Can I patent it?
ICOM IC-751A

"IT'S WHAT'S INSIDE THAT COUNTS!"

- All HF Band Transceiver / General Coverage Receiver
- Advanced Circuit Designs
- All Modes Built-in USB, LSB, FM, AM, CW, RTTY
- Superb Frequency Stability
- Continuous Duty Operation
- Crystal Clear Signal Quality

Midsize Masterpiece! The deluxe IC-751A includes more high performance features and professional circuitry per cubic inch than any other HF transceiver. Its smooth-as-silk operation and long-term reliability produce the ideal contesting, DX'ing, mobile, and portable rig. Owning an IC-751A truly means "Going First Class!"

Unsurpassed Quality and Reliability. Quality and Reliability is important to you and it's important to ICOM. ICOM now covers you and your investment with its exclusive one year warranty. There's more!

The IC-751A's receiver boasts 105dB dynamic range for superb listening. The 100% duty cycle transmitter defies abuse and delivers 100 watts of exceptionally stable and clean RF output. Reliability. Quality. One year warranty. That's ICOM.

All Bands, All Modes Included. Operates 160 through 10 meters, it's easily modified for MARS operation, plus it includes general coverage reception from 100kHz to 30MHz. No compromise, no comparison!

32 Tunable Memories. Store both frequency and mode information. Use them to quick-access your favorite spots or as 32 preferred frequency-remembering VFOs.

A Modern Amateur's Delight! Special attractions include an electronic keyer, semi or full break-in rated to 40 WPM, panel selectable 500Hz/FL-32A CW filter, and volume control-tracking sidetone. SSB transmissions are enhanced with an RF speech processor and tone control to produce sparkling clear audio. PLUS there's a new rubberized tuning knob for velvet-smooth tuning and a full line of accessories and filters.

RF Power Control. Varies output independent of mic gain, ALC and speech processor action. Enjoy maximum "talk power" at any drive level!

To see the IC-751A, contact your local ICOM dealer.
Get It All Together With KAM

Kantronics All Mode

KAM gives you CW, RTTY, ASCII, AMTOR, HF and VHF PACKET all together in one unit.

We combined the features of our UTU-XT and KPC-2 to give you the true all mode unit you've been asking for, the Kantronics All Mode (KAM™).

KAM features bargraph tuning and user programmable MARK and SPACE tones for RTTY and HF packet, as well as limiter/limiterless operation on HF for weak signal operation.

KAM's CW demodulator is also programmable for both center frequency and bandwidth.

KAM's RS-232/TTL terminal interfacing provides universal compatibility to all computers, including Commodores and PC compatibles.

If you're looking for increased sensitivity and the greatest amount of flexibility in an all mode unit, look to Kantronics. We've got it all together in the Kantronics All Mode.

Suggested Retail $319.00

NEW PROGRAM

EXTRA SPECIAL FEATURES

★ Simultaneous HF and VHF Packet connects & digipeating.
★ HF/VHF Gateway operation.

Kantronics
RF Data Communications Specialists
1202 E. 23 Street Lawrence, Kansas 66046 (913) 842-7745
TS-440S Compact high performance HF transceiver with general coverage receiver

Kenwood’s advanced digital know-how brings Amateurs world-wide “big-rig” performance in a compact package. We call it “Digital DX-citement”—that special feeling you get every time you turn the power on!

- Covers All Amateur bands
- General coverage receiver tunes from 100 kHz – 30 MHz. Easily modified for HF MARS operation.
- Direct keyboard entry of frequency
- All modes built-in USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code.
- Built-in automatic antenna tuner (optional)
- Covers 80-10 meters.
- VS-1 voice synthesizer (optional)
- Superior receiver dynamic range
 Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range. (500 Hz bandwidth on 20 m)
- 100% duty cycle transmitter
 Super efficient cooling permits continuous key-down for periods exceeding one hour. RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)
- Adjustable dial torque
- 100 memory channels
- Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.
- TU-8 CTCSS unit (optional)
 Subtone is memorized when TU-8 is installed.
- Superior interference reduction
 IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT, and optional filters fight ORM.
- MC-43S UP/DOWN mic. included
- Computer interface port
- 5 IF filter functions
- Dual SSB IF filtering
 A built-in SSB filter is standard. When an optional SSB filter (YK-885 or YK-88SN) is installed, dual filtering is provided.
- VOX, full or semi break-in CW
- AMTOR compatible

Optional accessories:
- AT-440 internal auto. antenna tuner (80 m – 10 m)
- AT-250 external auto. tuner (160 m – 10 m)
- AT-100 compact mobile antenna tuner (160 m – 10 m)
- IF-232C/IIC-10 level translator and modem IC kit
- PS-50 heavy duty power supply
- SP-430 external speaker
- MB-430 mobile mounting bracket
- YK-88C/88CN 500 Hz/270 Hz CW filters
- YK-88S/88SN 2.4 kHz/1.8 kHz SSB filters
- MC-80A/80/85 desk microphones
- MC-55 (8P) mobile microphone
- HS-5/67 headphones
- SP-40/50/51 mobile speakers
- MA-5/V1HF 5 band mobile helical antenna and bumper mount
- TL-922A 2 kw PEP linear amplifier
- SM-220 station monitor
- VS-1 voice synthesizer
- SW-100A/200A/2000 SWL/power meters
- TU-8 CTCSS tone unit
- PG-25 extra DC cable.

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
This month's cover: Can I patent it?
No. you can't patent the multioctave, omnidirectional antenna pictured on the cover, because it's already been patented by Harold A. Wheeler, a well-known inventor and holder of many patents in electronics and communications, some dating back to the late 1920s. U.S. Patent No. 4,033,265 was issued to Wheeler, with rights assigned to the Hazeltine Corporation of Commack, NY, on December 30, 1977. Thanks to Harold Wheeler, the Hazeltine Corporation, and Leo Zucker, K2LZ (see "Can I Patent It?"), for making these illustrations available.

Ed

MARCH 1987
volume 20, number 3

T. H. Tenney, Jr., W1NLB publisher
Rich Rosen, K2RR editor-in-chief
and associate publisher
Dorothy Rosa, KA1LBO assistant editor
Joseph J. Schroeder, W0JJUV
Alfred Wilson, W6HNF associate editors
Susan Shorrock
editorial production

editorial review board
Peter Bertini, K1ZJH
Forrest Gehre, K2BT
Michael Gruchalla, P.E.
Bob Lewis, W2ETB
Marvin Logan, KAMT
Vern Rippeita, WAG2QG
E. T. Weherholm, W3GNN

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JW
director of advertising sales
Dorothy Sargent, KA1ZK
advertising production manager
Susan Shorrock
circulation manager
Theresa Bourgault
circulation

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0496
Telephone: 603-747-1181

subscription rates
United States: one year, $22.95; two years, $38.95; three years, $49.95
Canada and other countries (via surface mail): one year, $31.00; two years, $59.00; three years, $74.00
Europe, Japan, Africa (via Air Forwarding Service): one year, $37.00
All subscription orders payable in U.S. funds, via international postal money order or check drawn on U.S. bank

international subscription agents: page 114

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tape of selected articles from ham radio are available to the blind and physically handicapped from Recorded Periodicals, 919 Walnut Street, Philadelphia, Pennsylvania 19107.
Copyright 1987 by Communications Technology, Inc. Title registered at U.S. Patent Office

Send change of address to: ham radio
Greenville, New Hampshire 03048-0496

FCC ANNOUNCES
NEW NOVICE PRIVILEGES
— SEE PAGE 6

contents

8 can I patent it?
Leo Zucker, K2LZ

17 modular transmit and receive converters for 902 MHz
Jerry Hinshaw, N6JH

29 the TEXNET packet-switching network part 1: system definition and design
Thomas H. Aschenbrenner, WB5PUC, and Thomas C. McDermott, N5EG, Texas Packet Radio Society

39 simple IC-735 to C-64 interface
Chuck Bahr, N7ICW

55 VHF/UHF world: the ubiquitous diode, part 2
Joe Reisert, W1JR

77 ham radio techniques: 160-meter equipment
Bill Orr, W6SAL

87 C-64 and GLB PK-1 interface circuit
John B. Meagher, W2EHDA/ex-W8JGN

93 packetimer for the PK-1
John B. Meagher, W2EHDA/ex-W8JGN

99 practically speaking: building the "poor man's spectrum analyzer"
Joe Carr, K4IPV

118 advertisers index

116 ham mart

109 new products

6 pressstop

106 DX forecaster

114 flea market

March 1987
manned vs. unmanned space flight

Having recently celebrated the 25th anniversary of the launch of OSCAR I, the world’s first non-government orbiting satellite, Amateur Radio has a proud history to look back upon, and an exciting future to anticipate. Our nearly two dozen experimental communications satellites and three manned Ham-In-Space missions have made it possible for thousands worldwide to participate, both personally and vicariously, in space exploration and research. They have also afforded us an unprecedented opportunity to compare the relative value and merits of manned vs. unmanned space missions.

Are the complexity, expense, and risk of manned space exploration justified, and if so, on what grounds? These questions are voiced by the lay public from time to time, either in the wake of a disaster or when appropriations are under consideration. The great strides in space exploration attributable to unmanned space probes raise some valid questions. Couldn’t shuttle-type missions be accomplished by unmanned, computerized, robotically controlled machinery? Wouldn’t this be cheaper, safer, and easier than providing life support systems? Isn’t man, in the final analysis, just so much excess baggage?

A more general question might be: Does the future of the space program lie in manned or unmanned missions? The unmanned craft now in space, and those planned for the foreseeable future, are singular enough in purpose to be controlled by telecommand. Their missions are of long duration and generally one-way; hence volunteer crew members are scarce. The rationale behind unmanned space probes is obvious; that behind manned exploration less so.

The common justifications for a human presence in space fall into three categories: philosophical, political, and technical. “Earth is the cradle of mankind,” wrote early rocketry theorist Konstantin Tsiolkovsky (1857-1935), “but man cannot live in the cradle forever.” We go into space for the same reason we climb mountains, explore caves, and sail the Queen’s ships toward the edge of the earth and certain doom; because it is there, and we are who we are. We still rise to a challenge, just as we did in Columbus’ day, and the challenges are much the same: propulsion, guidance, and environment. Within the past generation we have met these challenges, to the extent that space travel is now not only possible, but almost routine. But is it advisable?

The politician will consider the military aspects of a manned space presence, and conclude that further progress is inevitable; the only question is whether to lead or to follow. A generation ago President Kennedy said, “The exploration of space will go ahead whether we join it or not. It is one of the great adventures of our time and no nation that expects to be the leader of other nations can stay behind in the race for space.”

The United States and the Soviet Union may dominate, but no longer monopolize the quest for space. Japan and the European Space Agency are making great strides not only in their well proven launch capabilities, but in space manufacturing. If the United States is to remain competitive we must continue to send manned laboratories into space. The financial and scientific rewards are just around the corner.

The technological imperative for manned space missions becomes obvious when we consider the experiments which have been carried aloft in the cargo bay of the space shuttle, just in the past three years. We have witnessed breakthroughs in space manufacturing and materials processing, as well as astronomy, space plasma physics, life sciences, crystal growing, antenna testing, remote sensing, radar experiments, and of course, Amateur Radio! The launching, retrieving and on-orbit repair of unmanned spacecraft require mission specialists, as well as pilot astronauts to deliver hardware and personnel to the lofty job site.

All that is present technology. In January of 1984 our President directed NASA to begin developing plans toward launching a permanent space station by the end of the decade. Current schedules suggest that fabrication can begin this year, leading to an operational space station between 1992 and 1994. Even allowing for further scheduling delays associated with returning the space shuttle to service, it is clear that the question is not one of if, but rather when. Already Europe, Canada, and Japan have indicated an intention to participate in a truly international, permanent manned space presence.

There are still those who say manned space missions are too costly, in human life as well as dollars and cents. But by the National Transportation Safety Board’s uniform measure of safety — fatalities per hundred thousand miles — space travel shines as the safest transportation mode yet devised! As for financial costs, how can one put a price on progress? The medical breakthroughs alone justify the expense of the whole program. Through electrophoresis, the separating of cells by electricity in microgravity, pharmaceuticals have been manufactured in earth orbit at 700 times the yield and five times the purity of similar processes on earth. Dramatic advances in the treatment of anemia, cancer, diabetes, emphysema, dwarfishism, thrombosis, and viral infection are but a few of the tangible results.

We who have been privileged to participate in the Amateur space program, through our OSCARS, RSs, ISKRAs, and now JAS-1 — as well as through the efforts and accomplishments of W5FL, W8ORE, and DP0SL — are in a unique position to appreciate the roles which both manned and unmanned missions will play in a well balanced space program. To whatever extent we can influence national space policy, it behooves us to press for an aggressive space future which avails itself of the relative strengths of both men and machines. It is not only prudent to pursue both avenues of exploration, but essential to the advancement of civilization, and worthy of our financial and patriotic support.

Tedd E. Hankins, AMSAT 19192 and H. Paul Shuch, N6TX, AMSAT LM167
Complete Control...

IF-232C Level translator
IF-10A Computer interface for TS-711A/TS-811A
IF-10B Computer interface for TS-940S
IC-10 IC kit for TS-440S computer control

Attention "computing" hams! The Kenwood IF-Series computer interface units will enable you to connect your TS-711A, TS-811A, TS-940S, or TS-440S transceivers to your home computer. RS-232C standard is used, so the interface units are compatible with many computers!

The IF-10A and IF-10B computer interface boards and IC-10 IC kit are designed to be installed inside the transceivers. Control is performed via the computer RS-232C port and through the IF-232C level translator. The level translator performs two functions: (1) converts voltage levels from the RS-232C port to the TTL levels in the transceiver, (2) and acts as a noise suppressor. A complete interface “kit” would include the appropriate computer interface units (IF-10A, IF-10B, or IC-10) and the IF-232C level translator.

The applications of automated station control are almost endless! Just imagine...work DX from your hand-held...operate OSCAR "automatically"...remote operation of your station...or put together the “ultimate” contest station....

- Interchangeable commands
- Wide variety of commands
 This means that one program may be used with several rigs, to minimize program changes.
 Memory input and recall, frequency selection, frequency step, sub-tone frequency, offset, antenna tuner, DCS, scan, and many, many more functions are accessible with the Kenwood computer interface unit!

- Simultaneous operation of the computer and transceiver is possible
- Powerful, easy-to-understand instruction set
- AC-10 AC power adapter (optional)

Short Wave Listener's map and directory—simply select the QTH you'd like to listen to, and the pre-programmed frequency is "dialed up."
Display frequency, band, and mode data. Control your rig via keyboard!

CRT display shown is a simulation

Complete service manuals are available for all Trio-Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
NOVICES GET 220, 1270 MHz — PLUS SSB AND DIGITAL ON 10 METERS

Novices will soon be eligible for full privileges in all emission modes (though with a 25-watt power limit) on as yet unspecified subbands of 220 and 1270, as well as expanded privileges on 10 meters, which will be divided evenly between CW/digital (including packet, RTTY, ASCII, etc.) and SSB/CW. While complete details were not available at presstime — in early February — more information is expected shortly, with the release of the Commission's official report and order. Informed sources predict that the new privileges will take effect in late March or early April, perhaps even before you read this.

In awarding privileges on 220, the FCC reportedly took the Amateur community somewhat by surprise, since it had indicated earlier that 220 would not be a part of the enhanced Novice package because of unresolved conflicts over that band. A strong showing of support for granting 220 privileges to Novices, however, was credited for convincing the FCC of the importance of reserving portions of that band for Novice Amateur use. Though not specified in the FCC's January 30 release, repeater operation is expected to be included among the enhanced privileges.

