Tired of all the traffic on your band?

ICOM has a commitment to 220MHz.

ICOM has the most complete line of 220MHz gear to take you away from the traffic on other bands.

The IC-03AT Handheld reflects uncompromised top-of-the line quality and performance. Ultimately deluxe, with 10 full function memories, scanning, 32 built-in subaudible tones, three watts output (five watts optional) and an LCD readout. Direct frequency entry via DTMF keypad and adjustable offsets for non-standard repeaters.

The IC-37A Mobile is ICOM’s 220MHz version of the world’s most popular and easy-to-use handheld. Provides superb transmit and receive performance, 1.5 watts output and excellent audio.

The IC-38A Mobile...ICOM’s new compact and easy to operate mobile especially designed for operator convenience. It sports a large LCD readout and band/memory stepping from the provided IC-HM12 mic. Plus 21 memories, receive coverage from 215-230MHz, scanning and memory lock-out.

The IC-37A Mobile...ICOM’s slim-line 220MHz mobile. There's band or memory scanning, nine memories, 32 built-in subaudible tones and an LED readout. Plus a reverse switch for offset checks and an internal speaker. Comes with the IC-HM23 DTMF touchtone mic with up/down frequency and memory scan.

Discover the wide open spaces on 220MHz. ICOM will help take you to the excitement.

ICOM 220MHz

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 Customer Service Hotline (206) 454-7619
3150 Premier Drive, Suite 126, Irving, TX 75063
ICOM CANADA, A Division of ICOM America, Inc., 3071-#5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 220MHz/1066
THE ALL NEW PRIVATE PATCH IV BY CSI HAS MORE COMMUNICATIONS POWER THAN EVER BEFORE

- Initiate phone calls from your HT or mobile
- Receive incoming phone calls
- Telephone initiated control...
 - Operate your base station with complete control from any telephone
 - Change frequencies from the controlling telephone
 - Selectively call mobiles using regenerated DTMF from any telephone
 - Eavesdrop the channel from any telephone
 - Use as a wire remote using ordinary dial up lines and a speaker phone as a control head.

The new telephone initiated control capabilities are awesome. Imagine having full use and full control of your base station radio operating straight simplex or through any repeater from any telephone! From your desk at the office, from a pay phone, from a hotel room, etc. You can even change the operating channel from the touchpad.

Our digital VOX processor flips your conversation back and forth fully automatically. There are no buttons to press as in phone remote devices. And you are in full control 100% of the time!

The new digital dialtone detector will automatically disconnect Private Patch IV if you forget to send # (to remotely disconnect) before hanging up. This powerful feature will prevent embarrassing lock-ups.

The importance of telephone initiated control for emergency or disaster communications cannot be overstated. Private Patch IV gives you full use of the radio system from any telephone. And of course you have full use of the telephone system from any mobile or HT!

To get the complete story on the powerful new Private Patch IV contact your dealer or CSI to receive your free four page brochure.

Private Patch IV will be your most important investment in communications.

To get the complete story on the powerful new Private Patch IV contact your dealer or CSI to receive your free four page brochure.

Private Patch IV will be your most important investment in communications.

MBOLER ELECTRONIC SUPPLY
Milwaukee WI, Wickliffe OH, Orlando FL, Clearwater FL, Las Vegas NV
BARRY ELECTRONICS CORP.
New York NY
EGE, Inc.
Woodbridge VA
ERICKSON COMMUNICATIONS
Chicago IL
HAMS RADIO OUTLET
Annapolis CA, Burlington CA
Oakland CA, Phoenix AZ
San Diego CA, Van Nuys CA,
Atlanta GA
HENRY RADIO
Los Angeles CA
INTERNATIONAL RADIO SYSTEMS
Miami FL
JUNS ELECTRONICS
Culver City CA
MADISON ELECTRONICS SUPPLY
Houston TX
MIAMI RADIO CENTER CORP.
Miami FL
MIKES ELECTRONICS
Fl. Lauderdale, Miami FL
N & G DISTRIBUTING CORP.
Miami FL
OMNI ELECTRONICS
Laredo TX
PACE ENGINEERING
Tucson AZ
THE HAM STATION
Evansville IN
WESCOM
San Marcos CA
CANADA:
CARTEL ELECTRONIC DISTRIBUTORS
Surry B.C.
COM-WEST RADIO SYSTEMS, LTD.
Vancouver B.C.
Compact Breakthrough!

TH-25AT/45AT
New Pocket Portable Transceivers

The all-new TH-25 Series of pocket transceivers is here! Wide-band frequency coverage, LCD display, 5 watts plus...

- Frequency coverage: TH-25AT: 141-163 MHz (Rx), 144-148 MHz (Tx) (Modifiable for MARS/CAP Permits required.)
- TH-45AT: 438-450 MHz
- Automatic Power Control (APC) circuit for reliable RF output and final protection.
- 14 memories, two for "odd split".
- Automatic offset selection (TH-25AT).
- 5 Watts from 12 VDC or PB-6 battery pack.
- Large multi-function LCD display.
- Rotary dial selects memory, frequency, CTCSS and scan direction.
- T-ALERT for quiet monitoring. Tone Alert beeps when squelch is opened.
- Band scan and memory scan.
- Automatic "power off" circuit.
- Water resistant.
- CTCSS encoder built-in (TSU-6 decoder optional).
- Supplied accessories: StubbyDuk, battery pack, wall charger, belt hook, wrist strap, water resistant dual caps.

Optional accessories:
- PB-5 72 V 200 mAh NiCd pack for 2.5 W output
- PB-6 72 V 600 mAh NiCd pack
- PB-7 72 V 100 mAh NiCd pack
- PB-8 12 V 600 mAh NiCd for 5 W output
- PB-9 72 V 600 mAh NiCd with built-in charger
- BC-11 Rapid charger
- BC-6 AAA battery case
- BC-1PB-2V DC adapter
- HMG-2 Headset with VOX and PTT
- SC-14, 15, 16 Soft cases
- SMC-30/31 Speaker mics
- TSU-6 CTCSS decode unit
- WR-11 Water resistant bag
DECEMBER 1987
volume 20, number 12

T. H. Tenney, Jr., W1NLB publisher
Rich Rosen, K2RR editor-in-chief and associate publisher
Dorothy Rosa, KA1LBO managing editor
Tom McMullen, W1SL
Joseph J. Schroeder, W6JUV
Alfred Wilson, W8NIE associate editors
Susan Shorrock editorial production

editorial review board
Peter Berlin, K1ZJ
Forrest Gabriele, K2ET
Michael Gruench, P.E.
Rob Lewis, W3BS
Mason Logan, KM4T
Vern Rpontella, W3LDO
Ed Wertheim, W3ON

publishing staff
J. Craig Clark, Jr., N1ACH assistant publisher
Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA12X advertising production manager
Susan Shorrock circulation manager
Therese Bourgault circulation
Hans Evans, PABX COVER

hammer radio magazine is published monthly by Communications Technology, Inc.
Greenville, New Hampshire 03048-0006
Telephone: (603) 876-1441

subscription rates
United States:
one year, $22.95; two years, $38.95; three years, $49.95
Europe (£1, via airmail, effective January 1, 1988: £40.00)
Canada, Japan, South Africa, and other countries (via surface mail, year, $33.00; two years, $66.00; three years, $174.00)
All subscription orders payable in U.S. funds, via international postal money order or check drawn on U.S. bank

international subscription agents: page 119
Microfilm copies are available from University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3016
Cassette copies of selected articles from hammer radio are available to the blind and physically handicapped from Recorded Periodicals, 919 Walnut Street, Philadelphia, Pennsylvania 19107
Copyright 1987 by Communications Technology, Inc. Title registered at U.S. Patent Office
Second class postage paid at Greenville, New Hampshire 03048 (038) and at additional mailing offices. ISSN 0148-5899

send change of address to hammer radio
Greenville, New Hampshire 03048

contents

10 a simple rotor interface board for the C-64 and the VIC-20
Neil Hill, K7NH

29 a RAM drive for packet radio
Thomas M. Hart, AD1B

33 design an amplifier around the 3CX1200A7
W. J. Byron, W7DHD

49 practically speaking: generating low i-f frequencies
Joe Carr, K41PV

57 the technology of commercial television
part 1: historical aspects
Eric Nichols, KL7AJ

72 VHF/UHF world:
low-noise receiver update — part 2
Joe Reisert, W1JR

83 hammer radio techniques:
remembering Art Collins, 9CXX
Bill Orr, W6SAI

98 cumulative index
1983-1987

113 Elmer's notebook:
the 1200-MHz band
Tom McMullen, W1SL

122 advertisers index and reader service
9 comments
91 DX forecaster
120 flea market

December 1987
One afternoon not long ago, Skip and I were discussing the latest video to come to our attention. No, it wasn’t the latest flick from our local magnetic media emporium, but rather a professionally produced video entitled “The New World of Amateur Radio” in VHS format.

You’re right — it’s that 30-minute video from the League that explains what Amateur Radio is all about. I’m sure you’re familiar with most of the key players. In fact, in some of the scenes you might even recognize yourself.

It’s quite well done, and we enjoyed watching it. I’m not going to go into a scene-by-scene description; instead, I’ll just pass on an idea Skip suggested.

What if quite a few of us each obtained a copy (it costs only $20, and what else can you buy for $20 these days, anyway?) and offered it to our local family video center for free? The ARRL could prepare a poster or other in-store display piece for distribution to hams willing to undertake this effort. I’m pretty sure the family video center that I’m a member of would be willing to at least try it for a while. While there’d be no money exchanged, store owners could offer a free rental of the ARRL tape with the rental of any other. Everybody I know likes a bargain. Used as a promotional item, it’s conceivable that the tape might actually help business.

Wait a second. Wasn’t this film meant to be distributed to ham clubs, schools, etc.? Absolutely. But hams clubs already have hams. Wouldn’t it make sense to make the tape available to the general public? Doing this might have several positive effects: first, it might encourage some of our younger generation to find out something about Amateur Radio; second, it can’t hurt our image. Maybe one of those people borrowing the tape will just happen to be that neighbor who’s been so critical of your tower or your operation. It might explain a few things to him. By jingo, I can see it now — an 80-meter, double-extended zepp strung between your property and his!

A possibility? Contact the American Radio Relay League’s Publication Sales Office, Dept. NW/HR, 225 Main Street, Newington, Connecticut 06111, for your copies of “The New World of Amateur Radio” — one for you, one for your neighborhood video store, and five or ten more for all the lucky people on your holiday gift list.

Happy Holidays!

Rich Rosen, K2RR
Editor-in-Chief
Kenwood brings you a wide range of 220 MHz gear designed for every need. Choose from two types of mobile and two types of HT. The TH-315A is a full-featured HT covering 220–225 MHz. Ten memory channels and 2.5 watts of power. (5 W with PB-1 or 12 V DC.) Uses the same accessories as the TH-215A for 2 meters or TH-415A 440 MHz. For truly “pocket portability,” choose the TH-31BT, a thumb-wheel programmable, 1 watt unit. For mobile use, select the TM-321A or TM-3530A.

The TM-321A is the 25 W, 220 MHz, 14-channel version of the super popular, super compact TM-221A. The 25-watt TM-3530A has 23 channels, a 15 telephone number memory and auto dialer. Direct keyboard frequency entry and front panel DTMF pad enhances operating convenience. Novice to Amateur Extra, these transceivers will put everyone on the air “Kenwood Style”!

A complete line of accessories is available for all models.
Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.

KENWOOD
...pacesetter in Amateur Radio

220: FM for All!

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
Kenwood has been producing the finest communications equipment for over three decades. Kenwood is the name recognized worldwide as the number one manufacturer of Amateur Radio equipment.

Being number one means that we are committed to offer you the finest selection of equipment available. It's all here—everything for a truly "top notch" station. Commercial grade receivers for the Short Wave Listener. The latest in 220 MHz transceivers for the enhanced Novice. The finest selection of VHF and UHF rigs. Our legendary HF line continues to earn top billing in Product Reviews, winning contest stations, and DXCC Honor Roll. All in your choice of base, mobile, or portable packages. All designed with the latest innovations in communications technology.

When you are on the air with a Kenwood rig, fellow Amateurs recognize that "Kenwood Sound"—it separates you from the pack and lets everyone know that you are serious about communications, whether it's traffic handling, contesting, DX chasing, or just plain rag chewing. Leading edge technology, and superior field-proven performance—that's the Kenwood Experience!

Contact your nearest Authorized Kenwood Amateur Radio Dealer for more details on the hottest ham gear in the world!
to Amateur Extra Class!

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745

KENWOOD TS-940S TRANSCEIVER CONTROL PANEL
FREE 14.25-40 MHz S/M 5/5 kHz Date 01-25-87 Time 15:35

(1) R 5000A High Performance Receiver
(1) X-SP430 Matching External Speaker for TS 440S/TS 440S
(1) MC-480B (1) TS-771A 2m/25W All Mode Transceiver
(1) TS-215A 2m/Full-featured HF (1) TS-481A Power supply
(1) TS-440S HF Transceiver with AT 840 installed
(1) SP-940 Matching External Speaker for TS-940S
(1) MC-60A Base Station Microphone with UPS control
(1) TS-940S Competition Class HF Transceiver with General Coverage Receiver
(1) AT 840 installed
(1) A 232C Computer Interface Level Translator
(1) IF-18B Computer Interface Module compatible with TS-940S
(1) SM-2500A SDR Power Meter
(1) SM-220 Station Monitor with gain display option 858 installed
(1) MC-430 HF Linear Amplifier
(1) HS-8 Multi-function Desk Microphone with Graphic Equalization and three outputs
15-key DTMF Microphone

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features, and prices are subject to change without notice or obligation.
MFJ-931 creates artificial RF ground with random wire also electrically places a far away ground directly at your rig

Eliminate RF bites, hotspots, feedback, TVI, RFI and other problems due to an inadequate RF ground -- and at the same time -- improve your signal and radiation pattern for more DX.

Use the new MFJ-931 to create an artificial RF ground! The MFJ-931 resonates a random length of wire thrown along the floor and produces a tuned counterpoise, producing an artificial RF ground. This presents a low impedance to your rig and effectively places your rig near actual earth ground potential even if your rig is on the second floor or higher with no earth ground possible.

Also, the MFJ-931 electrically places a far away RF ground directly at your rig -- no matter how far away it is. It reduces the ground connection wire to virtually zero by turning it reactance.

It covers 1.8 to 30 MHz and has a built-in RF ammeter for indicating RF ground current. It's ruggedly built in an all aluminum cabinet with a brushed aluminum front panel and measures 7⅛ x 3½ x 7 inches.

MFJ-701 RFI-FREE CHOKE KIT
$14.95
Eliminates RFI easy as . . .

DROP-IN RAPID BATTERY CHARGER

Be prepared! Keep your handheld ready for instant use with the new MFJ-290 Drop-in Rapid Desk Charger for all ICOM rechargeable battery packs.

It's made of high quality premium plastic with ventilation holes for cool operation and measures just 7⅞ x 3 inches. On/Off switch, power ON and charging LEDs. Uses 110 VAC. IC-2 series battery packs require ICOM AD-10 charger adapter.

MORSE CODE TUTOR

MFJ-1266 disk $19.95
MFJ-1267 cartridge $28.95
This new Morse Code Tutor for the Commodore 64/128 not only teaches code but is also a full fledged iambic keyer and Morse keyboard! Optional MFJ-76 Interface ($19.95) lets you plug in an iambic paddle and the C-64/128 key a transmitter.

You can send all alphabet, numbers and punctuation randomly or choose certain letters, send a plain English message as given on an FCC test or received on the air, store a message for sending or send code directly from your keyboard. FCC-like Novice code test included.

Use ARRL's "Tune in the World" and MFJ supplied course for both individual and classroom study.

IBM Starter Pack for PACKET

MFJ-1284 $19.95
Ready to join the PACKET fun with an MFJ TNC or TAPR clone? MFJ's newest IBM Starter Pack for PCs and compatibles with serial port gets you on packet immediately with no hassles. You get a computer interface cable, complete "How To" instructions and the fields also subscribe to the Packet Terminal Program) on disk by N4PY -- everything you need to get on packet FAST.

PTP gives you split screen with keyboard buffer, user defined function keys, disk save, printing, file upload and download, WORL BBS/mailbox and WDCG PBBS support, help screen, automatic command strings, automatic time set, connect alarm, full screen editor, NTS traffic generation, complete documentation plus more.

COMPACT MOBILE SPEAKER

MFJ-280 $18.95
Enjoy crisp, clear audio and ultimate convenience with this tiny, low cost mobile speaker.

Just plug in the 3.5 mm phone plug, set the base on any magnetic surface and it's ready. Two auxiliary mounting plates with two-sided tape allow mounting on a dash or other non-magnetic surface (screws also included). A 30 inch cord and tilt bracket give you extra versatility.

It works with all 6 and 4 ohm impedances and handles up to 3 watts of audio. Its dark grey military color matches nearly all rigs. Measures just 2⅝ x 2⅝ x 3 inches and weighs less than half a pound!

NEW FROM MFJ

HANDHELD SPEAKER/ MIC

MFJ-284 $24.95
Once you've tried this new MFJ-284 Speaker/Mic you'll never want to be without it. You'll conveniently carry your handheld on your belt and never have to remove it to monitor calls or talk.

You'll never have to turn up your audio annoyingly loud because its handy lapel/pocket clip lets you place it close to your ear for easy listening.

It comes with a lightweight retractable cord that eliminates the "dangling cord problem" and fits most Icom, Yaesu and other handhelds. Outstanding audio on both transmit and receive. Dark grey.

1/44220 MHz VHF ANTENNA TUNERS

MFJ-920 $49.95
MFJ-921 $69.95
Get cool efficient operation, maximum power output and minimum SWR with these dual band VHF antenna tuners that cover both 2 meters and the new Novice 220 MHz band.

Both handle 300 watts PEP, match a wide range of impedances for coax fed antennas, and are suitable for both mobile and base operation.

MFJ-921 has SWR/Wattmeter and is 8x2⅝ x 3 inches. MFJ-920 is 4⅝ x 2⅝ x 3 inches.

MFJ-701 RFI-FREE CHOKE KIT
$14.95
Eliminates RFI easy as . . .

ORDER ANY PRODUCT DIRECTLY FROM MFJ AND TRY IT NO OBLIGATION. IF NOT SATISFIED RETURN WITHIN 30 DAYS FOR FULL REFUND (less shipping).

- One year unconditional guarantee
- Add $5.00 per shipping/handling
- Call or write for free catalog, over 100 products.

FOR YOUR NEAREST DEALER OR TO ORDER CALL TOLL FREE

800-647-1800

801-323-5869 in Miss. and outside continental USA. Telex 53-4590 MFJ STKV
sentimental technocrats speak

Dear HR:

The "Reflections" column of September 1987 ("A Sentimental Technocrat Speaks") was the best thing written about Amateur Radio in 20 years. Mr. Zavrel, W7SX, captured my feelings as well as those of most of my friends with his well-written article . . . he forgot one dislike, however: ready-made coax with crimp-on connectors.

J. R. Sheller, KN8Z (ex WA8ZDF)

Dear HR:

I loved Bob Zavrel's editorial (September 1987). It's my turn now — but aren't we too young to be talking like this?

What about the warm glow of the tubes, the click of the big antenna tubes, the smell of wax capacitors and carbon resistors cooking, the drifting of the old receiver, the steadfastness of that rockbound 6146, the heterodynes of the a-m bands, the quality of the audio on those signals, all those homebrew radios and amplifiers with those weird, unheard-of tubes, the vibrating transmitter cabinet tops, the occasional job of peaking those slug coils in the rf section of the receiver and that "plastic" tuning wand used to do so? How about the old tube tester down at the K&B, the ease of changing tubes, and the reliability of the fact that if a tube wasn't lit, that was the problem? (This is why I dislike metal tubes.) And what about the deep red glow of an overloaded 6146, the pop of a high voltage arc, blown fuses, the smell and sting of finger skin on a hot tube, the smell and heat of natural convection; the burned spots on painted cabinet tops and the smell of cooking bakelite pc boards? The smell of a new roll of wire, of hot solder flux — and the memory of running home after school to turn the rig on, after you'd been given a 50-foot length of coax . . . the thrill of that first QSO, of wondering who might answer a CQ — and most of all, old radio friends.

Richard W. Thimmesch, WA5NYG
Belle Chasse, Louisiana 70037

romantic whining?

Dear HR:

I'd like to take this opportunity to respond to Rich Rosen's editorial, "Evolution" (August 1987).

My experience with readers and kit buyers indicates that he is correct; most avid builders are older. Many, having already lost wives and the ability to focus beyond 8 inches, are dying off even as we speak. Others of us simply never recovered from the war, and make little radios for therapeutic reasons.

Nevertheless, acknowledging that fact touches a raw, primal nerve-ending in my Amateur Radio soul. It makes me want to fire up, grab my rusty old J-38, and take a stand. "Don't hide behind that 940, you paper-crazed DX junkie," I'd pound. "Pull your iron, and let's see if you've got what it takes to call yourself a REAL ham!"

But alas, such romantic whining from the island of QRP would only be lost in a turbid sea of mixer-crushing affluence. Perhaps, more constructively, I could simply ask that a quiet spot be reserved for my bones . . . in the ARRL museum.

Rick Littlefield, K1BQT
Barrington, New Hampshire 03825

moon bounce

Dear HR:

While it is correct that "moon bounce" first occurred in 1946 (see W1JR's "VHF/UHF World," August 1987), the radar used was not commercial, but military. The event took place at the United States Army Signal Corps Laboratories at Belmar, New Jersey. The New York Daily Mirror of Friday, January 25, 1946 (2 cents a copy) covered the story of Project Diana under the headline, "Army Contacts The Moon."

ham radio continues to be outstanding. But how could you miss with Mssrs. Reisert, Orr, Beers — and others — all contributing to a single issue?

Len Sheer, W7WRQ
Phoenix, Arizona 85018

UHF/SHF newsletter

Dear HR:

I enjoyed the July issue of ham radio very much, and agree completely with WA2LQQ's view on the use of bands from 13 cm "upward" (Vern Riportella, "13 cm: Onwards and Upwards," page 4).

I'm really concerned that publications available in the United States don't hold a candle to some of the European publications in terms of their presentation of UHF/SHF technical material. Take any edition of Dubus, for example, and you'll see what I mean.

I'm doing what little I can with VHF-Plus Update, and I know you're doing quite a lot with ham radio, but there's a long way to go, and I hope that other major Amateur publications will get wise to the importance of our UHF/SHF bands!

Jack C. Parker, KCOW
4016 Narrows Road
Erlanger, Kentucky 41018

Note: Jack publishes a fine newsletter called KCOW's VHF-Plus Update. It's well worth subscribing to. — Ed.
Track satellites with your personal computer

a simple rotor interface board for the C-64 and the VIC-20

The AUTOTRAK project combines three of my favorite subjects — Amateur Radio, computers, and Amateur satellites.

It began several years ago when I purchased a ZX81 (later to become the Timex 1000) computer, taught myself BASIC, and developed a program for tracking satellites. Shortly afterward, AMSAT chose the ZX81 to be part of its AMS81 project to develop tracking software and a companion hardware board to control rotors for automatic antenna aiming. Though I was privileged to be one of the beta testers of the software, the hardware board never appeared; I assume it couldn't be produced for the "under $100" figure that had been targeted.

Seeing a real need for automatic rotor control, I decided to try to design one to interface to the tracking program I'd developed. It had to be simple, inexpensive, and easy to use. The AUTOTRAK board meets these criteria, and is adaptable to many different rotors and a variety of computers. While the board was sold commercially by Spectrum West and although I still build and market them, I'm pleased to share the design with others.

This article describes its use with the Commodore 64 and VIC 20, but the design can be made to work with any computer that allows you access to the address and data lines. The board will interface with many light-duty rotors that use a linear pot to "sense" antenna direction — for example, the Kenpro 400/500/5400 and HD73. The board output can also be configured to support the new computer-ready Kenpro 5400A/5600A.

Designed to be powered by an 11.0- to 15-volt ac wall transformer, AUTOTRAK won't operate rotors with brakes or those of the chunk-chunk style. Accuracy is within a couple of degrees, which is sufficient for all but very large arrays. Its overall cost should be only about $70.

The software consists of a couple of short program lines, written in BASIC, which you can add to your favorite tracking program. (The new SUPER VR85 tracking program has the coding already built in.) A short operating program and software information are supplied at the end of the article.

theory of operation

Your tracking program will calculate where the satellite is supposed to be at a particular time and provide azimuth and elevation bearings to the satellite for that time. The new program lines you add to your program will calculate a number (between 0 and 255) representing your azimuth and elevation bearings. These numbers are POKeD onto your computer's data bus, where they're latched by D-to-A converters and changed to an analog voltage corresponding to the direction in which the computer says your antennas should be pointing. Meanwhile, the actual direction of each antenna is brought onto the board via the direction "sense" lines from the rotor controllers. After being processed, these voltages, and those of the D-to-A converters, are summed together and applied

By Neil Hill, K7NH, 22104 66th Avenue W., Mountlake Terrace, Washington 98043

10 December 1987
to "window" comparators. If the output voltage of the summing circuit is at or near zero, it will fall into the window and the antenna will not move. However, if the voltages are unequal, there will be a voltage and polarity difference and one of the two comparators making up the window comparator will be turned on. Through an appropriate output circuit, the antenna will then be rotated until the output of the summing circuit reaches zero, at which time the comparator will turn off, leaving the antenna pointing where the program says it should.

For details, refer to the schematic (fig. 1) and follow along. As noted above, two AD558 D-to-A converters continuously monitor the data lines and will latch and hold whatever data is ready whenever their read and enable lines are low. The AD558 was chosen for three important reasons: it provides a voltage rather than current output; the full-scale voltage can turn off, leaving the antenna pointing where the program says it should.

For details, refer to the schematic (fig. 1) and follow along. As noted above, two AD558 D-to-A converters continuously monitor the data lines and will latch and hold whatever data is ready whenever their read and enable lines are low. The AD558 was chosen for three important reasons: it provides a voltage rather than current output; the full-scale voltage can
be set for either 2.5 or 9.75 volts; and it has a built-in latch, which allows the computer to go on its way once the chip has received the information it needs.

Part of the simplicity of the AUTOTRAK design is attributable to the presence, on the Commodore 64 and VIC-20, of two 1-K wide I/O sections that aren't normally used. I simply POKE an address in each section to activate the azimuth and elevation D-to-A converters momentarily. (On other brands of computers, you'll probably need to decode the address lines, but this should require only a couple of ICs.) The output of each D-to-A converter is applied to one side of a summing circuit consisting of two 22-k resistors. The other side of each summing circuit is fed by the output of one half of an LM4558 op amp, which accepts the sense voltage from the associated rotor, inverts it, and "matches" it to the voltage range of the corresponding D-to-A converter.

Adjustment of the + input of the op amp sets the low or CCW end of rotation, and its gain adjustment sets the high or CW end. The outputs of the summing circuits are tied to window comparators, each formed by both halves of an LM319. The high speed of the LM319 is important for accuracy, but it's very sensitive to noise and ac signals on its inputs, so special care must be taken to control the input signals. The size of the window determines the accuracy of the board. I found a 47-ohm resistor to be about the right value. Increasing this value widens the window, and decreasing it causes it to close; however, too small a value causes both halves of the comparator to be on at the same time, which can cause problems.

The outputs of these comparators in turn operate a pair of optoisolators, one for each rotor direction, and LEDs that indicate which direction is active. These LEDs are also used when making the setup adjust-
EIMAC's
new DX champion!
The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221
MULTI-BAND
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25-45W, 440 MHz, 10 MTR, 6 MTR, 220 MHz & 1.2 GHz, 10 MEMORIES
ARE YOU READY FOR 1.2 GHz OPERATION?

SALE! CALL FOR PRICE

LOW PRICE!

SALE! CALL FOR PRICE

LOW PRICE!

GREAT PRICE!

FROM STORE NEAREST YOU

NOW! RAPID DELIVERIES

COAST TO COAST

CALL FOR LOW, LOW PRICE

IN STOCK FOR IMMEDIATE DELIVERY

CALL TOLL FREE (800) 854-6046

Toll free including Hawaii. Phone hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store.

- California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

December 1987
PORTABLE ANTENNA

MODEL AP-10
Designed for APARTMENTS, MOTELS, VACATIONS

PRICE $55.25
Add 3.00 Shipping and Handling

Quick Simple Installation. Operates on 2, 6, 10, 15, 20, 30 and 40 meters. All coils supplied. Only 22-1/2 inches long. Weighs less than 2 lbs. Supplied with 10 ft. RG58 coax and counterpoise. Whip extends to 57 inches. Handles up to 300 watts. VSWR -1.1:1 when tuned. Write for more details and other BW products.

GLB PACKET RADIO GOES PORTABLE
THE FIRST CONTROLLER DESIGNED FOR PORTABLE AND SOLAR-POWERED STATIONS

- LOW 25 mA Current Drain.
- Miniature size - Lightweight.
- Rugged metal, shielded case.
- Lithium Battery backup for RAM.
- Onboard Watchdog for reliability.
- Standard DB25 Connectors.
- "Connected" Status output line.
- Remote Commands in Unattended Mode with Hardware Lockout.
- Retains all other PK-1 features.
- Extra I/O lines for special applications.

NEW SOFTWARE FEATURE: INTELLIGENT "BUOY LIST" - Provides selective call sign filtering for Digipeating, Monitoring and Connecting.

Model PK1-L
Wired/ Tested
List price - $209.95
Amateur net - $179.95

Power requirement: 9 to 15 Volts DC @ 25 mA typical
Dimensions: 4.6 X 5.9 X 1.0 inches
Weight: 12 ozs.

Please specify Call Sign and SSID Number and Mode Name when ordering.

Contact GLB for additional info and available options.
We offer a complete line of transmitters and receivers, tripods, preselector preamps, CMDRs & synthesizers for amateur & commercial use. Request our FREE catalog. MC & Visa welcome.

GLB ELECTRONICS, INC.
151 Commerce Pkwy., Buffalo, NY 14224 716-675-6740 9 to 4

December 1987

parts list

CT-7, 11, 16, 19, 22
0.1/4, 50 volts, 0.2-inch CTC
C5, 8, 12
10 volt electrolytic
C9, 10
100 volt electrolytic
C12, 14, 22, 23
0.01, 5 volt disc
D6
1N4002 200 volt PIN diode
D1-4
1N4148 diode
J1
Power connector
R1-R4
10k pot. 1/2-square inch, 1 turn (Bowens 2386W, 103K)
R5, 6
50K pot. 1/2-square inch, 1 turn (Bowens 2386W, 503K)
R6, 8, 9, 12
10k, 1/4 watt
R13-17
2.2, 1/4 watt
R14, 15, 21, 24, 27, 30, 2-3, 1/4 watt
R15
88 ohms, 1/4 watt
R18, 19
68K ohms, 1/4 watt
R20-23, 26, 29
180 ohms, 1/4 watt
R22-25, 31
39 ohms, 1/4 watt
SW1
DPST (miniature)
U1
IC555 dual op amp
U2
LM319 dual comparator
U1.5
AD558 D-to-A converter (available from Analog Devices.
MCC3601 optoisolator
U10, 11, 12, 13
IC2268 triac
VR1
7812 voltage regulator (+12)
VR2
7812 voltage regulator (-12)
Green LED
TIL222
Red LED
TIL239
Cable
10-conductor multicolored (5 feet)
Transformer
110- to 15-volt ac, wall mounted
Autotrack pc board
Available from NH Enterprises, 2204 66th Avenue West,
Mountlake Terrace, Washington 98043

Parts needed for computer-ready controllers: U6-9. Optoisolators (TIL113); 4 2N7000 FET's.
(*) designates parts to be omitted in computer-ready controller.

ments. The actual circuit used to interface to your rotor system depends on what kind of rotor you use. Most small rotors use ac motors, so an optoisolator triac driver such as an MOC 3011 and triacs are used. This acts as a remote ac switch for the rotator motor. However, by using TIL113 optoisolators and 2N7000 FET's (in which FETs are substituted for a Darlington transistor pair) the board acts like a low-power on/off switch to ground so that computer ready rotors can be controlled. If you need more voltage or current to be controlled, just substitute power MOSFETs such as the IRF 520 series for the FET's.

Voltage for the board is provided by a simple dual-voltage (+15 and -15) volt supply using inexpensive regulators and powered by a small 11.0- to 15-volt ac transformer that plugs into a wall outlet.* A switch is employed to disconnect voltage to the optoisolators, thus disabling the board when manual control of the rotor controllers is desired.

ESD caution

As in all such projects, it's important to minimize the possibility of electrostatic discharge (ESD) damage to components. The AD558 D-to-A converters are quite expensive, and also sensitive to ESD damage, so take the appropriate precautions. (One friend covers his work area with aluminum foil before starting a project.) When handling the AUTOTRAK board, try not to touch the end that plugs into the computer; the "fingers" go directly to the AD558s.

* - NS - 12 volt regulators and a 12 volt ac transformer may be substituted if more readily available.
building the board

Assembling the board is straightforward. The C-64 and VIC-20 AUTOTRAK boards are identical except for the computer connector. For those of you who are making your own boards from the supplied artwork (see figs. 2 and 3), there are two things to remember: first, unless your boards have through-hole plating, you must supply the through-hole connections with a wire placed in the through holes and soldered on both sides; and second, any trace to component connections on the top of the board must be soldered on top of the board rather than on the bottom.

I use the "layer" method when assembling the boards. First I insert the shortest parts, normally the resistors and diodes, and cover them with something flat and stiff (like a piece of corrugated cardboard). Holding this "sandwich" together, I turn the board upside down, leaving the component legs sticking up, ready for soldering. After soldering, I clip the leads and move on, inserting the next tallest group of parts such as ICs, small capacitors, and variable pots. The switch, LEDs, filter capacitors, and the input power connector are mounted last. For parts placement and orientation, see fig. 4.

Note that the voltage regulators are installed upside down (metal side up) in order to conserve board space. After mounting the variable pots, turn them to the center of their range to prevent confusion later, during testing. When installing the electrolytic capacitors, make sure their polarity is correct.

All components are mounted on the top of the board except C20-C22. Keep the leads on these capacitors short because they're used to shunt to ground any noise or ac voltage, which might confuse the operation of the comparators. Each of the four LEDs
should be mounted with its flat spot towards the edge of the board. If there's no flat spot, note the length of the mounting leads and mount the shorter one towards the edge. No cuts or jumpers are necessary when assembling the standard ac motor version of the board.

Differences for the computer-ready version concern only the output circuitry (fig. 5). Everything else stays the same. See fig. 5(B) for parts changes and fig. 2C for the six cuts and various jumpers needed. All cuts are made on the bottom side of the board and are easily accomplished with an X-acto® knife or equivalent. Jumpers can be mounted from the top or bottom side of the board, but should not be run over an exposed trace unless they're insulated. Don't forget the +15 volt lead to pin 5 of each of the TIL113s, and watch the lead placement of the 2N7000s. (See fig. 4B.)

After the board is completely assembled, give it a careful visual inspection, especially for solder shorts. Are the part values correct? Are the solder connections smooth and shiny? Did you miss any? Is the polarity correct on the electrolytic capacitors and diodes? Are the LEDs mounted with their flat sides toward the edge of the board, and the voltage regulators upside down and bent over? How about the three 0.1-μF capacitors mounted across the pins of the LM319s on the bottom side of the board; did you forget them? All correct? Great — let's move on.

preliminary testing

Be sure to test your work before you plug the AUTOTRAK board into your computer and before running any wires to your rotors. First verify that the four variable pots are somewhere in the middle of their ranges. Next turn on the enable switch (with the handle toward the top edge of the board) and connect
the 15-volt ac input power to the ac power connector (J1). Make sure one of each color LED is lit. If they’re not, remove the ac power and recheck the parts, their orientation, and their solder connections before proceeding. If everything looks all right, reconnect the ac and check the output of the regulators for + and −15 volts.

If the voltage is correct but the LEDs still don’t operate correctly, check to confirm that either pin 7 or 12 of the LM319s is near 14 volts. If neither is, check the polarity of the LEDs. If both pins are near 14 volts, look for trouble in the LM319 circuitry. When the LEDs operate correctly, you’re ready to proceed. The operation of the D to A converters, op amps and triacs will be checked later.

To complete the board, connect the 10-wire (or 8-wire for the computer-ready version) multicolored rotor interconnect cable and mount two 5/8-inch rubber feet (or equivalent) to the rear holes of the board for support.

rotor preparation

Unless your rotors are the new computer-ready type, you may need to make a small modification to allow access to both sides of the direction switches. Note figs. 6 and 7, then consult the schematic in your rotor manual and identify the following: the line from the rotor head to the controller used for sensing direction, the ground return for the sensing line, and the direction switch lines.

Identify the ac common wire from the transformer to the rotor direction switches; if it isn’t brought out to a terminal, the controller wiring must be modified to allow access (see fig. 7). Wire it to an unused terminal at the rear of your controller if one is available, or supply one to which it can be attached. An alter-
THE NEW "KREEPIE PEEPIE" ATV TRANSMITTER

1. New final transistor typically gives more than 1.5 watts output on sync tip with 13.8 vdc applied.
2. Now you can see your own transmitted video with the on-board RF detector/monitor 1 v output.
3. Final RF output test point for setting up blanking pedestal with a voltmeter.
4. Improved lower distortion subcarrier sound generator for this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just are one of those with just a downconverter, saw some pictures and was bitten by the ATV bug, then
5. All this at no increase in price! Single freq. KPA5-c board still $159 delivered* Two freq. $174.

NEW TX70-1 ATV TRANSMITTER contains the KPA5 and T/R relay ready to go in a small 6x5.2x2.5" shielded cabinet. Has both the 10 pin "VHS" camera & RCA phono jack video/audio inputs. If you are one of those with just a downconverter, saw some pictures and was bitten by the ATV bug, then this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just connect its input to the downconverter BNC connector on the back of the TX70-1. $229 delivered.

NEW TX70-1 $229 delivered

KPA5-c 70CM ATV XMTR BOARD FEATURES:
- >1 WATT P.E.P. RF OUTPUT ON SYNC TIP.
 Run barefoot for portable. Output properly matches Mirage D15N 15 watt or Mirage D24N-ATV 50 watt linear amp for full output and the Mirage D1010N-ATV to over 50 watts p.e.p.
- FULL COLOR AND SOUND on a small 3.25x4" board
- Wired and tested board runs on external 13.8vdc @ 300ma. supply or 12 V battery
- Accepts composite video from cameras, VCRs, computers, etc.
- 2 audio inputs, one for low Z dynamic mic, & one line level from most cameras & VCRs
- Supplied with one xtal on 426.25, 434.0, or 439.25 2nd xtal add $15. Specify freq. when ordering, check with local ATVers, ARRL Repeater Directory or call us. Only 2 channels available in any given area due to video bandwidth of 9.1 MHz.
- Price still $159 delivered via UPS surface in contiguous USA. Transmitters sold only to licensed Technician class or higher amateurs for legal purposes. We verify name, call letters, & QTH in the Callbook. If recently licensed or upgraded send a copy with order.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? Either a TVC-2G or TVC-4G downconverter connected to any TV set tuned to channel 3, and coax cable to a good 70cm antenna to receive. Connect up the TX70-1 or package up the KPA5, add 12 to 14 vdc, antenna, and any home TV camera, VCR, or computer with composite video output. It's that easy!

