp lot! Fortunately, most of the “eagle eyes” simply point out the error and let me off the hook easily. Others...well, others...I won’t tell you about them, except to state that for some people columnists’ mistakes are mortal sins.

One error turns out to be not an error at all, merely an oversimplification. In one column I warned you to be careful of NPO capacitors because they are not really zero temperature coefficient. Most of them are 0 ppm. Although I prefer silvered mica capacitors, some of you don’t like them because they seem variable with respect to tempco (despite the rating). It turns out that I was right after all, but so were those of you who wrote. The selection of the low tempco capacitor is a lot more complicated than I (or any other Amateur Radio writer) have shown. I am researching the issue, and may write a column about it in the future. If you have information or opinions, write to me at the address at the end of this column.

Tuner/linear parts

Antenna tuners and linear-amplifier RF tuned circuits are popular Amateur Radio construction projects. That old saw, offered by scores of doomsayers, that hams don’t build anymore is belied by my mailbag. Many people have written me (more than 60 in response to the spectrum analyzer column) on construction projects. A common question regards the class of parts used for tuners and linear amplifiers. When a schematic shows a variable capacitor, the capacitor could be a screwdriver-adjusted trimmer or a mighty vacuum variable. I’ll take a look at a couple of different types of components this month.

Another question I see frequently concerns supply sources. Hamfests are traditional places to find linear/tuner parts, but those events are either drying up or people are asking an arm and a leg for parts. I saw a corroded (really scuzzy) transmitting-type variable capacitor at a hamfest; the owner wanted only $3 less than the price Radiokit was asking for a brand new one! Although hamfest bargains (and reasonable deals) still abound, you might contact some of the vendors shown in Table 1 for mail order purchases, or to locate a dealer who can help you.

Let’s take a look at the types of parts that are suitable for building antenna-tuning units or the RF output deck of a linear, or class-C, RF power amplifier.

Photos A and B show a pair of high-voltage variable capacitors suitable for use in high-power applications. The capacitor in photo A is a 250-pF model about 10 inches long, with wide spacing between plates to accommodate the high voltage. In the model shown, the shaft has a nylon end piece shown in Table 1 for mail order purchases, or to locate a dealer who can help you.

Let’s take a look at the types of parts that are suitable for building antenna-tuning units or the RF output deck of a linear, or class-C, RF power amplifier.

Photos A and B show a pair of high-voltage variable capacitors suitable for use in high-power applications. The capacitor in photo A is a 250-pF model about 10 inches long, with wide spacing between plates to accommodate the high voltage. In the model shown, the shaft has a nylon end piece shown in Table 1 for mail order purchases, or to locate a dealer who can help you.

Table 1

<table>
<thead>
<tr>
<th>List of suppliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiokit, POB 973, Pelham, New Hampshire 03076, (603) 635-2235</td>
</tr>
<tr>
<td>Barker & Williamson, 10 Canal Street, Bristol, Pennsylvania 19007, (215)798-5581</td>
</tr>
<tr>
<td>Fair Radio Sales, 1016 East Eureka Street, POB 1105, Lima, Ohio 45802</td>
</tr>
<tr>
<td>Nevada Communications, TELECOMMS, 189 London Road, North End, Portsmouth, PO2 9AE, England</td>
</tr>
<tr>
<td>Unadilla/Anennas Etc., POB 215 BV, Andover, Massachusetts 01810-0814, (617)475-7831</td>
</tr>
<tr>
<td>Van Gorden Engineering, POB 21305, South Euclid, Ohio 44121</td>
</tr>
<tr>
<td>SPI-RO Manufacturing, Inc., POB 1538, Hendersonville, North Carolina 28793</td>
</tr>
<tr>
<td>Alpha Delta Communications, Inc., POB 571, Centerville, Ohio 45459 (513)435-4772</td>
</tr>
</tbody>
</table>

Joe Carr, K4IPV
Introuducing CT-3 ... the new service monitor designed by service techniques for service personnel. It's work harder for less... giving you advanced capabilities at a very affordable price.

FEATURES
- Direct entry keyboard with programmable memory
- 16x8 character display
- 32 serial test points
- 100 MHz frequency coverage
- 0.1 Hz frequency resolution
- 0.5 MHz frequency display
- 100% transistorized in the USA

FREQUENCY COUNTERS

CT-30 7 DIGIT 525 MHz
CT-90 9 DIGIT 600 MHz
CT-50 6 DIGIT 500 MHz
CT-125 9 DIGIT 12 GHz

ACCESSORIES FOR COUNTERS

Motion generator, 0.5% accuracy.
10 MHz crystal reference

TONE DECODER

A complete 40 watts, solid state decoder includes 8 tones: 150, 200, 250, 300, 400, 500, 600, and 700 Hz. 20 watts output. 100% transistorized in the USA.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE

SUPER SEALANT

A superior silicone adhesive that will stick to almost any surface and will not peel or shrink. It's a great bonding agent for everything from fishing to plumbing to construction.

CIRCUIT MODEM

Integrates into almost any PC board. Features 4000-5000 baud circuit timing. Complete with all required parts.

SOLID INK MAKER

Create your own solid ink or toner. It's perfect for printing labels or making custom stamps.

SPEECH SCRAMBLER

Communicate at a higher level with your voice on the telephone. This scrambled speech device is perfect for anyone who needs to keep their conversations confidential.

MICROWAVE INTRODUCER ALARM

An alarm that sounds when microwave signals are detected. It's perfect for keeping intruders out of your home or office.

FM RECEIVER

For both sapphire and diamond types. This receiver features a stable signal output and exceptional sensitivity. It's perfect for the home or office.

FM MINI Kit

A complete, easy-to-follow kit that includes everything you need to build your own FM receiver.

MICROWAVE INTRODUCER

A self-contained microwave detector that can detect signals from 1 to 1000 MHz. It's perfect for monitoring microwave signals.

MICROWAVE INTRODUCER ALARM

A compact, easy-to-use alarm that sounds when microwave signals are detected. It's perfect for keeping intruders out of your home or office.

SEMICONDUCTOR TESTING

A complete kit that includes everything you need to test semiconductors.

RESISTOR TESTING

A complete kit that includes everything you need to test resistors.

CAPACITOR TESTING

A complete kit that includes everything you need to test capacitors.

INDUCTOR TESTING

A complete kit that includes everything you need to test inductors.

TRANSISTOR TESTING

A complete kit that includes everything you need to test transistors.

ALL NEW KITS

PERSONAL POWER ASSIST

Completely assembled and tested. A powerful tool that will help you handle tasks both big and small. It's a great addition to your toolbox.

HIGH POWER PW®

A high-powered system that will handle anything you throw at it. It's perfect for those tough jobs.

LOW POWER PW®

A powerful system that will handle most tasks. It's perfect for those everyday tasks.

RUGGED CAST ALUMINUM

An industrial-grade receiver that's built to handle the toughest conditions.

ONE YEAR WARRANTY

All kits include a one-year warranty against defects in materials and workmanship.
High-voltage, air-dielectric variable capacitor.

Motor driven 1000-pF vacuum variable capacitor.

Photos C and D show a pair of inductors used for antenna-tuning units. The version in photo D is a fixed coil made from B&W 3029 stock. There are three methods for connecting leads to the coil. One is to use an alligator clip. Press down a short section of alternate turns to allow the clip to be attached without shorting adjacent turns. Another is to simply solder a wire to a turn of the coil. Finally, sources like Radiokit sell special coil clips that screw onto the coil stock. Use either a manual attachment or an RF switch to select the required inductance.

The inductor shown in photo C is a rotary inductor. This one selects inductances from about 1-28 μH. A rotary shaft on the front end of the coil sets the inductance.

Photo E shows an antenna-tuning unit from Nevada Communications in England. I ordered this instrument through the mail (Nevada can accept most of the major charge cards familiar to United States customers).

that permits the stator plates to be at high voltage (where necessary) without placing the operator at risk. This particular capacitor (as well as the inductor in photo C) is part of the antenna-tuning unit kit offered by Radiokit (see table 1 for address).

The capacitor in photo B is a 1000-pF vacuum variable. This model is surplus, and was obtained from Fair Radio Sales in Lima, Ohio. The surplus capacitor cost considerably less than the new vacuum variables, and a lot less than some hamfest "tailgate specials" I've seen in recent years. In this case, a motor drive mechanism is supplied allowing the user to set the capacitance by applying a +12 Vdc source to the motor control. Microswitches at the limits of travel can be used either to provide warning to the operator that the limit is reached, or automatically turn off the power to the motor and reverse the direction of travel. I plan to use this capacitor in an outdoor (remotely tuned) antenna-tuning unit.
Nevada also sells the individual components. One capacitor (shown on the right) is a 250-pF variable; the other is a dual-section 250-250 pF model. It can be used as either a dual capacitor in a Transmatch circuit, or can be connected in parallel to form a 500-pF unit.

Dummy loads

A dummy load is a substitute antenna for making measurements and tests. In fact, British radio engineers often refer to dummy loads as "artificial aerials." There are several uses for these devices. Radio operators should use dummy loads to tune up on crowded channels, and then transfer to the live antenna.

Dummy loads can also be used when troubleshooting antenna systems. Suppose you have a system in which the VSWR is high enough to affect the operation of the transmitter. You can disconnect each successive element and connect the dummy load to its output. If the VSWR goes down to the normal range, then the difficulty is downstream (i.e., towards the antenna). You'll eventually find the bad element (which is usually the antenna itself).

Several commercial dummy loads are shown in photos F through H. **Photo F** is a Drake DL-1000. This dummy load is usable throughout the HF region, and will handle 1000 watts for short periods. A long, high-power, noninductive resistor element inside the DL-1000 is rated at 50 ohms, and can dissipate 1000 watts for several minutes. If you anticipate longer times or higher powers, apply forced air cooling by adding a blower to one end of the cage.

I modified my DL-1000 by adding a BNC signal sampling jack. Connect this jack internally to either a two-turn loop made of no. 22 insulated hook-up wire, or to brass rods positioned alongside the resistor element. It will then pick up a sample of the signal so that it can be viewed on an oscilloscope, or used for other instrumentation purposes. I'll discuss this modification in a future column.