According to the FCC release, Part 97 will not only be modified to include expanded Novice privileges, but will also provide for the separation of Element 3 of the Amateur Radio examination into Elements 3(A) and 3(B), providing different theory tests for Technicians and Generals. All Technicians licensed before the effective date of the new regulations will be "grandfathered," however, and will not be required to pass the new General theory exam before upgrading.

All existing Novices will likewise be "grandfathered" and will be allowed to operate on the new bands without passing the new, more demanding Novice exam, which will be expanded to include questions pertaining to operation on the newly-awarded bands. While current Novice examinations may be supervised by only one licensed Amateur, Novice exams occurring after the effective date of the new privileges will be supervised by two examiners. The FCC has specifically recommended that current Novice operators, who were authorized the new privileges without additional qualifications, become knowledgeable in the new requirements before using their new privileges.

According to the FCC release, the expansion of Novice privileges will be implemented in order to attract more Novice operators to the Amateur service without diminishing their incentive to upgrade to higher license classes. FCC Private Radio Bureau Chief Mike Fitch was quoted as saying, "I am delighted with the Commission's actions. I believe the new operating privileges on the 0.23, 1.25, and 10-meter bands will attract new people to Amateur Radio and keep their interest in the hobby by encouraging upgrades. We've provided these new growth tools to Amateur Radio. It's now up to the Amateur community to put the tools to work."

ham radio
Kenwood brings you the greatest hand-held transceiver ever! More than just "big rig performance," the new TH-215A for 2 m and TH-415A for 70 cm pack the most features and the best performance in a handy size. And our full line of accessories will let you go from ham shack to portable to mobile with the greatest of ease!

- Wide receiver frequency range. Receives from 141-163 MHz. Includes 145 MHz channel! Transmits from 144-148 MHz. Modifiable to cover 141-151 MHz (MARS or CAP permit required).
- TH-415A covers 440-449.995 MHz.
- Select 5, 2.5, or 1.5 W output, depending on the power source. Supplied battery pack (PB-2) provides 2.5 W output. Optional NiCd packs for extended operation or higher RF output available.
- CTCSS encoder built-in. TSU-4 CTCSS decoder optional.
- 10 memory channels store any offset, in 100-kHz steps. Each memory channel can store frequency, frequency step, offset, reverse switch position, and CTCSS frequency.
- Nine types of scanning! Including new "seek scan" and priority alert.
- Intelligent 2-way battery saver circuit extends battery life. Two battery-saver modes to choose, with power save ratio selection.
- Easy memory recall. Simply press the channel number!
- 12 VDC input terminal for direct mobile or base station supply operation. When 12 volts is applied, RF output is 5 W!
- New Twist-Lok Positive-Connect locking battery case.
- Frequency entry by keyboard or UP/DOWN keys.
- Priority alert function.
- Monitor switch to defeat squelch. Used to check the frequency when CTCSS encode/decode is used or when squelch is on.

Optional Accessories:
- PB-1: 12 V, 800 mAh NiCd pack for 5 W output • PB-2: 8.4 V, 500 mAh NiCd pack (2.5 W output) • PB-3: 7.2 V, 800 mAh NiCd pack (1.5 W output) • PB-4: 7.2 V, 1600 mAh NiCd pack (1.5 output)
- B1-5 AA cell manganese/alkaline battery case • BC-7 rapid charger for PB-1, 2, 3, or 4 • BC-8 Compact battery charger
- SMC-30 speaker microphone • SC-12, 13 soft cases • RA-3: 5 telescoping antennas • RA-68 StubbyDuk antenna • TSU-4 CTCSS decode unit • V8-2530: 2m, 25 W amplifier • LH-4, 5 leather cases
- MB-4 mobile bracket • BH-5 swivel mount • PG-2V DC cable • PG-3C cigarette lighter cord with filter

Complete service manuals are available for all TH-215A and TH-415A transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.

KENWOOD
TH-215A shown
THIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
can I patent it?

Some patent law basics for the industrious Amateur

Although Amateurs often express interest in obtaining patent protection for some circuit, antenna, or other device which they've conceived, they may not have sufficient understanding of the patent process to protect their inventions adequately.

In this article, we'll discuss what makes an invention patentable. We'll examine a typical patent application, timing limitations, and employee agreements covering inventions created on the job.

what is a patent?

Article I, Section 8 of the United States Constitution authorizes Congress to "promote the Progress of Science . . . by securing for limited Times to . . . Inventors exclusive Right to their . . . Discoveries" — in short, to grant patents. While the constitutional directive would appear to offer virtually unlimited protection, it's important to note that the owner of a patent has the right only to exclude others from making, using, or selling the patented invention in the United States without license by the owner. The patent grant does not confer an absolute right to produce or market the invention free of infringement claims by another who holds a so-called "dominant" or broader patent (more on this later).

The bulk of legislation dealing with patents comes under Title 35 of the United States Code (35 U.S.C.), as enacted in 1952 and amended to date. The federal agency authorized to examine applications and issue patents is the Patent and Trademark Office (PTO) of the United States Department of Commerce.* The PTO's Rules of Practice deal with specific requirements for patent applications, procedures to be followed while applications are pending, and payment of maintenance fees for issued patents.

The PTO issues utility patents, patents for new varieties of asexually reproduceable plants, and patents for ornamental designs of articles of manufacture. Utility patents are of potentially greatest interest to Amateurs because they're granted to those who invent or discover "...any new and useful process, machine, manufacture or composition of matter, or any new and useful improvement thereof." These patents are granted for 17 years from date of issue, but may lapse after 4, 8, or 12 years if maintenance fees are not paid in a timely manner.

In electronics, utility patents were granted last year for items ranging in sophistication from, for example, an electric cord holder to nuclear magnetic resonance (NMR) methods and apparatus. While it isn't necessary to furnish a model or prototype of the invention with a patent application, the PTO does reserve the right to require one. So if you've conceived of a device that consumes less energy than it produces — i.e., a "perpetual motion" machine — be sure to have a working model on hand. The patent examiner will certainly want to see it.

To be worthy of a patent, the subject of a utility patent application must be more than just new and useful. It must also have been "non-obvious" to one of ordinary skill in the pertinent art when the invention was made.

Leo Zucker, K2LZ, 34 South Broadway, White Plains, New York 10601

*Address: Commissioner of Patents and Trademarks, Washington, D.C. 20231.
was made. The “non-obviousness” criterion is determined initially during PTO proceedings on an application, usually by an evaluation of two or more prior patents or publications which together show all the elements of the claimed invention. If, in the examiner’s judgment, it would have been obvious to a skilled worker to combine the disclosures of the references so as to give rise to the invention, your claims will be rejected. A word of caution: if you’re making or selling an article for which a patent is pending, you may use terms such as “patent pending” on the article or in advertising to dissuade others from risking an infringement suit should a patent ultimately be issued. The false use of “patent pending” or similar phrases, however, subjects the perpetrator to a maximum $500 fine for each offense.

what to do before applying

Let’s say you’re trying to develop a system that will automatically select from four different antennas the one antenna that will provide optimum signal strength while a signal is tuned on your receiver. You’ve searched the available literature and found nothing. You sit down and sketch out a system as shown in fig. 1.

Even before trying out the system, sign and date your sketch and have a witness who understands it countersign the sketch. Properly signed and dated sketches — preferably on sequentially numbered pages of a hardbound notebook — can be used as valuable evidence of the date of your invention.

You may then try to assemble all necessary parts for your system and determine operating parameters such as the following: the antenna sampling time and protocol; the necessary increase in receiver AGC level a sampled antenna must provide over a previously switched-in antenna, for the sampled antenna to be switched on line; and the time period over which a switched-in antenna will be held on line prior to initiating the next sampling routine. You may allow the operating parameters to be set in a microprocessor CPU by an input device such as a keyboard and create a program for enabling the CPU to carry out all operating functions.

When your system performs exactly as you planned, make sure you properly record the successful test in your notebook, with all components correctly identified. By doing this, you’ve established a so-called “reduction to practice” of your invention, evidence of which may also be valuable at a later time.

It isn’t necessary to have actually reduced your invention to practice before applying for a patent, however. Once you’ve conceived your system (for example, as shown in fig. 1), and determined what you believe to be all other details a skilled worker would need to make and use your system in the best way you know, you may consider filing a patent application.

At this point it’s wise to consider obtaining guidance from a patent attorney or agent. A roster of attorneys and agents registered to practice before the PTO is available from the Superintendent of Documents, Washington, D.C. 20402. You should, of course, feel satisfied that a particular individual has the technical background and experience to portray your invention adequately in a formal application if you decide to have him or her represent you before the PTO.

the search

Your attorney will probably advise that a search be conducted before formal papers are filed with the PTO. The cost of a search is often many times less than the total cost — including drawings and filing fee — of preparing formal application papers. It typically takes about two weeks to conduct a search and obtain the results.

The search should be directed to cover all important aspects of your invention. Frequently, an invention disclosure may encompass more than one patentable invention, and a professional search will uncover references pertinent to every aspect of your invention that might qualify for a patent. Two or more
Wide Dynamic Range and Low Distortion – The Key to Superior HF Data Communications

- Dynamic Range > 75 dB
- 400 to 4000 Hz
- BW Matched to Baud Rate
- BER < 1 x 10^-5 for S/N = 0 dB
- 10 to 1200 Baud
- Linear Phase Filters

Real HF radio teleprinter signals exhibit heavy fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm, not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX/Tones
- Split or Transceive RX/TX
- CRT Tuning Indicator
- RS-232C, MIL-188C, or TTL Data
- 8, 600, or 10k Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, 44-440 Hz
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- 3.5” High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784
patents sometimes stem from a single “parent” application.

Even if the results are discouraging, you’ll get a good idea of how your invention stacks up against the state of the art. If you later conceive of certain additions or improvements to your invention which are not suggested or “obvious” over the references found in the search, you may then give serious thought to obtaining patent protection for the later version.

A patent search can be beneficial in other ways. Remember that even if your invention is eventually patented, it could still infringe upon an enforceable patent of broader scope. Such dominant patents often turn up in the search, and you will at least be forewarned of their existence at an early stage.

the application

If all systems are “go,” you’ll want to have a formal application prepared and filed with diligence at the PTO. Although the process of examining an application and issuing a patent, if warranted, takes time, there’s now a definite trend toward shortening the traditional wait between filing and final disposition. Furthermore, both the applicant and his or her attorney now must inform the PTO of all information they know “which is material to the examination of the application or else face strict sanctions.” Such information includes those patents found during prior searches, and thus can be of great help and save time for the examiner who conducts the search at the PTO.

A complete patent application includes a written description of the invention sufficient to enable one skilled in the pertinent art to make and use it; one or more claims delineating the scope of the invention described; a drawing of one or more figures if necessary; an oath or declaration by the applicant stating, inter alia, that he or she believes himself or herself to be the original and first inventor of the claimed subject matter; and the required filing fee.

Using the automatic antenna select system proposed in fig. 1 as an example, your notebook entries will provide a good basis for the written description. If you’ve arrived at one or more variations of the original configuration you think would enhance the system construction or performance, these alternative “embodiments” must be specified as well. The description must be adequate to enable a skilled worker to make and use the invention you’re claiming.

The claim(s) of invention must particularly point out and distinctly claim those aspects of the system you regard as your invention. Depending on what your search uncovered, you may feel you’re entitled to relatively broad, intermediate, or only narrow protection. Each claim generally must read as a single sentence. In cases where the invention itself is believed quite narrow, just one claim having very specific terminology may occupy two or more pages of the application papers.

A drawing showing at least the overall system as shown in fig. 1 would facilitate the drafting of the written description, which can make frequent reference to the illustrated system components while explaining their structure and operation.

Once completed, your application should be filed promptly with the PTO along with the prescribed oath and filing fee. If all formal requirements are met, it will be accorded an official filing date and serial number, and then routed to a patent examiner for further action.

Don’t forget to disclose to the PTO all material references of which you’re aware. You can do this by filing a separate statement with your application papers or shortly thereafter.

what about software?

You may have taken considerable time and effort to create working system software and wonder if it alone can be protected by a patent. Insofar as software is only a list of instructions addressed to and performed by a computer to bring about a certain result, a patent is generally not available for software, per se.
You may, however, apply to register your software with the Copyright Office at the Library of Congress, Washington, D.C. 20559. For further information, call or write the Copyright Office and ask for Circular No. R61, “Copyright Registration for Computer Programs.”

Since your software enables your system (fig. 1) to operate as you intended, a flow chart such as shown in fig. 2, depicting the system operation when properly programmed, is a worthwhile, possibly even essential addition to your original application disclosure. A full listing of your program need not be included with your written description, as long as a skilled programmer could arrive at a working program without undue difficulty by referring to your written description and drawings.

some important time limits

As mentioned, it’s important to move swiftly once you decide you’ve conceived of a patentable invention. Suspension of pre-filing development work for a long time without good cause can amount to an “abandonment” on your part. The result — if another person conceives the same invention and acts without delay to file an application, he or she may be the one entitled to any patent which may be issued.

If your invention was patented or described in a printed publication anywhere in the world more than a year before your application filing date in the United States, you’ll be barred from obtaining a patent here. You’ll also be barred if the invention was in public use or on sale in the United States more than one year prior to your filing date. For example, if an article describing all essential details of your automatic antenna selection system appears in a magazine published in Japan on January 1, 1987 — and you believe you’re the original inventor — you have only until January 1, 1988, to apply for a patent in the United States.

Another example: suppose your antenna selection system works so well you decide to manufacture a large quantity and offer it for sale through an advertisement in the January 1, 1987, issue of *ham radio*. Your deadline for filing a United States application (assuming no prior disclosures) is January 1, 1988.

Although you may disclose your invention publicly up to one year before filing an application in the United States, it’s sometimes necessary to file before publicly announcing or commercially exploiting your invention. One example is when you wish to file corresponding applications in certain other countries where “absolute novelty” requirements exist for patent applications. That is, the patent laws of some countries do not allow public disclosure of an invention anywhere in the world prior to filing an application with their governments. Because other time bars may exist, in your case, consult your patent attorney or agent prior to filing.

employment agreements

Amateurs who work in technical capacities for others may be required, as a condition of employment, to execute a written agreement to assign all inventions they develop while on the job to their employer. Without such a written agreement, the employer could not claim title to any patents obtained by the employee independently. The employer would derive only a “shop right” or royalty-free license to use the patented invention.

Because the employee agreements are generally upheld if contested in court, employees who are subject to them should review them carefully before applying for patents on their own. Sometimes an employer will release an invention after an employee discloses the invention and the employer decides not to pursue a patent. Upon obtaining such a release, the employee is then free to apply for a patent — at his or her own expense.

conclusion

The patent system is an integral part of our nation’s commercial activity and growth. To foster and reward inventiveness, the framers of our Constitution empowered the owner of a patent with the right to exclude others, for a limited time, from making, using, or selling the claimed invention in the United States. Before obtaining this right, however, the patent applicant must describe the invention in a manner sufficient to enable others skilled in the relevant art to make and use it.

Individual inventors and small businesses play a prominent role in advancing the state of the art in many high technology fields. To encourage this initiative, the PTO reduces by 50 percent its patent filing, processing, and maintenance fees for applications filed only in the interests of individual inventors and small businesses (i.e., those with 500 or fewer employees).