ACCESSORIES:
- TVC-2G GaAsfet downconv. board wired & tested.....$59
- varicap tuned, 420-450 MHz to ch3. Req 12vdc
- TVC-4G (TVC-2G in cabinet with 120vac supply).....$99
- TVCX-70 crystal controlled GaAsfet downconv.....$99
- specify in freq. & out on ch 3 or 45mhz IF. 2 freq......$114
- Hammond 1590D Use for KPA5. 7.3x4.7x2".....$17
- 1590C 4.6x3.6x2" aluminum box. Fits TVCX-70.....$11
- 800J 10 pin VHS color camera chassis connector.....$10
- VOR Video (horiz sync) operated relay board.....$25

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $39

P.C. ELECTRONICS 2522 PAXSON LANE ARCADIA CA 91006-8537 USA
TOM (W6ORG) & MARYANN (W36YSS) O'HARA
(818) 447-4565

NEWKOM PEEPIE TV TRANSMITTER

1. New final transistor typically gives more than 1.5 watts output on sync tip with 13.8 vdc applied.
2. Now you can see your own transmitted video with the on-board RF detector/monitor 1 v output.
3. Final RF output test point for setting up blanking pedestal with a voltmeter.
4. Improved lower distortion subcarrier sound generator for this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just are one of those with just a downconverter, saw some pictures and was bitten by the ATV bug, then this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just connect its input to the downconverter BNC connector on the back of the TX70-1. $229 delivered.

NEW TX70-1 $229 delivered

KPA5-c 70CM ATV XMTR BOARD FEATURES:
- >1 WATT P.E.P. RF OUTPUT ON SYNC TIP.
 Run barefoot for portable. Output properly matches Mirage D15N 15 watt or Mirage D24N-ATV 50 watt linear amp for full output and the Mirage D1010N-ATV to over 50 watts p.e.p.
- FULL COLOR AND SOUND on a small 3.25x4" board
- Wired and tested board runs on external 13.8vdc @ 300ma. supply or 12 V battery
- Accepts composite video from cameras, VCRs, computers, etc.
- 2 audio inputs, one for low Z dynamic mic, & one line level from most cameras & VCRs
- Supplied with one xtal on 426.25, 434.0, or 439.25 2nd xtal add $15. Specify freq. when ordering, check with local ATVers, ARRL Repeater Directory or call us. Only 2 channels available in any given area due to video bandwidth of 9.1 MHz.
- Price still $159 delivered via UPS surface in contiguous USA. Transmitters sold only to licensed Technician class or higher amateurs for legal purposes. We verify name, call letters, & QTH in the Callbook. If recently licensed or upgraded send a copy with order.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? Either a TVC-2G or TVC-4G downconverter connected to any TV set tuned to channel 3, and coax cable to a good 70cm antenna to receive. Connect up the TX70-1 or package up the KPA5, add 12 to 14 vdc, antenna, and any home TV camera, VCR, or computer with composite video output. It's that easy!

ACCESSORIES:
- TVC-2G GaAsfet downconv. board wired & tested.....$59
- varicap tuned, 420-450 MHz to ch3. Req 12vdc
- TVC-4G (TVC-2G in cabinet with 120vac supply).....$99
- TVCX-70 crystal controlled GaAsfet downconv.....$99
- specify in freq. & out on ch 3 or 45mhz IF. 2 freq......$114
- Hammond 1590D Use for KPA5. 7.3x4.7x2".....$17
- 1590C 4.6x3.6x2" aluminum box. Fits TVCX-70.....$11
- 800J 10 pin VHS color camera chassis connector.....$10
- VOR Video (horiz sync) operated relay board.....$25

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $39

P.C. ELECTRONICS 2522 PAXSON LANE ARCADIA CA 91006-8537 USA
TOM (W6ORG) & MARYANN (W36YSS) O'HARA
(818) 447-4565

NEWKOM PEEPIE TV TRANSMITTER

1. New final transistor typically gives more than 1.5 watts output on sync tip with 13.8 vdc applied.
2. Now you can see your own transmitted video with the on-board RF detector/monitor 1 v output.
3. Final RF output test point for setting up blanking pedestal with a voltmeter.
4. Improved lower distortion subcarrier sound generator for this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just are one of those with just a downconverter, saw some pictures and was bitten by the ATV bug, then this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just connect its input to the downconverter BNC connector on the back of the TX70-1. $229 delivered.

NEW TX70-1 $229 delivered

KPA5-c 70CM ATV XMTR BOARD FEATURES:
- >1 WATT P.E.P. RF OUTPUT ON SYNC TIP.
 Run barefoot for portable. Output properly matches Mirage D15N 15 watt or Mirage D24N-ATV 50 watt linear amp for full output and the Mirage D1010N-ATV to over 50 watts p.e.p.
- FULL COLOR AND SOUND on a small 3.25x4" board
- Wired and tested board runs on external 13.8vdc @ 300ma. supply or 12 V battery
- Accepts composite video from cameras, VCRs, computers, etc.
- 2 audio inputs, one for low Z dynamic mic, & one line level from most cameras & VCRs
- Supplied with one xtal on 426.25, 434.0, or 439.25 2nd xtal add $15. Specify freq. when ordering, check with local ATVers, ARRL Repeater Directory or call us. Only 2 channels available in any given area due to video bandwidth of 9.1 MHz.
- Price still $159 delivered via UPS surface in contiguous USA. Transmitters sold only to licensed Technician class or higher amateurs for legal purposes. We verify name, call letters, & QTH in the Callbook. If recently licensed or upgraded send a copy with order.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? Either a TVC-2G or TVC-4G downconverter connected to any TV set tuned to channel 3, and coax cable to a good 70cm antenna to receive. Connect up the TX70-1 or package up the KPA5, add 12 to 14 vdc, antenna, and any home TV camera, VCR, or computer with composite video output. It's that easy!

ACCESSORIES:
- TVC-2G GaAsfet downconv. board wired & tested.....$59
- varicap tuned, 420-450 MHz to ch3. Req 12vdc
- TVC-4G (TVC-2G in cabinet with 120vac supply).....$99
- TVCX-70 crystal controlled GaAsfet downconv.....$99
- specify in freq. & out on ch 3 or 45mhz IF. 2 freq......$114
- Hammond 1590D Use for KPA5. 7.3x4.7x2".....$17
- 1590C 4.6x3.6x2" aluminum box. Fits TVCX-70.....$11
- 800J 10 pin VHS color camera chassis connector.....$10
- VOR Video (horiz sync) operated relay board.....$25

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $39
native would be to wire in a multiwire "pigtail" to your controller with a connector so that the AUTOTRAK wires can be disconnected.

You'll also need to check the voltage of your rotor's sense lines. The AUTOTRAK board can work with sensing lines between 0.5 and 9.5 volts. If the voltage is higher, a simple voltage divider (see fig. 8) can be built into the board to bring it to about 8 volts. If the voltage is less than 2 volts, remove the short across JP1 (see fig. 1 for location) with an X-acto® knife and install JP2, using a small piece of wire. This changes the maximum output of the D-to-A converter to approximately 2.5 volts, where your low-sensing voltage can be more easily matched.

calibration

Calibration should be done one rotor at a time, starting with bearing. Turn your computer off. Then plug the AUTOTRAK unit into the expansion port. Turn your computer on, connect the ac to the board, and turn on the enable switch. On the rotor controller, locate the direction-sensing voltage terminal and its ground return line (or the equivalent pins on a computer-ready rotor) and connect the wires from J3, pins 1 and 2 respectively, to them. Using its controller, move your rotor to its ccw end. Now type in the following POKE command for the C-64: POKE 56832.0 (for the VIC-20, use POKE 39936.0) and press RETURN. Notice the green LEDs; one should be lit. Adjust R1 (the leftmost pot) back and forth. You should find you can light either green LED, with a neutral spot, or window, showing between them when neither is lit. If adjusting R1 causes both LEDs to light, it may be that you have too much noise (or ac ripple) on the sense line from your rotor. Try putting a 10- to 100-µF cap between the sense line and ground (see fig. 9).
Adjust R1 to the center of the window. If this can’t be done, check for these conditions: U5 (the azimuth D-to-A converter) pin 14 should be at or near zero volts; the input sense line from your rotor should also be near zero volts; correspondingly, U1 (the inverting op amp), pin 1 should be near zero volts or slightly negative and somewhat adjustable by R1. The POKE value mentioned above sets the output of U5 to zero. The ccw end of rotor rotation should be the low-voltage end. R1 sets the op amp to match the output of U5, but with opposite polarity. When these conditions are met, you’re ready to proceed. Move the rotor manually to its cw end, enter POKE 56832,255 (POKE 39936,255 for the VIC-20) and press RETURN. Again, one green LED should light. This time, adjust R2 (the second pot from the left) to the window where neither LED is on. This adjusts the cw end of rotation. If you can’t find a window, check U5 pin 14 for approximately 9.5 volts (the maximum output of the D-to-A converter); U1 pin 1 should be adjustable by R2.
to a negative value matching this voltage. Because there's some interaction between adjustments, it's important to repeat the calibration steps at least twice. You may want to make these adjustments with the rotor positioned several degrees in from the extreme ends to allow some slack for changes due to time and/or temperature.

Now you can connect the wires to the direction switches. Be careful to hook them up correctly and use POKE commands to verify that they rotate in the correct direction. Reverse them if they seem to operate backwards.

To hook up the elevation rotors, use the same procedure as with the azimuth rotor, but connect the
ASTRON POWER SUPPLIES

- **HEAVY DUTY**
- **HIGH QUALITY**
- **RUGGED**
- **RELIABLE**

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-5A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

RM SERIES

19" × 5¼ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5¼ × 19 × 8½</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5¼ × 19 × 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5¼ × 19 × 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

• Separate Volt and Amp Meters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12M</td>
<td>9</td>
<td>12</td>
<td>5¼ × 19 × 8½</td>
<td>16</td>
</tr>
<tr>
<td>RM-35M</td>
<td>25</td>
<td>35</td>
<td>5¼ × 19 × 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50M</td>
<td>37</td>
<td>50</td>
<td>5¼ × 19 × 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 × 4 × 5½ ½</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 × 5 × 6</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 × 6 × 7½</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 × 7 × 8½</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 × 7 × 10½ ½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 × 7 × 11</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 × 8 × 12</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 × 7 × 10½ ½</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 × 9 × 10½ ½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 × 11 × 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 × 13 × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4½ × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 × 9 × 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 × 11 × 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 × 13 × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

• Separate Volt and Amp Meters • Output Voltage adjustable from 2-15 volts • Current limit adjustable from 1.5-amps to Full Load

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>@13.8VDC</td>
<td>@10VDC</td>
<td>@5VDC</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 × 9 × 10½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 × 11 × 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 × 13 × 11</td>
<td>46</td>
</tr>
</tbody>
</table>

• Variable rack mount power supplies

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRM-35M</td>
<td>25</td>
<td>35</td>
<td>5 × 19 × 12½</td>
<td>38</td>
</tr>
<tr>
<td>VRM-50M</td>
<td>37</td>
<td>50</td>
<td>5 × 19 × 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 × 7½ × 10½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 × 7½ × 10½</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 × 8 × 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 × 9 × 10½</td>
<td>16</td>
</tr>
</tbody>
</table>

• Built in speaker

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
fig. 5. AUTOTRAK output circuit: (A) for ac motors (standard configuration); (B) for computer-ready rotators.

Wires to J2 and follow these POKE commands: for down (horizon), use **POKE 57088.0** (POKE 38912.0 for the VIC-20) and for straight up (90 degrees), use **POKE 57088,127** (POKE 38912,127 for the VIC-20). Adjust R3 (the second pot from the right) for zero-degree adjustment and R4 (the rightmost pot) for the 90-degree adjustment. Watch the red LEDs this time.

Quick check

Here's a quick calibration sequence for checking or occasional recalibration.

- Azimuth:
 - **POKE 56832.0** (39936.0 for the VIC-20).

fig. 6. Simple modification allows access to both sides of direction switches.
Adjust R1 for both green LEDs out with rotor at ccw end.

POKE 56832,255 (39936,255 for the VIC-20).

Adjust R2 for both green LEDs out with rotor at cw end.

Elevation:

POKE 57088,0 (38912,0 for the VIC-20).

Adjust R3 for both red LEDs out with rotor at 0 degrees (horizon).

POKE 57088,127 (38912,127 for the VIC-20).

10 REM MANUAL AUTOTRAK PGM BY NEIL HILL, K7NH
20 PRINT "MANUAL AUTOTRAK MODE"
30 PRINT "ENTER AZIMUTH (0 TO 359), PRECEDE WITH B"
40 PRINT "EXAMPLE: 80, B45, B335"
50 PRINT "OR ELEVATION (0 TO 90), PRECEDE BY E"
60 PRINT "EXAMPLE: E0, E45, EB7"
70 PRINT
80 INPUT AD$: AD=VAL(MIDS(AD$,2)): IF LEFT$(AD$,1)="E" THEN 130
90 IF LEFT$(AD$,1)<>'B' THEN PRINT "PRECEDED BY B OR E? TRY AGAIN": GOTO 80
100 IF AD>360 THEN PRINT "AZIMUTH 0 TO 359? TRY AGAIN": GOTO 80
110 AB=(180+AD)*.71: IF AB>255 THEN AB=AB-255
120 POKE 56832,AB: PRINT "OK": GOTO 80
130 IF AD>90 THEN PRINT "ELEVATION 0 TO 90? TRY AGAIN": GOTO 80
140 AE=AD*1.4: POKE 57088,AE: PRINT "OK": GOTO 80

fig. 7. If ac common wire isn't brought out to terminal, modify controller wiring as shown.

fig. 8. Add simple voltage divider if sense line is more than 9 volts.

fig. 9. If both LEDs come on at the same time (noise on sense line), add a 10- to 100-pF capacitor across terminals at rotor controller.

Photo A. Top view, VIC-20 (left) and C-64 (right) AUTOTRAK boards. 15 volt wall mounted transformer is shown at upper right.
A brief but complete program for manual operation of AUTOTRAK using the C-64 is shown in fig. 10.

boards available

Readers who would like to build the AUTOTRAK modules but don’t want to make their own boards may order them from me. For $20 each, I’ll provide high quality glass epoxy double-sided printed circuit boards with plated-through holes and full assembly instructions. I also have assembled and tested boards as well as world map-style tracking programs for the C-64 and VIC-20 (expanded and unexpanded) that work in real time and are designed to operate the AUTOTRAK boards. The SUPER VR85 mentioned earlier is available from RLD Research. For information on any of these items, please write to me at the address given at the beginning of the article.

acknowledgments

I’d particularly like to thank Al Chandler, K6RFK, Vice President of Engineering for AEA, for taking my prototype drawings and concepts and turning them into a practical design. Thanks also to John Morarity, K6QQ, and Dick Bartells, WATZIH, for their encouragement, suggestions, time, and effort in helping with the preparation of this article.

software

The program lines that need to be added to the “real time” section of your program are very simple. You take the desired azimuth, multiply it by 0.71 to make it fit into the range 0 to 255 (as high as you can count using 8 bits) and POKE it to address 56832 (39936 for the VIC-20). It would look like this:

\[
\text{BG = AZIMUTH*0.71} \\
\text{POKE 56832,BG}
\]

Use 39936 instead of 56832 for the VIC-20.

This will work very well for rotors that turn clockwise from north to north again. However, most are set up to travel from south to south, so a 180-degree offset is needed. For a south-to-south rotor, the program lines look like this:

\[
\text{BG = (180+AZIMUTH)*0.71} \\
\text{IF BG > 255 THEN BG = BG - 255} \\
\text{POKE 56832,BG}
\]

Use 39936 instead of 56832 for the VIC-20.

For elevation bearing, simply multiply your elevation by 1.4 and POKE it to 57088 (38912 for the VIC-20). This gives you a number between 0 and 127 for horizon to straight up, and provides enough accuracy and some safety; in case a number as high as 255 were accidently POKEd, your antenna would move only to the far horizon, not through the roof. The program lines should look like this:

\[
\text{EL = ELEVATION*1.4} \\
\text{POKE 57088,EL}
\]

Use 38912 instead of 57088 for the VIC-20.
FEATURES INCLUDE:
- SWITCH SELECTABLE — ELEVATION FROM 0° - 90° AND 0° - 180°
- ELEVATION SCALING X1 OR X2
- NORTHERN OR SOUTHERN HEMISPHERE
- MANUAL OR AUTOMATIC MODE
- BAUD RATE (300 - 2400)
- 100 PAGE DETAILED MANUAL
- CABLE FOR KENPRO'S™ "A" SERIES CONTROLLER

"MTI" IS THE ONLY SMART INTERFACE BOX THAT WORKS WITH SILICONE SOLUTIONS™ SOFTWARE.
"MTI" OFFERS AUTOMATIC TRACKING OF ANY ORBITING BODY.
"MTI" KEEPS ANTENNAS AIMED CORRECTLY AT ALL TIMES.
"MTI" COMES WITH A ONE YEAR WARRANTY FROM MIRAGE/KLM.
"MTI" OFFERS ONE YEAR SOFTWARE SUPPORT TO REGISTERED OWNERS.
"MTI" IS AVAILABLE FROM MIRAGE/KLM ONLY. CALL FOR MORE DETAILS.

CALL YOUR DEALER TO ORDER ONE NOW!

CJ2M
ELECTRICAL:
BANDWIDTH 144-148 MHz
GAIN 1.8 dBi
VSWR 1.5:1
FEED IMP 50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT 61"
WEIGHT 2 lbs.
MAST 1½" o.d.

CJ220
ELECTRICAL:
BANDWIDTH 220-224 MHz
GAIN 1.8 dBi
VSWR 1.5:1
FEED IMP 50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT 40"
WEIGHT 2 lbs.
MAST 1½" o.d.

CJ440
ELECTRICAL:
BANDWIDTH 420-470 MHz
GAIN 1.8 dBi
VSWR 1.5:1
FEED IMP 50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT 19½"
WEIGHT 1 lb
MAST 1½" o.d.
Like many Amateurs, I've been spending more time at my computer and less time on the hf or VHF bands. Because packet radio looked like a way to combine both interests and enjoy both activities, I recently purchased a used Heathkit model HD-4040 TNC and decided to try packet radio.

There are times when I found myself missing transmissions, however - or on other occasions, having to wait for activity to pick up. One solution to these problems, I concluded, would be to capture the passing packets onto a disk file and read or print the contents later. But I had no need to fill up floppy disks with transient files; all I wanted was a way to collect and read packets monitored by the computer when I couldn't be there.

A better way, I found, is to divide my random access memory (RAM) into two sections: a storage area (called a RAM drive) and a free section that remains available to the terminal program. I send packets to the RAM drive for storage and read them periodically. One recent 90-minute collection session resulted in the creation of a 20K file for my review.

My frequency-synthesized 2-meter transceiver is connected to the TNC by two cables: one provides audio input and the other enables the microphone connection. The terminal unit contains an internal program (AX.25 protocol) to run the packet receive and packet transmit features for the system. A third cable runs from the TNC to my computer's RS-232 connector (the serial port); the computer acts as a terminal for the packet system.

The computer itself requires a terminal program to permit the computer to "talk" to the TNC; I selected ProComm, a "shareware" program with outstanding features. ProComm has many functions, including one that writes information to a designated file on disk or in RAM for future use.

A RAM drive disappears when the power is shut off; this is not a concern because I use the RAM drive only for capturing information when the system is running and I can't be there. If I need to save a file, it's easy enough to copy the data to one of the regular disk drives.

My RAM drive system is running on a Zenith computer, using MS-DOS version 3.2. However, the same basic approach should work on a wide range of computers using DOS 2.0 or above. Some older versions of MS-DOS may not have a RAM drive file; if yours doesn’t, you should be able to obtain one from any users' group.

By Thomas M. Hart, AD1B, 54 Hermaine Avenue, Dedham, Massachusetts 02026

fig. 1. RAM is volatile memory designed to hold programs during execution; a RAM disk is an allocation of memory that simulates a disk drive. Disk drives A> and B> are hardware; drive C> is in software. The operating speed of a RAM drive is much faster than hardware devices like A> and B>, however, when power is turned off, all files in a RAM drive are lost.
RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5" and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5" and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SYNTHESIZED SIGNAL GENERATOR

Made in USA

Model: SG-100F
Frequency Range: 1 kHz to 100 MHz
Accuracy: ±1 part per 10 million
Output Power: 1 mW

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720

KENNEDY ASSOCIATES
Stocking all major lines. San Antonio's Ham Store. Great Prices—Great Service. Factory authorized sales and service. Hours: M-F 10-6, SAT 9-3

KENWOOD

Yaesu

ICOM

Amateur Radio Division
5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Dealer Inquiries Invited
In Australia contact ATN Antennas, Bishops, Victoria

Vanguard 196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 478-0591

Kennedy Associates
5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

Black Dacron® Polyester Antenna Rope

Synthetic Textiles Inc.
2472 Eastman Ave., Building 21
Ventura, California 93003
Phone: (805) 658-7903
customizing the RAM

The steps I took in customizing a RAM drive are described below; you should be able to follow the same approach on your own system.

My ProComm working disk is self-booting. An AUTOEXEC.BAT file starts the program. A CONFIG.-SYS file on the disk consists of a single line:

```
DEVICE = VDISK.SYS.
```

This cryptic statement sets up the RAM drive when the computer is booted.

The following statement appears when my computer starts up:

```
Microsoft RAMDrive version 3.2 VIRTUAL
```

Disk c:

- Disk size: 256 KB
- Sector size: 256 bytes
- Allocation unit: 1 sectors
- Directory entries: 64

If you've never prepared a CONFIG.SYS file, the process is simple; just place the terminal program in the default disk drive. When the DOS prompt appears on the screen, enter the following commands:

```
A>COPY CON:CONFIG.SYS (RETURN)
DEVICE = VDISK 256 256 (RETURN)
F - 6 (FUNCTION KEY 6)
```

These simple steps will create a new file on the terminal emulation disk. If you want to check the file, do the following:

```
A>TYPE CONFIG.SYS (RETURN)
```

The contents of the file will be printed on the screen and should state:

```
DEVICE = VDISK.SYS 256 256
```

Copy the file VDISK.SYS from your DOS disk (probably on disk 2) to the terminal disk. This is the RAM disk program, which is installed by the newly created CONFIG.SYS file when the computer is booted.

With the terminal program still in the default drive, reboot the system. This will start the program normally and set up the RAM drive in the process.

When the packet system is running, use the command that your program requires to write information to a file (i.e., the file download command). In ProComm, the commands are:

```
PAGE-DOWN (start download)
ASCII FORMAT (create text file)
ENTER FILE NAME (I use C:\P)
```

These few steps will send all packets that the system monitors off to a single file (P) on the RAM drive (C:\). You'll find the system very convenient for passive packet monitoring, and there'll be no reason to miss any of the action in your area.

ham radio

America's Weekly Guide to Satellite TV

The best in satellite programming! Featuring:

- Over 120 Channels listed
- Weekly, Updated Listings
- Magazine Format
- Complete Alphabetical Movie Listings
- Sports Specials
- Prime Time Specials
- Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

*NC Residents must add 5% Sales Tax

Subscribe Today!

call toll free 1-800-234-0021
Visa® and MasterCard® accepted
OnSat PO Box 2347 Shelby, NC 28151-2347

STV Guide

The new STV Guide contains valuable information on zoning regulations, scrambling, plus technical tips for installing or updating a satellite system—and now a precise monthly guide to satellite TV with the latest program listings for over 90 channels!

- Only $48.00 per year (12 monthly issues)
- $2.00 for a sample copy

*NC Residents must add 5% sales tax

Subscribe Today!

call toll free 1-800-234-0021
Visa® and MasterCard® accepted
STV Guide PO Box 2384 Shelby, NC 28151-2384
TELEWAVE ANTENNAS
CABLES
BEFORE YOU BUY YOUR NEXT ANTENNA
OR CABLE.....DIAL:
800-331-3396

CELLFLEX -1 5/8" - 1 1/4" - 7/8" - 1/2" *
BELDEN RG-213 & RG-214 Type
CONNECTORS AVAILABLE

* ANTENNAS *
COLLINEAR - YAGI - DIPOLE
We are major suppliers of: Cavities, Duplexers and Antenna Combining Systems

TELEWAVE, INC.
1156 TERRA BELLA, MOUNTAIN VIEW, CALIFORNIA 94043
(415) 968-4400 • TVX 910-3796955 • FAX (415) 960-1741
CALIFORNIA CALLERS DIAL (415) 968-4400

CALL LONG DISTANCE ON YOUR HANDHELD

35 WATT and 75 WATT 2-METER AMPLIFIERS

The MODEL 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate @8 or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, TR2600, IC-2AT, Yaesu, Sante, and Fundek. Only 300 mA input will deliver 5 watts out. 3 watts in will deliver 35 watts out. Maximum input level is 5 watts.

We specialize in carrying a complete parts list for the 148 and 450 watt TAPR amplifiers as well as the MOTOROLA Bulletin 27A, AN-757, AN-762, and the CABB Hand Book. We also carry a line of ATV equipment for 30 and 33 MHz. For detailed information and prices, call or write for our free catalog.

MODEL 335A (Standard) $139.00
MODEL 335 (UL) Kit $119.00

PACKET RADIO

“Your can’t Lose when you buy an ORIGINAL”

Since you can’t buy a TAPR TNC 2 kit anymore, we feel our licensed copy of their design is the next best thing. Our TNC II is an EXACT copy of TAPR’s and is ready to work. Includes only premium components like GOLD dual - beam IC sockets and a battery socket. You’ll be assured that our Quality, Reliability, Style is like no other.

- Standard RS-232 computer interface
- 1200 baud FSK modem w/ adapter
- TAPR documentation - EASY hookup
- 12 volt powered, CMOS available

ASSEMBLED 699

Includes the following EXTRAS

- 48 hour burn-in, 1 year “replacement” guarantee
- FREE SHIPPING (UPS BROWN to 48 USA States)
- Complete Kit 135
- Bare Board and Manuals 36
- OPTIONS: 32 K RAM adder 9
- ALL CMOS Add 9

DON’T FORGET - WE ALSO SUPPLY:

IBM PC-XT* CLONES FROM ... 579

(Requires only a monitor and software)

California Packet Concepts
P.O. Box 952
Coalinga, CA 93210-1247
209-935-3846
Call M-F. 8am to 10pm PST (Collect for orders)
Tele 6503857918 (via Western Union Interface)
California addresses must add 6%
IBM is a registered trademark of
International Business Machines
Prices subject to change without notice
design an amplifier
around the 3CX1200A7

Try this logical approach
for correct operation

The 3CX1200A7 high-ß triode was introduced about three years ago by the Salt Lake City division of Varian/EIMAC as an extension of a series of zero-bias tubes of the kilowatt variety. Used predominantly in grounded-grid applications, the '1200 owes its electronic design to the 3-1000Z, which is its direct ancestor. It is a new type, however: air-cooled, possessing slightly different electrical characteristics, but offering increased plate dissipation. Its most notable differences are the anode construction and the resulting increased inter-electrode capacitances. Also, its maximum rated plate voltage is 500 volts less than that of the 3-1000Z.

I bought one of these tubes during the initial EIMAC sales promotion. What follows is a summary of the results of my efforts to generate, for my personal use, design methods for the 3CX1200, as well as for other tubes. Approximately two years of intermittent work were dedicated to this project.

In addition to the published tube characteristics, several aids are available to help designers; some of these were used in the preparation of this work.1,2 The methods and numbers were transformed, drastically in some cases, without affecting either their content or their applicability. In their places are a few BASIC programs and several figures that greatly reduce the amount of effort necessary to complete a design. Graphs are presented for those without access to a personal computer.

how do we start?

Initially, the following five parameters must be determined: drive impedance and drive power, dc plate current and power input, PEP output, plate dissipation, and plate load resistance. Later, we'll determine air cooling requirements, input matching circuits, and output matching circuits.

Figure 1 shows a stylized version of the constant-current curves supplied by the manufacturer for design purposes. Representative of all curves of the type, it provides information we can use to make very good estimates of operating parameters. Reference 2 provides the standard expressions for them. For "two-tone" conditions, the most important approximations are:

dc plate current, \(I_\text{h} = \frac{2i_p}{\pi^2} \), \hspace{1cm} (1)

plate input (watts), \(P_{\text{in}} = \frac{2i_pE_p}{\pi^2} \), \hspace{1cm} (2)

average output (watts), \(P_\alpha = \frac{i_pE_p}{8} \), \hspace{1cm} (3)

PEP output (watts), \(P_\text{PEP} = \frac{i_pE_p}{4} \), \hspace{1cm} (4)

plate efficiency, \(E_{\text{ff}} = \left(\frac{E_p}{E_b}\right)^2(\pi/4)^2 \). \hspace{1cm} (5)

Two-tone calculations, which appear throughout this article, are more representative — though not precisely — of single-sideband voice operating conditions. In any event, the PEP output is the same for both two-tone and single-tone conditions.

Figure 1 shows that the points \(Q \) and \(Q' \) are at opposite ends of a load line. \(Q \) represents the quiescent condition of no drive. Therefore the plate voltage is exactly the supply voltage, \(E_b \). The value of the quiescent plate current is also determined. At the other end of the load line is the point \(Q' \), representing the maximum instantaneous plate current \(i_p \), the minimum instantaneous plate voltage \(E_{\text{min}} \), and the peak grid voltage. The positions of these points are arbitrary; the plate supply voltage is what you have available, and the peak plate current \(i_p \) is your choice. The latter affects the plate load resistance, drive power, drive impedance, PEP output, and virtually everything else of consequence.

The dc plate current may be estimated by the use of eqn. 1. Equations 2 through 5 will yield other essential numbers. The grid current, however, isn't usually available from the curves. It can be calculated by using the EIMAC Tube Performance Computer3 or by calculating the transfer curve up the load line and then integrating the grid current.

By W. J. Byron, W7DHD, P.O. Box 2789, Sedona, Arizona 86336-2789
Neither the transfer curve nor the grid current calculations, which were done on a personal computer, are obvious in the text. I've tried to produce a simple design method that will assure safe operation of this expensive tube if these voltages, currents, and drive power requirements (and restrictions) are met. In the preparation of the graphs and programs included, I first performed an integration up the worst-case load-line. As a result, I've limited the minimum plate voltage to 500 volts; because this limitation is essential to the protection of the grid, it must remain. Thus the designs developed from this article will always yield less though not much less than the absolute maximum power available from the 3CX1200A7. It's still possible to achieve considerably more than the maximum legal Amateur power output with relatively low plate-supply voltages, yet operate in a safe, conservative manner.

Figure 2 shows a BASIC program for solving eqns. 1 through 5, as well as others. It contains two loops, one of which is nested. The outer loop steps the plate supply voltage from 4000 volts to 2500 in steps of -500 volts. The inner loop steps the max \(i_p \) from 1.0 to 2.5 amperes in steps of 100 milliamperes. Thus, as shown, it will produce four tables, each with 16 lines. One table (or "panel") is shown in fig. 3. It was printed singly by changing line 10 to read, "FOR EB = 4000 TO 4000". Great latitude is allowed in the loop-control (FOR-NEXT) statements. Plate supply voltage may be stepped in units of -500 (as shown), -250, or even -100 volts. Each step will produce one panel. The plate instantaneous maximum current may be stepped in units as low as 1 milliampere. Adjust them according to your needs, but keep the plate voltage at 4000 volts or less, and keep \(i_p \) equal to or less than 2.5 amperes. Leave \(E_{min} \) at 500 volts.

The reasons for the restrictions are two-fold. First, in order to keep these BASIC programs simple, all programming "traps" were omitted. Steps that would prohibit plate voltages over 4000, and plate currents of over 2.5 amperes, for example, would only complicate the programs; while they're necessary in other circumstances, they probably aren't appropriate here. The other is that the maximum values are those which have been established by the work described earlier.

By selecting an appropriate plate supply voltage, the program will produce 16 lines that list all data consistent with that voltage. One hundred watts drive at a plate voltage of 4000 predicts a PEP output of approximately 1800 watts — see fig. 3. The data for exactly 100 watts drive fall between the \(i_p \) values of 2.00 and 2.10 amperes. If you want a more precise answer than
fig. 2. BASIC program solves eqns. 1 through 5, plus others, producing tables of tube operating parameters.

<table>
<thead>
<tr>
<th>ip</th>
<th>Zi</th>
<th>Drive ep</th>
<th>Ib</th>
<th>DC in</th>
<th>PEP</th>
<th>Pi.Dis.</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>120.3</td>
<td>36.4</td>
<td>3500</td>
<td>0.230</td>
<td>810.6</td>
<td>899.9</td>
</tr>
<tr>
<td>1</td>
<td>115.1</td>
<td>41.42</td>
<td>3500</td>
<td>0.243</td>
<td>972.7</td>
<td>1070.7</td>
<td>447.7</td>
</tr>
<tr>
<td>1</td>
<td>110.9</td>
<td>46.84</td>
<td>3500</td>
<td>0.263</td>
<td>1053.7</td>
<td>1160.9</td>
<td>485.0</td>
</tr>
<tr>
<td>1</td>
<td>107.5</td>
<td>52.65</td>
<td>3500</td>
<td>0.284</td>
<td>1194.8</td>
<td>1251.3</td>
<td>522.3</td>
</tr>
<tr>
<td>1</td>
<td>104.7</td>
<td>58.66</td>
<td>3500</td>
<td>0.304</td>
<td>1215.9</td>
<td>1341.9</td>
<td>559.6</td>
</tr>
<tr>
<td>1</td>
<td>102.4</td>
<td>65.50</td>
<td>3500</td>
<td>0.324</td>
<td>1296.9</td>
<td>1432.8</td>
<td>596.9</td>
</tr>
<tr>
<td>1</td>
<td>100.4</td>
<td>72.54</td>
<td>3500</td>
<td>0.344</td>
<td>1378.0</td>
<td>1528.3</td>
<td>634.2</td>
</tr>
<tr>
<td>1</td>
<td>98.7</td>
<td>79.97</td>
<td>3500</td>
<td>0.365</td>
<td>1459.0</td>
<td>1615.0</td>
<td>671.5</td>
</tr>
<tr>
<td>1</td>
<td>97.3</td>
<td>87.80</td>
<td>3500</td>
<td>0.385</td>
<td>1540.1</td>
<td>1706.4</td>
<td>706.6</td>
</tr>
<tr>
<td>1</td>
<td>96.0</td>
<td>95.00</td>
<td>3500</td>
<td>0.405</td>
<td>1621.1</td>
<td>1798.0</td>
<td>746.1</td>
</tr>
<tr>
<td>2</td>
<td>114.5</td>
<td>113.45</td>
<td>3500</td>
<td>0.446</td>
<td>1783.3</td>
<td>1981.7</td>
<td>820.8</td>
</tr>
<tr>
<td>2</td>
<td>127.7</td>
<td>122.66</td>
<td>3500</td>
<td>0.466</td>
<td>1864.3</td>
<td>2073.6</td>
<td>858.1</td>
</tr>
<tr>
<td>2</td>
<td>118.6</td>
<td>132.14</td>
<td>3500</td>
<td>0.486</td>
<td>1944.5</td>
<td>2166.1</td>
<td>895.4</td>
</tr>
<tr>
<td>2</td>
<td>106.8</td>
<td>141.86</td>
<td>3500</td>
<td>0.507</td>
<td>2026.4</td>
<td>2258.4</td>
<td>932.7</td>
</tr>
</tbody>
</table>

Note: Overall Plate Efficiency is 53.97 per cent. Drive feed-through is added to PEP out.

fig. 3. Example of the output of the BASIC program of fig. 2.

```
5 REM SAVED AS 1200B
10 FOR EB = 4000 TO 3500 STEP 500
20 EM = 500
30 LPRINT "3CX1200A7 TWO-TONE; EB = 4000 Volts"
40 LPRINT "GRIDED GRID"
50 LPRINT "Emin = 500 Volts"
60 LPRINT "(Fixed Bias = 16 Volts)"
70 IF EB > 3500 THEN LPRINT "(Fixed Bias = 16 Volts)"
80 IF EB > 3800 AND EB < 3500 THEN LPRINT "(Fixed Bias = 8.2 Volts)"
90 IF EB > 3800 AND EB < 3500 THEN LPRINT "(Zero Bias)"
100 LPRINT "---------
110 LPRINT "ip Zi Drive ep Ip DC in PEP Pi.Dis. RL"
120 LPRINT "Amps Ohms Volts Watts Volts Watts Watts Watts Ohms"
130 FOR IP = 1 TO 2.5 STEP 1
140 FOR IP = 1 TO 2.5 STEP 1
150 IF EB > 3500 THEN EM = 51.4 = 4.1666*IP+2*IP^2-3.333*IP^3
160 IF EB > 3500 AND EB < 3500 THEN EM = 43.2 = 4.1666*IP+2*IP^2-3.333*IP^3
170 IF EB > 3800 AND EB < 3500 THEN EM = 43.2 = 4.1666*IP+2*IP^2-3.333*IP^3
180 IF EB > 3800 AND EB < 3500 THEN EM = 43.2 = 4.1666*IP+2*IP^2-3.333*IP^3
190 IF EB > 3500 THEN EM = 51.4 = 4.1666*IP+2*IP^2-3.333*IP^3
200 EM = 2*IP/IP^2
210 EP = EB-EM
220 PEP = (EP-EP/4)*PFT
250 ZI = 2*EP/IP
260 RL = 2*EP/IP
270 PD = 2-ZI/2
280 WI = ZI/EB
290 DIS = (1-ZI*(ZI/EB))
300 A$ = "Amper Monitor/Printer, 150 Watt P/S, Star NP-10, Monitor/Printer Card, AT/XT Keyboard Warranty, 640 Ram, Floppy Cont., 20 meg H/D."
310 LPRINT USING A$;IP;ZI;PD;EP;IB;WI;PEP;DIS;RL
320 NEXT IP
330 LPRINT "---------
340 LPRINT "Note: Overall Plate Efficiency is 53.97 per cent. Drive feed-through is added to PEP out."
360 LPRINT "---------
400 LPRINT: LPRINT
410 NEXT EB
420 END

```

Statistics Special I

Complete System

- Incl. Monitor & Printer
- 4.77-8 mhz
- 360K DD
- Monitor/Printer Card
- AT/XT Keyboard Warranty
- Samsung TTL Amber Monitor
- "See us at the Tropical Hamboree February 6 & 7, 1988."

WORLD DATA ENTERPRISES

- 1-800-634-3547
- (305) 551-4023
- P.O. BOX 652737 MIAMI, FL 33265
- *PLUS S/H, Assembled In USA*

Statistics Special II

Complete System

- Incl. Monitor & Printer
- 4.77-8 mhz
- 2 - 360K DD
- Monitor/Printer Card
- AT/XT Keyboard Warranty
- Samsung TTL Amber Monitor
- Floppy Cont.
- "See us at the Tropical Hamboree February 6 & 7, 1988."

WORLD DATA ENTERPRISES

- 1-800-634-3547
- (305) 551-4023
- P.O. BOX 652737 MIAMI, FL 33265
- *PLUS S/H, Assembled In USA*
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT P.O. Box 27 Washington, DC 20044 301 589-6062

these, change line 140 to read, “FOR ip = 2.0 TO 2.1 Step .01”. Then you’ll get one panel with eleven lines, representing conditions for drive powers from 96.0 to 104.56 watts. Remember that the supply voltage is a “loaded” value; that is, the plate voltage under load. Typically, it will be between 5 and 10 per cent below the no-load value.

A prospective builder probably has only a few factors under control at the outset of a design. He has the tube, an exciter, a power transformer or a power supply, and maybe a surplus centrifugal blower. He therefore has only two pertinent inputs: plate-supply voltage and drive power. It’s possible to rearrange the program to accommodate only those two inputs.

While the program shown in fig. 2 can do all that’s necessary, it was modified so that those two factors are the only inputs; fig. 4 lists that program. First it requests “PLATE SUPPLY VOLTAGE,” and “MAX DRIVE POWER.” It then begins with an ip of 1 ampere and incrementally steps the value, in this case by 5 milliamperes, and calculates Z1 and PD (drive impedance and drive power). It then compares the calculated PD until it’s in a “window” of A ± 0.5 watts width, where A is the exciter drive power. When this is reached, it then performs all the other calculations and produces one panel with one line — the only one that meets the requirements of the inputs. Though it doesn’t print a hard copy, one can be obtained by using the screen dump facility (mine is simply SHIFT/PRINT.) An example of the program output is shown in fig. 5.

