WHEN YOU CAN'T AFFORD TO MISS A SINGLE WORD

When you demand uncompromised performance and dependability from your communications system, you need an ICOM. Featuring a full product line of rugged land mobile, marine, aircraft, and ham (amateur) transceivers and receivers, ICOM provides you with the most sophisticated and reliable communications available.

Spectacular performance, smooth operation and incomparable dependability are confirmation of ICOM equipment's top-line quality. These superb characteristics are built into every ICOM handheld, mobile, base unit and accessory.

ICOM's full product line also includes the IC-R71A 0.1 to 100MHz and IC-R7000 25 to 1000MHz/1025 to 2000MHz receivers. They assure your maximum operating performance anywhere, anytime. Move into the winner's circle with ICOM and enjoy a commitment to excellence!

ICOM
First in Communications

3150 Premier Drive, Suite 126, Irving, TX 75063 / 1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349
ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada
All stated specifications are subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. Signal788.
FOUR user selectable operating modes and a 90 number autodialer make Private Patch V the ONLY choice!

SELECT AN OPERATING MODE USING THE BUILT-IN KEYBOARD...

1. SIMPLEX SAMPLING PATCH
Private Patch V achieves a level of sampling patch performance unobtainable in any other product. Crucial to performance is the noise squelch filter. Compare our five pole filter to the competition's two pole filter. Advanced software algorithms perform noise correlation tests which result in greater useable range than the competition. Nine selectable VOX enhancement ratios allow you to vary performance from straight sampling to highly VOX enhanced. (sampling rate decreased while the land party is speaking). The mobile is in full control and can break-in at any time.

2. SIMPLEX VOX PATCH
VOX mode offers superb simplex operation with any radio, including synthesized and relay switched models. VOX mode has other advantages too. 1. A linear amplifier can be used to extend straight simplex range. 2. You can operate through any remotely located repeater to greatly extend range. 3. If desired you can connect Private Patch V to the MIC and speaker jack of your radio. NO INTERNAL CONNECTIONS ARE REQUIRED. Control is maintained automatically with built-in dial tone detection, busy signal detection and fully programmable activity and time out timers. An optional electronic voice delay board eliminates first word clipping with slow switching radios.

3. DUPLEX PATCH
Select duplex mode when connecting Private Patch V to your existing repeater or duplex base station. Many features including semi-duplex privacy mode are user programmable. The mobile is in full control at all times.

4. REPEATER CONTROLLER
Private Patch V will convert any receiver and transmitter into an outstanding performing repeater with duplex autopatch. Features such as repeater on/off code, hangtime, activity timer time, CW ID interval etc. are fully user programmable. Private Patch V is the right choice for your club system.

Private Patch V is a totally new concept in automatic phone patches. A built-in keyboard and menu driven display allow you to customize all modes, features, and functions specifically to your application.

Private Patch V can be a sampling patch today. A VOX patch tomorrow. And a repeater controller next year! You may never need another patch again.

COMPARE THESE FEATURES...
- 90 phone number autodialer
- Last number redial
- Regenerated tone/pulse dialing
- Toll restrict: 1st and 2nd digit restrict, prefix lockout and digit counting
- 1-5 digit connect/disconnect code
- 2-5 digit secret toll override code
- User programmable CW ID
- Remote hook flash
- Auto disconnect on dialtone/busy signals
- Telephone remote base
- Remote controlled relay (relay optional)
- Lightning protected

Call or write today for your FREE brochure.

CONNECT SYSTEMS INC.
23731 Madison St. Torrance, CA 90505
Phone: (213) 373-6803
Compact Breakthrough!

TH-25AT/45AT New Pocket Portable Transceivers

The all-new TH-25 Series of pocket transceivers is here! Wide-band frequency coverage, LCD display, 5 watt option, plus...

- Frequency coverage: TH-25AT: 141-163 MHz (Rx); 144-148 MHz (Tx). (Modifiable for MARSSCAP Permits required.)
- TH-45AT: 430-450 MHz
- Automatic Power Control (APC) circuit for reliable RF output and final protection.
- 14 memories, two for any "odd split" (5 kHz steps).
- Automatic offset selection (TH-25AT).
- 5 Watts from 12 VDC or PB-6 battery pack.
- Large multi-function LCD display.
- Rotary dial selects memory, frequency, CTCSS and scan direction.
- T-ALERT for quiet monitoring. Tone Alert beeps when squelch is opened.
- Band scan and memory scan.
- Automatic "power off" circuit.
- Water resistant.
- CTCSS encoder/decoder optional (TSU-6).
- Supplied accessories: StubbyDuk, PB-6 battery pack for 2.5 watts output, wall charger, belt hook, wrist strap, water resistant dust caps.

Optional accessories:
- PB-5 12 V 200 mAh NiCD pack for 2.5 W output • PB-6 72 V 600 mAh NiCd pack • PB-7 72 V 1000 mAh NiCd pack
- PB-8 12 V 600 mAh NiCd for S.W. output • PB-9 72 V 600 mAh NiCd with built-in charger • BC-10 Compact charger
- BC-11 Rapid charger • BT-6 AAA battery case • DC-1/PG-2V DC adapter • HMC-2 Headset with VOX and PTT • SC-14, IS.
- Soft cases • SMC-30/31 Speaker mics • TSU-6 CTCSS decode unit • WR-1 Water resistant bag

KENWOOD

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features, and prices are subject to change without notice or obligation.
10 Simple Receivers from Complex ICs
Bill Parrott, W6VEH

24 The Weekender: Improving Operation with the MFJ 989 Transmatch
L.B. Cebik, W4RNL

26 Ham Radio Techniques: The radio boys in the Pacific, or, working DX for Uncle Sam
Bill Orr, W6SAI

33 The Pepperdyne Receiver
Jim Pepper, W6QIF

60 The Weekender: A 1296-MHz Low Noise Amplifier
Norman J. Foot, WA9HUV

67 A Solid-State 75A-4 Receiver
James M. Larson, K7M

100 Practically Speaking: An Overview of Operational Amplifiers: Part 1
Joe Carr, K41PV

117 Elmer’s Notebook: SSB Basics: Generating the Signal
Tom McMullen, W1SL

DEPARTMENTS

Backscatter 4 Flea Market 112
Comments 9 New Products 120
Ham Notebook 98 Advertiser’s Index 126
Ham Mart 106 Reader Service 126
DX Forecaster 108

NOVEMBER 1988
A potential danger...

Recently a great amount of attention has been given to the effects of electromagnetic radiation on the human body. Dr. Samuel Milham of the Washington State Department of Social and Health Services (as well as several others*) has written a number of studies indicating that there may be a link between electromagnetic radiation and several forms of cancer. Lately Milham’s studies have been picked up by the wire services and articles have appeared in newspapers nationwide. While this isn’t a revelation (we all know that at certain frequencies electromagnetic energy can be harmful) it is cause for concern, because one of Milham’s study groups consisted of male Radio Amateurs in the States of Washington and California.

In a paper published in the *American Journal of Epidemiology* (Vol. 127, No. 1, January, 1988), Milham observed there was an elevated rate of mortality from several different forms of cancer in male Radio Amateurs in Washington and California, during the years 1979 through 1984.

Looking at the broader field of danger from all forms of electromagnetic radiation, Milham published a paper in *Environmental Health Perspectives* (Vol. 22, pages 297-300, 1985) which included an occupational mortality analysis of 486,000 adult male death records filed in Washington State from 1952 to 1982. He looked at electrical and electronic technicians, radio and telegraph operators, radio and TV repairmen, telephone and power company linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists, and electricians. He states that: "In the 1952 to 1982 data set, men whose occupations were associated with electric or magnetic fields had more deaths due to leukemia than would be expected."

Now before anyone jumps to an erroneous conclusion, let me add that at the end of the first paper, Milham states that the overall mortality for Radio Amateurs compares quite favorably with that of the rest of the population. It’s also important to note that these studies are very preliminary and will require additional years of exhaustive work before any firm conclusion can be reached.

One of the biggest dangers with reports like Milham’s is that the casual reader may be misled by media reports on the subject written without all the facts. Everyone knows of stories that have appeared on TV or in print, giving only partial information, which have created a great degree of unwarranted concern. Paul Brodeur’s 1977 book *The Zapping of America*, while informing us of a potential danger, was written in this kind of sensational vein. Credibility is what’s required — not sensationalism!

A number of hams around the world are very concerned about the bio-effects of electromagnetic radiation. In response to earlier concerns, the ARRL has formed a bio-effects committee a number of years ago. Wayne Overbeck, Ph.D., N6NB, and Stu Cowan, W2LX, are also concerned and are cooperating with a number of other concerned amateurs and organizations** in an in-depth study. While neither Overbeck or Cowan are physicians, both are experienced amateurs and want to get to the truth of the matter. Dave Rodman, M.D., KN2M, a medical doctor who is researching the bio-effects of electromagnetic radiation — specifically 60-Hz radiation.

At the ARRL National in Portland, Oregon on September 10th, 1988, Overbeck presented his preliminary findings to a packed audience of interested Amateurs. He summarized the dangers as follows: radio frequency energy, 60-hertz electromagnetic fields, and chemical agents. (See HR’s December 1983 issue on the dangers of PCBs.) Overbeck did add some caveats to his research. First, it’s difficult to prove cause and effect due to the myriad hazards that we face, both in the workplace and home. Secondly, with cancer, the long latent periods and subtle signs and symptoms often don’t become apparent until long after exposure.

Overbeck then presented his audience with a list of common sense precautions: don’t run high power into a low directional antenna or more than 25 watts on VHF/UHF mobile installations without first measuring the RF power densities;*** make sure that no one is near a ground-mounted antenna or mobile antenna when it is transmitting; and make sure that all power amplifiers are fully shielded when in use. Overbeck

(continued on page 114)
The Number One Rated HF transceiver

The TS-940S—the standard of performance by which all other transceivers are judged. Pushing the state-of-the-art in HF transceiver design and construction, no one has been able to match the TS-940S in performance, value and reliability. The product reviews glow with superlatives, and the field-proven performance shows that the TS-940S is "The Number One Rated HF Transceiver!"

- 100% duty cycle transmitter. Kenwood specifies transmit duty cycle time. The TS-940S is guaranteed to operate at full power output for periods exceeding one hour, (14.250 MHz, CW 110 watts.) Perfect for RTTY, SSTV, and other long-duration modes.
- First with a full one-year limited warranty.
- Extremely stable phase locked loop (PLL) VFO. Reference frequency accuracy is measured in parts per million!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner • SP-940 external speaker with audio filtering • YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter • VS-1 valve synthesizer • SO-1 temperature compensated crystal oscillator • MC-43S UP/DOWN hand mic. • MC-60A, MC-80, MC-85 deluxe base station mics. • PC-1A phone patch • TL-92A linear amplifier • SM-220 station monitor • BS-8 pan display • SW-200A and SW-2000 SWR and power meters • IF-232C/IF-10B computer interface.

Complete all band, all mode transceiver with general coverage receiver. Receiver covers 150 kHz-30 MHz. All modes built-in: AM, FM, CW, FSK, LSB, USB.
- Superb, human engineered front panel layout for the DX-minded or contesting ham. Large fluorescent tube display with dimmer, direct keyboard input of frequency, flywheel type main tuning knob with optical encoder mechanism all combine to make the TS-940S a joy to operate.
- One-touch frequency check (T-F SET) during split operation.
- Unique LCD sub display indicates VFO, graphic indication of VBT and SSB Slope tuning, and time.
- Simple one step mode changing with CW announcement.
- Other vital operating functions. Selectable semi or full break-in CW (QSK), RIT/XIT, all mode squelch, RF attenuator, filter select switch, selectable AGC, CW variable pitch control, speech processor and RF power output control, programmable band scan or 40 channel memory scan.

Kenwood U.S.A. Corporation
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
November 1988

Ham Radio Outlet
LARGEST HAM OUTLET IN THE WORLD

7 STORE BUYING POWER

Terralochron
GLOBAL TIME INDICATOR

- Detailed illuminated map shows time, time zone, sun position and day of the week at a glance for any place in the world.
- Continuously moving - areas of day and night change as you watch.
- Mounts easily on a wall. Size: 34" x 22½".

$129.00 $115.95 DELIVERED IN U.S.

US TOWER CORPORATION

- MA-40
 40' TUBULAR TOWER
 $895 SALE! $629
- MA-550
 55' TUBULAR TOWER
 $1395 SALE! $999

- Handles 10 sq. ft. at 50 mph
- Please consult with tubular streamlined look

PK-232 Multi-mode Data Controller

- New IBM Fax Screen Display Program Available
- Transmit/Receive on Six Modes
- CW/RTTY/ASCII/AMTOR/Packet/FAX
- IBM and Commodore terminal programs available

In Stock for Quick Delivery
Free Shipment

KENWOOD

- TM-721A DUAL BANDER
 2MTR/70cm
 45w 35w
 EXTENDED RECEIVING RANGE (2 m)

- TM-621A DUAL BANDER
 2MTR/220MHz
 45w 25w
 AUTOMATIC OFFSET CALL FOR LOW LOW PRICE

All Major Brands in Stock Now!

Outside California CALL TOLL FREE (800) 854-6046
Inside California CALL STORES DIRECT

Toll free including Hawaii, Phone hrs: 7:00 am to 5:30 pm Pacific Time, California, Arizona and Georgia customers call or visit nearest store.
California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
HAM RADIO OUTLET
LARGEST HAM OUTLET IN THE WORLD

7 STORE BUYING POWER

ICOM IC-761
HF SUPERIOR GRADE TRANSCEIVER
SALE! CALL FOR PRICE

ICOM IC-781
THE ULTIMATE 150 W, ALL BAND HF TRANSCEIVER
GREAT PRICE!

ICOM IC-900
MULTI-BAND MOBILE
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz, 10 MTR, 20 MTR, 220 MHz & 1.2 GHz, 10 MEMORIES
ARE YOU READY FOR 1.2 GHz operation?

ICOM IC-275A/275H, 138-174 MHz
IC-375A, 220 MHz
SALE 799.95
IC-475A/475H, 430-450 MHz
LOW PRICE!

ICOM IC-735
100 W, 100 KHz-30 MHz
Dual VFO Receiver
CALL FOR LOW, LOW PRICE

ICOM IC-R7000
25 MHz-1300 MHz SCANNING RECEIVER
GREAT PRICE!

NOW! RAPID DELIVERIES
COAST TO COAST
FROM STORE NEAREST YOU

HAND-HELD VHF/UHF
IC-02AT IC-2AT 2MTR
IC-03AT IC-3AT 220 MHz
IC-04AT IC-4AT 440 MHz

ICOM IC-38A/TT*
220 MHz
(Recent FCC changes DID NOT effect normal 220 MHz FM operating frequencies)
*Includes touchtone mike.
REG. 499.95
SALE 329.95

All Major Brands in Stock Now!

ANAHEIM, CA 92801
2620 W. La Palma
(714) 731-0323, (213) 660-2040
Between Disneyland & Knott's Berry Farm

ATLANTA, GA 30340
6671 Buford Hwy
(404) 262-0769
Larr. Mgr. W04AGW

BURLINGAME, CA 94010
995 Howard Ave
(415) 342-5757
George Mgr. W8BDSV
5 miles south on 101 from SF 0

OAKLAND, CA 94606
2219 Livingston St.
(415) 534-5757
Al Mgr. WAGSYK
17/8th Ave /17/5th Ave

PHOENIX, AZ 85015
1782 W. Carefree Back Rd.
(602) 242-8515
Bob Mgr. K7ROH
East of Hwy 77

SAN DIEGO, CA 92123
5075 Kearny Villa Rd.
(619) 580-6500
Tom Mgr. KM6K
Hwy 163 & Clairemont Mesa Blvd

VAN NUYS, CA 91411
5285 Sepulveda Blvd
(818) 888-2107
Al Mgr. K5YRA
San Diego Ave
at Victory Blvd

STORE HOURS
10 AM - 5:30 PM
CLOSED SUNDAYS

OUTSIDE CALIFORNIA CALL TOLL FREE (800) 854-6046
INSIDE CALIFORNIA CALL STORES DIRECT

Toll free including Hawaii. Phone Hrs. 7:00 am to 5:30 pm Pacific Time. California, Arizona and Georgia customers call or visit nearest store.

California, Arizona and Georgia residents please add sales tax.
Prices, specifications, descriptions subject to change without notice.

November 1988 7
MFJ 3 KW Roller Inductor Tuner

... lets you get your SWR down to absolute minimum -- something a tapped inductor tuner just can't do...

... plus you get a peak reading Cross-Needle SWR/Wattmeter, 6-position antenna switch, balun for balanced lines and 1.8-30 MHz coverage... $239.95

NEW

MFJ 986

$239.95

MFJ's innovative new Differential-T Tuner™ uses a differential capacitor that makes tuning foolproof and easier than ever. It ends constant re-tuning with broadband coverage and gives you minimum SWR at only one setting.

The new MFJ-986 is a rugged no-compromise 3 KW PEP Roller Inductor antenna tuner that covers 1.8-30 MHz continuously. Including MARS and all the WARC bands. The roller inductor lets you tune your SWR down to the absolute minimum -- something a tapped inductor tuner just can't do.

A 3-digit turns counter plus a spinner knob gives you precise inductance control -- so you can quickly return to your favorite frequency.

You get a lighted Cross-Needle meter that not only gives you SWR, forward and reflected power at a glance -- but also gives you a peak-reading function! A new directional coupler gives you even more accurate readings over a wider frequency range.

You get a 6-position ceramic antenna switch that lets you select two coax lines and/or random wires (direct or through tuner), balanced line and external dummy load.

A new current balun for balanced lines minimizes feedline radiation that causes field pattern distortion, TVI and RF in your shack. Ceramic feedthrough insulators for balanced lines withstand high voltages and temperatures.

New Antenna Tuner Technology

MFJ brings you three innovations in antenna tuner technology: a new Differential™ circuit simplifies tuning; a new directional coupler gives you more accurate SWR, forward and reflected power readings; and a new current balun reduces feedline radiation.

A New Twist on a Proven Technology

By replacing the two variable capacitors with a single differential capacitor you get a wide range T-network tuner with only two controls -- the differential capacitor and a roller inductor.

That's how you get the new MFJ Differential-T Tuner™ that makes tuning easier than ever, gives you minimum SWR at only one setting and has a broadcast response that ends constant re-tuning. You'll spend your time QSOing instead of fooling with your tuner.

The compact,10 1/4 x 4 1/2 x 15 inch cabinet has plenty of room to mount the silver-plated roller inductor away from metal surfaces for maximum Q -- you get high efficiency and more power into your antenna.

The wide spaced air gap differential transmitting capacitor lets you run a full 3 KW PEP -- no worries about arcing.

A New Directional Coupler: Accurate SWR and Power Reading

MFJ's Cross-Needle SWR/Wattmeter gives you more accurate SWR and power readings over a wider frequency range with no frequency sensitive adjustments.

That's because MFJ's new directional coupler gives you up to an order of magnitude higher directivity and coupling factor than conventional circuits ... plus it gives you a flat frequency response that requires no frequency compensation.

The cross-needle meter lets you read forward/reflected power in 2 ranges: 200W/800 and 2000/5000 watts. The meter lamp is front-panel switched and requires 12 volts.

A switch lets you select peak or average power readings.

A New Current Balun: Reduces Feedline Radiation

Nearly all commercially built tuners use a "voltage" balun. The "voltage" balun forces the voltages to be equal on the two antenna halves. It minimizes unbalanced currents only if the antenna is perfectly balanced -- not the case with practical antennas.

The MFJ-986 uses a true current balun to force equal currents into the two antenna halves -- even if your antenna is not perfectly balanced -- so you get minimum unbalanced currents.

The current balun gives superior balance over the "voltage" balun.

Minimum SWR and maximum current reduces field pattern distortion -- which concentrates your power for a stronger signal -- plus it reduces TVI and RF in your shack caused by feedline radiation.

The MFJ-986 Differential-T Tuner™

Get absolute minimum SWR

Get the tuner that incorporates the latest innovative MFJ technology by the world's leader in antenna tuner technology.

See your dealer today for the new MFJ-986 Differential-TM 3 KW Roller Inductor Tuner. Include $10 shipping/handling if ordering direct.

WHY CHOOSE AN MFJ TUNER?

Hard-earned Reputation: There's just no shortcut. MFJ is a name you can trust -- more hams trust MFJ tuners than anyone else -- with MFJ tuners you get a highly-developed product with proven reliability.

First-rate Performance: MFJ tuners have earned their reputation for being able to match just about anything -- anywhere.

One full year unconditional guarantee: That means we repair or replace your tuner (at our option) no matter what for a full year.

Continuing Service: MFJ Customer Service Technicians are available to help you keep your MFJ tuner performing flawlessly -- no matter how long you have it -- just call 601-323-5869.

Your very best value: MFJ tuners give you the most for your money. Not only do you get a proven tuner at the lowest cost -- you also get a one year unconditional guarantee and continuing service. That's how MFJ became the world's leading tuner manufacturer -- by giving you your very best value.

Choose your MFJ tuner with confidence! You're getting proven performance and reliability from the most trusted name in antenna tuners. Don't settle for less.

Call or write for a free full-line MFJ catalog with all 10 of our tuners and tons of ham radio accessories!

FOR YOUR NEAREST DEALER

or to order call toll free

800-647-1800

One Year Unconditional Guarantee

MFJ ENTERPRISES, INC.

Box 494, Mss. State, MS 39762

601-323-5869 Telex: 53-4590 MFJSTKV

MFJ... making quality affordable

November 1988
Priceless covers

Dear HR:

My wife Ginger, N5LTH, and I look forward to the HAM RADIO covers! PA0CX really understands the hobby and seems to always come up with a clever idea or humorous slant. He is great at using body language to tell a story. Your July "cover story" for instance is familiar to anyone who has built something from scratch—the ham is proud of his fantastic VHF circuit (his nose says so) but he's worried that people will laugh because he's used an old teapot as his resonant cavity! (crossed arms, knees together). The September cover, also cracked us up; the guy is pretending to be asleep, hoping that someone will try to make off with his treasures (note the unmistakable BC-348 and 811A) so that he can press the foot switch and zap them with the old spark coil. (See the half open eyelids and the little wires connecting all the goodies?) This is priceless. Your covers completely outclass those of any other ham magazine.

Since you are soliciting feedback on the technical and construction format—please keep up the technical emphasis. HAM RADIO and QST are the only "technical" magazines left. Please keep it up—we need you!

Don Murray, W9VE,
Dallas, Texas 75218

Congratulations!

Dear HR:

The all new HAM RADIO is superb. Your editorial staff has achieved a remarkably well-balanced publication—one that should appeal to just about every segment of the Amateur Radio community.

The universe of Amateur Radio presents a major challenge to those engaged in producing a technically, applications-oriented magazine. Clearly you have found the formula to yield a useful and meaningful contribution to those of us who enjoy not only operating our equipment, but also for those who still enjoy the thrill of experimentation and "rolling our own" equipment.

Your new graphics are excellent and so professionally tied in with the main theme of the story. The return of the reader service card is welcomed. It is efficient and effective...though it appears limiting the number of inquiries to 15 may dismay some of your advertisers. I usually seem to find a desire to exceed the limit.

I have every issue of HAM RADIO in binders, so I find your mailing wrapper a nice touch in eliminating the damage previously inflicted upon your great magazine by the postal service.

Your shorter stories are refreshing, but do run the occasional longer, in-depth story when the subject matter warrants the treatment.

In summary, the HAM RADIO staff deserves a round of prolonged applause for your response to your readers needs and in producing one of the finest Amateur Radio magazines available anywhere on our globe.

Kenneth M. Miller, K61R,
President,
National Capitol DX Association,
Rockville, Maryland 20853-1128

Big is better

Dear HR:

I have been a subscriber of HAM RADIO for many years and my subscription, I believe, runs until 1991. However, the new format, in my opinion, is "lousy"!!! I would much rather have the usual "BIG" technical articles with depth than the smaller ones as depicted in the September, 1988 issue.

The interspersing of advertising with editorials turns what was once an excellent technical publication into a QST (which is okay for what it is supposed to achieve) or a CQ.

Perry Pollins,
Lexington, Massachusetts
02173-0362

Our advertising has always been mixed with our editorial content. Ed.
SIMPLe RECEIvERS
FROM COMPLEX ICs

By Bill Parrott, W6VEH, 7662 Bellaire Avenue, N. Hollywood, California 91605

As integrated circuits become more complex, ham designs can become correspondingly simpler and smaller. Multifunction ICs open the door to a whole new world of simple "weekender" receivers for Novices and old-timers alike.

Who needs a simple receiver?

Simple receivers, like the ones I'll describe, are good ones for beginners. They help bridge the "if you want to be a ham, you have to make a major investment" gap. But simple receivers shouldn't just be dismissed as Novice devices. They can be used in homebrew test equipment, time standards, net monitors, panadaptors, and other gadgets where the main shack receiver isn't appropriate.

Design goals

My projects started with a need to test some mobile antennas. I built a noise bridge, using the circuit in the ARRL Handbook, but it needed a receiver as a noise detector. Dragging a large expensive receiver out into the driveway was clumsy, so I decided to build my own.

What I needed was a simple, low-power receiver that was quick and easy to build. I considered several of the "one-IC" receiver designs, but decided that while the chips were simple, the layout and debug problems were not. I settled on the good old direct conversion (DC) approach. Then I discovered the Signetics NE602N, one of those "magic" chips that unlocked both of the following designs.

A magic mixer

The NE602N shown in fig. 1 is a combination chip, consisting of a double-balanced mixer and an internally connected bipolar oscillator with built-in buffering. The mixer portion is similar to the MC1496, except that the eight external resistors usually required with the MC1496 have been moved on-chip. The oscillator is also internally

![Diagram](image)

One of the possible configurations of the NE602N. Balanced circuits are preferred, but may be difficult to implement.

- Cx: Blocking/bypass capacitors, 0.001 to 0.1 μF, depending on frequency.
- RFC 1: Ferrite beads or RFC, recommended at higher frequencies.
- Unmarked components are tuned circuit elements.
However, the information included here is really all you need. The chip is very easy to hook up and the oscillator seems to work with almost any breadboard lash-up.

A magic audio amplifier

I was encouraged by finding the NE602N and started looking for a good audio amplifier to go with it. Most DC receivers use a chain of high-gain audio stages followed by some compromise design for the output stage. After a lot of searching, I finally discovered the Plessey SL6310C, another magic chip — at least for this design.

The SL6310C (see fig. 2) can be described as a noninverting op amp, with an 8-ohm power output. In one eight-pin package I had a high-gain preamp, and more than enough audio output. The device can be muted, using pin 7 (active low) or pin 8 (active high), but these pins may be left open if you don’t need the mute function. With 70 dB of gain and 400 mW of audio output, it’s a great device.

A magic regulator

Because the NE602N is optimized for 6-volt operation, and since I wanted to use a 9-volt (2U6) transistor radio battery, some kind of voltage dropping and regulation was required. Zener diodes are fine for some applications, but proper operation requires that they draw heavy (10mA) current. Most of the common integrated regulators also consume a fair amount of current. My third magic chip was the National LM2931, an adjustable voltage regulator. Its quiescent current is only 400 μA, and its “headroom,” or input/output differential, is only 0.6 volts! It’s an “automotive” regulator and is self-protecting against shorts, overloads, reversed input voltages, and 60-volt transients. It was an ideal part for the purpose.

The 3 x 8 + 2 design

Armed with these chips, I started my noise-bridge detector design. The shortcomings of DC receivers, like microphonics and poor selectivity, are well known. However, the shortcomings had to be balanced against the advantages of small size, low current, and freedom from image problems.

Images would be a major problem with a superhet. There would be a high noise level at the image frequency, and with simple input circuits, the desired null might be masked by the image noise. Here’s one of those rare occasions where a DC receiver could outperform a superhet.

I tried to keep the number of components to a minimum, but with only 20 dB of mixer gain and 70 dB of audio, the results were marginal. I added an op amp to pick up the needed gain, but I found that other authors were correct when they put a low-noise FET amplifier in front of the audio chain. Without it you have S9 + 40 op amp noise. I could have used a low-noise op amp

Plessey SL6310-DP high-gain audio amplifier. All capacitor values are μF. The values shown are for “hi-f” operation. The low frequency response can be raised by decreasing C1, C2, and C3. The high frequency response can be decreased by increasing C4. The mute pins are internally biased, and may be left open. Grounding “A” or connecting “B” to pin 5 will mute the output. The mute connections must include a 100k series resistor.

Block diagram of the 3 x 8 direct conversion receiver. Having more than one function per chip is advantageous.
instead, but the good low-noise ones draw about 14 mA. This would have exceeded my power budget.

The final DC receiver design is shown in figs. 3 and 4. The block diagram is expanded to show the many functions available from the few chips.

The front-end circuits are "no frills". The mixer shows the usual tuned circuit input, but for noise bridge use I detuned this circuit. Signals in the CB, 10 meter, and commercial ranges made the null hard to find. For noise bridge applications you can leave the capacitor out; you'll need the usual tuned circuit for other applications.

The oscillator is a simple Colpitts, which inherently provides the necessary isolation for the base and emitter input pins. For my application, bandspread tuning wasn't needed. With the components shown, the oscillator tuned from about 26 to 32 MHz. Note that this simple tuning arrangement is adequate for some test equipment, but not for communications reception. Tuning in an SSB signal on this receiver required the "freeze and hold your breath" technique. Better circuits are shown for the 5 x 8 design below, and can be substituted here.

To provide a load for the mixer output, I used one of the common 10k:2k (Radio Shack) audio transformers, with primary and secondary reversed. Terminating the secondary in a 10k resistor reflects a reasonable load back into the mixer. The transformer frame must be grounded, because its stray capacitance helps to keep RF out of the audio circuits.

The FET amplifier is straightforward; you can substitute almost any other type of low-noise FET for the one specified. The op amp circuit is also straight from the books. Note, however, that the op amp is one of the new low-current (1 mA) types, which helps to keep the overall current drain to a minimum.

The SL6310C provides the remaining audio gain, and also supplies the power needed to drive earphones or a speaker. Most simple receivers have weak audio outputs, but not this one. If your results duplicate mine, you'll seldom turn the audio gain all the way up!

For simplicity you would use a 6-volt battery and eliminate the voltage regulator, but the oscillator would be unregulated and the frequency would drift slowly as the battery voltage dropped. I included the regulator in my design so I could use a 9-volt transistor radio battery.

Construction

Sorry, no circuit board layout. I built the receiver on some computer prototype circuit board scraps. You can use almost any of the usual assembly techniques. There are only a few special precautions to observe, provided you follow the usual ones like keeping the outputs well away from the inputs. One precaution concerns the audio output power circuit. Be sure to use heavy leads and run them directly back to the battery; this circuit can pull heavy current on audio peaks. Also, the 100-pF filter capacitor should be mounted very close to pin 8 because its purpose is to supply these peak currents.

The other precaution is to build the oscillator "like a battleship," since the high audio gain makes the receiver microphonic. This effect is characteristic of DC receivers in general. Careful attention to mechanical details is
You're In A Separate "Class" With The SB-1400 Transceiver

The world is at your fingertips with the NEW Heath SB-1400 All-Mode Transceiver featuring dual VFOs and 20 memory channels. With a price tuned into your budget, the SB-1400 is an assembled SSB/CW/AM and optional FM transceiver that delivers 100W of PEP output on all nine HF amateur bands, with 100kHz-30MHz general coverage reception.

The SB-1400 is the latest addition to Heath Company's full line of amateur radio equipment — everything you need to complete your ham shack.

Heath Company also carries an extensive line of other electronic products. From computers to television sets, from test instruments to stereos, every Heathkit® product — kit and assembled — is backed by 40 years of dedicated attention to design, quality and durability.

For a FREE Heathkit catalog, send in your QSL card, mail the coupon below, or call 24 hours a day TOLL FREE:

1-800-44-HEATH (1-800-444-3284)
well into the VHF range, you can use this receiver anywhere between 20 kHz and 200 MHz by changing the mixer and oscillator components.

The 5 x 8 + 1 design

OK, so I got hooked. If my DC receiver was that easy to build, a simple superhet should take only a few more parts. About this time, I found a low-cost source for Toko i-f transformers and slug-tuned coils. That did it. With the above chips, and low-cost RF and i-f coils, the superhet receiver almost designed itself.

In this second design, I kept most of the previous design goals: small size, simplicity, low cost, and low current drain. I decided to switch to 9 volts of AA-size batteries, since the life of the 2U6s would be too short.

FIGURE 5

Block diagram of the 5 x 8 40-meter superhet receiver. There are ten functional stages in five 8-pin ICs.

FIGURE 6

Mixer/first oscillator circuits for the 5 x 8 receiver. Decimal capacitor values of μF; whole capacitor values are in pF. Capacitors marked /s are poly styrene, silver mica, or NPO ceramic. Values are for 40 meters.

necessary to keep the receiver from living up to its name as a "boing box."

There's little to debug other than wiring errors or defective components. The only adjustment is to the local oscillator. Tweak the coil and capacitor until the proper tuning range is obtained.

Performance

I've built several DC receivers, and this design seems much less microphonic than the others — probably due to the 20-dB mixer gain. With a 5-dB noise figure and 400 mW of audio it is a "hot performer." Selectivity is typical; stability depends on the oscillator circuit and oscillator components used.

The version shown, a broad-tuning 10-meter receiver, is of limited use. However since the NE602N will work

The goals that I chose imposed some performance limitations, and I had to leave out some of the usual extras, like AGC and audio filtering. However, the basic circuits are easy to modify and the design can be expanded to meet other objectives and purposes.

The block diagram of the 5 x 8 is shown in fig. 5. An eight-pin mixer/oscillator buffer, two eight-pin i-f stages, an eight-pin product detector/L.O. buffer, and an eight-pin audio amp/output stage, plus an IC regulator make up the whole design. While the schematic looks complicated, try comparing it to other designs with the functions listed above and you'll see the difference!

If you add up the stage gains, the result seems like overkill — and it would be, except for the insertion losses in the interstage networks. I didn't include the losses in the block diagram because I couldn't measure them.
EIMAC's new DX champion!
The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1221
Once in a lifetime, a transceiver is introduced that's so extraordinary and innovative that it opens a totally new era in HF communications. ICOM's pacesetting IC-781 proudly exhibits that hallmark achievement with futuristic designs and features of true legendary proportions. Whether DX'ing, contesting, pioneering new interests or enjoying unquestionable top-of-the-line performance, the IC-781 is indeed today's standard of excellence!

Multi-Function Five Inch CRT. Displays frequencies, modes, memory contents, operating notes, RIT, two menu screens, plus a panoramic view of all signals in a selected range. A portion of the screen also serves as a display for data modes like RTTY, AMTOR, and PACKET.

Unique Spectrum Scope. Continuously indicates all signal activities and DX pileups with your operating frequency in the center. Selectable horizontal frequency spans of 50, 100, and 200kHz for each side of the frequency you're listening to. Vertical range indicates relative signal strengths. A contestor's dream!

Dual Width Noise Blanker includes MCF filter plus level and width controls to eliminate pulse and woodpecker noise with minimum adjacent-signal interference.

Incomparable Filter Flexibility. Independent selection of wide and narrow SSB filters plus CW filters. Second and third CW IF filters are independently selectable!

Dual Watch. Simultaneously receives two frequencies in the same band! Balance control adjusts VFO A/B receive strength levels. You can check additional band activity, even tune in your next contact, while in QSO without missing a single word!

DX Rated! 150 watts of exceptionally clean RF output. Easily drives big amplifiers to maximum power.

Twin Passband Tuning with separate controls for second and third IF stages! Increases selectivity and narrows bandwidth, independently varies low and high frequency response, or functions as IF shift. It's DX'ing Dynamite!

A Total Communications System! Includes built-in 100% duty cycle supply, high speed automatic antenna tuner, lambic keyer, semi-automatic or full QSK CW break-in to 60 wpm, Audio Peaking Filter (APF), RF speech processor, multiscanning, 105dB dynamic range, all-band/all-mode receiver with general coverage, and much more!

ICOM Dependability. The phenomenal IC-781 is built for action and backed with the most extensive warranty in the industry.

See the IC-781 at your local ICOM dealer.
accurately. Better impedance matching would cut these losses and improve the gain, but it’s an unnecessary step since there’s gain to spare.