Photo G shows a small collection of my low-power dummy loads. The small gray load in **photo G** is a 5-watt model, and is typically used in Citizen's Band servicing. The resistor is mounted directly on a PL-259 coaxial connector. These loads typically work to about 300 MHz, although many are not really useful over about 150 MHz. I have successfully used it to service a 2-watt, 2-meter handheld. A higher power version of the same type is also shown in **photo G**. This device works to the low VHF region, and dissipates up to 50 watts for short times, even though it is rated at 15-watts continuous power. I have used this dummy load for servicing high-VHF landmobile rigs, VHF-FM marine rigs, and low-VHF landmobile rigs — as well as Amateur Radio rigs.
The load box shown in photo G is a homemade device containing ten different 2-watt, carbon composition, non-inductive resistors. Also included are a zero-ohm switch position (shorted to ground) and an open position (which requires an external load, or produces an "infinite" impedance). I used this dummy load to produce the photos in a past column on time domain reflectometry methods.

Photo H shows a small collection of 8000-series Termaline® dummy loads produced by Bird Electronics, Inc. These are professional instruments and are rated very conservatively. If you plan to service a lot of equipment or go into business, then it's probably a good idea to buy one or more of them. Even Amateurs with a modest workshop may want one of these professional loads.

I can be reached at POB 1099, Falls Church, Virginia 22041; I'd like to have your comments and suggestions for this column.

Article J

HAM RADIO

INTERNATIONAL RADIO AND COMPUTERS, INC.

Is pleased to announce that we are now an authorized dealer for ICOM Products.
- We service All ICOM products and, of course, use Factory Service parts.
- We provide a complete check for performance and function on each radio we sell.
- Call us for a quotation on your next ICOM purchase.
- Master, Visa, American Express cards accepted.
- Servicing Amateur Radio Operators for eight years.
- Send for your FREE Brochure.

INTERNATIONAL RADIO AND COMPUTERS, INC.
751 South Macedo Blvd.
Port St. Lucie, FL 34983
(407) 879-6868

5-1000 MHZ PREAMPLIFIERS

<table>
<thead>
<tr>
<th>NF</th>
<th>G</th>
<th>P(1dB)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLA21m</td>
<td>3dB</td>
<td>13dB</td>
<td>8dBm</td>
</tr>
<tr>
<td>WLA22m</td>
<td>4</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>WLA23m</td>
<td>4</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>WLA24m</td>
<td>3</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

430/50MHZ CONVERTER

RCX431 .15µV 20dB 99

WILAM TECHNOLOGY, Div. of WI-COM ELECTRONICS INC.
P.O. Box 5174, MASSENA, N.Y. 13662
(315) 769-8334

K COMM., INC.
THE HAM STORE

Stocking all major lines. San Antonio's Ham Store. Great Prices—Great Service. Factory authorized sales and service. Hours: M-F 10-6, SAT 9-3

KENWOOD YAESU ICOM

5707A Mobud
San Antonio, TX 78238
800-344-3144
Orders Only

HI-PERFORMANCE DIPOLES--Made for use on your antenna tower! A complete line of hi-performance dipoles. Stainless steel, painted black, high efficiency. Dipoles are available in 2, 3, and 4 element, 3, 4, and 5 element, and 5, 6, and 7 element. 5-1000 MHz. CERTIFIED for use with your ICOM.

Buckmaster Publishing
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777
Visa/MC 800/282-5528

January 1989
THE WEEKENDER

A simple signal source for 903 MHz

Circuit testing is probably one of the most difficult problems you’ll encounter when building equipment for the higher frequency Amateur bands. It’s even harder on a new band, because you may have no operational equipment to use as a starting point. I’ve built a simple reference-signal generator for the 903-MHz band that can be operated without any other RF test equipment. Try using it as the reference point for adjusting antennas and equipment.

Circuit description

The idea for this test-signal generator came to me while I was looking through a catalog of standard TTL crystal oscillators. These oscillators, intended for use in digital computer equipment, are inexpensive and fairly accurate signal sources. One commonly available oscillator operates at 18.432 MHz and has a convenient 49th harmonic of 903.168 MHz. It’s very near to the 903.1-MHz calling frequency — certainly close enough to be useful in testing and tuning equipment for the entire 33-cm band.

Once I realized that this oscillator’s harmonic falls on a useful frequency, I started wondering how to use it to build a signal generator. The block diagram in fig. 1 came to mind. The crystal oscillator’s output is amplified and its harmonic level enhanced. A sharp, pre-tuned filter rejects most of the undesired harmonics and another amplifier increases the level of the 903-MHz signal. It requires no adjustments or external calibration.

By Jerry Hinshaw, N6JH, 10 Acorn Circle, #101, Towson, Maryland 21204
the desired harmonic at 903.168, and all points in between.

There are a number of silicon MMIC amplifiers which will work well here. As I mentioned before, the main requirement is for gain saturation when driven by the oscillator. I used an Avantek MSA-0104, biased with a resistor to about 15mA collector (output lead) current. Other possible choices are the MSA-0185 (the same device in a smaller plastic package) or the Mini-Circuits MAR-1 (which appears to be the Avantek MSA-0185 device sold under a different label). The slightly higher power Avantek MSA-02 (Mini-Circuits MAR-2) would probably work well enough, although the output level might be a bit lower due to its lower gain. The MSA-06 (MAR-6) would also be a good choice. It’s similar in many ways to the MSA-01, except for its lower collector voltage and lower noise figure. The latter is of little merit in this application.

The next stage is the filter. The ideal filter would have no loss at 903 MHz, and infinite loss at all other frequencies. In practice, we want as much rejection as possible. The undesired harmonics are unfortunately close to the desired spectral line, only 18.432 MHz above and below the output at 903.168 MHz. This signal generator’s circuit architecture is not ideal for rejection of undesired harmonics because the multiplication order is so high — the price you pay for such simplicity. Still, if the filter can reject the adjacent harmonics (numbers 48 and 50) by 10 to 20 dB relative to the harmonic at 903 MHz, the output will be quite useful.

Commercially available helical resonator filters are a good choice for this application. They are narrowband, have sharp rejection skirts, and low insertion loss at their center frequency. The Toko company manufactures a line of helical resonator filters with two or three resonator sections. Some even come pre-tuned. Either the two or three-section filter will work, but the three-section one gives a cleaner output spectrum due to its greater attenuation of the adjacent harmonics. The Toko filters available in the 900-MHz region have passband widths of about 10 to 15 MHz, measured at the -3 dB points, and losses of about 4 dB at the center frequency. They are packaged in small metal cans with radial leads at the bottom. You’ll need good grounding to make them work, but otherwise they’re trouble free.

A second MMIC amplifier after the filter increases the signal level of the 903-MHz line — the strongest harmonic at this point in the circuit. Here the signal level is low, so a high gain MMIC amplifier with a low compression point is again suitable (though for somewhat different reasons than for the stage ahead of the filter). Any one of the MMIC amplifiers mentioned before will work.

In summary, the test-signal generator is a chain consisting of an oscillator followed by a multiplier/amplifier, a narrow filter centered at the output frequency, and an output amplifier. There are only four stages, few components, and no adjustments.

Construction details

There’s little need for a printed circuit board for a simple project like this; the usual Amateur methods work well. I used a copper-clad perfboard for the prototype. The oscillator DIP and the helical filter sit on the unclad side of the board while the smaller RF parts solder directly onto the copper-clad side. You can see many of the construction details in photo A.

The crystal oscillator’s leads protrude through the holes in the perfboard. Two of the leads (the DC power lead and the RF output) are isolated above ground, so I cleared away the copper with a pad cutter. The other two leads are soldered to the copper foil, which is the ground plane for the circuitry.

Install the MMIC amplifiers by bending their two ground leads flush to the package and soldering them to the copper ground foil, as close as possible to the MMIC package. This gives them low-impedance ground connections. Leave the input and output ribbon leads suspended in the air; they are both short and stiff so no other support is needed. Solder the input and output coupling capacitors and the output bias resistor directly to the MMIC leads. Make the connections as short as practical, as is the practice in the “hot” portions of UHF circuitry. Short leads increase the mechanical strength of the assembly.

The hardest part is mounting the helical resonator filter, because its leads aren’t on the perforated circuit board’s 0.1-inch grid pattern. This means that you must drill special holes for at least some of the leads. Figure 3 shows the pin connections and spacings for
the two-section filter. Bend the metal mounting tabs on the filter flat and solder them to the board's copper ground foil.

The test oscillator can easily be built inside a 2" x 1.5" x 1.5" box. A shielded box is preferable. It allows for the cleanest possible output, because only the filtered signal is permitted to exit the box by way of the output connector. Photo B shows my version, mounted in the ubiquitous "Bud" box. The output connector is a BNC type. It's a lossy choice at this frequency, but convenient, widely available, and inexpensive. DC power for the circuitry comes in through banana jacks.

Operation and test results

Once the circuit board is fully assembled (it took me about 90 minutes), it's ready for operation. No tuning is needed, and in fact none is possible. (The helical filters have screw adjustments which could be tuned for better response, but that's probably not a good idea without a spectrum analyzer.) The test oscillator should draw about 100 mA at 13.6 volts. Each of the MMIC amplifiers should have about 4 volts at the output tab, and about 1.6 volts at the input lead. There should be 5 volts at the output of the voltage regulator supplying the oscillator. If all of these voltages are correct and present, the signal generator should be operating.

As soon as I applied DC power, the prototype worked and produced a strong signal at about 903.2 MHz. The audio note was fairly pure — quite pleasingly so for a crystal oscillator that was not designed for low phase noise and multiplied 49 times. (The phase noise of an oscillator is increased during frequency multiplication.)

On a spectrum analyzer, the output signal measures -26 dBm (2.5 μW) at the circuit board. This is not a huge signal by transmitter standards, but plenty large for testing even insensitive receivers. The spectrum appears fairly "clean" and the adjacent harmonic lines are down more than 10 dB below the desired output. This is acceptable for a tuning indicator, and is good for a crystal reference. A spectrum plot is shown in fig. 4. You can see that the adjacent harmonics are rapidly attenuated away from the desired 903 center. All of the harmonics below 800 MHz and above 1 GHz are at least -70 dBm.

When a three-section helical resonator is used in place of the two-section model, the results should be even better — as indicated in fig. 5. I made the prediction that appears in fig. 5 from the vendor’s test data of filter attenuation of the three-resonator filter. Of course the three-section filter is more expensive, but the output purity is considerably better. The three-section filter is generally a good idea; for antenna testing (where the signal is radiated in space) the better filtering is probably essential. Building the test generator should be no different with the more selective filter, except for the necessary change required in the mechanical layout due to the filter's slightly larger size.
Predicted spectral plot for a signal source using a three-section helical resonator in place of the two-section filter used in the prototype.

