FIELD DAY
ICOM 1.2GHz
THE ONLY 1.2GHz SYSTEM... ANYWHERE

- IC-1271A Base Station
- IC-12AT Handheld
- NEW! IC-1200 Mobile
- IC-RP1210 Repeater

Explore 1.2GHz with ICOM. Only ICOM offers the most complete line of ham gear for 1.2GHz...the IC-1271A full-featured base station transceiver, the IC-12AT handheld, the new IC-1200 mobile and the IC-RP1210 repeater. So, get away from the crowd and be a pioneer on 1.2GHz.

The IC-1271A 1240-1300MHz base station transceiver features 10 watts of RF output power, 32 memories, scanning and multi-mode operation including ATV (amateur TV).

A variety of options are available for the IC-1271A including the IC-EX310 voice synthesizer, UT-155 CTCSS encoder/decoder, IC-PS25 internal AC power supply, AG-1200 preamplifier and the TV-1200 TV interface unit.

The IC-12AT handheld covers from 1260-1299.990MHz, has ten memory channels, memory scan, program scan and programmable offset. It also features an LCD readout, RIT and VXO, 32 built-in tones and a DTMF pad.

The new IC-1200 1.2GHz mobile transceiver has 21 memory channels, scanning, an HM-14 up/down scanning mic, RIT, large LCD readout and 10 watts power output. Accessories include the PS-45 slim-line external power supply.

The IC-RP1210 completes your 1.2GHz system. It features a field programmable (198 channel, DIP switch), high stability PLL, repeater access to CTCSS, three-digit DTMF decoder for control of special functions, 10 watts, selectable hang time and ID'er.
THE ALL NEW PRIVATE PATCH IV BY CSI HAS MORE COMMUNICATIONS POWER THAN EVER BEFORE

- Initiate phone calls from your HT or mobile
- Receive incoming phone calls
- Telephone initiated control...
 - Operate your base station with complete control from any telephone
 - Change frequencies from the controlling telephone
 - Selectively call mobiles using regenerated DTMF from any telephone
 - Eavesdrop the channel from any telephone
 - Use as a wire remote using ordinary dial up lines and a speaker phone as a control head.

NEW!

The new telephone initiated control capabilities are awesome. Imagine having full use and full control of your base station radio operating straight simplex or through any repeater from any telephone! From your desk at the office, from a pay phone, from a hotel room, etc. You can even change the operating channel from the touchpad!

Our digital VOX processor flips your conversation back and forth fully automatically. There are no buttons to press as in phone remote devices. And you are in full control 100% of the time!

The new digital diatone detector will automatically disconnect Private Patch IV if you forget to send # (to remotely disconnect) before hanging up. This powerful feature will prevent embarrassing lock-ups.

The importance of telephone initiated control for emergency or disaster communications cannot be overstated. Private Patch IV gives you full use of the radio system from any telephone. And of course you have full use of the telephone system from any mobile or HT!

To get the complete story on the powerful new Private Patch IV contact your dealer or CSI to receive your free four page brochure.

Private Patch IV will be your most important investment in communications.

- Connects to MIC and ext. speaker jack on any radio. Or connect internally if desired.
- Can be connected to any HT. (Even those with a two wire interface.)
- Can be operated simplex, through a repeater from a base station or connected directly to a repeater for semi-duplex operation.
- 20 minutes typical connect time
- Made in U.S.A.

OPTIONS
1. 1/2 second electronic voice delay
2. FCC registered coupler
3. CW ID chip

CONNECT SYSTEMS INC.
23731 Madison St.
Torrance CA 90505
Phone: (213) 373-6803

AMATEUR ELECTRONIC SUPPLY
Milledgeville GA

HENRY RADIO
Los Angeles CA

BARRE ELECTRONICS CORP.
New York NY

JUNS ELECTRONICS
Culver City CA

E.G., Inc.
Woodbridge VA

MADISON ELECTRONICS SUPPLY
Houston TX

ERICKSON COMMUNICATIONS
Chicago IL

MIAMI RADIO CENTER CORP.
Miami FL

HAM RADIO OUTLET
Anchorage AK

MIKES ELECTRONICS
 Ft. Lauderdale, FL

MICHAEL'S

N & G DISTRIBUTING CORP.
Miami FL

OMNI ELECTRONICS
Laredo TX

PACE ENGINEERING
Tucson AZ

THE HAM STATION
Evansville IN

WESTCOM
San Marcos CA

CANADA:
CARTEL ELECTRONIC DISTRIBUTORS
Surrey B.C.

AM.WEST RADIO SYSTEMS, LTD.
Vancouver B.C.
#1 Rated HF!

TS-940S

Competition class HF transceiver

TS-940S—the standard of performance by which all other transceivers are judged. Pushing the state-of-the-art in HF transceiver design and construction, no one has been able to match the TS-940S in performance, value and reliability. The product reviews glow with superlatives, and the field-proven performance shows that the TS-940S is "The Number One Rated HF Transceiver!"

- 100% duty cycle transmitter. Kenwood specifies transmit duty cycle time. The TS-940S is guaranteed to operate at full power output for periods exceeding one hour. (14.250 MHz: CW, 110 watts.) Perfect for RTTY, SSTV, and other long duration modes.
- First with a full one-year limited warranty.
- Extremely stable phase locked loop (PLL) VFO. Reference frequency accuracy is measured in parts per million!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-455C 1 (500 Hz), YG-455CN 1 (250 Hz), YK-88C 1 (500 Hz) CW filters; YK-88A 1 (6 kHz) AM filter
- VS 1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-43S UP/DOWN hand mic.
- MC-60A, MC-80, MC-85 deluxe base station mics.
- FC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-8 pan display
- SW-200A and SW-2000 SWR and power meters
- IF-232CIF/10B computer interface

Complete all band, all mode transceiver with general coverage receiver. Receiver covers 150 kHz-30 MHz. All modes built in: AM, FM, CW, FSK. LSB, USB.

Superb, human engineered front panel layout for the DX-minded or contesting ham. Large fluorescent tube man display with dimmer, direct keyboard input of frequency, flywheel type tuning knob with optical encoder mechanism all combine to make the TS-940S a joy to operate.

- One-touch frequency check (T-F SET) during split operations.
- Unique LCD sub display indicates VFO, graphic indication of VBT and SSB Slope tuning, and time.
- Simple one step mode changing with CW announcement.
- Other vital operating functions: Selectable semi or full break-in CW (OSK), RIT/XIT, all mode squelch, RF attenuator, filter select switch, selectable AGC, CW variable pitch control, speech processor, and RF power output control, programmable band scan or 40 channel memory scan.

KENWOOD U.S.A. CORPORATION
2201E, Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
8 design program for the grounded-grid 3-500Z
W.J. Byron, W7DHD

19 designing a station for the microwave bands: part 2
Glenn Elmore, N6GN

39 VHF/UHF world: propagation update — part 2
Joe Reisert, W1JR

54 the Quad antenna: part 2
R.P. Haviland, W4MB

68 ham radio techniques: a nifty bi-square beam for 10 or 12 meters
Bill Orr, W6SAI

72 practically speaking: "ferriting" out the problem
Joe Carr, K41PV

78 Yagi vs. Quad, part 2
David Donnelly, K2SS

95 Elmer's notebook: "Q" signals
Tom McMullen, W1SL

on the cover: John Webster, K1FWE (bottom left), and Doug Grant, K1DG (bottom right), operating during the 1986 K1AR Field Day effort. Both are SFRCC members. Top photo: Marty Durham, NB1H, "fixing things" on N1AU's tower.

98 advertisers index
92 ham mart
96 comments
84 new products
88 DX forecaster
90 flea market
98 reader service
4 reflections
Novice enhancement and the future of Amateur Radio

Since going into effect last spring, Novice enhancement hasn’t caused any great upsurge in the Amateur ranks. Whether it should be considered a modest success or a complete failure seems to depend on who’s talking.

If the criterion is merely the decrease in Novice licensees compared with a year ago, Novice enhancement has failed. To me that’s a very shallow, superficial interpretation resulting from a cursory reading of the numbers and a misplaced belief that enhancement addressed a basic problem of Amateur Radio rather than an ancillary one.

Discounting the big Novice jump in April and May of 1987, when a lot of newcomers rushed in to take the Novice exam before it was expanded to cover new privileges, the Novice population hasn’t shown a significant change in the past year. There are, perhaps, many reasons for that. How many of last year’s new licensees didn’t even pause at Novice but moved up immediately? How many of them had been putting off becoming Amateurs and were stimulated to take the Novice exam before it got tougher? These and many other questions should be answered before the results of Novice enhancement can be properly assessed.

Some critics now say the problem with Novice enhancement is that it didn’t go far enough, and what’s really needed is to do away with the CW “boogie man”. Though I agree that the CW requirement has long intimidated — and will continue to intimidate — a vocal minority of prospective Amateurs, I also firmly believe that any attack on the CW issue, no matter what its outcome, will have no more effect on the long or short term Amateur growth problem than Novice enhancement did!

Whatever your feelings, neither Novice enhancement nor a no-code license addresses the basic problem. The problem isn’t our product, but its marketing. Amateur Radio is a great product, but if our potential customers don’t know the product exists, where to find it, or appreciate its many benefits, they aren’t going to buy!

Intelligent marketing is based on market analysis. Manufacturers who don’t understand this are doomed to slow growth and/or stagnation at best, and the bankruptcy court at worst. Analyses of recent licensees by the FCC and the VEs who are actually bringing the newcomers on board agree that the average new Amateur is an older, well-established adult. Our marketing effort has been aimed at youngsters, so it seems likely we’ve been targeting the wrong market. The ARRL seems to feel this way, and is now experimenting with a pilot program that encourages older residents of the Tampa/St. Petersburg, Florida area to become hams.

Before investing any great amount of money and effort in new sales pitches or product revisions, I suggest we put some of that money into a professional market study. This study should be directed primarily at those Amateurs who’ve joined us in the past 10 to 12 years and (when possible) those who’ve dropped out. It should include questions on how and why respondents became Amateurs, what they felt had helped, or what had hindered their developing Amateur Radio interest. When the study’s results are analyzed, the most cost-effective marketing strategy may become clear.

The ARRL and the Amateur Radio Industry Group have the capabilities for such a study. The two worked together well on the Archie’s Ham Radio Adventure comic book project, and might be willing to work together on this one. In the meantime, however, I feel that any further tinkering with the product isn’t going to solve the basic problems, only complicate them.

Joe Schroeder, W9JUV

This editorial is one person’s opinion about Novice enhancement and does not necessarily represent the views of ham radio. Ed.
Affordable DX-ing!

TS-140S
HF transceiver with general coverage receiver.
Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140S HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of “look-alike” transceivers!

- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz. (Receiver specifications guaranteed from 500 kHz to 30 MHz.) Modifiable for HF MARS operation. (Permit required.)
- All modes built-in. LSB, USB, CW, FM and AM.
- Superior receiver dynamic range Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.

- New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRM to non-participants.
- Famous Kenwood interference reducing circuits. IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC, and FM squelch.

- M. CH/VFO CH sub-dial. 10 kHz step tuning for quick OSY at VFO mode, and UP/DOWN memory channel for easy operation.
- Selectable full (QSK) or semi break-in CW.
- 31 memory channels. Store frequency, mode and CW wide/narrow selection. Split frequencies may be stored in 10 channels for repeater operation.
- RF power output control.
- AMTOR/PACKET compatible!
- Built-in VOX circuit.
- MC-43S UP/DOWN mic. included.

Optional Accessories:
- AT-130 compact antenna tuner • AT-250 automatic antenna tuner • HS-5/HS-6/HS-7 head-phones • IF-232C/IF-100 computer interface • MA-5/V-1 HF mobile antenna (5 bands) • MB-430 mobile bracket • MC-43S extra UP/DOWN hand mic • MC-56 (6-pin) goose neck mobile mic • MC-60A/MC-80/MC-85 desk mics. • PG-2S extra DC cable • PS-430 power supply • SP-40/SP-50B mobile speakers • SP-430 external speakers • SW-100A/SW-200A/SW-2000 SWR power meters • TL-922A 2 KW PEP linear amplifier (not for CW QSK) • TU-8 CTCSS tone unit • YG-455C-1 500 Hz deluxe CW filter. YK-455C-1 New 500 Hz CW filter.

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features, and prices are subject to change without notice or obligation.
tips for construction projects

Dear HR:

Boy, am I glad that I started building projects before reading Paul A. Johnson’s article in your March 1988 issue. I’m sure Mr. Johnson’s piece would have scared me away. Here are some suggestions for any of your readers who might be interested in project construction:

1. Don’t start with anything rf. Receivers, transmitters, tuners, lines are all difficult and require a lot of adjustment once they’re assembled. As I recently discovered, even a simple dummy load isn’t simple. Don’t start with a high-voltage or high-current power supply either. Anything over about 50 volts or 5 amps requires extra care and construction technique. Start with something like a 12 volt 3 amp power supply to run your HT in the house. How about a digital clock? Use a microcontroller and make a keyer. These suggested projects may not sound very exciting technically, but you’ll find that project construction is often more mechanical than electrical.

2. You don’t have to build most projects in metal boxes. For non-rf projects, plastic is fine. It’s inexpensive, easy to work, and doesn’t have to be painted. Jameco, Digi-Key, and your local Radio Shack all offer a selection of plastic enclosures. Stick with plastic and you won’t need a drill press; an electric hand drill is fine. You won’t need expensive and dangerous hack-saws, sabre saws, circular saws, or fly cutters either. Holes larger than your drill can make or odd-shaped openings can be cut quickly and easily with a reamer or some cheap files. Filing out openings in metal is an arduous task, but in plastic even cheap files cut quickly. Here’s a tip: to drill a nice hole in plastic, start with your smallest bit and work up to the final size using every bit between them in your index. Hot-melt glue guns work on plastic. A cheap pop riveter is another handy tool. If you do need metal, look for a prefab cabinet that will fit your project. Prefabs may seem expensive, but they’re a lot easier and you won’t need a lot of tools and equipment. Bud, LMB, and others offer an excellent assortment of cabinets ready to house most projects.

3. Plan! Document! Much of the work for my projects is done on paper. Start with a good schematic. If you’re using any integrated circuits, mark the pin numbers on your schematic. Draw pin diagrams of other parts like transistors next to the part on the schematic. Assign part numbers. Sketch how the project will be assembled, the layout of parts on circuit boards, and the chassis wiring. Then make a from-to wiring list. With all of this planning, your project will be a snap to build and will work the first time. If it doesn’t, all the documentation will help you find the problem fast. By the way, keep all of this paper so that if your project ever breaks, you or a friend ever want to build another, it’ll be easy. As you correct bugs or add modifications, document the changes.

4. Take your time. Measure twice, cut once. Make test fits as you move along. Check each electrical connection with an ohmmeter. Try to make every solder joint perfect. Use cable ties or lacing tape to form cable bundles. If you have extensive chassis wiring, use wire marker labels. Use heat-shrink tubing and cable clamps as necessary. In short, try to make each project a show piece inside and out.

While Mr. Johnson’s work certainly looks very nice, project construction does not have to be as difficult or as complicated as he makes it sound. You don’t have to be a machinist, and you really don’t need a lot of expensive tools either. By avoiding complicated projects (especially rf ones) at first, using plastic boxes whenever possible, planning carefully, and working slowly, anyone can enjoy building perfect construction projects. I know I sure do!

Chuck Gollnick, KA7QEN
Ames, Iowa 50010-1363

no contest

Dear HR:

In his article in the November 1987 issue, Bill Orr, W6SAI, says he can attest to the fact that allocation of even a small segment of the 30-meter band to SSB operation would be of great benefit to Amateur Radio. Instead of a bland statement, would he be a bit more explicit?

Surely he must be aware that another well-known author sparked a similar controversy in the columns of the RSGB’s RadComm magazine, and the consensus of opinion was against any change in the IARU’s recommendations. Could there be a conspiracy of authors on this subject?

I have used the 30-meter band almost since it’s inception, and the greatest problem is finding a space to work without causing QRM to priority users. Like many others, I have worked over 100 countries; the DX is there and occupancy will surely improve as we advance into the new cycle.

Would the SSB fraternity be as mindful of our non-priority status as the CWers have been? I doubt it, and it would not be long before we lost the band altogether.

I wholeheartedly agree with his 18 MHz sentiments and it would be a great shot in the arm to have the W/Ks on the band, but please no contests. As my friend SM3CIQ/U1F says; rather RTTY QRM than contests.

Edward D. Ross, 5B40G/A9XCE
Larnaca, Cyprus
N SYNC FILTER
DELYED AND SINGLE SWEEP MODES
EXCEPTIONALY BRIGHT 5" CRT
X-Y OPERATION
Z AXIS INTENSITY MODULATION
FAST 10NS RISE TIME

DMM-300

3.5 DIGIT DMM/MULTITESTER

$79.95

DMM-100

3.5 DIGIT POCKET SIZE DMM

$29.95

DMM-200

3.5 DIGIT FULL FUNCTION DMM

$49.95

MODEL 2000

$389.95

20 MHZ DUAL TRACE OSCILLOSCOPE

Model 2000 features frequency calculation and phase measurement quick and easy. The component tester aids in fast troubleshooting. Service technicians appreciate the TV Sync circuits for viewing TV-V and TV-H and accurate synchronization of the video signal. Blanking, VTIS, and VH sync pulsers.

- Exceptionally bright 5" CRT
- Built-in component tester
- TV Sync filter
- X-Y operation (10/200V)

DPM-1000

3.5 DIGIT PROBE TYPE DMM

$54.95

JDR INSTRUMENTS, 110 KNOWLES DRIVE, LOS GATOS, CA 95030

RETAIL STORE: 1256 SOUTH BASCOM AVE, SAN JOSE, CA (408) 947-8881

ORDER TOLL FREE 800-538-5000
design program for the grounded-grid 3-500Z

This program gives "no-compromise" answers

There are probably as many amplifiers in existence that use the 3-500Z as there are with any other power amplifier tube. The 3-500Z is an excellent tube with a well-deserved reputation for high power-handling capabilities and reasonable cost. There are no doubt hams with one or two spare 3-500Zs in their shacks who are thinking of building their own amplifiers. But of course, it's one thing to copy the design of another amplifier and a different matter to design one's own from scratch.

Circuit variations for amplifier designs are available from other sources and I will not discuss them here. This article covers only one mode of operation for the 3-500Z — grounded-grid class AB2 operation — probably the most prevalent use of the tube. I will discuss virtually all possible combinations of drive power, load resistance, drive impedance, plate voltage, and bias requirements for grounded-grid, linear operation. I have included a program which allows you to accommodate any set of normal operating conditions that can be realized on the constant-current curves. Figure 1 is the program listing.

This program's answers are probably a bit more precise than ones obtained with the "Tube Performance Computer". You might assume that linear divisions exist between constant-current curves on the tube charts; they don't. This is not a serious problem, as variations from one tube to another will usually be greater than those differences. It is important to remember that using the hand-calculated methods consumes much paper, time, and nervous energy. My program lets you change any of the input parameters and see the differences for each proposed operating condition in a few seconds, as compared with fifteen minutes or a half-hour required for hand-calculated answers — and it doesn't make mistakes!

The program has only 170 lines to enter; it runs completely within a few seconds after you enter the last input. (The answers appear in about 3 seconds on the Tandy-2000, and in 8 to 10 seconds on an early IBM PC.) When this program is compiled, answers appear in under a second. The program is very densely packed with numbers and equations — I know of no other way to define every current and voltage (including fractional values) that can be found on the tube chart, and still use fewer than 7 kilobytes of computer RAM. The labor of typing the program pays for itself many times over as it saves hours of effort during a design routine.

how to use the program

Figure 2 is a reproduction of the "EIMAC 3-500Z Typical Constant Current Characteristics" curves for grounded-grid, class AB2 operation. The operational area of the program (crosshatching) is superimposed on the curves. Stay inside the "box"; it includes every permissible or useful operating point. You decide on the placement of the operating (or load) line. It is drawn between two points, labeled "ip", and "Q". The first defines the maximum peak instantaneous plate current as well as the minimum plate voltage. The second defines the quiescent (no drive) value of the plate current, and occurs at exactly the plate-supply voltage. The chart also tells you the quiescent plate dissipation. This is not printed in the program output, but can be calculated by multiplying the rest-plate current by the plate supply voltage. The program requests: "Enter Plate Supply Voltage, Eb".

By W.J. Byron, W7DHD, 240 Canyon Drive, P.O. Box 2789, Sedona, Arizona 86336
fig. 1. The 3-500Z Design Program Listing.

10 PRINT "3-500Z Grounded-Grid Characteristics"
20 PRINT "Subroutines Copyrighted 1967, W.J. Byron"
30 PRINT "All rights reserved"
40 INPUT "Enter Plate Supply Voltage, Ebb":E3
50 PRINT "EXCESSIVE PLATE VOLTAGE!":GOTO 190
60 INPUT "Enter Peak Plate Current, Ip":I1
70 IF I1<1.6 THEN PRINT "EXCESSIVE PEAK CURRENT!":GOTO 290
80 INPUT "Enter Minimum Plate Voltage, Emin":E4
90 IF E4<150 THEN PRINT "HIGH GRID CURRENT AREA!":GOTO 210
100 IF I1<1.4 AND E4<250 OR E4>4500 THEN PRINT "OUT OF BOUNDS":GOTO 210
110 IF I1>4.4 AND E4<1450 OR E4<3000 OR I1=I1.4 AND E4<1500 THEN PRINT "OUT OF BOUNDS":GOTO 210
120 INPUT "Enter Cathode Bias Voltage (Zener)":E2
130 IF E2<0 THEN PRINT "Negative Cathode Bias Not Permitted!":GOTO 230
140 PRINT "CALCULATING..."
150 PRINT "RADIO FREQUENCY LINEAR AMPLIFIER"
160 PRINT "Cathode Drive, Class AB2"
170 PRINT "--"
180 PRINT "--"
190 PRINT "--"
200 PRINT "--"
210 PRINT "--"
220 PRINT "--"
230 PRINT "--"
240 PRINT "--"
250 PRINT "--"
260 PRINT "--"
270 PRINT "--"
280 PRINT "--"
290 PRINT "--"
300 PRINT "--"
310 PRINT "--"
320 PRINT "--"
330 PRINT "--"
340 PRINT "--"
350 PRINT "--"
360 PRINT "--"
370 PRINT "--"
380 PRINT "--"
390 PRINT "--"
400 PRINT "--"
410 PRINT "--"
420 PRINT "--"
430 PRINT "--"
440 PRINT "--"
450 PRINT "--"
460 PRINT "--"
470 PRINT "--"
480 PRINT "--"
490 PRINT "--"
500 PRINT "--"
510 PRINT "--"
520 PRINT "--"
530 PRINT "--"
540 PRINT "--"
550 PRINT "--"
560 PRINT "--"
570 PRINT "--"
580 PRINT "--"
590 PRINT "--"
600 PRINT "--"
610 PRINT "--"
620 PRINT "--"
630 PRINT "--"
640 PRINT "--"
650 PRINT "--"
660 PRINT "--"
670 PRINT "--"
680 PRINT "--"
690 PRINT "--"
700 PRINT "--"
710 PRINT "--"
720 PRINT "--"
730 PRINT "--"
740 PRINT "--"
750 PRINT "--"
760 PRINT "--"
770 PRINT "--"
780 PRINT "--"
790 PRINT "--"
800 PRINT "--"
810 PRINT "--"
820 PRINT "--"
830 PRINT "--"
840 PRINT "--"
850 PRINT "--"
860 PRINT "--"
870 PRINT "--"
880 PRINT "--"
890 PRINT "--"
900 PRINT "--"
910 PRINT "--"
920 PRINT "--"
930 PRINT "--"
940 PRINT "--"
950 PRINT "--"
960 PRINT "--"
970 PRINT "--"
980 PRINT "--"
990 PRINT "--"
NEW SUPER LONG PLAY TAPE RECORDERS
12 Hour Model — $105.00
USES D-120 TAPE

Modified Parascopic Silline, high quality AC-DC
Recorders provide 8 continuous hours of quality
recording & playback on
each of cassette for a
total of 12 hours.
Built-in features include:
• Voice level control, • Digital
counter, etc. TDK DC-120

PHONE RECORDING ADAPTER
Records calls automatically. All Solid
state connects to your telephone
jack and tape recorder. Starts
recording when phone is lifted.
Stops when you hang up.

$24.50

VOX VOICE ACTIVATED CONTROL SWITCH
Solid state. Self contained. Adjustable
sensitivity. Voices or other
control automatic and
control recorder. Uses either 16
or remote.

$24.95

COMMUTERIZE YOUR SHACK
YAESU 747, 757GX, 757GXII, 767, 9600.
KENWOOD TS 440, TS 940.
ICOM RTJ6, RT60, 735, 751A.
DRIVERS FOR RADIOS ARE MODULAR.
NEW MODELS BEING ADDED EVERY DAY.

COMPLETE PROGRAM ENVIRONMENT
MENU DRIVEN AND DESIGNED FOR EASE
OF USE.
SCAN FUNCTION ADDED TO RADIOS THAT DO
NOT SUPPORT IT.

MENUS FOR THE FOLLOWING:
AMATEUR HF—AMATEUR VHF—
AMATEUR UHF
AM BROADCAST—FM BROADCAST—
TELEVISION BROADCAST—
SHORT WAVE BROADCAST
AVIATION HF(SSB)—AVIATION VHF—
AVIATION UHF
HIGH SEA MARINE—VHF MARINE
MISCELLANEOUS HF, VHF, UHF
MOST POPULAR FREQUENCIES ALREADY
STORED.
ADDITIONAL LIBRARIES AVAILABLE
COMPLETE LOGGING FACILITY
ALL FREQUENCY FILES MAY BE ADDED TO,
EDITED OR DELETED
AVAILABLE FOR IBM PC, XT, AT, 80386 256K RAM
1 SERIAL PORT AND 1 FLOPPY DRIVE

PROGRAM WITH INITIAL LIBRARIES
$99.95
AS — 230 TO TIL INTERFACE ONLY
NEEDED IF DON'T HAVE MANUFACTURERS
INTERFACE ALLOWS 4 RADIOS
SPECTRUM ANALYZER MODULE
(CALL FOR PRICE)

DATACOM, INT.
8081 W. 21ST. LANE
HALEAH, FL 33016
AREA CODE (305) 822—5792
Radio Shack Parts Place™
Hams! Shop The Shack® for Parts and Accessories

"Hotline" Service
Your Radio Shack store manager can special-order many parts and accessories not in our catalog—tubes, semiconductors, crystals, photolactics and more. No minimum order, no service charge! Try it!

Novice Exam Kit
Quickly prepares you for the enhanced Novice exam. Two casette recordings for self-paced Morse code learning plus practice exam questions and answers to help you get ready for the test.

Drive a Bargain! Mobile Accessories
(1) Extension Speaker. Adjustable base. 10-foot cable with "80" mini-plug. Rated 5 watts, 6 ohms. #21-549 12.95
(2) Dynamic Mic. Features shielded, coiled cord and DIN-type plug. 21-1172 14.95

Audio Connectors
(1) 8-Pin Mike Plug. #274-025 . 2.19
(2) Headphone Adapter. 1/4" stereo plug to 7/8" mono jack. #274-346 . 1.89
(3) Adapter. Connects 1/4" plug to 7/8" jack. #274-325 . 1.49
(4) HT Special Adapter. #274-381 . 1.79

Auto Power Cords
(1) Heavy-Duty Lighter Plug/Cord. Fused. 8-ft cord. #270-154 38.99
(2) Accessory Outlet. #270-1538 . 4.99
(3) 2-Outlet Y-Adapter. #270-1538 . 4.99
(4) 10-Foot Extension Cord. Rated 8 amps. #270-1538 . 4.99

Toolbox "Musts"
(1) Pocket Brazing/Soldering Torch. Flame to 500°F. #64-2165 . 25.95
(2) STUDDIFIER. Electronically locates the exact centers of studs. Battery extra. #64-2825 . 19.95

Antenna Rotor
Archector®. Tops for many VHF beams, small loaded HF beams and rotatable dipole. Includes indoor control unit, rotor and hardware. Battery extra. UL listed. #15-1225 . 59.95
Roto-Cable. 100 feet. #15-1150 . 7.95

BNC Connectors
(1) UG-88 Male BNC. For RG-58 cables. #270-803 . 2.89
For RG-58/RG-62 Cables. #278-104 . 2.59
(2) 1084 Female. #278-105 . 1.39
(3) UG-914 Adapter. #278-115 . 2.19
(4) UG-306 Right-Angle Adapter. Male to Female. #278-116 . 4.29

Headset HT Pair
Voice Actuated, 49-MHz FM Operation
Realistic® TRC-500. Talk hands-free—perfect for antenna installation teams. Batteries extra. #21-400 . Pair 69.95

Power Parts
(1) AC-to-CEE Power Cord. UL listed. #278-1271 . 3.99
(2) 120VAC to 12VDC Adapter. Rated up to one amp. UL listed. #273-1653 . 18.95
(3) Regulated 2.5A, 13.8VDC Power Supply. UL listed. #22-120 . 39.95

Electronics Calc
Our EC-4035 accepts input and displays answers using common electrical symbols! Has 110 functions including trig and statistics. Features gamma functions and complex number calculations. With batteries. #295-983 . 37.95

Bench Multimeter
Our best! Features 31-segment analog bar-graph display. min/max hold, autoranging with manual override, buzzer continuity, tests diode junctions, measures AC/DC voltage/current and resistance. Batteries extra. #22-195 . 59.95

Radio Shack Has A Full Line of Ham Accessories For Every Budget
(1) Outdoor RF Seal. #278-1645 . 2.49
(2) PL-259 Plug. #278-205 . 2.99
(3) RG-59/8M Reducer. #278-204 . 2.99
(4) RG-58 Reducer. #278-206 . 2.99
(5) PL-258 Coupler. #278-1669 . 1.49
(6) M-358 T-Adapter. #278-1669 . 2.99

Coax Cable and RF Connectors
(1) Premium-quality coax cable.
(2) Outdoor RF Seal. #278-1645 . 2.49
(3) PL-259 Plug. #278-205 . 2.99
(4) RG-59/8M Reducer. #278-204 . 2.99
(5) RG-58 Reducer. #278-206 . 2.99
(6) PL-258 Coupler. #278-1669 . 1.49
(7) M-358 T-Adapter. #278-1669 . 2.99

Coax Cable Tools
(1) Coax Cable Stripper. The perfect stripper—adjustable for RG6, 59, 59.8, 62 and 62 cables. others from 1/4" to 3/4" dia. #278-240 . 11.95
(2) Coax Cable Cutter. Maintains accuracy—curved blades don't flatten cable. #278-244 . 4.95

Over 1000 items in stock: Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Wire, Zeners and More!

*Revolving credit from Radio Shack. Actual payment may vary depending on your account balance.

Prices apply at participating Radio Shack stores and dealers.
S P R I N G I N T O A T V S A L E

Now you can get into this exciting mode with our all in one box TC70-1 70cm ATV Transceiver at the 1988 Spring Sale reduced price from $299 to only $269 delivered.

TC70-1 FEATURES:
- Sensitive UHF GaAsfet tuneable downconverter for receiving
- Two frequency 1 watt p.e.p. transmitter, 1 crystal included
- Crystal locked 4.5 MHz broadcast standard sound subcarrier
- 10 pin VHS color camera and RCA phono jack video inputs
- PTL (push to look) T/R switching
- Transmit video monitor outputs to camera and phono jack
- Small attractive shielded cabinet - 7 x 7 x 2.5"
- Requires 13.8vdc @ 500 ma. + color camera current

Just plug in your camera or VCR composite video and audio, 70cm antenna, 12 to 14 vdc, and you are ready to transmit live action color or black and white pictures and sound to other amateurs. Sensitive downconverter tunes whole 420-450 MHz band down to channel 3. Specify 439.25, 434.0, or 426.25 MHz transmit frequency. Extra transmit crystal add $15.

*Transmitting equipment sold only to licensed radio amateurs verified in the Callbook for legal purposes. If newly licensed or upgraded, send copy of license. Receiving downconverters available to all starting at $39 (TVC-2).

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any Tech class or higher amateur can get on ATV. If you have a camera you used with a VCR or SSTV & a TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70cm antennas on ATV.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the 440-6 normally used for portable uses like parades, races, search & rescue, damage assessment, etc. For greater DX or punching thru obstacles: 15 watt p.e.p. Mirage D15N or 50 watt p.e.p. D24N or D1010N-ATV.

The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes, computer programs, repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook chapt. 20 & 7 for more info & Repeater Directory for local ATV repeaters.

PURCHASE AN AMP WITH THE TC70-1 & SAVE!
50 WATT WITH D24N-ATV....$469
All prices include UPS surface shipping in cont. USA.

HAMS! CALL (818) 447-4565 NOW OR WRITE FOR YOUR SPRING SALE CATALOG OF ATV PRODUCTS.

12 June 1988
fig. 2. The 3-500Z Constant Current Characteristics Curves with the program boundaries marked. Stay inside the cross-hatched area. The load line is for the solution in fig. 4.

fig. 3. Diagram of the possible movement of the Operating Line. For use with table 1.

"Enter Peak Plate Current, \(i_p \)", "Enter Minimum Plate Voltage, \(E_{\text{min}} \)", and "Enter Cathode Bias Voltage (Zener)".

These four inputs define both ends of the operating line (which you may already have drawn on the curves), and are sufficient to determine all operating parameters. It isn’t actually necessary to draw the line, but it may help to visualize it; one appears in the figure to demonstrate the method.

The main program starts immediately after the last input and calculates a total of fifteen lines of data. Two are input repetitions (Plate Supply Voltage and the Zener Bias); the rest are results of internal calculation by the program. These are the numbers you want. The inputs are repeated in the line just below the heading for the program output as a record of what has been entered. Use them as starting points for any changes you want to make. After the listing there is a question: "Do you wish to change an input—Y or N?" If you enter "Y", the program in turn will ask you, "Which one?" in a menu, and you can change any one of the four inputs until the outputs are to your liking. Any other entry, including "N", will abort the program and you will have to "RUN" again. You can then use the "immediate mode" of BASIC to calculate, for instance, the quiescent plate dissipation (which as a rule of thumb should be somewhere between 30 and 40 percent of the maximum plate dissipation — 500 watts for this tube).