The next time you conceive a new circuit, system, antenna, or any other useful device or process — and feel you can exploit it on your own — consider conducting a professional search. You just might have the makings of a patentable invention.

references

3. 35 U.S.C. Sec. 103.
4. 37 C.F.R. Sec. 1.56.
5. 35 U.S.C. Sec. 102.

Leo Zucker, a patent attorney, welcomes inquiries from readers and suggestions for future articles.
MFJ's Fastest Selling TUNER

MFJ-9410 $99.95

MFJ's fastest selling tuner packs plenty of new features. New styling! Brushed aluminum front. All metal cabinet. New SWR/Wattmeter! More accurate. Switch selectable 300/30 watt ranges. Read forward/reflected power. New antenna switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load. New airwound inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 RF power output. Matches everything from 1.8 to 30 MHz dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced and coax lines. Built-in 4 ft balun for balanced lines. 1000 V capacitor spacing. Black. 11 x 3 x 7 inches. Works with all solid state or tube rig. Easy to use anyplace.

MFJ's 1.5 KW VERSA TUNER III

MFJ-9828 $229.95

Run up to 1.5 kw PEP and match any feedline continuously from 1.8 to 30 MHz: coax, balanced line or random wire.

Lighted Cross-needle Meter reads SWR, forward and reflected power in one glance. Has 300 and 3000 watt ranges. 6 position antenna switch handles 2 coax lines, wire and balanced lines. 4.1 balun. 250 ft, 6 kw variable capacitors. 12 position ceramic inductor switch. New smaller size matches new rigs: 10¼ x 4½ x 14½ inches. Flip stand for easy viewing. Requires 12V for light.

ORDER ANY PRODUCT FROM MFJ AND TRY IT NO OBLIGATION. IF NOT SATISFIED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (less shipping).

- One year unconditional guarantee
- Made in USA
- Add $5.00 each shipping/handling Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494, Mississippi State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE

800-647-1800 – 108

Calif 601-323-5669 in Miss. and outside continental USA Telex 53-4590 MFJ STKV

MFJ TUNERS

This may be the world's most popular 3 KW roller inductor tuner because it's small, compact, reliable, matches virtually everything and gives you SWR/Wattmeter, antenna switch, dummy load and balun—all at a great price!

Meet “Versa Tuner V”. It has all the features you asked for, including the new smaller size to match new smaller rigs only 19¼ "WX14½ "HX14 7/8 "D. Matches coax, balanced lines, random wires—1.8 to 30 MHz. 3 KW PEP—the power rating you won't outgrow through tuner or direct, random/balanced line or dummy load. 90-259 connectors, ceramic feed-throughs, binding post grounds. Deluxe aluminum low-profile cabinet with sub-chassis for RFI protection, black finish, front panel with raised letters, tilt bail.

MFJ's best 300 watt tuner is now even better! The MFJ-949C all-in-one Deluxe Versa Tuner II gives you a tuner, cross-needle SWR/Wattmeter, dummy load, antenna switch and balun in a new compact cabinet. You get quality, performance and a clutter-free shack at a super price.

A new cross-needle SWR/Wattmeter gives you SWR forward and reflected power—all at a single glance. SWR is automatically computed with no control settings. Has 300 and 3000 watt scale on easy-to-read 2-color meter (needs 12 V). A handsome new black brushed aluminum cabinet matches all the new rigs. Its compact size (10 x 3 x 7 inches) takes only a little room.

You can run full transceiver power output—up to 300 watts RF output—and match coax, balanced lines or random wires from 1.8 thru 30 MHz. Use it to tune out SWR on dipoles, vees, long wires, verticals, whips, beams and quads. A 300 watt 50 ohm dummy load gives you quick tune ups and a versatile six position antenna switch lets you select 2 coax lines (direct or thru tuner), random wire or balanced line and dummy load.

A large efficient airwound inductor—3 inches in diameter—gives you plenty of matching range and less losses for more watts out. 100 volt tuning capacitors and heavy duty switches gives you safe proof operation. A 4 1/2 balun is built in to match balanced lines.

Order your convenience package now and enjoy.

2 KW COAX SWITCHES

MFJ-1702 $19.95

Least 2 db loss.

SWR below 1.1:2.

NEW $29.95 MFJ-1701

8 positions. White marking surface for antenna positions.

Lighted Cross-needle Meter reads SWR, forward and reflected power in one glance. Has 300 and 3,000 watt ranges. Meter light requires 12 VDC.

6 position antenna switch (2 coax lines, through tuner or direct, random/balanced line or dummy load). 90-259 connectors, feed-throughs, binding post grounds. Deluxe aluminum low-profile cabinet with sub-chassis for RFI protection, black finish, front panel with raised letters, tilt bail.

MFJ's Smallest 200 watt Versa Tuner

MFJ's smallest 200 watt Versa Tuner matches coax, random wires and balanced lines continuously from 1.8 thru 30 MHz. Works with all solid state and tube rigs. Very popular for use between transmitter and final amplifier for proper matching. Efficient airwound inductor gives more watts out. 41 balun for balanced lines. 5 x 2 x 6 inches. Rugged black aluminum cabinet.

MFJ's Mobile TUNER

MFJ-945C $79.95

Designed for mobile operation! Small, compact, takes just a tiny bit of room in your car. SWR/dual range wattmeter makes tuning fast and easy. Careful placement of controls and meter makes antenna tuning safer while in motion. Extends your antenna bandwidth so you can operate anywhere in a band with low SWR. No need to go outside and readjust your mobile whip. Low SWR also gives you maximum power out of your solid state rig—runs cooler for longer life. Handles up to 300 watts PEP RF output. Has efficient airwound inductor, 1000 volt capacitor spacing and rugged aluminum cabinet. 8x25 inches. Mobile mounting bracket available for $5.00.
HAM RADIO OUTLET

7 STORE BUYING POWER

KENWOOD TS-940S

TOP-OF-THE LINE HF TRANSCEIVER
GREAT PRICE, CALL

KENWOOD TR-2600A

SUPER SALE!

A few left at
$269.95
plus free spare PB-26

HAM RADIO HOME STUDY
NOVICE VOICE COURSE

- Updated novice-voice questions
- 6 stereo code & theory cassette tapes
- 2 text books, code oscillator, key & battery
- Color Ham Bands wall chart & frequency list
- Sample novice exam for a Ham friend to give you the code & theory test in your home
- FCC license application forms & instructions to your examiner Ideal for spouse & the kids!

$49.95

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

Toll free including Hawaii. Phone Hrs. 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store. California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

More Details? CHECK – OFF Page 118
ICOM IC-R71A
Superior Grade General Coverage Receiver
SALE! CALL FOR PRICE

ICOM IC-275A/275H
138 - 174 MHz
IC-275A (25w) IC-275H (100w)
GREAT PRICE!

ICOM IC-1271A
1.2 GHz Transceiver:
The First Full-featured 1240-1300 MHz Transceiver
ARE YOU READY FOR 1.2 GHz OPERATION?

ICOM IC-28A/28H
2-METER MOBILES
IC-28A (25w) IC-28H (45w)
LOW PRICE!

ICOM IC-R7000
The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

ICOM IC-μ2A/μ2AT
New Mini Hand-Held AT Model w/ TT Pad
GREAT PRICE!

NOW! RAPID DELIVERIES
COAST TO COAST
FROM STORE NEAREST YOU

SALE! CALL FOR PRICE

ALL MAJOR BRANDS IN STOCK NOW!

ANAEIM, CA 92801
3620 W. La Palma
(714) 761-3003, (213) 860-2040
Between Disneyland & Knotts Berry Farm

ATLANTA, GA 30340
6071 Buford Hwy
(404) 963-0700
Neil, Mgr. KC4MJ

BURLINGAME, CA 94010
999 Howard Ave
(415) 340-5757
George, Mgr. W9EBYY
5 miles south on 101 from SFO

OAKLAND, CA 94606
2210 Livingston St.
(415) 534-5757
Al, Mgr. WA6SYK
1745 San Ave, 175-18th Ave

PHOENIX, AZ 85015
1702 W. Camelback Rd.
(602) 245-3515
Beb. K7RDH
East of Hwy 17

SAN DIEGO, CA 92123
5075 Kearny Villa Rd.
(619) 550-4800
Tom, Mgr. KM6K
Hwy. 163 & Claremont Mesa Blvd

VAN NUYS, CA 91401
6265 Sepulveda Blvd.
(818) 986-2212
Al, Mgr. KB9RA
San Diego Fwy.
at Victory Blvd.

STORE HOURS
10 AM - 5:30 PM
CLOSED SUNSAYS

CALL TOLL FREE (800) 854-6046

Tell 'em you saw it in HAM RADIO!
1.5 Megawatts at 50 MHz—And More!
Delivered by EIMAC's 8973 Power Tetrode

The versatile super-power 8973 tetrode is designed for tough, on-the-job results under difficult circumstances. For CW or long-pulse service in plasma heating and accelerator applications, this rugged Varian EIMAC power tube fills your needs. Look at these demanding applications where the 8973 is operating today:

It takes a sturdy, reliable power tube to have on-the-job results like these and the 8973 is doing it, day after day.

And this is just the beginning!
The X-2242, available early in 1986, will provide 2.5 megawatts at 80 MHz and 1.5 megawatts at 130 MHz. All of this, plus 1.4 megawatts anode dissipation rating. The X-2242 is the same size as the 8973. That's a lot of power in a small package!

For a data sheet and technical literature on the 8973, contact Varian EIMAC, 301 Industrial Way, San Carlos, CA 94070 or call (415) 592-1221, TWX 910-376-4893.

<table>
<thead>
<tr>
<th>User</th>
<th>Application</th>
<th>Frequency (MHz)</th>
<th>Power Output</th>
<th>Pulse Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>JET</td>
<td>ICH*</td>
<td>25-50</td>
<td>1.5 MW</td>
<td>20 seconds</td>
</tr>
<tr>
<td>JT-60</td>
<td>ICH*</td>
<td>110-130</td>
<td>750 kW</td>
<td>10 seconds</td>
</tr>
<tr>
<td>JFT-2M</td>
<td>ICH*</td>
<td>10-40</td>
<td>1.5 MW</td>
<td>300 milliseconds</td>
</tr>
<tr>
<td>KFA-Textor</td>
<td>ICH*</td>
<td>29-59</td>
<td>1.5 MW</td>
<td>3 seconds</td>
</tr>
</tbody>
</table>

*ICH = Ion cyclotron heating
This article describes a set of up- and downconverters for the 902-MHz band. When used together with the local oscillator chain described previously,¹ the result is a set of building blocks which can form the core of a complete 902-MHz transverter. The converters have a common board design for simplicity; MMIC amplifiers are used throughout, and the filtering is designed for ease in tuning.

The block diagrams of the up- and downconverter are shown in fig. 1. The similarity between the two is immediately apparent. The mixer and the two bandpass filters are identical in each converter, and only the direction of signal flow is changed by reversing the MMIC amplifiers. The two bandpass filters in each are used to provide selectivity, for the amplifier stages are inherently broadband.

With these converters, a 902-MHz transverter is easily assembled. A power amplifier hybrid, such as those discussed by Reisert² and Hilliard,³ can be driven directly from the upconverter module. A low-noise amplifier, such as the one described by Hilliard⁴ can be used ahead of the downconverter for critical small-signal work; the converter board alone will provide sufficient sensitivity for local QSOs.

design goals

These converters were designed to achieve several goals which were not met in some of my earlier designs. First, the converter printed circuit board (PCB)
is common to both the up- and downconverter to simplify fabrication. The physical size of each PCB is small, and a standardized outline was planned from the start to simplify packaging. The converters were designed to be non-critical so that tuning with simple equipment is possible. All circuitry operates from a single 13.6-volt dc supply. Finally, no very costly components are used. There are two configurations of a single circuit card: one is for the receiving downconverter and the second for the transmitting upconverter. For receiving, the main considerations are noise figure and intermodulation distortion, while the transmitting converter should have good spectral purity and sufficient output to drive a final amplifier. These different requirements dictate the selection of different amplifiers, but the same filtering is used for both converters. Before we leap into the "how-to" construction hints, however, a brief review of the amplifiers, filters, and the PCB itself should be helpful.

MMICs

Both converters use silicon microwave monolithic integrated circuits (MMICs) extensively. These devices have been described recently in Amateur publications. Each MMIC device is a completely matched broadband rf circuit, so only blocking capacitors and a bias network are needed to make a 50-ohm amplifier. These "building block" amplifiers are a great aid in the design of UHF equipment; at last it can truly be said that gain is cheap.

Among the MMIC amplifier devices suitable for use in this converter are the Avantek MSA series, the CGY-40 device from Siemens, and the newly announced MMIC from Mini-Circuits Labs, the MAR-1. Each of these devices is somewhat different, but they are all similar enough mechanically so that any one of them can be installed on the circuit board for this converter. Only the bias resistor value needs to be changed to adapt to a different MMIC. Table 1 lists some MMICs, their principal characteristics, and the value of the bias resistor for 13.6-volt operation.

Most of the MMIC amplifiers are available in small, four-lead plastic pill-type packages, while the CGY-40 is available only in a ceramic package. In all cases, two of the leads are grounds and the other two are input and output. Bias is applied through the output lead. Their typical outline is shown in fig. 3. Since the package is symmetrical, the device can be simply reversed (and the bias connection moved to the output) to "turn around" the signal flow in a circuit. This idea is central to the re-use of circuitry in this transverter.

Filters

The filters used in both the up- and downconverters are identical, although the filtering requirements in the two converters are not exactly the same. In the downconverter, filtering is used to screen the mixer from noise at the image frequency and to help prevent intermodulation distortion by attenuating out-of-band signals. The filtering also helps to prevent the mixer local oscillator (LO) signal from reradiating (out the antenna port), although the reverse isolation of the preamplifiers may well be sufficient to block it. In the upconverter, however, the filters must prevent the LO signal from reaching the antenna through the forward path of the amplifiers. The LO signal must not be permitted to saturate the amplifier chain. In general, these different requirements would result in different filter designs, but it is possible, if not optimal, to use one design.

The filters used here are of edge-coupled design, and are similar to combline filters. Filters of this type have been built on microstrip circuitry before and used with good results by Amateurs. Their chief advantage lies in their ease of reproduction and stability; because the inductors are printed onto the board they
need no adjustment. Here, the main variations on this old theme are that the filter layout was optimized using computer-aided design (CAD) software, and that the filtering is distributed. The use of CAD helps to design a good filter, one which comes close to its specifications the first time. By distributing the filter-

![Graph](image)

fig. 4. Frequency response of the 903-MHz filter. Both the calculated response (squares) and the measured response (crosses) of a prototype are shown.

![Printed Circuit Board](image)

fig. 5. Full-size printed circuit board negative.
ing, the required rejection of out-of-band products is achieved not in one filter, but in two or more. There is a simple reason for this: it is easier to tune two independent filters with few elements than it is to tune one filter which has many resonators. This is especially true when simple test equipment (i.e., no spectrum

![Diagram](image)

fig. 6. Parts placement: (A) downconverter, (B) upconverter. Parts shown in dotted lines are installed on the other side of the board. Eyelets are used in four places to ensure good grounding for the filters.

Table 1. Typical 900 MHz performance of three different manufacturers' MMIC's.