Summary

This simple project provides a useful tool for aligning filters, amplifiers, and receivers and also for antenna testing. Because it can be built and used without needing alignment, it's a good starting point for work in the 903-MHz band. Use a similar approach with a different crystal oscillator and the proper filter to make a test generator for frequencies from at least 200 MHz up to 1200 MHz. You can assemble a “quick and dirty” version in less than one hour; a carefully constructed version — including packaging — shouldn't take more than three or four hours.

Article K

HERE'S A CHALLENGE FOR YOU. WRITE FOR HAM RADIO Magazine!

HAM RADIO is the leading technical journal for Radio Amateurs. We're always on the lookout for freelance articles on topics ranging from simple, easy-to-build projects to complex state-of-the-art equipment.

Accept our challenge; write for HAM RADIO. Nowhere else will your work receive the kind of recognition it will get in Amateur Radio’s premier technical magazine. You’ll be respected by readers around the world in addition to being paid for your efforts. As a special added incentive, we are offering double our normal page rate for all "Weekenders" we accept. To top it off, the author of each month’s most popular Weekender will receive a copy of The Radio Handbook by Bill Orr, W6SAI — a $26.95 value.

Don’t know how to get started?

Send today for HR's FREE Writer's Guide. You’ll get full details on how to put your article together. HR’s expert editorial team is also standing by to help you with all the little details that often stall a project.

When it comes to projects and quality technical papers, no one can compete with HR. Call or write today for a complete information packet on how to write for us. We’ll even throw in a FREE HR Logbook.

Terry Northup and Marty Durham, NB1H

RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5” and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. MHz</th>
<th>Input</th>
<th>Output</th>
<th>NF-dB</th>
<th>Gain-dB</th>
<th>DC +Vdc</th>
<th>Power A</th>
<th>RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>050G</td>
<td>50-54</td>
<td>1600</td>
<td>1600</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>28</td>
<td>UHF</td>
</tr>
<tr>
<td>0510G</td>
<td>50-54</td>
<td>1600</td>
<td>1600</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
</tr>
<tr>
<td>1409G</td>
<td>144-148</td>
<td>1600</td>
<td>1600</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
</tr>
<tr>
<td>1410G</td>
<td>144-148</td>
<td>1600</td>
<td>1600</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
</tr>
<tr>
<td>1412G</td>
<td>144-148</td>
<td>1600</td>
<td>1600</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
<td>20</td>
<td>UHF</td>
</tr>
<tr>
<td>2210G</td>
<td>220-225</td>
<td>1300</td>
<td>1300</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
<td>21</td>
<td>UHF</td>
</tr>
<tr>
<td>2212G</td>
<td>220-225</td>
<td>1300</td>
<td>1300</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
<td>16</td>
<td>UHF</td>
</tr>
<tr>
<td>4410G</td>
<td>420-450</td>
<td>1000</td>
<td>1000</td>
<td>.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>N</td>
</tr>
<tr>
<td>4412G</td>
<td>420-450</td>
<td>1000</td>
<td>1000</td>
<td>.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>N</td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete G suffix on model #). All units cover full amateur band — specify 10 MHz bandwidth for 420-450 MHz amplifier.

Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28V), Commercial, etc. also available - consult factory.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0991

January 1989

91
FLEA MARKET

RATES: Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAFMESTS: Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Please send us a list of hamfest ads paid the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to correctable in next available issue.

DEADLINE: 15th of preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

BEGINNER'S RADIO CLEARINGHOUSE: On a space available basis only. Please send us a list of hamfest ads paid the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to correctable in next available issue.

DEADLINE: 15th of preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

IBM-PC RTTY/CW. New CompRty II is the complete RTTY/CW printout for 28 caps, 7.8 kV, and is larger buffers, better support for packet units, pictures, much more. Virtually any speed ASCII, baudot, CW. Text entry via built-in sonetizer, 60Q per word both payable in advance. Ham Radio can reject unsuitable copy. Ham Radio can reject unsuitable copy. Department 64, 427-1980.

WILL HAVE WITH: 108.00 MHz. Telstar, and other satellites, any condition. Ken, KBBMG, 4610 Park Road, Mansfield, Ohio 44905. $60.00.

WANTED: 108 MHz. Telstar, and other satellites, any condition. Ken, KBBMG, 4610 Park Road, Mansfield, Ohio 44905. $60.00.

IBM-PC RTTY/CW. New CompRty II is the complete RTTY/CW printout for 28 caps, 7.8 kV, and is larger buffers, better support for packet units, pictures, much more. Virtually any speed ASCII, baudot, CW. Text entry via built-in sonetizer, 60Q per word both payable in advance. Ham Radio can reject unsuitable copy. Ham Radio can reject unsuitable copy. Department 64, 427-1980.
Easiest Packet Radio Ever!

Is F E A R keeping you from joining the thousands of hams who are having the time of their lives with packet? FEAR no more! Here's the easiest packet radio set up yet — and you don't even need to buy one of those TNCs — just let your PC do the work. The DRSI PC+Packet Adapter plugs into your IBM PC (or clone) and gets you on the air in minutes. Seconds even. The one-page Quick-Start-Guide will have you instantly going like an expert. It doesn't even keep you from using your PC for other work! Now, in addition to everything else, you'll have a dual-port TNC with cross-band digipeating... even if you don't even know what that means right now. Find out why thousands of hams are so excited — get your feet wet in packet with the DRSI system. It's only $139.95.

To get going on the HF bands you'll want the DRSI HF+ Modem/Tuning Indicator — an extra $79.95. Go first class and get both — or stick to VHF with the basic PC+Packet Adapter. Find out for yourself why packet is the fastest growing phase of amateur radio today. It's a ball! See it at your dealer today.
Dealers: YOU SHOULD BE HERE TOO!

Contact Ham Radio now for complete details.

California

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-TECH ELECTRONICS</td>
<td>1033 HOLLYWOOD WAY BURBANK, CA 91505</td>
<td>(818) 945-9203</td>
</tr>
<tr>
<td>JUN’S ELECTRONICS</td>
<td>3919 SEPULVEDA BLVD. CULVER CITY, CA 90230</td>
<td>(213) 390-8003</td>
</tr>
</tbody>
</table>

Colorado

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLIED APPLIANCE & RADIO</td>
<td>4253 SOUTH BROADWAY ENGLEWOOD, CO 80110</td>
<td>(303) 761-7305</td>
</tr>
<tr>
<td>COLORADO COMM CENTER</td>
<td>525 EAST 70TH AVE. DENVER, CO 80229</td>
<td>(303) 227-7373</td>
</tr>
</tbody>
</table>

Connecticut

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114</td>
<td>(203) 527-1891</td>
</tr>
</tbody>
</table>

Delaware

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>3208 CONCORD PIKE WILMINGTON, DE 19803</td>
<td>(302) 478-2757</td>
</tr>
<tr>
<td>DELAWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD NEW CASTLE, DE 19720</td>
<td>(302) 328-7726</td>
</tr>
</tbody>
</table>

Florida

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 DREW STREET CLEARWATER, FL 33575</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>621 COMMONWEALTH AVE. ORLANDO, FL 32803</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Georgia

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC’S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE ROSSVILLE, GA 30741</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Hawaii

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEEAUMOKU STREET HONOLULU, HI 96814</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Idaho

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>78 SOUTH STATE STREET P.O. BOX 234 PRESTON, ID 83263</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Illinois

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE. CHICAGO, IL 60630</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Indiana

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE HAM STATION</td>
<td>220 N. FULTON AVE. EVANSVILLE, IN 47710</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Maryland

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARYLAND RADIO CENTER</td>
<td>8576 LAURELDALE DRIVE LAUREL, MD 20707</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Massachusetts

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEL-COM, INC.</td>
<td>675 GREAT ROAD, RTE. 119 LITTLETON, MA 01460</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Missouri

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSOURI RADIO CENTER</td>
<td>102 NW BUSINESS PARK LANE KANSAS CITY, MO 64150</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

Nevada

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE LAS VEGAS, NV 89106</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>

New Hampshire

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDON DERRY ROAD DERRY, N. H. 03038</td>
<td>Mon-Sat: 9-5:30, Sun: 9-3</td>
</tr>
</tbody>
</table>
MAKE CIRCUIT BOARDS
WITH TEC-200 FILM

JUST 3 EASY STEPS:
Copy circuit on TEC-200 film using any plain paper copier
Iron film on to copper clad board
Peel off film and etch

SATISFACTION GUARANTEED

5-Sheets for $3.95
10 sheets only $5.95
Add $1.25 postpay - NY res. add sales tax

The MEADOWLAKE Corp.
DEPT. L, P.O. BOX 497
Northport, New York 11768

Pennsylvania

HAMTRONICS,
DIV. OF TREVES ELECTRONICS
4033 BROWNSVILLE ROAD
TREVISE, PA 19047
215-357-1400
Same Location for over 30 Years

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

K COMM dba THE HAM STORE
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110
800-344-3144
Stocking all major lines. San Antonio's Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

Mission Communications
11903 ALEIF CLIDINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764
Now in Southwest Houston—full line of equipment. All the essentials and extras for the "ham."

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

Fast & Easy to Build
- 4225 5/8x5" Board, 1100 Hu
- 4225 3x5" Board, 1070 Hu
- 4225 3x3" Board, 1020 Hu
- 4225 2x2" Board, 970 Hu
- 4225 1x1" Board, 840 Hu
- 4225 0.5x0.5" Board, 580 Hu
- 4225 0.25x0.25" Board, 77 Hu
- 4225 0.125x0.125" Board, 7 Hu

Amateur Radio Dealer
Better DXing in 1989

Now that the new year’s begun, take time to consider ham radio DXing. It should be a new kind of year for this activity. The sunspot number will climb to very near maximum by the end of 1989, so now’s the time to evaluate how your station performs on the higher frequency bands. The maximum usable frequency (MUF) for December 1989 is expected to reach 27.5 MHz at midlatitudes. MUF’s nearly twice those in recent sunspot minimum years are expected. And, since the last sunspot maximum, we are allowed to use two new bands that we didn’t have at the last sunspot maximum. These are 12 meters (usable now) and 17 meters (available July 1, 1989).