The front-end circuits

The front end (fig. 6) is an expansion of the circuit used in the 3 x 8 design. The mixer is double tuned to reduce images. Varactor tuning is an added frill that’s handy but not really necessary. If you plan to use the receiver with one antenna, and on one part of the band, you can use trimmer capacitors. Peak them once and forget them. If you want optimum performance with random antennas, use either panel-mount capacitors, or varactors as I did. The controls serve a dual purpose; you can peak them for best DX reception, or use them as attenuators when the guy down the street fires up his kW rig.

The oscillator is a standard Colpitts with components added to provide the required bandspread. The component values I used are shown in the diagram. You should expect some cut-and-try adjustments; component tolerances make the values given simply approximations.

Using a Toko slug-tuned coil for L2, instead of the usual solenoid or toroid coil, was a gamble that paid off. I was concerned with possible drift problems, but the results (at least in my case) were excellent. Having a slug-tuned coil in the oscillator makes alignment a quick, simple task. My guess is that while this little slug-tuned coil is electrically inferior to a toroid or solenoid, its thermal performance is superior due to its small size, shielding, and bonding to the circuit board.

Many authors report glowing success with their particular oscillator designs, but unless several identical units have been built with consistent results, you can suspect that the author may have been lucky. When you build a new receiver you should be prepared to swap parts and move and bond leads until you get the oscillator performance you want — even if your circuit is an “exact copy” of a published design. A good oscillator is part science, part art, and part luck.

The i-f stage design (fig. 7) is right out of the book. I could have used hotter i-f amplifiers than the MC1590, but, it was the optimum choice based on a gain/mA criterion and my design goals. Some authors use resistance-coupled designs, and rely on the filter to provide all the selectivity. I chose to use transformer coupling instead, because a resistance-coupled amplifier will amplify anything presented to it. With more than 80 dB available, any stray signal that happens to get into the amplifier chain will appear at the detector. Transformer coupling limits the passband to the signals of interest, and reduces the requirements for shielding, filtering, and decoupling.

The Toko i-f transformers aren’t special parts. I used them because they were inexpensive and easy to obtain. If you have a scrap transistor radio in your junk box which has 455-kHz transformers in it, use your transformers instead of the Toko ones. Because the filter sets the bandwidth, the transformer parameters are not critical.

I used a 6-kHz ceramic filter to set the receiver bandwidth. You might argue successfully that a narrower filter would be a better choice. The filter I used was more of a “procurement opportunity” than a deliberate choice, but the selection turned out to be a good one. Ideally you should use a much narrower filter, but then you’d have to switch the product-detector local-oscillator frequency and the accuracy and stability requirements would increase. The choice, and the resulting complications, depend on your needs and inclinations.

The product detector (fig. 8) also uses the NE602N; the mixer portion is a repeat of the above. For the oscillator-tuned circuit, I used one of the Toko i-f transformers in a Hartley configuration. I assumed correctly that the transformer’s built-in tuning capacitor had NPO characteristics and that the frequency drift would be minimal.

Note that the capacitor at pin 7 is 0.001 μF, while the other blocking capacitors are larger. In the whole design/debug cycle I had only one unexpected problem.
Construction

Again, there is no circuit board artwork, because I built the receiver modular fashion. The circuits are ideal for a printed circuit layout; perhaps someone will contribute one. I would recommend building the receiver on two boards, one for the front end and one for the rest, as only the front end needs to be changed to move the receiver to different bands.

One construction problem arose when I mounted the Toko coils and the filter, because their mounting dimensions are metric. I saved a lot of time and frustration by making drill templates on small pieces of brass. The coil dimensions are shown in fig. 10. Dimensions for the filter depend on the one you choose — there is no one standard size. The effort required to make the templates is quickly repaid when you drill a circuit board.

Assembly precautions

The same audio amplifier precautions mentioned above for the 3 × 8 design apply here. It’s a good idea to put brass shields across the filter, the MC1590Gs, and between each mixer and its oscillator. These shields aren’t shown on the schematics because I’m not certain that they are required. Shielding never hurts, and shields are easier to build in at the beginning than to add later.

If you are new at construction, I strongly recommend that you resist the temptation to crowd everything into a tiny, tightly packed assembly. If you use reasonable spacing, lots of shielding, plenty of decoupling, and keep outputs well away from inputs, your receiver should work the first time.

If you’re experienced, you can make the receiver very small. The i-f transformers are available in 7-mm sizes; varactor tuning capacitors can be used; and Motorola has just announced the MC1490G, a flat-pack equivalent of the MC1590G. I suggest you build a larger version first, just to get a feel for the circuits.

With a larger value capacitor, the circuit acted like a blocking oscillator and put out RF in short bursts. Reducing the capacitor to the value shown cured the problem. It’s a point to consider if you use the NE602N in other designs.

The audio amplifier and regulator circuits (fig. 9) are identical to those used in the 3X8 design, and the same comments and precautions apply. When using earphones, be sure that you turn the audio gain down before you turn on the power!

Mounting dimensions for the Toko transformers. The measurements are in mm. Drill the center hole for a standard-sized screw to hold the template on your circuit board while drilling.
Radio Shack® The Technology Store

IMPROVE YOUR STATION WITH OUR QUALITY ACCESSORIES

- **LCD Digital VOM**
 - 99.95
 - Our Best-Ever Multimeter

- **Super Calculator**
 - 39.95
 - Built-In Electronic Engineering Functions
 - EC-4035 makes ticket-upgrade math a snap. Displays electrical units—V, A, mA, mW, Ω—along with the answer. Trig and base conversion—110 functions in all. With case, batteries. #65-983

- **Novice and General Exam Study Guides**
 - 19.95
 - Complete! Prepared by Gordon West, WB6NOA
 - Include Two Self-Paced Code Cassettes
 - Sample Test Questions And Answers
 - Durable Molded Binders
 - FCC Form 610 Included
 - Clubs—Ask About Discounts On Quantities of 6-Up
 - Novice Exam Study Package. #62-2402
 - General Exam Study Package. #62-2404

- **Antenna Rotator**
 - 59.95
 - Why Pay More?
 - Our famous Archer TV rotator is just right for many VHF and small HF beams. Built to last! UL listed AC. #15-1225
 - 100' 3 Cond. Cable. #15-1150 . . . 7.95

- **Gas-Powered Iron**
 - 29.95
 - Solder Anywhere
 - There's nothing better for antenna building and repair. Up to one hour per charge and refills in seconds with ordinary butane lighter fuel. Adjustable temperature equivalent—10 to 60 watts. #64-2160

- **Filtered 6-Outlet**
 - 24.95
 - Protect Your Rig
 - Converts one grounded outlet to six with noise filter, breaker and spike protector. 13A at 120VAC. UL listed AC. #61-2786

- **Add-On Speaker**
 - 13.95
 - Low As
 - Really improves audio from mobiles, HTs and compact rigs. Five-watt 6" speaker in an extra-durable enclosure. Prewired 10-ft. cord, 1/4" plug. Adjustable metal bracket. #21-549

- **High-Grade Coax**
 - 18.95
 - Handles Up to 1 kW
 - Reads SWR and doubles as a portable field strength meter. Covers 3 to 30 MHz. #21-525

- **SWR/Fs Meter**
 - 18.95

- **Hookup Helpers**
 - 16.95
 - Inline Tester. LEDs show status of seven data lines. #276-1401
 - Inline Spike Protector. Stops voltage spikes cold. #276-1402

- **WWV/WX Radio**
 - 39.95
 - Great Gift
 - Crystal controlled! Receives WWV time on 5, 10 or 15 MHz plus VHF weather stations up to 50 miles away. #12-148

- **RF Connectors**
 - 18c Per Foot
 - New Improved Shielding!
 - Cable | Cat. No. | Per Foot
 - --- | --- | ---
 - RG8 | 278-1323 | .40
 - RG8/M | 278-1328 | .25
 - RG58 | 278-1326 | .20
 - RG59 | 278-1327 | .18

- **“Snap” Toroid Core**
 - NEW! 695
 - Pkg. of 2
 - Easy-to-install and effective RFI eliminator. Simply wind cable through core and snap together—no need to remove plugs from AC cords, coax or phone cables. Opening: 7/8" x 7/8". With data. #273-104

- **RS-232 Helpers**
 - 14.95
 - (1) 8 Pin Mike Plug. #274-105 . . . 2.19
 - (2) "Phone Adapter. Stereo 1/8" to mono 1/4". #274-348 1.99
 - (3) Mono Adapter. Adapts 1/8" plug to 1/4". #274-345 1.99
 - (4) H-T Adapter. 1/8" stereo to 1/4" mono. #274-381 1.99

- **Keep It Cool**
 - 13.95
 - (1) 1 1/2" 12VDC Fan, Low noise. 27 CFM. #273-243 14.95
 - (2) 1 1/2" 120VAC Fan. Whisper quiet. 32 CFM output. 11 watts. #273-342 15.95
 - (3) Heavy-Duty MOV. Spike protection! #276-568 1.99

Over 1000 items in stock! Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners, More!

Prices apply at participating Radio Shack stores and dealers

November 1988
Alignment

The first alignment step is to get the product detector and i-f strip adjusted. If you have a signal or sweep generator that covers 455 kHz, just clip it to the output of the mixer and tune up the transformers and the product detector.

If you don’t have the proper equipment, you could steal a signal from the second detector of any battery-operated transistor radio. Don’t interconnect the grounds; with one clip lead between radios you can get enough stray signal for a preliminary alignment.

With front-end alignment comes the familiar problem of setting the oscillator on the proper frequency (455 kHz below the input) and getting the required bandspread. You will need a calibrated test oscillator or a general coverage receiver to do this properly. I used an old, but accurate, grid-dip meter. With the oscillator tuning capacitor set to maximum, adjust L1 for the low-frequency setting. Then with the tuning capacitor set to minimum, adjust the series capacitor for the high-frequency setting. The settings interact and several tries will be necessary. You may need to change or pad a capacitor if you can’t get the desired range.

Front-end adjustment is simple. Hook an antenna to the rig, find a strong signal, set the varactor controls to middle range, and peak the input capacitors. If you want bandpass tuning, use a sweep generator to set C1 to its optimum value. A fair job can be done by setting C1 to minimum, peaking the antenna and mixer adjustments, and then increasing C1 until the output signal just starts to drop.

Once you can tune in signals, you can retouch the i-f transformers for peak performance. Use a weak signal to prevent amplifier overload. Because the filter’s characteristics control the passband, you can’t miss the proper adjustment points.

Performance

As I pointed out in the beginning, this was a compromise design and some tradeoffs had to be made to meet the design goals. The hardest one to accomplish was getting reasonable performance while keeping the current drain to a minimum.

On the 40-meter band, the input noise figure isn’t important because external noise predominates. However, it’s nice to know that the mixer does have 5-dB capability. Gain is always important, but that’s not a problem here. When the controls are turned all the way up, the audio output limits on antenna noise.

The overall receiver performance is limited by the i-f bandwidth. In the weakest signal case, it is the noise riding through with the signal that limits the sensitivity. A narrower filter would improve this, but as pointed out above, you would then have second-detector oscillator problems to solve.

The receiver was designed for casual use, not for DXCC. However, when the band is open, WAS would be easy. From my area, with a dipole antenna pointing EW and up about 15 feet, the W2s and W4s are S9 + most of the time, and the W5s and W7s are S9 + 40.

Battery drain is about 26 mA. While the design value for the power source is 9 volts, I actually use NiCds (7.2 volts) which work equally well. One evening while trying out the breadboard version, the receiver went mushy and quit soon afterward. I checked the battery pack and found that I had been listening to the receiver until the batteries had dropped to about 3.2 volts! Goal achieved.

Stability, as I’ve mentioned, depends on several construction factors and adjustments. My “statistical sample of one” sat on W87PAX, the Pan-American Games station, for over two hours, copying SSB without adjustment. This was outside, with no cover on the receiver.

One unsolved problem is the feedthrough of images from strong commercial and SWBC stations that can be S9 + when the band is open. However, since I have seen the same problem in some very expensive commercial receivers, I don’t feel that I’m alone. A better front end design could help cut the interference down somewhat, but it would complicate construction.

You’ll find the SL6310 a real performer as an output amplifier. With a 4-inch speaker you should have armchair copy 10 feet away. When I use the receiver outside, my XYL keeps reminding me to “Turn that thing down before the neighbors complain!”

I’ve tried to provide a detailed description of the receiver performance. If you decide to build the receiver, you’ll either be delighted or disappointed, depending on what you expect. If you expect this receiver to outperform its $500 commercial counterpart, you will be disappointed. On the other hand, if you think that a receiver built from five eight-pin chips is just a toy, you could be quite surprised and pleased with the performance.

Room for improvement

Home construction projects are never really finished, but at some point you just have to draw the line. This one is no exception. Here are a few things I didn’t do, that could improve the performance of the receiver:

• The filter wants to be terminated in 2,000 ohms. I didn’t consider the shunt and series impedances of the source and load when I designed the circuit. The input 2k resistor could be reduced, and the output 2k resistor increased for a better match. The result would be a flatter passband.

• The antenna and mixer tuned circuits were not optimized for impedance match. I did some calculations on the computer and built the circuit accordingly. When winding these coils, you might add a few extra taps and then try to find the optimum tap combinations for best performance.

• The impedance match between the i-f transformers and the mating circuits are undoubtedly incorrect. I tried
RADIO TELEGRAPH TERMINAL

AR-501

MORSE CODE DECODER

ELECTRONIC KEYER

MORSE CODE TRAINER

ORDERING INFORMATION: For fastest service, call 800-523-6366 from 9 A.M. to 4 P.M. P.S.T. Send mail orders to: ACE Communications, Inc. 22511 Aspan Street, Lake Forest, CA 92630. Visa and MasterCard orders and certified or cashier’s check or money order shipped within 48 hours of receipt. Rush service by UPS/Overnight, UPS/2nd Day Air and Federal Express is available at extra shipping charges. Purchase orders accepted from Government agencies. CA residents add 6% sales tax. COD is $3.00 extra. **WARRANTY INFORMATION:** The AR-501 covered by One Year Warranty. Extended warranty service available at the following rates: 3 Years—$25.00; 2 Years—$15.00. SATISFACTION GUARANTEE: If, for any reason, the ORIGINAL PURCHASER, is not satisfied with the unit purchased, a full refund of the purchase price will be issued if the unit and all accessories are returned to us UNDAMAGED WITHIN 25 DAYS of the date of original purchase (Invoice date). This policy excludes any additional freight that may be incurred, and in no event modifies or limits the limited warranty.

DECODER

- Input level: 10mV to 2V RMS
- Input impedance: 6 to 1kΩ—600Ω typical
- Decoding speed: 5 WPM to 30 WPM
- Audio filter: 800 Hz ± 30 Hz
- Active and PLL filters
- 700 Hz to 900 Hz internally adjustable.

ELECTRONIC KEYER

- Paddle input: TTL level
- Contact input: ON/Actuating, OFF/Stop
- Key input: TTL level
- Contact input: ON/Mark, OFF/Space
- Keying speed: 5 WPM to 30 WPM
- Keyer output: Transistor switching, 0mA collector type

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>AR-501 Radio telegraph terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power source</td>
<td>DC 12V to 13.8V—165mA</td>
</tr>
<tr>
<td>Size</td>
<td>4.5"x W x 2.24"H x 6.25"D</td>
</tr>
<tr>
<td>Weight</td>
<td>12.5 oz. (358 g)</td>
</tr>
<tr>
<td>Controls</td>
<td>Power On/Off</td>
</tr>
<tr>
<td></td>
<td>Random code generator On/Off</td>
</tr>
<tr>
<td></td>
<td>Print-out On/Off</td>
</tr>
<tr>
<td></td>
<td>Monitor speaker level</td>
</tr>
<tr>
<td></td>
<td>Electronic keyer mode select</td>
</tr>
<tr>
<td></td>
<td>Speed Up & Down</td>
</tr>
<tr>
<td>Display Indicators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCD 32 characters—16 per line</td>
</tr>
<tr>
<td></td>
<td>LCD 16 characters—32 per line</td>
</tr>
<tr>
<td></td>
<td>LED</td>
</tr>
<tr>
<td></td>
<td>Tuning—Red LED</td>
</tr>
<tr>
<td>Front connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paddle—Standard/Amateur</td>
</tr>
<tr>
<td></td>
<td>Ordinary telegraphic key</td>
</tr>
<tr>
<td></td>
<td>Headphone/Earphone</td>
</tr>
<tr>
<td>Rear connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC 13.8V input</td>
</tr>
<tr>
<td></td>
<td>Audio input</td>
</tr>
<tr>
<td></td>
<td>External speaker</td>
</tr>
<tr>
<td></td>
<td>Keyer output</td>
</tr>
<tr>
<td></td>
<td>Printer output</td>
</tr>
</tbody>
</table>

PRINTER PORT

- Compatible with Centronics 8-bit parallel printer. At least 4K byte data buffer is required in a printer.

BACK TO BASICS — • • • But far more advanced — • • •

The AR-501, triple mode CW terminal in a small package, is a powerful gear to practice and play with. For the Novice, SWL and Amateur radio operators it detects Morse code between 5 to 30 WPM. Just plug the AR-501 to your receiver to start translating the Morse code onto full 32 character LCD display. Very simple and easy to operate. You ask; for code practice?, both receive and transmit? Yes, the AR-501 does just that. It will improve your cord reception and keying technique at the speed you want. More? it operates as an electronic keyer both standard and iambic. More Yet? How about a printer port? You bet, the AR-501 provides parallel printer port for hard copy. You can Log the QSO, and Practice. It will help you immeasureably. We even offer a standalone Nicad operated thermal printer as an option. **ACCESSORIES SUPPLIED:** The AR-501 Radio telegraph terminal comes complete with Receiver cable, DC Power cable, Miniature Phone plug, Miniature stereo phone plug, Spare fuse. Wall receptacle style power adaptor and Instruction manual. **ACCESSORIES AVAILABLE:** CC-501 Parallel printer cable — $30.00/DPU-411 Standalone Thermal printer with 8K buffer—$235.00
Simple converters using the NE602N. (A) shows the circuit for fundamental crystals; (B) shows the circuit for overtone crystals. Component values for (A) depend on the frequency being converted. The (B) circuit oscillator is appropriate for 10 meters. L1 and C1 should be rough-tuned to 30 MHz, to assure operation on the proper overtone frequency.

A recommended preregulator circuit for use with autonomous or 12-volt DC wall adapters. Note that a connection to car body or earth ground is shown to reduce stray noise and signal inputs.

to get a data sheet on the transformers, but all Toko had was one of those half-English short-form sheets, with no useful design information on it.

Additions and changes

Rather than load this discussion with detailed footnotes, I'll just point out that "Everything you ever wanted to know..." can be found in the ARRL Handbook, in Solid State Design for the Radio Amateur, and in the back issues of HAM RADIO magazine. You can find circuits for AGC, tuning meters, coil designs for other bands, crystal calibrators, and the other typical options.

For CW operation, the most valuable addition would be a sharp audio filter. If you plan to use an op amp active filter, and are using a battery supply, be sure to check the op amp current requirements; some op amps are real current hogs.

For maximum utility you might want to add a switch at the i-f output and provide diode AM detection and FM detection in addition to the SSB product detector.

Higher frequencies

Receiver performance will drop off above 10 meters, due to oscillator stability requirements and interfer-ence problems. The solution is to use a front end converter. Here again the NE602N can be pressed into service. Two such converters are shown in fig. 11: one for fundamental crystal oscillators, and the other for overtone oscillators. Because there is a wide range of inexpensive microprocessor crystals available, and since the converter will draw less than 3 mA, using one of these converters makes it easy to move your receiver anywhere you want — up to the 200-MHz converter limit.

As an example, Digi-Key offers a 23.4-MHz fundamental crystal ($1.62) Using this crystal in the fig. 11

<table>
<thead>
<tr>
<th>Parts List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mfr</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>KY</td>
</tr>
<tr>
<td>KY</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>NTK</td>
</tr>
<tr>
<td>ME</td>
</tr>
<tr>
<td>ME</td>
</tr>
</tbody>
</table>
converter, with the 5 x 8 set around 5.1 MHz, will produce a 10-meter receiver. The exact frequency of the 5 x 8 will depend on the part of the 10-meter band you want to receive.

If you plan to use the receiver only with a converter, you won't need the elaborate double-tuned mixer circuits. A simple single-tuned circuit is adequate. Unfortunately, you'll probably need a double-tuned circuit at the converter's input to reduce images and strong stray signals.

Instead of adding a converter, you can use one of the circuits of fig. 11 as the mixer/oscillator input stage for fixed-frequency operation. This can be handy for nets or for frequency-standard reception. If you use this approach for WWVH or a similar station, consider using a diode detector in place of the product detector.

Alternate power sources

In addition to operation from dry cells or NiCds, you could run these receivers from many other sources because the current drain is low and the voltage requirements aren't strict. However, there are a few things to consider. If you plan to rob power from some existing supply, be certain the supply voltage is "clean." If the supply also powers digital circuits or a microprocessor, you could have switching noise on the power supply lines. These receivers are hot; even a few microvolts of RF on the supply lines could show up in the receiver. A preregulator helps a lot (see fig. 12) to clean up a contaminated supply. If you still have problems, add some RF chokes and filter capacitors as required.

Parts procurement

Unless you are very lucky, you won't find the ICs that I used (see parts list) through surplus channels. They are available through the usual distributor channels, but most distributors have a $20-$30 minimum charge. Many ham clubs have a group purchase plan to get around this problem.

The same is true for the ceramic filters. I can't recommend a reliable source, but they are common flea market items. As with crystal filters, the more elements used the better the performance and the higher the price. Because the catalogs for these parts are hard to obtain, I've listed some selected example. The parts list key follows:

ME: Murata Erie
KY: Kyocera
NTK: NTK Technical Ceramics

6 dB B.W.: Filter bandwidth at the 6 dB points
50 dB B.W.: Filter bandwidth at the 50 dB points

S.B. Attn: Stop Band Attenuation, performance of the filter outside its passband.

Term: Input and output termination impedance, ohms.
Case: P = plastic, M = metal

The filters shown are ranked in order of increasing performance. Expect to pay $5 to $25, depending on the characteristics. The first few on the list are not really recommended, but you can try them if you find them at the right price.

The Toko coils are available from Digi-Key⁴. The same company also sells inexpensive crystals.

Summing things up

I hope my work encourages you to plug in your soldering iron. These designs are simple, fun to build, and easy to modify. You can get a lot of satisfaction per hour of assembly effort.

If you have problems or questions (other than where to find the parts), drop me a line and I'll try to help. (Please include an SASE.) But if you come up with improvements, don't write me; drop a line to Marty Durham, NB1H, at HAM RADIO, so he can print them and we can all share your findings.

References

2. Signetics Application Note AN198 (included in above Manual).
3. Digi-Key, P.O. Box 677, Thief River Falls, Minnesota 56701. Order only: 1-800-344-4538 (free minimum).
The MFJ 989 transmatch provides great versatility for the money. With 240-pF variable capacitors and a 36-μH rotary inductor, the unit handles most loads down to 160 meters. However, you can improve its performance at 12 and 10 meters with two simple changes.

1. Remove the case top and check the rotary inductor. MFJ has used at least two different models. In my unit, the lower end (closest to front panel) of the coil was not grounded. Correcting this situation revealed another problem. The movable tap was grounded at the panel end, leaving a long path of low Q stray inductance. This reduced the available adjustable inductance at 10 meters. The fix is simple. Run a heavy ground strap from the movable tap terminal at the rear end of the inductor unit to ground. In my unit, the strap goes to a mounting lug on the chassis. The result is another half turn of available adjustable inductance, and the shape of the ground lead follows the general coil shape, yielding (I would guess) higher Q stray inductance.

2. The variable capacitors are difficult to tune for high reactance loads. Sharp settings result in back and forth overshoot. The solution is to install a pair of Vernier drives. I used a pair of 6:1 Jackson Brothers drives. Again, installation is straightforward and requires no disassembly other than removing the capacitor knobs. The steps are as follows:
 a. After removing the case top and knobs, cut the capacitor shafts to a length of 1/2”. This point is just about where the plastic part of the shaft begins. Save the plastic shafts for step d. (Note: if Verniers were to be installed during initial assembly, this cutting would be unnecessary. Only the plastic shafts would need trimming.)

By L. B. Cebik, W4RNL, 2414 Fair Drive, Knoxville, Tennessee 37918

IMPROVING OPERATION WITH THE MFJ 989 TRANSMATCH

b. With a chassis hole punch, enlarge the shaft opening in the front panel to about 7/8”. Carefully align this hole so that the shaft is dead center.

c. Using the drive as a guide, drill 4-40 (1/8” diameter) holes for the mounting wings of the drive. On older model 989s with capacitor reference numbers between 1 and 6, vertical alignment avoids obscuring any number. Newer models have finer markings, and the hardware will obscure something.

d. Cut the plastic remnants of the capacitor shafts to 1-1/4”, and mount to the drives. This step restores adequate insulation between the capacitors and the panel assembly. Then install the drives loosely on the front panel to check alignment.

e. If the plastic shaft aligns very well with the capacitor metal shaft, loosen the assembly and install an ordinary 3/4” long 1/4” diameter shaft coupler to join the metal and plastic shafts. Then tighten down everything and check for capacitor binding during rotation. If binding occurs, or if alignment is not very good, install a flexible shaft coupler between the capacitor and the plastic shaft. This step goes smoothly if all cut shafts have been filed smooth. Remember to vacuum the filings from the transmatch case.
overshoot beyond minimum SWR. This speeds up the 2-hour effort well worth the energy.

Outside of the 4-40 mounting hardware and small resetting the transmatch when changing bands.

Then add the original knob, align the capacitor for mark 1 or 6 if the drive is equipped for a secondary marker (two screws into a brass plate), cut a marker pointer from thin, stiff plastic. Plastic file folder material is ideal; it’s stiff, but can be cut with shears or an Xacto\textregistered knife. Then add the original knob, align the capacitor for mark 1 or 6 (or 10 on the latest models), and reclose the case.

The result will be easier capacitor setting with no overshoot beyond minimum SWR. This speeds up the transmatch operation when changing bands. Outside of the 4-40 mounting hardware and small pointers emerging from behind the capacitor knobs, you haven’t altered the appearance of the 989 at all. The improved operation of the transmatch makes this 2-hour effort well worth the energy.

The Jackson Brothers 6.1 Vernier dials (part no. 4511-DAF) are available through Radiokit, Pelham, New Hampshire. Ed.

Article B

HI-PERFORMANCE DIPOLES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFD-5</td>
<td>80-120-20 MHz max performance dipole 6' long</td>
<td>$10.00/pair</td>
</tr>
<tr>
<td>MFD-2</td>
<td>80-120-20 MHz max performance dipole 13' long</td>
<td>$15.00/pair</td>
</tr>
<tr>
<td>SS8-6</td>
<td>80-120-20 MHz space saver dipole 7' long</td>
<td>$12.00/pair</td>
</tr>
<tr>
<td>SS8-1</td>
<td>80-120-20 MHz space saver dipole LC. 500/500</td>
<td>$15.00/pair</td>
</tr>
<tr>
<td>SS8-6</td>
<td>80-120-20 MHz space saver dipole LC. 500/500</td>
<td>$15.00/pair</td>
</tr>
</tbody>
</table>

SASE for catalog of 30 dipoles, slippers, and space saving, unique antennas

AMATEUR TELEVISION

NOVICES: NOW YOU CAN TRANSMIT VIDEO WITH OUR NEW TX23-1

Did you know that you as well as all classes of licensed amateurs can easily transmit live action color and sound video just like broadcast TV with our TX23-1 transmitter. Use any home TV camera and/or VCR, computer, etc. by plugging the composite video and audio into the front 10 pin or rear phono jacks. Call or write now for our complete ATV catalog including downconverters, transceivers, linear amps, and antennas for the 70, 33, & 23cm bands.

Only $299

TX23-1 one watt ATV transmitter crystalized for 1289.25 MHz runs on 12-14 Vdc @ .5A. PTL T/R switching, 7x7x2.5". Transmitters sold only to licensed amateurs for legal purposes verified in the latest Callbook or with copy of license sent with order.

(818) 447-4565 m-f 8am-5:30pm pst.

P.C. ELECTRONICS
2522 Paxson Ln Arcadia CA 91006

Tom (W60RG) Maryann (WB8YSS)

29th ANNUAL TROPICAL HAMBOREE

A.R.R.L. FLORIDA STATE CONVENTION

FEBRUARY 4-5, 1989

TAMMAM PARK FAIR GROUNDS

10901 S.W. 24th Street (Coral Way), Miami, Florida

HOURS: 9 A.M.-5 P.M. SATURDAY • 9 A.M.-4 P.M. SUNDAY

FREE PARKING 15,000 VEHICLES

200 COMMERCIAL EXHIBIT BOOTHS

1,000 INDOOR SWAP TABLES

COMPUTERS & SOFTWARE

300 CAMPSITES WITH FULL HOOKUPS

LICENSE EXAMS

Registration: $5.00 Advance — $6.00 Door. Valid Both Days. (Advance deadline January 30th.)

Swap Tables, 2 Days: $16.00 each. Power: $10.00 per User.

All swap table holders must have registration ticket.

Campsites: $12.00 per Day • Includes Water, Power, Sanitary Hookups & Showers.

(All RV vehicles, tent campers, vans, trailers welcome — no ground tents, please.)

Make Checks for Registration, Swap Tables & Campsites Payable to: Dade Radio Club & Mail As Follows:

Tickets & Hotel Info Only: Evelyn Gauzens, W4WYR, 2780 N.W. 3rd St., Miami, FL 33125

Swap Tables, RV, Tickets & Hotel: John Hall, W4DFG, 8670 S.W. 29th St., Miami, FL 33155

RV & Tickets Only: Dick Leisy, W4OOH, 650 W. 63rd Dr., Hialeah, FL 33012

Exhibit Booth & General Info: Evelyn Gauzens (address above) or Call (305) 642-4139 or (305) 233-0000

BROCHURE WITH FULL DETAILS AVAILABLE DECEMBER 1st
The radio boys in the Pacific, or, working DX for Uncle Sam

The year was 1934. Many thoughtful Americans felt that war with Japan was inevitable, but the international political atmosphere tied their hands. Japan, in defiance of treaties, was fortifying Micronesia and busy turning the island of Truk into a large naval base. Other Japanese bases existed at Koror, Ponape, and Saipan. The military analysts in Washington thought the next thrust of Japanese military power might be in the direction of Hawaii, though a smattering of small islands lay in the path. The United States was faced with the problem of protecting and converting these islands into advance air or naval bases, without upsetting relations with Japan.

The Pan-American “smoke screen”

The proposed flights of the legendary Pan-American Airways flying boat “China Clipper” (see Photo A) provided a smoke screen behind which American preparations in the Pacific could take place without arousing the Japanese government. The huge flying boat with its requirements for island refueling bases was thought to be the ideal cover for preliminary investigation and eventual fortification of the islands to the west of Hawaii. The Clipper would fly on a regular commercial schedule from San Francisco to Macao or the Philippines, stopping at various U.S.-controlled Pacific islands for refueling and to allow the passengers to rest. The uninhabited islands had to be surveyed and determination made as to which ones would be suitable as landing sites for the Clippers. A deep lagoon was needed on each island, with sufficient land area to accommodate the necessary support facilities. Survey crews were hired quickly to start the project. This is where Radio Amateurs played their fateful role.

The China Clippers

The Martin M-130 flying boats were titans. Over 90-feet long and with a 130-foot wing spread, the four-engine, 26-ton giants were the first planes powerful enough to carry their equivalent weight as payload. They could fly an astounding 3,200 miles nonstop at 130 miles per hour. No other aircraft could duplicate this feat. The time was ripe for these Clippers to island-hop from the American West Coast to the Orient. Aided by covert military funds, the U.S. government set about establishing island bases to accommodate the flying boats.

Each flying boat was equipped with duplicate shortwave receivers and crystal-controlled transmitters (CW) in addition to a battery-operated emergency trans-receiver. Long-wire

PHOTO A

The Martin M-130 “China Clipper” in flight over San Francisco Bay, bound for Honolulu, Hawaii. The 26-ton flying boat carried 16 passengers and took 18 hours for the first leg of the flight to Hawaii. One-way fare to Honolulu was $380. Round trip to China and back was $1600.
NYE

Takes the fear out of full power antenna tuners, and the guesswork out of PEP measurement with these two MUST SEE PRODUCTS!!

MB-V-A

Get correct easy to read measurements of PEP for SSB, AM, and Pulse along with full time completely automatic SWR display with this unique Power Monitor System. Two models to choose from: The RFM-003 for 3KW indication and The RFM-005 for 5KW.

RFM-003

Check the Features:

- Pi Network. Low Pass Pi Network tuning 1.8-30 MHz. Heavy duty silver plated continuously variable inductor with 25:1 vernier dial. 7000 volt variable capacitor and 10,000+ switch selected fixed capacitors on output side. Tuned 40-2000 ohms loads. Good harmonic suppression!

- Automatic SWR. Hands free metering of SWR. No reset or calibration needed. Separate meter power -300 or 3000 w r m automatically switched. Easy to read 2.5" recessed and back-lighted dual scale meters.

- Antenna Switch. Push-BUTTON antenna switching to (4) antennas (2 coax, single wire and twin lead). Can be bypassed on first coax output. We designed this switch to take the power at a10KV and 20 amps.

- Balun. Trifilar wound triple core torroid gives balanced output to twin feed or from 200 to 1000 ohms and unbalanced output down to 20 ohms.

- Maximum Power Transfer. Match your transmitter output impedance to almost any antenna system for maximum power transfer. Amplifiers only run at their designed Q when properly matched.

- Mode Options. MB-V-A1 includes all MB-V-A features plus antenna switch and balun. MB-V-A2 is identical to MB-V-A1 with the addition of a triple core balun.

- 1.8 MHz will not tune on some antennas.

Other NYE VIKING Products

Phone Patchers - Electronic and Memory Keyers - Squeeze Keys - Straight Keys - Code Practice Sets - SWR Wattmeter for the blind - Low Pass Filters - All Band Antennas and more...

Ask for a FREE FULL LINE CATALOG.

Barry Electronics
C-Comm
Missouri Radio
Quement Electronics
Texas Towers
Ham Station

TO ORDER, CALL YOUR FAVORITE DEALER

Amateur Electronic Supply
Ham Radio Outlet
Henry Radio
Madison Electronics
EGE
R & L Electronics

Wm. M. Nye Co. Inc.
1614 130th Ave. N.E.
Bellevue, WA 98005
TEL: (206) 454-4524
FAX: (206) 453-5704

November 1988
Crystals for many applications

For over 37 years, ICM has manufactured the finest in quartz crystals for every conceivable purpose.

A wide selection of holders are available to fit most any requirement. Our computer database contains crystal parameters for thousands of equipment types.

Need crystals for communications, telemetry, industrial, or scientific applications? Let ICM's sales department assist you to determine which type of crystal is best for you.

Can we solve your crystal problem?

For special purpose crystals, special holders, special sizes, call our crystal sales department. We will be pleased to provide recommended data.

International Crystal Manufacturing Co., Inc.

P.O. Box 26330, 701 W. Sheridan, Oklahoma City, OK 73126-0330
Phone (405) 236-3741
Telex 747-147
Facsimile (405) 235-1904

Affordable Packet

Tiny-2 is our new low-cost high-performance standard for packet controllers. Thousands already in use worldwide. A perfect beginner's unit. Complete, wired $119.95 and tested, only $159.95

Benefits and features of both units:
- Optional personal message system (mini-BBS)...Add $1000
- Tiny enough for briefcase or portable yet large enough for easy experimentation or repair
- 1-year limited warranty, excellent customer support
- RS-232 and TTL compatible—all connectors supplied
- Latest AX.25 software and TCP/IP (KISS) module included.

MicroPower-2 is our remarkably compact, 58-ounce unit using upgraded TAPR TNC-2 technology that requires less than 40 millamps! For very portable operation, solar or battery, you need not pay more for a TNC that's about the size of your HT! Was $179.95, now at a low of $139.95

- Fully compatible with ROSE & NET/ROM EPROMs
- 32K RAM, 32K ROM, 4.9 mHz CPU
- Xtal controlled modem, compatible with use on Inn HP/VH/THE

TO ORDER, toll-free with major charge card, call: 1-800-223-3511
Technical support line: 813-874-2980

Pac-Comm
3652 West Cypress St., Tampa, FL 33607

Please send: □ Tiny 2 □ MicroPower-2 □ TNC-220 info □ FREE Packet Catalog

Name ________________________________ Call ____________________________
Address ___
State __________ Zip __________ Card Number ________ Exp. Date __________

Money Back Guarantee. Add $3 shipping/handling per order. FL addresses add 5%. Major Credit Card: give number, expiration and signature. FAX: 813-874-2896

THE RACK IS BACK

- save space - go vertical
- organize your radio room
- get the professional look
- have finger tip access to your radios
- keep your equipment safe and clean
- hold all the ugly wires
- protect your investment

NOVEk rack mounts are standard EIA 19 inch size aluminum panels and are optionally equipped with handles and/or forward facing speakers.

