professional layout software
for amateur radio applications
ICOM IC-900 FIBER OPTIC FM MOBILE

ICOM introduces the revolutionary IC-900 multi-band FM mobile transceiver. ICOM, first in utilizing fiber optic technology in amateur radio, enables you to create your own mobile communications system. Six band combinations: 10M FM, 6M, 2M, 220MHz, 440MHz, and 1.2GHz. It's the most advanced, versatile, compact, and easy-to-use mobile available.

Features Galore. The IC-900 is an operator's dream...Listen on two bands simultaneously or transmit on one band and receive on a different band when using a second speaker (true full duplex crossband operation). 10 memories per band, independent PL tones and offset into each memory, memory and programmable band scan, and all subaudible tones in actual Hz readout.

The IC-900 includes an ultra compact remote controller, an Interface A unit, Interface B unit, SP-8 speaker, HM-14 up/down DTMF mic, fiber optic and controller cables.

Remote Controller

Measuring only 2 inches high by 5.7 inches wide by 1 inch deep, the remote controller can be installed on your car's dash or sun visor with the supplied velcro. And, if you want, take the controller with you when you leave your car. The controller features a super large, highly visible LCD.

Interface Unit A is installed in a location near the driver's seat.

Interface Unit B controls the six band units and can be installed in your car's trunk. A fiber optic cable runs from Interface A to Interface B, which transports an abundance of information through a 3/16" cable and eliminates RF feedback.

Band Units are "stacked" onto the Interface B Unit via the supplied mounting bracket. Optional band units available are:

<table>
<thead>
<tr>
<th>Band Unit</th>
<th>Power Output</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>UX-19A</td>
<td>10W/1W</td>
<td>28-30MHz</td>
</tr>
<tr>
<td>UX-29A</td>
<td>25W/5W</td>
<td>138-174MHz Rx: 140.1-150MHz Tx</td>
</tr>
<tr>
<td>UX-29H</td>
<td>45W/5W</td>
<td>138-174MHz Rx: 140.1-150MHz Tx</td>
</tr>
<tr>
<td>UX-29A</td>
<td>25W/5W</td>
<td>216-228MHz Rx: 220-225MHz Tx</td>
</tr>
<tr>
<td>UX-49A</td>
<td>25W/5W</td>
<td>440-450MHz</td>
</tr>
<tr>
<td>UX-59A</td>
<td>10W/1W</td>
<td>50-54MHz</td>
</tr>
<tr>
<td>UX-129A</td>
<td>10W/1W</td>
<td>1250-1300MHz</td>
</tr>
</tbody>
</table>

ICOM America, Inc., 2380-116th Ave. N.E., Bellevue, WA 98004 Customer Service (206) 461-3900
3150 Premier Drive, Suite 126, Irving, TX 75063 / 1777 Phoenix Parkway, Suite 201, Alhambra, CA
ICOM CANADA, A Division of ICOM America, Inc., 3071 - 65 Road, Unit B, Richmond, B.C. V6X 2T1

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
NOW — ALL KANTRONICS KPCs and KAM ARE TCP/IP NETWORKING COMPATIBLE INCLUDE THE PACKET MAILBOX AND COME WITH 32K RAM

EXTRA FEATURES — NO EXTRA CHARGE

That's right! Now all Kantronics packet units* include the Personal Packet Mailbox**, come with 32K RAM, and are TCP/IP Networking compatible — ALL AT NO EXTRA CHARGE. And there's more . . .

KAM and KPC owners** — you can add the Packet Mailbox and TCP/IP compatibility for the special low price of just $15.00.

At Kantronics we're committed to keeping you current. Check below and see — we offer more features and the best customer support around.

KPC-2™ This low cost/high performance Kantronics TNC features a built-in HF/VHF modem, the Personal Packet Mailbox, full duplex operation, and multiple connect capability. The serial RS-232/TTL port allows easy interfacing with all computers, even Commodores. KPC-2 is TCP/IP Networking compatible, includes 32K RAM, and uses only five front panel indicators for easy operation. Like all Kantronics units, KPC-2 is fully compatible with existing TNCs.

KAM™ KAM is the fully programmable All Mode unit that lets you operate VHF Packet, HF Packet, CW/RTTY/ASCII/ and AMTOR. But that's not all . . .

Only KAM's dual VHF/HF radio ports work together for simultaneous Connects, Digipeating, and VHF/HF GATEWAY operations. And now KAM is TCP/IP Networking compatible, comes with 32K RAM, and has the Personal Packet Mailbox ALL STANDARD.

KAM includes watchdog timers on each port, an RS-232/TTL serial port, and a bargraph tuning indicator for HF operation. KAM even comes with an external modem connection point for optional 2400 b/s packet operation. For the greatest degree of sensitivity and flexibility, turn to KAM, Kantronics All Mode.

KPC-4™ Only KPC-4 features simultaneous Connects, Digipeating, and Gateway functions on two fully functional VHF radio ports — each of which includes a watchdog timer. What's more — you can add 2400 b/s operation to port 2 with Kantronics optional 2400 Modem™.

KPC-4 includes the Personal Packet Mailbox and 32K RAM (expandable to 64K), and is TCP/IP Networking compatible. The RS-232/TTL serial port assures easy interfacing with any computer. Make KPC-4 your GATEWAY into packet flexibility.

Kantronics
RF Data Communications Specialists
1202 E. 23 St Lawrence, Kansas 66046 (913) 842-7745

* KAM, KPC-2, KPC-4, and KPC-2400 units shipped 7-31-87 or later.
** KAM-1 (Packet Communicator), KPC-2, KPC-4, KPC-2400
First Again!

TW-4100A

2 m/70 cm FM Dual Bander

A Kenwood original just got better! Kenwood was the first to develop a 2 m/70 cm mobile radio in a single, compact package. Since then, other companies have imitated the concept, but still have not done it the "Kenwood way." The all-new TW-4100A is more compact, more powerful, and packed with more features than ever before! With many new features and accessories, and backed by Kenwood's experience, the all-new Kenwood Dual Bander is light years ahead of the rest!

- Selectable full duplex cross band ("telephone style") operation. Remote base or cross band repeater function possible (a control operator is needed for remote or repeater operation).
- 45 watts on 2 m, 35 watts on 70 cm. 5 watts (adjustable) low.
- Frequency coverage 144-149 MHz (allows operation on certain MARS and CAP frequencies) and 440-449.995 MHz.
- New compact size! Only 5.9” W x 1.97” H x 7.87” D and weighs less than 4 pounds!
- Proven high performance Kenwood GaAs FET front end receiver.
- Easy to operate! Only 3 knobs and 8 keys on the front panel.
- Separate antenna ports for VHF and UHF. Minimizes loss and increases reliability and performance!
- 10 memory channels. Lithium battery backs up memory. Store frequency, offset, subtone. Two channels store the transmit and receive frequencies independently for odd split or cross band operation.
- Front panel-selectable CTCSS tone (when optional TU-7 is installed.)

- Non-volatile operating system. Even after memory back up cell dies, all operating features remain intact! No re-programming or "board-swapping" necessary!
- Programmable band scan and memory scan with memory channel lock-out.
- Large, illuminated LCD display and main knob. For excellent visibility in direct sunlight or darkness.
- Selectable frequency step for 2201 MHz.

Digital Channel Link (DCL) option.

- Voice synthesizer VS-2 option.

Optional accessories:
- PS-50/PS-430 DC power supplies
- MU-1 DCL modem unit
- TU-7 CTCSS encoder
- VS-2 Voice synthesizer
- SW-100B SWR/PWR/Volt meter 140-450 MHz for mobile use
- SW-200B SWR/PWR meter for base station use 140-450 MHz 0-200 W in 2 ranges
- SWT-1/SWT-2 2 m and 70 cm antenna tuner
- SP-40 Compact speaker
- SP-50B Mobile speaker
- PG-2N Extra DC cable
- PG-3B DC noise filter
- MC-60A, MC-80, MC-85 Base station mics.
- MC-55 (8-pin) Mobile microphone
- MA-4000 Dual band mobile antenna with duplexer (shown)
- MB-11 Extra mobile mount

KENWOOD

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
OCTOBER 1987
volume 20, number 10

T. H. Tenney, Jr., W1NLB
publisher

Rich Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KAI1BO
managing editor

Tom McMullen, W1SL
Joseph J. Schroeder, WSJUV
Alfred Wilson, W0NIF
associate editors

Susan Sharrock
editorial production

editorial review board

Peter Beins, K1ZJH
Forrest Gehry, K2FJ
Michael Gruchalla, P.E.
Bob Lewis, W2EES
Mason Logan, K4MT
Vern Ponsel, W9JGQ
Ed Werthmuller, W9QN

publishing staff

J. Craig Clark, Jr., N1ACH
assistant publisher

Randy Dennis, KA1JWF
director of advertising sales

Dorothy Sergent, KA1ZK
advertising production manager

Susan Sharrock
circulation manager

Theres Bourgault
circulation

Visions
cover

Ham Radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0498
Telephone: 603 878-1441

subscription rates

United States
one year, $22.95; two years, $35.95; three years, $43.95
Canada, Japan, South Africa and other countries: two surface mail:
one year, $51.00; two years, $96.00; three years, $144.00
All subscription orders payable in U.S. funds or international postal money order or check drawn on a U.S. bank

international subscription agents: page 98

Microfilms copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Publications,
919 Walnut Street, Philadelphia, Pennsylvania 19107
Copyright 1987 by Communications Technology Inc.
Title registered at U.S. Patent Office
Second class postage paid
at Greenville, New Hampshire 03048-0498
and at additional mailing offices
ISSN 0146-5989

Send change of address to Ham Radio
Greenville, New Hampshire 03048-0498

contents

8 low-cost pc board layout software
Eva Freeman

17 antenna relay sequencing
Mark Mandelkern, KN5S

27 VHF/UHF world:
impedance-matching techniques
Joe Reisert, W1JR

41 return of the 360-degree
propagation prediction
Henry Elwell, N4UH

57 practically speaking:
troubleshooting dc power supplies
with an oscilloscope
Joe Carr, K4IPV

65 pulse width modulated
dc-to-dc converters
William R. Hennigan, W3CZ

79 ham radio techniques:
white noise revisited
Bill Orr, W6SAI

89 locator field list
Folke Rosevall, SM5AGM

100 Elmer's notebook:
packet radio
Tom McMullen, W1SL

advertisers index
and reader service

6 comments
85 DX forecaster
96 flea market

98 ham mart
91 new products
4 reflections
97 short circuits

October 1987 3
the possessed

During the anything-goes sixties, while attending City College, I shared an apartment with two roommates on the upper west side of Manhattan. This editorial is dedicated to one of them. Without naming names (let’s just call him “Mr. A”), this roommate was the antithesis of what most of us Radio Amateurs have become.

We’re like magnets. Anything we see that might be remotely useful, even in the far-distant future, will come to us to be saved for that eventuality. Now, I’m not talking about just nuts and bolts. I’m talking real quantity and diversity.

Look around your shack, which in some cases might be considered the entire house. If you’re like me, you’ve probably spread out all over.

What was that sound? The one just before that awful grinding noise and the smell of burning motor? Was it that 1-percent precision, 141.7-ohm resistor you’ve been looking for since Labor Day — the part you needed to finish your super-deluxe noise bridge — being sucked up into the vacuum cleaner? Well, it’s history now. The vacuum cleaner has claimed another victim.

“Just a darn minute!” you exclaim. “That resistor was carefully placed on the dining room table!”

Come on. Follow me. Starting from the shack, let’s take a quick walk — in our mind’s eye — around the house. It’s probably impossible, even dangerous, to walk around any other way because of the overcrowding or perhaps because of those three 6-foot racks of tube equipment you’ve built over the years. All those dangling jumper cables (control, audio, digital, and rf) seem to want to reach out and trip people. Come on, don’t let me hear that argument you give your spouse about how keeping all that equipment going helps keep the house warm, thereby cutting the fuel bill, and hasn’t she noticed how nice and dry it is down in the basement when all those pretty tubes are lit? I’ve heard all those justifications before. In fact, I’ve used some of them myself.

As painful as it may be, let’s leave the shack and move on. No point stopping at the kitchen or dining room tables; we all know what we’ll find there.

If you’re at all like me, you have many different interests and probably subscribe to a number of magazines that address those interests. Are the magazines all neatly stacked on a bookshelf in the radio room — just as pictured in any of the operating manuals that show what the typical ham station looks like? Naah. Who are you kidding? Those magazines are strewn all over the place — scattered atop the TV and on side tables and even chairs, heaped in piles in corners, in the attic, in the hallway, the bathroom, the garage, and, of course, on the floor. Did you ever consider the possibility that your spouse might consider this an encroachment on her living space?

Speaking of the garage, that’s a story in itself. It’s amazing to consider how seven sections of Rohn 45 can fit in there so nicely. But the XYL’s car? Well, that’s a different matter. Maybe winter won’t be so bad after all.

I won’t even mention those drums of surplus wire, cable, or whatnot that you picked up at that flea market in 1979. What a deal! Heck, you’re going to help her shovel the snow off the car this winter anyway, right?

Moving outside, did you know that the great outdoors offers almost unlimited storage capability? Of course you do. Why, there’s the evidence: more rusting tower sections, some sturdy anchors, a hundred feet of guy line, and a 6-foot dish! Too good to sell, give away, or discard, they’re also too big for the garage. But they’re not too big for the great outdoors!

“All right!,” you protest. “Maybe there’s some truth to what you’ve been saying. But what’s the point?”

This is it: perhaps October’s the time to take another look at what we possess, or more appropriately, what possess-es us. Maybe this is the time to go through the entire house, gather all our treasures together, and decide what’s really important, what we really want to keep. Let’s sell the rest, or better yet, donate it to a worthy cause like that Novice down the block. After all, we’ve gotta start ‘em right on this acquisition madness, don’t we?

I hope you appreciate the gravity of the chance I’m taking by writing this editorial. If my XYL ever reads this, I might have to practice what I preach. As a friend of mine is wont to say: “End of message.”

And what about the legendary Mr. A, to whom this editorial is dedicated? Well, Mr. A owned exactly two shirts and two pairs of shoes, pants, and socks — and barely anything else. When the time came to move, I had to rent a trailer to cart my possessions. Mr. A put everything he owned into his attache case and walked away.

Rich Rosen, K2RR
Editor-in-Chief
Kenwood brings you the greatest hand-held transceiver ever! More than just "big rig performance," the new TH-215A for 2 m, TH-315A for 220 MHz, and TH-415A for 70 cm pack the most features and the best performance in a handy size. And our full line of accessories will let you go from ham shack to portable to mobile with the greatest of ease!

- Wide receiver frequency range. Receives from 141.163 MHz. Includes the weather channels! Transmit from 144.1-148 MHz.
- TH-315A covers 220-225 MHz, TH-415A covers 440-449.95 MHz.
- 5, 2.5, or 1.5 W output, depending on the power source. Supplied battery pack (PB-2) provides 2.5 W output. Optional NiCd packs for extended operation or higher RF output available.
- CTCSS encoder built-in, TSU-4 CTCSS decoder optional.
- 10 memory channels store any offset, in 100-kHz steps.
- Odd split, any frequency TX or RX, in memory channel "0".
- Nine types of scanning! Including new "seek scan" and priority alert. Also memory channel lock-out.
- Intelligent 2-way battery saver circuit extends battery life. Two battery-saver modes to choose, with power saver radio selection.
- Easy memory recall. Simply press the channel number!
- 12 VDC input terminal for direct mobile or base station supply operation. When 12 volts applied, RF output is 5 W! (Cable supplied!)
- New Twist-Lok Positive Connect locking battery case.
- Priority alert function.
- Monitor switch to defeat squelch. Used to check the frequency when CTCSS encode/decode is used or when squelch is on.

Optional Accessories:
- PB-1: 12 V, 600 mAh NiCd pack for 5 W output
- PB-2: 8.4 V, 500 mAh NiCd pack (2.5 W output)
- PB-3: 7.2 V, 800 mAh NiCd pack (1.5 W output)
- PB-4: 7.2 V, 1600 mAh NiCd pack (1.5 W output)
- BT-5 AA cell manganese/alkaline battery case
- BC-7 rapid charger for PB-1, 2, 3, or 4
- BC-8 compact battery charger
- SMC-30 speaker microphone
- SC-12, 13 soft cases
- RA-3, 5 telescoping antennas
- RA-88 StubbyDuk antenna
- TSU-4 CTCSS decode unit
- VB-2530: 2m, 25 W amplifier (1.4 W input)
- LH-4: 5 leather cases
- MB-4: mobile bracket
- BH-5 swivel mount
- PG-2V extra DC cable
- PG-3D cigarette lighter cord with filter

KENWOOD U.S.A. CORPORATION
2201 E. Bixmagaz St., Long Beach, CA 90802
P.O. Box 70746, Long Beach, CA 90807-746

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
ground plane antennas

Dear HR:

I was rather taken aback at a recent ham club meeting when a couple of friends informed me that according to a letter to the editor in ham radio, my "offset drooper" ("The Offset Drooper: An Improved Ground Plane," January, 1986, page 43), had been invented years ago by a Frenchman.

DJ0TR/OE8AK's letter in the June, 1987 issue, in which he discusses the origins of the venerable ground plane antenna, states, immediately following his reference to my article, "This VHF/UHF antenna was invented several years before in France"

A careful reading of the letter, however, makes it quite clear from the context that the statement "This VHF/UHF antenna was invented several years before" applies to the earlier mentioned classic ground plane credited to Dr. George Brown. But apparently, if one hurriedly skims the letter, the remark can be mistakenly applied to the "offset drooper" version of the ground plane antenna.

While on the subject of originality, I'm surprised that the matter of French prior art pertaining to ground plane type antennas has taken 50 years to surface. I do know that I certainly am not in a position to pass judgement as to worldwide prior art. My information was taken from the article, "The Ground Plane Antenna: Its History and Development," by Harold Vance, Sr., W2FF (now deceased), which appeared in the January, 1977 issue of ham radio.

George Brown and Harold Vance were both highly respected VIPs at RCA during World War II. As section head and project officer on some new USMC electronic equipment under development, I used to visit Harold Vance and his crew of key engineers at the RCA Camden plant frequently. He was a fine gentleman, with exceptional electronics savvy and management know-how. I regret I didn't get a chance to meet George Brown, who, I believe, was at RCA Labs (elsewhere) at the time.

In hindsight, my offset drooper article could have been more accurately titled "An Improved Drooping Ground Plane." For over three decades, drooping radials have been widely used by the ham fraternity to permit direct connection of 50-ohm coax. However, this aggravates antenna effect. The Offset Drooper configuration provides a substantial reduction in antenna effect without adding a detuning sleeve or an extra set of radials, while still maintaining a 50-ohm match.

Woody Smith, W6BCX
Anaheim, California 92804

is nothing sacred?

Dear HR:

With this rather untimely heading ["Is Nothing Sacred?" — Ed.], The New York Times recently reported slight changes in more than 100 of the fundamental constants used in science. These changes represent a consensus of scientific opinion by the world's leading measurements laboratories, including those in the Soviet bloc and our National Bureau of Standards as well.

It is gratifying to learn that the speed of light hasn't changed, and remains at 299,792,458 meters per second. I shall leave it to some computer whiz to translate that into feet and inches; my hand calculator is inadequate.

However, whereas this number was previously termed "approximate," it is now defined as "exact," and the second is considered constant. The meter is then defined in terms of the velocity of light and the second — a nice Catch-22! Greater accuracy will be achieved with future improvements in measurement.

The meter, as originally proposed by a French vicar in 1670, was defined as 1 ten-millionth of the distance between the equator and the North Pole. It was subsequently translated into two scratches on a platinum bar kept at 23 degrees C. (Now that we deal in subatomic distances, this is gross measurement indeed.) Thus the scientists have defined the meter as the distance that light will travel in 1/299,792,458 second!

Obviously, you won't have to throw away your tape measure when you put up that new beam!

Josef Darmento, W4SXX
Merritt Island, Florida 32952

bird chaser

Dear HR:

Noticed the letter from Bernard Kirschner in the May issue ("Comments," page 6).

He's having troubles using an owl as a bird chaser, is he? Perhaps he should use one of those inflatable snakes from the local garden shop instead. Tie one end of it about halfway out along the boom and the other end on the pole so it looks like it's just climbing onto the boom. Those things would scare me off — as well as all manner of feathered creatures.

Charles Christien
Sunnyvale, California 94086

neighborly gesture

Dear HR:

There's a very useful technique for dealing with neighbors who complain of TVI. Instead of making critical comments about their television receivers, try lending them a table model color receiver fitted with the proper filters. Then ask them to help you perform a simple test.

Three or four days later they'll ask you to tell them how they can fix their receivers. Amazingly, even the most formerly rabid neighbor will approach you in a very friendly and reasonable frame of mind.

As proof of the effectiveness of this method, how many Amateurs do you know who have ground radial systems covering not only their yards, but a side neighbor's yard and the yard of the neighbor in the back as well?

John Labaj, W2YW
Elsmere, New York 12054
New MFJ-1274 lets you work VHF and HF packet with built-in tuning indicator for $169.95 . . .

. . . you get MFJ’s latest clone of TAPR’s TNC-2. TAPR’s VHF/HF modem and built-in tuning indicator that features 20 LEDs for easy precise tuning

Now you can join the exciting world of packet radio on both VHF and HF bands with a precision tuning indicator . . . for an incredible $169.95!

You get MFJ’s top quality clone of the highly acclaimed industry standard TAPR TNC-2. We’ve made TAPR’s modem selectable for both VHF and HF operation, added their precision 20 segment LED tuning indicator, a TTL serial port, an easily replaceable lithium battery for memory back-up and put it all in a new cabinet.

If you don’t need the tuning indicator or the convenience of a switchable VHF/HF modem, choose the affordable MFJ-1270 for $139.95.

All you need to operate packet radio is a MFJ-1274 or MFJ-1270, your rig, and any home computer with a RS-232 serial port and terminal program.

If you have a Commodore 64, 128, or VIC 20 you can use MFJ’s optional Starter Pack to get on the air immediately. The Starter Pack includes interfacing cable, terminal software on disk or tape and complete instructions . . . everything you need to get on packet radio. Order MFJ-1282 (disk) or MFJ-1283 (tape), $19.95.

Unlike machine specific TNCs you never have to worry about your MFJ-1274 or MFJ-1270 becoming obsolete because you change computers or because packet radio standards change. You can use any computer with an RS-232 serial port with an appropriate terminal program. If packet radio standards change, software updates will be made available as TAPR releases them.

Also speeds in excess of 56K bauds are possible with a suitable external modem! Try that with a machine specific TNC or one without hardware HDLC as higher speeds come into widespread use.

You can also use the MFJ-1274 or MFJ-1270 as an excellent but inexpensive digipeater to link other packet stations.

Both feature AX.25 Level 2 Version 2 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, multiple connects, 256K EPROM, 16K RAM (expandable to 32K with optional EPROM), simple operation, socketed ICs plus much more.

You get an easy-to-read manual, a cable to connect your transceiver (you have to add a connector for your particular radio), a connector for the TTL serial port and a power supply for 110 VAC operation (you can use 12 VDC for portable, remote or mobile operation).

Help make history! Join the packet radio revolution now and help spread this exciting network throughout the world. Order the top quality and affordable MFJ-1274 or MFJ-1270 today.

Now you can tune in HF, OSCAR and other non-FM packet stations fast! This MFJ clone of the TAPR tuning indicator makes tuning natural and easy - it shows you which direction to tune. All you have to do is to center a single LED and you’re precisely tuned in to within 10 Hz. 20 LEDs give high resolution and wide frequency coverage.

The MFJ-1273 tuning indicator plugs into the MFJ-1270 and all TNC-1s, TNC-2s and clones that have the TAPR tuning indicator connector.

Order any product from MFJ and try it - no obligation. If not satisfied return within 30 days for prompt refund (less shipping).

- One year unconditional guarantee
- Add $5.00 each shipping/handling
- Call or write for free catalog; over 100 products.

To Order or for Your Nearest Dealer
800-647-1800
Call 601-323-5869 in Miss. and outside continental USA.
Telex 53-4590 MFJ STKV

Reader Service CHECK – OFF Page 106

MFJ ENTERPRISES, INC.
Box 494, Miss. State, MS 39762

November 1987
The price has dropped — but watch out for those options!

The price of sophisticated printed circuit board layout packages has plummeted. For less than $1000 — often much less — you can buy an easy-to-use package that can handle almost any board layout. Even if you’ve never used computer-aided design (CAD), you can master any of these packages quickly.

Until recently, pc board designers had to choose between sending their designs to pc board service bureaus or using expensive layout packages that ran on dedicated work stations. CAD packages priced at less than $1000 were drafting tools at best. But all that’s changed; today’s relatively low-cost pc board layout software packages provide almost the same features as work station-based systems. What’s more, they run on personal computers, which means they’re now within reach of clubs and individual Amateurs.

All packages aren’t equally suited for all applications, however. For analog designs, a package should provide an area-fill capability, which you’ll need for constructing irregularly shaped ground planes. Some packages are tailored for digital designs and consequently don’t provide a way to create copper planes of arbitrary shape.

Most of the low-cost packages, however, offer tools for filling in copper areas. For example, area fill is a standard feature of Accel Technologies’ Tango-PCB® program for IBM PCs and compatible personal computers. Together with the package’s 1-mil grid, the area-fill command enables you to create copper areas and thick tracks for microstrips and ground planes. Its $495 price includes software, documentation, a function key overlay, a sample pc board, and a 30-day money-back guarantee.

Procad xtra®, from Interactive CAD Systems, features filled areas for ground planes and lets you select up to seven fill patterns and styles of lines. Complex symbols such as standard power-supply layouts or memory bus structures can be stored in the program’s library for repeated use. Procad xtra costs $695; it runs on IBM PCs and on Digital Equipment Corporation’s VAX minicomputers.

Similar features are found in QTech’s Qwik Tek® package. That’s not too surprising — they were developed by the same programmers. Like Procad xtra, Qwik Tek runs on IBM PCs and on DEC VAXs; the base price of Qwik Tek is $695.

automatic layout software

Qwik Tek and Procad xtra aren’t alike in all respects. Procad xtra is a purely interactive system, which is all you’ll need for most analog applications. But for designs with large numbers of components, you’d need a program that could position them on a layout and draw interconnections among them. A $7900 version of Qwik Tek includes these capabilities, offering a schematic editor, interactive layout, automatic placement, and an autorouter.

An autorouter interconnects the components on a layout automatically. The sophistication of the autorouters in low-cost pc board layout packages approaches that of autorouters in the most advanced work stations and mainframe-based layout systems. Yet the price of an IBM PC-based autorouter can be relatively low. For $750, CAD Software’s Pads-Route® autorouter provides three routers: power-and-ground, memory, and maze. The power-and-ground and memory routers specialize in power supply and RAM interconnections; the maze router interconnects all other digital and analog components.

By Eva Freeman, 108 Trapelo Road, Lincoln, Massachusetts 01773
It's not reasonable to expect too much of pc board autorouters priced at under $1000. They can't match the speed of mainframe or work station-based autorouters, nor can they consistently route all boards to completion, as can some mainframe or work station-based autorouters.

Though these packages are certainly more than adequate for typical Amateur projects, you shouldn't expect, for example, to use a PC-based package to design an eight-layer, 500-IC board. Although several of the PC-based layout programs listed in Table 1 do permit eight layers and 500 components, their autorouters just can't route boards of such complexity. If you do find your designs limited, they'll be limited not by the maximum number of components or layers, but instead by the maximum number of traces your software package will allow.

Table 1 lists the maximum number of traces each package can handle. Note that vendors differ in the way they specify this capability. Some specify a maximum number of nets; others, a maximum number of lines. A net links all pins that are to be connected to-

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
<th>Base price</th>
<th>Required hardware</th>
<th>Operating system</th>
<th>Auto-router price</th>
<th>Auto-placement</th>
<th>Compatible net lists</th>
<th>Max. no. of colors</th>
<th>Max. no. of traces</th>
<th>Max. no. of components</th>
<th>Max. no. of layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacus Software</td>
<td>PC Board Designer</td>
<td>$195</td>
<td>Atari 520ST or 1040ST</td>
<td>Gem</td>
<td>X</td>
<td></td>
<td></td>
<td>2</td>
<td>1100 lines</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>Accel Technologies Inc.</td>
<td>Tango-PCB</td>
<td>$495</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X</td>
<td></td>
<td></td>
<td>16</td>
<td>26,000 lines</td>
<td>1000</td>
<td>9</td>
</tr>
<tr>
<td>Advanced Microcomputer</td>
<td>PC PRO</td>
<td>$250</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X $250</td>
<td></td>
<td></td>
<td>16</td>
<td>256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B & C Microsystems</td>
<td>PCB/DE</td>
<td>$395</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X</td>
<td></td>
<td></td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD Software Inc.</td>
<td>Pads-PCB</td>
<td>$175</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X $750</td>
<td></td>
<td></td>
<td>16</td>
<td>4511 nets</td>
<td>764</td>
<td>30</td>
</tr>
<tr>
<td>Dasoft Design Systems</td>
<td>Project: PCB</td>
<td>$950</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X</td>
<td></td>
<td></td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Computation Inc.</td>
<td>Draftsman-EE</td>
<td>$749</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X $2450</td>
<td></td>
<td></td>
<td>16</td>
<td>4000 nets</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>Douglas Electronics</td>
<td>CAD/CAM</td>
<td>$95</td>
<td>Apple Macintosh</td>
<td></td>
<td>Macintosh</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive CAD Systems</td>
<td>Procad Xtra</td>
<td>$695</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X</td>
<td></td>
<td></td>
<td>16</td>
<td>2000 nets</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>QTech Inc.</td>
<td>Owak Tek</td>
<td>$695</td>
<td>IBM PC or compatible</td>
<td>MS-DOS</td>
<td>X $7205</td>
<td></td>
<td></td>
<td>16</td>
<td>1500 nets</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Softcircuits Inc.</td>
<td>PCLO</td>
<td>$500</td>
<td>Commodore Amiga 1000</td>
<td></td>
<td>Amigados</td>
<td>X</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamp Inc.</td>
<td>McCAD</td>
<td>$395</td>
<td>Apple Macintosh</td>
<td>Macintosh</td>
<td>X $995</td>
<td>X</td>
<td></td>
<td>2</td>
<td>32,000 lines</td>
<td>32,000</td>
<td>6</td>
</tr>
<tr>
<td>Visionics Corp.</td>
<td>EE Designer</td>
<td>$975</td>
<td>IBM PC or compatible</td>
<td>MS DOS</td>
<td>X $975</td>
<td>X</td>
<td></td>
<td>16</td>
<td>999</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Wintek Corp.</td>
<td>Smartwork</td>
<td>$895</td>
<td>IBM PC or compatible</td>
<td>MS DOS</td>
<td>X</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
FEATURES INCLUDE:
- SWITCH SELECTABLE — ELEVATION FROM 0° - 90° AND 0° - 180°
- ELEVATION SCALING X1 OR X2
- NORTHERN OR SOUTHERN HEMISPHERE
- MANUAL OR AUTOMATIC MODE
- BAUD RATE (300 - 2400)
- 100 PAGE DETAILED MANUAI
- CABLE FOR KENPRO'S "A" SERIES CONTROLLER

CALL YOUR DEALER TO ORDER ONE NOW!