If you need a new rig to cover these bands, you may want a more powerful one. But the new bands (particularly 12 and 17 meters) are up where signal absorption isn’t usually a great problem. However, you may want to evaluate your antenna’s ability to put the signal where you want to DX. The signal increase you’ll gain from coupling the antenna to the ionosphere to work your favorite DX area is well worth the effort. Choose the antenna that best increases your station’s signal strength by homebrewing or selecting one of the many on the market. Directional antennas are highly recommended and not too difficult to build on 12 meters. A horizontal antenna can be placed high enough (60 feet) to give a signal takeoff angle of 10 degrees for general DXing, but you’ll need to determine the height that gives you the best angle to put the signal at the correct distance. While they are inherently low-angle radiators, vertical antennas need good ground radial systems and correct array phasing to put the best signal at the needed distance and place.

Last-minute forecast

Expect the first and second weeks to have openings in the higher frequency bands (10 to 30 meters). This is due to higher solar flux. Some openings may provide excellent signals to southern countries in the late afternoon and evening. Ionospheric disturbances could enhance these openings near the 5th, 11th, and 18th. Paths to Japan and Europe may have fluctuating signals and lower MUF’s during these disturbed periods. Conditions will be favorable for winter absorption anomaly openings 3 to 4 days after the disturbance around the 18th. Check WWV for the STRATWARM announcement, along with the position of the poor signal area and its 180-degree partner. The strong signal openings are at positions in between. These openings are usually for the lower frequency bands near the evening, but do extend into the higher bands.

Lunar perigee is on the 12th; the full moon appears on the 22nd. An intense but short-duration (a few hours) meteor shower — the Quadrantids — will occur between January 2 and 4.

Band-by-band summary

Ten and 12 meters, the highest daylight-only DX bands, are nearest the MUF for Southern Hemisphere paths. They will be open during the 3 to 5-hour period centered on local noon most days when the solar flux is above 150. These bands open on paths toward the east and close toward the west. The paths are up to 4000 km (2400 miles) in single-hop length, and will double on occasion during evening transequatorial openings.

Fifteen and 17 meters daylight-only DX bands (open most of each day) have lower signal strengths and greater multipath variability than 10 and 12 meters. Propagation will be best when the MUF is resting just above these bands, up until the time it drops below them. This transition period occurs soon after sunrise and just before sunset. Transequatorial openings will occur with distances similar to 10 and 12 meters.

Twenty, 30, and 40 meters are both daytime and nighttime DX bands. Twenty is the maximum usable band for DX in the northern directions during the day and, in combination with 30 meters, provides nighttime paths for the day-only bands. Forty meters becomes the main over-the-pole DX daytime band, with some hours covered by 30 meters. This path and east-west paths may be affected by 10-20 dB of anomalous absorption during a few days of the month.

Eighty and 160 meters, the nighttime DX bands, exhibit short-skip propagation during daylight hours and then lengthen at dusk. These bands follow the darkness path, opening to the east just before local sunset, swinging more to the north-south near midnight, and ending up in the Pacific areas for a few hours before dawn.

Article L
ANTENNA MODELING

Easy to use, with menus, and optional mouse. Enter parameters, and get a color coded sinusoidal projection of a MW or SW antenna. Move over the projection with a mouse or cursor and read the gain at that point.

LONG WIRE PRO models long wires, see, dipoles, and rhombics displaying a sinusoidal projection. $40

VERTICAL PRO models verticals or arrays displaying a sinusoidal projection, a ground wave plot, and the impedance of each element. $80

IBM PC compatible. DOS 2.0 or higher. 256K, CGA or EGA color required. International orders add $5 shipping.

EPISONL CO
Box 715, Trumbull, CT 06611, (203) 261-7694

QRZ CONTEST!™

VHF Contest Software for PC Compatible

Now only $19.95 postage paid

- Covers: ARRL Sprints, VHF QSO Parties, UHF, Jan. Sweepstakes, & the CQ World Wide VHF WPX
- Menu driven and user friendly
- Color and options user configured
- Grids worked display on-line!
- Full dupe checking & log editor
- Full cursor control. for data entry
- Handles multi-op contest stations
- Handles 4000 contacts with 256K
- HF version available Jan. 1989

ATFAB Computers and Electronics
P.O. Box 4766
Maineville, OH 45039
(513) 683-2042
Accepted

LOGWRITE

Bring your station into the computer age with LOGWRITE. The menu driven, user friendly logging program written by Ed Tiny (NGV). LOGWRITE is the perfect accessory for the competitive ham. It simplifies your operation and gives you the competitive edge. It converts your operation and makes it easier.

LOGWRITE's unique split screen feature allows for simultaneous logging and test processing. Logging features include:

- Instant call sign or prefix search
- Print Est. or View records
- Plenty of room for notes & addresses
- Automatic time/date stamping

Test processor features automatic word wrap, backspace cursor, and scrolling. These are your pen and paper!

To order your copy of LOGWRITE, complete with instruction manual, send $24.95 (50 cents sales tax inc)

Aerospace Consulting
P.O. Box 156, Gwynedd, Pa. 19436
On call 1-800-234-1456 ext 54 to order with Visa/Master Card. (Please specify 3.5 or 5.25 inch floppy.)

VHF-UHF POWER DIVIDERS

RF power dividers provide the best way to feed in phase two and a antenna arrays to maximize system gain and at the same time reduce losses to a minimum. Covering 1-44 to 1296 MHz, this series of VHF-UHF power dividers are premier RF devices designed for a long service life with low SWR and broad operating bandwidth.

Extruded aluminum body with a flat metal plate in addition to silicon sealing at connector flanges results in a ruggedized unit for all array installations. Available with N-type connectors only. These units are unconditionally guaranteed for 2 years.

STROEBER ENGINEERING CO.
P.O. Box 7973 * Shreveport, LA 71107 * USA
Phone: (318) 669-0003

THE WIREMAN

1-800-433-WIRE
FOR ALL AMATEUR WIRE & CABLE
Beident & Equivalent
(803) 895-4195 (SC & Ragchew)
CERTIFIED COMMUNICATIONS
PITTAYAN ROAD, ROUTE 2 LANDRUM, SC 29356

MADISON SHOPPER

CALL FOR ORDERS
1-800-231-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
FAX 1-713-771-7759

ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

Now Icom IC 781 Trades wanted
Kenwood TH 215A, TH 205AT Trade in your old HT
Now Kenwood TM 663A, 144/220 MHz FM

NEW

Kenwood TH 215A mobile

New Kenwood TM 721A mobile

LASCOW

IC 781

Call

Icom 761

Shure 444D

HEIL BM 10 Boom Mike, wired 6 pin

HEIL HMS Desk Mike

NYE MBSA Tuner

Alpha Delta Transmissor HV

CSI Private Patch IV

Amtech PT 3 Pre Amp

Larsen 2 meter on glass

Antecos 2M, 5R, Mag. Mount, Comp

Van Gordon GSPV

Value ABS mobile

Thousands of panel meters

Aerovox 1000 pF/500 V withstand cap

Transformer 120 V P, 1050 V 1/4 A, (Sec. 18 Wire)

100 mhp/50V Axial Cap

100 mhp/50V Axial Cap

Arista SWR Bridge 3-30 MHz

831SP PL 259 Silverplate (Amphenol)

83-61 N Male (Amphenol)

83-202-1006 N Male (9913)

Double Female UHF

UG 176 RG8X

Surplus Elbow PL 259 50239

Each $1

Receiving tubes $50.00 off retail price

Santele Boom Mike/Headset (Icom) $20.00

Rohn SA 25G 67 (67 inside arm)

Each $125

USED EQUIPMENT

All equipment, used, clean, with 90 day warranty and 30 day trial. Six months full trade against new equipment. Sales price refunded if not satisfied. Call for latest used gear.

Don's Corner:
Use or lose it!
Our new WARF bands are far from fully occupied. If we don't get on the stick and keep them active, other interests are going to petition the FCC to reallocate them. What is it going to take?

GUN INV PROD
TE Systems 2m Amp 30-160 watts GaAs fet $226.00

POLICIES
Minimum order $10.00. Mail order, VISA, or C.O.D. All prices FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call anytime to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty. Bird and Belden products in stock. Call today.

MADISON ELECTRONICS SUPPLY

3621 FANNIN
HOU1TON, TExAS 77004

January 1989
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

*Look at next higher band for possible openings.

HAM RADIO

98 HAM January 1989
R-7000 Widespan Panadapter
Panadapter especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 MHz. Uncover unknown elusive signals. Complete with all cables, & 90 day warranty. $349.95 Shipped. Pa. res. add 6%.

GTI Electronics
RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

THE RF CONNECTION
"SPECIALIST IN RF CONNECTORS AND COAX"
Part No. Description Price
321-11064-3 BNC 2 PST 98 volt coaxial relay, 83-802 $16.00
Amphenol
1.068 Insertion loss: 8 to 0.75GHz.
Power rating: 25 to 8.0GHz, 190 watts C.W. 2 w peak
Isolation: 0.4 GHz-450Mhz. 0.2 GHz. 255 used 430b, 8.4 GHz.35 db tested
83-802 PL-T9046 Teflon, Amphenol $1.50
45 RG-6 Pl-296 ST LHF Male Silver Teflon, USA $1.50
UG-2100 N Male RG-8, 213, 214, Amphenol $2.95
UG-2180 N Male RG-8, 213, 214, Kings $4.00
9913/PIN N Male Pin for 9913, 9086, 8214 $1.50
UG-2190/9913 N Male for RG-8 w/9913 Pin $3.95
UG-2190/PIN N Male for RG-8 w/9913 Pin $4.75
UG-3880 N Male to SO-239, Teflon USA $5.00
UG-3880/PIN Female to SO-239, Teflon USA $5.00

"THIS LIST REPRESENTS ONLY A FRACTION OF OUR HUGE INVENTORY"
THE R.F. CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477
VISA/MasterCard: Add 4% Prices Do Not Include Shipping

Nodal Analysis
Input Impedance, VSWR, Return Loss, Ref Coef(S11), MM loss.
Transducer gain (S21), Voltage or Current Gain, Z21, Z21.
Transmission Lines, Crystal Models, Coiled Inductors, Transistor Model.
CGA, EGA Graphics, 8087 supported.
MS-DOS Computers
Send $50 Check or Money Order to
Gary Appel
1318 Old Abbey Place
San Jose, CA 95132

Affordable Packet

TINY-2 is our new low-cost high-performance standard for packet controllers. Thousands already in use worldwide. A perfect beginner's unit. Complete, wired and tested only $119.95

BENEFITS and features of both units:
- Optional personal message system (mini-BBS) add $10.00.
- Tiny enough for briefcase/portable, yet large enough for easy experimentation or repair.
- 1-year limited warranty, excellent customer support.
- RS-232 and TTL compatible—all connectors supplied.
- Latest AX.25 software, TCP/IP (KISS) module included.