At this point it’s very important to emphasize that although modern exciters are of the “100-watt PEP minimum” variety, many — and perhaps most — will exceed 100 watts PEP output. The programs above require that the designer know the characteristics of the exciter. It isn’t good design if one enters 100 watts for the PEP drive power, when in reality it might be 120 watts. Almost all exciters will deliver more PEP output under voice conditions than they will under “key-down” on CW. The leading cause of power-grid tube destruction is excessive grid dissipation. The most important single instrument in an amplifier is the grid-current meter.

completing the design

The major difference between the ‘1200 and the 3-1000Z is in the cooling, another factor not yet faced. If you have a surplus blower in the shack, it’s essential to know beforehand if it will be sufficient. The best way to determine this is to test the blower in a separate measurement.

Find a cardboard carton large enough to hold the tube, and sturdy enough to allow the blower to be taped onto the side. Cut a circular hole large enough
Radio Shack Parts Place

HOLIDAY VALUES AT A STORE NEAR YOU

Special Order Hotline
No Postal or Shipping Charge
• Fast Service • No Minimum
Your Radio Shack store manager can special order parts and accessories not a part of our regular stock. These items include linear and digital ICs, microprocessors, diodes, semiconductors, tubes, phone style, crystals and more. We'll call you when it arrives—in about a week.

Reference Guide and How-To Books
NEW!
MC1488 Line Driver. For sending peripheral data, 14-pin DIP. #276-2520... 1.29
MC488 RS-232 Quad Line Receiver. Use with above, 14-pin DIP.
CMOS & Bipolar Timers
TLC555. Low-power CMOS. Same pin-out as 555 but operates up to 2 MHz. 8-pin DIP.
Bipolar Resettable Timers.

FM Receiver on a Chip
NEW!
No IF Transformers Needed
TD47000. Combines IF mixer, IF and demodulator stages in one monolithic IC. Just what you need to build a small, inexpensive mono FM band receiver, repeater monitor or public service band monitor with a minimum of external components. Frequency-locked-loop system with 70 KHz IF. Includes pin-out and application notes. #276-1304... 5.95

Soldering Tools/Supplies

Dual-Track Split Supply

Bench LCD Multimeter

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zener's and more!

Choice of Independent Or Slave Operation

Manual/Autoranging • Stores Min/Max Values
The 31-segment analog bar graph displays input peaks and trends. Transistor checker, diode checker, memory function and buzzer continue checker. Measures to 1000 VDC, 750 VAC, 10 AC/DC amps, 30 megohms resistance, Impedance. 10 megohms.

Tools/Supplies

(18)

(19)

(20)

(21)

(18) Ten-Piece Electronic Tool Set. #64-2801... 14.95

69.95

99.95

Choice of Independent Or Slave Operation

Low As $15 Per Month

Manual/Autoranging • Stores Min/Max Values
The 31-segment analog bar graph displays input peaks and trends. Transistor checker, diode checker, memory function and buzzer continue checker. Measures to 1000 VDC, 750 VAC, 10 AC/DC amps, 30 megohms resistance, Impedance. 10 megohms.

Dual-Track Split Supply

Bench LCD Multimeter

Over 1000 items in stock: Binding posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zener's and more!

Variable 0-15 VDC or series up to 30 VDC. Delivers rock-stable DC at precisely the voltages you need. In tracking mode, a single control lets you adjust both voltages simultaneously independent mode to adjust voltages separately. Voltmeter. UL listed AC.

Radio Shack
A DIVISION OF TANDY CORPORATION

229

December 1987
I FT-727R
FT-726R
FT-23
FT-290R
FT.757
TS-9, IOSAT
TM--3SJOA
TH3lBT
TH-205
TM-2550A
TM-2530A
TM-2570A
TM-250A FM Mobile 45w
TM-250A FM Mobile 70w
TH-205 AT. NEWS 2M HT
TH-215A. 2M HT Has It All
TH21BT 2M HT
TH31BT 220 HT
TM--3530A FM 220 MHz 25w

IC-735
List June
IC-761 New Top of Line $249.00 Call $999.00
IC-735 Gen. Cvg. Xcvr 819.95 Call $999.00
IC-751A Gen. Cvg. Xcvr 1649.00 Call $999.00
R7000 Gen. Cvg. Rcvr. 1099.00 Call $999.00
R71A Gen. Cvg. Rcvr. 949.00 Call $999.00
IC-28A/H FM Mobile 25w/45w 429.459 Call $999.00
IC-3TA FM Mobile 25w 499.00 Call $999.00
IC-900 Super Multi-Band Mobile 589.00 Call $999.00
IC-04AT UHF HT 449.00 Call $999.00
IC-48A UHF 45w 459.00 Call $999.00
IC-38A FM Mobile 25w 459.00 Call $999.00
IC-02AT FM HT 399.00 Call $999.00
IC-a2AT Micro HT 329.00 Call $999.00

KENWOOD

TS-440S/AT
TS-940SAT Gen. Cvg. Xcvr. $2249.95 Call $819.95
TS-430S Gen. Cvg. Xcvr. 819.95 Call $819.95
TS-711A All Mode Base 25w 899.95 Call $819.95
TR751A Full Mode Mobile 25w 599.95 Call $819.95
TS-440S/AT Gen. Cvg. Xcvr. 1199.95 Call $819.95
TM-2530A FM Mobile 25w 429.95 Call $819.95
TM-2550A FM Mobile 45w 469.95 Call $819.95
TM-2570A FM Mobile 70w 559.95 Call $819.95
TH-205 AT. NEWS 2M HT 259.95 Call $819.95
TH-215A. 2M HT Has It All 349.95 Call $819.95
TH21BT 2M HT 259.95 Call $819.95
TH31BT 220 HT 269.95 Call $819.95
TM--3530A FM 220 MHz 25w 449.95 Call $819.95

YAESU

FT 757GX
FT-757 GX Gen. Cvg. Xcvr. $999.00 Call $1895.00
FT-767 4 Band New 1895.00 Call $999.00
FT-211 RH 999.00 Call $999.00
FT-290 All Mode Portable 579.95 Call $999.00
FT-23 FT/T Mini HT 299.95 Call $999.00
FT-209RH RM Handheld 259.95 Call $999.00
FT-726R All Mode Xcvr. 1095.95 Call $999.00
FT-727R 2M/70CM HT 479.95 Call $999.00
FT2700RH 2M/70CM 25w 599.95 Call $999.00

JUN'S

3919 Sepulveda Blvd
Culver City, CA 90230
213-390-8003

fig. 4. BASIC program modified to accept two inputs, plate supply voltage, and PEP drive power.

RUN
PLATE SUPPLY VOLTAGE 3250
MAX DRIVE PEP 710

3CX1200A7 TWO-TONE; ED = 3250 Volts
GROUNDED GRID
(Fixed Bias=8.2 Volts)

1p Zi Drive ap lb DC in PEP P Dis. RL
Amps Watts Volts Watts Watts Ohms

2.255 86.3 109.69 2750 0.457 1485.1 1605.2 710.0 2439

Note: Overall Plate Efficiency is 52.19 per cent.
Drive feed-through is added to PEP out.

fig. 5. Example of the output of fig. 4.

NEW

ELIMINATES RADIO FREQUENCY INTERFERENCE

$15.00 per 4
+$2 for shipping

EFFECTS OF INTERFERENCE IN TV sets, Radios, Hi-Fi, PA systems, Telephones, VCRs, Test equipment, Burglar and Fire alarms, Modems, Micros, Computers DUE TO Domestic appliances, Radio Transmitters (CB, Ham Radio), Commercial, Industrial machinery, Cordless Telephones, Computers, Switching Systems.

EASY TO USE: Fits onto small, large and rugged cables. No need to rewire connectors, too easy. Multiple ferrite core design fits up to 8GHz coax cable.

IMPROVES "COMMON MODE" filters current induced in the ground shielded cable and ground wire! Special ferrite material effective 0.5 - 260 MHz.

DOES NOT VOID EQUIPMENT WARRANTY.

Manufactured and available in Canada from:

38 December 1987
The solution is based on holding the tube anode; but tight enough to hold the tube by friction alone. With masking tape, tape the tube in place. Now do the same for the blower. Tape all seams so that the system is tight.

Make a water manometer using Tygon tubing of at least 3/16 inch ID. (Be sure to use tubing large enough to prevent a meniscus problem.) Push one end of the tubing into the box and tape it in place. Add one drop of food coloring for visibility, and one drop of liquid detergent to the water to aid surface-wetting. Then start the blower. The vertical difference between the two levels in the manometer is the differential pressure required is a function of the drive impedance of 86.3 ohms, a PEP output of 1605 watts, and a plate load resistance of 2439 ohms (round to 2440). The plate supply voltage of 3250. Now we can determine the input and output matching circuits.

The hypothetical design in fig. 5 gives a cathode drive impedance of 86.3 ohms, a PEP output of 1605 watts, and a plate load resistance of 2439 ohms (round to 2440). These are for a drive power of 110 watts and a plate supply voltage of 3250. Now we can design the input and output matching circuits.

cathode drive circuit

The calculations were all done for grounded-grid
operation. The computed drive impedance at the cathode is, for the example, 86.3 ohms. Since the 3CX1200 is a filament-type tube, it requires a filament choke, and a hefty one at that, because the filament current is 21 amperes. The rule of thumb for such devices is that the reactance of the choke (a bifilar filament choke) must be no smaller than 5 • 83.8 ohms. Assume about +j500 ohms at the lowest frequency contemplated; 86.3 ohms in parallel with +j500 ohms equals 83.8 + j14.5 ohms, which is easily compensated by a Pi-section. The problem desolves to the design of an impedance matching circuit that converts 50 ohms to 84 ohms. I recommend a Pi-section with a Q, of about 3.5. The reactance values appear in fig. 10.

output matching

The plate load resistance from the program is 2440 ohms. There are many ways to match that to 50 ohms. The example worked out here will be the PI-L, which is just what it implies: a Pi-section followed by an L-section. The Pi converts the resistance (or impedance) to an intermediate value, and the L further converts it to the desired 50-ohm load. The intermediate impedance (the junction between the L and the Pi) is, by convention, between 10 and 15 percent of the input impedance. A typical value would be 300 ohms. The attractiveness of the PI-L is in that it has a series inductance in the output side, and provides greater harmonic attenuation than the usual PI-section. Methods for designing both Pi- and L-sections are available from many sources. The reactance values for the PI-L also appear in fig. 10.

Harmonic attenuation, however, is greatly dependent on the Q of the tank circuit, no matter what type is used. It should be somewhere between 15 and 20 for the lower frequencies, but because of distributed circuit capacitances it may be forced above 20 at, say, 29 MHz. The reason is that the component capacities to ground (switches, busses, and coils) plus the out-

![fig. 7. Amplifier parameters for plate supply voltages from 2.5 to 3.0 kV.](image)

![fig. 8. Amplifier parameters for plate supply voltages from 3.0 to 3.5 kV.](image)
are correct?

tions of the input and output capacitors. Which ones done require that the amplifier be operated according to design. There is only one value each for it's possible to "load" the amplifier with many posi-
tremely valuable. For example: the design is based on
is nearly finished, I find that an additional step is ex-
tute the major part of the total input capacitance of the tank circuit. To give the tuning capacitor more con-
ting capacitors. Which ones

<table>
<thead>
<tr>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>fig. 9. Amplifier parameters for plate supply voltages from 3.5 to 4.0 kV.</td>
</tr>
</tbody>
</table>

put capacitance of the tube itself frequently consti-
tute the major part of the total input capacitance of the tank circuit. To give the tuning capacitor more control over resonance, a higher Q usually is selected. Try a Q of 25 as a first guess for the 10-meter band.

When the design is completed and the construction is nearly finished, I find that an additional step is extremely valuable. For example: the design is based on a Q of 15 and a load resistance of 2440 ohms. But when a load (near 50 ohms) is placed on the output, it's possible to "load" the amplifier with many positions of the input and output capacitors. Which ones are correct?

The programs developed and the background work done require that the amplifier be operated according to design. There is only one value each for C_1 and C_2 in the PI-L tank that will assure that the plate is looking at 2440 ohms. There is an easy way — and a rela-
IN TERMEOIATE $= 300$ OHMS

looking at 2440 ohms. There is an easy way — and a relatively precise one — to determine beforehand what these are.

A method I have used for years requires only a noise bridge and some carbon (non-inductive) resistors. Series-parallel combinations are perfectly acceptable. First, balance the noise bridge with a 50-ohm resistor. Then, without touching either the R or X knobs (leave the bridge at the balance position), connect the "Unknown" port to the output of the amplifier. Temporarily connect a 2440-ohm resistance from the plate to ground. Adjust C_1 and C_2 until the bridge is again balanced. Those are the correct settings for the amplifier during operation. Mark their position on the dials or the panel. Just so that there's no misunderstanding, leave all amplifier voltages off during this test! The same methods are very useful in adjusting baluns, transmission-line transformers, and transmatches — which I recommend using no matter what is on the other side of the transmatch. If the amplifier is looking at something other than 50 ohms, the measurements, regardless of how carefully they've been made, mean very little.

conclusion

The programs and methods presented here are simplified versions of those I've developed over the past two years or so, but which are too complicated to be presented in full. The 3CX1200A7 is a new tube type that is of interest to Amateurs, and the simpler programs offer a way to help interested hams to do some design work of their own. I've also described some techniques (fan-testing and the pre-tuning of an amplifier) which should be useful in other projects. I built an amplifier about six years ago that used a variometer-type link coupling. If it weren't for the special use of a noise bridge, I would never have been able to determine for certain where the proper load conditions were. I hope these hints and techniques will be useful to you, too.

references

2. "Care and Feeding of Power Grid Tubes," Laboratory Staff, Varian EIMAC, 1678 Pioneer Road, Salt Lake City, Utah 84104.
3. "Tube Performance Computer (or their specific brochure title)." Bulletin No. 5, Varian EIMAC, 301 Industrial Way, San Carlos, California 94070.
NEW PACKET TOYS FROM PAC-COMM
THREE NEW PACKET CONTROLLERS - AVAILABLE NOW!

TINY-2
INTRODUCTORY PRICE $109.95
READY TO USE - NOT A KIT $119.95 AFTER JANUARY FIRST

*USES TNC-2 EPROMS INCLUDING NET/ROM. FIRMWARE VERSION 1.1.5 PROVIDED
*32K RAM AND 32K EPROM STANDARD
*SUPPORTS BOTH RS-232 AND TTL COMPUTERS, 300-9600 BAUDS
*EXTRUDED ALUMINUM CABINET WITH OVEN-BAKED WRINKLE FINISH. ONLY 5' x 7''
*WATCHDOG TIMER, MODEM DISCONNECT HEADER, 12V DC OPERATION.

MICROPOWER-2
A VERY LOW POWER TNC-2 CLONE, PERFECT FOR PORTABLE OR SOLAR POWERED OPERATION.
- ONLY 40 MA AT 9-13 VOLTS DC
- SMALL AND LIGHTWEIGHT (5'x7'x13/8'' - 22 oz.)
- HARDWARE HDLC, BATTERY BACKED 32K RAM
- QUALITY EXTRUDED ALUMINUM CABINET WITH BAKED WRINKLE FINISH
- SUPPORTS BOTH RS-232 AND TTL COMPUTERS
- USES TNC-2 EPROMS - INCLUDING NET/ROM FIRMWARE VERSION 1.1.5 PROVIDED
ASSEMBLED AND TESTED ONLY $179.95

PC-100 SERIES
SINGLE AND DUAL PORT PACKET CONTROLLERS ON A PC PLUG-IN CARD
- DOES AX.25 AND TCP/IP WITHOUT AN EXTERNAL TNC OR INTERFACE
- POWERFUL SOFTWARE PROVIDED ON PC COMPATIBLE DISKETTE
- SWITCHABLE FOR EITHER HF OR VHF TONES
- HARDWARE HDLC, IC MODEMS
- CONNECTS DIRECTLY TO RADIO - NO EXTERNAL INTERFACE NEEDED
- PROVISION FOR EXTERNAL HIGH SPEED MODEM
PC-110 SINGLE PORT $169.95
PC-120 DUAL PORT $199.95

THE BEST VALUE IN A VHF/HF TNC
PAC-COMM TNC-220 $159.95
- NOW WITH 32K RAM STANDARD, FIRMWARE VERSION 1.1.5
- CONNECT BOTH HF AND VHF RADIOS PERMANENTLY -- SELECT FROM THE KEYBOARD
- IN KIT FORM -- $129.95 INTERNAL TUNING INDICATOR -- $44.95

PACKET TERMINAL PROGRAMS
PAC-PRO (PC) $29.95
DIGIPACK II (PC) $49.95
MACPACKET (MAC) $49.95
MACKET (MAC) $39.95
COMMODORE 64 $19.95
TNC-200, TNC-220 VERSION 1.1.5 EPROMS $10.00

WRITE OR CALL FOR OUR NEW CATALOG OF PACKET EQUIPMENT, SOFTWARE AND ACCESSORIES.

Pac-Comm, 3652 West Cypress St., Tampa, FL 33607

TOLL FREE (ORDERS ONLY) 800-223-3511 EXCEPT FLORIDA
TELEX: 650-288-1526 MCI FAX: (813) 872-8696
TECHNICAL INFORMATION 7:30 AM - 11 PM EASTERN
(813) 874-2980

FLORIDA ADDRESSES ADD 5%. $3.00 SHIPPING/HANDLING PER ORDER.
Rob, WA3QLS Katherine, KA3IYO Paul, WA3QPX

Delaware
Amateur Supply

71 Meadow Road, New Castle, Del. 19720 302-328-7728
Factory Authorized Dealer
9-5 Daily, 9-8 Friday, 9-3 Saturday

AEA • ALINCO • AMERITRON • CUSHCRAFT • ICOM
KANTRONICS • KENWOOD • MOSLEY • SANTEC
TELEX HY-GAIN • TENTEC • YAESU • AND MORE!

800-441-7008
New Equipment Order & Pricing

Prices are subject to change without notice or obligation.
Products are not sold for evaluation.
NO Sales Tax in Delaware!
one mile off I-95

SERVICE,
USED GEAR INFO:
302-328-7728

Daily UPS Service

Large Inventory

December 1987
Another Great Power Amplifier
with “Made in the U.S.A.”-Quality

The MIRAGE D15N represents the latest in 440 MHz Power Amplifiers. It incorporates features that make it the most useful and versatile amplifier available today. The D15N will amplify both FM, SSB, and ATV signals. It has variable SSB delay.

SPECIFICATIONS:

- Frequency Range: 420 to 450 MHz
- Power: INPUT 0.1-2 Watts (2 Watts maximum) OUTPUT 18 Watts or more for 2 Watts input intermittent duty cycle
- Modes: FM, SSB, CW and ATV
- Performance:
 - Power In: 1.5, 7.5, 5, 25
 - Power Out: 18, 15, 13, 10, 6.0
- Insertion Loss Typical 1.5 dB
- DC Power: 13.6 VDC at 3 amps nominal
- Fuse: 5 amps
- Impedance: 50 Ohm input and output
- Size: 7.25'' x 3.5'' x 2''
- Weight: 1.5 lbs

Contact your local ham dealer for prices and availability.

P.O. Box 1000 • Morgan Hill, CA 95037
(408) 779-7363

Become a DeVry VE

DeVry VE teams have the advantage of:

- Personalized service
- Quick Accreditation
- Free test generation software
- Out-of-pocket expense reimbursement
- Use of 800 number to communicate with the VEC
- Generating their own examinations

Contact: Jim Georgias, W9JUG
DeVry VEC
3300 N. Campbell Avenue
Chicago, IL 60618
(312) 929-8500
(800) 327-2444 [outside of Illinois]

VHF-UHF POWER DIVIDERS

RF power dividers provide the best way to feed in-phase 2 and 4 antenna arrays to maximize system gain and at the same time reduce losses to a minimum. Using 144 thru 1296 MHz, this series of VHF, UHF power dividers are proven RF devices designed for a long service life with low SWR and broad operating bandwidth.

- Extruded aluminum body with a durable enamel finish in addition to silicon sealing at connector flanges results in a ruggedized unit for all array installations. Available with N type connectors only; these units are unconditionally guaranteed for 3 years.

MODEL CONFIG PRICE
144.2P (2 ports) $51.00
144.4P (4 ports) $56.00
220.2P (2 ports) $50.00
220.4P (4 ports) $57.00
430.2P (2 ports) $46.00
430.4P (4 ports) $56.00
922.2P (2 ports) $45.00
922.4P (4 ports) $56.00
1296.2P (2 ports) $49.00
1296.4P (4 ports) $57.00

1988 Ham Radio Photo Wall Calendar

Your daily reminder of radio events... Great for home, office, shack, or as a gift!

Send $9.95 (US), $12.00(DX) for one. Send $8.90 (US), $10.50 (DX) for 2 up.
KB1T, Box 1015-H, Amherst, NH 03031

December 1987
28th ANNUAL
TROPICAL HAMBOREE
ARRL HAMFEST OF THE AMERICAS
FEBRUARY 6-7, 1988
DADE COUNTY YOUTH FAIR GROUNDS
Tamiami Park, 10901 S.W. 24 Street (Coral Way), Miami, Florida

FREE PARKING 15,000 VEHICLES • 1,000 INDOOR SWAP TABLES • 300 CAMPSITES WITH FULL HOOKUPS • 200 COMMERCIAL EXHIBIT BOOTHS • COMPUTERS & SOFTWARE • HAMBOREE DEALER SPECIALS • LICENSE EXAMS • PACKET RADIO PROGRAMS • DX FORUM • RCA FLORIDA SECTION LUNCHEON • TECH TALKS • ACTIVITIES FOR NON-HAMS

Registration: $5.00 Advance — $6.00 Door. Valid both days. (advance deadline Jan. 30th)
Swap Tables, 2 days: $16.00 each. Power: $10.00 per user.
All swap table holders must have registration ticket.
Campsites: $12.00 per day, includes water, power, sanitary hook-ups, showers.
(All RV vehicles, tent campers, vans, trailers welcome — no ground tents, please.)
Headquarters Hotel: Miami Airport Hilton, 5101 Blue Lagoon Drive.
Special Hamboree Rates: $55.00 Single or Double.
Reservation forms available through Dade Radio Club December 1st.

Make checks for Registration, Swap Tables & Campsites payable to:
DADE RADIO CLUB, P.O. BOX 350045, MIAMI, FL 33135

4-Page Brochure Available... December 1st
ICOM IC-900
Six Bands in One Mobile!

ICOM IC-900 FIBER OPTIC FM MOBILE

ICOM introduces the revolutionary IC-900 multiband FM mobile receiver. ICOM, first in utilizing fiber optic technology in amateur radio, enables you to create your own mobile communications system. Six band combinations...10M FM, 6M, 2M, 220MHz, 440MHz, and 1.2GHz. It's the most advanced, versatile, compact, and easy-to-use mobile available.

Features Galore. The IC-900 is an operator's dream. Listen on two bands simultaneously or transmit on one band and receive on a different band when using a second speaker (true full duplex crossband operation). 10 memories per band, independent PL tones and offset into each memory, memory and programmable band scan, and all subaudible tones in actual Hz readout.

The IC-900 includes an ultra compact remote controller, an Interface A unit, Interface B unit, SP-8 speaker, HM-14 up/down DTMF mic, fiber optic and controller cables.

Interface Unit A is installed in a location near the driver's seat.

Interface Unit B controls the six band units and can be installed in your car's trunk. A fiber optic cable runs from Interface A to Interface B, which transports an abundance of information through a 3/16" cable and eliminates RF feedback.

Band Units are "stacked" onto the Interface B Unit via the supplied mounting bracket. Optional band units available are:

<table>
<thead>
<tr>
<th>Band</th>
<th>Power Unit</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>UX-19A</td>
<td>10W/1W</td>
<td>26-30MHz</td>
</tr>
<tr>
<td>UX-29A</td>
<td>25W/5W</td>
<td>138-174MHz Rx; 140.1-148MHz Tx</td>
</tr>
<tr>
<td>UX-29H</td>
<td>45W/5W</td>
<td>138-174MHz Rx; 140.1-148MHz Tx</td>
</tr>
<tr>
<td>UX-39A</td>
<td>25W/5W</td>
<td>220-255MHz Rx; 220-255MHz Tx</td>
</tr>
<tr>
<td>UX-49A</td>
<td>25W/5W</td>
<td>440-450MHz</td>
</tr>
<tr>
<td>UX-59A</td>
<td>10W/1W</td>
<td>50-54MHz</td>
</tr>
<tr>
<td>UX-129A</td>
<td>10W/1W</td>
<td>1240-1300MHz</td>
</tr>
</tbody>
</table>

ICOM America, Inc., 2380-116th Ave, N.E., Bellevue, WA 98004 Customer Service Tel. 425-556-5800
3100 Premier Drive, Suite 125, Irving, TX 75063 / 1777 Phoenix Parkway, Suite 201, Aliso Viejo, CA 92656

ICOM CANADA, A Division of ICOM America, Inc., 3771 - #5 Road, Unit 9, Richmond, B.C. V6X 2T1

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.

ICOM First in Communications
Have you been trawling the bounding main for a new product? We have just netted it—the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $595.00. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $59.95. This module allows complete offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.

Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.

$595.00 each
$59.95 DTMF module
$149.95 Digital CTCSS module

Now available with Digital CTCSS

COMMUNICATIONS SPECIALISTS, INC.
426 West Taft Avenue • Orange, CA 92665-4296
Local (714) 998-3021 • FAX (714) 974-3420
Entire U.S.A. 1-800-854-0547
generating low i-f frequencies from an hf signal generator.

Like many Amateurs, I own several older signal generators that were once used in engineering laboratories, professional service shops, or maintenance repair organizations (MROs), and other places where high-quality rf signal sources are needed. Mine was traded from a local Amateur for a broken SB-34; he'd rescued it from the dumpster in back of our engineering school. That old Measurements Model 80 still has plenty of life in it, and works a lot better than some of the cheap signal generators that I could afford brand new.

Amateurs who want to build a collection of good test equipment often do well with these industry castoffs. I've seen top-of-the-line instruments from Boonton, Hewlett Packard, Measurements, Inc., and other notable manufacturers at hamfests for prices that were quite low. A very clean Boonton 202H am/fm/CW signal generator (which covers the 220-MHz band) was offered for only $50 because the frequency range was, at the time, of less interest than other ranges. Similarly, an HP 608 in apparently good shape fetched only $175.

But there's a problem with my Model 80 and many other signal generators. Though they work well on hf and VHF, they don't provide signals below hf. My Model 80, for example, operates over the range of 2 to 400 MHz. Yet there are times when I'd want it to provide signals in the lower end of the spectrum — above audio, but less than 2 MHz. For example, how do you align or troubleshoot a 455 kHz i-f amplifier without a good signal generator?

Some instrument manufacturers addressed that need with separate signal generators that had overlapping ranges. I suspect that was a sales strategy to get us to buy two instruments instead of one (some makers did, however, offer "full range" signal sources inside a single box). Others, such as Boonton (later bought out by Hewlett-Packard), offered additions such as the Univerter. That interesting device took the output of the Boonton 202 series of signal generators and down-converted it to a frequency between 10 kHz and 2 MHz, at the same rf level that was input. This latter feature allowed the user to set the rf level with the master attenuator on the front panel.

A basic but effective method of solving the problem is by heterodyning the output of the signal generator to a lower frequency. Figure 1 shows a block diagram of the system.
double balanced mixer (DBM) receives the output of the signal generator at its “rf” port, and a stable local oscillator signal at its “LO” port. The difference signal appears at the i-f port. The output of the DBM should be low-pass filtered to remove residual high-frequency signals. In my own case, I wanted to generate frequencies up to 1.9 MHz, so I used a 2-MHz low-pass filter described in reference one.

The amplifier at the output of the low-pass filter is optional. I didn’t find it necessary for my application because the entire gain of a communications receiver i-f amplifier was behind the signal generator. For others, however, some form of amplifier is recommended. Perhaps the easiest approach to a wideband (2 MHz) amplifier is a bandpass-limited version of the MMIC amplifiers discussed in Joe Reisert’s column recently.2,3,4 These amplifiers are low in cost, easy to construct, and already have a 50-ohm input/output impedance.

construction

Over the past few years I’ve built several modules on my workbench for use in various projects or as “test gear,” and these were usable in this project. These modules are a double-balanced mixer with wideband output, a 10-MHz crystal oscillator, and a 34- to 40-MHz voltage controlled oscillator. The DBM (fig. 2) is built from a Mini-Circuits SBL-1-1.* This model of the well-known MCL product is able to work over a range of 0.1 to 400 MHz, which matched my requirements nicely. The inputs and the output terminal are isolated internally with 2-dB resistive attenuators, which are sometimes used in wideband circuits to overcome difficulties that can be caused by changing impedances over a wide frequency range. Because no tuning is used at the i-f output, the DBM of fig. 2 is wideband. I built it in a die-cast shielded Pomona box that provides a reasonably good seal against rf leakage in or out. The input and output connectors are BNC. The rf input (RF1) will accept signals up to +1 dBm (1.26 mW), while the local oscillator (RF2) input requires +7 dBm (5 mW) to work properly.

The crystal oscillator (fig. 3) was originally built for use as a marker (generator) in an alignment job. The 10.7-MHz crystal was subsequently replaced with a 10.000 MHz crystal to allow the oscillator to be used as time-base source in a digital project, and as

* Mini Circuits Laboratories, Inc., P.O. Box 166, Brooklyn, New York 11235.

fig. 3. Colpitts oscillator and buffer amplifier combination provide stable source.

fig. 4. Voltage-tuned oscillator can be tuned from 34 to 40 MHz.
a crystal calibrator in a receiver. The CY-10A 10-MHz crystal was obtained from a Jim-Pack display at a local electronics shop for only a few dollars.*

The oscillator circuit uses a 2N2222 NPN transistor, although almost any replacement rf transistor similar to the 2N2222 will also work well. In fact, I've used this same circuit with both PNP and NPN transistors selected at random from a variety of sources. Although in many cases stability might suffer as a result of a less than rigorous selection of devices, it demonstrates that this circuit is forgiving and easy to construct. The basic circuit is a Colpitts crystal oscillator. The feedback capacitor voltage divider network (C2, C3) should be made from silver-mica capacitors for best stability. This circuit works at frequencies from 2 to 20 MHz.

To enable tuning the crystal frequency to exactly 10.0 MHz, place a 50-pF trimmer capacitor in series with the crystal and eliminate capacitor C1. Adjust the trimmer for exactly 10 MHz output, as measured by a digital frequency counter or by zero-beating WWV.

The output stage is a JFET buffer amplifier. When I found that the oscillator frequency would be pulled slightly when load impedances changed, I decided buffering would be necessary. The JFET is an MPF-102 or equivalent device — for example, an NTE-312, which is widely available from local parts distributors.

The crystal oscillator was built inside a shielded aluminum sheet metal box. Although not as rf-tight as other types of boxes, it is satisfactory. For more critical applications, use die-cast boxes or simply drill a number of extra holes for screws in the sheet metal box (for "buttoning" it up) to improve shielding.

When I needed to generate a 455-kHz signal, I used the 10-MHz crystal oscillator to drive the LO input of the DBM module, and the Model 80 signal generator to drive the rf input of the DBM. With a 10-MHz LO, the 0- to 2-MHz output is generated by tuning the signal generator from 10 to 12 MHz.

additional uses

I built a voltage tuned oscillator that operated over a range of 34 to 40 MHz (see fig. 4). This circuit is a simple variable frequency oscillator circuit in which part of the capacitance used to tune the tank circuit is derived from a variable capacitance diode ("varactor"). In this case, I used an MV-2111 device, which offers 47 pF at 4 Vdc and a C/C0 ratio of 2.6:1. The inductor is a 49-MHz TV i-f amplifier transformer (Digi-Key part No. TK-209).*

Figure 5 shows the relationship between tuning voltage and output frequency. Please note that this figure is very rough, and reflects factors such as my choice of layout (stray capacitance), the specific MV-2111 that I used, and the accuracy of the voltmeter and digital frequency meter. Before a curve such as the one shown in fig. 5 can be trusted completely, it is necessary to build several such identical circuits and calibrate them several times to obtain enough data points to give one confidence in the calibration. For example, a second oscillator was built using the same circuit operated over a range of 32 to 44 MHz, but it had tighter layout on the wireboard. You'll obviously have to experiment and make your own calibration curve, even though it will probably be close to the one shown in fig 5. The important thing to note is that there is a relationship between voltage and frequency. If we apply a modulating signal to the tuning voltage input (V), then the output signal is frequency modulated (or swept, if a sawtooth is used). Like the crystal oscillator above, the VCO shown in fig. 4 uses an output buffer amplifier to prevent varying load impedances from affecting the operating frequency. The buffer is even more important to this circuit than in the crystal oscillator case.

There are two ways to use the VCO. First, we can replace the signal generator at the rf input of the DBM with the VCO. The output of the DBM then

* Jim-Packs (blister-packed electronics parts) are available at most local hobby and TV service parts distributors. The same components are available in non-blister packed from Jameco Electronics.

* Digi-Key Corporation, P.O. Box 677, Thief River Falls, Minnesota 56701.
becomes the difference between the 10-MHz crystal oscillator and the VCO, or a range of 24 to 30 MHz. We could, instead, replace the crystal oscillator with the VCO, making the output frequency the difference between the signal generator and the VCO. Because of the wide range of the signal generator, a wide range of sweep center frequencies is possible.

So what use is a sweep generator? It is possible to sweep an entire Amateur band in order to inspect the frequency response of a circuit. One can also sweep an antenna over a wide range in order to determine resonance. Of course, devices such as bandpass filters are best inspected using a sweep generator. I suspect that many applications should be apparent.

If you use the method described above to sweep tuned circuits, be sure to keep the sweep frequency low. A high sweep frequency will ring Q tank circuits or filters and cause other problems during measurements. Although audio sine waves to 1000 Hz present no problem, sawtooth, triangle, or squarewave modulation should be kept to 60 Hz or less.

One problem with this circuit is the fact that the output amplitude may not be level over the band swept. In cases where this variation is important, it might prove necessary to use a wide-band automatic gain control (AGC) amplifier at the output. But that's a subject for another column, and is one of the topics I'm currently working on.

I'd like to hear your suggestions for future columns. You can contact me at P.O. Box 1099, Falls Church, Virginia 22041.

references

ETO AND ALPHA GO FACTORY DIRECT!
The new ALPHA 86, and all other ETO amplifiers including the forthcoming ALPHA 87 AND 88, will be sold factory direct only, from now on. There are several important reasons. WHY BUY DIRECT FROM ETO?

SPECIALIZED KNOWLEDGE
High power amplifiers are specialized products. Relatively few people are qualified to provide accurate information and competent service. And ALPHA amplifiers always have been innovative, incorporating features and components not commonly found in other amateur equipment.

New ETO products, beginning with the ALPHA 86, are even more sophisticated. So it figures that ETO is your best source of accurate information. For 18 years amateurs have been calling us to get the facts before choosing an amplifier. We want you to know exactly what to expect from your ALPHA before you buy it. We hate unpleasant surprises as much as you do and we try hard to provide meticulously accurate information.

TROUBLE BUSTER!
Call Ray Heaton, NJ0G (ex-WA0DYZ) if you're considering a new linear. Ray has been answering the ALPHA sales and service lines for over a decade. He has a wealth of information and advice concerning various amplifiers and their applications. He also has up-to-date delivery information on new ALPHA's.

ALPHA owners also call Ray when they need help. He's Mr. Service in the ALPHA world and can resolve most problems in a few minutes. If factory service is needed, Ray knows all the techniques to insure fast turnaround. And ETO stocks almost any part that might be needed.

FACTORY FRESHNESS
It's our policy to implement as running changes new refinements or upgrades developed by ETO engineers. By selling direct we can insure that your new ALPHA is factory fresh, with the very latest mods.

PRICE RESTRAINT
The great new ALPHA 86 is rated to deliver twice as much long term average output power as an ALPHA 76CA and incorporates such important new features as PIN diode T/R switching and fully tuned input. We're proud to be able to offer it, despite all the new features and six years of rising costs, for only 11% more than the price of that same 76CA back in 1981. Innovative engineering and selling direct make it possible.

AND THE NAME IS...
Many of you associated the name POWER LINES with the specter of QRN, high electric bills, and other spooks in hamdom's anxiety closets.

Several suggestions including ETO in the name of this column. Our choice: ETO/QRO—loosely translated, "MORE POWER FROM ETO!!"

THANK YOU...
for many notes offering encouragement and expressing pleasure at our return to a more aggressive role in amateur radio. Key chains will be in the mail shortly.

73,

Dick Ehrhorn, WA4ETO

BY THE WAY...
ETO needs immediately a licensed amateur—good with people and knowledgeable about high power linear amplifiers—to help Ray Heaton expand our customer sales and service operation. If you qualify, please call Ray directly. We also have openings for RF power design engineers, technicians, and manufacturing & marketing specialists. Please send resume to Steve Christensen at ETO.

52 December 1987
Alpha 86 offers these very special reasons to buy one now:

- 1500 watts RF output power — no time limit in any mode.
- Silent, lightning-fast QSK — new PIN diode T/R system.
- Pre-tuned input on all bands — easy drive and high efficiency.
- Five-function instant metering — four separate LED bargraphs.
- Quick, easy tune-up.

Plus the traditional virtues of all Alpha amplifiers:

- Ruggedness and quality — synonymous with Alpha.
- Compact and lightweight — exceptional power/weight ratio.
- 3 year limited warranty — exclusive with ETO.
- ETO factory service — renowned for helpfulness.
- Satisfaction of ownership — goes with every Alpha.

Contact ETO direct for detailed literature and delivery information.

EHRHORN TECHNOLOGICAL OPERATIONS, INC.
P.O. Box 888
Canon City, CO 81212
Telephone (303) 275-1613
Alpha 86: $2995 delivered in North America
Measure Up With Coaxial Dynamics
Model 7510 Frequency Counter/Wattmeter

This 2-in-1 laboratory/portable, compact, dual function digital frequency counter/wattmeter makes frequency and power readings easy.

The optional battery pack converts Model 7510 to a portable field service instrument. The frequency counter measuring range is 10 Hz to 1.25 GHz. The wattmeter power measuring range is 100 mW to 5 kW over 2 to 1,000 MHz, determined by standard elements ordered separately.

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.
15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2333 1-800-COAXIAL
Telex: 98-0630

Service and Dependability...A Part of Every Product

THROW AWAY YOUR FALCON CATALOGS

Falcon Communications,
THE source for quality,
American made, MOSFET repeater, base station and mobile power amplifiers announces a major re-design of our line.

See your dealer, or contact the factory, for the latest information on our new MOSFET and bipolar power amplifiers.

FALCON COMMUNICATIONS
P.O. Box 8979 • Newport Beach, CA 92658
(714) 760-3622

“INSTANT” MORSE CODE

Beginners:
Deliciously Easy

Experts:
Automatically Fast

CURLYCODE™ MANUAL
ONLY $6.50

Guaranteed

MINDS EYE

Minds eye Publications
Dept. H32, Suite 115-199
1350 Beverly Rd.
McLean, VA 22101

SOLID BRASS MORSE KEY

AVAILABLE WITH LOW PROFILE OR CLASSIC STYLE ARM
THE ULTIMATE STRAIGHT KEY FOR THE CW OPERATOR
QUALITY BRITISH CRAFTSMEN: R. A. KENT (ENGINEERS)
SMOOTH OPERATION WITH BALL RACE BEARINGS
PRECISION ADJUSTMENTS, SOLID BRASS CONTACTS
MAHOGANY, WEIGHTED BASE WITH NON-SLIP FEET

EXCLUSIVE U.S. DISTRIBUTOR

TOTAL ELECTRONIC CONCEPTS (TEC)
P. O. Box H 400, LINCOLN MA 01773
(617) 259-0125

KIT $59.95
ASSEMBLED $74.95

Plus $6.00 shipping, handling and insurance.
Massachusetts residents add 5% state sales tax.