Now available for most ICOM, KENWOOD, and YAESU radios and accessories.

Prices start at a low $79.95 each.

Orders: 1-800-368-3270 Local & tech info 301-368-1000

Electronic Equipment Bank
5118 Mill St. NE, Vienna, VA 22180

(20079)
antennas were strung between the aircraft's nose and tail. A group of frequencies in the 3-10 MHz region were allocated to the Pacific chain of bases with whom the Clippers could easily and quickly communicate. The Clippers' flights could be tracked across the Pacific by direct CW contact every half hour, as well as by direction finders placed on the islands.

Island colonization

One of the first steps to establish ownership of the islands was the Coman Oceanographic Expedition of 1935. Kenneth Lum King, K6BAZ was with this expedition. He was replacing K6GNW who had been stationed on Howland Island in connection with the tragic flight of Amelia Earhart. K6ODC was on Johnston Island, while K6INF was on Baker Island. Howland, Jarvis, and Baker Islands were being "colonized" to justify a U.S. claim on the group. The claim was supported by the fact that Americans had visited the islands between 1860 and 1880 to dig guano (fertilizer). In addition to lazering in the sun, the radio Amateurs handled commercial traffic and worked DX on 7 and 14 MHz.

Other tiny islands were also being colonized by American expeditions. They, too, had hams serving as radio operators. Kingman Reef, Canton Island, Christmas Island, and Olosenga Island (Samoa) were about to be put on the air. The islands of Hull, Swain, Atafu, and Puka Puka were also investigated as possible military sites.

Beginning in 1934, Pan-American and U.S. government crews started to work on air bases the Navy needed but couldn't get. Baker, Jarvis, and Howland Islands were claimed by the British, but in 1935 the U.S. State Department decided not to waste time discussing the matter with the British. It began to colonize the islands immediately instead. Commercial aviation supplied the "cover story".

Canton Island—American or British?

Each island base was to be self-sufficient, complete with maintenance facility, radio and beacon stations, and a weather station. The Howland Island airstrip was built first as a navigation aid for the Earhart flight. The supply ship "Itaska" was stationed near Howland as the principal navigation system for the flight. The loss of the Earhart plane and the radio navigation problems of the "Itaska" convinced the Navy that only permanent, well-organized facilities would do. A better island was needed; that turned out to be Canton Island.

The stage was set. Americans landed on Canton Island in February 1935, only to find British settlers there. A peaceful truce came about, but in May 1939 a British cruiser blocked the American supply ship and prevented it from reaching the island. Diplomatic cables flew back and forth between Washington and London, and the cruiser eventually sailed away. Sovereignty was placed in abeyance.

While the international political game was being played between America and England, Japan watched the colonization of the islands with apprehension. These islands would be used as advance bases for the forthcoming war with Japan! The Japanese Navy began to study how to eliminate these danger spots. Perhaps the best way would be to bypass them with a direct attack on the Hawaiian islands...

The islands are Americanized

Once the islands were declared U.S. territory, the Federal Communications Commission quickly assigned prefixes: K66 (Guam) previously OM1 and K6 KC6 (Wake)KD6 (Midway) KE6 (Johnston) KF6 (Baker, Canton, Howland, and Phoenix Islands) KG6 (Jarvis and Palmyra) KH6 (Hawaii, previously K6).

Even so, the situation was confusing. Some of the islands were under the control of the Department of the Interior (Jarvis, Baker, and Howland), while others were supervised by the Commerce Department. Others had no direct supervision other than that of the colonists, guided by the U.S. Navy.

During 1940-1941, while American Amateurs were banned from working foreign countries, the new Pacific islands provided a welcome source of DX. Most of the island hams worked on 7 or 14-MHz CW; a few of them were on 14-MHz phone. Some of the stations heard on the air during that period are listed in table 1.

TABLE 1

| Partial list of Radio Amateur activity in the Pacific (1935-1940): |
|------------------|------------------|
| KB6-Guam | K6Brez |
| K6CBE | K6CHR |
| K6W-Midway | K6TE-KC6 |
| K6A-Wake Island | K6Ala/KC6 |
| K6D-Midway Island| K6FOU |
| K6OHX | K6BSRA |
| K6B-Baker, Canton, Howland, and Phoenix Islands |
K6BAZ	K6JRN
K6HCO	K6DEC
K6JRN	K6JEG
K6JEG	K6RQV
K6SJJ	K6JEG
K6PUL	W7DBR/KF6
KG6-Jarvis and Palmyra Island	
KG6DC	KG6MV
KG6MV	KG6GNV/KG6

War!

By late 1941, the new Pacific possessions were highly visible on the Amateur bands. There was talk of other exotic islands ready to come on the air any day, but the advent of World War II quickly put the hams off the air. Most of the islands were evacuated to protect the personnel and the installations were destroyed. Only Midway and Wake Islands were
thought to be of any use to the Navy in the long, hard days ahead.

Post-war Amateur operation

As soon as Amateurs were allowed back on the air, some of the Pacific islands became active. In particular, Canton, Wake, and Christmas Islands were represented on 20-meter phone. An interesting situation developed on Canton Island (re-christened with the new prefix KB6). British settlers arrived to strengthen the British claim on the islands. The American contingent was represented by KB6AD (Ken Neifert) and the British by VR2AZ/VR1 (Don Schroder). As far as DXCC was concerned, Canton Island counted for two countries, depending upon whom you worked!

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present day listing of prefixes from the Pacific.</td>
</tr>
<tr>
<td>KH2, (KB6)......Guam</td>
</tr>
<tr>
<td>KH9, (KW6).....Wake Island</td>
</tr>
<tr>
<td>KH4, (KD6).....Midway Island</td>
</tr>
<tr>
<td>KH3, (KD6).....Johnston Island</td>
</tr>
<tr>
<td>KH1, (KF6)......Baker, Canton, Howland, and Phoneix</td>
</tr>
<tr>
<td>KH5, (KG6)......Jarvis and Palmyra Island</td>
</tr>
</tbody>
</table>

The end of the China Clippers

The last China Clipper flight took place in April 1946. Newer, four-engine post-war transports could fly quicker, carry a heavier load, and cost less to operate than the old flying boats. Most of the island bases were now no longer needed. The facility on Canton was abandoned in 1945, but partially retained as a weather station. Later, it was used as a down-range tracking station for the U.S. Air Force. By 1970 this activity ceased, but the island is still under joint U.S.-British administration.

Now most of the islands are deserted. Wind, wave, and sand have obliterated the old bases. Jet aircraft make contrails over the islands as they fly past locations once thought vitally important in the hectic, pre-war days, but now merely relics of a forgotten period of American history.

An occasional DXpedition visits one or two of the islands. The F.C.C. has assigned new prefixes to the islands (see table 2) and hopeful DXers still keep an ear open for radio activity from the little spots of sand that loomed so large in pre-war America planning.

The “Dead Band Contest”—“Elementary, my dear Watson”

In my July 1988 column I challenged my readers to identify a quotation from a famous work of fiction, thus proving that alert and active hams are not “couch potatoes”, but are avid readers when the band is dead. The quote was: “You have been in Afghanistan, I perceive.”

I was pleased and gratified at the many correct responses to this quiz and I was impressed by the depth of knowledge of the “Sacred Writings”. As Bob Rosenquist, W0EHF, put it, “These were the first words spoken to John H. Watson, M.D., late of the Army Medical Department, by Sherlock Holmes in January 1881, in the laboratory at St. Bartholomew’s Hospital in London.”

Harry Hyder, W7IV, also illustrated his knowledge of “The Canon” and informed me he was a member of the “Sherlock Holmes Wireless Society.” Congratulations to the other readers who were kind enough to enter this contest. Within the first week of publication of the July issue of HAM RADIO, the following had correctly identified the quotation. The asterisk (*) after the call indicates the individual had exceptional knowledge of the famous works of Sir Arthur Conan Doyle.

George Marts, W0THD; George Goldstone, W8AP(*); Donn Baker, WA2VOI; Bob Harmiston, WB6JOP; Dan Pierson, W6NTX(*); Fred Linn, W9NZF; Bill Calderwood, K1CT; Steve Trapp, ND4G; Russ Webster, K6WM; John Mise, AA6FK; Mike
Helm, WC5Z; Carl Scherer, VE3MDM; Ed Wetherhold, W3NQI; John Peak, KE6HS; "Doc" Roberts, K9BX; Ralph Turner, W8HXC; Bob Locker, W9KNI; Ken Morgan, KC5DW; Bob Hous, KD9UX; Steve Twiggs, KM7U; Gary Grebus, K8LT.

Another "Dead Band" Contest

Smart readers, eh? Well, try this one on for size. Identify the subject, verb, and object of this portion of the following popular song:

"Oh, say, can you see, by the dawn's early light, what so proudly we hailed at the twilight's last gleaming"

This quiz was given by Jon Carroll in his column in The San Francisco Chronicle of July 1, 1988.

References

Article C

HAM RADIO

WORLD'S SMALLEST—WEATHER STATION

THE AMAZING WEATHER COMPUTER THAT YOU CAN HOLD IN THE PALM OF YOUR HAND.

DIGITAL's new TWR-3 Micro-Weather Station includes a computer, precision wind vane and speed sensor with mounting hardware, and 40 feet of cable. For only $159.95. With the optional, automatic-encoding RC-1 Rain Collector ($49.95) you can even monitor rainfall!

- WIND SPEED
- WIND DIRECTION
- TIME OF DAY
- WIND CHILL
- WIND GUST RECORD
- METRIC STANDARD
- TEMPERATURE
- HUMIDITY
- ONE YEAR WARRANTY

MAGNAPHASE INDUSTRIES, INC.
1122 PERSHING STREET S.W.
MC & VISA
MADE IN U.S.A.
AUBURN, WA 98001
ORDERS ONLY: 800-323-1502
INFORMATION: 206-735-0774
FAX: 206-735-9044

HI-Q BALUN
- For dipoles, loops, inverted vee and doublet antennas
- Neoprene center insulator
- Pull power in antenna
- Broadband 1:1 SWR
- Small lightweight and weatherproof
- For full legal power and more
- With 209 connector
- Hi-Q DC grounding protects against lightning

Only $14.95

HI-Q ANTENNA CENTER INSULATOR
- Small rugged light weight weatherproof
- Replaces center insulator
- Handles full legal power
- With 209 connector

$6.95

SHORTY ALL-BANDER
- The perfect match for ANTENNAS TUNED WITH A BALANCED OUTPUT
- Competently factory assembled ready to use
- Small lightweight weatherproof shielded shorteners with stainless steel eyepins
- Significant reduction in SWR
- Center fed with 100 feet of light loss
- High performance balanced transmission line
- Includes center insulator with an eye hook for simple support
- Includes custom molded insulators instead of top quality material with high dielectric qualities and excellent weatherability
- Complete weatherproof insulators included
- Overall length 70 feet, length when erected as an inverted vee is 280 feet
- Handles 2.8 PEK & covers 160 through 10 meters
- May be treed to fit small cities 700 feet

Only $39.95

The ALL-BANDER DIPOLE, fully assembled overall length 135 feet with 100 feet 450 OHM feedline

$29.95

DIPOLES

MODEL BANDS LENGTH PRICE

Dipoles
D-160 160 260 $36.95
D-80 80 75 130 31.95
D-40 40 15 66 29.95
D-30 30 20 45 26.95
D-20 20 25 36 24.95
D-15 15 30 24.95
D-10 10 40 20.15.10 24.95
D-6 6 15 10 24.95

Shortened dipoles
SD-40 80 75 90 35.95
SD-40 40 66 33.95

Feeders
PO-810 80 40.20.15/10 130 43.95
PO-1010 80 40.10.5/10 130 43.95
PO-840 80 40 130 39.95
PO-640 60 40 66 32.95

Dipole shorteners only as same included in SD models
S-80 80 13 $13.95
S-40 40 12.95

All prices are complete with a HI-Q BALUN and HI-Q Center insulator for Models including 160 meters. No. 14 7022 stranded hard drawn copper antenna wire, 100 feet. Non-harddrawn antenna support tape rated for full legal power.

DIPOLES

MODEL BANDS LENGTH PRICE

HSD-160 160 130 $59.95
HSD-110 110 130 44.95

Loaded dipole-s using coils
LD-1 80 40 80 $59.95
LD-1 80 40.20.10 132 79.95
LD-1 80 40 132 89.95
LD-1 80 40.20.10 164 69.95
LD-1 80 40 164 69.95
LD-1 80 40 69.95

Trap dipoles
TD-159 20.15 20 28 $49.95
TD-159 20.15 10 28 26.95
TD-210 20.15 10 57 24.95
TD-210 20.15 10 48 24.95
TD-210 20.15 10 106 59.95
TD-210 20.15 10 106 59.95
TD-210 20.15 10 99 59.95
TD-210 20.15 10 99 59.95

Antenna Accessory—available with antenna orders
Cables, connectors, etc...

Amidon Associates Since 1963

Toroidal Cores

Iron Powder and Ferrite

Shielding Beads, Shielded Coil Forms

Small Orders Welcome

Free "Tech-Data" Flyer

12033 Otsego Street, North Hollywood, Calif. 91607

November 1986
HITACHI SCOPES AT DISCOUNT PRICES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>DC to</th>
<th>Dual Channel</th>
<th>CRT Readout</th>
<th>Cursor Meas</th>
<th>DC Offset</th>
<th>Alt Magnifier</th>
<th>Compact Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-212</td>
<td>$379</td>
<td>List $560</td>
<td>Save $181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-425</td>
<td>$835</td>
<td>List $995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-1060</td>
<td>$1,285</td>
<td>List $1595</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20MHz Dual Trace Oscilloscope

All Hitachi scopes include probes, schematics and Hitachi's 3 year guarantee on parts and labor. Many accessories available for all scopes.

- List $560
- Save $181

ELENCO PRODUCTS AT DISCOUNT PRICES

20MHz Dual Trace Oscilloscope

- **$349**
- **MO-1251**
- **6" CRT**
- **Built-in component tester**
- **TV Sync**

- **SCOPE PROBES**
 - P-155Hz, x, 10x
 - P-2100MHz, x, 10x
 - with 5 accessories
 - 10 Meg ohm input impedance
 - Fits all scopes with BNC connector
 - TL-3 BNC to Minigrabber $3.49

- **Multimeter with Capacitance and Testa**
 - M-5500

- **Digital Capacitance Meter**
 - CM-1550

- **50MHz Logic Probe**
 - LP-700

- **Solderless Breadsboards**

- **Low Cost Multimeter**

- **3½ Dig Digi**

- **3½ Dig Digi Type**

- **Digital Triple Power Supply**
 - XP-765

- **Quad Power Supply**
 - XP-580

- **Four-Function Frequency Counters**
 - F-1000

- **Best Idea Function BLOX For EASY BREADBOARDING**

NEW! Autoranging DMM

- M-5000

- **$45**

- **NEW! AC Clamp-On Current Adapter**

- **ST-265**

- **$22**

- **NEW! Wide Band Signal Generators**

- **SG-9000**

- **$119**

- **3½ Dig Digi Type**

- **Digital Triple Power Supply**

- **XP-765**

- **$249**

- **Fully Regulated, Short circuit protected with 2 Limit Cont, 3 Separate supplies**

- **XP-660 with Analog Meters $175**

NEW! Function BLOX For EASY BREADBOARDING

Great IDEA Function BLOX For EASY BREADBOARDING

- **9900**

- **28.95**

- **9910**

- **28.95**

- **9920**

- **18.95**

- **9930**

- **22.95**

- **9940**

- **22.95**

- **9950**

- **19.95**

Power BLOX

- **List $5.95**

- **5 at 3A**

- **15 Day Money Back Guarantee**

- **2 Year Warranty**

C & S SALES INC.

1245 Rosewood, Deerfield, IL 60015

(800) 292-7711 (312) 541-0710

WRITE FOR FREE CATALOG

November 1988

<table>
<thead>
<tr>
<th>List</th>
<th>Price</th>
<th>Save</th>
</tr>
</thead>
<tbody>
<tr>
<td>$770</td>
<td>$695</td>
<td>$75</td>
</tr>
<tr>
<td>$975</td>
<td>$925</td>
<td>$50</td>
</tr>
<tr>
<td>$955</td>
<td>$915</td>
<td>$40</td>
</tr>
<tr>
<td>$1,195</td>
<td>$1,155</td>
<td>$40</td>
</tr>
<tr>
<td>$2,295</td>
<td>$2,195</td>
<td>$100</td>
</tr>
<tr>
<td>$3,100</td>
<td>$2,565</td>
<td>$535</td>
</tr>
<tr>
<td>$498</td>
<td>$402</td>
<td>$96</td>
</tr>
<tr>
<td>$138</td>
<td>$106</td>
<td>$32</td>
</tr>
<tr>
<td>$25</td>
<td>$20</td>
<td>$5</td>
</tr>
<tr>
<td>$35</td>
<td>$30</td>
<td>$5</td>
</tr>
<tr>
<td>$45</td>
<td>$40</td>
<td>$5</td>
</tr>
<tr>
<td>$150</td>
<td>$125</td>
<td>$25</td>
</tr>
<tr>
<td>$235</td>
<td>$205</td>
<td>$30</td>
</tr>
<tr>
<td>$375</td>
<td>$345</td>
<td>$30</td>
</tr>
<tr>
<td>$525</td>
<td>$475</td>
<td>$50</td>
</tr>
<tr>
<td>$1,195</td>
<td>$1,155</td>
<td>$40</td>
</tr>
<tr>
<td>$2,295</td>
<td>$2,195</td>
<td>$100</td>
</tr>
<tr>
<td>$3,100</td>
<td>$2,565</td>
<td>$535</td>
</tr>
<tr>
<td>$498</td>
<td>$402</td>
<td>$96</td>
</tr>
<tr>
<td>$138</td>
<td>$106</td>
<td>$32</td>
</tr>
<tr>
<td>$25</td>
<td>$20</td>
<td>$5</td>
</tr>
<tr>
<td>$35</td>
<td>$30</td>
<td>$5</td>
</tr>
<tr>
<td>$45</td>
<td>$40</td>
<td>$5</td>
</tr>
<tr>
<td>$150</td>
<td>$125</td>
<td>$25</td>
</tr>
<tr>
<td>$235</td>
<td>$205</td>
<td>$30</td>
</tr>
<tr>
<td>$375</td>
<td>$345</td>
<td>$30</td>
</tr>
<tr>
<td>$1,195</td>
<td>$1,155</td>
<td>$40</td>
</tr>
<tr>
<td>$2,295</td>
<td>$2,195</td>
<td>$100</td>
</tr>
<tr>
<td>$3,100</td>
<td>$2,565</td>
<td>$535</td>
</tr>
<tr>
<td>$498</td>
<td>$402</td>
<td>$96</td>
</tr>
<tr>
<td>$138</td>
<td>$106</td>
<td>$32</td>
</tr>
<tr>
<td>$25</td>
<td>$20</td>
<td>$5</td>
</tr>
<tr>
<td>$35</td>
<td>$30</td>
<td>$5</td>
</tr>
<tr>
<td>$45</td>
<td>$40</td>
<td>$5</td>
</tr>
<tr>
<td>$150</td>
<td>$125</td>
<td>$25</td>
</tr>
<tr>
<td>$235</td>
<td>$205</td>
<td>$30</td>
</tr>
<tr>
<td>$375</td>
<td>$345</td>
<td>$30</td>
</tr>
<tr>
<td>$1,195</td>
<td>$1,155</td>
<td>$40</td>
</tr>
<tr>
<td>$2,295</td>
<td>$2,195</td>
<td>$100</td>
</tr>
<tr>
<td>$3,100</td>
<td>$2,565</td>
<td>$535</td>
</tr>
</tbody>
</table>
THE PEPPERYDYNE RECEIVER

Build this six-part receiver as a series of weekend projects

By Jim Pepper, W6QIF, 44 El Camino Moraga, Orinda, California 94563

There have been many articles on receiver construction. Some were good, some were beyond the capability of the average homebrewer, and some lacked sufficient information to complete the construction (e.g., pin information on special ICs and on troubleshooting). A receiver can be quite an undertaking if you're not given enough data. I've also found that it can take a substantial time investment to complete the project.

I decided to design and build a receiver that, although not in the same class as the present commercial receivers, would have some of their features and comparable performance. But most important, the builder would be able to repair it. Although this receiver is not a weekend project, it's designed to be built in sections; each takes about a weekend to build. To fulfill these requirements, I had three goals to meet: the circuitry had to be simple, be easily serviced or modified, and use readily available parts.

Circuit description

The receiver consists of six basic sections: the mixer, the local oscillator, the i-f section, the audio board, the counter board, and the power supply.

The mixer is a dual-gate MOSFET 40673 that uses a single coil to tune from 40-160 meters. A fixed capacitor is switched in parallel with the mixer-tuning capacitor to cover the 160-meter band. Using a single coil simplifies the coil-switching circuitry. The antenna is coupled to this coil through a series-tuned trap to reject 5 MHz, the frequency of the i-f. The 5 MHz trap works well as a notch filter rejecting the 5 MHz WWV broadcast; a front panel switch is provided to shunt out the trap and allow WWV reception.

The local oscillator is a standard Colpitts circuit using a MPF102 JFET. The circuit is tuned by a varicap diode and a ten-turn potentiometer. The varicap capacitance is a nonlinear function of the applied voltage, making the frequency change per turn of the tuning pot different at one end of the dial from the other. I have compensated for this variation by using a technique known as "pot loading." A resistor is connected from the pot arm to ground and, with the right choice of resistance, the variation can be greatly reduced. (This method can also be used to give a pot an output approaching an audio taper from a linear pot.)

The local oscillator operates 5 MHz above the incoming signal and has three coils to cover the three bands. In
Complete block diagram of the receiver.

The i-f amplifier stage consists of an MC1350 IC that operates at 5 MHz with a two-pole ladder-crystal network on both the input and output. I experimented first with a single two-pole network and found the skirt selectivity very poor. I then tried a three-pole network to find that crystal matching was very critical and the desired bandwidth was difficult to achieve. Finally, I decided to try the input/output configuration; it gave very good rejection and the bandwidth needed for phone operation. I chose the 5-MHz frequency because of the availability of low-cost crystals and the WWV reception capability. You can use other frequencies, but you may have to alter the network components to achieve the desired bandwidth characteristics.

The MC1350 provides about 50 dB of gain and an AGC range of 60 dB. The AGC voltage is derived from the audio signal and there is little difference in the audio output level of signals registering from F2 to F9. I included an i-f gain control, but I don’t use it very much.

The product detector in this receiver is a CA3028. I experimented with a number of different detectors and found the CA3028 to be the best from a gain standpoint. It also required the least number of parts. The BFO for the product detector is generated by a 5-MHz crystal oscillator. To keep the circuitry simple, only lower sideband reception is available. This is no real problem since 99 percent of the stations on the three bands use the lower sideband for transmission.

The audio section consists of an audio amplifier, an AGC circuit, a peak-null filter circuit, and a LM380 power amplifier. The peak-null circuit can give either a sharp rejection of a given frequency, or peaking — which is very effective on CW operation. The selected frequencies are variable and controlled from the front panel. The two are independent of each other.

The counter circuit, with a few changes, was copied from an old issue of *Popular Electronics*. The circuit consists of a timebase and a programmable counter that allows the i-f frequency to be subtracted from the local oscillator frequency, giving the frequency of the incoming signal. The circuit is designed to display to the kHz level. By adding another divide-by-10 counter, the display will read to the 100-Hz level. The two ranges are accessed by a switch on the front panel.

Receiver construction

For serviceability, the receiver is broken down into six parts; four are made on plug-in boards. The fifth board, the local oscillator, is mounted on the chassis for stability and the sixth is the power supply parts placement guide.
RF POWER AMPLIFIERS BY FALCON

Quality American made amplifiers for those who demand the best

UTILITY LINE: Reliable, moderate cost, 100% duty cycle amplifiers
Catalog and custom units in low noise MOSFET and economy bipolar designs. For: FM repeaters, base stations, ACSSB, data links, TV, medical research, broadcast FM, etc.

FEATURES INCLUDE
- Maximum power outputs from 50 to 150 Watts
- Thermostatically controlled fan on most models
- 13.8 Volt operation (Other voltages for custom units)
- Overtemperature protection
- "Straight through" mode when overheated or turned off
- Standard 8½” x 19” rack panel mounting

See UTILITY LINE catalog sheet for details

PRESTIGE LINE: Premium 100% duty cycle amplifiers
MOSFET devices, conservatively used, assure long life and low noise. Use in; FM repeaters, base stations, data links, ACSSB, medical research, TV, broadcast FM, satellite uplinks, etc.

Full monitoring of amplifier performance. Amplifier will shut down in the face of certain abuses and status can be determined from front panel LED's and signals at a rear connector.

OTHER FEATURES INCLUDE
- Maximum power outputs from 100 to 250 Watts
- Forced air cooling for low temperatures and long life
- Line voltage operation - Power supply built in
- Overtemperature, overdrive, excess power and VSWR protection
- "Straight through" mode when shut down or turned off
- Standard 3½” x 19” rack or table top mounting

See PRESTIGE LINE catalog sheet for details

MOBILE LINE: Reliable, moderate cost, intermittent duty amplifiers
Catalog and custom units in low noise MOSFET and economy bipolar designs available. Use for FM, SSB, CW, etc.

FEATURES INCLUDE
- Maximum power output from 50 to 150 Watts
- Adjustable delay for SSB
- Optional plug-in receive preamplifier
- Overtemperature protection

See MOBILE LINE catalog sheet for details

P.O. Box 8979
Newport Beach, CA 92658
(714) 760-3622
The parts can be purchased from the supply houses listed on the figures. (You may find many of them in your junk box.) I would advise you to send for the suppliers' catalogs before ordering; some have a minimum purchase amount.

Construction hints

The tools required are those ordinarily used for homebrew work. I would suggest that your soldering iron have a small tip to be used on the pc boards. These boards, obtained from Radio Shack (no. 276-152), are similar to vector boards and come with multiple holes and pads for mounting parts.

The power supply pc board and transformer are mounted on the rear panel of the cabinet, which also acts as a heat sink for the 12-volt regulator. The plug-in board sockets (Radio Shack no. 276-1551) mount on the bottom plate with 0.5" spacers. The pc board components are mounted on push-in terminals from TI Circuit Specialists (no. T421). Before mounting any parts, I tinned the fingers on the board that was used for interconnects. Do this by first heating and then wiping each finger with a cloth. The tinned surfaces should be thin.

My cabinet came from Radio Shack, but it is no longer available. In order to house the pc boards, the cabinet height must be at least 5", and to house the rest of the components, at least 7" deep by 9" wide. (See fig. 2.) Before starting on the pc boards, I suggest that you mount and wire the parts for the front and rear panels and the sockets for the boards, so each pc board can be checked for operation as it is completed. The 7812 voltage regulator is mounted directly to the rear chassis. No isolation is required.

Power supply

Build the power supply shown in fig. 3A-C first. The board is attached to the rear panel by two 0.5" spacers over the 7812 voltage regulator. When completed, the AC power can be applied and the power supply output voltages can be checked with a voltmeter for proper operation.

Audio board

Before starting on any of the following boards (figs. 4A, 4B, 4C), I would suggest that you make a copy of the assembly drawings. You can mark the components and wires you have installed on these sheets. This makes it easier to stop your work and then pick up where you left off.

Audio board construction

The audio board consists of a preamplifier, an audio-derived AGC, an S-meter driver, a peak-null circuit, and an LM380 power amplifier. The LM380 and similar amplifiers are prone to oscillate under certain loads. I found that a 10-ohm resistor in series with the speaker makes the circuit stable, with little output loss. The voltage for the output is obtained from the unregulated power supply (16 volts) to allow greater output without distortion.

The audio-derived AGC controls the gain of the MC13501-f amplifier. An offset voltage of 5 volts is required when there is no signal and the AGC voltage moves in a positive direction for an incoming signal. This offset is generated on the audio board. The S meter is also connected to this voltage. No zero
adjustment is required with this design; however, a full scale adjustment is provided. The values shown are for an old CB S meter with a 250 µA movement. You can use any movement up to 1 mA, but you’ll have to reduce the series resistor.

Following the parts layout for the audio board (fig. 4B and C), mount the IC sockets and push-in terminals as indicated. Check the size of your components; they may be different than the type I used. This is especially true for capacitors. Mount all of the components on the push-in terminals. This makes identification of points for wiring the other side of the board easier. Save the wire clippings; they can be used for jumpers on the wire side of the board.

Next, wire all short jumpers. The same wire can be used on longer leads, if there are no crossovers. Where there are crossovers, I used wire-wrap type. Remember to mark off all work done.

Testing the audio board

Insert the required ICs into their sockets and plug the pc board into socket J4. Turn on the power and check the voltages against the schematic. Set R2 (the S-meter sensitivity pot), to maximum resistance. The peak switch (S1) should be closed, and the null pot set at the maximum clockwise position. You’ll need to connect a speaker for this test. If an audio oscillator is available, connect it to pin C on the pc socket, J4. A 20 mV peak-to-peak 1-kHz signal should
Easiest Packet Radio Ever!

Is FEAR keeping you from joining the thousands of hams who are having the time of their lives with packet? FEAR no more! Here's the easiest packet radio set up yet — and you don't even need to buy one of those TNCs — just let your PC do the work. The DRSI PC*Packet Adapter plugs into your IBM PC (or clone) and gets you on the air in minutes. Seconds even. The one-page Quick-Start-Guide will have you instantly going like an expert. It doesn't even keep you from using your PC for other work! Now, in addition to everything else, you'll have a dual-port TNC with cross-band digipeating...even if you don't even know what that means right now. Find out why thousands of hams are so excited — get your feet wet in packet with the DRSI system. It's only $139.95.

To get going on the HF bands you'll want the DRSI HF* Modem/Tuning Indicator — an extra $79.95. Go first class and get both or stick to VHF with the basic PC*Packet Adapter. Find out for yourself why packet is the fastest growing phase of amateur radio today. It's a ball! See it at your dealer today.

Packet Radio without a Packet Radio TNC

Digital Radio Systems, Inc.
2065 Range Rd. Clearwater, FL 34625
(800) 999-0204 (813) 461-0204

NEW

New Mod Kit for Bird Model 43 Wattmeter

MEASURES PEAK POWER OF SSB AND OTHER AM SIGNALS

Bird Model 4300-400 modification kit quickly adapts any Bird Model 43 Wattmeter to measure audio peak power of single sideband and other AM modulated signals.

The 4300-400 kit pc board mounts inside the Model 43 housing, on the meter studs. Estimated conversion time is only 15 minutes from start to finish.

Once modified, you can measure peak power to an 8% F.S. accuracy, without affecting cw operation or accuracy.

And, the Model 4300-400 is surprisingly inexpensive. Contact your Bird distributor or factory for details.

Ham Radio & Computer EXPO '88

presented by
THE ALFORD MEMORIAL RADIO CLUB of Stone Mountain
November 5 & 6, 1988
Gwinnett County Fairgrounds
Lawrenceville, Georgia
Just 20 minutes Northeast of Atlanta

LARGE INDOOR DEALER AREA
CONCESSION STANDS
RV-SITES WITH HOOK-UPS
24 HOUR SECURITY
COOKOUT SATURDAY NIGHT

VEC EXAMS BOTH DAYS!
Talk-In W4BOC 146.1676

$5.00 FREE ADMISSION PARKING
FOR MORE INFO CONTACT:
EXPO '88
P. O. Box 1282
Stone Mountain, GA 30086

30303 Aurora Rd., Cleveland (Solon), Ohio 44139 — 2794
216-248-1200 TLX 706898 Bird Elec UG FAX: 216-248-5426
WESTERN REGION OFFICE
Bird Electronic Corp
621 Oak Ave., Suite F, P.O. Box 28, Ojai, CA 93023 805-646-7255

November 1988
Audio board schematic.

drive the audio to full output. The S meter should also vary as a function of the input signal. If no oscillator is available, touch your finger to pin C. You should hear a loud hum.

Building the i-f board

The i-f board construction, shown in figs. 5A-C, is similar to the audio board. The parts associated with the ladder networks should be close to the given values to obtain the proper bandwidth characteristics. The BFO for the product detector is located on the counter board because its strong field, if mounted on the i-f board, will swamp the AGC circuit.

Testing the i-f board

To check the i-f board, insert it in J2. The audio board should also be plugged in and a speaker connected. Turn on the power and check the voltages against the schematic. Reset the AGC pot (audio board) to approximately 5 volts. Connect an antenna of approximately 25' or longer to pin V of the i-f board. You should hear WWV under nighttime conditions. An adjustment can be made to the trimmer capacitor across the output coil of the MC1350 to give maximum output.

The counter board

Construct the counter board (See fig. 6A, B, C) next; you'll use it to adjust the oscillator coils to the correct frequency. The counter is designed as a multiplexing device — so the display must be designed for multiplexing, or for discrete displays having their common segments tied together. I used a multiplexing type and was able to cut the line to the unwanted decimals, leaving just one for the 100-Hz range. Unless you are familiar with this type of display, I recommend using discrete ones. I used ribbon cable, with its multicolored wires, to aid in wiring the segments.

The counter programming as wired is for 5 MHz, but it can be programmed for other frequencies. The counter clock uses a 3.2678-MHz crystal. Figure 6D shows a means for shifting its frequency slightly is provided for additional calibration accuracy.

The counter board also contains the 5-MHz BFO circuit for the product detector. It too has a means to shift its frequency a bit to calibrate it with WWV.

To check the counter board, do not insert any IC until you have checked the voltages present on the various IC sockets. Plug the board into socket J3. Be sure that the voltage is 5 volts to prevent any damage to the ICs — in particular the counter, which costs about $10. Remember to turn the power off before inserting the ICs.
First plug in the oscillator-counter IC (4060). A simple way to see if the circuit is working is to connect the output of the 4060 (pin 3) to pin C of the audio board. You should hear a buzzing sound. The frequency should be 200 Hz. Next plug in the rest of the ICs. If the counter is working, check it by grounding pin P of J3. The range switch should be on the kHz position. The display should read 5000± one count if the circuit is working. If it comes up with some unreadable numbers, chances are that there is a wiring error. On the 100-Hz range, the display should go blank.

Now you can check the 5-MHz BFO. Plug in the i-f and audio boards with a speaker connected. Once again, connect an antenna to the i-f board input (pin V). Use WWV, which should be receivable during the evening hours. During voice announcements adjust the capacitor on the circuit to zero beat to WWV. If you can't do this, you may have to try another crystal. When the capacitor is set correctly, the voice on WWV should sound natural.

I-F board parts placement guide.
The mixer board in figs. 7A-C is next because it has the adjustment pots for setting the oscillator frequencies. They could have been placed on the oscillator board, but my original design had the oscillator on the plug-in board. The stability of the oscillator was very poor, so I put it on a separate board attached directly to the chassis. I didn’t have room for the pots, so they remained on the plug-in board. The 9-volt supply is also located on the mixer board. The mixer coil is wound on a T50-6 toroid with 80 turns of no. 30 AWG and ten turns on the primary. The number of turns on the secondary will be adjusted later to give about 10...
The industry standard RC-850 Repeater Controller can now talk with your computer.

And there's so much for them to say! The '850 computer interface improves the management of your voice repeater system. It allows you to command and program interactively from your terminal or personal computer using a MODEM or packet TNC. Even preview and edit repeater messages by typing words from the controller's vocabulary directly into message slots.

Retrieve and catalog data relating to your site measurements, equipment status, and repeater and command activity. Download and print out the information programmed into your controller. And view your system "front panel" on your computer screen.

You'll find the RC-850 controller on the leading voice repeaters around the world. ACC pioneered remote programming of repeaters – and continues to pioneer with remote computer access. While the rest of the world just talks about catching up, ACC continues to lead the way in advanced repeater technology.