MICROPOWER-2 is our remarkably compact, 18-ounce unit using upgraded TAPR TNC-2 technology that requires less than 40 millamps! For very portable operation, solar or battery, you need not pay more for a TNC that's about the size of your HT! Was $179.95 now at a low $159.95

Fully compatible with ROSE & NET/RSM EPROMS.
32K RAM, 32K ROM, 4.9 MHz CPU.
Xtal controlled modem, compatible with use on 10m HF/VHF/URH.

TO ORDER, toll-free with major charge card, call: 1-800-222-3511
Technical support line: 813-872-2980

Pac-Comm
3652 West Cypress St., Tampa Fl. 33607

Please send: TINY 2 MicroPower-2 TNC-220 info FREE Packet Catalog.

INTERFERENCE?

- Interference Location
- Stick Microphones
- Cable TV Leaks
- Security Monitoring

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

DOPPLER SYSTEMS, INC. P.O. Box 31819
Phoenix, AZ 85046
(602) 488-9755

ATV CONVERTERS / HF LINEAR AMPLIFIERS

HF AMPLIFIERS per MOTOROLA BULLETINS
ATRF, ATRF-2206, ATRF-2206C
ATRF-2206C $25.95
ATRF-2206 $20.95
KA2206 $25.95
RF-2206 $25.95

AMATEUR TELEVISION CONVERTERS
AUTO TV/2 Post $50.95
AUTO TV/4 Post $60.95

AUDIO SQUELCH CONTROL for ATV
Squelch $79.95

AMPLIFIER HF AMPLIFIERS
25Watt Model USA $79.95
25Watt Model USA $115.95
Available in kit or wired and tested

HFO CONVERTERS

CAR 180 VHF $85.95
CAR 180 UHF $85.95

TERRESTRIAL DEVICES HF
HF-2206 $25.95
HF-2206C $29.95
HF-110 $69.95
HF-110C $79.95
HF-110D $89.95

HEAT SINK MATERIAL
Model 99 Heat Sink 3x1x1 $12.95
Model 13 Heat Sink 4x1x1 $22.95
Add $5.00 additional shipping

CABLES
HF-2206 $25.95
HF-2206C $29.95
HF-110 $69.95
HF-110C $79.95
HF-110D $89.95

AMPS
AMPS-2206 $25.95
AMPS-2206C $29.95
AMPS-110 $69.95
AMPS-110C $79.95
AMPS-110D $89.95

Add $3.00 shipping and handling

COMMUNICATIONS CONCEPTS INC.
500 Millstone Drive, Xenia, OH 45385 *(513) 239-9677
the polarity of both batteries and the milliammeters. The results were much the same (although the actual numbers were different because the transistor had different characteristics). There was a small amount of leakage current (collector current flow when there was no measurable base current), but the collector current increased smoothly in response to changes in R1.

JFETs operate on a different principle; I'll get into that next month. Until then, why don't you grab a couple of old transistors and see what you can find out?

\textit{Article H} HAM RADIO
the higher bands
4CD and
several stateside contacts - all with excellent
edge indicated a maximum SWR of 1.3 to 1, with
will be a hot performer on 12 meters in the com-
reports. Owing to the newness of the 12-meter
band, and the relative lack of commercial
antennas it,
expect from a high-performance 4-element
months here in the Northeast, I was able to make
been marginal at best through the summer
trum, this antenna will make your signal loud on payload is an earth-looking
surface area of 3.9
up tower. The antenna is a delight to work with
remains straight-forward
simple with Cushcraft's updated instruction
manual showed the easiest way to
final set-up. To put the antenna together you
need a standard straight-blade screwdriver, a
small adjustable wrench, and a measuring tape.
I put all the parts together in a little more than
an hour. After I had assembled the
4CD, it took me about 15 minutes to install it on a crank-
up tower. The antenna is a delight to work with
on towers. It weighs just 21 pounds and has a
surface area of 3.9 square feet. It can be easily
installed by one person.
Performance of the 12-4CD is what you’d expect from a high-performance 4-element monoband Yagi. Tuning from band edge to band edge indicated a maximum SWR of 1.3 to 1, with
resonance at the center of the band. Although
the higher bands (i.e. 12 and 10 meters) have
been marginal at best through the summer months here in the Northeast, I was able to make
several stateside contacts — all with excellent
reports. Owing to the newness of the 12-meter
band, and the relative lack of commercial antennas it, I didn’t run comparative A-B tests. But from contest experience with Skywalker 10-
4CD and 15-4CD beams, I believe this antenna
will be a hot performer on 12 meters in the coming
years. If you’re looking to enjoy DX on 24
MHz and take advantage of our increased spect-
trum, this antenna will make your signal loud on
12 meters!

New precision tool stripping wire
OK Industries Inc. has introduced a new
adjustable precision wire stripper, the ST-500.
The ST-500 strips 20 to 30 AWG wire with four
specialized hardened blades that handle all types of wire insulations — including Teflon. Simply
turn the adjustment wheel to the appropriate
wire diameter, put the wire through the hole,
squeeze the handle, and turn the tool slightly to withdraw the wire.

Low cost, high gain hetero-
junction FET
California Eastern Laboratories announces the
NE3209A low noise, hetero-junction FET. Low
noise and high associated gain make the device
suitable for LNA, gain stage, and OSC applica-
tions in DBS, TVRO, and other low cost, high
volume products.
The performance features are as
follows:
NF: 1.5 dB MAX (1.3 dB TYP) at 12 GHz
GA: 9.0 dB MIN (10.0 dB TYP) at 12 GHz
Samples and mass production quantities are
available now from California Eastern Labora-
tories, the exclusive sales agent in North America
for NEC RF and microwave semiconductors. For
further information contact California Eastern
Laboratories, Inc., 3260 Jay Street, Santa Clara,
California 95054.
Circle #02 on Reader Service Card.

Consortium pioneers new
satellite class
A consortium of Amateur Radio groups
(AMSAT-NA, AMSAT-LU, and BRAMSAT —
Brazil AMSAT) and Weber State College,
Ogden, Utah are working together to construct
and launch a new class of ultra-compact "micro-
satellites" so small they can be launched on
virtually any launcher. The Tucson Amateur Packet
Radio (TAPR) organization is providing initial
financial support and ARRL is assisting with
design and construction support.
Each satellite consists of a common design
bus. Each bus carries a mission-specific payload.
AMSAT-NA and AMSAT-LU payloads are
packet radio transponders. BRAMSAT's payload
is a voice synthesizer transmitting easily-heard
VHF FM downlinks. The Weber State College
payload is an earth-looking CCD camera.
The most unique characteristic of each satel-
it continues on page 106)
29th ANNUAL
TROPICAL HAMBOREE
A.R.R.L. FLORIDA STATE CONVENTION
FEBRUARY 4-5, 1989
TAMIAI PARK FAIR GROUNDS
10901 S.W. 24th Street (Coral Way), Miami, Florida
HOURS: 9 A.M.-5 P.M. SATURDAY • 9 A.M.-4 P.M. SUNDAY

FREE PARKING 15,000 VEHICLES • 200 COMMERCIAL EXHIBIT BOOTHs
1,000 INDOOR SWAP TABLES • COMPUTERS & SOFTWARE
300 CAMPSITES WITH FULL HOOKUPS • LICENSE EXAMS

Registration: $5.00 Advance — $6.00 Door. Valid Both Days. (Advance deadline January 30th.)
Swap Tables, 2 Days: $16.00 each, Power: $10.00 per User.
All swap table holders must have registration ticket.
Campsites: $12.00 per Day • Includes Water, Power, Sanitary Hookups & Showers.
(All RV vehicles, tent campers, vans, trailers welcome — no ground tents, please.)
Headquarters Hotel: Miami Airport Hilton, 5101 Blue Lagoon Drive, $75.00 Single or Double
Alternate Hotel: Airport Lakes Holiday Inn, 1101 N.W. 57 Avenue, $50.00 Single or Double
Reservation forms available through Hambooree Chairman, December 1st

Make Checks for Registration, Swap Tables & Campsites Payable to: Dade Radio Club
Mail to: Evelyn D. Gauzens, W4WYR, Chairman, 2780 N.W. 3rd St., Miami, FL 33125

Exhibit Booth & Program Booklet Advertising:
Call Evelyn (305) 642-4139 (Home) — or — (305) 233-0000 (Office)
(BROCHURE WITH FULL DETAILS AVAILABLE DECEMBER 1st)
A balun for 10 meters

More so than the lower frequency bands, 10 meters is a hostage to the sunspot cycle. When the sunspot count is low, the band is dead. Only spotty, occasional DX shows up as a result of sporadic E or other chancy forms of propagation.

However, when the sunspot cycle is comfortably high the 10-meter band is a DX operator’s paradise. Signals boom in from all parts of the world, often with astounding strength. Many recently licensed Amateurs have never had the thrill of 10-meter DX. But after a false start last spring 10 meters is jumping once again, and there’s great interest in 10-meter antennas and antenna accessories.

Judging from my mail and conversations with newly licensed hams, the antenna balun is a confusing topic. I hear these questions: What is a balun? What does it do? Do I need one?

How the balun works

Let’s look at the workings of the balun first. The word “balun” stands for “balance-to-unbalance”. This implies that a balun provides two equal and opposite-phase voltages with respect to ground when driven from an unbalanced source, like a coax line connecting a balanced antenna (such as a dipole) to a coax line.

From another point of view, the balun provides isolation between the coax outer shield and the half of the dipole connected to it. If the balun were not present, some of the current flow in the coax shield would be present on the outside of the shield — not the inside. The current on the outside of the shield can radiate into space, making the coax line part of the antenna.

In the case of a beam, outer shield current can ruin an otherwise good front-to-back ratio, cause loading difficulties, and even lead to TVI and RFI problems. It can also cause erroneous SWR readings regardless of antenna type.

Some beam antennas and dipoles come with baluns, others don’t. You can buy or build a balun if you want one. Building a balun isn’t difficult, especially for 10 meters.