Generate Your Own Electricity

Hundreds of satisfied owners are now using the WINDSTREAM® WIND GENERATOR to provide power for R/C, weekend cottages, boats, workshops, remote locations, emergency back-up power and much more. Portable—weighs only 20 lbs—easily installed with our comprehensive installation manual—minimum maintenance—full warranty.

Thermax Corporation
P.O. Box 3128, Burlington, VT 05401-3128
In 1937, Stan Burghardt (WDIT), because of his intense interest in amateur radio, began selling and servicing amateur radio equipment in conjunction with his radio parts business. We stand proud of this long-lasting tradition of Honest Dealing, Quality Products and Dependable "S-E-R-V-I-C-E"!

Above all, we fully intend to carry on this proud tradition with even more new product lines plus the same "fair" treatment you've come to rely on. Our reconditioned equipment is of the finest quality with 30, 60 and even 90-day parts and labor warranties on selected pieces. Always remember:

- WE SERVICE WHAT WE SELL -

AEA Belden ICOR NYX
ALNCO BENCHER JSC PALOMAR
AMERITRON BIRD KANTRONICS RADIO CALLBOOK
APPENDIX BUTTERUT KDK RITON
ARD SUPPLY CENTURY KLM ROHN
ANTEX CES LARSEN TELEX/RAYSA
ANTENNA CUSHCRAFT MEJ TEN-TEC
SPECIALISTS DIAMOND MINI-PRODUCTS TRIO-KENWOOD
ASTRON ENCO MRAG Unadilla/Areyco
B & W HUSTLER MOSELEY YAEGU

Write today for our latest Bulletin/Used Equipment List.

Factory-less, jumper-less, ROM-less programming.

With the new S-COM 5K Repeater Controller, you'll be able to configure your repeater remotely — using DTMF commands. Only the 5K offers this capability for just $189, wired and tested.

S-COM Industries
P.O. Box 8921
Fort Collins, CO 80525
(303) 493-8316

A better way to design and analyze Long wires, Vee's, and Rhombics.

EASY TO USE, MENU DRIVEN, SELECT WIRE LENGTH, HEIGHT, FREQUENCY, GROUND TYPE, AND GET A COLOR CODING SYSTEM FOR YOUR HF ANTENNA. FOR THE IBM PC AND COMPATIBLES, DOS 2.0 OR HIGHER, 256K, COLOR REQUIRED.

Price $35.00

EPSILON CO
Box 715, Trumbull CT, 06611, (203) 261 7694

DOWN EAST MICROWAVE

MICROWAVE ANTENNAS AND EQUIPMENT
- Loop Yagis / Power Dipoles / Linear Amplifiers / Complete Arrays / Microwave Transverters / GaAsFET Preamps
- TRP / EME / Weak Signal / OSCAR / 802 / 1296 / 2400 / 2400 / 3050 MHz
- 2340 L/ M / Loopy Yagi 1296 MHz 20dB $63
- 3340 L / M / Loop Yagi 2204 MHz 20dB $80
- 3350 L / M / Loop Yagi 802 MHz 16.5dB $63

Above antennas assembled and tested. Kits available.

Add $8 UPS S/H, $11 West of the Mississippi.

2316 PA Linear Amp 1W in 1W out 1296 MHz 13.5V $245 ppm.
2335 PA Linear Amp 10W in 35W out 1296 MHz 12.5V $295 ppm.
NEW MICROWAVE TRANSVERTERS
BY LMW ELECTRONICS
1296 TRX HD 8W GaAsFET, TH Sequencer, Output Meter $569
2204 TRX HD 2W GaAsFET, TH Sequencer, Output Meter $619

Add $6 for shipping UPS/48 Stripped down version, kits also available

DOWN EAST MICROWAVE
Bill Olson, W3HQT
A Box 2130, RR 1, Troy, ME 04987
(207) 948-3741

ND EAST WIRE PRO

Easy to use, menu driven, select wire length, height, frequency, ground type, and get a color coded sinusoidal projection of your HF antenna.

For the IBM PC and compatibles, DOS 2.0 or higher, 256K, color required.

Price $35.00
Now that you can speak, talk to Larsen.

Novice Enhancement opens up a whole new way for novices to communicate. To make the most of it, talk to Larsen Electronics.

We'll tell you how Larsen antennas can greatly improve your powers of communication. We'll also explain how Larsen 220 and 1296 MHz antennas are designed to give you the best performance.

Talk to your Larsen amateur dealer today, and see if Larsen performance doesn't speak for itself.

Larsen Antennas
The Amateur's Professional
See your favorite amateur dealer or write for a free amateur catalog.

IN USA: Larsen Electronics, Inc., 11911 N.E. 50th Ave., P.O. Box 1799, Vancouver, WA 98668. 306-573-2722.
IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6th Avenue, Vancouver, B.C. V5Y 1K3. 604-872-8517.
the technology of commercial television
part 1: historical aspects

Ever wondered how it works?
Take this ham’s-eye tour of a commercial tv station

A television station contains more different types of electronics in one location than any other enterprise I can think of. Yet in the 20 or so years that I’ve been reading the literature of Amateur and commercial electronics, I’ve never seen a comprehensive account of the technical aspects of a commercial television station. I won’t pretend that the system we use here in the United States is perfect, but I do believe it represents both the systematic evolution and the efficient use of available technology — and as such, merits attention in the Amateur press.

what is NTSC?

Most video hobbyists have seen the initials NTSC and assumed that it meant “Never The Same Color.” Although this aptly describes the American television system when compared with more advanced systems, the acronym actually stands for “National Television Standard Committee,” who developed and defined the way a television system should work in 1953. Believe it or not, there haven’t been any changes in the NTSC standards since their adoption, even though the technology for creating these NTSC television signals has obviously changed radically.

why NTSC?

To explain how a standard such as NTSC, or any other standard, is derived, we must deal with a concept fundamental to all communications: bandwidth, or the range of frequencies necessary to convey a given amount of information. Leaving aside any mathematical definitions of bandwidth, I’ll attempt to convey the idea in English instead.

An example of a narrow bandwidth system would be the telephone. To convey speech information by telephone, we need a range of frequencies between about 300 and 3000 cycles per second (Hz). The audio bandwidth in this case is 3000 – 300, or 2700 Hz. When the telephone mouthpiece converts the sound to electrical signals, we still have a bandwidth of 2700 Hz.

High fidelity audio, on the other hand, is an example of a greater (wider) bandwidth. Most audiophiles agree that we need a frequency range of at least 20 to 20,000 Hz in order for sound to qualify as high fidelity, or a bandwidth of 20,000 – 20 (19,980 Hz). Our entire system must be capable of passing electrical signals over a bandwidth of 19,980 Hz in this case.

When we convert visual images to electrical impulses, we also have to deal with bandwidth. Normal video has

By Eric Nichols, KL7AJ, Box O, North Pole, Alaska 99705
a frequency range of 0 Hz (dc) to about 4,180,000 Hz, or a 4.18-MHz bandwidth. This is over 200 times the bandwidth required for high fidelity audio, and over 1500 times the bandwidth required for a telephone (voice grade) circuit!

If we were to define a channel as being a slot of frequencies 2700 Hz wide, we'd see that a video picture will use up over 1500 channels! Now, as long as our raw video or audio electrical signals are confined to electrical conductors (i.e., in a closed-circuit system), we don't have to worry (theoretically, at least) about how many channels we occupy. We can duplicate identical channels on separate wires. In other words, the amount of information we carry is limited only by how many audio or video cables we want to run. High-definition television (HDTV), for example, has been available for quite some time on closed-circuit systems, and its bandwidth is several times greater than the NTSC-specified 4.18 MHz.

When we take these same channels and transmit them over the air, every channel of radio spectrum we use must be shared with the entire universe. Radio waves, of course, recognize no geographical, political, economic, religious, or psychological boundaries; here-in lies the necessity for making compromises in bandwidth, and NTSC is the system by which a very good compromise is made with available channel space.

When the NTSC color system was developed, there were already over 40 million monochrome television receivers in operation in the United States! The NTSC's first job, therefore, was to make a color system that would work on black and white receivers; after all, 40 million households could not be expected to take lightly the prospect of having their extremely expensive (at the time) receivers being rendered obsolete by a new television standard! This is one price the United States paid for being first; most of Europe waited for us to develop color television before they had any television, so that they wouldn't have to contend with a compatibility problem. Great Britain and a few other nations still flounder with awkward dual-standard systems (i.e., separate color and monochrome channels).

And yes, France's SECAM system has more than twice the visual resolution as ours, but they have fewer than half the available channels. Their channels are as broad as a barn door, and no other nation can afford to wipe out that much spectrum space, nor can many people afford the receivers.

As numerous as the problems are with the NTSC system, we still have the most uniform and affordable television system in the world, one that is reasonably conservative of spectrum space. The fact that the NTSC system is still widely imitated in much of the world testifies to the foresight and ingenuity of the developers of the NTSC standard.

Given the importance of spectrum conservation, we now see that NTSC had to compromise in the least objectionable fashion, i.e., in the way that would impair image quality as little as possible. A color television signal obviously contains more information than a black and white signal, and since more information requires greater bandwidth, something has to give when you try to force a color signal into a video channel. NTSC discovered gaps in the brightness information in average video program material — in fact, they found almost no video information occurring at about 3.5 MHz in a normal monochrome signal. Subjective tests with thousands of untrained viewers revealed that when a narrow band of frequencies centered near 3.5 MHz was intentionally filtered out, nobody noticed. Color information, therefore, could be slipped into this segment without affecting the perceived quality of the final image.

The NTSC system was television's earliest and best example of what we now call "ergonomic" or human engineering. Every aspect of the new NTSC system was checked for its subjective perceived qualities; even the choice of color phosphors was determined by evaluating the responses of viewers.
everything but the kitchen sync

Before we can have a quality image, we must have an image — and without synchronization or “sync,” as it's usually called, we have no image. It's common knowledge that a television image is created by scanning an electron beam back and forth across a phosphor screen. Few viewers realize, however, just how tight the tolerances relevant to the positioning of that beam must be, particularly with color television. It's the sync system that controls these tolerances; in fact, most of a television transmitter's power is devoted to generating sync pulses so that we can have a stable scan or raster. This will be covered in detail next month, when we discuss transmission techniques.

Typical movie theater projectors display 24 frames per second, but the NTSC system specifies 30 complete frames per second. Unlike movie frames, each video frame consists of two interlaced fields. NTSC scans 525 lines per field, but not adjacent; instead, a field of 262-1/2 lines is scanned, with the odd lines “filled in” during the next field. Even experienced television service technicians are sometimes surprised to learn about this interlace scheme; some are amazed that a television works at all when they realize what's required to achieve accurate interlacing. This interlace achieves two things: first, it reduces flicker to the same level as would be sensed at 60 frames per second without increasing the bandwidth. Second, by flipping the color polarity of the odd lines upside down, the color information “disappears” from monochrome receivers. We use 60 fields per second rather than 53, 65, or 80.4 because in the United States, ac power is 60 Hz, and the ac power is convenient for achieving approximate control of the frame lock (vertical hold).

Another critical element of image quality is synchronization of the horizontal sweep. This means that the left-to-right positioning of the receiver's scanning beam has to correspond exactly with the scanning beam of the studio camera. So before each scan (video line), a horizontal sync pulse is transmitted at a repetition rate of 15,750 Hz or:

\[30 \text{ frames/second} \times 525 \text{ lines/frame} = 15,750 \text{ lines/second} \]

This is the annoying frequency you sometimes hear emanating from television sets; all the high-voltage circuitry resonates at this frequency.

color

I mentioned earlier that in a normal monochrome signal, almost no video information occurs at approximately 3.5 MHz. Actually the FCC states that the color information must be centered at 3.579 MHz. For general purposes, the FCC refers to this as 3.579545 MHz; for convenience, broadcast engineers refer to it as simply 3.58 MHz. The greater precision is justified, however, in that the subcarrier can be locked to the National Bureau of Standards' 5-MHz transmission. The 3.58 MHz color subcarrier is the most accurate reference to which the average citizen has access; in fact, many scientific and navigational firms use the color reference from a local television station as a time reference. (For accuracy, the television station must be locked to a satellite network.)

So what do we do to this 3.58 MHz to give us color? We can change three things about any electrical wave: its height (a-m), its frequency (f_m), or its timing or position relative to a fixed reference wave of the same frequency (phase modulation). Two of these — a-m and phase modulation — are done to the color subcarrier. (f_m is obviously out of the question.)

Changing the amplitude of the wave changes the saturation of the color at that particular period of time. Saturation is what you change when you tweak the “color” control on your television set. Changing the phase or timing of that carrier at that point in the scan

![Diagram of color burst and sync]

December 1987
changes the "tint" or "hue." In other words, the phasing tells the receiver which color to present at that spot on the screen.

The horizontal sync pulse comes just before the color burst. The burst is about 10 cycles of 3.58-MHz signal at the beginning of each and every line. Its phase, compared to every other burst, is absolutely constant. But after the burst, the information changes according to the color we want. Figure 1 shows two lines of video that are identical except that the phasing of Genuine Color Information in B is shifted slightly from that of A. (How a receiver compares such a subtle thing as a phase shift will be addressed next month.) In reality, unless you’re actually looking at a solid white background, the video line will be wavy all the way across. Figure 1 shows modulation only at the color frequency.

Figure 2A shows modulation of the video level, not at the color frequency. This will have no effect on the color because it’s not 3.58 MHz; instead, it will appear as a gradual increase from gray to white, down through gray toward black, up through gray toward white, then down to gray again. Keep in mind that this is just a single line of video repeated 15,750 times each second.

the 3.58-MHz tie

Figure 2B is very interesting. The section labeled "hf burst" represents what would happen if the camera looked at a very fine black and white pinstripe pattern. Because the video modulation is higher in frequency than color, once again no color appears. This pattern tests the resolution capabilities of the system. In other words, some herringbone suits are very high-frequency suits; such a suit will increase in frequency as the camera backs off or "zooms out." So if you’re going to be on television, be sure to select your clothes with regard to the video modulation only at the color frequency.

Figure 2A shows modulation of the video level, not at the color frequency. This will have no effect on the color frequency. This will have no effect on the color because it’s not 3.58 MHz; instead, it will appear as a gradual increase from gray to white, down through gray toward black, up through gray toward white, then down to gray again. Keep in mind that this is just a single line of video repeated 15,750 times each second.

from studio to receiver

So far, we’ve spoken mostly of the raw video; in other words, we haven’t considered what happens to the video between the studio and the receiver. We did mention that the radio signal path is a limited bandwidth channel, and that the NTSC signal is tailored accordingly. But what does the signal look like after it leaves the transmitter?

The visual portion of a television signal is a modified form of a-m. Television falls in an area between a-m and single sideband called Vestigial Sideband (VSB). A standard a-m transmitter emits a channel which is twice the bandwidth of the modulating signal. It doesn’t matter what form the modulation takes; if we take a 4.18-MHz wide video signal and put it into an a-m transmitter, our transmitted signal will occupy 8.36 MHz of precious spectrum space.

The emitted channel consists of two sidebands, symmetrically spaced on either side of the carrier frequency. One sideband is redundant; each carries the same information except that one is inverted in frequency — a mirror image, so to speak. The carrier frequency of Channel 2 is around 55 MHz; the carrier frequency of Channel 13 is around 211 MHz. (In every case, the television audio carrier is 4.5 MHz above the visual carrier, but we’ll discuss that later.)

Because one sideband is redundant, we could lop off either one and still have a complete video signal. In SSB radio, we do exactly that, and thus end up with a radio frequency channel of exactly the same bandwidth as our audio modulation channel.

In television, we remove most of the lower sideband, leaving the upper sideband intact. The only reason we don’t completely eliminate the lower sideband is attributable to technical considerations which no longer apply, but since the rules were cast in concrete 35 years ago, it looks like we’re stuck with VSB for the foreseeable future. However, the NTSC made a noble step in the right direction when they opted for VSB instead of full a-m.

Unlike SSB radio — where it’s easy to regenerate the carrier upon reception — in television we leave the carrier untouched because eliminating it would make receiver design hideously complicated. Although our transmitters would be more efficient if we could eliminate it, the carrier doesn’t occupy any spectrum space and is therefore of no concern.

Figures 3A and 3B compare the occupied bandwidth of a-m to VSB. What do we put where the LSB used to be? The upper part of the next lower television channel, of course. It would be nice to leave that lower sideband gap as elbow room, wouldn’t it? Unfortunately, both nature and the FCC abhor a vacuum, and one or the other guarantees that something is going to be there. In most cases, it’s a television station, unless you happen to be talking about channel 7, in which case it happens to be the fm broadcast band as well as most high-band VHF fm communications.

Actually, the lack of elbow room between television stations would never create problems in properly designed television receivers. Unfortunately, nobody makes any. Even though the quality of the video sections of television receivers has improved dramatically in the last three decades, the radio frequency sections, or front ends, have gotten worse. The old tube receivers of the 1950s had far better selectivity than any receivers built now.

(continued on page 65)
Yaesu's mini HTs.
The smallest, smartest, toughest radios. Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreciate the high power, durability and size of Yaesu's FT-23R Series mini-HTs.

To begin with, you'll find a model that's right on your wavelength. The 2-meter FT-23R. The 220-MHz FT-33R. Or the 440-MHz FT-73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moisture-resistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, microprocessor-controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:

The FT-23R comes with a 7.2 volt, 2.5-watt battery pack. The FT-73R with a 7.2 volt, 2-watt pack. And the FT-33R with a powerful 12 volt, 5-watt pack.

You can choose the miniature 7.2 volt, 2 watt pack shown in the photo below. And all battery packs are interchangeable, too.

And consider these options: Dry cell battery case for 6 AAA size cells. Dry cell battery case for 6 AA size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, toughness and small size, seeing is really believing.
CALL FOR SPECIAL HOLIDAY PRICES
(215) 357-1400
ARRL—AMECO—PUBLICATION—EXAM GUIDES
AMECO — BENCHER — MIRAGE — ROHN — KENPRO
KENWOOD 940 S/AT
100% DUTY CYCLE
40 MEMORIES
160-10
ON SALE

YAESU FT 757 GX/II
CAT System
All model HF Transceiver
Dual VFO
Full Break-in CW
100/Duty Cycle
ON SALE

ICOM IC-761
HF All Ham Band
General Coverage Rec.
Built-in antenna tuner
and power supply
ON SALE

KENWOOD
100% Duty Cycle
100 memories
Direct keyboard entry
Call for Price
ON SALE

KENWOOD TL922A
160-15M
Linear Amplifier
2 KW PEP

KENWOOD R2000
100 kHz-30 MHz
Gen. Cov. Receiver
Call for Special Price

MB-IV-1A
MB-V-A
Call for Price

NYE VIKING

MK-IV-3

ICOM R-7000
25-1300 + MHz Special Receiver CALL Pricing

ICOM IC-1271A
1.2 GHz All Mode Transceiver

KENWOOD DUAL BAND
TW4100A
45W VHF
25W UHF
10 memories

MC300A
125.95

ICOM Dualbander
IC-3200A
10 memories
Scanning
Compact
38 Built in tones
25W output
MARS/CAP Operation

SMART PATCH
CES 510-SA

HAMILTON VOLKAMER INC.
A DIVISION OF TREVOS ELECTRONICS
4033 BROWNSVILLE RD., TREVOSA, PA 19047
(215) 357-1400
Prices are subject to change without notice.

HAMTRONICS, INC.
AMECO — BENCHER — MIRAGE — ROHN — KENPRO
NEW BOOMER DISTANCE RECORDS

220 MHz on June 14, 1987 Bill Duval, K5UGM of Irving, Texas using the 220B Boomer made the first ever 220 MHz sporadic E contact with W5HUQ/4 in Florida.

2 meters on June 14, 1987 Jim Frye, NW70 using the 4218XL Boomer contacted Jim Poore, KD4WF using a 215WB Boomer to set a new 144 MHz overland distance record of 1980 Statute miles.

2 meters on August 3, 1987 Gordon West WB6NOA, using a ½ watt handheld into a pair of 4218XL Boomers contacted KH6HME in Hawaii a distance record of more than 2400 statute miles.

Make Boomer quality and performance work for you. Whether you choose one of our two new 220 MHz antennas, the most popular 215 WB or the world class 4218XL, you will have all of the best Boomer features. Whatever your choice of operating mode or distance BOOMER DOES IT BETTER.
Referring back to fig. 1 and 2, it should be mentioned that these are upside down as far as transmitted power is concerned. In other words, even though the sync pulse is shown at the bottom, it’s actually maximum transmitted power and modulation. As a matter of fact, transmitters for television are licensed according to peak power, or sync peak envelope power. There are several good reasons for this practice: first, the sync represents a constant value, which is reasonably simple to measure or calculate. The FCC requires broadcasters to know how much power they’re radiating. Because the video waveform is continually changing, it would be practically impossible to represent power output in terms of ‘average picture modulation’ or some other such nebulous term. By putting the sync at the top, in terms of power, we at least have a maximum power measurement. (In “real” television, we never have a condition of unmodulated carrier as we do in radio, so we can’t talk about a television station’s licensed carrier power.) The second reason for having the sync at the top relates to our original discussion of sync pulses. We mentioned that there’s no point in having a nice-looking video image if it isn’t stable. By placing the sync pulses at maximum output power, we ensure that as the received signal gets weaker, the last thing to go will be picture stability. This one characteristic, common to television standards around the world, allows us to have a usable picture under much poorer conditions than would be possible if the sync pulse were at a lower transmitter modulation.

One thing that does vary from standard to standard is in what direction you go to get from black to white. In NTSC, the blacker you go, the closer you get to sync power. In the British system and others, white is transmitted near sync level and black is at lower modulation levels. A British picture viewed on NTSC, therefore, would appear as a negative rather than as a positive image.

Each polarity of video offers certain advantages. The NTSC system has a better signal-to-noise ratio in the black region, which translates into less visible “snow” in the darker areas. On the other hand, it’s generally easier to achieve linearity on most types of transmitters with the inverted video systems. (Linearity, in this context, refers to the degree of video “fidelity.”) A more linear system reproduces luminence levels, or shades of gray, more accurately.

waveform monitor

The waveform monitor (fig. 4) — a vital piece of test equipment common to all television stations — is a specialized form of oscilloscope used to view video signals either line by line or field by field. Actually, any good oscilloscope would be sufficient.

Although many different graticules are used, the IRE is by far the most common. Note that the graticule has two scales. The left scale represents IRE units. The IRE scale of 140 units is divided into 100 units of genuine video information and 40 units of sync. The 0 division or baseline is clamped at 0 volts in most television stations. In other words, anything below 0 is a negative voltage, while anything above 0 is a positive voltage. The right side of the scale indicates the percentage of modulation of an actual television transmitter, assuming everything is working satisfactorily.

I’ve shown one line of a “window” signal superimposed on the graticule; this appears as a white left half and a very black right half of the screen — television screen, that is; waveform monitor screens are green. Notice that sync is 100 percent modulation, the baseline is 75 percent modulation, and pure white is 12.5 percent modulation. Why isn’t white set at 0 percent modulation? Because television receivers need a little bit of visual carrier (12.5 percent) to demodulate the audio signal. Did you ever notice that raspy buzz in the audio when a television station runs credits or other very white characters? This is what happens when the video accidentally gets past 12.5 percent white towards 0. Television receivers use a technique called intercarrier sound demodulation to simplify the receiver tuning circuitry. It’s a system I’d get rid of if I were Emperor, but that’s unlikely to happen.

The IRE scale is quite convenient for visual quality control. As long as we keep our visual range between 0 and 100 units on the left, we’ll have a reasonably pleasant-looking picture. In practice, genuine video information (GVI) should never go below 7.5 IRE units. This tiny setup level prevents our GVI from confusing our
8-POLE CRYSTAL FILTER SALE - 10 - 20% OFF
For Kenwood, ICOM and Yaesu products. We will match any competition prices. FREE one year subscription for ICOM, Kenwood or Yaesu Newsletter ($10.00 value) with filter purchase. USA only. For latest prices, call (305) 879-6868 or send SASE for latest catalog!! Sale ends December 31, 1987.

We also offer expert repair service on Kenwood, ICOM, Yaesu, Azden and Atlas equipment. 15 years experience, 5 days average turnaround time. Call for more info!!

INTERNATIONAL RADIO, INC.
751 S. Macedo Blvd.
Port St. Lucie, FL 34983
(305) 879-6868
baseline clamping circuitry. We’ll talk more about clamping next month, but for now, let’s just say that clamping is there so that television sets know where black ends and sync begins.

television sound

Although the NTSC had little to do with the development of television audio, television transmitters have always been capable of excellent audio. In fact, the audio section and legal FCC specifications for television audio are essentially identical to those specified for fm radio! Television frequency response uses exactly the same 75-ms pre-emphasis curve as fm broadcasting, for example, and the total harmonic distortion specifications are the same as those for fm radio (monaural).

So why has television audio — until very recently — sounded so poor? There are two weak links in the television audio chain: the first is in production techniques. In most videotaped and live television fare, audio has generally been added on almost as an afterthought. Quality audio has nothing to do with technology; it’s simply a matter of quality control and care. The second weak link has been intercarrier sound demodulation, mentioned briefly above. The intercarrier technique is extremely clever, but that’s about all I can say for it; too many compromises in overall audio quality are required, so the purpose of transmitting good audio is almost defeated. Intercarrier sound demodulation has greatly complicated the problem of stereo audio transmission, but even so, it seems like it’s here to stay.

Visitors to television stations are often amazed by how good the audio sounds. This is because a television audio “modulation monitor” is a discrete (i.e., non-inter-carrier) tuner and because the monitors in the control room usually use full-size, full-range speakers. So all is not lost when it comes to television audio, and more and more producers — especially with increasing public interest in stereo reception — are beginning to pay some attention to audio techniques and quality control.

The unmodulated sound carrier is exactly 4.5 MHz above the visual carrier. It is frequency modulated ± 25 kHz under maximum loudness from this carrier. The modulation of an fm carrier results in the generation of some sidebands which overlap into the video portion of the channel. For this reason, most television receivers have a “sound trap” that notches the audio out of the video chain. In general, though, this slopover has minimal detrimental effects on the video, and some high-resolution monitors do not include sound traps.

As far as aural (audio) carrier power is concerned, a typical television station cranks out only one-fifth as much aural power as peak sync power. The reason for this has to do with the bandwidth of the aural compared to the bandwidth of the visual system. A narrowband system, of course, needs less power to do the same job as a wideband channel.

tune in next month . . .

In the next installment, I’ll describe station equipment that processes signals ranging from dc through visible light. Topics covered will include antennas; mechanical, electrical, and audio devices; light transducers; analog and digital electronics; rf and microwave devices; power generation and distribution; wave propagation; and just a tiny bit of nuclear physics.
TURBO PC/XT COMPATIBLE
$649.00
PRICE INCLUDES
PHOENIX BIOS
HI-RES SAMSUNG MONITOR
2 DISK DRIVES DS/DD 360K
DELUXE KEYBOARD
MS DOS 3.1 WITH MANUAL
PRINTER PORT
SERIAL PORT
GAME PORT
CLOCK CALENDAR
256K MEMORY
4.77 OR 8MHz OPERATION
EXPANDABLE TO 640K
8 SLOT MOTHER BOARD
FREE SOFTWARE
AZOTIC INDUSTRIES INC.
2026 W BELMONT
CHICAGO ILL 60618
(312)-975-1288
I YEAR WARRANTY ON DRIVES MONITORS
KEYBOARD POWER SUPPLIES.
10 YEAR WARRANTY ON MOTHER BOARDS
AND I/O CARDS. EXTENDED WARRANTY
AND MAINTANCE AVAILABLE.

COMING SOON
BBS SERVICE &
FAX SERVICE

WE STOCK
FLOPPY DISK DRIVES
HARD DISK DRIVES
MONITORS CABLES
I/O CARDS MODEMS
OCR PC-FAX EGA
SERVICE & REPAIRS

AMATEUR RADIO MAIL LISTS
Self-stick 1x1 labels
*** NEWLY LICENCED HAMS ***
*** ALL NEW UPDATES ***
*** UPDATED EACH WEEK ***
Total List = 462,728 (ZIP sorted)
Price is 2.5 cents each (4-up Cheshire)
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777

Multiband QRV 160-10 Dipole/V/Sloper
Ready to Use
Fastest Install
Concealed
Full Legal Power
No Lower Power Requirements
Tough
Flexible
Kink Proof
Low Noise
High Quality
Never Corrodes

$49.95 ppd.
and 48p Tech Manual

Antennas West
(801) 374-1084

SB E Electronic Transverters & Preampifiers
LTC14 144/144/230/230/230 MHz 540 MHz $549
LTC25 230 MHz 70 MHz 10W $549
MICRO-13 230/144 MHz 70 MHz 10W $479
MICRO-X 109/144 MHz 20W $499
DX series line noise preamps from $125
K series in sheet glass DBM from $129

TRANSVERTERS UNLIMITED
510-432-7000
25 MHz 70 MHz 28 MHz 50 MHz $270
TJ444 144/230 MHz 50 MHz $279
PA2300 230 MHz 2 W $499
PA2301 230 MHz 1 W $499
PA1325 230 MHz 5 W $429
HF800 High power relay 29K at 144 MHz $125
LR500 Medium power relay 1K at 144 MHz $69
Factory Authorized Dealer for SB Electronics
for North America

TRANSVERTERS UNLIMITED TRANSVERTERS UNLIMITED
BOX 9288 STATION A
TORONTO, ONTARIO
P.O. BOX 176
NEW BOSTON, NH 03070

W6SAI BOOKS
published by Bill Orr, W6SAI
and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated the Beam Antenna Handbook
includes the very latest state-of-the-art antenna design. Computer
generated beam dimensions, for the 40, 30, 20, 15, 12, 10 and
VHF bands are included. Also included is the need for time
cost calculations. Also covered are Beam height and optimum
azimuth of radiation, how element types and hardware
performance affects radiation patterns, feedlines, and matching
systems. Much more.

RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS
Learn how to build simple, economical wire antennas.

RP-WS Softbound $9.95

THE RADIO AMATEUR ANTENNA HANDBOOK
Contains lots of well illustrated construction projects for
vertical, long wire and, HF/VHF beam antennas. There
is an honest judgment of antenna gain figures, informa-
tion on the best and worst antenna locations and
heights, a long look at the quad vs. the yagi antenna,
information on baluns and how to use them, and new in-
formation on the popular Sloper and Delta Loop
antennas. The text is based on proven data plus practi-

RP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.

68 December 1987
Have You Been a Good Little Ham This Year?

EGE VIRGINIA
14803 Build America Drive, Bldg. B
Woodbridge, Virginia 22191
Information (703) 643-1063
Service Dept. (703) 494-8750
Store Hours: M-Tn: 10-6
F: 10-8
Sat. 10-4
Order Hours: M-F 9-7
Sat. 10-4
EGE NEW ENGLAND
8 Stiles Road
Salem, New Hampshire 03079
New Hampshire Orders,*
Info & Service: (603) 898-3750
Store Hours: MtuWf: 10-5
Th: 12-8
Sat. 10-4
Order & we'll credit you $1 for the call

LACOMBE DISTRIBUTORS
Our associate store:
Davis & Jackson Rd., P.O. Box 293
Lacombe, Louisiana 70445
Info & Service: (504) 882-5355

Terms: No personal checks accepted.
Prices do not include shipping. UPS COD fee: $1.50 per package. Prices are subject to change without notice or obligation.
Products are not sold for evaluation. Authorized returns are subject to a 15% restocking and handling fee and credit will be issued for use on your next purchase. EGE supports the manufacturers' warranties. To get a copy of a warranty prior to purchase, call customer service at 703-643-1063 and it will be furnished at no cost.

Antennas
Amateur HF Bands
Cushcraft, Butternut, KLM, Mosley, Hy-Gain, Mini-Products, B&W, Van Gordon, Hustler, Larsen, Antenna Specialists, Century, Smiley
Antennas in Stock
for Mobiles, Base Stations, and Handhelds
Everything from mini rubber duckies to huge monobanders
ASK FOR PACKAGE DEALS ON ANTENNAS AND ACCESSORIES
Also...
Antennas for Scanners, CBs, Marine, Commercial, and Short Wave Listening

For Orders & Quotes Call Toll Free: 800-336-4799
In New England (except NH): 800-237-0047
In Virginia: 800-572-4201

EGE inc™

more Radios

KDK
FM 240 2m Mobile
SONY
Receivers
REGENCY BEARCAT
Scanners
MIDLAND
CB Radios
COBRA
CBS, Radar Detectors, Phones
UNIDEN
CBS, Radar Detectors
WHISTLER
Radar Detectors

December 1987 69
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.
DISCOUNT PRICING
Panasonic CCTV
Wireless & Hardwired Alarm Systems
Experienced
State Licensed
For More Information

DETECTION DYNAMICS
4700 LOYOLA LANE, #119
AUSTIN, TX 78723 (512) 345-8401

SECURITY SYSTEMS
ALARM & CLOSED CIRCUIT TV

YOU NAME IT.
WE'VE GOT IT!
All Consolidated Electronics inc. we carry over 10,000 parts and products such as: fuses, semiconductors, batteries, capacitors, resistors, wire, cables, connectors, antennas, chemicals, speakers, test equipment, soldering equipment, stylus and cartridges, video heads, telephone accessories, and more. Consolidated Electronics is an authorized distributor for:

In last month’s column¹, in which we discussed the state of the art (SOA) in low-noise receivers and preamplifiers, I pointed out that some incredibly low noise figures are now possible using very affordable (less than $10) GaAsFETs. HEMTs (high electron mobility transistors), the latest rage, can cut noise figures by as much as 50 percent; though HEMT prices are pretty steep right now, they are dropping.

Last month’s column also discussed ways to decrease noise figure by proper component selection and cooling techniques. This month’s column will be more practical, stressing recommended circuitry, stability techniques, and device selection. We’ll review testing and talk about improvements that can be expected in the near future.

recommended circuits

By now you’re probably wondering what circuitry to use for GaAsFET preamplifiers. Reference 2 discussed recommended circuits for 144, 220, and 432 MHz. Those circuits still are close to optimum for a simple competitive preamplifier without any special components or tricky techniques.

Reference 3 also stressed that most of the noise figure in today’s typical Amateur preamplifiers is caused by losses in the input impedance matching network. Use only components with the highest possible unloaded Q. Cavity-type construction may be required, especially if noise figures of less than 0.5 dB are required on 432 MHz and above. However, that is beyond the scope of this month’s column.

output circuits

There are many types of output-matching circuits used in Amateur GaAsFET preamplifiers. Some of them are shown in fig. 1. It is desirable when selecting the output circuit to make sure that it has sufficient bandwidth so that it doesn’t become the bandwidth-limiting device in the preamplifier.

An output tank circuit similar to the one recommended for input matching is shown in fig. 1A. It is definitely not recommended and should be avoided for a number of reasons: first, because it will usually increase the gain well above the desired operating level, 15 to 20 dB, as discussed in reference 1; second, because it’s very difficult to decouple a high-impedance output tank circuit from an input circuit sufficiently, thus creating a source of feedback and potential oscillations; and third, because the reflected impedance of the following amplifier stage on the tuning of this output circuit may cause

¹ Reference 1.

fig. 1. Typical GaAsFET output-matching techniques. C_b is an rf bypass capacitor; C_c is the coupling capacitor as described in the text. (A) shows a tuned tank circuit (not recommended); (B), a bifilar wound 4:1 transformer; (C), resistive loading; and (D), an L-network.
additional instability when the preamplifier is placed in your system.

The bifilar-wound output transformer (fig. 1B), first proposed for GaAsFET preamplifiers by Bob Sutherland, W6FO, has stood the test of time. It's easy to construct and works well up through 432 MHz. 5

Resistive loading, shown in fig. 1C, has been used in the past, particularly where gain is very high. 6 It certainly calms down hot high-gain devices, but will also lower the output power and the dynamic range of a preamplifier.

In reference 3 I introduced a simple form of L-network that effectively replaces the bifilar type of transformer matching (fig. 1D). It's not only easier to build, but also provides some selectivity. Furthermore, it typically yields slightly higher gain and output power (at the 1-dB compression point) than the bifilar transformer.

final circuit

Figure 2A shows a recommended GaAsFET preamplifier circuit for the 144, 220, 432, and 903-MHz Amateur bands. It uses a capacitance-coupled input tank circuit as described in reference 1. The output circuit is an L-network as just described. Note that the capacitance of the output coupling capacitor is much lower than typically seen in other GaAsFET preamplifiers.

Source biasing is used because it's simple, effective, and requires only a single power supply. The drain voltage is supplied from an inexpensive three-terminal voltage regulator through a limiting resistor. This provides simple protection to the GaAsFET. 7 The zener diode, CR1, is simply used for over-voltage protection and will be described shortly.

Note that a ferrite bead is placed on the drain lead. At the frequency of interest it dissipates only 0.5 to 1.0 dB of the preamplifier gain. However, in the microwave region where most GaAsFETs still have plenty of gain, it prevents undesirable oscillations.

component selection

Before building a preamplifier, you should first consider which components are to be used. The GaAsFET choice is important, but don't get carried away by using one that is specified well above your operating frequency, because you may end up with a higher noise figure than expected at a price that isn't cost effective. 1

It's best to choose a GaAsFET that's specified on or just above your band of interest. Many GaAsFETs are now available, especially some that were popular several years ago but are now obsolete by today's standards. Most will operate in the circuit shown in fig. 2 with only slight differences in tuning. Dual-gate GaAsFETs can also be used in this circuit if the second gate is biased as shown in fig. 2B.

Table 1 has been prepared to assist you in GaAsFET selection. Several devices, mostly those that are popular with Amateurs, are listed. While there are many GaAsFET manufacturers, most semiconductor suppliers don't like to deal with individuals except through distributors (for instance, Avantek and Motorola) or unless a large order (typically greater than $50) is placed. Fortunately, at least two Amateur suppliers can help—not only with GaAsFETs, but with some of the hard-to-find components. 3, 4

As described in reference 1, the input-matching capacitors should have a very high unloaded Q; the Johnson or equivalent air variables are appropriate. Likewise, the inductors described in the component list are close to optimum for unloaded Q. Always use large-diameter (No. 14 AWG or larger) copper or copper-plated wire. Keep inductors away from nearby objects because they can cause the unloaded Q to decrease.

Low insertion loss connectors with good impedance characteristics are desirable at the preamplifier input. Type N, SMA, or TNC are recommended. However, less expensive connectors can be used for the preamplifier output connector when losses aren't a great concern.

The capacitive values of the source bypasses aren't critical, but they should be chip or leadless ceramic or porcelain types. Suitable inexpensive types are available from Michigan Microwave. 5, 6 The rest of the components don't require further explanation. The type of enclosure to be used will be described shortly.

