compact cw transceiver for 20 meters
The IC-761 ushers in an exciting new era of amateur radio communications; an era filled with all the DX'ing, contesting, and multi-mode operating pleasures of a fresh new sunspot cycle. The innovative IC-761 includes all of today's most desired features in a single full-size cabinet. This is ham radio at its absolute best!

Work the World. The IC-761 gives you the competitive edge with standard features including a built-in AC power supply, automatic antenna tuner, 32 fully tunable memories, self-referencing SWR bridge, continuously variable RF output power to 100 watts in most modes, plus much, much more!

Superb Design. Uncompromised Quality. A 105dB dynamic range receiver features high RF sensitivity and steep skirted IF selectivity that cuts QRM like a knife. A 100% duty cycle transmitter includes a large heatsink and internal blower. The IC-761 transceiver is backed with a full one-year warranty and ICOM's dedicated customer service with four regional factory service centers. Your operating enjoyment is guaranteed!

All Bands, All Modes Included. Operates all HF bands, plus it includes general coverage reception from 100kHz to 30MHz. A top SSB, CW, FM, AM, and RTTY performer!

Passband Tuning and IF Shift plus tunable IF notch provide maximum operating flexibility on SSB, CW, and RTTY modes. Additional features include multiple front panel filter selection, RF speech processor, dual width and adjustable-level noise blanker, panel selectable low-noise RF preamp, programmable scanning, and all-mode squelch. The IC-761 is today's most advanced and elaborate transceiver!

Direct Frequency Entry Via Front Keyboard or enjoy the velvet-smooth tuning knob with its professional feel and rubberized grip.

Special CW Attractions include a built-in electronic keyer, semi or full break-in operation rated up to 60 WPM. CW narrow filters and adjustable sidetone.

Automatic Antenna Tuner covers 160-10 meters, matches 16-150 ohms and uses high speed circuits to follow rapid band shifts.

Complementing Accessories include the CI-V computer interface adapter, SM-10 graphic equalized mic, and an EX-310 voice synthesizer.

You're The Winner with the new era IC-761. See the biggest and best HF at your local ICOM dealer.

ICOM America, Inc., 2380-116th Ave. N.E., Bellevue, WA 98004 Customer Service Hotline (800) 454-7619
3150 Premier Drive, Suite 126, Irving, TX 75063 / 1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349
ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 70140.
KPC-4 Gives Simultaneous Connects, Digipeating, and Gateway On Two VHF Radio Ports

KPC-4™ is your GATEWAY into VHF Packet flexibility. KPC-4 features two fully functional packet ports, digipeating on each port, VHF gateway between ports, and an RS-232 computer port.

What's more — digipeating and gateway operations occur simultaneously while you're connected on one or both ports.

KPC-4's RS-232/TTL terminal interfacing provides universal compatibility to all computers, including Commodores and PC compatibles. Stream switching provides for access to both radio ports, each of which supports the ARRL adopted AX.25 protocol.

KPC-4 also contains the popular Personal Packet Mailbox™ feature, (optional on all other Kantronics Packet Communicators). You or others can leave and retrieve messages from the Personal Packet Mailbox.

Only KPC-4 lets you bridge two frequencies on one band, and operate crossband.

For more information about KPC-4 Dual Port Communicator, contact Kantronics or your Kantronics dealer.

Suggested Retail $329.00.

KPC-4 Dual Port Features

- Two simultaneous operable VHF radio ports, both ports operating at 1200 baud.
- Automatic gateway operation between ports.
- Command driven, like KPC-2 or KAM, with over 100 software commands.
- Kantronics Personal Packet Mailbox feature included.
- External modem connection point provided for future use.

- RS-232 or TTL level operation by jumper selection.
- 32K bytes RAM, 32K bytes EEPROM, 512 bytes EEPROM, 68B03X processor.
- Kantronics' industry standard extruded aluminum case.
- ARRL adopted AX.25 protocol.
- FCC part 15 compliant.
Matching Pair

The TS-711A 2 meter and the TS-811A 70 centimeter all mode transceivers are the perfect rigs for your VHF and UHF operations. Both rigs feature Kenwood's new Digital Code Squelch (DCS) signaling system. Together, they form the perfect "matching pair" for satellite operation.

- Highly stable dual digital VFOs. The 10 Hz step, dual digital VFOs offer excellent stability through the use of a TCXO (Temperature Compensated Crystal Oscillator).
- Large fluorescent multi-function display. Shows frequency, RIT shift, VFO A/B, SPLIT, ALERT, repeater offset, digital code, and memory channel.
- 40 multi-function memories. Stores frequency, mode, repeater offset, and CTCSS tone. Memories are backed up with a built-in lithium battery.

- Versatile scanning functions. Programmable band and memory scan (with channel lock-out). "Center-stop" tuning on FM. An "alert" function lets you listen for activity on your priority channel while listening on another frequency. A Kenwood exclusive!
- RF power output control. Continuously adjustable from 2 to 25 watts.

- Automatic mode selection. You may select the mode manually using the front panel mode keys. Manual mode selection is verified in International Morse Code.
- All-mode squelch.
- High performance noise blanker.
- Speech processor. For maximum efficiency on SSB and FM.
- IF shift.
- "Quick-Step" tuning. Vary the tuning characteristics from "conventional VFO feel" to a stepping action.
- Built-in AC power supply. Operation on 12 volts DC is also possible.
- Semi break-in CW, with side tone.
- VS-1 voice synthesizer (optional) More TS-711A/811A information is available from authorized Kenwood dealers.

Optional accessories:
- IF-10A computer interface
- IF-232C level translator
- CD-10 call sign display
- SP-430 external speaker
- VS-1 voice synthesizer
- TU-5 CTCSS tone unit
- MB-430 mobile mount
- MC-60A, MC-80, MC-85 deluxe desk top microphones
- MC-48B 16-key DTMF, MC-43S UP/DOWN mobile hand microphones
- SW-200A/B SWR/power meters: SW-200A 1.8-150 MHz
- SW-200B 140-450 MHz
- SWT-1 2-m antenna tuner
- SWT-2 70-cm antenna tuner
- PG-2U DC power cable

Complete service manuals are available for all Tho-Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
contents

8 compact 20-meter CW travelradio
 Rick Littlefield, K1BQT

29 compact travel antenna
 Rick Littlefield, K1BQT

37 ham radio techniques:
time and frequency station WWVS
 Bill Orr, W6SAI

45 NBS survey

53 the TEXNET packet-switching network
 part 3: software overview
 Thomas H. Aschenbrenner, WB5PUC,
 and Thomas C. McDermott, N5EG,
 Texas Packet Radio Society

69 practically speaking:
build your own
time-domain reflectometer
 Joe Carr, K4IPV

75 VHF/UHF world:
microwave portable operation
 Joe Reisert, W1JR

86 test DBMs for diode leakage
 Cliff Klinert, WB6BTH

95 NEW COLUMN:
elmer's notebook
 Tom McMullen, W1SL

98 advertisers index
90 ham mart

6 comments
4 reflections

66 DX forecaster
26 short circuits

92 flea market

June 1987
REFLECTIONS

a whole new generation of ‘‘designers’’

I just read an honest, provocative article in the April, 1987 issue of Folio, a magazine for people who publish and produce magazines, about how some people expect to become editors and publishers simply by purchasing desktop publishing systems. In short, the author of that article said — and I fully agree — that a piece of equipment and some software do not an editor make.

I’m wondering if the same thing can be said about electrical circuit designers. Take a PC and any of your better interactive design software, be it for filters, amplifier stages, or receivers. Add some form of schematic capture capability — and voila! A full-fledged designer!

Well, maybe

Someone with reasonable intelligence (i.e., able to form cause-and-effect conclusions), when provided with a PC and some interactive software, will probably generate some pretty decent designs. You might even get those designs from him a lot faster than you’d get them from the generation of designers and engineers of which I consider myself a part.

For example, let’s say you buy a relatively sophisticated piece of filter synthesis software with a well-thought-out, user-friendly, menu-driven program. A basic circuit is provided as part of a learning tutorial. Hit one of the function keys and the circuit response pops up on the screen, replete with MHz and dB. If the rejection or bandwidth or ripple isn’t exactly what you want, back you go to the original menu; you simply turn the knob and watch the response take all different shapes.

Depending upon the sophistication of the software, you might have to do no more than enter your wish list; the computer will not only provide the circuit topology (after going through all the possible choices — Chebyshev, Butterworth, Elliptical, Gaussian, etc.) quietly and rapidly, but will determine the number of poles, matching sections, and component values as well. Of course, it’s possible that your wish list will exceed even Fano’s limitation (a fundamental mathematical relationship which says, in essence, that you can’t get something for nothing). But then if the software is worth its salt, it will gently remind you that what you desire isn’t exactly possible, and ask whether you might be willing to consider modifying the parameters to conform just a little bit more with reality.

Basically, then, what we have is a new generation of designers who don’t necessarily need to rely on a storehouse of knowledge about resistors that aren’t, coils that need to be “opened up” just a little more, box covers that do have an effect, and all other the peculiarities one can encounter in the analog world.

Though this makes me feel somewhat like a relic (I still enjoy “hands-on” designing), I suspect many of us older (read that “more mature”) Radio Amateurs share the same feeling. However, in the case of circuit design software, I believe real progress has occurred: tools have been developed by the older generation that can be used by the younger generation to effect better and more efficient designs more quickly than ever before.

Rich Rosen, K2RR
Editor-in-Chief
Here's One for You!

TM-221A/421A

2 m and 70 cm FM compact mobile transceivers

The all-new TM-221A and TM-421A FM transceivers represent the “New Generation” in Amateur radio equipment. The superior Kenwood GaAs FET front end receiver; reliable and clean RF amplifier circuits, and new features all add up to an outstanding value for mobile FM stations! The optional RC-10 handset/control unit is an exciting new accessory that will increase your mobile operating enjoyment!

- TM-221A provides 45 W. TM-421A is the first 35 W 70 cm mobile! Both models have adjustable 5 W low power.
- Selectable frequency steps for quick and easy QSY.
- TM-221A receives from 138-173.995 MHz. This includes the weather channels! Transmit range is 144-148 MHz. Modifiable for MARS and CAP operation. (MARS or CAP permit required.)
- The TM-421A covers 438-449.995 MHz. (Specifications guaranteed for Amateur band use only.)
- Built-in front panel selection of 38 CTCSS tones. TSU-5 programmable decoder optional.
- Simplified front panel controls makes operating a snap!
- 16 key DTMF hand mic., mic. hook, mounting bracket, and DC power cable included.
- Packet radio compatible!
- Kenwood non-volatile operating system. All functions remain intact even when lithium battery back-up fails. (Lithium cell memory back-up—est. life 5 yrs.)
- 14 full-function memory channels store frequency, repeater offset, sub-tone frequencies, and repeater reverse information. Repeater offset on 2 m is automatically selected. There are **two** channels for “odd split” operation.
- Programmable band scanning.
- Memory scan with memory channel lock-out.
- Super compact: approx. 1-1/2"H x 5-1/2"W x 7"D.
- New amber LCD display.
- Microphone test function on low power.
- High quality, top-mounted speaker.
- Rugged die-cast chassis and heat sink.

Optional Accessories:

- RC-10 Multi-function handset remote controller
- PG-4G Extra control cable, allows TM-221A full duplex operation
- PS-50/PS-430 DC power supplies
- TSU-5 Programmable CTCSS decoder
- SW-100A Compact SWR/power/volt meter (18-150 MHz) * SW-100B Compact SWR/power/volt meter (140-450 MHz) * SW-200A SWR/power meter (18-150 MHz) * SW-200B SWR/power meter (140-450 MHz) * SWT-1 Compact 2 m antenna tuner (200 W PEP)
- SWT-2 Compact 70 cm antenna tuner (200 W PEP)
- SP-40 Compact mobile speaker
- SP-50B Mobile speaker
- PG-2N Extra DC cable
- PG-3B DC line noise filter
- MC-55 (8-pin) Mobile mic. with gooseneck and time-out timer
- MA-4000 Dual band antenna with duplexer (mount not supplied)
- MB-201 Extra mobile mount

Specifications and prices subject to change without notice or obligation. Complete service manuals are available for all Kenwood transceivers and most accessories.
Many radio hobbyists have spent long hours building and enjoying their collections of QSL cards and verification letters. Unfortunately, few think about the long term importance of their collections.

The Committee To Preserve Radio Verifications is a five-person group whose goal is to preserve verifications belonging to hobbyists who are no longer active. Through direct contact with inactive listeners and the families of deceased hobbyists, and by a public information campaign, the committee seeks out existing QSL collections that might otherwise be lost and takes steps to preserve them.

If you are interested in donating your QSL collection to the committee or if you know of others who might be interested in the group’s work, please contact:

JERRY BERG, Chairperson
38 Eastern Avenue
Lexington, MA 02173
(617) 861-8481

Dear HR:

The original “groundplane antenna” was not developed by Brown, Epstein, and Lewis in the late 1930s, as generally published and last mentioned in ham radio [“The Offset Drooper — An Improved Ground Plane,” by Woodrow Smith, W6BCX, February, 1986, page 43].

This VHF/UHF antenna was invented several years before in France by Maurice Ponte (French patent No. 764,473, 1933) with all the main items such as elevated feedpoint, coaxial feeding, and radials. The “groundplane” for preventing undesired radiation from feedline was described either as a disk 1/2-wave in diameter or as a number of horizontal 1/4-wave radials.

This invention was also known and patented in the United Kingdom and in the United States (United Kingdom patent No. 414,296, applied for in 1934; United States patent No. 2,026,652, applied for in 1933 and granted in 1936).

Two remarkable early contributions to the groundplane antenna development should be noted: a base reactance compensation for reduction of amplitude and phase distortion for television application (Germany, 1936) and tuned radials, either with coiled conductors and series capacitances or with bent or encircled arms tunable for series resonance (United Kingdom, 1937/38).

This present information about the early history of groundplane, however, does not diminish the importance of Dr. Brown’s role as a great American inventor and antenna specialist. His remarkable works, known worldwide, include: Earth Currents (1933), Turnstile (1935), Broadcast Antennas (1935), Multifrequency Antenna (1936), Ground Systems and Antenna Efficiency (1937), Directional Antennas (1937, Square Antenna (1938), Rotary Beam (1940), Collinear Antenna (1941), Duplex Balancer (1942), and RF Wattmeter (1943).

Alois Krischke, DJOTR/OE8AK
Munich, West Germany

kudos > kantronics

Dear HR:

With all of the less than desirable business practices going on in this world, it is with pleasure that I relate a good experience with you.

After purchasing a used Kantronics UTU Universal Terminal Unit, I discovered that there was a problem with “handshaking” between the UTU and the computer. After inserting a breakout box between the two, I found that the UTU was not sending a CTS (Clear To Send) signal to the computer. This prevented the computer from sending anything to the UTU, because as far as the computer was concerned, the UTU just wasn’t ready.

I called Kantronics and spoke with their service technician, who informed me that I was using an older version of the firmware (version 1.0) and said that if I would give him my address, he would send me out the updated version (1.3). Although I informed him that I had purchased this unit used, he replied that it was company policy to correct any manufacturing errors. The replacement EPROM was received about four days later, and it works just fine.

Thus, in this day of the quick buck, it is a pleasure to announce to the world that there are still quality firms out there doing business. Please pass along the word, and send them more business!

Rick Mainhart, WB3EXR
Mystic, Connecticut 06355
New MFJ-1274 lets you work VHF and HF packet with built-in tuning indicator for $169.95...

...you get MFJ's latest clone of TAPR's TNC-2. TAPR's VHF/HF modem and built-in tuning indicator that features 20 LEDs for easy precise tuning.

New MFJ-1274

MFJ-1274

$169.95

MFJ-1270

$139.95

Now you can join the exciting world of packet radio on both VHF and HF bands with a precision tuning indicator... for an incredible $169.95!

You get MFJ's top quality clone of the highly acclaimed industry standard TAPR TNC-2. We've made TAPR's modem selectable for both VHF and HF operation, added their precision 20 segment LED tuning indicator, a TTL serial port, an easily replaceable lithium battery for memory back-up and put it all in a new cabinet.

If you don't need the tuning indicator or the convenience of a switchable VHF/HF modem, choose the affordable MFJ-1270 for $139.95.

All you need to operate packet radio is a MFJ-1274 or MFJ-1270, your rig, and any home computer with a RS-232 serial port and terminal program.

If you have a Commodore 64, 128, or VIC 20 you can use MFJ's optional Starter Pack to get on the air immediately. The Starter Pack includes interfacing cable, terminal software on disk or tape and complete instructions... everything you need to get on packet radio. Order MFJ-1282 (disk) or MFJ-1283 (tape), $19.95.

Unlike machine specific TNCs you never have to worry about your MFJ-1274 or MFJ-1270 becoming obsolete because you change computers or because packet radio standards change. You can use any computer with an RS-232 serial port with an appropriate terminal program. If packet radio standards change, software updates will be made available as TAPR releases them.

Also speeds in excess of 56K bauds are possible with a suitable external modem! Try that with a machine specific TNC or one without hardware HDLC as higher speeds come into widespread use.

You can also use the MFJ-1274 or MFJ-1270 as an excellent but inexpensive digipeater to link other packet stations.

Both feature AX.25 Level 2 Version 2 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, multiple connects, 256K EPROM, 16K RAM (expandable to 32K with optional EPROM), simple operation, socketed ICs plus much more.

You get an easy-to-read manual, a cable to connect your transceiver (you have to add a connector for your particular radio), a connector for the TTL serial port and a power supply for 110 VAC operation (you can use 12 VDC for portable, remote or mobile operation).

Help make history! Join the packet radio revolution now and help spread this exciting network throughout the world. Order the top quality and affordable MFJ-1274 or MFJ-1270 today.

Now you can tune in HF, OSCAR and other non-FM packet stations fast! This MFJ clone of the TAPR tuning indicator makes tuning natural and easy -- it shows you which direction to tune. All you have to do is to center a single LED and you're precisely tuned in to within 10 Hz. 20 LEDs give high resolution and wide frequency coverage.

The MFJ-1273 tuning indicator plugs into the MFJ-1270 and all TNC-1s, TNC-2s and clones that have the TAPR tuning indicator connector.

More Details? CHECK-OFF Page 98

Order any product from MFJ and try it -- no obligation. If not satisfied return within 30 days for prompt refund (less shipping).

* One year unconditional guarantee
* Add $5.00 each shipping/handling
* Call or write for free catalog, over 100 products.

More Details? CHECK-OFF Page 98

MFJ ENTERPRISES, INC.
Box 494, Miss. State, MS 39762

To Order or for Your Nearest Dealer
800-647-1800

Call 601-323-5869 in Miss. and outside continental USA
Telex 53-4590 MFJ STKV

June 1987
a compact 20-meter CW transceiver

Pack a private DX-pedition in a very small bag

DX-ing from another part of the world is something most of us would like to try, but packing those extra suitcases full of equipment can take much of the joy out of traveling. My solution to this problem was to choose a favorable band and mode, and then design a super-compact station that would slip into my suitcase without displacing more essential items. I settled on the 20-meter band because it's open most of the time, and because portable antennas for that band are easy to pack and erect. I chose CW because it provides the best opportunity for reliable long-range communications on low power.

The CW Travelradio, described in this article, is what resulted. The entire package measures 1.5 x 4.5 x 6.0 inches and weighs just 7.5 pounds. The receiver is a conventional superhet with AGC and a switchable CW audio-bandpass filter; the choice of speaker or headphone operation is yours. The transmitter delivers 12 to 15 watts to the antenna, and features sidetone and semi-break-in. The VFO range covers the bottom 100 kHz of the band, where virtually all CW and most RTTY operation takes place.

Circuit Description

To expedite the design, I reworked board art from an existing 1-watt SSB exciter to make a basic transceiver circuit board. I then designed a control board to provide shaped keying, semi-break-in T/R switching, and sidetone generation. I completed the package by adding a simple two-stage audio-bandpass CW filter and a 15-watt class C PA.

The receiver is an updated version of previously published designs. Double-balanced mixer U1 (see fig. 1) amplifies and converts 14-MHz signals to 9 MHz, which are filtered through FL-1 and fed to i-f amplifier U2. The gain of U2 is controlled by an audio-derived AGC. U3 is a DBM product detector. U4 amplifies received signals and sidetone to speaker level, and provides AGC drive to dc amplifier circuit Q1, Q2. U4 runs at full gain, with speaker and headphone volume controlled "downstream" via R1. This arrangement permits full AGC action at all gain control settings.

Transmit mixer U5 combines BFO and VFO drive to produce a 14-MHz output. This stage is keyed via Q8 (see fig. 2). Harmonics and other unwanted products are removed by the bandpass filter at L3, L4. Broadband amplifier Q6 then boosts the filtered signal to drive FET driver stage Q7. This stage operates in class AB, and delivers about 0.7 watts at the output of a 50-ohm Pi-network. If desired, a simple class-C configuration using a bipolar device could be substituted without major disruption to the circuit board.

Q11 is a broadbanded class-C PA (see fig. 3) that delivers 12 to 15 watts output into 50 ohms. A five-section half-wave filter suppresses harmonics, and an adjustable diode detector provides a dc signal for metering rf output.

VFO Q4 tunes from 5.0 MHz to 5.1 MHz to cover the bottom 100 kHz of the band. Source-follower Q5 isolates the VFO and provides a low impedance drive to the mixers. BFO Q3 utilizes diode-switched capacitance in series with Y1 to provide a 700-Hz offset during transmit.

The CW control module provides three functions. Q8, the dc switch, simultaneously activates the transmit mixer, sidetone oscillator, and relay driver when the key is depressed. An RC input circuit shapes rise time, which in turn softens the CW waveform and prevents key-clicks. Twin-T oscillator Q9 generates a 700-Hz sidetone, which is fed to audio amplifier U4 during transmit. Relays K1 and K2 are controlled by

Rick Littlefield, K1BQT, Box 114, Barrington, New Hampshire 03825

8 June 1987
The 20-meter sub-compact QRP transceiver has most of the features of a full-sized radio, yet occupies very little space.

Main board is mounted about 1/4 inch above the bottom of the frame to allow space for wires and parts mounted on the bottom of the board.

The CW control module and CW filter are mounted onto the main board with stiff buss wire. FL1 is epoxied to side panel. The power amplifier is mounted externally on the back panel to reduce heating of internal circuitry during transmit.
Wide Dynamic Range and Low Distortion – The Key to Superior HF Data Communications

- Dynamic Range > 75 dB
- 400 to 4000 Hz
- BW Matched to Baud Rate
- BER < 1×10^{-5} for $S/N = 0$ dB
- 10 to 1200 Baud
- Linear Phase Filters

Real HF radio teleprinter signals exhibit heavy fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm, not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q’s. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX Tones
- Split or Transceive TX/RX
- CRT Tuning Indicator
- RS-232C, MIL-188C, or TTL Data
- 8, 600, or 10K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, 44-440 Hz
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- 3.5" High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784
fig. 1. Main circuit diagram (see parts list, page 12).
coaxial R.F. antenna switches

Heavy Duty switch for true 1 Kw POWER - 2 Kw P.E.P.

Single Pole, 3 Position.
Desk or wall mount.
All unused positions grounded.
*593 - UHF connectors / $27.25
*594 - BNC connectors / $36.50

2 Pole, 2 Position, by-passes, lines, reflectors, etc.
*595 - UHF connectors / $34.25

Single Pole, 5 Position, all unused positions grounded.
*596 - BNC connectors / $32.00
*597 - BNC connectors / $46.50

* Shipping and handling for any item add $2 each.

ALL OUR PRODUCTS MADE IN USA

BARKER & WILLIAMSON
Quality Communication Products Since 1932
At your Distributor or call
10 Canal Street, Bristol PA 19007
(215) 788-5581

I/O FOR REAL WORLD CONTROL
$199.95

NOW ANY PERSONAL COMPUTER CAN HAVE THE MOST COST EFFECTIVE AND VERSATILE I/O BOARD ON THE MARKET TODAY!

- Serial Link Interface RS-232 or TTL
- 8 Relay Outputs, High Current AC/DC Form A & C
- 8 Opto-Isolated Inputs Plus 8 Bit Counter
- 8 Bit A/D with Span Adjust 0 to 5V.
- Provisions for up to 8 Input Channels

- EASILY Programmed & Controlled Using BASIC Statements
- Perfect for Lab Work, Machine Control, Security Systems, & Data Acquisition
- Unprecedented Usability as Attested by Universities, Government & Industrial Users
- Complete Documentation with Software Examples & Total Engineering Support

MODEL CIP35A SHOWN WITHOUT COVER

I BM • HP • RADIO SHACK • COMMODORE

SIAS Engineering, Inc.
831 S. POWERS RD. / SALINA, KS 67401 / (913) 823-9209

Ferrite beads FB43-101
FL1 9-MHz crystal filter, Showa SF022B or equivalent
L1 20 turns No. 26 on T37-2, 2-turn link
L2 20 turns No. 26 on T37-2; tap at 10 turns
L3 10 turns No. 28 trifilar wound on T37-2
L4 20 turns No. 26 on T37-2
L5 36 turns No. 32 on 1/4-inch form; tap at 6 turns, enclose in 1/2 x 1/2 x 3/4-inch shielded can
L6 12 turns No. 24 on T37-2, spread to occupy 80 percent of form length

Q1, Q3, Q4, Q5 MPF102
Q2 2N3906
Q6 2N2222A
Q7 DV-1201K (M/A-COM, 1742 Census Blv., Torrance, CA 90507)
T1 10 turns No. 28 trifilar wound on FT37-43
T2 10.7 MHz output transformer, green core
T3 10 turns No. 26 bifilar wound on FT37-61
U1, U3, U5 MC1496G
U2 MC1350P
U4 LM386
VFO capacitor 50 pF, 6:1 reduction drive
Y1 8998.5-5 crystal, series resonant
Z1 Zener, 9 volts @ 400 mA

switching FET Q10. Delay time is set via an adjustable RC circuit on the gate of Q10.

CW filter U6 is a two-stage audio-bandpass CW filter (see fig. 4) built around a dual op-amp. This is a simplified version of a popular three-stage design. With the values shown, center frequency was measured at 720 Hz. A response curve is shown in fig. 5.

Finally, U7 is a monolithic 12-volt regulator that protects and stabilizes voltage to all stages except the PA (see fig. 6). All T/R switching is handled by miniature DPDT relays K1 and K2. An extra set of contacts is available for switching an external amplifier.

construction

Space is limited, so choosing small components is important. All four boards were designed to accommodate 1/4-watt resistors, low-voltage ceramic or monolithic caps, tantalum dips, miniature vertical trim pots, and miniature trimmers. Attempting to substitute larger devices will quickly result in overcrowding.

Monolithic capacitors were used in most frequency-critical rf circuits. Silver mica or high quality NPO ceramic devices can be substituted in most cases, as
long as they’re within 5 percent of specified values. While polystyrene capacitors are typically specified for frequency-critical elements in audio oscillators and active filters, monolithics are much smaller and seem to work just as well. To ensure accuracy, I matched active filter values carefully with a capacitance meter. Finally, I recommend using flexible small diameter wire and lavalier microphone cable for jumpers and interconnections. Harnessing leads together will reduce the chance of breakage. A complete kit and most of the individual parts are available from Radiokit.*

The parts layout for the main board is shown in fig.

7. It’s generally easier to mount low-profile components (such as resistors, capacitors, and ICs) first, saving taller items (like trimpots and inductors) for last. FT-type toroid cores should be coated with clear nail polish before winding to prevent damage to enameled wire insulation. Toroids and chokes should be installed last and glued in place to prevent movement and lead breakage. When all parts and wires are installed on the top side, refer to fig. 8 and complete the bottom side.

*For details, contact Radiokit, Box 973, Pelham, New Hampshire 03076.
Tell 'em you saw it in HAM RADIO!
ICOM IC-761
HF SUPERIOR GRADE TRANSCEIVER
SALE! CALL FOR PRICE

ICOM IC-275A/275H
138 - 174 MHz
IC-275A (25w) IC-275H (100w)
GREAT PRICE!