The 1:1 balun

There are many forms of baluns; the most popular Amateur type is the 1:1 design. This implies that when the balun is used with a 50-ohm coax line, it provides a balanced 50-ohm termination. Amateurs have found that this simple balun works well with balanced antennas having a feedpoint
impedance as low as 20 ohms, or as high as 80.

The simplest form of 1:1 balun is a choke coil made of coax line. The line is wound into a multi-turn coil about ten times the diameter of the coax. Most designs specify six to eight turns (fig. 1A). The electrical equivalent of this balun is shown in fig. 1B. The balun may be either air wound, or wound on a ferrite or powdered-iron core. (More about the core material later.)

If the balun is connected to a balanced and "floating" load (one that is not grounded), the balun will do the job. The magnetizing current (the current that creates the magnetic field in the core) is balanced in the windings and doesn’t upset the balanced output voltages. You can see this in fig. 1B.

There’s no guarantee that the driven element of the antenna is really balanced in an electrical sense. The degree of balance depends upon physical and electrical characteristics (mounting technique, parasitic capacitances, proximity of coax line, etc.) that you can’t measure or control. One solution to this problem is to physically ground the center point of the antenna (fig. 2A). The load is no longer floating to ground, but the magnetizing current no longer flows equally in the windings and the load! It’s shorted to ground by the ground point of the antenna (fig. 2B).

Here’s an example. Some beam designs employ a balun and delta-match feed system with the driven element grounded to the boom of the array (fig. 3). Intuition tells you the design is practical, but the illustration in fig. 2B clearly shows that half of the feed system isn’t working; the magnetizing current isn’t flowing through one balun winding. The two-winding balun isn’t doing the job it’s supposed to do.

The three-winding balun

In many cases the two-winding balun (coax line wound up into a coil) feeding an ungrounded, floating dipole is adequate. A better solution is the three-winding balun shown in fig. 4A.

Two-winding balun (coax balun, for example) is shorted out when coax shield and center of driven element are grounded to boom of antenna.

The third winding provides a path for the magnetizing current around the load, regardless of whether the load is floating or not (fig. 4B). Note that the polarity of the third winding is reversed. This is the ideal solution to the problem. The majority of 1:1 baluns on the market are made in this configuration. The simple coil-type coax balun can be readily converted into a three-winding balun. I’ll tell you how in the next section.

A homemade balun for 10 meters

Figure 5 shows a simple and inexpensive air-core three-winding coax balun you can build. The balun is usable over the range of 14 to 30 MHz. You’ll need a 25-1/2 inch length of RG-8A/U, a PL-259 plug and 3 feet of plastic covered no. 12 single conductor wire, available from most hardware or home improvement stores.

First place the PL-259 on one end of the coax cable. Next, remove 2 inches of the outer jacket of the opposite end of the line. Unbraid the outer braid and twist it into a pigtail. Now remove about an inch of the inner insulation. Place large soldering lugs on the two conductors. You’ll attach these to the terminals of the driven element. The exposed joint needs to be carefully covered later with CoaxSeal™ Radio Shack Connector Sealant 278-1645, or equivalent to make sure water doesn’t enter the coax cable.

Winding the balun

Next, wind the coax into a two-turn coil; leave about two inches of coax free on each end. Do this by manipulating the size of the coil. The coax plug and pigtail should lie very close to each other on the same side of the coil. Hold the coil in position with bits of vinyl tape.
Now add the third winding to the coil. Carefully wind the plastic-covered wire in parallel with the coax. This is easy because there are only two turns to the coil. Smooth the wire up against the coax and tape it in place every few inches. When you've finished, the wire will be running closely parallel to the coil. Smooth the wire up against the coil completely.

Finally, attach the wire to the coax winding. If the coil size is right, there will be about 2 inches (or less) of coax free of the coil at each end. The wire winding is cross-connected at the ends of the coax. (See fig. 6.) The end of the wire nearest end A of the coax is connected to end B of the coax. Do this by soldering one end of the wire to the shell (not the ring!) of the PL-259 and the other end of the wire to the free center conductor lead, just before it enters the soldering lug. Trim the ends of the wire as you proceed so that no loose wire is left at either end of the coil. After everything's in place, wrap the complete coil again with vinyl tape and waterproof the wires at one end of the balun with the coax tape.

That's all there is to it! The power rating of the balun is the same as that of the coax line.

You can also make a smaller, lighter balun for low-power applications by substituting RG-58B/U coax for the RG-8A/U. A PL-259 plug and UG-175 reducing adapter are used at one end of the balun; otherwise, all is as described earlier.

Modifying the balun for wideband use

The three-winding coax balun can be modified for lower frequency use. If you use three turns instead of two for both windings, the operating range of the balun is 7 to 30 MHz; with five turns, the range is 3.5 to 18 MHz. A six-turn design didn't work very well as it was difficult to hold the wire coil in close proximity to the coax coil.

The ferrite-core balun

The air-core balun I've described is somewhat limited in low-frequency response. Even the five-turn design wasn't too good at the low-frequency end of the 80-meter band. You can extend the low-frequency limit by adding turns to the balun, but it's difficult to make an air-core balun that's electrically unbalanced function properly on the 80-meter band.

The solution is to use a higher permeability core. Both ferrite and powdered-iron cores that will do the job are available. The core can be a rod or a toroid. At the higher frequency end of the spectrum the core is almost "invisible," but the core is most important as the frequency of operation is lowered. At 80 meters, the entire balun field is contained within the core. Some manufactured baluns must be derated on 80 meters to prevent the core from running too hot. Many of them won't function at all on 160 meters. But the need for a balun on the lower bands is questionable; few highly directional antennas are used at these frequencies. In the case of a simple antenna like a dipole, current flow on the outside of the coax is no big deal. If the coax line is made an odd multiple of a quarter wavelength (1/4, 3/4, etc.), and an effective ground is used on the transmitter, current flow on the outside of the coax will be at a minimum.

The perfect balun really exists only in the laboratory; practical low-cost baluns work, but exert some influence on antenna resonance. Wideband, Amateur-style ferrite-core HF baluns usually have a design frequency of about 10 MHz and are useful over the 3.5-30 MHz range. Air-core coax-wound baluns have about the same design frequency, but are useful only down to about 4 MHz. In either case, above or below the design frequency, the balun appears as a reactive load and introduces its own SWR anomaly into the picture. Figure 7 shows the SWR response of a typical wideband balun working into a 50-ohm load. The balun is good, but not perfect. The reactive effect of the balun, when you're operating with an antenna, is to move the resonant frequency of the antenna either higher or lower. A beam cut to 14,150 kHz, for example, may seem to be resonant at 14,220 kHz and "look like" 48.5 ohms when checked through a 50-ohm balun.

Dial cards for the TL-922A amplifier

I was working Bob, KL7DJI, in Fairbanks, Alaska the other day; he gave me a great idea for tuning charts for a linear amplifier. I made up a set, and they have proved invaluable for quick band changes (fig. 8).

The idea is simplicity itself. Cut a dial card from heavy paper. (I used index cards to make mine.) Slot the card to

Figure 7

Ferrite-core trifilar balun shows good response between 6 and 25 MHz. Performance is poor at 80 meters (3.5-4.0 MHz) and 10 meters (28-30 MHz). Balun is terminated in 50-ohm noninductive load.
Free catalog of tools and test equipment

Jensen Tools Inc. offers a free catalog of tools and test equipment. Illustrated in full color, the 160-page catalog lists many new products. The catalog features over 50 tool kits. Other major categories include: hand and power tools, (English and metric) tools and accessories for fiber optics and wire/cable systems, static control products, soldering/desoldering supplies, lighting and optical aids, circuit board accessories, test cables, carrying cases and shipping containers.

For your free catalog, write or call Jensen Tools Inc., 7815 S. 46th Street, Phoenix Arizona 85044. (602)968-6231.

Circle #004 on Reader Service Card.

New computer interface option

Advanced Computer Controls, Inc. announces the new computer interface option for the RC-850 Repeater Controller. The interface opens up remote control, programming and information access to FM repeater systems from a home computer or terminal via telephone modem or packet TNC.

The user interface resembles a packet BBS. It's menu driven with lots of on-line help.

Information that can be downloaded from the controller includes a "front panel display," command log, metering information, activity information, and the contents of the programmable memory. All controller commands may be entered through the remote terminal with text responses displayed on the terminal screen. Programmable speech and Morse code messages stored in the controller may be viewed directly as text. They can be reprogrammed by typing the letters and words directly, without referring to vocabulary codes.

Two additional Touch-Tone decoders on the interface provide access to FM repeater systems from a home computer or terminal via telephone modem or packet TNC.

A Vocabulary Expansion Option increases the...
size of the synthesized speech vocabulary to 530 words.

The price of the Computer Interface Board is $350; the Vocabulary Expansion Option is $75. For additional information, contact [Advanced Computer Controls, Inc.], 2356 Walsh Avenue, Santa Clara, California 95051. Or call 1-408-727-3330.

Circle #05 on Reader Service card.

MFJ-986 3 KW differential-T antenna tuner

MFJ Enterprises, Inc. has introduced the new MFJ-986 3 KW Roller Inductor Differential-T Antenna Tuner. This unique design uses a single differential capacitor in place of two variable capacitors. It covers 1.8 to 30 MHz continuously, including MARS and all the WARC bands.

The differential capacitor makes tuning easier because you get minimum SWR at only one setting and have only two controls to adjust. It also gives you a broadband response that eliminates constant retuning.

A three-digit turns counter plus spinner knob gives precise inductance control for instant return to a favorite frequency.

The compact 10-3/4" × 4-1/2" × 15" aluminum cabinet has plenty of room to mount the silver-plated roller inductor away from metal surfaces for highest 'Q' and maximum power into your antenna.

A lighted two-color peak and average reading Cross-Needle SWR/Wattmeter lets you read forward and reflected power and SWR at a glance. It also has a new directional coupler that gives more accurate SWR and power readings over a wider frequency range.

A six-position antenna switch lets you select two coax lines and/or random wires (direct or through tuner), balanced line and external dummy load.

A new current balun for balanced lines reduces feedline radiation, field pattern distortion, and TVI. Ceramic feedthrough insulators for balanced lines withstand high voltages and temperatures.

The new MFJ-986 3 KW Roller Inductor Differential-T Antenna Tuner is priced at $239.95 and comes with MFJ's one-year unconditional guarantee.