Table 1. Typical GaAsFETs popular with Amateurs

<table>
<thead>
<tr>
<th>Type</th>
<th>Noise figure at frequency (GHz)</th>
<th>Approximate price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT 8110</td>
<td>1.1 dB typical at 4</td>
<td>$27.00</td>
<td></td>
</tr>
<tr>
<td>AT 10135</td>
<td>0.5 dB typical at 4</td>
<td>$10.85</td>
<td></td>
</tr>
<tr>
<td>CFY 19</td>
<td>1.8 dB maximum at 6</td>
<td></td>
<td>low cost</td>
</tr>
<tr>
<td>MGF 1100</td>
<td>2.5 dB typical at 4</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>MGF 1202</td>
<td>2.0 dB maximum at 4</td>
<td>$10.00</td>
<td>discontinued use MGF 1302 replaces MGF 1202</td>
</tr>
<tr>
<td>MGF 1302</td>
<td>1.4 dB maximum at 4</td>
<td>$10.00</td>
<td>replaces MGF 1202</td>
</tr>
<tr>
<td>MGF 1402/2SK274</td>
<td>1.4 dB maximum at 4</td>
<td>$14.00</td>
<td></td>
</tr>
<tr>
<td>MGF 1412/2SK275</td>
<td>0.8 dB typical at 4</td>
<td>$26.00</td>
<td></td>
</tr>
<tr>
<td>MRF 966</td>
<td>1.2 dB typical at 1</td>
<td>$2.00</td>
<td>dual-gate HEMT</td>
</tr>
<tr>
<td>NE 202</td>
<td>1.0 dB typical at 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 0453</td>
<td>0.8 dB typical at 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE 4137</td>
<td>1.3 dB typical at 0.8</td>
<td>$3.00</td>
<td>dual-gate</td>
</tr>
<tr>
<td>NE 72084/2SK571</td>
<td>0.6 dB typical at 2</td>
<td>$10.00</td>
<td>replaces MGF 1402</td>
</tr>
</tbody>
</table>

2. Steve Kostro, N2CLI, 8 D. 1, Box 341A, Frenchtown, New Jersey 08826.
construction techniques

Just like other low-noise circuitry, GaAsFET preamplifiers require good construction practices if optimum performance is to be achieved. Poor construction will result in mediocre performance indicated by low gain, moderate to high noise figure, and instability — or all of the above.

Choose a shielded enclosure. I prefer cast aluminum boxes such as the Bud model CU123 or CU124, the Hammond 1590A or 1590B, or equivalent. Attach a piece of ordinary double-sided printed circuit board to the cover of the enclosure as shown in fig. 3A; it can be held in place by the input-output connectors and the input power connections.

Figure 3 can be used as a guide to recommended component location for a GaAsFET preamplifier. Figure 3A is a top view of the subchassis; fig. 3B shows the side view. In particular, note the position of J1, C1, C2, and L1, since their location and proximity to each other help keep input losses (as well as noise figure) low. The raised bracket shown in fig. 3C is used to mount the GaAsFET at the proper height so it can be connected directly to the matching network using only its gate lead. At the same time, the leadless or chip capacitors can be easily attached to this bracket.

stability considerations

Like bipolar transistors, GaAsFETs can be very unstable if they’re used improperly. Poor circuit performance can be traced to rf as well as dc instability or both!

When GaAsFETs first appeared on the Amateur scene, dc stability was a real problem. Negative gate biasing was often used, and when it failed (which seemed to be quite often), the expensive GaAsFETs died a quick death. Nowadays, most Amateur circuits use source biasing as shown in fig. 2. This way, the drain current of the device is automatically limited.

If source biasing is used, rf bypassing can be a problem. Always use bypass capacitors that have little or no series inductance such as the chip type. The actual capacitance value isn’t important as long as the capacitive reactance is below 1 or 2 ohms at the operating frequency.

A ferrite bead on the drain lead will help eliminate rf instability in the microwave region, as mentioned previously. Likewise, a ferrite bead on the leads of any resistors or chokes (if used) in the rf path is recommended. I’ve seen some preamplifiers that have a diplexer incorporated on the output of the preamplifier using a parallel resonant circuit and a 50-ohm resistor.

Sometimes the enclosure can be a problem, since it may act like a waveguide — but the lower the height of the enclosure, the less likely the problem is to occur. Proper component layout is, of course, recommended. Shields between the input and output circuits are also suggested. I’ve seen some commercial suppliers add ferrite absorbers inside an enclosure as a last resort.

GaAsFET preamplifiers have moderately high input and output impedances and usually don’t have much isolation between the input and output circuits. Remember that GaAsFETs are like the old triode vacuum tubes that were often neutralized (ugh!). For circuit stability, they rely on a low capacitance between the gate and drain, and on keeping the gain at a reasonable level.

Most Amateurs tune up their preamplifiers in a well-matched environ-
ment with a good (low VSWR) input and output load. Then, when everything looks great, they often insert the preamplifier into a system that’s matched at the frequency of operation but highly reactive out of band. If the gain is too high, if the loading of the following stage is the wrong impedance or phase, or if the reverse isolation of the preamplifier is inadequate (more on this shortly), the preamplifier may become unstable and “take off and fly.”

For the reasons stated above, many commerical suppliers follow their preamplifiers with a ferrite isolator or circulator which effectively presents a good output impedance match irrespective of the load. This is great, but the cost of such a device is often more than the price of the typical Amateur GaAsFET preamplifier alone! Needless to say, beware of potential instabilities.

modifications to existing preamplifiers

Often I’m asked if the commercial Amateur GaAsFET preamplifiers can be modified or improved. The answer is usually yes — if there’s sufficient room to work within the enclosure.

I recently had one of the 70-cm (432 MHz) EMEers send me his very low noise GaAsFET preamplifier. It worked fine on his bench, but oscillated when it was inserted in his EME system. I looked at the circuit, I was shocked; there was the typical tuned output transformer (fig. 3). Recommended construction techniques for a GaAsFET preamplifier used on 144 through 903 MHz: (A) looking down on component side; (B) side view. For clarity, some components are not shown. (C) shows grounding pedestal for GaAsFET.

GaAsFET can be substituted in an existing preamplifier. I’m sure there are other instances when minor circuit changes can be made to an existing preamplifier following the guidelines in this month’s column. After all, who cares if a preamplifier has close to a 0.0-dB noise figure if it won’t work in a realistic environment? Jump in and rescue it rather than letting it rest unused in your desk drawer.

GaAsFET destruction

I still hear horror stories about GaAsFETs that get destroyed. These cases usually involve mast-mounted preamplifiers. More often than not, the problems are caused by poor antenna change over relays or lack of relay sequencing.

Most modern low-noise solid-state devices are moderately reliable and can usually withstand low levels of rf (100 milliwatts, +20 dBm, or less) for at least a few milliseconds, the typical switching speed of a normal T/R relay. However, for best reliability and continued low noise figures, rf levels should be kept at least 10 db lower — not to exceed 10 milliwatts (+ 10 dBm).

Many of the commonly available T/R relays used by Amateurs have only 30 to 40 dB of receiver isolation on 144 MHz, with 25 to 30 dB typical at 432 MHz. With 500 watts (+ 57 dBm) of power and 30 dB of isolation, the leak-through power on the input of the preamplifier would be 0.5 watts (+27 dBm), high enough to blow out even a stiff transistor!

parts list

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>0.5 to 10 pF low-loss air variable (see text)</td>
<td></td>
</tr>
<tr>
<td>C3, C4</td>
<td>Leadless or chip bypass capacitor, 470-1000 pF (see text).</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>144 MHz: 6.8-7.5 pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220 MHz: 4.7-5 pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>432 MHz: 3.8 pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>903 MHz: 3.0 pF</td>
<td></td>
</tr>
<tr>
<td>CR1</td>
<td>5.6 volt zener, 1N751 or equivalent</td>
<td></td>
</tr>
<tr>
<td>CR2, CR3</td>
<td>1N4601 or equivalent silicon diode</td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td>Ferrite bead: Type 3B, 4A, 43, or equivalent</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>Low-noise input connector. N. SMA or TNC preferred.</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>Output connector. Type not critical.</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>144 MHz: 5 turns No. 14 on 3/8-inch ID, 0.5 inch long.</td>
<td>903 MHz: thin (0.02-0.03 inch) copper strap 1.0 inch long overall.</td>
</tr>
<tr>
<td></td>
<td>220 MHz: 5 turns No. 14 on 0.25-inch ID, 0.5 inch long.</td>
<td>144 MHz: 1 turn No. 14 on 0.32-inch ID. Length of wire 2 inches overall.</td>
</tr>
<tr>
<td></td>
<td>432 MHz: 1 turn No. 14 on 0.32-inch ID. Length of wire 2 inches overall.</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>144 MHz: 10 turns No. 24 on 0.1-inch ID, 0.25 inch wide and 0.5 inch long.</td>
<td>903 MHz: 3 turns of No. 24 on 0.1-inch ID, 0.25 inch long.</td>
</tr>
<tr>
<td></td>
<td>220 MHz: 8 turns of No. 24 on 0.1-inch ID, 0.5 inch long.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>432 MHz: 5 turns of No. 24 on 0.1-inch ID, 0.5 inch long.</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>See text and table 1</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>See text and table 1</td>
<td></td>
</tr>
<tr>
<td>R1, R2</td>
<td>200 ohms typical. Select for Ip of 7-10 µA (see text).</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>100 ohms typical (see text).</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>5.0-volt, three-terminal voltage regulator, 78L05 or equivalent.</td>
<td></td>
</tr>
</tbody>
</table>
You can best limit the rf level on the input of your preamplifier by use of a high isolation relay, typically 50 dB. Better yet, use a dual relay system like the one suggested in references 8 or 9. The second relay can be a low-cost type and will significantly increase relay isolation. Furthermore, on transmit, the preamplifier can be returned to a 50-ohm load, thus preventing any tendency towards oscillation and possible destruction.

As described in references 8 or 9, relay sequencing is highly recommended. Chip Angle, N6CA, has proposed a more sophisticated sequencing scheme built around a quad operational amplifier. It provides several different delay times for switching receivers, exciters, and transmitters and is suggested for extra protection.

Don't overlook the dc biasing conditions just discussed. Source biasing and voltage-regulated power supplies will help GaAsFETs. Remember also that dc spikes are another potential problem. That is why I've always recommended the use of three-terminal voltage regulators with zener diode over-voltage protection as shown in fig. 2.

Sometimes I see Amateur preamplifiers with a spike-protection zener diode shunted between the drain and source. If you use this technique, don't forget to use ferrite beads in series with the diode, since it's in shunt with the rf path and could introduce rf feedback.

As I've recommended many times before, provide a dedicated power supply for your low-noise preamplifier and a separate dedicated supply for all relays. Inductive spikes from switching relays can kill any low-voltage unprotected device operating on the same voltage line! If only one supply is used, provide spike limiting diodes on the relays, as recommended in reference 9.

Another sporadic problem is handling GaAsFETs while inserting or soldering them into circuits. Always use a low-power soldering iron with the tip grounded to the chassis. Also, first ground yourself to the chassis or use a "wrist strap" before contacting a GaAsFET. Static kills GaAsFETs!

Finally, beware of rf and static discharges such as lightning. The best protection is simply removing your preamplifier from the system when it's not in use. Input filtering will go a long way towards protection of a low-noise preamplifier. In this regard, the capacitance-coupled input circuit shown in fig. 2 is highly recommended.

TVRO LNAs

The TVRO (TV receive only) LNAs (low-noise amplifiers) are literally everywhere, now that much of satellite TV is scrambled. I've seen them for sale at flea markets for less than $30! Typically, they have 50 dB of gain specified for operation from 3.7 to 4.2 GHz and use two or three stages of GaAsFETs followed by three to four stages of bipolar transistors.

TVRO LNAs are usually great "as is" for operation on 3456 MHz, and will typically have a 1.5-dB noise figure in the Amateur band. Dave Mascaro, WA3JUF, recently described not only how to use them as receiver preamplifiers, but also how to modify them for use as low-level transmitter amplifiers. They're also a great source of spare parts, even if they're defective units (which usually makes them cheaper yet!). Many small UHF and microwave components such as tuning and chip capacitors — not to mention several very low noise GaAsFETs and bipolar transistors — are easily removed!

microwave techniques

On the microwave bands (typically 1296 MHz and above), different matching techniques such as the NRAO lossless feedback circuit are often used. The NRAO/W6PO type preamplifier that uses this technique is popular on 1296 MHz. On the higher microwave bands, dielectric, stub, screw, and empirical matching tuners are often used as described in reference 4. Commercial suppliers often use ferrite isolators or hybrid couplers to improve bandwidth and impedance matching.

This month's column mainly referred to VHF and lower UHF operation because this is where most of the activity is. Upper UHF or microwave techniques, a completely separate subject, will be discussed in a future column.

monolithic GaAsFET amplifiers

So far I've mainly addressed homebrew preamplifiers. As I said before, technology moves fast, so it shouldn't be surprising to see that we now have commercial GaAsFET MMICs (Monolithic Integrated Circuits). Some are simply broadband, moderate-gain (6 to 10 dB) types such as the Microwave Semiconductor Corporation (MSC) CGY-40 and the Nippon Electric Company (NEC) NEPA 1001.

MSC, NEC, Harris Corporation, Pacific Monolithics, and others now supply a broad range of MMIC amplifiers with moderate to high gain as well as entire subsystems through 10 GHz all using GaAsFET technology. These units, typically with 3- to 5-dB noise figures, are usable as medium-performance preamplifiers, but more practically, as second-stage amplifiers. In addition, performance improvements are constantly occurring.

There are a few precautions to observe when using GaAsFET MMICs. Many of these amplifiers require multiple power supplies. Prices are still high, but will drop.

Last month I mentioned the phenomenon of 1/f or low-frequency noise. For illustration, note that the specified noise figure of the Minicircuits Labs model ZHL 1042J broadband GaAsFET amplifier is only 4.5 dB above 100 MHz, but increases to 18 dB at 10 MHz!

tuning and testing

If you can't tune or test a low-noise preamplifier properly, it won't achieve the low noise and moderate gain values that we've discussed so far. However, as I stated previously in both this column and in reference 2, a GaAsFET preamplifier can easily be tuned in line for maximum gain with
Now you can have the BEST in a radio data communications terminal with the NEW DS-3200.

Recognizing the chief weakness of previously available computer-based terminals is RFI generation and susceptibility, HAL has designed the fully-shielded DS-3200 for operation in the radio data communications environment. No longer do you have to QRT when that rare DX station's signal dips near the noise level!

The DS-3200 is provided with an extensive RTTY software package which emulates the operation of our MPT3100/DSK3100 combination for message processing and handling. Continuous save to disk of all received text, direct transmission of selected files from disk, and full editing capability are just a few of the features of this "user-friendly" software package. Plus, we have included the latest release of MS-DOS with GW BASIC!

The built-in RS-232C serial port allows the use of the DS-3200 with an external demodulator such as the HAL ST-5000, ST-6000, or ST-8000. Or, add the HAL PCI-2000 for a completely self-contained RTTY/CW terminal and demodulator. Also, with the use of a second RS-232C serial port the DS-3200 can be used with your favorite TNC on Packet!

The DS-3200 with its IBM PC XT-style architecture gives you virtually unlimited flexibility for future expansion. Here is a list of just some of its hardware features: 8088 CPU, 640KB RAM, RS-232C Serial Port, Parallel Printer Port, Clock/Calendar with Battery Back-Up, Two 360KB Floppy Disk Drives OR One 360KB Floppy and One 20MB Hard Disk Drive, HERCULES-compatible Monochrome Graphics Adapter with High-Resolution 12 Inch Monochrome Video Monitor.

The DS-3200 is THE choice for modern radio data communications.

Write or call for complete specifications on the NEW DS-3200.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, IL 61801
(217) 367-7373 TWX 910-245-0784

Trademarks: IBM, International Business Machines Corporation
MS-DOS, Microsoft Corporation
GW BASIC, Microsoft Corporation
HERCULES, Hercules Computer Technology
only a small degradation in noise figure.

A weak signal source can be used for tuning by having a local Amateur radiate a small amount of rf on your favorite frequency. In this case, the preamplifier should be tuned for best signal + noise ratio (SNR), not gain. This can be tricky at best. EMEers often tune their preamplifiers for maximum sun noise referenced to a quiet sky.\(^{13}\)

Reference 2 also discussed the “reverse isolation” test, which greatly simplifies the testing of the preamplifier stability margin. For system stability, it’s important that the reverse gain (really a loss) be at least 6 to 10 dB greater than the forward gain of a preamplifier. For instance, a GaAsFET preamplifier with a gain of 20 dB should have a loss of at least 26 dB when reversed from end to end. If not, it may not be stable when used in a system that isn’t 50 ohms from dc to daylight!

If you’re lucky enough to own or borrow the use of a noise figure generator, preamplifier tuneup is considerably simplified. If not, attend one of the many VHF conferences often referred to under “Important VHF/UHF Events” at the end of each month’s “VHF/UHF World.” These conferences often have the latest in noise figure gear available, which you can use to optimize your preamplifier noise figure and measure your performance against that of your peers.

A few precautions about noise figure generators are in order. For best noise figure accuracy, the so-called “excess noise ratio” of the noise source should be only a few dB greater than the noise figure of the device under test. Furthermore, the VSWR of the noise source must be very low both in the “on” and “off” states.

Low VSWR can be assured only with a highly padded down noise source or one followed by a ferrite isolator; both, however, are sources of inaccuracy. Most of the older noise generators have 15 to 16 dB excess noise. A 10-dB attenuator pad can be added in series with the output, but this will affect absolute accuracy of the results. To solve this problem, Hewlett-Packard has recently introduced the model 346A noise source for use on its popular model 8970 noise figure generator. The 346A noise source has about a 5.2-dB excess noise ratio (versus 15 to 16 dB on the older model 346B) and is highly recommended for optimization of very low noise figure preamplifiers, especially those with GaAsFETs.

Finally, if you really want to “zero in” on the lowest possible noise figure, you must not only tune for optimum noise match, but also optimize the dc operating parameters of the preamplifier. This is most easily accomplished by placing a pot either in series with or as a direct replacement of the source resistor and the resistor in series with the drain (see fig. 2).

To prevent excess current, it’s advisable to place a small resistor (perhaps 10 to 50 ohms) in series with these pots. This will provide full adjustment capability. With all these “handles” on the preamplifier, you’ll have to act like an octopus to tune everything!

Special Techniques

As mentioned in last month’s column, many techniques are available that will allow you to achieve a low noise figure. The most obvious is to use components with the highest unloaded Q. Then select a solid-state device with the lowest possible noise figure. This will probably be a GaAsFET below 4 GHz and a HEMT above that frequency. If you can afford a cryogenic cooler, or find one at a surplus sale, they’re highly recommended. Don’t forget that the optimization of noise figure, as discussed above, is very important.

It should also be obvious from what we’ve discussed that the temperature of the preamplifier is very important. Therefore, if your preamplifier is mast- or antenna-mounted, it should be shielded from heat or radiation from the sun. The latter is particularly important for EME operation, which often takes place during the day, when the preamplifier is exposed to sunlight.

Predictions for the Future

Low-noise HEMTs will eventually trickle down to Amateurs, as will even lower-noise GaAsFETs. Who knows? Maybe even lower noise-figure devices will be discovered that can surpass present HEMT performance. There are certainly customers waiting in the wings for any improvements, however small, and we all know that improvements are market driven.

One of the brightest and perhaps most rapidly accelerating technologies is the field of ceramic superconductivity. Every month an improved ceramic material seems to be discovered that can operate at an even higher temperature and still achieve zero resistivity. As I write this, the latest reported superconductivity has taken place at just below room temperatures; if this technology can be applied to semiconductors, noise figures may yet go to 0.0 dB at room temperature!

Although it doesn’t affect receiver technology, semiconductor manufacturers have made great strides in the production of power GaAsFETs. Some presently available devices will deliver 4 to 7 watts of linear output power up through 10 GHz with gains of 7 to 10 dB. Even higher power devices are being developed.

What this means is that we can now achieve moderate amounts of linear power well into the microwave frequencies (bands) with simple-to-use devices requiring only one or two low-voltage power supplies. There’s no longer any excuse for not using antenna-mounted power amplifiers, thus removing one of the last components of loss in the microwave system.

Summary

The SOA is rapidly changing. Noise figures are rapidly approaching the ultimate of 0.0 dB. Homebrew GaAsFET preamplifiers are now being used by Amateurs up through 3 cm (10.5 GHz) and perhaps higher. Some of the circuit and construction techniques were described in this and last month’s columns.
Commercial Amateur suppliers are now providing SOA GaAsFET preamplifiers up through 10.356 GHz. With the arrival of power GaAsFETs and the use of antenna-mounted receivers and power amplifiers, we’ll soon have to rethink our antenna designs and methods to aim our antennas accurately!

new records

In last month’s column, I reported that the North American 3-cm (10 GHz) DX record had just been broken. Since then, I’ve been able to confirm that a two-way QSO took place on July 19, 1987 between Glen Elmore, N6GN/6, in Ball Rock, California (CM89PX) and Bob Dildine, W6SFH/6, in Mt. Frazier, California (DM05MS). They used narrow-band CW on 10.368 GHz for a record-setting DX of 413.8 miles (665.7 km). Both stations were running 200 to 300 milliwatts to 4-foot dishes, with 4.0-dB receiver noise figures. This was a joint effort with four other stations located throughout California. Congratulations to Glen and Bob on their new record!

Next I want to apologize to Jim Crow, WA5ICW, for listing his call sign incorrectly in the last publication of the North American 5760-MHz DX records.¹⁴

Last but surely not least, the North American 6-cm DX record has recently been extended. On July 4, 1987 Tony Bickel, K5PJR, in Grove, Oklahoma (EM260P) and Larry Nichols, W5UGO/0, in Campbell, Nebraska (EN00PH) had a two-way CW QSO on 5760 MHz over a distance of 322.2 miles (534.6 km). Both stations were running 5 watts to 4-foot dishes with 2- to 4-dB noise figure receivers. Congratulations to Tony and Larry.

silent key

It is with great sorrow that I report that Willis (Bill) Conkel, W6DNG, an EME pioneer, passed away on July 13, 1987. Bill was on one end of the first two-way, 2-meter EME QSO. He had developed many novel weak signal techniques and built over 30 different antenna systems before he accomplished this feat. In a letter I just
received from OH1NL, the other half of his history-making contact, Lennart told me how they had run 74 EME schedules before their first successful OSO. That’s persistence!

Bill had since moved from Long Beach to Lindsay, California. Ironically, he was building up a new 2-meter EME station at the time of his death. I’ll never forget our meetings together. We’ve lost a great experimenter and friend. SK.

important VHF/UHF events:

December 13 Predicted peak of the Geminids meteor shower at 1900 UTC
December 20 New moon
December 21 ± 1 month, winter peak of sporadic E propagation
December 22 Predicted peak of the Ursids meteor shower at 2200 UTC
December 22 EME perigee
January 4 Predicted peak of the Quadrantids meteor shower at 0030 UTC
January 19 New moon
January 19 EME perigee
January 23-25 ARRL January VHF Sweepstakes Contest

REFERENCES

SUPER COMSHACK 64
Programmable Repeater Controller/HF & YHF Remotes/Autopatch

REMOTE #1
CS64S * HM1 * CART * CS8 * BASE TX/RX
REPEATER CONTROLLER
* Change all access codes remotely
* Synthesized male/female voice
* Program mailbox or ID tail with touchtones from HT
* Alarm clock & auto excite mode
* Macro commands; 22 digits max
* 32 CTCSS manual & auto paging
* Code priority & voice feedback
* Multifunction voice alarm clock
* 10 Memories/auto mode sel.
* Scan up/down sel. rate or step
* Voice echo, all control commands

AUTOPATCH
* 300 Auto/quick dial mem. recall
* 300 call signs paged/32 sub tone
* 50 enable/disable tel. **’s
* Hi/Lo priority access codes
* Directed/general & reverse page
* Full or Half duplex (level cont.)
* Security mode / TT feed back on/off
* Store MCI/Sprint tel. **’s
* Reverse Patch active all modes
* Call waiting/quick dial & reset
VHF REMOTE #1
* Dual VFO’s/Rev/Split/COR detect
* Set Scan Inc. & offset/var. resume

MINI (BEAR CAT) COMPUTER CONTROL FT-727R
Programs and Scans 100 ch. in Ham/General coverage. Converts HT into a powerful 100 ch. scanner & programs all for field use!
* Digital “S” meter; stops scan from S(1-9); Auto resume
* Loads & programs all FT-727R parameters in less that 15 secs.
* Includes hardware & disk for C64 or IBM PC

MINI COMPUTER CONTROL FT-727R
Models: DCPS $119.95

System Options
* External Relay Control 3 DPDT relays + 5 open collector outputs.. CS-8 $79.95
* EPROM Auto boot Cartridge customized with your system............CART $99.95
* Beam control; speaks bearing and rotates beam .1 degree incre.....HM1 $49.95
* Manual (Refunded)............MINI $15.00
* Row & cal. freq. control..RPF $149.95
* C64 D.C. Switcher P.S....DCPS $119.95

12v C64 SWITCHER
* Draws 1.1A @12v.
* 70kHz 75% efficient
* Outputs 5v @2 amps and 9 vac 60Hz
* Crystal time base
* Plugs into C64 power

MODEL DCPS $119.95

Touchoe 4 Digit Decoder
& on/off latch with all 16 digits

Audio Blaster IC-02/04 AT/2AT/U16/FT209/FT727R
Module installs inside the radio in 15 Min. Boost audio to 1 watt! Low standby drain/Corrects low audio/1000’s of happy users. Miniature audio amplifier --> WOW!! Used by Police, fire, Emergency, when it needs to be HEARD!

FOR ALL H.T.’S

MODEL AB1 $19.95

Expandable Repeater on/off control

* Low power CMOS +5 to +12 Volts
* User programmable 50,000; 4 digit codes
* Send code once to turn on; again to turn off
* Momentary & Latch output drives relay
* Wrong digit reset; no faulting; 2 to 4 digits
* Mute speaker audio until call is received
* LED displays latch state; Optional 4 digit extra custom latch.(7225) IC’s $6.95 ea.

MODEL TSD $59.95

Engineering Consulting 563 Candlewood St. Brea, CA. 92621 Tel: 714-671-2009
Mastercard ** Visa ** Check ** M.O. ** CA Res. Add 8% Tel: 714-671-2009

December 1987
The magazine was over 50 years old, but the photograph was quite clear. The young man was standing at a desk or drafting board, his head bowed in concentration. Several graphs and a slide rule were visible on the table. He was writing something on a piece of paper, oblivious to the photographer whose picture forever froze in time a glimpse of the young radio engineer at work (see fig. 1). Could he possibly have realized that in due course he would found a communications manufacturing empire?

Arthur A. Collins, 9CXX, had embarked upon a risky business — making money manufacturing Amateur Radio equipment. Starting a new company in the depths of the depression was uncertain enough. He was unknown to Amateurs at large, and the market he viewed was very small — fewer than 15,000 hams. And most of them had little money to spend on ham gear! Still, 9CXX’s reputation was good — good enough to spur an order for four 1.5-kilowatt, a-m/CW transmitters to be delivered to Admiral Byrd for his forthcoming Antarctic expedition.

Why had the Admiral bought the transmitters from a relatively unknown source? One reason was that 9CXX had handled messages from Byrd at the North Pole when other stations couldn’t make the contact. 9CXX had scheduled KEGK, the S.S. Chantier, at Spitzbergen on 37.5 meters and had also worked KNN, the Josephine Ford, Byrd’s Fokker airplane as it flew towards the pole. The Admiral knew a capable fellow when he met one, and the upshot was that Art Collins built the greater share of the transmitting gear for Byrd’s trip to the South Pole.

design problems

When 9CXX started designing transmitters for sale to hams, his experience in building his own station was invaluable. He knew how unreliable ham transmitters were! It was an ongoing battle, he knew, to keep a 20-meter phone transmitter on the air — even a small one. And Byrd wanted kilowatt capability all the way up to 16 meters!

In 1933 there were only a few 20-meter phone operators in the world. Other Amateurs looked upon these supermen with awe. Building a low-power 20-meter phone was an exercise in frustration. Tubes ran red in the breadboard rigs. RF skipped merrily through rf chokes and ran down power and microphone cables. The audio system squealed with feedback, meters banged against the pin, and very little rf ever reached the antenna. And the idea of building a kilowatt 20-meter phone transmitter? Out of the question! One or two hams knew — or thought they knew — how to do it, but they kept their plans a secret, or so it seemed.

Art Collins, however, had the concept of systems engineering in his mind decades before the term became popular. Years later, he told me that he had broken the difficult design problem down into four areas: how to keep rf where it belonged in the transmitter; how to provide sufficient drive for proper phone operation; how to couple the energy to the antenna; and finally, how to package the whole transmitter so that it could be shipped in working condition to the buyer.

All of these concepts had been discussed in greater or lesser degree in The Proceedings of the I.R.E., but no one had put the ideas together to construct a practical, inexpensive short-wave transmitter that would work on
a large number of frequencies under difficult operating conditions.

Months before the Byrd contract arrived, a small ad appeared in the January 1932 issue of QST, announcing “crystal transmitters” of radically new design and capable of high output on 20 meters (fig. 2). The transmitters were supplied in kit form, with prices starting at $37.25. The advertiser was Arthur A. Collins Radio Laboratories in Cedar Rapids, Iowa.

The next ad (in the March 1932 edition of QST) dropped the kit idea (fig. 3). The lowest priced transmitter (presumably not a kit) was now only $33.95 and the company name had been changed to Collins Radio Transmitters. A complete line of power supplies, modulators, and “input equipment” was also listed.

The ad in the May 1932 issue of QST suggested that the little company was now a successful business. Shown in the ad was a photo of a 150-watt, 20-meter phone transmitter, resplendent with seven meters and mounted neatly in a steel rack (fig. 4). The price? A mere $285.70. (At the time, I mailed a penny postcard to Collins Radio Transmitters asking for full information. Alas, the $33.95 transmitter

![Crystal Transmitters](image)

Crystal Transmitters

Radically new design suitable for Class B modulation or high output C.W. on 14, 7 and 3.5 M.C.

Consists of crystal-oscillator, buffer amplifier, and Class C output amplifier mounted on polished aluminum and hard rubber chassis with plug-in coils and plug-in crystal holder for quick change of frequency. Complete Kits, less tubes, crystal and power supply:

- 210 Output $37.25
- 203A Output $47.50
- 852 Output $47.25

The smoothest, neatest little rig you ever saw — and what a kick she has!

Immediate Delivery

Write for data sheets

ARTHUR A. COLLINS

Cedar Rapids, Iowa Radio Laboratories, Inc., W9CXX

fig. 2. Collins kits? Yes, the first ad Art Collins ran in QST advertised transmitter kits. He soon saw the folly of this arrangement and thereafter sold only finished products!

![Collins CRYSTAL TRANSMITTERS](image)

Collins Crystal Transmitters

are fast becoming the popular choice of both the old-timer who has learned to appreciate the value of trouble-free, efficient performance on all bands — and also the beginner who wants to start right. Write at once for full details and photographs. Units from $33.95 up with carrier powers of 30 to 300 watts. Also a complete line of power supplies, modulator and input equipment, relay racks, quartz crystals, etc.

Collins Radio Transmitters

CEDAR RAPIDS, IOWA

(Arthur A. Collins, W9CXX)

fig. 3. Collins was now in the transmitter business. Note that he was also selling auxiliary components. The company had clearly outgrown the “laboratory” concept featured in the first advertisement.

![For Really FINE EQUIPMENT](image)

For Really FINE EQUIPMENT

150-Watt Phone Transmitter
Class B Modulated

- insist on COLLINS design

Send for Bulletin 100 describing complete transmitters priced from $71.00 to $267.00, with power supplies; or Bulletin 101 listing relay racks, power transformers and full line of transmitting parts.

Collins Radio Transmitters
CEDAR RAPIDS, IOWA

fig. 4. The 150-watt rack-mounted phone transmitter. Quality was so good that the little transmitter was bought by several South American broadcast stations. The sky-high price of $287.50 prevented many Amateurs from buying.
was now $73.60. Regrettfully, I concluded I could never afford a Collins transmitter.

Finally, in early 1933 the Collins company announced the 30W transmitter (fig. 5). This was a neat, two-deck job, with four meters (meters were very important in those days). The price was $125.00. Almost as an afterthought, a companion modulator that would “make a phone that really does things” was offered as well.

Interest in the 30W prompted Collins to make a complete, compact phone transmitter - the 32B. The price was held at $125.00.

By mid-1933 the country was starting to come out of the depression. Business was picking up, unemployment had dropped a bit, and people seemed to have a little money to spend. Enough Amateurs bought the Collins 32B transmitter — and liked it — to make Collins a “big name” in the communication industry (fig. 6).

To hedge his bet, Collins also brought out a simple CW version of the transmitter, but sales were poor in comparison with sales of the phone version.

rapid expansion

By autumn of 1933 the Collins Radio Company was in full swing. A full-page ad in the November QST revealed an impressive line of transmitting components — transformers built to Collins specs by the Chicago Transformer Company. And in early 1933, the company announced the 150B phone transmitters used a state-of-the-art rf deck that was included in higher power units as well (up to the kilowatt level). The three-stage circuit, built on an aluminum chassis and panel, utilized three plug-in coils to provide operation between 1700 kilocycles and 15 megacycles. Power output was at least 100 watts at any frequency in that range.

fig. 5. The 30-watt CW transmitter was a success among well-to-do Amateurs. By redesigning the circuit, Collins produced the famous model 32A and 32B transmitters. Selling at the same price as the obsolete 30W, the 32B was an instant hit among DX phone operators.

fig. 6. The Collins 32B was the first low-power “all-band” Amateur phone transmitter that worked. Mine is still working — on 160 meters.

fig. 7. The popular 150B-series transmitters used a state-of-the-art rf deck that was included in higher power units as well (up to the kilowatt level). The three-stage circuit, built on an aluminum chassis and panel, utilized three plug-in coils to provide operation between 1700 kilocycles and 15 megacycles. Power output was at least 100 watts at any frequency in that range.
transmitter, a 150-watt job that worked on all frequencies up to 14.5 megacycles (MHz). At last a workable 20-meter phone transmitter of moderate power had arrived! It sold for about $350. Best of all, low-power shortwave broadcast stations were buying the transmitters in increasing numbers!

the Collins rf deck

The secret of success was Art Collins's knowledge of rf circuitry, as revealed in the 150B. The circuit was quite conventional, and most Amateurs of that period could draw it out on paper from memory. But Art knew the tricks necessary to translate the circuit diagram into a working transmitter (see figs 7, 8, and 9).

The basic transmitter was first sold in early 1933, and with a few circuit and cosmetic changes, it remained in production until late 1935, when newer tubes rendered the design obsolete. At the same time, band switching eliminated the old-fashioned plug-in coils.

The circuit consisted of a 47-pentode tube as a crystal oscillator, two 46 high-μ tubes connected in parallel as a doubler stage, or neutralized amplifier, and a single 203A, 50-watt triode power amplifier. A link coil was used to couple the amplifier to an external antenna tuner.

A circuit similar to this had appeared in the ARRL's *Handbook* for years. But that transmitter was a breadboard affair, and Collins built his on an aluminum chassis to provide better ground return and improved circuit isolation. Interconnecting harnesses ran between the transmitter decks and important power leads were well bypassed to keep the rf where it belonged.

Most important, Art Collins knew about and understood parasitic circuits. Mysterious tube heating, unreliable tuning, and loss of output power — a mystery to most Amateurs and even many manufacturers — were conquered in the 150B rf deck. Mass production of shortwave transmitters heretofore had been costly and frustrating because each transmitter had to be debugged to get it on the air, and each debugging operation seemed different from the previous one!

Not so with the Collins gear. An example of an early parasitic suppression
scheme is seen in the underchassis view of the rf deck. Today, the presence of a noninductive resistor and choke coil is commonplace in large, tube-type linear amplifiers. But that was a new and novel idea in the 1930s.

The reproducibility and docile tuning of the transmitter were so good that Collins advertised that the transmitter was factory neutralized, and the user wouldn't have to worry about that complicated adjustment! This was a refreshing change for Amateurs and professionals who had spent hours vainly trying to tame a wild and unpredictable amplifier!

Art Collins, now W9CXX, had achieved what others had tried but failed to do. He marketed a shortwave transmitter that could be tuned up by the book — and would work! The price was right. As international shortwave broadcasting became popular, more and more Collins ham transmitters were put to this use. Collins started making commercial versions of the ham transmitters, complete with speech consoles and studio equipment. (In 1934 I visited YV3BC in Caracas, Venezuela, and saw three Collins 150-watt phone transmitters adapted for shortwave broadcast service.)

The big transmitters designed for the Byrd expedition were quickly adapted for broadcast and Amateur use (fig. 10). The company expanded into the broadcast field and, by World War II, was a fixture in the communications world as a reliable manufacturer of communications equipment of all kinds.

From 1932 to 1942, radio was dominated by this small, upstart company that grew from a one-man shop into a giant in communications (fig. 11). World War II brought tremendous expansion to Collins Radio, but I’ll leave it to someone else to tell the story of the company from 1942 on.

These stories of “the good old days” were gleaned from Art himself during our occasional meetings over the years. He had many more, but now they’ll not be told. Art was a grand person, a good friend of the Radio Amateur, and a technical wizard. Those of us who knew him miss him very much.