Now, with its computer interface, the '850 can be best friends with your computer.
Six Function DTMF Controller

Auto-Kall
AK-4

MoTron Electronics
695 W. 21st Ave.
Eugene, OR 97405

Call Toll Free 1-800-338-9058 or (503) 687-2118

NEW! SUPER LINEAR ANTENNA SYSTEM

NEW! SWR Power Minimeters

NCG
(714) 630-4541
1275 N. Grove St., Anaheim, CA 92806

Specifications and prices subject to change without notice or obligation.
THE QSL BOOK!

Continuing a 68 year tradition, we bring you three new Callbooks for 1989, bigger and better than ever!

The North American Callbook lists the calls, names, and address information for 495,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists 500,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1989 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1, 1989, this combined Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

Every active amateur needs the Callbook! The 1989 Callbooks will be published December 1, 1988. Order early to avoid disappointment (last year's Callbooks sold out). See your dealer now or order directly from the Publisher.

North American Callbook
incl. shipping within USA $29.00
incl. shipping to foreign countries 35.00

International Callbook
incl. shipping within USA $32.00
incl. shipping to foreign countries 38.00

Callbook Supplement, published June 1st
incl. shipping within USA $13.00
incl. shipping to foreign countries 14.00

SPECIAL OFFER

Both N.A. & International Callbooks incl. shipping within USA $58.00
incl. shipping to foreign countries 68.00

Illinois residents please add 6½% tax. All payments must be in U.S. funds.

Oscillator board

The board (see fig. 8A, B, C) consists of a conventional Colpitts oscillator and buffer with the three oscillator coils for 160, 80/75, and 40 meters tuned by a varicap and a ten-turn pot. The upper end of each band is adjusted by trimmers located on the mixer board. The lower end is done by adjusting the num-

percent of the value of the 360-pF variable for peaking the 40-meter band. Experiment to find the 160-meter switched-in capacitor. I used a 550-pF capacitor, but a lot depends on other circuit capacitances. You'll have to retune the mixer capacitor as you go across the 160 and 80/75 bands, but this greatly simplifies the circuitry.

When the board is completed, check it out by plugging it in J1. The rest of the boards should also be in. Short out the WWV trap by closing the switch across the trap coil. Connect an antenna to the input jack. With power on, you should hear WWV with the mixer-tuning capacitance set about 40 percent. (Of course this should be done during nighttime conditions when WWV comes in best.) The receiver may oscillate at this point because there are three stages tuned to the same frequency. Just detune the mixer capacitance a small amount. Some of this oscillation will be reduced when a shield is placed between J1 and J2. A shield will also be placed between J2 and J3. Please note that there is a capacitor between pin 1 and chassis ground on both J1 and J2. I found these caps helped reduce the multiplexing noise from the counter board.

You can also check the effectiveness of the trap at this time. Open the trap switch and tune the capacitance across the coil for minimum signal. If you have successfully completed this board, the next board is the last — you're almost there!
Counter board foil-side connections.

ber of turns on the coils. It sounds like a tedious task, but you can perform it rapidly if you use a counter.

The board used for the oscillator is a Radio Shack (no. 276-140). It’s mounted to the bottom plate with four stand-offs. The same type of construction is used as on the plug-in boards. Because of the limited space, the toroids are mounted vertically. I used polystyrene capacitors for temperature stability but they may be hard to find. Use, in place, any capacitor that has a low temperature coefficient.

When the board is wired and checked, mount it to the bottom plate and connect the band switch and ten-turn pot. Set the band switch to 160 meters. With all boards in and the power on, the counter should indicate a frequency somewhere between 1.5 and 2.5 MHz. Turn the dial to give the highest reading. Adjust the trim resistor on the mixer board designated 160 M trim. Adjust it in a direction towards 2.0 MHz. Turn the dial to the other end and add or remove turns until the counter approaches 1.8 MHz. Repeat the process until adjustments give 1.795 and 2.005 MHz. Final adjustments can be made by spreading the turns. Repeat the same process for 80 and 40. The 75-meter band has two adjustments. Set the upper to 4.005 and the lower at 3.790 MHz. I have set the 20-meter band to cover 3.600 to 3.805 MHz. Final adjustments

With the oscillator working, it’s time to connect the receiver to an antenna. During the day, the best band to try is 40 meters. Set the band switch to 40 M. Be sure the mixer capacitor for 160 is out of the circuit. Adjust the mixer capacitor to about 10 percent of full scale. You should hear an increase in background noise. Signals should be audible, and the display should indicate the right frequency.
Counter board schematic.

Editor's Note: As the November issue was going to press, Jim found out that Radio Shack has discontinued pc board no. 276-152. He has redesigned the printed circuit assemblies to fit Radio Shack's board no. 276-154. Jim will be happy to send copies of the new drawings to anyone who sends him one dollar in stamps to cover the cost of printing and postage.

Panadaptor especially designed
for the R-7000 receiver. For use
with a standard scope. Variable
span width from 1 to 10 Mhz.
Uncover unknown elusive signals.
Complete with all cables, & 90 day
warranty. $349.95 Shipped. Pa.
res. add 6%.

GTT Electronics
RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032
NEW BOOKS

ARRL ANTENNA BOOK
by Jerry Hall, K1TD, NEW 15th Edition
The all new 15th edition of this antenna classic represents over two years of hard work by editor K1TD. It's doubled in size to cover just about every subject imaginable. Some of the highlights are: Chapters on Loop antennas, multi-band antennas, low frequency antennas, portable antennas, VHF and UHF systems, coupling the antenna to the transmitter and the antenna, plus p-i-n-f-i-n rectifiers. Like the 1988 HANDBOOK and new OPERATING MANUAL, the new ANTENNA BOOK is going to be a smash hit. Order yours today. 15th edition 900 + pages ©1988
AR-AM Softbound $17.95

NOVICE ANTENNA NOTEBOOK
by Doug DeMaw W1FB
Novices have long wondered what is the best all around antenna for them to install. Up until now, this was a difficult question to answer. Armed with the newly licensed Ham, DeMaw writes for the non-engineer in clear concise language with emphasis on easy-to-build antennas. Readers will learn how antennas operate and what governs performance. Also great reading for all levels of Amateur interest. 1st Edition ©1988.
AR-NAN Softbound $7.95

THE 1989 ARRL HANDBOOK
FOR THE RADIO AMATEUR (Available late Oct. 1988)
Revised and updated with the latest in Amateur technology, now is the time to order your very own copy of the world famous ARRL HANDBOOK. In addition to being the definitive reference volume for your Ham shack, there are plenty of projects for every interest in Amateur Radio — from antennas for every application to the latest state-of-the-art projects — you'll find it all in the 1989 HANDBOOK. Order now and we will ship as soon as the books arrive from the printer. They make perfect gifts for the holiday season for your hard-to-buy for Ham friends or for yourself. Over 1100 pages ©1988.
AR-H889 Hardbound $20.95

N6RUJ's ELECTRONIC SECOND OP
for MS-DOS computers
by Jim Raftery N6RUJ
The world famous SECOND OP is now available in a state-of-the-art computerized data base. This program, written for MS-DOS computers, is a must for DXers, contesters and all Amateurs interested in reliable DX communication. Data can be displayed either in columnar format or in full screen displays. Unknown call signs can be entered and compared to the ITU call sign allocation for easy identification. There's plenty more too such as call rates, beam headings and QSL bureaus to name just a few. Great program to have in your shack. Order yours today. ©1988. MS-DOS computers 5 1/4 and 3 1/2 versions available. Please specify on your order.
N6RUJ (MS-DOS Computers) $59.95

1989 AMATEUR CALLBOOKS
(Available late November 1988)
NORTH AMERICAN EDITION
Fully updated and edited to include all the latest FCC and foreign government call signs and addresses for Hams in North America. Includes plenty of handy operating aids such as time charts, QSL bureau addresses, census information and much more. Calls from Northern Canada to tropical Panama. Now is the time to buy a new Callbook when you'll get the most use out of your investment. ©1988
CB-US89 Softbound $25.95

INTERNATIONAL EDITION
QSL's are a very important part of our hobby. All sorts of awards, including the coveted DXCC, require confirmation of contact before the award can be issued. Of special interest, addresses are being added daily for Hams in the USSR and other countries. While in no means complete, it's a start and will be of tremendous help in getting QSLs. Handy operating aids round out this super book value. ©1988
CB-F89 Softbound $28.95

BUY 'EM BOTH SPECIAL
Reg. $54.80 Only $49.95
SAVE $4.95

Please enclose $3.50 shipping & handling.
NEW BOOKS

PASSPORT TO WORLDBAND RADIO 1989 Edition
Brand new and fully revised, SWL's everywhere will want a copy for their library. Expanded to 416 pages, the book now includes a bigger and better buyer's guide, an interview with James Michener, an exciting real life drama of one SWL's escape from Iran plus much more. Also includes all the latest broadcast schedules from countries around the world. You're up-to-date if you have a copy of this new book by your radio. 416 pages 1989 Edition ©1988
Softbound $14.95

MASTERING PACKET RADIO: the hands on guide
by Dave Ingram K4TWJ
Packet radio continues to grow at a rate that boggles the mind. This new book appeals to all levels of packet radio enthusiasts from novices to experts alike. Full of illustrations and written in a simple, easy-to-understand style. Topics covered include: a basic primer, home computers and data communications terminals, a survey of equipment available, how to set up a station plus much more. Great compliment to the other packet books available. 208 pages ©1988 1st edition
Softbound $12.95

THE ARRL SATELLITE ANTHOLOGY
Taken from the pages of the "Amateur Satellite News" column in QST. Includes the latest information available on OSCARs 9 through 13 as well as the Russian RS satellites. Full coverage is given to Phase III, OSCAR 10 and 13 satellites. Also includes an unpublished article detailing UoSAT-OSCAR 11 operation. Digital modes, tracking, antennas, RUDAK, microcomputer processing of telemetry plus much more is contained in this valuable new volume. 112 pages ©1988
Softbound $11.95

22nd CENTRAL STATES VHF SOCIETY
CONFERENCE PAPERS
Papers in this book were submitted for the 1988 Central States VHF Society meeting. Includes: Microwave EME, predicting 144 MHz "Es" openings, matching versus noise figure trade-offs in pre-amps, 902 MHz transverter, power amplifier and antennas, how to measure your own K index plus much more. A must publication for the active VHF'er ©1988
Softbound $11.95

GENIUS AT RIVERHEAD a profile of
H. H. Beverage
by Alberta Wallen
Born at the very beginning of the radio age, Harold Beverage is one of radio's pioneers. Most know him from his development of the Beverage or wave type receiving antenna. Learn about the career of this brilliant engineer in this easy-to-read biography. Starting with GE in 1917 and moving to RCA in 1920, Beverage was involved in some of the most exciting aspects of radio. Of particular interest is a reprint of the famous November 1922 QST article describing the wave antenna. Includes 35 photos. 130 pages ©1988
Hardbound $15.95

THE "GROUNDS" FOR LIGHTNING &
EMP PROTECTION
by Roger Block, PolyPhaser Corporation
Here's a subject that has never really been fully covered in Amateur literature. This 116 page text contains a comprehensive analysis of proper grounding and protection against lightning and other EMP disasters. Includes information for all kinds of electronic gear: radios, telephones, computers, Ethernet, CATV, TVRO, and security systems to name just a few. Of special interest to Hams are chapters on low inductance grounds and connections, guy anchor grounding, and how to ground inside the shack. Every Ham should have a copy. 1st edition 116 pages ©1987
Softbound $19.95

Please enclose $3.50 shipping & handling.

HAM RADIO (603) 878-1441
GREENVILLE, N.H. 03048

DATATEL 800™

(800) 341-1522
(ORDERS ONLY)
Yaesu's mini HTs.
The smallest, smartest, toughest radios. Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreciate the high power, durability and size of Yaesu's FT-23R Series mini HTs.

To begin with, you'll find a model that's right on your wavelength. The 2-meter FT-23R. The 220-MHz FT-3YR. Or the 440-MHz FT-73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moisture-resistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, microprocessor-controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:

The FT-23R comes with a 72 volt, 2.5-watt battery pack. The FT-73R with a 72-volt, 2-watt pack. And the FT-3YR with a powerful 12-volt, 5-watt pack.

You can choose the miniature 72-volt, 2-watt pack shown in the photo below. And all battery packs are interchangeable, too.

And consider these options: Dry cell battery case for 6 AAA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, toughness and small size, seeing is really believing.
The verdict is in and the opinion of HF Packet operators is clear . . . the HAL ST-7000 is a winner!

The HF Packet communications world is not forgiving. Selective fading, noise, and interference coupled with poor tuning indicators and simplistic phone line modems contribute to the poor performance of packet controllers on HF.

The ST-7000 makes HF Packet Work

The ST-7000 is designed specifically to greatly improve the 300 baud HF Packet performance of all packet and multi-mode controllers. Techniques developed for our government and military ST-8000 (MD-1232/G) HF modem are applied to the special problems of HF Packet radio. It's simple . . . just connect the ST-7000 to your existing packet or multi-mode controller . . . and you're ready to send data, not repeats.

The "standard" 200 Hz shift mode of the ST-7000 has a 6-pole input bandpass filter, an optimized detector circuit, plus a 40 db AGC system. These design features make 200 Hz HF Packet work!

The ST-7000 also includes a 600 Hz shift mode for even better performance than is offered by the 200 Hz "standard" shift mode.

Other features of the ST-7000 include:
- A new tuning indicator design assures quick and accurate tuning of HF Packet signals
- CD (carrier detect) and threshold level circuits designed specifically for 300 baud HF Packet
- A sine-wave synthesized transmit tone generator assures minimum phase distortion and splatter
- Easily interfaces with all packet and multi-mode controllers via RS-232C, TTL, or TNC VHF audio tones

Best of all, the ST-7000 is manufactured and tested entirely in the United States by HAL Communications, a company you've known and trusted for years.

The ST-7000 is available directly from the factory at a price of $299.00, which includes a 12VDC, 0.25A power supply.
Before making any further adjustments to the receiver, add the shields between J1 and J2, and J1 and J3. The shield on the side of the oscillator should also be in place. This shield prevents the oscillator frequency from shifting when

Mixer board parts placement guide.

--

FIGURE 6

Detail for slightly changing the counter to 4 MHz and 6 MHz.

FIGURE 7

--

QRZ CONTEST!

VHF Contest Software
for PC Compatibles
$39.95 postage paid
- Covers all VHF and UHF contests
- Includes the 70 MHz European band
- Menu driven and user friendly
- Color and options user configured
- Grids worked display on-line!
- Full duple checking
- Complete log editor included
- Handles 4000 contacts with 512K
- Demo-version available $5.00
- HF Version to be available soon!

ATFAB Computers and Electronics
P.O. Box 4766
Maineville, OH 45039
(513) 683-2042

NEMAL ELECTRONICS

*Complete Cable Assembly facilities MIL-STD-45208
*Commercial Accounts welcome Quantity pricing Same day shipping most orders
*Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

HARDLINE 50 OHM

<table>
<thead>
<tr>
<th>CABLE</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX12 1/2" Aluminum Black Jacket</td>
<td>59/ft</td>
</tr>
<tr>
<td>FL12 1/2" Cablewave corr. copper bkd jet</td>
<td>1.53/ft</td>
</tr>
<tr>
<td>FL78 7/8" Cablewave corr. copper bkd jet</td>
<td>3.92/ft</td>
</tr>
<tr>
<td>NM12CC N conn 1/2" corr copper m/t</td>
<td>25.00</td>
</tr>
<tr>
<td>NM17CC N conn 1/2" corr copper m/t</td>
<td>54.00</td>
</tr>
</tbody>
</table>

COAXIAL CABLES (per ft)

<table>
<thead>
<tr>
<th>CABLE</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1150 BELDEN 9015 very low loss</td>
<td>52</td>
</tr>
<tr>
<td>1105 RG58/U 95% shield low loss foam 11g</td>
<td>36</td>
</tr>
<tr>
<td>1110 RG58 95% shield (mini 8)</td>
<td>17</td>
</tr>
<tr>
<td>1170 RG213/JU 95% shield mil spec NOV</td>
<td>19</td>
</tr>
<tr>
<td>1140 RG214/JU db silver shield mil spec</td>
<td>1.85</td>
</tr>
<tr>
<td>1105 RG14G/JU db silver shield, teflon ins</td>
<td>1.50</td>
</tr>
<tr>
<td>1170 RG213/JU 50 ohm 500 watt db shield</td>
<td>98</td>
</tr>
<tr>
<td>1150 RG214/JU 50 ohm 1000 watt db shield</td>
<td>1.4</td>
</tr>
</tbody>
</table>

ROTOR CABLE-8 CONDUCTOR

<table>
<thead>
<tr>
<th>CABLE</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C12B2 2-16ga and 8-22ga</td>
<td>21</td>
</tr>
<tr>
<td>8C12D0 2-16ga and 8-20ga</td>
<td>39</td>
</tr>
</tbody>
</table>

CONNECTORS-MADE IN USA

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE70 Type N plug for Belden 9013</td>
<td>$3.95</td>
</tr>
<tr>
<td>NE72 Type N jack for Belden 9013</td>
<td>4.00</td>
</tr>
<tr>
<td>PL259AM Amphenol PL2598</td>
<td>69</td>
</tr>
<tr>
<td>PL259TS PL263 ftel trau/silver plated</td>
<td>1.59</td>
</tr>
<tr>
<td>PL259AM Amphenol female-female (barel)</td>
<td>1.65</td>
</tr>
<tr>
<td>R07175/R07176 reducer for RG58/58 (specify)</td>
<td>22</td>
</tr>
<tr>
<td>UG210/JU N plug for RG21214 Silver</td>
<td>3.38</td>
</tr>
<tr>
<td>UG215/JU N plug for RG21514 Silver</td>
<td>1.25</td>
</tr>
<tr>
<td>UG214/JU N plug adapter, teflon</td>
<td>6.00</td>
</tr>
<tr>
<td>UG214/JU N plug adapter, teflon</td>
<td>6.00</td>
</tr>
<tr>
<td>UG215/JU N plug adapter, teflon</td>
<td>6.00</td>
</tr>
<tr>
<td>SO239 to SO239 to N plug adapter, teflon</td>
<td>6.00</td>
</tr>
<tr>
<td>SO239 to SO239 to NH plug adapter, Amphenol</td>
<td>2.29</td>
</tr>
<tr>
<td>SO239 to SO239 to HHC plug adapter, Amphenol</td>
<td>8.99</td>
</tr>
</tbody>
</table>

GROUND STRAP-GROUND WIRE (per ft)

<table>
<thead>
<tr>
<th>CABLE</th>
<th>INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS38 3/8" tinned copper braid</td>
<td>.40</td>
</tr>
<tr>
<td>GS12 1/2" tinned copper braid</td>
<td>.50</td>
</tr>
<tr>
<td>GS200 1-1/2" heavy tinned copper braid</td>
<td>2.00</td>
</tr>
<tr>
<td>NW86 6ga Insulated stranded wire</td>
<td>.35</td>
</tr>
<tr>
<td>AW14 14ga stranded Antenna wire CCS</td>
<td>.14</td>
</tr>
</tbody>
</table>

Prices do not include shipping. $3 minimum, Visa/Mastercard $30 min, COD add $3.00
Call or write for complete price list. Nema's new 36 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $4 with credit against next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161
(305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

November 1988 51
the unit is enclosed in a cabinet. When the shields are in place, make the following adjustments:

1. Set the AGC bias voltage.
 Turn the i-f gain pot to minimum voltage. Measure the voltage on pin 5 of the MC1350. The voltage should be set to 5.0 volts using the bias adjust pot on the output board.
2. Adjust the mixer coil.
 Set the receiver to the 40-meter band. With an antenna connected, adjust the turns on the mixer coil so the mixer capacitor peaks at about 10 percent of full scale. Switch to the 80-meter band and check the mixer capacitor setting. It should be about 60 percent of full scale. Repeat the operation for the 160-meter band. Clip lead a 470-pF capacitor across the mixer capacitor. Set the tuning dial to read 1.900 MHz. Vary the mixer capacitor until a peaking in background noise is heard. If the trim capacitor is of the correct value, the mixer capacitor will be about mid-scale. It should read about 90 percent at 1.800 MHz.
3. Set the WWV trap.
 If you have been doing some checks in the evening, you have undoubtedly heard WWV in the background. If you have, either the WWV switch is in the shorting position or the trap needs further adjustment. Set the band switch to 40 M and the mixer capacitor to about 30 percent scale. Adjust the trap capacitor to give minimum feedthrough. The 5.000-MHz BFO setting can be rechecked at this time. Wait until the steady tone is off, then adjust the BFO trimmer on the counter board to zero beat with WWV.
Hi PRO
VHF-UHF REPEATERS

SUPERIOR RECEIVER AND TRANSMITTER SPECIFICALLY DESIGNED FOR REPEATER SERVICE.

ADJUSTABLE TRANSMITTER POWER, FROM 1 TO 25 WATTS MINIMUM OUTPUT WITH EXTREMELY COOL OPERATION.

AUTOMATIC BATTERY BACK UP SYSTEM CAPABILITY WITH BATTERY CHARGING AND REVERSE POLARITY PROTECTION.

NOW WITH A FULL COMPLEMENT OF INDICATORS AND STATUS LIGHTS.

—100% DUTY CYCLE—ADVANCED REPEATER SQUELCH

NO CHOPPING, POPPING, OR ANNOYING REPEATER KEY UPS DURING LIGHTNING STORMS.

—DIE CAST ALUMINUM R.F. ENCLOSURES—SMALL SIZE 5⅛ x 19 x 13"—HIGH QUALITY LONG LIFE DESIGN.

AMATEUR DISCOUNTS AVAILABLE

Hi Pro Receivers

FEATURES:
- High sensitivity
- Superior rejection
- Double sided rel spec G-10 fiberglass boards
- Extremely stable operation
- Excellent adjacent channel rejection
- Squelch circuit designed for critical repeater use
- Small size
- Choice of passbands
- Wide selection of frequency ranges
- Separate open collector C.O.R. output
- Separate tone control squelch input
- Separate tone control output
- Discriminator meter output
- Signal level meter output
- Multi channel capability. Up to 6 channels
- Multiple Voltage Regulation
- Available with precision grade high stability crystal
- Selectable C.O.S. high or low output
- 1 year warranty

SPECIFICATIONS:

Selectivity:
- EIA two signal method
 - Standard: 15 kHz = 30 dB
 - Optional Narrow: 15 kHz = 100 dB

Selectivity (EIA two tone method):
- Standard: 15 kHz = 80 dB

Squelch Sensitivity:
- 0.10 to 0.20 µV

Frequency Response (EIA two tone method):
- 2 to 3 dB of 6 dBOctave de-emphasis from 300-3000 Hz 1000 Hz reference

Audio Output (8 ohm speaker): 20 watts max

R.F. Impedance: 50 ohms

Frequency Range:
- VHF: 108-150 MHz, 144-175 MHz, 220-250 MHz
- UHF: 406-450 MHz, 450-490 MHz

Operating Voltage:
- +11 to -14.5 VDC
- +12VDC nominal

Current: 90 mA nominal squelched

Size: 3½ W x 6¼ L x 1½ H

Duty Cycle: 100% at 60 C

Operating Temp Range: -30 C to -60 C

Meet or Exceeds All Published Specifications.

Maggiore Electronic Laboratory
600 Westtown Rd., West Chester, PA 19382
4. Mixer and i-f output capacitor adjustments.

With the receiver set on any frequency where there is noise only, adjust each of these capacitors to give maximum output.

5. Testing the peak-null circuit.

Tune in a steady carrier set to an audio tone of about 1 kHz. Switch on the peaking switch, and rotate the peaking pot until a pronounced increase in signal is present. Now rotate the null pot until the signal is reduced in amplitude.
If these actions are noted, these circuits are operating correctly.

6. Final calibration.

Tune the receiver to 2.000 MHz. A weak signal will be heard that is a sub-harmonic of 5.000 MHz. Tune the...
Do the Hop; up to 2400 Baud Packet!

Faster is Better; Speedy 2400 Baud

Faster is better for files.

2400 baud is twice as fast for files as formerly speedy 1200 baud, reducing chances for error during transmission. And speeding along long data strings, which helps keep the airwaves open. And you can still select 300 or 1200 baud in seconds.

FASTFILE™ is a powerful terminal program for PCs and compatibles that performs neat, fast file transfers.

You'll receive FASTFILE free, but you should also look at its big brother, PACFILE™, an exclusive Kantronics file transfer program for only $29.95.

New! VERY Special Suggested Price

Normal suggested retail for our KPC-2400™ unit was $329.00. The new breakthrough suggested retail is just $199.00! A 40% savings!

The KPC-2400 is not only the fastest packet on four rubber feet, but has all these "Designed and Built in the U.S.A." features:

* Watchdog timer
* Personal Packet Mailbox™
* WEFAX command
* Software-selectable 300/1200/2400 baud rate
* KA-NODE™
* TCP/IP compatibility
* 32K RAM

Also "built in" is Kantronics' incomparable commitment to service. So there's no better time than now to get into Packet. Jump in or up with the Kantronics KPC-2400™!
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you:

- **Message Master** real speech
- **voice** readout of received signal strength, deviation, and frequency error
- 4-channel receiver voting
- clock time announcements
- Function control
- Helical filter receiver
- Extensive phone patch functions.

Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (508) 372-3442

Measure Up With Coaxial Dynamics Model 83000A RF Peak Reading Wattmeter

Take a PEAK with Coaxial Dynamics "NEW" Model 83000A, designed to measure both FWD/RFL power in CW and FM systems simply and quickly. Then with a "FLIP" of a switch, measure "PEAK POWER" in most AM, SSB or pulse systems. Our Model 83000A features a complete selection of plug-in-elements plus a 2 year warranty. This makes the Model 83000A an investment worth looking at. So go ahead, take a "PEAK", you'll like "WATT" you see!

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

Coaxial Dynamics, INC.
15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAAXIAL
Telex 99-0630

NOVEX

DM4061 Dip Meter

A must for every ham shack - check coils, tank circuits, antennas, etc. as RF generator, internal modulation, look for harmonics.

- 1.5 to 200 MHz
- 50 Ohm "NT"
- 5-20/120 watt ranges
- Measures your HF & VHF power output

only $99.95 + $4 S&H

PM330 RF Power Meter/Dummy Load

- 1.8 to 300 MHz
- 50 Ohm "NT" 300 W
- S-20/120 watt ranges
- Excellent for audio AC power adapters "NOVEX" included

only $129.95 + $4 S&H

FC5250 Counter

- know your transmit frequency
- 10 Hz to 150 MHz
- 10 digits
- 15/100 count
- 10 Hz to 150 MHz
- 10 Hz to 150 MHz
- 20/150 watt ranges
- Excellent for audio AC power adapters "NOVEX" included

only $129.95 + $4 S&H

Orders: 800-368-3270 (Local & state call: 301-886-2500)

Electronic Equipment Bank
3161 Mill St NW, Vienna, VA 22180

[Reproduced from National Radio Club]
We go to great lengths

...with our design and engineering. The HR 2510 is a full featured 10 meter mobile transceiver. You get all of 10 meters—from 28.000 to 29.6999 MHz. You also get a full complement of operating modes (CW/SSB/AM/FM), and enough power to do the job, with 25W PEP for CW and SSB modes, and 10W for AM and FM. A built-in Digital VFO (tuned with a knob, not buttons) with steps of 10 KHz, 1 KHz, and 100 Hz, and Digital Display of your selected transmit frequency makes it easy to use.

...to make operation easy. We haven’t neglected the receiver either. With typical sensitivity of only 25 µV for 10 dB S/N in CW and SSB modes, the HR 2510 has the extreme sensitivity needed for operation with less than ideal mobile antenna systems. There’s also a highly effective switchable Noise Blanker for the ultimate in mobile ignition noise suppression. You also get receive scanning, (scan fifty 10 KHz channels), and RIT (Receiver Incremental Tuning) to precisely zero beat on your receive.

...with lots of standard features. Of course, an easy to read multifunction LCD display with selectable dim or bright backlighting, multifunction metering on the LCD with S/RF, Modulation, SWR Cal, and SWR functions, RF Gain control, Frequency Lock, and Channel Up/Down switches on the PTT microphone are all standard features.

...to make the President HR 2510 the best 10 Meter Mobile Transceiver on the market today.

President is a leading manufacturer of transceivers, and we’ve put that know how to work in the HR 2510 to bring you the finest 10 meter mobile in its class.
problems, I'll indicate what has to be done to correct the fault. Go to it!

Acknowledgments

Thanks Francisco Moreno, a photo enthusiast, for taking and enlarging the photos, and to Tom Fattaruso for acting as a sounding board for some of my ideas and coming up with helpful solutions.

Note:
The photo showing the printed circuit assembly of the counter board has been changed slightly to use a different crystal frequency than the original circuit.

receiver to zero beat. Then adjust the counter-oscillator trimmer so the counter reads 2,000 MHz.

Conclusion

Although this receiver is not a single weekend project, each board can be constructed in a weekend. It’s a far cry from the first superhet I built before WW II using Miller coils. I’ve made a number since, but this one outperforms them all.

In the future, I’m going to build converters to cover the 20, 15, and a portion of the 10-meter band.

If you have any problem with any of the boards and you’ve followed the same pin connections that I’ve used, I will gladly troubleshoot your board for a small fee of $5 per board (postage prepaid). If you’ve only made a small error, I’ll make the correction. On major

References

Article D

HAM RADIO

November 1988
The noise figure of an RF amplifier can be elusive, especially at VHF and above. This is true unless you are fortunate enough to have sophisticated (and very expensive) test equipment at your disposal.

Specifications

Transistors are ordinarily specified by the manufacturer in terms of their scattering S parameters. These are the electrical characteristics seen at their interfaces. Scattering parameters allow you to design an amplifier with approximately the same gain and noise figure specified by the manufacturer, as long as you follow certain rules of analysis. Unfortunately, for most of us, following these rules by longhand can be an exceedingly ambitious and time-consuming task.

Computer needed

If you have access to a personal computer and a suitable program, you can accomplish designs quickly and with relative ease. Even so, you wouldn't expect to develop a design from scratch on a weekend.

Some years ago I wrote a relatively simple computer program in BASIC for purposes of designing low noise amplifiers. With this program, using data specified by the manufacturer, I found that I could realize a design in short order.

I've built and tested a number of amplifiers with this program, employing various types of transistors — including both bipolar and GaAsFETs. My designs agreed with the manufacturer's data sheets, increasing my confidence in the program.
Schematic diagram of power supply/regulator.

Schematic diagram of GaAsFET amplifier.

Chart showing curve of gain versus frequency.

It should be recognized that while the manufacturer specifies the optimum noise figure to be about 0.7 dB at 1296 MHz with an associated gain of 18.5 dB, the actual noise figure will be somewhat higher and the gain lower. This is due to such factors as pc board dielectric loss, source lead inductance, or inaccuracies in microstrip dimensions. Measured gain for this particular amplifier is 17 dB when \(I_{DS} = 10 \) mA. Differences in dielectric con-

stant between one manufacturer's board material and another's, or between different production runs from a given manufacturer, can influence performance. A value of \(e_2 \) = 4.4 was selected from a published table.\(^3\)

Gain increases with drain current, peaking out at 19.5 dB at about 40 mA, but the manufacturer's data calls for a drain current of 10 mA for minimum noise figure.

Through-grounds are made on the pc board in fig. 1 by passing no. 26 tinned copper busbar through the ground holes and soldering on both sides. In this way, the ground on the trace side of the board is connected to the ground plane with minimum inductance. This is particularly important where the stub on the gate side of the transistor is connected via a through hole to the ground-plane side of the board, and where the transis-
I; age to + 3 volts.

Ferrite bead placement on the + 15 volt Vdc line.

Adjustments

Before soldering the GaAsFET to the pc board, adjust the negative bias and protective circuit. Temporarily connect a 270-ohm resistor from the junction of L1 and R4 and ground to simulate transistor-drain current. Then adjust R6 until the drain voltage across the 270-ohm resistor is 3.0 Vdc. When pin 5 of the 7660 is then shorted to ground, or if the 7660 is removed from its socket, the positive 3 Vdc ramps down to zero.

Shielding

The 1296-MHz amplifier performs noticeably better when the assembly is enclosed in a shielded box. Form brass strip 1/4” wide and 0.032” thick into a 2” x 3” rectangle and solder it to the copper band around the trace side of the board. Now form a 0.015” thick piece of aluminum into a tight-fitting cover. Use a pair of 2-56 screws to hold the cover in place through tapped holes in the brass rectangle.

A final note

I make no particular claims for superior performance for the amplifier described here. It will win few contests for the lowest noise figure, but on-the-air tests make it clear that “store-bought” or homebrew converters come to life when you use it. You be the judge.

References

Bibliography

"You're miles ahead with Larsen."

When the directors of the Coors International Bicycle Classic needed a sophisticated mobile communications system, they turned to communications consultant Rick Woodsome. As a communications specialist, Woodsome knows what it takes to make a communication system work.

That's why he turned to Larsen Antennas.

"You don't pull off the largest sports event in the Western Hemisphere without good communication. And you don't have good communication without the right equipment.

"Larsen antennas were instrumental in making last summer's Coors Classic an overwhelming success. They were key to our entire communication network.

"Without Larsen, it would have been uphill all the way."

Rick Woodsome

Larsen Antennas
The Amateur's Professional

See your favorite amateur dealer or write for a free amateur catalog.

IN USA: Larsen Electronics, Inc., 11611 N.E. 50th Avenue, P.O. Box 1799, Vancouver, Washington 98668 (206) 573-2722.

IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6th Avenue, Vancouver, B.C. V5Y 1K3 (604) 872-8517.
ETO INTRODUCES THREE NEW STATE-OF-THE-ART ALPHA LINEAR AMPLIFIERS

*ALPHA 86-Continuous HF coverage, manually tuned
*ALPHA 87-Amateur HF band coverage, bandpass no-tune-up
*ALPHA 88-Continuous HF coverage, fully automatic band selection and tuning under microprocessor control

The ALPHA 86, 87, and 88 are new, state-of-the-art HF linear amplifiers designed for the most demanding radio amateur. The three models differ only in the manner by which output tuning and loading is accomplished.

The ALPHA 86 is adjusted manually by the operator (like earlier ALPHA 76A series amplifiers) for optimum performance at any frequency between 1.8 and 22 or 30 MHz*. Smooth and easy manual tuning is provided by a combination of custom split capacitor, vernier drives, bandswitched RF choke, and level-independent LED tuning indicator. Accurate manual tuneup is easier and quicker than ever before.

The ALPHA 87 employs fixed, pretuned bandpass circuits after the fashion of earlier ALPHA 374 and 78 models. It covers all amateur HF bands permitted by FCC* and has no manual tuning controls. You simply turn a knob to the desired amateur band and begin transmitting—with no waiting and nothing to adjust.

ALPHA 88 combines the full frequency coverage* amplifier circuitry of the '86 with a microprocessor-based automatic control system. Nominal settings for all frequency ranges are factory-loaded in memory; when drive is applied the microprocessor system samples the incoming RF, selects the proper frequency range, and trims tuning and loading for optimum performance—all within a few seconds. Tune-up is always precisely correct for your actual operating frequency and load impedance. You always have maximum efficiency and 1.5 kW of razor sharp RF output without ever touching a knob!

All the new ALPHA's use a pair of Eimac 3CX800A7 triodes to provide maximum legal power in all modes with plenty of reserve. Tuned inputs assure easy excitation to full rated output with superb linearity and efficiency.

An advanced PIN diode system provides silent and ultra-fast (1 ms) VOX, QSK, and AMTOR T/R switching. These models also share instant-response LED bargraph metering of all critical parameters, full-cabinet forced air cooling, and ETO's unmatched THREE YEAR factory limited warranty.
SPECIFICATIONS, ALL MODELS

POWER OUTPUT: 1500 watts PEP, keyed CW, or carrier (RTTY, SSTV, etc.) up to 100% duty cycle, no time limit. Optional auxiliary cooling fan recommended for operation of ALPHA 87 at output power exceeding 1000 watts average for more than 30 minutes continuously.

DRIVE POWER: 50 to 80 watts PEP or carrier for 1500 watts RF output.

INPUT VSWR: 1.5:1 maximum within amateur bands; 2.5:1 maximum elsewhere.

TUBE COMPLEMENT: Two EIMAC 3CX800A7 ceramic-metal, grounded grid triodes.

POWER SELECTION: HI/LO panel switch selects nominal 1500W or 750W RF output.