For more information or your nearest MFJ dealer contact MFJ Enterprises, Inc., P. O. Box 494, Mississippi State, MS 33976, or order toll free at 800-647-1800.

Circle #06 on Reader Service card.

AND THE BRAWN.

(rated dissipation 290 watts each) operated at 24 volts for excellent intermodulation rejection in transmitter.

Enhanced C.A.T. system for external control of transceiver from personal computer. (Software for Apple IIe/MAC, Commodore C-64, and IBM-PC is available through your Yaesu dealer.) There's also data communication with the FL-7000 linear amplifier for hands-free amplifier operation.

The muscle to get you out: The FL-7000. This solid-state amplifier covers 160 to 15 meters, and includes a built-in power supply, automatic tuner and lots of powerful operating features.

There's fast turnaround time for break-in (QSK) CW, HF packet radio, and AMTOR. Only 70 watts excitation for full output, and 1200 watts PEP input power. Fully protected push-pull parallel wideband "no-tune" amplifier circuit powered by 47V, 25A DC power supply. Yaesu's exclusive "DVC" (Direct Vertical Cooling Heatsink System) with bottom-mounted fan. Automatic antenna matching sensor turns off amplifier and rematches tuner circuitry if SWR rises above 2.1. Hands-free automatic band change when used with FT-787GX, FT-787GN or FT-880. Lithium battery backup remembers antenna selection and tuner settings. Dual 2-speed fans with independent thermal sensors. Connection to up to four antennas, including automatic selection via optional unit. Eight front panel LED status indicators. And more.

Get the DX advantage. Just combine the FT-787GX's brains, the FL-7000's brawn, and your special operating knowledge. What an impact you'll make on the world!
CELEBRATE

the 75th anniversary of ARRL
with a new Handbook!

1989 marks the 75th anniversary of the founding of the League. There's no better way of celebrating this momentous occasion, than with the new 1989 ARRL Handbook for the Radio Amateur!

The 1200-page sixty-sixth edition contains over 2100 tables, figures and charts. The new Handbook is better than ever with revised information on phase noise measurement, direct frequency synthesis and spread spectrum communication techniques. The section on repeaters has been updated including a new CW identifier circuit. You'll find new spectrum analyzer and oscilloscope material, as well as several new projects in the test equipment chapter.

As always, we've added a host of new construction projects to this new edition. Just some of the new projects include: A 500-MHz frequency counter, 160 through 10 meter legal limit amplifier, simple CMOS keyer project, digital audio memory keyer and a L/Q meter for measuring coil inductance.

But that's not all. You'll find many other popular construction projects that can be built in a weekend such as power supplies and VHF/UHF preamps. For the more ambitious builder there are projects like the 1.8 MHz QSK transverter (there are VHF/UHF transverter projects too) and there are many amplifier designs to suit your needs from HF through microwaves.

The Handbook has always been famous as a reference for component data and you will find an entire chapter devoted to everything from transmitting tube and transistor specifications to aluminum tubing sizes. Satellite enthusiasts will find that the digital TR sequencer will add operating convenience to your station. Of course, you'll find the most up-to-date information on digital techniques, and the video communications chapter is packed with information not only on SSTV, ATV and FAX but Weather FAX as well. QRP enthusiasts will find the famous "Cubic incher" transmitter; not much bigger are the QRP SWR indicator and QRP Transmatch. There is also a VXO-controlled 6-watt CW transmitter for your favorite band between 80 and 15 meters. There are a number of useful station accessories that you can build like DTMF encoders and decoders, PIN-diode TR switch, digital PEP wattmeter and SWR calculator, Transmatches and dummy loads.

For $21, The ARRL 1989 Handbook for the Radio Amateur, remains an exceptional value for a hardcover technical publication. The price outside the US is $23. For postage and handling, add $2.00 (or $3.50 for insured mail or UPS — please specify)

The American Radio Relay League, Inc., 225 Main St., Newington, CT 06111 USA
Dial card for TL922A amplifier. Cursor marks enable fast tuning. One card is made for each band.

drop down behind the “tuning” and “loading” panel controls. You’ll need one card for each band.

Tune and load the amplifier and transfer the dial settings to the card. Just mark a line on the card that corresponds with the line indicated on the dial. Then, when you retune, slip the proper band-dial card in place and readjust the dials to the marks. This idea also works well with the various transceivers that have adjustable tuning and loading controls.

The “Dead Band” contest

Aha, you Couch Potatoes! I really caught you with my second quotation quiz! The cable:

STORY TRUE. AWAIT ME ALGERS. BURROUGHS

is the beginning of Pellucidar, by Edgar Rice Burroughs. This is the transatlantic cable sent by Burroughs to Cogdon Nestor, who had found the telegraph line laid by David Innes connecting the Sahara Desert to Pellucidar — 500 miles below the earth’s surface.

To date (late August), the only sharp-eyed readers who identified the famous cable are: Bob Clarke, N1RC; John Brown, G6GJB; and Bill Lathan, K5K. Good work! My condolences to W0TDH, NW2V, W9VE, and W50WS who came close.

Thanks to the following detectives who correctly identified the quote from Sherlock Holmes: Gerry Skloot, KE2N; Howard Tooker, W3TL; Ben Richardson, W11CUG; Louis Axeman, Jr., N8LA; Dan Deckert, WA6FQC; Mike Mahoney, WA1KNQ; Chris Kirk, KA1RSV; Dave Fordham, KD9LA; Peter Chadwick, G3RZP; Charles Rhine, AA8M; Cliff Watkins, KB7ADF; Jeff Rahmel, KA82AW; John Peak, K6EH; Don Murray, W9VE; Jim Josenhans, WB2LEH; Bob Clarke, N1RC; John Nagle, K4J; and Dale Hunt, W86BYU. Congratulations to all!

This month’s “Dead Band Quiz” is an easy one. Name the book and author. If you don’t know, ask your XYL or girl friend: “Last night I dreamt I went to Manderley again.”

If you think you can identify this quotation, drop me your answer on a QSL card: Box 7508, Menlo Park, California 94025. Good luck!

Article M

HAM RADIO

1500 + WATT TRANSMATCH KIT $169.95

OTHER KITS

G3RUH, PSK Packet Modern, Satellite and Terrestrial ... $111.00
G3RUH, OSCAR 13 Telemetry Demodulator ... $144.95
QRP 20, 5w, 20 meter Transceiver (HR 1/89) .. $124.95
W1FB 160/80 Pre Amp (QST 8/88) ... $19.95
K9CW Memory Contest Keyer .. $109.00
Yaesu FRG-9600, 1 to 60 Mhz Converter ... $94.95
20m CW, 15w Transceiver (HR 8/87) ... $159.95
50W 75M SSB SCVR .. $199.95

Factory Wired

Amp Supply/Ameritron/TenTec Products CALL B&W PT-2500A Amp ... $1,670.00
B&W VS1500A Tuner .. $388.00
Net-Tech DVK-100A (Free Repeat Option) ... $269.00
Shipping Extra Unless Noted Catalog $1.00

RADIO KIT + P.O. Box 973-H

Pelham, NH 03076 * (603) 635-2235

dials, terminals, chassis, ceramic standoffs, hardware, tuners, amp components, B&W coil stock, etc.

SAVE TIME and MONEY with THE HAZER

Bring down hills for safety and convenience.

NEVER climb your tower again with this elevator system. Antennas and rotator mounts on HAZER; complete system transmits tower in vertical upright position. Safety lock system operates while raising or lowering. Never can fall.

Complete kit includes winch, 100 ft. of cable, hardware and instructions. For Rohn 20 and 25 G Towers.

HAZER-2 Heavy duty alim. 12 sq. ft. load $311.95 ppd.
HAZER-3 Standard alim. 8 sq. ft. load $221.95 ppd.
HAZER-4 Heavy gauge, steel 16 sq. ft. load $291.95 ppd.

NEW FOR Rohn 45 and 55 Towers

HAZER-8 Heavy duty galvy steel 16 sq. ft. load $352.95 ppd.
HAZER-10 Heavy duty galvy steel 16 sq. ft. load $321.95 ppd.

CALL

Ball Thrust Bearing TB25 for any size tower. Call for price

Send for full details of aluminum towers specifically engineered for use with the Hazer. Two sizes: M-15 (13" wide) and M-18 (16" wide). All bolted construction, no welds. Easy to install hinge base, walk up erection. Complete tower UPS or air freight shipped. Pre-assembled or kit form.

Satisfaction guaranteed. Call today and charge to Visa, MasterCard or mail check or money order.

GLEN MARTIN ENGINEERING INC.

Rte 3, Box 322

Boonville, MO 65233

(816) 882-2734 FAX 816-882-7200

PC Slow Scan $149.95

A complete slow scan television station for your IBM PC or compatible. Send and receive images in up to 10 shades of gray depending upon your graphics card and printer.

Includes:

Demodulator Modulator 75 Page Manual Software Tutoria Cassette

Requires:

Ham transceiver PC with 640K Parallel Port Graphics Card Tape Recorder Serial port

Slow Scan Formats: 8.12,17,23,34,36,48,72 sec

Software Systems Consulting

1303 S. Olia Vista

San Clemente, CA 92672

(714) 498-5784
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, the appropriate reader service number make a check mark in the space provided. Mail this form to
ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name:

Address:

City: State: Zip:

*Please contact this advertiser directly. Please use before March 31, 1988.