MIRAGE/ KLM
COMMUNICATIONS EQUIPMENT, INC.
P.O. BOX 1000 MORGAN HILL, CA 95037
(408) 779-7363 or outside CA,
(800) 538-2140

MIRAGE TRACKING INTERFACE

"MTI" IS THE ONLY SMART INTERFACE BOX THAT WORKS WITH SILICONE SOLUTIONS™ SOFTWARE.
"MTI" OFFERS AUTOMATIC TRACKING OF ANY ORBITING BODY.
"MTI" KEEPS ANTENNAS AIMED CORRECTLY AT ALL TIMES.
"MTI" COMES WITH A ONE YEAR WARRANTY FROM MIRAGE/KLM.
"MTI" OFFERS ONE YEAR SOFTWARE SUPPORT TO REGISTERED OWNERS.
"MTI" IS AVAILABLE FROM MIRAGE/KLM ONLY. CALL FOR MORE DETAILS ...

(408) 779-7363 or outside CA,
(800) 538-2140

CJ2M
ELECTRICAL:
BANDWIDTH.....144-148 MHz
GAIN............1.8 dBd
VSWR..........1.5:1
FEED IMP....50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT........61"
WEIGHT.........2½ lbs.
MAST...........1½" o.d.
MAST...........1½" o.d.

CJ220
ELECTRICAL:
BANDWIDTH.....220-224 MHz
GAIN............1.8 dBd
VSWR..........1.5:1
FEED IMP....50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT........40"
WEIGHT.........2 lbs.
MAST...........1½" o.d.

CJ440
ELECTRICAL:
BANDWIDTH.....420-470 MHz
GAIN............1.8 dBd
VSWR..........1.5:1
FEED IMP....50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT........19½"
WEIGHT.........1 lb.
MAST...........1½" o.d.

ALL CJ ANTENNAS INCLUDE INSULATED SUPPORT MAST

10 October 1987
out packages have written their software to run on most compatible PCs (see table 1 for details).

Whether routed manually or automatically, a layout can be only as good as component placement permits. If you don’t optimize the placement of components on your board, your board will have more "vias" (plated-through holes) and longer interconnections than should be necessary. In many cases, the autorouter will simply fail to route the board completely. In all cases, pc board fabrication costs will be higher and system speed will be lower than they might be.

Even if you don’t use an autorouter, you’ll find that pc board layout packages can assist you in interconnecting components. Most of the packages include a rat’s-nest utility that displays straight-line connections between components. With it, you can shift components on your layout to minimize the length of interconnections.

the bottom line: price, practicality

For Amateurs, the most important feature of a pc board layout system is likely to be its price. The least expensive package available for the IBM PC is Advanced Microcomputer Systems’ $250 PC PRO® (fig. 1). This program gives users extensive control over designs; for example, it offers trace widths from 0.001 to 0.255 inches, and a single net can include a combination of trace widths. Similarly flexible, the symbol library includes footprints for standard ICs, connectors, and discrete components — and offers tools for creating new pad shapes.

Some of the less expensive packages were designed for computers other than the IBM PC. Table 1 lists four such programs. The $195 PCBoard Designer® from Abacus Software (fig. 2) provides pc board layout tools for Atari users. The package offers component rotation in 90-degree increments and a choice of 45- or 90-degree routing paths; output is configured for Epson dot-matrix printers.

Softcircuits’ $500 PCL0® package for the Commodore Amiga provides pan capabilities and fast screen redraws to keep the overall layout coherent while you’re working. Ten work-area memories provide instant movement among disjoint areas.

Apple Macintosh users can choose between two programs: Vamp’s McCAD® and Douglas Electronics’ Douglas CAD/CAM.* The graphics-manipulation capabilities of the Macintosh are particularly attractive for analog applications; the line-and-pad-array generators in McCAD, for example, cut down on the time you need to create ground planes.

You can buy a Douglas CAD/CAM for as little as $95, but it won’t provide automatic layout features or schematic capture. The basic package doesn’t include interfaces to pen plotters or photoplotters; you have to send your layout to Douglas and have them fabri-
ATV MADE EASY WITH OUR SMALL ALL IN ONE BOX TC70-1 TRANSCEIVER AT A SUPER LOW $299 DELIVERED PRICE!

CALL 1-818-447-4565 AND YOURS WILL BE ON ITS WAY IN 24 HRS (Via UPS Surface in Cont. USA).

TC70-1 FEATURES:
* Sensitive UHF GaAsfet tuneable downconverter for receiving
* Two frequency 1 watt p.e.p. transmitter. 1 crystal included
* Crystal locked 4.5 mHz broadcast standard sound subcarrier
* 10 pin VHS color camera and RCA phono jack video inputs
* PTL (push to lock) T/R switching
* Transmit video monitor outputs to camera and phono jack
* Small attractive shielded cabinet - 7 x 7 x 2.5"
* Requires 13.8vdc @ 500 ma. + color camera current

Just plug in your camera or VCR composite video and audio, 70cm antenna, 12 to 14 vdc, and you are ready to transmit live action color or black and white pictures and sound to other amateurs. Sensitive downconverter tunes whole 420-450 mHz band down to channel 3. Specify 439.25, 434.0, or 426.25 mHz transmit frequency. Extra transmit crystal add $15.

Transmitting equipment sold only to licensed radio amateurs verified in the Callbook for legal purposes. If recently licensed or upgraded, send copy of license. Receiving downconverters available to all starting at $59 (TVC-2G).

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any Tech class or higher amateur can get on ATV. If you have a camera you used with a VCR or SSTV & a TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70cm antennas on ATV.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the 440-6 normally used for portable uses like parades, races, search & rescue, damage assessment, etc. For greater DX or punching thru obstacles: 15 watt p.e.p. Mirage D15N or 50 watt p.e.p. D24N or D1010N-ATV.

The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes, computer programs, repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook chapt. 20 & 7 for more info & Repeater Directory for local ATV repeaters.

PURCHASE AN AMP WITH THE TC70-1 & SAVE!
50 WATT WITH D24N-ATV....$499
All prices include UPS surface shipping in cont. USA

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $39
cate your pc board* — or make it yourself from the image you see on the screen. You can buy a pen-plottin option or a combined pen-plottin and photo-plottin option, but they'll cost you $300 and $500, respectively.

Although the least expensive package runs on the Macintosh, most low-cost layout programs were designed to run on the IBM PC. One vendor, B&C Microsystems, has held down the cost of its IBM PC-based PBC/DEe program by linking the software to Auto-desk's AutoCAD® drafting package. Strictly speaking, the total package costs more than $1000 because you must purchase AutoCAD; but if you already own AutoCAD, you'll find that the $395 program provides more features than comparable packages that include drafting software.

Most PC-based packages don't require AutoCAD or any other additional drafting software; it's included with the pc board software. Wintek's $895 Smart-work® program, for example, includes all the graphics tools you need for pc board layouts. Though the program doesn't have an autorouter, it does offer an interactive router that finds the best possible connection between each successive pair of interconnections. Besides its layout package, the company offers an $895 schematic-capture program and is introducing an automatic router.

Visionics has recently added a $975 automatic router to its $975 EE Designer® pc board layout package (fig. 3). The autorouter can route not only two-layer boards but surface-mount devices and multilayer boards as well.

what options do you need?

Each one of these low-cost pc board layout packages comes with a "catch." The least expensive product that most vendors sell is the basic program; the optional programs and hardware dramatically increase the total cost. Like automobile manufacturers, vendors of low-cost pc board layout software often derive their profits not from the basic package, but from the options that accompany it.

Unfortunately, these "optional" programs aren't always optional. For example, Design Computation's basic Draftsman-EE® provides only a graphics editor, a component library, and bill of materials and parts list utilities. To generate a rat's nest display and to check for design rule violations, you'll have to purchase the optional DC/Check® program. An autorouter is yet another option. Often, these options are necessary.

Draftsman-EE is priced at $749, DC/Check costs $398, and the autorouter lists for $2450. For about $4000 you can purchase all of these tools, as well as

UNADILLA REYCO/INLINE™

Amateur Antenna Baluns

For 20 years, preferred by Amateur, Commercial and Military Operators. First with built-in lightning arrester—minimizes TVI, maximizes power.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2AU 1:1 & 4:1</td>
<td>$17.95</td>
</tr>
<tr>
<td>W2DU-HF</td>
<td>$19.95</td>
</tr>
<tr>
<td>W2DU-VHF</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

W2AU Broadband Ferrite Core Baluns

For medium power (1000 watts RF min.) and broadband operation 3–40 MHz.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2DU Non-Ferrite High Power Baluns</td>
<td>$398</td>
</tr>
</tbody>
</table>

W2DU-HF (High Power)

- 1.8–30 MHz
- 3000–9000 watts with 1:1 antenna SWR
- 1500–5000 watts with 2:1 antenna SWR

W2DU-VHF (High Power and Extended Range)

- 30–300 MHz
- 2000–4000 watts with 1:1 antenna SWR
- 1200–2400 watts with 2:1 antenna SWR

W2AU 1:1

- 50 to 50 or 75 to 75 ohms
- For dipoles, V's, beams, quads

W2AU 4:1

- 200 to 50 or 300 to 75 ohms
- For high impedance antennas such as folded dipoles

Switch All Your Antennas Over One Coaxial Feedline

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$20.15</td>
<td>106 12 VDC Energizer (Optional)</td>
</tr>
<tr>
<td>$35.50</td>
<td>C105B 2 Position On-Off Coupler</td>
</tr>
<tr>
<td>$52.00</td>
<td>DC Operated 2 Position Relay (inside your shack)</td>
</tr>
</tbody>
</table>

This system operates from 1.5 to 180 MHz and handles 1250 RF watts.

Use our antenna switching kit and eliminate excess coax runs. With this kit and a single run of coax, you can switch between your antennas remotely. Use to add an antenna at modest cost, or change array direction.

Other types and combinations of relays are available. Please call or write us for more information, and save on your coax runs!

30 day MONEY BACK GUARANTEE on all products

Unadilla/Reyco/Inline is now a Division of ANTENNA'S ETC.
EASY DOES IT!

At last, a Circuit Analysis System that you **cannot** afford to be without — at a price you **can** afford...

from Western Systems Corporation.

EASY gives you the power to quickly explore new electronic designs on your personal computer with state-of-the-art software.

- Pull down Menus
- Full interactive graphic editing
- Linear and non-linear circuit elements
- Graphic and tabular display of results
- Frequency and Time Domain Analysis
- Data Sheet Capture,
 ...and much, much more!

EASY is remarkably simple to use.

- Analyze complex or simple circuits
- Allows up to 100 nodes and 400 components

EASY ... the affordable **ELECTRONIC ANALYSIS SYSTEM.**

Introductory price **$89.95**

Order TODAY from
Western Systems Corp.
6536 Simms Street
Arvada, Colorado 80004
(303) 422-6722

VISA & MASTERCARD accepted.
Colorado residents add 3% tax.

Available for the IBM PC, XT,AT and full compatibles. **EASY** requires a minimum of 256 k-bytes of memory and a CGA or EGA graphics environment.
fig. 2. This rat's nest display shows direct connections among all components. Using the rat's nest display in Abacus Software's PCBBoard Designer, you can interactively complete any one- or two-sided pc board.

fig. 3. Even inexpensive packages can handle mixed analog and digital designs. EE Designer, from Visionics, routed an 88-component analog/digital board with 269 interconnections to 100 percent completion in six minutes.

12 months of telephone assistance; while it's a modest price for a complete professional pc board layout system, it's still more than five times the cost of the basic program alone — and far more than most Amateurs would probably be willing to spend.

Even though these options, especially for packages that list for less than $1000, greatly increase the cost of pc board software, the total cost — in professional applications — is still far less than the cost of using pc board service bureaus or work station-based layout systems. In considering the purchase of pc board layout software for Amateur applications, then, it's probably best to keep in mind the advice of the United States Postal Service: "If an offer sounds too good to be true, it probably is."

reference

EIMAC's new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1221

Cards and plaque courtesy W6TC
antenna relay sequencing

Use one basic protection circuit for normal switching or full break-in

Antenna relays are very expensive, and while bargains can sometimes be found on the surplus market and at swap meets, it takes time to find them.

Running 1500 watts into 50-ohm coax means that more than 5 amperes of rf current flows at almost 300 volts. Coax relays, with their contacts and spacing kept relatively small to preserve the impedance match, are definitely not designed to hot-switch this kind of rf power. If you try using them for this, you'll burn out the contacts; in fact, Murphy's Law ensures that transmit contacts will burn out completely just as you hear the rare DX country or VHF grid square you've been looking for.

Another form of antenna relay failure that's as common as burning out the contacts is arcing from the transmitter connector to the relay shell. This is caused by abnormally high rf voltage output from a high-power amplifier under open-circuit conditions.

A power amplifier also needs protection from any open-circuit condition, even for just a fraction of a millisecond. If a tube-type amplifier sees an open load at any time, either at the beginning or the end of a transmission, plate circuit arcing and damage to the components may occur. In solid-state amplifiers, an open load can destroy the transistors instantly.

The need for sequencing a mast-mounted VHF preamplifier is well known. GaAsFETs certainly aren't designed to handle several hundred watts, even for the few milliseconds it takes for a relay to switch.

This article discusses the most common case of a power amplifier and an ordinary coaxial antenna relay. The same basic circuit is used for full break-in with vacuum relays; in such a situation, the delay periods will simply be shorter. The same circuit can also be used to sequence mast-mounted VHF preamplifiers, together with an interface circuit to delay the exciter.

design criteria

To protect the relay and amplifier when the push-to-talk (PTT) line is closed, the amplifier turn-on should be delayed long enough for the relay contacts to close — and, most important, to have settled down after bouncing. To protect the relay and amplifier when the PTT line is opened, the relay contacts should be held in long enough for the amplifier output to have dropped to zero.

Each unit should, as much as possible, "take care of itself." This means, for example, that the relay should not depend upon a certain capacitor in the exciter or amplifier for a delay. Because you might want to use a different exciter or amplifier later on, the sequencing circuit should be treated as an integral part of the antenna switching mechanism.

circuit specifications

The timing functions of amplifier hold-off at the beginning of a transmission and relay hold-in at the end of a transmission are separated, greatly simplifying the selection of timing capacitors.

The control line for the circuit conforms to the following standards, which I've adopted for all the equipment in my shack: the open-circuit voltage on the control line is negative, and does not exceed -1 volt; the closed-circuit current on the control line does not exceed 1 mA; and the control line is diode-isolated. The first two standards ensure that the control line may be easily controlled by other such circuits, using inexpensive, easily obtainable, low-voltage PNP transistors, without the need for complicated interface circuits or relays. The result is that everything in the shack (except the antenna and other rf circuits) is controlled by solid-state switching. The final standard al-

By Mark Mandelkern, KN5S, 5259 Singer Road, Las Cruces, New Mexico 88005
This circuit to convert all the gear I've built with relays over the last 40 years to solid-state switching; none has ever failed.

circuit description

The switching operation shown in fig. 1 is very simple. Were it not for O1, resistor R2 would supply enough base current to saturate Q2. This lowers the collector voltage to a very low value, which energizes the relay and enables the amplifier or other circuits. In the unkeyed state, resistor R1 supplies enough base current to saturate Q1, lowering the voltage at the collector of Q1 to about −0.1 volts, much lower than the −0.6 volts needed at the base of Q2 to turn it on. Thus, in the normal state, Q1 is on and Q2 is off. Now what happens when the key is closed?** Keying the circuit grounds the base of Q1, turning it off. This removes the grounding (by the collector of Q1) from the base of Q2, allowing R2 to turn it on. Now the collector of Q2 drops to about −0.1 volts, enabling the relay or other device. Having the top of the relay coil always hot is one clue to the simplicity of this circuit. The transistors all have their emitters grounded and are either on or off, so their collectors either present a ground to the next stage or do not. Everything in the shack is enabled by simply grounding a terminal. There's no need for making two-wire connections when you want to apply a voltage to something. The basic circuit shown in fig. 1 needs only diode isolation and timing to become a full working device. These features have been added in fig. 2.

diodes provide isolation

Diode isolation is provided by inserting CR1 in the key line. If two or more of these switches have their key lines all tied together, the diodes CR1 in each switch will prevent any current flow between switching circuits. There's only one problem: with CR1 in the key line, closing the key reduces the voltage at the low end of R1 only to the forward voltage drop of the diode, which is just about the same as the −0.6 volts required to turn on the base-emitter junction of Q1. Thus, Q1 may or may not turn off, depending on the characteristics of the diodes and transistors, the temperature, and other such details. Diode CR2 saves the day by producing a 0.6-volt drop between the low end of R1 and the base of Q1. Now the voltage at the low end of R1 must be about −1.2 volts to turn on Q1. Closing the key drops it to −0.6 volts, and Q1 goes off with absolute certainty. Thus CR2 fixes the problem caused by the isolating diode, CR1.

"Key" is a generic term used here for the point in any solid-state switch, relay circuit, exciter, or amplifier which is grounded in order to enable the device. Only in a CW keying circuit would "key" indicate a real telegraph key, and even then we'd usually be referring to the output of an electronic keyer. In this antenna relay sequencing circuit, the PTT line connects to the "key" terminal of the switch.
Figure 2 shows the general form of the switch, with two timing capacitors, although we use only one capacitor in each of the separate antenna relay and amplifier switching circuits. (Both capacitors could be used in certain applications, when both turn-on and turn-off delays are desired.) Capacitor C2 provides a turn-on delay (which we will use for the amplifier), while capacitor C1 provides a turn-off delay (which we will use for the relay). When the key is closed, C1 discharges immediately through CR1, and Q1 turns off. This allows R2 to turn on Q2, but not instantaneously. It must charge C2 up to about -0.6 volts, and this takes a bit of time. Thus C2 provides a turn-on delay, but C1 doesn’t affect the turn-on. Now when the key is let up, this allows R1 to turn on Q1 — but, again, not instantaneously. It must charge C1 up to about -1.2 volts, and this provides the turn-off delay. As soon as Q1 turns on, its collector discharges C2 immediately, so C2 doesn’t affect the turn-off time.

separate relay and amplifier switching

It’s the clean separation of functions between C1 and C2 that makes the use of two separate switching circuits — for relay and amplifier — well worth the few extra parts. In the relay switching circuit, there’s no C2 and the turn-off delay capacitor C1 doesn’t delay the turn-on. In the amplifier switch, there’s no C1 and the turn-on delay capacitor C2 doesn’t delay the turn-off. Although there may be circuits that will do all this with one transistor, the adjustment of turn-on and turn-off times is much more complicated, there’s no isolation (so key lines can’t be tied together), and hot two-wire connections are often required. The sequencing could also be done with timer ICs, but this circuit seems simpler and may be less susceptible to rf pickup problems. Instead of comparators and timer thresholds, this circuit simply uses the base-emitter junctions of the transistors, which have sharp thresholds at about 0.6 volts with hard turn-on currents, resulting in a very sharp positive action. Timer IC circuits would still need the timing capacitors, transistors for relay drivers, and transistors or relays in interface circuits to match PTT lines and amplifier control lines.

selection of bias resistors

The basic switching circuit shown in fig. 1 doesn’t show the values of the bias resistors R1 and R2. These depend on the load current to be switched. Take first an antenna relay switch. A typical 24-Vdc antenna relay draws about 80 mA — let’s say no more than 100 mA. We don’t need the exact relay coil current, but rather just an upper limit for design purposes; our circuit will work well with any relay drawing less than this limit. To ensure that Q2 turns on hard at this collector current, a good rule of thumb is to provide a base current of about 10 percent of the collector current. This is like asking the transistor to have a gain of 10; the transistors we’ll be using have typical gains in the 50 to 200 range, so this is quite a conservative rule. For Q2 to turn on hard means that with the 100-mA collector current, the collector voltage should drop quite low, to about 0.1 or 0.2 volts. This is not to ensure that the relay coil will get the full 24 volts (it will probably work fine at only 20 volts), but instead to keep the Q2 collector dissipation low. At 0.2 volts this will be only 0.02 watts, but if Q2 doesn’t turn on hard, and the collector voltage drops only to 4 volts, the dissipation will be 0.4 watts, more than the rating of a typical ten-cent transistor. So for a 100-mA collector current, we’ll provide a base current of 10 mA. The bias resistor R2 should then have the value R = E/I = 15/0.01 = 1500 ohms. The power in R2 will be P = I^2R = (0.01)^2 * 1500 = 0.15 watts, so a 1/2-watt resistor will be satisfactory.

Q1 has to sink the 10-mA current in R2 in order to keep Q2 off until we push the PTT button. The collector voltage of Q1 should be as low as 0.1 to 0.2 volts, well below the 0.6 volts required by the base of Q2, so that Q2 will stay off. We apply the same rule of thumb as before; Q1 needs only 1-mA base current in order to sink 10 mA in the collector circuit. Thus for R1 we need a value of R = 15/0.001 = 15 k. Obviously, the voltage across R1 isn’t the full 15 volts, because of the small voltage drop in CR1 and the base-emitter junction of Q1. But there’s no need here for mathematical precision. The power in R1 will be only 0.015 watts, so we’ll use a 1/4-watt resistor. (Whenever the required current comes out less than 1 mA, I always provide 1 mA anyway; this avoids unusually low currents, thereby lessening any possibility of problems from leakage in the PTT line or rf pickup, and ensures that the output transistor in any switch, even if built to switch only another 1-mA line, will sink at least 10 mA, and will thus switch several 1-mA lines simultaneously if necessary.)

The current gain of the two transistors together is the product of the individual gains. Thus, to be safe, we assume a combined gain of 100, although 10,000 would be a more typical value. It’s this gain of at least 100 that allows the 100 mA relay coil to be controlled with only 1 mA on the PTT line.

The amplifier switch bias resistors are even easier to select. If the amplifier bias switching circuit follows the standards listed above, you’ll need to sink only 1 mA on the amplifier control line. So 15-k, 1/4-watt resistors will be acceptable for both R1 and R2. We’ll leave the bias switching problem to the amplifier itself. This will keep the bias, up to -300 volts, of our control lines and out of our station band switch. The bias switch will be discussed below.
Val Comm Inc. offers an exciting New Mobile Antenna for 2 meter operations for the SSB/FM mode. The original antenna, designed by Mike Staal in conjunction with Val Comm Inc., was to produce a mobile antenna in the VHF band for government satellite communication networks. Its outstanding performance is now offered to the amateur operator for mobile or fixed communications.

Orientation of the Eggbeater is unimportant as it produces an omni-directional horizontally polarized pattern. As an omni-directional satellite antenna, the Eggbeater is very effective as it produces a right-hand circular polarization off the top. When placed 1/8 wavelength over a metallic surface, such as a vehicle roof top, the signal level off the top portion of the antenna increases by as much as 6 dB. No rotation or steering is necessary. Circularity is optimized in the 144 to 146 MHz region, ellipticity will increase either side of that range but the antenna is still effective from 135 to 150 MHz.

Base station, contest and field day use of the Eggbeater will allow rapid fire communications in all directions with other horizontally polarized stations. While the Eggbeater won’t replace a good directional antenna, it is certainly a valuable addition to any mobile or fixed station.

Eggbeater Specifications:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>144 to 148 MHz</td>
<td>135 to 150 MHz</td>
<td>50 OHMS</td>
<td>1.5:1</td>
<td>Omni-directional at horizontal, circular off the top.</td>
</tr>
</tbody>
</table>

- **Polarity:** Horizontal
- **Power Handling Max:** 1 kilowatt
- **Mounting:** Requires 3/8-24 male thread SO-239
- **Size:** 34” high x 28” wide
- **Wind Speed Max:** 100 MPH
- **Materials:**
 - Loops: 17.7 stainless
 - Loop Support: 3/8” fiberglass
 - Body: Delrin & anodized alum
 - Hardware: Stainless & brass

VC Eggbeater Options:

- Magnetic Mounts: $39.95
- Spring Coil: $9.95
- Bumper Mounts: $15.95
- 54” Bumper Mount Extension: $22.95
- Folding Extension: $29.95

Price: $119.95

Warranty: This product is guaranteed for a period of one year from date of purchase against defective workmanship and materials. It is the option of Val Comm Inc. or M2 Enterprises to repair or replace the defective part. This specialty antenna product has been carefully manufactured by M2 Enterprises, (408) 683-2967, and serviced and marketed thru Val Comm Inc.

Val Comm Inc. is a small business, woman-owned corporation specializing in design and fabrication of prototype special applications communications systems in RF links, video transmitters, data communications and security communications.
selecting the timing capacitors

Figure 3 shows a typical complete sequencing circuit — in this case, for a 24-volt relay. The 24-volt relay supply is further dropped to –15 volts for the timing circuits. Since the voltage used affects the timing, this ensures that if the relay is changed to one with a different coil voltage, the timing circuits need not be readjusted.

Because of variations in the actuating time of different relays, it won’t be sufficient to merely provide component values; the method of calculation must be explained. The time constant formula $T = RC$ is usually used to choose circuit values in an R-C timing circuit, as in Fig. 4. The units are seconds, ohms, and farads, but if kilohms and microfarads are used for R and C, the formula conveniently gives the time, T, in milliseconds (ms). The time constant, T, is the time required to charge the capacitor to about 63 percent of the applied voltage, V. In the circuit used here, however, the capacitors never charge beyond about –0.6 or –1.2 volts. To find the exact time to reach this voltage requires a complicated exponential-growth formula. But in this situation the level of charge is less than 10 percent of the applied voltage, so a much simpler formula will suffice:

$$v \approx \frac{t}{T} V$$ (1)

This is a straight-line approximation to the exact voltage. Here, V is the applied voltage, v is the voltage reached after time t, and T is the time constant. The formula indicates a simple proportionality between the time and the voltage. Thus, in a circuit with a time constant, $T = 500$ ms, and an applied voltage of $V = 15$ volts, the capacitor will charge to about $v = –0.6$ volts (4 percent of the applied voltage) in about $t = 20$ ms (4 percent of the time constant). For a 10-ms antenna relay, this delay would be enough to hold off the amplifier while the relay closes.

Once we have the required time constant, it’s easy to find the value of the capacitor needed in each bias circuit. With a 20-ms relay, we may wish to delay the amplifier for 30 ms, in order to allow for contact bounce. Using the relationship

$$t \approx \frac{v}{V} T$$ (3)

with the values $v = 0.6$ volts and $V = 15$ volts, we find we need a time constant of

$$T \approx \frac{15}{0.6} \cdot 30 = 750 \text{ ms}$$ (3)

The delay capacitor C_2 is on the base of Q_4. If the switching circuit in the amplifier follows the standards.
about 1.2 volts. This is 8 percent of the applied 15 volts, so we need a time constant relay switching circuit. When the PTT line is opened, the good exciter continues to transmit for 3 to 5 milliseconds after the key is let up; this allows gradual decay of the keying waveform and prevents key clicks. If the antenna relay opens during this time, arcing will result, and in the case of QSK operation, key clicks will be generated.

For these reasons we provide a short delay in opening of the antenna relay when the PTT line is opened. In fig. 3, this is done with C1 at the base of Q1 in the relay switching circuit. When the PTT line is opened, Q1 won’t turn on until C1 charges through R1 up to about 1.2 volts. This is 8 percent of the applied 15 volts, so we need a time constant $T = RC$ about 12.5 milliseconds the required delay. For a 6-ms relay hold-in time, $T = 75$ ms will be about right. If R1 is 15 k, C1 will need a value of $C = T/R = 75$ ms/15 k $= 5 \mu F$.

antenna relays

Since the best bargains for coaxial relays on the surplus market, or at swap meets, are 24-volt dc types, fig. 3 shows the circuit for these. The dc relays offer the advantages of quiet operation, solid-state control, and the convenience of using the relay supply to power the sequencing circuit. However, the circuit is easily adapted for an ac antenna relay by adding a small reed relay as shown in fig. 6. The reed relay switching time is quite small compared to that of the coax relay. We can add a few milliseconds to our computations, or just let it be absorbed in the final scope test.

Because of the high cost of antenna relays, I’ve followed the old-fashioned custom of using only one relay, at the amplifier output, with the receiver antenna line running to a separate jack on the exciter. This minimizes losses on VHF and alleviates the need for double relays on every preamplifier, attenuator, transverter, and driver down the line. This method is also highly recommended by some GaAsFET preamplifier manufacturers for safest operation. However, if you want to use two relays, switching the input and output simultaneously, just connect the coils in series or parallel, depending on the operating voltage available.

In the complete sequencing circuit shown in fig. 3, both the relay switch and amplifier switch are limited to 1-mA closed-circuit current, but the circuit as a whole requires the PTT line to sink 2 mA. The design standards can be implemented a bit loosely; in fact, the 1-mA limit was chosen for just this reason. If each individual circuit conforms to this limit, then any reasonable number of such circuits can be tied in parallel, and the total current will remain small.

In one of my relay sequencing circuits, extra protection is provided by inserting one set of the coax relay auxiliary contacts at the input to the amplifier delay.