TRANSMIT-RECEIVE SWITCHING: PIN diodes, 1 mS max. switching time. Mechanical relay bypasses amplifier when in STANDBY and OFF modes.

ALC: Negative going, grid-derived, adjustable threshold.

COOLING: Full cabinet, ducted, rear intake/top exhaust.

SWR PROTECTION: ALPHA 86 & 88-Automatic tripout for VSWR > 2.5:1 @ 1500W Po. ALPHA 87-Automatic tripout for VSWR > 1.5:1 @ 1500W Po.

METERING: Separate multi-color LED bargraphs for Pout, Prefl, Ig: switched LED bargraph for Ip, HV, and (ALPHA 86 only) manual tuning indicator.

HARMONIC OUTPUT: Better than 55 dB below rated output on all amateur bands; better than 50 dB elsewhere.

INTERMODULATION DISTORTION: Better than 35 dB below rated output.

PRIMARY POWER REQUIRED: 220-250V, 50-60 Hz, 20A maximum (internal jumpers for 110-125V; requires 40A primary service or reduced power).

SIZE & WEIGHT: ALPHA 86 & 87-17" W x 7" H x 15" D excluding feet; 65 lb. ALPHA 88-Same except 17" D; 70 lb.

Shippable via UPS (Hipersil® transformer removed for shipping).

*Continuous frequency coverage in the '86 and '88 permits MARS and other special uses far removed from standard amateur frequencies. Units delivered in USA cover 1.8-22 MHz only, as required by FCC rules. Appropriately licensed amateurs may easily modify to restore full 1.8-30 MHz operation. ALPHA 88 pending FCC type acceptance.
ASSOCIATED RADIO
8012 CONSER BOX 4327
OVERLAND PARK, KANSAS 66204

EVERY DAY A HAMFEST
BUY — SELL — TRADE
ALL BRANDS NEW AND RECONDITIONED

WE’LL BUY YOUR EXTRA RIG
STATIONS-ESTATES ETC.
Call 913/381-5900
FAX 913 648 3020
SEND $2 FOR CATALOG
AND WHOLESALE LIST

NOVEX Speaker Mics

High quality audio • Privacy earphone jack
Rotatable lapel clip • Hi-Lo volume switch

ICOM DMC-237
Kenwood DMC-337K
Yaesu DMC-537

SUPER VALUE only $19.95
In shopping & handling

NOVEX Handsets

PTT handset • backlit DTMF • Private listening
Wired for most current ICOM, Kenwood, Yaesu
& others (on special request)

ICOM HC5701K, Kenwood HC5701K, Yaesu HC5701Y
Available for many other radios at slightly higher price.

Introductory price $79.95
In shopping & handling

Orders: 800-368-3270

Electronic Equipment Bank
316H Mill St. NE, Vienna, VA 22180
(Inquires from Washington, DC)

Please send all reader inquiries directly.
A SOLID-STATE
75A-4 RECEIVER

By James M. Larson, KF7M, 2245 Ross Avenue, Idaho Falls, Idaho 83406

Complete details for updating this classic radio

I have done a solid-state conversion of the Collins 75A-4 receiver. My intention was to "get the tubes out," yet retain or improve the original operating features and performance. I wanted a receiver that looked and felt like a 75A-4, but with negligible frequency drift and improved intermodulation distortion (IMD) and overload capability. I was also looking for steeper skirts on the i-f passband and a noise limiter that was effective on the "woodpecker."

I wanted to keep all the original RF, oscillator, i-f, BFO and VFO coil structures, and their associated band-switches. The original mixing scheme would remain. An additional mechanical filter would be inserted in series with the existing i-f filters.

The end result is a receiver that, from all external appearances, is a 75A-4 (Photo A). But when you open the lid, you see the uncluttered view in Photo B — and no tubes!

The lack of background interference and hash is noticeable when you compare the new receiver with the unmodified version. The measured IMD and blocking capability are also greatly improved.

Performance characteristics

Table 1 shows performance specifications for the more important parameters of the solid-state receiver, compared to the vacuum tube original. The data is the result of comparative measurements made on a vacuum tube 75A-4 and the solid-state version.

With the exception of receiver sensitivity, all other parameters of the solid-state conversion are improve-
ments over the original. The high sensitivity of the vacuum tube receiver was reduced to enhance the IMD and overload capability. The input noise of the solid-state version still remains below the typical background and galactic noise from the antenna.1 2

Getting started

The first thing I did was acquire two 75A-4s. One unit was used as the comparison standard. I removed everything from the other 75A-4 except the RF coils, oscillator coils, variable i-f coils, crystal sockets, bandswitch assembly, and the sockets and switch for the mechanical filters.

The wiring that remained included the interconnecting wires between the bandswitch, its associated coils and crystal sockets, the mechanical filter selection switch, and the interconnecting wiring to the filter sockets. I had removed everything else, leaving an almost bare chassis.

I also stripped out the tube sockets and all wiring at the base of the tube sockets in the permeability tuned oscillator (PTO). I didn’t disturb the oscillator circuit in the PTO hermetic enclosure at this time. Next I opened, cleaned, and checked the i-f cans, BFO enclosure, and the rejection filter enclosure. The megacycle dial drum, the kilocycle dial, and their pointers were cleaned and temporarily stored with the front panel. I cleaned the chassis to remove dust and stains, then remounted the i-f cans, BFO enclosure, and rejection filter enclosure. I cut an aluminum plate to cover the portion of the chassis on the right side as viewed from the front that was riddled with holes from remnants of tube sockets, transformers, and other hardware I’d removed. The tube sockets on the left chassis, and those not easily covered

* Overall circuit diagram of the receiver.
on the right, were filled with button-type hole covers. A nine-pin tube socket was mounted on the right side (see Photo C) for the additional 3.1-kHz mechanical filter to be added to the i-f section.

Much of the circuit was built “daub-a-gob” style on unetched copper-clad vector board. These boards are still in place, but I hope to replace them in the future.

Circuit description

The overall circuit diagram for the receiver is shown in fig. 1A-D. Components retained from the original receiver are also shown in fig. 1, accompanied by an asterisk and the component designators used by Collins on the original receiver schematic. The new solid-state circuits are shown only as circuit blocks on this diagram. The solid-state circuits comprising these blocks are described in more detail later. If you own a 75A-4, you might be interested in comparing fig. 1 with the block diagram and schematic in your 75A-4 instruction book.

The circuit diagram shows that the new solid-state version retains the same mixing scheme and the same basic topology as the original. It differs from the original as follows:

- An AGC-controlled input attenuator has been added at the receiver input.
- There is no RF amplifier. The antenna and RF coils are now capacitively coupled, forming a double-tuned network ahead of the first mixer.
- An additional 3.1-kHz mechanical filter has been placed in the i-f amplifier to improve shape factor and i-f rejection.
- I used a gated noise limiter that has its own separate i-f amplifier for impulse noise identification.
- The S meter is driven from a special driver board.

Crystal calibrator

Figure 2 shows the schematic of the 100-kHz crystal-calibrator circuit. The active element is a CD4011 CMOS

November 1988 69
quad nand gate. Gate U₁ᵥ, crystal Y₁, resistors R₁ and R₃, and capacitors C₁ and C₃ comprise a Pierce oscillator. Gates U₁ through U₁₅ buffer the oscillator output and square up the oscillator signals to enhance its harmonic output. Positive 15 volts is applied to the calibrator when the front panel AC power switch, S₆, is in CAL position.

Capacitor C₁ and crystal Y₁ are components from the original receiver. The new oscillator was built on a small piece of vector board that was mounted close to the antenna connector. This board is mounted underneath the input attenuator board and may be seen in the lower right-hand corner of Photo D. The output signal from the calibrator circuit is coupled to the antenna input connector through capacitor C₅, as shown in fig. 1A.

Input attenuator

The conversion transconductance first-mixer is high enough that an RF amplifier is not needed. AGC ahead of the first mixer is provided by a voltage-controlled input attenuator in series with the antenna input and antenna coils. The input attenuator is mounted on the input attenuator board (fig. 1A). This board is shown schematically in fig. 3.

The input attenuator board consists of a Mini Circuits SAY-1 high-level, double-balanced diode mixer and transistor, Q₁. The double-balanced mixer acts as an attenuator by feeding its DC-coupled i-f port with a DC voltage derived from the AGC bus. The SAY-1 has an insertion loss of about 3 dB and provides about 40 dB of attenuation with full AGC.

The SAY-1 requires about 20 mA of DC into its i-f port for minimum attenuation. This current is provided by emitter follower Q₁. Resistor R₁ and R₂ limit the current into the i-f port to about 20 mA for an AGC input of 10 volts to the base of Q₁. Capacitors C₁ and C₂ filter the AGC input to the SAY-1. Resistor R₂ provides a 50-ohm termination to the SAY-1 i-f port.
COMPLETE CUSTOMER SATISFACTION...SUPERIOR SERVICE...FRIENDLY, KNOWLEDGEABLE PERSONNEL...QUALITY MERCHANDISE...PROVIDING THE BEST VALUES IN LEADING EDGE TECHNOLOGY.

35 MHZ OSCILLOSCOPE
A remarkable value
$499.95
Wide bandwidth and exceptional 1mV/DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians at a remarkable price. Delayed triggering allows any portion of a waveform to be isolated and expanded for closer inspection. Variable Holdoff allows stable viewing of complex waveforms.

DMM-300
3.5 DIGIT DMM/MULTITESTER
$79.95
This full function 3.5 digit DMM offers highly accurate performance and a host of added features like audible continuity, capacitance, transistor temperature, and countdown to help you do the job—fast. Temperature probe, test leads and battery included:
- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mv–1000V, 5 ranges
- AC voltage: 200mv–750V, 5 ranges
- Resistance: 200 ohms–20M ohms, 6 ranges
- Capacitance: 2000pF–500pF, 3 ranges
- Transistor tester: 0–2000° F
dend
- Conductance: 2000mhos
- Fully overload protected
- Input impedance: 10M ohm

DMM-100
3.5 DIGIT POCKET SIZE DMM
$29.95
Perfect for the field service technician. Shiny pocket size without compromising features or accuracy. Large, easy to read 1/2" LCD display. Fully overload protected for safety. 2000 hour battery life with standard 9V cell. Probes and battery included:
- Basic DC accuracy: plus or minus 0.5%
- DC voltage: 2v–1000v, 4 ranges
- AC voltage: 200v–750v, 2 ranges
- Resistance: 2k ohms–2M ohms, 4 ranges
- DC current: 2mA–2A, 4 ranges
- Input impedance: 10M ohm
- Fully overload protected
- Approx. 5” x 3” x 1”. Under 7 ozs.

DPM-1000
3.5 DIGIT PROBE TYPE DMM
$54.95
Custom 80 pin LSI chip provides accuracy and reliability in such a compact size. Autoranging, audible continuity and data hold feature help you pinpoint the problem quickly. Case and batteries included:
- Basic DC accuracy: plus or minus 1%
- DC voltage: 2v–500v, autoranging
- AC voltage: 2v–1000v, autoranging
- Resistance: 2k ohms–2M ohms, autoranging
- Fully overload protected
- Input impedance: 1M ohm
- Approx 8 1/2” x 1 1/2”. Under 3 ozs.

MODEL 2000
$389.95
20 MHz DUAL TRACE OSCILLOSCOPE
Model 2000 makes frequency calculation and phase measurement quick and easy. The component tester aids in fast troubleshooting. Service technicians appreciate the TV Sync circuits for viewing TV V and TV H and accurate synchronization of the video signal, Blanking, WTS, and V/H Sync pulses.
- Exceptionally bright 5” CRT
- Built-in component tester
- TV Sync filter
- X-Y operation 110/220 volts

DMM-200
3.5 DIGIT FULL FUNCTION DMM
$49.95
Get highly accurate performance at a very affordable price. Rugged construction, 20 amp current capability and 22 ranges make it a perfect choice for serious field or bench work. Low battery indicator and tilt-stand. Probes and 2000 hour battery included:
- Basic DC accuracy: plus or minus 0.25%
- DC voltage: 200mv–1000V, 5 ranges
- AC voltage: 200mv–750V, 5 ranges
- Resistance: 200 ohms–20M ohms, 6 ranges
- AC/DC current: 200mA–20A, 6 ranges
- Input impedance: 10M ohm
- Fully overload protected
- Approx. 7” x 3 1/2” x 1 1/2”. Wt. 11 ozs.

* 2 YEAR REPLACEMENT WARRANTY
* 30 DAY MONEY BACK GUARANTEE
* TOLL FREE TECHNICAL SUPPORT
* NEXT DAY AIR SHIP AVAILABLE

JDR INSTRUMENTS, 110 KNOWLES DRIVE, LOS GATOS, CA 95030
RETAIL STORE: 1256 SOUTH BASCOM AVE, SAN JOSE, CA (408) 947-8881
ORDER TOLL FREE 800-538-5000
The 230A Linear Amplifier

Something new in a high power, high quality, HF linear amplifier

The Advanced Radio Devices (ARD) 230 series represents a new generation in high power linear amplifiers. Utilizing microprocessor control, the 230 provides full "HANDS OFF" automatic operation.

- Full power is always available
- Completely automatic
- Microprocessor controlled tuning
- No time limit for QRO
- Full QSK
- LCD metering
- VSWR readout
- Microprocessor controlled protection
- Automatic tube monitoring
- Easy modification for 10 meters
- RS-232C output for external control
- Modular construction
- Export/commercial versions available
- Remote antenna switching control
- Remote control up to 250 feet away
- UPS shippable (3 boxes)

Orders: 800-368-3270
Local & tech info 703-938-3350
EEB Electronic Equipment Bank
516 H Mill St. NE, Vienna, VA 22180

(Just minutes from Washington, DC)

R9100 SUPER ROTATOR

The Advanced Radio Devices (ARD) R9100 is the heavy duty antenna rotator designed for the big gun with antenna loads to one ton. All components are designed and selected for durability and long life, a quality often over looked.

The control system provides both analog and digital readout of direction to within ±1 degree. Provisions for external computer control which allows rotor positioning by the mere keyboard entry of a target country's prefix. Software is provided for use with most popular computers.

This quality rotor is the most capable and powerful unit designed for the amateur market today. You can pay more and get less.

SPECIFICATIONS
- Rotating torque: 10,000 inch lbs.
- Braking torque: 24,000 inch lbs.
- Vertical load: 2000 lbs.
- Mast sizes: 2.0 to 3.5 inch O.D.
- Motor: 1/3 HP
- Rotation speed: 1 RPM
- Weight: 230 lbs.
- Size: 14.9x25x15.1 inches (wh)

Write for complete specs and installation information

Distributed Exclusively by EEB

Orders: 800-368-3270
Local & tech info 703-938-3350
EEB Electronic Equipment Bank
516 H Mill St. NE, Vienna, VA 22180

(Just minutes from Washington, DC)
An Absolute Must for Every Amateur's Radio Station! Gives You Important Changing Weather Conditions That Can Be Critical To Your Antenna System!

Protect your antenna system and home.

A must in every shack. Now you can scan heavy Wind Gusts... Wind Direction... High/Low and more! Get your own computerized weather station at an incredibly low, affordable price.

The New Azimuth Weather Star by Digitar is a high quality, power-packed weather computer, just loaded with features. Gives you accurate weather data... right in your shack... at a touch of a finger. Created with the latest CMOS microchip technology.

You Get All These Exciting FUNCTIONS & FEATURES with the TW2...

- HANDY, COMPACT SIZE: 2½" x 2½" x 1½"
- LARGE, EASY TO READ LCD READOUT
- WIND SPEED—Calculates pulses from full-function anemometer included with system.
- WIND DIRECTION—Wind-sensing vane relays directions to computer.
- WIND CHILL FACTOR—Automatically factors wind speed and outside temperature readings.
- TEMPERATURE—Remote external sensor (optional) reads outside temperature.
- HIGH/LOW—Tracks highest and lowest wind gusts plus high/low external temperature at the touch of a button.
- F/C—Automatically Converts Fahrenheit to Celsius—Miles to Kilometers.
- Programmable SCAN—Lets you select display functions you need.
- OPERATES ON BATTERY or AC POWER

YOUR TW-2 SYSTEM COMES COMPLETE WITH: Anemometer & Wind Vane made of high impact, Ultra Violet resistant plastic, with stainless steel bearings & shaft for years of trouble free service. Forty feet of cable lead in with convenient connectors. External temperature sensor. Mounting hardware.

GET THESE EXTRA OPTIONS—DKS-22/Desk Stand Crafted in Beautiful Stainless Steel • BP-3 Rechargeable Ni-Cad Battery Pack • AC Power Adapter (PS12)

And it's MADE IN AMERICA! YOUR SATISFACTION GUARANTEED!

Call TOLL-FREE (800) 882-7388

ALSO AVAILABLE AT HENRY RADIO & ALL HAM RADIO OUTLETS!
UNDER $25
BK136 TECH/GENUINE MANU 5.00
CALL BOOKS 1969 24.95
BK141 EXTRA CLASS 5.00
BK120 REPEATER DIRECT 5.00
BK102 "NEW" ANTEENA BK. 18.00
LARSEN KD4124QH 16.95
KANTRONICS MAX-FAX 19.95
ICOM HS10AS/SB 24.50
ICOM HM10AS/SB 24.50
ICOM LC11, 12, OR 14 20.95
ICOM LC24, 25, 26, OR 27 13.95
MFJ 105HS 14.95
MFJ 106 24HR DUAL LCD 19.95
MFJ 1250 STARTER KIT DISK 19.95
MFJ 1294 STARTER KIT PAPE 19.95
MFJ 284 SPEAKER MIC 24.95
MFJ 1270 SPOE. ANT. SWITCH 19.95
UNIDELLA WZ2AJ 16.95
VANGORDEN HI-Q 14.95
VANGODEN D10 10M 19.50
VANGORDEN D15 15M 20.95
VANGORDEN D20 20M 22.95
VANGORDEN D40 40M 24.95
VANGORDEN QSL CARD 4.95
ARRL 1998 HANDBOOK 21.95

UNDER $50
ALLIANCE U110 49.95
ANT SPEC AP1513G 35.95
ANT SPEC AP4003G 35.95
CUSHCRAFT CS147M 38.95
CUSHCRAFT ARX28 40.50
CUSHCRAFT ARX450B 40.50
CUSHCRAFT 124W8 38.95
ICOM HM46 SPKR MIC 31.99
MFJ 185HWDECK 18.95
K2RAG RAG10, 15, 20 35.95
K2RAG RAG4 2KW BALUN 24.95
K2RAG RAG40 40M DIPOLE 45.50
K2RAG RAG800 80M DIPOLE 49.50
KANTRONICS KANTERM 29.95
KENWOOD SMSC30 29.95
KENWOOD SMSC31 29.95
KETUSC ENCODER 49.50
KETUSC ENCODER 49.50
LARSEN KG144 49.95
LARSEN KG144PL 49.95
LARSEN AD7Z 49.50
LARSEN KD14142HW 29.95
MFJ 250 1KW WET 40.95
MFJ 260 300W DRY 26.95
MFJ 1286 GREY LINE ADV. 29.95
NYE 002001 LOW PASS Filt. 31.95
NYE 40044002CWL WYE 29.95
VAN GORDEN GS5R 45.95
YAESU FNB10 BATTERY 41.95
YAESU MH12A9 41.95
YAESU MH18A2B 41.95

UNDER $75
ALINCO ELH230G 2M AMP 72.95
ASTRON RS10A PWR SPWL 61.95
ASTRON RS12ARP WRL SPYL 71.99
B&W ASW60LW ANT 66.95
BENCHEY BY1 BLACK 54.00
BENCHER B2Y CHROME 56.50
ICOM BPS BATTERY 65.00
ICOM EX243 KEYER 64.50
ICOM FL32 CW FILTER 69.00
ICOM RC11 OR RC12 70.99
KENWOOD H55 70.99
MFJ 931 GRND TUNER 73.95
SHURE 444D DESK MIC 59.95
YAESU FNB94 OR FNB4A 64.95
YAESU FNB92 BATTERY 59.95
YAESU FTS12 ENCODER 61.95

UNDER $100
ALINCO ELH230D 2M AMP 89.95
ASTRON RS12M 92.95
ASTRON RS20A PWR SPWL 91.95
B&W ASW60LW DIP 94.95
CUSHCRAFT A743 84.95
CUSHCRAFT A744 84.50
CUSHCRAFT 215WB 83.95
HYGAIN 40M KIT EXP. 19.95
ICOM BC95 CHARGER 79.95
ICOM BP7 OR BP8 79.95
ICOM GCS 24HR WORLD CLK 79.95
ICOM SM8 DECK MIC 89.00
MFJ 452B MEMORY KEYER 91.95
MFJ 941D TUNER 92.95
SANGEAN AT9001 RCVR 89.95
SONY AN1 ACTIVE ANTEENA 79.95
TELEX PROCOCM250 72.90

UNDER $150
ALLIANCE HD73 ROTOR 119.95
ALINCO ELH260D 2M AMP 124.95
UNIDEN 55XL SCANNER 135.95
BUTTERNUT HF6VX 119.00
DIWA LA2065R 3M AMP 122.95
HYGAIN 18AT/WB 137.50
ICOM SM10 DESK MIC 130.95
ICOM AT270B PACKET 129.95
YAESU MD18 DESK MIC 109.95
YAESU SU726 129.95

UNDER $200
CUSHCRAFT APB2 HF VERT. 153.95
DOCKING BOOSTER/P20 169.95
HYGAIN 1058 10M BEAM 173.95
HYGAIN CD45I ROTOR 199.95
ICOM FL44A SSB FILTER 164.95
ICOM PS51 PWR SUPPLY 156.95
KENWOOD AT130 TUNER 184.95
KENWOOD PS431S 175.00
MFJ 1274 PACKET 152.95
SANGEAN AT5003 RCVR 174.95
UNIDEN 70XLT SCANNER 174.95

UNDER $250
CUSHCRAFT A3 13F BEAM 249.95
CUSHCRAFT R4 HF VERT. 225.95
DAWA CNW419 TUNER 205.95
HEATHKIT HC21 PACKET 215.95
KENWOOD TH31BT 200 HH 239.95
MFJ 1278 ALL MODE TNC 225.95
SANYO 2030 SWL RECEIVER 219.95
YAESU SM736 6M MODULE 234.95

Orders & Quotes Toll Free 800-444-4799

Ege Virginia
14803 Build America Drive, Bldg B
Woodbridge, Virginia 22191
Information: (703) 643-1063
Service Dept: (703) 494-8750
Fax: (703) 494-3679

Ege New England
224 N. Broadway
Salmon, New Hampshire 03079
New England (NH Included)
Toll Free: 800-444-0047
Info & Service: (603) 898-3750

Store Hours: M-F 10-6; Sat: 10-4
Order Hours: M-F 9-6, Sat: 10-4

Prices are subject to change without notice or obligation

Orders & Quotes Toll Free 800-444-4799

EgeVirginia
14803 Build America Drive, Bldg B
Woodbridge, Virginia 22191
Information: (703) 643-1063
Service Dept: (703) 494-8750
Fax: (703) 494-3679

Ege New England
224 N. Broadway
Salmon, New Hampshire 03079
New England (NH Included)
Toll Free: 800-444-0047
Info & Service: (603) 898-3750

Store Hours: M-F 10-6; Sat: 10-4
Order Hours: M-F 9-6, Sat: 10-4

Prices are subject to change without notice or obligation
Double-tuned input network

Originally the 75A-4 had an RF amplifier stage between the antenna and RF coils. This stage has been replaced with the passive-coupling network shown in fig. 4. The antenna coils and the first RF coils now comprise a double-tuned input network on the 10 through 80-meter bands. The purpose of switch S1-G is to change the coupling capacitance between the antenna and RF coils when different bands are selected. The S1-G switch is a Centralab YD wafer that you must add to the original bandswitch.

As shown in fig. 4, wafer switch S1-G is positioned on the existing bandswitch assembly. Its location is critical because the stray capacitance between the wafer switch and antenna coils L3, T2, and T7 is used for coupling. This capacitance is the right amount for coupling on 20 through 10 meters. Additional capacitance is added (as shown in fig. 7) for 40 and 80 meters. The input network is single tuned on 160 meters.

It's not difficult to add the wafer switch S1-G to the bandswitch assembly. Collins provides access holes on the back of the receiver that allow the bandswitch wafer-supporting hardware to be disassembled. Part of the added wafer switch, S1-G, must be cut away for lack of room; coil T2 gets in the way. I did this with a Dremel tool.

I'd like to re-emphasize that even with the insertion loss of the attenuator and the absence of an RF amplifier, the receiver still provides an input sensitivity of approximately 0.6 μV. This input noise level is quite acceptable because it's small when compared with the noise from a typical resonant antenna. The small loss of sensitivity, as compared with the original 75A-4, is repaid by improved IMD and overload capability.

First mixer

The output signal from the RF coils is mixed with that from the band-select crystal oscillator to derive a signal falling between 1.5 and 2.5 MHz. This is the frequency of the variable i-f of this receiver. Mixing is accomplished in the first mixer located on the first mixer board of fig. 1B. The schematic of this board is shown in fig. 5.

The mixer is a dual-gate MOSFET (Q1). Q1 is connected in cascade with Q2, which has a high collector breakdown voltage. Its collector is powered from an 80-
TABLE 1

Comparative performance specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Original vacuum tube 75A-4</th>
<th>Solid state 75A-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity measured at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.5 MHz</td>
<td>0.4 µV for (s + n)/n = 10 dB</td>
<td>0.6 µV for (s + n)/n = 10 dB</td>
</tr>
<tr>
<td>7.3 MHz</td>
<td>0.28 µV for (s + n)/n = 10 dB</td>
<td>0.6 µV for (s + n)/n = 10 dB</td>
</tr>
<tr>
<td>I-F selectivity</td>
<td>3.1 kHz at –6 dB</td>
<td>3.0 kHz at –6 dB</td>
</tr>
<tr>
<td>6 to 60 dB</td>
<td>5.1 kHz at –60 dB</td>
<td>4.1 kHz at –60 dB</td>
</tr>
<tr>
<td>3.1-kHz filter</td>
<td>Shape factor = 1.65</td>
<td>Greater than 80 dB</td>
</tr>
<tr>
<td>I-F rejection</td>
<td>Approximately 50 dB</td>
<td>Greater than 130 dB</td>
</tr>
<tr>
<td>Image suppression</td>
<td>above 21 MHz</td>
<td>Same</td>
</tr>
<tr>
<td>IMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of two-tone RF inputs</td>
<td>–67 dBm</td>
<td>–45 dBm</td>
</tr>
<tr>
<td>at 14.02 MHz to produce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third order IMD product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 14.06 MHz giving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(IMD product + n)/n = 3 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-dB compression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>desired signal of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 V at 14.02 MHz;</td>
<td>1-dB compression of the</td>
<td>1-dB compression of the</td>
</tr>
<tr>
<td>undesired signal</td>
<td>desired signal occurs</td>
<td>desired signal occurs</td>
</tr>
<tr>
<td>at 14.04 MHz</td>
<td>for undesired signal</td>
<td>for undesired signal</td>
</tr>
<tr>
<td>AGC</td>
<td>Audio rise <</td>
<td>Audio rise <</td>
</tr>
<tr>
<td>AGC time constants</td>
<td>3 dB for RF inputs of</td>
<td>3 dB for RF inputs of</td>
</tr>
<tr>
<td>AGC fast</td>
<td>5 µV to 0.2 volt</td>
<td>3 µV to >1 volt</td>
</tr>
<tr>
<td>AGC slow</td>
<td>Rise time = 10 ms</td>
<td>Rise time equivalent to 10 ms or less for 60-dB step.</td>
</tr>
<tr>
<td>Audio bandwidth</td>
<td>Release time = 0.1 sec</td>
<td>Release time ≈ 0.2 sec</td>
</tr>
<tr>
<td>Noise limiter</td>
<td>Rise time = 10 ms</td>
<td>Rise time equivalent to 10 ms or less for 60-dB step.</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>Release time = 1 sec</td>
<td>Release time ≈ 2 sec</td>
</tr>
<tr>
<td>stability</td>
<td>–3 dB 100 Hz to 5 kHz</td>
<td>–3 dB 300 Hz to 3 kHz</td>
</tr>
<tr>
<td>For line voltage change of</td>
<td></td>
<td>Gated diode limiter in i-f circuit</td>
</tr>
<tr>
<td>±10 percent</td>
<td>Does not exceed 100 Hz</td>
<td>15 Hz in first minute following a cold start.</td>
</tr>
<tr>
<td>Power input at</td>
<td>85 watts</td>
<td>Approximately 30 Hz per hour thereafter</td>
</tr>
<tr>
<td>115 VAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

volt power supply. Q1 is biased to optimize conversion transconductance.

The local oscillator signal is applied to gate 2 of Q1. Slug-tuned inductor L18 is terminated on the 80-volt supply through decoupling network C3 through C5 and resistors R3 and R4. Capacitor C47, which was connected across L18 in the original vacuum tube receiver, was increased to 390 pF and connected directly to Q2's collector.

The oscillator signal at gate 2 of MOSFET Q1 is approximately 5 volts peak-to-peak on all bands. The 1-pF capacitor, C9, connected to gate 2 of Q1 provides an isolating test point for measuring local oscillator signal amplitude with an oscilloscope and test probe. The oscillator voltage at gate 2 is the measured value read by the oscilloscope multiplied by the ratio (Cprobe + C9)/C9. This test point is useful for setting local oscillator output level.

This cascode technique was so effective that I used it again in the second mixer and the last i-f stage, because these stages are also susceptible to output saturation with large amplitude signals.
Band-select crystal oscillator

This oscillator is shown schematically in fig. 6. The topology of the solid-state oscillator is much the same as that of the vacuum tube version in the original receiver.

The active element in this circuit is a dual JFET, U431. In the original receiver, L11 and L17 (fig. 1A) were paralleled by 47-pF capacitors. These capacitors were removed and a single 47-pF capacitor, C1, was connected to the drain of Q1a. (See fig. 6.) This was to eliminate a high-frequency parasitic oscillation caused by the long wire runs from the bandswitch to coils L11 through L17. This parasitic just couldn't be tamed satisfactorily in any other way. Capacitors CX and CY were added at the bottom terminals of L11 and L12, as shown in fig. 1A. This additional bypassing also helped cure the parasitic problem.

The parallel capacitance across coils L14 through L16 was reduced by approximately 47 pF so that they would resonate properly. No change was required in the capacitance paralleling L12 and L13, as these coils had sufficient adjustment range to resonate.

Second mixer

The output signal from coil L22 of the variable i-f (fig. 1B) is fed, through wafer switch S1-H. This signal is mixed in the second mixer with the VFO output to develop the 455-kHz i-f. The schematic is shown in fig. 7. The design of the second mixer is similar to the one used in the first mixer. The VFO output voltage is connected to gate 2 of Q1. The voltage amplitude at gate 2 is approximately 8 volts peak-to-peak.

The S1-H switch is a Central Lab YD wafer that's added to the original band switch at the partition separating L18 and L22. S1-H is used to switch in additional attenuation when you select the 160-meter band.

Permeability tuned VFO

The permeability tuned oscillators used in Collins VFOs have always been outstanding for their smoothness, freedom from backlash, and frequency stability. The VFO shown in fig. 8 is even better because its frequency drift is almost nil. At constant temperature this
oscillator drifts less than 5 Hz in the first minute after turn-on and about 5 Hz per hour thereafter.

Modify the VFO by first removing the tube sockets and all the circuits connected to them. A small thin piece of aluminum covers the tube-socket mounting holes. I opened the sealed portion of the VFO. It contains inductors L200 and L201, and capacitors C200 through C203 and C207. Capacitor C207 was disconnected and a new tap was made on L201 eight turns from the bottom. (C207 was originally tapped into L201 at about ten turns). I lowered the tap on L201 because that coil is now being driven from the lower impedance seen at the source of Q1. C207 was replaced by C1 and C2 which are polystyrene caps.

Diode CR1, in conjunction with C203 and R1, allows the oscillator to generate negative self-bias through grid-leak action. Q2 serves as a buffer between Q1 and the outside world. Capacitor C8 at the collector of Q2 helps reduce the harmonic content at the VFO output.

VFO buffer amplifier

The output of the VFO drives the VFO buffer amplifier in fig. 9. This amplifier serves three purposes. It boosts the signal amplitude from the VFO to about 8 volts peak-to-peak, provides additional filtering to reduce the harmonic content of the VFO signal, and allows the resonant network in the drain of Q1 to be peaked, so that the output of the VFO circuit is flat through its tuning range.

The buffer amplifier board also provides the 6.9-volt power supply for the VFO. This supply consists of an LM329DZ precision voltage reference, (CR1), and resistor R8.

455-kHz i-f amplifier

The 455-kHz i-f section is comprised of the switch-selectable mechanical filters, i-f amplifier boards 1 through 4, bridged-T rejection network, added 3.1-kHz mechanical filter, and the i-f buffer and gated limiter board.
Now Your 2-Way Has a New Way to Communicate!

Introducing the first digital audio recorder for 2-way radio.

With the new Palomar VC-300, you can now record, broadcast and receive any type of message—up to 34 seconds—with any type of 2-way radio... amateur, marine, commercial or CB.

It's Like a Telephone Answering Machine for 2-Way Radio. And when used by both sender and receiver, the VC-300 is the ideal way to get messages to truckers having breakfast, wrecker operators hooking up a car, fishermen landing the big one, amateur ham operators away from the shack or RV club members out on the road.

Only With the VC-300. Perfected after two years of intensive development, the VC-300 is manufactured in Japan exclusively for Palomar, known worldwide for innovative 2-way radio products.

One D-Ram (256K) Memory or 8.5 Seconds Recording Time. For only $9.50 each, we can supply you with up to 3 more D-Rams for a total of 34 seconds. Or purchase them at any electronics hobby store.

Call, Write, or Fax. And we'll send you a free VC-300 descriptive brochure, a Palomar product line catalog and the name of your nearest area distributor. Or visit your local 2-way radio retailer. Suggested retail is $239.95.

RF Limited

Fax: 206-392-8413 Tel.: 206-392-0399
P.O. Box 1124 Issaquah, WA 98027
The Perfect Holiday Gift!

Every issue is chock-full of the kind of articles Hams are looking for. Each month there'll be at least two Weekenders — the kind of projects you really want to build. Extra emphasis is also given to excellent short technical pieces. In addition, HAM RADIO will continue to carry high quality technical articles.

HAM RADIO Magazine has monthly columns from some of the best authors in the radio field: Bill Orr, W6SAI, on antennas and general radio subjects; Joe Reisert, W1JR, spotlighting VHF/UHF technology; Garth Stonehocker, K0RYW's monthly propagation forecasts; Joe Carr, K41PV, concentrating on equipment repair and Tom McMullen, W1SL, covering basic operating procedures and theory.

You also get four, highly regarded, very special issues. January brings the Annual Construction issue — put together to exemplify Ham Radio’s new emphasis on building. In May, there’s our annual Antenna Special — antenna designs and ideas from some of the world’s best antenna experts. July means VHF and UHF with the latest in state-of-the-art. And in November, you’ll receive the annual Receiver issue, full of high performance designs and technology. They all come absolutely FREE as part of your subscription.

HAM RADIO Magazine also has new graphics, design and layout that enhance HR's readability and give it a pizzazz not found elsewhere in the Amateur Radio field.

There’s no time like now to give a HAM RADIO Magazine subscription as a present for that hard-to-buy-for Ham friend. While you’re at it — why not renew your own subscription and take advantage of the special low one year rate.

An attractive gift card will be sent if your order is received before December 16, 1988

Please enter my one year gift/renewal subscription(s) to HAM RADIO Magazine as follows:

First gift renewal $19.95 SAVE $3
Two or more $15.95 SAVE $7

Name ___________________ Call ___________________
Address _______________________________________
City ____________ State ________ Zip ____________

□ Start □ Renew my Subscription to HR
□ Enclosed is a check or money order
Charge: □ Mastercard □ VISA
Card # ___________________ Expires _____________________
My Name ___________________
Address _______________________________________
City ____________ State ________ Zip ____________

THIRD SAVE $7
Name ___________________ Call ___________________
Address _______________________________________
City ____________ State ________ Zip ____________
□ NEW □ RENEWAL

SECOND SAVE $7
Name ___________________ Call ___________________
Address _______________________________________
City ____________ State ________ Zip ____________
□ NEW □ RENEWAL

For extra fast service, call toll free to order your gift subscriptions or books

HAM RADIO MAGAZINE
GREENVILLE, NH 03048

CALL TOLL FREE
800-341-1522
M-F 9-9 EST. • Sat: 9-5
DATATEL 206-987-8642
ORDERS ONLY

Prices U.S. only. Foreign prices upon request.
YOU COULD WIN...

a hand-held radio. Here's how.