There are some constraints imposed on the initial inputs (see lines 190 through 240). These conditions do not exist at the "Do you wish to change an input?" prompt. Because you are typing the program yourself, you decide whether or not to include them (use your own good judgement). To do so, just duplicate the conditions stated in the lines identified above. The constraints result partly from the maximum values permitted by the manufacturer and partly from my work to limit both maximum grid dissipation and amplifier distortion. The program isn’t valid outside these limits; the manufacturer’s allowable values are the principal reasons for the lower limit of 250 volts for the minimum plate voltage.

Certain changes will occur when the positions of

<table>
<thead>
<tr>
<th>Movement in direction</th>
<th>Results of movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>Higher grid current</td>
</tr>
<tr>
<td></td>
<td>Higher plate current</td>
</tr>
<tr>
<td></td>
<td>Higher input and output</td>
</tr>
<tr>
<td></td>
<td>Higher plate dissipation</td>
</tr>
<tr>
<td></td>
<td>Lower drive impedance</td>
</tr>
<tr>
<td>B:</td>
<td>Reduced efficiency</td>
</tr>
<tr>
<td></td>
<td>Lower input and output</td>
</tr>
<tr>
<td></td>
<td>Reduced grid current</td>
</tr>
<tr>
<td></td>
<td>Increased plate current</td>
</tr>
<tr>
<td>C:</td>
<td>Reduced grid current</td>
</tr>
<tr>
<td></td>
<td>Reduced Plate current</td>
</tr>
<tr>
<td></td>
<td>Reduced input and output</td>
</tr>
<tr>
<td>D:</td>
<td>Higher distortion</td>
</tr>
<tr>
<td></td>
<td>(peak flattening)</td>
</tr>
<tr>
<td></td>
<td>Increased grid current</td>
</tr>
<tr>
<td>E:</td>
<td>Lower distortion</td>
</tr>
<tr>
<td>F:</td>
<td>Increased input and output</td>
</tr>
<tr>
<td></td>
<td>Increased efficiency</td>
</tr>
<tr>
<td></td>
<td>Increased plate dissipation</td>
</tr>
<tr>
<td></td>
<td>(Do not exceed mfg’s max Plate Voltage)</td>
</tr>
<tr>
<td>G:</td>
<td>Lower quiescent plate current</td>
</tr>
<tr>
<td></td>
<td>Lower quiescent plate dissipation</td>
</tr>
<tr>
<td></td>
<td>Increased distortion</td>
</tr>
<tr>
<td></td>
<td>(non-linear “crossover”)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Movement in direction</th>
<th>Results of movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>Higher grid current</td>
</tr>
<tr>
<td></td>
<td>Higher plate current</td>
</tr>
<tr>
<td></td>
<td>Higher input and output</td>
</tr>
<tr>
<td></td>
<td>Higher plate dissipation</td>
</tr>
<tr>
<td></td>
<td>Lower drive impedance</td>
</tr>
<tr>
<td>B:</td>
<td>Reduced efficiency</td>
</tr>
<tr>
<td></td>
<td>Lower input and output</td>
</tr>
<tr>
<td></td>
<td>Reduced grid current</td>
</tr>
<tr>
<td></td>
<td>Increased plate current</td>
</tr>
<tr>
<td>C:</td>
<td>Reduced grid current</td>
</tr>
<tr>
<td></td>
<td>Reduced Plate current</td>
</tr>
<tr>
<td></td>
<td>Reduced input and output</td>
</tr>
<tr>
<td>D:</td>
<td>Higher distortion</td>
</tr>
<tr>
<td></td>
<td>(peak flattening)</td>
</tr>
<tr>
<td></td>
<td>Increased grid current</td>
</tr>
<tr>
<td>E:</td>
<td>Lower distortion</td>
</tr>
<tr>
<td>F:</td>
<td>Increased input and output</td>
</tr>
<tr>
<td></td>
<td>Increased efficiency</td>
</tr>
<tr>
<td></td>
<td>Increased plate dissipation</td>
</tr>
<tr>
<td></td>
<td>(Do not exceed mfg’s max Plate Voltage)</td>
</tr>
<tr>
<td>G:</td>
<td>Lower quiescent plate current</td>
</tr>
<tr>
<td></td>
<td>Lower quiescent plate dissipation</td>
</tr>
<tr>
<td></td>
<td>Increased distortion</td>
</tr>
<tr>
<td></td>
<td>(non-linear “crossover”)</td>
</tr>
</tbody>
</table>
EIMAC's new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1227
Ebb = 3150 Ip = .87 Emin = 250 Bias (Zener) = 5.2

Plate Supply Voltage = 3150 Volts
Cathode Bias (Zener) = 5.2 Volts
Zero Signal Plate Current = 67 mA dc
Single-Tone Plate Current = 278 mA dc
Single-Tone Grid Current = 90 mA dc
Grid Power Dissipation = 6 Watts
Peak RF Cathode Voltage = 87.8 Volts
Feed-through Power = 19 Watts
Grid Drive Power = 25 Watts
Total Cathode Drive Power = 50 Watts
Cathode Drive Impedance = 152.2 Ohms
Power Input = 878 Watts
PEP Power Output = 617 Watts
Plate Dissipation = 279 Watts
Plate Load Impedance = 6806 Ohms

Do you want to change an input - Y or N?

fig. 4. Program output for the design for two parallel 3-500Zs with 3150 plate supply volts, and 100 watts total drive.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Program Mfgr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Supply Voltage</td>
<td>1500 1500</td>
</tr>
<tr>
<td>Cathode Bias</td>
<td>0 0</td>
</tr>
<tr>
<td>Quiescent Plate Current</td>
<td>51 65</td>
</tr>
<tr>
<td>Single-Tone Plate Current</td>
<td>403 400</td>
</tr>
<tr>
<td>Single-Tone Grid Current</td>
<td>142 130</td>
</tr>
<tr>
<td>Grid Drive Power</td>
<td>51 49</td>
</tr>
<tr>
<td>Cathode Impedance</td>
<td>134 94</td>
</tr>
<tr>
<td>Power Input</td>
<td>606 600</td>
</tr>
<tr>
<td>PEP Output</td>
<td>330 330</td>
</tr>
<tr>
<td>Plate Load Impedance</td>
<td>1602 1600</td>
</tr>
</tbody>
</table>

Table 2. Comparison of calculated and manufacturer’s data.

points "I_p" and "Q" are moved. Figure 3 is a schematic showing what to expect when shifting the points. Use it in conjunction with table 1. It is essential that you be familiar with these principles — that’s the only way you will accomplish your final design.

how well does the program work?

The proof is in the performance. A sample of the program output appears as fig. 4, which is also the demonstration of a design using two parallel 3-500Zs. It looks just like the manufacturer’s list of typical operating data.

Table 2 compares the program-calculated data with those published by ELMAC under the heading “Typical Operating Data”. The results of trying to match two sets (at 1500 volts and 3500 volts) are compared in the table. The manufacturer’s data came from the latest technical data sheets for the 3-500Z (the revision effective April 1, 1986). I have culled all except the directly comparable data from the table; they are remarkably close. Figures 5 and 6 are the program outputs for the 1500- and 3500-volt cases.

parallel operation

All the tables reflect data for one tube. If you choose a two-tube parallel operation, all currents and power levels must be doubled. All impedances (such as the cathode drive and plate load impedances) must be halved. Voltages remain unchanged.

A hypothetical design demonstration follows:

Suppose you have a power transformer that will deliver 3500 volts dc at no load. A typical power supply voltage will sag about 10 percent under load, so enter 3150 for E_bb. Now suppose that you have 100 watts of drive (PEP) from the exciter, and you also want to have the most power available from the amplifier.
MFJ multi-mode data controller

MFJ shatters the 6 mode barrier and the price barrier with the MFJ-1278 and gives you... Packet, RTTY, ASCII, CW, WEFAX, SSTV and Contest Memory Keyer... 7 digital modes... for an affordable $249.95

Amateur radio's newest multi-mode data controller -- the MFJ-1278 -- lets you join the fun on Packet, RTTY, ASCII, CW, Weather FAX, SSTV and gives you a full featured Contest Memory Keyer mode... you get 7 modes... for an affordable $249.95.

Plus you get high performance HF/VHF/CW modems, software selectable dual radio ports, precision tuning indicator, 32K RAM, AC power supply and more.

You'll find it the most user friendly of all multi-modes. It's a menu driven for ease of use and command driven for speed.

A high resolution 20 LED tuning indicator lets you tune in signals fast in any mode. All you have to do is to center a single LED and you're precisely tuned in to within 1 Hz and it shows you which way to tune!

All you need to join the fun is an MFJ-1278, your rig and any computer with a serial port and terminal program.

You can use the MFJ Starter Pack to get on the air instantly. It includes computer interfacing cable, terminal software and friendly instructions... everything you need to get on the air fast. Order the MFJ Starter Pack (MFJ-1283) for the C-64/128 and VIC-20 or MFJ-1284 for the IBM or compatible. $19.95 each.

Packet
Packet gives you the fastest and most reliable error-free communications of any amateur digital mode.

With MFJ's superclone of the industry standard -- the TAPR TNC-2 -- you get genuine TAPR software/hardware plus more... not a "work-a-like" imitation.

Extensive tests published in Packet Radio Magazine ("HF Modem Performance Comparisons") prove the TAPR designed modem used in the MFJ-1278 gives better copy with proper DCD operation under all tested conditions than the other modems tested.

Hardware DCD gives you more QSOs because you get reliable carrier detection under busy, noisy or weak conditions.

A hardware HDLC gives you full duplex operation for satellite work or for use as a full duplex digipeater. And, it makes possible speeds in excess of 56K baud with a suitable external modem.

Good news for SYSOPs! New software lets the MFJ-1278 perform flawlessly as a WORLI/WA7MLB bulletin board TNC.

Baudot RTTY
You can copy both shifts and all standard speeds including 170, 425 and 800 Hz shifts and speeds from 45 to 300 baud. You can copy not only amateur RTTY but also press, weather and other exciting traffic.

A high performance modem lets you copy both mark and space for greatly improved copy under adverse conditions. It even tracks slightly drifting signals.

You can transmit both narrow and wide shifts. The wide shift is a standard 850 Hz shift with mark/space tones of 2125/2975 Hz. This lets you operate MARS and standard VHF FM RTTY.

You get the American Western Union and the International CCITT character sets. Start your own unattended reception and selectable "Diddie".

A receive Normal/Reverse software switch eliminates retuning and Unshift-On-Space requires fewer errors under poor receiving conditions.

ASCII
You can transmit and receive 7 bit ASCII using the same shifts and speeds as in the RTTY mode and using the same high performance modem. You also get Autostart and selectable "Diddie".

CW
You get a Super Morse Keyboard mode, that lets you send perfect CW effortlessly from 5 to 99 WPM, including all prosigns -- it's tailor-made for traffic handlers.

A huge type-ahead buffer lets you send smooth CW even if you "hunt and peck".

You can store entire QSOs in the message memories... you want!

You can link and repeat any messages for automatic CFQs and beaconing. Memories also work in RTTY and ASCII modes.

A tone Modulated CW mode turns your VHF FM rig into a CW transceiver for a new fun mode. It's perfect for transmitting code practice over VHF FM.

An ASCII CW mode lets you QTY in CW. The CW receive mode lets you copy from 1 to 99 WPM. Even with sloppy fists you'll be surprised at the copy you'll get with its powerful built-in software.

You also get a random code generator that'll help you copy CW faster.

Weather FAX
You'll be fascinated as you watch WEFAX signals blossom into full fledged weather maps on your printer.

Other interesting FAX pictures can also be printed -- such as some news photographs from wire services.

Any Epson compatible printer will print a wealth of interesting pictures and maps.

Automatic sync and stop lets you set it and leave it for no hassle printing.

You can save FAX pictures and WEFAX maps to disk if your terminal program lets you save ASCII files to disk.

Pictures and maps can be printed to screen in real time or from disk on IBM and compatibles with the MFJ-1284 Starter Pack.

You can transmit FAX pictures right off disk and have fun exchanging and collecting them.

Slow Scan TV
The MFJ-1278 lets you exchange pictures with thousands of SSTVers all-over-the-world.

You'll not only see what your ham buddies look like but you can send your own pictures to them, too.

You can print slow scan TV pictures on an Epson compatible printer. If you have an IBM PC or compatible you can print to screen in near real time or from disk with the MFJ-1284 Starter Pack.

You can transmit slow scan pictures right off disk -- there's no need to set up lights and a camera for a casual contact.

You can save slow scan pictures on disk from over-the-air QSOs, audio tapes and other sources if your terminal program lets you save ASCII files.

The MFJ-1278 transmits and receives 8, 5, 12, 24, and 36 second black and white format SSTV pictures using two levels.

Contest Memory Keyer
Nothing beats a quick response of a memory keyer during a heated contest.

You'll score valuable contest points by completing QSOs so fast you'll leave your competition behind. And you can snag rare DX by slipping in so quickly you'll catch everyone by surprise.

You get iambic operation with dot-dash memories, self-completing dots and dashes and jamproof spacing.

Message memories let you store contest CQs, call info... everything you want to repeat over and over. You'll save precious time and work more QSOs.

You get automatic incremental serial numbering. In a contest it can make the difference between winning and losing.

A weight control lets you penetrate QRM with a distinctive signal or let's your transmitter send perfect sounding CW.

More Features
Turn on your MFJ-1278 and it sets itself to match your computer baud rate.

Select your operating mode and the correct modem is automatically selected.

Plus... printing in all modes, threshold control for varying band conditions, tone-up command, lithium battery backup, RS-232 and TTL level serial ports, watch dog timer, FSK and AFSK outputs, output level control, speaker jack for both radio ports, test and calibration software, Z-80 at 4.9 MHz, 32K EPROM, and socketed ICS. FCC approved.

Get yours today and join the fun crowd!

FOR YOUR NEAREST DEALER or to order call toll free 800-647-1800

One Year Unconditional Guarantee

MFJ ENTERPRISES, INC.
Box 494, Miss. State, MS 39762
601-323-5869 Telex: 53-4590 MFJSTK

MFJ... making quality affordable
The program was run with initial inputs of 3150 volts, 1.0 A (chosen as a starting point), 250 volts, and 5.2 volts. The Zener was chosen as 5.2 volts because it is about the same bias voltage as that used in the Heath SB-220. It proved to be a good choice. By reducing \(i_p \) incrementally via the menu, the calculated drive power was reduced to 50 watts exactly (for one tube). It occurred when the max plate current \((i_p) \) reached 0.87 A (see fig. 4). By "doubling and halving," the resulting numbers for two tubes in parallel are:

- **Plate Supply Voltage** = 3150 volts
- **Cathode Bias** = 5.2 volts
- **Zero Signal Plate Current** = 134 mA dc
- **Single-Tone Plate Current** = 556 mA dc
- **Single-Tone Grid Current** = 180 mA dc
- **Feed-Through Power** = 38 watts
- **Total Cathode Drive** = 100 watts

Table: Program Output for 3150 Volts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebb</td>
<td>1500</td>
</tr>
<tr>
<td>Ip</td>
<td>1.31</td>
</tr>
<tr>
<td>Emin</td>
<td>≈ 70</td>
</tr>
<tr>
<td>Bias (Zener)</td>
<td>0</td>
</tr>
<tr>
<td>Plate Supply Voltage</td>
<td>1500 Volts</td>
</tr>
<tr>
<td>Cathode Bias (Zener)</td>
<td>0 Volts</td>
</tr>
<tr>
<td>Zero Signal Plate Current</td>
<td>51 mA dc</td>
</tr>
<tr>
<td>Single-Tone Plate Current</td>
<td>403 mA dc</td>
</tr>
<tr>
<td>Single-Tone Grid Current</td>
<td>142 mA dc</td>
</tr>
<tr>
<td>Grid Power Dissipation</td>
<td>14 Watts</td>
</tr>
<tr>
<td>Peak RF Cathode Voltage</td>
<td>117.9 Volts</td>
</tr>
<tr>
<td>Feed-through Power</td>
<td>38 Watts</td>
</tr>
<tr>
<td>Grid Drive Power</td>
<td>51 Watts</td>
</tr>
<tr>
<td>Total Cathode Drive Power</td>
<td>103 Watts</td>
</tr>
<tr>
<td>Cathode Drive Impedance</td>
<td>134.4 Ohms</td>
</tr>
<tr>
<td>Power Input</td>
<td>605 Watts</td>
</tr>
<tr>
<td>PEP Power Output</td>
<td>330 Watts</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>312 Watts</td>
</tr>
<tr>
<td>Plate Load Impedance</td>
<td>1602 Ohms</td>
</tr>
</tbody>
</table>

Do you want to change an input - Y or N?

Table: Program Output for 3500 Volts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ebb</td>
<td>3500</td>
</tr>
<tr>
<td>Ip</td>
<td>1.25</td>
</tr>
<tr>
<td>Emin</td>
<td>350</td>
</tr>
<tr>
<td>Bias (Zener)</td>
<td>15</td>
</tr>
<tr>
<td>Plate Supply Voltage</td>
<td>3500 Volts</td>
</tr>
<tr>
<td>Cathode Bias (Zener)</td>
<td>15 Volts</td>
</tr>
<tr>
<td>Zero Signal Plate Current</td>
<td>25 mA dc</td>
</tr>
<tr>
<td>Single-Tone Plate Current</td>
<td>396 mA dc</td>
</tr>
<tr>
<td>Single-Tone Grid Current</td>
<td>129 mA dc</td>
</tr>
<tr>
<td>Grid Power Dissipation</td>
<td>11 Watts</td>
</tr>
<tr>
<td>Peak RF Cathode Voltage</td>
<td>116.6 Volts</td>
</tr>
<tr>
<td>Feed-through Power</td>
<td>37 Watts</td>
</tr>
<tr>
<td>Grid Drive Power</td>
<td>49 Watts</td>
</tr>
<tr>
<td>Total Cathode Drive Power</td>
<td>97 Watts</td>
</tr>
<tr>
<td>Cathode Drive Impedance</td>
<td>137.1 Ohms</td>
</tr>
<tr>
<td>Power Input</td>
<td>1306 Watts</td>
</tr>
<tr>
<td>PEP Power Output</td>
<td>991 Watts</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>430 Watts</td>
</tr>
<tr>
<td>Plate Load Impedance</td>
<td>5001 Ohms</td>
</tr>
</tbody>
</table>

Do you want to change an input - Y or N?

fig. 5. Program output for duplicating the manufacturer's data for 1500 plate supply volts.

fig. 6. Program output for duplicating the manufacturer's data for 3500 plate supply volts.
Cathode Drive Impedance = 76 ohms
Power Input = 1756 watts
PEP Power Output = 1234 watts
Plate Load Impedance = 3403 ohms

The actual power output would be (1234 + 38) or 1272 watts because of the feed-through power. Total plate dissipation would be 559 watts. The design can proceed from here.

Always keep the manufacturer's maximum ratings in mind. Two appropriate values to monitor are the plate dissipation and the maximum plate voltage. Another more important one is grid dissipation, also calculated by the program. Normally you will never exceed all the maximum ratings at once — but stay alert to assure that it doesn't happen. This program should be accompanied by the manufacturer's tube data sheets.

comments

In table 2 there are two lines which show some discrepancies; neither of these is very important. They involve plate quiescent current and cathode drive impedance. These numbers agree with those calculated by hand from the EIMAC Bulletin No. 5 "Tube Performance Computer". Even so, the table 2 “worst-case” discrepancy (cathode drive impedance for the 1500-volt case) would result in a VSWR of only 1.4. Everything else came out much better than I expected.

My program is complicated and takes lots of time. But remember that when the work is done, the resulting program will simulate data for an operational circuit. It should be emphasized that "real" tubes may produce numbers which differ by as much as ± 10 percent in the main part of the characteristics curves. Though I have made many design calculations with the aid of this program, I certainly have not challenged every possible entry. I would be interested in your results. Let know if there are any “glitches” in the program, and send me your suggestions for improvements.

I plan to put several design programs on disk. I have done this same routine for the 3CX1200A7; the routines for the 8877 are half-finished. I will tackle each tube type in succession until most of the common tubes are covered. In the meantime, I hope you have good results with this 3-500Z design program.

acknowledgment

Thanks to Frank Chess, K3BN, who helped with the programming. It was his idea to echo the inputs at the heading of the output routine.

references

3. Available from Varian/EIMAC, 1678 Pioneer Road, Salt Lake City, Utah 84104

Ham Radio
designing a station
for the microwave bands: part 2

A complete 10-GHz Amateur SSB/CW station

Part 1 discussed why the microwave Amateur bands may be better than lower frequencies for many applications, though in the past Amateurs have viewed them as line-of-sight realms. It described some of the inherent advantages microwaves have for point-to-point communication, even over modern higher power hf, VHF, or UHF stations. These advantages make them very attractive for high volume, high data rate communications like those required for Amateur networking.

A local oscillator frequency scheme using common pc boards was presented. It can be used to get a station on all of the Amateur microwave bands with a minimum of redundant construction. This scheme uses conventional lower frequency components, readily available microwave oscillators, and only a small amount of additional microwave construction to produce a high quality narrowband station. Part 1 and the rest of this series demonstrate this approach by describing construction of a complete 10-GHz Amateur SSB/CW station — the station that holds one end of the current North American 10-GHz DX record of 414 miles.

spectral purity

The cornerstone of this station is a spectrally pure and stable 1010-MHz oscillator. Spectral purity, sometimes overlooked more than it should be even on the hf bands, is of particular importance when operating on microwave frequencies. This is because the “contamination” produced by angular (phase or frequency) modulation of a low-frequency reference signal is multiplied right along with the signal itself when a harmonic is used in a microwave system. The fact that drift and frequency errors are multiplied is well known to anyone who tries to “net” a pair of fm transceivers on 1200 or even 440 MHz. However, these frequency domain “imperfections” are members of a whole class of impurities given the name “phase noise”. Even a quartz oscillator in a modern hf transceiver exhibits this to some degree. In a well-designed oscillator the “cleanliness” of a signal is related to its operating frequency. On the Amateur hf bands these noise characteristics may be so small relative to normal signal-to-noise ratios that they are unobservable, except perhaps as an increase in background noise level down the band from a local “big gun”. Some of the early synthesized ham band transceivers exhibited this as noise “humps” a few kHz either side of the carrier frequency on both transmit and receive. Commercial Amateur equipment has improved to the point where fundamental overload or other factors usually come into play before the phase noise of the local oscillators is observed. However, as higher frequencies are required and higher harmonic multiples of reference oscillators are used, these unwanted components are multiplied. The relative amplitude of these unwanted signals follows a $20 \log N$ rule, where N is the harmonic number. This means that on the tenth harmonic of a signal, the phase noise sidebands can be expected to increase by $20 \log 10$ or 20 dB. The 100th harmonic will be 40 dB worse than the fundamental. Consequently, a “clean” signal at 10 MHz, one with say $-90 \text{ dB} \text{C}$ (dB relative to the carrier) noise sidebands or fm spurious signals, might be 60 dB worse at 10 GHz, or $-30 \text{ dB}C$. On an S9 signal such noise might be barely audible; however, if the fundamental oscillator was only -60 dB the resulting microwave signal might be unusable for communications. Because the 1010-MHz oscillator and its harmonics provide a local oscillator signal for a narrowband station, spectral purity must be maintained. Although a PLL can serve to “clean up” a poorer oscillator at frequencies close in to the carrier, no improvement is made.

By Glenn Elmore, N6GN, 3528 Deerpark Drive, Santa Rosa, California 95404

June 1988
Beyond the PLL bandwidth. For this reason the best available oscillator should be used.

1-GHz reference oscillator

This oscillator can be used as the LO for a 1296-MHz signal mixer directly, as well as for the microwave harmonic downconverter reference at microwave frequencies. The active device is an inexpensive bipolar transistor. A coaxial resonator is made from pc board and brass tubing. Three separate buffered outputs are provided for phase locking, downconverter reference, and 1296-MHz signal mixer LO. The oscillator is tuned with the same UHF TV tuner diode used in the 100-MHz reference along with a short length of wire coupled to the resonator at the low-impedance end. This provides approximately ±3-MHz tuning range around a 1010-MHz center frequency.

Oscillator tuning is somewhat novel; it works in much the same way as “loop modulation” of early radio days. Free running high-power oscillators were used with a carbon microphone connected across a single-turn loop located in the vicinity of a frequency determining inductor. As the operator spoke into the microphone the resistive load across the loop varied, which in turn modulated the loop current. Because this was an induced current, it tended to produce an opposing flux which effectively varied the net tank inductance and frequency modulated the oscillator. The technique works, but be careful not to couple too closely or extract so much energy from the tank that you burn up the microphone — not to mention the operator!

The method used here doesn’t extract much power from the tank, as the load the varicap presents to the loop is mostly reactive. Any such dissipation is undesirable as it acts to lower the operating Q of the resonator. The varicap value and coupling wire inductance are chosen to be below self-resonance for any tuning voltage. This is done to limit the maximum current and control energy loss in the tuning circuit resistances. If the tuning circuit tunes too close to resonance, oscillation may stop. With nominal loop dimensions and the indicated varicap, the 1010-MHz oscillator tunes with a nearly straight frequency/voltage tuning curve. The 5-MHz tuning range is ample to maintain lock once the other loops and coarse tuning are adjusted to center the output frequency.

Two versions of this oscillator have been built. The first uses a quarter-wave line allowing physically smaller construction, but requiring a dielectric support for the high-impedance end of the line to obtain the lowest “microphonics”. The second approach uses a
Hi Pro HPC201 MICROPROCESSOR REPEATER CONTROLLER & AUTO PATCH

HPC201E DELUXE MICRO COMPUTER
AS SHOWN
THE AUTO PATCH IS CAPABLE OF 60 EMERGENCY AND 300 USER SPEED DIAL NUMBERS & INFORMATION TO PROGRAM THE SPEED DIALER SUPPLIED WITH ORDER.

THE HP201E DELUXE MICRO COMPUTER IS AVAILABLE FOR LESS THAN $500.00 COMPLETE

LISTED BELOW ARE SOME OF THE FEATURES AND FUNCTIONS OF THE HP201E DELUXE CONTROLLER & AUTO PATCH

#1 MICROPROCESSOR CONTROL WITH 16 DIGIT DECODER
#2 USER PROGRAMMABLE CODES BY RADIO OR TELEPHONE
#3 USER PROGRAMMABLE I.D. BY RADIO OR TELEPHONE
#4 REPEATER RINGUP AUTO PATCH WITH ON OFF CODES
#5 UNIVERSAL PULSE DIALER WITH ADJUSTABLE SPEED
#6 SINGLE OR MULTI DIGIT AUTO PATCH ACCESS CODE
#7 AUTO PATCH TIMER TIME OUT WARNINGS
#8 CALLER CONTROLLED REVERSE AUTO PATCH WITH USER PROGRAMMABLE ACCESS CODES
#9 EXCUTEN AUTO PATCH AUDIO WITH ADJ. INPUT & OUTPUT LEVELS
#10 SMART AUTO PATCH
#11 DIAL 9 FIRST, PBX FEATURE
#12 SEPERATE REVERSE AUTO PATCH ON/OFF COMMAND
#13 COMPUTER PRINTOUT OF SPEED DIALER NUMBERS
#14 TOLL Restrict With ON/OFF COMMAND AND ADJ. MIN. AND MAX. NUMBER OF DIGITS TO BE DIALED
#15 COURTEOUS TONE NOTIFICATION OF A.P. STATUS
#16 USER AND EMERGENCY SPEED DIALER INHIBIT
#17 REDIAL CAPABILITY OF LAST NUMBER DIALED
#18 EXPANDABLE TO OVER 800 SPEED DIAL NUMBERS

#19 INPUT TO DISABLE AUTO PATCH WHEN LINE IS IN USE, ALLOWING MULT. USE OF PHONE LINE
#20 TRANSMITTER SHUTDOWN WITH PRESENCE OF TONE
#21 UNIQUE TONE NOTIFICATION OF A P DISCONNECT
#22 ADJUSTABLE AUTO PATCH TIME OUT TIMER
#23 DTMF TONE MUTE AND COVER TONE MASKING
#24 REPEATER TIME OUT TIMER WARNINGS
#25 PROGRAMMABLE IDENTIFIER OVER THE AIR AND OVER THE PHONE LINE
#26 SEVEN DIGIT CONTROLLER COMMAND CODES
#27 SMART CW IDENTIFIER, IDENTIFIES AFTER INPUT CARRIER DROPS AND AFTER FINAL Q50
#28 D.K. NOTIFICATION OF VALID FUNCTION CHANGE
#29 BATTERY BACKUP NOTIFICATION WITH BATTERY BACKUP CAPABILITY
#30 CAN BE ORDERED TO USER INITIAL POWER UP FUNCTIONS AND MASTER CODE AND IT ALL WILL LISTED ON THE SUPPLIED COMPUTER PRINT OUT.
#31 BURGLAR AND FIRE ALARM INPUT WITH SPECIAL ALERT FUNCTION
#32 SEVEN 500 MA OPEN COLLECTOR CONTROLLER OUTPUTS

HERE IS A LOW COST REPEATER CONTROLLER AND AUTO PATCH THAT ANYONE CAN AFFORD WITH A CHOICE OF STANDARD OR DELUXE PROGRAMS JUST JAMM PACKED WITH OWNER AND USER FUNCTIONS. THE SMALL SIZE ALONG WITH LOW CURRENT DRAIN AND STATE OF THE ART DESIGN WITH ALL FEATURES REQUIRED FOR TODAY'S DEMANDING REPEATER OWNERS AND OPERATORS.

OVER 80 USER FUNCTIONS

ASK ABOUT OUR REPEATERS, LINKS, RECEIVERS, TRANSCEIVERS, C.O.R.'S AND COMPLETE REPEATER SYSTEMS

PLUS MUCH — MUCH — MORE

Maggiore Electronic Laboratory
600 WESTTOWN RD. TELEX: 499-0741-MELCO
WEST CHESTER, PA 19382 PHONE 215-436-6051

WRITE OR CALL FOR OUR COMPLETE CATALOG

Reader Service CHECK — OFF Page 98
The 1010-MHz oscillator is built from pc board and copper flashing. The assembly is divided into three compartments — one for the resonator and one each for the oscillator and signal amplifier circuits. Minimum lead length is used when components are soldered directly to the circuit board material.

The half-wave line and, although longer, is simpler to construct. The quarter-wave version allows tuning versatility by "telescoping" the inner conductor with a length of the next smaller size brass tubing sliding through the center of the fixed tubing. It tuned it continuously from 800 to more than 1200 MHz.

The half-wave version has another advantage. When you place the oscillator transistor with its isolation amplifier on one end of the resonator and signal amplifiers on the other end, the resonator serves to isolate spurious signals which might be present in the downconverter/phase lock circuitry. This "autofiltering" makes it easier to achieve —80 dBc spectral purity at 1 GHz. Similar performance can be obtained with the quarter-wave version, but more stages of isolation and careful shielding are required.
fig. 3. 1-GHz oscillator.

fig. 4. A simple diode detector and voltmeter can measure signal power up through the VHF range. The circuit is useful for relative power measurement well past 1 GHz.

The BFR91 oscillator transistor is optimized to have maximum negative resistance at 1 GHz with the insertion of approximately 7 nH of inductance in its base lead. This inductor is just the 3/8 inch of lead length between the transistor package and the feedthrough capacitor ground on the end wall. The emitter is coupled into the resonator with a loop, also bypassed in a feedthrough capacitor on the same wall. Base and emitter biasing resistors are connected on the outside. The 1-GHz oscillator schematic is shown in fig. 1. Figure 2 shows the mechanical dimensions and positioning for the resonator, feedthrough capacitors, and coupling loops. A photo of the completed oscillator is shown in fig. 3.

collection

The oscillator could be built entirely of pc board, but I chose to make the end walls from copper flashing. This makes it easier to solder the brass tubing after the resonator box has been assembled. The sides, center, ends, and partition should all be punched or drilled before soldering. Holes for the oscillator emitter loop and buffer amplifier input loop are in the center wall. Amplifier transistor emitters and all bypass capacitors can be soldered directly to the board material with virtually no excess lead length. The oscillator emitter lead can protrude right through the center wall hole and be soldered to its coupling loop. An 8-32 brass nut should be soldered to the inside wall of the resonator so that a tuning screw can be inserted later. If possible use 1/8th or 1/16th watt resistors. The physically smaller packages should have less associated inductance. Choose feedthrough capacitors small enough to fit snugly against the brass tubing on the oscillator end. These must be soldered in place since their nuts would otherwise interfere with the brass tubing protruding from the end wall.

adjustment

Begin check-out without tuning screws and apply 12 volts. The oscillator emitter (measured at the outside of its feedthrough capacitor) should sit at about 3.5 volts, and the amplifier transistors should have 6 to 10 volts on their collectors. Collector currents of about 15 mA for the BFR91 and 40 mA for the BFR96 amplifiers are fine. All three outputs should have a load connected; a 50-ohm resistor may be tacked across an unused output as a temporary load. If a power meter or other calibrated detector is not available, an inexpensive power detector may be made (fig. 4). An approximate calibration curve useful through the VHF range is shown in fig. 5. At 1 GHz the curve may not accurately predict the detected power because of differing construction techniques and component characteristics, but the detector should still be useful for determining relative output powers and adjusting the 1010-MHz circuits. I built the detector right on the cable end of the same type of SMB coax connector I used throughout. You can use it to verify ECL outputs as well as oscillator performance.

A 1-GHz frequency counter or a spectrum analyzer

fig. 5. A plot of the detector output voltage as a function of input power shows a useful range from about 0 to +16 dBm (1 to 40 milliwatts).
is extremely useful for tune-up. If such test equipment is not available, build the 1-GHz harmonic downconverter described in the next section. Use it to convert the 1-GHz signal down to the hf range of a general coverage receiver or low frequency counter. If you use a receiver, couple the downconverter lightly or use an attenuator to avoid overload. Overloading can cause confusion because of images and other spurious responses.