![fig. 5. Tetrode amplifier bias switch. Values shown are typical for an amplifier of about 150 volts standby bias, such as a 4CX1000A. Rf filtering should be added, as noted in fig. 3.](image-url)

![fig. 6. Interface for ac-operated antenna relay. RY1 is a 12-volt reed relay; other coil voltages may also be used.](image-url)
circuit at the base of Q3 in fig. 3, and the other set at the output at the collector of Q4. This keeps the amplifier disabled in the event of failures such as an open relay coil or a shorted or open transistor. This also provides some mechanical delay so that C1 need provide delay only during the bounce time. However, this mechanical method doesn’t eliminate the need for the amplifier sequencing circuit. Oscilloscope tests on typical antenna relays show considerable antenna contact bounce times, continuing long after the auxiliary contacts close. Incidentally, the “hot-shot” method (providing double the coil voltage for about 50 ms) often seems to make the bounce worse!

amplifier switching

For tetrode amplifiers with negative grid bias standby switching, amplifier switching is done with a separate switching circuit installed in the amplifier, as shown in fig. 5. In principle, the amplifier bias adjustment control could be connected directly to the collector of Q2 in the sequencing circuit of fig. 3, but this would have several disadvantages. The voltage rating of Q4 would have to be high enough to handle the full standby bias of the amplifier, as high as –300 volts or more. This high voltage would be on the cable between the amplifier and the sequencing circuit, violating the standards set forth at the opening of this article. If the control lines of both the driver and final amplifier are tied together at Q4, the –300 volts from the amplifier would appear at the driver switching circuit and in the station band switch. The isolating diodes would have to be the high-voltage type and there would be dangerous voltages in unexpected places. I much prefer to have the bias switching circuit inside the amplifier, even though it may seem a bit strange to find four transistors between the PTT switch and the amplifier bias circuit. All but the last one — a required high-voltage type — are inexpensive.

For amplifiers with screen voltage standby switching, a small reed relay with a solid-state driver can be installed in the amplifier. For zero-bias triode amplifiers, the solid-state interface circuit shown in fig. 7 may be used.

connection to the exciter

The PTT jack on the sequencer can be connected in parallel with the PTT line of the exciter if the exciter PTT line is also negative and isolated. If the exciter PTT line is negative but not isolated, isolation can be easily provided by using the basic circuit of fig. 2, with no timing capacitors. If the exciter PTT line is positive, and you want to use negative switching for most gear in the shack, the interface circuit shown in fig. 7 can be used. For full break-in, the exciter can be delayed using another two-transistor switching circuit.

testing and adjustment

The antenna relay can be tested to determine the actuating and bounce time before building the sequencing circuit, but it’s easier to build the circuit using estimates of the delays required and then test the whole system afterwards. An amplifier delay of 50 ms and a relay hold-in time of 10 ms would be good figures to start with.

One possible test setup using a dual-trace triggered scope is shown in fig. 8. Although this illustration shows a battery, any available voltages from test supplies can be used. The antenna relay is controlled by the sequencing circuit, but the amplifier isn’t used for the test. The external scope trigger connection, connected to the PTT line, is used. Thus the left edge of the scope trace represents closing of the PTT line. A foot switch, straight key, or push-button on the PTT line is convenient for repeated, manually triggered tests. The closing and opening transitions can be observed separately by changing the trigger polarity. One trace is used for the antenna relay contacts, and the other for the amplifier switching circuit. The testing is done with very small voltages and currents, so no damage results while you try different timing capacitors or parallel combinations of whatever capacitors are on hand in an effort to obtain the desired delays.

The timing capacitors should be selected so that the amplifier switch doesn’t turn on until about 5 ms after the relay contacts cease bouncing and the contacts remain closed until about 10 ms after the amplifier shuts down. After initial adjustment, the antenna relay contact test current can be increased to several amperes; more bounce sometimes appears.

A single-trace scope can be used to see what’s happening at two or more different places simultaneous-
RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5" and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. MHz</th>
<th>Power Input</th>
<th>Power Output</th>
<th>Preamp NF-dB</th>
<th>Gain-dB</th>
<th>DC +VDC</th>
<th>Power A</th>
<th>RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0500G</td>
<td>50-54</td>
<td>170</td>
<td>15</td>
<td>13.6</td>
<td>28</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0510G</td>
<td>50-54</td>
<td>10</td>
<td>15</td>
<td>13.6</td>
<td>28</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1409G</td>
<td>144-148</td>
<td>2</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1410G</td>
<td>144-148</td>
<td>10</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1412G</td>
<td>144-148</td>
<td>30</td>
<td>15</td>
<td>13.6</td>
<td>20</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2210G</td>
<td>220-225</td>
<td>10</td>
<td>12</td>
<td>13.6</td>
<td>21</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2212G</td>
<td>220-225</td>
<td>30</td>
<td>12</td>
<td>13.6</td>
<td>16</td>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4410G</td>
<td>420-450</td>
<td>10</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4412G</td>
<td>420-450</td>
<td>30</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
<td>N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete G suffix on model #). All units cover full amateur band - specify 10 MHz bandwidth for 420-450 MHz amplifier.

Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28V), Commercial, etc. also available - consult factory.

The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut Verticals
Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
- 80 40 30 20 15 and 10 meters automatic bandswitching
- Add on kit for 17 and 12 meters available now
- 26 ft tall

Model HF2V
- Designed for the low band DXer
- Automatic bandswitching on 80 and 40 meters
- Add on units for 60 and 30 or 20 meters
- 32 feet tall may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure.

This publication is available in microform from University Microfilms International.
ly, although it requires the special test circuit shown in fig. 9. A triggered sweep is still needed. The battery and the resistors establish various voltages, which the relay contacts and the amplifier switching circuit alter in such a way that can be observed on the scope. With the PTT line open, -9 volts will be seen on the scope. It stays at -9 volts while the relay contacts close. As soon as the relay closes, it climbs to -6 volts, then to -3.6 volts when the amplifier switching circuit turns on. If the amplifier switch turns on before the antenna relay closes, the trace will climb to -4.5 volts without going through the -6 volt stage, indicating that more amplifier delay is needed. Contact bounce before the amplifier switch turns on is seen on the scope as a fluctuation between -9 and -6 volts. Contact bounce after the amplifier switch turns on (to be avoided!) is seen on the scope as a fluctuation between -3.6 and -4.5 volts. Now when the PTT line opens, the amplifier switching circuit turns off instantly; the trace drops to -6 volts and stays there while the relay holds in, then drops back to the full -9 volts.

obtaining components

Inexpensive PNP transistors are available from the suppliers listed below.** For most circuit positions the 40-volt, 200-mA 2N3905 will do well. A good 24-volt relay driver is the slightly more expensive 120-volt 2N5400. Rated at 600-mA collector current, it will handle a 100-mA relay coil current with a nice safety factor. For higher coil current, such as we'd have with relays in parallel or 6-volt relays, the MPS-U87 (rated for 2 amperes) can be used. For tetrode amplifier bias switching in the circuit shown in fig. 5, the 300-volt MPS-A92 is available from BCD Electro.** These choices of transistor types are quite arbitrary; any available PNP types can be used as long as you check the manufacturer's ratings and compare these with the circuit voltage and current requirements.

For the timing capacitors, it's essential to use only tantalum electrolytics rather than ordinary filtering types. Tantalum will remain stable, with negligible leakage, over a very long time. Tantalum electrolytics usually have a 10 percent tolerance, which is satisfactory for sequencing purposes. On the other hand, the ordinary aluminum types often have tolerance ratings such as -20 percent to +100 percent. Because of this, and their leakage and unreliability, they are unusable in this application. Notice that in these circuits the capacitors never see more than 1.2 volts, so inexpensive 6-volt units may be used. One source for tantalum electrolytics is, again, BCD Electro.**

performance

For several years I've used two of these units with two homebrew amplifiers. One uses a 4CX1000A on 1.8 through 50 MHz; the other uses push-pull 4-400A's at 144 MHz. There's no arcing at the contacts, and I believe the antenna relays will last a long time.

Many antenna relays have an inspection port at one end, with a snap-in cover, for checking the contacts and connectors, which can be cleaned or replaced if necessary. It's interesting to remove this cover, turn off the shack lights, and watch for arcing. Without the sequencing circuit, the arcing can be seen clearly.

** BCD Electro, P.O. Box 830119, Richardson, Texas 75083. Parts also available from Circuit Specialists, P.O. Box 3047, Scottsdale, AZ 85257.
OUTSTANDING PRICES ON IBM XT™ * COMPATIBLE SYSTEMS!

SYSTEM #1 $399.00
MOTHERBOARD WITH BIOS AND FIRST 64K OF RAM, UPGRADEABLE TO A FULL 640K OF RAM. FLIP TOP CASE. KBXT (AT LOOK ALIKE) KEYBOARD. 150 WATT POWER SUPPLY WITH ALL THE POWER NEEDED TO RUN EXTRA DRIVES AND CARDS.

SYSTEM #2 $699.00
MOTHERBOARD WITH BIOS AND FIRST 256K OF RAM. UPGRADEABLE TO A FULL 640K OF RAM. FLIP TOP CASE. KBXT (AT LOOK ALIKE) KEYBOARD. 150 WATT POWER SUPPLY. COLOR GRAPHICS CARD WITH RGB AND COMPOSITE OUTPUTS. AND A COMPOSITE MONITOR. CARD WITH RGB AND COMPOSITE FLOPPY DISK DRIVES DS DD CABLES. ONE FLOPPY DRIVE DS PORT. CLOCK AND CALENDAR TO A FULL 640K OF RAM.

SYSTEM #3 $999.00
MOTHERBOARD WITH BIOS AND CONTAINING 640K OF RAM. FLIP TOP CASE. KBXT (AT LOOK ALIKE) KEYBOARD. 150 WATT POWER SUPPLY. COLOR GRAPHICS CARD WITH RGB AND COMPOSITE OUTPUTS. MULTI I/O CARD WITH TWO DISK DRIVE PORTS. ONE PARALLEL PORT. ONE SERIAL PORT AND ONE SERIAL PORT OPTION. ONE GAME PORT. CLOCK AND CALENDAR WITH BATTERY BACKUP. TWO FLOPPY DISK DRIVES DS DD 360K AND A COMPOSITE MONITOR.

OUTSTANDING PRICES ON IBM XT™ * COMPATIBLE SYSTEMS!

NEW PRICE!

ANTENNA POLARITY SWITCHER MODEL APS-1

The APS-1 is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis. The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.

In addition to switchable outputs for two antennas, the APS-1 also contains a 6-13 volt regulated DC power supply. This feature is designed for powering items such as preamplifiers, VHF/UHF converters, etc., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

- **Power Requirement (AC):** 117V ± 10% AC 50/60 Hz 15 Watt
- **Power Requirement (DC):** 11-16 VDC 500 mA
- **Outputs:** Two 12 VDC unregulated, switched (antenna relay supply). One 6-13 VDC variable regulated auxiliary supply.

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

P.O. BOX 1000 MORGAN HILL, CALIFORNIA 95037 (408) 779-7363
OUTSIDE CALIF. (800) 538-2140

references

ham radio
impedance-matching techniques

Because hardly a month goes by that I don’t receive at least one question about impedance matching, this month’s column will first address the subject generally and then describe some specific techniques.

impedance matching in general

When impedance matching is discussed, it usually refers to matching to an antenna. Often the only question is “How do I get a low VSWR?”

For years Amateurs have had the notion that if the VSWR isn’t close to unity (1:1), valuable power is being lost. They seldom consider the insertion loss of the transmission line, the accuracy of the measurement gear, or the mismatch loss (if any).

It’s true that if the VSWR on a transmission line isn’t 1:1, there’s an additional line loss over and above that of the insertion loss of the feed line.¹ This is often referred to as “mismatch loss.” For many years a graph published in several Amateur journals and the ARRL’s Antenna Book has shown how to estimate the mismatch loss if the VSWR at the load and the nominal insertion loss of a transmission line are known.² Because I didn’t know how precise it was, and because using it involves a two-step addition process (another possible source of error), and because it doesn’t include low transmission line losses such as typically encountered at EME, I haven’t had much confidence in it.

Thanks to Dick Turrin, W21MU, I now have the mismatch loss mathe-

fig. 1. Total insertion loss in a transmission line terminated in a mismatch (see text).
mational equations, but they are lengthy. Dick pointed out to me that a mismatch loss graph using a different format was published in the 1940s.\(^3\) Sure enough, I’d had the information in my files all these years and hadn’t noticed it!

I’ve verified the math. The older and, in my opinion, more useful graph for mismatch loss is shown in fig. 1. Note that this graph stands alone, in that the loss indicated is the total loss, not just an incremental amount which then has to be added to the nominal insertion loss. As with the former graph, you still have to know the VSWR at the load as well as the nominal insertion loss of the transmission line. The latter quantity, however, is readily available.\(^1,2\)

For example, using fig. 1, if the VSWR at the load is 5:1 and the nominal transmission line insertion loss is 0.2 dB, the total insertion loss — including the mismatch loss — will be 0.5 dB. Furthermore, if the VSWR at the load is 3:1 and the nominal insertion loss of the line is 5 dB, the total insertion loss will be 6 dB. I feel that fig. 1 is easier to use and more realistic than the graph most amateurs are presently using.

Impedance matching is especially important nowadays because of the proliferation of solid-state power amplifiers that will shut down or decrease power in the presence of VSWR above 1.5 or 2:1. However, the subject of impedance matching extends beyond antenna systems, since impedance matching can also refer to matching into or out of a low-noise, medium, or high power amplifier. Impedance matching can be narrowband as well as broadband and between resistive or reactive loads.

categories of impedance matching

Before we go any further, we should discuss what I feel are the three major categories of impedance matching: nonreflective, conjugate, and optimum source. Nonreflective matching is probably the most common type. In this scheme, an impedance matching network or “antenna tuner” is placed somewhere in the line between the source and load. This network is then tuned for minimum VSWR looking into the load. In a worst-case scenario, a large attenuator could be placed between the source and load to yield a good impedance match. (More on this shortly.)

Conjugate matching is often used in the design of solid-state power amplifiers where gains are typically low and therefore losses must be kept at a minimum, both in the input matching network and in the components involved.\(^4\) In order to accomplish a conjugate match, all reactive components must be cancelled and the resistive component of the load made equal to the input line impedance.\(^5\) Conjugate matching is often used in applications where wider bandwidth or no tuning is desired.

Optimum source matching usually refers to providing the impedance required for best operation of the load. In the case of a vacuum tube power amplifier, if a conjugate output match is used, at least one-half of the rf output power generated would have to be dissipated in the tube — a very inefficient condition.\(^6\) Therefore, conjugate matching is usually not used in high-power amplifier designs.

In a similar manner, the input circuit of a low-noise preamplifier is often tuned to an impedance that produces the lowest noise figure, which seldom yields a good impedance match. Therefore a device or circuit that requires optimum source matching will usually have a moderate to poor input and/or output VSWR.

simple impedance-matching techniques

There are many ways to perform impedance matching. Resistors, transformers, reactive elements, transmission lines, and stubs are some commonly used VHF/UHF/SHF techniques. The optimum choice depends on whether the load is resistive or reactive, whether any insertion loss is allowable, and how broadband the match must be.

If loss isn’t a problem, the load is resistive and doesn’t have to see an impedance match looking back at the source; a simple resistor or resistor network is all that’s necessary for a wideband impedance match. Several examples of resistor matching are shown in fig. 2.

In fig. 2A, the impedance of the amplifier must be resistive and less than the source impedance. The matching resistor, R, will be the difference between the source and load impedance. For example, if you want to match a source of 50 ohms and the load is 40 ohms, R should be 10 ohms.

If the load impedance is higher than the source, use a shunt resistance as shown in fig. 2B. With a load of 75 ohms, the shunt R will have to be 150 ohms to provide a match to a 50-ohm source. In either case, the matching resistor will dissipate power and decrease overall gain. Furthermore, the source will see a good impedance match but the load looking back toward the source will see a mismatch. The larger the impedance difference between the source and load, the larger the insertion loss and the lower the gain.

Sometimes it’s desirable to have both the source and load see a good impedance match. In this case, the so-called “minimum loss pad” can be used for impedance matching (see figs. 2C and 2D). This type of impedance matching provides a match looking both ways but has a higher insertion loss than the single resistor matching shown in figs. 2A and 2B.

For example, using fig. 2C with a source impedance of 50 ohms and a load of 40 ohms, R1 should be 22.4 ohms and R2 89.4 ohms. The overall insertion loss will be 4.2 dB. If the load impedance is higher than the source, use the circuit in fig. 2D. With a source impedance of 50 ohms and the load at 75 ohms, R1 will be 86.6 ohms and R2 43.3 ohms. The overall insertion loss will be 5.7 dB.

If gain is of no consequence, typical “T” or “Pi” attenuator pads can be used for impedance matching as shown in figs. 2E and 2F. If the at-
fig. 2. Different types of resistor matching for cases in which the source and load impedance are resistive: (A) source impedance is higher than load; (B) load impedance is higher than source; (C) minimum loss pad with source impedance higher than load; (D) minimum loss pad with load impedance higher than source; (E) typical symmetrical "T" pad attenuator; (F) typical symmetrical "PI" pad.

tenuation of the pad is high enough, for example 10 dB, the source and load will typically see a VSWR equal to or better than 1.2:1. Values for a 10-dB pad are 26, 35, and 26 ohms for R1, R2, and R3, respectively, in fig. 2(E) and 96, 71, and 96 ohms, respectively, in fig. 2(F).

Finally, even lossy coax cable can act as an attenuator. For example, RG-58A/U coax has a loss of approximately 11 dB per 100 feet at 400 MHz. Therefore, about 90 feet of RG-58A/U would make an excellent 10-dB attenuator for the 70-cm (432 MHz) band with a power rating of 85 watts to boot. Equations for designing minimum loss and matched attenuator pads are available in most design handbooks. Typically computer programs are also available.

Transformer matching

Another method of impedance matching...
The XP-706-US Multiband Antenna

In the final analysis quality is less expensive

The unique design of the XP-706-US antenna system gives you MONOBAND PERFORMANCE in a Multiband beam. The antenna USES NO TRAPS of loading coils that rob power and limit bandwidth. Sommer Antennas use the FULL surface area of the elements on ALL bands.

Our commitment to use only the finest materials insures that your investment will last for years. Our system uses a Double rectangular boom. CAST aluminum element mounting brackets, all stainless hardware and a high power balun.

Monoband performance on a Multiband beam is yours when you move up to Sommer, the last beam you’ll have to buy. We believe Sommer is your best antenna value when compared to the construction and performance of other multi and monoband antenna systems.

H.J. Theller Corp.
P.O. Box 5369
Spartanburg, SC 29304
(803) 576-6566

Subscribe Today To The World's Leading Magazine For Shortwave & Scanner Listeners!

- International Broadcasting
- Utility Monitoring
- Scanners
- Shortwave and Longwave
- Satellites
- Electronic Projects
- Listening Tips
- Frequency Lists
- Equipment Reviews
- News-breaking Articles
- Feature Articles
- Exclusive Interviews
- Insights by the Experts
- New Products

Each month MONITORING TIMES, the first wide-spectrum listener's publication and still the best, brings you 64 giant tabloid pages of late-breaking information on every aspect of monitoring the radio spectrum.

Fast-paced and information-packed, MONITORING TIMES consistently scoops the publishing industry. ORDER YOUR SUBSCRIPTION TODAY before another issue goes by: only $15 per year (U.S. and Canada), $22 per year (foreign) or send $1 for a sample issue (foreign send 2 IRCs).

MONITORING TIMES
P.O. Box 98
Brassstown, N.C. 28902
matching is through the use of transformers. The 4:1 transformer is particularly popular with Amateurs. It will conveniently match a resistive source to a resistive load that is four times the impedance. A bifilar wound transformer is often used, as shown in fig. 3A. This technique was recently suggested by Bob Sutherland, WB6PO, for matching out of GaAsFET amplifiers. Bifilar wound transformers are also very popular for toroidal baluns (fig. 3B). Trifilar wound transformers can also be used to match resistive impedances that are a ratio of nine times (fig. 3C).

Another popular form of transformer is the resonant step-up/step-down type that is often used at the input of low-noise receivers. It has many forms, but those shown in figs. 3D and 3E are the most popular. Figure 3F is a somewhat simpler but more obscure transformer configuration that’s popular where the goal is to optimize the impedance in the circuit without changing taps or components. Resonant transformers are often used in reverse to match the output of a high-impedance small signal amplifier to a lower impedance. Other types of transformers using coaxial techniques will be discussed shortly.

reactive impedance matching

So far I’ve been discussing mostly resistive matching networks. At the lower VHF/UHF frequencies, especially when low-loss impedance matching is required over only a narrow bandwidth, simple “L” networks using inductors and capacitors are often used, especially when the load impedance is reactive.

This is probably the time to mention the venerable “Smith Chart,” a tool used mainly by professionals to impedance match from any one impedance to any other impedance if the impedances of the source, load, and reactive components are known. Smith points out in Chapter 10 of his book that any resistive impedance, Zo, can be matched to any complex impedance, Z1, using a simple L-net-
work. The eight required circuit topologies are shown in fig. 4. Smith shows the recommended network based on the portion of the Smith Chart where the load is present.

stub matching

Impedance matching can also be accomplished using coaxial stubs. The most common configurations are the open (fig. 5A) and the shorted (fig. 5B) shunt types. In most cases the stub is less than one-quarter wavelength. If a shunt stub isn’t sufficient to complete the match, a tandem transmission line, also usually less than one-quarter wavelength, may be added ahead of or behind the shunt stub as shown in figs. 5C and 5D. The Smith Chart is particularly useful for performing stub matching.

Use of the Smith Chart has been described many times in the Amateur literature so I won’t dwell on it here. Instead, I’ll refer you to these references and use the rest of this month’s column to show simple impedance-matching techniques that can be easily implemented by Amateurs.

coaxial transformers

Probably one of the most widely used impedance matching techniques in the VHF/UHF spectrum is the “quarter-wavelength transformer” as shown in fig. 6A. In its simplest form it can match virtually any two resistive impedances. The impedance of the line is the geometric mean between the input and output impedances as shown below:

$$Z_t = \sqrt{Z_{in} \times Z_{out}} \quad \text{eqn. 1}$$

Where Z_t is the impedance of the quarter-wavelength transformer, Z_{in} is the input impedance, and Z_{out} is the output impedance, all in ohms. For example, let’s say that we want to match a 50-ohm resistive line to a 75-ohm resistive line. Using equation 1, the optimum impedance of the quarter-wavelength transformer, Z_t, is 61.24 ohms.

The length, as stated above, must be one-quarter wavelength at the operating frequency. This can be determined using equation 2:

$$L = \frac{\epsilon_r (2951/f)}{2} \quad \text{eqn. 2}$$

Where L is the length in inches, ϵ_r is the dielectric constant, 1.0 for air, and f is the frequency in MHz. Therefore a quarter-wavelength transmission line at 432 MHz using air dielectric is approximately 6.83 inches long.

Now all you have to do is to build a coaxial line section one-quarter wavelength long that has a characteristic impedance of 61.24 ohms. The impedance can be determined using equation 3:

$$Z = 138 \log \left(\frac{D_2}{D_1}\right) \quad \text{eqn. 3}$$

Where Z is the impedance of a coaxial line, D_1 is the outer diameter of the inner tubing, and D_2 is the inner diameter of the outer tubing (see fig. 6B). For an impedance of 61.2 ohms, the ratio of D_2/D_1 is approximately 2.78:1.

A suitable coaxial transmission line can be made using hobby shop brass or copper tubing. Half-inch household plumbing uses copper tubing that has an approximate inside diameter of 0.532 inches. Therefore, a 3/16-inch outside diameter tube, such as you’ll find in hobby shops, would make a good match for the inside tube in this particular application.

Yet another transformer matching scheme — the “non-synchronous” transformer — is an outgrowth of the work of Frank Reiger, OD5CG, offering similar matching properties. Figure 6C shows a particularly fine example of this kind of transformer using two lengths of coax of the same impedance as that to be matched but inverted. No longer is there a need for an “oddball” line impedance. The overall length is 0.1628 wavelengths, which is 35 percent shorter than an equivalent quarter-wave transformer.

Another trick is to parallel coax. For instance, if two identical pieces of coax are paralleled, the new impedance is half the individual value (fig. 6D).
Therefore, two quarter-wavelength pieces of 70-ohm coax in parallel would equal 35 ohms and could be used to match 25 ohms to a 50-ohm line. Likewise, two quarter-wavelength pieces of 50-ohm coax in parallel would have an impedance of 25 ohms and would be good for matching from 50 to 12.5 ohms.

variable impedance matchers

Some of the matching techniques just described are fine, especially when the impedances to be matched are resistive. But what do you do when you want to impedance match to a reactive load? The answer is that you need some sort of antenna tuner.

At VHF/UHF/SHF frequencies this doesn’t have to be the coil and variable capacitor type typically used at hf. Instead, you can build a very simple tuner using a section of coaxial line with a few small variable capacitors properly spaced along the line and shunted to ground.

Figure 7 shows some recommended types of coaxial line impedance matchers. The first, fig. 7A, is the most complex.18 Basically speaking, a half wavelength of 50-ohm line is constructed in a trough, enclosure, or even in a microstrip line. Four variable capacitors are shunted to ground along the line at specific wavelength intervals as shown. Figure 7B shows a slightly simpler three-eighths wavelength matching scheme that probably has a little less tuning range.19

Figure 7(C) shows another scheme developed by one of my former colleagues, Dick Thurston. It originally used standard coax cable, so it has slightly higher loss than the schemes just described, but it’s inexpensive and easy to construct. If standard coax is used, the line sections must also be shortened because of the dielectric constant of the line. At lower frequencies the coax can be coiled up. Thus a very compact, inexpensive impedance-matching transformer is possible.

The typical maximum capacitance required for the tuners shown in fig. 7 can be determined empirically or by using equation 4 below:

\[C_{\text{max}} = \frac{9000}{f} \]

\(\text{eqn. 4} \)

Where \(C_{\text{max}} \) is in pF and \(f \) is in MHz. For example, 60 pF and 20 pF are typical maximum values for 144 and 432 MHz, respectively. In any case, the minimum capacitance should be no greater than 10 percent of \(C_{\text{max}} \) or 6 and 2 pF, respectively.

In all of these coaxial type tuners, the capacitors must be physically small, have low inductance, and have very short leads. Mica compression trimmers similar to the types used in transistor power amplifiers are quite suitable. Air variables such as the E. F. Johnson type “U” or piston trim-
mers made by Johanson and others are excellent for low-power applications, especially at UHF frequencies.

On 220 MHz, I have a cathode-driven final that has a moderate input VSWR. Normally this wouldn’t require any attention, but my solid-state driver doesn’t care for the input mismatch. Hence a tuner similar to the one in fig. 7C is now used with three 4- to a good input VSWR to my final.

with a VSWR bridge (fig. mica compression driven final that has a moderate input doesn’t care for the input mismatch. any attention, but my solid-state driver then tune one capacitor at a time, starting with the one closest to the load, alternating combinations until a satisfactory match is obtained. It probably takes less time to do than explain it!

One final thought on coaxial tuners. As I pointed out earlier, additional mismatch loss will be incurred if a transformer is placed close to or at the load instead of the source, the mismatch loss may be entirely eliminated — a double bonus!

UHF/SHF tuners

When you go higher in frequency, capacitors become inductive; consequently, the tuners mentioned above are probably usable only to about 1.3 GHz, provided that care is taken to select a good capacitor type. Above 1 GHz, impedance matching is often accomplished using variable shorted (or open) stubs, “line stretchers,” and dielectric slug tuners.

Figure 9A shows the simplest type of stub tuner, usually fitted with a connector so that it can be easily inserted into a coaxial line, perhaps via a “T” fitting. If the stub won’t decrease the VSWR sufficiently, a line stretcher (fig. 9B) may be inserted between the load and the stub so that the distance of the stub tuner from the load can be varied (fig. 9C).

Another common type of impedance matcher is the double-stub tuner (fig. 9D), which consists of two variable-length shorted (or open) stubs typically adjustable up to one-half wavelength and separated by the distance, D, one-eighth to three-eighths of a wavelength at the operating frequency. Double-stub tuners can match impedances only over a limited frequency range.

The triple-stub tuner shown in fig. 9E is more complex to use because it has more independent variables than the double-stub tuner. However, it will virtually match any impedance to any other impedance. It has one major drawback in that some settings will incur very high losses, so use it accordingly.

Stub tuners are in wide use, particularly where a quick impedance match is desired until a final circuit can be configured. However, most stub tuners employ some type of mechanical short circuit. This short sometimes increases insertion loss or causes intermittents due to high circulating currents, especially after extended tuner use. The construction of a suitable double-stub tuner is described in reference 20. Both double and triple stub tuners are manufactured by many companies, so they often turn up at flea markets.

Because of the mechanical problems associated with stub tuners as just described, dielectric slug tuners are sometimes used. A typical slug tuner is shown in fig. 9F. It usually consists of a 50-ohm air-type transmission line with electrical quarter-wavelength pieces of low-loss dielectric (such as PTFE/Teflon RTM) or metal slugs (covered with a low-loss insulating dielectric) placed along the line. Slug tuners don’t have the tuning range of a stub tuner, but they will fit most applications and are usually easier to construct and use. Some recommended construction techniques for slug tuners are described in reference 21.

A variation on the slug tuner is the “multi-screw” tuner, which may be used in coax (fig. 9G) but is especially useful in waveguide (fig. 9H). It works on the same principle of operation as the coaxial tuner. The greater the number of screws available, the greater the tuning range. Brass or silver-plated screws are recommended, with appropriate nuts soldered to the housing for low-impedance, low-loss rf contacts. Some recommended construction techniques are described in reference 22.

Most of you are probably familiar with microstrip transmission lines which are very popular, especially above 1 GHz. Microstrip is often used where impedance matching is required. The quarter-wavelength transformer (fig. 10A) or shorted and open stubs (fig. 10B) are easily implemented. Microstrip is great for production equipment. However, it does require a thorough knowledge of the circuit elements and much tweaking with expensive test equipment before optimum performance can be achieved.