<table>
<thead>
<tr>
<th>Device</th>
<th>Typical gain, dB</th>
<th>Typical Noise figure dB</th>
<th>Typical P1dB dBm</th>
<th>Bias Resistor volts/mA</th>
<th>Bias 13.6 volts</th>
<th>Package & Lead Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantek:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA0104</td>
<td>17</td>
<td>5</td>
<td>+1</td>
<td>4.5/17</td>
<td>560</td>
<td>Plastic package; moulded "bump" near output lead.</td>
</tr>
<tr>
<td>MSA0204</td>
<td>13</td>
<td>6</td>
<td>+3</td>
<td>5/25</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>MSA0304</td>
<td>12</td>
<td>6</td>
<td>+8</td>
<td>5/35</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>MSA0404</td>
<td>8</td>
<td>6</td>
<td>+11</td>
<td>5.5/50</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Siemens:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGY-40</td>
<td>9</td>
<td>3</td>
<td>+17</td>
<td>4.5/65</td>
<td>130</td>
<td>Ceramic package. Output lead slashed.</td>
</tr>
<tr>
<td>Mini-Circuits:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAR 1</td>
<td>14</td>
<td>5</td>
<td>+1</td>
<td>7/20</td>
<td>330</td>
<td>Plastic package. Input lead slashed.</td>
</tr>
</tbody>
</table>

20 March 1987
Now! In America
For the first time, the AR2002 is available in the U.S.A.! Acclaimed worldwide for its full spectrum coverage, its superior sensitivity, excellent selectivity and convenient, compact design; it has all the features a sophisticated and discerning public service band radio user desires. Experts in Europe, and around the world report excellent performance in independent lab tests. For example: sensitivity across all bands will typically exceed .3 microvolts in NFM.
And now the AR2002 is available to you exclusively through this offer.

Performance Above and Beyond
You'll hear signals from 25 through 550 MHz, plus 800 MHz through 1.3 GHz. In any mode: narrow band FM, wide band FM, or AM. Search through entire bands, or enter selected frequencies into any of 20 memory channels. The sidelighted LCD gives full information on status and programming. Profession quality hinged keys and a digitized front panel control knob make tuning easier than ever before. There's even a real time clock with backup, a signal strength meter and a front panel head phone jack. Plus, programmable search increments, a laboratory quality BNC antenna connector with switchable attenuator, full memory backup, and power cords for AC or DC operation. A professional quality swivel mount telescoping antenna is also supplied.

...And More!
Every AR2002 has a special connector on the rear panel. It interfaces to our custom RC-pack. A little device that makes the AR2002 controllable by ANY computer with an RS-232C port. The possibilities that result from this option are nearly limitless. In effect, virtually your only monitoring constraint will be your imagination.

Yet Convenient to Own
The AR2002 is available exclusively through us — so call us direct, TOLL FREE. We'll be happy to answer any questions you may have. And if you respond like thousands of other monitor users the world over, we'll be shipping you an AR2002 within 48 hours by surface UPS for only $455. Plus we pay all freight and handling charges. Remember to ask about our custom test and triple extended buyer protection warranty plans, and our express shipping option. If you're not satisfied within 25 days, return your AR2002. We'll refund your purchase and return shipping costs. There are no catches, no hidden charges.

The AR 2002
The Professional Monitor Receiver

ACE COMMUNICATIONS Monitor Division
10707 East 106th Street, Indianapolis, IN 46256

Call Toll Free 800-445-7717
Visa and MasterCard
COD slightly higher
In IN 317-842-7115 Collect
Warehouse: 22511 Aspen Street, Lake Forest, CA 92630
(7½"D × 5½"W × 3½”H Wt. 2 lbs., 10 oz.)
Expanding Our Horizons

Introducing

Mirage/KLM 1.2–44 LBX

The first 1260 MHz to 1300 MHz
Made in the U.S.A.

• Factory Tested
• Completely Assembled
• Completely Weatherized Balun
• Also Available Soon . . .
 Power Dividers

SPECIFICATIONS

Electrical
- Band Width 1260–1300 MHz
- Gain 18.2
- VSWR Better than 1.5 to 1
- Feed Imp. 50 Ohms
- Balun 4:1 Rigid Coax

Mechanical
- Beam Length 12' 4"
- Element Length 4.5"
- Mast 2" O.D.
- Windload 1 sq. ft.

Mirage Communications Equipment, Inc.
P.O. Box 1000
Morgan Hill, CA 95037
(408) 779-7363

22 March 1987
Therefore, a pair of two-section filters is used in each converter. The two filters are separated by an amplifier stage which prevents interaction and consequently improves out-of-band rejection.

Each filter consists of a pair of broadside coupled microstrip transmission lines. Each line is shorted to ground at one end and capacitively loaded at the open-circuited end. A top view of this structure is shown in fig. 4. Signals are coupled in and out of the filters by transmission lines which "tap" the resonators at a point whose location helps determine the filter's passband impedance match. The variables in the filter design include the width, length, and spacing of the lines, the loading capacitance, and the location of the tap points. The CAD program juggled these variables to produce a good compromise between insertion loss, rejection, and in-band VSWR. The circuit model presumed typical losses in G-10 type PCB material. Note that the coupling between the filters is, according to the model, entirely between the lines. The tuning capacitors at the ends of the lines are presumed by the software model to be dimensionless. In practice, however, the capacitors tend to increase the coupling between the two resonator sections, increasing the bandwidth and reducing the out-of-band rejection relative to the model. No attempt was made to model the capacitors' non-ideal behavior because there are so many different types of capacitors, and each would require its own analysis.

Figure 5 shows the filter frequency response with a dual plot. The points are the predicted performance of a single filter, while the crosses show actual results from a hand-cut prototype. This prototype used small tubular trimmer capacitors similar to those used in the downconverter. Note that the calculated response is considerably sharper than the actual results, which show the expected overcoupled behavior. This deviation from theoretical performance is often seen in handmade prototypes, where the fabrication accuracy is poor. The performance could probably be improved by using capacitors which are physically smaller, and which therefore produce less stray coupling. Further refinement would be made by carefully etching a precision filter design onto good microwave substrate material. However, this is an amateur design, and it is just this sort of expected inaccuracy which led to the design approach of using non-critical filters. Non-critical filters tuned to the center frequency are better than sharp filters on the wrong frequency. The rejection of the converter depends on the cascade of two filters. With two of these filters cascaded, as on the PCB, the out-of-band rejection is approximately twice that of a single filter.

printed circuit board

The board is common fiberglass epoxy G-10 material, 0.06 inch thick. The top traces are shown in the
Device

Parts list, fig. 8

Parts common to both versions
C1,2,3,7,8,9,10 30 to 100 pF chip capacitor
C3,4,7,8 2.10 pf variable cap
C7,14,16 0.01 to 1 pf ceramic disk capacitor, 25 volts
RFC 1,2,3 Approximately 10 turns No 30 AWG solid Kynar insulated wire (wire-wrap wire, close-wound on 0.06-inch diameter form (removed after winding)
U1 SBL/IX mixer, Mini Circuits Labs

Parts specific to upconverter:
AR1 Avantek MSA0304 MMIC amplifier
AR2 Avantek MSA0404 MMIC amplifier
AR3 Siemens COY-40 MMIC amplifier
R1 270 ohms, 1/2 Watt
R2 160 ohms, 1/2 Watt
R3 130 ohms, 1 Watt

Parts specific to downconverter:
AR1,2 Avantek MSA0304 MMIC amplifier
AR3 Siemens COY-40 MMIC amplifier
R1,2 270 ohms, 1/2 Watt
R3 130 ohms, 1 Watt

Full-size negative (fig. 6). The bottom side, visible in the photograph, is unbroken copper that serves as a ground plane for the microstrip lines. Components are mounted mainly on the top of the board, and soldered to the top traces. Where good grounds are essential, such as at the bases of the filter stubs, eyelets are used to connect top and bottom grounds. The edge of the board was wrapped with copper foil and soldered on both sides to further decrease ground impedances.

A few components — including the mixer, whose can is soldered to the ground plane, and the bias resistors — are mounted on the bottom side. Remember to clear away the copper where non-grounded leads pass through the board. There are four pins on the mixer which must be isolated above ground, and each end of the bias resistors also must be so isolated. There is no artwork for the ground plane side of the board, so the clearance holes are made by hand with a small drill or pad cutter. A pad cutter can also be used to make a pad for the bias resistor on the microstrip side of the board, if desired.

The MMICs are mounted in a hole drilled through the board. One of the two ground leads on each package is soldered to the top ground. The second ground lead is bent at a right angle to the package, inserted through the hole, and soldered to the bottom ground plane. The clearance hole size depends on the device used, because the MMICs listed in fig. 2 range in diameter from 0.07 to 0.19 inches.

There are two component layout drawings, one for the upconverter and the second for the downconverter. These are both shown in fig. 7. Note that the bias inductor is routed to the output end of the MMIC, so the locations of the three coils are somewhat different for the two versions. The MMIC orientations are of course opposite in the two versions. Otherwise, the parts locations are identical.

The schematic diagram of the receiving version is shown in fig. 8. The downconverter should have good noise performance, moderate gain, and good selectivity. Recall that the intent of this converter is not to produce the lowest possible noise figure. If a very low noise figure system is needed, a preamplifier should be used.

The input signal from a low-noise amplifier, or directly from an antenna, is fed to the first amplifier in the chain. There are a number of possible choices for this first amplifier stage. Any of the listed devices
The first filter stage follows the first MMIC. After filtering, the next amplifier is used mainly as a buffer between the two filters and adds a bit of gain. Lower-cost silicon MMICs are a good choice here; I used the Avantek MSA0304. At first glance it may seem strange that the input stage should have a higher intercept point than the following stage, but the reasoning is this: the second stage has the benefit of filtering to screen strong out-of-band signals, while the broadband input stage must face the world of large signals "naked," as it were. This reasoning is not theoretically rigorous, but in practice it seems to be correct — even a moderately selective filter in front of a preamplifier works wonders in reducing intermodulation spurious responses.

A second filter and a third amplifier follow. The final amplifier provides a good broadband termination for the mixer, which helps to preserve the mixer's low intermodulation distortion. If there is too much gain in the system, such as might be the case when a high-gain preamplifier is used with this converter, the middle stage could be replaced with a resistive pi attenuator pad to isolate the two filters somewhat.

The PCB is laid out for a specific mixer, the MiniCircuits SBL-1X. This low-cost mixer, which provides good performance up to 1000 MHz, can be used with any i-f of 5 to 500 MHz. The local oscillator drive level is 5 milliwatts (+7 dBm). Other mixers can physically be plugged into the same eight-pin layout, but take care; the SBL-1X has an unusual pin assignment.

When the downconverter is configured as shown in the schematic, it will have a noise figure of 3 to 4 dB at room temperature. It will have good selectivity; the gain at 700 MHz, for example, will be more than 20 dB, down from its gain at 903 MHz (which is +17 dB). The image response at 613 MHz (the 758 MHz LO minus the 144 MHz i-f) measured more than 50 dB below the desired 903-MHz response.** The selectivity of this cascade of two broad filters is sufficient to keep most fm broadcast, TV, and other signals below UHF from causing any problems with 903-MHz reception.

** Measured with the i-f drive level set to -35 dBm and with +10 dBm drive at 758 at the LO port.

The upconverter has a somewhat different task than the downconverter. Here, noise figure is not of great importance, but the output level should be high enough to drive an amplifier. In this case, I wanted 30 to 40 milliwatts output so that a hybrid amplifier would be fully driven to its 7-watt output. This requirement dictated a different choice of amplifier MMICs than did the receiver converter. Figure 9 is a matrix of the required signal levels. This matrix was put together to ensure that the various signals which exit the mixer do not saturate the amplifier chain, and that the undesired signals are ultimately well attenuated at the converter's output. Thus, the three main signals of note are tracked through the chain. As an example, the 758-MHz LO drive leaks through the mixer somewhat, and appears at the output of the mixer as an undesired spurious at about -13 dBm maximum. This spurious must be attenuated before it reaches the output. The chart shows that the undesired signals remain within manageable range throughout the upconverter chain, and that the expected signal levels are within the linear power limits of each MMIC.

This chart also shows that the desired drive level at 144 MHz is about 1 milliwatt (0 dBm). The drive from the i-f source must not be much greater than 10 milliwatts, and should never be greater than 100 milliwatts or the mixer may be damaged. To adjust the output power of the upconverter, change the input drive level.

The schematic of the upconverter is given in fig. 8. The desired 903-MHz signal, mixed from 144 and 758, continues to be amplified throughout the chain, and by the time it reaches the output it is considerably stronger than the next larger signal at 758 MHz. At the output, a power level of +16 dBm is achieved, easily enough to drive a hybrid amplifier to its full output.
Once a converter is assembled, it is necessary to tune the filters. No other part of the circuitry requires tuning, fortunately. The filters must be peaked for minimum loss at the center frequency. Once peaked at 903 MHz, for instance, the converter should work well enough over the entire 902 to 928 MHz band. The 3-dB bandwidth of the converter is about 50 MHz. I found that there was only one peak reading obtainable, so that there is no problem with tuning to the wrong harmonic as long as you are measuring the correct frequency. The board can be tested at 903 MHz with all of the components except the mixer installed. A test connector is temporarily installed at the point marked “x” on the layout drawing (fig. 7). The other end of the converter board is connected normally as either the drive input (downconverter version) or the output (upconverter).

After tuning and testing at 903, install the mixer. Test the entire converter by applying a low-level signal to the input, the LO to the L port of the mixer, and verify that the output signal is no more than about 10 dB lower than the straight-through gain was before the mixer loss was added. The alignment is then complete.

A number of these converter boards have been built, and none has shown any tuning difficulties. See figs. 10 and 11. The filters tune with a single peak, and there have been no instabilities with the MMIC amplifiers. They thus appear to be simple, well-behaved conversion blocks, useful in many applications. The filters’ center frequency can in fact be tuned (simply by adjusting the end loading capacitors) over a fairly wide bandwidth, so that these boards could probably be operated anywhere between about 750 and 1000 MHz with only slightly degraded selectivity. Clearly, if the filters’ coupled microstrip line lengths were scaled, this range could be further extended. The mixer’s operating range is guaranteed only up to 1 GHz, but one was tried at 1300 MHz and showed good conversion loss and isolation.

A complete block diagram of a 903 transverter is shown in fig. 12. This transverter uses the two converter boards described here. One converter drives a hybrid amplifier module to 7 watts output in Class C operation, and the receiving converter is used alone with a low-noise MMIC to give a system noise figure of about 3 dB. The entire transverter operates from a single 13.6-volt supply.

sources of parts

The parts should be available from a number of sources. Small capacitors and connectors are listed in a few companies’ advertisements in the Amateur press. Although manufacturers are sometimes unwilling to sell single devices, MMICs are available from manufacturers and their distributors in moderate quantities. MMICs will probably be stocked by Amateur vendors soon, too. As a courtesy to Amateur builders, I can supply the pc boards and a few of the other parts for this project. Send an SASE to me for a list of available items.

references

ham radio
The AVCOM STA-70D IF and FM Test Analyzer was developed to assist in the installation and maintenance of Single Channel Per Carrier (SCPC) satellite communication systems. The STA-70D can be ordered for use as a spectrum display monitor for special ECM requirements. Possible applications are unlimited call or write AVCOM with your requirements.

NEW PSA-35A PORTABLE SPECTRUM ANALYZER

The PSA-35A Portable Spectrum Analyzer accurately measures wide band signals commonly used in the United States and European satellite communications industry. The PSA-35A frequency coverage is from less than 10 to over 1750 MHz, and from 3.7 to 4.2 GHz in 6 bands. The PSA-35A features switch selectable sensitivity of either 2 dB/Div or 10 dB/Div. The portable, battery or line operated, PSA-35A spectrum analyzer is the perfect instrument for the critical dish alignment and tracking requirements necessary for maximum signal reception.