1988 AMATEUR RADIO AMATEUR CALLBOOK
Includes all countries outside of North America and has
been updated with all the latest calls and addresses
-available world. $9.95 © 1987
CB-US88 Softbound $24.95

1988 INTERNATIONAL RADIO AMATEUR CALLBOOK
Includes all countries outside of North America and has
been updated with all the latest calls and addresses
-available world. $9.95 © 1987
CB-FB8 Softbound $26.95

ORDER BOTH AND SAVE $5
REG. $51.90 JUST $46.90
Books available late November

ARRL OPERATING MANUAL
This book has been completely revised and up-dated! Over
600 pages and contains full radio history text on how
Ham should have at their fingertips. In addition to message hand-
giving, emergency operating, repeaters, and contesting,
this book contains 75 pages on rules and regulations
WB4NWH and WB4ZRN, a new section on packet radio and over 60
pages in full color describing operating awards from around the
world. 1986 688 pages © 1987 AR-OG
Softbound $14.95

TRANSMITTER HUNTING: RADIO DIRECTION
FINDING SIMPLIFIED
by J. D. Moew, KOV and T. N. Currie WB8UHZ
Knowing how to use direction finding equipment can be
an important addition to your Ham skills. Besides the fun
aspects like “Fox” or T-hunting, you might someday be called
upon to assist a search and rescue group save lives. Written by two QG experts, this book is full of helpful
hints, tips and suggestions. Includes: how to equip your-
self, weak signal techs, equipment you can build to aid
yourself, optimizing your efforts. Hunting techniques plus much more.
Two BASIC computer programs also included with complete
instructions for triangulation. 1986 320 pages T-7201
Softbound $7.95

MICROWAVE UPDATE
September 1987
These papers were presented at the September 1987 meet-
ing held in Estes Park, Colorado. 15 Papers include the latest in technology, designs and microwave techniques.
100 pages © 1987
AR-MU Softbound $9.95

NOVICE VOICE-CLASS QUICK COURSE
by Gordon West, WBINGA and Fred Maia, W8RS
If you are physically located at the WEST (AMATEUR SCHOOL), the next best choice is to use one of their custom
designed home study courses. Designed for the student who has no knowledge of Amateur Radio, the Novice
course first teaches the Morse code using two playing cards.
It is a comfortable, easy-to-learn fashion. The clear-cut
and fully illustrated theory book covers everything you need to know to pass the Novice test as well as including an overview of the Amateur Radio service
Includes sample Novice exam and FCC form 610.
Latest edition shipped © 1987
GW-QN $19.95

Beverage Antenna Handbook
by Victor Misak, W1WC
Recognized around the world as the definitive work on
Beverage Antennas, Misak delves deep into the secrets of
the single wire Beverage and SWA (Sweepable Wave Anten-
as) with helpful hints and tips on how to maximize perfor-
mance based upon wire size, height above ground, overall
length and impedance matching. Also includes information
on larger center Bev’s with over 40 wire types. CITY LOT OWNERS
Note Misak has developed a Beverage for you too! Called the Micro-SWA, it is just 60 ft. long. You get all the
advantages of a Beverage without the disadvantages of full size Beverage Antennas. $24.90 (MS-DOS) $29.90
© 1987 80 pages 2nd Edition JVM-SAN Softbound $14.95

HAMLOG (MS-DOS Computer)
by Rick Martin, W5YLD
Harness the power of your MS-DOS computer with this
tested and proven program. HAMLOG is fully menu driven
and features fast record retrieval and display. Can be edit-
ed at any time and allows hard copy print-outs by callign,
date, or a number of other parameters. Also includes helpful
freight frequency allocation tables by license class and third
party agreements for traffic handlers. $49.95

DIGIPAC II (MS-DOS Computers)
by Karl Assoc.
DIGIPAC II combines a fully featured computer communica-
tions package with the world’s greatest message editing and format-
ting program designed for traffic handling. This message processing feature presents complete, comprehensive
form, and provides the best print and selection menus. Full user defined help system plus more. The communications
program has plenty of features too. Multi-level alarm, multi
screen, split, recall, user programmer friendly, decoding keys to name just a few. No matter your interest in packet — from rag chewing to traffic handling — this pro-
gram will fill the need. $49.95

Beverage Antenna Handbook
by Victor Misak, W1WC
Recognized around the world as the definitive work on
Beverage Antennas, Misak delves deep into the secrets of
the single wire Beverage and SWA (Sweepable Wave Anten-
as) with helpful hints and tips on how to maximize perfor-
mance based upon wire size, height above ground, overall
length and impedance matching. Also includes information
on larger center Bev’s with over 40 wire types. CITY LOT OWNERS
Note Misak has developed a Beverage for you too! Called the Micro-SWA, it is just 60 ft. long. You get all the
advantages of a Beverage without the disadvantages of full size Beverage Antennas. $24.90 (MS-DOS) $29.90
© 1987 80 pages 2nd Edition JVM-SAN Softbound $14.95

HAMLOG (MS-DOS Computer)
by Rick Martin, W5YLD
Harness the power of your MS-DOS computer with this
tested and proven program. HAMLOG is fully menu driven
and features fast record retrieval and display. Can be edit-
ed at any time and allows hard copy print-outs by callign,
date, or a number of other parameters. Also includes helpful
freight frequency allocation tables by license class and third
party agreements for traffic handlers. $49.95

DIGIPAC II (MS-DOS Computers)
by Karl Assoc.
DIGIPAC II combines a fully featured computer communica-
tions package with the world’s greatest message editing and format-
ting program designed for traffic handling. This message processing feature presents complete, comprehensive
form, and provides the best print and selection menus. Full user defined help system plus more. The communications
program has plenty of features too. Multi-level alarm, multi
screen, split, recall, user programmer friendly, decoding keys to name just a few. No matter your interest in packet — from rag chewing to traffic handling — this pro-
gram will fill the need. $49.95

Beverage Antenna Handbook
by Victor Misak, W1WC
Recognized around the world as the definitive work on
Beverage Antennas, Misak delves deep into the secrets of
the single wire Beverage and SWA (Sweepable Wave Anten-
as) with helpful hints and tips on how to maximize perfor-
mance based upon wire size, height above ground, overall
length and impedance matching. Also includes information
on larger center Bev’s with over 40 wire types. CITY LOT OWNERS
Note Misak has developed a Beverage for you too! Called the Micro-SWA, it is just 60 ft. long. You get all the
advantages of a Beverage without the disadvantages of full size Beverage Antennas. $24.90 (MS-DOS) $29.90
© 1987 80 pages 2nd Edition JVM-SAN Softbound $14.95

HAMLOG (MS-DOS Computer)
by Rick Martin, W5YLD
Harness the power of your MS-DOS computer with this
tested and proven program. HAMLOG is fully menu driven
and features fast record retrieval and display. Can be edit-
ed at any time and allows hard copy print-outs by callign,
date, or a number of other parameters. Also includes helpful
freight frequency allocation tables by license class and third
party agreements for traffic handlers. $49.95
SHOPPING IDEAS

RADIO HANDBOOK 23rd Edition by Bill Orr WSSAI
Here are some of the highlights of this exciting new edition:
- New 32-page charts for Chebyshev and elliptic filter configurations, new data on power MOS-FETS, how to use state-of-the-art OF-AMPS, and home computer RTTY to name just a few.
- New projects include: ZCZ, GAUFT, preamps for 902 and 1296 MHz, easy-to-build audio CW filter. Economy two 5-300Z, 160 meter amplifier, multiband amp using two 2SC1000s, and a deluxe amplifier with the 3SC1200A7 tube. New antenna projects include: efficient Marconi design for 160 and 80 meters, computer generated dimensions for HF-Yagis, and a 2 meter slot beam. Get your copy today. 23 edition © 1986

Re-CODE-million CLASS (Apple II)
Sound recognition has been proven to be the most efficient method for learning the Morse code. RE-CODE-milion uses a computerized derivation of the famous Farnsworth-Hiss speed soundwave code teaching method. Using a word game approach to learning, the program strives to eliminate the drudgery of learning the code. You can custom design code practice by entering text or use data files on disk.

HAM RADIO LICENSE STUDY COURSE by Diamond System (MS-DOS Computers)
Use your home computer to study for your Amateur Radio License. Questions and answers are taken from the FCC code syllabus for each license class. You can either study the whole question pool or an individual sub element. Novice, General and Extra programs also include a Morse code program that will allow you to tune up on your code. The program can generate code randomly or from a text file. State-of-the-art learning. MS-DOS only.

HAM RADIO LOG BOOKS
ROOM BY POPULAR DEMAND!!
Room for over 2100 QSO's— that's over twice as many as the other log book. For contesters, each page contains 30 QSO's in QSO format. You also get the latest up to date frequency spectrum chart, ITU callsign list and ARRL DXCC List. Would try to lay down on your desk. Unquestionably the best log book value around. 1986

RADIO COMMUNICATION HANDBOOK by RSGB 5th Edition
Here's an inside look at Amateur Radio with the British version of the ARRL Handbook. Full of projects, theory and all additional helpful technical information. Also includes antennas, propagation, satellite plus much more! 1982 2nd chaps ters 150 thick

BASEBALL CAP
How about an attractive BASEBALL style cap that has name and call on it. It gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whenever occasion demands. Choose from the following colors:
- GOLD, BLUE, RED, KELLY GREEN

I.D. BADGES
No harm should be without an I.D badge. It is just the thing for club meetings, conventions, and hamfests, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D badges. Available in the following color combinations (badge/lettering):
- white/red, wood grain/white, bronze/white, black/white, yellow/white, red/white, green/white, metalic gold/black, metallic silver/black.
- 101 Engraved I.D. Badge

ORDER FORM
In a hurry? Call today!
(603) 878-1441

Call Books available early December: ARRL Handbooks late October.
IN LINE TYPE SWR & POWER METERS

EXCLUSIVE!!! PATENTED WIDEBAND Z COUPLER, AVAILABLE IN NO OTHER UNIT AT ANY PRICE, PROVIDES LABORATORY ACCURACY AND QUALITY AT AMATEUR PRICES...

REVEX IN LINE WATT METER

MODEL

- W510
- W540
- W560
- W570

FEATURES

- RF 1.8 – 54 MHz, AF 10 Hz – 40 kHz AM, SSB, OSCILLOSCOPE, TRAPEZOID, RTTY
- Wave Monitor Scope MS1 directly monitors 1.8 – 54 MHz band transmission signals (10 – 1000W PEP)
- Front panel operation makes it possible to monitor RF envelope patterns and RF trapezoid patterns. Also, since the MS1 has two sets of input terminals (one on the front and one on the rear panel) for observing audio band patterns, an RTTY terminal can be connected to allow monitoring of RTTY (radio telegraphy) cross patterns.

PRICES

- **INTRODUCTORY PRICE**
 - $89 MODEL W510
 - $99 MODEL W540
 - $129 MODEL W570

EXCLUSIVE DISTRIBUTOR:

AMATEUR-WHOLESALE ELECTRONICS
46 Greensboro Highway, Watkinsville, Georgia 30677

TO ORDER:

TOLL FREE..800-327-3102
Telephone (404) 769-8706 Telex: 4930709 ITT

THE RF CONNECTION

SPECIALIST IN RF CONNECTORS AND COAX

Part No.

- 1158-4-3

Description

- SNC 2 PST 20 amp coaxial relay, Amphenol
- Insertion loss: 0 to 0.75GHz, 81.5dB

Price

- $25 used

VHF

- PL-259 Teflon Amphenol

Price

- $1.50

UHF

- N Male RG-8, 213, 214, Amphenol
- N Male RG-6, 213, 214, Amphenol

Price

- $2.95

N913 PIN

- N Male for 913 9006, 9214

Price

- $1.50

UG210-UG199

- No USG-UG-210 or USG-UG199's

Price

- $4.95

UG 146U

- Female to 50 Ohm Teflon USA

Price

- $5.00

UG 853

- Female to 50 Ohm Teflon USA

Price

- $2.50

THE NEW TREND OF AMATEUR RADIO

REVEX

IN LINE WATT METER

Model:

- RF: W510
- W540
- W560
- W570

Frequency Range:

- 1.8 MHz – 30 MHz
- 1.8 MHz – 50 MHz
- 1.8 MHz – 130 MHz

Power Range:

- 2W – 20W
- 20W – 200W
- 200W – 2500W

SWR Sensitivity:

- 1W
- 2W
- 4W

Measurable Functions:

- RF POWER
- PEAK POWER
- PEAK MONITOR
- D. Y. POWER
- D. Y. PEAK
- D. Y. PEAK MONITOR
- D. Y. POWER
- D. Y. PEAK
- D. Y. PEAK MONITOR

GIVE YOUR EARS A BREAK!

X-MAS SPECIAL!

Auto-Kall AK-10

Price

- $79.95

THE R.F. CONNECTION

213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

CASH PRICES

- $233

TO ORDER:

TOLL FREE..800-327-3102

Telephone (404) 769-8706 Telex: 4930709 ITT

THE RF CONNECTION

SPECIALIST IN RF CONNECTORS AND COAX

Part No.

- 1158-4-3

Description

- SNC 2 PST 20 amp coaxial relay, Amphenol
- Insertion loss: 0 to 0.75GHz, 81.5dB
- $25 used

VHF

- PL-259 Teflon Amphenol

Price

- $1.50

UHF

- N Male RG-8, 213, 214, Amphenol
- N Male RG-6, 213, 214, Amphenol

Price

- $2.95

N913 PIN

- N Male for 913 9006, 9214

Price

- $1.50

UG210-UG199

- No USG-UG-210 or USG-UG199's

Price

- $4.95

UG 146U

- Female to 50 Ohm Teflon USA

Price

- $5.00

UG 853

- Female to 50 Ohm Teflon USA

Price

- $2.50

THE NEW TREND OF AMATEUR RADIO

REVEX

IN LINE WATT METER

Model:

- RF: W510
- W540
- W560
- W570

Frequency Range:

- 1.8 MHz – 30 MHz
- 1.8 MHz – 50 MHz
- 1.8 MHz – 130 MHz

Power Range:

- 2W – 20W
- 20W – 200W
- 200W – 2500W

SWR Sensitivity:

- 1W
- 2W
- 4W

Measurable Functions:

- RF POWER
- PEAK POWER
- PEAK MONITOR
- D. Y. POWER
- D. Y. PEAK
- D. Y. PEAK MONITOR
- D. Y. POWER
- D. Y. PEAK
- D. Y. PEAK MONITOR

GIVE YOUR EARS A BREAK!

X-MAS SPECIAL!

Auto-Kall AK-10

Price

- $79.95

THE R.F. CONNECTION

213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

CASH PRICES

- $233
DXing via the winter anomaly

The increased signal absorption anomaly that results in five- to six-day periods of 20 to 40 dB weaker signals through the mid-to-high latitude propagation paths in winter has been the subject of previous columns.\(^1\,^2\)

These paths provide our main communication links to European, Asian, and Japanese Amateurs. As discussed in the previous columns, there are exceptions to this anomalous propagation rule; these show up as areas of lower absorption and consequently higher signal strengths. These “windows” can sometimes produce signal levels that exceed those received during the normal (optimum) winter low absorption periods. So to emphasize the positive aspects of wintertime DXing, let me summarize the DXing possibilities inherent in taking advantage of this phenomenon.

Table 1 shows the forecasting sequence of events that precede the good signals, and also when they’re likely to be best. Anytime during the months from November through February — and possibly into March — look for the progression indicated in Table 1.

The absorption spreads as it rotates to the west, decreasing in latitude at the same time as shown in fig. 1 below. The rotation amounts to 30 degrees (two time zones) per day and decreases in latitude from 65 to 30 degrees in the five days of rotation.

To take advantage of the decreased absorption that provides strong DX signals on east, west, and transpolar paths, one has to access WWV or the bulletin board to keep track of the daily geomagnetic A value during this winter season (mainly January). Continue keeping track after each A value of 15 or higher until a STRATWARM is given; after that, consult your map or globe to follow the 90-degree position between the location given for the STRATWARM and its 180-degree companion. Coordinate your beam bearings and the DX path control points (1200 miles from the QTHs “on” the great circle) with the areas of lower absorption on both or on at least one end. If the area isn’t right for your DX on that particular day, you can forecast — at 30 degrees of longitude and lower latitude per day — when you can expect good results during the five to six days to come.

last-minute-forecast

The higher frequency bands, 10 to 30 meters, are expected to be best the first and last weeks of the month, as well as during half of the preceding and following weeks. Look for good extra-long-skip transequatorial openings to the south during the second week, especially if some days of mild geomagnetic disturbance occur because of the decreasing (relaxing solar pressure) solar flux. The third week of the month — plus a few days on both ends — is expected to be best for daytime short-skip and nighttime DX on the lower bands. Expect other geomagnetic-ionospheric disturbances around the 16th.

The Geminids meteor shower, which will peak on December 13 through 14, will provide the richest and most reliable display of the year, with rates of 60 to 70 per hour. Because optical observations may be difficult or impossible during periods of poor weather in December, actual numbers must be determined by radio reception. A smaller version of the shower will be noted on December 22. The full moon will occur on the 5th, and lunar perigee will occur on the 22nd. Winter solstice occurs on December 22nd at 0946 UT.

band-by-band summary

Ten, twelve, fifteen, and twenty meters provide many openings during the daytime. As you go up in frequency (i.e., into the higher bands) the openings will be shorter, centered around noon, and mainly toward southerly directions. Fifteen meters is only a transition band between 12 and 20. Twenty meters, the mainstay daytime band for northerly directions will be useful towards the south in the evenings. Transequatorial openings might occur in evening hours to locations up to 2000 miles away if antenna radiation angles are down to 10 degrees.

Thirty, forty, eighty, and one-sixty meters are all good for nighttime DX.
Radiosporting

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by the world's best in their fields: ON4UN, SM9AG0, LZ2CJ, VE3BVW, KH6BZF, DJ9ZB, Z56BRZ, W1NY, N2AU, KG7CO, K4ZN, W4QG, VE3JTO, WB4ZNH, WB9TBU, KQ2M, N5EJ, M3PG, K93E, KPLK, N7CKB, VESK2, ABAQ, JEICKA and others.

Includes DX News, QSL Info, 160m, 80m, 10m, 6m columns, QSTQ, Propagation, Awards, Contest rules and results, Traffic - Emergency, FCC News, New Products, Antennas, Technical news and articles, equipment reviews and modifications, computer programs, Radio Funnies, Club Life, RTTY, VH/FUHF, Mail Box, Classified Ads and much more in a magazine format with the speed of a bulletin.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame and World Radio Championship contest.

"Your publication is superb! Keep it up!" Joe Reisert, W1JR
"Your W2PV articles are priceless. Your magazine is superb!" Rush Drake, W7RH
"Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contestor!" Dick Moen, N7RO
"RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." Chas Browning, M4PKA

Subscription rates: 1 year USA $25, Canada CDN$40, Overseas US$32; 2 years $35, $50, $42 respectively. Single issue $2.
USA First Class Mail add $3/year, DX Air Mail add $3/year.

TRY US! SUBSCRIBE OR SEND $1 FOR YOUR SAMPLE COPY.

December 1987
| DECEMBER | 000 | 010 | 020 | 030 | 040 | 050 | 060 | 070 | 080 | 090 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 |
|----------|
| ASIA | 40 |
| FAR EAST | 40 |
| EUROPE | 40 |
| S. AFRICA| 12 |
| S. AMERICA| 15 |
| ANTARCTICA | 15 |
| NEW ZEALAND | 12 |
| OCEANIA | 12 |
| AUSTRALIA | 30 |
| JAPAN | 30 |

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

*Look at next higher band for possible openings.
Thirty and 40 meters are the night frequencies for the east, west, and north-south directions, and for distances of 1600 miles if increased solar activity has occurred. With little solar activity, the MUF will approach 80 meters and signals will usually be stronger there. These bands should generally be quiet and stable, since thunderstorm activity is not pronounced and December is a geomagnetically tranquil month.

CRYSTAL FILTERS

YEAR-END CLEARANCE

All starred (+) items 20% off; all others 10%. Prices are each except as noted. All filters 8-pole. Sale ends December 31, 1987.

FILTERS FOR KENWOOD - Reg. $60 except as noted. 8.35MHz IF for models TS420 through TS420G.

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS420</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS420G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS420V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS420DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS420VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS420DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR YAESU - Reg. $60 except as noted. 3.18MHz IF for FT-101 Series except 2D.

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR ICOM (exact replacements)

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR GFI (uses same crystal)

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR SANGEAN

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR TELEDYNE

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR TUNES_P TV

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR PROSCAN

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR HEATH - All Models

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

FILTERS FOR DRAKE R-4C - Reg. $65 excl. as noted

<table>
<thead>
<tr>
<th>Bandwidths</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS200</td>
<td>$299.95</td>
</tr>
<tr>
<td>TS200G</td>
<td>$309.95</td>
</tr>
<tr>
<td>TS200V</td>
<td>$319.95</td>
</tr>
<tr>
<td>TS200DA</td>
<td>$329.95</td>
</tr>
<tr>
<td>TS200VD</td>
<td>$339.95</td>
</tr>
<tr>
<td>TS200DG</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

LIMITED QUANTITIES - ORDER NOW!

Sales prices are based on our present stock. Orders for any exhausted type of filter are subject to a 6-week delay. Order by phone for availability. SPECIFY: Make and Model Number of your Rig. Frequency and Bandwidth of filter(s).

ORDER BY MAIL or COD OR D.D.

SHIPPING: $5 US and Canada, $13 elsewhere.

GET THE BEST 8-POLE FILTERS FOR LESS!

FOX-TANGO Corp.

Box 15944, W. Palm Beach, FL 33416

Telephone: (305) 683-9587
PC-PAKRATT Terminal Program for the PK-232

One of the biggest problems many Hams encounter in getting on packet radio is making their home computers "talk" to their TNCs. Despite the claims of software houses ("easy to use," "sets up in minutes!"") -- don't believe it. Unless you're a computer whiz, it doesn't happen that way . . . or at least it didn't happen that way until AEA released its new MS-DOS Packet terminal program for the PK-232. Designed for those of us without EE degrees, PC-PAKRATT allows use of the PK-232 with a minimum of hassle and problems.

PC-PAKRATT will run on all IBM PC-XT or AT machines and most compatibles. You need to be running DOS 2.0 or a later version, have at least 320K internal memory, have a RS-232 serial port, and two 360K floppy drives. If you're using a compatible and it will run one of the flight simulation games, chances are PAKRATT will work OK for you.

PC-PAKRATT requires ROM chips dated 1987 or later to work properly; if you have chips dated October 1986 or earlier, contact AEA for upgrade information.

Installation

Before you begin, you'll want to make a working copy to protect the original from mistakes or other glitches.

Remove the batteries from the internal battery supply. The PC-PAKRATT program will store your callsign and other important information on the program disk. Connect the TNC to your computer, boot your operating system, install the PC-PAKRATT program, and you're just about ready to go.

The first screen you'll see is Log On; with this one, you'll be able to choose the most appealing or easy-to-read colors for the screen and text, select communications port 1 or 2, and set the TNC-to-computer baud rate. Hitting the space bar initiates communications between computers; in about 15 seconds you should see the main screen display. If there's a problem, the screen will give you an error message. A quick look in appendix A of the program manual will identify the error and suggest an appropriate fix.

Main Screen

Now that the program is up and running and the computers are talking to each other, it's time to learn all the subtle nuances of the program. AEA has tried hard to make the PAKRATT as simple and as easy to use as possible. Commands are straightforward and easy to remember: P = print, R = rename, S = erase, and so on. You can edit and browse using the B command, and you can set up two user-defined files. Of particular interest, AEA has provided a "soft-key" or user-designed macro that can be used to save time as you enter repetitive commands.

You can store as many as 20 different sequences of up to 256 keystrokes.

Mode Screens

The packet display is divided into three windows or areas. At the top, the status line lists transmission mode, link status, buffer status, link state, and several other important parameters. The second section, the receive window, displays all the data received by the TNC. The third, the transmit window, the information you're about to transmit.

A number of special keys are provided to help reduce the amount of time needed to make any command changes. F1 brings up the HELP screen; F2 is AUTO CONNECT; F3 is CONNECT; and F4 is DISCONNECT, and so on.

The Morse, Baudot, ASCII, AMTOR, and FAX screens are similar in layout and operation. There are divided screens for both receive and transmit as well as plenty of special keys to enhance and speed operation on each mode. These special keys are designed to simplify operation to the point that it's hard to forget how to use the equipment even after a long layoff. You can also use your computer as a dumb terminal to facilitate PK-232 calibration and SIAM operation.

As if that weren't enough, PC-PAKRATT will also emulate MicroPro's WordStar program as a screen editor program. You can create, modify, or examine most files in the system. You can also look at and make changes to the QSO buffer.

Conclusion

All in all, this is a super program. When I first got "digitized," I spent hours setting up my system, then getting the computers to talk to each other. As of now, I've spent three hours trying to get a supposedly easy-to-work dumb terminal to talk to the PK-232; it took about 10 minutes to get PC-PAKRATT to work on my IBM clone computer.

One distinction needs to be made. PC-PAKRATT doesn't give you hundreds of unique features that aren't found in other communications software packages. PC-PAKRATT does give you, however, everything you need to use the PK-232 to its fullest potential. It also greatly simplifies operation through its carefully structured commands. And, I'm sure that as PAKRATT gets into the hands of more users, it will continue to evolve in ease of operation and overall power.

AEtv has just announced the availability of a C-64 program that provides many of the same features as PC-PAKRATT.

You can see PC-PAKRATT in operation at your local AEA dealer or contact the manufacturer (AEA, 2006 196th Street SW, Lynnwood, Washington 98087) for more information.

Circle #301 on Reader Service Card.

--- de N1ACH

2X4Z Base Repeater Antenna

The Highest Gain Dual Band Base/Repeater Antenna

High Power 200 Watts

Center Frequency

146.500 MHz
446.500 MHz

Gain:

VHF - 8.2dBi
UHF - 11.5dBi

VSWR

-1.1 to 1.2 or less

Connector:

N Type Female

Lightning Protection Grounded Direct

Length:

16 Ft.

Weight:

5 Lbs. 3 OZ.

Wind Load:

90 MPH

Mounting:

Up to 2 In.

Mast:

Can Simulcast on Both Bands

Waterproof Connecting Joints

UPS Shipable

Amateur Special

1275 North Grove St.,
Anaheim, Calif. 92806
(714) 630-4541
Cable: NATOCOLGIZ
Fax (714) 630-7024
new 10- and 6-meter base station transceiver

The new IC 575A is a 10-meter and 6-meter dualband base station transceiver. This wideband, all-mode base receives 26 to 54 MHz continuously and has 99 tunable full function memories, passband tuning, a notch filter, noise blanker, built-in SWR bridge, semi- or full CW break-in and a multi-function meter. The IC 575A also has a velvet-smooth tuning knob and easy-to-read amber LCD readout with variable backlight.

Four scanning systems are available: band, programmable, mode and memory scan with selectable lock out (scans 99 memories in five seconds).

All subaudible tones are built in, and the actual subaudible frequency is displayed. Standard repeater splits are built in and odd splits are programmable.

For packet enthusiasts, the IC 575A incorporates DDS (Direct Digital Synthesizer). The 10 watt IC 575A is similar in design to ICOM’s compact base station line: the IC 735, IC 275A, IC 275H, and IC 475A.

Information concerning price and availability can be obtained by contacting ICOM America, Inc., 2380 116 Avenue N E., P.O. Box C 90029, Bellevue, Washington 98009 9029.

Circle #302 on Reader Service Card.

dual-band VHF antenna tuners

MFJ Enterprises, Inc. has introduced two new dual-band VHF antenna tuners that cover both the 144 MHz and the new Novice 220 MHz bands. Both handle 300 watts PEP, match a wide range of impedances for coax-fed antennas, and are built into rugged all-aluminum cabinets painted eggshell white with a black top.

The MFJ 921 has a built in SWR/Wattmeter, measures 9 x 2 x 3 inches, and retails for $69.95. The MFJ 920 measures a compact 4 1/2 x 2 x 3 inches and retails for $49.95.

Both come with a one year unconditional warranty. If either is ordered directly from MFJ Enterprises, Inc., it can be returned within 30 days for a full refund (less shipping and handling) if you’re not satisfied.

For additional information, contact MFJ Enterprises, Inc., at P.O. Box 494, Mississippi State, Mississippi 39762.

Circle #305 on Reader Service Card.

tool cases, catalog

Two new tool cases are featured in Jensen’s new 160 page, full color catalog. Rotationally molded of high density polyethylene, these Rota-Lux and Rota-Tough cases are available options for Jensen’s tool kits, including the top of the line JTK 87 Electronic Service Kit for field service engineers.

Rota-Lux and Rota-Tough cases vary slightly in size and styling. All Rota-Lux cases measure 17 3/4 x 12 3/4; Rota-Tough cases measure...
linear amplifier kit

Heathkit's new SB-1000 linear amplifier provides a full 1000 watts PEP output on SSB or 850 watts output on CW. It provides full HF coverage from 160 to 15 meters, including 80 percent of rated output on the three WARC bands. The SB-1000 Linear Amplifier uses a single 3-500Z tube in a high-efficiency circuit and has a hypersil steel EI core transformer for high-performance operation. It also features a quiet computer style fan, a stiff full-wave power supply with computer-grade capacitors, adjustable ALC, and plate and load controls with smooth vernier tuning.

For more information about the SB-1000 Linear Amplifier and Heath's expanding line of Amateur Radio equipment, contact Heath Company, Dept. 150-955, Benton Harbor, Michigan 49022. (In Canada, contact Heath Company, 1020 Islington Avenue, Dept. 3100, Toronto, Ontario, M8Z 9Z3.)

antenna rotor

Encom's new KR 1000SDX azimuth antenna rotor from Kenpro includes features such as 450 degree rotation for easy, speedy antenna pointing; North, South, East, or West centered readout capability; variable speed rotation control for fast (less than 43 seconds) 360 degree rotation; and preset direction control with automatic movement control. In addition, it features gentle antenna handling, with preset and soft landing automatic slowdown before stop; its weatherproof outside connector resists corrosion and decay of wiring. There's room inside the control box for an optional computer interface board area. Limit switches at 450 degrees are included.

The KR1000s (without preset and speed control) are also available. The KR 1000SDX is priced at $489.00; the KR 1000, $399.00. For further information, contact Encom, Inc., 1506 Capital Avenue, Plano, Texas 75074.

scanner/computer interface

The Engineering Consulting Model 727S scanner interface for the Yaesu FT-727R and the Commodore 64 computer provides a high quality, feature packed scanner. The entire radio channel memory can be loaded in under 15 seconds at 4800 baud. All parameters are stored and up to ten sets of ten channels can be scanned. Information can be saved to disk, which allows 100 channels per disk. All ten memory groups can be scanned at once or individually. Scan lock out for individual channels is provided. The scan speed and resume time are adjustable. All transmit and receive frequencies plus offsets and encode/decode sub-tunes can be input and load into radio on command. Return data from the FT-727R provides a full-screen digital S-meter which may be used to stop the scan on preset signal strengths from S-1 to S-9. A comment field is provided for each channel entered and is displayed while scanning the channel. All information for each channel programmed in groups of 10 is simultaneously displayed on the monitor.

Once the channels are entered via the computer keyboard the information in any of the ten frequency groups may be downloaded to the HT for portable use. All 100 channels may be scanned as one group while under computer control. The model 727S is supplied with hardware and software to operate with the Commodore 64/64C/C128/5164 series of computers. The hardware interface includes the circuit board, components cables, instructions and connectors necessary (in kit form). Assembly time is approximately 10 minutes, and it makes a great club project.

For further information, contact Engineering Consulting, 583 Candlewood Street, Brea, California 92621.

handheld meter training package

The John Fluke Manufacturing Co., Inc. has announced the availability of a video training package designed to maximize the usefulness and safety of Fluke's 70 Series of handheld digital multimeters.

Titled "70 Series Solutions," the package is intended for industrial or vocational training applications. In addition to a 15-minute video tape, it includes numerous classroom tools such as overhead transparencies, a 100-page instructor's guide, and 25 student workbooks.
ANTENNAS AND TRANSMISSION LINES

general
Antenna functools. PTFE VHF WSJTL p. 98, Oct 85
Antenna relay sequencing KNSL p. 17, Oct 87
Antenna support (HN) WXAM p. 64, Jun 84
Applied Yagi antenna design part 2: 220 MHz, the Greenblum design data WB3BGU p. 33, Jun 84
Balun chop duty KAK4 p. 113, May 85
Bulkhead connector (HN) KJCZ p. 78, Apr 85
Short circuit p. 74, Jul 85
Compact travel antenna K1B0T p. 29, June 87
Direction finding tool, the fox box K1ZJH p. 25, Oct 85
Groundplane antenna Comments DJ8R/OW6AK p. 6, June 87
Comments ground plane antennas WB6CX p. 6, Oct 87
Ground rod resistance K1DO p. 6, Oct 87
K1DX p. 95, Jul 84
Comments p. 8, Sep 84
Ground systems, installing effective KKL7 p. 67, Nov 84
Ham radio techniques WS3A p. 75, Nov 84
Ham radio techniques WS3AI p. 67, Dec 84
Ham radio techniques antenna systems WS2AI p. 55, May 87
Homebrew antenna mount W2JR p. 35, May 87
Leaves 5 magic, "pin the derivation of the Hetzeran and Marcum antennas K2EEA p. 24, Oct 84
Preamplifiers, Active antenna R.W. Burnham p. 47, May 84
Practically speaking using antenna noise bridge K1IV p. 69, May 86
Rain solar rest WS1FX p. 83, Sep 83
Secrets of successful low band operation part 1 K2RR p. 16, May 86
Secrets of successful low band operation part 2 K2RR p. 1, Jun 86
Static mystery WB8FFU p. 85, Jul 83
VHF/UHF world W1JR p. 110, May 84
VHF/UHF world W1JR p. 77, Sep 86
Wire pole build a simple W7VU p. 107, May 84
Yagi design program WB5NH p. 6, May 87
Yagis, stacking is a science K1FO p. 18, May 85
hf antennas
Active antenna 5-30 MHz K1ZJH p. 37, May 85
Comments, Hansen, R.C., p. 10, Jul 85
Making verticals quieter K1GO p. 10, Sep 86
Matching dipoles (letter) WS5X p. 8, Aug 85
Mobile vertical, 20-meter K1ZGZ p. 26, May 84
Mobile vertical dipole, high-performance, corner-fed G5HAB p. 87, Sep 84
New class of directive antennas WA4M p. 107, Apr 86
No-compromise, multiband, low VSWR dipole GM3HAT p. 69, May 87
Old antennas, comments K9VCX p. 9, Aug 86
Offset dropper: an improved ground plane WB6CX p. 43, Feb 86
Old antennas, comments W6MJP p. 9, Feb 86
Phased arrays, using an alternate method K5BI p. 58, May 85
Short circuit p. 74, Jul 85
Rhombics, controlled vertical radiation, part 1: designing for high performance NA4H p. 100, Mar 85
Rhombics, controlled vertical radiation, part 2: antenna erection and performance NA4H p. 99, Apr 85
Secrets of successful low-band operation part 1 K2RR p. 16, May 86
Secrets of successful low-band operation part 2 K2RR p. 17, Jun 86
SEE antenna: a short, efficient end-fed dipole W4JAZ p. 103, Sep 84
Short vertical antennas for low bands part 1 W7DHD p. 36, May 83
Short vertical antennas for low bands part 2 W7DHD p. 37, May 83
Sluggish tuned dipoles increase bandwidth K4MT p. 22, May 83
Tapered vertical, calculating the input impedance of K3QOF p. 24, Aug 85
Short circuit p. 76, Oct 85
Terminated ve beam, sloping Ross, Robert p. 71, May 85
Top-loaded vertical, a high-efficiency WE6US p. 65, Oct 84
Transmission line antenna 160 meter NW6E p. 87, May 83
Trap antenna, design your own W6MIS p. 37, Oct 84
Two element hf beams G6XN p. 8, May 87
Vertical phased arrays part 1 K7FA p. 18, May 83
Comments, W90AM p. 10, Mar 84
Vertical phased arrays part 2 K7FA p. 26, Jul 83
Vertical phased arrays part 3 K7FA p. 26, Jul 83
Short circuit p. 70, Oct 83
Comments, W90AM p. 15, Mar 84
Vertical phased arrays part 4 K2BF p. 34, Oct 83
Short circuit p. 11, Dec 83
Comments, W90AM p. 10, Mar 84
Vertical phased arrays: part 5 K2BF p. 55, Sep 83
Comments, W90AM p. 10, Mar 84
Vertical phased arrays: part 6 K2BF p. 45, May 84
Verticals over REAL ground WB9WVA p. 35, Jan 84
W2PV 80-meter quad WA3EKL p. 56, May 86
Yagis, designing with the Commodore 64 WA3EKL p. 59, Jun 83
Yagis, stacking is a science K1FO p. 19, May 85
3-element Yagi design, key to K3QOF p. 48, Mar 84
40, 80, and 160-meter vertical, remote controlled W7R p. 38, May 84
80-meter half-wave sloper uses reflector (HN) K0IF p. 48, Oct 84
Short circuit p. 8, Feb 85

vhf antennas
Antenna funtions. PTFE VHF WSJTL p. 98, Oct 85
Applied Yagi antenna design part 1: a 2 meter class revisited WB3BGU p. 14, May 84
Applied Yagi antenna design part 2: 220 MHz, and the Greenblum design data WB3BGU p. 33, Jun 84
Applied Yagi antenna design part 3: 430 MHz with Knadle and Tilton WB3BGU p. 73, Jul 84
Applied Yagi antenna design part 4: a 50-MHz Tilton/Greenblum design WB3BGU p. 103, Aug 84
Applied Yagi antenna design part 5: additional optimization techniques WB3BGU p. 93, Sep 84
Cogali antenna, The VE6BKM p. 51, Aug 84
Computer aided design of long vhf Yagi antennas VK4ZF p. 29, May 86
Cylindrical logdipoles revisited WAS9UV p. 29, Feb 86
Efficient matching VE7FZK p. 83, Sep 83
Fastening Trigon reflectors to VHF antennas (HN) WA7JTL p. 88, Sep 84
Ham notebook 2-a meter halfwave antenna N6SA p. 63, May 87
Ham antennas AA6PZ P. 42, May 83
Helical antenna matching Bellview, John B77MV p. 73, May 83
High-performance Yagis for 432 MHz K1FO p. 8, Jul 87
Short circuit p. 97, Oct 87
Comments KL7X p. 6, Sep 87
Lung 2-meter collinear - a simple way to achieve gain (HN) WB3AIV p. 95, May 86
Matching 432-MHz helical antenna W6BNW p. 44, Mar 83
Repeater antenna beam tilting K7NA p. 29, May 83
Short circuit p. 80, Jul 83

hm radio cumulative index 1983-1987

98 IF December 1987
VHF antenna null, achieving the perfect K3ED 48, May 83
VHF antenna World WJUR 510, May 84
VHF/UHF World: stacking antennas, part 1 WJUR 512, Apr 85
VHF/UHF World: stacking antennas, part 2 WJUR 519, May 85
VHF/UHF world WJUR 509, May 85
VHF/UHF world Designing and building loop Yagis WJUR 556, Sep 86
Short circuit WJUR 54, Jan 86
VHF Yag CAD on the C-64 WJUR 70, Sep 86
WJUR 70, Sep 86
VHF/UHF world Yag facts and fallacies WJUR 103, May 86
VHF antenna World Optimized 2- and 6-meter Yagis WJUR 92, May 87
Short circuit 41, Aug 87
Short circuit 49, Jul 87
VHF/UHF world: minimum requirements for Comment EMER-part 1 WJUR 39, Aug 87
Yagis triangular array WJUR 42, May 87
Yagi trigger reflector, Optimizing WJUR 84, Jan 86
WJUR 84, Jan 86
Yagi yagi high-gain 70-cm WJUR 75, Dec 66
Short circuit 68, Feb 87
Yagi stacking is a science WJUR 18, May 85
K1IPO 2-meter J-pol antenna, all-metal K1IPO 42, Jul 84
Comments, K2WMT, K1IPO 8, Feb 85
Comments, DJ4IKWOAEKpGk 9, Nov 85
2-meter antenna AD7 36, Aug 84
matching and tuning
Antenna matching, easy WB4GCS 67, May 84
Antenna tuner (HI) WBX6M 94, May 83
Broadband RF transformers K1IPO 75, Jan 86
Capacitively coupled hybrids WJ3KWT 70, Mar 83
Designing trap antennas a new approach WJUR 60, Aug 87
VHF Efficient matching VE7BS 83, Sep 83
Gamma matching basic WB4BNK 29, Jan 85
Gamma matching programs for the C-64128 K4IIP 87, May 87
Ham radio technology WJ3KWT 65, Jan 84
WB4GCS 8, Sep 84
WB4DKU 8, Sep 84
Comments, WB4DKU 8, Sep 84
Comments, AD1G 8, Dec 84
Helical antenna matching Belliveau, John 73, May 83
HF hybrid descriptions WB4GCS 60, Oct 83
Hybrid ring WJ3KWT 50, Aug 83
Imprinting matching WB4NTO 85, Jul 83
Comment, K1C0 95, Nov 83
Matching dipole antennas W1OLP 129, May 84
Comments, W6XW 12, Apr 85
Mars 32 MHz helical antenna WB4WNU 44, Mar 83
Phased arrays, feeding an alternative method KB8I 58, May 85
Short circuit 74, Jul 85
Tensoriums K4IIP 30, Aug 83
towers and rotators
Antenna carriage and track pole mount KB8I 46, Aug 83
Antenna hinge N4LI 70, Aug 83
Antenna tower, fixed, lift over conversion P39, May 85
AUTOTRAK, a simple rotor interface board for the C-64, VIC-20 and ap- plications to other popular computers K7NH 10, Dec 87
Match your antenna to your tower W8DEG 26, Jun 84
Tower installation: make it sturdy, make it safe W8DEG 22, Jun 84
Turning that big array VE4AIA 10, Jun 86
UHF antenna tower: low cost K6GUY 30, Oct 84
transmission lines
Antennal transmission lines K4OB1 21, Jul 86
Bridge measurements, the half-wave transmission line in (MHz) K4AX 108, Nov 84
General purpose line transformers K4CV 62, May 83
Comments, KM1H 8, Nov 83
Optimum line for 2 meters N7UL 94, Jan 87
Real coax impedance and phase rela- tions K2BT 8, Apr 87
Practically speaking: amplifier tuning problem K4IPV 78, Nov 86
Real coax: impedance and phase rela- 8, Apr 87
RF transmission cable, microwave ap- plications K10N 108, May 85
Solving transmission line problems on your Commodore 64 K4KZB 74, May 86
Short circuit 87, Jul 86
Time domain reflectometer VE7CIC 49, Nov 83
VHF/UHF World-transmission lines WJUR 83, Oct 85
Comments WB4KZC 9, Apr 86
VHF/UHF world WJUR 85, Dec 85
AUDIO
Advanced CW processor W8NRW 25, Dec 86
Audio filter building blocks KB8I 74, Jul 83
Audio filter design, computer-aided K5ES 24, Feb 83
Audio filter design, elliptic type W3QNQ 20, Feb 84
Audio oscillator to pulse generator con- verters (MHz) WB0QD 50, Oct 84
Audio to microwave amplifier, build your own W8CQH 12, Mar 84
Gruchalla, Michael 12, Mar 84
Aural voco provides relative metering K1IPO 17, Jan 87
Automatic gain control, an audio K7NH 24, Sep 84
Converting mobile units with handheld VHF transmitters K8DKZ, W1CC 79, Mar 86
CW acoustical filter WB2A 22, Jan 83
CW and RTTY, digital audio W1CER 60, Aug 83
Extended range VU meter WB6JUN 59, Sep 86
Improving the audio on the ICOM IC-27 K4AX 61, Feb 86
Modifying microphones VE7CIC 81, Jan 87
Peerless audio filter design, computer- aided highpass and bandpass filters W8DEG 41, Oct 85
Comments, WB3QNY 8, Nov 85
Passive audio filter design part 3 Stefan Niwinowski 29, Jan 86
Phone patches, building and using N4ARE 34, Oct 85
Repeaters, speech synthesis for N4ARE 79, Mar 84
Telephone ring indicator, visual (MHz) WGOJ 62, Apr 84
Understanding telephones N4ARE 39, Sep 85
Comments, KOTWL 9, Apr 86
COMMERCIAL EQUIPMENT
Annunciator bell for the Kantorkses KPC 2 K1ZJH 22, Aug 86
Argonaut 509 conversion for 30 meters (MHz) WB3QNY 49, Oct 84
C-64 and GLB PK-1 interface circuit WB6JUN 26, Nov 84
CAT control system for the Yaesu FT- 750X K1ZJH 36, Nov 87
Computer control of ICOM M-71, 271, 471, and 751 radios K1ZJH 47, Apr 86
Extending receive coverage for the IC-02 and IC-04 WB6GTM 77, Jul 86
Comments WB6GTM 6, May 87
Ham radio techniques W4HPK 63, May 84
Ham radio techniques, fifty years ago W8SAI 58, Jun 84
Ham radio connectors, inexpensive WB4AC5 62, May 83
Comments, KM1H 8, Nov 83
Optimum line for 2 meters N7UL 94, Jan 87
Real coax impedance and phase rela- tions K2BT 8, Apr 87
Practically speaking: amplifier tuning problem K4IPV 78, Nov 86
Real coax: impedance and phase rela- 8, Apr 87
RF transmission cable, microwave ap- plications K10N 108, May 85
Solving transmission line problems on your Commodore 64 K4KZB 74, May 86
Short circuit 87, Jul 86
Time domain reflectometer VE7CIC 49, Nov 83
VHF/UHF World-transmission lines WJUR 83, Oct 85
Comments WB4KZC 9, Apr 86
VHF/UHF world WJUR 85, Dec 85
CONSTRUCTION TECHNIQUES
Advanced CW processor WB4IRW 25, Dec 86
Air-wound coils, constructing WB4WNU 37, Aug 84
Antenna carriage and track pole mount KB8I 46, Aug 83
Antenna hinge N4LI 70, Aug 83
Audio filter building blocks K1IPO 74, Jul 83
Short circuit 92, Nov 83
Battery charger, Nicd, constant current at KB2W 62, Aug 85
Build a better box Gruchalla, Michael 45, Aug 84
Build RF filter assemblies, Comments WB4EHS 9, Sep 86
Built-in connector (HI) WB4CW 78, Apr 85
Short circuit 70, Nov 84
Carpets samples in the ham shack KB8I 59, Sep 87
Cooling semiconductors part 1: design- ing and using heatsinks MAN3 Vaughn D 33, Jul 84
Cooling semiconductors part 2: blowers and fans MAN3 Vaughn D 33, Jul 84
Custom resistors, nomogram design WB4EKA 68, Jun 83
Design an amplifier around the 1200 A7, 1200 WD3H 30, Jul 83
Demand load, DC WA4M 91, Apr 85
Elevation indicator, inexpensive WB4M 67, Jul 85
G O.E.S. reception: a simple approach WA4WOC 46, Jan 84
Ham radio: Waterproofing parts WA3OSM 101, Nov 86
Heatload cooling fan (HI) WB4CKW 22, Jul 83
Comments, WA4S 8, Oct 83
Comments, K4KZB 2, May 84
High-frequency dummy load (HI) WK1KE 64, Jun 84
ICAT, anyting for case for (K) K1TJN 21, May 84
W8XW 62, Aug 83
Inductance equation, a different approach (HI) K4KZB 116, Dec 84
Junk-box ingenuity: how to buy, use, and store surplus electronic parts WB4EHS 32, Aug 84
Low-cost pc board layout software Freeman, Evan 8, Oct 87
Make a homemade sheet metal brake for chassis construction projects K1TJN 43, Jul 87
Microstrip impedance programs KB8I 31, May 84
N5005 wideband amplifier WB4CH 30, Sep 86
Short circuit 72, Jan 87
December 1987 99
Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shnuy, Fujitus, Seals, Spillsbury, Neulec, etc. Call or write for information. 212-925-7000.