This explains the recent popularity — particularly above 2 GHz — of what I call the “empirical matching tuner.” Figure 10C shows a typical configuration. A 50-ohm microstrip transmission line perhaps one-half wavelength long is etched on the pc board either ahead of or behind the device to be matched. Then thin narrow strips (0.1 to 0.5 inches wide) of brass or copper shim stock perhaps 0.05 to 0.25 wave-length long are slid along the line until an optimum match occurs.

When using this empirical technique, sometimes the size and/or shape of the metal strip has to be altered many times. Often more than
Delaware Amateur Supply

71 Meadow Road, New Castle, Del. 19720 302-328-7728
Factory Authorized Dealer
9-5 Daily, 9-8 Friday, 9-3 Saturday

AEA • ALINCO • AMERITRON • CUSHCRAFT • ICOM
KANTRONICS • KENWOOD • MOSLEY • SANTEC
TELEX HY-GAIN • TENTEC • YAESU • AND MORE!

800-441-7008
New Equipment Order & Pricing

Large Inventory
Prices are subject to change without notice or obligation. Products are not sold for evaluation.

NO Sales Tax in Delaware!
one mile off I-95

SERVICE,
USED GEAR INFO:
302-328-7728

Daily UPS Service
one strip is required. These “tuners” can be slid along the main line with a small-diameter insulated material such as a wooden dowel from a cotton swab. When the optimum spot is located on the line, the strips are soldered in place and perhaps glued to the pc board so that they won’t move. This approach is simple and inexpensive and can be quite effective.

wideband matching techniques

So far I’ve mentioned mostly narrowband matching techniques, since they’re usually all that Amateurs need. Most wideband techniques require more hardware, several matching sections in cascade (rather than a single section, as previously discussed) and often have higher insertion loss.

Other wideband techniques involve the use of hybrid couplers, ferrite isolators, and circulators, but these usually aren’t necessary in Amateur applications and are therefore beyond the scope of this month’s column. For those interested, I’d recommend references 23 and 24 for some wideband impedance-matching transformers.

antenna impedance matching

By now you’re probably wondering why I haven’t covered any information directly related to antennas. The subject of antenna matching has been addressed many times in the literature. References 13 and 26 describe not only recommended techniques but also typical test equipment.

Basically, matching an antenna is largely a matter of setting up a measurement system similar to the setup in fig. 8. Then the length, spacings, and diameters of the driven element and matching section are adjusted until an optimum impedance match is obtained. If you have any specific questions about antenna impedance-matching techniques, let me know and they can be covered in a future column.

summary

The subject of impedance-matching techniques has been widely addressed
in Amateur literature. New techniques — some simple, some complex — are constantly being presented. The material presented in this month's column reflects a summary of some of the information that should be most useful for Amateurs, especially those interested in the VHF/UHF/SHF frequencies. I hope I've described some new or interesting technique that will be of help to newcomers and old-timers alike.

acknowledgments

I'd like to particularly thank Dick Turrin, W21MU, for deriving the formulas necessary for me to calculate mismatch loss, and for providing appropriate references.

new records

Just as I completed this column, an important milestone in radio propagation occurred: the first two-way contact via sporadic E propagation on the 135-cm (220 MHz) Amateur band. As I've mentioned before, this has been a big plum, with at least two prior one-ways. (Yes, I was on one end of one of them!)

All that changed during the June ARRL VHF QSO Party, when sporadic E propagation was super on 6 and 2 meters in the southern portions of the United States. Finally, after a few unsuccessful attempts, on June 14, 1987, Bill Duval, K5UGM, of Irving, Texas (EM12MS) completed a two-way contact with John Moore, W5HGU/4, of Orange Park, Florida (EM90GC), on 220.1 MHz — for a record 932 miles (1499 km). Both CW and SSB were used, and signals were much greater than S9. Congratulations to Bill and John. Another Amateur Radio propagation first! Now that it's been done, let's see how long it takes to do it again!

During this same contest, apparent double-hop sporadic E contacts took place on 2 meters. However, some of them that have been reported to me so far either were short of the present North American record (1891 miles or 3043 km) or were incomplete contacts. I would particularly like to hear from anyone who can better the existing record.

important VHF/UHF events:

October 3-4 International Region 1 UHF/SHF Contest, 70 cm and up
October 4 EME perigee
October 9 Predicted peak of the Draconids meteor shower at 0900 UTC
October 10-11 Mid-Atlantic States VHF Conference Warminster, Pennsylvania (Contact WA2OMY)
October 17-18 ARRL EME Contest, first weekend
October 21 Predicted peak of the Orionids meteor shower at 0830 UTC
October 30 EME perigee
November 3 Predicted peak of the Taurids meteor shower at 2200 UTC
November 3 Predicted peak of the Cassiopids meteor shower at 2100 UTC

fig. 10. Examples of typical microstrip matching techniques: (A) series quarter-wavelength transformer; (B) series and shunt stubs; (C) empirical matching tuner.
references

2. Gerald Hall, K1TD, The ARRL Antenna Book, available from ham radio's Bookstore: $38.00 plus $3.50 shipping and handling.
7. Joe Reisert, W1JR, and Gary Field, WA1GRD, "RF-CAD Electronics Design Program"; available for the IBM PC from ham radio's Bookstore: $39.95 plus $3.50 shipping and handling.

ham radio

QRO?

This is the first "QRO?" column, a collection of notes and anecdotes concerning ALPHA amplifiers, ETO, and RF power in general. We plan to print QRO? irregularly—whenever we think we have something of interest.

QRO? as you probably know, means: "Shall I increase power?" Some of our staff prefer the name "Power Lines" for this new column. If you'll help us settle the issue by dropping me a note before November 1 with your vote and the name of the magazine you read this, we'll send you an ETO key as a token of our appreciation. (It may take a month or two, so please be patient.) Meanwhile, keep an eye out for QRO? (or "Power Lines") opposite ETO's regular ad.

Where have we been?

You may have wondered why ETO's monthly ad disappeared abruptly from the ham magazines in mid 1983. Well, at Dayton that year, representatives of one of the world's largest electronics companies saw our ALPHA 85 microprocessor-controlled RF linear amplifier (since superseded by the forthcoming ALPHA 88) and recognized the applicability of its basic technology to an imminent requirement of theirs.

The upshot is that ETO is now the principal supplier worldwide of the RF power amplifiers used in high field magnetic resonance imaging (MRI) systems. These sophisticated linear amplifiers typically deliver 15+ kW and cover 10-17 MHz under remote computer control.

The incredibly complex medical diagnostic MRI systems in which our amplifiers are used can peer into the living human body and display images of the brain, spinal column—even the beating heart—with clarity and detail that rivals the illustrations in med school anatomy texts. Suffice to say for now, the opportunity to become involved in MRI was something ETO couldn't pass up, and we spent three years totally immersed in that challenge.

Today's ETO is a different company.

We're five times bigger than we were in 1983. A new building tripling our floor space was added in 1985. In the ETO tradition of investing heavily in new technology, our engineering group (mostly hams) has grown five-fold. We may even have a ham station on the air by the time you read this!

Meet our Technical Director.

Last year, Don Fowler (W1GRV, ex-W4YET/J6YXO) joined ETO as director of all technical activities including engineering, quality, and manufacturing. Those with long memories will remember Don as the young chief engineer of Signal/One, responsible for the original CX7 transceiver back in 1968-69.

That design nearly two decades ago introduced a bevy of new techniques and features that since have become de rigueur in virtually all up-scale amateur transceivers.

Don spent the intervening years in increasingly responsible engineering/manufacturing jobs with GenRad, Narco Scientific, and Sensormatic. There is absolutely no one I would rather have in charge of technological progress at ETO, and our new products will demonstrate why.

For now, please take a close look at the ALPHA 86 and all the truly new features and capabilities it incorporates. The 86 is FCC type accepted and shipments should be going out the door by the time you read this. Why not give us a call so we can send you a detailed brochure? Better yet, order now for earliest delivery of your new ALPHA 86!
Alpha 86 offers these very special reasons to buy one now:

- 1500 watts RF output power — no time limit in any mode.
- Silent, lightning-fast QSK — new PIN diode T/R system.
- Pre-tuned input on all bands — easy drive and high efficiency.
- Five-function instant metering — four separate LED bargraphs.
- Quick, easy tune-up.

Plus the traditional virtues of all Alpha amplifiers:

- Ruggedness and quality — synonymous with Alpha.
- Compact and lightweight — exceptional power/weight ratio.
- 3 year limited warranty — exclusive with ETO.
- ETO factory service — renowned for helpfulness.
- Satisfaction of ownership — goes with every Alpha.

Contact ETO direct for detailed literature and delivery information.

EHRHORN TECHNOLOGICAL OPERATIONS, INC.
PO. Box 888
Canon City, CO 81212
Telephone (303) 275-1613
Alpha 86: $2995 delivered in North America
Now that you can speak, talk to Larsen.
Novice Enhancement opens up a whole new way for novices to communicate. To make the most of it, talk to Larsen Electronics.
We'll tell you how Larsen antennas can greatly improve your powers of communication. We'll also explain how Larsen 220 and 1296 MHz antennas are designed to give you the best performance.
Talk to your Larsen amateur dealer today, and see if Larsen performance doesn’t speak for itself.

Larsen Antennas
IN USA: Larsen Electronics, Inc., 11611 N.E. 50th Ave., P.O. Box 1799, Vancouver, WA 98686 206-573-2722.
IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6th Avenue, Vancouver, B.C. V5Y 1K3 604-872-8517.

Kennedy Associates
Stecking all major lines, San Antonio's Ham Store. Great Prices—Great Service. Factory authorized sales and service. Hours: M-F 10-6; SAT 9-3

Kenwood
Amateur Radio Division
5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

Up upgrade Easily!
WITH AMECO BOOKS & CODE COURSES

COMPLETE MORSE CODE COURSE FOR THE PC
This is the most versatile code course ever designed—with 4 user friendly menus and over 18 options. Some options are:
- Sends infinite, random characters and QSO's (similar to FCC/VEC exams), at ANY speed and tone.
- Sends external data files.
- Sends with the Hi/Lo method.
- Includes lessons for beginners and code book. * Plus many more features
Cat. #107-PC. For IBM PC/XT/AT or 100% compat. $19.95

* FCC TEST MANUALS
Each test manual contains the latest FCC/VEC test questions PLUS the ARRL multiple choice answers. PLUS a complete simplified discussion to each question written in Ameco's proven, easy-to-understand style.
Novice (#27-01) 300 questions $4.95
General (#2-12) 500 questions $4.95
Advanced (#26-01) 500 questions $4.95
Extra (#17-01) 400 questions $4.95

AMECO PUBLISHING CORP. 220 EAST JERICHO TPKE., MINEOLA, NY 11501 (516) 741-5030

INDUSTRIAL QUALITY REPLACEMENT BATTERIES FOR COMMUNICATIONS Nickel-Cadmium, Alkaline, Lithium, etc.

Repair Packs For
ICOM, KENWOOD, YAESU, SANTEC, AZDEN, TEMPO, CORDLESS PHONES... AND MORE!

NEW! I.C.E. PACK $49.95

E.H. YOST & CO.
EVERETT H. YOST KB9XI
7944 TETIVA RD.
SAUK CITY, WI 53178
ASK FOR OUR CATALOG (608) 643-3194
return of the
360-degree propagation prediction

Improved coding combines 24-hour MUF and point-to-point programs

My February, 1987, article, “360-degree MINIMUF Propagation Prediction” described a computer program for producing a 360-degree propagation prediction for any stated hour of the day. That article generated considerable interest in the program; unfortunately, there was a fault in the program for locations other than North Carolina, and that fault brought lots of mail from those interested in using the program but mystified as to why it would crash at the 180-degree computation of their latitude/longitude.

Several Alaskan hams, particularly AL7HU, discovered a problem in the computation of the longitude at zero bearing in that northern latitude, and others (WA1WPJ, VK1BGG, and Glenn Skaggs of the Naval Research Laboratories in Washington, DC) explained an apparent anomaly at certain MUF computations in southerly directions.

The main problem was the syntax error that occurs when you try to compute the latitude and longitude at the 180-degree bearing. I knew that the equations don’t permit computations along the line of equal longitude, and therefore included an IF statement to make the 180-degree bearing “your home longitude + .1”. That statement was useless. Interestingly enough, however, the problem doesn’t occur for all latitude/longitude computations. The quick fix was to insert two additional lines:

105 IF H = 180 THEN H = 182
106 IF H = 192 THEN H = 190

While that addition made the program work, the cause of the problem was still in question.

I added a temporary line to the program asking for the printout of the “Y” computation of line 180 (see table 1 of the original article). The test was done using the latitude/longitude for Lodi, California, the QTH of WA6FKM, one of several readers having trouble with the program.

As the bearing approaches 180 degrees, the computation for Y approaches 1. At 180 degrees the value of Y is 1.00000599. The next line, 190, computes the longitude and has a term using 1-Y*Y. When Y is greater than 1, a negative term results and the computer can’t take the square root of a negative number, so that produces the syntax error. A better way of handling the problem is to delete lines 105 and 106 and insert the following statement instead.

185 IF ABS(Y) > 1-1E-9 THEN Y = .999999

This will always work! If line 185 is added, then lines 105, 106, and 205 through 207 may be omitted.

The problem occurring at the high latitudes is that the zero-bearing 4000-km distance from Anchorage, Alaska, for example, is over the North Pole and down on the other side of the world. An IF statement at line 200 says:

IF H = 0 THEN PRINT # . . . “HOME LONG. + .1”

Thus, the actual distance by a calculator is 2161 km. When I eliminated the HOME LONG. + .1 statement and let the computer do its own thing, I discovered that it computed and printed the correct answer. So lines 199 through 201 should be deleted.

The anomaly of the lower MUFs at certain southern bearings was explained by the fact that the MINIMUF program goes into a two-hop mode at ranges slightly greater than 4000 km. In my program

By Henry Elwell, N4UH, Route 2, Box 20G, Cleveland, North Carolina 27013
it's attributable to a lack of precision (only one decimal point) in the results of the latitude/longitude program generation of the 4000-km periphery. Also, the 4000-km periphery for the first hop isn't practical for all stations because it's based on a vertical propagation angle of about 5 degrees or less. It's very practical for those with antennas producing such low angles of vertical radiation. However, the average ham with, say, a tribander at 60 feet, has a takeoff angle of about 12 degrees on 20 meters. Thus a first-hop distance would be no more than 3000 km, depending upon the reflection height of the ionosphere. Figure 1 shows the relation of one-hop takeoff angles vs. range and ionosphere height. Using the 3000-km first-hop great circle periphery requires substituting the following lines for lines 110 and 180:

\[L2 = 0.0022617638 \times \cos(L1 \times 0.01745) + \cos(H \times 0.01745) + (-0.9999974422) \times \sin(L1 \times 0.01745) \]
\[Y = (-0.9999974422) - (\sin(L1 \times 0.01745)) \quad \text{(same as original to its end)} \]

Any other distance may be used and the sin and cos values of \(D/60 \) substituted, but remember that \(D \) is in nautical miles and is found from kilometers by dividing the km by 1.852. Of course, if you want to reach way out, leave the 4000-km computation as is.

Combining programs

In my original article I said that it should be easy to combine the point-to-point prediction with the 360-degree prediction because both methods employ the basic MINIMUF program. Because I'd found that at times I wanted to know the 24-hour prediction from North Carolina to somewhere else while I was still in the 360-degree program, I went ahead and combined the two.

One of the first steps was to combine the latitude/longitude program with the main program; with only 10 to 11 lines required, it was an obvious thing to do. I often felt the need to use a different transmitter location than the one built into the program as DATA, and it was a nuisance to write it in for different locations all the time.

The new program permits the user to select any first-hop distance. The program then sets up a latitude array and a longitude array, both of which are tied in with the bearing (heading). It's interesting to see how the MUF retreats as you decrease the length of the first hop to less than 4000 km. You can see how a range of 900 km, for example, would restrict you to the 40-meter band or lower if there were no other layers, because the F2 layer doesn't support higher frequency transmissions for those distances under all circumstances. Note that the MINIMUF program is based only on the F2 layer.

This would be a good place to mention some of the factors upon which the MINIMUF program is based, as detailed in the technical report (TR-186) referenced by KG6KU in his article in QST, which Glenn Skaggs duplicated and sent to me.

The MUF is principally controlled by the critical frequency of the F2 layer of the ionosphere. The critical frequency is that frequency which will be reflected from the ionosphere when a signal is transmitted vertically. Unlike propagation from the E and F1 layers, which can be modeled as a function of the angle of the sun from the zenith, F2 propagation prediction is more complex. The F2 layer has diurnal (day/night), seasonal, and geographical variations. It also has so-called anomalies: the MUF can be higher in midday in winter than in summer, although in the Northern Hemisphere the summer sun is further north and suggests higher ionization; also, the MUF can peak in the late afternoon rather than at midday on certain days.

Figure 2 shows the E-layer 2000-km MUF in megacycles for a particular day. The horizontal scale is local time, and the vertical scale is latitude. Note that for your latitude, the MUF starts out very low, peaks at noontime, and decreases as the day continues. Thus, you can predict E-layer MUF by the angle of the sun from its zenith. TR-186 says let's start from there, using the zenith angle as a forcing function to "drive" a semi-empirical model; we'll use a single-lag linear system such as an RC circuit as the model. Allowing the lag time constant to be long (about ten hours in the summer) and short (one hour in winter) at middle and equatorial latitudes, one could then at least partially reproduce both the seasonal and diurnal anomalies. The lag time constant during the day is a function of the midday solar zenith angle. The time constant at night is two hours, regardless of season or geographical location.

All this adds up to an equation which the authors of the article called the ionosphere as fof2:
where: \(R \) = sunspot number, \(\cos X_{eff} \) is the cos of the effective solar zenith angle, and \(R_0, A_0 \) and \(A_1 \) are constants independent of geographic location and time.

Of course the technical report includes pages of equations for calculating those seemingly simple symbols which consider sunsets, sunrise, relaxation time, daytime duration, calculations of local noon, sunrise and sunset times, and the noon value of the solar zenith angle. Then we have to compute control points and two-hop paths if a 4000-km distance is exceeded. There’s an \(M \)-factor that considers the ionosphere height of 290 km (which must change from winter to summer) and includes a factor for transequatorial paths, which increases MUF, a factor regarding increases in \(F_2 \) layer heights observed at high northern latitudes during the summer, and others.

I chose \(M_{MIN/MUF} = 3.5 \) for the 360-degree propagation prediction because compared with advanced programs of its kind, it’s very simple. I recommend that those who have more advanced prediction programs substitute them for MICROMUF 3.5. The subroutine for the MICROMUF program goes from line 1140 to 2060. When I first considered doing this revision, I thought a complete renumbering of the program would be neater and more desirable; however, recalling previous efforts, I decided to leave the numbering as it appeared in the orginal article for the benefit of others who may want to update their copies of the program.

I’ve eliminated a lot of unnecessary material in the new program. It starts out with a menu that asks whether you want a 360-degree or a point-to-point pre-
HOUR = 10Z **DAY** = 6 **MONTH** = JUN **SF** = 74
35.75 DEG 80.75 DEG 1ST HOP = 4000 KM

<table>
<thead>
<tr>
<th>BEARING</th>
<th>MUF</th>
<th>BEARING</th>
<th>MUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.9</td>
<td>180</td>
<td>11.1</td>
</tr>
<tr>
<td>10</td>
<td>15.4</td>
<td>190</td>
<td>11.1</td>
</tr>
<tr>
<td>20</td>
<td>15.5</td>
<td>200</td>
<td>11.2</td>
</tr>
<tr>
<td>30</td>
<td>15.6</td>
<td>210</td>
<td>11.3</td>
</tr>
<tr>
<td>40</td>
<td>15.2</td>
<td>220</td>
<td>11.5</td>
</tr>
<tr>
<td>50*</td>
<td>14.7</td>
<td>230</td>
<td>11.7</td>
</tr>
<tr>
<td>60</td>
<td>17.7</td>
<td>240</td>
<td>11.9</td>
</tr>
<tr>
<td>70</td>
<td>17.0</td>
<td>250</td>
<td>12.1</td>
</tr>
<tr>
<td>80</td>
<td>16.3</td>
<td>260</td>
<td>12.3</td>
</tr>
<tr>
<td>90</td>
<td>15.6</td>
<td>270</td>
<td>12.6</td>
</tr>
<tr>
<td>100</td>
<td>14.9</td>
<td>280</td>
<td>12.8</td>
</tr>
<tr>
<td>110</td>
<td>14.3</td>
<td>290</td>
<td>13.2</td>
</tr>
<tr>
<td>120</td>
<td>13.7</td>
<td>300</td>
<td>13.7</td>
</tr>
<tr>
<td>130</td>
<td>13.1</td>
<td>310</td>
<td>11.5</td>
</tr>
<tr>
<td>140</td>
<td>12.5</td>
<td>320</td>
<td>12</td>
</tr>
<tr>
<td>150</td>
<td>11.9</td>
<td>330</td>
<td>13</td>
</tr>
<tr>
<td>160</td>
<td>11.2</td>
<td>340</td>
<td>14.5</td>
</tr>
<tr>
<td>170</td>
<td>11.1</td>
<td>350</td>
<td>14.5</td>
</tr>
</tbody>
</table>

DATE: DAY 6 **MONTH** JUN
TRANSMITTER LOCATION:
LATITUDE 35.75 LONGITUDE 80.75
RECEIVER LOCATION:
LATITUDE 52 LONGITUDE 1
DISTANCE = 6298 KM
SUNSPOT NUMBER = 13

<table>
<thead>
<tr>
<th>HOUR</th>
<th>MUF</th>
<th>HOUR</th>
<th>MUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.5</td>
<td>12</td>
<td>16.1</td>
</tr>
<tr>
<td>1</td>
<td>14.4</td>
<td>13</td>
<td>16.8</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>14</td>
<td>17.5</td>
</tr>
<tr>
<td>3</td>
<td>11.8</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>11.7</td>
<td>16</td>
<td>18.4</td>
</tr>
<tr>
<td>5</td>
<td>11.7</td>
<td>17</td>
<td>18.7</td>
</tr>
<tr>
<td>6</td>
<td>11.1</td>
<td>18</td>
<td>18.5</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>19</td>
<td>18.3</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>12.7</td>
<td>21</td>
<td>17.6</td>
</tr>
<tr>
<td>10*</td>
<td>14</td>
<td>22</td>
<td>17.1</td>
</tr>
<tr>
<td>11</td>
<td>15.1</td>
<td>23</td>
<td>16.4</td>
</tr>
</tbody>
</table>

PRESS P PRINT: Q QUIT: T TRY AGAIN

*Note: the approximate 50-degree 1000 UTC MUF is slightly higher as a one-hop prediction than the 1000 UTC MUF to England because of the greater number of hops needed.

fig. 3. Compare (A), the 360-degree propagation values, to (B), the predicted point-to-point conditions to England over the same period of time as shown in (A).

diction. It also displays a note stating that MUFs will be lower if the WWV K-factor is greater than 1. Most predictions, including MINIMUF, ignore the geomagnetic field activity (K > 1).

If you select a 360-degree prediction, you're asked whether you want your home coordinates. If so, you get them — provided, of course, that you've put them into line 41; mine are there now. If you want some other QTH, you're asked for that latitude and longitude; this is a good feature because you may want to see what's happening somewhere else or give information to a friend. Of course, you're also asked for the month, day, solar flux number, and the hour.

Once these decisions are made, the latitude/longitude computation takes place and is stored in memory to be used if you want to make other runs. It takes about 30 seconds for the computer to set up the information, but the screen tells you to wait. The screen also tells you to turn up the volume control of the monitor so you can be alerted by an automatic tone when the prediction is completed. You may then exit the program, run it again, or select a printout. If you want a prediction for another QTH, you must exit and start the program again so the new coordinates can be computed.

If you select the point-to-point prediction mode, you have similar decisions to make and enter into the computer as it requests them. There's also a tone to indicate completion of the prediction, but no notice of it beforehand, as in the 360-degree prediction.

In projects such as this, you reach the point at which you have to say "Enough!" and leave further development up to users; such is the case of a polar coordinate display, which is much more realistic than the same data presented in tabular form. WA1WPJ has devised a nice polar display for the C-128 and has offered to correspond with others who'd like more information; I appreciate his willingness to share his talents.

Figure 3 shows a comparison of the two printouts. The point-to-point prediction is from North Carolina to England, which has a bearing of approximately 50 degrees. Compare the two printouts for a time of 10Z, the time used for the 360-degree prediction, and you'll see that the one-hop MUF of the 360-degree prediction is 14.7 MHz, while the point-to-point prediction is 14 MHz. This difference is attributable to the fact that a two-hop mode is being used in the prediction, which lowers the MUF slightly when distances greater than 4000 km are used.

For those who wish to substitute another prediction in place of the MINIMUF 3.5 lines 1140 to 2060, an entrance and exit line has been inserted to change the transmitter latitude/longitude to radians and then back to degrees to facilitate printing degrees on the screen. There's also a short subroutine (lines 2640 to
NEW!

ICOM IC-761

A NEW ERA DAWNS

- Built-In AC Power Supply
- Built-In Automatic Antenna Tuner
- SSB, CW, FM, AM, RTTY
- Direct Keyboard Entry
- 160-10m/General Coverage Receiver
- Passband Tuning plus IF Shift
- QSK up to 60 WPM

The IC-761 ushers in an exciting new era of amateur radio communications; an era filled with all the DX'ing, contesting, and multi-mode operating pleasures of a fresh new sunspot cycle. The innovative IC-761 includes all of today's most desired features in a single full-size cabinet. This is ham radio at its absolute best!

Work the World. The IC-761 gives you the competitive edge with standard features including a built-in AC power supply, automatic antenna tuner, 32 fully tunable memories, self-referencing SWR bridge, continuously variable RF output power to 100 watts in most modes, plus much, much more!

Superb Design, Uncompromised Quality. A 105dB dynamic range receiver features high RF sensitivity and steep skirted IF selectivity that cuts QRM like a knife. A 100% duty cycle transmitter includes a large heatsink and internal blower. The IC-761 transceiver is backed with a full one-year warranty and ICOM's dedicated customer service with four regional factory service centers. Your operating enjoyment is guaranteed!

All Bands. All Modes Included. Operates all HF bands, plus it includes general coverage reception from 100kHz to 30MHz. A top SSB, CW, FM, AM, and RTTY performer!

Passband Tuning and IF Shift plus tunable IF notch provide maximum operating flexibility on SSB, CW, and RTTY modes. Additional features include multiple front panel filter selection, RF speech processor, dual width and adjustable-level noise blanker, panel selectable low-noise RF preamp, programmable scanning, and all-mode squelch. The IC-761 is today's most advanced and elaborate transceiver!

Direct Frequency Entry Via Front Keyboard or enjoy the velvet-smooth tuning knob with its professional feel and rubberized grip.

Special CW Attractions include a built-in electronic keyer, semi or full break-in operation rated up to 60 WPM, CW narrow filters and adjustable sidetone.

Automatic Antenna Tuner covers 160-10 meters, matches 16-150 ohms and uses high speed circuits to follow rapid band shifts.

Complementing Accessories include the CI-V computer interface adapter, SM-10 graphic equalized mic, and an EX-310 voice synthesizer.

You're The Winner with the new era IC-761. See the biggest and best HF at your local ICOM dealer.

3835 Premier Drive, Suite 126, Irving, TX 75063 / 1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349
ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 704A-97.
1988 CALLBOOKS

The "Flying Horse" sets the standards

Continuing a 67 year tradition, we bring you three new Callbooks for 1988.

The North American Callbook lists the calls, names, and address information for 478,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland, Bermuda, and the Caribbean Islands plus Hawaii and the U.S. possessions.

The International Callbook lists 481,000 licensed radio amateurs in countries outside North America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1988 Callbook Supplement is a new idea. It lists the activity in both the North American and International Callbooks. Published June 1, 1988, this Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.

The 1988 Callbooks will be published December 1, 1987. See your dealer or order now directly from the publisher.

North American Callbook
incl. shipping within USA $28.00
incl. shipping to foreign countries $30.00

International Callbook
incl. shipping within USA $30.00
incl. shipping to foreign countries $32.00

Callbook Supplement, published June 1st
incl. shipping within USA $13.00
incl. shipping to foreign countries $14.00

SPECIAL OFFER

Both N.A. & International Callbooks
incl. shipping within USA $55.00
incl. shipping to foreign countries $60.00

RADIO AMATEUR Callbook INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA

Tel: (312) 234-6600

fig. 4. N4UH program provides MINIMUF 3.5 propagation predictions for any hour and point-to-point predictions for 24-hour periods.
Now you can have the BEST of both... Radio Data Communications and PC-Compatibility!

The DS-3200 is provided with an extensive RTTY software package which emulates the operation of our MPT3100/DSK3100 combination for message processing and handling. Continuous save to disk of all received text, direct transmission of selected files from disk, and full editing capability are just a few of the features of this "user-friendly" software package. Plus, we have included the latest release of MS-DOS with GW BASIC!

The DS-3200 with its IBM PC XT-style architecture gives you virtually unlimited flexibility for future expansion. Here is a list of just some of its hardware features: 8088 CPU, 640KB RAM, RS-232C Serial Port, Parallel Printer Port, Clock/Calendar with Battery Back-Up, Two 360KB Floppy Disk Drives OR One 360KB Floppy and One 20MB Hard Disk Drive, HERCULES-compatible Monochrome Graphics Adapter with High-Resolution 12 Inch Monochrome Video Monitor.

The built-in RS-232C serial port allows the use of the DS-3200 with an external demodulator such as the HAL ST-5000, ST-6000, or ST-8000. Or, add the HAL PCI-2000 for a completely self-contained RTTY/CW terminal and demodulator. Also, with the use of a second RS-232C serial port the DS-3200 can be used with your favorite TNC on Packet!

The DS-3200 is THE choice for modern radio data communications.