Price $1965

AVCOM manufactures many helpful and unique accessories for the PSA-35A, such as the TISH-40 Terrestrial Interference Survey Horn, the WCA-4 Waveguide to Coax Adapter, the SSC-70 Signal Sampler and Calibrator, the QRM-35 Quick Release Rack Mount, AVSAC, and Overlays. Other AVCOM accessories include 2, 4, and 8 way power dividers (with or without DC power block), broad band amplifiers, DC power blocks, line amplifiers, isolated power dividers, and others.

AVCOM manufactures a full line of economical spectrum analyzers, test equipment and accessories for the satellite communication and microwave industries. These include the MSA-65A Spectrum Analyzer, Sweep Generators, Tracking Generators, and others. AVCOM also manufactures SCPC, audio subcarrier, and video satellite receivers for domestic and international reception; including commercial, broadcast, SMATV, institutional, and private use receivers.

SEE AND HEAR THOSE ELUSIVE SCPC SIGNALS WITH AVCOM'S NEW STA-70D TEST ANALYZER!

The STA-70D is adaptable to other than AUDIO communication and microwave receivers. These include the MSA-65A Spectrum Analyzer, Sweep Generators, Tracking Generators, and others. AVCOM also manufactures SCPC, audio subcarrier, and video satellite receivers for domestic and international reception; including commercial, broadcast, SMATV, institutional, and private use receivers.

NEW!! AVCOM PSA-35A PORTABLE SPECTRUM ANALYZER

10-1750 MHZ 3.7-4.2 GHz
ATV MADE EASY WITH OUR SMALL ALL IN ONE BOX TC70-1 TRANSCEIVER AT A SUPER LOW $299 DELIVERED PRICE!
CALL 1-818-4474565 AND YOURS WILL BE ON ITS WAY IN 24 HRS (VIA UPS SURFACE IN CONT. USA).

TC70-1 FEATURES:
* Sensitive UHF GaAsFet tuneable downconverter for receiving
* Two frequency 1 watt p.e.p. transmitter. 1 crystal included
* Crystal locked 4.5 MHz broadcast standard sound subcarrier
* 10 pin VHS color camera and RCA phono jack video inputs
* PTL (push to look) T/R switching
* Transmit video monitor outputs to camera and phono jack
* Small attractive shielded cabinet - 7 x 7 x 2.5" + color camera current

Just plug in your camera or VCR composite video and audio, 70cm antenna, 12 to 14 vdc, and you are ready to transmit live action color or black and white pictures and sound to other amateurs. Sensitive downconverter tunes whole 420-450 MHz band down to channel 3. Specify 439.25, 434.0, or 426.25 MHz transmit frequency. Extra transmit crystal add $15.

Transmitting equipment sold only to licensed radio amateurs verified in the Callbook for legal purposes. If recently licensed or upgraded, send copy of license. Receiving downconverters available to all starting at $59 (TCV-2G).

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any Tech class or higher amateur can get on ATV. If you have a camera you used with a VCR or SSTV & a TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70cm antennas on ATV.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the 440-6 normally used for portable uses like parades, races, search & rescue, damage assessment, etc. Get 50 watts p.e.p. with the Mirage D24N or D1010N-ATV amp for greater DX or punching thru obstacles.

The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes, computer programs, repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook chapt. 20 & 7 for more info & Repeater Directory for local ATV repeaters.

PURCHASE AN AMP WITH THE TC70-1 & SAVE!
50 WATT WITH D24N-ATV....$499
All prices include UPS surface shipping in cont. USA

COMPLETE ATV STATION

HAMS! Call or write for full line ATV catalog....downconverters start at only $59

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC70-1</td>
<td>$299</td>
</tr>
<tr>
<td>Astron RS20M</td>
<td>$129</td>
</tr>
<tr>
<td>KLM 440-27</td>
<td>$107</td>
</tr>
<tr>
<td>KLM 440-14</td>
<td>$77</td>
</tr>
<tr>
<td>KLM 440-6</td>
<td>$62</td>
</tr>
</tbody>
</table>
the TEXNET packet-switching network
part 1: system definition and design

Four-node digipeater system reduces congestion, speeds packet delivery

In response to the phenomenal growth of packet radio over the past three years, many packet repeater ("digipeater") networks have been developed, allowing packet communications to be extended over many hundreds, even thousands, of miles. The operation of these digipeater systems has not been without some significant problems, however; most notably, congestion and difficulty in maintaining connections through more than about four or five individual repeaters, with excessive time delays between endpoints.

In an effort to resolve these problems, we decided to establish a rapid, reliable network that would allow Texas packet radio operators to communicate effectively over distances of several hundred miles in real time. We now have TEXNET, a four-node network with some of the communication trunks between nodes operating at 9600 bits per second.

In developing TEXNET, our goal was to minimize the cost of building a network node, yet provide very small transmission delay time between users. After the system was in place, we added additional services to the network without degrading the quick response time.

digipeaters — pro and con

A digipeater repeats what is transmitted to it; it can’t remember anything about what it is repeating.

A good analogy to a "string" of individual digipeaters is a bucket-brigade line at a fire, in which each person is handed a bucket, which he or she in turn hands down the line to the next person. Eventually, each bucket makes it to the last person in the line, who throws the water onto the fire. With digipeaters, the system works like this: the first person in the line fills up a bucket and hands it to the second person. The second person hands it to the third, and so on until it reaches the end of the line (the receiver). Utilizing digipeaters, the sender must wait until the bucket is delivered to the receiver, emptied, and then sent backwards up the line back to the sender, who fills it up again. In other words, there's only one bucket!

Just as water can leak or spill from the bucket each time it's passed in the bucket brigade, data packets can be lost at each digipeater. Thus, it's not at all certain that all of the packets will arrive at their appointed destination.

On packet radio we use a layer 2 protocol called AX.25 to assure that all the packets get to the destination in the right order, without any getting lost along the way. This protocol is no more than a set of rules upon which the sender and receiver have agreed; one of the rules is that the receiver will "acknowledge" packets when they’re received. The receiver sends these acknowledgments ("ACK," for short) backwards up the bucket-brigade line (i.e., the string of digipeaters) to the sender. If the sender doesn’t see an acknowledgment within a few seconds, it assumes that the packet was lost somewhere and retransmits the packet. When the ACK is received, the sender transmits the next packet. However, only one bucket can be put into the line at a time; the ACK must come back from the receiver before the next packet can be started. Notice that none of the digipeaters really get involved in what’s going on; they merely repeat the packets. This method of acknowledgment is known as end-to-end acknowledgment — that is, the acknowledgment travels all the way through the string of digipeaters from the packet receiver back to the packet sender. (AX.25 is really a little more complicated than this, but it’s a good approximation of what’s happening.)

Thomas H. Aschenbrenner, WB5PUC, and Thomas C. McDermott, N5EG, Texas Packet Radio Society, 265 Daniel Drive, Plano, Texas 75074

March 1987
As anyone who’s used a string of digipeaters to communicate with another station can attest, AX.25 works. But because we have only one bucket, the throughput (the amount of water that can be delivered to the fire) is very limited, and the greater the number of digipeaters in the path, the worse the problem becomes. In fact, it gets much worse very fast. Since the loss of a packet or of an acknowledgment at any point in the path will cause the retransmission of a packet, the probability of both the packet and the acknowledgment making the round trip successfully quickly becomes very small. This means that communicating a single packet will require many retransmissions, so throughput is reduced significantly.

A better method of relaying the information along a network would be to have each repeater along the way check the validity of the information before passing it on to the next repeater. That is, each repeater would ask for a “fill” of the message before sending it down the line. When the sender is assured that the first repeater received the packet, it could immediately send the next packet into the bucket-brigade line. Thus, we would have a bucket-brigade line with many buckets. Once the first bucket is delivered to the first repeater, another bucket would be filled and delivered to the first repeater by the sender. Thus the throughput (amount of water delivered) would be increased greatly. If we were to employ this strategy in relaying a message, the chance of losing packets grows only slightly larger as the number of digipeaters is increased. This method is called hop-to-hop acknowledgment, as each packet is acknowledged between adjacent repeaters before being sent along the network. As the probability of losing a packet grows, the necessity of retransmitting it increases — that is, fewer packets per unit of time can be transmitted. Figure 1 compares the throughput for hop-to-hop and end-to-end ACK methods to the rf path quality between each repeater.

Response time — the amount of time it takes for a message to be delivered from the sender to the receiver, and for the sender to receive the ACK — is an additional consideration. Figure 2 compares the round-trip response time for hop-to-hop and end-to-end ACK methods to the rf link quality between each repeater. As can be seen, if the repeaters operate virtually error-free, then the end-to-end acknowledgment strategy works very well. However, if the quality is degraded even slightly, it can be seen that the end-to-end strategy behaves poorly, whereas the hop-to-hop acknowledgment degrades linearly only with path quality. It should be noted that 2-meter packet users consider a path with 75 percent reliability extremely good!

A second problem with any string of digipeaters lies in determining just where a problem exists. If one of the repeaters in the string isn’t receiving packets at all, then the sender and receiver know only that the path is “blocked” and are unable to tell where the packets aren’t being relayed.
a network solution

To try and solve some of these problems, we wanted to build a packet network that would acknowledge packets at each step on the path, operate with minimal time delay, and provide us with information about the network: specifically, a measurement of the path quality at each point in the network and clear indication of where the break in the path has occurred, should one of the paths be out or one of the nodes be broken. It could also provide other features, such as conference bridges between any three or more users, or bulletin board service to several users simultaneously.

Earlier we stated that AX.25 would provide only end-to-end acknowledgments. This is because X.25 (from which AX.25 was derived) was designed basically as a point-to-point protocol. As a result, it works very well when Station A wants to communicate reliably with Station B. Our network, however, must use some additional strategies (protocols) for managing things like supervision (altering routing tables, reinitializing nodes), error recovery (to indicate where network has failed), and hop-to-hop acknowledgments.

It’s at this point that we’ll break up the problem of communicating between two stations into several “pieces,” each of which will have the responsibility of solving only a part of the total problem. If we’re smart about how to divide up the problem, each piece will be a fairly straightforward design problem, and each piece will know what to expect of the other pieces. That is, each of the pieces will cooperate with the others in order to solve the entire communication problem. This approach is called “layering” a problem.

layered protocols

Let’s look at the problem of communicating a message along a network. Station A is the sender, Station B is the repeater, and Station C is the receiver (see fig. 3). The sender, Station A, needs a way to send information along the route A-B-C.

The first problem is to make sure that the information gets from A to B accurately. Let us assign this problem to layer 2 (ignoring layer 1 for now). That is, layer 2 must get information from A to B in the correct sequence, without duplicating any packets and without losing any packets. AX.25 works just fine for this job. Getting data from A to B is a point-to-point problem; A sends the packets and B acknowledges them. Now that some packets have traversed from A to B, how does B know what to do with them? This is a job for the next layer of the protocol, layer 3. Layer 3 tells each node where the information is going; if B is unable to send the information to C (or a path that leads to C), then it informs A that something is
NEW! **Pac-Comm TNC-220**
HF / VHF Terminal Node Controller

$124.95 **KIT**

The TNC-220 is a new, low-cost Packet Terminal Node Controller evolved from the Pac-Comm TNC-200 (TAPR TNC-2). It uses more large scale integrated circuits and fewer components to provide greater functionality, reliability and sensitivity with reduced size and cost. The single-chip modem used for both 300 baud HF and 1200 baud VHF operation has two radio ports. Switching between ports is done entirely in software and no cable changing, no switch setting and no retuning is required! The HF port has an active bandpass filter and provides either FSK or AFSK keying. An optional tuning indicator slides inside the cabinet. A standard modem disconnect header will connect accessory high speed or satellite modems.

- Two radio ports
- 7910 single-chip modem
- 300 and 1200 bauds
- Enhanced command set
- Multi-color status LED's
- Supports RS-232 and TTL computers
- Active HF bandpass filter
- Tuning indicator option
- 12 volt DC operation
- Premium quality case
- 6" x 2" x 7" d

$159.95 **ASSEMBLED**
The TNC-220 has the familiar TAPR command set and AX.25 Level 2 Version 2 protocol running on a 2-80 processor with 32k bytes of EPROM and 16k bytes of battery-backed RAM. A Zilog 8530 SCC performs all packet HDLC in hardware. The terminal port can select either RS-232 or TTL for your C-64/128, VIC-20 or other TTL computer. Five large, color coded LED's clearly indicate status at a glance. The power switch is now located on the front panel. The TNC-220 is enclosed in a rugged extruded aluminum cabinet with an attractive two-tone blue front panel. All indicators and controls have large, clear labels.

Tech Line (813) 874-2980
Write For Free Packet Catalog

ORDER DIRECT 800-223-3511 FREE UPS BROWN

Pac-Comm Packet Radio Systems, 3652 West Cypress St., Tampa, FL 33607

UTILI-CASTING?

While some mergers result in funny names, the recent merger of Monitoring Times and International Radio (formerly the Shortwave Guide) has resulted in an excellent new 60-page magazine covering full-spectrum utilities communications as well as worldwide shortwave broadcasting activities. To keep it simple, we've retained the name of one of the two partner companies—Monitoring Times. It's all new, bigger, more colorful and more informative. Clearly, it's the most comprehensive publication for the radio listener available today!

Send for a free "sample digest" or subscribe by contacting:
MONITORING TIMES
P.O. Box 98
Brasstown, N.C. 28902
704-837-9200
Rates: 1 Yr. $14; 2 Yrs. $25; 3 Yrs. $36

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WWV ARC bands. Everything you need to know. 204 illustrations. 268 pages. ©1985. Revised 1st edition.

RP-BA
Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS
Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics. 192 pages. ©1972 2nd edition

RP-WA
Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1985 3rd edition.

RP-CQ
Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slippers and delta loops. Practical antenna projects that work! 190 pages. ©1976 1st edition.

RP-AH
Softbound $9.95

Please enclose $3.50 for shipping and handling.
fig. 5. Contents of the packet. The layer 3 envelope is wrapped around the data first. It tells each node where the data came from, and where it is going, and the network entry and exit points. The layer 2 envelope is wrapped around the layer 3 envelope, and tells two adjacent nodes how to exchange the information reliably between themselves.

fig. 6. Drawing the network boundaries—which nodes translate from AX.25 to TEXNET-IP. In order for network users not to have to understand the internal network protocol, each network node has a user entry point, which supplies an English-language interface between the user and the network. The user may ask the network for services via this interface.

fig. 7. This is a map of the TEXNET test bed and two user stations (operators, TNCs, and 2-meter radios) of the network. Network trunks exist between Murphy, Dallas, and TI, but Garland can only communicate with Dallas. Wrong with the network. So Station A has to add a little additional information at the front of each packet that tells the intermediate stations where the information came from and where it's going.