ICOM IC-1271A
1.2 GHz Transceiver:
The First Full-featured 1240-1300 MHz Transceiver
ARE YOU READY FOR 1.2 GHz OPERATION?

ICOM IC-28A/28H
LOW PRICE!
2-METER MOBILES
IC-28A (25w) IC-28H (45w)

ICOM IC-735
The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

ICOM IC-R7000
25 MHz-1300 MHz
IN STOCK FOR IMMEDIATE DELIVERY

ICOM IC-μ2A/μ2AT
Mini Hand-Held AT Model w/ TT Pad
GREAT PRICE!

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

More Details? CHECK — OFF Page 98

June 1987
EIMAC's new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221
Construct the control module (fig. 9), and the CW filter module (fig. 10) in similar fashion. Solder all power and signal leads to the foil side of these boards.

The PA circuit board is mounted onto the PA heatsink before construction (foil side up). All components are mounted stripline-style by soldering them directly to the tracks (fig. 11). Note that a rectangular hole is cut in the board to accommodate mounting the PA transistor directly to the heatsink. Since the MRF479 is an emitter-tab device, no insulating washer is used between the tab and ground.

Packaging

I packaged my transceiver in an open frame cabinet similar to what many commercial equipment manufacturers use. Mounting tabs for the main board were made by tacking solder lugs onto the foil, then fastening them onto the frame with No. 4-40 screws. The CW control board and CW filter modules were mounted into the main board with stiff bus wires. Crystal filter FL1, relay K2, and the meter are held in position with contact cement. Voltage regulator U7 is fastened to the frame with No. 4-40 hardware. The PA is mounted to the outside of the back panel with 3/4-inch spacers. This approach keeps circuit board and chassis wiring very accessible, and reduces the box size to a bare minimum. However, packaging is tight, and a cabinet of this type requires a metal shop and a fair amount of care to construct.

Since layout isn’t very critical, the transceiver can be constructed in any convenient case — as long as a few basics are taken into account to ensure VFO stability. I recommend keeping the PA module on the outside of the case to reduce interior temperature fluctuations during transmit. Also, make sure all external VFO components are securely mounted and connected with short, rigid leads. Finally, route interstage wiring well away from VFO components. Mounted in a Hammond cast aluminum case, with a portable VCR battery, this rig would make an extremely tough and self-contained communications package for rough-and-tumble DX enthusiasts!

Once the packaging is done, and all interconnec-
fig. 6. Module interconnections for completed transceiver. Note that K1 is actually located on the main board.

fig. 7A. Main transceiver board pc board art (foil side).
fig. 78. Main transceiver board component layout.
NEMAL ELECTRONICS

HARDLINE — 50 OHM

Cable No.	Description	Length (ft)	Price ($)
FM400	RG114 50' Shileded Mil. Spec	3000	3.60
FM410	RG8 50' Shielded mil. Spec	1000	3.40
FM411	RG58 50' BNC. Male/Female	1000	5.60
FM414	RG174 50' BNC. Female/Female	1000	5.75

COAXIAL CABLES

Cable No.	Description	Length (ft)	Price ($)
FM400	RG114 50' Shileded Mil. Spec	3000	3.60
FM410	RG8 50' Shielded mil. Spec	1000	3.40
FM411	RG58 50' BNC. Male/Female	1000	5.60
FM414	RG174 50' BNC. Female/Female	1000	5.75

ROTATOR CABLE — 8 COND.

Cable No.	Description	Length (ft)	Price ($)
R1200	RG174 50' BNC. Female/Female	1000	5.95
R1201	RG174 50' BNC. Female/Female	1000	5.95

CONNECTORS — MADE IN U.S.A.

Connector	Description	Price ($)
PL258AM	BNC Female/Female	4.75
PL259	BNC male/Female	7.00
PL259M	BNC Teflon/Silver	3.75
PL259T	BNC Teflon/Silver	3.75
UT110	BNC Teflon/Silver	3.75
UT111	BNC Teflon/Silver	3.75

GROUNDS TRAP — BRAID

Connector	Description	Price ($)
01-01	Ground Wire Stranded Wire	5.00

GROUND WIRE — STRANDED

Connector	Description	Price ($)
0006	6 Ga. Insulated Stranded	5.00

Call or write for complete price list. Nemal's 32-page Cable & Connector Selection Guide is available at no charge with orders of $50.00 or more, or at a cost of $4.00 individually.

NEMAL ELECTRONICS, INC.
12240 N.E. 14 Ave., No. Miami, FL 33161

TEL-COM Electronic Communications

NEW ENGLAND'S FACTORY AUTHORIZED SALES & SERVICE FOR KENWOOD

Also displaying the popular accessories needed to complete a HAM STATION...

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL • ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI • Belden • Bencher • B & W • Daiwa • ALINCO • HUSTLER • KLM • Larson • Mirage • RoHN • TELEX/HY-GAIN • TOKYO HY-POWER LABS • TRAC KEYERS • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1½ miles from Rte. 495 (Exit 31) toward Groton, Mass.

ARE YOUR REPEATER OR OTHER AUDIO LEVELS UP AND DOWN? TRY THE AGC-4!

- **Dynamic Range of**
 - ± 45dB
- **Output Constant**
 - ± 2dB
- **Single Voltage**
 - ± 9VDC

KIT — $28.00 PPD in U.S./CANADA

BARRETT ELECT. - 525N 2150W

WEST POINT, UTAH 84015
fig. 8. Wiring placement guide for main transceiver board.
When the wiring is checked (fig. 6), it's time to double-check the wiring and connect a power supply. I use a compact 13.8-volt supply that's capable of supplying 2.5 amperes for intermittent periods. Although this supply is regulated, I added 2000 μF to the output circuit to help the regulator track the current surge as the transmitter is keyed. Note that the transceiver's voltage regulator needs a supply voltage of at least 13 volts to function properly. Operation from a standard 12-volt battery may require regulating the main board at 10 volts with an adjustable device such as the LM317.

tune-up

The transceiver is easy to align (fig. 12). First, make sure both oscillators are functioning properly. Then monitor VFO output with a frequency counter or all-band receiver, and net VFO tuning into the 5.0 to 5.1 MHz range. Large adjustments may require substituting fixed-value capacitors (the VFO calibration trimmer has a range of about 50 kHz). Once the VFO tunes properly, the dial can be calibrated.

Next, monitor BFO output and set up BFO trimmers. When correctly adjusted, frequency on receive will be 8998.5 kHz (with +12 volts applied to the switching diode), and 8999.2 kHz on transmit (voltage removed from the switching diode). This provides a standard 700-Hz transmit offset. Since the two trimmers interact, some retuning will be necessary.

To set up the receiver section, first adjust AGC bias to 5 volts as measured at test point No. 1; then zero the S-meter. Tune T2 for maximum background noise in the speaker. Finally, peak both receiver bandpass filter trimmers for maximum sensitivity at 14.050 MHz (make sure there are two signal peaks per revolution).

Next, connect a power meter and dummy load to the transceiver output. To set a sidetone level, depress...

fig. 9A. CW control module pc board art (enlarged 2X).

fig. 10A. CW audio filter pc board art (enlarged 2X).

fig. 9B. CW control module component placement guide.

fig. 10B. CW audio filter component placement guide.
the key and adjust the sidetone trimmer for a reading of S9 on the S-meter. Then key the transmitter and peak transmit bandpass filter trimmers for maximum output. Use a nonmetallic tuning tool; one trimmer is part of a balanced circuit, and will be detuned by a metallic blade. Finally, key the transmitter and set the bias of driver Q7 to 3 volts. Measure bias voltage at test point No. 2 with a high-impedance voltmeter.

The PA is broadbanded and requires no tuning. With a supply voltage of 13.8 volts, the indicated output should be between 12 and 15 watts into a 50-ohm load. Set the rf meter's sensitivity by adjusting the 2-k rf meter trimmer on the PA board for a 3/4-scale reading. The semi-break-in delay trimmer can now be adjusted to suit sending speed and operating style.

All that remains is to connect an antenna and try your luck. Antenna SWR should normally be held below 2:1 with solid-state rigs, and this one's no exception. However, momentary accidents do happen, and my MRF479 PA has survived several with no damage. The rf meter can help you avoid trouble; it will read excessively high or low when a serious mismatch is present.

conclusion

As I called my first CQ, I wondered if 15 watts into a dipole would cut the mustard. After all, 20 is a popular band, and finding a clear spot to operate can be difficult. My fears were quickly dispelled when a UQ2 came back and gave me a 579. Several more DX contacts followed — all with good reports. I quickly discovered that 15 watts was enough power to work almost anything I could hear, including ZLs and VKs. That reliability, along with “extras” like the CW filter, a smooth sidetone note, and semi-break-in, make this rig fun to operate. Now, all I really need is the proper test platform from which to field-test the transceiver's portable capability. A large schooner — something with two masts headed for a tropical island — would be just right!
fig. 12A. Alignment control locations, main transceiver board.
A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV® you will receive a FREE LCD Calendar/Clock.

- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED ...

OnSat

The best in satellite programming! Featuring: ★ All Scheduled Channels ★ Weekly Updated Listings ★ Magazine Format ★ Complete Movie Listing ★ All Sports Specials ★ Prime Time Highlights ★ Specials Listing and ★ Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV®/OnSat®
P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384
SUBSCRIPTION CALLS ONLY
TOLL FREE 1-800-438-2020

references

bibliography

short circuit

Figure 5(E), omitted from W1JR’s “VHF/UHF World” in the May issue (page 92), appears below:

fig. 5(E). This non-piercing above-the-boom mounting method, devised with the help of Don Cook, K1DPP, is recommended for homebrewed antennas.
RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5" and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Fre./ MHz</th>
<th>Power</th>
<th>Preamp</th>
<th>DC</th>
<th>Power A</th>
<th>RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0508G</td>
<td>50-54</td>
<td>1</td>
<td>170</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
</tr>
<tr>
<td>0510G</td>
<td>50-54</td>
<td>10</td>
<td>170</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
</tr>
<tr>
<td>1409G</td>
<td>144-148</td>
<td>3</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
</tr>
<tr>
<td>1410G</td>
<td>144-148</td>
<td>10</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
</tr>
<tr>
<td>1412G</td>
<td>144-148</td>
<td>30</td>
<td>160</td>
<td>.6</td>
<td>15</td>
<td>13.6</td>
</tr>
<tr>
<td>2210G</td>
<td>220-225</td>
<td>10</td>
<td>130</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
</tr>
<tr>
<td>2212G</td>
<td>220-225</td>
<td>30</td>
<td>130</td>
<td>.7</td>
<td>12</td>
<td>13.6</td>
</tr>
<tr>
<td>4410G</td>
<td>420-450</td>
<td>10</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
</tr>
<tr>
<td>4412G</td>
<td>420-450</td>
<td>30</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete G suffix on model #). All units cover full amateur band -- specify 10 MHz bandwidth for 420-450 MHz amplifier. Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28V), Commercial, etc. also available -- consult factory.

SAVE TIME and MONEY with THE HAZER

Bring things down for safety and convenience.

Never climb your tower again with this elevator system. Antennas and rotator mount on HAZER, complete system ships tower in vehicle upright position. Safety lock system operates while raising or lowering. Never can fail. Complete kit includes winch, 100 ft. of cable, hardware and instructions. For Rohm 20 and 25 G Towers.

Hazer 2 - Heavy duty alun, 12 sq. ft. load $297.00 ppd.
Hazer 3 - Standard alun, 8 sq. ft. load $213.00 ppd.
Hazer 4 - Heavy galv, steel 16 sq. ft. load $278.00 ppd.
Ball Thrust bearing TiS-25 for any of above $42.50 ppd.

KENPRO Antenna Rotors

KR-600 19 sq. ft. Azimuth Rotor $299.95 ppd.
KR-5400 AZ-EL Satellite Rotor $399.95 ppd.
KR-001 C-64 Computer Interface $159.95 ppd.

Send for free details of aluminum towers specifically engineered for use with the Hazer. Satisfaction guaranteed. Call today and charge to Visa, Master Charge or mail check or money order.

GLEN MARTIN ENGINEERING INC.
P.O. Box 253
Booiville, Mo. 65233
816-862-2794

17th ANNUAL INDIANAPOLIS HAMFEST™
And INDIANA STATE ARRL CONVENTION
July 11-12, 1987
Marion County Fairgrounds — Gates open 6:00 AM both days

2 Full Days of:

FREE:

Commercial Exhibitors
Large Flea Market
Hourly Awards
Forums
Free Trolley Buses to Union Station
Indianas Largest Electronic Flea Market,
Computer and Amateur Radio Display

INDIANAPOLIS HAMFEST, P.O. Box 11776, Indianapolis, IN 46201
CALL: (317) 745-6389—Commercial (317) 356-4451—Flea Market

June 1987
Pac-Comm TNC-220

HF/VHF PACKET CONTROLLER

MADE IN U.S.A.

AMATEUR DIRECT PRICES

KIT $129.95

ASSEMBLED $159.95

OPTIONS:

- 32K RAM $9.95
- INTERNAL LED BAR GRAPH TUNING INDICATOR $39.95

YOUR BEST VALUE—COMPARE FEATURES

- Only unit under $300 with dual radio connectors
- Switch radios, data rates, modem tones with one keyboard command—no buttons to push, no cables to swap
- Six pole HF filter standard—no add-ons
- Software selectable carrier detection—use software method, amplitude detection, or phase lock (with tuning indicator option)
- Modern disconnect header, CPU high speed clock jumps, expandable to 32K RAM
- Latest version of proven TAPR AX.25 25.2V2 software supports 300 to 9600 baud terminal and radio data rates
- Watchdog timer for legal unattended operation. Lithium battery backed RAM
- 280 CPU, 8530 SCC hardware HDLC, 7910 integrated circuit modem
- All ICs socketed
- Direct FSK output available for HF (in addition to AFSK)
- Enhanced software ability to filter connects and digipeating
- LED bar graph tuning indicator option with phase locked loop carrier detection for unsurpassed HF operation
- Works with any TTL or RS-232 computer (no additional interface for VIC-20 or C-64)
- Excellent customer support—24 hour technical hotline, electronic mail system, low cost repair service
- Assembled units carry one year limited warranty
- Comprehensive manual and convenient instruction card
- High quality extruded aluminum case and colorful front panel
- Dealer inquiries invited

WRITE FOR CATALOG OF PACKET EQUIPMENT, SOFTWARE AND ACCESSORIES.

ORDER DIRECT 800-223-3511 FREE UPS BROWN VISA

Pac-Comm Packet Radio Systems, 3652 West Cypress St., Tampa, FL 33607

Rutland Arrays

Presenting

The Finest 432 MHz Antennas Available

- EME—WEAK SIGNAL—TROPO—ATV
- THE FO-22 15.8 DBD MEASUR ED GAIN 22EL 14FT $76.64
- AN OUTSTANDING ANTENNA FOR EME—WEAK SIGNAL—TROPO
- THE RIW-19 14.9 DBD MEASUR ED GAIN 19EL 13FT $69.95
- FOR EME—TROPO—ATV
- Assembly time 1 hr. per antenna
- Add $5 UPS, $9 H for single or pair of antennas, $8 west of the Mississippi. PA residents add 6% state tax
- ALSO AVAILABLE: Power Dividers—Stacking Frames
- Write for details and Price Sheet

Rutland Arrays

1703 Warren Street
New Cumberland, PA 17070

NEW! LOW COST AC POWERLINE DISTURBANCE MONITORS

- MODEL LDM-120 ONLY $89
 - DETECTS, STORES AND DISPLAYS WORST CASE LINE VOLTAGE VARIATION DUE TO BROWN-OUTS, SAGS AND SURGES 1% AND 3 CYCLE RESPONSE TIMES 60-160 VOLT RANGE.
- MODEL LSM-120 ONLY $139
 - DETECTS, STORES AND DISPLAYS WORST CASE PEAK SPIKE VOLTAGE, NORMAL AND COMMON MODE SELECTION 100V-2.5KV RANGE.
- COMPLETE STANDALONE INSTRUMENTS WITH INTERNAL AUDIBLE ALARM AND EXTERNAL TTL ALARM OUTPUT.
- FULLY ISOLATED 1 YEAR WARRANTY

Circuit Analysis Tool Kit

PC and XT COMPATIBLES

RF and Microwave Circuit Analysis can easily be performed using LNCAP+$1 TOOL KIT. Design and analyze RF circuits containing network parameters such as S, Z or Y; R, L, C's, transmission lines, coupled lines, stubs, hybrid models and many other element blocks. Includes parallel and series branching and network combining; sensitivity analysis and full optimization. Perform complete stability analysis for active networks plus filter and matching network design program. Print results to screen, disk or printer. Includes file editor with instructions and examples.

TOOL KIT $46.95

plus $2.50 for S & H

BMA Software
1234 Rousseau Drive
Sunnyvale, CA 94087
(408) 732-9475
M.O. or Check Accepted
compact travel antenna

Complete the installation — add this antenna to your compact rig

Traveling with a portable rig* is fun, but raising a temporary antenna can be difficult. For one thing, few resort managers are willing to lend their flagpoles and trees to unsightly wires that could garrote paying customers. And, of course, there's always the possibility of a mishap — a poorly thrown beanbag dimpling the roof of a vintage Mercedes, for example. These liabilities are real, and all too often I've settled for makeshift alternatives to avoid an unpleasant confrontation.

Thinking there must be a better way, I set out to build an antenna that would provide solid on-the-road performance without scaring the spirit of cooperation out of resort owners. I started by writing down my needs: it must be self-supporting, easy to mount, and collapsible; it must cover 14-30 MHz, perform with high efficiency in either vertical or horizontal polarization, be made from available materials, and require no external matching devices.

Remembering my old Cushcraft “Trick-Stick” VHF dipole, and how easy it was to set up and use, I reasoned that a loaded hf dipole of similar size might be the answer.

design

Since I didn’t want a high-budget project, my first step was to raid my junk pile, where I found several 4-1/2 foot lengths of 3/8-inch diameter thick-wall aluminum tubing. I decided that these would make sturdy center sections.

Six-foot collapsible replacement antennas from Radio Shack would be perfect for the ends. This would give me a 21-foot element in four pieces (fig. 1). Since 21 feet is a healthy 66 percent of full size, I concluded that my antenna would be efficient, and provide a good match without need for special matching devices.

loading coils

Power handling wasn’t a concern, since my portable rig runs 15 watts. But efficiency was very important. With QRP and marginal locations, every watt counts! A friend who designs antennas for a living cautioned me against close-winding loading coils with enameled wire. His experience indicated that high-Q air-wound stock is less lossy, and well worth the extra investment. He said I might get away with using 3/4-inch 16 TPI (turns per inch) miniductor for low power, but strongly recommended larger diameter stock with 8 or 10 TPI spacing.

construction (see table 1)

Since this antenna is intended for temporary use, Rick Littlefield, K1BQT, Box 114, Barrington, New Hampshire 03825

See K1BQT’s “A Compact 20-meter CW Transceiver” on page 8 of this issue.
Unadilla Amateur Antenna Baluns
For 20 years, preferred by Amateur, Commercial and Military Operators
First with built-in lightning arrester-minimizes TVI, maximizes power handling

W2AU Broadband Ferrite Core Baluns
For medium power (1000 watts RF)
W2AU 1:1
* 50 to 50 or 75 to 75 ohms
* For dipoles, V's, beams, quads
W2AU 4:1
* 200 to 50 or 300 to 75 ohms
* For high impedance antennas such as folded dipoles

W2DU Non-Ferrite Very High Power Baluns
W2DU-HF (High Power)
* 1.8–30 MHz
* 3000–9000 watts with 1:1 antenna SWR
* 1500–5000 watts with 2:1 antenna SWR
W2DU-VHF (High Power and Extended Range)
* 30–300 MHz
* 2000–4000 watts with 1:1 antenna SWR
* 1200–2400 watts with 2:1 antenna SWR

W2AU 1:1 & 4:1 Only $17.95
W2DU-HF Only $19.95
W2DU-VHF Only $19.95

The Perfect Dipole!

Only $65.00
Complete Kit
* W2AU 1:1 Balun
* Pair of W2VS KW-40 Traps
* Pair of End-sulators
* 125' #14-7 Copper Wire
* Complete Installation & Pruning Instructions

Unadilla/REyco/Inline is now a Division of UNADILLA/ANTENNA'S ETC.

VHF-UHF POWER DIVIDERS
RF power dividers provides the best way to feed in-phase 2 and 4 antenna array to maximum system gain and at the same time reduce losses to a minimum. Covering 144 to 1296 MHz, this series of VHF-UHF power dividers are premier RF devices designed for long service life with low SWR and broad operating bandwidths. Extruded aluminum body with a durable enamel finish in addition to silicon-sealing at connector flanges results in a ruggedized unit for all array installations. Available with N-type connectors only these units are unconditionally guaranteed for 2 years.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CONFIG.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>144-2P</td>
<td>(2 ports)</td>
<td>$51.00</td>
</tr>
<tr>
<td>144-4P</td>
<td>(4 ports)</td>
<td>$56.00</td>
</tr>
<tr>
<td>220-2P</td>
<td>(2 ports)</td>
<td>$50.00</td>
</tr>
<tr>
<td>220-4P</td>
<td>(4 ports)</td>
<td>$55.00</td>
</tr>
<tr>
<td>430-2P</td>
<td>(2 ports)</td>
<td>$48.00</td>
</tr>
<tr>
<td>430-4P</td>
<td>(4 ports)</td>
<td>$54.00</td>
</tr>
<tr>
<td>902-2P</td>
<td>(2 ports)</td>
<td>$45.00</td>
</tr>
<tr>
<td>902-4P</td>
<td>(4 ports)</td>
<td>$44.00</td>
</tr>
<tr>
<td>1296-2P</td>
<td>(2 ports)</td>
<td>$49.00</td>
</tr>
<tr>
<td>1296-4P</td>
<td>(4 ports)</td>
<td>$57.00</td>
</tr>
</tbody>
</table>

STRAUBERG ENGINEERING, CO.
P.O. Box 7972 • Shreveport, LA 71111 • USA
Phone (318) 865-0523

MICROCOMPUTER REPEATER CONTROL

$129

Introducing the MICRO REPEATER CONTROLLER RPT 2A, a new concept in LOW COST, EASY TO INTERFACE, microcomputer repeater control. Replace old logic boards with a state of the art microprocessor that adds NEW FEATURES, HIGH RELIABILITY, LOW POWER, SMALL SIZE, and FULL DOCUMENTATION to your system. Direct interface (drop in) with most repeaters. Detailed interface information included. Original MICRO REPEATER CONTROLLER article featured in QST Dec. 1983

- Two CW ID Modules
- Time Out Timer
- PreTimeout Warning MSG
- Post Timeout CW MSG
- Courtesy Beep
- Auxiliary Inputs
- Recordable COR Input
- High Current PTT Interface
- Serial Tone Generator
- Low Power 9.15 VDC @ 200 mA
- Size 3 1/2" x 3 1/2"
- All Connections Included

RPT 2A Kit Only $129 plus $3.00 shipping

PROCESSOR CONCEPTS
P.O. BOX 26023
ST PAUL, MN 55126
(612) 484-9176 7pm-10pm evenings
CALL OR WRITE FOR FREE CATALOG AND SPECIFICATIONS

THE MULTIPLE RECEIVER SOLUTION

$156

4 Channel Signal-to-Noise Voter
- Expandable to 32 Channel by Just Adding Cards
- Continuous Voting
- LED Indicators of COR and Voted Signals
- Built in Calibrator
- Remote Voted Indicators Printed Out
- 4 x 6 Double Sided Grid Plated 44 Pin Card
- Remote Brute Inputs
- MORE

Built, tested and calibrated with manual

$350.00

NEW PRODUCT
Telephone interface now available
For more information call or write

HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871
I concentrated on making it lightweight and easy to assemble in the field. The center block was made from a piece of 5-1/2 inch x 3/4-inch plastic rod stock (see fig. 2). This material is fairly inexpensive, easy to machine, and available from most plastic supply houses. Each end was drilled to a depth of about 1-1/2 inches to accept the 3/8-inch tubing. The block and tubing sections were drilled and tapped to accept a No. 4-40 screw, which locks each element in place. This screw also provides electrical connection for the feedline. The center of the block can then be drilled to accept any kind of mounting scheme, including the one shown here or a standard TV mast U-bolt.

The loading coil and collapsible whip are constructed as a single assembly (see fig. 3). The coil support is a 3-inch length of 1/2-inch diameter plastic rod. A 1/4-inch solid aluminum stub is installed in one end to mate with the 3/8-inch element tubing. The whip is inserted in the other end. Note the location of the solid insert at the base of the whip. The locking hole must be drilled through this insert to ensure a secure mount and good electrical contact. Install solder lugs on mounting hardware; these will be needed for connecting the loading coils. If you plan to operate in foul weather, protect the coils with a plastic sleeve. Without them, rain and snow may detune the antenna and make it temporarily unusable.

To simplify feedline attachment, I hard-wired an electrical half wavelength (22 feet) of RG-58U directly to the center block. This accommodates most outdoor-window and off-the-balcony setups. Since this antenna is certain to be installed in imperfect locations, it may be especially beneficial to decouple the feedline from the antenna. While a balun can be installed for this purpose, looping five or six tight turns in the feedline or slipping a few large ferrite beads over the cable jacket will prove just as effective.

Feel free to modify the design to suit your own particular needs. I've constructed a second version of the antenna that breaks down into 2-1/2 foot sections — just for air travel. A friend of mine built a ruggedized model for permanent installation on his TV mast. In reality, moving loading coils closer to the ends, adjusting element lengths, and using different tubing schemes will probably do little to change performance. The most critical factors are keeping the length greater than 20 feet and using high-Q loading coils to achieve resonance. A grid dip meter works fine for making initial adjustments.

Table 1. List of materials for compact antenna.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8-inch OD x 53-inch aluminum tubing</td>
<td>2</td>
</tr>
<tr>
<td>1/4 x 3-inch aluminum rod</td>
<td>2</td>
</tr>
<tr>
<td>3/4 x 3-1/2 inch aluminum channel stock</td>
<td>1</td>
</tr>
<tr>
<td>3/4 x 5-1/2 inch plastic rod</td>
<td>1</td>
</tr>
<tr>
<td>1/2 x 3-inch plastic rod</td>
<td>2</td>
</tr>
<tr>
<td>Radio Shack 72-inch collapsible antenna</td>
<td>1</td>
</tr>
</tbody>
</table>

supports

To support my antenna, I cut a 6-foot strip of 3/4 x 1-inch poplar. Wood is preferable to metal in this application because it's strong, light, and less likely to damage or discolor woodwork. A short piece of 3/4-inch aluminum channel stock was used to square the center block so it would lock securely into a square notch cut into the mast. A single 1/4-inch bolt holds the antenna in place (see fig. 4).
ASTRON POWER SUPPLIES

RS and VS SERIES

SPECIAL FEATURES
- Solid State Electronically Regulated
- Fold-Back Current Limiting protects Power Supply from excessive current & continuous shorted output.
- Crowbar Over Voltage Protection on all Models except RS-4A.
- Maintain Regulation & Low Ripple at low line input Voltage.
- Heavy Duty Heat Sink + Chassis Mount Fuse
- Three Conductor Power Cord
- One Year Warranty • Made in U.S.A.