READER SERVICE # PAG E #

116 - Ace Communications, CA 25

117 - ACX Communications, IN 52

136 - Advanced Computer Controls 53

136 - Advanced Receiver Research 54

136 - AEA ... 55

170 - Aerospace .. 97

157 - All Electronics Corp .. 84

3 - Allied Appliance & Radio 05

162 - Alumina Tower Co ... 87

152 - AMC Sales, Inc ... 75

149 - Amtron ... 63

132 - Amidon Associates .. 53

179 - AMSAT ... 120

146 - Antonio West ... 101

120 - Antique Radio Classified 07

151 - ARRL .. 108

117 - Astron Corp .. 28

171 - ATV Fab Transistors and Computers 97

143 - Azimuth ... 65

* Barker & Williamson ... 21

* Barry Electronics .. 82

139 - Bid Company .. 61

115 - Buckmaster Publishing 93

116 - Buckmaster Publishing 100

181 - Buckmaster Publishing 100

181 - Butternut Electronics 47

119 - C & S Sales ... 30

146 - Caldwell Corp .. 72

173 - Certified Communications 97

134 - CIE .. 52

175 - Communication Concepts, Inc 99

122 - Communications Specialists 41

123 - Connect Systems Inc 100

186 - Crystal Crystals .. 72

141 - Cygnus-Quasar Books 61

121 - Datacom, International 23

174 - Doppler Systems .. 99

144 - Doug Hall Electronics 22

164 - DRFI ... 83

171 - Electronic Equipment Bank 69

148 - Engineering Consulting 95

194 - Epillon Company ... 97

160 - Fair Radio Sales ... 61

169 - Range Line ... 87

167 - Gallatin Radio Supply 93

* Gary Appel .. 99

125 - GTF Electronics ... 45

177 - GTI Electronics ... 09

70 - G horizon ... 99

110 - Hall-Tronix .. 21

137 - Ham Radio Outlet .. 56

144 - Ham Radio's Backrooms 48

* Hamtronics, NY .. 71

* Hamtronics, PA .. 93

* Heath Company .. 15

102 - ICOM America, Inc .. C11

* International Crystal Mfg Co, Inc C11

161 - International Radio ... 87

153 - Jan Crystals .. 81

115 - Jensen Tubs, Inc .. 22

ADDENDUM TO "THE HAMFEST"

Please contact this advertiser directly. Please use before March 31, 1988.

READER SERVICE # PAGE #

130 - Jun's Electronics .. 61

100 - Kantronics ... 16

135 - KCom, The Ham Store 97

159 - Kenwood USA Corporation 2, 5, 7, CIV

106 - Madison Electronics Supply 12

169 - Madison Electronics Supply 97

118 - Magnicore Electronics Laboratory 27

185 - Glen Martin Engineering, Inc 109

166 - The Meadrowake Corp 95

105 - MFU Enterprises .. 8

130 - Micro Control Specialists 50

127 - Milon ... 31

198 - Missouri Radio Center 111

120 - Mobile Mark, Inc .. 31

145 - Monitoring Times .. 67

155 - Moton Electronics ... 80

111 - Multifax ... 23

147 - NCG .. 72

* Nemal Electronics .. 54

183 - Nuts & Volts ... 102

123 - Wm. M. Nye Co, Inc 46

189 - OPTOelectronics ... 112

114 - Orlando Hamvention .. 50

117 - Pac-Comm Pocket Radio Systems, Inc 99

156 - Radio Amateur Callbook 85

184 - RadioNet ... 109

119 - Radio Shack .. 17

178 - Ramsey Electronics, Inc 101

176 - The RF Connection .. 97

129 - RF Enterprises .. 49

140 - RF Parts ... 110

124 - Sherwood Engineering 100

129 - Software Systems ... 45

186 - Software Systems ... 109

* Strandsburg Engineering Co 97

145 - STVOnSat ... 67

126 - Synthetic Textiles, Inc 45

163 - TE Systems .. 91

127 - Tel-Com ... 47

* Tropical Hamboire ... 102

113 - Vanguard Labs ... 77

104 - Varian EMAC .. 13

149 - VHF Communications 97

160 - W9GIN Antennas .. 87

158 - Wi-Comm Electronics Inc 87

182 - Yaesu USA .. 106

190 - Yaesu USA .. 55

* ^E. Yost Co .. 72

PRODUCT REVIEW/NEW PRODUCT

* 305 - Advanced Computer Controls 106

* 303 - AMSAT ... 101

* 302 - California Eastern Laboratories Inc 101

* 301 - Cushcraft Corp .. 101

* 307 - Hudson Co .. 101

* 304 - Jensen Tools Inc .. 106

* 306 - MFU Enterprises ... 107

* 301 - OK Industries Inc 101

110 January 1989
Missouri Radio Center

DEPENDABLE SERVICE
AT THE RIGHT PRICE... EVERYTIME

MasterCard—VISA—Discover

ICOM—KENWOOD—YAESU—UNIDEN—ASTRON—KANTRONICS

KODER

180-00-821-7323

ORDER TOLL-FREE

102 N.W. Business Park Lane Call For Best Trade-In Deal Kansas City, MO 64150

Call Toll Free—9am - 6pm Mon.-Fri. 9am - 2pm Sat.
In Missouri Call—816-741-8118

MOST ORDERS SHIPPED SAME DAY

- DAIWA - HUSTLER - HYGAIN - ICOM -
NEW

POCKET SIZE

SIZE: 4" H x 3.5" W x 1" D
MADE IN USA

OPTOELECTRONICS INC.

FREQUENCY COUNTERS

TO 2.4 GHZ

8 LED DIGITS • 2 GATE TIMES
ALUMINUM CABINET
INTERNAL Ni-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY

AC-DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.3 GHz and 2.4 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1300H/A makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

#1300H/A Model 1300H/A 1-1300 MHz counter with preamp. sensitivity: < 1mV,
27MHz to 450MHz includes Ni-Cad batteries and AC adapter $169.95

#2400H Model 2400H 10-2400 MHz microwave counter includes Ni-Cad
batteries and AC adapter $299.95

#CCA Model CCA counter, counter, for debugging, ultra sensitive, < 50 micro
volts at 150MHz to 1-600 MHz with adjustable threshold, RF indicator
LED. Includes Ni-Cad batteries and AC adapter $299.95

ACCESSORIES:

#TA-100S Telescoping RF pick-up antenna with BNC connector $12.00

#P-100 Probe, direct connection 50 ohm, BNC connector $20.00

#CC-12 Carrying case, gray vinyl with zipper opening. Will hold a counter and
#TA-100S antenna. $10.00

ORDER FACTORY DIRECT
FLA (305) 771-2050
1-800-327-5912

OPTOELECTRONICS INC.

5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

AVAILABLE NOW!

Orders to US and Canada add 5% of total ($2 min, $10 max)
Florida residents add 6% sales tax. COD fee $2.
Foreign orders add 15%
You'll be hard-pressed to beat the performance of Yaesu's new FT-411 handheld.

Let Yaesu's "next generation" handheld lighten your load!

Picking up where our popular FT-209R Series left off, the 2-meter FT-411 will amaze with its astounding array of features!

The brains of a base station. "Sophisticated operation" takes on new meaning in the FT-411. You get 49 memories, plus dual VFOs for quick band-hopping. Keyboard frequency entry. Automatic repeater shift. DTMF autodialer with ten memories of up to 15 digits each. Selectable channel steps: 5/10/12.5/20/25 kHz. Programmable band scan with upper/lower limits. Selectable memory scan. And extended receive coverage of 140-174 MHz (MARS/CAP permit required for transmit on 140-150 MHz).

Not bad for a handheld measuring just 55(w) x 32(d) x 139(h) mm (the same size as our FT-23R Series HTs)!

Friendly operation. For operating convenience, the FT-411's keypad features a "do-re-mi" audible command verification. Both the display and keypad can be backlit (brightly!) for night operation at the push of a button. A rotary channel selector allows fast manual tuning. Or key in the frequency directly. Operate VOX (with YH-2 headset option). Plus you get a battery saver to conserve power while monitoring. And a (defeatable) automatic power-off feature that shuts down your radio if you forget to turn it off!

High power capability. The FT-411 comes equipped with the 2.5-watt, 600-mAh FNB-10 battery pack. Try our optional FNB-12 5-watt, 500-mAh pack or tiny FNB-9 2.5-watt, 200-mAh pack. Or get 6 watts output by applying 13.8-volts DC from an external power supply.

Swap options with Yaesu's FT-23R Series. Our rugged best-seller's chargers, batteries, and microphones are fully compatible with the FT-411. The FT-23R is the perfect companion for the FT-411, and at a great price!

Try out an FT-411 today. Ask for it now at your local Yaesu dealer. Or call 1-800-999-2070 for a free brochure. And experience the legendary Yaesu HT performance!
TS-940S

Competition class HF transceiver

TS-940S—The standard of performance by which all other transceivers are judged. Pushing the state-of-the-art in HF transceiver design and construction, no one has been able to match the TS-940S in performance, value and reliability. The product reviews glow with superlatives, and the field-proven performance shows that the TS-940S is “The Number One Rated HF Transceiver”!

1. CW Variable Bandwidth Tuning. Vary the passband continuously in the CW VSK, and AM modes, without affecting the center frequency. This effectively minimizes QRM from nearby SSB and CW signals.

2. AF Tune Operation. Enabled with the push of a button, this CW interference filter inserts a tunable, three-pole active filter between the SSB/ CW demodulator and the audio amplifier. During CW QSOs, this control can be used to reduce interfering signals and noise, and peaks audio frequency response for optimum CW performance.

3. SSB Slope Tuning. Operating in the LSB and USB modes, this front panel control allows independent, continuously variable adjustment of the high or low frequency slope of the IF passband. The LCD sub-display illustrates the filtering position.

4. IF Notch Filter. The tunable notch filter sharply attenuates interfering signals by as much as 40 dB. As shown here, the interfering signal is reduced, while the desired signal remains unaffected. The notch filter works in all modes except FM.

Optional accessories:

- AF-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-455C-1 (500 Hz), YG-455C-2 (1200 Hz), YG-88C-1 (500 HZ), YG-88C-2 (1200 HZ) CW filters
- YC-86A-1.6 kHz AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-43S UP/DOWN hand mic.
- MC-60A, MC-80, MC-85 deluxe base station mics.
- PC-1A phone patch
- TA-922A linear amplifier
- SM-200 station monitor
- BS-8 pan display
- SW-200A and SW-2000 SWR and power meters
- IF-232C/IF-10B computer interface

Specifications:

- Complete all band, all mode transceiver with general coverage receiver. Receiver covers 150 kHz-30 MHz. All modes built-in: AM, FM, FSK, LSB, USB.
- Superb, human engineered front panel layout for the DX-minded or contesting ham. Large fluorescent tube main display with dimmer; direct keyboard input of frequency; flywheel type tuning knob with optical encoder mechanism all combine to make the TS-940S a joy to operate.
- One-touch frequency check (T-F SET) during split operations.
- Unique LCD sub-display indicates VFO, graphic indication of VBT and SSB Slope tuning, and time.
- Simple one-step mode changing with CW announcement.
- Other vital operating functions. Selectable semi or full break-in CW (QSK). RIT/XT, all mode squelch, RF attenuator, filter select switch, selectable AGC, CW variable pitch control, speech processor, and RF power output control, programmable band scan or 4 channel memory scan.