Please fill out the Magazine evaluation card and mail it to us. We'll tabulate all the responses to see what you do and do not like.

There will be a drawing of evaluation cards. The person whose card is picked will win a hand-held. Help us make the best Amateur magazine even better. You could WIN a radio for your efforts!

Also, each month the author of the most popular WEEKENDER will be given a hand-held radio.

Subscribe to HAM RADIO today. Tap into Amateur Radio's #1 technical and building journal. You'll also save $7.05 off the newsstand price ($30 per year)! Fill out this card and mail it in.

For even more prompt service, call TOLL FREE (800) 341-1522, MasterCard, VISA and Bill Me orders accepted. Phone lines open Monday thru Friday 8 a.m. to 9 p.m. Please, orders only.

Bill me Payment enclosed

PREL US USE BEFORE JANUARY 31, 1989 NOVEMBER 1988
Please enter my subscription

BUSINESS REPLY CARD
First Class Permit No. 1 Greenville, NH

Postage Will Be Paid By Addressee

HAM RADIO
Greenville, NH 03048

ATTN: Reader Service Dept.
The output of the second mixer is fed to the switch-selectable mechanical filters through the front panel selectivity switch, S2. The output of the selected filter drives the input of i-f amplifier board 1, shown in fig. 10.

Dual-gate MOSFET Q1 on i-f amplifier board 1 is the first amplifier in the i-f chain. AGC is applied to gate 2 of this FET. Dual-gate MOSFET Q2 is the first amplifier in the noise-limiter i-f chain. The noise limiter i-f and its separate AGC bus will be described later.

The output of i-f amplifier 1 drives i-f amplifier 2 and the Q multiplier. This board is shown in fig. 11. Q1 provides additional i-f gain and AGC capability. It drives the Q multiplier rejection filter comprised of Q2 and external bridged-T network L26; capacitors C72, C73, and C74; and resistors R34, R35, and R36. The Q multiplier is an exact equivalent of the circuit in the original vacuum-tube receiver. The only difference is that Q2 is used in place of the dual triode in the original.

The bridged-T network drives i-f amplifier 3. This board is shown in fig. 12. Q1 provides additional gain and AGC capability. Capacitors C75 and C139 and resistor R37 terminate the bridged-T, and are identical to the

VFO schematic.
components used in the original receiver. Q1 drives the added 3.1-kHz mechanical filter. The mechanical filter output drives the last i-f stage, made up of the components on i-f amplifier board 4 (see fig. 13).

Q1, on i-f amplifier board 4, is connected in cascode with Q2. The collector voltage for Q2 is derived from the 80-volt power supply. I-F transformer T3 provides coupling between Q2’s collector and the i-f buffer and gated noise limiter. I used the cascode connection, with its 80-volt collector supply, for the last i-f stage. This allows for a large voltage swing.

I-F buffer
The last i-f stage output is derived from the secondary of i-f transformer T3, which drives the i-f buffer and gated noise limiter. This board is shown in fig. 14.

Buffer amplifier U1 on this board provides a high-
impedance termination for the secondary of T3. In addition, it provides a low-impedance source of i-f output for the AM detector, product detector, AGC amplifier, and gated noise limiter. The product detector, AM detector, and the AGC amplifier receive their input signals through resistors R7, R6, and R5, respectively.

Gated noise limiter

The noise limiter works as follows (see fig. 14 for details): U2 and U4 are high-speed, solid-state switches. The internal switch contacts of U2a and U4 are normally closed, and the internal switch of U2b is normally open. Capacitor C1 charges to, and closely follows, the positive peaks of the i-f signal output of U1 through CR1. Similarly, capacitor C2 charges to the negative peaks of the i-f output signal. The voltage developed across capacitors C1 and C2 also appears at the outputs of unity-gain buffers U3 and U3b.

U5 is a retriggerable single shot driven by the noise limiter i-f and pulse-detection circuit (described later). When a noise pulse is detected, U5 outputs a negative-going pulse which lasts for the duration of the noise pulse plus 5 milliseconds. This pulse causes the internal switch contacts of U2a and U4 to open and the internal contacts of U2b to close.

When the contacts of U2a and U4 open, capacitors C1 and C2 hold the voltage to which they were charged. This voltage is the plus and minus i-f signal envelope prior to the noise pulse. When the internal contact of U2b closes, diodes CR3 and CR4 are enabled and clamp the i-f signal at the input of buffer U1 to the envelope voltage that existed just prior to the noise impulse.

The advantages of this circuit over other automatic i-f noise limiter circuits are:

- The voltage across C1 and C2 closely follows the envelope of the i-f output because R2, C1 and R3, C2 time constants are short.
- Capacitors C1 and C2 are buffered and their voltage doesn’t change during the clamping interval.
- The forward voltage drops across CR1-CR4 cancel. As a result, the noise pulse is clamped to the exact envelope of the i-f signal just before the noise event.
- The actual interval of clamping is determined by a noise i-f amplifier having its own AGC separate from the receiver i-f section.

This circuit is extremely effective on the woodpecker, and on narrow ignition-type impulse noise. In fact, its effectiveness improves with increasing noise amplitude, because i-f AGC swamping is eliminated.

The method of generating the strobe pulses that feed U5 is very important in relation to the overall operation of the gated limiter. This will be discussed in more detail later when the noise limiter i-f circuit is described.

The 5-volt power for U5 is developed across the 5-volt zener, CR5.

AM detector and AGC amplifier

AGC and AM detection are developed on the AM detector and AGC amplifier board (see fig. 15). AM
detection is accomplished by rectifying the i-f output voltage with CR1. The output is filtered by R2 and C2 and is buffered by op amp U1. Trimpot R3 provides an attenuation adjustment so that the AM output can be adjusted to the same amplitude as the SSB output from the product detector. The AM output from this board is routed to the front panel SSB/AM switch, S3 (fig. 1D).

The AGC voltage is developed by rectifying the i-f output voltage with CR2. The AGC voltage developed across C7 and R8 is buffered by U2. U2, CR3, CR4, and resistor R9 comprise a “super diode” circuit that eliminates the forward-voltage drop of CR3.

Similarly U3a, in conjunction with CR5, CR6, and R12 eliminate the forward-voltage drop of CR6. This circuit also buffers the output of RF-gain control R99.

The anodes of CR3 and CR6 are connected together when AGC switch S5 is in its fast or slow position. The two diodes form a linear “OR” gate. The voltage developed at the anodes of CR3 and CR6 is equal to the output voltage at the RF-gain control wiper, R99, or to the AGC voltage developed at R8, whichever is the most negative. This voltage controls the RF and i-f gain by way of the AGC bus.

If front panel AGC switch S5 is placed in its off position, the connection between the anodes of CR3 and CR6 is opened. In this mode the receiver gain is controlled only by the setting of the RF-gain control.

CR6’s anode drives op amp U3b. U3b is a level shifter that sets the quiescent “no signal” i-f gain through trimpot R13. R13 is adjusted for an i-f output amplitude of 15 volts peak-to-peak at test point 1 on the i-f buffer and gated limiter board (see fig. 14).

U3a drives the AGC bus. CR7 through CR11 clamp the output of U3a so that its voltage doesn’t exceed approximately 3.5 volts, or drop below approximately −2.1 volts. The mute input at the anode of CR13 is normally
K COMM., INC.
THE HAM STORE
Stocking all major lines. San Antonio's Ham Store. Great Prices—Great Service.
Factory authorized sales and service.
Hours: M-F 10-6, SAT 9-3

KENWOOD
YAESU
ICOM

5707A Mobud
San Antonio, TX 78238
800-344-3144
Orders Only

Butternut Verticals

Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
- 80, 40, 30, 20, 15, and 10 meters automatic bandswitching
- Addition kit for 17 and 12 meters available now
- 26 ft tall

Model HF2V
- Designed for the low band DXer
- Automatic bandswitching on 80 and 40 meters
- Addition units for 160 and 30 or 20 meters
- 32 feet tall—may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure

The HF4B “Butterfly”™
A Compact Beam for 20-15-12-10 Meters

- Unique design reduces size but not performance
- No lossy traps, full element radiates on all bands
- Retrofit kit for 17 meters coming soon
- Turns with TV rotor
- Only 17 lbs.

NUTS & VOLTS
MAGAZINE
P.O. Box 1111-H
PLACENTIA, CA 92670
714-632-7721

IF YOU ARE INTO ELECTRONICS AND SAVING MONEY IS IMPORTANT TO YOU, THEN YOU OWE IT TO YOURSELF TO TRY NUTS & VOLTS MAGAZINE. DISCOVER WHY THOUSANDS OF SMART PEOPLE NATIONWIDE TURN TO NUTS & VOLTS EACH MONTH TO MEET THEIR ELECTRONIC NEEDS. WHETHER YOU'RE BUYING, SELLING, OR JUST TRYING TO LOCATE THOSE UNIQUE OR HARD-TO-FIND ITEMS, FIND OUT HOW NUTS & VOLTS CAN HELP!

SUBSCRIBE TODAY!
- CHECK ☐ MONEY ORDER ☐ VISA ☐ MC

Name ________________________________
Address ________________________________
City ___________________________ State __________ Zip ___________
Card No. __________________ Exp. Date ___________

CALL FOR ADVERTISING INFORMATION
DISTRIBUTOR INQUIRIES INVITED

A National Publication For The Buying And Selling Of Electronic Equipment

Subscription Rates
U.S. FUNDS REQUIRED
3rd Class Mail - USA
One Year $12.00
Two Years $21.00
Lifetime $60.00

1st Class Mail
One Year - USA $20.00
Canada & Mexico $22.00

Air Mail
Foreign - 1 Year $55.00
Includes one FREE 40-word Classified Ad
AM detector and AGC amplifier schematic.

SYNTHESIZED SIGNAL GENERATOR

MODEL

SG-100F

$429.95 delivered

- Covers 100 MHz to 199,999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/− 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ ½ Amp
- Available for immediate delivery

Phone: (718) 468-2720

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423

Phone: (718) 468-2720 Mon. thru Thu.

BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Dealer Inquiries Invited

HAMILTON, INC.

2472 Eastman Ave., Building 21

Ventura, California 93003

(805) 588-7900

Electronic Repair Center Servicing

Amateur Commercial Radio

The most complete repair facility on the East Coast.

Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing “Hams” for 30 years, no rig too old or new for us.

HAMTRONICS, INC.

4033 Brownsville Road

Trevose, PA 19047

215-357-1400
kept at ground potential so that CR₁₃ is reverse biased. When the front panel AGC power switch is in the standby position, the mute input is opened and CR₁₃ conducts. The conduction current through CR₁₃ drives the output of U₃d and the AGC bus to \(-2.1\) volts; this effectively mutes the receiver.

The standby mode of the receiver may be overridden by shorting standby terminal 2 of the rear panel terminal strip E₃ to ground (see fig. 1C).

The input attenuator has its own AGC voltage, which is developed at the output of U₃d. R₂₀ is adjusted so that the attenuator AGC voltage is approximately 5 volts when a 100-\(\mu\)V signal is injected at the receiver input. This voltage decreases to about 2 volts for 100 mV input to the receiver.

CR₁₂ in the feedback circuit of U₃d prevents the input attenuator AGC voltage from going more negative than about \(-0.6\) volt. C₁₃ and C₁₄ slow the output response.
of U32 to keep the AGC bus from motorboating when the input attenuator is active.

Buffer amplifier U1 (fig. 14) also functions as an i-f limiter. This limiting effect is important; it prevents unpleasant noise and leading-edge signal bursts.

In the general case, the amplitude of fast-rising i-f signals and noise is limited by a fast-responding AGC. However, in this receiver design, I couldn’t obtain a stable AGC loop and at the same time have an AGC attack time much faster than about 30 milliseconds. This occurs because of the delay introduced by the mechanical filters and experienced by the i-f signals as it responds to the effects of AGC.

The i-f limiting action of U1 limits the leading edge of fast-rising i-f signals and noise to an acceptable level during the time interval required for the AGC to operate. The overall effect is to make the AGC appear to have an attack time on the order of a few milliseconds.

Product detector

The product detector is shown in fig. 16. I used a Motorola MC1496 balanced modulator. This IC requires a lot of external components, but provides linear detection and little 455-kHz output component. The CW/SSB signal is taken from terminal 6 of U1, through C8. This output signal goes to the front panel AM/SSB switch, S3, as shown in fig. 1D.

The BFO output is attenuated by carrier-level trimpot R4. This pot is adjusted for a carrier level of 300 mV rms at U1, pin 8.

BFO

The BFO is comprised of the original BFO tuned-circuit assembly and the BFO board shown in fig. 1B. The BFO board is shown schematically in fig. 17. It’s nearly identical to that used in the VFO described earlier.

The BFO has its own regulator comprised of voltage reference CR2 and resistor R4. The 15-volt power is routed to the BFO through front panel AM/SSB switch, S3.

The stability of the BFO circuit is only slightly less than that of the VFO. At constant temperature, its drift is less than 10 Hz in the first minute after turn-on, and about 10 Hz per hour thereafter.
ASTRON POWER SUPPLIES

- **SPECIAL FEATURES**
 - SOLID STATE ELECTRONICALLY REGULATED
 - FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
 - CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
 - MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
 - HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
 - THREE CONDUCTOR POWER CORD
 - ONE YEAR WARRANTY • MADE IN U.S.A.

- **PERFORMANCE SPECIFICATIONS**
 - INPUT VOLTAGE: 105-125 VAC
 - OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
 - RIPPLE Less Than 5mv peak to peak (full load & low line)
 - Also available with 220 VAC input voltage

RM SERIES

19" x 5½ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 1/8 x 9 1/8</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/8 x 9 1/8</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 1/8 x 9 1/8</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 1/4 x 4 1/2</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 1/4 x 4 1/2</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 1/4 x 4 1/2</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 1/4 x 4 1/2</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>3 1/4 x 4 1/2</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 1/2 x 7 1/2</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 7 1/2</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 7 1/2</td>
<td>13</td>
</tr>
<tr>
<td>RS-26A</td>
<td>16</td>
<td>20</td>
<td>5 1/4 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 10 1/2</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 1/4 x 13 1/4</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/8 x 8 1/8</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 1/4 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 10 1/2</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 1/4 x 13 1/4</td>
<td>46</td>
</tr>
</tbody>
</table>

- Switchable volt and Amp meter
- Separate volt and Amp meters

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/8 x 8 1/8</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 1/4 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 10 1/2</td>
<td>27</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 1/4 x 13 1/4</td>
<td>46</td>
</tr>
</tbody>
</table>

- Variable rack mount power supplies

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 1/2 x 7 1/2</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 1/2 x 7 1/2</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 7 1/2</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 1/4 x 10 1/2</td>
<td>18</td>
</tr>
</tbody>
</table>

- Built in speaker

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
UNADILLA REYCO/INLINE™
Amateur Antenna Baluns
For 20 years, preferred by Amateur, Commercial and Military Operators. First with built-in lightning arrester—minimizes TVI, maximizes power.

W2AU 1:1 & 4:1 $17.95
W2DU-HF $19.95
W2DU-VHF $19.95

W2AU Broadband Ferrite Core Baluns
For medium power (1000 watts RF min.) and broadband operation 3–40 MHz.
W2DU Non-Ferrite Very High Power Baluns
W2DU-HF (High Power)
* 1.8–30 MHz
* 3000–9000 watts with 1:1 antenna SWR
* 1500–5000 watts with 2:1 antenna SWR
W2DU-VHF (High Power and Extended Range)
* 30–300 MHz
* 2000–4000 watts with 1:1 antenna SWR
* 1200–2400 watts with 2:1 antenna SWR
W2AU 1:1
* 50 to 50 or 75 to 75 ohms
* For dipoles, V’s, beams, quads
W2AU 4:1
* 200 to 50 or 300 to 75 ohms
* For high impedance antennas such as folded dipoles

Purchase from any of over 300 dealers nationwide or order direct

To request informational brochure, call
617-475-7831
write
ANTENNA’S ETC.
PO Box 215 BV, Andover, MA 01810-0814

Switch All Your Antennas Over One Coaxial Feedline

$20.15
105
12 VDC Energizer (Optional)

$35.50
C105B
2 Position On-Off Coupler

$52.00
105
DC Operated 2 Position Relay (inside your shack)

This system operates from 1.5 to 180 MHz and handles 1250 RF watts.
Use our antenna switching kit and eliminate excess coax runs.
With this kit and a single run of coax, you can switch between your antennas remotely. Use to add an antenna at modest cost, or change array direction.
Other types and combinations of relays are available. Please call or write us for more information, and save on your coax runs!

30 day MONEY BACK GUARANTEE on all products
Unadilla/Reyco/Inline is now a Division of ANTENNA’S ETC.
As stated earlier, the gated noise limiter has its own separate i-f amplifier. This amplifier with the noise pulse detection circuit is enclosed in a small chassis located on the top deck of the receiver. The position of this chassis is shown in Photos A, B and C. Photo C shows the i-f chassis opened with the i-f circuitry exposed.

The noise limiter i-f and the pulse detection circuit are shown in fig. 18. The interconnection of this circuit with the front panel noise limiter switch, S4; control pot R67; i-f buffer and gated-noise limiter board; and the i-f amplifier are shown in the circuit diagram of fig. 1C. Q1 and Q2 and their associated circuits comprise the i-f amplifier. Q3 is a unity-gain buffer between the output of the last i-f stage and the AGC and pulse-detection circuit. CR1 and CR2 make up the AGC rectifier. AGC voltage is developed across C13 and applied to the second gate of Q1 and Q2. AGC voltage is also applied to the first stage of the noise limiter i-f, which is located on i-f amplifier board 1 (see fig. 10).

Noise pulse detection is accomplished by U1 and reference-voltage buffer U2. This circuitry functions as follows:

The noise limiter i-f and noise pulse detector

Top inside view showing exposed noise limiter, i-f circuit, and added 3.1-kHz mechanical filter.

Partial bottom view showing location of switch S-1-G, input attenuator board, crystal-calibrator board, and oscillator board.
A variable threshold voltage is developed across front-panel noise limiter control R67 and is applied to the noninverting input of unity-gain buffer U2.

Threshold voltage at the output of U2 is applied to the noninverting input of U1 through R21. R20 and R21 provide hysteresis, so that the comparator switches cleanly.

The output of U1 goes to zero for the duration of any half cycle of the i-f signal that exceeds the threshold voltage developed at the output of U2.

The output signal from U1 is routed to U5 in the i-f buffer and gated noise limiter, (fig. 14). Because this single shot is retriggerable, it doesn’t complete its time out until 5 milliseconds after the last pulse enters.

S-meter driver board

The voltage developed by the AGC bus of the solid-state receiver isn’t compatible with the scale on the face of the S meter. I didn’t want to change the appearance of the receiver by making a new face. My only choice was to make some type of nonlinear circuit that would match the meter face to the solid-state receiver’s AGC bus voltage. This is the circuit on the S-meter driver board in fig. 19.

U1 of this circuit is driven from the AGC bus, as shown in fig. 1C. Trimpot R1 on the S-meter driver board adjusts the zero offset of the S meter. R1 is adjusted so that the S meter reads zero for 0.5 microvolts of RF input to the receiver. The resistor-diode network made up of CR1 through CR6 and resistors R5, R6, and R7 comprise what is equivalent to a nonlinear resistor having high resistance at low negative voltages, and the converse.

This circuit provides excellent S-meter calibration throughout its range. An S9 meter reading in the original receiver corresponded to a 100-mV signal. I prefer
256 μV for an S9 reading and calibrated the meter accordingly.

Audio amplifier

The output of the product and AM detectors is routed through the front panel switch and from there through front panel **gain** control R62 (see fig. 1D). The **gain** control output is routed to the audio-amplifier circuits shown in fig. 20.

The first audio stage, U1a, is a unity-gain buffer whose output drives a unity-gain, two-pole active low-pass filter. This filter consists of U1a and its associated components. U1a drives an SK3435 amplifier module. Feedback resistors R5 and R8 give the amplifier a gain of 10. The module is powered from the unregulated 25-volt supply and has a power capability in excess of 5 watts. The 3-db bandwidth of the audio amplifier is 300 to 3000 Hz. The output of the audio stages feeds the speaker terminals and headphone jack as shown in fig. 1D.

Power supply

The power supply is shown in fig. 21. T1 and T2 are Radio Shack filament transformers having a 12.6-volt center-tapped secondary rated at 3A. Transformer T3 has a 36-volt secondary rated at 60 mA. The 80-volt unregulated output is obtained by connecting all of the secondaries in series. The input to the rectifiers for the ±15 volt three-terminal regulators comes from the center tap of T2. Simple half-wave rectifier circuits are used for all the supplies. The 6-volt AC power for the panel lamps is taken from the center tap of transformer T1.

VFO alignment

I did a lot of experimenting with the permeability-tuned section of the VFO while designing this oscillator. By the time I had decided on the design described above, VFO linearity wasn't what it was supposed to be.

I recalibrated the oscillator by measuring the VFO output frequency with a frequency counter, then plotted the output frequency as a function of dial setting. This plot gave a clear indication of those areas on the dial where the VFO's frequency needed to be increased or decreased.

I first adjusted the trimming stud of L200 to get the end points of the VFO dial lined up. I then opened the hermetic enclosure and adjusted the PTO tracking washers to restore the linearity between the end points. I had to repeat this process a number of times before the VFO linearity and alignment were restored.

The next time I make this modification, I won't change the location of the tap on L201 of the VFO. I suspect that the drift characteristics will be almost as good, and I'm sure a lot less effort will be necessary in the realignment of the VFO after the modifications are made.

General alignment

The balance of the alignment, with a few differences, can be done in the same order and way as that described in the 75A-4 operator's manual. The more important differences are listed as follows:

- When measuring i-f output amplitude, I made all my measurements with an oscilloscope connected through a probe to TP1 of the IF amplifier and through the 1-pF isolating test point on the band-select crystal oscillator board of **fig. 6**.
- I adjusted the output of the band-select crystal oscillator to 5 volts peak-to-peak on all bands. This adjustment was made with the oscilloscope and probe through the 1-pF isolating test point on the band-select crystal oscillator board of **fig. 6**. The method of computing the crystal oscillator output amplitude was described in the band-select crystal oscillator section above.

Performance measurements

Comparative measurements of sensitivity, two-tone intermodulation distortion (IMD), and blocking were made using the methods and test setup described in Chapter 25 of the 1987 *ARRL Handbook*.

I used a Hewlett-Packard HP606A RF generator and a Boonton Radio Corporation 240A RF generator as the signal sources for these tests. Both of these generators have excellent precision attenuators. A Wavetek 5008.1 precision step attenuator, a Mini Circuits ZSC-2-1 hybrid combiner, and a Ballantine 323 true rms-reading voltmeter made up the balance of the test setup. A Tektronix 2235 100-MHz oscilloscope was used to verify all initial signal amplitudes before adding attenuation.

The combined drift of the BFO and VFO was measured by placing the receiver in the SSB mode and tuning in an external crystal calibrator. The audio-frequency output tone was measured for 8 hours, beginning from a cold start. The drift amounted to 13 Hz in the first minute, followed by a slow drift of about 26 Hz per hour. The slow drift stabilized after about 3 hours, giving a total drift of 91 Hz in that 3-hour period. Once stabilized, receiver drift was approximately ±10 Hz per hour.

The major source of drift appears to be heat generated by the transformers located on the chassis near the BFO. This heat warms the chassis in the location of the BFO. This heat warms the chassis in the location of the BFO tuned-network assembly. A purist would probably mount these transformers on a heatsink above the chassis to improve the receiver's long-term drift. I haven't felt a need to do this because the drift that does occur seems innocuous.

Conclusion

As you might guess, this was a long-term project. I don't recommend that you take on this conversion unless you have another receiver to use in the meantime. A good oscilloscope and signal generator are essential.
On the other hand, if you have the experience and equipment, you will find this a satisfying project—particularly if you have a 75A-4 that isn’t being used because of circuit problems or lack of good tubes.

References
1. James R. Fisk, W1DTY. “Receiver Noise Figure, Sensitivity and Dynamic Range—What the Numbers Mean,” *ham radio*, October 1975, page 8.

Bibliography

AND, THE WINNER IS...

Congratulations to Norman Roller, W6EDD, the winner of September’s sweeps drawing and to Richard Measures, W6GK, author of September’s most popular WEEKENDER—“An Easy-to-Build NiCd Pulse Charger. Both will receive a handheld radio. Want a chance to win? Just send us the evaluation card bound into this issue to enter for November’s drawing, or submit a WEEKENDER project. Who knows; the next winner could be you!

Many thanks to all of you who’ve been supporting us during this time of change. Your insightful letters, comments on the evaluation cards, and manuscript submissions will all play a part in creating the best *HAM RADIO* ever. Keep ’em coming!
THE HAM NOTEBOOK

TS-440 interface for keying linears with high voltage biasing

I recently had a problem posed to me involving keying the relay of a Heathkit low-band linear from a Kenwood TS-440. The relay power in the linear is obtained from the -120 volt bias supply, and the transmit keying output from the Kenwood is +12 volts at 10 mA, maximum. The circuit below solved the problem. The key ingredient is the PNP driver transistor, which must be capable of handling at least 150 volts at about 250 mA. I've indicated several ECG types that meet the circuit requirements.

I'm sure others are running into the same or similar problem; I hope this circuit solves it!

Hugh Wells, W6WTU

Two simple 80-meter radiators for short and long skip

Getting the optimum performance from his equipment and antenna system is every ham's greatest desire — at least it should be! With this in mind, I want to share two simple but efficient radiators I've used during my 27 years in Amateur Radio.

The first is a high-angle radiator, the second a low-angle radiator. The first is for contests, local round tables, and other local communications. It produces a strong signal because it's really a two-element antenna. This is because the earth appears as a reflector to the antenna when the antenna is mounted at the proper height. On-the-air comparative reports were made between the "lazy loop" mounted at approximately 25 feet and an 80-meter dipole mounted higher. Both receive and transmit reports consistently favored the loop.

The lazy loop construction is very basic (see fig. 1). The total length of the loop is approximately one wavelength. Because the loop is actually square, each side is 66' 5" for a total wire length of 265' 8". The optimum height above ground should be in the neighborhood of 0.15 wavelength or 41'. Because of the effect of the ground on the antenna, the feed impedance is between 50 and 60 ohms. You should have no problems feeding the antenna directly with 50-ohm coax; however, you can use a balun if you wish. The loop can be constructed from copper wire of 16 AWG and up.

The second antenna, known as the "delta loop," provides exceptional low-angle radiation, which is useful for working DX. Construction again is very straightforward; you use a suitable gauge of copper wire cut to approximately 270' in length. Provided the antenna is laid out as shown in fig. 2, the feed impedance will be close to 50 ohms, allowing a direct feed with 50-ohm coax. Some of the pluses of this antenna are:

- Will fit anywhere a full-size 80-meter dipole will.
- Can be physically lower than an 80 meter dipole, and still perform as well or better.
- Can be fed directly with 50-ohm coax.
Full-wave horizontal loop with dimensions. This antenna is an excellent high-angle radiator and should be very useful for local communications.

Inverted Delta Loop for 80 meters. This antenna provides a good low angle of radiation and is excellent for DXing.

So if you're tired of that old 80-meter dipole that just won't perform the way you want it to, here are two veteran antenna designs which will provide many hours of pleasant operating.

Sever Diaconu, YO4WU

Article G
An overview of operational amplifiers: part 1

This month’s topic is a discussion of the basics of operational amplifiers and other linear IC devices. Because the role of these devices is so great in radio communications equipment and circuits, it’s important to understand them. Op-amps can be used for audio applications, in electronic measurement instruments, and in control circuits.

Operational amplifiers

Figure 1A shows the usual circuit symbol of the op amp. An alternate symbol is shown in fig. 1B. (Burr-Brown and some ARRL literature use the alternate symbol.) This symbol is technically the “correct” one to use. It uses a curved back to which the input leads are attached. However, the version shown in fig. 1A is used almost universally, even though it is the generic amplifier symbol, and could denote any amplifier stage — including the operational amplifier. Because it’s the industry standard, I’ll use the symbol in fig. 1A here.

Note the pin-outs for the amplifiers in fig. 1. The pin numbers given are for the 741 device, but have become something of an industry standard. There are two input connections, two power supply connections, and one output connection. There is no “ground” or common connection. The signal common is taken from the power supply common line. More on this in a moment.

The two power supply connections are V+ and V−. The V+ supply is positive with respect to common; the V− is negative. The range for these voltages is typically ±4 volts to ±18 volts, although a number of examples exist with wider (or slightly different) voltage ranges. A GE RCA CA-3140 BiMOS device, for example, operates at potentials up to ±22 volts for V− and V+, while certain “low-power” or “micropower” op amps operate down to ±1.5 volts DC.

In addition to the absolute voltage limits, there are sometimes relative limitations. For example, older 741 devices have a 30-volt limit for the voltage defined by the expression [(V+)−(V−)], even though each V− and V+ can be as high as 18 volts. As a result, if V+ is +18 volts, then V− must be not greater than −12 volts in order that the differential not be greater than 30 volts [(+18)−(−12) = +30 volts].

The selection of power supply voltages might also depend on the maximum anticipated output voltage. If the amplifier is being designed for use with an analog-to-digital converter that has an input voltage range of −10 to +10 volts input, then I certainly want the output of the amplifier to be capable of achieving those values. But there is a limit on how high the output voltage can reach; that limit is a function of the power supply voltage. In general, the limitation is based on the number of PN junctions between the output terminal on the IC and each power supply terminal. Each PN junction has a 0.7-volt drop which must be accounted for. If there are four PN junctions between the output terminal and the V+ power supply terminal, for

FIGURE 1

A

Standard op-amp symbol. The pin outs are “industry standard” 741-family and fit a large number of different devices.

B

‘Official’ symbol used in some catalogs and ARRL publications.
example, then the maximum allowable output voltage will be
\[(V+) - (4 \times 0.7)\] volts, or 2.8 volts lower than V+.

When I want the output terminal to swing to +10 volts, the absolute minimum V+ power supply voltage will be 10 + 2.8 volts, or +12.8 volts DC. Obviously, a +12 volt DC power supply won't work in this case. In general, ordinary bipolar transistor op amps (like the 741) require a supply voltage 2 to 4.5 volts higher than the maximum required output voltage, but must also remain within the V+ and V− constraints of the device. Some BiMOS and BiFET devices are available in which the maximum output signal voltage can be as low as 0.5 volts below the power supply potential.

Operational amplifier inputs and outputs

The two inputs for the operational amplifier form a “differential pair” because they are 180 degrees out of phase with each other. The **inverting** input (−) produces a 180-degree phase shift between the input signal and output signal (in other words, a positive-going input signal produces a negative-going output signal, and vice versa). The **noninverting** input (+) produces a zero-degree phase shift in the output signal. Since one input produces an in-phase output and the other produces an out-of-phase output, simultaneous application of the same voltage to both inputs produces a zero net output potential. I'll use this information in a later section to form the differential amplifier. The two inputs on the op amp offer a very high input impedance, which is infinite in the ideal model. On paper, they are a perfect-voltage amplifier input.

The output of the operational amplifier is also suited to a perfect-voltage amplifier circuit. The output impedance of the typical op amp is usually quite low (10-100 ohms), so it forms a nearly perfect voltage source.

Operational amplifier DC power supplies

Figure 2 shows a model of the typical operational amplifier power supply. Either batteries or electronic power supplies operated from the AC power lines can be used. Recall that you have two different voltages in the op amp power supply: V+ and V−. Voltage V+ is supplied by B1; V− is supplied by B2. The common (or ground) connection is the junction between the two batteries. Normally, B1 and B2 will have the same voltage rating, but that is not a strict requirement unless other circuit considerations apply.

The capacitors shown in fig. 2 are used for decoupling, especially when multiple stages are fed from the same power supply. Capacitors C1 and C2 are normally 1-100 μF electrolytics, and are used for decoupling low-frequency signals. Capacitors C3 and C4 are used for decoupling higher frequency signals. You can't normally use the higher value C1/C2 for high-frequency signals because these are ordinarily electrolytic capacitors, which are ineffective at high frequencies. Fortunately, some new capacitors will operate to the frequencies covered by the gain-bandwidth product of most op amps.

The power supply common or “ground” connection is used as the zero-reference point for input and output signals on the operational amplifier. Whether the common is actually grounded or not depends upon circuit design considerations. In most cases it is grounded for the sake of simplicity.

In most applications, electronic power supplies used for B1 and B2 must be voltage regulated. Although there are certainly numerous applications where voltage-regulated DC power supplies are not strictly required, they are almost always good engineering practice. Because there are low-cost three-terminal fixed-voltage regulators now on the market, it's easy to obtain regulated power supplies.

The ideal operational amplifier

Before getting further into operational amplifier circuits, let's set the stage for a simplistic circuit analysis by discussing the properties of the “ideal” op amp. This ideal device has the following:

- Infinite open-loop gain
- Zero-output impedance
- Infinite input impedance
- Zero-noise contribution
- Infinite bandwidth
- Differential inputs which “stick together.”

Let’s define these properties and compare them with those found in practical IC operational amplifiers.

Infinite open-loop gain. This means that the voltage gain of the ideal operational amplifier in the open-loop (i.e., no feedback) configuration is infinite. Real op amps don’t even approach the ideal, but are still good enough approximations to make the device function properly. The ability of practical op amps to approach the ideal depends on having extremely high open-loop gain, otherwise the equations behave badly. In practical devices, you’ll find that the open-loop voltage gain \(A_{\text{v}}\) will be 20,000 in low-cost devices, and well over 1,000,000 in premium ones.

Zero-output impedance. The operational amplifier is supposed to be a perfect-voltage amplifier, so it should offer an output impedance of zero. Real devices have output impedances of 10-100 ohms, with most being around 50.

Infinite input impedance. This parameter means that the input will neither sink nor source electrical current. Recall that input impedance is \(Z = V_{\text{in}}/I_{\text{in}}\), so for input impedance to be infinite, \(I_{\text{in}}\) must be zero. In real operational amplifiers, the input current is non-zero. This is one of the primary differences between premium and low-cost devices. Low-cost amplifiers use...
bipolar transistor input stages and have input bias and leakage currents of up to 1 or 2 milliamps to contend with. Certain others have the input currents in the nano- to picoamp range. The RCA BiMOS op amps (e.g., RCA CA3140, etc.) use MOSFET input transistors to produce an input impedance of 10^12 ohms. For most practical purposes that impedance is "infinite."

Zero-noise contribution. The noise referred to here is internal device-generated noise added to the signal. This is another difference between low-cost and premium devices. The low-cost amplifiers add considerable "hiss" noise, making them unusable on low-signal applications.

Infinite bandwidth. This parameter means that there is no limit to the operating frequency of the device, which is patently absurd in the case of real operational amplifiers. Unconditionally stable, frequency-compensated devices like the 741 may have an upper frequency limit of only a few kilohertz, while other op amps operate to several megahertz. Only a few devices are available for the high HF or low VHF frequency ranges. They are usually labeled "video operational amplifiers," or something similar. Some devices with gain-bandwidth products that imply HF operation don't operate as op-amps per se, but will work to some degree even though they don't operate in accordance with standard op amp rules and equations.

Differential inputs which "stick together." This property is essential to the simplified circuit analysis used. It's also used in some circuit applications, like "bridge audio." The property implies that a voltage applied to one input will also appear on the other. You must treat both inputs mathematically the same in this regard. If you apply a voltage to the noninverting input, then you must treat the inverting input as if it also sees that voltage. This statement is not merely some theoretical device used to make equations work. If you apply a real voltage to a real noninverting input, and then connect a real voltmeter to the inverting input, you will measure the same volt-
age at that point. This point is very important, and I'll touch on it again next month when I deal with inverting and noninverting amplifiers.

Next month...

Next month I'll expand on the op amp theme and look at the three most basic circuit configurations: inverting follower, unity gain noninverting foller, and noninverting follower with gain. I'll derive the transfer equations, and display an interesting property of operational amplifiers — the property that makes them so easy to use.