With an applied fixed tuning voltage of 6 volts, insert the tuning screw and set the frequency to approximately 1010 MHz. Adjust the emitter loop slightly to assure oscillation while varying the tuning voltage over the 2-to-10 volt varicap tuning range. Reduce coupling by decreasing the area of the loop and positioning it further from the brass tubing. Use the minimum coupling to maintain output so you can avoid unnecessarily loading the resonator and degrading phase noise. This coupling is somewhat dependent on resonator loading by both the tuning circuit and buffer amplifier input loops. Adjust the buffer amplifier loop (made from the coupling capacitor lead) for minimum coupling consistent with maximum power out of the power splitter. Adjust the emitter loop to maintain output over the whole tuning range. Some iteration between these two adjustments may be necessary to arrive at the best settings. If you find that the oscillator dies at the high end of the tuning range, or just above 10 volts, you may need to lower the tuning circuit resonant frequency. Do this by lengthening the tuning inductor slightly. The values shown in the drawing should provide a good starting point and should work without modification. Extreme emitter loop over-coupling can cause "squegging", the output switching rapidly between two frequencies. This is not a problem if the above adjustment procedure is followed. Reduce coupling if you observe spurious sidebands on the unlocked oscillator or find low-frequency oscillations on the bias feedthrough capacitors.

The output amplifier on the signal side is followed by a power splitter made from two 2-inch lengths of semi-rigid coax. This is a simple way to provide two outputs. If only one 1010-MHz source is required, it may be omitted and the single BFR91 buffer amplifier used to provide +10 dBm for a signal mixer. The two-stage amplifier with a BFR96 in the output and the power divider can easily provide two +13 dBm (20 milliwatt) sources.

Once the loops are positioned for proper power output, all that remains is to readjust the tuning screw so the oscillator "free runs" right at the desired frequency. If you adhere to the dimensions for the half-wave version, the oscillator should run at about 1025 MHz with no tuning screw and only the 4.5 volts from the resistive divider on the tuning input. It should tune down mechanically to 1000 MHz without a significant change in output power. When you obtain the proper frequency, secure the tuning screw locking nut. Verify that approximately + and −2 MHz tuning is possible, respectively.

PLL harmonic downconverters

The downconverters themselves are similar, although implementation at 10 GHz is somewhat different from that at 1 GHz. Anti-parallel diodes are used with a diplexer arrangement to couple signals in and out. The downconverter block diagram is shown in fig. 6.

The anti-parallel diode pair is effectively an even harmonic mixer. Its simplicity and built-in protection from overload and static damage make it attractive for this application. Depending on harmonic number and phase-locked oscillator frequency, −30 to −40 dB conversion efficiencies are obtainable even with "ham shack" construction — i.e., discrete components or microstrip circuits cut out of Teflon™ epoxy pc board material with a small hobby knife. The high-pass filter couples the reference fundamental into the diodes; the low-pass filter couples the i-f out. The oscillator can be connected directly to the diode pair through a small capacitor.

At 1 GHz, packaged diodes and discrete capacitors and inductors can be used. Lead length should be kept to a minimum, but otherwise the circuit is extremely simple to build. The diodes generate considerable energy at odd harmonics of 100 MHz. However, the isolation of the 1010-MHz oscillator resonator, not to mention the buffer amplifiers, keeps this energy from showing up in the signal output. These sidebands are for the most part amplitude, not frequency modulated, and don't get "amplified" when higher harmonics of the 1010-MHz signal are used as a reference signal in the 10-GHz downconverter. The PLL i-f signal
ASTRON POWER SUPPLIES

SPECIAL FEATURES
- Heavy Duty
- High Quality
- Rugged
- Reliable

PERFORMANCE SPECIFICATIONS
- Input Voltage: 105-125 VAC
- Output Voltage: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- Ripple: Less than 5mV peak to peak (full load & low line)
- Also available with 220 VAC input voltage

RM SERIES

19” x 5 ¼ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 x 19 x 8 ½</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 ½ x 19 x 12 ½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 ½ x 19 x 12 ½</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters
 - RM-12M: 9, 12
 - RM-35M: 25, 35
 - RM-50M: 37, 50

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 x 4 ½ x 5 ½</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 ½ x 6 ½ x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>5</td>
<td>5</td>
<td>3 ½ x 6 ½ x 9</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>7</td>
<td>7</td>
<td>4 x 7 ½ x 10 ½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 ½ x 10 ½</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 x 7 ½ x 10 ½</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 8 x 10 ½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¼ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 8 x 10 ½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¼ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 8 x 10 ½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¼ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

- Separate Volt and Amp Meters
- Output Voltage adjustable from 2-15 volts
- Current limit adjustable from 1.5 amps to Full Load

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRM-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 19 x 12 ½</td>
<td>38</td>
</tr>
<tr>
<td>VRM-50M</td>
<td>37</td>
<td>50</td>
<td>5 x 19 x 12 ½</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-S SERIES

- Built in speaker

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 ½ x 10 ½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 ½ x 10 ½</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 8 ½ x 10 ½</td>
<td>18</td>
</tr>
</tbody>
</table>

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
IC-900 SIX BANDS IN ONE MOBILE
- Remote Controller, Interface A Unit, Interface B Unit, Speaker, Mic and Cables
- Six Band Units to Choose
- Ten Memories per Band
- Programmable Band Scan
- Fiber Optic Technology

FT-736R VHF-UHF BASE STATION
- SSB, CW, FM on 2 Meters and 70 cm
- Optional 50 MHz, 220 MHz or 1.2 GHz
- 25 Watts Output on 2 Meters, 220 and 70 cm
- 10 Watts Output on 6 Meters and 1.2 GHz
- 100 Memories

SIX BANDS IN ONE MOBILE

Remote
Controller,
Interface A
SSB.
CW. FM on 2 Meters and 70 cm

Interface B
Unit.
Speaker.
MIC

dptional50
MHz. 220 MHz or 1.2
GHz

SIX
Band
Unlls
lo Choose

25 Walt
Oulput
on 2 Meters. 220 and 70 cm

Ten
Memor~es
per Band

Programmable Band scan

@. 10 Watts Output on 6 Meters and 1.2 GHz

SPECIAL PRICE
CALL NOW

KENWOOD

R-5000

KENWOOD

R-2000

BLACK DACRON® POLYESTER
ANTENNA ROPE
- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Authorized Sales & Service—Yaesu ■ Kenwood ■ Icom

HAMTRONICS, INC
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
(215) 357-1400 PA Residents & Service Info.
Hours M,T,W—9-6 Th-F—9-8 Sat.—9-3

Prices subject to change without notice

Order Toll Free
(800) 426-2820

D Born
Borne

P-7V 12 KEY VERT. $53* CALL OR WRITE
P-7H 12 KEY HORIZ. $53* FOR FREE CATALOG
P-8V 16 KEY VERT. $57* Request quantity pricing

Half-Square QRV-DX Monobanders

Work DX with No Tower and No Amplifier. Cut noise, cut near signs, build DX signs, kill QRM.

10 Meters 15 Meters 20 Meters 40 Meters
$29.95 $39.95 $49.95 $69.95

Laminated Pattern, Low Profile, Coax Feed, Ready to Use

Highest DX Gain per Dollar

When ordering add $5 Postage & Handling.

1971 North Oak Lane Antennas West
Provo, UT 84604-2138 (801) 374-1864

Pipo Communications®
P.O. Box 2020
Emphasis is on Quality & Reliability
Piping Pines, California 90728
916-644-5444
FAX-916-644-PIPO

R-7000 Widespan Panadaptor

Panadaptor especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 Mhz. Uncover unknown elusive signals. Complete with all cables, & 90 day warranty. $349.95 Shipped. Pa. res. add 6%.

GTI Electronics
RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

Dtmf/steel keys! sealed gold contacts!

Mail Order To:

Dtmf/steel keys! sealed gold contacts!

Dtmf/steel keys! sealed gold contacts!
from the downconverter is approximately 30 dB below the reference or locked oscillator levels. This conversion loss is made up for in the bipolar amplifier and the two ECL line receivers on the phase-lock circuit. With 10 to 13 dBm reference drive, i-f output doesn’t change dramatically for 0 to 10 dBm oscillator input. Around -30 dBm PLL i-f power is typical for both converters — plenty to drive the last ECL line receiver before the phase comparator well into saturation. The i-f output may actually drop if the oscillator input level is increased too far. The 1-GHz harmonic downconverter schematic diagram is shown in fig. 7. Figure 8 is a photo of the completed 1-GHz downconverter and common PLL board.

The 100-MHz reference signal is bandpass filtered and amplified from the 0-dBm ECL levels. The filtering makes sure that any low level, low-frequency digital signals which might be present on the 100-MHz ECL output don’t “ride” straight through to the PLL i-f amplifiers. Diode drive of 10 to 20 milliwatts is adequate.

The 10-GHz downconverter is functionally the same as the 1-GHz version. Here, however, a pair (or half a quad) of diodes in a small package is used to avoid parasitic inductance and capacitance associated with the larger discrete diodes. Many of the filter elements are made using microstrip techniques instead of lumped components. Chip capacitors are used to minimize parasitic inductance.

Because most of the 10-GHz oscillator power is needed for converting the VHF signal to and from 10 GHz, a hybrid coupler is used to extract only enough to make the PLL downconverter operate. This hybrid has one of its input ports terminated with a discrete resistor. This termination needn’t be very good at 10 GHz, as the object of the coupler is simply to extract a sample of the energy (10 dB or so down) and its directivity isn’t particularly important. Use as physically small a resistor as possible with 0 lead length. All of the high-impedance lines may be made from some small diameter wire and soldered across the wider traces. Number 38 wire should be fine for this.

The signal mixer is shown with the 10-GHz downconverter and can be built on the same board at the same time. This makes it possible to get on the band as soon as the 10-GHz oscillator is locked and a VHF i-f is available. The 10-GHz harmonic downconverter is shown in figs. 9A and 9B. Figure 10 shows a 2:1
The 10-GHz and 1010-MHz downconverters are functionally identical. At 10 GHz, however, microstrip components replace discrete components. A hole is provided in the 1/32 inch Teflon board material under diode ring, D1, to allow shorting the diode leads to the backside ground. Radial transmission lines on these same leads help assure a low-impedance ground connection.

fig. 9. The 10-GHz and 1010-MHz downconverters are functionally identical. At 10 GHz, however, microstrip components replace discrete components. A hole is provided in the 1/32 inch Teflon board material under diode ring, D1, to allow shorting the diode leads to the backside ground. Radial transmission lines on these same leads help assure a low-impedance ground connection.

locking to 1010 MHz

The 1010-MHz common PLL circuit is nearly identical to that of the 100-MHz reference oscillator — only the loop filter values are different. For this loop, the phase comparator VCO input comes from the filtered and amplified output of the 1-GHz harmonic downconverter. A 35-MHz low-pass filter follows the downconverter; the PLL i-f is first amplified by a two-stage controlled-gain amplifier. I used this configuration instead of another ECL line receiver for two reasons: it allowed variation of the stage gain by changing a single resistor value, and the bipolar amplifier has lower bandwidth than the ECL line receiver. The rest of the PLL circuitry is identical to the 100-MHz phase lock except for the loop filter component values. The bandwidth of this loop is set to approximately 50 kHz.

Once the 1010-MHz oscillator is built and adjusted, you are ready to lock it up. Use one of the common PLL boards with the loop filter component values in part 1, table 2. Set the jumper wires on the phase comparator input for the “+” configuration. If the PLL board is working properly (remember that you can test it ahead of time by using it to lock up the 100-MHz oscillator), the loop should close and “pull in” the 1010-MHz oscillator exactly on frequency. This lock can occur if the 100-MHz loop is locked or free running, and the output frequency should be exactly 10.1 times the 100-MHz crystal oscillator frequency. Make sure you use the 10-MHz reference to lock at 1010 MHz and the 20-MHz reference if you are trying to lock to 1020 MHz.

Troubleshoot any problems by checking the PLL board and the 1010-MHz oscillator independently of each other. As long as the oscillator tunes over the correct range and the PLL board is working, there

NOTE: BOARD MATERIAL IS V/32" DOUBLE CLAD TEFLOI - FLAREGLASS. DURID" MAY BE USED.
The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut Verticals

Butternut's HF verticals use highest-Q tuning circuits to outperform all multiband designs of comparable size!

Model HFeV
- 80, 40, 30, 20, 15 and 10 meters
- automatic band-switching
- Add-on kit for 17 and 12 meters available now
- 36 h.t.

Model HF2V
- Designed for the low band DXer
- Automatic band-switching on 80 and 40 meters
- Add-on units for 160 and 30 or 20 meters
- 30 feet tall—may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure.

NEMAL ELECTRONICS
12240 NE 14th Ave.
Miami, FL 33161
(305) 893-824
Telex 6975377 24hr FAX (305)895-8178

The QSYer's effortless, lightning-fast frequency selection brings out your best as a Ham. No matter what your Amateur Radio interest—contesting, DXing, ragchewing, or mobile—you'll do it better, faster and easier with a QSYer.

Order one today, and start enjoying your rig's full potential.

Order the KW-QSYer for the Kenwood 590, 440, 140, 711 and 811; the 579 QSYer for the FT757GX; the 779 QSYer for the FT-777GX, or the 759 QSYer for the ICB-735. (Kenwood rigs need the Kenwood IC-10 or IC-10 interface installed.)

Still only $89.50 plus 2.50 S&H (Visa/MC accepted) from:

Stone Mountain Engineering Company
Box 1573 • Stone Mountain, GA 30086
404-879-0241

KENWOOD YAESU ICOM

KENWOOD RADIO DIVISION
5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

KENNEDY ASSOCIATES
Starking all major lines, San Antonio's Ham Store. Great Prices—Great Service. Factory authorized sales and service.

Hours: M-F 10-6, SAT 9-3

AMATEUR RADIO MAIL LISTS
Seif-stick 1x3 labels

NEWLY LICENCED HAMS
ALL NEW UPDATES
UPDATED EACH WEEK

Total List 462,728 (ZIP sorted)
Price is 2.5 cents each (4-up Cheshire)

BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777
800-282-5628

NEMAL ELECTRONICS

*Complete Cable Assembly Facilities MIL-STD-45208
*Commercial Accounts welcome—Quantity pricing
*Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

HARDLINE 50 OHM
FR12 1/2" Aluminum Black Jacket 89/ft
FR12 1/2" Cablewire corr. copper bkl jct 50/ft
FLCT8 7/8" Cablewire corr. copper bkl jct 30/ft
HM12CC N corr 1/2" corr copper m/f 25.00
HM78CC N corr 1/8" corr copper m/f 50.00

COAXIAL CABLES (per ft)
1100 BELDEN 9013 very low loss 6.25
1102 RG8/SU 90% shield low loss foam 11ga 6.25
1110 RG8/SU 90% shield (mini 8) 6.25
1130 RG213/U 90% shield mil spec NCV Mv .. 4.50
1140 RG214/U dbi silver libd mil spec 6.00
1705 RG142/B/U dbi silver libd, teflon ins .. 8.00
1310 RG217/U 50 ohm 5000 watt dbi shd 6.50
1450 RG177/U 50 ohm 100' mil spec 6.00

GROUND STRAP-GROUND WIRE
GS30 3/8" tinned copper braid 2.50
GS12 1/2" tinned copper braid 2.50
GS200 1-1/2" heavy tinned copper braid 2.50
AW14 14ga stranded antenna wire CCS 2.50

ROTOR CABLE-8 CONDUCTOR
RC1822 2-14ga and 6-22ga 2.50
RC1820 2-14ga and 6-20ga 2.50

CONNECTORS-MADE IN USA
NE720 Type N plug for Belden 9013 3.95
NE732 Type N jack for Belden 9013 4.95
PL259AM Amphenol PL259 1.50
PL259AM Amphenol female-female 6.50
UG175/UG176 reducer for RG58/59 2.50
UG210DS N plug for RG8/213/214 Silver 3.35
UG2828 N jack to PL259 adapter, teflon .. 6.00
UG441A SO239 to N plug adapter, teflon .. 6.00
UG550 SO239 to BNC plug adapter, Amphenol 3.29
SO239AM UHF chassis mt receptacles/Amphenol 2.90

**Shipping: Cable $3/tub, Connectors $1.00, Visa/Mastercard $5.00 min, COD add $2.00 Call or write for complete price list. NEMAL's new 36 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $4 with credit card next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. Miami, FL 33161
(305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

30 June 1988
should be no difficulty in achieving and maintaining lock. Once this is done, you have an LO for use in a 1296/2304 station or as a reference oscillator for locking your 10-GHz oscillator.

10-GHz oscillator selection and locking

The 10-GHz oscillator is locked in the same manner as the 1010-MHz reference. The tuning circuit may depend on the type of oscillator available. Generally, only enough tuning range to overcome drift and instability is used. If too much tuning range is provided, the microwave oscillator might get on the “wrong side” of the downconverter reference frequency harmonic, giving an i-f with the wrong tuning sense. If this happens, the PLL amplifier tries to tune the oscillator in the wrong direction to acquire phase lock and the loop will remain saturated and unlocked. For a 20-MHz PLL i-f, 30 MHz of total electronic tuning range should be adequate, and this combined with about a 10-volt swing out of the loop amplifier suggests a 3-MHz/volt tuning sensitivity. If the microwave oscillator is unstable or drifts (necessitating a greater tuning range), an ECL divide-by-2 or divide-by-4 could be inserted right at the phase comparator input. Of course, this would produce a different locked output frequency, and all other i-f and oscillator frequencies in the system might have to be reselected. The loop filter component values would also have to be recomputed.

Selection of the 10-GHz oscillator depends upon what is available and within your budget. The M/A-Comm Gunnplexers™ work extremely well and require very little additional circuitry. If you have one of these as part of a wideband station, you may want to use the 10,220-MHz locking scheme. If there is already some broadband 10-GHz activity in your area and you
don’t want to give it up entirely, this approach will allow switching between modes. The Gunnplexer can be operated with its internal diode mixer for operation on 10220/10250 wideband duplex, or phase locked to 10220 and used with a 148-MHz SSB transceiver for 10368-MHz narrowband weak signal work. The wideband station can also be run phase locked with modulation of the 20-MHz reference signal in the 1020-MHz loop phase. (This should end any local discussions about who is or is not on the right frequency!)

The M/A-Comm Gunnplexers have electronic tuning and need only level shifting and scaling of the tuning voltage. A typical tuning curve for a GunnPlexer is shown in fig. 12. Driving the tuning input directly from the loop amplifier provides too much tuning range and could allow “latch-up” on the wrong side of the i-f, as mentioned before. It is a simple matter to scale the tuning input to reduce the approximately 7-MHz/volt sensitivity down to about 3. A circuit providing this scaling, as well as a regulated 10-volt bias supply, is shown in fig. 13. This circuit will maintain proper output and tuning even when the power supply voltage drops slightly below 12 volts. A low dropout regulator may be substituted for the LM317K for particularly low inputs. This is of concern primarily when mountain topping with discharged batteries as the only power source! The phase-locked Gunnplexer produces an excellent 10080-MHz signal (fig. 14).

Some means of tuning must be provided if an oscillator without an electronic tuning input is used. The Gunn oscillators in automatic door openers can be made to work by using bias voltage “frequency pushing”. These are very similar to Gunnplexers except for their lack of electronic tuning and a mixer diode. The tuning deficiency can be overcome by using the bias/tuning circuit in fig. 15. Here a three-terminal regulator sets the bias and tunes the oscillator for phase locking. To pick the nominal bias point, plot a frequency versus bias voltage curve for your particular oscillator — this will vary from oscillator to oscillator. Usually a range of bias can be found (often just on one side of maximum power output) that provides a fairly straight tuning curve or nearly constant tuning sensitivity. A plot of a typical bias-tuned oscillator is shown in fig. 16. The tuning resistor values are selected to tune over a 24-MHz range with 2 to 10 volts on the tune input. The nominal operating
Our Antenna & Tower Discounts Are Tops

Hy-Gain, Cushcraft, Rohn, Tri-Ex, and Alliance Package Specials Available

Call and Compare Our Prices

Orders & Quotes Toll Free 800-444-4799

KENWOOD
NEW TM-721A
2m/440 MHz dual-band mobile with deluxe features.

YAESU
NEW FT-212
Mini 2m mobile with 45 Watts

ICOM
IC-27A SPECIAL
25-Watt Mobile with UT-16 speech synthesizer already installed.
$349.95
Offer good while they last
Limited quantity subject to prior sale
need to be in coax in order to use the downconverter and mixer. Although waveguide is well behaved and very low in loss, coax is versatile and convenient. I have used coax throughout the 10-GHz station, both at 1 and 10 GHz. Miniature SMB “snap on” connectors work well at 1 GHz and below, even when used with poor quality lossier coax cable. In the microwave region, 0.086-inch semi-rigid cable is a pleasure to work with; the cable and corresponding SMA connectors are fairly easy to find. To cut the cable to length, first score the outer conductor with a sharp knife; then grab each side of the score mark with a pair of needle-nose pliers and break. The Teflon dielectric can be trimmed away and the cable end slid into the connector or soldered directly to the circuit, depending upon the application.

If your oscillator is similar to the door-opener type, it probably has a waveguide output and will require a waveguide-to-coax adapter. These are often available as surplus but if you don’t have or can’t get one, it is easy to build an acceptable substitute. The version shown in fig. 17 made from a short length of commercial waveguide works very well, although you’ll need metal-working equipment. If your shack doesn’t include much more than a soldering iron, hacksaw, and file, the second version made from pc board in fig. 18 is for you.

After selecting your 10-GHz oscillator, build the appropriate tuning circuit. If a means of measuring 10-GHz frequency (a 10-GHz counter or spectrum analyzer with 1-MHz frequency resolution) is not avail-

![fig. 16. This is a tuning curve of a surplus Solfan™ oscillator of the type used in burglar alarm motion detectors and automatic door openers. Both output power and frequency are dependent upon bias voltage. By plotting a similar curve and selecting a useful portion of the tuning curve, you can find component values for biasing and tuning almost any similar oscillator. In this case, a bias of 8.25 volts + 1.25 volts will tune the output over approximately a + 12-MHz tuning range.](image)

point, with 6 volts applied to the tuning input, is set at the center of this range. If 24-MHz tuning is not possible, use the maximum available and recalculate the PLL component values for the different tuning sensitivities.

The three terminal regulators work in this application because they have several hundred kHz of bandwidth and can follow a 50-kHz bandwidth error signal without adding much additional phase shift. This is necessary for the loop to remain stable. The regulators do add some noise to the oscillator output when used in this configuration; reduction of this is the reason for splitting up and bypassing part of the voltage setting and tuning resistances. This technique is not the ultimate in low phase noise performance, but the ~90 dBc noise sidebands obtainable (1 Hz bandwidth) are more than adequate for Amateur use and will probably never be observed unless signal strengths are 30 or more dB above S9. The Gunnplexers, with their built-in tuning, will probably be at least 8 to 10 dB cleaner than this. Although I have not tried them, many of the oscillators in automotive radar detectors should work well. Another source of suitable oscillators is the type used for police radar guns. The NEC ND751AAM for 10 GHz (ND610AAM for 24 GHz) has similar characteristics. Any of these 10-GHz sources should have adequate drive power for the signal mixer described next.

The oscillators’ output and antenna connections
Introducing the next logical step.
Yaesu’s Dual Band Handie.

Two affordable radios in one—that’s exciting.
Yaesu’s dual-band FT727R packs our best HT know-how into one compact design. At a price that’s in step with your ham budget.

Hit hard-to-reach repeaters with a powerful 5 watts on both 2 meters and 440 MHz.

Work the bands quickly and easily with a wealth of microprocessor-controlled commands:
Jump between the separate VHF and UHF VFO registers.
Program each of the ten memories for instant recall of repeater input and output frequencies, odd splits, and tone encode/decode.
Scan the memory channels, the entire band, or a band segment. And return to any special frequency with the priority feature.
Use link repeaters by programming TX on one band and RX on another.

Conserve power with the battery saver. It lets you monitor silently while drawing negligible current.
And measure your battery level with the digital battery voltmeter. There’s even a “Low Battery” LED.

Finally, your operation is rounded out with features like VOX capability. A one-touch repeater reverse switch. An LCD readout with illumination lamp. A high/low power switch. Remote computer control capability. An optional CTCSS module. And Yaesu’s full line of optional accessories.

So step up your operating capability now with the logical choice in HT operation.
Yaesu’s dual-band FT727R.

Yaesu USA
1720 Edwards Road, Cerritos, CA 90701
(213) 404-2700
Repair Service (213) 404-4884
Parts: (213) 404-4847

Prices and specifications subject to change without notice.
The HF data communications world is not forgiving. Everything bad can and does happen to your HF-Packet signal. Selective fading, noise, interference, poor tuning indicators, and simplistic phone line modem designs all conspire to destroy the traffic handling capability of HF-Packet. We should be sending data, NOT repeats!

Two Modes
The ST-7000 transmits and receives two modes for HF-Packet: the "standard" 200 Hz shift, and a more optimum 600 Hz shift. Both shifts are fully supported by separate optimized 6-pole input filters, and a 40 dB AGC system. Our 600 Hz shift mode uses separate 4-pole Mark/Space filters, active detectors, and a 3-pole post-detection filter. The transmit tone generator uses our proven sine-wave synthesizer circuit to assure minimum phase distortion and spectrum splatter.

Finally! A Tuning Indicator That Works
The ST-7000 tuning indicator is a truly unique display of frequency spectra that makes quick work of tuning an HF-Packet signal. No more guessing about your frequency!

Interfaces With All Packet Controllers
The ST-7000 has three different packet controller (TNC) interfaces: RS-232C, TTL, and TNC audio. The audio interface connects to any TNC VHF radio connector and converts the VHF tones to HAL HF standards. TNC audio is switched to a separate VHF radio connector when the ST-7000 is turned OFF.

Best of all the ST-7000 is completely manufactured in the United States by a company you've known and trusted for 20 years. We do radio data communications, and we do it extremely well!

ST-7000 is available direct from the factory for $349.95. An optional 12VDC, 0.5A power supply is priced at $19.95. Write or call now for your HAL ST-7000.

Introductory Price: $299.95. Order Now!
for most oscillators I have tried. Select the nominal bias voltage as the center of a reasonably straight 24-MHz range near the maximum power bias point, or in a mode-free region. Select the tuning scaling resistors from fig. 15 based on the change in bias necessary to produce 24-MHz frequency change; this gives 3-MHz/volt sensitivity at the tuning input. The sense of this tuning may be either positive or negative, depending on your particular oscillator. For the motion detector oscillator plotted in fig. 16 I chose a nominal bias point of 8.25 volts. Tuning resistor values were selected for the required volt change (approximately 2.5). These values cause the 2 to 10 volts from the loop amplifier to tune the oscillator over a 24-MHz total range. Resistor and capacitor values for some different oscillator sensitivities are shown in the table.

When you are confident that the oscillator is tuning correctly, preset it to 10080 MHz with 6 volts on the bias circuit tuning input. Do this by coarse tuning for a 20-MHz PLL i-f on the correct side of 10100 MHz. If the PLL board is functioning, locking should now be no more difficult than locking the 1010-MHz oscillator. Remember to select the proper wire jumpers based on "high side" LO and the tuning direction of your particular oscillator.

As for the 1010 MHz oscillator, troubleshoot any problems by separating the PLL components and testing them individually. Make sure that the PLL board works on a lower frequency loop. Verify that there are suitable 1-volt peak-to-peak ECL levels on both phase 10080 MHz LO INPUT FROM DOWNCONVERTER BOARD MATERIAL 0.025" DUROD, DOUBLE CLAD DIODE QUAD 2N4380 HEAT SINK OR METALLICS MS550-142-045 T1 T2 9 TURNS FLAT WOUND ON 0.050" NYLON CORE OR 1/4" NYLON BALLOON RTL 0.050" RADIUS, 60° TAN J5-FLANDED SMA CONNECTORS J6-SMC CONNECTORS NARROW TRACES ARE 0.056" WIDER TRACES ARE 0.083" W306 MHz 10368 MHz 258 MHz I-F

fig. 19. Closeup of the 10-GHz signal mixer.
comparator inputs. Also make sure that the 10-GHz oscillator is tuning properly. Be sure that there is no large (bigger than 1000 pF) bypass capacitor across its bias input; this could limit the fm bandwidth.

signal mixers

Commercial mixers that give good performance up through 2304 MHz are available at reasonable prices. Simple "rat race" mixers can be made on Teflon pc board for all bands up to and including 10 GHz; they don’t work as well at 24 GHz and above because of packaged diode size and parasitics. A diode mixer with less than 7-dB conversion loss at 10368 MHz (with 10080-MHz local oscillator injection) can be cut out of a piece of circuit board. This by itself (no amplifier, preamplifier, or transmit/receive switch) can give S9 signals between similar stations with 4-foot dishes separated by 10 miles!

The 10-GHz signal mixer uses the same diode ring and board material as the 10-GHz harmonic downconverter. Building it on the same piece of board material eliminates two connectors and some coax along with their associated losses. A balun is used to match the mixer diode’s input impedance to 50 ohms. You can make this balun from two toroidal cores, or use a VHF TV 300-to-75 ohm balun. Conversion loss of under 10 dB should be possible over a range of local oscillator powers. Low barrier diodes are indicated in the parts list, but medium and high barrier may be substituted if sufficient 10080-MHz oscillator power is available. Higher drive levels make higher i-f levels possible on transmit, and therefore higher 10368-MHz transmit power. To avoid serious distortion, i-f power should generally be kept at least 10 dB below the available local oscillator power. A close-up of the 10-GHz signal mixer is shown in fig. 19.

Build the signal mixer as part of the downconverter assembly, and you can be on the air as soon as the 10-GHz oscillator is locked and you have a suitable SSB i-f transceiver. Just hook it through a bandpass filter to your antenna!

Part 3 will discuss the following: a 260-MHz locked oscillator along with amplifiers and switching for the 280-290 MHz i-f transverter; and a two-stage, 16-dB gain, 2.5-dB noise figure 10-GHz amplifier that can be used on transmit and receive. Two such stations connected to modest size antennas should improve your DX possibilities and could help you break the current world 10-GHz DX record!

ham radio
I've discussed VHF/UHF/microwave and millimeter-wave radio propagation many times in this column, yet there is always more new material available. This month we will try to pick up where reference 3 left off and update the present state of the art (SOA) of radio propagation above 50 MHz.

DX records

For years I have felt that the greatest incentives for experimentation on the frequencies above 50 MHz are discovering new propagation modes and setting new DX records. However, published DX records were either scattered or incomplete and often without any mention of the propagation mode used. Most of the published records were worldwide, tending to favor regions where special geography or phenomena are present.

Several years ago I started publishing consolidated VHF/UHF/microwave and millimeter-wave DX records in "VHF/UHF World." At first only the more available worldwide records were included. Later EME (Earth-Moon-Earth) records were added.

I next published a list including only those DX records where at least one of the stations was located in North America. As a new twist, the suspected propagation mode was added. This made for many new DX opportunities above 50 MHz.

The "North America Only" list caught on like wildfire. Many new DX record claims were documented and other propagation modes on different frequency bands were added. These records have been published at least once a year in this column; we now publish new record claims at the end of each "VHF/UHF World."

This month is no exception. All three record tables have been updated. Table 1 shows the North America Only terrestrial records, table 2 lists the worldwide terrestrial records, and table 3 the worldwide EME records.

Each claim has been documented by at least one of the record holders. To facilitate new claims, I designed the VHF/UHF/SHF Record Verification Form in table 4. The form verifies when the claimed contact took place and shows the equipment required to make the record. The latter is particularly important since it sets the minimum equipment specifications required.

frequency bands

The list of frequencies available to Amateurs under FCC jurisdiction was published in reference 2; the microwave and millimeter frequencies were later updated and appeared in reference 3. There haven't been any changes of late.

However, there are some further frequency restrictions. The band most affected is the 70 cm (420-450 MHz). Any United States station operating within 100 miles of any PAVE PAWS radar installation and running more than 50 watts is required to obtain FCC permission. This currently affects Amateurs in New England, Georgia, Texas, Alaska, and California.

Amateurs operating in the 70-cm band near the missile test ranges in California, Florida, and New Mexico are also affected by the new rules. There have been additional restrictions placed on Amateurs operating in the 420-430 MHz region near the Canadian border and some Canadians are now affected in the 430-450 MHz region near airports using experimental wind-shear radar. These rules seem to be in a state of flux.