Write or call for complete specifications on the NEW DS-3200.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, IL 61801
(217) 367-7373 TWX 910-245-0784

Trademarks: IBM, International Business Machines Corporation
MS-DOS, Microsoft Corporation
GW BASIC, Microsoft Corporation
HERCULES, Hercules Computer Technology
You’ve put your finger on it!

The biggest problem with existing batteries is never knowing how much operating time you’ve got left. MOLICEL® rechargeable lithium batteries eliminate that problem.

By simply pressing a button, you’ll know exactly where you stand. No more surprises.

And that’s not all. In addition to state-of-charge indication, MOLICEL® batteries offer:

- Charge retention of years instead of weeks.
- Long life because there’s no memory effect to reduce capacity.
- More operating time between charges.

MOLICEL® replacement battery packs compatible with several popular handheld transceivers are available from MoliKit. Order yours now!

MOLICEL® replacement battery packs (in kit form) are available with plastic cases for ICOM transceivers only. Please enquire about compatibility with other makes. The MoliKit includes a 6 cell pack, PC board, electronic components, charger and instruction book. Price: $59. U.S. (includes shipping). Order by credit card on our toll free line. Call MoliKit 1-800-663-6658. P.O. Box 82460, N. Burnaby, BC, Canada V5C 5Z1 (See “The Magic of Moli,” QST, June 1987, pp. 22-25).

BLACK DACRON® POLYESTER ANTEENA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE’LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Dealer Inquiries Invited
In Australia contact
ATN Antennas, Birchip, Victoria

synthetic textiles, inc. (805) 688-7803
2472 EASTMAN AVE., BUILDING 21
VENTURA, CALIFORNIA 93003

LUNAR COMMUNICATIONS & SYSTEMS DIVISION
7930 Arjons Drive • San Diego, CA 92126 • Telephone (619) 549-9555 • Telex 181747
595 PRINT1;"DEG;";W1;"DEG;";D1;"HOP=";K;"KM"
590 PRINTTAB(1);"BEARING;";TAB(5);"HUF;";TAB(21);"BEARING;";TAB(33);"HUF"
595 GOTO 950
600 PRINT;"INPUT;";RECEIVER LAT. LONG;L2;W2
602 IF L<90 THEN 606
604 IF L>90 THEN 608
606 GOTO 614
608 PRINT;"INVALID LATITUDE. MUST BE IN RANGE"
610 PRINT;"OF -90 TO 90 DEGREES"
612 GOTO 600
614 IF W<-360 THEN 620
616 IF W>360 THEN 620
618 GOTO540
620 PRINT;"INVALID LONGITUDE. MUST BE IN RANGE -360 TO 360"
622 GOTO 600
700 PRINT$;"DATE;";"DAY;"D;"MONTH;"M;
710 PRINT;"TRANSMITTER LOCATION"
720 PRINTTAB(7);"LATITUDE;"L1;TAB(22);"LONGITUDE;"W1
730 PRINT;"RECEIVER LOCATION"
740 PRINTTAB(7);"LATITUDE;"L2;TAB(22);"LONGITUDE;"W2
750 PRINT;"DISTANCE=";D1;"KM"
760 PRINT;"SUNSPOT NUMBER=";S9
770 PRINT
780 PRINTTAB(4);"HOUR;"TAB(11);"MUF;";TAB(21);"HOUR;";TAB(28);"MUF"
795 IF QC=1 THEN GOTO 955
800 T5=60;GOTO 970;REM HOLDS TIME CONSTANT FOR 360° PREDICTION
805 FOR T5=0 TO 24
810 IF T5>25 THEN GOSUB3050;GOTO 2990
812 GOSUB140
815 J9=J9+10
820 K9=INT(J9)
825 PRINT$;
1000 IFNC<180 THEN L1=1200-210;FOR=1 TO NC;PRINT$;NEXT;PRINT$;TAB(21)T5;TAB(27);J9;NEXT;
1010 EXIT
1015 IFNC=1 AND T5<12 THEN PRINT TAB(21)T5;TAB(27)J9;NEXT T5
1020 PRINT$;"INPUT=1 THEN PRINT TABB(4)T5;TAB(10)J9;NEXT T5
1021 IF=180 THEN=10;FOR=1 TO NC;PRINT$;NEXT;PRINT TABB(22)H;TAB(32);J9;NEXT H
1022 IFH=180 THEN PRINT TABB(22)H;TAB(32);J9;NEXT H
1023 IF=360 THEN GOTO1040
1030 PRINT TAB(4)H;TAB(13)J9
1040 IF=360 THEN GOSUB3050;PRINT$;"PRESS P-PRINTS=QUIT=TRY AGAIN";GOTO3000
1042 NEXT H
1044 IF QC=1 THEN PRINT$;PRINT TABB(21)T5;TAB(27)J9;GOTO1060
1050 PRINT$;PRINT TABB(21)T5;TAB(27)J9
1060 ;
1065 EXIT H
1140 REM MIN HEIGHT 3.5
1141 L1=HIRO-M1-W1-RO
1145 IFQC<1 THEN K7=SIN(L1);L2;K8=SIN(L2);K9=COS(L2);K10=COS(L2);M1;GOTO1160
1150 K7=SIN(L1);L2;K8=COS(L2);K9=COS(L2);K10=COS(L2);M1;GOTO1160
1160 GOTO1190;PRINT$;
1170 K7=1
1180 GOTO1210
1190 IFQC=1 THEN 11210
1200 K7=1
1210 G1=ATN(K7;SQR(-K7+1));F2
1220 K6=K5+1
1230 IFG6=1 THEN 1250
1240 K6=1
1250 K5=1/K6
1260 J9=100
1270 FORK=1 TO 1/(2*K6);T01=1/(2*K6);STEP0.9999-1/K6
1280 IFG6<1 THEN GOTO1295
1290 K5=0.5
1295 IF QC=1 THEN P=SIN(L2);GOTO1305
1300 P=SIN(L2);GOTO1305
1305 IF QC=1 THEN Q=COS(L2);GOTO1320
1310 Q=COS(L2);GOTO1320
1320 AK=SIN(L1);P=SIN(G1)
1330 B=1
1340 B=1
1350 B=1
1360 D=1
1370 D=1
1380 GOTO1410
1390 IFQC=1 THEN GOTO1410
1400 D=1
1410 D=ATN(D/2);SQR(-D);F2
1415 IF QC=1 THEN W0+2;W2+2;G0+SIN(W0+2;W2)+2;G0+GOTO1430
1420 W0=W0+2;W2+2;G0+SIN(W0+2;W2)+2;G0+GOTO1430
1430 IFW0>10 THEN GOTO450
1440 W0=W0+2;F1
1450 IFWC=1 THEN GOTO1470
1460 W0=W0+2;F1
1470 IFC=1 THEN GOTO1500
1480 C=1
1490 GOTO1520
1500 IFQC=1 THEN GOTO1520
1510 C=1
1520 L0=0.0172*(10+0.01+0.04)+2
1530 Y2=0.0172*(10+0.01+0.04)+2
1540 Y2=0.0172*(10+0.01+0.04)+2
2680) for computing the distance between the transmitter and receiver for the point-to-point prediction. That distance, used only for information to the screen, replaces several lines in the original program which had not been used.

The equation for S9, the sunspot number in line 540, has been changed in response to a suggestion from Glenn Skaggs. The original equation produces sunspot numbers slightly low at low flux numbers and slightly high at high flux numbers. The new equation gives a closer fit when converting flux to sunspot number.

The original article generated letters asking if I would copy the program to readers' disks. If you'll send me a disk with return postage (or a dollar bill if that's easier), I'll copy the program shown in fig. 4 to your disk and return it.

acknowledgments

Besides those already mentioned herein, I want to thank Bob Brown, NA7M, for educating me about the more advanced programs he enjoys.

references

SURGEGUARDs provide virtually unconditional overvoltage protection for your valuable radio equipment.

SURGEGUARDs use various versions of a patented circuit. This circuit combines brute force, failsafe protection with ultra fast response.

Independent testing laboratories and thousands of units in the field have proved that SURGEGUARDs are the most effective protectors available.

SURGEGUARDs pass data signals and power through unaltered but damaging external surges and continuous overvoltages are limited to a safe level. Protection is available against common mode (with respect to earth) and difference mode (across leads) overvoltages.

SURGEGUARDs will reduce breakdowns by up to 80%. They will also greatly lengthen the life of the protected equipment as the components are not subjected to voltage stresses.

- Brute force protection stops up to 20,000 Amps lightning surge
- Ultra fast: less than 1 picosecond response
- Failsafe: becomes a short when damaged (LSA®) or breaks the surge path (POWERGUARD®)
- Clamping voltages available from 7V to 600V AC or DC
- Resets automatically when overvoltage passed (except POWERGUARD)
- Stand-alone, rack-mount, or plug-in modules

For more information on the full line of SURGEGUARD products, please write or call CSE/SURGEGUARD.

100 W. Central • Box 308
New London, Minnesota 56273
1-800-428-9267
In Minnesota, call 612/354-2091
TELEX 952854 New London UO
EASYLINK Mailbox Address 6289065
FAX 612/354-2083
VISA and MasterCard Accepted
7 STORE BUYING POWER

KENWOOD TS-940S

TOP-OF-THE LINE
HF TRANSCEIVER

GREAT PRICE, CALL

KENWOOD TM-3530A

The First Comprehensive
220 MHz FM Transceiver.

ARE YOU READY FOR
220 MHz OPERATION?

Gordon West's

21 DAY NOVICE

$19.95

CODE TAPES • 175 PAGE BOOK • BANDS CHART
ALL FCC FORMS • SAMPLE TESTS • PLUS MORE!
• $70 in equipment certificates from
ICOM, KENWOOD, & YAESU.
• Ham radio equipment "Wish Books".
• ARRL membership forms.
• Hotline for student questions.
• Course completion certificate.

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

Toll free including Hawaii. Phone hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store.

California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

October 1987

Tell 'em you saw it in HAM RADIO!
ICOM IC-761
HF SUPERIOR GRADE TRANSCEIVER
SALE! CALL FOR PRICE

ICOM IC-275A/275H
138 - 174 MHz
IC-275A (25w) IC-275H (100w)
GREAT PRICE!

ICOM IC-28A/28H
2-METER MOBILES
IC-28A (25w) IC-28H (45w)
LOW PRICE!

ICOM IC-735
The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

ICOM IC-900
MULTI-BAND MOBILE
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz, 10 MTR, 6 MTR,
220 MHz & 1.2 GHz, 10 MEMORIES
ARE YOU READY FOR 1.2 GHz OPERATION?

ICOM HAND-HELD VHF/UHF
IC-02AT IC-03AT IC-2AT IC-3AT IC-4AT
2MTR 220 MHz 440 MHz

ICOM IC-R7000
25 MHz - 1300 MHz
IN STOCK FOR IMMEDIATE DELIVERY

ICOM IC-U4AT/U2AT
440 MHz, 2 MTR
Mini Hand-Held AT Model w/ TT Pad
GREAT PRICE!

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046
Toll free including Hawaii. Phone Hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store.
California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

Reader Service CHECK - OFF Page 106
New PK-232 Breakthrough

Six Digital Modes - Including Weather FAX

Your home computer (or even a simple terminal) can be used for radio data communication in six different modes. Any RS-232 compatible computer or terminal can be connected directly to the PK-232, which interfaces with your transceiver. The only program needed is a simple terminal program, like those used with telephone modems, allowing the computer to be used as a data terminal. All signal processing, protocol, and decoding software is in ROM in the PK-232.

The PK-232 also includes a no compromise VHF/HF/CW modem with an eight pole bandpass filter, four pole discriminator, and 5 pole post detection low pass filter. Experienced HF Packeteers are reporting the PK-232 to have the best Packet modem available.

Operation of the PK-232 is a breeze, with twenty-one front panel indicators for constant status and mode indication. The 240 page manual includes a "quick start" section for easy connection and complete documentation including schematics. Two identical back panel radio ports mean either your VHF or HF radio can be selected with a front panel switch. Other back panel connections include external modem disconnect, FSK and Scope Outputs, CW keying jacks, and RS-232 terminal interface.

The RS-232 connector is also used for attaching any Epson graphics compatible parallel printer for printing Weather Fax. Weather maps and satellite photos, like the one in this ad, can be printed in your shack.

Contact your local AEA dealer today for more information about the one unit that gives you six modes for one low price, the PK-232.
try an oscilloscope
for troubleshooting
dc power supplies
It is something of a truism that the first place to look for trouble in a piece of malfunctioning electronic equipment is the dc power supply. Almost everyone who keeps records of equipment failure will report that a large percentage of repair actions involve the low-voltage dc power supply. This problem is so commonplace, and such a logistics cost driver, that the United States Navy now has a power supply standard that, among other things, limits the maximum junction temperature of semiconductor devices to 110 degrees C, and also limits the power-per-unit-of-volume (watts/cubic inch).

The typical low-voltage dc power supply will have a transformer to step down the 120-VAC line voltage to some lower voltage. The exact value of the transformer secondary voltage, of course, depends upon the dc output potential of the supply. The output of the transformer will be a sine wave or near-sine wave (fig. 1A). The transformer voltage ratings sometimes yield some confusing results for the troubleshooter. For example, let’s consider the standard 12.6-VAC transformer (fig. 1B). The rated voltage of a transformer is the RMS potential across the entire secondary, unless otherwise specified.

If you use a reasonably good quality ac voltmeter, the reading will be 12.6-VAC across points A-B — right? transformer with no load, you can expect a higher voltage than the rated potential. Some transformers are worse than others in this respect, but all will demonstrate this phenomenon to some extent. The problem lies in the internal resistance of the secondary windings. I’ve seen a 12.6-VAC @20-ampere transformer show a 22-VAC “RMS” on a digital ac voltmeter of good quality until a 500-mA load was placed across the secondary. The load reduced the secondary potential to 12.6-VAC RMS ± line fluctuation.

If the transformer is center-tapped, as in fig. 1B, then the rating of the secondary must be scrutinized to determine the actual voltage. For example, “12.6 VAC C.T.” means that 12.6 VAC appears across A-B, while the potential readings from CT to A and CT to B will be 6.3-VAC RMS each.

Another point of confusion is found when measuring the voltage across the transformer secondary with an oscilloscope. Most ac meters are RMS-reading devices (or nearly so) for sine waves, unless they’re specifically designed for peak-to-peak or peak-reading applications. But the oscilloscope is inherently a peak-to-peak reading instrument. In fig. 1A, the horizontal line denotes the zero-volts baseline, while the positive excursions are above the line and negative excursions are below the line (following the standard convention). The peak voltage is the potential between the zero baseline and either peak, while the
and 3B show the waveforms that the scope will show when connected across load resistor R. The device in fig. 2A is the half-wave rectifier, and it produces the waveform shown in fig. 3A. Note that only the positive half of the applied ac sine wave is applied, which causes a certain amount of inefficiency in this form of power supply. The other two rectifiers are both full-wave types, and they produce the waveform shown in fig. 3B. The rectifier shown in fig. 2B is a conventional full-wave rectifier, and it depends upon the center-tap of the transformer secondary winding in order to provide a ground reference.

The rectifier in fig. 2C is a full-wave bridge. It does not require a center-tapped transformer, but instead uses a node of the bridge to provide the ground reference. This article is based on the bridge rectifier, by far the most commonly used rectifier in modern equipment. Fig. 4 shows the circuit of the dc power supply that was used in making the measurements and waveform photographs. The transformer was an 8.5 VAC @1-ampere transformer, while the rectifiers (CR1-CR4) were 1N400x-series devices.

Figures 5A and 5B show the normal waveform expected when the oscilloscope probe is applied to points A and B in fig. 4. Each waveform is half-wave rectified, but each is 180 degrees out of phase with the other. This phasing reflects the fact that the bridge rectifier is full-wave, and therefore uses the entire 360 degrees of the input ac waveform. Even with a single-trace oscilloscope, you can tell that the circuit is working correctly by the half-wave trace. Figure 5B, on the other hand, shows an anomaly. I once saw this waveform in a piece of equipment in which the printed circuit trace from the + terminal of the bridge rectifier was cracked, and that effectively removed the load from the rectifier. If you see a sine wave or near-sine wave at the ac nodes of the bridge (points A and B in fig. 4,) you should suspect that the load is somehow disconnected.

The full-wave pulsating dc wave-
form of fig. 3B is almost as useless for electronic equipment, as ac, circuit
designers supply a filter capacitor such as C1 in fig. 4. Figure 6 shows
the horizontal white line was placed at the zero-volts line in order to provide
a frame of reference. The line was made
by adjusting the position control for
channel 2 of the oscilloscope, and
the input selector in the
grounded position. The waveform of
fig. 6A represents the case in which
500 μF of filter capacitance was used;
in this situation, the digital voltmeter
read 12.03 Vdc, while the measurements
on the oscilloscope screen showed
10.8 volts between the zero-volts baseline and the bottom of the
ripple waveform, and 12.4 volts to the
peak of the ripple waveform (resulting in a ripple amplitude of 1.6 volts). In
fig. 6B, the filter capacitor is increased to
2700 μF. The DVM read 12.01 Vdc,

fig. 5A. Normal waveform generated when
oscilloscope probe is applied to points A
and B in fig. 4.

fig. 5B. Anomalous waveform indicates
defective circuit.

New rigs and old favorites, plus the best essential accessories for the amateur.

CALL FOR ORDERS
1 (800) 231-3057
1-713-520-7300 OR 1-713-520-0550
TAXCHERS ORDERS CALL COLLECT
ALL ITEMS ARE GUARANTEED OR SALES
PRICE REFUNDED

EQUIPMENT
New Icom IC-761
Kenwood TH-205A
Kenwood TS-440SAT
Icom R7000 25-5000 MHz
Icom IC-785
Sanyo FM-320
200 MHz, 25 w.
Sanyo FM-240 NT
Mirage 6000
Tokyo Kogyo Power HL 1K AMP. no 4C2505
New Kenwood TM-221A, 45W mobile
V Amplifier VHF, built in England. in 1 of 100 out,
3.100 to 5.100 (b) 249.00
10 in 1 out 229.00
15 in 1 out 319.00
All models include preamp
Lunar 2MA-49P
Yasuie FT-727 (Rh. new CPU)
Kenwood TW-4100A

ACCESSORIES
B&W VIEWSTAR ANTENNA TUNER
Helix HF40C
Helix RM10 Boom Match headend
Tr. H 5000A Remote Phone
Daiwa NS6500S 300/3000 watts
Aladdin ELH 12000 Excellent buy
Nye MB5A (for the big boys)
Shebe 44DD
Amigo FT 3
Novo Tokyo HC 200A
Asics MC2/1 Cartridge D104
Ten Tec Mobile Switch 3001

ANTENNAS
Ispate 144 MHz
Ispate 440 MHz
Cushcraft 124 WB (146 MHz)
Buttenfield HF6V 80-10 vertical
HF2V 80 45 vertical
HF6V 169
Hurler GT414
Hurler 6BTV
KLM HF World Class Series Antennas
Al. Pha Delta 0X D0D
Coax Seal
B&W Dikes
KLM KT 3A4
W2AOU W2DU
NEW HLM 1 24AX
129.00
1296 Power Divder
Create CD-76 & RS 80 75/80/90 variable dipole
GS-RV

OTHER ANTENNAS
Diamond D 1300 Discote 25-1300 MHz
Larson KU/325 wave telescope an
Larsen 2M wave telescope ant
Avanti 1513 3G on Glass Antenna
Anteco 2M, 5/8 Mag. Mount, Comp
Van Gordon ND 4 4 band Novice dipole
Valex AB 5 Mobile
Storer DA100 D Active Rx Antenna
DC Tenna Hitch 3/8 1/4 Thread

PARTS
1.5 Amp 400V full wave bridge rectifier
2.5A/1000V epoxy diode 29 each or 19.0100
4015-1000V or 40120V
3N201 95
4 inch femal end 1 1.5
3550F cap
Sanyo AAA AA Nickel cells 2
2.4 5.6 15 mic pm caps 58.00
1/16, 1/32, 1/64 solid resistors 0.05 each
Meter 0-3000 VDC 0-Amp DC 1/2" scale
with shunt
Drake—Collins mike plug 2
Thousands of panel meters 3.95 up CALL
Mica Cap 0.015 Fs
5 00 others CALL
Dipoles 35' 30' 00' 15' 00'
Duracell 9 volt Battery 2 Pak MN 160C
DC 13 volt 1/2" x 3/4" x 3/4"
CINCH 12 pin connector (doke etc). female
Aerotech 1000 pH 500V readthrough caps 1.95
Mallory 6 volt 4 prong Vibrator PN 605A
100 mfd 450V Axial Cap
Equipoys 9 volt battery (216)
9.1 x 11 x 3/8" (Doke etc) female
Mallory 6 volt 4 prong Vibrator PN 605A
5 0000 mfd 450V Axial Cap

Call ICOM 28/07TM
399.00

AMPHENOL
831SS PLS250 Silverplate
UG156 reducer RG8X
83J Double Female UHF
82 61 N Male
82 97 N Female Bulkhead
82 97 N Female UHF
82 98 Nulflow
82 202 1006 N Male for 9913
3 212 ENC-859
3 212 ENC-858
34052 N Male PG8S
34125 N Female UHF ISAB
3128 Female Pl 2359 relates
4400 N Male SD 239
2900 BNC SD 239

TUBES
Collin & Drake Replacement tubes
GE 5144 F
GE 15503
GE Industrial Tubes
GE 5177F
GE 6S6C
GE 8950
GE 12BK6
GE 12B6W

Hearϊng and old favorites, plus the best essential accessories for the amateur.

1800)
GE 6S6G
1800)
GE 6K6
1800)

PACKET POWER
AFA PK 1002 with new W1 FAX
Hitachi PK 101
MFJ 1270
MFJ 1274
New Kantronics KAM

SERVICES
Complete KWM 2 Retube
Flat fee Collins rebuilding

USED EQUIPMENT
All equipment used, clean with 90 day warranty and 30
days trial. Six months full trade against new equipment. Sale
price refunded if not satisfied
Call for latest used gear
(800) 231-3057

TS-4030 TS-3030 TS-5030 F1101E

220 MHz
IC-1021 Small rig, small bucks
CALL
IC-0341 39.99
TM 35-115 CALL
IC-18A, 17.99

POLICIES
Minimum order $10.00. Mastercard, Visa, or C.O.D. All
prices F.O.B. Madison, except as noted. Prices subject
to change without notice. Items subject to prior sale. Call any
time to check the status of your order. Texas residents add
sales tax. All items full factory warranty plus Madison
warranty.

DON'S CORNER
Madison Double Warranty on Kenwood Radios! We will
double Kenwood 90 day warranty regardless of how you
purchased the radio.
the case where the filter capacitance is reduced significantly. This fault occurs occasionally in aluminum electrolytics, especially in equipment that has been unused for a while. Some service literature will show you the peak-to-peak readings to expect across the filters; in other cases, only experience or hunches will aid the troubleshooter.

Figures 7A and 7B show a pair of ripple waveforms found in another situation. Both waveforms were made with the oscilloscope's vertical input ac-coupled because we are specifically looking at ripple, rather than at the ripple + dc component. The top waveform (fig. 7A) shows a filtered pulsating dc waveform in a normally operating dc power supply. In a full-wave rectified supply, the ripple frequency is twice the line frequency, or 120 Hz in the United States. But fig. 7B shows the same power supply with one leg of the bridge (CR4 of fig. 4) open-circuited. The ripple amplitude is up — a fact that could also be attributed to a weak filter capacitor — but the ripple frequency is one-half the expected frequency. On the oscilloscope timebase (horizontal line), you'll find that the ripple waveform on a full-wave circuit will have a period of 1/120 Hz, or about 8.3 milliseconds. The half-wave rectified ripple waveform resulting when a diode is opened produced a period of 16.7 milliseconds on the oscilloscope.

A lesson to be learned from this example is to examine not just the amplitude of the waveform, but also its period/frequency. Also, if its shape is wrong, then suspect a fault (again, examine the difference between figs. 5A and 5B).

regulated power supplies

Most Amateur equipment uses voltage-regulated dc power supplies. This fact is due, in part, to the nature of modern solid-state circuits, which simply work better when the power supply is voltage regulated. It's also attributable in large part to the fact that IC voltage regulators are widely available today. In past times, because it was expensive to regulate supplies, many manufacturers used unregulated supplies. Figure 8 shows a basic IC voltage regulator circuit based on the three-terminal IC regulator devices. In making the measurements for this article I used a 7805 device, which — for our purposes — is the same as the LM-309 and LM-340T-05 devices, all of which produce 5 volts output for TTL digital circuits. Similar devices are available in output voltages to 24 Vdc, both positive and negative.

One effect of the voltage regulator is to greatly reduce the ripple of the power supply. In fact, in 1964 a manufacturer of test equipment marketing a new regulated bench supply (then a rarity) bragged that it had the “equivalent of 1 Farad of filtering.” The voltage regulator produced a reduction in ripple equivalent to what would be obtained with 1,000,000 μF of filter capacitance! This effect is shown in fig. 9. The upper trace, A, is taken at point “A” in fig. 8, and represents the

\[
C = \frac{1,000,000}{416 \times R_L \times RF}
\]

where:

- \(C\) is the capacitance in microfarads
- \(R_L\) is the load resistance (Vo/Io)
- \(RF\) is the required ripple factor

If the filter capacitor is open — a common fault — then you should expect to see the pulsating dc waveform of fig. 3B across the load resistor, instead of the distinctive waveforms of fig. 6. A certain amount of judgment and experience is needed, however, in

![fig. 6A. Filtered pulsating dc output from the low-voltage power supply shown in fig. 4: 500 μF of filter capacitance results in ripple amplitude of 1.6 volts.](image)

![fig. 6B. With filter capacitance increased to 2700 μF, ripple amplitude drops to 0.25 volts.](image)

![fig. 7A. Ripple waveform of filtered pulsating waveform in a dc power supply operating normally.](image)

![fig. 7B. Ripple waveform of power supply operating with one leg of the bridge open-circuited.](image)
Yaesu's mini HTs.
The smallest, smartest, toughest radios. Anywhere.

Whether you’re a Novice or Extra class operator, you’re sure to appreciate the high power, durability and size of Yaesu’s FT-23R Series mini-HTs.

To begin with, you’ll find a model that’s right on your wavelength. The 2-meter FT-23R, the 220-MHz FT-33R, or the 440-MHz FT-73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moisture-resistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, microprocessor-controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:

The FT-23R comes with a 72-volt, 2.5-watt battery pack. The FT-33R with a 72-volt, 3-watt pack. And the FT-33R with a powerful 12-volt, 5-watt pack.

You can choose the miniature 72-volt, 2-watt pack shown in the photo below. And all battery packs are interchangeable, too.

And consider these options: Dry cell battery case for 6 AAA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, toughness and small size, seeing is really believing.
output waveform from the regulator. The bottom trace is the filtered pulsating dc at the input of the regulator device (point “B” in fig. 8). Both trace photos were taken with the oscilloscope’s vertical attenuator set to 0.1 volts/cm. The bottom trace shows 160 mV of ripple, while the upper trace shows no discernible ripple. In fact, the oscilloscope showed no discernible ripple on all settings of the attenuator except at the 5-mV/cm (most sensitive) position. A defective regulator will show a high ripple on the output as well as an incorrect voltage.

WARNING: Defective regulators can produce a higher than normal voltage at the output of the supply! That potential can damage electronic circuits, so immediately turn off the equipment if this result is found. If the regulator is a simple IC type, then it can be replaced and the circuit inspected for damage.

I use a current-limited bench power supply to troubleshoot equipment of this sort. Disconnect the regulator, set the bench output voltage to the same potential the regulator is supposed to produce, set the current-limiting control to the rated value produced by the regulator, and then connect the bench supply across the equipment circuits. If the circuits are undamaged, they will function correctly. Next, place a load resistor across the output of the regulator (the equipment circuits are still disconnected). It should draw a current of 25 to 100 percent the normal load for that particular supply. Measure the output voltage and examine the waveform across the load resistor. If the regulator is operating correctly, you may reconnect the circuits to the replaced or repaired regulator.

Conclusion

Although professional servicers almost invariably prefer troubleshooting with oscilloscopes, many people still mistakenly believe that the dc voltmeter is the only instrument useful for troubleshooting dc supplies. In this article we’ve seen that the oscilloscope is also useful for this job — which strengthens my conviction that all technically inclined Amateurs ought to obtain good oscilloscopes for their workshops.

WARNING: techniques presented in this article are for low-voltage dc power supplies only. Do not attempt to use them on a high-voltage supply unless a suitable high-voltage probe is provided. Otherwise, damage to the oscilloscope may result, and the high voltage present may also be dangerous to you.
YOU ALREADY OWN 75% OF A COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what's required to receive and send color video world-wide!

Add a ROBOT Video Transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your favorite mode is SSB or FM or AM—direct, via repeater or satellite—you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

Please send me the following Robot equipment. I understand that if I am dissatisfied for any reason, I can return the unit and receive a full refund.

- 1000C high resolution video transceiver $1995
- 450C standard resolution 5795
- 400C upgrade kit 3995

More Information

Name______________________Call_____________________
Address___________________Zip_____________________
City______________________Exp. Date__________________

COD
Enclosed check or money order $_____________________
MC □ VISA □

ROBOT RESEARCH, INC.
7591 Convoy Court
San Diego, California 92111
Phone (619) 279-9430
NEW ENGLAND'S FACTORY AUTHORIZED SALES & SERVICE
FOR
KENWOOD
Also displaying the popular accessories needed to complete a HAM STATION...

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• Belden • Bencher • B & W • Daiwa • Alinco
• Hustler • KLM • Larsen • Mirage • Rohm
• Telex/Hy-Gain • Tokyo Hy-Power Labs
• Trac Keyers • Vibroplex • Welz • etc.

OPEN SIX DAYS A WEEK

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1½ miles from Rte. 495 (Exit 31) toward Groton, Mass.