PERFORMANCE SPECIFICATIONS
- Input Voltage: 105 - 125 VAC
- Output Voltage: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- Ripple: Less than 5mv peak to peak (full load & low line)

RS-A SERIES

MODEL RS-50A
- RM-A Series
- 19" X 5 ¾ Rack Mount Power Supplies

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5½ x 19 x 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5½ x 19 x 12½</td>
<td>50</td>
</tr>
<tr>
<td>RM-35M</td>
<td>25</td>
<td>35</td>
<td>5½ x 19 x 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50M</td>
<td>37</td>
<td>50</td>
<td>5½ x 19 x 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

MODEL RS-7A

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3¼ x 6½ x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3¼ x 6½ x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 x 7½ x 10¼</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7½ x 10¼</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

MODEL RS-35M

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M SERIES

MODEL VS-20M
- VS-M Series
- Separate Volt and Amp Meters
- Output Voltage adjustable from 2-15 volts
- Current limit adjustable from 1.5 amps to Full Load

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty @13.8V (Amps)</th>
<th>ICS* (Amps) @13.8V</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>9</td>
<td>5 x 9 x 10½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>15</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>22</td>
<td>6 x 13¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

MODEL RS-12S
- RS-S Series
- Built-in speaker

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7½ x 10½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7½ x 10½</td>
<td>12</td>
</tr>
<tr>
<td>RS-10L(For LTR)</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7½ x 10½</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>18</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
</tbody>
</table>

Radiation Corporation
9 Autry
Irvine, CA 92718
(714) 458-7277

Canadian Distributor:
Eastcom Industries, Ltd.
430 Signet Drive
Weston, Ont. Can 49L 2T6
(416) 743-7801
When setting up the antenna, almost anything can be a potential supporting structure (window sills, balcony rails, fire escapes, standpipes, and existing TV masts are all favorites). Attaching antenna and mast to one of these supports can be a real exercise in "jerry-rig" engineering. Having the right tools helps! Gaffer's tape, lightweight ratcheting C-clamps (Stanley 83-157 or equivalent) and motorcycle bungie cords are essential tools of the trade for the imaginative field-installer!

performance

For initial testing, I mounted the antenna out a second story window, about 5-1/2 feet from the side of the building. Sections went together without difficulty, and the completed assembly seemed well balanced and easy to handle. The support mast was clamped to the window casement with a C-clamp.

After pruning the loading coils for resonance at

Your #1 Source for PACKET Info

"...received my moneys worth with just one issue..."

— J. Trenbick

"...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination..."

— Fred Blechman, K6UGT

U.S.A.$18.00 for 1 year

Mexico, Canada$32.00

Foreign$43.00(land)-$68.00(air)

(U.S. funds only)

Permanent (U.S Subscription)$150.00

Sample Copy$3.50

Circulation Manager
1704 Sain Drive
Birmingham, Alabama 35235
Phone: 205/854-0271

Name ________________________________

Call Sign ________________________________

Address ________________________________

City __________________ State ________________

Zip _________________ Phone __________________

Date __________________

Signature __
14.05 MHz, I measured a minimum SWR of 1.4:1. My noise bridge read the impedance as 38 ohms — an acceptable load for broadbanded solid-state rigs. Listening across the band, I was encouraged to hear several 599+ signals. Running 15 watts, I called two lengthy CQs, both yielding no reply. Beginning to think the worst, I tried again. This time, a much-welcomed CT3 came back with a 569 report. Several more DX and stateside contacts followed, with signal ranging from 559 to 589. Flipping the antenna to vertical polarization brought similar results.

other bands

Although untested on the other bands, this antenna should do very well on 18, 21, 24, and 30 MHz. For 18-MHz operation, simply readjust the collapsible end sections for minimum SWR. For 21 MHz and up, place 8-inch jumper wires across each loading coil (the extra jumper length is needed to make the antenna resonate at 21.0 MHz). Collapsing the length of the end sections (with jumpers in place) will provide continuous coverage through 10 meters.

site suggestions

Here are some tips to help you achieve maximum performance:

- **Look for a high, open location.** Get above the roofline if you can, but keep directivity and takeoff angle in mind (fig. 5).
- **Keep the antenna at least 5 or 6 feet from the building surface.** Proximity to electrical wiring, foil insulation, and structural metal can detune it. Bending elements outward may help to decouple the ends from a metal structure.
- **When you side-mount to a building, try to locate the antenna on the side facing the desired direction of transmission.** Better to use the structure as a reflector than as a shield!
- **If there are horizontal wires close by, vertical polarization may work better.** When using vertical polarization, make sure the bottom leg is at least 6 feet above ground. Also, make sure the antenna is clear of people and pets. Even QRP rigs can develop enough rf potential at element tips to cause painful burns and injury.

conclusion

Whether you’re jet-setting to VP2-land, driving cross-country, or working tabletop DX from the local flea market, a good portable antenna will help you get on the air with a minimum of hassle and frustration. I am continually pleased with how well this one has worked for me. On occasion, it has even been spotted emerging from my office window . . . at lunchtime, of course!
Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty
- prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE
B23 2W in = 30W out
(useable in: 100 mW-5W)
B108 10W in = 80W out
(1W = 15W, 2W = 30W) RX preamp
B1016 10W in = 160W out
(1W = 35W, 2W = 90W) RX preamp
B3016 30W in = 160W out
(useable in: 15-45W) RX preamp
(10W = 100W)

220 MHz ALL MODE
C106 10W in = 60W out
(1W = 15W, 2W = 30W) RX preamp
C1012 10W in = 120W out
(2W = 45W, 5W = 90W) RX preamp
C22 2W in = 20W out
(useable in: 200mW-5W)

RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading

MP-1 (HF) 1.8-30 MHz
MP-2 (VHF) 50-200 MHz

430-450 MHz ALL MODE
D24 2W in = 40W out
(1W = 25W)
D1010 10W in = 100W out
(1W = 25W, 2W = 50W)

Available at local dealers throughout the world.

COMMUNICATIONS EQUIPMENT, INC.
16890 Church St., Morgan Hill, CA 95037, (408) 779-7363
THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE
COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

SPECIAL SALE $795

MANUFACTURER
TONO CORPORATION
98 Motosouma Machi, Maebashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS
**Dual AMTOR: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur AMTOR codes and all of the CCIR recommendations 476-2 for commercial requirements.

Specifications Subject to Change.

MR. NICAD

REPLACEMENT BATTERIES FOR COMMUNICATIONS

Nickel-Cadmium, Alkaline, Lithium, etc.
ICOM - BP-3 Repack $15.00
BP-2, BP-6, BP-8 Repacks
NEW HOT ROD PACKS FOR ICOM 2A, 2AT, 22A, 8 CELL 800 MAH, 10 CELL 12.5v - 500 MAH - $49.95 ea.
Yaesu, Kenwood, Sony, ICOM, Tempo, Standard, Cordless Phone, etc.

MR. NICAD E.H. YOST & CO.

EVERETT H. YOST RR #1 BOX #37
KIRKI SAUK CITY, WI 53963
(608) 643-3194

Send for FREE catalog & info.

MOBILE RADIO MOUNTS
MM 10013

MM 1007

- Government
- Commercial
- Industrial
- Recreational

IXX IXX Equipment Ltd.
P.O. Box 9 Oaklawn, Il (312) 433-0605

Dustcovers
by KAGIL

- PROTECT your GEAR
- Waterproof PAK Nylon
- FIVE Colors
- Economical
- For ALL Amateur Radio Gear, Vintage thru Solid State...
- Custom covers
- MINI covers

Send (SASE) Today Samples & Brochure
KAGIL Dustcovers PO Box 06780
Portland, OR 97206
time and frequency station WWVS

I couldn’t resist the temptation. Driving along the south coast of Kauai Island, Hawaii, I saw a sign reading U.S. Department of Commerce, National Bureau of Standards Radio Station WWVH. In a microsecond, I turned off the highway and headed toward a brace of interesting looking antennas. After passing through a checkpoint, I quickly arrived at WWVH and was greeted by Ernie Farrow, the Engineer-in-Charge.

What an interesting visit! A low-frequency DXer would have been visibly shaken by the sight of the extensive vertical antenna and ground screen for the 2.5-MHz transmissions of WWVH. The antenna would be a “bomb” on 160 meters!

Ernie surprised me when he mentioned the time and frequency transmissions from WWVS, a station I never knew existed. WWVS, it seems, refers to the satellite-disseminated time code using the GOES (Geostationary Operational Environmental Satellite) satellites of NOAA (National Oceanic and Atmospheric Administration). The time code can be used for general-purpose reference time in the Western Hemisphere from two satellites on a nearly full-time basis.

The two active GOES satellites are in orbit over the Pacific. The satellite that serves the western United States, Canada, and western South America operates at 468.825 MHz and is located at 135 degrees West Longitude. The eastern satellite can be received on 468.8375 MHz and is positioned at 75 degrees West Longitude to serve the eastern seaboard of the United States, as well as Brazil and western Africa.

The time code to the satellites is sent from Wallops Island, Virginia. Because the path delay to and from the satellite is about 260,000 microseconds, the signals are advanced in time by this amount. The arrival time of the signal back on earth is corrected to within 16 microseconds. Other path delays are known, and the exact satellite position is included in the downlink signal for correction by the observer.

Additional information on the transmissions via WWVS and general data on time signals can be obtained in NBS Special Publication 432, available from Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80303.

Many thanks to Ernie Farrow at WWVH for an interesting tour, which is recommended to all visitors to the south coast of Kauai Island. Aloha, Ernie, and Mahalo!

(Note: Want to participate in the NBS 1987 survey? A brief explanation and a tear-out, postage-paid survey form follow this article. — Ed.)

nothing new under the sun!

Sam Pavone, W2DDN, sent me a copy of the original patent on the top-loaded vertical antenna, in common use today as a broadcast antenna and also as a DX antenna on the low frequency ham bands (see fig. 1). Looks familiar, doesn’t it? Even the current distribution curve (marked “3”) is what one would expect from an antenna of this type.

The U.S. Patent No. 930,746, however, was granted to Simon Eisenstein of Kiev, Russia on August 10, 1909! The preamble of the patent refers to Simon as “a subject of the Czar of Russia, residing in Kiev [sic], in said Empire of Russia.” The patent then goes on to define the current in the antenna in terms of degrees and discusses the problem of corona discharge. In spite of the fact that the patent was witnessed by a lady with the unlikely name of Fannie Fisk, it is apparent that Simon knew his onions. I wonder what happened to him? Did he disappear from the pages of history after filing this contribution to radio communication?

the WOSVM minibeam design

Jack Sobel, WOSVM, has been working for some months on a miniature beam antenna for hams who have restricted air space. His basic design consists of out-of-phase, loaded dipoles in the familiar W8JK configuration (fig. 2). Jack’s first design is for a 40-meter beam with 7.5-foot spacing. Element lengths are about 37 feet. This is about half the size of a conventional 40-meter, 2-element beam. The experimental antenna uses No. 12 AWG copper wire for the elements and is hung between two supports. Eight-foot spreaders made of wood or PVC pipe are used for the test antenna.

The radiation resistance of the antenna seems to be about 5 ohms, so its operational bandwidth is small. Jack feeds the antenna with a 50-ohm coax line and uses a Transmatch at the station to permit operation over a
Despite the popularity of transmission line transformers in both commercial and amateur applications, little practical design information has been published concerning these devices. The lack of data was made abundantly clear to Jerry Sevick, W2FMI when he began designing matching transformers for the short vertical antennas that are the subject of his classic series of articles that appeared in QST. In order to fill in the gaps of available knowledge, Jerry decided to study the subject of transmission line transformers in depth and the results of his findings are contained in this new ARRL publication!

Transmission Line Transformers covers types of windings, core materials, fractional-ratio windings, efficiencies, multiwinding and series transformers, baluns, and limitations at high impedance levels. There is also a chapter on practical test equipment. This book is must reading for everyone interested in antenna and transmission line theory. Copyright 1987, 128 pages $10 hardcover only.

The American Radio Relay League, Inc
225 Main St., Newington, CT 06111
reasonable portion of the 40-meter band. The phasing line between the elements is coiled up on the boom, or spreader. Jack hopes to get his antenna up high in the air so he can run some real operational tests. Perhaps with the coming of spring, he'll get some on-the-air tests with this interesting, compact antenna.

Jack has also built a compact beam of this design for 21-MHz operation. Spacing is less than 6 feet and overall element length is about 12 feet. For the elements, he uses 3/4-inch diameter copper pipe, available from plumbing supply stores in 10-foot lengths.

By changing the length of the phasing line, the beam pattern can be made unidirectional. As shown in the illustrations, both beams have a figure-8, bidirectional pattern, as is common with the WBJK antenna design.

Jack is experiencing lobe-splitting with the antenna and it remains to be seen if the simple feed system is distorting the antenna pattern. This problem won’t be solved until milder weather comes to Missouri. Stay tuned for the latest developments.

more on “white noise”

My January column discussing the problem of “white noise” in the modern frequency-synthesized ham gear drew a lot of interesting mail. Obviously, I’m not the only one who has noticed this problem. Synthesizer noise is well known in the industry. Standards of measurement have been developed and most modern military and commercial communication equipment has limitations on this type of annoying radiation.

An interesting letter from Tom Bay, O2SKG, outlines the ongoing problem he and other European Amateurs have had with a BBC (British Broadcasting Corporation) transmitter operating in the early morning hours on 7120 kHz. Tom provided the BBC with spectrum photographs showing the sideband noise, as monitored in Denmark.

The problem of “white noise” is well known in the industry. John noticed this problem. Synthesizer noise is inherently due to the phase-locking of the oscillator. According to John, it’s attributable, rather, to the necessity of keeping manufacturing costs under control.

Another letter came from John Grebenkemper, KA3LBO, of Saratoga, California. John wrote, In pre-PLL days, the oscillator would be designed with good coils and good capacitors in order to achieve temperature stability. This also resulted in a design which had a very high-Q oscillator resonant circuit. The high Q means that the oscillator is very good at filtering out the phase noise far away from the carrier. However, the newer designs that have PLOs can use much cheaper components because the phase-lock circuitry can now

attracted noise doesn’t affect the Danish Amateurs. This spring the BBC will again resume transmissions on 7120 kHz; it will be interesting to see if the wideband noise is still present on the signal.

phase noise standard?

We stock RF Power transistors lor Atlas, KLM, Collins, Yaesu, Kenwood, Cubic, Mirage, Motorola, Regency, etc. Cross-reference on CD, PT, SD, SW, JO, and 25C PNs.

Orders received by 1 PM are shipped UPS same day. Minimum order twenty dollars. COD/VISA/MC. Foreign Orders Accepted

Call: (619) 744-0728
FAX: (619) 744-1943

June 1987
remove the local oscillator drift. Therefore, the manufacturer uses less expensive coils and capacitors and gets an oscillator which has a much lower Q and higher phase noise. The fact that the oscillator is phase-locked does not prevent the generation of noise that is far removed from the carrier.

I would suggest that Amateurs generate a set of standards for local oscillator phase noise. These standards would be much less stringent than some of the numbers that you mentioned. They only need to be adequate to guarantee non-interference based upon a reasonable set of assumptions. I would suggest something on the order of -140 dBc/Hz at whatever offset frequency one desires to achieve no interference. This would guarantee no interference for a 1-kW effective isotropic radiated power transmitter at a distance of 1 mile. A number of Amateur transceivers could then be tested as to how well they meet these standards.

I have made phase noise measurements on an ICOM 745. It has a phase noise of better than -120 dBc/Hz at a 10-kHz offset, and better than -125/Hz at a 100-kHz offset. I think that is a pretty clean transceiver.

John closes his letter by saying: Phase noise is really in the same state as receiver dynamic range was 15 years ago. It yet has to be addressed by specific articles which deal with its causes, effects, and how to measure it.

I wish to thank the following individuals who sent me comments on white noise and also provided some interesting material on this subject:

- Dr. William J. Robertson, W8KHO, who sent a reprint of his article, "The Effects of Transmitter
1987 CALLBOOKS
NOW AVAILABLE

The 1987 CALLBOOKS are in! Place your order now so you can get full use out of your valuable investment. All the latest names, call signs and addresses make these two books invaluable operating aids.

NORTH AMERICAN CALLBOOK
Fully updated with all the latest up-to-date call signs and addresses for all North American Hams. Includes handy operating aids such as, time charts, OSL bureaus, census information and much more. With calls from Panama to Greenland, every ham should have one in their shack. ©1986.

CB-US87 Softbound $24.95

INTERNATIONAL CALLBOOK
Callsigns and addresses for all Amateur Radio operators outside of the North American continent. Invaluable aid to getting OSL cards from foreign DXers. Includes plenty of extra information too! Universally recognized as the source of OSL information. ©1986.

CB-F87 Softbound $24.95

Order Both and SAVE. Reg. Price $49.95

Order NOW.

CB-USF $44.95

SPECIAL PRICE
SAVE $5

Take it with you.

ShackMaster™ puts your home station in the palm of your hand. Whether portable, mobile, around the yard or around town you'll be linked through your handheld to your high performance equipment at home. Even call home from any Touch-Tone phone and operate. Scan the bands, change modes, select antennas, turn gear on and off - all from your Touch-Tone keypad. Check into nets, work skeds, ragchew and DX without being tied down to the shack.

Exchange electronic mailbox messages with your family - like "I'll be late", or "All is OK". Or talk with your family directly through ShackPatch™ with you in remote control of your home station. Report traffic accidents or disabled motorists through your home phone while mobile or portable with PersonalPatch™. All the power of your home station (and more) really can follow you anywhere. To find out more about ShackMaster™ just write, send us your OSL, or call and talk with us at 408-727-3330.

CALL LONG DISTANCE ON YOUR HANDHELD

The Model 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate SSB or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, IC-2AT, Yaesu, Santec, and Ten-Tec. Only 300 mw input will deliver 5 watts out; 3 watts in will deliver 35 watts out. Maximum input drive level is 5 watts.

Our products are backed by prompt factory service and technical assistance. WE SPECIALIZE IN: Complete parts list for the 140 watt, 300 watt HF amplifiers per Motorola bulletins EB27, EB63, AN758 and AN762. We also carry a line of ATV equipment. Call or write us for our free catalog.

Model 335A KIT $79.95

CCI Communication Concepts Inc.
121 Brown Street • Dayton, Ohio 45402 • (513) 220-9677

June 1987
Noise and Receiver Local Oscillator Noise in a Co-site Environment”;
- Douglas R. Schmieskors, Jr., WA6DYW, who sent a reprint of “Phase Noise Intermodulation and Dynamic Range,” written by Peter Chadwick of Plessey Semiconductors, Swindon, England;
- Chod Harris, VP2ML, who sent copies of the “DX Bulletin,” which summarized problems various Amateurs have had with white noise;
- Art Block, W3YK, who reported severe white noise on his synthesized transceiver when subjected to heavy off-channel interference;
More information on the subject is coming in. Stay tuned.
ALL NEW!

DUAL BAND ANTENNAS FOR ULTIMATE PERFORMANCE!!

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Sug. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X4Z</td>
<td>Base/Repeater 200 Watt</td>
<td>$168.95</td>
</tr>
<tr>
<td></td>
<td>Gain 146 MHz 8.2dB, 446 MHz 11.5dB</td>
<td></td>
</tr>
<tr>
<td>2X4SR</td>
<td>Mobile with Mag. Mt. 150 Watt</td>
<td>71.90</td>
</tr>
<tr>
<td></td>
<td>Gain 146 MHz 3.8dB, 446 MHz 6.2dB</td>
<td></td>
</tr>
<tr>
<td>2X4SDY</td>
<td>Mobile with Mag. Mt. 100 Watt</td>
<td>65.95</td>
</tr>
<tr>
<td></td>
<td>Gain 146 MHz 2.15 dB, 446 MHz 3.8dB</td>
<td></td>
</tr>
<tr>
<td>HT 702</td>
<td>146/446 MHz Hand Held BNC 50 Watt</td>
<td>29.95</td>
</tr>
<tr>
<td>C7-71</td>
<td>Base/Repeater 920 MHz 50 Watt</td>
<td>$115.95</td>
</tr>
<tr>
<td></td>
<td>7.14 dB Gain</td>
<td></td>
</tr>
<tr>
<td>C202N</td>
<td>Mobile 920 MHz with Mag. Mt. 5 dB Gain 50 Watt</td>
<td>72.95</td>
</tr>
<tr>
<td>1234E</td>
<td>Base/Repeater 200 Watt 8.5dB, 1.2 GHz 10.1dB</td>
<td>$178.95</td>
</tr>
<tr>
<td>124X</td>
<td>Mobile with Mag. Mt. 100 Watt 2.5dB, 1.2 GHz 3.5dB</td>
<td>104.95</td>
</tr>
<tr>
<td>121S</td>
<td>1.2 GHz Base/Repeater 100 Watt</td>
<td>$158.95</td>
</tr>
<tr>
<td></td>
<td>15.5dB, 21 Step colinear</td>
<td></td>
</tr>
<tr>
<td>1210M</td>
<td>1.2 GHz Mobile with Mag. Mt. 50 Watt</td>
<td>76.95</td>
</tr>
<tr>
<td></td>
<td>Gain 8.8dB</td>
<td></td>
</tr>
<tr>
<td>415M</td>
<td>High power duplexer 146 MHz 400 Watt</td>
<td>59.95</td>
</tr>
<tr>
<td></td>
<td>446 MHz 250 Watt</td>
<td></td>
</tr>
<tr>
<td>412N</td>
<td>UHF/GHz Duplexer 446/1400MHz Max. 70 Watt</td>
<td>68.95</td>
</tr>
</tbody>
</table>

1275 NORTH GROVE ST.
ANAHEIM, CALIF. 92806
(714) 630-5451
CABLE: NATCOLGIZ
FAX (714) 630-7024

Dealer prices may be different than list.
Prices and specifications subject to change without notice or obligation.

CADDELL COIL CORP.
35 Main Street
Poultney, VT 05764
802-287-4035

BALUNS
Get Power to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3.30 MHz operation. (See ARRL Handbook pages 199 or 620 for construction details.)

150 Watt (4, 1.5, 1, .9, .8, or 1.1 impedance—select one) $10.50
Universal Transmatch 1 KW (1 impedance) 14.50
Universal Transmatch 2 KW (1 impedance) 17.00
Universal Transmatch 1 KW (.9, .8, or 1.1 impedance) 16.00
Universal Transmatch 2 KW (.9, .8, or 1.1—select one) 18.50

AMATEUR RADIO MAIL LISTS
Self-stick 1x3 labels

*** NEWLY LICENCED HAMS ***
*** ALL NEW UPGRADES ***
*** UPDATED EACH WEEK ***
Total List = 462,728 (ZIP sorted)
Price is 2.5 cents each (4-up Cheshire)
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777

SYNTHESIZED SIGNAL GENERATOR

MODEL SG-100F
$429.95 delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/- 1 part per 10 million
- Internal FM adjustable from 0 to 100 kHz at 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ ½ Amp
- Available for immediate delivery • $429.95 delivered
- Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details • Phone in your order for fast COD shipment.

VANGUARD LABS
198-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.

THE ALL-IN-ONE DTMF DECODER

AUTO-KALL
AK-4

NEW!

- NEW! 100% hand-wound coil and tuning condensers
- Features include: 100% metal sheath coils for maximum safety
- Q-value is under 1.5
- Accuracy to 0.01 ohm
- Netuno circuit and filter is adjustable
- INDICATOR LED
- 5.995 V DC excitation
- 12 Volt dc operation
- Full-size metal box
- 4.3 x 4.3 x 1.125 inch
- Weight 5 oz
- 2 year warranty

NET-KALL NK-1: THE ECONOMY DTMF DECODER

Full-size metal box and front-mounted power on/off switch. Price includes 100% hand-wound coil and tuning condensers.\n
MO'TRON ELECTRONICS
695 W. 21st Avenue • Eugene, Oregon 97405
TEL: (503) 687-2118 • TLX: 600-3157002 MCI
VISA / Master Card / Check / COD

WIDEBAND PREAMPLIFIER

5 MHz to 950 MHz
Gain=22dB, NF=4dB, IP=25dBm

Other preamps 140-160, 210-230, 420-450 MHz available

WI-COMM ELECTRONICS INC.
P.O. Box 5174, MASENA, N.Y. 13662
(315) 769-8334
Uncle Sam wants your input

The National Bureau of Standards has invited readers to participate in its 1987 survey of users of NBS time and frequency services. More than 10,000 responses to the last survey (1975) were received; according to the NBS, these were "invaluable" in planning and carrying out the mission of the NBS over the past decade.

This year the NBS is expanding the scope of its survey to include not only WWV, WWVH, and their associated telephone-accessible time-of-day services, but also the WWVB 60-kHz service and the newer GOES satellite time code broadcasts. Your responses will help NBS provide the best mix and levels of time and frequency services in the future, consistent with your needs and NBS resources.

Please answer each question that is appropriate to your use of the NBS services. Even if you answer only some of the questions, your responses will be of great help to NBS. If your responses represent the views of an entire organizational unit, please indicate that fact, clearly identifying the name of the organization you represent.

For those who may be relatively unfamiliar with the present NBS services, the term GOES, as used in the questionnaire, refers to the Geostationary Operational Environmental Satellites that broadcast the NBS time code. DUT1 refers to information included in NBS broadcast formats that provides the approximate difference between the UT1 astronomical time scale and the UTC atomic time scale. Marine Weather refers to the marine storm warning announcements provided on WWV and WWVH, and Geoalerts refers to the WWV announcements relating to solar activity and solar-terrestrial conditions. Omega refers to the WWV and WWVH announcements that relate to the current status of the U.S. Coast Guard's Omega Navigation System. BCD Time Code refers to the time-of-day information in binary-coded-decimal form provided on 100-Hz subcarriers on WWV and WWVH.

Please cut out and mail your completed questionnaire to the Time and Frequency Division, 524.00, National Bureau of Standards, 325 Broadway, Boulder, Colorado 80303. (No postage is necessary if mailed within the United States.)