At the present time, Amateur restrictions on 33 cm (902-928 MHz) are
Table 1. North American VHF and Above Claimed DX Records. (Notes 1, 2 & 3)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Record Holders</th>
<th>Date</th>
<th>Mode</th>
<th>DX Miles (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME</td>
<td>WA4NJP (EM84DG) - KH6HI (BL01XH)</td>
<td>88-02-15</td>
<td>CW</td>
<td>4530 (7289)</td>
</tr>
<tr>
<td>144 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>KA1ZE (FN31TU) - WB0DRL/ WA0TKJ (EM18CT)</td>
<td>96-02-08</td>
<td>CW</td>
<td>1347 (2167)</td>
</tr>
<tr>
<td>Ducting</td>
<td>KH6GRU (BL01XH) - WA6JRA (DM13BT)</td>
<td>73-07-29</td>
<td>CW</td>
<td>2686 (4161)</td>
</tr>
<tr>
<td>EME</td>
<td>VE1UT (FN63XV) - VK5MC (QFO2EJ)</td>
<td>84-04-07</td>
<td>CW</td>
<td>10,985 (17676)</td>
</tr>
<tr>
<td>Spor. E</td>
<td>KD4WF (EM92LA) - NW70/7 (DM25GV)</td>
<td>87-06-14</td>
<td>SSB</td>
<td>1980 (3186)</td>
</tr>
<tr>
<td>FAl</td>
<td>W5HUQ/4 (EM90GC) - W5JUN (DM82WA)</td>
<td>83-07-25</td>
<td>CW</td>
<td>1228 (1976)</td>
</tr>
<tr>
<td>MS</td>
<td>K5UR (EM25WA) - K4EKG (FK68VG)</td>
<td>85-12-13</td>
<td>SSB</td>
<td>1960 (3153)</td>
</tr>
<tr>
<td>TE</td>
<td>KP4EOR (FK78AJ) - LU5DZJ (GF11LU)</td>
<td>78-02-12</td>
<td>SSB</td>
<td>2833 (4528)</td>
</tr>
<tr>
<td>Tropo</td>
<td>K1RJH (FN31XH) - K5WXZ (EM120W)</td>
<td>68-10-08</td>
<td>CW</td>
<td>1468 (2362)</td>
</tr>
<tr>
<td>220 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>W3IY/4 (FM19HA) - WB5LUA (EM13QC)</td>
<td>82-07-14</td>
<td>CW</td>
<td>1145 (1842)</td>
</tr>
<tr>
<td>Ducting</td>
<td>KH6JK (BL11AQ) - W6NLZ (DM03TS)</td>
<td>59-06-22</td>
<td>CW</td>
<td>2639 (4086)</td>
</tr>
<tr>
<td>Spor. E</td>
<td>K6UGM (EM12MS) - W6HUQ/4 (EM90GC)</td>
<td>87-06-14</td>
<td>CW/SSB</td>
<td>932 (1499)</td>
</tr>
<tr>
<td>EME</td>
<td>K1WHG (FM43MK) - KH6HFZ (BL11CN)</td>
<td>83-11-17</td>
<td>CW</td>
<td>5058 (8128)</td>
</tr>
<tr>
<td>MS</td>
<td>K1WHG (FM43MK) - KOALL (EN16NNW)</td>
<td>86-08-12</td>
<td>SSB</td>
<td>1279 (2067)</td>
</tr>
<tr>
<td>TE</td>
<td>KP4EOR (FK78AJ) - LU7DZJ (GF05RJ)</td>
<td>83-03-09</td>
<td>CW/SSB</td>
<td>3670 (5906)</td>
</tr>
<tr>
<td>Tropo</td>
<td>VE3EMS (EN86QJ) - WB5LUA (EM13QC)</td>
<td>82-09-28</td>
<td>SSB</td>
<td>1181 (1901)</td>
</tr>
<tr>
<td>432 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>W3IP (FM19PD) - WB5LUA (EM13QC)</td>
<td>86-02-08</td>
<td>CW</td>
<td>1182 (1901)</td>
</tr>
<tr>
<td>Ducting</td>
<td>KD6R (DM13NI) - KH6JAA/P (BK29GO)</td>
<td>80-07-28</td>
<td>CW</td>
<td>2550 (4103)</td>
</tr>
<tr>
<td>EME</td>
<td>K2UYH (FN20QG) - VK6FL (QF78VB)</td>
<td>83-01-29</td>
<td>CW</td>
<td>11,567 (18612)</td>
</tr>
<tr>
<td>MS</td>
<td>W2AZL (EN20VI) - W5LER (EN35IA)</td>
<td>72-08-12</td>
<td>CW</td>
<td>1019 (1640)</td>
</tr>
<tr>
<td>Tropo</td>
<td>WB5CZG (FN21AX) - WASJQB (EM12LQ)</td>
<td>86-11-29</td>
<td>SSB</td>
<td>1318 (2121)</td>
</tr>
<tr>
<td>903 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME</td>
<td>K5JL (EM15DQ) - WB5LUA (EM13QC)</td>
<td>88-02-07</td>
<td>CW</td>
<td>187 (301)</td>
</tr>
<tr>
<td>Tropo</td>
<td>W2PGC (FN02OR) - K5SIW9 (EN52WA)</td>
<td>86-12-24</td>
<td>SSB</td>
<td>478 (769)</td>
</tr>
<tr>
<td>1296 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ducting</td>
<td>KH6HME (BK29GO) - WB6NMT (DM12KU)</td>
<td>86-08-13</td>
<td>CW</td>
<td>2528 (4068)</td>
</tr>
<tr>
<td>EME</td>
<td>K2UYH (FN20QG) - VK5MC (QF05EJ)</td>
<td>81-12-06</td>
<td>CW</td>
<td>10,562 (16995)</td>
</tr>
<tr>
<td>MS</td>
<td>W2AZL (EN20VI) - W5LER (EN35IA)</td>
<td>72-08-12</td>
<td>CW</td>
<td>1019 (1640)</td>
</tr>
<tr>
<td>Tropo</td>
<td>WB3CZG (FN21AX) - KD5RO (EN13PA)</td>
<td>86-11-29</td>
<td>CW</td>
<td>1287 (2070)</td>
</tr>
<tr>
<td>2304 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME</td>
<td>W3WI/8 (FM08CK) - ZL2AQE (RE78JS)</td>
<td>87-10-18</td>
<td>CW</td>
<td>8658 (13931)</td>
</tr>
<tr>
<td>Tropo</td>
<td>KD5RO (EN13PA) - WBY10 (EN82BE)</td>
<td>86-11-29</td>
<td>CW</td>
<td>940 (1513)</td>
</tr>
<tr>
<td>3456 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropo</td>
<td>WA5TNY/5 (EM11AU) - WB5LUA/5 (EM24UQ)</td>
<td>86-10-19</td>
<td>CW</td>
<td>288 (464)</td>
</tr>
<tr>
<td>EME</td>
<td>W7CNK/5 (EM15FI) - KOE0/0 (DM79NO)</td>
<td>87-04-12</td>
<td>CW</td>
<td>498 (802)</td>
</tr>
<tr>
<td>5760 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropo</td>
<td>K5PJR (EM2650P) - W5UGO/0 (EN00PH)</td>
<td>87-07-04</td>
<td>CW</td>
<td>332 (535)</td>
</tr>
<tr>
<td>EME</td>
<td>WA5STNY (EM12KV) - W7CNK/5 (EM15FI)</td>
<td>87-04-24</td>
<td>CW</td>
<td>174 (279)</td>
</tr>
<tr>
<td>10.368 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropo</td>
<td>N6GN/6 (CM89PX) - W6SFH/6 (DM94MS)</td>
<td>87-07-19</td>
<td>CW</td>
<td>414 (666)</td>
</tr>
<tr>
<td>24.192 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>WA3RMX/7 (CN93IQ) - WB7TNU/7 (CN95DH)</td>
<td>86-08-23</td>
<td>SSB</td>
<td>116 (186)</td>
</tr>
<tr>
<td>47.040 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>WA3RMX (CN85PL) - WB7TNU/7W7TYR (CN85NH)</td>
<td>87-03-08</td>
<td>SSB</td>
<td>13.9 (22.4)</td>
</tr>
<tr>
<td>76-149 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>None reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>474 THz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>K6MEP (DM040I) - WA6EJO (DM04KT)</td>
<td>79-06-09</td>
<td>LASER</td>
<td>15 (24)</td>
</tr>
</tbody>
</table>

Note 1. The records are listed alphabetically by mode. Ducting is suspected where the path is mostly over water. No efforts are made to separate out ducting on overland paths so they’re grouped under tropo.

Note 2. The information within the parentheses () following the callsign is the grid square locator.

Note 3. Distances have been calculated assuming a spherical earth model using the actual latitude and longitude rather than grid square centers which are less accurate.

Note 4. Six-meters records, excepting EME, were left off since the primary propagation mode is often hard to distinguish. Also long-path QSOs have been reported during solar cycles 19 and 21 which exceed approximately 12,430 miles.
How do you pack 7 watts, 20 memories and scanning into a handheld?

IC-2GAT: 7 Watts
Rx 138-174MHz, Tx 140-150MHz

IC-4GAT: 6 Watts
440-450MHz

IC-32AT: 5 Watts
Rx 138-174MHz, 440-450MHz, Tx 140-150MHz, 440-450MHz

A New Generation of Powerful, Versatile Handhelds.
Select a new "G Series" or dual band ICOM transceiver and enjoy full base station luxury in a portable unit designed especially for you!

- **Maximum Frequency Coverage.** The IC-2GAT receives 138-174MHz, including NOAA, and transmits 140-150MHz to include CAP and MARS frequencies. The IC-4GAT operates 440-450MHz, and the IC-32AT receives 138-174MHz and operates 140-150MHz/440-450MHz.

- **Most Powerful Handheld!** The IC-2GAT delivers seven watts! The IC-4GAT is six watts and the IC-32AT is five watts! One watt level selectable for local QSO's.

- **20 Memories.** Store any frequency, Tx offset and subaudible tone in any memory. Total flexibility!

- **Programmable Scanning** of band and memories plus easy lockout and instant memory recall.

- **Additional Features.** Battery saver, call channel, all subaudible tones, multi-function LCD readout and DTMF pad.

- **Compatible Accessories.** All ICOM IC-2AT/02AT series battery packs, headsets and speaker mics are interchangeable.

- **Optional UT-40 Beeper** silently monitors a busy channel for your calls. When the pre-programmed subaudible tone is received, the unit beeps and the LCD flashes.
Measure Up With Coaxial Dynamics
Model 81000A RF Directional Wattmeter

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL C. W. power in Coaxial transmission lines. 81000A is comprised of a built-in line section, direct-reading 3-scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty. Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.
15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 98-0630
Service and Dependability...A Part of Every Product.

THE 1988 ARRL HANDBOOK
NEW EDITION
The 1988 ARRL Handbook For The Radio Amateur carries on the tradition of the previous editions by presenting 1200 pages of comprehensive information for the radio amateur, engineer, technician and student. Clothbound only $21 in the U.S., $23 in Canada and elsewhere.

Cleveland Institute of Electronics
1776 East 17th St., Cleveland, Ohio 44114

CIE is the world’s largest independent study electronics school. We offer ten courses covering basic electronics to advanced digital and microprocessor technology. An Associate in Applied Science in Electronics Engineering Technology is also offered.

Study at home — no classes. Programs accredited and eligible for VA benefits.

CIE Cleveland Institute of Electronics
1776 East 17th St., Cleveland, Ohio 44114
YES! I want to get started. Send me my CIE school catalog including details about the Associate Degree program.

Print Name______________________
Address________________________
City_________________State____Zip____
Age__________Area Code/Phone No.
Check box for GI Bulletin on Educational Benefits
□ Veteran □ Active Duty
MAIL TODAY:
AHR-02

Electronic Repair Center
Servicing
Amateur
Commercial Radio

The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing “Hams” for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400

Generate
Your Own
Electricity

Hundreds of satisfied owners are now using the WINDSTREAM WIND GENERATOR to provide power for RV’s, weekend cottages, boats, workshops, remote locations, emergency back up power and much more. Portable—weights only 20 lbs — easily installed with our comprehensive installation manual—minimum maintenance—full warranty.

Thermex Corporation H
P.O. Box 3128, Burlington, VT 05401-3128

NEW!
The classic “Antenna Bible” now in a thoroughly-revised, much-enlarged edition

ANTENNAS
2nd edition
by John Kraus, WR1JK
Ohio State University
Covers both theory and its applications to practical systems. Over 1000 illustrations and nearly 600 worked examples and problems. Over 100 new topics. Complete with design formulas, tables and references

917 pages, hardcover. $51.95
Add $2.50 per book for shipping and handling U.S., $5.00 elsewhere

CYGNUS-QUASAR BOOKS
P.O. Box 85, Powell, Ohio 43065
Tel. 614-548-7885

June 1988
2x4Z BASE REPEATER ANTENNA

THE HIGHEST GAIN DUAL BAND BASE/REPEATER ANTENNA

HIGH POWER 200 WATTS

CENTER FREQUENCY
146.500 MHz
446.500 MHz

GAIN:
VHF - 8.2dB
UHF - 11.5dB
VSWR - 1.1-1.2 or less

CONNECTOR:
N TYPE FEMALE

LIGHTNING PROTECTION GROUNDED DIRECTLY

LENGTH: 16 FT.
WEIGHT: 5 LBS. 3 OZ.
WIND LOAD: 90 MPH
MOUNTING: UP TO 2 IN.
MAST
CAN SIMULCAST ON BOTH BANDS

WATERPROOF CONNECTING JOINTS

UPS SHIPPABLE

Give your repeater something to celebrate!

The new RC-96 controller for your repeater will make its day. And yours.

For you, remote programming will let you easily make changes to your repeater from anywhere without a trip to the tail. Change codes, autodial numbers, ID messages and more, with reliable storage in EEPROM memory.

Your users will love the outstanding patch and autodialer, with room for 200 phone numbers. The talking S-meter will let them check their signal strength into the repeater. Plus support for pocket pagers, linking to other repeaters, and a bulletin board.

Your technical crew will appreciate the built-in keypad and indicators. And the ease of hookup through shielded DIN cables. With pots and DIP switches easily accessible at the rear of the unit. They’ll be impressed by the gas discharge tube across the phone line and transient suppressors on each I/O signal to keep lightning from taking your system down.

And most important, your repeater will have a new sense of pride in being able to serve you better. You’ll even hear it in its voice!

Something for everyone. A real party animal! The RC-96 Repeater Controller – the newest choice from ACC.

2356 Walsh Avenue, Santa Clara, California 95051 (408) 727-3330

BEVERAGE ANTENNA HANDBOOK

by Vic Misek, W1WCR

W1WCR has spent countless hours developing new antenna ideas and optimizing the SWA (Steerable wave antenna). Misek has driven deep into the secrets of the single wire Beverage with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Also includes information on center fed Beverages constructed out of several wire types. SMALL LOT OWNERS - Beverage for you too! Called the Micro-SWA it is just 60 ft long. You get excellent directivity and null steering capabilities. Transformer design information for both termination and feedline matching is completely revised. 1987 80 pages Softbound $14.95

Please enclose $3.50 shipping & handling

ham radio BOOKSTORE
GREENVILLE, NH 03048 603-878-1441
CLOSE OUT TITLES

PROGRAMMING FOR THE TI-59 AND HP-41 CALCULATORS
by Paul Garrison
To take full advantage of your hand-held calculator's power, you need to learn how to program it. Clear easy-to-understand instructions make programming a snap! Over half the book has practical programming applications that will solve some very complex problems. © 1982, 294 pages.
T-1442 Was $12.95 SAVE $8 Softbound $4.95

SOFTWARE FOR AMATEUR RADIO
by Joe Kasser, G3ZCC
Packed with practical computer applications and tested and de-bugged programs that can be simply adapted to almost any microcomputer. Includes BASICA programming concepts as well as how to interface your computer to your radio, digital communications and more. © 1984, 284 pages.
T-1560 Was $15.95 SAVE $11.00 Softbound $4.95

BUY ALL 3 SPECIAL
$44.85 VALUE at retail
□ T-SPB $10.95
SAVE $33.90 WOW What a Deal!!!
Please enclose $3.50 shipping and handling

HAM RADIO BOOKSTORE
GREENVILLE, NH 03048
603-878-1441

IF YOU ARE INTO ELECTRONICS AND SAVING MONEY IS IMPORTANT TO YOU, THEN YOU OWE IT TO YOURSELF TO TRY NUTS & VOLTS MAGAZINE. DISCOVER WHY THOUSANDS OF SMART PEOPLE NATIONWIDE TURN TO NUTS & VOLTS EACH MONTH TO MEET THEIR ELECTRONIC NEEDS. WHETHER YOU'RE BUYING, SELLING, OR JUST TRYING TO LOCATE THOSE UNIQUE OR HARD-TO-FIND ITEMS, FIND OUT HOW NUTS & VOLTS CAN HELP!

SUBSCRIBE TODAY!
□ CHECK □ MONEY ORDER □ VISA □ MC
Name_________________________Address_________________________
City_________________________State_________Zip__________________
Card No_______________________Exp. Date_____________________

CALL FOR ADVERTISING INQUIRIES INVITED
A National Publication For The Buying And Selling Of Electronic Equipment

Subscription Rates
U.S. FUNDS REQUIRED
3rd Class Mail - USA
One Year $12.00
Two Years $21.00
Lifetime $60.00

1st Class Mail
One Year - USA $20.00
Canada & Mexico $22.00

Air Mail
Foreign - 1 Year $55.00
Includes one FREE 40-word Classified Ad
Table 2. Worldwide Claimed VHF/UHF/SHF Terrestrial DX Records (notes 1 & 2)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Record Holders</th>
<th>Date</th>
<th>Mode</th>
<th>DX Miles (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td>WA4JNP (EM84DG)-K16H1 (BL01XH)</td>
<td>88-02-15</td>
<td>CW</td>
<td>4530 (7289)</td>
</tr>
<tr>
<td>144 MHz</td>
<td>K6MYC/K76 (BK29AO)-ZS64LE (KG43RC)</td>
<td>83-02-18</td>
<td>CW</td>
<td>12,091 (19455)</td>
</tr>
<tr>
<td>220 MHz</td>
<td>K1WHS (FN43MK)-K7686 (BL11CJ)</td>
<td>83-11-17</td>
<td>CW</td>
<td>5058 (8139)</td>
</tr>
<tr>
<td>432 MHz</td>
<td>F9FT (JO29AG)-Z3LAAAD (RE66GR)</td>
<td>80-04-18</td>
<td>CW</td>
<td>11,679 (18793)</td>
</tr>
<tr>
<td>900 MHz</td>
<td>K5JL (EM15DO)-WB5LUA (EM13OC)</td>
<td>88-02-07</td>
<td>CW</td>
<td>187 (301)</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>PA0S6 (JO11IW)-Z3LAAAD (RE66GR)</td>
<td>83-06-13</td>
<td>CW</td>
<td>11,595 (18657)</td>
</tr>
<tr>
<td>2304 MHz</td>
<td>W3IWI-8 (FM080C)-ZL2AOE (RE78JS)</td>
<td>87-10-18</td>
<td>CW</td>
<td>8685 (13931)</td>
</tr>
<tr>
<td>3456 MHz</td>
<td>W7CNIK/5 (EM15JF)-K06 (DM75NO)</td>
<td>87-04-06</td>
<td>CW</td>
<td>498 (802)</td>
</tr>
<tr>
<td>5670 MHz</td>
<td>WA5TNY (EM12KJ)-W7CNIK/5 (EM15JF)</td>
<td>87-04-24</td>
<td>CW</td>
<td>174 (279)</td>
</tr>
<tr>
<td>10,000 MHz</td>
<td>None reported</td>
<td>None reported</td>
<td>None reported</td>
<td>None reported</td>
</tr>
</tbody>
</table>

Notes:
1. The information within the parentheses () after the callsign is the grid square locator.
2. The distances shown have been calculated assuming a spherical earth model. The actual latitudes and longitude are used rather than grid square centers which are less accurate.

Table 3. Worldwide Claimed VHF/UHF/SHF EME DX Records (notes 1 & 2)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Record Holders</th>
<th>Date</th>
<th>Mode</th>
<th>DX Miles (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td>WA4JNP (EM84DG)-K16H1 (BL01XH)</td>
<td>88-02-15</td>
<td>CW</td>
<td>4530 (7289)</td>
</tr>
<tr>
<td>144 MHz</td>
<td>K6MYC/K76 (BK29AO)-ZS64LE (KG43RC)</td>
<td>83-02-18</td>
<td>CW</td>
<td>12,091 (19455)</td>
</tr>
<tr>
<td>220 MHz</td>
<td>K1WHS (FN43MK)-K7686 (BL11CJ)</td>
<td>83-11-17</td>
<td>CW</td>
<td>5058 (8139)</td>
</tr>
<tr>
<td>432 MHz</td>
<td>F9FT (JO29AG)-Z3LAAAD (RE66GR)</td>
<td>80-04-18</td>
<td>CW</td>
<td>11,679 (18793)</td>
</tr>
<tr>
<td>900 MHz</td>
<td>K5JL (EM15DO)-WB5LUA (EM13OC)</td>
<td>88-02-07</td>
<td>CW</td>
<td>187 (301)</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>PA0S6 (JO11IW)-Z3LAAAD (RE66GR)</td>
<td>83-06-13</td>
<td>CW</td>
<td>11,595 (18657)</td>
</tr>
<tr>
<td>2304 MHz</td>
<td>W3IWI-8 (FM080C)-ZL2AOE (RE78JS)</td>
<td>87-10-18</td>
<td>CW</td>
<td>8685 (13931)</td>
</tr>
<tr>
<td>3456 MHz</td>
<td>W7CNIK/5 (EM15JF)-K06 (DM75NO)</td>
<td>87-04-06</td>
<td>CW</td>
<td>498 (802)</td>
</tr>
<tr>
<td>5670 MHz</td>
<td>WA5TNY (EM12KJ)-W7CNIK/5 (EM15JF)</td>
<td>87-04-24</td>
<td>CW</td>
<td>174 (279)</td>
</tr>
</tbody>
</table>

Notes:
1. The information within the parentheses () after the callsign is the grid square locator.
2. The distances shown have been calculated assuming a spherical earth model. The actual latitudes and longitude are used rather than grid square centers which are less accurate.

still in effect in Colorado, Wyoming, White Sands Missile Range, and Region 3 areas. Operators in these restricted areas who have tried to obtain permission from the FCC have been unable to do so. Canadian Amateurs need special permission from DOC to use CW or SSB on this band. (It is presently designated as fm only!)

solar cycle update

Probably one of the hottest discussions on the hf and 6-meter bands these days is "when will the next solar cycle peak?" Near the sunspot peak there is a chance that F2 propagation will be possible on 6 meters. News of that peak is starting to come in. The new cycle, 22, has definitely begun and ended when it bottomed out at a smoothed sunspot count of Cycle 21 level of 118.6 sunspots in mid-1991. Because this cycle started statistically like the Sargent/Ohl were very close in predicting the peak of cycle 21. Based on available data and using this prediction method, it now appears that cycle 22 will peak at a smoothed level of 118.6 sunspots in mid-1991. Figure 1 shows this early data along with the final data on cycle 21.

The predicted peak of cycle 22 shows that it will be very flat and should stay above 100 sunspots from about July 1989 through June 1992.
fig. 1. This graph shows the smoothed sunspot numbers for solar cycle 21 as well as the forecasted numbers for cycle 22, per reference 8.

earlier than other cycles and rose abruptly, we will have to wait at least another year or so to see what if any modifications will occur.

This information is not very promising for 6-meter Amateurs as it usually takes a sunspot count above 150 to yield good F2 openings. However, minor sunspot peaks often occur during a cycle, albeit of short duration. No 6-meter operator active during the last solar cycle will ever forget the solar peaks in late 1979 that rivaled those of all previously recorded solar cycles.

The equivalent short-term sunspot number can be predicted using the solar flux measured at Ottawa on 10.7 cm. The value is updated daily and broadcast at 18 minutes after each hour on radio station WWV. Using the equation shown in reference 2, I have prepared fig. 2 which can be used to determine the equivalent sunspot number on any day. Remember also that the ionosphere usually has to be "pumped up" for four or five consecutive days to yield good long-haul F2 propagation.

The SOA in equipment, antennas, and propagation forecasting has greatly improved in recent years. Predictions of the MUF are now possible with improved accuracy using personal computer programs like MINIMUF® in conjunction with the sunspot number per fig. 2.

This information, along with increased 6-meter interest and improved operating methods (more on this shortly), as well as recent relaxations in licensing restrictions in western Europe and North Africa, means that there will be many more regions and DXCC countries represented during cycle 22. Let's hope it's a great cycle for 6-meter operators. Stay tuned!

fig. 2. This figure shows the correlation between solar flux and sunspot numbers.

backscatter

The backscatter form of propagation described in reference 1 is basically a form of reflection and indicates that a highly ionized region is present. Operators detecting this phenomenon can often work DX by aiming their antennas in the direction of the ionized region and "backscattering" their signals.

Backscatter also indicates that the MUF is very high; it was well used during solar cycle 21 to indicate the presence of an opening. Often western United States stations could work Hawaii while eastern stations could work Europe either by backscatter or by knowing that there was a high degree of probability of an opening in progress.

Ionospheric scatter

Ionospheric scatter was also described in reference 1. It is a form of "forward scatter" linked to the time
Table 4. VHF/UHF/SHF Propagation Record Verification Form.
(Please return to Joe Reisert, W1JR, 17 Mansfield Drive, Chelmsford, MA 01824)

<table>
<thead>
<tr>
<th>Band</th>
<th>Propagation Mode</th>
<th>Date of record (UTC):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time of record (UTC):</th>
<th>DX (miles)</th>
<th>(km):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Station 1

<table>
<thead>
<tr>
<th>Call</th>
<th>Name</th>
<th>QTH for this QSO:</th>
<th>Lat*: Long*:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grid Locator (6 digit):</th>
<th>Elevation ASL (feet):</th>
<th>(meters):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna type:</th>
<th>Estimated gain (dBi):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TX freq:</th>
<th>TX power:</th>
<th>Feedline loss:</th>
<th>Modulation type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RX freq:</th>
<th>RX type:</th>
<th>RX desc:</th>
<th>Feedline loss:</th>
<th>Noise figure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RX bandwidth:</th>
<th>Rcvd signal to noise ratio:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other equipment description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Station 2

<table>
<thead>
<tr>
<th>Call</th>
<th>Name</th>
<th>QTH for this QSO:</th>
<th>Lat*: Long*:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grid Locator (6 digit):</th>
<th>Elevation ASL (feet):</th>
<th>(meters):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antenna type:</th>
<th>Estimated gain (dBi):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TX freq:</th>
<th>TX power:</th>
<th>Feedline loss:</th>
<th>Modulation type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RX freq:</th>
<th>RX type:</th>
<th>RX desc:</th>
<th>Feedline loss:</th>
<th>Noise figure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RX bandwidth:</th>
<th>Rcvd signal to noise ratio:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other equipment description:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Other comments, weather conditions etc:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

The information submitted above is correct to the best of my knowledge.

Submitted by: _____________________________ Call: __________ Home QTH:

_______________________________ Phone number (IAC _______)

Record received and verified by: _____________________________ Date: __________

Please list latitudes and longitudes in degrees, minutes, and seconds.
of day (typically peaking broadly around noon local time) and to high sunspot activity. Ionospheric scatter can be used on 6 and 2 meters.

This form of propagation is used extensively in commercial service but seems to have been almost totally ignored by Amateurs. It does require reasonable antenna gain and high power, but is within the reach of many well-equipped 2-meter Amateur stations, especially those with EME or marginal EME capability.

As the sunspots increase, so will the possibilities of forward scatter. This represents an interesting challenge for Amateurs and is a good way to increase their grid square count in the 800–1300 mile region.

TE (transequatorial) scatter

Like forward and back scatter, TE propagation is a good mode for long DX, especially on 6 meters. It is best observed across the equator on more typical distances of 3 to 6,000 miles.

TE propagation is most often observed in the late afternoon and early evening for several weeks around the equinoxes. During the peak of the solar cycle around this time, highly ionized “patches” are often present approximately 10-20 degrees north and south of the “geomagnetic” equator.

Unfortunately, the geomagnetic equator is very far south in the North and South American sector. This limits North American TE propagation mainly to stations in the Caribbean and the extreme southern portions of the United States. Don’t let this discourage you; there are always new propagation modes and isolated openings to explore.

equatorial FAI (Field Aligned Irregularities)

Equatorial FAI was first discovered in 1977. It is still not fully understood and often referred to as TE propagation (see references 11 and 12). Like TE scatter, equatorial FAI depends on highly ionized patches that are typically located 10-15 degrees north and south of the geomagnetic equator at the same dates and times discussed under TE propagation above. However, the DX is slightly less. The most favored locations are paths from southern Europe to South Africa, Japan to Australia, and the Caribbean to southern South America.

While TE scatter is generally limited to below 100 MHz, equatorial FAI has been known to extend higher in frequency. Contacts as high as 220 MHz have been confirmed as shown in tables 1 and 2. Although some one-way 432 reports have been reported, I have been unable to document any two-way contacts above 220 MHz. Maybe during the peak years of solar cycle 22 the frequency barrier will be broken and two-way 432 MHz contacts will be completed. Any takers?

midlatitude FAI

When reference 10 was written, it was speculated that FAI propagation would be possible in mid-northern latitudes. It didn’t take long before this became a reality on 144 MHz.13

Midlatitude FAI propagation has many similarities to auroral propagation; both stations must be south of the ionized region and aim their antennas several degrees north of the great circle path. This type of propagation most often occurs in the evenings during the summer, especially on days when there has been sporadic E propagation on 6 meters. As shown in table 1, it has been successfully used out to a distance of just over 1200 miles on 2 meters. Until recently FAI has been slow to take hold, despite the fact that it should be usable up through 220 MHz.13

This is all changing now — contacts were reported during the summer of 1987 in the southern United States and a wide region of Europe (reference 14 through 16). In fact, well over 500 European contacts were reported using midlatitude FAI propagation during the summer period of 1986 alone! (See reference 15.)

As observed in Europe, the scatter region tends to be at the same height as sporadic E, typically 70 miles. These regions resemble aurora propagation; unlike the relatively small (1-2 mile thick) sporadic E clouds, they have large volume areas.

Midlatitude FAI signals tend to have rapid fading. They have been observed over several European locations but mostly along the 45-55 degree north latitude lines following the contours shown in reference 13. Those who can elevate their antennas have a greater possibility of success.

Midlatitude FAI propagation offers a great challenge to VHF Amateurs, especially in North America. This mode of propagation should be usable up through 220 MHz throughout the contiguous 48 United States. All it takes is some patience and a surge in activity. Who will be the first to report a 220-MHz midlatitude FAI QSO? It’s there for the asking!

summary

This month I’ve given you a status report on the latest DX records on the VHF/UHF/microwave bands. We’ve also discussed the latest prognosis for propagation using the solar cycle 22 peak and some scatter modes. Next month’s column will update other propagation modes. Until then, you can read the references cited.

new DX records

This has been a good month for new VHF/UHF DX records. First off, the 6-meter EME record has been extended. On February 15, 1988 between 1800-1845 UTC, Ray Rector, WA4NJP, Gillsville, Georgia (EM84DG) completed a two-way EME contact with Bert Ingalls, KH6HI, Ewa Beach, Hawaii (BL01XH), on 50.008 MHz using 1-minute sequencing. The distance was approximately 4530 miles (7289 km). Ray was using 1500 watts and Bert was running 1000. Both stations were using quads of four eight-element Yagis on 35-38 foot booms. Congratulations to Ray and Bert — 6 meters is now buzzing with EME activity.

Last month we reported the first ever 33-cm (902 MHz) EME QSO. That record didn’t last very long! On February 7, 1988 at 0500 UTC, Jay Lieb-
It's a lesson you learn very early in life. Many can be good, some may be better, but only one can be the best. The PK-232 is the best multi-mode data controller you can buy.

1 Versatility

The PK-232 should be listed in the amateur radio dictionary under the word Versatile. One data controller that can transmit and receive in six digital modes, and can be used with almost every computer or data terminal. You can even monitor Navtex, the new marine weather and navigational system. Don’t forget two radio ports for both VHF and HF, and a no compromise VHF/HF/CW internal modem with an eight pole bandpass filter followed by a limiter discriminator with automatic threshold control.

The internal decoding program (SIAM™) feature can even identify different types of signals for you, including some simple types of RTTY encryption. The only software your computer needs is a terminal program.

2 Software Support

While you can use most modem or communications programs with the PK-232, AEA has two very special packages available exclusively for the PK-232...PC Pakratt with Fax for IBM PC and compatible computers, and Com Pakratt with Fax for the Commodore 64 and 128.

Each package includes a terminal program with split screen display, QSO buffer, disk storage of received data, and printer operation, and a second program for transmission/reception and screen display of facsimile signals. The IBM programs are on 5-1/4" disk and the Commodore programs are plug-in ROM cartridges.

3 Proven Winner

No matter what computer or terminal you plan to use, the PK-232 is the best choice for a multi-mode data controller. Over 20,000 amateurs around the world have on-air tested the PK-232 for you. They, along with most major U.S. amateur magazines, have reviewed the PK-232 and found it to be a good value and excellent addition to the ham station.

No other multi-mode controller offers the features and performance of the PK-232. Don’t be fooled by imitations. Ask your friends, or call the local amateur radio store. We’re confident the PK-232 reputation will convince you that it’s time to order your very own PK-232.

Call an authorized AEA dealer today. You deserve the best you can buy, you deserve the PK 232.

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373
Gordon West's

21 DAY NOVICE

$19.95

CODE TAPES • 112 PAGE BOOK • HAMOS-TALK
• FCC FORMS • SAMPLE TESTS • PLUS MORE!
• 500 in equipment certificates from
KCOM, KENWOOD, & VCRE.
• Ham radio equipment "Wish Books".
• RARR membership forms.
• Hotline for student questions.
• Course completion certificates.

CONCEPTS

Contemporary design, quality and a 5 year warranty
on parts and labor. 6 months on the RF Final transistors.
All amplifiers have GaAsFET receive pre-amps and high SWR shutdown protection.

Alpha Delta
Model DELTA-4

Lightning Surge Protected
4-Position RF Coax Switch

• Exclusive center "off" (ground) position.
• Uses ceramic Arc-Plug® protector.
• Micro-strip circuitry—no water switch.

Model DELTA-4
(UHF Connectors) $69.95

Model DELTA-4/N
(N-type Connectors) $89.95

FREE SHIPMENT
MOST ITEMS UPS SURFACE

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

Tell 'em you saw it in HAM RADIO!
MULTI-BAND

YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!

2 MTR 25/45W. 440 MHz, 10 MTR, 2 MTR, 220 MHz & 1.2 GHz. 10 MEMORIES

ARE YOU READY FOR 1.2 GHz OPERATION?

HF SUPERIOR GRADE TRANSCEIVER
SALE! CALL FOR PRICE

ICOM IC-761

A Models 25W, H Models 100 W

IC-275A/275H, 138-174 MHz
IC-375A, 220 MHz
IC-475A/475H, 430-450 MHz

LOW PRICE!

NOW! RAPID DELIVERIES

COAST TO COAST

FROM STORE NEAREST YOU

The Latest in ICOM's Long Line of HF Transceivers

CALL FOR LOW, LOW PRICE

ICOM IC-735

ICOM IC-781

HF ALL BAND TRANSCEIVER
GREAT PRICE!