Let's examine the sequence of events that occurs here. In fig. 4, Station A generates some data and sends it to its own layer 3 box. This box adds some information to the data packet (who the sender and receiver are, for example). Then the layer 3 box gives this slightly larger packet to the layer 2 box, which in turn adds a little information to it (things like a checksum for detecting errors, and the callsigns of Stations A and B). Layer 2 at Station A then assures that this packet is reliably delivered to the layer 2 box at Station B. The layer 2 box at Station B, happy with this packet, “unwraps” the layer 2 information and delivers what’s left to the layer 3 box at Station B. The layer 3 box at Station B now looks at the information that the layer 3 box at Station A added to the packet and decides what to do with the packet. Probably Station B will determine the best way to get to Station C, and will tell its own layer 2 to send this packet to Station C; Station B will not alter the layer 3 information that station A put on the packet. Then the layer 2 box at Station B will add information (like a checksum, and the callsigns of Stations B and C) to the packet, and reliably deliver it to Station C. The “unwrapping” (examination of the layer 3 header, and the “rewrapping” of the layer 2 data) will continue at each node until the packet arrives at C. At Station C, the layer 2 box will “unwrap” the layer 2 data and then present the remainder to the layer 3 process, which will notice that this packet is destined for this station. Then the layer 3 box at Station C will remove the layer 3 information and present the raw data to the receiver at Station C. The contents of this individual packet is shown in fig. 5.

Thus raw data has traversed the network from A to B, through intervening users. At each step of the way it was error-checked and reliably exchanged by adjacent nodes, and each node decided how to route the information along to the final destination. Thus we have built a method that offers hop-to-hop acknowledgment, routing information reliably between two points. It also returns error messages to the sender, since it knows who the sender and receiver are.

There are two important points to consider: a standard protocol (AX.25) has been used at layer 2, and some of the more distressing problems with digipeaters have been solved. Unfortunately, we’ve added the requirement that the sender and receiver, Stations A and B, understand and implement an additional protocol, the layer 3 box. Rather than require this, we can instead build a “translation” function into Stations C,
D, E, and F. These would converse with A and with B in an English language-like manner, and would make all the decisions about to and from whom packets should be delivered. Thus if Stations A and B can wrap and unwrap the layer 2 information from each packet, and if the human operators at Stations A and B understand the English language commands that C through F need in order to translate and add layer 3 information to each packet, then the users at A and B need only to possess a TNC that has a layer 2 function that is compatible with AX.25 (see fig. 6). Fortunately, all TNCs are capable of this.

the TEXNET implementation

This is how TEXNET operates. A user connects to TEXNET just as anyone with a TNC would connect to any station. For example, let's look at the sequence K5YEF (in Plano) would follow to utilize the network to talk to a station in Garland (see fig. 7).

In this case, K5YEF is located near the Murphy node, and WD5HJP is located near the Garland node. Notice that the network node stations are not normal TNCs, but are TEXNET network nodes instead.

What K5YEF types is shown underlined; all other text appears on his CRT.

CMD: C, NSEG: 4
CMD: *** CONNECTED TO NSEG: 4
NSEG: 4 VIRTUAL CONNECTION 03 AT 17:04:57 ON 11/26/86
*** WELCOME TO TEXNET V0705-WB5PUC ***
COMMAND? CIRCUIT WD5HJP @ GARLAND
YOUR CONNECTION IS ESTABLISHED

From this point on, the communication proceeds normally.

What does the station WD5HJP see? Let's take a look at WD5HJP's CRT.

CMD: *** CONNECTED TO WASMOD: 4
INCOMING TEXNET CONNECTION FROM K5YEF: 0 AT MURPHY

At this point, whatever K5YEF has typed appears on the screen.

The users of TEXNET connect to it on 145.05 MHz, at 1200 Baud using their standard TNCs. The network communicates between its own nodes using AX.25 as the layer 2 protocol and TEXNET-IP as the layer 3 protocol. The network nodes run their inter-nodal trunks at 9600 Baud on either 220 or 450 MHz, or can run them at 1200 Baud on 2 meters.

It would be best if the users of this network (Stations A and B, for example) had a way to communicate with the network that didn't require the use of human operators and English language commands. Then computers (at A and B) could control setting-up and tearing-down connections through the network. Unfortunately, this type of layer 3 protocol — outside the network — requires that all TNCs be standardized for a layer 3 communication process, and no standards now exist in the Amateur community for this function.

The TEXNET-IP layer 3 protocol is "hidden" from all the users because the entry and exit nodes of the network translate the instructions from the users from English to TEXNET-IP and back again. The TEXNET-IP is utilized only within the network, and it is of a family of network protocols known as "datagram" (that is, each packet carries all of the information needed by

fig. 8. A Mesh network topology. Many paths through this network are possible, AEILNMB, AEDHKMB, AEIHKMB are 3 possible routes. This network is resistant to failures, but expensive to implement.

fig. 9. A Backbone network topology. A few alternate routes exist through the network, but single-point failures are possible. This is a low-cost network.
SAVE $7.05 with HOME DELIVERY (one year newstand cost $30.00)

- 1 year 12 issues $22.95
- 2 years 24 issues $38.95
- 3 years 36 issues $49.95
 (U.S. ONLY)

Payment Enclosed
Bill me later
Check here if this is a renewal
 (Attach Label)

SUBSCRIBE TO Ham Radio TODAY
CALL NOW AND PLACE YOUR ORDER ON OUR TOLL FREE ORDER LINE
1 (800) 341-1522
8 AM - 9 PM EST Orders Only
Have your credit card ready.

For other information call Ham Radio direct
(603) 878-1441 8 A.M. - 4:30 PM

Name__________________________
Address________________________
City___________________________
State__________________________Zip________

Please allow 4-6 weeks for delivery of first issue.

FOREIGN RATES: Europe, Japan and Africa, $37 for one year by air forwarding service. All other countries $31 for one year by surface mail.
the network). The TEXNET-IP protocol adds 5 bytes of overhead to the front of every packet inside the network, but is not suited for use as a user layer 3 protocol.

network topologies

How should all of these network modes be physically located? How should the communication paths between nodes be set up? The topology of a network is a map of the network—that is, where the nodes of the network are located, and which nodes are within rf range of other nodes. The topology defines which nodes can be connected to each other, and gives a name to the different types of network configurations that could be made.

There are many topologies available for setting up a network, but we’ll look at two common ones here. One way to set up a network—a “mesh” network—is shown in fig. 8. Mesh networks have many nodes, and many possible ways to route information between two users. Meshes also have a lot of “resiliency.” They can suffer outages of nodes and/or paths, yet still have a way to route information between any two points.

Because the Texas Packet Radio Society doesn’t have enough money to build and install switching nodes everywhere, we’ve chosen a topology that minimizes cost, but unfortunately degrades the survivability of the network. In our network, we’ve installed a “backbone” arrangement as shown in fig. 9. In this topology, nodes are installed along a “skinny” route between the major population centers—those users with the largest amount of traffic to send a long distance. Alternate routes to some of the paths are included. Each of the nodes contains a “table” in memory which is a map of the system, so that it knows to which node packets should be forwarded, depending upon which node will receive the packet and deliver it to the final user. These tables contain alternate routes in case the primary route is unavailable. In addition, each node contains an area in the memory where the routing table can be “patched” to accommodate recent changes to the map. These recent changes can be loaded into the network nodes by the network control operator. This type of routing is known as static or directory routing.

Further articles in this series will focus on specific issues addressed in implementing the TEXNET network. One section will be devoted to the hardware that was designed, and one section will be devoted to the software that was designed (protocol layers). The software section will also describe additional features provided by the network.
ONE RADIO DOES IT ALL!
BUSINESS/AMATEUR/C.A.P.

TAD'S HOT M8

- True 40 Watt Power
- Freq. Range 136-174 MHz
- 99 Channels
- Wide-Band (24 MHz)
- Programmable CTCSS, T.O.T.
- Multi Mode Scan
- Large LCD Display
- Cloneable
- FCC & DOC type-accepted
- Low Cost $749.00 VISA/MC

1-800-551-9922

TAD USA

38 March 1987
2614 Western Avenue / Seattle, WA 98121
simple ICOM IC-735 to C-64 interface

Software routine controls frequency, mode, memory channel, and VFO selection

This simple hardware and software interface can be used to control an IC-735 transceiver by means of a Commodore 64 using a serial data bus. With an understanding of the control codes listed in Table 1, a routine can be written to perform many complex, useful operations with the IC-735 and, ultimately, to automate an entire station. Because future ICOM equipment will have the same data protocol, the program shown in Figure 1 should be easily adaptable to those as well.

Figure 2 is a schematic diagram of the hardware used to interface the IC-735 to the C-64. Notice that the only component needed is a 4.8 k pull-up resistor. A more sophisticated design involving transistors and inverters for buffering is possible but not necessary because the C-64 user port is TTL-level compatible with the IC-735. The pull-up resistor is used to provide sufficient current to drive the input and output pins of Commodore’s user port. Since this is a bi-directional data bus, both input and output pins in the C-64 user port are connected together. The flag interrupt is also connected to the bus for data detection and timing. As can be seen from the schematic, pins B, C, and M on the user port are pulled up to +5 volts through the resistor by a connection at pin 2 in the user port. The center connector of the REMOTE output of the IC-735 is then connected via a two-conductor cable to these data pins. The outside connector of the IC-735 REMOTE is connected through the same cable to pin N (GND) on the user port, thus completing the hardware interface.

Table 1. Control code designations and descriptions.

<table>
<thead>
<tr>
<th>Control Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Requests transceiver to return its current operating frequency.</td>
</tr>
<tr>
<td>4</td>
<td>Requests transceiver to return its current operating mode.</td>
</tr>
<tr>
<td>5</td>
<td>Selects operating frequency.</td>
</tr>
<tr>
<td>6</td>
<td>Selects operating mode.</td>
</tr>
<tr>
<td>7</td>
<td>Selects VFO A or B.</td>
</tr>
<tr>
<td>8</td>
<td>Sets parameters of selected memory channel.</td>
</tr>
<tr>
<td>9</td>
<td>Stores current configuration into displayed memory channel.</td>
</tr>
<tr>
<td>A</td>
<td>Stores current configuration into last displayed VFO memory.</td>
</tr>
</tbody>
</table>

NOTE: Codes 0 through 2, below, are not used in this program.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Code used by transceiver when returning frequency after main dial or mode switch has been activated.</td>
</tr>
<tr>
<td>1</td>
<td>Same as 0 except data is for mode.</td>
</tr>
<tr>
<td>2</td>
<td>Request to return valid operating range.</td>
</tr>
</tbody>
</table>

A line-by-line description of the entire listing is not necessary because of the functional similarity of the functional control blocks. (See Figure 3.) The details presented in the first block are useful for understanding the balance of the program.

Housekeeping

Lines 10 through 599 contain a brief introduction, a definition of variables used, and a subroutine map. Line 600 begins the functional part of the program by initializing the system. It opens the user port on the C-64, sets the screen color, clears the screen, and provides the data for the function keys. Lines 750 through 950 display the main menu and prompt the user for the desired function.

Frequency Selection

The block of code beginning at line 1000 is the first...
Jensen's new catalog features hard-to-find precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.

JENSEN TOOLS INC.

Dept HB
7815 S 46th Street
Phoenix, AZ 85044
(602) 966-6241

AUTHORIZED KENWOOD I-COM RADIO DEALER

H. L. HEASTER, INC. 203 Buckhannon Pike, Clarksburg, W. Va. 26301 Clarksburg Phone (304) 624-5458 or W. Va Toll-Free 1-800-352-3177
HAROLD HEASTER, K900X, 91 Ridgefield Place, Ormond Beach, FL 32074 Honda Phone (904) 673-4066
NEW NATION-WIDE TOLL-FREE TELEPHONE 1-800-84-7346

Call us for a quotation, WE WILL SAVE YOU MONEY!

ALL BAND TRAP VERTICAL ANTENNAS!

FULL-LIFE WAVE! - All Band: Automatic Selection with proven Hi-Q Traps. - Monies Added! All trap supports - Ground or boom mount. Hi STRENGTH FIBERGLASS TUBING OVER ALL NO WOBBLY LUMINY TRAPS - NO UN-SIGHTED TRAPS needed - Satisfies all the way up. - Traps, holder, make. You can use it in a 1 ft. box. BACKED FOR APARTMENTS, MOBILE HOMES, CONDOMS, etc. where maximum space and neat appearance is MANDATORY. Instant "Drive-In" ground mount (included). Use with or without traps (including) all single height mount. Easy READ-END: NO TUNER NEEDED FOR MOST. - TRANSCEIVERS! Use Manual Ref. "B" - BAND - POCKET WIRE TRAP. Built - Handmade - Tested - PREPAID IN USA. Assembled in 10 min. using only two -driven WEATHERPROOF! No. AVT-80-10 - 5 Band - 25-6 - $199.95
No. AVT-80-20 - 4 Band - 77.95
No. AVT-80-30 - 3 Band - 114 - $39.95
No. AVT-80-40 - 2 Band - 114 - $24.95
SEND FULL-PRI SE FOR FF DEL IN USA. Emailed in 59.99 euro for postage, direct. Customers for order using VISA, MASTERCARD or AMER-EXP. At 1/3rd. All Antennas Guaranteed for 1 year - 10 days money back trial. Free leaflet.

WESTERN ELECTRONICS

Dept AH Kearney No. 68847

fig. 1. ICOM 735 hf transceiver program.
B05 READ D,B*
B10 PRINT TAB(3)D TAB(10)B*
B15 PRINT
B20 NEXT X
B25 PRINT
B30 PRINT "ENTER CODE"
B40 REM
B50 GOSUB 8000:REM SOFT KEYS
B60 GET A*
B65 IF A=*"" GOTO B60
B70 A=ASC(A)+CHR$(10))
B75 A=A-A8
B80 IF A=CHR$(133) THEN GOTO B80:REM BLANK SOFT KEY
B85 IF A=CHR$(134) THEN GOTO 640:REM MAIN MENU
B87 IF A=CHR$(135) THEN GOSUB 7000:SYSTEM STATUS
B88 IF A=CHR$(136) THEN GOTO 631:REM REDisplay MENU
B90 IF A=CHR$(137) THEN GOTO 9900:REM EXIT PROGRAM
B90 IF A<1 OR A>6 THEN GOTO 631
B91 ON A
B92 PRINT "INVALID CHARACTER, TRY AGAIN."
B94 FOR X=1 TO 2500: NEXT X
B95 GOTO 760
B96 REM
B98 REM
B98: REM
B99 REM
B100 REM
B101 REM
B102 REM
B103 REM
B104 REM
B105 REM
B106 REM
B107 REM
B108 REM
B109 REM
B110 REM
B111 REM
B112 REM
B113 REM
B114 REM
B115 REM
B116 REM
B117 REM
B118 REM
B119 REM
B120 REM
B121 REM
B122 REM
B123 REM
B124 REM
B125 REM
B126 REM
B127 REM
B128 REM
B129 REM
B130 REM
B131 REM
B132 REM
B133 REM
B134 REM
B135 REM
B136 REM
B137 REM
B138 REM
B139 REM
B140 REM
B141 REM
B142 REM
B143 REM
B144 REM
B145 REM
B146 REM
B147 REM
B148 REM
B149 REM
B150 REM
B151 REM
B152 REM
B153 REM
B154 REM
B155 REM
B156 REM
B157 REM
B158 REM
B159 REM
B160 REM
B161 REM
B162 REM
B163 REM
B164 REM
B165 REM
B166 REM
B167 REM
B168 REM
B169 REM
B170 REM
B171 REM
B172 REM
B173 REM
B174 REM
B175 REM
B176 REM
B177 REM
B178 REM
B179 REM
B180 REM

XEROX® PERSONAL COMPUTER
FOR BUSINESS, HOME, AND PROFESSIONAL USE

XEROX®...The Name You Can Trust!
For over 20 years Xerox® has been the world leader in office products and copying equipment. They have set standards that others can only imitate. The Xerox® 6064 Personal Computer was designed to meet the demands of business, professional, and personal computing today, and into the future! We are proud to offer this complete Xerox® System at a remarkably LOW price! Compare for yourself...then buy your Xerox® 6064 from C.O.M.B.!