*ANTENNA TIME
HF-VHF-UHF
Crushcraft A3, A4 & 10 mtr Monobander
Hustler, KLM, B & W
AEA and Austin

NEMAL ELECTRONICS

*Complete Cable Assembly facilities MIL-STD-45204
*Commercial Accounts welcome. Quantity pricing. * Same day shipping most orders
*Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

HARDLINE 50 OHM
FX12 1/2 Aluminum Black Jacket..........19.75
FLC12 1/2 Cablewire corr. copper bknj 2.00
FC78 7/8 Cablewire corr. copper bknj 2.00
NM12CC N conn 1/2 corr copper m/m 2.25
NMH8CC N conn 7/8 corr copper m/m 2.25

COAXIAL CABLES (per ft)
1140 BELDEN 9013 very low loss
1140 RG6 95% shield low loss foam 1/2 bknj 1.75
1110 RG8X 96% shield mini 8 1.50
1110 RG213/U 95% shield spec NCV bknj 3.00
1140 RG214/U dbl silver shield spec 1.65
1175 RG214/U dbl silver shield, telon 1.50
1310 RG217/U 50 ohm 5000 watt dbl shield . 1.65
1450 RG174/U 50 ohm 100 watt dbl shield 1.40

ROTOR CABLE-8 CONDUCTOR
RC1802 DS1a 2-1/2ga and 2-22ga 9.75
RC1820 2-1/2ga and 3-20ga 2.25

RECEPTOR-MADE IN USA
HE720 Type N plug for Belden 9013........ $3.95
HE723 Type N jack for Belden 9013..... 4.05
PL258AM Amphenol PL259.................. 2.96
PL259AM Amphenol female-female (barrel) 1.45
LG175/LG176 reducer for RG59/59 (specify)........ 1.22
LG210DS N plug for RG8,213,214 Silver........ 3.35
LG280 N jack to PL259 adapter, telon 6.50
LG145A S0239 to N plug adapter, telon 6.50
LG255 S0239 to BNC plug adapter, Amphenol 3.29
S0239AM UHF chassis mt receptacle,Amphenol 3.29

GROUND STRAP-GROUND WIRE
GS34 3/8" shielded copper braid 30.00
GS12 1/2" shielded copper braid 40.00
GS200 1-1/2" heavy shielded copper braid 25.00
HW68 5ga insulated stranded wire 35.00
AW14 14ga stranded Antenna wire CCS 12.00

Shipping Cable $3/100, Connectors $1.00, Visa/Mastercard $5 min. CO add $2.00
Call or write for complete price list. NEMAL's new 36-page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $4 with credit against next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161
(305) 893-3924 Telex 679377 24hr FAX (305)895-8178

Full Feature Remotely Programmable Repeater Controller for under $600

- Field tested for over 2 years
- Full 2 year warranty
FREE Free Full Color Brochure Call Toll Free 1-800-621-8387
ext. 244, 8am-5pm Mountain Time
Or Write:
S-Com Industries
P.O. Box 8921 • Fort Collins, CO 80525

October 1987
Get the voltage you want — and high efficiency, too

How many times have you required a voltage lower, higher, or of opposite polarity than that provided by your power supply or battery? If you wanted to draw 5 volts from a 15-volt source, for example, you could use a linear regulator or a zener diode — but with efficiency of only 33 percent or less. By using a dc-to-dc converter, however, you could obtain your desired voltage with an efficiency of 65 to 80 percent or more.

While a number of different types of dc-to-dc converter circuits can be used, this article deals exclusively with the pulse width modulated (PWM) type. A wide variety of PWM ICs are available from a number of suppliers such as National, RCA, Fairchild, Motorola, Silicon General, Unitrode and others.

buck or forward converter

The first type examined will be the buck or forward converter used to supply a voltage lower than the input. Referring to fig. 1, note that the basic buck converter consists of a switch (S), a diode, an inductor, a capacitor, and a load resistor. In a practical converter, the switch is replaced by a transistor or FET driven by pulses supplied from a PWM chip.

When the switch is closed, current starts to build up gradually as the inductor opposes a rapid change in current flow. The capacitor begins to charge, and an EMF appears across the load. As the current increases, a magnetic field builds up in and about the inductor. The switch then opens, and forward current flow ceases. At this point the magnetic field collapses, inducing a voltage in the inductor of opposite polarity.

The energy induced in the inductor flows through the diode to the capacitor and load. Energy is supplied to the load from that stored in the inductor. The ratio of the time on (switch closed) to time off (switch open) determines the total energy delivered to the load, and therefore the output voltage. The PWM chip will monitor the output via the feedback resistor in a practical circuit, compare it with the internal reference voltage of the chip, and precisely control the ratio of on time to off time to maintain a constant output voltage. As the load is increased, the on time increases; as the load is decreased, the on time decreases. This circuit can be used to obtain an output voltage lower than the input by at least 2 volts or more.

flyback converter

Figure 2 shows a basic flyback converter with the same five basic components arranged in a different manner. In this circuit, when the switch is closed, energy is stored in the inductor because it cannot flow to the capacitor and load because of the diode. When the switch is open, the energy stored in the inductor is transferred to the capacitor and load because the diode is now forward biased. With this circuit, you can obtain a supply of reverse polarity greater than, less than, or equal to the input voltage.

boost or step-up converter

Figure 3 illustrates a basic boost or step-up circuit. In this circuit, we see the same five components arranged differently. When the switch is closed, the inductor is connected in parallel with the input, and energy is once again stored in the inductor.

By William R. Hennigan, W3CZ, 975 Clopper Road, Apartment A2, Gaithersburg, Maryland 20878
ASTRON POWER SUPPLIES
- Heavy Duty • High Quality • Rugged • Reliable

SPECIAL FEATURES
- Solid State Electronically Regulated
- Fold-Back Current Limiting Protects Power Supply from excessive current & continuous shorted output
- Crowbar Over Voltage Protection on all Models except RS-3A, RS-4A, RS-5A.
- Maintain Regulation & Low Ripple at low line input Voltage
- Heavy Duty Heat Sink • Chassis Mount Fuse
- Three Conductor Power Cord
- One Year Warranty • Made in U.S.A.

PERFORMANCE SPECIFICATIONS
- Input Voltage: 105-125 VAC
- Output Voltage: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- Ripple Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

RM SERIES
19" x 5 1/2" Rack Mount Power Supplies

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 3/4 x 19 5/8 12 1/2</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 3/4 x 19 12 1/2</td>
<td>30</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 3/4 x 19 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters
 - RM-12M: 9 x 12 x 5 3/4
 - RM-35M: 37 x 50 x 12

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 3/4 x 4 1/2 6 1/2</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 3/4 x 4 1/2 6 1/2</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 3/4 x 4 1/2 6 1/2</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>4</td>
<td>7</td>
<td>3 3/4 x 4 1/2 6 1/2</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 x 7 1/2 10</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 7/8 x 8 1/2 10</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 7/8 x 8 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 7/8 x 8 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 9/16 x 10</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>16</td>
<td>35</td>
<td>5 11/16 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 1/16 x 9 10 1/4</td>
<td>20</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 11/16 x 11</td>
<td>29</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

- Switchable volt and Amp meter
 - RS-12M
 - RS-20M

- Separate volt and Amp meters
 - RS-20M
 - RS-35M
 - RS-50M

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps) @13.8VDC</th>
<th>ICS* (Amps) @13.8VDC</th>
<th>Size (IN) H x W x D</th>
<th>Shipping (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/4 x 8 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 1/16 x 9 10 1/4</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 11/16 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

- Variable rack mount power supplies
 - VRM-35M
 - VRM-50M

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 1/2 10 1/4</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 1/2 10 1/4</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 x 7 1/2 10 1/4</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 9/16 x 10 1/4</td>
<td>18</td>
</tr>
</tbody>
</table>

- Built in speaker

*ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
fig. 1. Buck or forward converter supplies an output voltage lower than its input — i.e., $E_{IN} > E_{OUT}$.

fig. 2. Flyback converter provides a reverse polarity output that is greater than, equal to, or less than the input voltage in magnitude.

fig. 3. In this boost circuit the output is the sum of the input voltage and the voltage across inductor, i.e. $V_{OUT} > V_{IN}$.

When the switch is open, the energy in the inductor is transferred to the load and this voltage is now connected in series with the input; thus the output is the sum of the input voltage and the voltage across the inductor. This circuit can be used only as a step-up or boost circuit. It does suffer from one fault, however, which I'll explain later.

buck or step-down converter

A practical buck or step-down forward converter can be constructed using a 3524 IC, a chip that's readily available from a number of suppliers. Figure 4 shows a schematic of an 8-volt regulated supply with an input of 12 volts. I built this circuit several years ago; the 8-volt output was loaded from 150 to 500 mA with a measured efficiency that varied from 83 to 85 percent.

Note that the internal reference at pin 16 is divided down to 2.5 volts at pin 2. This is necessary because the comparator in the chip is powered off the 5-volt reference and has a common mode input of 1.8 to 3.4 volts (see fig. 5 for the internal circuitry of the chip). The Unitrode UC1524 family of chips has a higher common mode input because the comparators are powered off the input voltage of the chip; if they're used in this circuit — with 12-volt input — the reference could be applied directly to pin 2 by means of a resistor. The current limit comparator (pins 4 and 5) also has the same common mode input limitations with the LM3524, so the current limit resistor is in the negative lead in the circuit shown. The resistor value of RCL can be tailored to fit the need. A 1-ohm resistor will current limit at about 200 mA, a 0.2-ohm resistor at about 1 ampere, and a 0.4-ohm resistor at about 500 mA. The current limit value is the value of a resistor whose voltage drop equals 0.2 volts. If current limiting isn't necessary, it can be omitted and the leads connected together at this point, forming a jumper between point A and B.

L1 and L3, wound on toroids, consist of 45 turns of No. 25 wire on Micrometals T68-26A cores. These plus C6 can also be omitted if the ripple from the supply at both the 12-volt input and 8-volt output is acceptable.

Any of the 1524, 2524, 3524 chips will operate in the circuit shown in fig. 4. The operating frequency
of this converter, approximately 20 kHz, is determined by the value of R_t and C_t. The frequency is about equal to $\frac{1}{R_t C_t}$ or:

$$ f = \frac{1}{R_t C_t} \quad (1) $$

The inductor L_2, the heart of the unit, has an inductance of 830 μH, and consists of 72 turns of No. 26 wire wound on an 1811F1D bobbin mounted on a set of Ferroxcube® gapped cup cores (part No. 1811PA1603B9).* Though the inductor could just as well be wound on a toroid, I chose cup cores because they were available and because they’re much easier to wind than toroids. I bolted them together with a nylon screw, but any nonmagnetic material, such as brass, would have been appropriate.

This supply will operate equally well with a 15, 18, or 24-volt input. To convert to a 5-volt output, change the feedback resistor R_f to 5.1 k; to fine-tune the voltage, use a 4.7-k resistor in series with a 500-ohm pot.

The feedback resistor for the circuit shown in fig. 4 can be calculated as follows:

$$ R_f = 5100 \left(\frac{V_o}{2.5} - 1 \right) \quad (2) $$

V_o being the desired output voltage from the supply.

The switching transistor TIP 115 should be heat sunked to keep it from overheating. In my supply it was bolted, with a mica washer, to the circuit board upon which the supply was built to keep it from shorting to the copper foil of the circuit board.

If the output current is increased to 1.0 ampere, the value of the inductor should be decreased to 300 to 500 μH or so. In all cases, the diode should be a fast-recovery type; for maximum efficiency in low-voltage supplies of 5 to 10 volts output, a Schottky type (for example, a 1N5819) is preferred. In any event, don’t use 1N4000-type diodes, which will overheat.

The value of the inductor, L_2, can be calculated as follows:

$$ L = \frac{2.5 V_o (V_{in} - V_o)}{I_o V_{in} f_{osc}} \quad (3) $$

V_o = output voltage
V_{in} = input voltage
I_o = output current
f_{osc} = oscillator frequency

inverted supply

Figure 6 shows a converter that gives us an inverted supply or a -15 volt supply from a positive source.

*The cup cores are available from Ferroxcube. Toroids were made by Micrometals; toroids from FairRite, Arnold Engineering, Magnetics, and other manufacturers may be used instead.
Hustler VHF and UHF antennas offer a combination of gain, durability and value which have made them the antenna most often demanded for repeater applications.

Reliability and Performance - Beyond Your Expectations

G7 - 144
- **Electrical**
 - Gain 7dBd
 - VSWR 3 MHz under 1.5:1
 - Lightning Protection
 - Shunt Fed - DC ground
 - Termination
 - Type N Female
- **Mechanical**
 - Length 15'4"
 - Weight 10 lbs.
 - Wind Survival
 - 100 mph
 - Mounting
 - Up to 2" mast.

G7 - 220
- **Electrical**
 - Gain 7dBd
 - VSWR 4 MHz under 1.5:1
 - Lightning Protection
 - Shunt Fed - DC ground
 - Termination
 - Type N Female
- **Mechanical**
 - Length 10'2"
 - Weight 7 lbs.
 - Wind Survival
 - 110 mph
 - Mounting
 - Up to 2" mast.

G6 - 440
- **Electrical**
 - Gain 6dBd
 - VSWR 8 MHz under 1.5:1
 - Lightning Protection
 - Shunt Fed - DC ground
 - Termination
 - Type N Female
- **Mechanical**
 - Length 7'3"
 - Weight 16 lbs.
 - Wind Survival
 - 125 mph
 - Mounting
 - Up to 2" mast.
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

TELEX
Kendecom
617-373-7304

FAX
617-372-3442
This circuit provided an efficiency of 76 percent load-
ed to 250 mA. The inductor measured 525 pH and con-
sisted of 70 turns of No. 29 wire wound on a Ferroxcube cup core set of No. 1408PA1003B7 gapped cores. This is a smaller core than the one used in the buck converter shown in fig. 4. The frequency of this oscillator was measured at 21.2 kHz.

Do not operate any of these dc-to-dc converters without some load; if you do, the capacitor can charge up to the peak pulses applied to the inductor. One way to prevent this from happening is to modify the feedback resistor and 5.1-k resistor to ground to lower values, in order to provide some loading to the supply if you want to be able to remove the load while the supply is operating, or want to apply the load while it's operating. In this circuit, I used a Schottky diode (1N5819) with a snubber consisting of a 3.3-k resistor and a 1000-pF capacitor in series across the diode. If a fast-recovery type such as a 1N4935, 1N4936, or 1N4937 were used, the snubber could be deleted.

Since the 35.7-k feedback resistor isn't a standard value, a good substitute would be a 33-k resistor in series with a 5-k pot; with this arrangement, you'd be able to adjust the output to exactly 15 volts. The output voltage can be changed by merely changing the value of the feedback resistor.

The value of the feedback in this supply or circuit can be calculated as follows:

$$R_f = \frac{OV + 2.5}{2.5} \times 5100$$ \hspace{1cm} (4)

This supply will operate just as well with an input voltage of from +12 to +24 volts. In fact, it will probably operate with an input as high as 40 volts, the maximum for the LM3524, but be sure to use a fast-
recovery diode rather than a Schottky type.

boost converter

The boost converter shown in the next circuit (fig. 7) uses the internal switching transistors in the 3524 chip because the load was only 40 mA. The efficiency of this circuit, with an output of 24 volts at 40 mA, and an input of 12 volts, was measured at 78.6 percent. The 600-μH inductor consists of 80 turns of No.
Barry Electronics Commercial Radio Dept offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Sears, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

Barry Electronics Commercial Radio Dept offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Sears, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

Barry Electronics Commercial Radio Dept offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Sears, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

Barry Electronics Commercial Radio Dept offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Sears, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

Barry Electronics Commercial Radio Dept offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Sears, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.
fig. 6. Inverting converter provides −15-volt output for positive input.

fig. 7. Boost converter is able to use the LM3524 internal switching transistors because of low-current operation.

32 wire wound on a Ferroxcube core (No. 1107PA1003B7), which is smaller than those used in the other circuits. In all cases, when you use cup cores, be sure to adjust the wire size to fill the bobbin completely for the inductance required. Toroids can also be used in these circuits.

The component values of a large part of the circuitry are similar to the other circuits used in figs. 4 and 6. Earlier I mentioned a problem with the basic boost circuit given that there's no easy way to current limit it when the switching transistor isn't connected between the input and output. In any of the circuits where the switching transistor is connected between the input and output, the current limit comparator at pins 4 and 5 can be connected across a limit resistor as shown in fig. 4. In the inverting supply, the resistor can be
CONFERENCE PROCEEDINGS

21st Central States VHF Society Conference held in Arlington, Texas, July 23-26, 1987. 28 papers covering everything from use of TVRO dishes for moonbounce to a solid state amplifier for 5.7 GHz. 166 pages.

6th ARRL Computer Networking Conference held in Redondo Beach, California, August 29, 1987. 29 papers (approximately 150 pages) will appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 1.

MICROWAVE UPDATE 1987 held in Estes Park, Colorado, September 10-13, 1987. 15 papers (approximately 100 pages) appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 14.

Proceedings booklets are $10.00 each plus $2.50 per order for postage and handling ($3.50 for UPS).
placed in series with the diode and ground, with the ends of the resistor connected to pins 4 and 5; be careful to observe the correct polarity.

Simple buck converter

A rather simple buck converter can be built around the National LH1605K, a device with eight leads, contained in a TO3 package. The internal schematic and complete circuit diagram are shown in fig. 8. The switching transistor and diode are contained in the same package, so the entire circuit consists of three capacitors, one resistor, and one inductor in addition to the IC. The internal transistor and diode combination is capable of supplying an output current of 5 amps. Needless to say, it's necessary to use some form of heat sink. The maximum input voltage, 35 volts, will supply an output voltage as low as 3 volts and as high as 30. The feedback resistor can be calculated as follows:

\[
\frac{2 \times 10^3 (V_o - 2.5)}{2.5}
\]

If a 15-volt output is desired, then \(R_f \) would be 10 k; for a 5-volt output, it would be 2 k. With a 12-volt input and a 5-volt output, I measured an efficiency of 68 to 69.5 percent with a 5-volt load of 600 mA to 1 ampere. With a 24-volt input and a 14-volt output, the efficiency varied from 73.5 percent to 79 percent because the load was varied from 300 mA to 2 amperes. If a step-down regulator is required, this chip would surely be appropriate. The inductor in my unit measured 210 \(\mu \)H and consisted of 36.5 turns of No. 20 wire wound on a Ferroxcube cup core set (No. 2616PA170368) held together by a nylon screw, which also was used to mount it. This chip can be used only as a buck converter. In my unit, \(R_f \) was a pot that could be set for any output voltage as long as it was several volts less than the input.

Other possibilities

Lambda's 6300 series of PWM regulators come in the same TO3 package with eight leads. These units can be used in a number of circuits — buck, boost, or inverting.

It's possible to build multiple output supplies using PWM chips. If the supplies require that all the outputs need to be regulated rather closely under varying load conditions, then you could probably build, as I have, several regulated supplies with all chips running at the same frequency. One chip uses \(R_f \) and \(C_1 \), connected to the appropriate pins. Tie pin 3 of all chips together, and pin 7 of all chips together.

You can obtain a ± supply from one buck regulator which will track quite well even though one supply or output is sampled via the feedback resistor. It works best if the - supply is loaded to only 10 to 25 percent of the load on the + supply (see fig. 9). If the load on the + supply is removed with a load on

*The National LH1605K chip, most of the diodes, and the switching transistors used in these circuits are available from Digi-Key Corporation, P.O. Box 677, Thief River Falls, Minnesota 56701.
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.

- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
TRANSMISSION LINE TRANSFORMERS
A new ARRL Publication by Dr. Jerry Sevick, W2FMI

NOW AVAILABLE!

Despite the popularity of transmission line transformers in both commercial and amateur applications, little practical design information has been published concerning these devices. The lack of data was made abundantly clear to Jerry Sevick, W2FMI when he began designing matching transformers for the short vertical antennas that are the subject of his classic series of articles that appeared in QST. In order to fill in the gaps of available knowledge, Jerry decided to study the subject of transmission line transformers in depth and the results of his findings are contained in this new ARRL publication!

Transmission Line Transformers covers types of windings, core materials, fractional-ratio windings, efficiencies, multi-winding and series transformers, baluns, and limitations at high impedance levels. There is also a chapter on practical test equipment. This book is must reading for everyone interested in antenna and transmission line theory. Copyright 1987, 128 pages $10 hardcover only.

The American Radio Relay League, Inc
225 Main St., Newington, CT 06111
W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 Illustrations. 268 pages. ©1985. Revised 1st edition.

RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS

RP-WA Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad an DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition.

RP-QO Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, sleper, and delta loops. Practical antenna projects that work! 190 pages. ©1978. 1st edition.

RP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.

#1 Source of PACKET Info

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 Illustrations. 268 pages. ©1985. Revised 1st edition.

RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS

RP-WA Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad an DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition.

RP-QO Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, sleper, and delta loops. Practical antenna projects that work! 190 pages. ©1978. 1st edition.

RP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.

#1 Source of PACKET Info

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 Illustrations. 268 pages. ©1985. Revised 1st edition.

RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS

RP-WA Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad an DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition.

RP-QO Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, sleper, and delta loops. Practical antenna projects that work! 190 pages. ©1978. 1st edition.

RP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.

#1 Source of PACKET Info

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 Illustrations. 268 pages. ©1985. Revised 1st edition.

RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS

RP-WA Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad an DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition.

RP-QO Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, sleper, and delta loops. Practical antenna projects that work! 190 pages. ©1978. 1st edition.

RP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.
"white noise" revisited

In my January and June, 1987, columns I discussed the interesting phenomenon known as "white noise" or "reciprocal mixing" (see these columns for background information). It's interesting to note that Radio Communication, the monthly publication of the Radio Society of Great Britain, discusses this subject in detail in their equipment review column, but little is said about this subject in Amateur Radio magazine equipment review columns in United States publications. My opinion is that the subject won't go away if you ignore it!

The RSGB reviews indicate transmitter noise sideband performance at 10 kHz off-tune as the "standard of performance" they measure, but they also provide reciprocal noise measurements at 2, 3, 5, 10, 20, 30, 50 and 100 kHz off tune. This is very useful information, and it's a pity that more of it is available on this side of the pond.

In their article, Franke and DeLeon pointed out that the level of white noise is greatest close to the carrier frequency of the transmitter, and drops off gradually as the observation frequency departs from the carrier frequency (fig. 1). Unfortunately, the noise can't be filtered out at the receiver. They noted that the presence of close-in broadband noise isn't unexpected, considering the shape of the gain response of a bipolar transistor (fig. 2), which exhibits greater gain at frequencies lower than the normal operating region. This indicates to me that such amplifier stages are "wide open" to pass any close-in noise generated in the earlier stages of the transmitter.

In their article, Franke and DeLeon attacked this problem by using low frequency loading in the amplifier stages to reduce low frequency gain without sacrificing high frequency gain. In their example, the amplifier stages worked above 200 MHz, and they set about to lower stage gain at frequencies below 50 MHz. A sample of this design technique is shown in fig. 3.

In the base circuit of Q1, the rf choke (L1) is the normal one for the operating frequency. Choke L2 presents a high impedance down to very low frequencies and the low frequency (noise) energy flows through load resistor R1, which is in the range of 5 to 10 ohms. The base circuit, then, is loaded by R1 at low frequencies where power gain is high.

A similar scheme is used in the collector circuit. Choke L3 is normal for the operating frequency. However, L3 and hf bypass capacitor C1 form an L-network that transforms the value of resistor R2 to a value that will heavily load the collector at the lower frequencies. At the operating frequency, L4 appears as an open circuit and capacitor C2 provides a very low impedance, which results in the collector feedback network shown in the small illustration. Below the normal operating range of the amplifier the input impedance to the network looks resistive, approaching the value of R2, which is typically 10 to 20 ohms.

The authors provided "before and after" illustrations of broadband noise density with and without low frequency load resistance. In addition, they point out that FETs (Field Effect Transistors) have 10 to 15 dB lower broad-
band noise than a comparable bipolar power transistor. It appears that this technique is worth considering in the continuing battle against the white noise problem.

It’s obvious that progress is being made in this important area. Dealing with the problem of broadband noise (as far as ham equipment goes) is in about the same stage of development that receiver overload was 15 years ago. The latter problem has been solved, and I’m confident that this one is on the edge of being solved. Time will tell!

more on telephone interference

The following information was provided by W6BIP ("Bip"):

With regard to telephone interference caused by an Amateur station, recent editions of the *ARRL Handbook* and other publications have suggested that compensation networks that are RFI-free can be obtained from the telephone companies for installation in an RFI-prone instrument. Unfortunately, the compensation networks discussed have been discontinued and deleted from the AT&T inventory. *Bad news!*

W6BIP reports, however, that the new replacement line filter module Z-100A does the job in most cases. It consists of two 7.2-mH (8 ohms dc resistance) rf chokes wound on small ferrite cores. Contained in a plastic box that has matching connectors to place in series with the line, it can be bought at AT&T company phone stores or ordered by phone from the AT&T National Service Center in St. Louis, Missouri (800 222-3111). The stock number of the line filter is SKU-57210. A second line filter (model Z-101A), stock number SKU-57293, is available for use with wall-mounted phones.

W6BIP mentions that in addition to the line filter module, some phones may require additional rf filters in the form of a 0.01-µF ceramic capacitor placed across the microphone and a second one across the earphone. Experience has shown that the 3/16-inch diameter capacitors are superior in RFI reduction to the common 3/8-inch diameter capacitors. The value of 0.01 µF is not critical; values between 0.001 and 0.047 µF can be tried. When used in conjunction with the Z-100A filter module, they substantially reduce interference.

From experience, W6BIP says this combination of capacitors and filter module should work for those Amateurs using 1 kW input, or less, with their horizontal antennas at least 25 feet above and away from the affected telephones. For those using vertical antennas with radials on the roof, or slopers or end-fed antennas close to the roof, so much rf seems to enter the house wiring and indoor telephone lines that the filtering described may be inadequate.
the "wideband dipole" — a different approach

Eighty-meter operators have been continually frustrated by the problem of getting an antenna that will show a low value of SWR across the whole band (3.5 to 4.0 MHz). Many modern transceivers require a feed line SWR of less than 2:1 to function properly.

A conventional dipole, cut to midband and fed with a 50-ohm coax line has an operational bandwidth of 170 to 190 kHz between the 2:1 SWR points, depending upon the height above ground. This means that such an antenna, cut for the high end of the band (phone) is useless at the low end of the band (CW).

Bill McLeod, VK3MI, has an interesting approach to this problem, as shown in fig. 4. His antenna design appeared in the April, 1986, issue of the Journal of the Wireless Institute of Australia. His idea consists of using a quarter-wave 73-ohm transformer made of RG-59/U coax plus a reactance compensation capacitor to introduce a deliberate mismatch at the antenna. The result is a poorer SWR level at the resonant frequency of the antenna, but a flatter SWR response across the band of interest.

Using a dipole cut for 3.7 MHz, Bill measured an SWR value of less than 2:1 over a bandwidth of 420 kHz, as shown in the illustration.

It seems to me that with the dipole cut for a slightly higher frequency (say, 3750 kHz) and with adjustment of the reactance capacitor, it may be possible to "stretch" the 2:1 operating bandwidth to cover the complete 80-meter band.

The capacitor should be a high-voltage mica type, or it may be made from a length of coax line open at the far end. The capacitive stub can be taped to the feed line, if desired.

One trick for achieving better bandwidth is to use this scheme with a

Packet Radio

"You can't Lose when you buy an ORIGINAL"

Since you can't buy a TAPR TNC 2 kit anymore, we feel our Licensed copy of their design is the next best thing. Our TNC II is an EXACT copy of TAPR's with all its jumpers and a modem disconnected installed. We use only premium components like GOLD dual - beam IC sockets and a battery socket. You'll be assured that our Quality, Reliability, Style is like no other.

*Standard RS-232 computer interface
*1200 baud FSK modem winput filter
*TAPR documentation - EASY hookup
*12 vdc powered, CMOS available

Synthesized Signal Generator

- Covers 100 MHz to 199,999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/− 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery
- $429.95 delivered
- Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details

Vanguard Labs

196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.
“fat” dipole. If the dipole halves were made of 300-ohm transmitting twin-lead, with the wires shorted together at the ends, the additional conductor area might achieve substantially better bandwidth response. In any event, this looks like a good idea to experiment with.

EME directory

The 144-MHz EME (moonbounce) directory is available again. For a copy, send five first-class stamps or five IRCs to me (no envelope required) at Box 7508, Menlo Park, California 94025. The directory is a 36-page list of EME operators, their QTHs, and the equipment they use.

reference

Ham radio
GaAs FET PREAMPS
at a fraction of the cost of comparable units!

LANG-(-) GaAs FET PREAMP
ONLY $49!
Wired/TESTED

FEATURES:
- Very Low Noise: 0.7dB VHF, 0.8dB UHF
- High Gain: 13-20dB, depending on freq
- Wide Dynamic Range: to resist overload
- Stable: new-type dual-gate GaAs FET
 * Specify tuning range desired: 26.30, 46.56, 137.150, 150-172, 210-230, 400-470, or 800-960 MHz.

LNS-(-) IN-LINE PREAMP
ONLY $59/kit,
$79 Wired/TESTED
GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-5/8"L x 3/4"H. Easily mounts in many radios.
 * Specify tuning range desired: 120-175, 200-240, or 400-600 MHz.

HRA(-) HELICAL RESONATOR PREAMP
ONLY $49 VHF or $64 UHF
Low-noise preamps with helical resonators reduce intermod & cross-band interference in critical applications.

ACCESSORIES
- TO-2-DTMF DECODER/CONTROLLER kit only $78.
 - Full 16 digits, 5 functions, toll call restrictor, programmable. Much more. Great for selective calling too!
- AP-1 AUTOPATCH kit only $78. Reverse patch & phone line remotely control std.
- AP-2 Simplex Autopatch. Use with above.
- CWID kit, new low price $48.
 - Field programmable, timers, the works!
- COR-2 kit $38. Audio mixer, local spkr amplifier, tail & tone out timers.
- COR-3 kit $48, with courtesy beep.
- MO-202 FSID DATA MODULATOR kit $38: Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSID DATA DEMODULATOR kit $38.

HAMTRONICS, INC.
65-E Moul Rd.; Hilton NY 14468-9535

Order by phone or mail • Add $3 S&H per order (Electronic answering service evenings & weekends) • Use VISA, MASTERCARD, Check, or UPS COD.