ICOM IC-900

MULTI-BAND MOBILE

YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!

IC-02AT 2MTR
IC-03AT 220 MHz
IC-04AT 440 MHz

IC-u4AT/u2AT
440 MHz, 2MTR

Mini Hand-Held AT Model w/ TT Pad

GREAT PRICE!

ICOM IC-R7000

25 MHz-1300 MHz
IN STOCK FOR IMMEDIATE DELIVERY

All Major Brands in Stock Now!

Bob Ferrero W6RJ
President
Jim Rafferty N6RJ
VP Sales/Calif Div.
Anaheim Mgr.

ANAHEIM, CA 92801
2620 W. La Palma
(714) 761-3333, (213) 866-2040
Between Disneyland & Knotts Berry Farm

ATLANTA, GA 30340
6071 Buford Hwy.
(404) 232-0700
Larry Mgr. WD4AGW
Doraville, 1 mi. north of I-285

BURLINGAME, CA 94010
999 Howard Ave
(415) 342-5727
George Mgr. W9GKV
5 miles south on 101 from SFG

OAKLAND, CA 94606
2215 Livingston St
(415) 534-5757
Al Mgr. W6ASVYK
17th St Ave & 17th St Ave

PHOENIX, AZ 85015
1700 W. Camelback Rd
(602) 242-3010
Bob Mgr. K7RDK
East of Hwy. 17

SAN DIEGO, CA 92123
5275 Kearny Villa Rd
(619) 562-4900
Tom Mgr. K9BCK
Hwy. 163 & Claremont Mesa Blvd

VAN NUYS, CA 91401
5265 Sepulveda Blvd
(818) 988-2212
Al Mgr. K6YRA
San Diego Hwy.

STORE HOURS
10 AM-5:30 PM
CLOSED SUNDAYS

CALL TOLL FREE (800) 854-6046

Toll free including Hawaii. Phone Hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store. California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
CONFERENCE PROCEEDINGS

AMSAT-NA FIFTH Space Symposium

This conference was held in conjunction with the 1987 Amsat Annual Meeting in Southfield, MI, Nov. 6-8, 1987. 11 papers are presented with topics on trends in spacecraft technology, and space science education, FO-12 mailbox, QRP EME, Phase III-C and Phase IV developments in orbital determination and attitude control. Over 100 pages $12.

OTHER CONFERENCES

Mid-Atlantic VHF Conference. This conference was sponsored by the Mt. Airy VHF Radio Club, Oct. 10-11, 1987. 11 papers cover everything from mountain topping to transceivers for the 3400 and 5600 MHz bands. 120 pages. $10.

MICROWAVE UPDATE 1987 held in Estes Park, Colorado, September 10-13, 1987. 17 papers on equipment, antennas and techniques for 902 MHz through 10 GHz. Much information on construction of 2.3, 3.4 and 5.7 GHz gear. 136 pages. $10.

Please include $2.50 ($3.50 UPS) for shipping and handling.

PUBLISHED BY:
THE AMERICAN RADIO RELAY LEAGUE
225 MAIN STREET
NEWINGTON, CT 06111

EQUIP-tips

By Bob Grove
WA4PYQ

Tips from the expert on boosting the performance of your radio equipment.

The Grove ANT-8 is a fully-adjustable, professional whip antenna made of chrome-plated brass and equipped with a standard BNC base to fit most hand-held radios. Length is extendable from 7 to 46 inches. Replace that inefficient "rubber duckie" with the ANT-8 and STAND BACK!

Only $12.50 plus $1.50 UPS Shipping (US)

Grove Enterprises
140 Dog Branch Road
Braintree, N.C. 28902
(704) 837-9200 or (MC, Visa & COD only) 1-800-438-8155

Six Function DTMF Controller

Auto-Kall AK-4

- Outputs: 2 or 3 latched, 1 or 2 momentary, 1 timed and 1 manually reset group call latched for remote alarm
- Different codes for turning outputs on/off: NOT toggle on/off like most others! Wrong number reset
- 4-digit access code: can use up # down
- Multiple group call response: On board 1-amp relay

MoTron Electronics
695 W. 21st Ave.
Eugene, OR 97405

Call Toll Free 1-800-338-9058 or (503) 687-2118

WHOLESALE PRICING

CLOSED CIRCUIT TV SYSTEMS

- Cameras/Monitors/Housings
- Housing/Lenses/Video Amps
- Switchers/Quad Displays
- Pan/Tilt Units & Controls
- Motion Detectors/Splitters
- Time-Lapse Video Recorders

EXPERT DESIGN ASSISTANCE
7:30 AM-6 PM CST M-F

DETECTION DYNAMICS
4700 LOYOLA LANE, #119
AUSTIN, TX 78723 (512) 345-8401

Boost the Range of Hand-Helds

Today's hand-held VHF/UHF scanners and handle-talkies from Bearcat, Regency, Cobra, and Radio Shack, ICOM, Yaesu, and Kenwood have excellent sensitivity and talk power, but their range is reduced by their short flex antennas.

Tip: To increase the range of your hand-held scanner or transceiver, connect a Grove ANT-8 extendable whip antenna, equipped with standard BNC base.
mann, K5JL, Piedmont, Oklahoma (EM15DQ) completed a 33-cm EME QSO with AI Ward, WB5LUA, McKinney, Texas (EM13QC) over a distance of approximately 187 miles (301 km). Both stations were running approximately 150 watts and 24-28 foot dishes. Congratulations, Jay and Al. It looks as if 33-cm EME activity is just about to take off. Both records just discussed are included in tables 1 and 3.

Finally (although not yet a DX record), during February 1988 Rick Fogle, Grapevine, Texas (EM12KV) has been heard by Lucky Whitaker, W7CNK, Oklahoma City, Oklahoma (EM15FI) via 3-cm (10,368.1 MHz) EME. Likewise, Lucky has heard Rick via the same path. Rick uses a 10-foot dish and Lucky a 16 footer. Both have their preamplifiers and power amplifiers mounted right at the feed. Unfortunately, they have only one high-power (10-15 watt) TVT amplifier between them which they mail back and forth. Because of this, they can’t complete what is considered a conventional two-way QSO (use of two complete sets of gear all used during one operating session). Efforts are underway to get a second power amplifier. Good luck to Rick and Lucky as well as the other 3-cm operators who are also trying to conquer this elusive band. It seems that one of the last EME frontiers is about to be conquered.

Important VHF/UHF Events

June
- **4** EME perigee
- **7** Predicted peak of the daytime Arietids meteor shower at 0150 UTC
- **9** Predicted peak of the Zeta Perseids meteor shower at 1020 UTC
- **11-13** ARL June VHF QSO Party
- **14** New moon
- **16-18** SMIRK (Six Meter International Radio Klub) Party Contest (contact KA9NNO)
- **21** ±1 month. Peak of midlatitude Sporadic E propagation
- **24** ±1 month. Looks for United States to Europe openings on 6 meters
- **20** EME perigee
- **13** New moon
- **16-17** CO Magazine VHF WPX Contest

July
- **20** ±3 weeks. Look for 2-meter Sporadic E openings
- **21-24** *Central States VHF Conference, Lincoln, Nebraska, NeB (contact WA2OOFF)*
- **28** Predicted peak of the Delta Aquarids meteor shower at 2100 UTC
- **30** EME perigee

References
the Quad antenna: part 2, circular and octagonal loops

Analysis shows good performance with similar data.

Although there is a contradiction in terms, it is convenient to consider the circular loop, and arrays built of loops, as the first members of the Quad family. One reason is that all other versions can be regarded as departures from the 'ideal' circular figure. To the extent this is true, the performance of circular-loop antennas is thus representative of the performance of the entire family.

Another reason is that the theoretical analysis of the circular loop is far more advanced than for the other shapes. Extensive tables of calculated characteristics have been published, some with comparisons of measured performance. In contrast, while there are theories of square Quad loop and array performance, their complexity makes them impractical for calculation, even on mainframe computers.

theoretical basis of circular-loop analysis

As shown in fig. 1, only two quantities are necessary to specify the circular-loop antenna: the conductor size, usually given as its radius; and the loop size, also described by radius. It is often more convenient to use two derived descriptive quantities in theoretical discussion. The first is the normalized circumference of the loop at the specific frequency of interest given by the quantity kb, where k is defined as

\[k = 2\pi/\lambda, \]

By R.P. Haviland, W4MB, 1035 Green Acres Circle North, Daytona Beach, Florida 32019

fig. 1. A circular loop can be described by two quantities, the radius of the conductor (a) and the radius of the loop (b). For work, it is convenient to use two derived quantities, a conductor thickness factor (omega) and the circumference in wavelengths at the operating frequency (kb).
\(\lambda \) being the wavelength. The quantity \(kb \) is therefore the circumference of the loop in wavelengths. Conductor size is usually given by the relationship

\[
\Omega = 2\ln \left(\frac{2\pi b}{a} \right)
\]

where \(\ln \) is the natural logarithm, equal to 2.3 times the more common \(\log_{10} \) value. The value of \(\Omega \) is given in fig. 2 as a function of the ratio \(2\pi b/a \), or loop circumference to conductor radius. Values less than 10 represent very large conductor diameters, and those over 20 very small conductors. High-frequency antennas will usually have values in the range 20-25, and self-supporting ultrahigh frequency antennas values of 10-15.

The loop is assumed to be fed at one point, usually taken as the angle reference. This induces a current, \(i \), in the loop at angle zero which, in turn, creates a field at the point designated by \(R,01 \), for example. The total field at this point is the sum of the fields produced by all points on the loop.

The field components also induce current flow in the loop. When equilibrium is reached (after a few rf cycles) the field close to the conductor must lie only at right angles to it. (If there had been a tangential component, a change in the current would have been induced, so equilibrium would not yet have been attained.) This observation plus standard field equations give the conditions for calculating current distribution, and therefore the drive impedance and radiation pattern.

While the concept is relatively simple, the mathematical operations are difficult. See the references, especially Storer,\(^1\) for details. For our purposes it is sufficient to note that the current distribution is given by:

\[
I(\theta) = \frac{V}{i \cdot \pi \cdot 377} \left[\frac{1}{A_n} + 2 \cdot \sum \cos\left(n \cdot \theta\right) \frac{A_n}{A_n} \right]
\]

where the sum is for all values of \(N \) from 1 to infinity. This result was derived by Hallen.\(^2\)

This equation is simple, but its evaluation is complex. The quantities \(A \) involve series for which exact solutions are unknown. Even approximate solutions require further assumptions, two being that the conductor diameter is small compared to loop diameter and to operating wavelength. This restriction is satisfied by practical antennas.

Additionally, the infinite series in the equation tends to zero as the ratio of loop circumference to conductor radius increases. Practical self-supporting loops need an \(\Omega \) around 10-12 to have sufficient strength. Wire cage elements may be used to secure low \(\Omega \) factors at low frequencies.

Fig. 2. Values of the thickness factor (\(\Omega \)) as a function of the ratio of loop to conductor radius (or diameter). Practical self-supporting loops need an \(\Omega \) around 10-12 to have sufficient strength. Wire cage elements may be used to secure low \(\Omega \) factors at low frequencies.

Fig. 3. Current magnitude and phase on a large conductor circular loop one wavelength in circumference as derived by Storer.\(^3\)\(^,\)\(^4\) The loop is below resonance. The current on a conductor of essentially 0 radius is shown for comparison. Derived from transmission line theory, this is the first approximation to the current on any loop of the same circumference.
to become divergent when the number of terms is reduced for reasonable scale of calculation. Storer3,1 developed a method of calculation by keeping the first four terms of the series and replacing the remainder by an integral. He also published a set of ten curves giving the real and imaginary components of the series. With these, evaluation of the current distribution and drive impedance is reduced to some simple (but tedious) curve measuring and complex-number algebra. Unfortunately, the curves cannot be reduced to simple equation form, so this can't be avoided.

Rather than presenting these curves and usage details here, I will give only the results of examination of some specific loop designs. Subsequent analyses have given a table of drive impedances, which is more accurate for most work. These values are covered later.

For values outside the range given here, or to obtain the current distribution, you will need the Storer curves. (The reference 3 version is best, and is available at reasonable cost from Cruft Laboratory Library, Harvard University, Cambridge, Massachusetts.)

A simpler solution for small circular loops is available.4 Here “small” covers the range from 0 to 0.3 wavelength circumference. This restriction allows...
TWO TNC's in your IBM® PC!

The PC*Packet Adapter gives you two independent packet radio TNC's on one short PC plug-in card. Its on-board 1200 baud modem connects directly to your VHF/UHF radio. Add DRSI's HF*Modem with internal tuning indicator and you have another TNC in your PC. Our AX.25 software package includes simultaneous dual-port operation, multiconnect on both ports and cross-band digipeating. Introductory price for the PC*Packet Adapter is $119.95 until July 1. The HF*Modem is $59.95. Call today, get on the air tomorrow!

DRSI
Digital Radio Systems, Inc.
2065 Range Rd. ▲ Clearwater, FL 34625 ▲ (813) 461-0204

GOT SOMETHING TO SELL?
Try a classified ad in Amateur Radio's #1 magazine, ham radio.

Non-commercial ads $.10 per word. Commercial ads $.60 per word. No agency discounts allowed. 15% discount allowed for ads run 6 consecutive months without change. 33% discount allowed for ads run 12 months without change. Payable in advance. Deadline 15th of 2nd prior month.

From something simple to something exotic, ham radio readers are interested. And results prove that they BUY!

Send your ad in today. Send payment with order or give us your MasterCard or VISA and we'll charge your account for you.

Name ___________________________
Address ___________________________
City __________________ State ______ Zip ______
Card Number ____________ Card Type MasterCard ▲ VISA ▲ Exp. ______

HAM RADIO MAGAZINE
Greenville, NH 03048

WACOM DUPLEXERS
Our Exclusive Bandpass-Reject Duplexers
With Our Patented
Bp Bf CIRCUIT® FILTERS

ConnecT!
Interested in packet radio? The 1988-1989 ARRL Repeater Directory is for you. This is the most complete compilation of digipeaters ever. There are over 1400 listed! The regular repeater user will find over 13,000 listings plus band plans, addresses of frequency coordinators and CTCSS (PL) tone chart. Pocket size. Available at your dealer or directly from ARRL for $5.00 plus $2.50 for shipping and handling ($3.50 for UPS.)

WACOM PRODUCTS, INC.
P.O. BOX 21145
WACO, TEXAS 76702 • 817/848-4435

WACOM
PRODUCTS, INC.

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN ST
NEWINGTON, CT 06111

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN ST
NEWINGTON, CT 06111

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN ST
NEWINGTON, CT 06111
simplification of the general equation above, with only three terms giving adequate accuracy. Approximate equations for each are given, and are easily handled by small computers. Note that the reactance for these small antennas is determined almost entirely by the loop circumference, with almost no effect on conductor size. In contrast, the input resistance varies with both.

current distribution on a circular loop

Figure 3 shows the magnitude of the current on a one-wavelength circular loop as calculated by Storer, together with the current magnitude on an ideal shorted transmission line made from one wavelength of conductor. Figure 3B shows the phase with respect to the driving voltage for both cases.

A number of important factors concerning the entire Quad family show on these curves. The first is that a one-wavelength loop is not resonant, as indicated by the fact that the angle of the drive impedance is not zero. Since the loop appears as a capacitance, it is below resonance. Unlike dipoles, loops must be longer than a wavelength to be resonant.

A second factor is that there is no point on the loop where the current goes to zero. Associated with this is the fact that the current at 180 degrees from the feedpoint is appreciably less than at the driving point. Similarly, these two currents are not 180 degrees out of phase, but somewhat more. The point of phase reversal is not at 90 degrees to the line of symmetry through the feedpoint.

One reason for the differences between the loop and the ideal shorted line is the greater separation of the sides. Currents are not constrained to be equal because of tight coupling, as in the ideal shorted line. Further, power is being radiated, causing a reduction in current when moving away from the feedpoint. (In a practical antenna, the current differences would be somewhat greater, as the analysis assumes zero ohms loss.)

These current curves show that the usual evaluation of a Quad — two separated dipoles with ends bent to touch — can’t fully describe the performance. This simple concept is useful in verbal descriptions, and can be a valuable tool in approximate analysis. But it must be remembered that numerical results are probably in error by a factor at least as large as the current error, or at least 20 percent. The effect of the error should be smallest for pattern calculations and drive resistance, but is likely to be sizeable for drive reactance and resonant frequency.

These detail current calculations are for loops with relatively large conductors, \(\Omega = 10 \). Other studies, plus the tables presented later, show that the current magnitude and angle move progressively toward the curve for the ideal transmission line as the conductor radius becomes smaller. This means that the two-dipole approximation is likely to be better at high frequency than at ultrahigh frequency because omega is large for practical conductor sizes. The current distribution for some other loops is also given in references 1, 3, 5, and 6.
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helic filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

TELEX 4932256 Kendecom
FAX 617-373-7304
NOVEX 701 HANDSET

NEW!

* Gang w/PPT switch
* Bracket w/DTMF, speaker & volume controls
* Upgrade your 'mobile' image

Specify YAESU, ICOM or KENWOOD.

HSC701Y, I or K...$79.95 + $4. UPS

DATONG AUTOMATIC NOTCH FILTER

* Automatically notch out heterodynes, whistles
* Get rid of 'tuner-uppers' on NET frequencies
* 1 second is typical lock time/coveres 270 Hz to 3.5 KHz
* Auto/Manual operation in Notch or Peak modes.

ANF...$119.95 + $4. UPS

DATONG MULTIMODE AUDIO FILTER

* SSB, SSB & PEAK, SSB & NOTCH, CW & RTTY!
* If you need an audio filter this is it!

FL2...$159.95 + $4. UPS
* The ultimate audio filter: same as FL2 but with AUTO NOTCH!

FL3...$229.95 + $4. UPS

LAPEL MIC!

ADONIS

HW-10

* Clip-on lapel Mic/Earphone
* PTT switch/battery powered (battery not included).

Specify ICOM, YAESU, KENWOOD.

Order: HW10I, Y or K

$4. UPS

INTRODUCTORY SPECIAL...$39.95

DOCKING BOOSTERS

* GaAs FET preamp
* Compact solid state POWER Amplifier in 30 or 50 watt models
* ICOM, KENWOOD or YAESU from:

$169.95 and up!

CALL FOR DETAILS.

MICROS & Standard

* Turn your HANDHELD into a Mobile Giant!

WP230 or WP250,Y, I, K...$4. UPS

NOVEX 537 SPK MIC

* Finally a speaker/mike we can all afford!
* Specify YAESU, ICOM or KENWOOD.

DMCS537Y, 1 or K...$19.95 + $4. UPS

FREE 1988 CATALOG

SHORTWAVE!

CALL OR WRITE TODAY!

36 Pages over 300 items for the SWLer!

STORE HOURS (Eastern):
Closed Mondays
Thursday 10 A.M. to 9 P.M.

Electronic Equipment Bank — Order Toll Free 800-368-3270

HANDHELD SCANNER

NEW!

220 MHz!

* Covers NOVICE 220 MHz band!
* 16 Memories/Scanning.
* Delay/Unlock/Reset.
* 90-200, 260-30, 60-80, 115-178, 210-260, 410-520 MHz. NIMAC power.

BJ200...$229.95 + $4. UPS

DATONG DIRECTION FINDER

* Doppler DF system for FM receivers
* User attaches his own coax, antennas & speaker
* Normal transmission 20 - 200 MHz, dependant on users equipment.

DF...$329.95 + S&H.

COMPUTER INTERFACE

AEA PK 232

* Attach to any RS232 compatible computer for CW,RTTY, ASCH, AMTOR, PACKET and WEATHER FAX (Epson MS-80/RX-80 for Fascimile).
* The PK 232 is THE UNIT to buy!
* EAB includes the AC Adapter #371512 with purchase!

PK232...$299.95 + $6. UPS

RF SIGNAL GENERATOR

* 100 KHz - 150 MHz
* 450 MHz on harmonics.

SWR/RF ANTENNA METER

* Read SWR, RF power and field strength
* 10 or 100 watt range.

SG-4160...$149.95 + $4. S&H

MT330P...$19.95 + $4. UPS

Finally a speaker/mike we can all afford!

Electronic Equipment Bank
516 Mill Street, N.E.
Vienna, VA 22180

Order Toll Free: 800-368-3270
Technical and VA Orders (703) 938-3350
As a first approximation, the current distribution can always be assumed to be that of an ideal transmission line of the same conductor length. A second approximation can be sketched by "rounding all sharp corners," and decreasing the current away from the feedpoint. Greater accuracy will require tedious evaluation using Storer's curves or the MININEC technique (to be discussed).

drive-point impedance

Get the drive-point impedance by dividing the drive-point voltage by the drive current calculated above. Storer's gives tables of this impedance for loops from 0.05 to 2.5 wavelengths in circumference, and for omega values from 8 to 12 (large diameter conductors).

In considering the general problem of loop antennas, Wu developed another method for solving Hallen's equation. This gives the same values for resistance components as Storer, but the reactance values are quite different and agree more closely with measurements on real antennas. King, Harrison, and Tingley have used Wu's theory to calculate loop drive admittances for sizes from 0.05 to 2.5 wavelengths and for omega from 10 to 20. For those who have forgotten, or never had occasion to work with admittances,

\[
\begin{align*}
z &= R + jX \\
y &= 1/Z \\
y &= g + jb
\end{align*}
\]

(See also reference 10.)

Figures 4A and 4B show feed resistance (R) and reactance (X), respectively, for loops from 0.05 to 2.5 wavelengths circumference. The two values of omega shown, 10 and 20, are representative of very high frequency and high-frequency loops.

Over this range of loop diameters, three high-impedance or parallel resonance points are noted, corresponding to 0.5, 1.5, and 2.5 wavelengths circumference. For \(\Omega = 20 \), the low-impedance, zero-reactance points correspond to serial resonances at about 1.0 and 2.0 wavelengths circumference. For \(\Omega = 10 \), there is also a serial resonance at 1.0 wavelength circumference. There is no true serial resonance for a circumference of 2.0 wavelengths. Instead, the reactance becomes low and remains low and capacitive. This is the case for all values of omega less than 11, and for all but the first serial resonance.

The resistance at the serial resonance point changes markedly with the value of omega. For omega that is large (20 or so), the resistance also varies markedly with loop diameter. But for \(\Omega = 10 \), the resistance change is much smaller. (For \(\Omega = 8 \), the change is less than 2.1 for any circumference greater than 0.6 wavelength.)

These characteristics mean that thick loops are inherently broadband antennas and relatively easy to match. However, the pattern changes described in part 1 affect the desirability of this broadband operation, as discussed later.

Figures 5A and 5B show the feed resistance and reactance for frequencies of greatest interest (those close to the first series resonance) for loops from 0.8 to 1.2 wavelengths circumference. Figure 6 is derived from fig. 5B, and shows the resonant frequency as a function of conductor size. These three curves give the information needed to design practical loop antennas and arrays and to calculate their performance. Their use is covered further on.

gain of loop antennas

In considering loop gain, it was noted that gain should increase as loop size increases and that there are pattern changes as size increases. Specifically, gain on the axis of symmetry becomes zero for all loops with 2, 3, or more wavelengths in conductor length. These two effects are shown in the calculated gain curve of fig. 7 (see reference 11). For a circumference of 1 wavelength, the on-axis gain is 3.4 dB above isotropic, or about 1.4 dB above a dipole. (Based on measurements, Lindsay quotes approximately 4.0 dB, and Appel-Hansen quotes 3.4 dB above isotropic.)
The Original Ringrotor

NEW FROM TIC General

Here’s a fantastic new idea in antenna rotators. Instead of rotating one antenna per tower, with the Network 1000, you can mount several antennas on a tower and rotate each one either together in a phased array, or independently of each other.

Uses high strength steel gear drive, super strong I-beam ring construction and has been fully field tested. You can also aim the antenna to 1 degree of accuracy. TIC also has a digital control box available.

For more information about this exciting new antenna rotator, call TIC today.

(800) 423-6417 nationwide, (800) 542-5009 MN or (218) 681-1291 or write TIC General, P.O. Box 1 Thief River Falls, MN 56701.

Be the envy of your club when you demonstrate your new TIC Network 1000!

A RACE ON THE EDGE OF TIME

Radar — The Decisive Weapon of WW II
by David E. Fisher

A Race On The Edge Of Time reads like a thriller but is based upon painstaking and comprehensive research by the author. In fact, Fisher argues rather convincingly that radar was the crucial factor that allowed the allies to win the war and that radar has played the same important role in our current military and political environment. Filled with fascinating twists and turns of history that could have changed the war’s outcome, anecdotes about the personalities involved in the development of radar and other military insights. Also includes radar development post WW II and how it will influence future battles. Illustrated with rare vintage photographs and diagrams.

□ MH-21088 Hardbound $19.95

Please enclose $3.50 shipping and handling.

Figure 7 shows that larger loops are superior from the viewpoint of gain. A calculated gain value of 4.5 dB occurs for a loop circumference of 1.5 wavelengths. Above this circumference, the gain decreases, as the on-axis lobe splits. Remember, there is no radiation on axis for a circumference of 2 wavelengths.

In smaller sizes, the on-axis gain decreases as the circumference becomes less than a wavelength, and as the pattern changes toward the doughnut pattern of a small loop. The gain is about equal to that of a dipole at a circumference of about 0.65 wavelength, and about 1.5 dB poorer than that of a dipole for a circumference of 0.5 wavelength.

This brings up two important points. First, from the viewpoint of gain, the circular loop should be designed to operate away from resonance. Considering the factors of gain, lobe shape, and feed impedance, Ito et al. recommend a design circumference of 1.2 wavelengths, for a gain of 4.2 dB.

Second, a loop has good gain performance over a wide range of frequencies. For example, a 14-MHz loop would be slightly better than a dipole on 10 MHz, and about 1.5 dB poorer on 7 MHz. The gain would be near maximum on 21 MHz, better than a dipole on 18 MHz, and about as good on 24 MHz. The on-axis gain would be poor on 28 MHz, but there would be usable radiation in two lobes.

The acceptability of operation away from resonance is affected by the difficulty encountered in feeding the loop. From fig. 4, feeding a large loop on high frequency does not appear to be an unusual problem. The feed resistance would increase, but a matching section or transformer is needed. There would be an inductive component, easily compensated by a stub. Depending on conductor size, a very high frequency loop might require only a matching transformer.

Wideband operation would be a greater problem.

Figure 8. Relative geometry of a circle and an octagon. The difference in area for the same conductor length is very small.
You'd need a complex matching section at the antenna, or your transmission line would have appreciable VSWR. The combination of open-wire line and a wide-range "Match Box" would give excellent performance. This is especially interesting as the basis of a 3.5/7/10-MHz fixed-loop design.

I have made use of this wideband capability on many occasions. A 14-MHz loop is regularly used on bands from 7 to 28 MHz. Much of my 10, 18, and 24-MHz experimental work (KK2XJM) used this antenna. Other than Teflon™ insulated 75-ohm feedline and a pi-section tuner, no special precautions were taken.

circular-loop radiation patterns

Published data on radiation patterns of loop antennas varies from sparse to nonexistent. The equations needed to calculate the currents and patterns are solvable on a small computer only with a lot of programming and computing time. It has been necessary to approximate further to develop the pattern data which follows.

the MININEC antenna program

The chosen calculation technique (sometimes called "the method of moments") is the public domain program "MININEC," from Logan and Rockway, currently in its third version. It uses essentially the same initial assumptions as the Hallen approach above. But instead of applying the geometry exactly and then making simplifying assumptions, assume that the radiator is composed of a series of straight-line sections carrying constant current.

A solution's accuracy increases as the number of sections for a given geometry is increased. While the complexity of the solution is not greatly affected, the time required for the solution increases as the square of the number of segments. An IBM PC may take several hours to run the program; a very small computer like the Commodore 64 may need 12 to 24. Even so, this approach is the best generally available, and is quite practical.

The original MININEC was written for the Apple computer. I have translated it for the C-64 and the Amiga; KA4WDK has done the same for the PC. The third version was written for the PC, and I translated it for the Amiga; it also runs on the Macintosh.

MININEC originators used various conditions to examine calculation accuracy, including analysis of loops. One series used a ten-sided polygon approximation of a circle, with two current segments per side plus three for the feed side. Agreement with theory was to within 10 percent.

A second series approximated the circle using the circumscribed polygon. This shows good agreement (± 6 percent) for susceptance, down to four sides. Equally good agreement for conductance required 16 sides. With 22 sides, agreement was within 6 percent for sizes from 0.1 to 2.0 wavelengths. MININEC solu-
tions are found to be unreliable for circumferences less than about 0.01 wavelength.

The inscribed polygon approximation is not an ideal check of solution accuracy as the number of segments decreases. It introduces two added factors which change the results. One is the loss of area. (For eight sides this amounts to about 3 percent.) This reduces the gain by about the same amount. More important, the total conductor length decreases as the number of segments decreases, by about the same percentage. This change in wire length introduces a change in reactance near the series-resonant points, and a change in resistance near parallel-resonant points. Both may be relatively large.

A better approximation occurs when the conductor length is kept constant. It is not easy to evaluate the precise error this causes, but it appears that it is no greater than the sum of the inherent error of MININEC plus the area error in the approximation.

It also appears that the inherent error will be around 5 to 10 percent if two simple rules are followed in setting up a MININEC analysis:

1. use a minimum of two segments per section of conductor,
2. use a minimum of four segments per halfwave of conductor.

Practically, MININEC gives extremely good accuracy. An antenna can easily depart from its ideal value by 20 percent or more because of neglected factors like supports, tower location, and feed-antenna interaction.

octagonal loop

Calculated values for an octagonal loop should be a good approximation of circular-loop values. The octagon is also a useful antenna by itself. Probably the best-known type is the “Army Loop”—really a loop operating well below resonance, incorporating both a matching system and low-loss construction. Figure 8 shows the basic factors involved, and allows visualization of the small area difference from the circular loop.

The properties of the octagon for conductor lengths close to 1 wavelength are summarized by figs. 9A and 9B for drive resistance and reactance. These should be compared with figs. 4A and 4B to see the validity of the octagon approximation to a circular loop. As expected from previous discussions, the agreement in reactance near the series-resonant points, and a change in resistance near parallel-resonant points. Both may be relatively large.

- use a minimum of two segments per section of conductor,
- use a minimum of four segments per halfwave of conductor.

Practically, MININEC gives extremely good accuracy. An antenna can easily depart from its ideal value by 20 percent or more because of neglected factors like supports, tower location, and feed-antenna interaction.

fig. 10. Feed or self-reactance of an octagon for circumferences around one wavelength. The point of equal values occurs at the same reactance as the circular loop but at a greater circumference. Curve slopes are almost identical.

fig. 11. Resonant wavelength of an octagonal loop as a function of conductor thickness. The curve is similar to that of a circular loop, but differs by as much as ±6 percent.

fig. 12. Horizontal radiation pattern for an octagon lying in a vertical plane and fed at the bottom. Only the horizontally polarized component is shown. The pattern is very similar to that of a dipole, but the gain is higher by about 1.25 dB.
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers’ repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST-TONES:</td>
<td>TOUCH-TONES:</td>
</tr>
<tr>
<td>670XZ 91.5ZZ</td>
<td>118.82B</td>
</tr>
<tr>
<td>71.9XA 94.8ZA</td>
<td>123.03Z</td>
</tr>
<tr>
<td>74.4WA 97.4ZB</td>
<td>127.33A</td>
</tr>
<tr>
<td>77.0XB 100.01Z</td>
<td>131.83B</td>
</tr>
<tr>
<td>79.7SP 103.51A</td>
<td>136.54Z</td>
</tr>
<tr>
<td>82.5YZ 107.21B</td>
<td>141.34A</td>
</tr>
<tr>
<td>85.4YA 110.92Z</td>
<td>146.24B</td>
</tr>
<tr>
<td>88.5YB 114.82A</td>
<td>151.45Z</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Frequency accuracy, ± .1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

Model TE-64 $79.95
The unique design of the XP-706-US antenna system gives you MONOBAND PERFORMANCE in a Multiband beam. The antenna uses NO TRAPS of loading coils that rob power and limit bandwidth. Sommer Antennas use the FULL surface area of the elements on ALL bands.

Our commitment to use only the finest materials insures that your investment will last for years. Our system uses a Double rectangular boom, CAST aluminum element mounting brackets, all stainless hardware and a high power balun.

Monoband performance on a Multiband beam is yours when you move up to Sommer, the last beam you'll have to buy. We believe Sommer is your best antenna value when compared to the construction and performance of other multi and monoband antenna systems.

H.J. Thaller Corp.
P.O. Box 5369
Spartanburg, SC 29304
(803) 576-5666

INTERNATIONAL MONTHLY MAGAZINE BY AND FOR ACTIVE RADIOAMATEURS

Radiosporting

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by the world's best in their fields: ON4UN, SM0AGD, L2Z2I, VE3BMJ, K16BZF, DJ9ZB, ZS6BRZ, W1WY, N2SS, K7GCO, K7ZN, W4GF, VE3ITQ, W1AZN, W1B9TBU, KQ2M, N6X, W2XQ, W3FG, KAI3B, K1PLR, N3IK, N7KCD, VE3XN, ABOX, JE1Cka and others.

Includes DX, QSL Info, 160m, 80m, 10m, 6m columns, DXpeditioning, Propagation, Awards, Contest Rules and Results, Traffic - Emergency, FCC News, New Products, Antennas, Technical News and articles, Equipment Reviews and Modifications, Computer Programs, Radio Funnies, Club Life, SWL, RTTY, VHF/UHF, Mail Box, Classified Ads and much more in a magazine format with the speed of a bulletin. Radiosporting sponsors DX Centurion Award, Contest Hall of Fame and World Radio Championship contest.