Get the Xerox® Advantage! The Xerox® PC offers you the advantage of running IBM*-compatible MS*-DOS® so you can run the hundreds of business and professional software programs available today! And the Xerox® PC is easy to use! It's designed to get you up and running as quickly as possible with computer-aided instruction and superior documentation covering all aspects of personal computing.

Xerox®...Service You Can Count On! If you're considering an IBM*-compatible, don't be misled by price alone! The system we are offering is a complete system...very easy to hook up and use...and very affordable. But more than that, each system we sell is backed by Xerox® service and support. When you buy this system, your name and computer's serial number is automatically registered with Xerox®. Should you need service or advice, a network of over 150 service centers stands ready to help you. Before you buy...compare! Xerox® is your best value! Check all these features:

- IBM*-PC/XT Compatibility.
- 256KB Memory Features an 8MHz Intel 8086-2 Microprocessor for Faster Speed, Less Waiting Time.
- Two 5¼" Floppy Disk Drives, 360K Each.
- Seven Expansion Slots, Plus a Serial Port for Communications or Printer, and Parallel Printer Port.
- High-Resolution 640 x 400 Pixels Monochrome Monitor, with 12" Diagonal Non-Glare Screen, Swivel and Tilt Base.
- Standard 83-Key PC Keyboard with Mouse Interface (Mouse Not Included.)
- Comes with ScreenMate™, a User Friendly Guide to the Functions of the MS*-DOS® Operating System. ScreenMate™ is Menu Driven...No Need to Remember Complicated Commands!

Over 150 Service Centers Nationally.
Manufacturer's Limited 90-Day Warranty on Parts/Labor.
List Price $2224.80
Priced At Only $999

Item H-2167-7129-232 Shipping, handling: $49.00 ea. (Minnesota residents add 6% sales tax.)

SEND TO:
C.O.M.B. Marketing Corp.
1405 Xenium Lane N/Minneapolis, MN 55441-4494

Charge: [] VISA® [] MasterCard® [] Discover® [] American Express®
Acct. No. ___________ Exp. ___________

Credit Card customers can order by phone, 24 hrs. a day, 7 days a week.

Authorized Liquidator

Authorized

COMB

XEROX® PERSONAL COMPUTER
FOR BUSINESS, HOME, AND PROFESSIONAL USE

Authorized

COMB

Authorized

COMB

Authorized

COMB
2220 IF M$="FM" THEN M$="05
2230 IF M$="4" GOTO 2080
2240 PRINT#2,CHR$(254)+CHR$(254)+CHR$(4)+CHR$(242);
2250 PRINT#2,CHR$(06)+CHR$(M)+CHR$(253);
2260 GOSUB 8700:REM VERIFY DATA
2270 CLOSE 2
2280 GOTO 600
3000 REM
3010 REM * SET VFO
3020 REM * CONTROL CODE 07 *
3030 REM
3040 REM
3050 CLOSE 2
3060 OPEN 2,2,2,0,CHR$(B)+CHR$(17)
3120 GOSUB 8500 :REM CLEAR SCREEN
3130 FOR X=1 TO 10
3140 PRINT
3150 NEXT X
3160 V=2
3170 INPUT " " ENTER VFO A OR B":V$;
3180 IF VS="B" THEN LET V=1
3190 IF VS="A" THEN LET V=0
3200 IF V=2 THEN GOTO 3000
3210 PRINT#2,CHR$(254)+CHR$(254)+CHR$(4)+CHR$(241);
3220 PRINT#2,CHR$(07)+CHR$(V)+CHR$(253)
3230 GOSUB 8700:REM VERIFY DATA
3240 CLOSE 2
3250 GOTO 600
4000 REM
4010 REM * DISPLAY MEMORY CHANNEL *
4020 REM * CONTROL CODE 08 *
4030 REM
4040 REM
4050 CLOSE 2
4060 OPEN 2,2,2,0,CHR$(B)+CHR$(17)
4080 GOSUB 8500 :REM CLEAR SCREEN
4090 FOR X=1 TO 10
4100 PRINT
4110 NEXT X
4120 INPUT " " DISPLAY WHICH CHANNEL ":F$;
4130 IF F$="12 AND F$="THEN GOTO 4265
4140 PRINT " CHANNEL SELECTED IS NOT AVAILABLE"
4150 PRINT " ON IC-735. TRY AGAIN. "
4160 FOR X=1 TO 2500: NEXT X
4180 GOTO 4080
4265 GOSUB 8900:REM HEX CONVERSION
4270 PRINT#2,CHR$(254)+CHR$(254)+CHR$(4)+CHR$(241)
4280 PRINT#2,CHR$(08)+CHR$(T)+CHR$(253)
4290 PRINT#2,CHR$(254)+CHR$(254)+CHR$(A)+CHR$(241)
4300 PRINT#2,CHR$(25)+CHR$(253)
4310 GOSUB 8700:REM VERIFY DATA
4320 CLOSE 2
4330 GOTO 600
5000 REM
5010 REM * STORE TO MEMORY *
5020 REM * CONTROL CODE 09 *
5030 REM
5040 REM
5050 CLOSE 2
5060 OPEN 2,2,2,0,CHR$(B)+CHR$(17)
5120 GOSUB 8500 :REM CLEAR SCREEN
5170 PRINT#2,CHR$(254)+CHR$(254)+CHR$(4)+CHR$(241)
5180 PRINT#2,CHR$(09)+CHR$(253)
5190 FOR X=1 TO 10:PRINT NEXT X
5190 GOSUB 8700:REM VERIFY DATA
5200 CLOSE 2
5210 GOTO 600
6000 REM
6010 REM * FROM MEMORY TO VFO *
6020 REM * CONTROL CODE 10 *
6030 REM
6040 REM
6050 REM
6060 OPEN 2,2,2,0,CHR$(B)+CHR$(17)

SSB ELECTRONIC TRANSVERTERS & PREAMPS
LI255 144/256 Khz Preamp 50W GASKET DBM $499
LI256 144/256 Khz 10W GASKET $549
MI255 144/256 Khz Preamplifier $399
MI256 144/256 Khz Preamplifier $549
DX144 144 Preamplifer 0.4 dB or 250 dB gain $219
DX325 432 Preamplifer 0.5 dB or 250 dB gain $179
DX605 600 Preamplifer 0.5 dB or 250 dB gain $189
DX126 1200 Preamplifer 0.5 dB or 250 dB gain $189
DX2200 2200 Preamplifer 0.5 dB or 250 dB gain $189
MV1440-01 144 Switch Preamplifer 0.5 dB or 250 dB gain $199
MV4325-01 432 Switch Preamplifer 0.5 dB or 250 dB gain $199
MXV023 400 Switch Preamplifier 0.5 dB or 250 dB gain $219
MV1296 S 1296 Switch Preamplifier 0.5 dB or 250 dB gain $219
DCW48A 144 Switch Filter/Power Supply $69
TF 148 144 Switch Filter/Power Supply $79
TV1203 2200 Switch Filter/Power Supply $20
PA2300 2200 Switch Filter/Power Supply $275
ALSO AVAILABLE MICROPHONE MODULUS, EM ELECTRONIC TRANSVERTERS LIMITED, PETER H. FERGUSON, BOX 9286 STATION A, TORONTO, ONTARIO, CANADA MW 1P3

OCCUPATION
Established ethical ten-year-old mail-order business for sale. Instant name/logo recognition and excellent reputation worldwide. Ideal for technically competent amateur seeking satisfying career either as substitute for present employment or as retirement business. Minimum overhead expense and significant small business tax advantages. Can be carried on from a home anywhere as a "mom and pop" closely-held company (as it is at present) or expanded to any extent desired. Combines present hobby with a proven source of income—an ideal combination. Suggesting competition, the principal sales item is in constant demand worldwide for use in all ham rigs, old and new, factory-made or "home brew." No manufacturing, inventory, or storage problems, the physically-small principal item is obtained from an assured source—the top-rated manufacturer of this specialty in Japan. Additional opportunities to expand applications and profits through IC-735 only by initiative, imagination, and technical competence.

Monthly sales average $10,000 for the last three years have proviol guaranteed sideline and good dividends because of generous profit margins and legitimate tax allowances for home-office rental, pro-rata cash operating expense, and office equipment depreciation, etc. Easy ownership transfer without interruption of cash flow. Hand-holding is available during transition. Detailed information will be sent only to those judged to have the best chance of success. Accordingly, serious inquirers should write giving biographical data including age, education, technical background, and experience.

Box 498
Greenville, NH 03848

THE ASOTRON NO TUNERS! NO RADIALS! NO RESISTORS! NO COMPROMISE!
ANTENNAS FROM 160 TO 10 METERS
BILAL COMPANY
S.R. 3, Box 62, Dept. 2
Tulsa, Ok. 74112 (918) 751-4916

March 1987
The "Flying Horse" sets the standards

Continuing a 66 year tradition, there are three new Callbooks for 1987.

The North American Callbook lists the calls, names, and address information for licensed amateurs in all countries from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists the amateurs in countries outside North America. Coverage includes South America, Europe, Africa, Asia, and the Pacific area.

The 1987 Callbook Supplement is a new idea in Callbook updates; it lists the activity in both the North American and International Callbooks. Published June 1, 1987, this Supplement will include all the new licenses, address changes, and call sign changes for the preceding 6 months.

Publication date for the 1987 Callbooks is December 1, 1986. See your dealer or order now directly from the publisher.

<table>
<thead>
<tr>
<th>North American Callbook</th>
<th>incl. shipping within USA</th>
<th>$28.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>incl. shipping to foreign countries</td>
<td>$30.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International Callbook</th>
<th>incl. shipping within USA</th>
<th>$28.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>incl. shipping to foreign countries</td>
<td>$30.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Callbook Supplement, published June 1st</th>
<th>incl. shipping within USA</th>
<th>$33.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>incl. shipping to foreign countries</td>
<td>$40.00</td>
</tr>
</tbody>
</table>

SPECIAL OFFER

- Both N.A. & International Callbooks incl. shipping within USA $53.00
- incl. shipping to foreign countries 58.00

Illinois residents please add 6.5% tax.
All payments must be in U.S. funds.

RADIO AMATEUR CALLBOOK INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA
Tel: (312) 234-6600

```plaintext
6150 GOSUB B500: REM CLEAR SCREEN
6170 PRINT#,CHR$(254)+CHR$(254)+CHR$(4)+CHR$(241);
6175 PRINT#,CHR$(10)+CHR$(253)
6180 FOR X=1 TO 10:PRINT:NEXT X
6190 GOSUB B700: REM VERIFY DATA
6200 CLOSE 2
6210 GOTO 600
7000 REM setTextTo2
7010 REM * SYSTEM MONITOR *
7020 REM * CONTROLL CODES 03 AND 04 *
7030 REM setTextTo2
7040 REM
7050 CLOSE 2
7060 OPEN 2,2,O,CHR$(8)+CHR$(17)
7080 FOR X=1 TO 10
7090 PRINT
7100 NEXT X
7110 M=2
7120 OPEN 2,2,O,CHR$(8)+CHR$(17)
7140 M=3
7150 OPEN 2,2,O,CHR$(8)+CHR$(17)
7160 OPEN 2,2,O,CHR$(8)+CHR$(17)
7170 OPEN 2,2,O,CHR$(8)+CHR$(17)
7180 OPEN 2,2,O,CHR$(8)+CHR$(17)
7190 OPEN 2,2,O,CHR$(8)+CHR$(17)
7200 OPEN 2,2,O,CHR$(8)+CHR$(17)
7210 OPEN 2,2,O,CHR$(8)+CHR$(17)
7220 OPEN 2,2,O,CHR$(8)+CHR$(17)
7230 OPEN 2,2,O,CHR$(8)+CHR$(17)
7240 OPEN 2,2,O,CHR$(8)+CHR$(17)
7250 OPEN 2,2,O,CHR$(8)+CHR$(17)
7260 OPEN 2,2,O,CHR$(8)+CHR$(17)
7270 OPEN 2,2,O,CHR$(8)+CHR$(17)
7280 OPEN 2,2,O,CHR$(8)+CHR$(17)
7290 OPEN 2,2,O,CHR$(8)+CHR$(17)
7300 OPEN 2,2,O,CHR$(8)+CHR$(17)
7310 RETURN
8000 REM ------------------ SOFT KEYS ------------------
8010 REM
8020 PRINT
8030 PRINT
8040 PRINT
8045 PRINT
8050 PRINT
8055 PRINT
8060 PRINT
8070 PRINT
8080 PRINT
8090 PRINT
8095 PRINT
8100 PRINT
8110 PRINT
8120 PRINT
8130 PRINT
8140 PRINT
8150 PRINT
8155 PRINT
8160 PRINT
8170 PRINT
8180 PRINT
8190 PRINT
8200 PRINT
8210 PRINT
8220 PRINT
8230 PRINT
8240 PRINT
8250 PRINT
8260 PRINT
8270 PRINT
8280 PRINT
8290 PRINT
8300 PRINT
8310 PRINT
8320 PRINT
8330 PRINT
8340 PRINT
8350 PRINT
8360 PRINT
8370 PRINT
8380 PRINT
8390 PRINT
8400 PRINT
8410 PRINT
8420 PRINT
8430 PRINT
8440 PRINT
8450 PRINT
8460 PRINT
8470 PRINT
8480 PRINT
8490 PRINT
8500 PRINT
8510 PRINT
8520 PRINT
8530 PRINT
8540 PRINT
8550 PRINT
8560 PRINT
8570 PRINT
8580 PRINT
8590 PRINT
8600 PRINT
8610 PRINT
8620 PRINT
8630 PRINT
8640 PRINT
8650 PRINT
8660 PRINT
8670 PRINT
8680 PRINT
8690 PRINT
8700 PRINT
8710 PRINT
8720 PRINT
8730 PRINT
8740 PRINT
8750 PRINT
8760 PRINT
8770 PRINT
8780 PRINT
8790 PRINT
8800 PRINT
8810 PRINT
8820 PRINT
8830 PRINT
8840 PRINT
8850 PRINT
8860 PRINT
8870 PRINT
8880 PRINT
8890 PRINT
8900 PRINT
8910 PRINT
8920 PRINT
8930 PRINT
8940 PRINT
8950 PRINT
8960 PRINT
8970 PRINT
8980 PRINT
8990 PRINT
9000 PRINT
9010 PRINT
9020 PRINT
9030 PRINT
9040 PRINT
9050 PRINT
9060 PRINT
9070 PRINT
9080 PRINT
9090 PRINT
9100 PRINT
9110 PRINT
9120 PRINT
9130 PRINT
9140 PRINT
9150 PRINT
9160 PRINT
9170 PRINT
9180 PRINT
9190 PRINT
9200 PRINT
9210 PRINT
9220 PRINT
9230 PRINT
9240 PRINT
9250 PRINT
9260 PRINT
9270 PRINT
9280 PRINT
9290 PRINT
9300 PRINT
9310 PRINT
9320 PRINT
9330 PRINT
9340 PRINT
9350 PRINT
9360 PRINT
9370 PRINT
9380 PRINT
9390 PRINT
9400 PRINT
9410 PRINT
9420 PRINT
9430 PRINT
9440 PRINT
9450 PRINT
9460 PRINT
9470 PRINT
9480 PRINT
9490 PRINT
9500 PRINT
9510 PRINT
9520 PRINT
9530 PRINT
9540 PRINT
9550 PRINT
9560 PRINT
9570 PRINT
9580 PRINT
9590 PRINT
9600 PRINT
9610 PRINT
9620 PRINT
9630 PRINT
9640 PRINT
9650 PRINT
9660 PRINT
9670 PRINT
9680 PRINT
9690 PRINT
9700 PRINT
9710 PRINT
9720 PRINT
9730 PRINT
9740 PRINT
9750 PRINT
9760 PRINT
9770 PRINT
9780 PRINT
9790 PRINT
9800 PRINT
9810 PRINT
9820 PRINT
9830 PRINT
9840 PRINT
9850 PRINT
9860 PRINT
9870 PRINT
9880 PRINT
9890 PRINT
9900 PRINT
9910 PRINT
9920 PRINT
9930 PRINT
9940 PRINT
9950 PRINT
9960 PRINT
9970 PRINT
9980 PRINT
9990 PRINT
```
introducing a new dimension...