NEW LOCATION!
BILAL COMPANY
137 Manchester Dr.
Florissant, Colo. 80816
(303) 687-0650

This publication is available in microform from University Microfilms International.
DIGITAL TECHNIQUES

Amateur FSK. A spectral analysis
W4NCG p 42 Dec 66

AMTOR, AX.25, and HERMES: a performance analysis of three systems
W9JD p 63 Dec 85
Comments: GSPX p 9 May 86

Amateur bell for the K2MBC KT-2
K2JZH p 82 Apr 85
Audio filter design: computer-aided
K5GZ p 82 May 85

AUTOTRACK, simple control interface board for the C-84, VIC-20 and applicable to other popular computers
K7NH p 10 Dec 87

CAT control system for the Yaesu FT-736
SM6CI p 26 Nov 87
Commodore 64, $100 printer (HN)
W8QJ p 75 Apr 85

Computer control of ICOM R-71, 2711, 4570 and 751 radios
N0K p 47 Apr 86

Comments: Continuous phase tones
W1AGL p 6 Aug 87

Deluxe logic probe
M. Wild p 74 Jan 87

Digital can do more, Comments on
K4AF0 p 9 Mar 86

Digital clock, build a fail-safe
K1N p 54 Oct 85

Digital frequency readout using the Commodore 64
W3NLN p 83 Nov 85

Digital H.F. radio: a sampling of techniques
K5BFU DJ2LR p 19 Apr 86

Short circuit p 12 May 85

DTMF controller for repeaters
W4ATX p 47 Sep 85

Elmer's notebook: an introduction to digital communications
W8LJ p 92 Jul 87

Elmer's notebook: an introduction to
AMTOR W1SL p 101 Sep 87

Elmet notebook: laptop notebook
W9SL p 100 Oct 87

FEATURES AND FICTION

Electromagnetic jogon generator, state-of-the-art
NTX p 75 Apr 85

Ham radio techniques
W6SAI p 66 Jan 83

Ham radio techniques
W6SAI p 77 Feb 83

Ham radio techniques
W6SAI p 47 Mar 83

Ham radio techniques
W6KIZ p 52 Apr 83

Comments: W6DKZ p 8 Dec 83

Ham radio techniques
W6I a p 52 May 83

Ham radio techniques
W6I a p 46 Jun 83

Ham radio techniques
W6I a p 42 Jul 83

Ham radio techniques
W6I a p 40 Aug 83

Ham radio techniques
W6I a p 41 Sep 83

Ham radio techniques
W6I a p 64 Oct 83

Ham radio techniques
W6I a p 80 Nov 83

Ham radio techniques
W6I a p 00 Jan 84

Ham radio techniques: Xianggung Province the last frontier
W6SAI p 55 Apr 87

Interview with Dr. Kenneth Davies
K5BN p 28 Jan 83

Q signals (letter)
W4MB p 8 Feb 83

The Artistic realisation
W7DX p 29 Dec 87

FILTERS

Simple VHF: UHF multiple quartz wave filters
WA3JWT p 37 Sep 87

Top-down filter design
W6FEP p 41 Jan 87

FM and Repeaters

Autopatch, simplex
W4FCD p 42 Jan 83

DTMF controller for repeaters
W4FCD p 47 Sep 85

FM advantage
W9QCDZ p 38 Sep 84

FM repeater separation 20 kHz, Yes, 15
W6IBS p 12 Aug 85

Forgetting memory, N1-Cd discussion
W6LJO p 62 Jan 83

Improved repeater/transmitter noise performance (HN)
W6YHZ p 104 Apr 86

Linear transducers
W6JUN p 14 Sep 83

Microprocessor repeater controller
KBSF p 56 Apr 83

Remote repeater programming using a computer and a telephone
K0IRC p 89 Mar 86

Repeater antenna beam tilting
K6JW p 29 May 83

Short circuit
W6CR p 80 Jul 83

Repeater: the modern design
W1GIS p 8 Oct 83

Repeater, high-tech: designing and building an FM translator
W4CAY p 82 Feb 85

Repeaters: speech synthesis for N9EE p 79 Mar 84

Repeaters, three circuits for N9EEp 91 Jan 84

Squelch, smart
W6RRI p 37 Jun 83

State-of-the-art audio decoder
K2MWU p 21 Dec 83

Short circuit
W6CQR p 10 Apr 84

Short circuit
W6CQR p 16 Mar 84

Comments: W6D9EA p 8 Feb 83

Tone burst generator for European repeaters
A W9AEEC p 88 Jul 86

Comments, K2MWU p 8 Feb 83

Touch tone decoder
KC6C p 27 Apr 83

Z1 a connection: a multi-state 2-meter repeater link
K5SY p 30 Oct 86

HAZARDS

AC line transient protection
W6MCG p 59 Apr 86

Electric shock, the effects and treatment of
W6MCG p 85 Apr 84

Lightning and electrical transient protection
K0DZ p 73 Dec 85

When hazardous waste comes home
PCBs in the ham shack
KA-1L00 p 42 Dec 83

INTEGRATED CIRCUITS

FSK tone generator using an IC tone decoder
W6CXT p 88 Apr 83

Low-pass filter: integrated circuit
W82K1G p 59 Jan 85

Static electricity and modern integrated circuits
K4KEF p 33 Mar 84

The Guern Report: superchips come of age
W6MIGI p 126 Feb 85

The Guern Report: microchips
W6MIGI p 124 Jan 86

The Guern report: microchips
W6MIGI p 109, Jul 87

KEYING AND CONTROL

Call sign identifier: programmable
W6SAI p 106, Oct 85

Improving the W3BCEH programmable call sign identifier
K41SK p 82, Sep 87

Keyer: simple, compact ORP (weekender)
W6SO p 82 Oct 84

Latching relay control (HN)
K6HTM p 94, May 83

Low power keyer and interface
K6HTM p 68, Feb 83

Short circuit
W6SH p 97, Aug 83

Microprocessor repeater controller
KBSF p 56, Apr 83

Micros and VHF: beacon transmits messages automatically
K5JU p 51 Jul 85

Morse Code tutor
N3SE p 45, Jun 85

Morse keyboard, an easier approach to mastering the
W9YK p 80, Apr 84

Morse timing
N3SE p 17, Apr 83

Remotely controlled stations: a look at a useless remote base
W6AEJO p 48, Sep 86

Remote control hf operation
K7NO p 32 Apr 83

Short circuit
W9YK p 97, Aug 83

Sending CW
K6HTM p 75, Jun 83

Solid-state CW T-R system
W8RLN p 60, Mar 83

Testing tubes
K4KJ p 30, Aug 83

MEASUREMENTS AND TEST EQUIPMENT

An 11 sweep generator
W2ZUC p 101, Jan 67

An rf voltmeter
GACG p 65, Nov 87

BC201, unusual
VK2Z p 22, Jun 83

Bridge measurements, the half wave transmission line in (HN)
K4KI p 108 Nov 84

Capacitive-reactance multiplier (HN)
K4KI p 89, Apr 83

Continuity tester, simple
W6DCGMB p 130 Sep 85

Deltaplug probe
M. Wilde p 74 Jan 87

Detailed look at probes
M. Wilde p 75, Sep 85

Detector, logarithmic, wideband
PA6CW DJBSA p 75, Jul 85

Duo tester (HN)
W8OLU p 90, Apr 83

Dual wattmeter, 50-500 MHz
W6CMM p 67, Jul 85

Electrical calibration standards
Martin, Vaughn p 10 Oct 83

EMRFI shielding: new techniques part
1 Martin, Vaughn D. p 72, Jun 84

EMRFI shielding: new techniques part
2 Martin, Vaughn D. p 85, Feb 84

Extreme range VU meter
W8B6NN p 59, Sep 86

Field strength meter, sensitive
K5Q p 51, Jan 85

Filter tester, simple (HN)
W6XM p 116, Dec 84

December 1987
The Guerni report: signal processing
W6GMI p. 156, Dec 84

Time and frequency standards: part 1
Martin, Vaughn D. p. 31, Dec 83
Time and frequency standards: part 2
Martin, Vaughn D. p. 31, Dec 83

Transmitter tuning aid: buffer your load with this resistive network (weekender)
K4KI p. 52, Feb 84

Tune-up method: low-duty cycle for transmitters (HFN)
K4KI p. 62, Aug 83

Comments, W6XW p. 11, Dec 83
Comments, K4KI p. 11, Jan 84

Tunepac, silent, safe
K4KI p. 123, Dec 84

Two-tone signal generator
Y8BATA/W7AQN p. 25, Feb 86
Short circuit p. 45, Apr 86
Short circuit p. 36, Jun 86

2.3 GHz preselector
N6LH p. 21, Jan 87

Understanding noise figures
Gruchalla, M. p. 89, Apr 87

Using the Astro 103 as a frequency counter (HFN)
W4ATE p. 69, Jun 83

VHF noise bridge, a CEA2AP/A2A premium
W6FJ p. 10, Jul 86

VHF/ UHF world
W7UJR p. 55, Oct 84

Video monitor, inexpensive
K8CG p. 12, Apr 83
Comments, K9TA p. 10, Aug 83

SWR bridges
K2LB p. 37, Mar 66
Weather radar, 10-GHz
KW7AF p. 61, Sep 83

Wide range inductance meter
K9BEA p. 52, Feb 83
Wide range RF power meter
KAB0L p. 24, Apr 86

Wiens Bridge oscillators, voltage-controlled Tener diode Guerni Circuit
W3PHK p. 52, Feb 83

Electromagnetic interference and the digital era
K3PJR p. 114, Sep 84

EMIRP: shielding new techniques part 1
Martin, Vaughn D. p. 72, Jan 84
EMIRP: shielding new techniques part 2
Martin, Vaughn D. p. 84, Feb 84

Filters (letter)
W6XM p. 6, Feb 83
Comments, W3NOW p. 8, Apr 83

Filter design, graphic
W6RNF p. 37, Apr 84

Short circuit p. 13, Jul 84

Function generator: circuits from your signal generator part 1
K4KI p. 67, Dec 86

Ham radio techniques
W6ASI p. 63, May 84

Ham radio techniques, fifty years ago
W5PJ p. 58, Jun 84

Ham radio techniques
W6SAI p. 75, Jun 84

Ham radio techniques
W6SAI p. 59, Feb 85

Ham radio techniques
W6SAI p. 83, Mar 85

Ham radio techniques: electron-hole theory exposed as fraud
W6SAI p. 67, Apr 85

Ham radio techniques
W6SAI p. 66, May 85

Ham radio techniques
W6SAI p. 51, Jun 85

Ham radio techniques
W6SAI p. 59, Jul 85

Ham radio techniques
W6SAI p. 90, Aug 85

Ham radio techniques
W6SAI p. 91, Sep 85

Ham radio techniques
W6SAI p. 75, Oct 85

Ham radio techniques
W6SAI p. 67, Nov 85

Ham radio techniques: 9CX7 re-examined
W6SAI p. 83, Dec 87

Harmonic product detector for GRP transceivers
W5FG p. 44, Jun 83

Harmonics, Tripping stubborn
W7MUN p. 19, Nov 86

Impedance matching; a brief review
W4DC p. 49, Jun 84

KWM7BU external control circuit
W2RUD p. 96, Dec 83

Lightning location and detection
K1CV p. 25, Sep 87

Linear amplifier, 3CX800A7
KK8B p. 17, Aug 84

Low-pass filter, integrated circuit
WB2KTG p. 59, Jan 85

Mobile trailer desirant. The Weekender
K7FZ p. 70, Feb 87

Modifying the Tri-Kenwood TS930S
WB9KXT p. 67, Apr 86

Monolithic RF amplifiers
N6JH p. 22, Mar 86

Mysterious spout on 160
W2BPL p. 73, Jun 84

Comments, KRLK, KB3BEJ
W5E3S p. 99, Nov 83

NE52S wideband RF amplifier
Gruchalla, Michael p. 30, Sep 86
Short circuit p. 72, Jan 87

Neuralizing 5700 final at 1500 watts output (HFN)
W2YX p. 63, Jun 84

Noise cancellation circuit
K1ROG p. 75, Mar 84

Peaked toppass: a look at the ultralanhythmic flavour
W7ZIO p. 95, Jun 84

Phase modulator: PLL (HFN)
VK4A p. 117, Jun 85

Photolysin cells: a progress report
W2BAHO p. 52, Dec 83

Computers, KKKV, SSKV, 3CX800A7
Martin, W2BAHO. WBAAPF
W2BAHO p. 10, Feb 84

Polymer film transforms material into energy
W3AH p. 55, Dec 84

Power-EET: trend for VHF amplifiers
PW7PC p. 12, Jan 84

Practically speaking: repairing your failure
K5E p. 95, Oct 84

Practically speaking: inners, pr. 1
K4IPV p. 75, Nov 85

Practically speaking: inners, pr. 2
K4IPV p. 79, Dec 85

NOVICE READING

Cheers from down under. Comments: VK4A p. 9, Dec 86

Ham radio technique
W6SAI p. 59, Dec 86

Elmer’s notebook: novice enhancement
W1SL p. 95, Jun 87

Short circuit p. 95, Aug 87

Elmer’s notebook: 220 MHz
W1SL p. 91, Aug 87

Elmer’s notebook: an introduction to AM
TOR p. 101, Sep 87

Elmer’s notebook: packet radio
W1SL p. 100, Oct 87

Morse code computer tutorial
N3SE p. 45, Jun 85

New band privileges for Novice opera-
tors (letter)
KB2OKE p. 15, Sep 86

Comments, W3YF p. 86, Nov 84

Practically speaking: battery problems.
pl.1
K4IPV p. 62, Jul 87

Preordained messages help the hearing impaired (HFN)
W2QLI p. 87, Sep 84

Quartet radiators
Boodaster, Peter p. 85, Feb 86

Resonant circuits
WE4HJS p. 10, Mar 86

Short circuit p. 36, Jun 86

RFI filters, Build narrowband
W6W5 p. 12, Apr 84

Solar power for your ham station
N6HBN p. 14, Dec 84

The Guerni report computer technology
W6KMC p. 54, Nov 84

Short circuit p. 8, Dec 84

The Guerni report
W6KMC p. 124, Jan 85

The Guerni report: superchips come of age
W6KMC p. 126, Feb 85

The Guerni report
W6KMC p. 158, Mar 85

The Guerni report
W6KMC p. 157, Apr 85

The Guerni report: a busy signal from space
W6KMC p. 165, May 85

The Guerni report predicting equipment failure
W6KMC p. 125, Jul 85

The Guerni report
W6KMC p. 124, Jul 85

The Guerni report
W6KMC p. 124, Aug 85

The Guerni report: RF power supplies achieve high efficiency
W6KMC p. 157, Sep 85

The Guerni report: RF effects the good and the bad
W6KMC p. 142, Oct 85

The Guerni report
W6KMC p. 140, Nov 85

Two-tone signal generator
W6SAI/W7AQN p. 25, Feb 86
Short circuit p. 45, Apr 86
Short circuit p. 36, Jun 86

Comments “Using the Spectrum Monitor.”
KB2H p. 99, Nov 86

Using CAD to rewire transmitters
W8WTU p. 83, Dec 86

Using spreadsheet programs
AD1B p. 95, Dec 86

Very sensitive LF or HF field-strength meter
K1RG0 p. 67, Sep 86

VHF/UHF world: the VHF/UHF primer (Crier an introduction to filters
W1IP p. 112, Aug 84

VHF noise bridge
OE2AP/A2A p. 10, Jul 86

VSWR bridges
K2LB p. 37, Mar 86

VMOS on 1750 meters
K1ROG p. 71, Oct 83

Wide-range RF power meter
KAB0L p. 24, Apr 86

102 December 1987
QUALITY TEST GEAR YOU CAN COUNT ON

RAMSEY ELECTRONICS

QUALITY TEST GEAR YOU CAN COUNT ON

Includes 2 Hook-on Probes

20 MHz Dual Trace

- 20 MHz, 2 channel
- 500 MHz, 2 channel

35 MHz Dual Trace

- 35 MHz, 1 channel
- 500 MHz, 1 channel

UNRIVALLED QUALITY • SUITABLE FOR HOBBY, SERVICE & PRODUCTION

MINI-100 COUNTER

- $119.95
- Change, Megohmeters, AC Adapter Included

CT-70 7 DIGIT 525 MHz

- $139.95
- Change, Megohmeters, AC Adapter Included

CT-90 9 DIGIT 600 MHz

- $169.95
- Change, Megohmeters, AC Adapter Included

CT-50 8 DIGIT 600 MHz

- $189.95
- Change, Megohmeters, AC Adapter Included

CT-125 9 DIGIT 1.2 GHz

- $189.95
- Change, Megohmeters, AC Adapter Included

RAMSEY FREQUENCY COUNTERS

Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for lab quality products at breakthrough prices. Our frequency counters have features and capabilities of counters costing twice as much.

RAMSEY D-4100 COMPACT DIGITAL MULTITESTER

- $249.95
- Test leads and battery included

RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER

- $49.95
- Includes Probes, 1 Year Warranty

TONE DECODER

- $5.95

COLOR ORGNOM

- $7.95

VOICE MODULATOR

- $8.95

LED Blobby Kit

- $9.95

MADDY-MASTER

- $11.95

SUPER SLEUTH

- $13.95

F.M.WIRELESS

- $14.95

PHONE ORDERS CALL

716-586-3950

TELEX 466735 RAMSEY CI

FAX 716-586-4754

ACCESSORIES FOR RAMSEY COUNTERS

- Telescopic Whip antenna—BNC plug...
- High impedance probe, light loading...
- Low pass probe, audio use...
- Direct probe, general purpose use...
- Timer, for CT 79, 125, ...

VISA

TENNESSEE

- Sales tax and mailing...
- Savings on 10% over catalog...

RAMSEY ELECTRONICS, INC.

2575 Bard Rd.

P.O. Box 41625

N.York, N.Y. 10017-5625
Oscillators

Audio oscillator to pulse generator conversion

WBOLO p. 50, Oct 84
Better frequency stability for the Drake TR-7

H9ABO p. 21, Aug 87
Frequency synthesis by VFO harmonic selection

W3MT p. 12, Feb 84
High-stability BFO for receiver applications

K12BH p. 28, Jun 85
Local oscillators, high stability for microwave receivers and other applications

WBJ2O p. 29, Nov 85
Low-noise phase-locked UHF VFO part 1: the noise problem

WAl4U p. 33, Jul 86
Low-noise phase-locked UHF VFO

WAl4H p. 9, Dec 86
Low-noise phase-locked UHF VCO part 2: construction and testing

WAl4U p. 25, Aug 86
Oscillator, voltage controlled, uses ceres resonators

K2BlA p. 18, Jun 85
Short Circuit p. 27, Aug 85
PL tone generator, a programmable

WB/BSZ p. 51, Apr 84
Short Circuit p. 125, May 84
RF synthesizers for hf communications, part 1

WAOAA p. 12, Aug 83
Short Circuit p. 125, May 84
RF synthesizers for hf communications, part 2

WAOAA p. 48, Sep 83
Short circuit p. 125, May 84
RF synthesizers for hf communications, part 2

WAOAA p. 17, Oct 83
Short circuit p. 125, May 84
Universal oscillator circuit

VEGFR p. 38, Apr 86
VCO. 1800-2600 MHz p. 21, Jul 85
VIDs tuned by cylinder and disc

WBYBF p. 58, Feb 83
W8D4M CVO design

W4M4X p. 49, Jul 84
10 GHz oscillator, ultra stable

K8UR p. 57, Jun 83

Packet

C-84 and GLB PK-1 interface circuit

W2EH D. 87, Mar 87
Comments: packet board update

p. 6, Jan 87
Elmer’s notebook: packet radio

W1SL p. 100, Oct 87
Packet starter for the PK-1

W2EHDexWKBGN p. 93, Mar 87
Packet radio conference bridge

W8D4M p. 24, Apr 87
Packet radio PSK modem for JAS-1F/F0

12RH p. 8, Feb 87
RAM drive for packet radio

AD1B p. 44, Dec 87
TEXNET packet-switching network pt. 1: system definition and design

WBSPC/ NSEG P. 29, Mar 87
TEXNET packet-switching network pt. 2: hardware design

WBSPC/ NSEG P. 29, Apr 87
TEXNET packet-switching network pt. 3: software overview

WBSPC/ NSEG p. 53, Jul 87

Power Supplies

AC converter, DC to 400-Hz (H)N

WB2YY p. 58, Mar 83
Battery charger, NCO, constant current, a pulsed output

K2MWM p. 67, Aug 85
Diesel generator repair

Richter, Wayne p. 46, Apr 83
Dual voltage power supply

W8D4K p. 32, Mar 83
Comments, W8Bzan p. 12, Jul 83
Short circuit

W8D4K p. 80, Jul 83
Forget memory (Ni-Cd discussion)

KBOW p. 65, Jan 83

Discussed operating: more DX propagation tips

WB2YY p. 101, Oct 86
DX feeder, DX propagation

KB8EM p. 108, Jan 87
Comment: HORTANT for CFPO

K4OOG p. 6, Feb 87

Receivers and Converters

General

Bragg-cell receiver

WB2YY p. 42, Feb 83
CASCADES, IMO and intercept points of W8MGJ p. 28, Nov 84

104

December 1987
GaAs FET PREAMPS
at a fraction of the cost of comparable units!

FEATURES:
- **Very Low Noise:** 0.7 dB VHF, 0.8 dB UHF
- **High Gain:** 30-130 dB, depending on freq.
- **Wide Dynamic Range:** to resist overload
- **Stable:** new-type dual-gate GaAs FET
- **Duty cycle range desired:** 25-30, 45-55, 60-70, 100-150, 200-250, 400-500 MHz

GaAs FET Preamp

LNG -(-*)
GaAs FET PREAMP

ONLY $49!

FEATURES:
- **Very Low Noise:** 0.7 dB VHF, 0.8 dB UHF
- **High Gain:** 30-130 dB, depending on freq.
- **Wide Dynamic Range:** to resist overload
- **Stable:** new-type dual-gate GaAs FET
- **Duty cycle range desired:** 25-30, 45-55, 60-70, 100-150, 200-250, 400-500 MHz

LN4 -(-*)
MINIATURE GaAs FET PREAMP

Unbelievably Low Price:

**ONLY $99/kit, $34 **

FEATURES:
- **Very Low Noise:** 0.7 dB VHF, 0.8 dB UHF
- **High Gain:** 30-130 dB, depending on freq.
- **Wide Dynamic Range:** to resist overload
- **Stable:** new-type dual-gate GaAs FET
- **Duty cycle range desired:** 25-30, 45-55, 60-70, 100-150, 200-250, 400-500 MHz

ACCESSORIES

- **PDX DTMF DECODER/CONTROLLER kit only $78.**
 - Full 16 digits, 5 functions, toll call restrictor, programmable. Much more. Great for selecting calls too!
- **AP-1 AUTOPATCH kit only $78.** Reverse patch & phone line remote control std.
- **AP-2 Simplex Autopatch.** Use with above.
- **CWID kit, new low price $48.** Field programmable, timers, the works!
- **COR-2 kit, $48.** Audio mixer, local speaker amplifier, tail & time-out timers.
- **COR-3 kit, $48.** With courtesy beep.
- **MD-202 FSK DATA MODULATION KIT $38.** Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- **DE-202 FSK DATA DEMODULATOR KIT $38.**

HAMTRONICS, INC.
65-E Moul Rd.; Hilton NY 14468-9535

RECEIVING CONVERTERS

VHF MODELS
- **Kit with Case:** $49
- **Kit less Case:** $39
- **Wired w/Case:** $69

UHF MODELS
- **Kit with Case:** $59
- **Kit less Case:** $49
- **Wired w/Case:** $79

TRANSMIT CONVERTERS

- **For 55B-CW, 2FU, or 2FU, 2FU**
 - **Model X42:** $434
 - **Model X41:** $434
 - **Model X43:** $434
 - **Model X44:** $434

- **For UHF**
 - **Model X42:** $434
 - **Model X41:** $434
 - **Model X43:** $434
 - **Model X44:** $434

- **FCC TYPE ACCEPTED FOR COMMERCIAL BANDS.**
- **UHF & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **TM-144/220 FM RCVR.**
 - **25 MHz:** $144
 - **220 MHz:** $144
 - **UHF:** $144

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.

- **FM EXCITERS:**
 - **Kits only $68.**

- **FM & UHF LINEAR AMPLIFIERS.** For FM or SSB, Power levels from 10 to 45 Watts. Several models. Kits starting at $78.
MULTIFAX 2.0
AN UPDATED MULTIFAX PROGRAM TO COPY:
- WEFAK FROM GOES SATELLITES
- HF FAX FROM NAVY WEATHER BROADCASTS
- APT FROM NOAA POLAR ORBITING SATELLITES
- WEFAK REBROADCASTS FROM TV TRANSPONDERS
IN UP TO 8 COLORS (BY RE-USING FOUR) ON YOUR IBM OR COMPATIBLE PC.
MULTIFAX 2.0 (MF2) displays the full picture on the monitor as it is being recorded. Meanwhile memory is filled with fine-grain data so that ANY AREA on the picture may be selected and repeatedly magnified for viewing in greater detail. All data and any view may be saved on disk.
MF2 is adaptable to all known fax speeds and PC clock rates since timing is keyboard adjustable.
MF2 now records more, such as a full NOAA pass and long weather charts and schedules. 448k of memory for DOS, MF2, and normal recording space. More memory gives a longer recording in B4k increments.
SEND hard copies by using your GRAPHICS print program OR using MF2 to dump a full picture in maximum resolution.

Elmer W. Schwittek, K2LAF
2347 Coach House Lane
Naples, FL 33942

IBM registered trademark of IBM Corp
Multifax is a registered trademark of E. W. Schwittek

Subscribe Today To The World’s Leading Magazine For Shortwave & Scanner Listeners!
- International Broadcasting
- Utility Monitoring
- Scanners
- Shortwave and Longwave
- Satellites
- Electronic Projects
- Listening Tips
- Frequency Lists
- Equipment Reviews
- News-breaking Articles
- Feature Articles
- Exclusive Interviews
- Insights by the Experts
- New Products

Each month MONITORING TIMES, the first wide-spectrum listener’s publication and still the best, brings you 64 giant tabloid pages of late-breaking information on every aspect of monitoring the radio spectrum.

Fast-paced and information-packed, MONITORING TIMES consistently scoops the publishing industry.

ORDER YOUR SUBSCRIPTION TODAY before another issue goes by: only $15 per year (U.S. and Canada), $22 per year (foreign) or send $1 for a sample issue (foreign send 2 IRCs).

MONITORING TIMES
P.O. Box 98
Brasstown, N.C. 28902

#1 Source of PACKET Info
The Magazine
For Amateur Radio and Computerists
Why You Should Subscribe!
Read what our subscribers say!

It’s in the fine print:
• Your magazine is the finest innovation that I have seen in ham radio since 1953—except... maybe the all-solid state transceiver. Carl Soltesz, W8PFT • ...have most certainly received my money’s worth in software... Michael Regan, K8WBB • ...you have found a nice niche for CTM in packet... you have me getting interested... Charlie Curle, AD4F Chattanooga, TN • The packet computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homely style of your magazine and the many fine computer articles... Andy Kosiorek, Lakewood, OH • I was both pleased and dismayed upon becoming acquainted with your magazine at HAM-COM. Pleased that I discovered your magazine—dismayed that I didn’t long before now. Bill Lathan, AK5K • ...CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet amateur radio articles and computer articles. Barry Siegfried, K2MF • Of the three HAM magazines I received each month CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT

U.S.A. $18.00 1 Yr—$10.00 6 Months (Limited Offer) $33.00 2 Yr
Mexico & Canada $32.00 1 Yr (Surface)
Other Countries (Air) $68.00 (Surface) $43.00 1 Yr
U.S.FUNDS ONLY
Sample Copy & Back Issues—$3.50

Mail to:
Circulation Manager
1704 Sam Drive
Birmingham, AL 35235
(205) 854-0271

Name
Call Sign
Address
City_ ST ZIP
Date
Signature
SPACECRAFT COMMUNICATIONS PROGRAM

1. Introduction

2. Technical Requirements

3. System Architecture

4. Component Descriptions

5. Performance Analysis

6. Conclusion

References

Figure 1: Block Diagram of the System

Figure 2: Test Setup and Results

Figure 3: Block Diagram of the System

Figure 4: Test Setup and Results

Figure 5: Block Diagram of the System

Figure 6: Test Setup and Results

Figure 7: Block Diagram of the System

Figure 8: Test Setup and Results

Figure 9: Block Diagram of the System

Figure 10: Test Setup and Results

Figure 11: Block Diagram of the System

Figure 12: Test Setup and Results

Figure 13: Block Diagram of the System

Figure 14: Test Setup and Results

Figure 15: Block Diagram of the System

Figure 16: Test Setup and Results

Figure 17: Block Diagram of the System

Figure 18: Test Setup and Results
On the Twelfth Day of Christmas
My True Love Gave to Me...

Twelve Folks Conversing
Eleven Geezers Griping
Ten Novices Keying
Nine Raggers Chewing
Eight Amateurs Arguing
Seven Turkeys Babbling
Six Extras Explaining
Five Garrulous Hams
Four Chatting Chicks
Three Bantering Biddies
Two Crackling Speakers
And a Radio to Listen in With.

Our Thanks For Your Loyal Support
Happy Holidays From EGE

Orders & Quotes Toll Free:
National: 800-336-4799
New England (except NH):
800-237-0047
Virginia: 800-572-4201

EGE Virginia
14803 Build America Drive,
Building B
Woodbridge, Virginia 22191
(703) 643-1063 & (703) 494-8750
M-Th: 10-6; F: 10-8; Sat: 10-4

EGE New Hampshire
8 Stiles Road
Salem, New Hampshire 03079
(603) 898-3750
MTuWF: 10-5; Th: 12-8; Sat: 10-4

©1987, EGE, Inc.
The idea of handheld DX seems far-fetched, but it’s actually very simple. The DX Handy is a battery powered (six penlight AA drycells included) SSB/CW transceiver with two watts output. DX Handy can also use nicad rechargeable batteries, or be powered with 9 VDC.

Two variable crystal oscillators (VXOs), each with 50 KHz range, can be selected with a top panel switch. Crystals for 28.250 to 28.300 and 28.300 to 28.350 MHz are included, and other crystal ranges for the 10 meter band are also available at a nominal cost.

CW operation can be by either the built-in push button or with an external key or keyer. External speaker and microphone jacks are also provided, and the telescoping antenna is included. The DX Handy also has a top panel S-meter/ output power meter and an effective noise blanker circuit. DX Handy is housed in an attractive gray metal case comparing in size to popular VHF FM handolds.

Ten meters is coming back strong. With DX Handy all amateurs, novice to extra class, can enjoy the thrill of working handheld DX.

AEA Advanced Electronic Applications
P.O. Box C2160
Lynnwood, WA 98036-0918
(206) 775-7373

AEA Retail $379.95 Amateur Net $319.95

Specifications

General
- Frequency Coverage: Any two 50 KHz segments in the 28.0-29.0 MHz Amateur Band (28.25-28.30 and 28.30-28.35 MHz supplied)
- Frequency Control: VXO provides 50 KHz of continuous tuning with a single crystal
- Frequency Stability: Within ± 500 Hz from a cold start
- Antenna: 50 Ohms Unbalanced, BNC connector
- Power Requirement: 8.4-9.0 VDC
 - (Included): 8-AA Dry Cells (1.5 volt/cell) = 9.0 VDC
 - (Optional): 7-AA NiCads (1.2 Volt/cell) = 8.4 VDC
- Current Drain: Receiving - Approx. 70 mA
- Transmitting - Approx. 620 mA
- Dimensions: (W) 66mm x (H) 39mm x (D) 142mm
- Weight: 710 Grams (1 lb. 9 oz.) with batteries and antenna

Transmitter
- Output Power: 2 Watts at 9.0 VDC
- Emission modes: A3J (USB) and A1 (CW)
- Spurious Emissions: More than 40 dB down
- Intermediate Frequency: 11.2735 MHz

Controls and Indicators
- On/Off Volume control Top mounted Potentiometer
- Receiver Incremental Tuning (RIT): Top mounted Potentiometer with center off detent position
- Frequency: Top mounted 50 KHz VXO
- Frequency Range: Top mounted 2-position switch
- Noise Blanker: Top mounted On/Off switch
- S/RF meter: Top mounted S/RF meter
- Built in CW key: Top mounted momentary switch
- External Speaker output: Top mounted ½” phone jack
- External Microphone input: Top mounted ¼” phone jack
- Antenna Connector: Top mounted Female BNC
- Transmit Indicator: Top mounted Transmit LED
- Push-To-Talk: Side mounted momentary switch
- External Power: Bottom mounted 2.1 mm coaxial
- External key input: Bottom mounted ¼” phone jack
- Mode Selector Switch: Bottom mounted 2-position switch
- Charge/External Power: Bottom mounted 2-position switch selecting 12 VDC external power function

Specifications and prices subject to change without notice or obligation.
You already own 75% of a color video station

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what's required to receive and send color video world-wide!

Add a ROBOT™ video transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your favorite mode is SSB or FM or AM—direct, via repeater or satellite—you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

Please send me the following Robot equipment. I understand that if I am dissatisfied for any reason, I can return the unit and receive a full refund.

- 1200C high resolution video transceiver $1995
- 450C standard resolution $795
- 400C upgrade kit $395
- More Information

Name_________________________ Call_________________________
Address___________________________ City___________________________ Zip___________________________
COD___________________________
Enclosed check or money order $_________________________
MC □ VISA □ Exp. Date_________________________

ROBOT
ROBOT RESEARCH, INC.
5636 Huffin Road
San Diego, CA 92123
Phone (619) 279-9430
CLOSEOUT
Kenwood TR-3600A
440 to 450 MHz
Hand Held w/extra Battery Pack
$269 Cash Price

CLOSEOUT
Kenwood TM-401B
25W 440 to 450 MHz Mobile
$299 Cash Price
Kenwood TM-411A
Mobile
25W 440 to 450 MHz
$329 Cash Price Limited Supply

The ORIGINATOR of the VHF AMP/PREAMP COMBO!
YOU KNOW THE LUNAR NAME...NOW OWN THE BEST.
• Solid State Amplifiers for 50, 144, 220, 440 MHz

NEW! GaAs FET Receive Preamp Built-In!
NEW! UHF Models of Latest Design!
NEW! Model V2-500 for Two Meters...
500 Watts Output in a Deluxe Package!

See your dealer or call
7930 Arjons Drive • San Diego, CA 92126 • Telephone (619) 549-9555 • Telex 181747

CONFERENCE PROCEEDINGS
21st Central States VHF Society Conference held in Arlington, Texas, July 23-25, 1987. 28 papers covering everything from use of TVRO dishes for moonbounce to a solid state amplifier for 5.7 GHz. 166 pages.

6th ARRL Computer Networking Conference held in Redondo Beach, California, August 29, 1987. 29 papers (approximately 150 pages) will appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 1.