"Your publication is superb! Keep it up!" Joe Reisert, W1FR
"Your W2PV articles are priceless. Your magazine is superb!" Rush Drake, W7RM

"Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contest!" Dick Moen, N7RO
"Radiosporting, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." Chas Browning, W4PKA

"I take every ham magazine and can say without reservation that Radiosporting is the first one read each month." Joe Rudi, NK7U, "Oakland A's"

Subscription rates: 1 year USA $18, Canada CDN$28, Overseas US$25; 2 years $33, $50, $44 respectively. Single issue $2.

USA First Class Mail add $10/year, DX Air Mail add $20/year.

TRY US! SUBSCRIBE OR SEND $1 FOR YOUR SAMPLE COPY. VISA, MASTERCARD accepted.

Radiosporting Magazine
PO Box 282, Pine Brook, NJ 07058, USA Tel. (201) 227-0712.

For resistance is good — no more than a few percent difference. The agreement for reactance is not quite as good; this is the usual finding. However, neither error is beyond the expected range.

If you build a practical octagon antenna, use figs. 10 and 11 if the antenna is to be resonant or nearly so. If it is away from resonance, the values from table 1 give a good approximation. For best accuracy, the table values should be interpolated for the actual conductor diameter and equivalent radius. Alternatively, MININEC can be used to obtain values within 5 to 10 percent error.

Patterns of circular/octagonal loops

Because the octagon has been found to be a good approximation to the circle, we can use its pattern as a close approximation to those of circular loops.

Figure 12 shows the MININEC calculated horizontal plane pattern for a 1-wavelength octagon fed at
the center of the bottom segment — that is, with horizontal polarization. The lobes are very nearly the same as those of a dipole, but are slightly narrower to produce gain. The gain is 3.4 dB, essentially that of a circular Quad.

Figure 13 shows the vertical plane pattern in the plane of the loop, for the total radiation. Figure 14 shows the horizontal plane pattern for vertical polarization. There is a major difference from dipole patterns in these two figures. The loop has an appreciable vertically polarized component, zero on axis and maximum at right angles to this. This component is not present with dipoles and its importance is not clear. Vertically polarized component, zero on axis and maximum at right angles to this. This component is not present with dipoles and its importance is not clear. It may have an adverse effect because of interference received on the vertically polarized side lobes (and back lobe in beams), or it may tend to reduce fading due to variation of incoming signals and path splitting. The component may also be a factor in the reputation of received on the vertically polarized side lobes (and back lobe in beams), or it may tend to reduce fading due to variation of incoming signals and path splitting. The component may also be a factor in the reputation of Quad loops as good performers at low height. More aspects of these questions will be discussed in other parts of this series.

Figure 15, provided for comparison, shows the calculated current on an octagon. Because the example is for a relatively thin conductor, there is close resemblance to the distribution for a transmission line.

Figure 16 compares the calculated gain of an octagon and a circular loop. Some of the variation is due to the difference in areas. The rest appears to be related to differences in the calculation method. Practically, the difference is negligible.

General conclusions from this comparison of circular and octagonal loops are that both have good performance, and that the data from one can be used for the other with little error.

We will use this last finding in part 3, which is devoted to arrays composed of circular and octagonal loops. Design data for arrays of two to twelve elements will be given.

references

ham radio

PART 3 — COMING UP IN OUR JULY ISSUE.
a nifty bi-square beam for 10 or 12 meters

The miserable DX conditions at the bottom of the sunspot cycle are but a bad memory. True, the higher frequency bands tend to fizzle during the summer, but they'll be back again with a bang as soon as the cooler fall months roll around.

If you're interested in DX operation on either 10 or 12 meters, you'll eventually need a beam antenna. You can work a lot of "easy" DX with a dipole, but sooner or later you'll wish you had a beam for the more exotic DX stations. An easy solution is to buy a Yagi beam kit, but it's less expensive to build your own wire beam from scratch. Here's an inexpensive beam for your consideration.

The Bi-square beam (fig. 1A) is a derivation of the so-called "Lazy-H" array, a favorite of point-to-point stations in the maritime and fixed services. The Lazy-H consists of two half-wave dipoles in phase over a similar pair of dipoles. Spacing between the top and bottom dipole pairs is a half wavelength. Proper phasing of the pairs is achieved with a transposed open-wire transmission line fed at the center of the lower pair of dipoles with a quarter-wave, open-wire stub. The feedpoint impedance at the bottom of the stub is about 220 ohms.

A more practical version of the Lazy-H antenna is the Bi-square beam, shown in fig. 1B. This arrangement requires only a single center pole support. The Lazy-H dipole pairs are connected together at the outer tips, resulting in a diamond-shaped wire arrangement. You can eliminate the transposed line connecting the center of the pairs. The quarter-wave stub is retained.

The feedpoint impedance at the bottom of the stub is close to 150 ohms. There is a reduction in feedpoint impedance because the top and bottom radiating elements of the Bi-square configuration are closer to each other than they are in the Lazy-H antenna.

The Bi-square radiation pattern is a figure eight (bidirectional) at right angles to the plane of the array. The power gain over a dipole located at the center height of the array is about 5 dB.

building the bi-square beam

The Bi-square is an easy, inexpensive beam to build. You'll need about 100 feet of No. 16 enamel or Formvar™ coated wire and four insulators. The quarter-wave stub needs five spreaders cut from 1/2-inch diameter phenolic (or plastic) rod. One of the spreaders serves as the bottom insulator for the antenna wires. The diamond-shaped
antenna is open at the top (two insulators required). Overall height is a little less than 30 feet. I hung mine from a yard arm at the 45-foot level of my crank-up tower. The proximity of the metal tower to the plane of the loop didn’t seem to cause any harm.

Dimensions for the 10- and 12-meter versions of the antenna are given in fig. 2. The sides are pulled out by ropes and tied off to convenient points on nearby trees. The bottom of the quarter-wave stub is about 7 feet above the ground.

The yard arm holds the loop about 3 feet away from the tower. The loop isn’t quite in the vertical plane because I pulled the bottom of it 6 feet away from the tower in order to reach the bottom of the stub easily from the garage roof.

The Bi-square antenna’s bandwidth is very broad; the antenna may be cut to the dimensions given without further ado. Purists may wish to trim the antenna to a specific frequency in the 10-meter band. Design frequencies for the antenna shown are 28.5 and 24.95 MHz. The 10-meter antenna covers the whole band with an SWR of less than 1.5:1 — quite an achievement!

adjusting the antenna to frequency

It’s easy to set the resonant frequency of the antenna “on the nose.” The bottom of the stub (F-F) is shorted by a jumper that has a one-turn loop in the center. The loop is just big enough to fit over the coil of a dip oscillator. My shorting bar is made of two interconnected copper alligator clips so I can move it up and down the stub for adjustment. The dip oscillator is monitored in a nearby receiver. Move the shorting bar up and down the stub, an inch or so at a time, until the resonant frequency falls where you want it. Finally, cut the stub to the determined length.

matching antenna to feedline

As I stated earlier, the feedpoint impedance of the antenna is about 150 ohms. The antenna is symmetrical with respect to ground, and the feedpoint is balanced to ground. Two transformations are required to match the antenna to a 50-ohm unbalanced (coaxial) line. The 50-ohm point is first transformed from unbalanced to balanced by a 1:1 balun. The 50-ohm balanced condition is then transformed to 150 ohms. The first transformation is easy; I use a “Bencher ZA-1A” air-core balun which provides an excellent balance in the 10-meter region.

The transformation from 50 ohms to 150 ohms can be done in a number of ways. One is to use a ferrite toroid transformer (fig. 3). Take a core 2.4 inches in outer diameter and 0.5 inch high (Amidon FT-240-67, or equivalent) with a permeability of 40. Sand it to remove rough edges, and then wrap it with a layer of electrical vinyl tape. Wind 18 turns of No. 14 enamel wire around the core, tapped four turns from each end. Space the winding around the entire core. Fasten the completed transformer to a phenolic mounting plate with epoxy cement, and mount the assembly in a waterproof box for protection from the weather.

a linear matching transformer

The second matching scheme uses a linear transformer, (fig. 4). The design is based on a balanced L-network. The circuit (fig. 4A) was built using a receiving-type variable capacitor for initial tests. The dimensions shown allow adjustment of the capacitor which quickly drops the SWR on the transmission line to unity at the design frequency of the antenna. The last step is to replace the variable capacitor with a fixed one and substitute a section of transmission line for the network inductors (fig. 4B). This works like a charm. A 50-µF, 5-kV ceramic capacitor (Centralab 8505-50Z, or equivalent) is substituted for the variable unit. Place it in a plastic refrigerator jar to keep moisture away. The short line section is made up in the same manner as the quarter-wave stub.

results

For a few days the dipole was left in position as a comparison with the Bi-square. In all tests, the Bi-square outperformed the dipole (usually between one and two S-units on transmit). On receive, signals that were almost in the noise were perfectly readable on the Bi-square antenna. No doubt about it, the Bi-square delivers the goods!

a 15-meter version?

The Bi-square should work well on 15 meters if you have the space. Multiply all 10-meter linear dimensions by 1.34 to get antenna size for this band.

W5LDA 160-meter antenna

Jim, W5LDA, has an interesting 160-meter antenna that incorporates a simplified feed system (fig. 5). He uses
Synthesized Signal Generator

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/- 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery at $429.95 delivered
- Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details

Vanguard Labs
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720

430/50MHz Converter
RCX431
-15µV
20dB
99

5-1000 MHz Preamplifiers
- WLA21m 3dB 13dB 8dBm
- WLA22m 4 11 12
- WLA23m 4 23 12
- WLA24m 3 20 18

WILAM Technology, Div. of
WI-COMM Electronics Inc.
P.O. Box 5174, Masaena, N.Y. 13662
(315) 769-8334

Hi-Performance Dipoles

New OSCAR

BRIDGES HAMSPHERE

Amsat
PO Box 27
Washington, DC 20044

Keep Ham Radio Coming...

Here's my new address:

Name ____________________________
Address ____________________________
City ______ State ______ Zip ______

Call

185
his 54-foot tower (with a tri band Yagi atop it) as a vertical, top-loaded radiator. Rather than fooling around with a gamma match on the tower (which can prove to be very tricky), Jim made his tower into a voltage-fed unipole antenna. He fastened a wire to the top, brought it off at an angle, and voltage fed the bottom end. The natural resonance of the top-loaded tower is such that only a simple matching network is required.

The base of the tower, as well as the shield of the coax running to the beam, are grounded at the tower base. Each lead of the rotor cable (not shown) is bypassed to ground at the tower base with a 0.01-μF, 1.6-kV disc capacitor. The leads are also bypassed to the tower at the rotor. (Jim learned the hard way that bypassing is important, after he burned out the rotor potential-meter atop the tower running 1500 watts on 160 meters!)

The coax and rotor cables are buried in a hose and run to the shack. Twenty radials, each 65 feet long, are fanned out on the surface of the ground beneath the tower.

The end of the wire is at a high voltage point and is brought into the station via a ceramic feedthrough insulator. A simple L-network matches the antenna to 50-ohm coax running to the operating position.

The antenna is very high-Q (narrow bandwidth); the network must be readjusted for a frequency change. It is possible to achieve 80-meter operation of the antenna by retuning the network.

ham radio

THE MULTIPLE RECEIVER SOLUTION

- 4 Channel Signal-to-Noise Voter
 - Expandable to 32 Channels by Just Adding Cards
 - Continuous Voting
 - LED Indicators of OR and Voted Signals
 - Built in Calibrator
 - Remote Voted Indicators Passed Out
 - 4½ x 6 Double Sided Gold Plated 44 Pin Card
 - Remote Isolated Inputs
 - MORE
 - Built, tested and calibrated with manual

$350.00

Telephone interface now available. For more information call or write:

DOUG HALL ELECTRONICS

Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871
"ferriting" out the problem

Ferrite refers to materials that behave similarly to powdered iron compounds. They are used in radio equipment as inductors and transformers. Although they were made originally from powdered iron (and indeed the name "ferrite" still implies iron), many modern materials are made of other compounds. According to the Amidon Associates, ferrites with a permeability of 800 to 5000 have manganese-zinc composition, while cores with permeabilities of 20 to 800 are of nickel-zinc.1 The latter are useful in the 0.5- to 100-MHz frequency range of interest to most Amateurs.

toroidal cores

This month’s column will answer your questions about ferrite cores, winding toroidal cores, and using ferrite inductor and transformer cores.

A toroid is a “doughnut” shaped object, so a toroidal core is an inductor or transformer form made of a ferrite material in the shape of a doughnut. Core nomenclature provides useful information about shape, size, and type of material. For example the number FT—xx—nn means a ferrite toroid (FT) with an “xx” size, and an “nn” material type. The “F” in “FT” is sometimes deleted on parts lists, and the core defined as a “T-xx-nn.”

Amidon has a chart that provides dimensions, a description of the properties of the different types of material, and other physical data. Some of these data are also found in The 1988 ARRL Handbook for the Radio Amateur, beginning on page 2-32 (the same material appeared in earlier editions as well).

Tables 1 and 2 are derived in part from both Amidon and ARRL sources; table 1 shows the sizes and table 2 the properties of various popular toroids. These tables do not contain an exhaustive list of the variety of toroids available or all the properties of the toroids mentioned. Using the nomenclature mentioned above and the tables, you can see that a T-50-2 core (which might be called for in the parts list of a ham radio article) refers to a core that is useful from 1 to 30 MHz. It has a permeability of 10, is painted red, and has the following dimensions: OD = 0.500 inches, ID = 0.281 inches, and height (i.e. thickness) = 0.188 inches.

toroidal transformers

One reader asked me about the winding protocol for toroidal transformers seen in Amateur books and magazine articles. My correspondent included a partial circuit (fig. 1A) as an example of his dilemma. He wanted to know how to wind it and proposed a couple of methods. At first I thought the answer was obvious, then I realized that I was wrong — to many people it is not.

All windings are wound together in a “multifilar” manner. If there are three, we are talking about “trifilar” windings. Figure 1B shows the trifilar winding method. For clarity’s sake, I have shown all three wires different-ly. Because most of my projects use No. 26, 28, or 30 enameled wire to wind coils, I keep three colors of each size on hand and use a different color for each winding.
Factory-less, jumper-less, ROM-less programming.

With the new S-COM 5K Repeater Controller, you'll be able to configure your repeater remotely — using DTMF commands. Only the 5K offers this capability for just $189, wired and tested.

S-COM Industries
PO Box 8921
Fort Collins, CO 80525
(303) 493-8316

A better way to design and analyze Long wires, Vee's, and Rhombics.

LONG WIRE PRO

Easy to use, menu driven, select wire length, height, frequency, ground type, and get a color coded sinusoidal projection of your HF antenna. For the IBM PC and compatibles, DOS 2.0 or higher, 256K, color required.

Price $35.00

EPILESON CO
Box 715, Trumbull CT, 06611, (203) 261 7649

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria
Karl Ubben
Postfach 364
A-7602 Linzern
West Germany

Ham Radio Belgium
Sweewitz
B-1941 Gent
Belgium

Ham Radio Holland
Postbus 413
NL-7800 AV Emmen
Holland

Ham Radio Europe
Box 2054
S-114 85 Upplands Vastby
Sweden

Ham Radio France
Box 6110, Rue des Castors
F-30000 Aix-en-Provence
France

Ham Radio Germany
Karl Ubben
Postfach 364
D-7602 Linzern
West Germany

Ham Radio Nederland
St. Kiliaan
NL-2111 CT Bath
Holland

Ham Radio Nederland
Karel Mitter
Postfach 264
D-7602 Linzern
West Germany

Ham Radio Nederland
Karel Mitter
Postfach 264
D-7602 Linzern
West Germany

Ham Radio Nederland
Karl Ubben
Postfach 364
D-7602 Linzern
West Germany

Ham Radio Nederland
Karl Mitter
Postfach 264
D-7602 Linzern
West Germany

Ham Radio Nederland
Karl Ubben
Postfach 364
D-7602 Linzern
West Germany

Ham Radio Nederland
Karl Ubben
Postfach 364
D-7602 Linzern
West Germany

Ham Radio Nederland
Karl Ubben
Postfach 364
D-7602 Linzern
West Germany

Ham Radio Nederland
Karl Ubben
Postfach 364
D-7602 Linzern
West Germany

Barry Electronics Commercial Radio Dept. offers the best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Rose, Match, Yaesu, Icom, Colel, Uniden, Shimway, Fujitsu, Seas, Spilsbury, Neutel, etc. Call or write for information. 212-925-7000.

ALL Band Trap
"SLOPER" ANTENNAS!

FULL COVERAGE! ALL BANDS! AUTOMATION SELECTORS! NO WEATHER-PROOFED SLOPERS! 12" Ga Copperweld Wire! GROUND MOUNT SLOPERS! NO Radials needed! Ground to cat. or house water faucet! Connect Toys to Trees, Buildings, Poles, etc. PLUS Any angle from Straight up to 60 degrees for "SLOPER" DX. Taper Antenna Gain or bend it anywhere you need to! 2000 Watt power per port or portable uses. Installs in minutes. SMALL - NEAT - EASY INSTALLATION. ONLY $199.00 with HQ Power DX Antenna. Idea for Condo's Apartments. 4000 good-slopers for $199.99. SWR over all bands (except 80-60-30-20). No adjustment of traps required. COMPLETELY ASSEMBLED, 50 ft in RG-58U Coax feedline and PL-259 connectors. FREE INSTALLATION! Call 212-925-7000.

Barry Electronics Commercial Radio Dept.
413 Main Street
New Windsor, NY 12553

THE EXPERT'S EDGE

The Ultimate Computer program for station operation!

GENERAL
Multiple windows with data transfer and receive in separate windows. 40 function keys, 1800 step menu to program your PTT. Easy to use, no memory you may want.

RX buf 200G memory buffers for contacts, QSOs, built-in memory key! Write to file and transmit from file. Separate packet connect in a separate window. Transmit, receive, and transmit more.

TERMINAL
Full radio interface for your computer. Function keys, edit, copy, paste to any program. Yes, with previous GPOE! Includes full documentation.

COMTESTING
Build-in logging program gets radio frequency, mode, date and time automatically. Look at previous GPOE's, sorts data on line. Logging program prints output in your format. Available on 5.25" or 3.5" diskettes.

COMPATIBILITIES
Works with all major computers: IBM, APW, Alpha, Moveo, Radio Shack, JVC, Yaesu, Kenwood, etc.

Add $9.95 postpaid for 7.5% Tax.

EXPERIENCED? POST 10245 (atex)
Leatherhead—Fort Worth, Texas 76108— (817) 246-7418

June 1988
QUALITY TEST GEAR
YOU CAN COUNT ON

INCREASES 2-HOOK-ON-FREQUENCIES
20 MHz DUAL TRACE
Wide frequency bandwidth — optimal sensitivity — delayed triggering sweep — high internal — TV sync trigger — XY mode — 10 MHz vertical — 50 MHz horizontal

$369.95* INCLUDES 2-HOOK-ON-FREQUENCIES
35 MHz DUAL TRACE

$499.95* INCLUDES 2-HOOK-ON-FREQUENCIES

$2495.00* THE COMMUNICATIONS SERVICE MONITOR THAT WORKS HARDER FOR LESS.

Introducing COMM-3, the new service monitor designed by service technicians for service technicians. It works harder for less,
giving you advanced test capabilities at a very affordable price. FEATURES: Direct entry keyboard with programmable memory.
Audio & transmitter frequency counter. LED bar graph frequency counter. 20 kHz to 10 MHz output. High receive sensitivity, 1.5 kHz to 100 MHz continuous frequency coverage.
Sends transmit protection on up to 100 watts. Used as tone encoder, 1 kHz and external modulation

MINI-100 COUNTER
CT-70 7 DIGIT 525 MHz

$19.95

MINI-100 SERIES
METERS INCLUDE ADAPTERS

$139.95

MINI-100 CT-70 DIGIT 600 MHz

$169.95

MINI-100 CT-125 DIGIT 1.2 GHz

$189.95

RAMSEY FREQUENCY COUNTERS

Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for lab quality products at breakthrough prices. Our frequency counters feature accuracy and capabilities of counters costing twice as much.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

TOSS DECODER
Single-axle, 12-volt power supply feature. Controls two 12-volt alkaline or Nickel Cadmium batteries. Includes power supply, relay, 12-volt relay, 12-volt relay, 12-volt relay, 12-volt relay.

$5.95

COLOR ORIGAMI
Seamless, unbreakable film with color. High-speed, high-quality color film for a variety of applications. Each individually colored film is packed and designed to work with 12-volt alkaline or Nickel Cadmium batteries. Includes a set of three 12-volt relays.

$8.95

VIDEO MODULATOR
Contributes to video into indoor microwave. Provides a high-quality image of video signal. Includes color video and black and white video signal.

$7.95

LED BLIMP KIT
Incorporates LEDs into blimp. Includes blimp, 12-volt alkaline battery, 12-volt relay, and a set of three 12-volt relays.

$2.95

MAD BLASTER
Incorporates remote control, triggering and monitoring of blimp. Includes a high-quality image of video signal. Includes color video and black and white video signal.

$4.95

SUPER SILENCER
A high-performance speaker that replaces the original speaker in a variety of applications. Includes a high-quality image of video signal. Includes color video and black and white video signal.

$5.95

TELEPHONE TRANSMITTER
Low cost with professional performance. Includes a high-quality image of video signal. Includes color video and black and white video signal.

$14.95

MINI KIT
Assemble a high-performance FM transmitter. Includes a high-quality image of video signal. Includes color video and black and white video signal.

$19.95

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna — BNC plug $ 8.95
High impedance probe, light loading $ 16.95
Low pass probe, audio use $ 16.95
Direct Probe, general purpose use $ 13.95
Tilt ball for CT-70, 90, 125 $ 3.95

PHONE ORDERS CALL 716-586-3950

TERMS • Satisfaction guaranteed • money back on all orders if not pleased. Two-week approval period on all orders • Payment terms: cash, cashier's check, bank draft, bank transfer • Orders shipped within 48 hours • No sales tax on sales outside New York state • Free shipping on all orders over $150.00 to any state in the USA

TELEX 467635 RAMSEY CI FAX 716-586-4754

2575 Baird Rd. Penfield, N.Y. 14526

MasterCard

VISACard

TELEX 467635 RAMSEY CI FAX 716-586-4754

2575 Baird Rd. Penfield, N.Y. 14526

MasterCard

VISACard

TELEX 467635 RAMSEY CI FAX 716-586-4754

2575 Baird Rd. Penfield, N.Y. 14526

MasterCard

VISACard
The dots in the schematic and on the picture identify one end of the coil windings. The “dot” and “no-dot” ends are different from each other, and it usually makes a difference to circuit operation (signal phasing) which way the ends are connected into the circuit.

Figure 2 shows two accepted methods for winding a multifilar coil on a toroidal core. Figure 2A is the same method as in fig. 1B, but shows an actual toroid rather than a pictorial representation. As previously shown, the wires are laid down parallel to each other. The method in fig. 2B uses twisted wires. The three wires are chucked up in a drill and twisted together before being wound on the core. With one end of the wires secured in the drill chuck, anchor the other end to something that will hold it taut. (I use a bench vise.) Turn the drill on slow speed and let the wires twist together until you achieve the desired pitch.

Be very careful when performing this operation. If you don’t have a variable speed electric drill that runs at very slow speed, use an old-fashioned manual drill. Remember to wear eye protection if you use an electric drill. If the wire breaks, or gets loose from its mooring at the end opposite the drill, it will whip around wildly until the drill stops. That whipping wire will cause painful welts on the skin, and can certainly cause eye damage.

Of the two methods for winding toroids, the method shown in figs. 1B and 2A is preferred. When winding toroids, at least those of relatively few windings, pass the wire through the “doughnut” hole until the toroid is close to the midpoint of the wire. Loop the wire over the outside surface of the toroid, and pass it through the hole again. Repeat this process until the correct number of turns is wound onto the core. Be sure to press the wire against the toroid form and keep it taut as you wind the coils.

Enameled wire is usually used for toroid transformers and inductors, and this can lead to problems. The enamel can chip causing the copper conductor to contact the core. On larger cores, like those used for matching transformers and baluns at kilowatt power levels, the practical solution is to wrap the bare toroid core with a layer of fiber glass packing tape. Wrap the tape exactly as if it were wire, but overlap the turns slightly to ensure covering the entire surface of the core.

On some projects, particularly those in which the coils and transformers use very fine wire (like No. 30), I have found that the wire windings tend to unravel after the process is completed. To prevent this, place a tiny dab of rubber cement or silicone sealer at the ends of the windings (see fig. 2C).

Mounting toroid cores

Now that you have a properly wound toroidal inductor or transformer, it is time to mount it in the circuit. There are three easy ways to do this. If the wire is strong enough, use the wire connections to the circuit board or terminal strip to support the component. If this is not satisfactory (and in mobile equipment or wherever else vibration is a factor it won’t be), try laying the toroid flat on the board and cementing it in place with silicone
Every preamplifier is precision aligned on ARR's Hewlett Packard HP8970A/HP3464A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are rf switched (for use with transceivers) and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7%-1/2% sales tax. C.O.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or inline preamplifier today and start hearing like never before!

Advanced Receiver Research
Box 1242 • Burlington, CT 06013 • 203 582-9409

ATV CONVERTERS • HF LINEAR AMPLIFIERS

R-4C Enhancements
Custom AGC / Filter Switch Available
Custom AF / RF Knob Set Available
Filters for Every Mode and Bandwidth
CF-1.7K/8, Sharp SSB, CF-1.0K/8, Wide CW
CF-50/8, Standard CW, CF-250/8, Narrow CW
First IF Filter Solutions
CF-2K/8, Sharp Filter Pairs
CF-5K/8, First IF Replacement
CF-600/6, The Ultimate CW Upgrade

Sherwood Engineering Inc.
1268 South Ogden Street, Denver, CO 80210
(303) 722-2257 Monday - Friday 9 A.M. - 5 P.M.

Full Installation Dealers:
Design Electronics Ohio, KSNZ.
(614) 836-5711 Days, (614) 836-3376 Evenings
ITA Industries, K31.R (412) 528-9302

1988 CALL DIRECTORY
(Buckmaster Publishing)
Call Directory $8
Name Index $8
Geographic Index $8
All three $20 Shopping per order $3

BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777
800-282-5628
Seal or rubber cement. For the third method, drill a hole in the wiring board and use a screw and nut to secure the toroid. Do not use metal hardware for mounting the toroid! Metallic fasteners will alter the inductance of the component and possibly render it unusable. Use nylon hardware for mounting the inductor or transformer.

How many turns to use?

Three factors must be considered when making toroid transformers or inductors: toroid size, core material, and number of turns of wire. The toroid size is selected as a function of power handling capability or convenience. The core material is selected according to the frequency range of the circuit. The only thing left to vary is the number of turns. The size and core material yield a figure called the A_L factor. These values are given for several popular toroidal cores in Table 3. The required value of inductance and the A_L factor are related by the following equation:

$$ N = \frac{100}{\sqrt{L/A_L}} \quad (1) $$

Where:

- N is the number of turns
- L is the inductance in microhenries
- A_L is the core factor in microhenries per 100 turns

EXAMPLE

Calculate the number of turns required to make a 5-μH inductor on a T-50-6 core. From Table 3 we see that the A_L factor is 40.

Solution:

$$ N = \frac{100}{\sqrt{L/A_L}} = \frac{100}{\sqrt{5/40}} = 35 $$

Don't take the equation value too seriously; a wide tolerance exists on Amateur-grade ferrite cores. While this isn't too much of a problem when building transformers, it can be critical when making inductors for a tuned circuit. If you find that the tuned circuit takes considerably more or less capacitance when called for in the standard equation, and all of the stray capacitance is properly taken into consideration, then it may be that the actual A_L value of your particular core is different from the Table 3 value.

Ferrite rods are also used in receiving antennas. Although few Amateurs have them, there are places where a ferrite rod antenna (or "loopstick") is used. For example, ferrite loops are common in radio direction-finding antennas. Some Amateurs report that they use a loopstick receiving antenna when operating on crowded bands like 40 or 75 meters. The small loopstick is extremely directional and is capable of nulling out interfering signals. Of course, one would not want to use the loopstick for transmitting, so there must be some means for switching between transmit and receive functions.

Mounting ferrite rods

Ferrite rods can be mounted several ways; two of them are analogous to the methods used on toroids. You can mount the rod using either its own wires for support or a dab of cement or silicone sealer to fasten it to the board. Although you can't use simple nylon screws the way you can on toroids, you can use insulating cable clamps to secure the ends of the rod to the board.

Questions, suggestions, and criticisms are welcomed. Send them to: Joe Carr, K41PV, POB 1099, Falls Church, Virginia 22041.

References

1. Amidon Associates, 12033 Otsego Street, North Hollywood, California 91607
Optimized forward gain comparison

In part 1, we developed a means of analyzing quad antennas based on a mutual impedance versus spacing relationship and a fixed single quad element pattern. In part 2, we will examine different quad element configurations on a variety of boom lengths and attempt to maximize forward gain through fine tuning of the element lengths. Boom length will be limited to 1 wavelength or less because this is about the longest practical boom for 15, 20, or 40 meters. The intent here is to answer the questions: What is the best possible forward gain we can squeeze out of a quad of a given boom length, and how much has the optimized gain improved from where we started? Note that we are not taking front/back discrimination or bandwidth into consideration. Both parameters are important, but both detract from maximized forward gain. Finally, we can compare the computed maximized gain for a quad against the maximized forward gain for a Yagi.

Computational methodology

Antennas are modeled in free space using the assumptions outlined in part 1*. The mutual impedance between elements is assumed to be independent of element length. The self-impedance is approximated from interpolation of measured values. Gain is calculated from integration of field pattern over a sphere, and comparison of the forward field against the average power. Field points are updated every 10 degrees (both phi and theta, spherical coordinates).

Initial antenna design is based on general ARRL Antenna Handbook principles. Reflector length is \(1030/f = 1.05\) wavelengths. Driven elements are \(1005/f = 1.021\) wavelength. Directors are all \(975/f = 0.991\) wavelengths, and all elements are spaced equally along the boom. Starting with the reflector, the element length will be increased by 0.0025 wavelength and the gain again calculated. If the forward gain improves by at least 0.005 dBi, that element is incremented again in the same direction; if not, the element will be shortened until the gain starts to fall off. Once the reflector is optimized for forward gain, the same procedure is applied to the directors in order, and the process is repeated until no significant gain increase occurs with element change. The elements, except for the ones at the end of the boom, will then be moved along the boom in 0.0025 wavelength increments to attempt a further gain increase.

Two-element quad results

The optimized gain was about 8 dBi on a 0.115 or 0.172 wavelength boom (8 and 12 feet on 20 meters). Adding a third element was worthwhile, as gain increased to about 10 dBi for boom lengths of 0.258, 0.30, 0.343, 0.430, and 0.516. Initial performance of larger antennas was better. Quads on a 0.688 wavelength boom (48 feet on 20 meters) showed an initial gain of about 11 dBi which increased to just under 12 dBi with tuning. Quads on a 0.86 wavelength boom (60 feet on 20 meters) could be tuned for over 12 dBi, and on a 1.031 wavelength boom (72 feet on 20 meters) peaked at 12.7 dBi.

The relationship between maximum gain and boom length is compared against similar data developed for Yagi antennas1 (fig. 1). The two-element quad is slightly better than a two-element Yagi (by 0.5 dBi or so) but worse than a three-element full-size Yagi (by 1.5 dBi), and a three-element quad is slightly better than a three- or four-element Yagi (again by 0.5 dBi). The quad antennas did not show the same staircase gain phenomenon observed with Yagi antennas1, and forward gain rose smoothly with increases in boom length out to 1 wavelength. With Yagi antennas the gain versus boom length relationship is not smooth, but increases rapidly over a small extension in boom length and then plateaus. Thus, Yagi and quad antennas performed similarly out to a 24-foot boom on 20 meters, but past this point quad forward gain continued to increase and Yagi forward gain plateaued (fig. 2). Between 24- and 48-foot booms the quad showed up to 2.5 dBi gain over the same size Yagi. Above 48

By David Donnelly, K2SS, 8 Alder Street, Lincoln Park, New Jersey 07035

*Yagi vs Quad, Part 1, Ham Radio, May 1988, pg. 68.
feet the Yagi closed the gap, reducing the quad advantage to about 1.5 dB.

Several conclusions are suggested by these results:

First, quad antenna gain, like Yagi gain, is basically a function of boom length and not the number of elements, as long as "enough" elements are used. Second, the quad may have 2 to 2.5 dB greater gain than a well-tuned Yagi, but this occurs only at certain boom lengths. The quad should work about 0.5 to 1.5 dB better for the same boom length. Third, the average gain increase expected with fine tuning is about 0.45 dB (range 0.0-1.55 dBi).

Lindsay's 440-MHz experimental results initially suggested that quads were somewhat better than Yagi antennas on the same-sized boom. However, experimental uncertainties led to questions about his conclusions. For instance, it was difficult to measure gain accurately on the basis of input power because of inefficiencies in the coupling system. This may have influenced Lindsay's measurements from the start, since he measured the gain of a quad loop as being 2 dB better than a dipole. The actual value, according to several sources, should be 1 dB. Another variable in Lindsay's study involved the lengths of Yagi and quad elements; they were cut by formula and not optimized for any particular factor like forward gain. Because fine tuning of a Yagi or quad may add another 1 dB or so to the forward gain, any gain difference between Yagi and quad antennas is reduced to the experimental noise.

Not all people have found quad antennas to be as good as Yagis. Driving around California with a 70-foot portable reference antenna, Wayne Overbeck com-
YAGI ANTENNA DESIGN by Dr. James Lawson, N4PV
Based upon the popular Ham Radio Magazine series, this book includes notes, charts, graphs as well as other additional information not found in the original text. W4PV was known worldwide as one of the most knowledgeable experts on antenna design and optimization. This book is full of his contest winning “trade secrets.” Eight chapters cover analysis, performance calculations, Simple Yagi antennas, Yagi antenna performance optimization, Loop antennas, The effects of ground, Stacking, Practical design, and Practical Amateur Yagi antennas. A wealth of information at a modest price—Lawson’s book should sell for much more—every Ham should get a copy for their bookshelf.