HIGHLIGHTS
- GaAs FET PREAMPS
- LNG-(-)
- LNS-(-)
- HRA(-)
- Transmit Converters
- Receive Converters
- Accessories

THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT)

BAND
- 6M, 2M, 220
 - 6M $880
 - 2M $980
 - 220 $860
UHF
- 430 $730 (Also available for commercial bands!)

FEATURES:
- SENSITIVITY SECOND TO NONE! 0.15uV Typ.
- SELECTION THAT CAN'T BE BEAT! 0.15uV Typ.
- Resonator front end to combat distortion & interference.
- Preamp front end to deliver crossover & intermod.
- Antenna frequency control, separate spkr amplifier.
- CLEAN, EASY-TUNE TRANSMITTER, up to 20W output. 50W with additional PA.

GaAs FET PREAMPS
- LNG-(-)
- LNS-(-)
- HRA(-)

ACCESSORIES
- TO-2-DTMF DECODER/CONTROLLER kit only $78.
- CWID kit, new low price $48.
 - Full 16 digits, 5 functions, toll call restrictor, programmable. Much more. Great for selective calling too!
- AP-1 AUTOPATCH kit only $78. Reverse patch & phone line remotely control std.
- AP-2 Simplex Autopatch. Use with above.
- CWID kit, new low price $48.
 - Field programmable, timers, the works!
- COR-2 kit $38. Audio mixer, local spkr amplifier, tail & tone out timers.
- COR-3 kit $48, with courtesy beep.
- MO-202 FSID DATA MODULATOR kit $38: Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSID DATA DEMODULATOR kit $38.
equinox season

Sunspot minimum appears to be over until nearly eleven years hence. Even though a year or so will pass before momentum helps the new cycle to build up to its maximum rate, the return of the 27-day cycle (each solar rotation) has increased the number and size of solar flares and has solar flux energy topping 100 units again. This is expected to continue, gradually increasing in 27-day cycle activity until a sunspot region comes around at least three or four times before dying away. In the meantime, the geomagnetic disturbances will continue to be mainly variations in the solar wind from coronal holes, with an occasional flare-induced geomagnetic event. In either case, the disturbances affect DX fun adversely.

Geomagnetic disturbances, or storms, affect propagation and DX in four ways. First, particles from the sun entering the auroral zone at 50 to 70 degrees North and South latitudes come down into the ionospheric D and E regions, increasing signal absorption. This results in weak east-west path signals and few transpolar signals.

Second, the F region of the ionosphere (for stations in the United States, this is south of the auroral zone) has a depleted area of electrons that forms an electron density trough. The maximum usable frequency (MUF) for paths through this area decreases by 30 to 40 percent (see the January, 1986, DX Forecaster for tables of MUF statistics).

Third, and still further south at 20 degrees from the geomagnetic equator, an equivalent-size enhancement of the F region occurs, resulting in evening Transsequatorial (TE) openings during the equinox and winter seasons. These three effects vary in intensity and time on a short to long basis (seconds through hours), causing what we experience as fading and blackout. These effects continue to occur mainly each night for two to three days before ionospheric equilibrium is re-established. The larger the geomagnetic storm (the higher the value of the K or A indicies), the closer to the equator these effects occur.

Fourth, the particles form a reflective curtain along the equatorial side of the auroral zone (for those of us in North America, this is south), enhancing VHF auroral scatter propagation. Six-meter openings to Europe are one result of this phenomenon. Just as the particle density and speed of the solar wind vary, so do the characteristics of the geomagnetic field and ionosphere. Ionospheric variations cause signal reflection focusing and defocusing, which simply means that the signals arriving at your QTH will vary in both strength and angle of arrival from all four directions. Some locations you haven’t heard from in a long time may suddenly be workable.

last-minute forecast

The higher-level 27-day activity may push up the maximum usable frequencies (MUFs) during the first and second weeks of October, giving better 10-, 12-, and 15-meter DX. Transsequatorial one-long-hop propagation is expected to be underway again, especially around the 5th, 15th and 23rd of the month. This is because of a higher probability of geomagnetic disturbance at those times. During those same disturbed periods, the lower band’s MUFs should decrease by 15 to 25 percent for...
TELEWAVE ANTENNAS
CABLES
BEFORE YOU BUY YOUR NEXT ANTENNA
OR CABLE....DIAL:
800-331-3396

CELLFLEX - 1 5/8" - 1 1/4" - 7/8" - 1/2"
BELDEN RG-213 & RG-214 Type
CONNECTORS AVAILABLE

* ANTEENNAS *
COLLINEAR - YAGI - DIPOLE

We are major suppliers of : Cavities, Duplexers and Antenna Combining Systems

TELEWAVE, INC.
1155 TERRA BELLA, MOUNTAIN VIEW, CALIFORNIA 94043
(415) 908-4400 • TWX 910.379.0555 • FAX (415) 908-1741

IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...
ANTIQUE RADIO CLASSIFIED
Antique Radio's Largest-Circulation Monthly Magazine
Articles - Classifieds - Ads for Parts & Services
Also: Early TV, Ham Equip., Books, Telegraph, 40's & 50's Radios & more...
Free 20-word ad each month. Don't miss out!
Sample - Free, 6-Month Trial - $10.
1-Year: $18 ($24 by 1st Class), Foreign - Write.
A.R.C., P.O. Box 2-A3, Carlisle, MA 01741

1986-87 CALL DIRECTORY
(on microfiche)
Call Directory $5
Name Index $5
Geographic Index $5
All three — $20
Shipping per order $3
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777

Sub Problem?
Contact Sue. She'll fix it for you!
(603) 878-1441
Ham Radio
Greenville, N. H. 03048

a couple of days at a time. This will be particularly noticeable on east-west paths, and with noticeable QSB. Otherwise, the lower bands should be best during the last two weeks of the month because of higher signal strengths.

The Orionids meteor shower will be visible from the 15th to 24th of October, with a maximum rate of between 10 to 20 per hour on the 20th to 21st of the month. The moon is full on the 7th, and perigee occurs on the 4th and 30th. A penumbral eclipse of the moon occurs on October 7.

band-by-band summary

Ten, twelve, fifteen, and twenty meters will be open from morning to early evening almost every day, and to most areas of the world. The openings on the higher of these bands will be shorter and will occur closer to local noon. Transequatorial propagation on these bands will more likely occur toward evening during conditions of higher solar flux and a disturbed geomagnetic field.

Thirty and forty meters will be useful almost 24 hours a day. Daytime conditions will resemble those on 20 meters. Skip distances and signal strength may decrease during midday of those days that coincide with the higher solar flux values. Nighttime DX will be good except after days of high MUF conditions and geomagnetic disturbances. Look for DX from unusual places on east, north, and west paths during this time. The usable distance is expected to be somewhat less than that on 20 meters in daytime and greater than that on 80 meters at night.

Eighty and one-sixty meters will exhibit short-skip propagation during the daylight hours and lengthen for DX at dusk. These bands follow the darkness path, opening to the east just before your sunset, swinging more to the south near midnight, and ending up in the Pacific areas during the hour or so before dawn. The 160-meter band opens later and ends earlier than 80.
The italics-coded numbers signify the bands to try during the transition and early morning hours, when the standard time provides MUF during "normal" hours.

Look at next higher band for possible openings.

<table>
<thead>
<tr>
<th>Japan</th>
<th>Australia</th>
<th>New Zealand</th>
<th>Antarctica</th>
<th>Caribbean</th>
<th>S. Africa</th>
<th>Europe</th>
<th>Asia</th>
<th>Far East</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
<td>03</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>06</td>
</tr>
<tr>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
<td>07</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
<td>08</td>
</tr>
<tr>
<td>09</td>
<td>09</td>
<td>09</td>
<td>09</td>
<td>09</td>
<td>09</td>
<td>09</td>
<td>09</td>
<td>09</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>
QUALITY TEST GEAR YOU CAN COUNT ON

RAMSEY ELECTRONICS

INCLUDES 2 Hook-on Probes
20 MHz DUAL TRACE
Feature component testing circuit for resistors, capacitors, digital circuits and diodes—TV sync filter—high sensitivity—
Zoom XY mode—built-in calibrator—SX horizontal magnifier

INCLUDES 2 Hook-on Probes
35 MHz DUAL TRACE
Real-time triggering—hold-off—ALT trigger—single sweep—TV sync
SX magnification—XY or XYZ operation—HF/LF noise reduction

NEW

REMOTE CONTROL DIGITAL MULTIMETER
$249.95

RAMSEY D-4100

REMOTE CONTROL DIGITAL MULTIMETER
$249.95

Compact size, reliability, accuracy.
This LCD digital multimeter fits in your pocket, you can take it anywhere. It features full overload protection, 3½ digit LCD readout, patented input jack packs, safety probes, diode check function, and 200 hours battery life.

Has TOUCH-HOLD feature to allow readings to be logged or referred to before the next reading. Up to 10 AMP current capacity and a continuity feature to allow testing.

RAMSEY OSCILLOSCOPES

All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby, service and production applications.

+*Add a $10.00 for each unit at shipping.

MINI-100 COUNTER
$119.95

CT-70 7 DIGIT 525 MHz
MODEL: MINI-100
Sensitivity: 0.01 to 100 MHz
Accuracy: 1 ppm
Resolution: 1 MHz
Price: $119.95

DATA LOGGER
$89.95

AC ADAPTER INCLUDED

RAMSEY FREQUENCY COUNTERS

RAMSEY Electronics has been manufacturing electronic test gear for over 10 years and is recognized for lab quality products at breakthrough prices. Our frequency counters have features and capabilities of counters costing twice as much. BF-4 Nical battery pack for CT-70, CT-90 and CT-125 Frequency Counters. $9.95.

2-CHANNEL DIGITAL MULTIMETER
$249.95

CT-90 9 DIGIT 600 MHz
MODEL: CT-90
Sensitivity: 0.01 to 100 MHz
Accuracy: 1 ppm
Resolution: 1 MHz
Price: $169.95

CT-125 9 DIGIT 1.2 GHz
PRICE: $189.95

INCLUDES 2 Hook-on Probes
15 MHz DUAL TRACE PORTABLE
Field/chain-in and battery pack—up to 2 hours operating per charge—SX horizontal magnification—high brightness CRT—front panel trace rotator

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

PR-2 COUNTER PREAMP
$49.95

PS-2 AUDIO MULTIPLIER
$69.95

PS-10B 1 GHz PRESCALER
$99.95

ACCESSORIES FOR RAMSEY COUNTERS

TONE DECODER
$5.95

DUAL BRIDGE
$8.95

LED Blinky Kit
$2.95

MAD BLOATER
$4.95

SIREN
$5.95

MINI TIMEBASE
$5.95

FAX MINE
$2.95

SUPER HOOKUP KIT
$7.95

DAVID TUNER
$3.95

MIC KIT
$4.95

SHIN
$5.95

MERKEL KIT
$5.95

RAMSEY MINE
$2.95

TELEPHONE TRANSMITTER
$14.95

PHOTO DUPLEXER
$19.95

PHONE ORDERS CALL
716-586-3950

TELEX 46673 RAMSEY CI
FAX 716-586-4734

RAMSEY ELECTRONICS, INC.
2375 Board Ave., Dept. HR
Penfield, NY 14522

RAMSEY ELECTRONICS

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna—BNC plug $8.95
High impedance probe, light loading $16.95
Low pass probe, audio use $16.95
Direct probe, general purpose use $13.95
Tilt test, for CT-70, 90, 125 $3.85

TELEPHONE TRANSMITTER
Low cost with precision performance. Features include self test, megger test, test tone, from 100 MHz to 1 GHz. Includes 50 MHz, 1 GHz, external power source. Kit includes 1/2 watt transistors and 500 ohm resistors. $14.95

FAX MINE
$19.95

ACCESSORIES FOR RAMSEY COUNTERS

PHONE ORDERS CALL
716-586-3950

TELEX 46673 RAMSEY CI
FAX 716-586-4734

RAMSEY ELECTRONICS, INC.
2375 Board Ave., Dept. HR
Penfield, NY 14522

TELEPHONE TRANSMITTER
Low cost with precision performance. Features include self test, megger test, test tone, from 100 MHz to 1 GHz. Includes 50 MHz, 1 GHz, external power source. Kit includes 1/2 watt transistors and 500 ohm resistors. $14.95

FAX MINE
$19.95

ACCESSORIES FOR RAMSEY COUNTERS

ALL INCLUDE 2 Hook-on Probes, Instruction/Service Manual with schematic and component layout. 1 year warranty.

RAINIER MINE
$19.95

ACCESSORIES FOR RAMSEY COUNTERS

PHONE ORDERS CALL
716-586-3950

TELEX 46673 RAMSEY CI
FAX 716-586-4734

RAMSEY ELECTRONICS, INC.
2375 Board Ave., Dept. HR
Penfield, NY 14522
Specialized Communications
For Today's Radio Amateur!

Since 1967, covering all modes of Amateur Radio ‘Specialty’ communications; Fast Scan TV, SSTV, FAX, Packet Radio, Computers, RTTY, AMTOR, Satellites, TVRO, Microwave, Lasers and more! 10 issues per year. Back issues available; SASE brings TRS80C, C64, IBM software catalog. U. S. subscribers $20/year. Foreign slightly higher. Add $2.00 for Index Issue.

SPEC-COM Communications & Publishing Group
P.O. Box H, Lowden, Iowa 52255

Locater Field List

Do you like challenges? If the widespread acceptance of the DXCC, WAZ, and sundry other operating awards proudly displayed by Amateurs throughout the world is any indication, I’m sure you do.

Folke Rosvall, SM5AGM, has taken it upon himself for the December issue of Ham Radio four times a year to compile, on a per-band basis, the total number of fields worked by individuals. His list appears in Ham Radio four times a year (see page 75 of the July issue for the first list published in these pages).

“But,” you ask, “What’s a field?” Glad you asked. According to the Maidenhead locator system, the world is divided into 324 fields or areas, each 20 degrees wide in longitude and 10 degrees wide in latitude. Though most encompass land masses, quite a few do not: no countries, no islands, no reefs—just water. So even if you’ve worked every country in the world and your name is at the top of the honor roll, you still probably haven’t worked all the fields. For example, I’m very active on 80 meters, yet I’ve been able to snag only 148 out of 324 fields. I can think of a number of other 80 meter operators who are even more active than I am.

Have I tickled your competitive spirit? Think of the ultimate challenge: work all 324 fields on all 19 bands on one sideband. Some quick calculating shows that to be... uh... 6156 contacts. That’ll keep you off the streets but probably get you into trouble with your family, your employer, etc. Seriously, it’s all for fun, and you’ll learn a little more geography in the process.

All the necessary details are included on the accompanying chart. Folke would be very glad to hear from you. Please send your tabulations directly to him (his address at the bottom of the chart) — not to Ham Radio.

See you on 80!

Rich Rosen, K2RR

Gordon West’s
21 Day Novice
$19.95
Plus $2.50 Postage and Handling

CODE TAPES • 112 PAGE BOOK • BANDS CHART • ALL FCC FORMS • SAMPLE TESTS • HOTLINE • PLUS MORE!

STEREO THEORY TAPES COULD BE SUBLITTED FOR TH. BOOK FOR THE VISUALLY IMPAIRED. PLEASE ASK US.

- $70 in equipment certificates from ICOM, KENWOOD, & VRESU.
- Ham radio equipment “Wish Books”.
- Laminated world map.
- RRRLI membership forms.
- Free Ham Magazine coupon.
- Hotline for student questions.
- Dealer distributor list.
- School pen.
- Course completion certificate.
- License holder.

GORDON WEST RADIO SCHOOL
2414 College Drive • Costa Mesa, CA 92626 • (714) 549-5000

October 1987 / 89
LOW BAND DX'ING

COMPUTER PROGRAMS

by John Devoldere, ON4UN, for Apple IIe/c, MS-DOS, Commodore C-128 Apple Macintosh and Kaypro CPM Computers

Here’s a collection of 30 super programs written by ON4UN. Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: shunt and series input L network design, feedline transformer, shunt network design, SWR calculation, etc. 11 more! General Ham programs include: sunsets, days, great circle distances, grayline, vertical antenna design program, sunrise calendar plus more! Prew. When you sit down to use these programs you’ll be amazed at what you have. The best value in computer software available today. ©1986.

- UN-Apple IIe/c $19.95
- UN-MS (MS-DOS) $19.95
- UN-CPM/Kaypro $19.95
- UN-C-128 (COMMODORE) $19.95
- UN-MAC (MACINTOSH) $24.95

Now Available! The new, 2nd edition of the definitive book on Low Band DX’ing. Based upon years of practical, on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations—dipoles, inverted V’s, slugs, phased arrays, and Beverages—they’re all in this booklet. Also covered: propagation, transmitters, receivers, operating, software, and an extensive Low Band bibliography. Going to be a best seller! Get yours today. ©1987 2nd Edition 200 pages

- AR-UN Softbound $9.95

BUY’EM BOTH

SPECIAL OFFER

Book & Software Reg. $29.90 ($34.96 for Mac)
Just $24.90 ($29.90 for Mac)
- UN-SO (specify computer) $24.90
- UN-MSO Macintosh Special $29.90

SAVE $5

Please enclose $3.50 shipping & handling

ham radio BOOKSTORE
GREENVILLE, NH 03048 603-878-1441
personal packet mailbox

The Kantronics Personal Packet Mailbox is an inexpensive — $39.95 — firmware option that allows your Kantronics packet communicator (the KPC 1, KPC 2, KPC 2400 and the KAM) to function as a self-contained personal mailbox system.

Until now, most popular packet mailbox systems relied on personal computers such as the Xerox 820 or IBM XT using special packet bulletin-board software written by WORLI or W7MBL. The Kantronics personal mailbox eliminates the need to tie up (and run continuously) your expensive PC for simple mailbox operations.

As with other Kantronics firmware updates, installation is as simple as installing a new EPROM. After installation you'll have to perform a hard reset of the TNC, which involves simply powering down the system, waiting five seconds, then powering it back up again. I'm told this is necessary to allow the mailbox's files to be properly initialized.

installation is as simple as installing a new firmware update. As with other Kantronics firmware updates, installation is as simple as installing a new EPROM. After installation you'll have to perform a hard reset of the TNC, which involves simply powering down the system, waiting five seconds, then powering it back up again. I'm told this is necessary to allow the mailbox's files to be properly initialized.

The Kantronics personal mailbox eliminates the need to tie up (and run continuously) your expensive PC for simple mailbox operations.

As with other Kantronics firmware updates, installation is as simple as installing a new EPROM. After installation you'll have to perform a hard reset of the TNC, which involves simply powering down the system, waiting five seconds, then powering it back up again. I'm told this is necessary to allow the mailbox's files to be properly initialized.

One of the nicest features of this mailbox is its transparent operation with normal packet operations in your TNC. You can carry on a normal QSO with another station and use the mailbox only when needed. The kantronics software can even accept the mailbox even if someone is connected to you or to your mailbox.

While WORLI-type PBBSes can forward mail to your mailbox, the Kantronics mailbox has no provisions for forwarding itself. Mail sent to your mailbox is treated as a "personal mailbox" that can be addressed to the connecting station or to "ALL." It can't be listed, read or killed by that station. Upon connecting, stations are informed of any unanswered mail.

Since messages in the mailbox are stored in volatile RAM, even momentary power outages will trash its contents unless battery backup is supplied to the TNC. As its name implies, this mailbox is intended as a "personal mailbox," either for individual use, or as a small club bulletin board for limited general-interest bulletins. Due to its limited RAM allocation, the number and size of the messages that can be stored are necessarily limited (although impressive, considering the limitations). Once the memory limit is reached, future messages are lost.

Several friends and I have been using Kantronics' personal mailbox for months with no problems. Apparently the software is well written and very carefully debugged before the first versions were released. The documentation is concise and explains operation and all of the commands except for the PBBS N command, whose parameters were somewhat ambiguous. For marks, the Kantronics' personal mailbox rates an A++; we can fully expect this product to have a significant positive impact on packet operations.

For more info contact: Kantronics, 1202 E. 23rd St., Lawrence, KS 66046.

K1ZJH

Circle #307 on Reader Service Card.

updated fm dual-bander

The new 2-meter/70 cm Dual Bander from Kenwood puts out 45 watts on 2 meters and 35 watts on 70 cm. Features include compact size (5.8 x 1.97 x 7.87 inches), and light weight (less than 4 pounds). With only three knobs and eight keys on the front panel, it's easy to operate.

The large LCD display and main knob provide excellent visibility in direct sunlight or darkness. Full duplex crossband operation via repeater is possible (assuming, of course, that a control operator is available).

The new Dual Bander offers programmable band scan and memory scan with memory channel lock-out. A lithium battery provides

NEW products

The large LCD display and main knob provide excellent visibility in direct sunlight or darkness. Full duplex crossband operation via repeater is possible (assuming, of course, that a control operator is available).

The new Dual Bander offers programmable band scan and memory scan with memory channel lock-out. A lithium battery provides
backup for ten memory channels that store frequency, offset, and subtone. For odd split or crossband operation, two channels store transmits and receive frequencies independently. Thanks to a nonvolatile operating system, all operating features remain intact — even after the memory backup cell dies. No reprogramming or board swapping is ever necessary.

Separate antenna ports for VHF and UHF are provided. Optional features and accessories are available. For more information, contact Kenwood Communications and Test Equipment Group, 2201 E. Dominguez Street, Long Beach, California 90810.

new compact amplifier

The HL-37V from Tokyo High Power Labs is a compact amplifier designed for 144-MHz fm/SSB hand-helds and portable transceivers. The unit has a built-in variable gain RX pre-amp which uses a low noise GaAs FET.

The unit features an LED power level indicator and front panel with a smoked polycarbonate sub-panel so that LED lights can be recognized only when they're lit. Combined with a hand-held transceiver, the HL-37V boosts power from 2 or 3 watts to 30; rf driving input between 0.5 and 5 watts is accepted. A built-in RX GaAs FET pre-amp allows clearer reception of noisy or weak signals. Gain is continuously variable from -20 to +14 dB, an effective low-pass filter minimizes spurs.

Priced at $39.95, the HL-37V also features the fm/SSB mode select switch on the rear panel. A 1 second delay during changeover from RX to TX prevents relay chatter.

For details, contact Encomm Inc., 1500 Capital Avenue, Plano, Texas 75074.

Circle #504 on Reader Service Card.

overvoltage protection devices

GSE Technologies has introduced a comprehensive line of Surgeguard devices that provide virtually unconditional overvoltage protection for computers, control, communications, measuring, and home entertainment equipment.

Surgeguard devices include the LSA® Line Surge Absorber, which protects against overvoltage originating from signal/data/telephone lines; the Integro®, which protects the CCITT V.24 digital interface of terminals, computers, and modems from overvoltages originating from
Wonderful Wireless Widgets
From Woodbridge

FT 23/73 Mini Handhelds for 2m/440 MHz

FT 727R 2m/440 MHz Dual Band HT

FT 767GX All Mode Transceiver with CAT System

NEW FT 757GX Mark II HF Transceiver with General Coverage Receiver

IC 751A HF Transceiver with General Coverage Receiver

TS 440S HF Transceiver with Antenna Tuner

IC 3200 2m/440 MHz Mobile

TS-940S HF Transceiver with General Coverage Receiver

FT 767GX All Mode Transceiver

IC 275A All-mode Transceiver

R 7000 General Coverage Receiver

NEW Improved TH 215AT 2m Handheld

Micro 2AT Mini 2m Handheld

TH 218/318/418 TH 218/318/418 Mini Handhelds for 2m/220 MHz/440 MHz

R 5000 General Coverage Receiver

FT 767GX 2m/440 MHz Mobile

IC 02AT/03AT/04AT Handheld for 2m/220/440 MHz

R 5000 General Coverage Receiver

FRG 9600 Scanning Receiver for 60-905 MHz FM/AM/SSB

UNARCO-ROHN TRI-EX HY-GAIN

Packet Controllers Kantronics and MFJ

AMPLIFIERS

UNARCO-ROHN TRI-EX HY-GAIN

Packet Controllers Kantronics and MFJ

AMateur Software

Ham Data Software for Commodore Computers

For Orders & Quotes Call Toll Free: 800-336-4799
In New England (except NH): 800-237-0047 In Virginia: 800-572-4201

Reader Service CHECK—OFF Page 106

October 1987
IC-900 mobile transceiver

ICOM's new IC-900 mobile transceiver is the first fiber optic multiband mobile transceiver that allows you to operate up to six bands ranging from 10 meters to 1.2 GHz with one controller. The IC-900 includes an ultra-compact remote controller for remote mounting, an Interface A unit, an Interface B unit, an SP-8 speaker, an HM-14 up/down DTMF microphone, plus fiber optic and controller cables.

ICOM Corporation

multimode TNC

The new Heathkit HK-232 Pack-Kit™ Multimode TNC kit — a versatile addition to Heath's expanding Amateur Radio line — takes the hassle out of getting into RTTY, lets users run CW at speeds from 5 to 99 wpm and works on AMTOR, ASCII, HF, and VHF Packet. It decodes Weather Facsimile pictures onto Epson-compatible printers. The Multi-Mode TNC works Packet in both HF (300 baud) and VHF (1200 baud or up to 9600 baud, with an external modem.)

Add the HK-232 to a radio and computer lets the Amateur get on the air in every mode. It connects to the radio's PTT line, speaker output, and microphone input for interchangeable VHF and HF operation. The same connections work for all other modes including CW.

Amateurs can connect both their HF and VHF rigs at the same time, to allow switching between VHF Packet and copying a bulletin on 40 meters with just the push of a button.

A unique "SIGNAL" command causes the Pack-Kit to determine the correct RTTY, ASCII, or AMTOR mode for the signal the Amateur is receiving.
listening to. It also presets baud rate and mode and will invert the signal if necessary. All the user does is type "OK."

The HK-232 even handles American Standard Baudot (Western Union), Japanese Katakana Morse, Cyrillic (Russian) Morse, and translated versions of Cyrillic and Katakana. The Pack-Kit will copy signals that seemingly baffle other units. The HK-232 features an eight-pole audio bypass filter followed by a limiter discriminator with automatic threshold correction.

No special software is required to operate the HK-232 Pack-Kit TNC. It can be used with any versions of Cyrillic and Katakana specifically for the HK-232 and a ready have or an optional program modem communication package you may add. A step-by-step, easy-to-understand Operation Manual is included.

For more information, send for a free copy of the Heathkit catalog; contact Heath Company, Department 150-945, Benton Harbor, Michigan 49022. (In Canada, contact Heath Company, 1020 Islington Avenue, Department 3100, Toronto, Ontario, M8Z 6Z3.

Circle 303 on Reader Service Card.

trap antennas

Spi-Ro Manufacturing offers a complete line of both dipole and vertical "sloper" multi-band trap antennas that cover all Amateur bands from 10 through 160, meters.

The lightweight, sealed, and weatherproofed traps feature rustproof solid brass terminals that require no soldering or jumper wires. Easy to install in the field, they handle full power, and allow users to work multiple bands with a single antenna. They're suitable for all transmitters, transceivers, and receivers, and are fed with coax via a standard PL-259 connector.

For more information, contact Spi-Ro Manufacturing, Inc., P.O. Box 1538, Hendersonville, North Carolina 28793.

Circle 305 on Reader Service Card.

SAY YOU SAW IT IN HAM RADIO
RATES: Noncommercial ads 10¢ per word; commercial ads 60¢ per word payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS: Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable content. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE: 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

COMING EVENTS: Activities — "Places to go..."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUNCEMENT WHETHER OR NOT YOUR MANIFEST LOCATION INCLUDES CLASSES, EXAMS, MEETINGS, FLEA MARKETS, ETC. ARE WANTED. IF YES, PLEASE SPECIFY WHAT INFORMATION WOULD BE GREATLY APPRECIATED BY OURerokee HAMS WITH LIMITED PHYSICAL ABILITY.

CONNECTICUT: November 5, SCARA Indoor Ham Radio and Computer flea Markets, New Haven Park and Recreation Center, 7 Lesley St., N. Haven. Dealers admitted at 7 AM; buyers from 9 AM to 4 PM. Dealer fees are $10 in advance, $15 at the door. General admission 22 per person. Talk on 146.6 MHz. Reservations for tables must be prepaid by November 4. No reservation by phone. For information or reservations SEE: SCARA, POB 81, N. Haven 06470 or call at 203-347-5601 between 9 AM and 7 PM.

INDIANA: November 9, The Allen County Amateur Radio Technical society presents its 16th annual Fort Wayne Hamfest, Allen County Memorial Coliseum, Coliseum Blvd. 8 AM to 4 PM. Highly recommended for all amateur operators. Children 11 and under free. EX examinations November 7 by advance registration only. Exhibits. Other activities, Nearby motels and restaurants. For more information or reservations contact ACE ARTS Hamfest, POB 10432, Fort Wayne, IN 46835. For information ONLY Berne Kline, K1DZ. Hamfest Chairman (219) 485-0864, to 10 PM EST.

OKLAHOMA: October 4, Salt Plains ARS Eyeball QSO Party sponsored by the Salt Plains ARS and Auxiliary. Central Oklahoma. Talk in on 147.200 or call Gary Greer, K5B3H (316) 462-9407 or POB 142. 316-462-0277 in Kansas. For more information contact Salt Plains ARS, POB 142, 316-462-9407.

ILLINOIS: October 31 and November 1, The Fox River Radio League is sponsoring the ARRL’s Central Division Convention as part of a Hamfest Weekend. Noyes Sports Center all of Fri 64 to St. Charles, 35 minutes west of Chicago. 9 AM to 2 PM both days. Tickets $3.00 advance, $4.00 door for both days. Indoor flea market, forums, seminars and tech demos. Exhibits for all license classes. For advance tickets or information contact Noyes Convention Center, POB 5000, 164 May Street, West Chicago, IL 60185 (212) 431-5818. SASE appreciated. Talk in on 147.545 or 147.200 and 147.210.