MICROWAVE UPDATE 1987 held in Estes Park, Colorado, September 10-13, 1987. 15 papers (approximately 100 pages) appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 14.

Proceedings booklets are $10.00 each plus $2.50 per order for postage and handling ($3.50 for UPS.)

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN ST.
NEWINGTON, CT 06111

112 December 1987
the 1200-MHz band

This month I'll explore some of the activities and peculiarities of the 1200-MHz (23 cm) band, and give you a tip on how to become a very popular person with your local UHF crowd.

It wasn't too long ago that the 1200-MHz band was a real challenge for technically sharp Amateurs; getting a few milliwatts of stable power was difficult, and getting several watts required a whole bench full of tubes in cavities, heavy power supplies, blowers to keep it all cool, and enough spare surplus triodes to inflate the price of silver beyond reason. How things have changed!

A sketch of the 23-cm band is shown in fig. 1; note that the portion in which Novices can operate covers a large chunk of territory — almost half the band.

what's happening?

This is another band in which Novices can use repeaters, and perhaps one of its most promising activities. The power limitation of 5 watts PEP (peak envelope power) shouldn't create hardship at all. Any decent repeater on this band will have a high-gain, non-directional antenna, and it should be able to hear a 5-watt mobile or hand-held unit for several miles. Since a repeater transmitter can operate with many watts of output, the higher power level plus the antenna gain will assure full-quieting signals into any transceiver it can hear.

Repeater channels for fm on the 1200-MHz band are 25 kHz apart, with inputs starting at 1270.05 and continuing through 1276 MHz. Output frequencies are 12 MHz higher, from 1282 through 1288 MHz. There's room for simplex channels between 1294 and 1295 MHz, again with 25-kHz spacing recommended. There's plenty of room between 1276 and 1282, and between 1288 and 1294 for other modes, which I'll discuss later.

Adopted by the ARRL Board of Directors, this band plan has been widely publicized. Local groups may have different ideas, however, so be sure to check what's available before locking into a range of frequencies.

equipment

A look through the advertisements in any Amateur magazine shows that there are several choices for Novices to use on 1200 MHz. One notable fm unit is the IC-12AT hand-held unit from ICOM. It has 1-watt output, and has a sensitivity of 0.32 \(\mu V \) for 12-dB SINAD (and that's pretty good, considering that in the "weak-signal" work of only a dozen years ago, anything that could hear 0.5 \(\mu V \) was considered high tech!). One caution, however: current ICOM literature shows the IC-12AT (American version) available with 10, 20, 30, 40, or 50 kHz steps. Their IC-12E (European version) is available with 12.5, 25, 37.5, 50, or 62.5 kHz channel spacing. Be sure the one you get will fit the channel spacing available in your area.

There are a couple of mobile/portable units available: Kenwood's TR-50 (with 1-watt output) and ICOM's IC-120 (also with 1-watt output). Both units can be used mobile, or, given...
their relatively low battery-power requirements, portable with a small battery pack.

ICOM also offers a repeater, the IC-RP1210. Novices can’t be owners or control operators of repeaters, naturally, but I hope some Elmers or Technicians (who can also be Elmers) will get some ideas. This repeater provides inputs from 1271.02 to 1272.98 MHz, with outputs 20 MHz higher — i.e., 1291.02 to 1292.98 MHz. Output is 10 watts. It will work from either 117V/240V ac, or from 13.8V dc.

Then there’s ICOM’s IC1271. Again, it has too much power output (10 watts) for the Novice, but it’s nice to know about when thinking of upgrading. It’s a CW/SSB/fm transceiver, and has all the bells and whistles you'll need for OSCAR, contest, or other weak-signal work. It works from a 13.8-Vdc supply, so it’s a good candidate for mobile or home use.

is fm all there is?

There’s plenty of other activity going on in this part of the spectrum, and a look at the VHF/UHF/microwave contest scores in QST shows quite a few stations adding to their total by using 1296-MHz equipment. This usually comes under the heading of weak-signal work, and there’s equipment available for that, too. Note that although equipment shown in most advertisements is listed as 1296-MHz gear, it works at other frequencies too, and usually won’t need any adjustment if you put it to work just below 1295. It will require only minor tweaking if you want to use it between 1288 and 1294 MHz.

Weak-signal modes are CW or SSB, and most stations use their existing hf or VHF gear along with converters or transverters (transmitting/receiving converters) for 1200-MHz work. A popular line of such converters and transverters is produced by Microwave Modules. Among the equipment offered is the MMT 1296/144G — a 2-watt output transverter that uses a 144-MHz transceiver as its transmitting and receiving i-f; the NMK 1296/144 receiving converter that uses your 2-meter receiver tuned to the i-f output; and the MMG 1296 MHz receiving preamplifier to provide more gain and low noise ahead of a converter. Microwave Modules also has other units with more power capability for when you upgrade.

Most of the test equipment available in the usual ham workshop will function just as well at 1290 MHz, with the possible exception of a power/SWR meter. Here, the Bird series of wattmeters with plug-in elements offers an accurate means of checking your transmitter power output and antenna SWR.

Frequency counters, too, have arrived in this part of the spectrum: the Optoelectronics model 1300H works up to 1.3 GHz (1300 MHz), and Ramsey offers the CT125 for this band.

antennas

Although commercially-made antennas for this band are available, the selection isn’t large. There is evidence of improvement, however. Of course, Kenwood and ICOM provide antennas to work with the equipment they sell, and Larsen has a mobile 1200-MHz antenna available. I’ve also noticed mobile and base-station/repeater antennas made by NCG Company. Some of the NCG units are dual-band, working at both 446 and 1200 MHz.

For weak-signal work, most people roll their own, and considering that the length of a half-wave element at 1290 MHz is approximately 4-3/8 inches, it isn’t hard to put together a beam of respectable gain with a few pieces of aluminum.*

The loop Yagi, which consists of several closed metal hoops mounted on a boom in the same manner that elements are in ordinary Yagi antennas, is a popular item among many enthusiasts. Down East Electronics, Spectrum International, and Mirage/KLM offer loop Yagis.

the television question

Novices are permitted to use all available modes on the 1270-1295 band segment, and that includes television. The obvious precaution, however, is to be sure that television operation doesn’t interfere with any repeater operation. A TV signal requires a lot of room — anywhere from 3 to 8 MHz, depending upon the equipment used. There’s plenty of space for TV and other modes on the band, but the prudent operator will check to see where others are operating before putting a signal on the air.

The next thought that comes to mind is How? I haven’t seen any ready-made 1200-MHz television transceivers offered in the Amateur publications. There are, however, 420-MHz television systems and components available. Getting a signal on the air involves applying the video-output signal to an rf amplifier to produce amplitude modulation, then feeding the rf signal through some filters to get rid of one sideband and then to the antenna. Another method is to apply a low-power (i.e., milliwatts) output from a 420-MHz TV generator to a transmitting converter, then mix it with a local oscillator to produce 1200-MHz output. Either way, getting a television station together isn’t a terribly difficult procedure, and such a project can easily be explored by the technically adept Novice or Elmer.

safety precautions

One of the reasons for the 5-watt limit for Novices on 1270 to 1295 MHz is the possibility of tissue damage from rf energy at these frequencies. The problem comes about because unlike 28- or 220-MHz energy, for example, 1200-MHz energy is concentrated in a small area. Look at it this way: if you’re operating at 28.1 MHz and using a 1/4-wave whip, the output power is distributed along the length of the whip — approximately eight feet. The portion of it that your hand, arm, or head might intercept is small com-
pared to its total length. At 1200 MHz, however, the antenna length is 4 inches, which means that your hand can intercept most of the energy if you get too close. Even worse, your eye (which is very susceptible to rf damage) is of significant size compared with the energy distribution area, and can be severely damaged by exposure. Microwave ovens operate only 1000 MHz higher, at approximately 2300 MHz, and you know what they do to things in their rf fields.

Allowing newcomers to this part of the spectrum to become familiar with operating procedures and technical requirements at a power level low enough to reduce hazards is a very good move on the part of FCC.

A good precaution is to make sure that antennas are high enough so that they don't present any hazard, from either direct contact with their elements or from the concentrated energy (as in front of a high-gain Yagi) they emit.

feed line losses

All transmission lines lose some of the energy they're carrying between the transmitter and the antenna, and the higher the operating frequency, the more they lose. At 1290 MHz, RG-8/U or RG-213/U cable loses 11 dB per 100 feet. That means that if you have 5 watts going into the cable at your transmitter, only 1 watt is reaching the antenna in an average run of 60 feet. Obviously, you should use the shortest feedline you can. Don't scrimp on quality. Foam RG-8/U isn't bad (it loses approximately 6 dB/100 feet) and 1/2-inch hardline is even better at approximately 3.5 dB/100 feet. Buy the best you can get, and use good, clean coaxial connectors. The type-N fitting is best, but where space is a problem, the BNC will serve.

As for using RG-58/U cable (with 22 dB loss per 100 feet), and the so-called UHF (SO-239/PL259) fittings, don't even think about it. These connectors do terrible things to the feedline SWR at 1200 MHz, and most are pretty good attenuators, too.

signal attenuation

Normal atmospheric propagation holds no surprises as far as signal loss is concerned. Buildings will reflect 1200 MHz very well, as will some foliage. By the same token, foliage will absorb the signal, so getting an antenna up in the clear is very important. Mobile flutter (picket-fencing), caused by moving around, will be less noticeable because of the short distance between wavelength peaks and valleys.

One phenomenon that seems to work in a manner opposite from signal attenuation at 1200 MHz is called “ducting.” This is caused by layers of air of different densities and moisture content forming channels that reach great distances — sometimes hundreds of miles. These channels seem to behave as waveguides, allowing the signal bounce between layers with almost no loss until they pop out at the other end of the pipeline, often with S9+ strengths. Ducting seems to be more prevalent over or near large bodies of water.

Oddly enough, a higher-frequency signal such as 1200 MHz will come through very strong, even though a lower frequency such as 144 MHz won’t do well at all. Many UHF enthusiasts have been surprised by scanning a “dead” band, only to have a voice from DX-land come booming out of the speaker.

how to be a hero

Here’s a way to become a very popular person. There are several contests a year involving VHF and UHF operation. Stations operating on the higher bands are always in great demand. For example, in the ARRL UHF Contest (usually in August), each contact on 1290 MHz counts as six points, and the total number of grid squares (see below) on each band becomes the multiplier. You can grab one of the portable rigs described earlier, a couple of spare battery packs or whatever, plus 10 or 12 feet of collapsible mast and a small beam antenna. Get to the highest place you can (a hilltop, a tall
NEMAL ELECTRONICS

Complete Cable Assembly facilities MIL-STD-45208

Commercial Accounts welcome — Quantity pricing * Same day shipping most orders

Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

<table>
<thead>
<tr>
<th>Cable Assembly</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX 12/18 Aluminum Black Jacket</td>
<td>89/2</td>
<td>$9.95</td>
</tr>
<tr>
<td>FCL12 1/2″ Cablevision corr. copper blk jkt</td>
<td>1.5/2/3/4</td>
<td>$9.95</td>
</tr>
<tr>
<td>FCL72 1/4″ Cablevision corr. copper blk jkt</td>
<td>3.0/2/5/6</td>
<td>$9.95</td>
</tr>
<tr>
<td>NM12/12 N corr 1/2″ covr copper myl</td>
<td>23.00</td>
<td>$9.95</td>
</tr>
<tr>
<td>NM72/12 N corr 7/8″ covr copper myl</td>
<td>54.00</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connectors Made in USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE220 Type N plug for Belden 9913</td>
</tr>
<tr>
<td>NE223 Type N jack for Belden 9913</td>
</tr>
<tr>
<td>PL259 standard UHF plug for RG8/213</td>
</tr>
<tr>
<td>PL259AM Amphenol PL259</td>
</tr>
<tr>
<td>PL259TS PL259 teflon ins/silver plated</td>
</tr>
<tr>
<td>PL259AM Amphenol female-female (barrel)</td>
</tr>
<tr>
<td>LG175/LG176 reducer for RG316/58 (specify)</td>
</tr>
<tr>
<td>RS2505 RS259 to BNC plug adapter, teflon</td>
</tr>
<tr>
<td>RS229AM UHF chassis mtl receptacle, Amphenol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ground Straps</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS30 3/8″ tinned copper braid</td>
<td>30.00</td>
<td></td>
</tr>
<tr>
<td>GS12 1/2″ tinned copper braid</td>
<td>40.00</td>
<td></td>
</tr>
<tr>
<td>GS2000 1-1/2″ heavy tinned copper braid</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>HW66 6ga insulated stranded wire</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>AH14 14ga stranded antenna wire CCS</td>
<td>12.00</td>
<td></td>
</tr>
</tbody>
</table>

Shipping: Cable $3/100, Connectors $3.00, Visa/Mastercard $35 min, COD add $2.00

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

SPECIALIZED COMMUNICATIONS

FOR TODAY’S RADIO AMATEUR!

Since 1967, covering all modes of Amateur Radio "specialty" communications; Fast Scan TV, SSTV, FAX, Packet Radio, Computers, RTTY, AMTOR, Satellites, TVRO, Microwave, Lasers and more! 10 issues per year. Back issues available, SASE brings TRS80C, C64, IBM software catalog. U.S. subscribers $20/year. Foreign slightly higher. Add $2.00 for Index Issue.

SPEC-COM Communications & Publishing Group
P.O. Box H
Lowden, Iowa
52255-0408

For best rates on SPECIALIZED COMMUNICATIONS, call (305) 893-3924 for a free catalog.

Our 20th Year!
THE STANDARD OF EXCELLENCE
Definitely Superior!

AZDEN PCS-5000
COMMERCIAL GRADE

UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140,000-153,000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz.

CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range facilitates use of CAP and all MARS FREQUENCIES including NAVY MARS. COMPARE!

TINY SIZE: Only 2 inches high, 5½ inches wide and 7¼ inches deep!

MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.

UP TO 11 NONSTANDARD SPLITS: COMPARE this with other units!

20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.

DUAL MEMORY SCAN: Scan memory banks separately or together. All memory channels are tunable independently.

COMPARE!

MEMORY SCAN LOCKOUT: Allows you to skip over channels you don’t want to scan.

TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!

BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-resume.

DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency desired when scanning.

PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when channel is occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored for up to 5 years even if power is removed.

FREQUENCY REVERSE: Allows you to listen to repeater input frequency.

ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly.

CRISP, BACKLIT HIGH-POWER LCD DISPLAY: Easily read no matter what the lighting conditions!

DIGITAL 5/RM METER: Shows incoming signal strength and relative transmitter power.

MULTI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.

FULL 16-KEY TOUCHTONE PAD: Keyboard functions as autopatch when transmitting.

MICROPHONE CONTROLS: Up/down frequency control and priority channel recall.

PL TONE GENERATOR, BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE!

TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!

HIGH/LOW POWER: Select 25 watts or 5 watts output — fully adjustable.

SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for 20-db quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!

DIRECT FREQUENCY ENTRY: Streamlines channel selection and programming.

OTHER FEATURES: Rugged dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER.

AMATEUR-WHOLESALE ELECTRONICS
46 Greensboro Highway, Watkinsville, Georgia 30677
Telex: 781-2822952

MANUFACTURER:
JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku, Mitaka, Tokyo, 181 Japan
Telex: 49307091 ITT
<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>A-TECH ELECTRONICS</td>
<td>1033 HOLLYWOOD WAY BURBANK, CA 91505</td>
<td>(818) 845-9203</td>
</tr>
<tr>
<td></td>
<td>New Ham Store and Ready to Make a Deal!</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUN'S ELECTRONICS</td>
<td>3919 SEPULVEDA BLVD. CULVER CITY, CA 90230</td>
<td>213-390-8003, 800-882-1343 Trades Habla Espanol</td>
</tr>
<tr>
<td></td>
<td>A-TECH ELECTRONICS</td>
<td>ORLANDO, FL 32803</td>
<td>305-894-3238</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fta. Wats: 1 (800) 432-9424</td>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outside Fta: 1 (800) 327-1917</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>DOC'S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE ROSSVILLE, GA 30741</td>
<td>(404) 866-2302 / 861-5610</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICOM, Yaesu, Kenwood, Bird...</td>
<td>9AM-5:30PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>We service what we sell.</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEEAU MOKU STREET</td>
<td>(808) 949-5584</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HONOLULU, HI 98184</td>
<td>Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.</td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>78 SOUTH STATE STREET PRESTON, ID 83263</td>
<td>(208) 852-0803</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 9-2; T-F 9-6; S 9-2</td>
<td>Stock All Major Brands Over 7000 Ham Related Items on Hand</td>
</tr>
<tr>
<td>Illinois</td>
<td>ERIKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE. CHICAGO, IL 60630</td>
<td>312-631-5181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION</td>
<td>220 N. FULTON AVE. EVANSTON, IL 60710</td>
<td>(847) 523-7731, (812) 422-0231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICOM, Yeasu, Ten-Tec, Cushcraft, Hy-Gain, AEA & others.</td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDON DERRY ROAD DERRY, NH 03038</td>
<td>603-434-5371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hours M-S 10-5; THURS 10-7</td>
<td>Closed Sun/Holidays</td>
</tr>
</tbody>
</table>

Dealers: YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
Amateur Radio Dealer

New Jersey

ABARIS SYSTEMS
276 ORIENTAL PLACE
LYNCHBURG, NJ 07748
201-939-0015
Don WB2GPU
Astatic, Azden, B&W, Butternut, Larsen, Mirage/KLM, Kenpro, Nye, Santec, THL, and many others.
M-F 10 am-9 pm
SAT 9 am-7 pm
VISA/MC

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389
Gene K2KJI
Maryann K2RVS

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-926-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY
28900 EUCLID AVE.
WICKLiffe, OH 44092 (Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9:30-5, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS.
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; SAT 9-3

Missouri

KIRKWOOD ELECTRONICS
512 BROADWAY
ST. LOUIS, MO 63111
(314) 876-1200
Call Toll Free: 1-800-237-3788
M-F 9-5:30; SAT 9-3

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENDREY ASSOCIATES
AMATEUR RADIO DIVISION
5170A MUSEUM
VICTORIA, TX 77901
512-680-6110
Stocking all major lines. San Antonio's Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

MISSION COMMUNICATIONS
11903 ALEF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764
Now in Southwest Houston—full line of equipment. All the essentials and extras for the "ham."

Wisconsin

AMATEUR ELECTRONICS SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 362-0290
M-F 9-5:30 Sat 9-3

Foreign Subscription Agents for Ham Radio Magazine

Canada
Send orders to: Ham Radio Magazine
351 Main St.
Toronto, Ontario
Prices in Canadian funds
1 yr. $41.95, 2 yrs. $74.25
3 yrs. $99.90

Italy
Send orders to: Ham Radio Italia
Via Mauro 16
5-20133 Milano
Italy

England
Send orders to: Ham Radio Radio Magazine
3-520-7300
713-520-7000
PLATE THROUGH HOLES
SINGLE SIDE
DOUBLE SIDE
TYPE P.C. BOARDS

SALES & SERVICE: AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110

SAN ANTONIO, TX 78238

AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110

NEW YORK, NY 10012

California
351 Main St.
Toronto, Ontario
Prices in Canadian funds
1 yr. $41.95, 2 yrs. $74.25
3 yrs. $99.90

Foreign Subscription Agents for Ham Radio Magazine

Canada
Send orders to: Ham Radio Magazine
351 Main St.
Toronto, Ontario
Prices in Canadian funds
1 yr. $41.95, 2 yrs. $74.25
3 yrs. $99.90

Italy
Send orders to: Ham Radio Italia
Via Mauro 16
5-20133 Milano
Italy

England
Send orders to: Ham Radio Radio Magazine
3-520-7300
713-520-7000
PLATE THROUGH HOLES
SINGLE SIDE
DOUBLE SIDE
TYPE P.C. BOARDS

SALES & SERVICE: AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110

NEW YORK, NY 10012

California
351 Main St.
Toronto, Ontario
Prices in Canadian funds
1 yr. $41.95, 2 yrs. $74.25
3 yrs. $99.90

SPECIALISTS IN FAST TURN P.C. BOARDS

PROTO TYPE P.C. BOARDS
AS LOW AS $25.00
• SINGLE & DOUBLE SIDED
• PLATE THROUGH HOLES
• TEFLON AVAILABLE
• P.C. DESIGN SERVICES

FOR MORE INFORMATION

Midland Technologies
34374 EAST FRONTAGE ROAD
BOZEMAN, MT 59715 (406) 586-1190

December 1987 | 119
HARVEST Distinguished by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of harvest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unacceptable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

1.1, installation.

WASGFR COMMUNICATION SOFTWARE. Scanner store MFJ.

SMART BATTERY CHARGER for garage, car or lead acid battery. Write for details. L. J. Trefethen, 13529 Rice St, Downey, CA 90242.

CODE PROGRAMS, APPLE/B, 37-modes, LARESCO, POB 1208, 2019 Ring Road, Calumet City, IL 60409. 1 312 811 3279.

IBM-PC RTTY/CC, New Comp II is the complete IBM-PC CW program for I Rom and software. Send for free brochure. Ham Radio, 5235 W. LaPalmia, Unit K, Anchorage, AK 99501.

CHASSIS, KITS, CASES, K318K, 9200 Hammon Grove Road, Dover, PA 17315.

TELEVISION SETS must be in shape. TV s, monitors wanted. Send for our basic cash offer. Ham Radio, 203 S. College Ave, South Bend, IN 46625.

ENGINEERS request free catalog of Electronics Software: Circuit analysis, filter design, graphics, etc. BTV Engineering, 2200 Business Way, Suite 207, Riverside, CA 92501 (714) 781-0232.

NEW AND USED EQUIPMENT. Many hard to find items. Send large SASE to KASEF1, 4821 Terrace Terrar, Fort Worth, Texas 76114.

COMMODORE REPAIR. We are the largest Authorized Service Center in the country, led C139A198. Fast turnaround. Call Toll Free 1-800-664-7604. 248-298-298. On Site Service.

TEL-TEC. New shipping boxed latest USA radio latest factory models, 561 Coronet II, 5250 Argory II, and Century 70 scanners. RX3/166's MC3550's 100% new. $79.95.

TECHNOLOGIES 2928B 29V characterize antenna luma. Model 2605B 29V linear amplifiers, 70 MHz. Send for advance order. $199.95. Will pay postage for Paragon delivery. For best deal write or phone Bill Sip 706-274-6924. SLB Electronics Company, Highway 441, One, NY 14921.

DIGITAL AUTOMATIC DISPLAYS for FT-101's. T520's 0.01/6. Collie, Drake, Swan. Health and all others. Send for list. 306 3762. "Widths and transmisso" Send $2.00 for information and receive a 10x 0.10 discount. Includes accuracy comparison of the simple "BCD" readouts, found in new radios, against our "Calculate your Frequency Counter" readouts. Please be specific. GRAND SYSTEMS, POB 2171, Blaine, Washington 98230.

COMMODORE C-128 Radio-Electronics and Engineering Design software. Not available through any other source. Covering a whole range of electronics. Model 10 14. $29.95. Send $20.00 for 2 disks. 14. Send SASE for information to Tri County Amateur Radio Club c/o KAZAY, PO Box 80641, Miami, FL 33181 7841.

WANTED. Automatic Schematic for ham radio. OSCilloscoop model 10 14. Have Apple Pacific software listed above. Will trade. Request List: Huber Teasont, 1905 West 41 Street, Downey, CA 90240.

RTTY JOURNAL—Now in our 36th year. Join the circle of RTTY friends from all over the world. Year’s subscription to RTTY JOURNAL 1 year, 10 issues, 6.00$. Send SASE to RTTY JOURNAL, 9085 La Cota Ave., Fountain Valley, CA 92708.

CARMLA Medical Amateur Radio Club, Ltd. operates daily and Sunday nights. Medically oriented Amateurs (physicians, dentists, nurses, chiropractors, lab technicians) etc. invited to join. Presently over 350 members. For information write MARCO, Box 73’s, Acme, PA 18210.

HAM LAB PROJECT. Want several pieces HP 382A variable attenuator. Will consider any reasonable condition. KEGOX, PO Box 1522, Redford, MI 48240.

30 YEARS PROVIDING QSL’S. Colorful QSL’s and cards. Add SASE for list of cards at no charge. Send SASE to Bill Sip, 1141 N. Dale Ave, San Diego, CA 92117. SASE brings information.

ELECTRON TUBES: Receiving, transmitting microphone. All types available. Large stock. Next day delivery, minor defects. DAILY ELECTRONICS, PO Box 8203, Compton, CA 90224 213 774 1255.

CUSTOM MADE EMBROIDERED PARCHES. Any size, shape, color, design. Embroidery, patches, pin, pieces and ordering information. HERN SPECIALTIES, Inc., Dept 319, 802 N. Drake, Chicago, IL 60618.

RECONDITIONED TEST EQUIPMENT $1 25 for analog Wattcr, 2397 Nickel, San Pablo, CA 94906.

COMING EVENTS

Activities — "Places to go . . ."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUNCEMENTS OF EVENTS THE RACES, CONVENTIONS, CLASSES, EXAMS, MEETINGS, FLEA MARKETS, ETC. WHICH WILL BE ACKNOWLEDGED IN HAM RADIO. THIS INFORMATION WILL BE GREATLY APPRECIATED BY OUR BROTHER SISTER HAMS WITH LIMITED PHYSICAL ABILITY.

MINNESOTA: December 5. The annual Ham Radio Winter Hamfest. Enjoy 3,000 radios, Dais, books, and all related equipment. Ham equipment auction. Dinner at room. Programs follows. License exams. Call in 1-700 7-FAX for info. Fax phone 315-394 4247. SASE.

INDIANA: SOUTH BEND, January 3. Hamfest Swap Shop "First time ever." New Year's Day at CENTURY CENTH (then town on US 33 northway north between St. Joseph Builing and east, Five best highways to those from all dis. Tabs. 55 1/2 round 5.625 25% square. For your location. Tab fpm. 5 52-9 39 69-3 39 44-16 29 125 301.

WISCONSIN: January 9. The 16th Annual Midwinter Swapfest sponsored by the West Allen Amateur Club. Waukegan County Expo Center Forum. 8 AM to 3 PM. Admission: 2.00 advance, 3.00 door. 4 tables. 60 00 advance. 60 00 door. Advance deadline January 2. Exams given, duals welcome. Food free available. For tickets or information SASE to WVARC Swapmeet, PO Box 1072, Milwaukee, WI 53201.

MICHIGAN: January 24. The Southfield High School ARC is sponsoring their 20th Annual Swap & Ship. Southfield HS, 24677 Lasher, Southfield, door fee $4 for exhibitors, $3 for AM to 3 PM. Admission: 3.00. 1 6 2" table. Additional reserved tables 5.10 each. All profits go toward Electronics Summer Camp. Send SASE for information. Special: Ad. For information: reservations: Robert Younker, Southfield High School, 24677 Lasher, Southfield, MI 48034.

HAM EXAMS: The MIT UHF Radio Association and the MIT Radio Society offer monthly Ham Exams. All classes offered February 25, December 23, 7 PM. MIT Room 21. 77 Mass Ave, Cambridge, MA. Reservations requested 2 days in advance. Contact Ron Hoffmann at (617) 666-1641. Exam fee $4 00. Contact (617) 495 5000. Note: Exam is $4 00. For more information contact Ron Hoffmann. Enrolled and completed forms available from the FCC in Quincy, MA (617) 770-4023.

FLEA MARKET

RATES Noncommercial ads 10c per word; commercial ads 60c per word both payable in advance. No cash discounts or agency commissions allowed.

CHARGE YOUR CLASSIFIED ADS to your MC or VISA write or call

HAM RADIO MAGAZINE

Greenville, N. H. 03048

(603) 878-1441
Giving HAM RADIO Magazine is both fun and thoughtful.

One Year/12 issues

$19.95 SAVE OVER 10%
FOR ONE GIFT SUBSCRIPTION
OR RENEWAL

$16.95 SAVE 25%
FOR TWO OR MORE GIFT SUBSCRIPTIONS OR EXTENSIONS
INCLUDING YOUR OWN
A handsome gift card will be sent if your order
is received before December 15, 1987

Every month your Ham friend will be reminded
of your gift as they read through the latest issue
of HAM RADIO Magazine.

Staying on top of the ever changing world of
electronics is tough. With a subscription to HAM
RADIO, however, you get all the latest break-
throughs in electronic design and developments
as they happen — not years later. Each issue is
packed with theory, state-of-the-art projects and
the latest designs. Plus plenty more.

The Special ANTENNA issue in May, VHF/UHF
issue in July and the RECEIVER issue in Novem-
ber alone are worth the price of a subscription!

You also get monthly columns by Orr, Reisert,
Stonehocker, Carr and McMullen covering from
antennas to zener diodes and repair techniques.

There’s no time like now to give the present of
HAM RADIO Magazine for that hard-to-buy-for
ham friend. While you’re at it, why not renew
your own subscription and take advantage of the
special low one year rate.

1987 GIFTS AT 1985 PRICES!
Please enter my one year gift/renewal
subscription(s) to Ham Radio Magazine as follows:

First gift or renewal $19.95 Save $3
Two or more gifts or renewals $16.95 Save $6

Name_________________________Call_________________________
Address_________________________
City_________________________State_________Zip_________
____new______renew

FIRST SAVE $3

SECOND SAVE $6

FOR EXTRA FAST SERVICE, CALL TOLL FREE TO
ORDER YOUR GIFT SUBSCRIPTIONS OR BOOKS.

CALL TOLL FREE 800-341-1522
M-F 8-9 EST SAT 9-5 EST
DataTel 800°
ORDERS ONLY
ALL OTHER CALLS
603-878-1441 8-4:30 EST

Greenville, NH 03048
Prices U.S. only
<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>110</td>
</tr>
<tr>
<td>208</td>
<td>117</td>
</tr>
<tr>
<td>209</td>
<td>36</td>
</tr>
<tr>
<td>210</td>
<td>112</td>
</tr>
<tr>
<td>211</td>
<td>24</td>
</tr>
<tr>
<td>212</td>
<td>78</td>
</tr>
<tr>
<td>213</td>
<td>115</td>
</tr>
<tr>
<td>214</td>
<td>71</td>
</tr>
<tr>
<td>215</td>
<td>71</td>
</tr>
<tr>
<td>216</td>
<td>68</td>
</tr>
<tr>
<td>217</td>
<td>71</td>
</tr>
<tr>
<td>218</td>
<td>71</td>
</tr>
<tr>
<td>219</td>
<td>55</td>
</tr>
<tr>
<td>220</td>
<td>52.5</td>
</tr>
<tr>
<td>221</td>
<td>94</td>
</tr>
<tr>
<td>222</td>
<td>110</td>
</tr>
<tr>
<td>223</td>
<td>117</td>
</tr>
<tr>
<td>224</td>
<td>112</td>
</tr>
<tr>
<td>225</td>
<td>71</td>
</tr>
<tr>
<td>226</td>
<td>55</td>
</tr>
<tr>
<td>227</td>
<td>52.5</td>
</tr>
<tr>
<td>228</td>
<td>55</td>
</tr>
<tr>
<td>229</td>
<td>55</td>
</tr>
<tr>
<td>230</td>
<td>55</td>
</tr>
<tr>
<td>231</td>
<td>55</td>
</tr>
<tr>
<td>232</td>
<td>55</td>
</tr>
<tr>
<td>233</td>
<td>55</td>
</tr>
<tr>
<td>234</td>
<td>55</td>
</tr>
<tr>
<td>235</td>
<td>55</td>
</tr>
<tr>
<td>236</td>
<td>55</td>
</tr>
<tr>
<td>237</td>
<td>55</td>
</tr>
<tr>
<td>238</td>
<td>55</td>
</tr>
</tbody>
</table>

Please contact this advertiser directly.

Please use before January 31, 1988.

PRODUCT REVIEW/NEW PRODUCTS

- **AEA**
- **Bill Company**
- **Communications Specialists**
- **Encomm Inc.**
- **Engineering Consulting**
- **John Fiske Manufacturing Co.**
- **Heath Company**
- **ICOM America, Inc.**
- **Karatronics**
- **MFJ Enterprises**

ADVERTISER’S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to Ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name:

Address:

City:

State:

Zip:

1988 CALLBOOKS

Continuing a 67 year tradition, we bring you three new Callbooks for 1988.

The North American Callbook lists the calls, names, and address information for 478,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists 811,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and U.S. possessions).

The 1988 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1, 1988, this Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

The 1988 Callbooks will be published December 1, 1987. See your dealer or order now directly from the publisher.

- **North American Callbook**
 - incl. shipping within USA: $28.00
 - incl. shipping to foreign countries: $30.00

- **International Callbook**
 - incl. shipping within USA: $30.00
 - incl. shipping to foreign countries: $32.00

- **Callbook Supplement, published June 1st**
 - incl. shipping within USA: $13.00
 - incl. shipping to foreign countries: $14.00

SPECIAL OFFER

- **Both Callbooks and International Callbooks**
 - incl. shipping within USA: $35.00
 - incl. shipping to foreign countries: $60.00

Illinois residents please add 6% tax. All payments must be in U.S. funds.

RADIO AMATEUR Callbook INC.

Dpt. 925 Sherwood Dr., Box 247 Lake Bluff, IL 60044, USA

Tel: (312) 234-6600
ARE YOU CONFUSED ABOUT YOUR NEW PRIVILEGES? CALL US FOR THE UP-TO-THE-MINUTE INFORMATION AND ASSISTANCE WITH YOUR GEAR.

1-800-821-7323
TRADE INS ACCEPTED
MasterCard — VISA — COD Welcome

KENWOOD
- **TS940S** “DX-cellence”
 - Programmable Scanning
 - High Stability, Dual Digital VFO’s
 - 40 Channel Memory
 - General Coverage Receiver

- **TS440S** “DX-CITING”
 - 100% Duty Cycle
 - 100 memories
 - Direct Keyboard Entry
 - Optional Built-in AT
 - On Sale Now, Call For Price!

KENWOOD
- **TM-3530A** 220 MHz MOBILE FM TRANSEIVER
 - 220-225 MHz with 25 Watts
 - 7-Digit Telephone No. Memory
 - Direct Frequency Entry
 - 23-Channel Memory

NEW
- **TH-215A** “FULL FEATURED 2M HT”
 - 141-146 MHz Receive
 - 144-148 MHz Transmit
 - 2.5 Watt Output (5W Optional)
 - 15 Memories
 - Built-in CTSS Encoder
 - Nine Types of Scanning

KENWOOD
- **FT-23/73R**
 - Zinc-Aluminum Alloy Case
 - 140-164 MHz, 440-450 MHz
 - 500 MHz Standard Opt. 5W New “Super Hammer”

KANTRONICS
- **KAM**
 - Kantronics All Mode
 - CW, RTTY, ASCII, AMTOR, HF & VHF Packet
 - RS-232/TTL, Universal Compatibility
 - Transmit and Receive CW 6-99 wpm, RTTY/ASCII 45-300 Baud, ARQ, FEC, SELFEC, Listen ARQ, VHF and HF Packet

NOVICES
- **PK 232**
 - Make any RS-232 compatible computer or terminal a complete digital operating position.
 - Morse, Baudot, ASCII, AMTOR, Packet
 - Loaded with features.

ASTRON CORPORATION
- Power Supply
 - **RS2A** $48
 - **RS12A** $68
 - **RS20A** $88
 - **RS20M** $105
 - **V52M** $125
 - **R56A** $153
 - **R535M** $149
 - **V53M** $165
 - **SS50A** $189
 - **RS60M** $214
 - **RM50A** $219
 - **VS50M** $229

MISSOURI RADIO CENTER
- 102 N.W. Business Park Lane, Kansas City, MO 64150 816-741-8118
NEW
POCKET SIZE
SIZE: 4" H x 3.5" W x 1" D
MADE IN USA

$99.95 - $150.00

OPTOelectronics inc
FREQUENCY COUNTERS
TO 1.3 GHZ

8 LED DIGITS • 2 GATE TIMES
ANODIZED ALUMINUM CABINET
INTERNAL Ni-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY

AC-DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
#1200HKC Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions .. $ 99.95
#1200HC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $137.50
#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $150.00

ACCESSORIES:
#TA-100S Telescoping RF pick-up antenna with BNC connector .. $12.00
#P-100 Probe, direct connection 50 ohm, BNC connector .. $18.00
#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories .. $10.00

ORDER FACTORY DIRECT
1-800-327-5912

OPTOelectronics inc
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

AVAILABLE NOW!

Orders to US and Canada add 5% of total ($2 min., $10 max)
Florida residents add 5% sales tax. COD fee $2.
Should you choose one, two, or all three? Choose one—Yaesu's FT-109RH, FT-209RH or FT-709R—and you gain the maximum performance available in any single-band HT. Choose two—or even three, and you also get interchangeable accessories, options and operating procedures. Making it easy and affordable to work all your favorite VHF and UHF bands.

However you decide, you get all this operating flexibility: Powerful 5-watts output (4.5 watts on 440 MHz). Battery saver. Push-button recall of 10 memories, each that independently stores receive frequency, standard or non-standard offset, even optional tone encode and decode.

Push button scanning routines for scanning all memory channels, selected ones, or all frequencies between adjacent memories. And a priority feature to return you to a special frequency.

You also get a high/low power switch, power meter, backlit display, 500-mAh battery, wall charger, and soft case. Plus a choice of many interchangeable options, including a VOX headset, fast charger, hard leather case, and plug-in subaudible tone encoder/decoder for controlled access repeaters.

Let Yaesu's 220 MHz FT-109RH, 2-Meter FT-209RH and 440 MHz FT-709R give you the decided advantage in HT performance and upgrade ability. It may be the most enjoyable HT buying decision you ever make.
Affordable DX-ing!

TS-140S
HF transceiver with general coverage receiver.
Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140S HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of "look-alike" transceivers!

- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz. (Receiver specifications guaranteed from 500 kHz to 30 MHz.) Modifiable for HF MARS operation. (Permit required.)
- All modes built-in. LSB, USB, CW, AM and FM.
- Superior receiver dynamic range Kenwood DynaMax™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.
- New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRM to non-participants.
- Famous Kenwood interference reducing circuits, IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC, and FM squelch.
- M.CH/VFO CH sub-dial. 10 kHz step tuning for quick QSY at VFO mode, and UP/DOWN memory channel for easy operation.
- Selectable full (QSK) or semi break-in CW.
- 31 memory channels. Store frequency, mode and CW wide/narrow selection. Split frequencies may be stored in 10 channels for repeater operation.
- RF power output control.
- AMTOR/ PACKET compatible!
- Built-in VOX circuit.
- MC-43S UP/DOWN mic. included.

Optional Accessories:
- AT-130 compact antenna tuner
- AT-250 automatic antenna tuner
- HS-5/HS-6/HS-7 head-phones
- IF-232C/IF-10C computer interface
- MA-5/VP-1 HF mobile antenna (5 bands)
- MB-430 mobile bracket
- MB-435 extra HP/CLR hard mic
- MC-55 (5-pin) noise neck mobile mic
- MC-60A/MC-80/MC-85 disk mic.
- PG-2S extra DC cable
- PS-430 power supply
- SP-40/SP-50B mobile speaker
- SP-430 external speaker
- SW-100A/SW-200A/SW-2000 SWR/power meters
- TL-922A 2 kW PEP linear amplifier (not for CW/QSK)
- TF-83 CTSS tone unit
- YG-455C-1 500 Hz deluxe CW filter
- YK-455C-1 New 500 Hz CW filter.

TS-680S
All-mode multi-bander
- 6m (50-54 MHz) 10 W output plus all HF Amateur bands (100 W output).
- Extended 6m receiver frequency range 45 MHz to 60 MHz. Specs guaranteed from 50 to 54 MHz.
- Same functions of the TS-140S except optional VOX (VOX-4 required for VOX operation).
- Preamp for 6 and 10 meter band.

NEW!
KENWOOD...
...pacesetter in Amateur Radio

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745