1986 1st Edition

ARRL-YD Hardcover $14.95

ALL ABOUT VERTICAL ANTENNAS by Bill Orr, W5SAI and Stu Cowan, W2LX
Smart DX’ers know that the vertical antenna can be the secret to low band DX success. Theory, design, construction, operation—are fully covered by, 5, 8, 10, 16 elements and vertical arrays. There is a problem? The effects of ground on vertical antennas and how to make a effective ground system. The Bobtail, construction data for 25 different vertical antennas, many diagrams of all descriptions—which is best, plus P.L.E.T.Y more! 1st edition, 199 pages. 1986

ARRL-VA Softbound $11.95

THE AMATEUR RADIO VERTICAL HANDOOK by Capt. Paul H. Lee, USN (Ret.), N6PL Based upon the author’s years of experience, and a number of different vertical antenna designs, you’ll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for simple 1/4 and 3/4-wave masts as well as broadband and multielement directional antennas. Paul Lee is an engineer and ham and is Amateur Radio’s resident expert on the vertical antenna. 1984 2nd Edition

ARRL-QVH Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS by Bill Orr, W5SAI and Stu Cowan, W2LX The cubical quad antenna is considered to be the best DX antenna because of its simple, lightweight design and high performance. You’ll find quad designs for everything from the single element to the multi-element monster. There’s a wealth of data on construction, feeding, tuning, and mounting quad antennas. 112 pages. 1982 3rd Edition. Includes data for WARC bands

ARRL-CQV Softbound $9.95

BEAM ANTENNA HANDBOOK by W5SAI and W2LX
Completely revised and updated the Beam Antenna Handbook includes the very latest state-of-the-art antenna design. Computer generated beam dimensions for the 40, 30, 20, 17, 15, 12, 10 and VHF bands are included eliminating the need for time consuming math calculations. Also covered are: Beam height and optimum apex of radiation, how element types and hardware effect performance, effect of nearby objects on radiation patterns, baluns and matching systems and much more. Ham Radio VHF columnist W5JR, and noted European VHF or DL/DK0’s VHF antennas are covered extensively as well as NBS VHF long Yagi. 256 clearly written pages — 204 easy-to-understand illustrations, make this the book to buy for beam construction. 1985 1st Edition

ARRL-BA Softbound $11.95

SIMPLE LOW-COST WIRE ANTENNAS by Bill Orr, W5SAI and Stu Cowan, W2LX Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with one of the “invisible” antennas found here. Well diagrammed. 192 pages. 1972

ARRL-WA Softbound $11.95

1988 2nd Edition

LOW BAND DX-ING COMPUTER PROGRAMS by John Devidiere, ON4UN for Apple II, MS-DOS, Commodore C-128 and Kaypro CPM Computers
Here’s a collection of 30 super programs written by ON4UN. Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: Shunt and series input line network design, feedline transformer, shunt network design, SWR calculator, plus 11 more! General Ham programs include: sunrise/sunset, great circle distances, grayline, vertical antenna design program, sunrise calendar plus 9 more! With this book you sit down to use these programs you’ll be amazed at what you have! The best value in computer software available today. 1986

ARRL-UN Apple $39.95

ARRL-UN-MG MS-DOS $39.95

ARRL-CPS Kaypro $39.95

ARRL-C-128 Commodore $39.95

ARRL-UN-MAC MACINTOSH $49.95

LOW BAND DX-ING 2nd Edition

Now available! The new, 2nd edition of the definitive book on Low Band DX-ING. Based upon years of practical on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations—diopole, inverted V’s, slopers, phased arrays and Bev—They’re all in this book. Also covered: propagation, transmitters, receivers, covering software and an extensive Low Band antenna bibliography. Going to be a best seller! Get yours today. 1987 2nd Edition 200 pages

ARRL-UN Softbound $9.95

BUY ’EM BOTH SPECIAL OFFER

Book & Software Reg. $49.90 ($59.90 for Mac) Just $44.90 ($54.90 for Mac)

ARRL-USO (specify computer) $44.90

ARRL-UN-MAC MacIntosh Special SAVE $5 $49.95

ARRL-UN-MAC MacIntosh Special SAVE $5

SUN AMATEUR RADIO BOOKSTORE

603-878-1441

GREENVILLE, NH 03048
ARRL LICENSE MANUALS
by ARRL Staff

ALL LICENSE CLASSES NOW AVAILABLE!

ARRL License Manuals are keyed to the latest Exam syllabi now in use by the Volunteer Examiners. These books are written in an easy-to-read conversational style that en- thusiastically understanding without scaring the student away. All technical subject areas are explained in clear terminology and with plenty of illustrations, diagrams and schematics. Each book has the official ARRL multiple choice question Pool with answers and a key to the Exam syllabus for reference to other study publications. These are the study guides for:

- AR-T0 Tech/General
- AR-A0 Advanced
- AR-EG Extra
- AR-SG Get All Three

$12.95

HAM RADIO LICENSE STUDY COURSE
by Diamond System (MS-DOS Computers)

Use your home computer to study for your Amateur Radio License. Questions and answers are taken from the VEC standard syllabus for each license class. You can either study the whole question pool or one of the individual sub- elements. Novice, General and Extra programs also include a Morse code program that will allow you to bone up on your code. The program can either generate code randomly or from a text file. State-of-the-art learning MS-DOS only.

DS-N Novice (with code study) $39.95
DS-G General (with code study) $34.95
DS-A Advanced $49.95
DS-E Extra (with code study) $49.95

AMSCO STUDY GUIDES
Designed for VEC Exams

AMSCO study guides are taken from the latest FCC/VEC Exam question pool. Each book has the latest questions along with the ARRL/VEC multiple choice answers, immedi- ately followed by a detailed discussion explaining each question. While nothing can guarantee that you will pass, AMSCO study guides will make sure that you are fully pre- pared and ready to go. Written in clear, concise, easy-to- read format, each question is fully explained. Novice and General books are cross referenced to AMSCO’s 102-01 for a more thorough explanation.

102-01 Novice Class $4.95
12-01 Technician/General Class $4.95
25-01 Advanced Class $4.95
17-01 Extra Class $4.95
102-01 Radio Amateur Theory Course $6.95

AMSCO CODE COURSE for MS-DOS computers

Plenty of good code practice programs are already avail- able. But these existing programs do not offer as many different ways to learn the code as any of the others! Take ran- dom code practice or listen to existing ASCII files at your chosen speed. A comprehensive quiz is included that tests your code copying ability at any point during the learning process. You can also use the computer as a code practice oscillator. Finally, the computer will generate random QSO’s that are very similar in format to VEC code examinations. Great for either beginners or those getting ready to upgrade. © 1987

$19.95

RADAR HANDBOOK 23rd Edition
by Bill Orr WESAI

Here are some of the highlights of this exciting new edi- tion: New easy-to-use charts for Chebyshev and elliptic filter configurations. New data on power MOS-FETs. How to use state-of-the-art digital trans- mitters, and home computer RTTY to name just a few examples. New projects include: QAS/FET preamps for 902 and 1296 MHz, easy-to-build audio circuitry, Filter modules for 2100 MHz. New antenna projects include: Simple Marconi for 160 and 80 meters, computer generated dimensions for HF-Yagis, and a 2 meter slot antenna. Get your copy today. To Order © 1987

$22424

($29.95) Hardbound $25.95

REG. 29.95 SAVE $3

THE BUYER’S GUIDE TO AMATEUR RADIO
by Angus McKenzie, G3OSS

This new book from the RSGB is an invaluable aid in evaluating which radio best suits your personal operating needs. Author McKenzie spent hundreds of hours testing and measuring each radio’s operating parameters—over 10,000 measurements and 500 analyzer plots were made. Equipment was also subjected to hundreds of hours of on-the-air testing by hams throughout the UK and around the world. There are more than 100 fully equipment reviews and nearly 100 more products with brief reviews. © 1986 472 pages

IRS-BG Softbound $11.95

FCC RULE BOOK

More than the FCC Part 97 rules and regulations. It presents detailed explanations of FCC rules and is written in an easy-to-read, conversational style. You get the inside’s view of the FCC. You also get a broad overview of how international relations impact your hobby. Every U.S. amateur should have a copy of this latest FCC Rules and Regulations in their Ham Shack. © 1987, 6th edition

$39.95

TRANSMISSION LINE TRANSFORMERS
by Larry Savick, W2EMI

Contains a complete explanation and discussion of transmission line transformers and how to use them. Written by one of the experts in the field—this book is full of helpful information. © 1987 1st Edition 144 pages

$9.95

AM-FM.qi Transceiver

by Doug DeMaw, K1EM

The QRP Handbook. The Think of working a rare one using a QRP radio is hard to ex- plain. You can even be more thrilling if the radio is unmatch- ed and homedrew. The QRP Handbook stays away from heavy technical discussions and formulas and gives you in a plain, easy-to-read format all the essentials you need to build your own QRP gear. Six chapters cover: The essentials of receiving, the world of QRP transmitters, QRP- accessory gear. QRP transmitting, the QRP workshop and QRP operating. An appendix gives suggested books, magazine articles and parts suppliers. © 1986 86 pages 1st Edition

$39.95

ORDER FORM

In a hurry? Call today!

(603) 878-1441

Catalog # Title QTY. Price Total

Name Address City State Zip

Check or Money Order Enclosed VISA MasterCard

Card #

Expire

Need more space? Attach a separate piece of paper and mail in the handy enclosed envelope

I.D. BADGES

No ham should be without an I.D. badge. It’s just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the fol- lowing color combinations (badge/lettering): white/red, wood grain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

UDF-81 $15.00

$5.00

DI D Engraved I.D. Badge

$2.50

YOUR GATEWAY TO PACKET RADIO
by Stan Harzepa, W1LOU

Here is the complete beginner’s guide to Packet Radio writ- ten by ARRL Packet Expert, W1LOU. Beginners will find the complete easy-to-understand explanations eliminate many of the frustrating aspects of packet operation. Full of helpful hints and tips that come from thousands of hours of on-the-air experience. Keep from re-inventing the wheel — learn from an expert. 208 pages © 1987

AR-PKT Softbound $9.95

6th ARRL COMPUTER NETWORKING
CONFERENCE

August 1987

Packet radio is growing at a phenomenal rate. This collection of papers given in August 1987 at Redondo Beach, represents the “cutting edge” of packet technology. 29 papers cover every subject from equipment design and improvement and digital signaling processing, to the latest techniques in data transfer. Add this book to your collection of earlier Computer Networking Conferences — be 100% up-to-date and packet compatible. © 1987

AR-CN6 Softbound $9.95

DIGIPAC II (MS-DOS Computers)
by Kari Assuc

DIGIPAC II: A complete featured computer communications program with a powerful message editing and format- ing program designed for traffic handling. The program features address prompts, complete subscrolling form, prompts and pop-up help and selection menus, full user defined help system plus more. The communications program has plenty of features too: multi-level alarm, real time screen (full, split or recall) user programmable function keys to name just a few. No matter what your interest in packet — from rag chewing to traffic handling — this pro- gram is for you.

$49.95

THE PACKET RADIO HANDBOOK
by Jonathan Mayo, K3RT

Packet radio is the fastest growing mode in Amateur oper- ation today. No wonder — it combines the power of today’s microcomputer with worldwide digital communica- tions. Newcomers will find this book to be full of helpful tips, tricks and information that will help them get on Packet as quickly as possible. Providing you first with packet basics, this book progresses through the inner workings and operational aspects of packet to a look at future technology still in developmental stages. Also in- cludes: using bulletin boards, traffic handling on packet, modulation methods and networking principles, protocols (both AX.25 and VADOC) and a thorough discussion of the various TNCs and accessories available. © 1987

1st Edition 218 pages.

AR-PRT

Softbound $14.95

$14.95

TOTAL

$3.50

Need more space? Attach a separate piece of paper and mail in the handy enclosed envelope

THE HAM RADIO MAGAZINE BOOKSTORE
GREENVILLE, NH 03048

1-800-331-7946

www.arrl.org
Table 1. Element length, spacing, forward gain and front to back (at the horizon) for two, three, and four elements on 0.115, 0.258, 0.343, 0.430 and 0.516 wavelength booms (8, 12, 18, 20, 24, 30, and 36 feet on 20 meters). Row S is the starting antenna and row O is after forward gain optimization. The element length is specified first and the element position is in parentheses. R is the reflector; D is the driven element; D_1-D_n are directors. Gain is specified over isotropic.

<table>
<thead>
<tr>
<th>Element Length (boom position)</th>
<th>Gain(dBi)</th>
<th>F/B(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>(De)</td>
<td>(D1)</td>
</tr>
<tr>
<td>S 1.050(0)</td>
<td>7.64</td>
<td>11.12</td>
</tr>
<tr>
<td>O 1.035(0)</td>
<td>8.00</td>
<td>11.12</td>
</tr>
<tr>
<td>S 1.050(0)</td>
<td>7.65</td>
<td>11.12</td>
</tr>
<tr>
<td>O 1.037(0)</td>
<td>7.78</td>
<td>11.12</td>
</tr>
<tr>
<td>S 1.050(0)</td>
<td>8.76</td>
<td>11.12</td>
</tr>
<tr>
<td>O 1.030(0)</td>
<td>9.84</td>
<td>11.12</td>
</tr>
<tr>
<td>S 1.050(0)</td>
<td>8.99</td>
<td>11.12</td>
</tr>
<tr>
<td>O 1.035(0)</td>
<td>9.72</td>
<td>11.12</td>
</tr>
</tbody>
</table>

pared low-angle signal strengths of Yagi and quad antennas at various QTHs against a portable reference antenna at the same height as the test antenna. A review of his results showed that quads were the same as or inferior to Yagi antennas, and certainly not 2 dB better than similar Yagi antennas. Why didn’t the quads perform better?

Theoretical results presented here suggest that quad antennas with correct coupling should be at least as good as Yagis, and certainly not worse. But two complicating factors were not included in the computer model: the efficiency of the feed system and the effects of nonresonant elements in the vicinity of the antenna. Most of the antennas showing the best performance in Overbeck’s study were monoband Yagis with a double driven element. This feed system, popularized by KLM, is known for its wide bandwidth and low SWR, and is also said to give excellent results on quad antennas. Perhaps part of the answer lies in a lower feed efficiency for direct feed quads. Attaching the coax to the quad loop is the most common method of feeding quads. Most quad antennas are implemented as tribands with wires for other bands in close proximity to the desired antenna. It may be that these other wires significantly degrade performance. Both of these factors deserve a closer look.

I didn’t intend to provide optimum dimensions for quad loops, and a caveat is in order if you wish to use the dimensions provided in Table 1. Although I believe in the results of computer modeling, the dimensions should be trusted only after confirmation on an antenna test range. I have not done this, and the actual performance peaks may be different. The constructed quad loops should have the same reactance as the computer antenna. The best way to do this is to direct-
Quad antennas offer a theoretical 0.5 to 2.5 dB advantage over a Yagi of the same boom length. Like the Yagi, a gain increase of about 1 dB may be obtained through fine tuning of the elements. The increase in forward gain as one goes to longer boom lengths is smoother for quad antennas than for Yagis, and quads do not show the gain plateau seen with Yagi antennas. Finally, the quad should be significantly better than the Yagi, especially between boom lengths of 25 and 45 feet on 20 meters. However, unknown variables such as feed system efficiency or the effect of other wires in close proximity to the quad may detract from its theoretical performance.

references
new coaxial crimping tools

Nema! Electronics International has introduced two new crimping tools that combine the capabilities of several tools. They offer full cycle ratcheting with machined dies for precision crimping and long service life. By combining multiple hex sizes in a single fixed die, the tools provide great versatility and cost savings.

Part No. CT3600 crimp a wide variety of BNC, TNC, type N, and other rf connectors on RG58, 59, 62, 142, and 223 size cables. Part No. CT3900 offers the capability of crimping both RG59 and Belden 8281 connectors without changing dies. Both tools provide a ratchet release lever to allow adjustment of cable or connector position during the crimp cycle.

For additional information please contact Nema! Electronics International, Inc., 12240 NE 14th Ave., North Miami, Florida 33161.

multi-mode data controller

The new MFJ-1278 Multi-mode Data Controller by MFJ Enterprises, Inc. lets you work seven digital modes: Packet, ASCII, RTTY, CW, WEFAX, SSTV, and Contest Memory Keyer.

Features include high performance HF/VHF/ CW modes, software selectable dual radio ports, precision tuning indicator, 32K RAM, and an ac power supply.

To operate the MFJ-1278 you need a standard HF or VHF rig and a computer with a serial port and terminal program.

MFJ also offers a Starter Pack that includes computer interface cable, terminal software, and instructions. It is available for the Commodore 64//128, VIC-20 (MFJ-1287, disk; MFJ-1283, tape) and for the IBM or compatible (MFJ-1284), for $19.95 each.

The MFJ-1278 automatically sets itself to match your computer baud rate. All modes feature printing, threshold control for varying band conditions, tune-up command, lithium battery backup, RS-322 and TTL serial ports, watch dog timer, FSK and AFSK outputs, output level control, speaker jack for both radio ports, test and calibration software, Z-80 microprocessor running at 4.9 MHz, 32K EPROM and socketed ICs. It is FCC approved, measures 9 x 1-1/2 x 9-1/2 inches and operates on either 12 VDC or 110 VAC.

The MFJ-1278 is backed by a one-year unconditional guarantee. It can be ordered for $249.95 and may be returned within 30 days for a full refund, less shipping.

For details contact MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, Mississippi 35762. Circle #301 on Reader Service Card.

microphone for SSB/fm

Heil Sound has just released its HM-5 microphone with the HC-5 “Key Element” cartridge developed for SSB.

The HM-5 has a cast base with a 10 x 14 inch “easy-move” goose neck. A push-to-talk switch has single touch activation or can be locked down for longer transmissions. An eight-wire flexible cable is attached. The response is 300-2,800 Hz with an 8-dB spike at 2,000 Hz for increased articulation.

For additional information contact Heil Sound, Marissa, Illinois 62257. Circle #304 on Reader Service Card.

Macket software for Macintosh

Macket provides power and flexibility for the packet operator with a Mac®. There are windows for entering text, displaying the receive buffer, and logging transmitted text. The windows support all the features Mac users expect. The input window allows control-based editing. Other features include text uploading and downloading, printing, and macro keys.

Macket works with all Pac-Comm TNCs, the TNC-200, TNC-220, Tiny-2 TNC, and the Microport-2 TNC as well as any TNC with an RS-232 port. When used with a TNC-2 clone that has the RXBLOCK command, Macket can display the user's conversations in a special window so that the conversation will not be mixed with monitored text.

Macket's suggested retail price is $39.95. The program, developed by 'S Fine Software' is available from Pac-Comm Packet Radio Systems, Inc., 3652 W. Cypress St., Tampa, Florida 33607. Circle #302 on Reader Service Card.

dual meter wattmeters

Encomm, Inc. announces the addition of several wattmeters to their Santec line. They are actually “dual” meter wattmeters in several different models. Model W-710 covers 1.6-60 MHz and has three power levels of 2k/200/20w. Model W-720 covers 1.8-200 MHz with power levels of 200/60/15w. The W-740 has the same power levels as the W-720 but with frequency coverage of 140-525 MHz. Housed in a sturdy metal case the meters are basically unaffected by stray rf fields.

Contact Encomm Inc., 1506 Capital Ave., Plano, Texas 75074 for more information. Circle #303 on Reader Service Card.

tri-band base and mobile antennas

NCG Company now has new Tri-Band SLC system antennas for operation on 145, 446 MHz and 1.2 GHz. Both are SLC (Super Linear Converter) system antennas. They are waterproof with lightning protection. The base antenna is model CX-901; the mobile is CX-801.

Features of the CX-901 include one-piece construction of heavy-duty fiber glass. The mast diameter is 1.25 to 2.5 inches, the length is 3 feet, 4 inches, and it weighs 1 lb., 14 oz. This base antenna handles 150 watts, with frequency and gain of 144-148 MHz 3.0 dB, 440-449 MHz 6.0 dB, and 1260-1300 MHz 8.4 dB.

The CX-801 mobile unit is a one-touch, fold-over stainless steel, with an N connector for low loss, high gain. The maximum power handled is 100 watts. The antenna is 3 feet, 3 inches long and weighs 12 ounces. Frequency and gain for the CX-801 is 144-148 MHz 3.0 dB, 440-449 MHz 6.8 dB, and 1260-1300 MHz 9.6 dB.

Both antennas are designed for use with the new Tri-Plexer CFX-4310 that allows receiving and transmitting on all three bands at the same time. With one CFX-4310 it is possible to use only one coax for all three transceivers. Using the new Tri-Band transceiver you can operate three antennas from one transceiver.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!

KIT, ONLY $675
WIRED $975
VHF OR UHF

FEATURES:
- SENSITIVITY SECOND TO NONE! GaAsFET front end on vhf models gives 12dB SINAD of 0.12uV (vhf), 0.15uV (220). UHF model 0.25uV std, 0.1uV with optional helical resonator preamp.
- SELECTIVITY THAT CAN'T BE BEAT! Both B-pole xtal filter & ceramic filter for > 100dB at only 12kHz. Helical resonator front end to combat desense & intermod.
- CLEAN, STABLE TRANSMITTER, up to 18W output standard: 50W end to combat desense.
- *CLEAN. STABLE TRANSMITTER, up to 18W output standard: 50W, end to combat desense.
- R76 ECONOMY VHF FM RCVR for 16M, 6M, 2M, 22M. Without hel reson & etc. Kits only $129.
- Weather satellite & AM Aircraft receivers also available.

NEW

GaAs FET PREAMPS
at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $59!
Wired/Testsed

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF.
- High Gain: 13-20dB, depending on frequency.
- Wide Dynamic Range: to resist overload.
- Stable: new type dual-gate GaAs FET.

LAN -(*)
MINIATURE GaAs FET PREAMP
ONLY $24/kit.
$39 Wired/tested

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1 5/8"H x 1/4"H. Easily mounted in many radios.

LNS-(*)
IN-LINE PREAMP
ONLY $79/kit.
$99 Wired/tested

GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W.

* Specify tuning range desired: 120-175, 200-240, or 400-500 MHz.

HELICAL RESONATOR PREAMPS
Low-noise preamps with helical resonators reduce intermod & cross-band interference in critical applications.

MODEL IRR-(*) $49 vhf, $84 uhf.

ACCESSORIES

COR-3 Kit. Control dials and audio mixers needed to make a repeater. Tail & time-out timers, local spkr amp, courtesy beep.

* CWID Kit. Fixed-programmable, timers, the works.

* TD-2 DMF DECODER/ CONTROLLER Kit. Full 15 digits, switches 5 functions, toll call restrictor, programmable, much more. Great for selective calling too!

* AP-3 AUTOPATCH Kit. Use with above for repeater autopatch. Reverse patch and phone line remote control std.

* M-202 FSK DATA MODULATOR Kit. Run up to 1200 baud digital signals through any fm transmitter with full handshakes. Radio link computers, telemetry gear, etc.

* DE-202 FSK DATA DEMODULATOR Kit for rcvr end of link.

RECEIVING CONVERTERS

Antenna Input Range Receiver...Output
136-138 MHz...28.10 MHz
143-144 MHz...28.4 MHz
148-150 MHz...28.7 MHz
150-152 MHz...29.0 MHz
152-154 MHz...29.3 MHz
154-157 MHz...29.6 MHz
157-160 MHz...29.9 MHz
160-163 MHz...30.2 MHz
163-165 MHz...30.5 MHz
165-168 MHz...30.8 MHz
168-171 MHz...31.1 MHz
171-174 MHz...31.4 MHz
171-174 MHz...31.7 MHz
174-177 MHz...32.0 MHz
177-180 MHz...32.3 MHz
180-183 MHz...32.6 MHz
183-186 MHz...32.9 MHz
186-189 MHz...33.2 MHz
189-192 MHz...33.5 MHz
192-195 MHz...33.8 MHz
195-198 MHz...34.1 MHz
198-201 MHz...34.4 MHz
201-204 MHz...34.7 MHz
204-207 MHz...35.0 MHz
207-210 MHz...35.3 MHz
210-213 MHz...35.6 MHz
213-216 MHz...35.9 MHz
216-219 MHz...36.2 MHz
219-222 MHz...36.5 MHz
222-225 MHz...36.8 MHz
225-228 MHz...37.1 MHz
228-231 MHz...37.4 MHz
231-234 MHz...37.7 MHz
234-237 MHz...38.0 MHz
237-240 MHz...38.3 MHz
240-243 MHz...38.6 MHz
243-246 MHz...38.9 MHz
246-249 MHz...39.2 MHz
249-252 MHz...39.5 MHz
252-255 MHz...39.8 MHz
255-258 MHz...40.1 MHz
258-261 MHz...40.4 MHz
261-264 MHz...40.7 MHz
264-267 MHz...41.0 MHz
267-270 MHz...41.3 MHz
270-273 MHz...41.6 MHz
273-276 MHz...41.9 MHz
276-279 MHz...42.2 MHz
279-282 MHz...42.5 MHz
282-285 MHz...42.8 MHz
285-288 MHz...43.1 MHz
288-291 MHz...43.4 MHz
291-294 MHz...43.7 MHz
294-297 MHz...44.0 MHz
297-300 MHz...44.3 MHz
300-303 MHz...44.6 MHz
303-306 MHz...44.9 MHz
306-309 MHz...45.2 MHz
309-312 MHz...45.5 MHz
312-315 MHz...45.8 MHz
315-318 MHz...46.1 MHz
318-321 MHz...46.4 MHz
321-324 MHz...46.7 MHz
324-327 MHz...47.0 MHz
327-330 MHz...47.3 MHz
330-333 MHz...47.6 MHz
333-336 MHz...47.9 MHz
336-339 MHz...48.2 MHz
339-342 MHz...48.5 MHz
342-345 MHz...48.8 MHz
345-348 MHz...49.1 MHz
348-351 MHz...49.4 MHz
351-354 MHz...49.7 MHz
354-357 MHz...50.0 MHz
357-360 MHz...50.3 MHz
360-363 MHz...50.6 MHz
363-366 MHz...50.9 MHz
366-369 MHz...51.2 MHz
369-372 MHz...51.5 MHz
372-375 MHz...51.8 MHz
375-378 MHz...52.1 MHz
378-381 MHz...52.4 MHz
381-384 MHz...52.7 MHz
384-387 MHz...53.0 MHz
387-390 MHz...53.3 MHz
390-393 MHz...53.6 MHz
393-396 MHz...53.9 MHz
396-399 MHz...54.2 MHz
399-402 MHz...54.5 MHz
402-405 MHz...54.8 MHz
405-408 MHz...55.1 MHz
408-411 MHz...55.4 MHz
411-414 MHz...55.7 MHz
414-417 MHz...56.0 MHz
417-420 MHz...56.3 MHz
420-423 MHz...56.6 MHz
423-426 MHz...56.9 MHz
426-429 MHz...57.2 MHz
429-432 MHz...57.5 MHz
432-435 MHz...57.8 MHz
435-438 MHz...58.1 MHz
438-441 MHz...58.4 MHz
441-444 MHz...58.7 MHz
444-447 MHz...59.0 MHz
VHF MODELS...
Kit with Case...$59
Kit less Case...$50
Wired w/case...$79
UHF MODELS...
Kit with Case...$39
Kit less Case...$30
Wired w/case...$59

See catalog for full line of 2w transmitting converters for vhf & uhf. Kits only $79.

Linear Amplifiers avail. up to 50w.

Our 25th Anniversary
hamtronics, inc.
65-H MOUL ROAD• HILTON NY 14468-9535
Phone: 716-392-9430
Hamtronics® is a registered trademark
RC-96 repeater controller

Advanced Computer Controls, Inc. offers the RC-96 Repeater Controller. Remote programming lets the operator make changes to his repeater easily without a trip to the site. The '96 features autopatch and autodialer, with storage for 200 telephone numbers. The talking S-meter lets the user check signal strength into the repeater. The controller also supports pocket pagers, linking to other repeaters, and a bulletin board. It has high-quality synthesized voice with ACC's large, custom speech vocabulary.

The '96 has built-in keypad and indicators, with storage for 200 telephone numbers. The talking S-meter lets the user check signal strength into the repeater. The controller also supports pocket pagers, linking to other repeaters, and a bulletin board. It has high-quality synthesized voice with ACC's large, custom speech vocabulary.

The risk of lightning damage is minimized by a gas discharge tube across the phone line and transient suppressors on each transient suppressors on each I/O signal. Contact Advanced Computer Controls, Inc., 1202 E. 23rd Street, Lawrence, Kansas 66046.

Circle 306 on Reader Service Card.

new rf/high-voltage adapters

Nemal Electronics International offers a new line of rf adapters for quick and reliable interconnection between different connector series. These adapters facilitate rapid interconnection of incompatible cables and equipment while maintaining low loss and VSWR.

The NE964 adapts a type HN jack to an SMA plug; the NE962 adapts an SMA jack to a type HN plug; and the NE970 adapts a type N jack to an LC plug. The NE866 is a BNC series bulkhead feedthrough with both isolation and hermetic seal.

Constructed of brass and plated silver/nickel, these adapters have Teflon® insulation and tolerate temperatures of -55°C to +195°C. Other specifications include an impedance of 50 ohms,

The Carolina Windom comes with a special dedicated matching unit, vertical radiator section, high power line isolator, No. 14 stranded antenna wire, and glass-filled insulators. The package includes CoaxSeal® and an illustrated manual.

The price is $75, complete and ready to install. For more information, contact Jim Thompson, W4THU, Radio Works, Box 6195, Portsmouth, Virginia 23703. A catalog offering a wide selection of wire antennas, parts and accessories is available on request.

Circle 307 on Reader Service Card.

MAXFAX™ and WEFAX

Kantronics has added a weather facsimile command, WEFAX, with EPROM update 2.8. This update is available for the KAM, KPC-4, KPC-2, KPC-1, and the KPC-2400. In addition, Kantronics introduces two programs to work with the KAM or KPCs, MAXFAX 64/128 for Commodores and MAXFAX-PC for PCs and compatibles. If you use a PC, the CGA (color graphics adapter) is required.

With MAXFAX, you can store the pixel bytes from the KAM or KPC directly in RAM to the screen, or from RAM to diskette for transport or to your graphics printer. An Epson graphics format such as the EPSON LX-80 is assumed. Each MAXFAX copy comes on diskette and costs $19.95. You can order from Kantronics, Inc., 1202 E. 23rd Street, Lawrence, Kansas 66046.

Circle 308 on Reader Service Card.

The new 5D-FB 50-ohm coax, usable above 1200 MHz, is a solid copper center conductor with a PEF insulation, foil wrapped, TFE insulation, full braid, and black PVC weather jacket. N type connectors are available.

For information on the Tri-Band antennas, Triplexers, and 5D-FB coax contact NCG Company, 1275 N. Grove Street, Anaheim, California 92806.

Circle 305 on Reader Service Card.

The Radio Works has introduced the new Carolina Windom®, a high performance, 80-10 meter antenna system. While not a windom in the classic sense, its off-center feed system suggests the name. Fed with 50-ohm coax, it produces a low SWR across nearly all of the 75/80 meter band. Operation on 40-10 meters requires a transmatch.
frequency of 0.4 GHz, VSWR of 1.3, and voltage rating of 375/1500. The adapters offer electrical performance and construction to military specifications.

For details contact Nemal Electronics International Inc., 12240 NE 14th Ave., North Miami, Florida 33161.

Circle #309 on Reader Service Card.

AR-501 radio telegraph terminal

ACE Communications, Inc.'s model AR-501 is a triple-mode radio telegraph (CW) terminal for Amateur Radio operator, and short wave listeners.

The AR-501 performs as a CW decoder, CW trainer, and electronic keyer. Features include: automatic speed follow-up and threshold control, LED tuning indicator, 32 character LCD display, random code generator, and electronic keyer for both standard and iambic. Codes can be monitored in all three modes by internal speaker and printer through the parallel printer port.

It measures 4.5 x 6.25 x 2.25 inches and is powered by a 12 VDC source. The price of the AR-501 is $229.00 including ac power adapter and parts for hook up.

For more details contact ACE Communications, Inc., 22511 Aspian St., El Toro, California 92630-6321.

Circle #310 on Reader Service Card.

high-quality variable capacitors

Kilo-Tec announces the availability of the Nevada High-Power variable capacitors. They are capable of withstanding very high rf voltage up to 7.8 kV. These heavy-duty caps are suitable for high-power antenna matching units, power amplifiers, and transmitters.

There are two values: a 500 pF and a 250 pF. Approximate prices are $29 for the TC-250 and $40 for the TC-500. To order or receive a quote contact Kilo-Tec, PO Box 1001, Oak View, California 93022.

Circle #311 on Reader Service Card.
sporadic E season—1988

This is the second summer after the end of solar cycle 21. What kind of sporadic E conditions can we expect? In the period from May through September radiation from the nearly overhead sun generates high ion densities in the lower ionosphere that support short-skip propagation, including multiple short skips. The geomagnetic field clusters these ions into cloud-like patches known as sporadic-E (E_s). These patches form a thin layer of intense ionization in the E region about 60 miles up. A patch gives a strong, mirror-like signal reflection over skip distances of 600 to 1200 miles. Signals remain strong for about half an hour, up to a couple of hours after the onset of the first strong signal.

The frequency and magnitude of Sporadic E occurrences is a function of geographical location. The best locations for E_s openings this summer are toward the equator and on either side of the geomagnetic equator. It’s especially good where the geomagnetic equator is furthest from the geographic equator. The Northern Hemisphere areas are: Southeast Asia (best) and the Mediterranean (next best) followed by South America in the Southern Hemisphere. These were shown graphically in this column last year on a contour map.