This article is based on my new book: "IC User's Casebook," (Sams No. 22488, available from the HAM RADIO Bookstore for $12.95, plus $3.50 shipping and handling. I can be reached at POB 1099, Falls Church, Virginia 22041 and would like to have your comments and suggestions for this column.

Article H

HAM RADIO

Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Business, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icom, Ten-Tag, Octagon, Regency/Wilson, Midland, Standard, Uniden Shinway, Fujitsu, Echion, Spilsbury, Neutec, etc. Call or write for information. 212-925-7000.

Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Business, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icom, Ten-Tag, Octagon, Regency/Wilson, Midland, Standard, Uniden Shinway, Fujitsu, Echion, Spilsbury, Neutec, etc. Call or write for information. 212-925-7000.

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

DHOPPLER SYSTEMS, INC. P.O. Box 31819 Phoenix, AZ 85046 (602) 488-9755

November 1988

103
an article. The material in it was a rehash (for the most part) of an application written in *QST* (April 1984) and featured in the ARRL 1987 Handbook by a TRW engineer Fred Williams (credit was given in the bibliography). The article did go into more detail concerning phase noise and other problems associated with PLLs and how the DDS system overcame these problems. But, at least the Williams article published schematics and a parts list so "roll your owners" like me could play with it.

So please keep your standards high for the experimenter that your magazine addresses. Any articles that are a construction or any general theory content should have schematics and not a paragraph at the end saying, "send money." I do support an author offering to supply boards, "hard to find parts" or a complete kit for a fee, but at least require the article to supply enough information for a person to go from the article itself.

Please keep up the good work and I look forward to more informative issues.

Jeff Pierce Jr., WD4NMQ,
Kingsport, Tennessee 37663

Rave review!

Dear HR:
I will try to be succinct, but I gotta tell you.

My book shelves were getting overloaded with ham magazines so I decided to catalog those articles which were of interest to me and throw the rest away. I subscribe to two other popular ham magazines besides *HAM RADIO*.

After throwing away eighty percent of the other two as having no continuing interest, I then looked at the *HAM RADIO* file. I hadn't realized it before, but after going through all of them, I found an article of continuing interest in each one of them. Although *HAM RADIO* did not contribute to my house cleaning efforts I did end up with more room to hold future issues.

As I was writing this letter the September issue of *HAM RADIO* arrived. All I can say is — WOW — you have outdone yourself.

As a ham who built his first radio over 60 years ago from *Popular Mechanics* magazine, first transmitter from *Radio News*, and has been licensed for fifty-five years, I have a magazine that helps me keep up-to-date on the latest technology.

Kenneth L. Freeland, W1ANF,
Raymond, New Hampshire 03077

All constructive criticism welcome

Dear HR:
I read the September, 1988 issue with trepidation. I thought of the old adage, "If it ain't broke, don't fix it," as I read the issue. I am for changes in the magazine to keep pace with the "technology and standards in the graphic arts field." I do take exception to this issue as a showcase of your efforts, however.

The new layout of articles as displayed by the easy-to-spot heavy bar denoting the figures was not used in the articles obviously set up before the (seeming last minute) decision to go with the new style. No reason came to mind to not follow through with the new style throughout the magazine. I really applaud the inclusion of the reader service card back in *Ham Magazine*, as well as the plastic bag.

I just thought I'd give you my thoughts as I finish reading the issue and they are still fresh on my mind. Keep up the good magazine! and GOOD LUCK!

Richard Herndon, K5FNI,
Austin, Texas 78757-2424

We thought we'd give you some of the new and some of the old as a comparison. Glad you like our new style! Ed.

A round of applause

Dear HR:
I wanted to express my applause to the crew for some great graphics creating a fresh, exciting new look to *HAM RADIO*. It is the best face-lift HR has had since I've seen the publication.

Ed Buffington, WB1AMU,
Tustin, California 92681-3946
The Communications Service Monitor that works harder for less.

Introducing COM-3, the new service monitor designed specifically for service technicians. It works harder for less, giving you advanced testing capabilities at a very attractive price.

Features:
- **Direct ENTRY Workstation**
- **Programmable memory**
- **Audio & Transmitter frequency counter**
- **LED bar graph frequency display**
- **Input/output display**
- **0-10.000 MHz output levels**
- **High-speed accuracy of 50 kHz**
- **10 MHz to 99 MHz Continuous frequency coverage**
- **Temperature, up to 100 MHz**
- **ECN tone encoder, 10 kHz**
- **and external modulations.**

Price: $2495.00

FREQUENCY COUNTERS

Ramsey Electronics has been manufacturing electronic test gear for over 50 years. We are recognized for our quality products at a break through price. All our counters are designed and manufactured in the USA. They are built to withstand the toughest conditions and are available in a variety of models to meet your needs.

Model: COM-3

Price: $395.00

Model: COM-30

Price: $450.00

MINI KITS—EASY ASSEMBLE—FUN TO USE

COLOR ORGAN

- **Model:** 1000-6000 Hz
- **Price:** $55.00

VOICE ACTIVATED KIT

- **Model:** 1000-6000 Hz
- **Price:** $65.00

WIRELESS MICROPHONE

- **Model:** 1000-6000 Hz
- **Price:** $75.00

TRANSMITTER KIT

- **Model:** 1000-6000 Hz
- **Price:** $85.00

TELEPHONE TRANSMITTER

Low cost with feature performance. Features include pick-up line capability, variable volume, transmit and receive volumes, and automatic gain control. Includes transmitter module, audio cable, power supply, and programming software.

- **Price:** $5.95

HIGH FREQUENCY BANDSTAND

80 MHz to 150 MHz

- **Price:** $35.00

SPEECH SPACER

Communicates in a usable frequency range from 150 kHz to 900 kHz. Features include: full duplex operation, automatic gain control, and automatic power control.

- **Price:** $79.50

NEW MIMIKITS—NEW MINIKITS

- **Price:** $99.50

ALL NEW KITS

Speedy Portable Speedometer

- **Complete kit:** $99.50

Personal Speedometer

- **Complete kit:** $99.50

RADIOS

40 & 80 METER HAM RECEIVERS

- **Model:** 40-80 Meters
- **Price:** $2495.00

QRP TRANSMITTER KITS, 40 & 80 Meters

- **Model:** QRP Transmitter
- **Price:** $295.00

AIRCRAFT RECEIVER KIT

- **Model:** Complete kit
- **Price:** $129.50

NEW

- **Price:** $129.50

PHONE ORDERS CALL

716-586-3350

RAMSEY ELECTRONICS, INC.
2575 Baird Rd.
Penfield, N.Y. 14522
TELEX 468735 RAMSEY CI
FAX 716-586-4745
<table>
<thead>
<tr>
<th>State</th>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>A-TECH ELECTRONICS</td>
<td>1033 HOLLYWOOD WAY, BURBANK, CA 91505</td>
<td>(818) 845-9203</td>
<td>New Ham Store and Ready to Make a Deal!</td>
</tr>
<tr>
<td></td>
<td>JUN'S ELECTRONICS</td>
<td>3919 SEPULVEDA BLVD., CULVER CITY, CA 90230</td>
<td>213-390-9003, 800-882-1343 Trades</td>
<td>Habla Espanol</td>
</tr>
<tr>
<td></td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>621 COMMONWEALTH AVE., ORLANDO, FL 32803</td>
<td>305-894-3238, (800) 432-9424, 305-327-1917, 9-M-5:30, Sat. 9-3</td>
<td>Hours M-F 9:30-5:30, Sat. 9-3</td>
</tr>
<tr>
<td></td>
<td>MARYLAND RADIO CENTER</td>
<td>6576 LAURELDALE DRIVE, LAUREL, MD 20707</td>
<td>301-725-1212, 1 (800) 432-9424, 301-725-1212</td>
<td>Outside Maryland</td>
</tr>
<tr>
<td></td>
<td>DELAWARE MAUSER SUPPLY</td>
<td>71 MEADOW ROAD, EVANSVILLE, IN 47760</td>
<td>(812) 409-5168, 317-731-9000</td>
<td>Hours M-S 10-7, Same day service, low prices.</td>
</tr>
<tr>
<td></td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5146 N. MILWAUKEE AVE., CHICAGO, IL 60630</td>
<td>312-531-5161, 708-436-8300, 312-731-5161</td>
<td>Hours M-F 9:30-5:30, Mon. Tu. Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
</tr>
<tr>
<td></td>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDON DERRY ROAD, DERRY, NH 03038</td>
<td>603-434-5371, 1 (800) 330-2738</td>
<td>Hours M-S 10-5, THURS 10-7, Closed Sun/Holidays</td>
</tr>
<tr>
<td></td>
<td>DINER'S COMMUNICATIONS</td>
<td>819 KEEAUMOKU STREET, HONOLULU, HI 96814</td>
<td>(808) 949-5564, 808-949-5564</td>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td></td>
<td>DOC'S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE, ROSSVILLE, GA 30741</td>
<td>(404) 865-2302, 861-5610, 861-5610, 561-0</td>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td></td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5146 N. MILWAUKEE AVE., CHICAGO, IL 60630</td>
<td>312-531-5161, 708-436-8300, 312-731-5161</td>
<td>Hours M-F 9:30-5:30, Mon. Tu. Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
</tr>
<tr>
<td></td>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDON DERRY ROAD, DERRY, NH 03038</td>
<td>603-434-5371, 1 (800) 330-2738</td>
<td>Hours M-S 10-5, THURS 10-7, Closed Sun/Holidays</td>
</tr>
<tr>
<td></td>
<td>DINER'S COMMUNICATIONS</td>
<td>819 KEEAUMOKU STREET, HONOLULU, HI 96814</td>
<td>(808) 949-5564, 808-949-5564</td>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td></td>
<td>DOC'S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE, ROSSVILLE, GA 30741</td>
<td>(404) 865-2302, 861-5610, 861-5610, 561-0</td>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
</tbody>
</table>

You should be here too! Contact Ham Radio now for complete details.

106 November 1988
Amateur Radio Dealer

New Jersey

ABARIS SYSTEMS
276 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
ARRL, Astatic, Astron, B&W, Belden, Bencher, Hustler, Kenwood, Larsen, RF Concepts, Tonna and much, much more! Tues-Fri 10 am-7:30 pm Thurs 10 am-9:00 pm Sat 10 am-4:00 pm

CEDAR GROVE. NJ 07009
276 ORIENTAL PLACE
201-939-0015
28940 EUC
AMATEUR

VlSAlMC
Sat
Tues-Frl
ARRL, Astatic, ABARIS

Hours M-F
66-566-6345
3931 EDWARDS RD.
DEBCO ELECTRONICS, INC.
Lyndhurst, NJ 07071

New York

BARRY ELECTRONICS
512 EBOADWAY
NEW YORK, N.Y. 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUC. D AVE.
WICKLiffe, OH 44092 (Cleveland Area)
216-585-7388
Ohio Watts: 1 (800) 362-0290
Outside Ohio: 1 , 00) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

Wisconsin

AMATEUR ELECTRONIC SUPP. Y
4628 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Watts: 1 (800) 242-5195
Outside Wisc. : 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS,
DIV. OF TREVOS ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

K COMM dba THE HAM STORE
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6157
Ham Store. Great Prices - Great Service. Factory authorized sales and service. Hours: M-F 10-6; SAT 9-3

MISSION COMMUNICATIONS
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77002
(713) 879-7764

REYNOLDSBURG (COLUMBUS), OH 4828 W. FOND DU LAC AVE.
MILWAUKEE, WISC. WATS: 1 (800) 242-5195

Quartz CRYSTALS FOR TWO-WAY — INDUSTRY MARINE — AMATEURS SCANNERS — CBs MICROPROCESSORS
FOR FREE CATALOG, CALL OR WRITE:
JAN CRYSTALS
P.O. BOX 6001
FORT MYERS, FL 33906
(813) 936-2397
TOLL-FREE: 1-800-237-3063

IN FLORIDA: 1-800-226-XTAL
FAX ORDERS: 1-813-936-3750

Long & short wave
703-339-1298

Orders: 800-368-3270
Electronic Equipment Bank
3161 Mill St. SE, Vienna, VA 22180
(Just minutes from Washington, D.C.)
WINTER DX SEASON

November through February is the winter DX season. Less ionization occurs because the D and E regions of the ionosphere receive less energy from the sun in the Northern Hemisphere. Attenuation results from signal energy being absorbed by ions in the D region (35-50 miles or 60-80 km above the earth) where your path crosses the D region. On any propagation path, absorption increases with the number of transits of the D region, and varies inversely with frequency. So in working DX, it pays to use the higher frequency bands to obtain more distance per hop (resulting in fewer transits) and less signal loss. But you can’t always count on this; signals traveling a high-latitude path may be poor for several days at a time. This is known as the winter anomaly.

Along with lower signal attenuation, QRN decreases as fewer local thunderstorms pass through. As the large thunderstorm areas near the equator move farther south, their noise decreases by about 6-8 dB. This is particularly noticeable on the 160, 80, and 40-meter bands.

Even though ion production in the D, E, and lower F regions is less, ions are better able to diffuse and drift upward along the geomagnetic field lines into the F region. The F layer is the major factor in defining the maximum usable frequency (MUF) and the maximum on each side of the geomagnetic equator (see my October 1983 column). These maximums, which are reached most evenings at about 2200 local time, eliminate one whole earth bounce and its accompanying double-D region transits for one-long-hop propagation — real DXing.

Another advantage during the winter season is the increased stability of signal strengths resulting from the decrease in the number and intensity of geomagnetic field disturbances. This is attributable to the eccentricity of the earth’s orbit. When the earth is closer to the sun, the solar flux pressure on the magnetosphere surrounding the earth tends to hold the magnetosphere steadier. So, the geomagnetic field is least disturbed during November and December, and there is less variation of the magnitude and direction of the geomagnetic field lines in a minute’s time. Consequently, there are fewer periods of instability during the month, and better DXing.

Last-minute forecast

The higher frequency bands, 10-30 meters, are expected to be best during the third and fourth weeks of the month. During these days the solar flux should be highest and give good openings to the south, particularly in late evening and if a geomagnetic disturbance should occur to enhance the opening. Look for enhancement around November 5th, 15th, 22nd, and 31st. On the lower bands during these days look for lower MUFs, particularly during the night on east-west paths to Europe and Japan. These decreases may amount to 20 percent on the third night. Listen for DX openings from unusual QTHs also. Otherwise the lower bands are expected to be the best during the first and last weeks. Thanksgiving weekend (CQWW) is expected to have good openings on the higher bands and good nighttime conditions as well.

The Taurids meteor showers will occur from October 26th to November 22nd, with a maximum count of ten per hour from the 3rd through the 10th of November. Lunar perigee is on the 20th and a full moon falls on the 23rd.

Band-by-band summary

Ten and 12 meters, the highest day-only DX bands, are nearest the MUF for Southern Hemisphere paths. They will be open most days during the 3 to 5-hour period after local noon for the solar flux available this November. These bands open on paths toward the east and close toward the west. The paths are up to 4000 km (2400 miles) in single-hop length and, on occasion, double that during evening transequatorial openings.

Fifteen meters, a day-only DX band open most of each day, has lower signal strengths and greater multipath variability than 10 and 12 meters. It will be best when the MUF is resting just above this band, until it drops below it (a transition period that occurs after sunrise and just before sunset). Transequatorial openings will occur, with distances similar to 10 and 12 meters.

Twenty, 30, and 40 meters are both daytime and nighttime DX bands. Twenty is the maximum usable band for DX in the northern directions during the day. In combination with 30 meters, it provides nighttime paths for the day-only bands. Forty meters becomes the main over-the-pole DX daytime band, with some hours covered by 30 meters. This path and east-west paths may be affected by 10-20 dB of anomalous absorption during a few days of the month.

Eighty and 160 meters, the night-only DX bands, exhibit short-hop propagation during daylight hours, then lengthen at dusk. These bands follow the darkness path, opening to the east just before local sunset, swinging more to the north-south near midnight, and ending up in the Pacific areas for a few hours before dawn. Remember the DX window of 3790 to 3800.

Article 1
NOVEMBER	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	GMT	PST	
ASIA FAR EAST	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
EUROPE	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
S. AFRICA	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
ANTARCTICA	10	15	10	12	10	10	12	12	10	12	12	15	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
NEW ZEALAND	12	15	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
OCEANIA	12	15	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.
*Look at next higher band for possible openings.

November 1988
THE 1989 ARRL HANDBOOK FOR THE RADIO AMATEUR

Revised and updated with the latest in antenna technology, this is the time to order your very own copy of the world famous ARRL HANDBOOK. In addition to being the definitive reference volume for your Ham shack, there are plenty of projects for every interest in Amateur Radio—from antennas for every application to the latest state-of-the-art projects—you'll find it all in the 1989 HANDBOOK. Order now and we will ship as soon as the books arrive from the printer. Make perfect gifts for the holiday season for your hard-to-buy for Ham or friends for yourself. Over 1100 pages.

AR-RHBS Hardbound $20.95
AR-RHBB Softbound $17.95

ANTENNAS

The IO-89 ARRL REPEATER DIRECTORY

bigger and better man ever! Over 13,300 listings including 1400 repeaters—every Ham should have a copy of this directory in their shack. Handy resource book has listings by frequency and location. Invaluable aid while traveling.

1988-89 ARRL REPEATER DIRECTORY

Softbound $7.95

N6RI's ELECTRONIC SECOND OP

for MS-DOS computers

by Jim Rafferty, N6RI

The world famous Second OP is now available in a state of the art computerized data base. This program, written for MS-DOS computers, is a must for DXers, contests and all Amateurs interested in reliable DX communication. Data can be displayed either in columnar format or in full screen displays. Unknown call signs can be entered and compared to the ITU call sign allocation for easy identification. There's plenty more too such as postal rates, beam headings and OSL bureaus to name just a few...Great program to have in your shack. Order your today. 1988 MS-DOS computers. 5/4 and 31/2 versions available.

Softbound $19.95

GROUNDS FOR LIGHTNING & EMP PROTECTION

by Roger Black, Poly-Fiber Corporation

Here's a subject that has never really been fully covered in Amateur literature. This 116 page text contains a comprehensive analysis of ground design and protection, lightning and other EMP disasters, includes information for all kinds of electronic gear: radios, telephones, computers, Ethernet, CATV, TVRO and security systems to name just a few. Of special interest to Hams are chapters on low induction grounding and connections, eager anchor grounding, and how to ground inside the shack. Every Ham should have a copy. First edition. 116 pages.

Softbound $19.95

HACKLEBARNEY

by Bob Grove, 1988 Edition

This new edition from the expert on VLF and broadcasting information this SWL's bible is crammed with all the latest P-to-date frequencies and call sign information. Covers 10 kHz to 30 MHz and has listings for just about anyone who is interested in the US Government to as many club/club stations as you can imagine. Most stations are cross-referenced by agency and frequency for rapid identification. Also contains a glossary of terms, acronyms and abbreviations commonly heard on the air. 4th edition. 500+ pages.

Softbound $17.95

1989 RADIO AMATEUR HANDBOOKS

(50% of the proceeds from the sale of this book goes to charity)

MOTHER'S DAY

MAKING PACKET RADIO: The hand's guide

by Dave Ingram K4WI

Packet radio continues to grow at a rate that boggles the mind. This new book covers all aspects of packet radio enthusiasts and gives readers the information they need to start and build their own packet radio stations. The book provides detailed instructions on how to build a packet station, including hardware and software requirements. It also includes a glossary of terms, acronyms and abbreviations commonly heard on the air. 4th edition. 500+ pages.

Softbound $17.95

INTERNATIONAL EDITION

JOSS is a very important part of our hobby. All aspects of Joss, including the covered JOS, need to be reviewed and updated regularly. The new book covers all aspects of Joss, including antennas, transmitting aids and other important information. Inside you'll find listings for aeronautical, military, embroidery, YOLO TEL, POL, TEL, weather and JOS stations. Also included is a thorough discussion on how to listen to JOS stations, explanations of the abbreviations used by club stations, and much more. You can find out how to receive information useful to the hobby. Order now and we will ship as soon as the books arrive from the printer. Make perfect gifts for the holiday season for your hard-to-buy for Ham or friends for yourself. Over 800 pages.

Softbound $28.95

BUY 'EM BOTH SPECIAL—Reg. $49.95 Only $44.95

22nd CENTRAL STATES VHF SOCIETY

CONFERENCE PAPERS

Papers in this book were submitted for the 1988 Central States VHF Society meeting including: Microwave EME, predicting 144 MHz ES openings, matching versus tube trade-offs in a 600 MHz transverter, power amplifier and interface, how to measure your own K index plus much more. A must publication for the active VHF'er.

Softbound $4.95

PASSPORT TO WORLD WIDE RADIO 1989 Edition

This new edition is now fully and updated. SWL's everywhere have been waiting for a copy of this book. Expanded to 416 pages, the book now includes a bigger and better buyer's guide, an interview with WSJ, the excite existence of the SWL escape from the world. Includes all the latest schedules from countries around the world. You're up-to-date if you have a copy of this book. Conducted with the Radion 416 pages.

Softbound $19.95

CONFIDENTIAL FREQUENCY LIST

7th Edition now includes RTTY stations

Compiled by Jeff Hulling

This new edition is jam-packed with all the latest frequencies, call signs and other important information. Inside you'll find listings for aeronautical, military, embassy, YOLO VHF, POL, TEL, weather and RTTY stations. Also included is a thorough discussion on how to listen to RTTY stations, explanations of the abbreviations used by club stations, and much more. You can find out how to receive information useful to the hobby. Order now and we will ship as soon as the books arrive from the printer. Make perfect gifts for the holiday season for your hard-to-buy for Ham or friends for yourself. Over 800 pages.

Softbound $14.95

Please enclose $3.50
HAM RADIO LOG BOOKS
ORDER IN TIME FOR HOLIDAY GIVING
back by popular demand
Room for over 2100 QSO — that’s over twice as many as the other log book. Forcontesters, each page contains 30 QSO’s for easy counts. You also get the latest up-to-date frequency spectrum chart. ITU call sign list and ARRL DXCC list. Sprinkled throughout is a wealth of top-notch ideas. Absolutely the best log book value around. © 1988.
- HR-LB $2.95
- HR-3LB Special buy 3 price, Save 22% Get 3 offer $6.95

ANTENNA BOOKS
by W6SAI & W2LX

BEAM ANTENNA HANDBOOK
BEAM antennas galore $11.95

WIRE ANTENNA HANDBOOK
WRIE antennas for all installations $11.95

ALL ABOUT CUBIC SQUAD ANTENNAS
ALL about cubic strong antennas $9.95

INTERFERENCE HANDBOOK by WAFQF
INTERFERENCE great reference text for RFI problems $11.95

ALL ABOUT VERTICAL ANTENNAS
ALL about vertical antennas $10.95

THE RADIO AMATEUR ANTENNA HANDBOOK
Complete guide to antennas $11.95

OTHER BOOKS

TRANSMITTER HUNTING: RADIO DIRECTION FINDING SIMPLIFIED
T-2701 All about DOF $17.95

ORP HANDBOOK
ORP-88 by noted ORP expert W1FQ $5.00

ARRL RADIO HANDBOOK by Bill Orr W6SAI
2242 The source book $26.95

ARRL MICROWAVE UPDATE Sept. 1987
ARR-MU Colorado Microwave Papers $9.95

21st CENTRAL STATES CONFERENCE
ARR-CS July 1987 papers $9.95

RADAR COMMUNICATIONS RECEIVERS
MM-3570 by DUPL $69.95

RACE ON THE EDGE OF TIME
MH-2108B The roots of RADAR $19.95

DX POWER: EFFECTIVE TECHNIQUES
THE COMPLETE DX’ER by W9KNI
10-0X $10.95

RSGB VH/F UHF MANUAL
RS-VH $17.95

COMMUNICATION HANDBOOK
RS-RCH RS9’s Amateur Handbook $21.95

THE BUYER’S GUIDE TO AMATEUR RADIO
RS-BG Handy book to have around $11.95

MID-ATLANTIC VH/F CONFERENCE
AR-MID $9.95

Special Low Price Books

SOFTWARE FOR AMATEUR RADIO by G3ZCZ
G3ZCZ $4.95

MICROCOMPUTERS IN AMATEUR RADIO by G3ZCZ
T-1305 $4.95

PROGRAMMING FOR THE TI-59 & HP41
T-1442 $4.95

TTL COOKBOOK
21035 REG $14.95 $9.95

REPAIR AND TROUBLESHOOTING GUIDES
22353 APPLE II, III, I+ IN REG $19.95 $9.95
22358 IBM PC REG $19.95 $9.95
23363 C-64 REG $19.95 $9.95

MICROPROCESSOR CIRCUITS
2187V VOL-1 REG $19.95 $4.95

COMMODORE PROGRAMMER’S HANDBOOK
22856 REG $9.95 $3.95

APPLE PROGRAMMER’S HANDBOOK
22175 REG $22.95 $11.95

COMMODORE C-64 STARTER BOOK
22923 REG $17.95 $8.95

PACKET

YOUR GATEWAY TO PACKET RADIO by Stan Horpeza, WAILO
Here’s the complete beginner’s guide to Packet Radio written by ARRL Packet expert WAILO. Beginners will find the complete easy-to-understand explanations eliminate many of the frustrating aspects of Packet operation. Full of helpful hints that will come from thousands of hours of on-the-air experience. Keep from re-inventing the wheel — learn from an expert. 208 pages © 1987

GET** CONNECTED TO PACKET RADIO by Jim Grouse, KBEI
This is your Packet Radio Handbook. Over 17 chapters cover every aspect of Packet operation from choosing a packet controller (TNC), an explanation of protocol, packet accessories and a primer on how to make your first packet contact to how packet bulletin boards (BBS) operate. Plus much more! Also has complete appendix with more information on definitions, bibliography, frequency modifications, organizational, QSL card activity, etc. This handbook is must read for all packet users © 1986 208 pages 1st edition

THE PACKET RADIO HANDBOOK by Jonathan Maya, KE7T
Packet radio is the fastest growing mode in Amateur operation today. No wonder — it combines the power of today’s microcomputer with worldwide digital communications. Everyone will find this book to be full of helpful tips, tricks and information that will help get them on Packet as quickly as possible. Providing you with packet basics, this book progresses through the inner workings and operational aspects of Packet to look at future technology still in developmental stages. Also includes up-to-date on packet modulation methods and networking protocols (both AX.25 and VEC) and a thorough discussion of the various TNCs and accessories available © 1981 216 pages

ARRL COMPUTER NETWORKING CONFERENCES 1-4
This collection of Packet Radio papers should be in every Packet enthusiast’s collection. Written during the formative years of Packet development these papers are numerous to mention all cover theory, practical applications, protocols, software and hardware subjects. You also get a complete up-to-date collection of all published ‘Gateway’ the ARRL Packet Radio newsletter. As big as the ARRL HANDBOOK © 1985 over 1000 pages

6th ARRL COMPUTER NETWORKING CONFERENCE PAPERS
AR-CNC6 $9.95

GREENVILLE, N.H. 03048
(603) 878-1441

Slipping & handling.
RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad subject to our (editor) on a space available basis only. Repeat insertions of hamfests ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th preceding second Saturday of month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

BEGINNER’S RADIO CLEARINGHOUSE: On a space available basis, we are going to offer, OUR SUBSCRIBER, free of charge, a chance to find a home for your used equipment with a new Ham. Please send us a short description of what you wish to sell along with price, name, address and phone number. We’re running in a special section of the classified ads under the heading of BEGINNER’S RADIO CLEARINGHOUSE. Please limit your ad to 20 words or less.

FLEA MARKET

HIGHLINE BARGAINS Andrews 7-8’ hallicon, brand new 1000 foot spool $5.25, Mraury Lampert, VE3HI. (416) 661-0009. Nightly (416) 225-5221.

DIGICOM 64: a software-based PACKET radio system for the Commodore 64 by WP3UF, Aug 80 issue of 73 magazine, page 22. The software is public domain and requires a simple modifiable basis. we are with a new Ham. Please send us a short description of what CHASSIS DlGlCOM organizations receive one free Flea Market ad RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad subject to our (editor) on a space available basis only. Repeat insertions of hamfests ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th preceding second Saturday of month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

BEGINNER’S RADIO CLEARINGHOUSE: On a space available basis, we are going to offer, OUR SUBSCRIBER, free of charge, a chance to find a home for your used equipment with a new Ham. Please send us a short description of what you wish to sell along with price, name, address and phone number. We’re running in a special section of the classified ads under the heading of BEGINNER’S RADIO CLEARINGHOUSE. Please limit your ad to 20 words or less.

HIGHLINE BARGAINS Andrews 7-8’ hallicon, brand new 1000 foot spool $5.25, Mraury Lampert, VE3HI. (416) 661-0009. Nightly (416) 225-5221.

DIGICOM 64: a software-based PACKET radio system for the Commodore 64 by WP3UF, Aug 80 issue of 73 magazine, page 22. The software is public domain and requires a simple modifiable basis. we are with a new Ham. Please send us a short description of what CHASSIS DlGlCOM organizations receive one free Flea Market ad RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad subject to our (editor) on a space available basis only. Repeat insertions of hamfests ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th preceding second Saturday of month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

BEGINNER’S RADIO CLEARINGHOUSE: On a space available basis, we are going to offer, OUR SUBSCRIBER, free of charge, a chance to find a home for your used equipment with a new Ham. Please send us a short description of what you wish to sell along with price, name, address and phone number. We’re running in a special section of the classified ads under the heading of BEGINNER’S RADIO CLEARINGHOUSE. Please limit your ad to 20 words or less.
GaAs FET PREAMPS at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $59!
Wired/tested

FEATURES:
• Very Low Noise: 0.7dB VHF, 0.6dB UHF
• High Gain: 13.2dB, depending on frequency
• Wide Dynamic Range: to resist overload
• Stable: new-type dual-gate GaAs FET
 * Specify tuning range desired: 26-30, 48-56, 137-150, 150-172, 210-230, 400-470, or 800-960 MHz.

LNS -(*)
IN-LINE PREAMP
ONLY $79/kit.
$99 Wired/tested

GaAs FET Preamp

LHNW -(*)
MINIATURE GaAs FET PREAMP
ONLY $24/kit.
$39 Wired/tested

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-5/8"L x 3/4"H. Easily mounted in many radios.

NHNW -(*)
MINIATURE GaAs FET PREAMP
ONLY $24/kit.
$39 Wired/tested

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-5/8"L x 3/4"H. Easily mounted in many radios.

* Selectivity that can't be beat! Both 8-pole xtal filter & ceramic filter for >100dB at only ±12kHz. Helical resonator front end to combat desense & intermod.

• CLEAN, STABLE TRANSMITTER, up to 18W output standard; 50W with accessory power amplifier.

• FCC TYPE ACCEPTED for commercial high band and uhf.

• Courtesy beep, field-programmable CWID, flutter-proof squelch, automatic frequency control to compensate for off-frequency transmitters (all standard features).

• Full range of options available, such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

• FM EXCITERS:
 Kits $99, Wit $179. 2W continuous duty. TCXO & xtal oven options available.
 *R451 for uhf. FCC type accepted for commercial bands.
 *Call for latest information on 900 MHz transmitters.
 *VHF & UHF AMPLIFIERS. For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $79.

• R144/R228 FM RECEIVERS for 2M, 150-174, or 220 MHz. GaAs FET front end, 0.12uV sensitivity!
 Both crystal & ceramic filters plus helical resonator front end for exceptional selectivity: >100dB at ±12kHz (best available anywhere).
 Flutter-proof squelch. AFC tracks drifting transmitters. Kit $149, wit $229.

• R451 UHF FM RCVR. Similar to above. Tuned line front end, 0.25uV sens. (0.1uV with optional hel. res. preamp). Kit $149, wit $229.

• R931 FM RCVR FOR 998 MHz. Triple-conversion, GaAs FET front end, 0.2uV sens. Kit $169, wit $259.

• RT6 ECONOMY VHF FM RCVR for 10M, 6M, 2M, 226. Without hel res or afc. Kits only $129.

• Weather satellite & AM Aircraft receivers also avail.

FCC TYPE-ACCEPTED TRANSMITTERS & RECEIVERS AVAILABLE FOR HIGH-BAND AND UHF. CALL FOR DETAILS.

- Send $1 for 36 page catalog by return mail. (Send $2.00 or 4 IRC’s for overseas mailing)
- Order by phone or mail • Min $3 S & H per order
- Use Visa, Mastercard, Check, or UPS COD.
IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...

ANTIQUES RADIO CLASSIFIED

The RF CONNECTION

"SPECIALIST IN RF CONNECTORS AND COAX"

Part No.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>321-11064-3</td>
<td>BNC 2 P/ST 28 volt coaxial relay, Amphenol</td>
</tr>
<tr>
<td>83-822</td>
<td>Power rating: 0 to 2.5 GHz, 100 watts</td>
</tr>
<tr>
<td>83-822</td>
<td>Isolation: 0.1 GHz/45dB, 0.2 GHz</td>
</tr>
<tr>
<td>83-822</td>
<td>Installed</td>
</tr>
<tr>
<td>83-822</td>
<td>$25 used</td>
</tr>
<tr>
<td>83-822</td>
<td>BNC 2 P/ST 28 volt coaxial relay, Amphenol</td>
</tr>
<tr>
<td>83-822</td>
<td>Power rating: 0 to 2.5 GHz, 100 watts</td>
</tr>
<tr>
<td>83-822</td>
<td>Isolation: 0.1 GHz/45dB, 0.2 GHz</td>
</tr>
<tr>
<td>83-822</td>
<td>Installed</td>
</tr>
</tbody>
</table>

THE RF CONNECTION

213 North Frederick Ave. #11
Gaithersburg, MD 20877

(301) 840-5477

VISAMASTERCARD: Add 4%

Prices Do Not Include Shipping

(continued from page 4)

also urged that studies continue to be done by qualified medical researchers on the effects of all forms of electromagnetic energy on the human body, and that we quantify what power densities are involved in common Amateur activities. Only with this knowledge can we be informed as to the true nature of the danger we face and minimize their impact.

How about you; are you concerned? Are you aware of any other studies that would be of interest? This is a problem that won't go away. It's better that we be knowledgeable about the hazards than to succumb to media hysteria, ignore the situation, or take little or no action and investigate further. Drop us a line and let us know what you think.

Craig Clark
N1AC

*A bibliography of what we know has been published and is available from HAM RADIO for a SASE and twenty-five cents postage.

**Other concerned groups, include: Electric Power Research Institute, National Career Institute, NASA, Institute of Electrical and Electronics Engineers and ARRL.

SAY YOU SAW IT IN HAM RADIO
CELEBRATE

the 75th anniversary of ARRL
with a new Handbook!

1989 marks the 75th anniversary of the founding of the League. There's no better way of celebrating this momentous occasion, than with the new 1989 ARRL Handbook for the Radio Amateur!

The 1200-page sixty-sixth edition contains over 2100 tables, figures and charts. The new Handbook is better than ever with revised information on phase noise measurement, direct frequency synthesis and spread spectrum communication techniques. The section on repeaters has been updated including a new CW identifier circuit. You'll find new spectrum analyzer and oscilloscope material, as well as several new projects in the test equipment chapter.

As always, we've added a host of new construction projects to this new edition. Just some of the new projects include: A 500-MHz frequency counter, 160 through 10 meter legal limit amplifier, simple CMOS keyer project, digital audio memory keyer and a L/Q meter for measuring coil inductance.

But that's not all. You'll find many other popular construction projects that can be built in a weekend such as power supplies and VHF/UHF preamps. For the more ambitious builder there are projects like the 1.8 MHz QSK transverter (there are VHF/UHF transverter projects too) and there are many amplifier designs to suit your needs from HF through microwaves.

The Handbook has always been famous as a reference for component data and you will find an entire chapter devoted to everything from transmitting tube and transistor specifications to aluminum tubing sizes. Satellite enthusiasts will find that the digital TR sequencer will add operating convenience to your station. Of course, you'll find the most up-to-date information on digital techniques, and the video communications chapter is packed with information not only on SSTV, ATV and FAX but Weather FAX as well. QRP enthusiasts will find the famous "Cubic incher" transmitter; not much bigger are the QRP SWR indicator and QRP Transmatch. There is also a VFO-controlled 6-watt CW transmitter for your favorite band between 80 and 15 meters. There are a number of useful station accessories that you can build like DTMF encoders and decoders, PIN-diode TR switch, digital PEP wattmeter and SWR calculator, Transmatches and dummy loads.