United States Department of Commerce, National Bureau of Standards, 325 Broadway, Boulder, Colorado 80303

WWV and WWVB signals are broadcast from these antennas located about 7 miles north of Fort Collins, Colorado. The tall WWVB (60-kHz) array is fed from the building at left center, and the WWV antennas are powered from the building at right center. (Most of the WWV vertical dipoles are to the right, and scarcely visible.) Traces of the buried ground plane wires radiate from under the WWVB array.
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

- Satellite Tracking Software Available for most popular PCs.
- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks
- Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
1987 SURVEY OF NBS TIME AND FREQUENCY SERVICE USERS

My responses primarily reflect the view of: ☐ an individual ☐ an organization

Organization name

Approximate number of time and frequency users in this organization

USE OF CURRENT SERVICES

<table>
<thead>
<tr>
<th>How often do you use each of these NBS services?</th>
<th>WWV (MHz)</th>
<th>WWVH (MHz)</th>
<th>WWVB (0 kHz)</th>
<th>GOES SATELLITE (469 MHz)</th>
<th>TELEPHONE TIME-OF-DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0=Never; 1=Rarely; 2=Sometimes; 3=Generally)</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

ADEQUACY OF CURRENT SERVICES

<table>
<thead>
<tr>
<th>Do the current NBS services satisfy your needs for accuracy?</th>
<th>WWV</th>
<th>WWVH</th>
<th>WWVB</th>
<th>GOES SATELLITE</th>
<th>TELEPHONE TIME-OF-DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0=No; 1=Marginal; 2=Generally yes; 3=Yes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do the current NBS services satisfy your needs for reliability of reception and ease of use?</th>
<th>WWV</th>
<th>WWVH</th>
<th>WWVB</th>
<th>GOES SATELLITE</th>
<th>TELEPHONE TIME-OF-DAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0=No; 1=Marginal; 2=Generally yes; 3=Yes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOR USERS OF WWV AND WWVH

<table>
<thead>
<tr>
<th>Which types of information on these broadcasts do you use at least occasionally?</th>
<th>VOICE TIME OF DAY</th>
<th>BCD TIME CODE</th>
<th>1-SECOND TICKS</th>
<th>STANDARD FREQUENCY</th>
<th>DUTY VALUES</th>
<th>MARINE WEATHER</th>
<th>GEO Alerts</th>
<th>OMEGA STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Indicate by checking each appropriate box)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| How important is each type of information? | | | | | | | | |
| (0=Not at all; 1=Marginal importance; 2=Important; 3=Very important) | | | | | | | | |

<table>
<thead>
<tr>
<th>Is the present quality of the voice announcements of weather, geoalerts, and Omega System status adequate for your needs?</th>
<th>Yes</th>
<th>No</th>
<th>If no, why?</th>
</tr>
</thead>
</table>

FOR USERS OF WWVB

<table>
<thead>
<tr>
<th>How important is to you or your organization each of these aspects of WWVB?</th>
<th>STANDARD FREQUENCY</th>
<th>TIME CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0=Not at all; 1=Marginal importance; 2=Important; 3=Very important)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOR USERS OF THE GOES SATELLITE TIME CODE

<table>
<thead>
<tr>
<th>Does interference in your area significantly hinder the usefulness of the satellite time code?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Do you use the GOES time code status reports by accessing the "NBSGO" file in the U.S. Naval Observatory's Automated Data Service System?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Do you use the full accuracy of the time code (100 microseconds) via a receiver that automatically corrects for path delay variations?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Do the occasional time code shifts of more than 100 microseconds at times of satellite maneuvers cause serious problems for your application?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

FOR USERS OF THE WWV OR WWVH TELEPHONE TIME-OF-DAY SERVICES

<table>
<thead>
<tr>
<th>How often do you encounter busy signals when calling (303) 499-7111 or (808) 335-4363?</th>
<th>(Never; 1=Rarely; 2=Sometimes; 3=Frequently)</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Would the value of these services be decreased if only a high-quality voice time announcement were available without the weather, geoalert, or Omega status information?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

(OVER)
POSSIBLE FUTURE CHANGES IN NBS SERVICES

<table>
<thead>
<tr>
<th>ACCURACY</th>
<th>RECEPTION RELIABILITY</th>
<th>COVERAGE AREA</th>
<th>EASE-OF-USE</th>
<th>USER COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the development of future time and frequency services which of the following aspects need the most improvement? (Check appropriate boxes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the availability of new services in the future with improved capabilities in terms of accuracy, reliability, coverage, etc. required the payment of an annual user fee of less than $250/year, would you or your organization likely subscribe to such a service? (Yes or No)</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do you need NBS timing signals designed for direct interfacing to computers? If "Yes", what accuracy level is needed?</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What new or improved time and frequency services would you find useful? (Please describe briefly)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USER DATA

Please indicate which of the items below apply to you as a user of NBS services: (✓)

- Private Citizen
- Government/civilian
- Government/military
- Radio/TV Operations
- Standards Lab
- Electric Power Industry
- Telephone Industry
- Aviation/aerospace Industry
- Transportation Systems
- Communications Systems
- University
- Geophysics/seismology
- Health Care Industry
- Pleasure Boating
- Equipment Manufacturing
- Jewelry/watchmaker
- Amateur Radio

Please indicate which of the items below describe the purposes for which you use the NBS time and frequency services: (✓)

- Frequency Calibrations
- Watch/clock Setting
- Master Clock
- Navigation/Position Location
- Time Base for Computers
- Time Base for Synchronizing or Controlling Operations
- Time Base for Data Monitoring
- Surveying
- Space/missile tracking
- Marine Weather
- Propagation Information
- Astronomy
- Hobby
- Geolat Information
- Omega System Information

Other (Specify) ________________

In what state of the United States or foreign country do you use the NBS time and frequency services? (Two-letter state abbreviation or country) ________________

Please estimate the annual economic value of the NBS time and frequency services to you or your organization, if possible. $ ________________

Additional Comments:

U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards

325 Broadway

Boulder, Colorado 80303

OFFICIAL BUSINESS

Penalty for Private Use, $300

Time & Frequency Division, 524.00

National Bureau of Standards

325 Broadway,

Boulder, CO 80303

48 June 1987
AUTHORIZED KENWOOD I-COM RADIO DEALER

H. L. HEASTER, INC., 203 Buchanan Pike, Clarksburg, W. Va. 26301. Phone (304) 624-5455 or W. Va. Toll-Free 1-800-357-3177

HAROLD HEASTER, KAB0X, 91 Ridgefield Place, Ormond Beach, FL 32074. Phone (904) 673-4066.

NEW NATION-WIDE TOLL-FREE TELEPHONE 1-800-84-RADIO 1-800-34-72346

Call us for a quotation, we will save you money!

SPECIALISTS IN FAST TURN P.C. BOARDS

PROTO TYPE P.C. BOARDS AS LOW AS $25.00
- SINGLE & DOUBLE SIDED
- PLATE THROUGH HOLES
- TEFLON AVAILABLE
- P.C. DESIGN SERVICES

FOR MORE INFORMATION

Midland Technologies
34374 EAST FRONTAGE ROAD
BOZEMAN, MT 59715 (406) 586-1190

Full Feature
Remotely Programmable Repeater Controller
for under $600

- Field tested for over 2 years
- Full 2 year warranty
- FREE
 Free Full Color Brochure
Call Toll-Free
1-800-621-8387 ext. 244, 8 am - 5 pm Mountain Time

Full Feature
Remotely Programmable Repeater Controller
for under $600

- Field tested for over 2 years
- Full 2 year warranty
- FREE
 Free Full Color Brochure
Call Toll-Free
1-800-621-8387 ext. 244, 8 am - 5 pm Mountain Time

RADIO HANDBOOK
23rd Edition
by Bill Orr W6SAI

□ 22424 Hardbound $26.95
Reg. 29.95 SAVE $3

Please enclose $3.50 to cover shipping and handling

ham radio magazine BOOKSTORE
GREENVILLE, NH 03048
603-878-1441

June 1987
Understanding Automatic Antenna Tuners

One of the most popular yet often misunderstood accessories in modern amateur radio setups is the fully automatic antenna tuner. While this item plays a significant role in any station's overall performance and enjoyment, inquiries regarding its specific use and operation continue surfacing during conventions and ICOM Day discussions. Answering those questions in a "shared knowledge" manner thus inspired this Tech Talk's topic.

The basic purpose of an automatic antenna tuner is matching an antenna's transmission line-presented impedance to that of a transceiver's output. This technique is usually referred to as obtaining a low SWR for full band coverage. Many of today's multiband dipoles, beams, and verticals exhibit narrowband characteristics, for example, and must be pretuned for SSB or CW band segments before outdoor installation. Attempting subsequent operations in their less favored or "high SWR" range creates an impedance mismatch that restricts RF power output from their connected transceiver.

An antenna tuner utilizes a large multitapped coil and two variable capacitors to counteract undesired capacitive or inductive reactances and re-establish a matched condition between the transmission line and the transceiver. While this impedance matching doesn't eliminate coax cable losses, it does allow a station's transceiver to efficiently deliver its full output to the antenna system. This impedance matching arrangement has also been proven beneficial in reducing harmonic radiations and TVI.

The basic inner operation of all automatic antenna tuners is similar in nature. Initial band selection determines the proper coil tap to be utilized while reversible motors position the variable capacitors at their point of lowest SWR. "Correction voltage" applied to the motors is derived from the tuner's SWR sensing circuits which, in turn, are activated by RF energy from the transceiver.

Manual antenna tuners perform similar impedance matching functions; however, the station operator must personally monitor SWR readings while trial-and-error selecting coil taps and rotating capacitors to find a proper impedance matching point. The convenience and enjoyment of an automatic tuner "following your lead and readying everything for action" creates a deluxe setup that's a pleasure to operate.

There are presently two design variations in automatic antenna tuners: the totally "hands off" unit, and the operator-adjustable unit. "Hands off" units typically exhibit a limited impedance matching range and can't be operator fine-tuned. Operator-adjustable units usually exhibit a comparatively wider tuning range and offer greater overall station flexibility, but improper settings must be minimized.

ICOM's fully automatic AT-500, AT-100, and AT-150 antenna tuners incorporate the best features of previously discussed concepts in their designs. They can be used as a strictly automatic/hands-free unit or operator-adjusted when desired. Additionally, each tuner includes an automatic four-selection antenna switch and a transceiver interfacing cable for fully automated station operating convenience. The AT-500 and AT-100 handle 500 and 100 watts, respectively, and operate automatically with all ICOM HF transceivers (LDA option required for IC-730). The AT-150 handles 100 watts and mates with the compact IC-735 for true "dream station" performance.

Operating an AT-500/AT-100/AT-150 equipped ICOM station is an amateur's delight. When a particular band is selected on the station's transceiver, the "slaved" tuner connects the required antenna and internal coil tap. Transmitting a brief low power signal then allows the tuner to adjust its capacitors for an optimum impedance match, and the station is ready for action. If additional "tweaking" is desired, a top access hatch permits indirectly fine tuning capacitor settings. Four LEDs (two for each capacitor) provide direct assistance by indicating the resonant point of each control. Merely ensure the tuner's AUTO/Preset (Manual operation) switch is in its AUTO position, then rotate the controls until all LEDs extinguish. If a particular antenna exhibits exceptionally high SWR, the tuner may be switched into preset/manual operation. The previously mentioned internal controls may then be [slowly] adjusted while monitoring SWR on the transceiver's meter. Two capacitor-adjusting controls are provided for each band; thus, one band's antenna settings will not disturb another's. Two helpful hints: when manually presetting, always start with adjustments in midrange. When auto-tuning reluctant antennas, try "Walking" the tuner by allowing it to fully tune in 25kHz steps rather than 300kHz jumps. Remember, also, all tuners have their limits.

Inclusion of an automatic antenna tuner in any HF setup truly opens an exciting new world of enjoyment. A smooth operating station also inspires investigation of new pursuits and modes. Naturally, ICOM wants you to enjoy amateur radio's many rewards in TOP style!
GET ON THE AIR
WITH THE BEST

All Novices Can Talk on 220MHz, 10 meters and 1.2GHz.

ICOM extends congratulations to
prlx-levlal-enhanced Novlces, and invites
everyone to extend their horizons with
ICOM!

ICOM is the only amateur radio
manufacturer hosting a full product
line especially geared toward privi-
lege-enhanced Novices (and Techni-
cians joining 10-meter activity).
Whether your interests include 1.2GHz,
220MHz, HF bands, FM, CW, or SSB,
choosing ICOM gear means going First
Class!

Explore 1.2GHz DX attractions and
local activities with pacesetting ICOM
gear. The all mode IC-1271A base sta-
tion transceiver includes numerous de-
luxe features and is expandable with
your future interests. FM mobiling plea-
sures begin with ICOM’s new 10 watt
IC-1200A which is easy to install and
operate. Every amateur enjoys handheld portable operations, and ICOM’s
deluxe IC-12AT handheld is ready to go.

Experience 220MHz activities using
top quality ICOM equipment. For your
multi-mode interests is the new IC-375A
25-watt base station transceiver: a
true masterpiece of modern technology.
ICOM’s ultra slim IC-37A and compact
IC-38A are ideal 25-watt mobile units.
For a versatile and rugged handheld,
choose the deluxe IC-03AT or the ever-
popular IC-3AT.

Enjoy HF OSOs worldwide and de-
depend on ICOM transceivers for top
communications performance. The exciting
new IC-761 offers you superb ‘every-
thing in one cabinet’ operation. Or
there’s the ICOM deluxe midsize trans-
ceivers, the IC-751A and IC-745. The
IC-735 is today’s most popular fixed/
mobile rig. Also, friends, all ICOM HF
transceivers include a full one-year
warranty.

ICOM Accessories are interchangeable.
Use them with ICOM’s 2-meter and
440MHz gear when you upgrade!

Get on the Air with ICOM and ex-
plor: 1.2GHz, experience 220MHz, and
enjoy HF OSOs.
Get our famous High Tech Catalog FREE

Heath Company
Dept. 122-544
Benton Harbor, Michigan 49022

MAIL COUPON TODAY and receive the latest issue of the Heathkit Catalog free of charge

Name __________________________
Address ________________________
City ____________________ State ______
CL-783BR3 Zip __________

A subsidiary of Zenith Electronics Corporation
In previous installments of this three-part series,¹,² we described network algorithms and the design and testing of network hardware. This month, we'll discuss node control software.

Contained in a single 27C256 ROM, the software determines the functions and user features offered by the network nodes. Highly modular in design, the software was written in Z-80 assembly language for two reasons: one, because the wide array of services offered by a single node put memory space at a premium; and two, because one or more of each node's ports would be operating at 9600 bps, therefore stressing real-time capacity.

Because space is limited, we'll discuss the functions of specific software areas rather than describe the software itself in detail. Figure 1 illustrates a typical node, with each major software area indicated by a circled reference letter.

common logic

The common logic portion of the software package, identified as A in fig. 1, is responsible for memory allocation and management, real-time scheduling, and interfacing to the various hardware I/O devices, such as SIO's and the CTC. As an example of these housekeeping tasks, let's look at memory management. Because there are many more users for memory than there is memory capacity, memory management — specifically in regard to time-sharing — is critical to efficient system operation. The generic problem with most memory management schemes, however, is deadlock, which occurs, for example, when a memory user has some memory allocated and needs more to complete the job, but can't get more because of what's already been assigned. The node software package follows a procedure known as load shedding to prevent deadlock; it does this by finding the "oldest" and largest consumer of memory and aborting his resource allocation.

The largest section of the common logic is the multi virtual connection PAD (Packet Assembly/Disassembly) logic. This general-purpose software has a standard interface to the higher layers of software wishing to use its services. The PAD is completely state table driven and currently implements the ARRL AX.25 V1.0 and V2.0 protocol specification. The PAD supports a variable number of simultaneous virtual connections.

Thomas H. Aschenbrenner, WB5PUC, and Thomas C. McDermott, N5EG, Texas Packet Radio Society, P.O. Box 831566, Richardson, Texas 75083-1566
The common logic provides a number of features of the node. All users of the node see the node as a series of AX.25 addresses. For example, this is how users see the Garland, Texas node:

- **W9DDD-2** 1st conference bridge
- **W9DDD-3** 2nd conference bridge
- **W9DDD-4** TEXNET Access
- **W9DDD-5** Node's local console
- **W9DDD-6** Test access

These applications will be explained shortly; what's important to note here is that all of the addresses have the same Amateur call, W9DDD, and that the application is selected according to the SSID. (This method of operation is only one configuration of the address database. Instead of using the same call (W9DDD) five
times, different calls could have been configured, with the SSID held constant. The node will support any combination of the above examples.)

The common logic also supports various restriction and parameter tables. New connections to any AX.25 address of the node can be inhibited as a function of the number of digipeaters used to get to the node. This has been found to be useful in reducing channel congestion attributable to excessive retries on long digipeater paths to a specific node. The preferred method is to put a network node near enough to the user group and carry the traffic on the network backbone trunks.

Parameters managed by the common logic, on a per-physical port basis, include all of those specified in the AX.25 protocol (i.e., T1, T2, T3, K, N2, etc.) and some unique to this application. It was found desirable to define the AX.25 T3 timer as either an all-seems-well timer (its original function) or an auto-disconnect timer. In the auto-disconnect mode, if a user’s virtual connection is idle for greater than the T3 time value (nominally 3 minutes) he or she is automatically disconnected from the node, thereby making room for other users. This mode can be overridden by the ALERT network mode, which will be discussed below.

Finally, the common logic is responsible for gathering statistics for the node. Two main groups of statistics are collected. The first are those that aid in “traffic engineering” the node. Quantities such as the amount of memory in use, the maximum amount ever used, and the total available allow visibility into the level of service being provided and indicate whether or not more RAM should be allocated to the free memory pool, thus decreasing memory space available for applications. Experience indicates that a free memory pool of approximately 30K, allocatable in about 200-byte chunks, provides good service with enough reserve capacity to handle rather large impulse loads, such as congestion on 9600-bps trunk circuits.

The second group of statistics collected are those having to do with node use. Quantities such as the number of frames transmitted, received, and retransmitted for each physical channel yield data on overall network use, thereby suggesting possible additions to the node or changes in network configuration. These numbers can also be used to determine the performance level of network trunks.

multi-node network logic

As illustrated, the multi-node network logic (see B in fig. 1) is supported by the common logic. In turn, it supports higher-level applications such as Network Administration, User Intercommunication, and the Packet Message Server.

The multi-node network logic is a datagram-based system that can support up to 256 node locations with as many as 20 simultaneous users at each node. All network nodes interconnect via permanent virtual connections between them.

The network is a database-driven system that features an extremely user-friendly termination-based routing structure. The network provides end-to-end flow control to eliminate internal congestion. A user’s TNC “going busy” causes a network message to be sent to the far node, which in turn will “busy” the subject port at the far node, thus causing the remote user’s TNC to stop sending.

In order to allow for an increased level of reliability, the network allows for alternate routing of data via multiple routes to a single node. Controlled by the node’s database, alternate routing is automatically performed upon detection by a node that its first-choice route has failed.

The network provides substantial feedback to the user community via a mechanism called Network Information Codes (NIC). These NICs are printed at a user’s terminal when something unusual happens that will affect the performance of the network from the user’s viewpoint.

For an example of NIC operation, and for further
illustration and explanation, see fig. 2, which illustrates the network test configuration as it was in Dallas when this article was being prepared. This test configuration was used for software testing during the development phase and for a series of operational tests during the beta-test phase.

The system shown in fig. 2 is located in the north Dallas area. No particular attention was paid to the geographical locations except for convenience of access for testing. The illustrated network architecture was chosen because it provides for testing of all possible configurations of actual network operation.

Each of the four nodes has an Amateur call sign assigned as its user-access AX.25 address. Each node also has a mnemonic name to which all users refer when asking the network for services. For example, Node 4 has a user-access address of N5EG-4, and is referred to by users in all network commands as MURPHY. (Note: MURPHY is named for its location in Murphy, Texas — not in honor of the universal law of the same name.)

In an actual geographically dispersed network, the user community around each node has to know only their own node’s user access address (N5EG-4 in the example above). They refer to all other nodes in the network by the network node names (GARLAND, MURPHY, DALLAS, TI [Texas Instruments Radio Club] — see fig. 2).

Also shown in fig. 2 are typical user stations, labeled User 1 through User 5. These stations are standard Amateur packet stations equipped with commercially available TNCs and VHF transceivers.

the network users’ interface

The Network Users’ Interface (see C in fig. 1) provides the user’s view of the network. Referring to fig. 2, if User 5 were to connect to WB5PUC-4, he would see the following displayed on his screen:

C WB5PUC-4
***Connected to WB5PUC-4
WB5PUC-4 Virtual Connection 06 at 18:32:20 on 11/20/86
Welcome to TEXNET
Network Cmd?

At this point he can issue any of the network commands or just disconnect if he’s finished.

network command structure

The network command structure is as follows:

- **@NODENAME**. The NODENAME field may consist of any valid network node name. Valid node names may be two to seven characters long and can consist of any ASCII character except carriage return. As indicated in fig. 2, these names are MURPHY, GARLAND, TI, and DALLAS in our test configuration. User entry of a name not recognized by the node as valid will result in a message to the user indicating that an invalid node name has been entered. A list of valid names will be printed to allow correction of the error.

Because any command may be destined for any node, most commands are terminated by the @NODENAME field. Some commands have an implied node name. Commands that are currently implemented are listed in table 1. For purposes of this description, the network commands are divided into two categories: User and Administration. Note that this division is for explanation only; any user may execute any command. Those who simply want to communicate via the network need learn only the commands listed in the User category. A much smaller group of people — those who are responsible for network engineering and administration — need to learn the Administration commands.

While the command words are spelled out fully in table 1, only the first character must be entered for most commands — for example, H for HELP. Table 1 includes examples of network commands and their abbreviated formats.

- **HELP**. The user entering this command is given a partial list of commands (those marked “user”) and referred to the network operation manual for further enlightenment. This strategy, rather than the on-line tutorial method, was chosen in order to reduce channel congestion. All new users are sent a copy of the TEXNET manual; this eliminates trial-and-error learn-

<table>
<thead>
<tr>
<th>Table 1. Active network commands can be typed by user in response to the network command prompt, which is received after the user does a standard connect to the node.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>Admin</td>
</tr>
</tbody>
</table>

| 56 | June 1987 |
ing on the air, which results in more efficient use of channel space.

- The CIRCUIT command tells the network the desired destination of the user’s connection. See fig. 2; if User 1 wanted to communicate with User 4, he would enter the following at the command prompt:

 C W5ABC @ TI

 Obviously, this example assumes that User 4’s call sign is W5ABC. Note that User 1 doesn’t need to know how the network will connect to User 4; he just enters the terminating node name TI, and it’s the network’s responsibility to figure out how to route the message to TI.

 The routing strategy is accomplished by the database in a node’s knowing which of its adjacent nodes should be used to get to a remote node. It’s a tradeoff, in that it makes the node database somewhat more complex — but it does allow the users an extremely easy interface.

 Because the users don’t need to know the physical configuration of the network in order to communicate, the network administration group can change it at will without having to inform (and thus re-educate) the entire user community. This routing strategy takes advantage of the disparity between the number of times users access the network to communicate (very large) versus the number of times the administration group adds or makes changes to a node (very small). The increased burden on the administration group is more than offset by the benefit to users.

 In order to compensate for incomplete geographic network coverage, the CIRCUIT command allows an optional string of digipeaters to try to connect to the desired station. Thus,

 C W5ABC V WA5LXS @ TI

 would cause the remote node TI to attempt to connect to W5ABC, using WA5LXS as a digipeater. Up to two digipeaters can be specified in the CIRCUIT command.

 Operations note: whenever a remote node attempts to connect to a station (as when TI attempts to connect to W5ABC in our example), the node will use Version 2 of the AX.25 protocol unless a digipeater is specified. If a digipeater is specified, the remote node will attempt the connect using Version 1 AX.25. This is because there are still some digipeaters around that won’t accommodate Version 2.

 After User 1 enters the CIRCUIT network command, one of three things will happen. First, his CRT may display the message,

 Your connection is established

 in which case he’s being advised that the desired remote user (User 4) is on line. At the far side, our remote user (User 4) would receive the following on his screen:

 *****Connected to K5OJI-4**
 *****Linked to W5DEF at Murphy via Texnet**

 Therefore, User 4 knows exactly to whom he is connected via the network, and where the originating station is located. The above example, of course, assumes User 1’s call is W5DEF.

 The “*** Linked to” string received from the network allows a WORLI-compatible BBS system to know who the real user is (W5DEF) rather than thinking it is connected to the node (K5OJI-4).

 The second possible message is:

 Remote user not responding

 In this case, User 1 is informed that connection is impossible. This could occur for a number of reasons: the remote station may not have its equipment turned on, or it may be turned on but involved in another QSO.

 The third possibility is receipt of an NIC message. Using our example, if user 1 received:

 Network information code 017 from Dallas

 he could look in the TEXNET manual and find that code 017 means his attempt was routed as far as Dallas, but couldn’t be routed further because of a network trunk outage. This can then be reported to network administration for remedial action.

- The LOCATIONS command allows users to ask the network for a list of remote locations which can be reached through the network.

- The MESSAGE command gives any network user, regardless of node location, access to the network Packet Message Server (PMS) logic. Details of the PMS subsystem will be covered below; for the moment, let’s just say that it’s a network-wide message file system similar to the WORLI bulletin board system.

 It’s important to note that users at any node in the network don’t need to know where in the network the PMS system is physically located. All a user needs to do is type MESSAGE or M, and the network takes care of routing to PMS. In the test configuration shown in fig. 2, PMS is actually located at Node 1 or Dallas, but very few users are aware of this, since they can connect to any node to access PMS. Once the network has established a connection for the user to PMS, the user can enter PMS commands to store, list, or read messages.

- **ALERT-ON AND ALERT-OFF** enable or disable a special mode of operation called ALERT, which is especially designed for accommodating emergency traffic handling via packet radio. The ALERT mode can be enabled from any node in the network. When a user
connects to any node and issues the ALERT-ON network command, his or her node will send a “broadcast” command to all other nodes in the network informing them that ALERT mode is being enabled and telling each the name of the originating node. At this point, several things happen in every node.

Users connecting to the network are informed that an ALERT is in progress. Let’s assume that a user at Dallas has enabled the ALERT mode. As in our previous example, User 1 wants to communicate with User 4; when he tries to connect, however, he receives the following message on his CRT:

***Connected to N5EG-4
N5EG-4 Virtual Connection 03 at 08:30:20 on 12/15/86
Pls disconnect unless your traffic is related to the network alert in progress from Dallas.
Welcome to TEXNET

Network cmd?

When ALERT is enabled, all user automatic disconnect timing is disabled. Thus, instead of the standard 3-minute idle time disconnect, to which all users are subject, all nodes will allow connections of unlimited duration to their ports. This disconnect timing suspension affects all connects to the node. Thus, if groups of users want to use their node’s conference bridges to handle emergency traffic, they can remain connected indefinitely. User connects to PMS may also be of indefinite duration.

With the enabling of ALERT, a special mode of PMS that provides a real-time message exchange between the multiple users connected to PMS is also enabled. Thus, when one user SENDS (see PMS description below) to another, all of the standard PMS functions are invoked. In addition, after automatically saving the message on disk, PMS will check to see if the addressee is currently connected to PMS on another of its logical ports. If he is, PMS will automatically display the message at the addressee’s terminal.

With this mode of operation enabled, PMS becomes a real-time message forwarding system among its connected users, with the added feature that all messages are archived to the disk. This feature can be extremely useful in emergency government communications back-up, since the stations connected to PMS could be physically located anywhere along the network.

For a Department of Public Safety (DPS) exercise, for example, Amateurs equipped with standard packet equipment could be located in each community’s DPS office. Each station would be connected, via the network, to one of the logical ports of PMS. Because the ALERT mode would be enabled, they would be able to stay connected indefinitely — remember, DISC (disconnect) timing is inhibited with the enabling of ALERT — and each time one station uses the standard SEND feature of PMS, the message would be displayed in real time at the receive station. Of course, the message would be automatically saved to disk so the receive station can review it at will. Other advantages of this technique include a complete on-disk record of all messages (useful for exercise postmortems) and the fact that other connected stations may review all communications except those sent as private messages.

- The STATISTICS command, when issued with the NODENAME parameter, causes the local node to acquire the operational statistics of the remote nodes. The statistics counters in a node aren’t cleared by this command; this allows interval measurements to be taken. Every midnight, all statistics counters are cleared to zero.

The following are the statistics kept at each node and therefore available via the STATISTICS command:

Frame buffers available
Frame buffers in use
Maximum frame buffers ever used
Total connects
Connects to weather
Connects to conference bridge
Connects to network
Network circuits active
Maximum network circuits ever active
Packets sent on each physical channel
Packets received on each physical channel
Packets re-sent on each physical channel

In addition, the real time at the subject node is sent back with the statistics. By looking at some of the statistics returned, the network administrators can make various engineering judgments about the level of service being provided by a node to its user community. Quantitative measurements of the activity of a node’s local user community, and of which node services are being used, can also be made.

- The INITIALIZE command is the means of remotely restarting any node. When a node receives an INITIALIZE command directed to it from someplace on the network, two functions are executed. First, upon receipt and decoding of the command, the software kills all activity in the node for 30 seconds. This delay allows time for adjacent nodes to have their network trunks to the subject node time out because of the subject nodes’ lack of activity. This action gracefully removes the subject node from the network fabric. At the end of the delay period, the subject node does a cold restart, thus appearing to the rest of the network as if it had just been turned on. In response to this action, the subject node — after consulting its database — establishes network trunks to the appropriate adjacent nodes. Network operation is now re-established.
New PK-232 Breakthrough

Six Digital Modes - Including Weather FAX

A new software enhancement makes the AEA PK-232 the only amateur data controller to offer six transmit/receive modes in a single unit.

- Morse Code
- Baudot (RTTY)
- ASCII
- AMTOR
- Packet
- Weather FAX

$319.95 AMATEUR NET
$379.95 AEA RETAIL

Your home computer (or even a simple terminal) can be used for radio data communication in six different modes. Any RS-232 compatible computer or terminal can be connected directly to the PK-232, which interfaces with your transceiver. The only program needed is a simple terminal program, like those used with telephone modems, allowing the computer to be used as a data terminal. All signal processing, protocol, and decoding software is in ROM in the PK-232.

The PK-232 also includes a no compromise VHF/HF/CW modem with an eight pole bandpass filter, four pole discriminator, and 5 pole post detection low pass filter. Experienced HF Packeteers are reporting the PK-232 to have the best Packet modem available.