The highest frequency propagated by E_s tends to occur at local noon. The E_s patch is imbedded in the regular E layer and tends to track the E maximum ion density throughout the day, season, and sunspot cycle. During this summer expect about a 17 percent increase in the E layer as an E_s base for higher maximum usable frequencies (MUF) over a 1200 mile hop. This increase gives the base MUFs of 47 to 53 MHz this year, so six meter openings should be more prevalent. Two meter openings may still be rare, especially this month; perhaps August will provide some. The highest probability of occurrence is near sunrise and again around sunset. These two E_s characteristics affect short-skip openings differently. Openings on the higher-frequency bands occur around local noontime; the lower bands tend to have openings near sunrise and sunset. This occurrence characteristic is nearly constant over the sunspot cycle so there should be the same number of low to midlatitude E_s openings in the next few years.

last-minute forecast

Expect the higher frequency DX bands to be very good during the first two weeks of June because of solar flux peaks and longer daytime hours. Both factors contribute to elevated MUFs during the evening at midlatitude locations. No single hop transsequatorial openings are expected but look for good sporadic E openings around noon toward the end of the month. Good nighttime DX conditions on the lower bands are expected during the last two weeks of the month, but they will be noticeably shorter in duration and noisier as northern tropical thunderstorm noise propagates toward us.Geomagnetic disturbances are anticipated from solar flares around the 5th, more probable on the 13th, and from coronal thinning on the 18th through 24th of the month. MUFs should decrease about 15 percent on east-west propagation paths on most days and probably 20 percent on those paths during disturbed conditions on the 13th. Signals should be 10 to 15 dB lower level and QSB will be noticed. Paths near the equator can expect 10 percent higher MUFs.

The moon will be full on June 29th and at perigee (its closest approach) on June 5th. Summer solstice is on the 21st at 0357 UTC. The Aquarid meteor shower starts about the 8th, peaks around the 28th, and lasts until about August 7th. The maximum radio-echo rate will be 34 per hour.

band-by-band summary

Six meters will provide occasional openings to South Africa and South America around noontime via short-skip E_s propagation.

There will be long-skip conditions on ten meters in the afternoon during the peak times of the 27-day solar cycle. Otherwise, look to sporadic-E short-skip and multihop openings around
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

Look at next higher band for possible openings.
local noon for DX on this band. (Evening transoceanic openings usually don’t occur in the summertime.)

Twelve and fifteen meters, almost always open to some southern part of the world, will be the main daytime DX bands. Operate on 12 first, then move down to 15. DX is considered 5000 to 7000 miles on these bands. There may be some long, one-hop transoceanic propagation paths occurring early in the month.

Thirty, thirty, and forty meters will support DX propagation from most areas of the world during the daytime and into the evening hours most days. Forty meters joins this daytime DX group because of lower signal absorption, and therefore lower LF (lowest usable frequency) during this last unsunspot minimum year. DX on these bands may be either long-skip to 2500 miles or short-hop ES to 1250 miles per hour. There are many good hours of DXing ahead as the days get longer.

Thirty, forty, and sixty-one are all good for nighttime DX. Although the background thunderstorm noise is becoming noticeable, these bands are still quiet enough to provide good DX working conditions. Sidelobe propagation may be a contributing factor toward enhanced conditions at local sunset and will occur more often during the next two months.

ham radio
COMING EVENTS

Activities — "Places to go . . ."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE NOTIFY US IMMEDIATELY OF ANY HAMMEET LOCATION, CLASSES, EXHIBITIONS, FEA TURE ARTICLES IN YOUR LOCAL PUBLICATIONS. PLEASE CONTACT HAMMEET TO ORDER ADS AND THEY WILL BE Mailed TO YOU.

HAMMEET'S 8th ANNUAL BUSINESS MEETING AND CONFERENCE WILL BE HELD AT THE HAMMEET HEADQUARTERS, 1101 CLAY STREET, NEW YORK, NY 10014, ON SATURDAY, MAY 18, 1985, AT 9:00 AM. THE MEETING WILL CONCL UDE WITH A BUSINESS MEETING AT 11:00 AM.

OPERATING EVENTS

"Things to do . . ."

June 4 and 5: The Weine Institute of Northern Ohio (WIWIO) will be on the air with the summer session to commemorate the 50th anniversary of the VHF radio station in Cleveland, Ohio. The event will be held on Saturday, June 4, at 7 PM.

JUNE 11: 11th Annual Hamfest sponsored by the Arizona Radio Club of Arizona.

JUNE 13: 12th Annual Hamfest sponsored by the Amateur Radio Club of Texas.

JUNE 14: 13th Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 15: 14th Annual Hamfest sponsored by the Amateur Radio Club of Nevada.

JUNE 17: 16th Annual Hamfest sponsored by the Amateur Radio Club of Illinois.

JUNE 18: 17th Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 19: 18th Annual Hamfest sponsored by the Amateur Radio Club of Illinois.

JUNE 20: 19th Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 22: 21st Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 23: 22nd Annual Hamfest sponsored by the Amateur Radio Club of Illinois.

JUNE 24: 23rd Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 25: 24th Annual Hamfest sponsored by the Amateur Radio Club of Illinois.

JUNE 26: 25th Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 27: 26th Annual Hamfest sponsored by the Amateur Radio Club of Illinois.

JUNE 28: 27th Annual Hamfest sponsored by the Amateur Radio Club of California.

JUNE 29: 28th Annual Hamfest sponsored by the Amateur Radio Club of Illinois.

JUNE 30: 29th Annual Hamfest sponsored by the Amateur Radio Club of California.
California

A-TECH ELECTRONICS
1033 HOLLYWOOD WAY
BURBANK, CA 91505
(818) 845-9203
New Ham Store and Ready to Make a Deal!

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades Habla Espanol

Colorado

COLORADO COMM CENTER
525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 268-7373
(800) 227-7373
Stocking all major lines Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KOK, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch West Coast's only full service Amateur Radio Store. Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302 / 861-5610
ICOM, Yaesu, Kenwood, Bird...
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830
M 9-2; T-F 9-6; S 9-2
Stock All Major Brands Over 7000 Ham Related Items on Hand

Illinois

ERICSSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-331-5181
Hours: 9:30-5:30 Mon. Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
(800) 523-7731
(912) 422-0231
ICOM, Yaesu, Ten-Tec, Cushcraft, Hy-Gain, AEA & others.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
(617) 486-3400
617-486-3040
The Ham Store of New England You Can Rely On.

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323
Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Hampshire

RIVENDELL ELECTRONICS
8 LONDONDRERRY ROAD
DEERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-7 Closed Sun/Holidays
NEW SUPER FAST C-64 LOGGING PROGRAM
from WA8LIV and Charlie Stone

A revolutionary new contest program for the C-64 computer designed and tested by active contesters. Can be used in CQWW, ARRL Sweeps, Field Day, ARRL DX Test or any other Contest. Can be used with ONE OR TWO DISKDRIVES. Superfast dupechecker with real time clock ON or OFF. 3000 QSOs stored per band on your data disk. Special print and formatting routines plus much more. Easy-to-use and user friendly. Worth twice the price.

Just $39.95 plus $.50 shipping and handling

Also available QSL CARD FILE DATA BASE.
Organize your QSLs on computer for fast and easy retrieval of information. Each file has 28 fields which can be filled in or edited at any time. Each data disk will accept 400 complete records. Includes special print routine.

Just $19.95 plus $.50 shipping and handling

BUY BOTH SPECIAL
Contest Logger @ $39.95 plus QSL Data Base @ $19.95
Regular $59.90

SPECIAL SALE PRICE JUST $49.90
Save $10! plus $3.50 shipping & handling

We accept VISA/MASTERCARD-PERSONAL CHECKS.

REIBSTONE SOFTWARE CO.
P.O. Box 13322
St. Louis, Missouri 63137
Super Comshack 64

Programmable Repeater Controller/ HF & VHF Remotes/Autopatch

Rotor Control/Voice/CTCSS. 2 Tone Paging/ User Logging/ Unlimited Vocabulary

The CS64S is the most advanced control system available at any price. Total control of your ham shack/cub club station. Each user has individual access codes and privileges granted by the control op. All user’s logged to the disk & or printer. HI/L0 priority patch & security/monitor lock modes. Talking Packet BBS input soon.

**Super Comshack CS64S $349.95

$1.00 ship USA, incl. computer interface, disk, cables & manual (simplex version inc. on request).**

SYSTEM OPTIONS

- External Relay Control 3 DPDT relays

- 5 pin collector outputs. CS-85 $79.95

- EPM1M Auto boot cartridge customized with your system $195.99

- Beam control; speaks bearing and rotates beam 1 degree inc. $49.95

- Full 40 Channel memory $15.00

- Dual CW/SSB, dual memory

- Dual VFO’s, Rev/Split/CON detect

- Dual scan inc. & offset/var resume

Mini (Bear Cat) Computer Control FT-727R

Programs and Scans 100 ch. in ham/genera. cover. Converts FT into a powerful 100 ch. scanner, & programs for all field use!

- Digital S meter, stop scan from 31 - 9, Auto resume

- Lookup & programs all FT-727R parameters in less that 15 secs

- Includes hardware & disk for C64

IBM PC

MODEL 2725 $39.95

Touchtone 4 Digit Decoder & on/off latch with all 16 Digits

IBM PC

MODEL DCP $119.95

Audio Blaster

102/04/24T, U16, F1209/727, 727/73R

Module installs inside the radio in 15 mins. Boost audio to 1 watt! Low standby drain/Corrects low audio/1000’s of happy users. Minuart audio amplifier

- Used by Police, Fire, Emergency, when it needs to be heard!

- Wow! That’s loud!

Model 201

$155.95

Model 202

$195.95

Engineering Consulting

583 Candlewood St. **Brea, CA 92621**

**Mastercard **

**Visa **

**Check **

**M.O. **

CA. Res. Add 6% Tel.

714-571-2009

Want to Advertise in HAM RADIO?

Call Rally Dennis

(603) 878-1441
today for more information
"Q" signals

There are times when we are reminded that not everyone is familiar or experienced in the language of Amateur Radio. I was following my usual practice of listening to the activity on a local repeater while on my way to work one morning, and encountered a lively discussion on the meaning of a "Q" signal.

The signal in question was "QRU," and each Amateur knew part of the answer and thought that the other was incorrect. I resisted the temptation to break in and enlighten them about the "true meaning and proper use," but instead waited to see what developed. Sure enough, the next morning, the pair got together again; one had looked it up and was now fully informed. He surprised the other Amateur by stating that they were both on the right track, but needed the whole story. As with most Q signals, QRU can be either a question or a statement. When followed by a question mark, it (naturally) becomes a question. Without the question mark, it is a statement or an answer to a question. The discussion and follow-up not only educated the two Amateurs directly involved, but was also helpful to the many ears tuned to that repeater on those two days. Further, the incident triggered a thought that I'm putting to use here — how many other Q signals are unknown or misunderstood by a large number of Amateurs?

why Q signals?

Everyone uses Q signals. Old-timers cringe when hearing Q signals used in voice communications. Their theory is that such signals were invented for CW use, and if you are talking, you should say the phrase instead of the abbreviation.

There was a time when, deeply involved in traffic handling on several CW nets around the country, I agreed with that philosophy. However, after several years of exposure to the voice (and digital) world, I can see the merits of using Q signals wherever they apply, on any mode of communications.

Q signals, and their early companions, "Z" signals, were developed as short-cuts in message-handling procedures in marine and commercial radio circuits. It certainly was easier and quicker for an operator to send "QRU?" instead of "Do you have any messages for me?" The answer, equally shortened, would be either "ORU" (I have nothing for you), or "OTC" (I have messages for you). Before you old-time traffic handlers jump on me, yes, I've tweaked the phrase a bit. OTC really stands for "I have... telegrams for you," but Amateurs are not in the business of sending telegrams. Anyway, the short Q signal reduced the amount of key-pounding, and to a busy commercial operator, this was a blessing. Amateurs, too, realized the advantage in both time and clarity in using abbreviations and operating signals, and adapted many of them to fit their operations. The "Z" signals served the same purpose in many commercial circuits, but for some reason never caught on with the Amateur fraternity — perhaps because ARRL (American Radio Relay League) publications listed and explained the use of Q signals. Also, it has been rumored that Z signals were proprietary to some network or service, but I've not been able to find a reference that proves this.

voice and digital usage

Everyone uses Q signals on voice operation from time to time. The old
Table 1. Common Amateur Q signals

<table>
<thead>
<tr>
<th>QRM</th>
<th>Is there interference on the frequency?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRN</td>
<td>Is atmospheric noise (static) bothering you?</td>
</tr>
<tr>
<td>QRP</td>
<td>Shall I reduce power? (Seldom used by Amateurs as a question.)</td>
</tr>
<tr>
<td>QRS</td>
<td>Shall I send slower?</td>
</tr>
<tr>
<td>QRT</td>
<td>Shall I stop sending?</td>
</tr>
<tr>
<td>QRU</td>
<td>Do you have anything for me?</td>
</tr>
<tr>
<td>QRV</td>
<td>Are you ready?</td>
</tr>
<tr>
<td>QRX</td>
<td>Shall I wait?</td>
</tr>
<tr>
<td>QRB</td>
<td>Who is calling? (This is not a substitute for "CO".)</td>
</tr>
<tr>
<td>QSB</td>
<td>Does my signal strength vary?</td>
</tr>
<tr>
<td>QSL</td>
<td>Do you acknowledge?</td>
</tr>
<tr>
<td>QSO</td>
<td>Are you in contact with ?????????? (Amateurs seldom use QSO as a query.)</td>
</tr>
<tr>
<td>QSY</td>
<td>Shall we change frequency ??????</td>
</tr>
<tr>
<td>QTH</td>
<td>What is your location?</td>
</tr>
</tbody>
</table>

There is interference on the frequency. Atmospheric noise (static) is bothering me.
Reduce power. (Most often used as a statement, as in "I am running QRP here!" meaning the power is only a few watts.)
Send slower.
Stop sending. (Usually used to mean the station is shutting down for the moment, as in "I'm going QRT for now.")
I have nothing for you.
I am ready. Wait (most often used as in "QRX 5 minutes.")."
Your signal strength varies.
I acknowledge. I am in contact with, or I have made contact with (More often used in referring to a contact between two Amateurs, as in "Thanks for the QSO, and 73 to you.")
Let's change frequency .
My location is ____________________________

Standard "QSL?" is used to mean several things: "Do you copy?", "Did you copy?", "Do you understand?", and so forth. The answering statement, "QSL" applies to all these questions and more.

When conditions are good, and the signals are "arm-chair copy" between the two stations, there's really no justification for using a voice Q signal, but habits don't get turned on or off according to band conditions. When conditions are poor, or there is abundant interference (there it is again -- the Q signal QRM applies), certainly the letter Q sets the listener up to expect two more letters that are pertinent to the situation, and it might be easier to understand "QSY up 3" than "Let's move up 3 kilohertz".

In digital communications, the need is not so much for overcoming interference or weak-signal conditions — packet and AMTOR systems handle that pretty well — but rather a way to reduce the keystrokes at the sending station. Not all packet and RTTY enthusiasts are expert typists, and a few 3-stroke Q signals that can take the place of a whole line of text are a blessing to both sender and receiver. (How often I've stared at a blank screen wondering if something was not working right, only to find the operator at the other end was "one-finger typing" the message.)

In summary, Q signals are both useful and permissible in any mode today. It will help Novices and higher-class licensees to feel more at home on the air if they know what Q signals to use and how to use them. Table 1 lists the most common signals in both their question and answer form. This is by no means a complete list — some, like "QTE?" (What is my true bearing in relation to you?!) would probably be hard to understand and elicit a "HUH?" (which, fortunately, needs no Q signal).

I have modified the original meaning of many of these signals a bit, to make them more compatible with current Amateur Radio usage. The original Q signals were developed for commercial and aircraft use, and the language was either more stilted or directly applicable to a specific situation. As they are wont to do, Amateurs have softened the language and slanted the meaning to fit their needs, which Table 1 reflects.

Amateur traffic nets, both CW and voice, have their own set of Q signals that help to speed up message handling and network management. Many are adaptations of more common signals, with the middle letter replaced by an "N," as in QNU, which is borrowed from QRU, meaning "I have no traffic for the net." Another net signal is QNX, meaning "You are excused from the net." A few minutes spent listening to some of the busier traffic nets on 80-meter CW, 75-meter phone, and a few 2-meter repeaters is a lesson in management and a discipline that gets things done efficiently. When you read the monthly message totals as reported in QST, you can see why.

There's another signal -- QST. It does not have a question as part of its definition. QST is an alerting call to all Amateurs, indicating that some important information is to follow. It can be used by anyone, and is often heard at the beginning of network announcements and 2-meter repeater emergency-practice sessions. You're undoubtedly familiar with its use before code practice and bulletin transmissions from W1AW, the ARRL Maxim Memorial Station in Newington, Connecticut, and on the cover of their magazine, QST, which is the official journal of the American Radio Relay League.

Q signals are a vital and interesting part of Amateur language, useful in conveying information quickly and showing that you are "with it" on the bands. They fit all modes of communication (yes, even Amateur Television — a snowy picture of a card that says QRX 5 in big letters will get its message across), and when both the sender and the receiver know the meaning of "QRM, QSY down 3," things work a lot smoother!

ham radio
MICROWAVE ANTENNAS AND EQUIPMENT

- Loop Yagi • Power Dividers • Linear Amplifiers • Complete Arrays • Microwave Transceivers • GaAs FET Preamps
- TROPO • EME • Wideband Amplifiers
- OSCAR • 902 • 1296 • 2304 MHz
- 2304 • 2400 • 3456 MHz

3345 LY 45 el loop Yagi 1296 MHz 20dB $97
1345 LY 45 el loop Yagi 2554 MHz 20dB $84
3333 LY 35 el loop Yagi 902 MHz 18.5dB $97

Above antennas assembled and tested. Kits available.
Add $5 UPS S/H. $11 West of the Mississippi.

MICROWAVE LINEAR AMPLIFIERS SSB, ATV, REPEATER, OSCAR

2316 PA 1w in 1w out 1240-1300 MHz 13.8V $255
2335 PA 10w in 5w out 1240-1300 MHz 13.8V $205
2318 PA 1w in 20w out 900-930 MHz 13.8V $256
2335 PA 10w in 20w out 900-930 MHz 13.8V $205
331A preamp 0.7dB N.F.
331B preamp 0.5dB N.F.

Add $5 shipping UPS/FE

Write for free catalog

DOWN EAST MICROWAVE
Bill Olson, W3HGT
Box 2310, RR 1, Troy, ME 04987
(207) 948-3741

1 YR - $22.95 2YRS - $38.95
3 YRS - $49.95

Prices U.S. only

□ MASTERCARD
□ VISA □ BILL ME

Please have your charge card ready.

DATATEL 800™
800-341-1522

Weekdays 8 AM - 9 PM EST • Saturdays 9 AM - 5 PM EST
IN MAINE CALL COLLECT (207) 236-2896

OUR 800 NUMBER IS FOR SUBSCRIPTION ORDERS ONLY!

For Errors or Change of Address CALL ham radio
direct at (603) 878-1441 8-5 EST

June 1988
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to "Ham Radio" Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name:
Address:
City:
State:
Zip:
* Please contact this advertiser directly.

Please use before July 31, 1988.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>43</td>
</tr>
<tr>
<td>116</td>
<td>76</td>
</tr>
<tr>
<td>147</td>
<td>49</td>
</tr>
<tr>
<td>164</td>
<td>28</td>
</tr>
<tr>
<td>179</td>
<td>10</td>
</tr>
<tr>
<td>185</td>
<td>70</td>
</tr>
<tr>
<td>107</td>
<td>26, 86, 97</td>
</tr>
<tr>
<td>157</td>
<td>42</td>
</tr>
<tr>
<td>141</td>
<td>52</td>
</tr>
<tr>
<td>138</td>
<td>57</td>
</tr>
<tr>
<td>172</td>
<td>25</td>
</tr>
<tr>
<td>* Barker & Williamson</td>
<td>18</td>
</tr>
<tr>
<td>* Barry Electronics</td>
<td>73</td>
</tr>
<tr>
<td>110</td>
<td>94</td>
</tr>
<tr>
<td>163</td>
<td>30</td>
</tr>
<tr>
<td>118</td>
<td>76</td>
</tr>
<tr>
<td>* Buttenruth Electronics</td>
<td>30</td>
</tr>
<tr>
<td>* Caddell Coll Corp</td>
<td>94</td>
</tr>
<tr>
<td>152</td>
<td>42</td>
</tr>
<tr>
<td>150</td>
<td>42</td>
</tr>
<tr>
<td>119</td>
<td>76</td>
</tr>
<tr>
<td>132</td>
<td>65</td>
</tr>
<tr>
<td>190</td>
<td>28</td>
</tr>
<tr>
<td>123</td>
<td>74</td>
</tr>
<tr>
<td>154</td>
<td>42</td>
</tr>
<tr>
<td>* Data Com</td>
<td>60</td>
</tr>
<tr>
<td>160</td>
<td>33</td>
</tr>
<tr>
<td>* Engineering Consulting</td>
<td>94</td>
</tr>
<tr>
<td>122</td>
<td>73</td>
</tr>
<tr>
<td>142</td>
<td>73</td>
</tr>
<tr>
<td>174</td>
<td>18</td>
</tr>
<tr>
<td>136</td>
<td>26</td>
</tr>
<tr>
<td>142</td>
<td>52</td>
</tr>
<tr>
<td>109</td>
<td>94</td>
</tr>
<tr>
<td>159</td>
<td>36</td>
</tr>
<tr>
<td>129</td>
<td>70</td>
</tr>
<tr>
<td>146</td>
<td>50, 51</td>
</tr>
<tr>
<td>* Ham Radio's Bookstore</td>
<td>43, 62, 70, 73, 80, 81, 83</td>
</tr>
<tr>
<td>* The Ham Station</td>
<td>38</td>
</tr>
<tr>
<td>* Hamtastics, NY</td>
<td>85</td>
</tr>
<tr>
<td>* Hamtastics, PA</td>
<td>42</td>
</tr>
<tr>
<td>168</td>
<td>26</td>
</tr>
<tr>
<td>181</td>
<td>9</td>
</tr>
<tr>
<td>184</td>
<td>C8</td>
</tr>
<tr>
<td>157</td>
<td>41</td>
</tr>
<tr>
<td>* Indianapolis Hamfest</td>
<td>86</td>
</tr>
<tr>
<td>130</td>
<td>59</td>
</tr>
<tr>
<td>182</td>
<td>7</td>
</tr>
<tr>
<td>128</td>
<td>71</td>
</tr>
<tr>
<td>162</td>
<td>30</td>
</tr>
<tr>
<td>* Kernwood U.S.A. Corp</td>
<td>25, CIV</td>
</tr>
<tr>
<td>108</td>
<td>94</td>
</tr>
<tr>
<td>186</td>
<td>87</td>
</tr>
</tbody>
</table>

PRODUCT REVIEW/new PRODUCTS

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>21</td>
</tr>
<tr>
<td>113</td>
<td>87</td>
</tr>
<tr>
<td>175</td>
<td>16</td>
</tr>
<tr>
<td>134</td>
<td>59</td>
</tr>
<tr>
<td>167</td>
<td>28</td>
</tr>
<tr>
<td>103</td>
<td>99</td>
</tr>
<tr>
<td>112</td>
<td>86</td>
</tr>
<tr>
<td>144</td>
<td>52</td>
</tr>
<tr>
<td>155</td>
<td>43</td>
</tr>
<tr>
<td>* Nema Electronics</td>
<td>30</td>
</tr>
<tr>
<td>149</td>
<td>44</td>
</tr>
<tr>
<td>102</td>
<td>100</td>
</tr>
<tr>
<td>177</td>
<td>12</td>
</tr>
<tr>
<td>169</td>
<td>26</td>
</tr>
<tr>
<td>104</td>
<td>98</td>
</tr>
<tr>
<td>178</td>
<td>11</td>
</tr>
<tr>
<td>131</td>
<td>66</td>
</tr>
<tr>
<td>117</td>
<td>76</td>
</tr>
<tr>
<td>120</td>
<td>74</td>
</tr>
<tr>
<td>166</td>
<td>28</td>
</tr>
<tr>
<td>* RF Parts</td>
<td>53</td>
</tr>
<tr>
<td>189</td>
<td>93</td>
</tr>
<tr>
<td>111</td>
<td>90</td>
</tr>
<tr>
<td>121</td>
<td>73</td>
</tr>
<tr>
<td>* Sherwood Engineering, Inc</td>
<td>76</td>
</tr>
<tr>
<td>130</td>
<td>66</td>
</tr>
<tr>
<td>* Spec Com</td>
<td>59</td>
</tr>
<tr>
<td>161</td>
<td>30</td>
</tr>
<tr>
<td>106</td>
<td>97</td>
</tr>
<tr>
<td>115</td>
<td>79</td>
</tr>
<tr>
<td>171</td>
<td>26</td>
</tr>
<tr>
<td>148</td>
<td>44</td>
</tr>
<tr>
<td>153</td>
<td>42</td>
</tr>
<tr>
<td>140</td>
<td>57</td>
</tr>
<tr>
<td>* University Microfilm Int</td>
<td>87</td>
</tr>
<tr>
<td>125</td>
<td>70</td>
</tr>
<tr>
<td>176</td>
<td>14</td>
</tr>
<tr>
<td>165</td>
<td>28</td>
</tr>
<tr>
<td>127</td>
<td>70</td>
</tr>
<tr>
<td>* Warrick Antennas</td>
<td>57</td>
</tr>
<tr>
<td>139</td>
<td>73</td>
</tr>
<tr>
<td>126</td>
<td>70</td>
</tr>
<tr>
<td>* Yaesu USA</td>
<td>35</td>
</tr>
<tr>
<td>101</td>
<td>86</td>
</tr>
<tr>
<td>145</td>
<td>53</td>
</tr>
</tbody>
</table>

THE "FLYING HORSE" SETS THE STANDARDS

Continuing a 67 year tradition, we bring you three new Callbooks for 1988.

The North American Callbook lists the calls, names, and address information for 478,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists 481,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1988 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1, 1988, this Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

The 1988 Callbooks will be published December 1, 1987. See your dealer or order now directly from the publisher.

- North American Callbook incl. shipping within USA **$28.00**
- incl. shipping to foreign countries **$30.00**
- International Callbook incl. shipping within USA **$30.00**
- incl. shipping to foreign countries **$32.00**
- Callbook Supplement, published June 1st incl. shipping within USA **$13.00**
- incl. shipping to foreign countries **$14.00**

SPECIAL OFFER
- Both N.A. & International Callbooks incl. shipping within USA **$55.00**
- incl. shipping to foreign countries **$60.00**

* Illinois residents please add 6½% tax. All payments must be in U.S. funds.

RADIO AMATEUR CALLBOOK INC.

Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA

Tel: (312) 234-6600
KENWOOD

TS440S “DX-CITING”
- 100% Duty Cycle
- 100 Memories
- Direct Keyboard Entry
- Optional Built-in AT
- On Sale Now, Call for Price!

TS-140S AFFORDABLE DX-ing!
- HF Transceiver With General Coverage Receiver
- All HF Amateur Bands
- 100 W Output
- Compact, Lots of Features

TH-25AT POCKET-SIZED AND POWERFUL
- Frequency Coverage: 141-163 MHz (Rx), 144-148 MHz (Tx)
- Front Panel DTMF Pad
- 5 Watts Output
- 14 Memories
- TH-45AT Available for 440 MHz

ICOM

IC-720AT
- Super “Mini” HT’s
- Zip-Aluminum Alloy Case
- 10 Memories
- 140-164 MHz
- 440-450 MHz
- 2W Battery Pack or Optional 5W Pack

IC-72AT
- Micro HTs
- For 2M, 440
- Pocket Size HT Fun
- Ten Memories
- LCD Readout
- Wideband Coverage
- To 3 Watts Output
- 32-Built-in Subaudible Tones

ALINCO

ALD-24T DUAL BAND MOBILE
- 140-149.995 MHz / 440-450 MHz
- 25 Watts on Both Bands
- Crossband Full Duplex
- 21 Memory Channels
- CTSS Encoder/Decoder, Standard

YAESU

FT-736R VHF-UHF BASE STATION
- SSB, CW, FM, on 2 Meters and 70cm
- 25 Watts Output on 2 Meters, 220 and 70 cm
- 10 Watts Output on 6 Meters and 1.2 GHz
- 100 Memories
- Dual VFO’s
- Full CW Break-in
- Lots More Features

OLD-24T NEIEST HF SUPER RIG
- 160-10M/General Coverage Receiver
- Built-in Power Supply and Automatic Antenna Tuner
- SSB, CW, FM, AM, RTTY
- QSK to 60 WPM

NEW-24T COMPACT HF TRANSCEIVER
- All HF Band/General Coverage Receiver
- 12 Memories/Frequency and Mode
- USB, LSB, AM, FM, CW
- 100 Watts Output
- Includes HM-12 Scanning Mic

ASTRON

IC-900 SIX BANDS IN ONE MOBILE
- Remote Controller, Interface A Unit, Interface B Unit, Speaker, Mic and Cables
- Six Band Units to Choose
- 10 Memories Per Band
- Programmable Band Scan
- Fiber Optic Technology

TH-25AT POCKET-SIZED AND POWERFUL
- Frequency Coverage: 141-163 MHz (Rx), 144-148 MHz (Tx)
- Front Panel DTMF Pad
- 5 Watts Output
- 14 Memories
- TH-45AT Available for 440 MHz

TH-45AT Pocket Size HT Fun
- 10 Memories
- LCD Readout
- Wideband Coverage
- To 3 Watts Output
- 32-Built-in Subaudible Tones

POWER SUPPLY

- RS7A . . . $48
- RS7B $50
- RS12A . . . $66
- RS12B $78
- RS20A $88
- RS20B $105
- RS20C $125
- RS35A $132
- RS55M $149
- RS35M $149
- VS35M $165
- RS50A $189
- RS50B $225
- RS50M $215
- RS50A $219
- RS50M $229

MISSOURI RADIO CENTER
1-800-821-7323

TRADEINS ACCEPTED

HYGAIN ICOM KANTRONICS • MOST ORDERS SHIPPED SAME DAY • KDK KENPRO KENWOOD
NEW
POCKET SIZE
SIZE: 4" H x 3.5" W x 1" D
MADE IN USA

$99.95 - $150.00

FREQUENCY COUNTERS
TO 1.3 GHz

8 LED DIGITS, 2 GATE TIMES
ANODIZED ALUMINUM CABINET
INTERNAL NI-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY
& ACCURACY

AC-DC, PORTABLE
OPERATION

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys. They can actually outperform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, Cbers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
#1200HCK Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions .. $99.95
#1200HC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $137.50
#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $150.00

ACCESSORIES:
#TA-100S Telescoping RF pick-up antenna with BNC connector .. $12.00
#P-100 Probe, direct connection 50 ohm, BNC connector .. $18.00
#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories .. $10.00

ORDER FACTORY DIRECT
FLA (305) 771-2050
1-800-327-5912

AVAILABLE NOW!

OPTOelectronics inc
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

Orders to US and Canada add 5% of total ($2 min., $10 max)
Florida residents add 5% sales tax. COD fee $2.
Yaesu's mini HTs.
The smallest, smartest, toughest radios. Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreciate the high power, durability and size of Yaesu's FT-23R Series mini-HTs.

To begin with, you'll find a model that's right on your wavelength. The 2-meter FT-23R. The 220-MHz FT-33R. Or the 440-MHz FT-73R.

Whichever you choose, you benefit from incredibly small packaging. Take a look at the actual size photo. Aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moisture-resistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, microprocessor controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features.

The FT-23R comes with a 72-volt, 2.5-watt battery pack. The FT-73R with a 72-volt, 2-watt pack. And the FT-33R with a powerful 12-volt, 5-watt pack.

You can choose the miniature 72-volt, 2-watt pack shown in the photo below. And all battery packs are interchangeable, too.

And consider these options: Dry cell battery case for 6 AA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, toughness and small size, seeing is really believing.

Yaesu USA 1720 Edwards Road, Cerritos, CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847.

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc. FT-33R shown with optional FNB-9 battery pack.
Double Vision

TM-721A
Deluxe FM dual bander

The Kenwood TM-721A re-defines the original Kenwood “Dual Bander” concept. The wide range of innovative features includes a dual channel watch function, selectable full duplex operation, 30 memory channels, extended frequency coverage, large multi-color dual digital LCD displays, programmable scanning, and more with 45 watts of output on VHF and 35 watts on UHF. TM-721A—Truly the finest full-featured FM Dual Band mobile transceiver!

- Extended receiver range (138.000-173.995 MHz) on 2 meters; 70 cm coverage is 438.000-449.995 MHz. Specifications guaranteed on Amateur bands only. Two meter transmit range is 144-148 MHz. Modifiable for MARS/CAP. Permits required.
- 30 multi-function memory channels. 14 memory channels and one call channel for each band store frequency, repeater offset, CTCSS, and reverse. Channels “A” and “b” establish upper and lower limits for programmable band scan. Channels “C” and “d” store transmit and receive frequencies independently for “odd splits.”

Optional Accessories:
- RC-10 Multi-function handset/remote controller
- PS-430 Power supply
- TSU-6 CTCSS decode unit
- SW-100B Compact SWR power meter
- SW-200B Deluxe SWR power meter
- SWT-2 70 cm antenna tuner
- SP-40 Compact mobile speaker
- SP-50B Deluxe mobile speaker
- PG-2N DC cable
- PG-3B DC line noise filter
- MC-60A, MC-80, MC-65 Base station mic.
- MA-4000 Dual band mobile antenna (not supplied)
- MB-11 Mobile bracket
- MC-43S UP/DWN hand mic.
- MC-48B 16-key DTMF hand mic.
- Dual antenna ports.
- Full duplex operation.
- Programmable memory and band scanning, with memory channel lock-out and priority watch function.
- Each function key has a unique tone for positive feedback.
- Illuminated front panel controls and keys.
- Dimmer control.
- 16 key DTMF mic. included.
- Handset/remote control option (RC-10).
- Frequency (dial) lock.
- Supplied accessories: 16-key DTMF hand mic., mounting bracket, DC cable.

Complete service manuals are available for all Kenwood transceivers, and most accessories. Specifications, features, and prices are subject to change without notice or obligation.

KENWOOD
KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745