For $21, The ARRL 1989 Handbook for the Radio Amateur, remains an exceptional value for a hardcover technical publication. The price outside the US is $23. For postage and handling, add $2.00 (or $3.50 for insured mail or UPS — please specify)

The American Radio Relay League, Inc., 225 Main St., Newington, CT 06111 USA
SSB basics: generating the signal

The mode of choice for much of today's voice DX activity is single-sideband, abbreviated SSB in literature, and shortened to "sideband" in the vernacular. It started out as a much larger mouthful: "single-sideband, suppressed carrier". Even the abbreviation "SSSC" didn't make it palatable to the glib of tongue, so SSB and sideband it became. It is one of the great leaps forward in radio communications and has made a great difference in our Amateur world.

Why?

The popularity of SSB, and the rapid growth of equipment that could handle this sometimes tricky mode, achieved two resounding successes almost simultaneously. First, because it eliminated the need to transmit an RF carrier, it eliminated that nerve-wracking, ear-splitting beat note that is created when two carriers are within a few Hz of each other. Second, it more than tripled our band space - three or more SSB stations can now use the same space that one amplitude-modulated (AM) signal used before.

As if those two gains were not enough, it also contributed to the longevity of final amplifiers by reducing the power dissipated in just maintaining an RF carrier. In an AM signal of 100 watts, modulated 100 percent by a tone, half the power is in the RF carrier and the other half is shared between the two sidebands. When there is no modulation, as in pauses between words, the carrier is still there, making demands on the final amplifier. For a 100-watt carrier from a final amplifier that has perhaps 65 percent efficiency (most were much worse than that due to aging, design, or poor drive/loading), you can burn up close to 155 watts of DC just to get 100 watts of RF out, without modulation. Add modulation, and the power dissipation goes up along with it. Thus, it makes sense that if you can eliminate the steady drain of the RF carrier, your final should run cooler. By eliminating one of the sidebands, you can realize more economy in power and decrease the bandwidth required for the signal as well.

How

That sounds great, but how can you get rid of the carrier and one sideband?
To understand that, first take a look at the relationships between the carrier and the sidebands, as shown in fig. 1A. Let's assume an RF carrier at some nice round figure like 1 MHz, or 1000 kHz to make things easier to follow. To keep it easy, assume that the modulation is a sine wave at 1 kHz. This provides the classic profile of an AM signal, which has the carrier right in the middle between two sidebands. Because the frequencies both add and subtract, the product is a lower sideband at 999 kHz (1000-kHz carrier minus the 1-kHz modulation), and an upper sideband at 1001 kHz (1000-kHz carrier plus the 1-kHz modulation).

Now, suppose you had a modulation circuit that could cause the carrier to cancel itself, leaving only the two sidebands, as in fig. 1B. Think about a basic bridge circuit for a moment — that very sensitive measuring circuit that allows only a difference between two voltages (signals) to appear at its output. Aha! The possibilities arise. Of course nobody wanted to call such a circuit a "bridge modulator," even if that's what it was — much too obvious. They're called "balanced modulators," and a sample circuit is shown in fig. 2. The carrier,
The RF carrier does not appear at the output, but the products of modulation—sidebands—do appear.

applied equally across the bridge, does not appear at the output. The modulation reacts with the carrier in the diodes (the necessary nonlinear element) and generates the sidebands. These appear at the output as upper and lower sidebands, just as in fig. 1B.

Many of the modern transmitters and transceivers used today have circuits more sophisticated than this, and some have a special integrated circuit that combines a balanced modulator and other functions on one chip. All have some means of adjusting for best carrier rejection (best bridge balance), either by varying a DC bias or by a variable capacitance to “tweak” the carrier for an exact phase shift or balance. The amount of carrier rejection can sometimes be very high in experimental circuits, but in practice it is in the range of 40-60 dB as measured at the output of the transmitter. That’s still very good. A 100-watt carrier attenuated by 40 dB is only 0.0001 watt. That will cause far less interference than the original 100-watt AM earbuster did.

One sideband goes away

The next puzzler is how to get rid of one (and only one) sideband. There are RF and audio-phasing circuits that provide single-sideband output, but the bulk of today’s transmitters rely on selective filters to pass one sideband and reject the other. Designers can do marvelous things with crystals, ceramics, and inductors, along with impedance matching and something I’ve recently talked about called “Q”.

The result is that a window can be placed right over a sideband, as shown in fig. 3. Actually, fig. 3 shows “sidebands,” because it’s hard to talk in a sine wave — voices are made up of many frequencies. This creates a range of sidebands, which must be transmitted intact if the guy at the other end is going to understand what you’re saying. Communications equipment generally limits the frequencies in voice transmissions to 300-3000 Hz, so I’ve used that range in the illustration. The resulting output is simply treated as one “sideband”—the upper one is shown in fig. 3.

But, how do you...

Select between upper and lower sidebands? It can be done by using different filters, one for the upper and one for the lower. Just switch them in and out of the circuit as needed. Fortunately, there’s an easier and less expensive way. Filters are made up of several elements and each one adds to the cost. Crystals, on the other hand, are simpler and less expensive. Just switch the crystals in the oscillator that generates the (suppressed) carrier. If you have two crystals with frequencies spaced just right, you’ll have the upper sideband in the filter window when using one crystal, and the lower sideband in it when using the other. Neat!

Let’s look at an example from a common scheme used in several past and present transmitters. Figure 4 will give you the idea. The oscillator has a switch to select between an 8.9985-MHz crystal and a 9.0015-MHz one. As shown, the 8.9985 crystal is selected and the sidebands are at 8.9970 and 9.0000 MHz. The filter, at 9.0000 MHz, lets the upper sideband pass. Switch to the other crystal, 9.0015 MHz, and the sidebands are at 9.0000 and 9.0030 MHz. Again, the filter lets only one sideband through, in this case the lower one which is at 9.000 MHz. (These figures assume that an audio tone at 1500 Hz is used for modulation. With voice, this system will provide “sidebands” centered at 9.000 MHz.)

From here on, its just a matter of amplifying the few milliwatts that come out of the filter. This must be done carefully, using linear amplifiers to prevent signal distortion, which could cause splatter and irritate fellow hams. Tubes, transistors, integrated circuits, and “amplifier blocks” can be used here to build the power up to any level needed.

Oh, yes, there’s one other thing. There is no Amateur band at 9.000 MHz, so a few conversions need to be performed to make the signal useful. Mixer circuits are used, and they can
vary from simple to complex. A balanced mixer (almost identical to the balanced modulator) is a good bet because it helps reject the local oscillator at the output, making life easier for following stages. For example, to get that 9.000-MHz sideband signal up to 28.5 MHz, you mix it with another signal at 19.5 MHz. The SSB signal is crystal controlled, so, in order to be able to move around on the band, the 19.5-MHz signal must be variable. A variable-frequency oscillator (VFO) at this frequency tends to be unstable, so the solution is to make the VFO operate at a much lower frequency, then mix it with a different crystal-controlled signal to provide stable output at 19.5 MHz (or other frequencies to use on different bands). VFOs and mixers are worthy of a greater discussion than I have space for this month, so I’ll get back to them in a later issue.

Receiving SSB? That too is a subject worthy of a complete article, and I’ll cover that in next month’s column, along with an explanation of why SSB sounds so funny when you tune it in wrong.

HAM RADIO

MAKE CIRCUIT BOARDS THE NEW, EASY WAY WITH TEC-200 FILM

JUST 3 EASY STEPS:
- Copy circuit on TEC-200 film using any plain paper copier
- Iron film on to copper clad board
- Peel off film and etch

SATISFACTION GUARANTEED convenient 8½ x 11 size

5-Sheets for $3.95 10 sheets only $5.95 add $1.25 postage — NY res. add sales tax

The MEADOWLAKE Corp.
DEPT. G, P.O. Box 497
Northport, New York 11768 115

A. Microwave Associates 10 GHz Gunnplexer. Two of these transceivers can form the heart of a 10 GHz communication system for voice, mcw, video or data transmission, not to mention satellite (DXing) MA87141-1 (pair of 10 mW transceivers) $251.95. Higher power units (up to 200 mW available). B. Microwave Associates 24 GHz Gunnplexer. Similar characterstics to 10 GHz units. MA87620-4 (pair of 20 mW transceivers) $798.20. C. This support module is designed for use with the MA87141 and MA87820 and provides all of the cuitry for a double balanced audio transceive system. The board contains a low-noise, 3 GHz rf receiver, modulators for voice and mcw operation, Gunn diode regulator and varactor supply. Meter outputs are provided for monitoring received signal levels, discriminator output and varactor tuning voltage. RXMR830V assembled and tested $119.00. D. Complete, ready to use communication system for voice or mcw operation. Ideal for repeater linking. A power supply capable of delivering 13 volts dc at 250 mA (for a 10 mW version), microphone, and headphone and/or loudspeaker are the only additional items needed for operation. The Gunnplexer can be removed for remote mounting to a tower or 2 or 4 foot parabolic antenna. TR108A (10 GHz, 10 mW) $396.95. Higher power units available. TR24GA (24 GHz, 20 mW) $639.95. Also available: horn, 2 and 4 foot parabolic antennas, Gunn, varactor and detector diodes, search and lock systems, oscillator modules, waveguide, flanges, etc. Call or write for additional information. Let ARR take you higher with quality 10 and 24 GHz equipment!

Advanced Receiver Research
Box 1242 • Burlington CT 06013 • 203 582-9409

Gunnplexers & accessories

10 & 24 GHz

The K1FO 12 element 144 MHz YAGI

EME — TROPO — WEAK SIGNAL

MODEL FO-12-144

ELECTRICAL SPECIFICATIONS:

Gain: 50+ dB
E Plane beamwidth: 27 x 17 deg
H Plane beamwidth: 2 x 19 deg
Sidelobe attenuation: 25 db
Input Plane: 50 ohm
Input SWR: 1.5:1

MECHANICAL SPECIFICATIONS:

Length: 15½’ 4½’
Windlass: 60’’ x 12’’
Gan connector: N-type
Match to 2’’ dipole: Current minimum, 50 ohm minimum
Drum: Aluminum
Tower hardware: aluminum
Mounting holes: Aluminum

$134.95

ALSO AVAILABLE

FO-16-200. FO-20-432. FO-25-432 and FO-33-432 STACKING FRAMES: POWER DIVIDERS

RUTLAND ARRAYS
1703 Warren Street • New Cumberland, PA 17076
(717) 774-5298 7-10 P.M. EST

Distributor inquiries invited.
New mini mobile scanner from AOR

AOR, Ltd. of Tokyo, Japan has introduced a new miniature mobile scanner with frequency synthesized keyboard control. The new radio (model AR160) measures $1.5" \times 4.62" \times 6.5"$ and weighs 25 ounces. The receiver's frequency coverage is 29-52, 136-174, and 436-512 MHz.

The unit has a suggested retail price of $189; this includes a fused dc power cable, telescopic whip antenna, mobile mounting bracket with complete hardware, plus an ac-to-dc converter for indoor use.

Radio Shack offers new catalogs

Radio Shack*, a division of Tandy Corporation, highlights its line of 1989 computer products in two new catalogs: the 1989 Price Guide and the new Buyer's Guide. MS-DOS software, at up to 35 percent off the manufacturer's suggested retail price, may be ordered either through Radio Shack's outlets nationwide or by calling 800-321-3133 for shipment directly to you.

The Radio Shack computer catalogs are available free of charge from Radio Shack Computer Circulation Department, 10707 East 106th Street, Indianapolis, Indiana 46256.

New Aries-1™

Aries-1™, developed by Ashton ITC, is a software program which integrates Amateur Radio equipment with an electronic Logbook (database). The program ties together multi-mode terminal units, computer capable transceivers, and a real time logging function.

In addition to controlling terminal units with simple key presses or mouse clicks (pressing the up or down arrow on the keyboard increases or decreases CW speed and RTTY baud rates) and providing for replaceable string parameters within pre-written text files (Log entries such as Name, City, Report, etc. may be automatically pulled from the on-line log and inserted into an existing text file during transmission through the Terminal Unit), Aries-1 allows for simultaneous display of the TUs input/output on the same screen with the Logbook and Transceiver status.

The electronic Logbook features data search capability and automatic entry of date and time from the computer's clock. Frequency and mode are also automatically entered into the log when using a compatible transceiver. By clicking an optional mouse on the appropriate log entry, other data such as Station ID, City, State or Country, Name, etc. may be entered into the log from data received through a terminal unit without the need to re-type the information.

Aries-1 supports a Contest Mode which has instant dupe checking (displayed dupe information includes Frequency, mode, date/time, RST and optional exchange).

Other features include: the ability to run other programs from Aries-1 while staying resident in memory; a capture buffer for selectively saving to disk input/output data from a terminal unit; searching and printing of log data by band, state, country, unit and time; updating QSO information within the log; and uploading and downloading of files through Packet, RTTY, etc.

Transceivers currently supported are Kenwood Model: TS-940S, 440S, 140S, 640S, 711A, and 811A (with appropriate Kenwood IC-10 Kit and IF-222C interface), and Icom models: IC-735, 761, 275, 375, 475, and 575 (with Icom CT-17 interface). Terminal units currently supported include the AEA PK-232, Heathkit HK-232, and Kantronics KAM all mode units.

Aries-1 includes sample message files, a demo-log, and printed Users Guide. The program is available on 5 1/4 or 3 1/2 inch disks and runs on IBM PC/XT/AT, PS-2s or compatibles with at least 256K of memory. A serial port is required for connection to a compatible terminal unit or transceiver. A second serial port is necessary if you want simultaneous interface to both units. An optional mouse (Microsoft® bus version recommended) is also supported for even faster TU control and data entry. The price is $89.95, plus shipping and handling. For more details, contact Ashton ITC, PO Box 1067, Vestal New York 13851; 607-748-9028.

New digital storage oscilloscope

The new Philips PM 3320A Digital Storage Oscilloscope from John Fluke Mfg. Co., Inc., captures single events with its 200-mHz bandwidth, real-time sampling rate of 250 MS/s and 10-bit resolution.

Two acquisition modes are available to capture signal details exceeding preset limits - Save-on-Difference and Stop-on-Difference. They compare the incoming waveform with one in memory and record the new waveform (noting the time of capture) as soon as a difference due to jitter, spikes, or amplitude variation appears between the two signals. Another function, Absolute Min/Max, creates a historical record of a large number of traces and can be used to set the Save/Stop-on-Difference parameters. Other functions include digital filtering and the display of histograms, showing the amplitude distribution of a captured signal.

The PM 3320A DSO offers an on-board Fast Fourier Transform (FFT) option with an overview of the incoming signal's frequency spectrum. Other automatic measurement functions are: RMS voltage, percentage overshoot and preshoot for step functions, and continuously variable rise and fall times - including the two pre-set options of 10 to 90 percent and 20 to 80 percent of ECL applications. It also provides

(continued on page 122)
It's a lesson you learn very early in life. Many can be good, some may be better, but only one can be the best. The PK-232 is the best multi-mode data controller you can buy.

1 Versatility

The PK-232 should be listed in the amateur radio dictionary under the word Versatile. One data controller that can transmit and receive in six digital modes, and can be used with almost every computer or data terminal. You can even monitor Navtex, the new marine weather and navigational system. Don't forget two radio ports for both VHF and HF, and a no compromise VHF/HF/CW internal modem with an eight pole bandpass filter followed by a limiter discriminator with automatic threshold control.

The internal decoding program (SIAM™) feature can even identify different types of signals for you, including some simple types of RTTY encryption. The only software your computer needs is a terminal program.

2 Software Support

While you can use most modem or communications programs with the PK-232, AEA has two very special packages available exclusively for the PK-232...PC Pakratt with Fax for IBM PC and compatible computers, and Com Pakratt with Fax for the Commodore 64 and 128.

Each package includes a terminal program with split screen display, QSO buffer, disk storage of received data, and printer operation, and a second program for transmission/reception and screen display of facsimile signals. The IBM programs are on 5-1/4" disk and the Commodore programs are plug-in ROM cartridges.

3 Proven Winner

No matter what computer or terminal you plan to use, the PK-232 is the best choice for a multi-mode data controller. Over 20,000 amateurs around the world have on-air tested the PK-232 for you. They, along with most major U.S. amateur magazines, have reviewed the PK-232 and found it to be a good value and excellent addition to the ham station.

No other multi-mode controller offers the features and performance of the PK-232. Don't be fooled by imitations. Ask your friends, or call the local amateur radio store. We're confident the PK-232 reputation will convince you that it's time to order your very own PK-232.

Call an authorized AEA dealer today. You deserve the best you can buy, you deserve the PK-232.

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Brings you the Breakthrough!
Improved electro-mechanical tool kit

Jensen has improved the popular JTK-79 Electro-Mechanical Tool Kit. Designed for the performance of a wide variety of electronic and mechanical repair tasks, the kit now contains a full 14-piece socket set, 7-piece jewelers screwdriver set, 10-piece hex key set, 4 screwdriver blades (two Philips, two slotted), full-size handle, circuit tester, wire stripper/cutter, adjustable wrench, variety of pliers, and more.

The tools come in a compact 7 x 9 x 2-1/2" padded zipper case with Velcro snap closure to hold an optional Beckman DM 73 Meter.

The JTK-79 is priced at $79.00. For more information and free catalog, write Jensen Tools Inc., 7815 S. 46th Street, Phoenix, Arizona 85044. Circle 306 on Reader Service Card.

Digicom 64

Digicom 64 is a disk-based TNC emulator program for the Commodore 64 (or C128) computer. It is a public domain program written by hams in Germany that eliminates the need for a TNC and requires only an external modem for full packet radio operation.

The displayed modem circuit is based on the AM7910 chip; it supports both HF and VHF packet tones. No alignment is required. The circuit includes a "watchdog" timer as a failsafe for unattended operation and a relay output. Power for the modem is taken directly from the C64; no external supply is necessary. The pcb board is configured so that it may be plugged directly into the cassette port, or mounted remotely using a 6-conductor cable. Connectors for both configurations are included with each kit.

The complete parts kit with pcb board is priced at $49.95, plus $2.50 shipping and handling. An assembled/tested unit is $79.95, plus $3.50 shipping and handling.

For more information, contact RF Prototype Systems, 12730 Kestrel Street, San Diego, California 92129.

Circle 309 on Reader Service Card.
KENWOOD

Also displaying the popular accessories needed to complete a HAM STATION...

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • ALINCO
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • TOKYO HY-POWER LABS
• TRAC KEYERS • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK • VISA MC WELcomed

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1/4 miles from Rte. 495 (Exit 31) toward Groton, Mass.

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

Simple Low-Cost Wire Antennas

Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics. 192 pages. © 1972 2nd edition

ALL ABOUT CUBICAL QUAD ANTENNAS

Simple to build, lightweight, and high performance make the Quad a DXer's delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. © 1982. 3rd edition

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. © 1978. 1st edition.

Please enclose $3.50 for shipping and handling.

Sony ICF-2010 Receiver

Radio Sporting

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by the world's best in their fields: ON4UN, SM0AGD, L22C, VE3BIV, KH6BZF, DJ1ZB, ZS6BRZ, W1WY, N2SS, K7GCO, K4ZJ, W4GF, VE3ITQ, WB4ZNH, WP3TBU, K2QM, N5EX, W2XQ, W3FG, K33B, K1PLR, N5IK, N7CKD, VE3XN, AB08X, JEI CKA and others.

Includes DX News, QSL Info, 160m, 80m, 10m, 6m columns, DXpeditioning, Propagation, Awards, Contest Rules and Results, Traffic - Emergency, FCC News, New Products, Antennas, Technical News and articles, Equipment Reviews and Modifications, Computer Programs, Radio Funnies, Club Life, SWL, DXing for a living, Reviews, Awards, Contests, World Radio Championship contest.

"Your publication is superb! Keep it up!" - Joe Reisert, W1JR
"Your W2PV articles are priceless. Your magazine is superb!" - Rush Drake, W7RM
"Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contest!" - Dick Moen, N7RO
"RADIO SPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." - Chas Browning, W4PKA

"I take every ham magazine and can say without reservation that RADIO SPORTING is the first one read each month." - Joe Rudi, N7KU, "Oakland A's"

Subscription rates: 1 year USA $18, Canada CDN$28, Overseas US$25, 2 years $33, $50, $44 respectively. Single issue $2.

USA First Class Mail add $10/year, DX Air Mail add $20/year.

TRY US! SUBSCRIBE OR SEND $1 FOR YOUR SAMPLE COPY. VISA, MASTERCARD accepted.

RADIO SPORTING Magazine
PO Box 282, Pine Brook, NJ 07058, USA Tel. (201) 227-0712
We just struck gold with a miniature, high quality and very reliable DTMF decoder at a rock bottom price of $59.95. Our DTD-1 will decode 5040, 4 digit codes with the security of wrong digit reset. It contains a crystal controlled, single chip DTMF decoder that works great in bad signal to noise environments and provides latched and momentary outputs. Why carry that heavy gear when its size is only 1.25 x 2.0 x .4 inches and it comes with our etched in stone, legendary, one year warranty.

Instead of sifting through the field...searching, use our super quick one day delivery and cash in on a rare find.
ping and handling. Both include a program disk and documentation at no charge.

Program disks with documentation and blank printed circuit boards with construction details are also available.

For further information contact Barry Kutner, W2UP, 614-B Palmer Lane, Yardley, Pennsylvania 19067. Please enclose a SASE for reply. Circle #310 on Reader Service Card.

We've Got Books

Plenty of Books

Send SASE for free flyer

Ham Radio's Bookstore

Greenville, N. H. 03048

We're introducing the NEW OSCAR BRIDGES HAMISHERE

* Coming soon to a shack near you.
* Signals from space.
* Catch some free.
* We know how.
* You can too!
* Join AMSAT
* Free brochure for SASE

ICOM

VHF COMMUNICATIONS

915 North Main Street
Jamestown, New York 14701

QuickKit 80V, Loop, & Dipole Kits

Fast & Easy to Build
Everything included
Calculated vari-antenna
No measurements, cable
75 Ohm antenna in kit
Quality Components
Pre-owned Amplifier PL-260
Radarproof Superflex wire
Fully insulated, weatherproof, oil resistant, wave design
Fastest antennas in the West

Antennas West
(801) 378-8458
Box 5062-H, Provo, UT 84605

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria
Karl Leber
Pfeilbach 24a
D-7800 Loerrach
West Germany

Ham Radio Belgium
Sedewitzweg 416
B-8218 Gent
Belgium

Ham Radio Holland
P.O. Box 113
NL-7800 AV Eemnes
Holland

Ham Radio Europe
Bitte 2551
D-144 81 Upplands Vastby
Sweden

Ham Radio France
5M Electroniques
F-98000 Rouen
France

Ham Radio Germany
Karl Leber
D-7800 Loerrach
West Germany

Canada
Send orders to
Ham Radio Magazine
Greenville, NH 03048 USA

Prices in Canadian funds
1 yr $60.00, 2 yrs $75.00
3 yrs $99.00

Ham Radio Italy
Via Manzoni 15
20134 Milano
Italy

Ham Radio Japan
Kajima Electronic Co., Ltd.
4 Chome, Ota Ku
Tokyo 114, Japan
Telephone (03) 753-2405

Ham Radio Australia
Karl Leber
Pfeilbach 24a
D-7800 Loerrach
West Germany

VHF COMMUNICATIONS

915 North Main Street
Jamestown, New York 14701

ICOM

VHF COMMUNICATIONS

915 North Main Street
Jamestown, New York 14701

ICOM

VHF COMMUNICATIONS

915 North Main Street
Jamestown, New York 14701

November 1988

125
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to

ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name: ___________________________ Call: ______________

Address: __

City: ______________ State: __________ Zip: __________

*Please contact this advertiser directly.

READER SERVICE # PAGE #

176 - Ace Communications, Inc. 45
120 - Advancom, Inc. 21
147 - Advanced Computer Controls 42
160 - Advanced Microwave Laboratories, Inc. 62
114 - Advanced Receiver Research 119
131 - All Electronics Corp. 102
163 - Aluma Tower Co. 58
181 - AMC Sales, Inc. 42
194 - American Associates 31
104 - AMSAT 125
142 - Antenna's Etc. 92
106 - Antennas West 50, 104, 125
129 - Antique Radio Classified 114
118 - ARRIL 66
159 - Ashton ITC 62
144 - Astor Corp. 66
171 - AT&F Computers and Electronics 51
151 - Auzhamb 73
132 - Bank & Williamson 126
129 - Barry Electronics 162
186 - Bell Company 23
129 - Bird Electronics 38
140 - Buckmaster Publishing 95
174 - Buckmaster Publishing 129
122 - Buckmaster Publishing 155
191 - C& S Sales 32
120 - Cadell Corp. 23
131 - CMF 103
166 - Coffin Dynamics, Inc. 56
188 - Communication Concepts, Inc. 42
104 - Communication Specialists 128
191 - Connect Systems Inc. 1
167 - Crystal Crystals 58
129 - Cygnus/Quasar Books 114
187 - Dacom International 40
156 - Digital Instruments Corp. 38
132 - Dolph Systems 103
184 - Doug Hall Electronics 41
184 - Down East Microwave 41
184 - DRSI 38
150 - EGE, Inc. 74
201 - Electronic Equipment Bank 28
167 - Electronic Equipment Bank 56
156 - Electronic Equipment Bank 66
152 - Electronic Equipment Bank 72
153 - Electronic Equipment Bank 72
157 - Engineering Consultants 41
157 - ETO 64, 65
157 - EXPO '88 38
120 - Fair Radio Sales 115
121 - Falcon Communications 35
121 - Gallant Radio Supply 115
150 - Gift Shortwave 37
170 - Gordon West Radio School 52
174 - GTE Electronics 46
150 - GTE Electronics 46
172 - HAL Communications Corp. 50
136 - Halttronics 97
201 - Ham Radio Outlet 6, 7
201 - Ham Radio's Bookstore 40, 110, 111, 122, 123
201 - Hamtronics, NY 113
201 - Hamtronics, PA 88
201 - Health Company 13
201 - ICOM America, Inc. 10
204 - ICOM America, Inc. 16
210 - International Crystal Mfg Co, Inc 28
217 - Jan Crystals 107
214 - JDR Instruments 71
186 - Jensen Tocles, Inc. 41

PRODUCT REVIEW/NEW PRODUCTS

- 303 - Ace Communications, Monitor Div. 120
- 304 - Ashton ITC 120
- 306 - Field Fmig Co Inc 120
- 308 - Jensen Tools Inc 122
- 310 - Barry Kulner, W2UP 120
- 312 - Radio Shack 120
- 315 - RP Prototype Systems 122
- 316 - Shure Brothers Inc 122
The Right Price... Everytime

103

Dependable Service

MasterCard—VISA—Discover

1-800-821-7323

MISSOURI RADIO CENTER

KENWOOD

TS-940 "DX-CELLENCE"
- All Band, All Mode Transceiver
- Direct Keyboard Entry
- Engineered for the DX-Minded
- And Contesting Ham
- Its Got It All!

ICOM

FT-767GX HF/VHF/UHF
- Add Optional 6m, 2m & 70cm Modules
- Dual VFO's
- Full CW Break-in
- Lots More Features

KENWOOD

FT-736R VHF-UHF BASE STATION
- SSB, CW, FM on 2 Meters
- Optional 50 MHz, 220 MHz or 1.2 GHz
- 25 Watts Output on 2 Meters, 220 and 70 cm
- 10 Watts Output on 6 Meters and 1.2 GHz
- 100 Memories

TH-25AT POCKET-SIZED AND POWERFUL
- Frequency Coverage: 141-163 MHz (Rx), 144-148 MHz (Tx)
- Front Panel DTMF Pad
- 5 Watts Output
- 14 Memories
- TH-45AT Available for 440 MHz

TH-212RH THE "ANSWERING MACHINE" MOBILE
- Rx: 138-174 MHz
- Tx: 144-148 MHz
- 45W Output
- Digital Voice Recorder
- FT-712 RH for 70cm

TH-23/73R SUPER "Mini" HT's
- Zinc-Aluminum Alloy Case
- 10 Memories
- 140:164 MHz, 440:450 MHz
- 2W Battery Pack or Optional 5W Pack

102 N.W. Business Park Lane Kansas City, MO 64150
Call For Best Trade-In Deal

Call Toll Free—9am - 6pm Mon.-Fri. 9am - 2pm Sat.
In Missouri Call—816-741-8118

MOST ORDERS SHIPPED SAME DAY

- DAIWA HUSTLER KENWOOD LARSEN MFJ MIRAGE/KLM NYE/VIKING RF CONCEPTS UNIDEN YAESU

KAORI

TH-45AT AVAILABLE FOR 440 MHz
- 5 Watts Output
- 14 Memories
- TH-45AT Available for 440 MHz

CALL 144 MHZ S
220 MHZ P
220 MHZ CALL

MOBILE 10 Meter Transceiver
- SSB/AM/FM/CW
- 25 Watts PEP
- Computer Controlled Operation
SALE PRICED

KARLO

FT-712 RH FOR 70CM
- SSB, CW, FM on 2 Meters
- 45W Output
- Digital Voice Recorder
- Programmable Band Scan
- Fiber Optic Technology

4000.. $109.. $129.. $250.. $225.. $245
635A.. $139.. VS50M.. $323

ICOM

IC-900 SIX BANDS IN ONE MOBILE
- Remote Controller, Interface A Unit, Interface B Unit, Speaker, Mic and Cables
- Six Band Units to Choose
- 10 Memories Per Band
- Programmable Band Scan
- Fiber Optic Technology

IC-900A.. $50.. RS75M.. $55
RS12A.. $72.. RS22M.. $175
RS20A.. $92.. RS50A.. $199
RS20M.. $109.. RS50M.. $225
VS20M.. $129.. RM50M.. $245
RS35A.. $139.. VS50M.. $239

ASTRON

ASTRON

KEM-900 SIX BANDS IN ONE MOBILE
- Remote Controller, Interface A Unit, Interface B Unit, Speaker, Mic and Cables
- Six Band Units to Choose
- 10 Memories Per Band
- Programmable Band Scan
- Fiber Optic Technology

KANTRONICS

KAM
- Packet, WEFAX, ASCII, AMTOR, RITY, CW
- Simultaneous Operation on HF and VHF
- Personal Packet Mailbox™ SALE PRICED
Small enough to fit into a shirt pocket, our new 1.3 GHz and 2.4 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1300H/A makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden “bug” transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

- **#1300H/A** Model 1300H/A 1-1300 MHz counter with preamp, sensitivity, < 1mV, 27MHz to 450MHz includes Ni-Cad batteries and AC adapter ... $169.95
- **#2400H** Model 2400H 10-2400 MHz microwave counter includes Ni-Cad batteries and AC adapter ... $299.95
- **#CCA** Model CCA counter/counter, for debugging, ultra sensitive, < 50 micro volts at 150MHz/1-600 MHz with adjustable threshold, RF indicator, LED. Includes Ni-Cad batteries and AC adapter ... $299.95

ACCESSORIES:

- **#TA-100S** Telescoping RF pick-up antenna with BNC connector ... $12.00
- **#P-100** Probe, direct connection 50 ohm, BNC connector ... $20.00
- **#CC-12** Carrying case, gray vinyl with zipper opening. Will hold a counter and #TA-100S antenna. ... $10.00

ORDER FACTORY DIRECT

- **1-800-327-5912**

AVAILABLE NOW!
Introducing Yaesu's FT-4700RH dual-band mobile. Choose Yaesu's FT-4700RH, and you open the door to a lot of tight spaces.

While other dual banders just won't fit in today's small cars, the FT-4700RH utilizes a versatile "remote head" design. So you can mount the "brains" on your dash, visor, or door, and hide the "muscle" under your seat.

High-performance package. Packing a solid 50-watt punch on 2 meters (40 watts on 70 cm), the FT-4700RH includes Dual-Band Watch for simultaneous monitoring of both bands, with independent squelch settings on the main and secondary bands. When you transmit, opposite band monitoring goes on in a full-duplex mode.

You can adjust the relative volume of the two receive channels with the balance control, too. And with Yaesu's bright LCD display, transceiver status is clearly visible in sunlight or shade.

Convenience on the road. Human engineering, long a Yaesu specialty, is an important aspect of the FT-4700RH design. The ten-button front panel keypad includes a "do-re-mi" audible command verification, and all important controls are backlit for night operation. Plus you get extended receive coverage of 140-174 MHz (MARS/CAP permit required for transmit on 140-150 MHz, or 430-450 MHz on 70 cm). Nine memory channels on each band. High/low power selection (low power: five watts). One-touch reverse repeater shift button. Optional CTCSS module. And 16-key DTMF microphone.

Optional accessories. FTS-8 CTCSS unit. MH-15D8 Autodialer Microphone with 10 telephone number memory. SP-3 or SP-4 External Speakers. And YH-1 Headset/Boom Mic or MF-1A3B Flex Arm Boom Mic, both with SB-10 PTT Switch Unit.

Discover Yaesu's FT-4700RH today. And see what "high performance" really means. For dual-band mobile operation, Yaesu's FT-4700RH really fits!

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701
(213) 404-2900. Repair Service: (213) 404-4884.
Parts: (213) 404-4847. Prices and specifications subject to change without notice.
Four to Go!

TM-221A/321A/421A/521A

144/220/450/1300 MHz

The Hottest Selling Compact FM Mobile Transceivers

The all-new TM-221A, TM-321A, TM-421A and TM-521A FM transceivers represent the "New Generation" in Amateur radio equipment. The superior Kenwood GaAs FET front end receiver; reliable and clean RF amplifier circuits; and new features all add up to an outstanding value for mobile FM stations! The optional RC-10 handset/control unit is an exciting new accessory that will increase your mobile operating enjoyment!

- TM-221A receives from 138-173.995 MHz. This includes the weather channels! Transmit range is 144-148 MHz. Modifiable for MARS and CAP operation. (MARS or CAP permit required.)

- TM-321A covers 220-224.995 MHz, TM-421A covers 438-449.995 MHz, and the TM-521A covers 1240-1300 MHz. (Specifications guaranteed for Amateur band use only.)

- Built-in front panel selection of 38 CTCSS tones. TSU-5 programmable decoder optional.

- Simplified front panel controls—makes operating a snap!

- 16 key DTMF hand mic., mic. hook, mounting bracket, and DC power cable included.

- Selectable frequency steps for quick and easy QSY.

- Packet radio compatible!

- Programmable band scanning with memory scanning and memory channel lock-out.

- New amber LCD display.

- Kenwood non-volatile operating system. All functions remain intact even when lithium battery back-up fails. (Lithium cell memory back-up, est. life 5 yrs.)

- 14 full-function memory channels store frequency, repeater offset, sub-tone frequencies, and repeater reverse information. Repeater offset on 2 m is automatically selected. There are two channels for "odd split" operation.

- Super compact: approx. 1-1/2"x5-1/2"xWx7”D.

- Microphone test function on low power.

- High quality, top-mounted speaker.

- Rugged die-cast chassis and heat sink.

Optional Accessories:
- RC-10 Multi-function handset remote controller
- PG-4G Extra control cable for second transceiver
- PS-50/PS-430 DC power supply
- TSU-5 Programmable CTCSS decoder
- SW-100A Compact SWR/power/volt meter (18-150 MHz)
- SW-100B Compact SWR/power/volt meter (180 kHz - 30 MHz)
- SW-200A SWR/power meter (18-150 MHz)
- SW-200B SWR/power meter (40-450 MHz)
- SWT-1 Compact 2 m antenna tuner (200 W PEP)
- SWT-2 Compact 70 cm antenna tuner (200 W PEP)
- SWC-4 1200 MHz Directional coupler
- SP-40 Compact microphone speaker
- SP-50B Mobile speaker
- PG-2N Extra DC cable
- PG-3B DC line noise filter
- MC-60A, MC-80, MC-85 Basic station mics
- MC-55 6-pin Mobile mic
- PG-50 900 MHz Mobile mic
- MA-4000 4 m/20 cm dual band antenna with duplexer (not supplied)
- MB-201 Mobile mount (not supplied)

Specifications and prices subject to change without notice or obligation. Complete service manuals are available for all Kenwood transceivers and most accessories.

RC-10 Remote Controller

For TM-221A/321A/421A/521A.

Optional telephone-style handset remote controller RC-10 is specially designed for mobile convenience and safety. All front panel controls (except DC power and RF output selection) are controllable from the RC-10. One RC-10 can be attached to a combination of two transceivers with the optional PG-4G cable. When two transceivers are connected to the RC-10, cross band, full duplex operation is possible. (A control operator is needed for repeater operation.)