Operation of the PK-232 is a breeze, with twenty-one front panel indicators for constant status and mode indication. The 240 page manual includes a “quick start” section for easy connection and complete documentation including schematics. Two identical back panel radio ports mean either your VHF or HF radio can be selected with a front panel switch. Other back panel connections include external modem disconnect, FSK and Scope Outputs, CW keying jacks, and RS-232 terminal interface.

The RS-232 connector is also used for attaching any Epson graphics compatible parallel printer for printing Weather Fax. Weather maps and satellite photos, like the one in this ad, can be printed in your shack.

Contact your local AEA dealer today for more information about the one unit that gives you six modes for one low price, the PK-232.

Brings you the Breakthrough

2006-196th St. SW
Lynnwood, WA 98036
(206) 775-7373
The second thing that happens upon receipt of an INITIALIZE command is the activation of an external hardware fail-safe circuit. Buried in the INITIALIZE command as it traverses the network is a unique bit sequence generated by the originating node and specific to the subject node. Upon detection of the bit sequence by the subject node’s external hardware fail-safe circuit, the master reset line of the Z-80 is asserted. This technique obviates the above discussion on the software execution of the INITIALIZE command unless, of course, there’s a failure in the fail-safe hardware itself. The combination of the two techniques would require a double failure in a node before the ability to remotely reset it would be lost.

- The TIME command, when issued by a user at any node and directed to a specific remote node, will cause the real-time clock at the remote node to be updated to the time contained in the message. If no time parameter is input by the originating user, then the current time at the user’s node is sent to the remote. If the time parameter is entered by the user, his or her node’s real-time clock is updated with the input time before its value is sent to the remote node.

- ROUTE ADD/DELETE. Since in every node the ROM routing table is copied to RAM for operation, it may be changed by being added to or deleted from. The ROUTE commands are the means by which new nodes can temporarily be added to an existing network or by which the network configuration can be changed to accommodate a failure or some other special event.

- POINT COMMAND. This command is used to control external equipment at any node site. Within each node control point (NCP), there are 5 bits of input and 5 bits of output available for external use. These bits, called control points, could be used to control and monitor anything that interfaces via contact closures. Colocated equipment at the node site, such as other repeaters, could take full advantage of digital control via this feature of the NCP.

The POINT command allows full on/off control of the output points. For example, suppose a co-located voice repeater at the GARLAND node needed to be controlled. NCP output Point 1 could then be wired to the voice repeater’s control relay, and perhaps NCP input Point 1 would be wired to one of the control relay contacts to allow monitoring of relay closure.

Any authorized packet station, anywhere on the network, can issue the following command to enable the co-located voice repeater:

POINT ENABLE 1 @ GARLAND

or for short,

P E 1 @ GARLAND

Displayed on the CRT — after the network has passed the POINT command to the GARLAND node and the command was executed — would be:

Control Points at Garland Are
Point: 1 2 3 4 5 6 7 8
Input: E D D D D D D
Output: E D D D D D D

Since the control operator knows that Control Point 1 is wired to the voice repeater, he can see that it’s enabled, and by looking at Input Point 1, confirm that the control relay is closed.

Any time the control operator wishes to check if the voice repeater is on, he needs only to type P S @ GARLAND to get the status display of the control functions. When he chooses to shut the voice repeater down, he enters P D 1 @ GARLAND at the network command prompt. Again the status will be displayed on his screen in response to the command, allowing confirmation that shutdown has occurred.

One important use of the POINT command is the control of a pair of control points wired over to the node’s Uninterruptible Power Supply (UPS). By design, the UPS has a control lead which, when enabled, forces the UPS to switch from ac to battery. Another UPS lead provides an indication that the UPS has switched to battery operation.

In a normal node configuration, Control Point 5 input and output are wired to theUPS control leads. This allows any node in the network to be instructed to operate off battery power by the simple issuance of the P E 5 @ Node command. Issuing the P D 5 @ Node command restores the node to ac operation. This feature allows weekly testing of the UPS to ensure that it would be effective during an emergency.

network internals

It may be interesting at this point to describe some of the internal workings of the network software, which has the ability to establish, kill, and communicate over any number of virtual connections. Thus, at system startup, the network application executes logic to find out who its neighboring nodes are. It then establishes a virtual connection to each, over whatever physical channel is specified to be used as the network trunk. This virtual connection is left up forever. All subsequent communications from this node to its neighbor, whether user data or network management data, travel over this permanent virtual connection. Additional logic determines the network configuration for the node’s routing table.

A special byte string is added to the beginning of all packets going over a network trunk. This string, known as a Network Header Block (NHB), consists of a minimum of 5 bytes:
NHB.RNN Destination Node Number
NHB.RLC Destination Virtual Connection Number
NHB.LNN Originating Node Number
NHB.LLC Originating Virtual Connection Number
NHB.NCF Network Control Field
~ ~ Any Network or User Data

When a node receives information from a virtual connection marked as a network trunk, it examines the NHB. Looking at NHB element NHB.RNN, it checks to see if the received string is for this node. If it isn’t, the node consults its routing table to see on which of its trunk circuits (virtual connections) it is to retransmit the string. This is known as transit routing, and it’s extremely fast, thereby yielding a large node bandwidth in this mode. If the examination of NHB.RNN confirms that the string is for this node, the NHB.NCF byte is decoded to tell the node the proper action to take on the received string. There are over 15 valid network control fields in the current design, so it wouldn’t be practical to cover them all here; therefore, we’ll choose just one as a simple example.

The example will be of a remote node (perhaps many hops, or nodes, away — we don’t know, and we don’t care if the information came to us via transit routing through multiple nodes) asking us to send our operational statistics. When we finally receive the string, we find it’s directed to our node; moreover, after examining the network control field, we see it is set at 01 HEX, which tells us that the remote wants us to send our collected statistics. Our response to this is to reverse the NHB items so we can send information back to the requester and reset the network control field to 02 HEX, which will inform the requester, when he receives the string, that we respond— we don’t know, and we don’t care if the information came to us via transit routing through multiple nodes— and acts like a WORLI bulletin board system. This choice of operational methods was made to reduce the amount of end-user training required. It also aids in the transition that must occur when all users in a given area are switching from being served by an in-place WORLI system to the PMS system running on the network. Because of the similarities between the familiar WORLI system and the PMS, this discussion will not cover details such as how the SEND, READ, KILL, and other commands work, but will instead concentrate on the PMS’s enhancements.

Because the PMS system is designed to provide message service for all the users of a network subregion, the bandwidth requirements are greater than those found in other message systems. Unlike existing message systems, which have the ability to service only one user at a time, the PMS system allows up to ten users to log on simultaneously, providing the same grade of service, relative to response time, to each.

The storage element in a PMS is a 5-Megabyte hard disk. These disks are equipped with four head assemblies and a platter assembly capable of accommodating 154 cylinders. To make use of these characteristics and to provide the response time needed, the software was expressly designed to have a message file structure that takes advantage of the physical characteristics of the disk. The first time a new node is energized, the disk is automatically formatted and then configured to the necessary file structure. Every restart thereafter preserves all saved messages.

The combination of the hard drive and special file structure results in an incredibly small response time; even with multiple users, each user has a real-time response from the PMS, with a delay of less than 1 second. In tests run on the Dallas network test configuration, remote network users accessing the PMS via a 9600-bps network trunk observed no difference in response time from that observed by users directly connected to a PMS system. Both experienced a response time of less than 1 second. Most operational response time delay was attributable to congestion on the 1200-bps final link to the user.

The PMS system supports up to 500 active messages from a message number range of 1 to 99,999. There’s no difference in response time if a user is accessing Message No. 1, 500, or 50,000.

All active messages are subject to the auto-delete function of the PMS. An undeleted message will remain in PMS for no fewer than 14 days and no more than 28 days before being automatically deleted by the system. While these times are variable, users seem to find them satisfactory.

Important note: the PMS message system is
designated to run completely unattended. No SYSOP is required. All duties previously performed by people running mailboxes are done automatically by the PMS logic.

The PMS system can run “stand-alone” — for example, with its user community geographically near the PMS equipment, thus replacing an existing mailbox system. In testing this configuration, a version of the software was put into an MFJ 270 TNC-2 with a hard disk interfaced to it. This system is currently used as a demo system for other groups of Amateurs wishing to participate in TEXNET.

PMS is used primarily as a network-wide message system. In its network configuration, any user located anywhere on the network may, after receiving the network command prompt, issue only the MESSAGE command to be automatically routed over the network to his servicing PMS. Referring again to fig. 2, Node 1, containing the PMS system, will access the -4 SSID. After this, all that must be done is to issue a connect request to the desired nodes call and using the existing systems. The identification work users. PMS is designed to follow the standard -4 SSID. Any user can connect to any other node by issuing a connect request to the desired nodes call and using the -4 SSID. After this, all that must be done is to issue the MESSAGE command. The next thing that appears on the CRT is the text from PMS.

Since the PMS is network-compatible, it knows who the originator is as well as where (i.e., at what node name — DALLAS, GARLAND, TI, etc.) he’s located. All of this is used automatically whenever a user does an S command to send a message to another user. If, after doing the message send, the user does a simple R (in PMS, the R with no qualifier or number will read back the last message number), he’ll see that his call and the name of his node have been automatically entered in the message header.

In order to provide a message interface between an entire network and the existing Amateur message forwarding system, the PMS supports a subset of message forwarding. All messages that network users enter into PMS and which require forwarding will be passed by PMS to a single WORLI system for eventual forwarding by the existing systems. The identification of this WORLI system is contained in the node’s database. This same WORLI system can also forward messages into the PMS system for reading by all network users. PMS is designed to follow the standard forwarding protocol and uses a direct access port to connect with the WORLI system. For example, in fig. 2, Node 1, containing the PMS system, will access the WA5MWD BBS system in Dallas by using its WB5PUC-7 direct access port. The WA5MWD BBS system can pass messages into the network by connecting to WB5PUC-7. The WA5MWD box doesn’t know it’s talking to the network system; it thinks it’s talking to just another standard WORLI system.

non-network local services

The following are services provided by each network node on a standard basis. These services are independent of the network, but still extremely useful:

- Multi-user Conference Bridge
- National Weather Service interface
- Local Node Console
- Debug Aid
- Digipeating

multi-user conference bridge

The multi-user conference bridge (see fig. 1) logic allows up to six remote users to hold a roundtable conversation with each remote, with the ability to see all text generated by all other remotes. Each remote user has a direct AX.25 connect to a logical port on the conference bridge. Upon reception of a packet of information from one user, the bridge will make multiple copies and send one to each of the other connected users. Since each user has an AX.25 connect to the bridge, he’s assured of not losing packets, since the bridge will retry upon lack of an acknowledgment from the affected remote.

As the text is being transmitted to a remote user, it’s modified to show which of the other remotes originated it. Therefore, all users not only see all text from each other, but know who originated it.

In a standard software package, the conference bridge logic simultaneously supports two completely independent six-party conferences. Each of these independent conference bridges is accessed by remotes using unique SSIDs, usually -2 and -3.

Since the bridge logic is supported by the common logic, any of the remote users may be operating in either AX.25 version 1 or 2. Text is transferred among users without regard to versions used by individual remotes.

At any time during a conference, any of the users may type CONTROL-U. Upon receipt of this character, the conference bridge logic will respond by sending the requester a list of call signs of all other remote users currently connected to the conference bridge. Any of the remotes may exit an established conference and other remotes may join (on a noninterference basis) the conference in progress.

Tests conducted in the Dallas area show the conference bridge to be a cleaner and more reliable way for groups to hold multi-user roundtable connects than the UNPROTO mode available on standard TNCs. This is because of the built-in advantage of error-free AX.25 connects combined with the fact that each remote has to have a good path only to the conference bridge, not to all other users.
NWS interface

The National Weather Service (NWS) application (see Fig. 1) runs concurrently with others at a node. Typically, one node in each region could have this application enabled and interfaced via a standard 75-wpm, Baudot-encoded, 20-mA landline to the National Weather Service.

The NWS wire feed provides raw weather data for a large geographic region. The NWS logic monitors all received data, but selects and stores only those NWS products (for example, region forecasts, severe storm alerts, thunderstorm warnings, etc.) which have their unique codes programmed into the node’s database. The NWS logic currently supports 30 code sequences, with each having the ability to be from 2 to 11 characters in length. This code format is consistent with the nine-character sequence utilized as a standard by the NWS.

Remote users connect to the node’s NWS logic by means of a unique SSID (usually -1). Up to ten remote users may be connected to a node’s NWS logic simultaneously. Upon connection to the logic, the system will wait for the remote user to enter a single product designator — for example, a user in Dallas who enters “D” causes the node to send the current Dallas area weather forecast. Entering a question mark prints the entire list of stored product designators.

All remote users are assured of receiving the latest data because the node updates its buffers in real time, as new information is received from the weather bureau. At 2 A.M. each day, the node clears all buffers to eliminate products sent infrequently by the weather service.

local CRT console

Figure 1 (see G) shows the local console CRT logic “sitting on top of” the common logic. The CRT logic at each node allows a locally connected standard ASCII CRT to originate and terminate connects with any standard TNC. In operation, it uses a unique SSID (usually -5) to distinguish itself from other node services. The local console logic isn’t meant to be a full TNC-human user interface, as commercial TNCs are. Instead, this logic provides a minimum subset of human user commands that are necessary for testing and administration of the node. Table 2 contains examples of command types supported; some specific commands follow.

- **The ORIGINATE ON PHYSICAL CHANNEL command** allows the user to select which physical channel is to be used for originating connects. The console will accept connects from any physical channel, but will do so only if it’s not currently busy. This command allows the console to originate on the physical channel connected to the 1200-bps radios and, therefore, look like a standard user. Also allowed are connections to be established to any other node site via the 9600-bps trunk circuits. The latter is particularly useful for troubleshooting remote nodes from our network control site.

- **CONNECT AND DISCONNECT** are identical to the commands on any standard TNC.

- **BUSY** sets the console into a busy state to facilitate troubleshooting the network’s end-to-end flow control logic.

- **FRAME TRACE** is similar to that command on any standard TNC in that it provides a real-time look at all frames as they’re received by any physical channel on the node. Displayed are both hex and ASCII equivalents of the received frame.

- **LOCAL TIME SET** allows maintenance personnel to reset the real-time wall clock at a node. This command usually isn’t used because it’s possible to set the time at any node in the network from any other node using the network TIME command.

- **STANDARD MODE** permits an unused bit in the standard AX.25 protocol to be toggled. This bit is utilized by the PAD logic, network logic, and debug logic to signify that the remote is a special user capable of accessing advanced functions.

- **VERSION SELECT** allows the local console to originate connects in either AX.25 V1 or V2. This command controls only the originating version, since the common logic automatically accommodates either version on terminating connects.

The local console CRT interfaces to the NCP via one half of an SIO, which can be strapped for multiple baud rates. The console employs a 1000-character buffer to accommodate the speed differences between incoming text and the rate of display. Because the local console need not be equipped on a node, the console logic handles cases where no hardware is present.

<table>
<thead>
<tr>
<th>Command Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGINATE ON</td>
<td>ON where N = 0, 1, etc. = physical channel</td>
</tr>
<tr>
<td>PHYSICAL CHANNEL</td>
<td>C W5ABC V WASMWD, N5EG</td>
</tr>
<tr>
<td>CONNECT</td>
<td>D</td>
</tr>
<tr>
<td>DISCONNECT</td>
<td>B</td>
</tr>
<tr>
<td>BUSY</td>
<td>FT</td>
</tr>
<tr>
<td>FRAME TRACE</td>
<td>FT</td>
</tr>
<tr>
<td>LOCAL TIME SET</td>
<td>LT DDMMYYHHMM</td>
</tr>
<tr>
<td>STANDARD MODE</td>
<td>SM</td>
</tr>
<tr>
<td>VERSION SELECT</td>
<td>V1</td>
</tr>
</tbody>
</table>

Table 2. Command types supported by TEXNET’s CRT logic.
Table 3. Some commands and functions supported by the debug logic.

<table>
<thead>
<tr>
<th>Command</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY</td>
<td>M Adr1,Adr2</td>
<td>Do a hex dump from memory location Adr1 to Adr2.</td>
</tr>
<tr>
<td></td>
<td>M Adr1</td>
<td>Display the contents of memory location Adr1 and then wait for new contents to be entered. Entering a period escapes this mode.</td>
</tr>
<tr>
<td>COPY</td>
<td>C Adr1, Adr2, Adr3</td>
<td>Copy the contents of memory locations Adr1 to Adr2 to the new location, beginning with Adr3.</td>
</tr>
<tr>
<td>*(OFFSET)</td>
<td>* Adr1</td>
<td>The offset () register is useful for input arithmetic. For example, setting the * register to 1000H (+1000) allows subsequent entering of M + 2 to display location 1002H.</td>
</tr>
<tr>
<td>HEX ARITH</td>
<td>H Num1 + Num2 – Num3</td>
<td>Perform hex arithmetic on any entered numbers. Addition and subtraction are supported with support of the offset (*) register.</td>
</tr>
<tr>
<td>PORT</td>
<td>P75</td>
<td>Display the contents of the Z-80 I/O address 75H, then wait for a new number to be input. Entering a period escapes this mode.</td>
</tr>
<tr>
<td>INITIALIZE</td>
<td>I Adr1, Adr2, Num</td>
<td>Initialize the memory block from Adr1 to Adr2 with the number (Num) entered.</td>
</tr>
<tr>
<td>EXECUTE</td>
<td>E Adr1</td>
<td>Transfer execution control to Adr1 with the Z-80 registers initialized per the “R” command.</td>
</tr>
<tr>
<td>REGISTER</td>
<td>R</td>
<td>Display and allow change of the Z-80 register file</td>
</tr>
<tr>
<td>X DIAGNOSTIC</td>
<td>X Adr1, Adr2</td>
<td>Run read/write/verify memory diagnostics on the memory block Adr1 to Adr2.</td>
</tr>
</tbody>
</table>

debugger

The debug logic (see H in fig. 1) has proved to be an invaluable aid in initial software debug as well as in system integration. The debugger at any node is accessed by specially authorized remote users via requesting a connect to the node utilizing a given SSID (usually -6). This logic supports a single user and inhibits others from connecting if someone is currently active.

The debugger executes concurrently with the network logic and the PMS, as well as at the same application level (see fig. 1). Accessed from the common logic, it is used as an aid in debugging these and other applications in an on-line manner.

Table 3 describes some of the commands and functions which are currently supported by the debug logic.

digipeating

Unless inhibited from doing so by the database, every network node can also function as a local digipeater (see I in fig. 1) for whatever frequency is being used as an input. In Dallas, it’s 145.05. Multiple digipeater addresses are supported, thus allowing for any number of ALIASES or standard AX.25 addresses. It should be noted here that the PAD addresses mentioned above and the digipeater addresses are completely separate.

Enhanced digipeating is supported by the node because the output physical channel for retransmission of a packet is a function of both the digipeater address and the physical channel on which the packet was received. Thus, it’s possible to have a cross-frequency digipeater using no special tricks or logic. For example, N5EG-8 (Node 4, MURPHY) is configured to be a bidirectional cross-frequency digipeater between 2 meters and 450 MHz. This has proven to be extraordinarily useful in network software construction because it allows access to a remote node (one which is potentially many hops away) via digipeating over the 9600-bps trunk circuits. This method of access completely bypasses all other software and is, therefore, useful (in conjunction with the debugger) in troubleshooting.

conclusion

Thanks to the members of the Texas Packet Radio Society for helping to make this series of articles possible.

We’d like to hear from developers and users of other packet systems to learn what you’re doing. Please address correspondence (enclose SASE) to Tom McDermott, N5EG, The Texas Packet Radio Society, P.O. Box 831566, Richardson, Texas 75083-1566.

references

ham radio
sporadic-E season

During the summer months the sun — directly overhead at 23 degrees north — produces more ions in the lower ionosphere than it does in winter. These abundant ions are formed into cloud-like patches known as sporadic-E. The patches, which form in a thin but dense layer about 60 miles above the earth, give rise to strong mirror-like signal reflections over short-skip distances of 600 to 1200 miles.

Because E_s is related to the summer sun, the best locations for working these E_s openings are in the Northern Hemisphere from June through September and in the Southern Hemisphere during their summer, December through March. In each hemisphere, the best E_s is found on either side of the geomagnetic equator; it’s especially good where the geomagnetic equator is furthest from the geographic equator. These special areas are Southeast Asia and the Mediterranean in the Northern Hemisphere and South America in the Southern Hemisphere, with the former the better, as shown in fig. 1. The contours in the figure represent the percentage of the time that sporadic-E_s is available along that line. A “10-line” indicates that sporadic-E_s is available 10 percent of the month, or three days out of 30 — or, equivalently, 6 minutes out of each hour. This is a purely statistical measure of the chance of an E_s patch being available at the location of the midpoint of a 2000-km path. E_s openings can be utilized as high as the 6-meter band this year.

last-minute forecast

During the first two weeks of the month, daily MUFs should be lower. As a result, fewer openings on 10 to 30 meters can be expected, except for a few sporadic-E short-skip paths. There’s a slim possibility of one occurring on 6 meters. Long-skip conditions on these bands will improve somewhat in the third week. The lower bands will be best for daytime short-skip paths during the second week, corresponding to a minimum solar flux in June. Nighttime DX conditions should be best then as well, and should be fairly good during the whole month except when atmospheric noise levels are high.

The moon will be full and at perigee (its closest approach) on June 11.

Summer solstice is on the 21st at 2211 UTC. The Aquarid meteor shower starts about the 18th, peaks about the 28th, and lasts until about August 7. The maximum radio-echo rate will be 34 per hour.

band-by-band summary

Six meters will provide occasional openings to South Africa and South America around noontime via short-skip E_s propagation.

Ten meters will provide long-skip conditions in the afternoon during the peak times of the 27-day solar cycle. Otherwise, look to sporadic-E short-skip and multihop openings around local noon for DX on this band. (Trans-equatorial evening openings usually don’t occur in the summertime.)

Twelve and fifteen meters, almost always open to some southern part of the world, will be the main daytime DX bands. Operate on 12 first, then move down to 15 later. DX is considered 5000 to 7000 miles on these bands. There may be some long one-hop transequatorial propagation early in the month.

fig. 1. World map includes sporadic-E contours. The numbers on each line represent statistically the percentage of time during the month that a sporadic-E patch exists at that location.
<table>
<thead>
<tr>
<th>Time</th>
<th>JAPAN</th>
<th>OCEANIA</th>
<th>NEW ZEALAND</th>
<th>ANTARCTICA</th>
<th>S. AMERICA</th>
<th>S. AFRICA</th>
<th>EUROPE</th>
<th>ASIA</th>
<th>FAR EAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- `N`: North
- `S`: South
- `E`: East
- `W`: West
- `NW`: Northwest
- `SW`: Southwest
- `SE`: Southeast
- `NE`: Northeast
- `COT`: Coast
- `MWT`: Midway
- `EOT`: Eastern
- `WST`: Western
- `JAPAN`: Japan
- `OCEANIA`: Oceania
- `NEW ZEALAND`: New Zealand
- `ANTARCTICA`: Antarctica
- `S. AMERICA`: South America
- `S. AFRICA`: South Africa
- `EUROPE`: Europe
- `ASIA`: Asia
- `FAR EAST`: Far East

Look at the next highest band for possible openings.
MADISON SUMMER SHOPPER

New rigs and old favorites, plus the best essential accessories for the amateur.

CALL FOR ORDERS
1-713-520-7300 OR 1-713-520-0550
TAMIS ORDERS CALL COLLECT
ALL ITEMS ARE GUARANTEED OR SALES
PRICE REFUNDED
1 (800) 231-3057

EQUIPMENT
New Icom IC-761 Trades wanted
Kenwood TS-440SA AT
Kenwood TS-440SAT
Call for trade
Icom R7000 25-2000 MHz
949.00
Icom IC-735
860.00
Ten-Tec 2510 (Easy OSCAR)
439.00
KD KFM 240F NT
279.00
Magnum Files
158.00
Tokyo Hy Power HL 1K AMP no 4C2X50B...
699.00
New Kenwood TM-221A 45W mobile
Call
VJ Amplifier VHF, built in England, 1 in 100 out.
3,100 5,100
10 in 10 more.
229.00
25 in 110 more.
319.00
All models include preamp
Lunar 2M4 40P
109.00

ACCESSORIES
B+W VIE STAR ANTENNA TUNER
Heil MCH-SK Stock
Heil BM 10 Boom Mike headset
CALL
Tri H500A Remote Phone
$189.00
Dawell N560A 300/3000 135.00
Aline ELH 2300 E Excellent buy.
88.00
Nye MBS A (for the big boys!)
629.00
Share 444-
54.95
Amecc PT 3
Soon
New Tokyo HC 200A
115.00
Atlantic Silver Eagle & Base
66.00
Ten-Tec Mobile Switch 3001
17.00

ANTENNAS
Isopole 144 MHz
49.95
APEL-1 Complete Oscar Antenna
125.00
Butterfield HF 6V 10-20 vertical
149.95
HF-50 80 and 40 vertical
119.00
HF-45
189.00
Hustler G4-114
119.00
Hustler G4-BTV
139.00
KLM HF World Class Series Antennas
Call Don
All PHA Delta DX-66
63.00
Coax Seal
2.00/roll
BMW Dipoles
49.95/roll
KLM KT 34A
39.95
ZAWU 2ZUO
New Available
NEW KLM 11-144BX
129.00
2106 Power Divider
Soon
Create CD 78 - BS 80 7580 rotatable dipole
349.00
G5-7V
44.00

OTHER ANTENNAS
Diamond D-130 Discone 25-1300 MHz
75.00
Larsen Kultur
17.00
Larsen 2M24 wave wave antenna
25.00
Avant AP151GJ on Glass Antenna
36.00
Antec 2M 5/8 Mag. Mount Comp
25.00
Onion 21 1/2 inch hardy antenna
19.00
Van Gordon SLA-1 160-80-40 Sloper
34.00
Valor AB 5 Mobile
79.95
Stoner DA 100 D Active Rx Antenna
190.00
DC Tenma Hich 3/8-24 Thread
9.95
Fits 3/4" antenna
29.95

PARTS
1.75 Amp 400V full wave bridge rectifier
1.95
25-1000V Epoxy dome 289 or 191000
1.95 per 100
2015/10KV or 00120KV
5.00 per 100
3K20
2.25 per 100
4 inch terne rod
1.95
365F Cap
1.95
Sanyo AAA AA Nicads whiskeys
2.00
2.4-5.6 8 pin pm plugs
3.00
18 1/4 watt carbon resistors
25 each
Meter 0-30000 VDC 0.1 Amp DC 2-1/4" Square
19.95
19.95
Drake Collins mike plug
2.00
Thousands of panel meters
3.95 each
MECA Cap 2000/15KV
5.00 others CALL
Diodes 3A 1000 PIV
29
Duracell Volt battery 2 Pack MN1604
3.45
DC Fan 31/2" 385
3.00
Cinch 12 pin conn flt (Drake etc. female)
3.00

AMPHENOL
8319PL-2529 Silverplate
1.25
UGT 76 reducer RG-8
3.00
UGT 76 female 75 Ohm coax
3.00

Twenty, thirty, and forty meters will support DX propagation from most areas of the world during the daytime and into the evening hours almost every day. Forty meters has joined this daytime DX group because of lower signal absorption and therefore lower LUF (lowest usable frequency) during these sunspot minimum years. DX on these bands may be either long-skipp to 2500 miles or short-skipp to 1250 miles per hop. The length of daytime is approaching maximum, providing many hours of good DXing.