ILLINOIS: November 1, The Waukegan CAP will hold its 7th annual Hamfest, Lake County Fairgrounds. Rt’s 120 and 45, Grayslake. 7 AM to 5 PM. Large indoor flea market,QSOs, contests, equipment, seminars, clinics and displays. Free to all. The proceeds will support the Waukegan CAP. For reservations, SASE to CAP, 637 Euclid Street, Waukegan, IL 60085.

MINNESOTA: October 31. The 3rd annual Hamfest and Computer Expo sponsored by the Twin City FM Club, Hemmen Technical Center, North Campus, 9000 Brooklyn Blvd., Brooklyn Center, MN 55430, 701-330-4411 at 7 AM. $4.00 door. Free seminars. For more information contact Mike Danysh, K5YXQ, 757 N. 36th St., Brooklyn Center, MN 55428.

NEW YORK: October 17. The Radio Amateurs of Greater Syracuse will hold their 3rd annual Hamfest, Arts and Home Center, New York State Fairgrounds. Many indoor flea market, tech talks, contests, entertainment. Programs for non-hams. Tailgating area.
short circuits high-performance Yagis

In fig. 11 of K1FO's July, 1987, article, "High Performance Yagis for 432 MHz," a dimension is incorrectly placed. In the upper right hand part of the figure, the dimension "2 5/16" should be moved to the right, to indicate the distance between the end of the T-match section and the end of the driven element.

ladder networks

The following information was omitted from fig. 2 of W3NON's article, "BASIC Program Analyzes Simple Ladder Networks" (August, 1987, page 34):

- RS = RL = 50 ohms
- C1 = C5 = 1100 pF
- C3 = 560 pF
- L2 = L4 = 1.75 μH

wrong call

In table 3 of W1JR's column in the July, 1987, issue, the call "WA5CIV/5," listed under 5760 MHz, should be corrected to read "WASICW/5."

SSTV with C-64

The address of the Journal of the Environmental Satellite Users' Group was shown incorrectly in the October article, "Get on SSTV with the C-64" (page 43). The correct address is 2512 Arch Street, Tampa, Florida 33607. (Tnx WD4MRJ)

Yaesu FRG9600 modification

A complete kit — or circuit boards alone — for the modification described in W6MGI's article, "Add General Coverage to Yaesu's Latest VHF/UHF Receiver" (October, 1985, page 67) is available from Radiokit, P.O. Box 4114, Greenville, NH 03048. The kit is priced at $89.95 plus $3.00 shipping and handling; the boards only, at $7.00 plus $1.25 shipping and handling.

ham radio
California

A-TECH ELECTRONICS
1033 HOLLYWOOD WAY
BURBANK, CA 91505
(818) 845-9203
New Ham Store and Ready to Make a Deal!

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD
CULVER CITY, CA 90230
(213) 239-8003
800-882-1343 trades

New Ham Store and Ready to Make a Deal

Colorado

COLORADO COMM CENTER
525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7373
(800) 227-7373
Stocking all major lines

Kenwood, Yaesu, ICOM, Cushcraft, AE, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881

Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-44-7008

Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more.

One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33757
813-461-4267
Clearwater Branch

West Coast's only full service Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fta. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302
(861) 561-5610

Kenwood, Yaesu, Bird...

9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AE, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60653
312-461-5181

Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-6:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231

Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

SASE for New & Used Equipment List.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
M-F 10-7
SAT 9-5

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040

The Ham Store of New England You Can Rely On.

Michigan

ATLANTIC SOLAR POWER/ENCON (SINCE 1979)
37279 W. SIX MILE RD.
LIVONIA, MI 48152
(313) 591-7745

Call Paul, WDBAHO

Minnesota

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)
TOLL FREE: (800) 328-0250

In Minn: (612) 535-5050

M-F 9 AM-6 PM
Sat 9 AM-5 PM

Ameritron, Bencher, Butternut, ICOM, Kenwood

Missouri

MISSION RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(816) 741-8118

ICOM, Kenwood, Yaesu
Same day service, low prices.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114

Outside Nev: 1 (800) 634-6227

Hours M-F 9-5:30, Sat. 9-3

Dealers: **YOU SHOULD BE HERE TOO!**

Contact Ham Radio now for complete details.

October 1987
Amateur Radio Dealer

New Hampshire

RIVENDELL ELECTRONICS
8 LONDON O N E R R A D
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-7
Closed Sun/Holidays

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH 44092 (Cleveland Area)
216-585-7388
HoJo Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-866-4267

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
731-2-680-61
Same Location for over 30 Years

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110
Stocking all major lines. San Antonio’s Ham Store. Great Prices — Great Service. Factory authorized sales and service.

Mission Communications
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764
Now in Southwest Houston—full line of equipment. All the essentials and extras for the °ham°.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200

Invitation to Authors

ham radio welcomes manuscripts from readers. If you have an idea for an article you’d like to have considered for publication, send for a free copy of the ham radio Author’s Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

Foreign Subscription Agents for Ham Radio Magazine

Canada
Send orders to Ham Radio Magazine
Greenville, N.H. 03048
Prices in Canadian dollars

Belgium
Ham Radio Belgium
Steegweg 416
B-2118 Genk

Germany
Ham Radio Bundesrepublik Deutschland
Postfach 413
N. 7804 A- Enzen

Ireland
Ham Radio Europe
Box 2364
S 968 04 Upplands Vasby

Switzerland
Ham Radio Mundus
Postfach 248
S 7801 Lutrisch

United States
Ham Radio Consulting
Box 2364
8 968 04 Upplands Vasby

Sweden
Ham Radio France
S 7801 Lutrisch

West Germany
Ham Radio Lander
Box 2364
S 7801 Lutrisch

West Germany
Ham Radio Lander
Box 2364
S 7801 Lutrisch

West Germany
Ham Radio Lander
Box 2364
S 7801 Lutrisch

West Germany
Ham Radio Lander
Box 2364
S 7801 Lutrisch

West Germany
Ham Radio Lander
Box 2364
S 7801 Lutrisch

West Germany
packet communications

The answer is "definitely not!"
The question is "Is this guy hung up on digital stuff, or what?"

Hung up on digital stuff? No. But enthused? Absolutely! You see, I’m a follower of the old adage that there’s no such thing as too much knowledge. I’ve never learned anything that I haven’t found useful at one time or another, so I’m all for grabbing any knowledge I’m capable of absorbing. (And it’s surprising how much you retain, even when you think you’re in over your head.)

At the same time, however, I realize that not everyone shares my enthusiasm for “all things, great and small.” Hence my opening answer to questions that might come up about subjects covered in pursuit of the goals of this column. As stated originally (June, 1987), the purpose of Elmer’s Notebook is, first, to address the immediate needs of Elmers, Novices, and anyone else coping with the “Novice Enhancement” rules change; and second, to continue with as many subjects as needed to help Novices (or anyone else, for that matter) upgrade to a higher class of license or simply enjoy Amateur Radio more.

Along these lines, I’ll cover whatever topics I think will be useful. (I’m certainly open to suggestions.) So if a particular column doesn’t fit into your concept of what Amateur Radio means to you, read it anyway so you’ll have something filed away as “Maybe Useful — Someday.” Hang in there — I’ll get to your favorite subject sometime, especially if you’ll tell me what it is! Now, let’s take a look at packet radio.

what’s a packet?

According to some dictionaries, a packet is “a small package that contains anything. . . .” An electronics dictionary defines a packet as “a group of binary digits, including data and control elements, which is switched and transmitted as a composite whole.”

Though both definitions apply to Amateur packet radio in a general way, let’s see if we can be more specific without letting the technicalities overwhelm us. Describing a packet as “a package that contains data and control elements” sounds good, but isn’t that what RTTY, voice, and CW messages are? After all, they include the information to be transferred (the message), the control information (the address for delivery, the identification of the sender, and a word count for checking accuracy). The answer, then, is "Yes, but. . . ."

The rapid growth of packet radio began with a coincidence of timing that placed the newly popular personal computer within reach of many enthusiasts and the relaxing or rewriting of Amateur rules to allow data communications of greater bandwidths on the VHF and UHF bands (increased bandwidths allow higher speed communications). It doesn’t really matter which mode you’re using if you’re limited to a top speed of 100 baud or so on the hf bands; RTTY, AMTOR, and ASCII can handle that speed with ease. The higher speeds permitted on 2 meters and above were attractive, but the need for something better than the digital modes used on the lower bands was obvious. For one thing, RTTY and its cousins had no provision for rapid automatic relaying of data if there wasn’t a direct path between the originator and the destination. The instructions required to do this (called “overhead”) could end up longer than the text that was to be sent.

In their search for better means of transferring data between computers at scattered locations, commercial developers devised systems that provide fast, accurate transfer of data via telephone links, cable systems, and/or microwave or satellite relays. They’re not only accurate and fast; they’re transparent to the user — i.e., you feed your message into the system, and the system does the rest. Networks and repeaters are also accommodated in the language of these systems.

Such systems and languages are called protocols. “Protocol” means the same thing in packet radio as it does in any other context; it’s a set of prearranged operating procedures, signals, and language that make sure you understand precisely how I’m going to say something, what I mean when I say it that way, and how you should respond when I say it. As long as we both stick to the protocol, the chance for misunderstanding (i.e., errors) is small.

One very successful digital protocol
is called High-level Data Link Control, or HDLC. Obviously, you don’t have to know all about HDLC or the other protocols used to enjoy packet radio, but a basic understanding will help you see how it all fits together. (Beside, sooner or later you’ll start wondering, “How do they do that?”)

HDLC is part of a broader protocol called X.25, which covers several “layers” of packet radio, from the local level up through several types of networks. I’ll not go into the history of how Amateurs got packet radio going, except to say that several individuals and organizations realized that a standard was needed if packet was to become more than a curiosity. As a result of a series of conferences, the X.25 protocol was adopted, with some minor modifications, as AX.25 (the A is for Amateur, obviously). Predictably, once a standard was established, the mode — and the equipment industry to supply it — mushroomed. If you’re interested in more information about the birth and development of growth of packet radio, see “for further reading,” at the end of this column.

The Amateur packet radio protocol isn’t really very complex (see fig. 1). Each packet frame is made up of well-defined sections called fields. Each has a specific job to do, as defined by the protocol.

The first field is a flag. In digital language, a flag is an arrangement of bits that attract the attention of the data-processing equipment. In AX.25, the protocol tells the sending equipment, “When you want to get the other guy’s attention, send eight bits arranged in this manner (01111110).” The receiving station has been told, “Every time you see eight bits arranged in this particular pattern, pay attention!”

The rest of the packet is checked to make sure that this pattern never occurs anywhere except at the start or end of a packet. What the first flag says, in essence, then, is “This is the start of a packet.”

Next is an address field, which contains both the identification of the originator and the destination. One of the nice features of AX.25 is that it recognizes Amateur call signs as proper addresses.

The third field presents control information. Control information can vary, depending upon the job it has to perform, but the most common types in this field include information for the user, supervisory information for controlling data flow, and “unnumbered” information for controlling the link (if any).

Next is a protocol identifier field (PID) that identifies the network-layer protocol being used (if any).

Then comes the information or message field. This is where your “Having a great time, wish you were here” message goes. There’s room for 2048 bits in this field, but you don’t have to use all of them. Most of the packets I’ve seen consist of two to three lines of text on a normal computer screen. Each line requires approximately 640 bits for an 80-character-wide screen, so a three-line packet message would use up to 1920 bits.

The field following the message is a frame check sequence (FCS). (Didn’t I warn you that packet radio was loaded with “alphabet soup”?) The FCS tests the message for accuracy. It doesn’t care if you misspelled or mistyped a word; it simply checks to confirm that it received everything that was sent. This is done by a formula that I won’t go into here, but the microprocessor in your TNC (terminal node controller)* knows all about it. Basically, the sending station calculates and sends a number and the receiving station performs the same calculation to see if it gets the same number. If it does, the receiving station sends an acknowledgment, or “ack”; if it doesn’t, no acknowledgment is sent, and the sending station repeats the packet, saying, in essence, “I’m going to keep on doing this until you get it right!”

The last field is a flag that signifies “The End.”

This sounds like heavy stuff, but the microprocessor handles it so fast that you don’t even know it’s happening. A packet passed between two Amateurs chatting via their keyboards can be sent and acknowledged in less than 1/4 second.

hooking it up

The output from the TNC is in the form of audio tones, which are applied to the modulator in the transmitter just as any other audio would be. The output from the receiver is also audio tones, which the TNC processes to provide binary digits (pulses) for the microprocessor.

Commercially available TNCs come equipped with instructions for connection to your computer, and cables

* A terminal is your keyboard and screen; a node is a connection point to a network or circuit; and the controller does just that — it controls the data flow by putting information into packets according to the protocol in use.

October 1987 101
Have you been trawling the bounding main for a new product? We have just netted it—the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $595.00. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $59.95. This module allows complete offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.

Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.

$595.00 each
$59.95 DTMF module
$149.95 Digital CTCSS module

Now available with Digital CTCSS

COMMUNICATIONS SPECIALISTS, INC.
426 West Taft Avenue • Orange, CA 92665-4286
Local (714) 998-3021 • FAX (714) 974-3420
Entire U.S.A. 1-800-854-0547
may or may not be supplied. If they’re not, you can make or perhaps buy some that will do the job. Hookup is frequently just as simple as plugging the cable into the serial port of the computer and using software that makes your computer act like a dumb terminal.

On the radio end, it’s as simple as applying audio and push-to-talk (PTT) connections to the microphone (or auxiliary) input for the transmitter, and then plugging a connector into the external speaker plug on the receiver. Connectors vary in size, so you may have to shop for the right size to fit your radio. Many packet controllers use a nine-pin connector for the audio output/input to and from the radio, so you’ll have to connect the wires from the microphone input and speaker output to this connector. It’s a good idea to provide a termination for the radio’s speaker to provide impedance matching and prevent distortion. Figure 2 shows one way of doing this.

what can I do with packet?

Packet is the fastest-growing mode of Amateur communication today, and more uses for it emerge all the time. In addition to just chatting with your nearby friends, you can send packets over digipeaters (digital repeaters) to distant stations (up to eight repeats can be handled by the packet protocol). You can perform public service at events or in emergencies; packet radio was used in the 1984 Summer Olympics in Los Angeles, in the field at forest fires in California, and in innumerable emergencies and emergency-preparedness drills nationwide. There are hundreds of packet bulletin boards (PBBS) throughout the country, and stations called “Gateways” that provide access to satellites and to UHF repeaters that increase the baud rate and allow rapid transfer of packet information over vast distances. Packet will also handle graphics, which opens even more possibilities!

what frequencies?

Like other digital modes, packet can be used on 10 meters between 28.1 and 28.3 MHz. Novices can listen, but not operate, on several frequencies used on 2 meters; 145.01 MHz is the most popular, with 145.03, 145.05, 145.07, and 145.09 not far behind.

Several frequencies (223.42 to 223.90 MHz) on the 220-MHz band have been suggested for Novice packet operation. 223.30 has been suggested as a national packet simplex frequency (unless it’s in use by a local repeater). Note that 223.50 is the national simplex frequency for voice fm, so don’t use packet on that one.

Parts of the 220-MHz band have been used for developing experimental high-speed (9600 baud or higher) packet networking.

With Novice privileges now including packet on 220 MHz, the number of digipeaters and voice repeaters should increase, and local activity should grow rapidly. Check with local clubs for new activity in your area.

Here’s a helpful tip for when you get your TNC hooked up and want to see things happening on your screen: set the Monitor Mode to ON. This will let you “read the mail” on the bands on which you can’t transmit. Your instruction book will tell you how to do this — it’s usually as simple as entering a command (usually MONON or MALL) from the keyboard.

This has been a thumbnail sketch of what makes packet radio an effective and entertaining mode. There’s much left to tell, however, and I’ll do that in a future column.

for further reading

The Amateur magazines have featured many excellent articles on packet radio. The following books contain a wealth of information about the development, operating techniques, and the future possibilities of this mode. All but The Digital Novice, which addresses several digital modes, are dedicated to packet radio; the first two are ideal for beginners in packet radio, regardless of license class. All are available from ham radio’s Bookstore, Greenville, New Hampshire 03048.

*Get ***CONNECTED to Packet Radio,* by Jim Grubbs, K9EI.

The Digital Novice, by Jim Grubbs, K9EI.

ARRL Fifth Computer Networking Conference Papers, 1986.

references

Give the Gift of HAM RADIO this Holiday Season!

Giving HAM RADIO Magazine is both fun and thoughtful.

One Year/12 issues

$19.95 SAVE OVER 10%

FOR ONE GIFT SUBSCRIPTION
OR RENEWAL

$16.95 SAVE 25%

FOR TWO OR MORE GIFT SUBSCRIPTIONS OR EXTENSIONS
INCLUDING YOUR OWN

A handsome gift card will be sent if your order is received before December 15, 1987

Every month your Ham friend will be reminded of your gift as they read through the latest issue of HAM RADIO Magazine.

Staying on top of the ever changing world of electronics is tough. With a subscription to HAM RADIO, however, you get all the latest breakthroughs in electronic design and developments as they happen — not years later. Each issue is packed with theory, state-of-the-art projects and the latest designs. Plus plenty more.

The Special ANTENNA issue in May, VHF/UHF issue in July and the RECEIVER issue in November alone are worth the price of a subscription!

You also get monthly columns by Orr, Reisert, Stonehocker, Carr and McMullen covering from antennas to zener diodes and repair techniques.

There’s no time like now to give the present of HAM RADIO Magazine for that hard-to-buy-for ham friend. While you’re at it, why not renew your own subscription and take advantage of the special low one year rate.

1987 GIFTS AT 1985 PRICES!

Please enter my one year gift/renewal subscription(s) to Ham Radio Magazine as follows:

First gift or renewal $19.95 Save $3
Two or more gifts or renewals $16.95 Save $6

FOR EXTRA FAST SERVICE, CALL TOLL FREE TO ORDER YOUR GIFT SUBSCRIPTIONS OR BOOKS.
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number and call the number provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
</table>

Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before November 30, 1987.

READER SERVICE

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>188</td>
<td>90</td>
<td>113</td>
<td>90</td>
</tr>
<tr>
<td>150</td>
<td>56</td>
<td>207</td>
<td>26</td>
</tr>
<tr>
<td>267</td>
<td>84</td>
<td>192</td>
<td>92</td>
</tr>
<tr>
<td>132</td>
<td>42</td>
<td>170</td>
<td>78</td>
</tr>
<tr>
<td>123</td>
<td>30</td>
<td>144</td>
<td>106</td>
</tr>
<tr>
<td>210</td>
<td>40</td>
<td>156</td>
<td>64</td>
</tr>
<tr>
<td>169</td>
<td>76</td>
<td>167</td>
<td>72</td>
</tr>
<tr>
<td>184</td>
<td>86</td>
<td>165</td>
<td>55</td>
</tr>
<tr>
<td>136</td>
<td>49</td>
<td>172</td>
<td>81</td>
</tr>
<tr>
<td>159</td>
<td>77</td>
<td>179</td>
<td>84</td>
</tr>
<tr>
<td>168</td>
<td>74</td>
<td>158</td>
<td>66</td>
</tr>
<tr>
<td>160</td>
<td>77</td>
<td>167</td>
<td>72</td>
</tr>
<tr>
<td>162</td>
<td>86</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>181</td>
<td>85</td>
<td>145</td>
<td>53</td>
</tr>
<tr>
<td>171</td>
<td>73</td>
<td>118</td>
<td>35</td>
</tr>
<tr>
<td>175</td>
<td>82</td>
<td>193</td>
<td>92</td>
</tr>
<tr>
<td>196</td>
<td>95</td>
<td>199</td>
<td>102</td>
</tr>
<tr>
<td>198</td>
<td>95</td>
<td>164</td>
<td>72</td>
</tr>
<tr>
<td>187</td>
<td>95</td>
<td>180</td>
<td>85</td>
</tr>
<tr>
<td>191</td>
<td>93</td>
<td>193</td>
<td>84</td>
</tr>
<tr>
<td>165</td>
<td>72</td>
<td>129</td>
<td>40</td>
</tr>
<tr>
<td>126</td>
<td>39</td>
<td>148</td>
<td>55</td>
</tr>
<tr>
<td>148</td>
<td>55</td>
<td>156</td>
<td>55</td>
</tr>
<tr>
<td>135</td>
<td>47</td>
<td>142</td>
<td>26</td>
</tr>
<tr>
<td>122</td>
<td>26</td>
<td>127</td>
<td>43</td>
</tr>
<tr>
<td>186</td>
<td>89</td>
<td>129</td>
<td>40</td>
</tr>
<tr>
<td>129</td>
<td>40</td>
<td>135</td>
<td>47</td>
</tr>
<tr>
<td>152</td>
<td>26</td>
<td>127</td>
<td>43</td>
</tr>
<tr>
<td>142</td>
<td>26</td>
<td>129</td>
<td>40</td>
</tr>
<tr>
<td>127</td>
<td>43</td>
<td>129</td>
<td>40</td>
</tr>
<tr>
<td>154</td>
<td>69</td>
<td>129</td>
<td>40</td>
</tr>
<tr>
<td>194</td>
<td>31</td>
<td>120</td>
<td>31</td>
</tr>
<tr>
<td>131</td>
<td>62</td>
<td>121</td>
<td>31</td>
</tr>
<tr>
<td>111</td>
<td>62</td>
<td>121</td>
<td>31</td>
</tr>
<tr>
<td>130</td>
<td>62</td>
<td>111</td>
<td>62</td>
</tr>
</tbody>
</table>

2x4Z BASE REPEATER ANTENNA

THE HIGHEST GAIN DUAL BAND BASE/REPEATER ANTENNA

HIGH POWER 200 WATTS

FREQUENCY: BROAD BAND 140-170 MHz 410-470 MHz

GAIN:
- VHF - 8.2dBi
- UHF - 11.5dBi

VSWR: 1.1-1.2 or less

CONNECTOR: N TYPE FEMALE

LIGHTNING PROTECTION GROUNDED DIRECT

LENGTH: 16 FT.
WEIGHT: 5 LBS. 3 OZ.
WIND LOAD: 90 MPH
MOUNTING: UP TO 2 IN.
MAST CAN SIMULCAST ON BOTH BANDS

WATERPROOF CONNECTING JOINTS

UPS SHIPPABLE

AMATEUR SPECIAL

PRODUCT REVIEW/NEW PRODUCTS

<table>
<thead>
<tr>
<th>Product</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>308</td>
<td>Advanced Computer Controls 94</td>
</tr>
<tr>
<td>302</td>
<td>Communications Specialists 92</td>
</tr>
<tr>
<td>306</td>
<td>CSE Technologies 92</td>
</tr>
<tr>
<td>304</td>
<td>Encomm 92</td>
</tr>
<tr>
<td>301</td>
<td>Heath Company 94</td>
</tr>
<tr>
<td>305</td>
<td>ICCOM America, Inc 94</td>
</tr>
<tr>
<td>307</td>
<td>Kantronics 91</td>
</tr>
<tr>
<td>303</td>
<td>MFJ Enterprises 92</td>
</tr>
<tr>
<td>309</td>
<td>Sun-Ro Manufacturing, Inc 95</td>
</tr>
</tbody>
</table>
MISSOURI RADIO CENTER

102 N.W. Business Park Lane, Kansas City, MO 64150 • 816-741-8118

1-800-821-7323

TRADE INS ACCEPTED

MasterCard — VISA — COD Welcome

KENWOOD

- **TS940S “DX-cellence”**
 - Programmable Scanning
 - High Stability, Dual Digital VFO's
 - 90 Channel Memory
 - General Coverage Receiver

- **KS400S “DX-CITING”**
 - 100% Duty Cycle
 - 10 memories
 - Direct Keyboard Entry
 - Optional Built-in AT

On Sale Now, Call For Price!

KENWOOD

- **TM-3530A**
 - 220 MHz MOBILE FM TRANSCEIVER
 - 220-225 MHz with 25 Watts
 - 7-Digit Telephone No. Memory
 - Direct Frequency Entry
 - 23-Channel Memory

KENWOOD

- **TH-215A**
 - FULL FEATURED 2m HT
 - 141-148 MHz Receive
 - 144-148 MHz Transmit
 - 5 Watts Output (SW Optional)
 - 10 Memories
 - Built-in CTSS Encoder
 - Nine Types of Scanning

YAESU

- **FT-757GX “CAT SYSTEM”**
 - All Mode Transceiver
 - Dual VFO's
 - Full Break-in CW
 - 100% Duty Cycle

CALL FOR BEST PRICE!

- **FT-767GX HF/VHF/UHF BASE STATION**
 - Add Optional 6m, 2m & 70cm Modules
 - Dual VFO's
 - Full CW Break-in
 - Lots More Features

ICOM

- **IC-735 “NEW”**
 - 100 kHz - 30 MHz
 - FM Standard
 - 32 Memories
 - QSK (Nominal Speed 48 WPM)

Can you put a price tag on reliability? Now ICOM offers a ONE YEAR WARRANTY on its HF Transceivers & Receivers purchased after August 1, 1986.

- **IC-751A “NEW”**
 - Full 25W, 5W low
 - 21 memories
 - Subs/tones built-in

RX 215-230 MHz CALL FOR BEST PRICE

ICOM

- **IC-38A**
 - 140-160 MHz
 - 10 Memories
 - 1W, 1.5W optional
 - 32 tones built-in

Kamtronics

- **Kamtronics All Mode**
 - CW, RTTY, ASCII, AMTOR, HF & VHF Packet
 - RS-232 TTL, Universal Compatibility
 - Transmit and Receive CW 6-99 wpm, RTTY/ASCII 45-300
 - Baud, ARG, FEC, SELFEC, Listen ARQ, VHF and HF Packet

MFJ

- **MFJ-1274 TNC 2 PACKET RADIO**
 - VHF and HF Packet
 - Precision Tuning Indicator
 - AX.25 Level 2 Version 2 Software
 - TTL Serial Port

- **PK 232**
 - Make any RS-232 compatible computer or terminal a complete digital operating position.

Morse, Baudot, ASCII, AMTOR, Packet

- Loaded with features.

NOVICES

ARE YOU CONFUSED ABOUT YOUR NEW PRIVILEGES? CALL US FOR THE UP-TO-THE-MINUTE INFORMATION AND ASSISTANCE WITH YOUR GEAR.

AFA

- **PK 232**
 - Make any RS-232 compatible computer or terminal a complete digital operating position.

Morse, Baudot, ASCII, AMTOR, Packet

- Loaded with features.

ASTRON CORPORATION

- **Power Supply**
 - R57A $48
 - R512A $68
 - R520A $88
 - R520M $105
 - R520M $125
 - R530A $133
 - R535A $149
 - R535M $165
 - R550A $189
 - R550M $215
 - R550A $219
 - R550M $259

Call Toll Free — 9am - 6pm Mon.- Fri., 9am - 2pm Sat. In Missouri Call — 816-741-8118

MOST ORDERS SHIPPED SAME DAY
NEW POCKET SIZE
SIZE: 4” H x 3.5” W x 1” D
MADE IN USA

$99.95 - $150.00

FREQUENCY COUNTERS TO 1.3 GHZ

8 LED DIGITS • 2 GATE TIMES
ANODIZED ALUMINUM CABINET
INTERNAL NI-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY
AC-DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as; Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden “bug” transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
#1200H/KC Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions .. $99.95
#1200HC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $137.50
#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $150.00

ACCESSORIES:
#TA-100S Telescoping RF pick-up antenna with BNC connector .. $12.00
#P-100 Probe, direct connection 50 ohm, BNC connector .. $18.00
#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories .. $10.00

ORDER FACTORY DIRECT
1-800-327-5912

OPTOelectronics inc
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

Orders to US and Canada add 5% of total ($2 min., $10 max)
Florida residents add 5% sales tax. COD fee $2.

OPTOelectronics inc
FLA (305) 771-2050

AVAILABLE NOW!
Yaesu's FT-736R. Because you never know who's listening.

Why just dream of talking beyond earth?

You see, the FT-736R is the most complete, feature-packed rig ever designed for the serious VHF/UHF operator. But you'd expect this of the successor to our legendary FT-726R.

For starters, the FT-736R comes factory-equipped for SSB, CW and FM operation on 2 meters and 70 cm (430-450 MHz!), with two additional slots for optional 50-MHz, 220-MHz, or 1.2-GHz modules.

Crossband full duplex capability is built into every FT-736R for satellite work. And the satellite tracking function (normal and reverse modes) keeps you on target through a transponder.

The FT-736R delivers 25 watts RF output on 2 meters, 220 MHz, and 70 cm. And 10 watts on 6 meters and 1.2 GHz. Store frequency, mode, PL frequency, and repeater shift in each of the 100 memories.

For serious VHF/UHF work, use the RF speech processor. IF shift, IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker. Three-position AGC selection. Preamp switch for activating your tower-mount preamplifier. Even an offset display for measuring observed Doppler shift on DX links.

And to custom design your FT-736R station, choose from these popular optional accessories: Iambic keyer module. PTS-8 CTCSS encode/decode unit. FVS-1 voice synthesizer. FMP-1 AQS digital message display unit. 1.2-GHz ATV module. MD-1B8 desk microphone. E-736 DC cable. And CAT (Computer Aided Transceiver) system software.

Discover the FT-736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because you never know who's listening.
Compact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"—that special feeling you get every time you turn the power on!

- Covers All Amateur bands
- General coverage receiver tunes from 100 kHz – 30 MHz. Easily modified for HF MARS operation.
- Direct keyboard entry of frequency
- All modes built-in USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Memory Code.
- Built-in automatic antenna tuner (optional) Covers 80-10 meters.
- VS-1 voice synthesizer (optional)

- Superior receiver dynamic range
- Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range. (500 Hz bandwidth on 20m)
- 100% duty cycle transmitter
- Super efficient cooling permits continuous key-down for periods exceeding one hour. RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)

- Adjustable dial torque
- 100 memory channels
- Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.
- TU-8 CTCSS unit (optional)
- Subtone is memorized when TU-8 is installed.
- Superior interference reduction
- IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/TXT, and optional filters fight QRM.
- MC-43S UP/DOWN mic. included
- Computer interface port
- 5 IF filter functions
- Dual SSB IF filtering
- A built-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- VOX, full or semi break-in CW
- AMTOR compatible

Kenwood takes you from HF to OSCAR!

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.