Thirty, forty, and sixty meters are all good for nighttime DX. Although the background thunder-storm noise is beginning to be noticeable, these bands are still quiet enough to provide good DX working conditions. Sporadic-E propagation may be a contributing factor toward enhanced conditions at local sunset and will occur more often during the next three months.

ham radio

New 6 & 8-Pole Crystal Filters For ICOM, Kenwood & Yaesu Radios

- ICOM 730/735/740/745/751/7070/71A
- SSB 2 kHz, 8-Pole — Exact replacement for F1-44A
- Model IRIS581FHSX55999
- ICOM IC-271/272/2/2400 CW 4000 kHz, 8-Pole — Great for DXing or EMF
- Model IRIS571FHSX559999
- Kenwood TS-900/940/830 Super Selective CW 2500 kHz, 8-Pole 45 kHz Filter
- Comes mounted on high-quality glass PC board for the TS-930 and TS-840, drops into the TS-830
- Kenwood TS-830 940/830 2.1 kHz SSB
- Matched Filter Set FS50
- Model IRIS581FHSX559999
- TS-940/930/830 Super Selective CW
- Switch Kit — This new kit allows you to add another CW bandwidth. For example, on the TS-940/840, if you already have 400Hz or 500Hz filters installed, you can now select a set of IRIS250Hz filters. Our 250Hz matched set allows for a lower noise floor for super selective DXing
- 9 MHz 8-Pole Crystal Filters for Experimenters
- All 8-Pole Filters — $60
- All 6-Pole Filters — $50

For FSB
A. 2.4 kHz @ 6dB
B. 2.1 kHz @ 1.5 kHz @ 6dB
C. 1.5 kHz @ 6dB
D. 2.2 kHz @ 6dB
E. 2 kHz @ 6dB

For AM
A. 6 kHz @ 6dB
B. 6 kHz @ 6dB

For more information, call
International Radio, Inc.
747 So. Macedo Blvd.
Port St. Lucie, FL 34952
(305) 879-6688
build your own time-domain reflectometer

Solving transmission line difficulties can be a tedious and difficult chore, especially when the load end isn’t easily accessible. Although a number of different methods of dealing with these problems are available, I want to discuss time-domain reflectometry this month; we’ll cover some of the others in subsequent columns. Although commercial time domain reflectometers (TDRs) are expensive, some of the methods of time-domain reflectometry can be used by any Amateur who has access to an oscilloscope. The results won’t be as good as those obtained with professional TDR equipment, but the methods will work.

TDR fundamentals

Time-domain reflectometry works on the principle that waves on a non-matched transmission line reflect. [Any variation from the characteristic impedance of the transmission line will cause a reflected component to be sent back to the source. — Ed.] The waveform seen at any given point along the line is the algebraic sum of the forward and reflected waveforms. In TDR measurements, we look at the waveform at the input end of the transmission line system.

Figure 1 shows the basic setup for a TDR. A pulse generator, or other source of 1-MHz square waves, is applied simultaneously to the vertical input of an oscilloscope and the input end of the transmission line. The simplest way of splitting the signal is to use an ordinary coaxial ‘‘tee’’ connector, either a BNC or UHF.

pulse source

Almost any source of 1-MHz square waves can be used for the pulse generator. If you have a function generator with a 1 MHz or higher output pulse rate, you can use it; be careful, however, if the output impedance is 600 ohms. In such a case, you might want to wind a 600-to-50 ohm transformer or add a simple resistor pad. Alternatively, you can build your own pulse source.

building an oscillator

Many different forms of TTL oscillator can serve as a pulse source. Figure 2A is a circuit for a pulse generator that uses the Motorola MC-4024P device. This dual, TTL-compatible, voltage controlled oscillator is enclosed in a shielded box. The operating frequency is determined from \(f = \frac{300}{C} \), where \(f \) is the frequency in MHz and \(C \) is capacitance in pF. The actual operating frequency isn’t terribly critical, as long as it’s somewhere near 1 MHz. For very short transmission lines, the operating frequency may have to be increased. Experiment with it.

The output waveform is a square wave with a period of about 1.1 \(\mu \)S, with \(C_1 = 330 \) pF. The half-cycle used in the experiment (see fig. 2B) has a duration of 550 nanoseconds (0.55 \(\mu \)S). If you want to clean up the rise
SWL’s: Are You Plagued By Phantom Signals?

Meet the Eliminator.

Don’t let its small dimensions (4”x3”x2") fool you—the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the 100 kHz-30 MHz frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

Grove Enterprises
140 Dog Branch Road
Brasstown, N.C. 28902

Shop Grove for fantastic values in shortwave receivers, antennas, cable, performance boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!

LOW BAND DX-ING COMPUTER PROGRAMS
by John Devoldere, ON4UN,
for Apple IIe/c, MS-DOS, Commodore C-128 Apple Macintosh and Kaypro CPM Computers

Here’s a collection of 30 super programs written by ON4UN. Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: shunt and series input L network design, feedline transformer, shunt network design, SWR calculation, plus 11 more! General Ham programs include: sunrise/sunset, great circle distances, grayline, vertical antenna design program, sunrise calendar plus 9 more! Phew. When you sit down to use these programs you’ll be amazed at what you have. Super value at a super low price. The best value in computer software available today. © 1986.

- UN-Apple IIe/c $19.95
- UN-MS (MS-DOS) $19.95
- UN-CPM/Kaypro $19.95

Please add $3.50 for shipping and handling

HAM RADIO’S BOOKSTORE
Greenville, NH 03048 (603) 878-1441
Another alternate pulse generator is a 1- or 2-MHz crystal oscillator. These oscillators can also serve as marker generators for other purposes. Another possibility would be a 20-MHz TTL crystal oscillator with cascaded TTL frequency dividers providing 10-MHz, 5-MHz, 2-MHz, 1-MHz, 500-kHz, 100-kHz, 50-kHz, and 10-kHz outputs. There’s no reason the marker generator can’t be used as the pulse source in TDR measurements.

test setup

The test setup shown in fig. 1 was built to accomplish these measurements. The load box (see fig. 3) at the "antenna" end of the transmission line is a multi-impedance dummy load. The choices are ten discrete impedances, a short circuit, or an external load. When the external dummy load is disconnected, the load box sees an open transmission line in that switch position. (Why have a load box? It isn’t part of the TDR, but it helped in calibrating the system and in generating the pictures that follow.) The impedance values shown were selected to represent a wide range of actual impedances typically encountered in Amateur antennas.

measurements

Figure 4 shows two conditions that often occur on transmission lines: open circuits and short circuits. It rarely matters which one happens; both need to be corrected at the antenna end. The VSWR reading won’t tell you which one has occurred, because in either case the entire incident wave is reflected. The only difference is the location of the nodes and anti-nodes, which are out of phase with each other. If the exact electrical length of the line is known, we can determine whether the line is open or shorted. Otherwise, we’ll need to make a TDR measurement.

Figure 4A shows the waveform when the load end of the line is short circuit (in other words, when Z_L is zero). In the opposite case, an open-circuited line (with infinite impedance) appears as shown in fig. 4B. As you might suspect, impedances between zero and infinity are represented by various combinations (see fig. 5 of the two waveforms shown in fig. 4. Figure 5A shows the supposedly matched 50-ohm case. If the system were perfect, the top edge of the pulse would be totally flat. But the actual resistor used in the load box was 51 ohms (with 5 percent tolerance). In addition, there’s bound to be some reactance in the load, and perhaps some anomalies in the coax itself. When I performed this little experiment before, using a non-inductive 200-ohm potentiometer as the load, I was able to all but totally adjust out the lack of flatness. As you’ll see in a moment, the waveform in fig. 5A represents a real load impedance greater than 50 ohms.

The waveform shown in fig. 5B is for a 22-ohm load. This impedance is common on vertical antennas. (The nominal impedance for quarter-wave
length vertical is 37 ohms, but impedances will lower for shorter verticals.)

With load impedances greater than 50 ohms, the waveform takes on a different shape. Instead of the reflected impedance causing a little rise in the flat-top edge, it causes a droop. By comparing figs. 5C and 5D you can see that the amount of droop is related to how far above the surge impedance the load is.

The ideas presented here work, but I'm sure they can be improved upon. If you have any ideas, let me know. (Please note new address: P.O. Box 1099, Falls Church, Virginia 22041; current Callbook address is incorrect).

repairs in a jungle QTH

A missionary friend of mine, home on leave from some jungle QTH, asked about tools, parts, and test equipment to take with him when he returns. His purpose: to keep his two SSB rigs operating. (One is a Kenwood TS-130 for Amateur operation, and the other's a six-channel, crystal-controlled portable HF SSB rig from Stoner Communications. The Stoner has been the mainstay of backpacking missionaries, but the new Yaesu portable is making inroads in that market). Although I have plenty of experience, including years of communications repair shop time and more than a few Beer Days ... errr, I mean Field Days ... I'm soliciting your help in this matter.

Why? Well, once upon a time a couple planning to spend a year on a desert island asked a physician — who had never been in such a situation — what medicines they should take with them. While they used few of the recommended medicines (except for aspirin), they regretted not having taken along a topical antibiotic for skin infections. If you've had any experience with repairing radio communications gear in remote areas, I would especially appreciate hearing from you.

references

COMMODORE 64
LADDER NETWORK ANALYSIS PROGRAM
"ALADYN-64"

This program is a menu-driven design tool with a built-in circuit file editor, fast calculations and graphic output to either the screen or printer. Useable for circuits which operate from VLF through Microwave. Circuit elements include Rs, L's, C's, transmission lines, transistors and FET's. Output format rectangular or Smith chart.

$59.95 PPD. Check or M.O. INTERCEPTOR ELECTRONICS INC.
ROUTE 1, BOX 439, ROUND HILL, VA 22141-9307 PHONE (703) 338-4905

ALL ABOUT VERTICAL ANTENNAS
by Bill Orr, W6SAI and Stu Cowan, W2LX

Smart DX'er's know that the vertical antenna can be the secret to low band DX success. Theory, design, construction, operation—all the secrets of making the vertical work—are fully covered by Ham Radio's well known columnist and book author Bill Orr in a clear concise easy-to-read text. Orr is a master at making the complex simple and this book is no exception. Here's just a sample of what this exciting new book covers: Horizontal VRs vertical—which is best? Top loaded and helical antennas, 5 high efficiency Marcon antennas for 80 and 160, verticals and TV—are there a problem? The effects of ground on vertical antennas and how to make an effective ground system. The Botlstand beam, construction data for 25 different antennas, matching circuits of all descriptions—which is best, plus P.L.N.T-E-Y more? For years Hams have been asking for this book. Get your's now. You won't regret it! © 1986

Please enclose $3.50 to cover shipping and handling

June 1987
QUALITY TEST GEAR YOU CAN COUNT ON

INCLUDES 2 HOOK-ON PROBES
20 MHz DUAL TRACE
Features component testing circuit for resistors, capacitors, digital circuits and diodes—TV sync filter—high sensitivity—Z axis—Y axis mode—built-in calibrator—SX horizontal magnifier

$369.95*

INCLUDES 2 HOOK-ON PROBES
35 MHz DUAL TRACE
Features component testing circuit for resistors, capacitors, digital circuits and diodes—TV sync filter—high sensitivity—Z axis—Y axis mode—built-in calibrator—SX horizontal magnifier

$499.95*

NEW

INCLUDES 2 HOOK-ON PROBES
15 MHz DUAL TRACE PORTABLE
Field/ Bench applications—built-in charger and battery pack—up to 2 hours operation—Z axis—Y axis mode—SX magnification—high brightness CRT—front panel test rotator

$449.95*

RAMSEY OSCILLOSCOPES
All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby, service and production applications.

*Add an additional $10.00 for each unit for shipping.

MINI-100 COUNTER
CT7-7 DIGIT 525 MHz

$119.95

CHANGEable BATTERIES AC ADAPTER INCLUDED

$139.95

WIDER INCLUDES AC ADAPTER

$169.95 WIDE INCLUDES AC ADAPTER

$189.95 WIDE INCLUDES AC ADAPTER

MODEL
MINI-100
CT-70
CT-90
CT-50
CT-125
CT-90 WITH opt-1

FREQ RANGE
10-65 MHz
20-550 MHz
10-650 MHz
5-650 MHz
10-650 MHz
10-600 MHz

SENSITIVITY
100 PPM
100 PPM
100 PPM
100 PPM
100 PPM
100 PPM

ACCURACY
1 PPM
1 PPM
1 PPM
1 PPM
1 PPM
0.1 PPM

DIAGNOSTIC
ON-OFF
ON-OFF
ON-OFF
ON-OFF
ON-OFF
ON-OFF

RESOLUTION
100 PPM
100 PPM
100 PPM
100 PPM
100 PPM
0.1 PPM

PRICE
119.95
139.95
169.95
169.95
169.95
229.95

RAMSEY FREQUENCY COUNTERS
Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for top quality products at breakthrough prices. Our frequency counters have features and capabilities of counters costing twice as much. BP-4 Nidac battery pack for CT-70, CT-90, and CT-125 Frequency Counters. $8.95.

PR-2 GATING COUNTER

$449.5

wired includes AC ADAPTER

PS-2/4 kit $93.95

PS-2/4 PLUG $49.95

PS-10B 1 GHz prescaler

$89.95

wired includes AC ADAPTER

Compact size and reliability. This LCD digital multimeter easily fits in your pocket. It can take anywhere. It features full overload protection—3 1/2 digit LCD readout—protected input jacks—safety probes—diode check function—200 hours battery life.

NEW

RAMSEY D-4400 COMPACT DIGITAL MULTIMETER

$249.5

Compact size and reliability. This LCD digital multimeter easily fits in your pocket. It can take anywhere. It features full overload protection—3 1/2 digit LCD readout—protected input jacks—safety probes—diode check function—200 hours battery life.

NEW

RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER

$49.95

Includes probes 1 year warranty

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

TONE DECORDER

$5.95

40 WATT 2 mtr. PWMAmp

$12.95

VOICE ACTIVATED SWITCH

$6.95

Universal timer

$2.95

Whistle kit

$4.95

SUPER SLEUTH

$7.95

FM WIRELESS MIKE

$8.95

MAD BLASTER

$20.95

 שניתted kit

$3.95

SIREN

NR-1 KIT

$5.95

SIMPLE RADIO

$9.95

FM RECEIVER

$14.95

FM MINI MIKE

$14.95

ACCESSORIES FOR RAMSEY COUNTERS

Telescopnic whip antenna—BNP plug...

$8.95

High impedance probe, light loading... 16.95

Low pass probe, audio use...

16.95

Direct probe, general purpose use...

13.95

Tilt bar, for CT-70, 90, 125...

13.95

PHONE ORDERS CALL 716-586-3950

TELE 466735 RAMSEY ELECTRONICS

FAX 716-586-4754

RAMSEY ELECTRONICS, INC. 2575 Baird Ave. Dept. HR

PENFIELD, N.Y. 14526

TERMS: 30 days on delivery, unless otherwise specified. All prices are subject to change without notice. We also accept MasterCard. Visa, American Express, Discover cards. All sales are subject to sales tax. 6% sales tax on purchases over $100. We do not ship to PO Box addresses. All purchases must be accompanied by a proper method to pay charges. We are an equal opportunity employer and comply with all Federal and Local laws. We reserve the right to decline an order for any reason.
microwave portable operation

Spring and summer are the seasons of the year for VHF/UHF microwavers to dust off their rigs, fix all the gear that's been waiting for their attention, and get set to do some serious operating.

Portable operation offers some unique opportunities, especially if the home QTH isn't an ideal VHF location. Other reasons are often centered on the thrill of putting out rare VUCC grid squares, setting new DX records, or just the desire to commune with nature while enjoying our favorite activity. It presents some special problems however, not only for newcomers, but for old-timers as well. Often special equipment and antennas are required and things can go wrong — even things that might have been easily anticipated.

selecting your location

One of the first considerations in going portable is the choice of location. For starters, it probably would be advisable to select a location that's reasonably close to home. This will incur minimum expense, and if something goes wrong, you can either go home and bring back reinforcements or just QRT. After a few local operations, go for the long haul!

Successful portable or contest operation demands careful preparation. First, you'll have to determine whether the chosen location is accessible by conventional vehicles. Can you get there by four-wheel drive, or will you have to hike the last part of the trip? If you have to hike, what about lugging all the gear to the site? Is power available, or do you have to bring your own? (More on this shortly.)

Is the chosen location sufficiently clear so that you won't have problems erecting an antenna high enough to get above local obstructions — such as tall trees? It's always best to secure a topographic or geological survey map in advance. Usually available in local book stores, libraries, or sporting goods shops that carry camping or backpacking gear, such maps typically cover only a 7-1/2 minute section, 1/8 of a degree, or about a 6- by 9-mile area at midlatitudes. Therefore, more than one map may be necessary.

Accurate, detailed maps are invaluable, especially if you intend to operate near a state, county, or grid square border. You must always know, with a reasonable degree of certainty, that you really are where you think you are! Bring a camera; photos are good evidence, and you and your friends can enjoy the pictures for years to come (see fig. 1). They can also help when briefing others who may be interested in operating from the same location later on.

If possible, contact a local resident (preferably an Amateur) who's familiar with the area in question, or visit the proposed location before your operating excursion. Bring a small rig to try out the location. Check out possible operating positions, available facilities, and power sources. Don't underestimate travel and setup time! A preparatory visit will also give you a feel for the travel time from your home QTH so you can be on site and ready to operate at the scheduled time.

Even if you've visited the proposed location beforehand, bring a magnetic compass. Find the local magnetic offset for the proposed location before you leave home. In the New England area, the magnetic offset is over 15 degrees! If you have a distance and bearing program, this can be determined before you go. Enter the approximate location for the magnetic north pole at 76 degrees north latitude and 101 degrees west longitude into your program.

An elementary knowledge of astronomy is also helpful for locating the North Star, but obviously this will be impossible in the daytime or if the
weather is inclement, so back to the compass! The local transit time of the sun can also be determined for a true south marker. Check maps ahead of time to see what azimuth directions are available, or must you provide your own? Is camping permitted? Do you need written or verbal permission to operate a transmitter or a generator at the location?

Probable the most famous VHF/UHF and microwave locations are the high hills and mountains where prior contesting has taken place or from which DX records have been set. Some of these are shown in Table 1. Reference 2 discusses some of these locations and includes pointers on how to get to them and what to expect, as well as any particular local considerations. Regardless of the above, do your homework in advance, since it's often difficult to secure on-the-spot operating permission.

On-site rf emitters can be a problem. But they, too, can be checked on a preparatory visit. Elevated locations frequently have broadcast, VHF/UHF TV transmitters, repeaters, or other sources of local noise. Will this rf be a problem with spurious beats or noise? If so, choose another location or bring adequate external preselector filters with you just in case!

Table 1. This table shows some of the more well-known mountain-top locations popularized by VHF/UHF/microwave and millimeter-wavers to set DX and contest records.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location (approx.)</th>
<th>Elevation (feet)</th>
<th>Grid Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadillac Mountain</td>
<td>Bar Harbor, Maine</td>
<td>1,530</td>
<td>FN54</td>
</tr>
<tr>
<td>Mount Washington</td>
<td>Glen, New Hampshire</td>
<td>6,288</td>
<td>FN44</td>
</tr>
<tr>
<td>Pack Monadnock</td>
<td>Peterborough, New Hampshire</td>
<td>2,280</td>
<td>FN42</td>
</tr>
<tr>
<td>Mount Equinox</td>
<td>Manchester, Vermont</td>
<td>3,816</td>
<td>FN33</td>
</tr>
<tr>
<td>Mount Mansfield</td>
<td>Burlington, Vermont</td>
<td>4,393</td>
<td>FN34</td>
</tr>
<tr>
<td>Mount Greylock</td>
<td>North Adams, Massachusetts</td>
<td>3,491</td>
<td>FN32</td>
</tr>
<tr>
<td>High Point</td>
<td>Port Jervis, New York</td>
<td>1,803</td>
<td>FN21</td>
</tr>
<tr>
<td>Watchusett Mountain</td>
<td>Princeton, Massachusetts</td>
<td>2,006</td>
<td>FN42</td>
</tr>
<tr>
<td>Mount Mitchell</td>
<td>Asheville, North Carolina</td>
<td>6,684</td>
<td>EM85</td>
</tr>
<tr>
<td>Mount Toxaway</td>
<td>Oakland, North Carolina</td>
<td>4,777</td>
<td>EM85</td>
</tr>
<tr>
<td>Spruce Knob</td>
<td>Simoda, West Virginia</td>
<td>4,890</td>
<td>FM08</td>
</tr>
<tr>
<td>Western USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pikes Peak</td>
<td>Colorado Springs, Colorado</td>
<td>14,110</td>
<td>DM78</td>
</tr>
<tr>
<td>Mount Rose</td>
<td>Reno, Nevada</td>
<td>10,778</td>
<td>DM95</td>
</tr>
<tr>
<td>Mount Diablo</td>
<td>Walnut Creek, California</td>
<td>3,849</td>
<td>CM97</td>
</tr>
<tr>
<td>Mount Hamilton</td>
<td>San Jose, California</td>
<td>4,209</td>
<td>CM97</td>
</tr>
<tr>
<td>Mount Pinos</td>
<td>Frazier Park, California</td>
<td>8,831</td>
<td>DM04</td>
</tr>
<tr>
<td>Mount Palomar</td>
<td>Julian, California</td>
<td>6,126</td>
<td>DM13</td>
</tr>
<tr>
<td>Mount Ashland</td>
<td>Ashland, Oregon</td>
<td>7,530</td>
<td>CN70</td>
</tr>
</tbody>
</table>

Coastal locations are acceptable, especially if over-water paths are contemplated.

Some operational pitfalls deserve discussion. It's usually advisable to conduct some sort of rf liaison, typically on 2 meters or 70 cm. Often, however, I've heard of disasters — especially if the path is long (over 20 miles or line-of-sight). For instance, if 2-meter fm is used for liaison, will its signal be strong enough over the path?

Believe it or not, some operations have been unable to establish two-way 2-meter communications between high locations with a 10-watt fm rig operating into a quarter-wave car-mounted vertical antenna. In this case, even a small (three to four element) Yagi would have been sufficient to complete the path.

A Yagi antenna on a liason frequency has a second advantage. If it has high enough gain, it can be used as a crude direction finder so you'll at least know in what general direction other higher frequency antennas should be aimed! Typically, a ten-element or longer Yagi will have less than a 40-degree beamwidth — not as narrow as the typical record setting antenna, but definitely a confidence builder, especially if a visible sighting isn't possible.

establishing records

Record setting is surely one of the big reasons serious VHF/UHF and microwavers seek out portable locations. It's well known that the elevated locations will often add the extra low-angle takeoff so critical for record setting — not to mention the extended line-of-sight propagation on the upper microwave and millimeter-wave bands.
choice of frequency and gear

Before you get too far along in your portable operation plans, the frequency and gear must be carefully selected. If single-band operation is chosen, the problems are considerably simplified. Do you have your own gear, or will you have to borrow some or all for the operation? Are you interested in just the more populated bands such as 23 cm (1296 MHz) or do you want to go higher, or on one of the lower, less populated bands such as 135 cm (220 MHz) or 33 cm (903 MHz)? The more populated bands may yield more QSOs, but the less populated bands can often offer more satisfaction.

There’s plenty of self-contained commercial gear available such as the “multimode” rigs that offer easy operation in a single compact package. Units manufactured by ICOM, Kenwood, and Yaesu — the most popular manufacturers — offer VHF/UHF coverage from 50 to 1300 MHz on CW, SSB, and fm. Some of these manufacturers even offer dual or multiband operation in the same package. Most of these rigs will operate on either 115 VAC or 12 to 13 volts dc.

Some operators prefer up/down converters or transverters, which can often be optimized for the ultimate in sensitivity, selectivity, and/or high dynamic range. References 3 through 10 provide typical circuitry for “rolling your own.”

Many commercial manufacturers offer this type of gear from 50 MHz to 10.368 GHz! Popular suppliers are ARR, Microwave Modules, Mutek, and SSB Electronics. Remember that if an up/down converter is used, an extra hf transceiver or appropriate i-f will also be required.

power sources

It almost goes without saying that if commercial power is available at the proposed portable location, you’re in luck. If not, there are several alternatives. Most low-power (less than about 100 watts) VHF/UHF gear will also operate on 12 to 13 volts dc. For short periods of time (i.e., a few hours), especially at lower power levels (100 watts maximum), the power can be taken from the battery in your automobile.

However, if this is done, extreme care must be taken. It’s best to install a separate large diameter (No. 10 AWG minimum) wire connected directly to the battery terminals and kept to the minimum possible length to prevent large voltage drops. I’d also recommend that a circuit breaker or fuse be installed in this line as close as possible to the positive terminal of the battery.

Furthermore, I’d recommend that a power distribution and monitor box be fabricated. A schematic of a recommended type is shown in fig. 2. Note that it also has a fuse for double protection. The voltmeter is used to monitor the voltage regulation and warn of possible loss of battery charge. The ammeter monitors the current drawn by the gear in use. This will also aid in any troubleshooting exercise.
It’s always wise to keep your automobile’s gas tank as close to filled as possible. Be careful that you don’t run the battery down too low, or you won’t be able to start the car when your operation is completed! Start the car occasionally to let the battery recharge a little or bring along an extra charged battery just in case a backup is required.

Finally, the outputs of the power distribution box will give a flexible option for connecting and disconnecting units. I use the GR (General Radio) type of dual plugs on all equipment. GR plugs are specially marked for polarity, can carry heavy current with a minimum of voltage drop, and are very versatile and easy to install. They’re also compatible with most dc power supplies.

If you’re using a small antenna rotator, it may be wise to have a low-power 115-VAC source. I’m told that Radio Shack has a small 12-volt dc to 115-VAC power inverter that’s just fine for this application. However, I’d be wary of using this type of inverter on a regular transceiver because the voltage waveform may not be sinusoidal and could cause voltages to be higher or lower than expected.

If all else fails, or if higher power is desired, a gasoline-powered generator may be advisable. These can be rented, but they’re also quite affordable nowadays and may represent a prudent investment if you plan many portable operations. (Such a purchase can be simplified by first convincing your spouse of its unquestionable value as a source of electricity during power failures!)

AC generators are sold in many types and power ratings. Always choose one that has at least a 25- to 50-percent power reserve. Generators can be temperamental, so a few pointers are in order. Using a generator near its normal maximum load can cause instabilities and other erratic operation. Always test yours out before your trip to verify its reliability. Bring plenty of extra gasoline, spare spark plugs, and extra oil (if oil is required).

Table: Receiver Preamps

<table>
<thead>
<tr>
<th>Preamp</th>
<th>Frequency Range (MHz)</th>
<th>N.F. (dB)</th>
<th>Gain (dB)</th>
<th>1 dB Comp. (dBm)</th>
<th>Device Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P28VD</td>
<td>28-30</td>
<td><1.2</td>
<td>15</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P50V</td>
<td>50-54</td>
<td><1.3</td>
<td>15</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P50VDC</td>
<td>50-54</td>
<td><0.5</td>
<td>24</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P144VD</td>
<td>144-148</td>
<td><1.0</td>
<td>15</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P144VDC</td>
<td>144-148</td>
<td><0.5</td>
<td>24</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P220VD</td>
<td>220-225</td>
<td><1.8</td>
<td>15</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P220VDC</td>
<td>220-225</td>
<td><0.5</td>
<td>24</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P432VD</td>
<td>420-450</td>
<td><1.1</td>
<td>15</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
<tr>
<td>P432VDC</td>
<td>420-450</td>
<td><0.5</td>
<td>24</td>
<td>0</td>
<td>DGFEF</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

Advanced Receiver Research

Box 1242 • Burlington, CT 06013 • 203 582-9409

RFI Kit

Use ferrite beads and toroids to keep RF out of your TV, stereo, telephone, etc.

MULTI-BAND SLOPERS

Use ferrite beads and toroids to keep RF out of your TV, stereo, telephone, etc. Free catalog and interference tip sheet on request.
portable antennas

Next to the selection of your location, the most important key to success is your antenna. While you’re not likely to be running high power, every bit of antenna gain will be important to attract attention. You’ll probably hear all the more powerful home stations. But will they be able to hear you?

There are many factors to consider in choosing a portable antenna. Unless you’re going to operate on just one band, a moderate-sized Yagi would almost certainly be your best choice. Although a large antenna would obviously be hard to aim and keep aloft, especially if you’re operating alone, your antenna should be as long as conveniently manageable, since the apparent path attenuation increases with frequency unless the physical aperture of the antenna is the same.11

I’ve seen poor results on 70 cm when a portable station took down a 20-foot boom, 2-meter Yagi and replaced it with a 10-foot boom, 70-cm antenna. Try using the same boom-length antennas on each band. Your performance on the higher bands will be either the same or improved.

Some operators prefer to change antennas each time they change bands; if you do this, you can use a larger antenna on each band. Others may operate two or three bands, but prefer to mount all antennas on a single mast. In this case, the size of the individual antennas will probably have to be smaller. The choice is really one of convenience versus performance.

Another antenna constraint is transportation. If you have roof racks, you may be able to support a fully assembled 12- to 15-foot boom Yagi. If the antennas are transported inside a car or in a car trunk, they may have to be limited in size or broken down into shorter lengths not exceeding 5 to 8 feet. In the latter case, it may be possible to design the boom so that it can be conveniently broken down into shorter sections.

Try using Yagis that are easily assembled and preferably symmetrical. Most, but not all, Yagi designs use either similar length or a downward director taper. These designs are preferred for portable operation since there’s less likelihood of positioning the directors on the boom correctly. Mounting and assembly are also simplified.

If beams are broken down for transportation, place electrical tape or its equivalent on the elements or boom before transporting to mark the proper location of elements for reassembly. Steve Murray, K1KEC, taught me another trick: when transporting antennas, always tape down any loose nuts so they won’t shake off and get lost.
Finally, just in case you do lose some hardware during transportation, bring along a few spare nuts, bolts, and screws in your tool box. You’ll never regret it.

For 6-meter operation I prefer a 12-foot boom Yagi. This is a convenient length for a four-element design. I also prefer a 1-3/4 to 2-inch diameter boom so that the elements won’t spin. A single piece of tubing can be used, but you may prefer to use a two-piece boom with a center joining section. WD4BUM* can provide a suitable boom with 6-foot sections.

My 6-meter antenna follows a symmetrical design with equal element spacing and is based on an unpublished 0.6-wavelength NBS design. It offers gain of just under 10 dBi, and — along with other VHFsers in the W1/VE1 area — I’ve used it extensively to put out rare grid squares. It’s also been used to work not only the USA and Canada, but Europe, the Caribbean and South America, all with low power!

The mechanical details for this design are illustrated in fig. 3. The finished product is shown in fig. 4. My antenna was built from an old CB antenna, but parts from an old 6- or 10-meter beam are sufficient. The construction techniques are similar to those described in last month’s column. The elements can be any diameter between 1/2 and 3/4 inches or tapered (as discussed in reference 13). A gamma match is used because it’s small and easy to fabricate. You may have to adjust the length of the driven element, the length of the coaxial capacitor, or the shorting bar slightly for optimum VSWR.

Many small 6-meter or “hilltopper” Yagis are available commercially. For 2 meters, there are also many choices: if you’re a homebrew artist like myself, the eight-element Yagi design described in last month’s column is highly recommended. It has a great pattern, about 13.5 dBi of gain, and fits on a 12-foot boom. What could be simpler?

Many NBS Yagi designs are also described in reference 12. The 0.8-, 1.2-, and 2.2-wavelength designs are particularly recommended for 2 meters because they offer manageable lengths and reasonably good gain and radiation patterns. Likewise, there are plenty of commercial 2-meter Yagis available in many different boom-lengths and prices. Some are even specifically designed for mountain-topping.

Stan Jaffin, WB3BGU, originally became interested in 2-meter antennas suitable for mountain-topping. He therefore devised Yagi analysis programs which later resulted in several articles on optimized 50- through 450-MHz Yagi designs. His articles discuss a number of optimized designs in this frequency range.

Stan offers a few suggestions for 2-meter portable antennas. Yagis measuring 72 inches are suitable for carrying in an automobile, but 50-inch booms are good if you want to transport your antenna in your trunk, where it’s out of sight. Stan also prefers wooden booms at least 3/4 inch wide, since wooden boom antennas don’t require boom corrections and work fine as long as they’re not exposed to the elements for extended periods of time. Stan also feels that the elements should be substantial enough (at least 3/16 inch diameter) so that the elements don’t break or bend during transportation or in the wind.

Designs for 135-cm Yagis are available in references 12 and 14. The NBS 4.2-wavelength design is particularly recommended if a 19-foot boom is used. Several commercial 135-cm Yagi designs are also on the market.

Many 70-cm Yagi designs are readily available. The NBS Yagi designs allow choices of up to 4.2-wavelength booms. The DL6WU Yagi designs can be used for boomlengths of 2 or more than 10 wavelengths. On several expeditions I used the 24-foot boom Yagi design described in last December’s column. The K2RIW 19-element and the new K1FO 22-element Yagi designs are excellent for 13- to 14-foot boomlengths. Kits of parts for the W1JR, K1FO, and K2RIW designs are now available from Tom Rutland, K3IPW**. Many commercial 70-cm Yagis are also available.

* George Shira, WD4BUM, Route 7, Box 258, Anderson, South Carolina 29624.
** Tom Rutland, K3IPW, 1703 Warren Street, New Cumberland, Pennsylvania 17070.
*** Down East Microwave, W3HGT, Box 1665A, RFD 1, Burnham, Maine 04922.
The loop Yagi, surely one of the most popular antennas on 23 and 33 cm, can be built on a 12-foot boom. Gain is high and the size is quite manageable. Details on loop Yagi design can be found in references 9, 10, and 18. Loop Yagis are available from Down East Microwave.** * Several other sources manufacture Yagis for both bands.

Fewer antennas are available for 13 cm (2304 MHz) and above. The 45-element loop Yagi is a good choice.** * Down East Microwave** * offers this loop Yagi.

Parabolic dishes are also popular on 13 cm and above. However, if solid dishes are used, they may require a good mount because windload can be severe. Smaller dishes (18 to 24 inches in diameter) are often used on 3 cm (10 GHz) and can often be mounted on a good tripod similar to those used by surveyors. This also will allow some degree of azimuth calibration if a compass rose is available on the tripod mounting. Design of parabolic dishes and feeds for 13 cm and above are discussed in references 20 and 21.

towers and masts

By now it should be obvious that the type and size antenna used in portable operation is determined largely by the way it's supported. Several methods in widespread use include towers, tripods, and masts. Regular towers are great, but they're usually bulky and require guys and possibly special mounting techniques such as attachments to the side of a camper.

Some Amateurs prefer to use just a simple mast mounting. They usually attach some sort of pipe fitting near the end of a large plank and fit a 10- to 15-foot mast into the pipe flange. If the plank is large enough and the flange is near one end, it can be supported by driving over the top of the end with one wheel of an automobile. The support can consist of multiple sections of the 5-foot TV type masts that are readily available at Radio Shack and suppliers of TV antenna accessories.

There’s at least one technical problem with this mounting method. An antenna mounted near an automobile may suffer pattern distortion. The larger the antenna and the closer to an automobile, the greater the problem. As a rule of thumb, antennas should be spaced at least 25 to 50 percent of their boomlength away from any local objects. This is particularly important for those who use masts or towers attached to a camper. Furthermore, antennas should always be mounted at least 1 to 2 wavelengths above the ground for tropo work or at least 7 to 14 feet high on 2 meters. I prefer tripods or small self-supporting towers for portable operation. Several manufacturers now supply four-legged free-standing towers. I use the one shown in fig. 4 of last month’s column** on my portable EME station. These small towers usually have hooks at the top to allow guy lines to be added if necessary.

Figure 5 shows construction details for a simple tripod that I use for portable operation (see text). It consists of three 6-foot lengths of 2 X 4 lumber joined at the top to a triangular aluminum plate using small hinges available in hardware stores. A hole large enough to pass a mast through is drilled in the plate. An inexpensive piece of chain link is used to hold the shape and it is attached between the legs with hook eyes.

This tripod (figs. 1 and 4) is relatively compact, and the weight of the mast makes it very stable even in a mild wind. The antenna mast can be sections of the 5-foot TV type just described, which can rest on the ground. For a more substantial mast holding method, I sometimes use a plank such as the one described above, which can be attached with another hinge to one of the tripod legs (see figs. 1 and 4). For peace of mind, I sometimes attach a rope to the antenna in use to hold it in position, but I’m sure there are better safety methods.

Amateurs who go portable devise many different ways to hold their antennas. Antenna rotators can be used, but will require 115 VAC, as discussed earlier. Others attach a lever arm to the mast to allow quick steering. Whatever method you use, do consider something that will allow a relatively accurate azimuth indication such as a compass rose, since this may mean the difference between success and failure of your operation.

transmission lines and VSWR indicators

One big advantage of portable operation is that transmission lines are usually short. Hence, lower cost coax such as RG 8/U or RG 213/U may be perfectly acceptable. The newer 9913 coax is especially recommended if you want very low loss or expect to work on 70 cm and above.

Because you sometimes don’t know how long a feedline will be required at the site, I prefer to take several short cables as well as a few 10- and 25-foot feedlines, all fitted with type-N connectors. If the first feedline is too short just add another section, joining them with a coax barrel adapter.

Another suggestion: if you keep the number of connector types to a minimum, you won’t have to bring too
many different types of adapters. I prefer to use either type-N or BNC connectors in portable operation. Furthermore, bring along several short cox coax cables with the correct type of connectors so you can easily bypass rigs in case of unexpected equipment failure.

One indispensable accessory is a VSWR/power meter. Don’t leave home without it! Not only will it tell you that your transmitter is putting out the correct power, but it will give you a quick indication of VSWR that may tell you if the antenna system is functioning properly. This is particularly important on portable operation because the antenna may have been improperly assembled in a hurry to get on the air. If only a VSWR meter is used, try to have it calibrated before leaving home so that you’ll at least be able to know that the power indicated is in the ballpark.

antenna relays

Most of the popular multimode transceivers have built-in t/r relays. However, if an external preamplifier or power amplifier is used, an additional t/r relay may be necessary. Since most portable operation requires a 12-volt dc relay, you should obtain one well ahead of time and check it out, especially with respect to integration with the t/r switching. I may be old-fashioned, but I use a footswitch on all operation because I feel it’s more reliable and allows me other freedoms. I have a small box with the switching and voltages all wired beforehand.

If you can’t find a 12-VDC t/r relay you can use the 28-volt type, which is more readily available. But how do you use it on 12 volts? The answer is that you need an external 24- to 28-volt supply that’s powered from 12 VDC.

Figure 6 shows a schematic of such a supply which will operate on 12 to 13 VDC and deliver a nominal 28 VDC. It uses one of the newer IC chips and will easily provide enough current to drive a single 26-volt t/r relay. This circuit works as a “switching regulator.” Such a device is really an oscillator that operates very efficiently in supplying power to the output filter capacitor, C1, on demand. Normally the internal diode between pins 2 and 1 of the IC is used to connect to the output filter/divider. However, I used an external diode to keep chip dissipation to a minimum. One caution: switching regulators generates rf spikes. Therefore, it’s best to place the circuit in a shielded box and filter the dc input and output lines.

The circuit shown in fig. 6 is quite straightforward. The only special components are the IC chip (a Fairchild 78S40) and the switching inductor. The inductor should be of the very high current type made with large gauge wire such as the J. W. Miller type 5506 or equivalent. If you can’t locate these parts, Circuit Cellar offers a package deal of the 78S40 and the Miller inductor for $15.00.**

Recently a new series of switching regulator chips with higher output current capabilities was introduced by Linear Technology Corporation. Several choices such as the LT1070CK, LT1071CK, and LT1072CK, with specified output currents of 5, 2.5 and 1.25 amperes, respectively, are offered.

I built the circuit in fig. 7 using the higher current device, the LT1070CK, which costs $12.74 in small quantities and the same inductor as used in fig. 6. I haven’t completely put this circuit through its paces, but it looks as if it will have considerably more output current capability than the 78S40 circuit. Therefore, if high current isn’t required, you may want to use one of the lower-cost chips in this series.

power amplifiers

So far I haven’t mentioned power amplifiers. They aren’t always needed for portable operation. However, there are many choices if solid-state amplifiers are used. Reference 7 describes circuitry that will work for solid-state power up to the 100-watt level through 70 cm. Many different solid-state amplifiers are available commercially.

If you really want to go high power, tubes are still king. However, you’ll probably need to use either local power or bring along a generator so that the filament and high voltages can be generated conveniently.

A couple of years back there were some AM6154 and AM6155 tube-type power amplifiers on the surplus market. They can be adapted to operation on 144, 220, and 432 MHz.** This amplifier seems like just the ticket for high-power portable operation because it’s relatively small, fully self-contained, and can deliver 300 to 500 watts of rf with 10 to 20 watts of drive.

field repairs

Because it can be very frustrating working in the field, especially if a...
Table 2. Items recommended for a trouble-free portable operation. This list is by no means complete; you may want to expand some categories as you make your own list.

Antennas, transmission lines, and accessories:
- antennas
- tripod/tower
- rotator
- feedlines – short, medium and long
- link antennas
- masts
- rope
- coax cable adapters

Equipment:
- radios
- link gear
- HT t/r relay and power source
- straight key and keyer
- spare fuses
- spare preamplifiers
- power amplifiers
- master control system
- preselector filters
- earphones
- power distribution box (fig. 2)

Power generation:
- ac generator (plus spare plugs, gasoline, oil)
- dc to ac inverter
- batteries
- extension cords and ac outlet strips
- power supplies (if required)

Tools and supplies:
- tools (make a long list)
- hookup wire
- hardware
- pipe cleaners
- soldering iron and solder
- electrical tape
- ruler/tape measure
- clip leads

Test equipment:
- multimeter
- noise generator
- power/VSWR meter
- frequency calibration source

Miscellaneous:
- compass
- pens, pencils, scratch paper
- folding table
- operating platform
- beverage cooler stocked with water
- manuals on gear being used
- camera and film
- logbooks
- tent/tarpaulin
- folding chairs
- first-aid kit, aspirin, insect repellent
- beverages and snacks
- lamps/flashlight
- maps

failure occurs, always bring along extra gear, tools, and supplies. A multimeter is a must. Many inexpensive handheld types are available. A crystal calibrator is also nice for checking if you’re on frequency. I also carry a simple noise generator made with a diode, battery, and coax attenuator. It isn’t accurate, but it can tell you in one quick test if your preamplifier or receiver is inoperative!

It’s also a good idea to bring along a soldering iron. On one expedition I needed one to repair a broken relay coil. Luckily I was able to borrow a battery-operated one locally, and it saved the day! At the same time I needed a light. I had a flashlight, but I was alone and didn’t have three hands. I recommend a lamp that operates from a car cigarette lighter. It can also help by providing light for filling out your log.

If you’re working on 115 VAC, don’t forget to bring extension cords and extra power outlet strips. Extra leads with alligator clips are great for makeshift patching. I also recommend that you carry a package of ordinary pipe cleaners. They’re great for removing water or other debris that can get into coax connectors.
amenities

I really haven’t discussed creature comforts. If you’re going to operate from a car, bring along a board or platform on which to mount your rig, key, and logbook. If your car has a tailgate you can set the gear on it, but don’t forget to bring a folding chair. Of course, campers or vans can be ideal for portable operation since they usually have a built-in table and seat.

If you’re not fortunate enough to obtain the use of a local building, bring along a tent or tarpaulin to not only protect you and your gear from the high temperatures of direct sunlight. If you have to do is to fill in the QTH and grid square along with the usual information. Think about it the next time you’re planning a trip; it certainly simplifies QSLing.

summary

Portable operation on the VHF/UHF, microwave, and millimeter-wave bands is becoming quite a popular sport. I’ve tried to provide suggestions on how to improve your success rate; obviously, the most successful operations are those that were planned, tested, and integrated at home instead of on location.

acknowledgments

I’d particularly like to thank those who suggested a column on this subject, and especially Stan Jaffin, WB3BGU, for his helpful suggestions about antennas.

One quick way to QSL is to just mark up one of your own regular station cards or fill out one of those often offered as an advertising gimmick. But why not make up a universal QSL card instead — especially if you contemplate multiple operations or multiple QTHs?

With the help of Steve Gilbert, WA1AYS, who has his own printing business, I’ve done just that. It’s simple and effective, and it does the trick with a minimum of work and expense. The final result is shown in fig. 8. All you have to do is to fill in the QTH and grid square along with the usual information. Think about it the next time you’re planning a trip; it certainly simplifies QSLing.

Important VHF/UHF Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 7</td>
<td>Predicted peak of the daytime Aries meteor shower at 1900 UTC</td>
</tr>
<tr>
<td>June 10</td>
<td>Predicted peak of the Zeta Perseids meteor shower at 0400 UTC</td>
</tr>
<tr>
<td>June 13</td>
<td>EME peri gee</td>
</tr>
<tr>
<td>June 13-15</td>
<td>ARRL June VHF QSO party</td>
</tr>
<tr>
<td>June 20-21</td>
<td>SMIRK Party Contest (contact KAO(NO))</td>
</tr>
<tr>
<td>June 21</td>
<td>Peak of sporadic-E propagation (± 1 month)</td>
</tr>
<tr>
<td>July 1</td>
<td>Look for European 6-meter opening (± 1 month)</td>
</tr>
<tr>
<td>July 11</td>
<td>EME peri gee</td>
</tr>
<tr>
<td>July 18-19</td>
<td>CD Magazine VHF WPX Contest</td>
</tr>
<tr>
<td>July 20</td>
<td>Look for 2-meter sporadic-E propagation (± 2 weeks)</td>
</tr>
</tbody>
</table>

references

24. John Lindholm, W1XX, "VHF Mountain-topping meteor shower at 1500 UTC.

ham radio
HAMTRONICS, INC.
YOUR ONE STOP
ELECTRONICS SHOPPING CENTER

NOVICES!

Call TODAY (215) 357-1400

for all your new gear needs. Transceivers, handhelds, digital gear — everything you need to take advantage of your new, expanded voice and digital privileges!

KENWOOD
TM3530A

ICOM
IC03AT IC27A

YAESU FT109

AEA B&W ECG Rohn
Ameco Bencher Hy-Gain Sylvania
Astron Cushcraft MFJ

If you stop in, we would like to shake your hand, congratulate you and give you a free gift for your shack...No, you don't have to buy anything.

ACCESSORIES PLUS MUCH MORE

Technicians, Generals, Advanced and Extra Class Operators Too!

HAMTRONICS HAS IT ALL

Call today for Your SPECIAL PRICES

HAMTRONICS, INC.
A DIVISION OF TREVOSE ELECTRONICS
4033 BROWNSVILLE RD., TREVOSE, PA 19047
(215) 357-1400

More Details? CHECK — OFF Page 98
test DBMs for diode leakage

Decreased performance indicates damaged diodes

Commercially manufactured diode double-balanced mixers (DBMs) are popular with experimenters and equipment designers because of their low cost, predictable performance, and versatility. They’re used as mixers, all kinds of modulators, and current-controlled attenuators.

But mixers can suffer from failure that degrades performance without catastrophic destruction. This damage, caused by transient inputs exceeding ratings, may go unnoticed unless mixer performance characteristics are specifically tested.

It’s important to be aware of this effect when using an old mixer in a new design, or when performance seems to decrease. This article provides a method for making quick functional checks of mixer performance that can prevent a lot of frustrating troubleshooting.

mischer abuse

The obvious solution to the problem raised in the previous paragraph is to not exceed the manufacturer’s specifications. However, we’re all experimenters and tinkerers — and we just might install a mixer in a new configuration, inadvertently causing problems that aren’t immediately apparent. We might use the same damaged mixer in a number of different projects, with disappointing, seemingly inexplicable results. And we are known for trying to squeeze maximum performance from a component by exceeding its ratings.

Mixers can be used in several different applications. A DBM makes a very simple and trouble-free balanced modulator for generating a DSB signal. The DBM doesn’t require external adjustment of balance controls, and since these controls aren’t used, it doesn’t require subsequent readjustment to compensate for drift. The DBM balanced modulator is connected as shown in fig. 1. I used this scheme to generate a DSB signal using an LM386 IC audio amplifier driving the DBM i-f port. This worked perfectly, and its simplicity made it seem ideal. However, carrier suppression deteriorated after a period of use, and was cured by replacing the DBM. I was confused; a quick ohmmeter check on the mixer diodes indicated that they were still intact. The DBM had to be soldered into the circuit to determine that its balance had changed.

But how was the DBM damaged? Figure 2 shows the schematic of a Mini-Circuits SBL-1 mixer with the equivalent circuit for dc representation of the diodes. There is direct access to the diodes through the i-f port, making them most vulnerable to damage when the i-f is used as an input, which often occurs where a low frequency rf input is required but only a high frequency DBM is available. The LM386 power amplifier could easily generate transients that exceeded the DBM’s 40 mA maximum i-f current rating. These glitches only happened when making connections or touching the amplifier input leads. Normal microphone input resulted in normal modulation.

testing

Checking the damaged mixers with an ohmmeter didn’t seem to reveal much difference between a bad and a good mixer. Continuity checks are done to test for typical semiconductor failures — opens and shorts. The resistance measurements shown in table 1 were carefully made to document results. I used a Micronta 22-204A meter; other meters will provide different but similar results. Study of the actual resistance measurements reveals that mixer damage tends to progressively deteriorate the diode reverse leakage and cause imbalance. A good mixer has higher (and equal) reverse resistances than a damaged mixer. Continuing to operate with additional mixer damage causes the reverse resistance to decrease. When it reaches 20 or 15 ohms per diode, the DBM will pass virtually no signal.

I knew that I was in big trouble because I had a collection of used DBMs that might or might not have been damaged. The familiar balanced modulator

Cliff Klinert, WB6BIH, 1126 Division Street, National City, California 92050
RF performance really counts in tough repeater environments, so the KRP-5000 receiver gives you 7 helical resonators, 12-poles of IF filtering, and a precise Schmitt trigger squelch with automatic threshold switching. The transmitter gives you clean TMOS FET power.

Enjoy high performance operation with remote programmability, sequential tone paging, autopatch, reverse autopatch, 200-number autodial, remote squelch setting, status inputs, control outputs, and field-programmable Morse messages.

Call or write for the full performance story... and the super value price!

Micro Control Specialties
23 Elm Park, Groton, MA 01834
(517) 372-3442
TELEX: 4932256 Kondecom
FAX: 6173737304

The first choice in Transmitters - Receivers - Repeaters - Repeater Controllers - Power Amplifiers - Voice Mail Systems

The XP-706-US Multiband Antenna

In the final analysis quality is less expensive.

The unique design of the XP-706-US antenna system gives you MONOBAND PERFORMANCE in a Multiband beam. The antenna USES NO TRAPS of loading coils that rob power and limit bandwidth. Sommer Antennas use the FULL surface area of the elements on ALL bands.

Our commitment to use only the finest materials insures that your investment will last for years. Our system uses a Double rectangular boom, CAST aluminum element mounting brackets, all stainless hardware and a high power balun.

Monoband performance on a Multiband beam is yours when you move up to Sommer, the last beam you'll have to buy. We believe Sommer is your best antenna value when compared to the construction and performance of other multi and monoband antenna systems.

H. L. Thaller Corp.
P.O. Box 5369
Spartanburg, SC 29304
(603) 575-5566

More Details? CHECK-OFF Page 98

June 1987
Table 1. Mixer test data.

<table>
<thead>
<tr>
<th>Resistance on Pins:</th>
<th>Bad Mixer 1</th>
<th>Bad Mixer 2</th>
<th>Good Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forward</td>
<td>Reverse</td>
<td>Forward</td>
</tr>
<tr>
<td>3-5</td>
<td>7.0</td>
<td>35</td>
<td>8.0</td>
</tr>
<tr>
<td>5-4</td>
<td>7.0</td>
<td>30</td>
<td>7.5</td>
</tr>
<tr>
<td>4-6</td>
<td>7.5</td>
<td>35</td>
<td>8.0</td>
</tr>
<tr>
<td>6-3</td>
<td>7.5</td>
<td>35</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Isolation
- R-L at 10 MHz: 15 dB, 20 dB, Unmeasurable (> >30 dB)
- Loss
 - 10 mA i-f current: 10 dB, 7 dB, 3 dB

Note: Check ohmmeter current before making resistance measurements. To prevent damage, current into a diode shouldn’t exceed about 40 mA.

seemed like a good basis for a test fixture, so I settled on the circuit shown in fig. 3. Constructed on a perforated board, this circuit was used to prepare the rf measurements listed in table 1.

Mixer sockets aren’t available, so I made one by cutting up some IC sockets. This approach wasn’t entirely successful because the pin sizes don’t match. Crystal sockets have the same problem, so it may not be practical to build a permanent test jig. Applying 10 to 20 mA of current to a DBM i-f port will reduce rf-LO isolation to 3 dB or less. The resistors shown in fig. 3 terminate the i-f port with about 50 (specifically, 47) ohms, and the 9-volt battery supplies about 10 mA of i-f current. Press S1 to make the table 1 loss measurements. J1 and J2 can be reversed with similar results. This mixer output should be terminated with a 50-ohm load for precise results, but even a high input impedance oscilloscope is adequate to differentiate between good and bad mixers. A receiver with a calibrated variable attenuator could perhaps be used to measure a good mixer’s typical 50-dB isolation accurately.

summary
I was amazed to find a semiconductor failure mode resulting in gradual damage rather than complete instant destruction. It’s necessary to make a careful check of mixer diode resistances, or a quick rf test to identify this problem. Precise measurements could be made, but aren’t necessary for functional testing.

bibliography
RF/IF Signal Processing Handbook, Volume 1, Section 2, Mini-Circuits Labs, P.O. Box 166, Brooklyn, New York 11235.

ham radio
When we first saw the Casio PQ-40U Portable World Time Clock, we knew instantly that Ham Radio Bookstore customers would love this one. This time piece is more than a simple clock. Besides all the standard features, alarm, snooze, lightweight portable design and digital readout, this clock gives you time at 21 different locations around the world at the twist of a dial. DX'ers will delight at being able to get rid of their cumbersome manual time calculators: determining band and path to use will be greatly simplified. Contesters can simultaneously display both local and UTC times for logging purposes. In fact, every Amateur will find at least a dozen uses for this nifty clock. You can take with you when you go on vacation—business trips—set the alarm and get out of meetings early—anywhere you need a clock, the PQ-40U can go with you. Get a couple of them and give them as gifts, one for the house, car, office, just about anywhere you need a clock, the PQ-40U can go with you. Quantities are limited—order now and avoid disappointment.

PQ-40U $29.95

Please enclose $3.50 shipping and handling.

DISCOUNTS ON RIGS AND ACCESSORIES FROM:
- AEA, ARRL, ALINCO, ALLIAN, ALPHA-Delta, AMECO, AMERITRON, AMP SUPPLY, ANTENNA SPECIALISTS, ASTRON, BENCHER, BUTTENUT, B & W, CSI, CALLBOOK, CUSHCRAFT, DAIWA, DIAMOND, ENCOMM, HAL, HEIL, HUSTLER, ICOM, KDK, KANTRONICS, KENPRO, LARSEN, MFJ, MICROLOG, MIRAGE/KLM, NYE, PALOMAR, RF CONCEPTS, ROHN, SANTEC, SHURE, TE SYSTEMS, TELEX/HYGAINE, TEN-TEC, TOKYO HY-POWER, VIBROPLEX, W2AU BALUNS, WELZ, YAUES

THE HAM STATION
P.O. Box 4405
220 N. Fulton Ave.
Evansville, IN 47710

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on Beam Antenna design. Covers HF and VHF Yagi and 10, 12, and 14 MHz. Covers antennas: Everything you need to know. 204 illustrations. 268 pages. ©1985. Revised 1st edition. 250.00

SIMPLE LOW-COST WIRE ANTENNAS
Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics. 192 pages. ©1972 2nd edition. 13.00

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition. 25.00

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi Quad controversy, baluns, sloppers, and delta loops. Practical antenna projects that work! 190 pages. ©1981. 1st edition. 20.00

Please enclose $3.50 for shipping and handling.
<table>
<thead>
<tr>
<th>State</th>
<th>Address</th>
<th>Telephone Numbers</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>JUN'S ELECTRONICS 3919 SEPULEDA BLVD. CULVER CITY, CA 90230 213-390-8003 800-882-1343 Trades Habla Espanol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE. ORLANDO, FL 32803 305-894-3238 Fla. Wats: 1 (800) 432-9424 Outside Fla: 1 (800) 327-1917 Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>COLORADO COMM CENTER 525 EAST 70th AVE. SUITE ONE WEST DENVER, CO 80229 (303) 288-7373 (800) 227-7373 Stocking all major lines Kenwood Yaesu, Encomrn, ICOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS 500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881 Call today. Friendly one-stop shopping at prices you can afford.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>AMATEUR & ADVANCED COMMUNICATIONS 3208 CONCORD PIKE WILMINGTON, DE 19803 (302) 478-2757 Delaware's Friendliest Ham Store. DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD NEW CASTLE, DE 19720 302-328-7728 800-441-7008 Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET CLEARWATER, FL 33575 813-461-4267 Clearwater Branch West Coast only full service Amateur Radio Store. Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>DOC'S COMMUNICATIONS 702 CHICKAMAUGA AVENUE ROSSVILLE, GA 30741 (404) 866-2302 / 861-5610 ICOM, Yaesu, Kenwood, Bird... 9AM-5:30PM We service what we sell.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS 819 KEEAUMOKU STREET HONOLULU, HI 96814 (808) 949-5554 Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY 78 SOUTH STATE STREET PRESTON, ID 83263 (208) 852-0830 M 9-2; T-F 9-6; S 9-2 Stock All Major Brands Over 7000 Ham Related Items on Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERIKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE. CHICAGO, IL 60630 312-631-5181 Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION 220 N. FULTON AVE. EVANSVILLE, IN 47710 812-422-0231 Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others. SASE for New & Used Equipment List.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>MARYLAND RADIO CENTER 8578 LAURELDALE DRIVE LAUREL, MD 20707 301-725-1212 Kenwood, Ten-Tec, Alinco, Azden. Full service dealer. M-F 10-7 SAT 9-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>TNT RADIO SALES 4124 WEST BROADWAY ROBBINSDALE, MN 55422 (MPLS/ST. PAUL) TOLL FREE: (800) 328-0250 In Minn: (612) 535-5050 M-F 9 AM-6 PM Sat 9 AM-5 PM Ameritron, Bencher, Butternut, ICOM, Kenwood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>MISSOURI RADIO CENTER 102 NW BUSINESS PARK LANE KANSAS CITY, MO 64150 (800) 821-7323 Missouri: (816) 741-8116 ICOM, Kenwood, Yaesu Same day service, low prices.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY 1072 N. RANCHO DRIVE LAS VEGAS, NV 89106 702-647-3114 Dale Porray "Squeak," AD7K Outside Nev: 1 (800) 634-6227 Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Amateur Radio Dealer

New Hampshire

RIVENDELL ELECTRONICS
8 LONDONERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-7
Closed Sun/Holidays

New Jersey

ABARIS SYSTEMS
276 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
Astatic, Azden, B&W, Butternut, Larsen, Mirage/KLM, Kenpro, Nye, Santec, THL, and many others.
M-F 10 am-9 pm
SAT 9 am-7 pm
VISA/MC

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389
Gene K2KJI
Maryann K2RVH
OEP’s
110-4 ROUTE 10
EAST HANOVER, N. J. 07936
201-887-6424
In N.J. 1-800-USA-9913
Bill KA2OEP
Jim NZ2KW
VISA/Mastercard
Belden Coaxial Cable
Amphenol Connectors
Hours: 9:30 am-7:00 pm

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York’s finest Amateur dealer.

North Carolina

F & M ELECTRONICS
3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty — Sales & Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLIFFE, OH44092(Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-239-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUStON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
Stocking all major lines. San Antonio’s Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

MISSION COMMUNICATIONS
11993 ALEIF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUStON, TX 77082
(713) 879-7764
Now in Southwest Houston—full line of equipment. All the essentials and extras for the “ham.”

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

Foreign Subscription Agents for Ham Radio Magazine

Canada
Send orders to Ham Radio Magazine
Greenville, SC 29606 USA
$1.00 for 1 yr, $1.50 for 2 yrs
$2.00 for 3 yrs

Ham Radio Italy
Via Mangia 15
16123 Milano
Italy

Ham Radio Schweiz
Karmainstrasse 21
CH-4131 Urnäsch
Switzerland

Ham Radio Germany
Karl-Ulrich Ufer 2
D-18072 Luckenwalde
Germany

For orders over $25.00, please add $1.00 for First Class delivery.

June 1987
NEW JERSEY: GILFER SWL, FEST/FLEA MARKET; Saturday, June 19. American Legion Post 41 Headquarters, Free admission for all visitors. Sellers: $3.00 (tailgate only, bring own table and chair). For more information contact: GILFER SHORT-WAVE, 52 Park Avenue, Park Ridge, NJ 07656. For further information please call (201) 391-8787.

MARYLAND: June 10-13. The Antique Radio Club of America will host the 1st Annual CONVENTION and SHERRITON HOTEL AND EXHIBITION CENTER, RT. 450, New Carrollton, 10 miles NE of Washington, DC. The public is cordially invited to attend. Membership information can be obtained from ARCA, 81 Steeplechase Road, Devan, PA 19333.

KENTUCKY: June 7. The Northern Kentucky ARC's "Ham-O-Rama" will be held at the Taylor South Hotel, public 9 AM. Admission 15.00. Children under 13 free. Free flea market, open 9 AM to 6 PM. For more information contact: WM4KHF, 818 Alms Ave, Park Ridge, IL 60068.

INDIANA: June 21. The Lake County ARC will hold its 15th annual Dad's Day Hamfest, Lake County Fairgrounds, Crown Point. Advance tickets: $3.00. Contact: Ken Brown, W9HYF, 318 Chippewa Drive, Crown Point, IN 46307.

ILLINOIS: June 14. The Six Meeter Club of Chicago announces its 32nd annual Hamfest, Santa Ponsa 8th and Wolf Road, Willow Springs. SW of downtown Chicago. Advance tickets: $3.00. Free flea market, open 8 AM. Talk on in club. $147.60/00 and 146/52. Contact: Ken Brown, W9HYF, 318 Chippewa Drive, Crown Point, IN 46307.

PENNSYLVANIA: June 7. The Amateur Radio Society will hold its annual Western Pennsylvania Amateur Radio and Computer Swapfest, Saturday evening banquet, Sunday potluck dinner. Swap each: $3.00. At the Wiow Springs, SW of downtown Chicago. Advance tickets: $3.00. Children under 12 and 73 free. BRMRA, Box 70, Centre Hall, PA 16824.

COLORADO: June 20. The Grand Mesa Repeater Society will hold its 14th annual Hamfest, Lake County Fairgrounds. Crown Point. Advance tickets: $3.00. Contact: Carl Williams, W4GNT, 8723 S 56th Ave, Denver, CO 80238. For more information contact: Carl Williams, W4GNT, 8723 S 56th Ave, Denver, CO 80238.

OHIO: June 25-28: The Ottawa ARC will operate W8MCM from 1700Z to 0200Z to celebrate the 170th anniversary of the end of the War of 1812. For a special certificate send legal SA$E to KOBG WMO Weekend, 7126 Andover Drive, Mentor, Ohio 44060.

CHARGE YOUR CLASSIFIED ADS to your MC OR VISA write or call
HAM RADIO MAGAZINE
Greenville, N J 03048
(603) 878-1441

MOVING? KEEP HAM RADIO COMING... If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

MAY 1987

AFFIX LABEL HERE

Here's my new address:

Name:

State:

City:

Zip:

Here's my new address:

Name:

State:

City:

Zip:

OPERATING EVENTS

“Things to do...”

June 19 to 21: The Six Meter International Radio Club, Inc. announces their 12th annual SMIRK PARTY Contest. SASE for log requests to Lisa Lowell, KADNNQ, PO Box 547, Hugo, CO 80642.

June 6 and 7: The Wireless Institute of Northern Ohio (W.I.N.O.) will have a special events station to commemorate Ohio Wine Month. The station will be operating from a winery in Madison, Ohio and use callsign KBD8. For a special certificate send legal SA$E to KOBG WMO Weekend, 7126 Andover Drive, Mentor, Ohio 44060.

June 26-28: The Ottawa ARC will operate W8MCM from 1700Z to 0200Z to celebrate the 170th anniversary of the end of the War of 1812. For a commemorative certificate send QSL and SASE to W8MCM.

Julie 11 and 12: Oklahoma Amateur Radio Operators will conduct their 4th annual "Field Day" exercises at Lake Canton, OK. Activities begin 2 PM Saturday through noon Sunday. For additional information contact Tim Mauldin, W8STU, Lake Canton Field Day, PO Box 19097, Oklahoma City, OK 73144-1065 524-5048.

THE DIGITAL NOVICE

by Jim Grubbs, K9E1

Now that novices have digital privileges, there are thousands of new Amateurs anxiously awaiting to get on-the-air. Who’s going to answer their questions however? Jim Grubbs’s new book, The Digital Novice is written with beginner’s needs in mind. Each of the popular digital modes is discussed in detail with a brief history and full description of how it works. Hardware and software are covered in clear, concise terms. The book finishes with a look toward the future. Four appendixes cover; Morse, Baudot, AMTOR and ASCII Codes and has a glossary full of commonly used but misunderstood terms. Great for beginners and experts alike. ©1987 1st edition

Softbound $9.95
Pre-Publication Special Save $1.00

YAGI ANTENNA DESIGN

by Dr. James Lawson, W2PV

Based upon the popular Ham Radio Magazine series, this book includes notes, charts, graphs as well as other additional information not found in the original text. W2PV was known worldwide as one of the most knowledgeable experts on antenna design and optimization. This book is full of his contest winning “trade secrets.” Eight chapters covering: Performance calculations, Simple Yagi antennas, Yagi antenna performance optimization, Loop antennas, The effects of ground, Stacking, Practical design, and Practical Amateur antennas. A wealth of information at a modest price—Lawson’s book should sell for much more—every Ham should get a copy for their bookshelf. ©1986 1st edition

Hardbound $14.95

RADIO DATABASE INTERNATIONAL 1987 Edition

One of the problems SWL's encountering is having an up-to-date and accurate program schedule for international broadcasters. While no listing can Ever be 100% accurate, this new book represents thousands of hours of research and is one of the most accurate SWL international broadcasting listings available. Stations are listed by frequency and language format. Also included is a powerful search tool and a section on selected portable and tabletop radios. A number of tutorial articles have been included to help guide you to the most from your radio. ©1986

Softbound $12.95
Pre-Release Special $9.50
Welcome to *Ham Radio*'s new feature: Elmer's Notebook. You're going to find it informative, interesting, and — we hope — useful in many ways.

Who's Elmer?

Elmer is the person who helped us at one time or another, either in our efforts to get started or in trying something new in Amateur Radio. Although he wasn't necessarily an old-timer, he had considerably more experience than we did. Who was he?

Maybe you! Many of you have been Elmers without realizing it. Some would have been mildly embarrassed if caught in the act. But Elmers you have been, nevertheless.

For some, being an Elmer is actually a hobby within the hobby. Dedicated Elmers spend large amounts of time helping newcomers bone up for exams and acquire their first rigs. They’re always available to critique the new fist or help calm the first-contact jitters.

That’s what this new column is all about — to provide guidance, encouragement, and useful material for the Elmers among *Ham Radio*'s readers. Of course, if Novice or other licensees find Elmer's Notebook helpful or thought-provoking, that's great too!

Novice Enhancement

Novice Enhancement has been in the works since April, 1986, when the FCC adopted a Notice of Proposed Rule Making (NPRM) in response to several petitions. After several hearings and response periods, it finally became official on March 21, 1987: Novices now have expanded privileges that provide immense possibilities for communication and enjoyment on the 10-meter band, and new privileges in the 220- and 1270-MHz bands. Figure 1 shows the relationship of these segments to other parts of the Amateur Radio spectrum. The shaded areas indicate the modes Novices are permitted to use on those band segments. Power levels are 200 watts PEP on 28.1 to 28.5 MHz (this same power restriction applies to Technician class licensees on this band), 25 watts PEP on 222.1 to 223.91, and 5 watts PEP on 1270 to 1295 MHz.

These power levels are reasonable. They're adequate for plenty of exciting communications, either direct or through repeaters, yet still offer incentive to upgrade to a higher license in order to expand capabilities. Though the 5-watt limit at 1270 MHz may seem low at first glance, it's ample for use through repeaters and for direct communication via hand-held equipment or mobile and fixed stations. There is a concern for safety at these higher frequencies; until the operator has learned enough to understand why caution is essential, low power levels are prudent indeed. We'll talk more about this aspect of operation in future columns.

The challenge

These new privileges and frequencies not only give Novices room for growth, but also generate a challenge for us Elmers: to help Novices respond to the FCC’s strong recommendation, voiced in its Report and Order, that current licensees “become knowledgeable in the new requirements before using the new privileges.” It's up to us to advise them about techniques, equipment, and procedures required for the new modes of communication and on the new bands so they'll be comfortable when they try them — and so they can enjoy these privileges without creating problems simply because they haven't been there before.

Along with this primary challenge...
comes a second one — to prepare prospective Amateurs for the ten new questions to be incorporated into the revised Element 2 exam. (All Novices licensed before March 21 will be "grandfathered" into the new privileges.) If we do our homework and work toward meeting the primary goal, we'll be better prepared for meeting the second.

There shouldn't be much trouble in explaining voice modes (with the possible exception of answering the questions about PEP). Novices have been waiting to try voice for a long time, and have had plenty of time to listen to voices on the high-frequency bands, just a twist of the dial away from their own CW segments.

Digital modes? Now it gets interesting. Digital communications is a relative newcomer to the Amateur Radio bands. The newest facet of that mode is packet radio, with AMTOR a close second. RTTY has been with us for quite a while, but its image has changed dramatically over the years. I can still recall the heavy, noisy, cranky monster that I assembled back in the late 1940s — but that's another story.

As I peruse the exhibitor's booths and the flea markets at hamfests, I note many small, neat, RTTY demodulators that fit handsomely on the operating desk, work with almost any common computer setup, and make very little noise. They use less power than it took to just light the filaments in the tubes in my early rig. (Filaments? Oh, they were like heating elements in the tubes in my early rig. (Filaments?—but that's another story.

As I peruse the exhibitor's booths and the flea markets at hamfests, I note many small, neat, RTTY demodulators that fit handsomely on the operating desk, work with almost any common computer setup, and make very little noise. They use less power than it took to just light the filaments in the tubes in my early rig. (Filaments? Oh, they were like heating elements in the tubes in my early rig. (Filaments?—but that's another story.

Obviously, the Novice license is taking beginners into much more interesting and complex technology, and we should be prepared to provide answers and guidance. The new segments on 220 and 1270 MHz offer many exciting possibilities. Just a few of the inevitable questions include "What can be done at these frequencies?" "What's their communication range?" "Where do I get equipment?" "What about antennas?" And — here's a good one — "Can I send television on 1200 meg?" There are many answers to search for and lots of exciting territory to explore. We're here to help.

Next month, we'll take a closer look at the specific privileges indicated in fig. 1. In future issues, we'll discuss equipment and operating procedures, and provide information to help you prepare would-be Amateurs for the new Element 2 exam questions.
MICROWAVE ANTENNAS AND EQUIPMENT
- Loop Yagis
- Power Dividers
- Linear Amplifiers
- Complete Arrays
- Microwave Transceivers
- GaAsFET Passives
- TROPO
- EME
- Weak Signal

2304: 450 - 950 MHz
2345: 4860 loop Yagi 1296 MHz 206/61 933
1346: 4860 loop Yagi 2304 MHz 206/61 980
3335: 3360 loop Yagi 902 MHz 18.56/93

Above antennas assembled and tested. Kits available.

DOWN EAST MICROWAVE

NEW! MICROWAVE TRANSVERTERS
BY LMW ELECTRONICS
IZ9BTR/6V
6W
GaAsFET
TIR
Sequencer
Output Meter $499
Write for FREE catalog.

DOWN EAST MICROWAVE
Bill Olson, W3HOT
Box 1655A RFQ #1, Burnham, ME 04922 U.S.A.
(207) 969-3741

SERVICE CENTER
for
ICOM, KENWOOD
and YAESU

Fully equipped repair shop Amateur, Marine and Land Mobile repairs.

FCC NABER Lic
Mon-Fri 10:00-4:00 pm
(206) 776-8993

PACIFIC RIM COMMUNICATIONS

Bob KG7D
23303 56th Ave. West
Mountlake Terrace, WA 98043

& C.O.D. Welcome

Twx: 910-286-0253 SUBSCRIBE AND RENEW

TOLL-FREE

1 YR - $22.95 2 YRS - $38.95
3 YRS - $49.95
Prices U.S. only

□ MASTERCARD
□ VISA □ BILL ME

Please have your charge card ready.

DATATEL 800™

800-341-1522

Weekdays 8 AM - 9 PM EST • Saturdays 9 AM - 5 PM EST
IN MAINE CALL COLLECT (207) 236-2896

OUR 800 NUMBER IS FOR SUBSCRIPTION ORDERS ONLY!

For Errors or Change of Address CALL ham radio direct at (603) 878-1441 8-5 EST
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to Ham Radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name:
Address:
City: State: Zip:

Please contact this advertiser directly.
Limit 15 inquiries per request. Please use before July 31, 1987.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>Advanced Computer Controls</td>
<td>41</td>
<td>100</td>
</tr>
<tr>
<td>115</td>
<td>Advanced Receiver Research</td>
<td>78</td>
<td>129</td>
</tr>
<tr>
<td>135</td>
<td>AEA</td>
<td>59</td>
<td>169</td>
</tr>
<tr>
<td>131</td>
<td>All Electronics Corp</td>
<td>62</td>
<td>111</td>
</tr>
<tr>
<td>150</td>
<td>Amateur Wholesale Electronics</td>
<td>36</td>
<td>138</td>
</tr>
<tr>
<td>143</td>
<td>AMSAT</td>
<td>46</td>
<td>159</td>
</tr>
<tr>
<td>129</td>
<td>Antique Electronic Supply</td>
<td>70</td>
<td>123</td>
</tr>
<tr>
<td>118</td>
<td>Antique Radio Classified</td>
<td>77</td>
<td>109</td>
</tr>
<tr>
<td>132</td>
<td>AFRL</td>
<td>38</td>
<td>147</td>
</tr>
<tr>
<td>176</td>
<td>Astron Corp</td>
<td>32</td>
<td>144</td>
</tr>
<tr>
<td>184</td>
<td>Barrett Elec</td>
<td>20</td>
<td>141</td>
</tr>
<tr>
<td>125</td>
<td>Blais Company</td>
<td>72</td>
<td>173</td>
</tr>
<tr>
<td>178</td>
<td>BMA Software</td>
<td>28</td>
<td>110</td>
</tr>
<tr>
<td>122</td>
<td>Buckmaster Publishing</td>
<td>73</td>
<td>171</td>
</tr>
<tr>
<td>145</td>
<td>Buckmaster Publishing</td>
<td>44</td>
<td>166</td>
</tr>
<tr>
<td>102</td>
<td>Burghardt Amateur Center</td>
<td>99</td>
<td>106</td>
</tr>
<tr>
<td>150</td>
<td>Caddell Coil Corp</td>
<td>44</td>
<td>156</td>
</tr>
<tr>
<td>152</td>
<td>Communication Concepts, Inc</td>
<td>41</td>
<td>119</td>
</tr>
<tr>
<td>103</td>
<td>Communications Specialists</td>
<td>100</td>
<td>196</td>
</tr>
<tr>
<td>161</td>
<td>CTM</td>
<td>33</td>
<td>114</td>
</tr>
<tr>
<td>170</td>
<td>Digiex</td>
<td>98</td>
<td>134</td>
</tr>
<tr>
<td>105</td>
<td>Down East Microwave</td>
<td>97</td>
<td>142</td>
</tr>
<tr>
<td>149</td>
<td>EGE, Inc</td>
<td>43</td>
<td>119</td>
</tr>
<tr>
<td>108</td>
<td>Fluke Manufacturing Co.</td>
<td>96</td>
<td>157</td>
</tr>
<tr>
<td>180</td>
<td>GLB Electronics</td>
<td>9</td>
<td>185</td>
</tr>
<tr>
<td>126</td>
<td>Groove Enterprises</td>
<td>70</td>
<td>187</td>
</tr>
<tr>
<td>137</td>
<td>H.L. Heaster, Inc</td>
<td>49</td>
<td>183</td>
</tr>
<tr>
<td>182</td>
<td>HAL Communications Corp</td>
<td>10</td>
<td>112</td>
</tr>
<tr>
<td>165</td>
<td>Ham Electronics</td>
<td>30</td>
<td>115</td>
</tr>
<tr>
<td>174</td>
<td>Ham Radio Magazine</td>
<td>97</td>
<td>160</td>
</tr>
<tr>
<td>146</td>
<td>Ham Radio Outlet</td>
<td>14, 15</td>
<td>163</td>
</tr>
<tr>
<td>174</td>
<td>Ham Radio's Bookstore</td>
<td>34, 41, 42, 49, 70, 73, 89</td>
<td>181</td>
</tr>
<tr>
<td>159</td>
<td>Ham Station</td>
<td>89</td>
<td>124</td>
</tr>
<tr>
<td>154</td>
<td>Hamronics, NY</td>
<td>23</td>
<td>186</td>
</tr>
<tr>
<td>113</td>
<td>Hamtronics, PA</td>
<td>85</td>
<td>172</td>
</tr>
<tr>
<td>190</td>
<td>Heath Company</td>
<td>52</td>
<td>140</td>
</tr>
<tr>
<td>127</td>
<td>Hi-Light Engineering</td>
<td>70</td>
<td>177</td>
</tr>
<tr>
<td>134</td>
<td>ICOM America, Inc</td>
<td>50, 51</td>
<td>129</td>
</tr>
<tr>
<td>167</td>
<td>ICOM America, Inc.</td>
<td>CII</td>
<td>189</td>
</tr>
<tr>
<td>164</td>
<td>IIX Equipment Ltd.</td>
<td>36</td>
<td>133</td>
</tr>
<tr>
<td>121</td>
<td>Interceptor Electronics, Inc.</td>
<td>73</td>
<td>137</td>
</tr>
<tr>
<td>154</td>
<td>International Radio</td>
<td>68</td>
<td>146</td>
</tr>
<tr>
<td>153</td>
<td>Jun's Electronics</td>
<td>40</td>
<td>175</td>
</tr>
<tr>
<td>158</td>
<td>Kagig</td>
<td>36</td>
<td>116</td>
</tr>
<tr>
<td>168</td>
<td>Kantronics</td>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>117</td>
<td>Kennedy Associates</td>
<td>77</td>
<td>107</td>
</tr>
<tr>
<td>150</td>
<td>Tri-Kennwood Communications</td>
<td>2, 5, CIV</td>
<td>148</td>
</tr>
<tr>
<td>130</td>
<td>Madison Electronics Supply</td>
<td>68</td>
<td>104</td>
</tr>
</tbody>
</table>

WACOM DUPLEXERS

Our Exclusive Bandpass-Reject Duplexers With Our Patented B_P, B_T CIRCUIT® FILTERS

- **101**
- **B_P, B_T CIRCUIT® FILTERS**
- Provide superior performance... especially at close frequency separation.
- Models available for all commercial and ham bands within the frequency range of 30 to 960 MHz.

CALL 817/848-4435

WACOM PRODUCTS, INC.
PO. BOX 21145
WACO, TEXAS 76702 • 817/848-4435

POCKET SIZED!! 11000 MHZ FREQUENCY COUNTER BUILT, TESTED, AND READY TO GO!! ONLY $49.95 Prepaid

HAND HELD!! 1-200 MHZ FREQUENCY COUNTER BNC INPUT CONNECTOR ONLY $79.95 Prepaid

PA-20E PRE-AMP

FULLY ENCLOSED WITH A DC-1000 MHZ RANGE AND POWER SUPPLY OPTION AT NO CHARGE WITH THIS PREAMPLIFIER! ONLY $24.95 Prepaid

PA-19E

FULLY ENCLOSED WITH A 5-200 MHZ RANGE, POWER SUPPLY OPTION

DIGITREX ELECTRONICS

Division of NCI 10073 North Mayann
Northville, MI 48176

West Coast: Call Ray Lukas 805-497-2397

Personal checks, money orders, MasterCard or Visa are welcome. Or call in a C.O.D. PHONE (313) 348-7313 NOW!!

Specify type of radio when ordering pre-amplifiers.
BEVERAGE ANTENNA HANDBOOK
by Vic Misek, W1WC

Recognized around the world as the definitive work on Beverage Antennas, W1WC has spent countless hours developing new antenna ideas and optimizing the SWA (Steerable wave antenna). Misek delves deep into the secrets of the single wire Beverage with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Also includes information on center fed Beverages constructed out of several wire types. CITY LOT OWNERS Note: Misek has developed a Beverage for you too! Called the Micro-SWA, it is just 60 feet long. You get excellent directivity and null steering capabilities. Transformer design information for both termination and feedline matching is completely revised. © 1987 80 pages 2nd Edition

VM-BAH

Softbound $14.95

COMING SOON!!!

Stay tuned for details...
Please enclose $3.50 for shipping and handling

TRANSMISSION LINE TRANSFORMERS
by Jerry Sevick, W2FMI

Available in June from ARRL. Everything you need to know about transmission line transformers. 144 pages

AR-TLX

Hardbound $9.95

Write today for our latest Bulletin/Used Equipment List.

P.O. Box 73
208 East Kemp
Watertown, SD 57201
Have you been trawling the bounding main for a new product? We have just netted it—the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $595.00. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $59.95. This module allows complete offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.

Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.

$595.00 each
$59.95 DTMF module
Introducing all-mode radios for your mode of travel.

Yaesu's 2-meter FT-290R and 6-meter FT-690R Mark II Series are the perfect all-mode traveling companions.

On the road, simply snap on the heat sink, apply 12 volts of power, and you've got a 25-watt mobile station. (FT-690R: 10 watts).

On foot, attach the optional C-cell battery pack and shoulder strap, and take off with 2.5 watts RF output.

You get around fast on SSB, CW and FM with ten memories, dual VFOs, LCD display, automatic storage of repeater shift into memory register, offset tuning during receive or transmit for satellite operation, relative power output/S-meter, and optional CTCSS unit.

And everything fits into a lightweight-yet-rugged case, measuring just 2¼ x 6½ x 8¼ inches.

The FT-290R and FT-690R Mark II are perfect for emergency use, camping trips, talking around town, and DX work.

Plus each is priced to maximize your ham budget's mileage.

So discover Yaesu's 2-meter FT-290R Mark II and 6-meter FT-690R Mark II all-mode transceivers today. They're just a quick trip away at your nearest Yaesu dealer.
TS-940S

The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100% duty cycle transmitter. Super efficient cooling system using special air ducting works with the internal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour.
- High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel."
- Graphic display of operating features. Exclusive multi-function LCD sub-

display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status.
- Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- QRM-fighting features. Remove "rotten QRM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (QSK) CW.
- 40 memory channels. Mode and frequency may be stored in 4 groups of 10 channels each.
- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz.
- 1 yr. limited warranty. Another Kenwood First!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner * SP-940 external speaker with audio filtering * YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter * VS-1 voice synthesizer * SO-1 temperature compensated crystal oscillator * MC-43S UP/DOWN hand mic. * MC-60A, MC-80, MC-85 deluxe base station mics. * PC-1A phone patch * TL-922A linear amplifier * SM-220 station monitor * BS-8 pan display * SW-200A and SW-2000 SWR and power meters.

More TS-940S information is available from authorized Kenwood dealers.

KENWOOD

KENWOOD U.S.A. CORPORATION
Communications & Test Equipment Group
2201 E. Dominguez St., Long Beach, CA 90810