FROM PRO-SEARCH®

NEW DIGITAL CONVERSION

- For All 8 Wire CDE Rotors
- North & South Center
- Continuous 1° Readout For Full 360°
- Bright ½ x 1½" Display

ONLY $59.95
PLUS SHIPPING

- Made In USA
- Easy To Install
- Quality Material
- Designed For Years Of Service

FOR JUST A FEW DOLLARS MORE YOU CAN HAVE THE CONTROLLER OF THE FUTURE TODAY!

introducing a new LOW COST MODEL THE PSE-1K PRICED AT $189.95 plus shipping

For Contesters, DX'ers, Handicapped Operators and General Purpose Ham Operators:

- The Most Advanced Antenna Control Available....
- The Only Computerized Unit
- The Only Talking Unit
- The Only Scanning Unit
- The Only Programmable Unit
- The Only Automatic Braking Unit

Now Three Models of Our Computerized-Digital Antenna Control Priced From $189.95 to $469.95

- PSE-1K Series
- PSE-1A Series
- PSE-1 Series

Pro-Search Is Adaptable To Many Systems, Simple To Install.
No modifications are necessary.
Disconnect your present antenna control system and connect ours.
Pro-Search is used with HAM-M, HAM-II, III, IV, and TX2. Other models are available to work with the HDR-300, etc.

To Order:
1-800-325-4016
1-314-994-7872
(Missouri)

Or write:
Pro-Search Electronics
1350 Baur Blvd.
St. Louis, MO 63132
Ringo Ranger II
Simply the best

The best combination of gain, bandwidth and low angle radiation for simplex or repeater operation.

Quick easy assembly and installation
Mount anywhere with compact dimensions and neat appearance
Proven performance and durability in all environments
Complete FM band coverage
One year warranty

Cushcraft antennas created the FM antenna revolution by making the best performance and value available to every ham. We continue to set the pace with a broad line of antennas for every FM application. Tune across the band and you will find the overwhelming majority of hams using one, two, or more Cushcraft antennas. The reason is very simply that they are the best. Now is the time for you to enjoy the value of a Cushcraft antenna. See your nearby dealer today.

New Mobile Antennas

Exciting news for HAMS! the same high performance and quality, CUSHCRAFT/SIGNALS antennas, used by professionals and business, are now available to improve your mobile communications.

FEATURING
- SILVER PLATED LOADING COILS
- TAPERED 17-7PH STAINLESS STEEL WHIPS
- STRONG, MOISTURE PROOF ABS COIL CASES
- CADMIUM PLATED NON-SEIZING HARDWARE
- FULL BRAID COVERAGE RG 58AU CABLE
- COAXIAL Connectors
- EACH COMPLETE WITH CABLE, CONNECTORS AND THREADED BASE TO TAKE EITHER THE STAINLESS STEEL SPRING OR STRAIGHT WHIP
- CHOICE OF 3 MOUNTING OPTIONS
 1. 90 POUND MAGNET MOUNT
 2. TRUNK LIP MOUNT
 3. ¾ INCH HOLE MOUNT

ONLY CUSHCRAFT/SIGNALS MOBILE ANTENNAS GIVE YOU ALL OF THESE IMPORTANT PERFORMANCE FEATURES.
8628 PRINT "MODE: ";
8630 IF K(5)=00 THEN M$="LOWER SIDE-BAND"
8632 IF K(5)=01 THEN M$="UPPER SIDE-BAND"
8634 IF K(5)=02 THEN M$="AM"
8636 IF K(5)=03 THEN M$="CW"
8638 IF K(5)=05 THEN M$="FM"
8640 IF M$="" THEN GOTO 9500:REM ERROR ROUTINE
8642 PRINT M$
8643 PRINT
8644 PRINT "PRESS RETURN TO CONTINUE"
8646 GET K$
8648 IF K$<>CHR$(13) THEN GOTO 8646
8650 CLOSE 2
8660 GOTO 600
8700 REM ----- VERIFY/GET DATA -----
8702 GET#2,D$
8704 IF D$="" GOTO 8702
8706 FOR D=1 TO 15
8710 GET#2,D$
8725 K(D)=ASC(D$)+CHR$(0))
8727 LET E=K(D)
8730 SR=ST
8735 IF SR AND 247>0 GOTO 9500
8740 IF E=251 THEN PRINT " CHANGE ACCEPTED":REM VALID DATA
8745 IF E=253 THEN LET D=15:REM POST AMBLE
8750 IF E=250 THEN GOTO 9500:REM INVALID DATA
8755 IF E=252 THEN GOTO 9500:REM DATA COLLISION
8760 NEXT D
8770 FOR X=1 TO 2500:NEXT X
8785 RETURN
8790 REM
8900 REM ----- HEX CONVERSION -----
8902 REM F IS BROUGHT IN
8904 F=F+.000001
8906 T=INT(F)
8908 IF T<>10 THEN GOTO 893B
8910 F=(F-T)@10
8912 U=(INT(F))@16
8914 F=(INT(F))@10
8916 U=U+INT(F)
8918 F=(INT(F))@10
8920 V=(INT(F))@16
8922 F=(INT(F))@10
8924 V=V+INT(F)
8925 F=(F-T)@10
8926 F=(INT(F))@10
8928 W=(INT(F))@16
8930 F=(INT(F))@10
8932 W=W+F
8934 RETURN
8938 T=(T-(INT(T/10))*10)+(16#INT(T/10))
8940 F=(INT(F))@10
8950 GOTO 8912
9500 REM ----- ERROR PROCESS -----
9505 PRINT " STATUS ERROR "SR AND 255
9510 IF SR AND 2=2 THEN PRINT " FRAMING ERROR"
9515 IF E<>D=4 AND 4=4 THEN PRINT " RECEIVER BUFFER OVERRUN"
9520 IF E=250 THEN PRINT " RADIO DETECTED BAD DATA"
9525 IF E=252 THEN PRINT " DATA COLLISION DETECTED."
9530 PRINT:PRINT
9535 PRINT " PRESS F1 TO RESTART"
9540 PRINT " PRESS F7 TO EXIT PROGRAM"
9545 GET A$
9550 IF A$="" THEN GOTO 9545
9555 IF A$>CHR$(133) THEN GOTO 9910
9560 CLOSE 2
9565 GOTO 600
9900 REM ----- PROGRAM EXIT -----
9910 GOSUB 8500
9920 CLOSE 2
9930 END
READY.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT)

BAND
WIRED KIT
6M, 2M, 220 $880 $630
UHF $980 $730
(Also available for commercial bands!)

FEATURES:
• SENSITIVITY SECOND TO NONE! 0.15uW Typ.
• SELECTIVITY THAT CAN'T BE BEAT! Both 8-pole xtal filter & ceramic filter for > 100dB at 12kHz.
• Helical resonator front-end to combat desense & intermod.
• Filter proof squelch. Automatic frequency control, separate spkr amplifier.
• CLEAR, EASY-TUNED TRANSMITTER, up to 20W output. 50W with additional PA.

ACCESSORIES

• TO-2 DTMF DECODER/CONTROLLER kit only $78. Full 16 digits, 5 functions, toll call restrictor, programmable. Much more. Great for selective calling too!
• AP-1 AUTOPATCH kit only $78. Reverse patch & phone line remote control std.
• AP-2 Simplex Autopatch. Use with above.
• CWID kit, new low price $48. Field programmable, timers, the works!
• COR-2 kit, $38. Audio mixer, local spkr amplifier, talk & time out timers.
• COR-3 kit, $48, with courtesy beep.
• MO-202 FSK DATA MODULATOR kit $38. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
• DE-202 FSK DATA DEMODULATOR kit $38.

GaAs FET PREAMPS at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $49!

FEATURES:
• Very Low Noise: 0.7dB VHF, 0.8dB UHF.
• High Gain: 13-20dB, depending on freq.
• Wide Dynamic Range: to resist overload.
• Stable: new-type balanced GaAs FET

GaAs FET Preamp similar to LNG, except designed for low cost & smaller size. Only 5/8"W x 1-5/8"L x 3/4"H. Easily mounts in many radios.

• Specify tuning range desired: 25-35, 35-55, 55-90, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNS-(*)
IN-LINE PREAMP
ONLY $59/kit, $79 wired/tested

GaAs FET Preamp with features similar to LNG, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W. Tower mtg. hardware supplied.

• Specify tuning range desired: 120-175, 200-240, or 400-500 MHz.

HRA-(*)
HELICAL RESONATOR PREAMP
ONLY $49 VHF or $64 UHF

Low-noise preamps with helical resonators reduce intermod & cross-band interference in critical applications.

• Specify tuning range desired: 143-150, 150-156, 156-162, 162-174, 213-233, 420-450, 450-465, or 465-475 MHz.

TRANSMIT CONVERTERS

For VHF Models XV2 $29 39 $59 $24 35 $39 $101 $130 $130
Model XV3 $39 50 $67 $40 51 $60 122 $185 $185
Model XV4 $49 60 $76 $52 64 $58 133 $200 $200
Model XV5 $59 73 $84 $80 77 $60 166 $228 $228

MOD COVERED

• Order by phone or mail • Add $3 S&H per order
(Electronic answering service evenings & weekends)
• Use VISA, MASTERCARD, Check, or UPS COD.

HAMTRONICS, INC.
65-E Moul Rd.; Hilton NY 14468-9535

□ High quality equipment at reasonable prices surely appeals to me; but I want more details before I buy! Rush my copy of the 40-page Hamtronics catalog by return first class mail. I enclose $1 ($2 for overseas air mail).

Name ____________________________
Address ____________________________
City ____________________________ State/ZIP ____________________________

Phone: 716-392-9430

Hamtronics® is a registered trademark

HIDQUALITY XMT & RCVR
MODULES FOR REPEATERS,
LINKS, TELEMETRY, ETC.

• FM EXCITERS: Kits only $68. Wht $146
TCXO and stat oven available. 2W cont. Up to 3W intermitten.
• TS1 for 10M, 6M, 2M, 150-174, 220 MHz.
• TS41 for uhf
FCC TYPE ACCEPTED FOR COMMERCIAL BANDS.
• VHF & UHF LINEAR AMPLIFIERS. For FM or SSB. Power levels from 10 to 45 Watts. Several models, kits starting at $78.

NOW—FCC TYPE ACCEPTED TRANSMITTERS, RECEIVERS, AND REPEATERS AVAILABLE FOR HIGH-BAND AND UHF. CALL FOR DETAILS.
The block of code beginning at line 2000 prompts the user for the desired operating mode and sets the transceiver accordingly. The acceptable modes are USB, LSB, a-m, fm, and CW.

VFO control

VFO control is performed by the block of code beginning at line 3000. The user is prompted to select the desired VFO, which is changed to a number, inserted into the character string, and printed to the Commodore’s user port.

memory recall

Memory channel control is performed in the block beginning at line 4000. After the screen is cleared and the user port opened, the operator is prompted to select the desired memory channel. If the channel number selected is outside the bounds of the IC-735, the screen is cleared and the operator re-prompted for a correct channel number. The IC-735 is then programmed for memory mode and the character string to recall the selected channel sent after the channel number has been converted to its hexadecimal equivalent. It is important to remember that any data sent to the serial bus must be in hexadecimal format.

memory store

Storing the present transceiver frequency and mode into the displayed memory channel is performed in the code beginning at line 5000. This section requires no input from the operator because the current configuration of the rig is stored in the displayed memory channel automatically.

VFO programming

VFO programming is performed in the code beginning at line 6000. This section stores the transceiver’s present mode and frequency into the last displayed VFO memory.

radio configuration

The transceiver’s current frequency and mode is determined starting at line 7000. A character string with control codes 3 and 4 is sent to the rig. The transceiver responds by returning the current frequency and mode, which are decoded and printed to the monitor. Control is returned to the main menu after data has been verified.

subroutines

Housekeeping and support subroutines begin after line 8000. Line 8000 begins a subroutine to provide visible “soft-keys” on the monitor screen. The legends on these “keys” correspond to the functions available on the Commodore “F” keys. Line 8500 begins a “clear screen” subroutine. Line 8600 starts a subroutine.
K.V.G. CRYSTAL PRODUCTS

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$83.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$72.95</td>
</tr>
<tr>
<td>XF-9B-01</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9B-02</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9B-10</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>$125.65</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>3.7 kHz</td>
<td>5</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9D</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9M</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>$54.10</td>
</tr>
<tr>
<td>XF-9NB</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9P</td>
<td>CW</td>
<td>250 kHz</td>
<td>8</td>
<td>$151.20</td>
</tr>
<tr>
<td>XF-910</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>$17.15</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

WRITE FOR FULL DETAILS OF CRYSTALS AND FILTERS

Shipping: $3.75

MICROWAVE MODULES EQUIPMENTS

Use your existing HF or 2M rig on other VHF or UHF bands

RECEIVE CONVERTERS

MMk 169-137	299.95
MMk 1296-144G	189.95
MMk 439-ATV	94.95
MMc 432-78s	69.95
MMc 144-28(HP)	74.95
MMc 144-29	74.95

LINEAR POWER AMPLIFIERS

2M	144-30 LS	144.95
	144-50 S	129.95
	144-100 LS	224.95
	144-200 S	439.95

ANTENNAS

10X2-YM	374.95
70cm	444.95
70MMB2/8	64.95
70MMB43	64.95
70MMB83	94.95
DYO-200-900 MHz	79.95

Send 66c (stamps) for details of all wave VHF & UHF equipments and K.V.G crystal products.

Shipping: FOB Concord, Mass.

(617) 263-2145
SPECTRUM INTERNATIONAL, INC.
Post Office Box 1084
Concord, MA 01742, U.S.A.

BASEBALL CAP

How about an attractive BASEBALL style cap that has name and call on it. It gives a good item when worn at hamfests and is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion.

Hats come in the following colors:

- Gold Blue
- Red Kelly Green

Please send call and name (maximum 6 letters per line). $6.00

I.D. BADGES

No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations:

- White/Red, Wood, Green/White, Blue/White, White/Black
- Yellow/Blue, Red/White, Green/White, Metallic Gold/Black, Metallic Silver/Black

UID Engraved I.D. Badge: $2.50

LOW BAND DX-ING COMPUTER PROGRAMS

by John Devoldere, ON4UN

Here's a collection of 30 super programs written by ON4UN. Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: shunt and series input L network design, feedline transformer, shunt network design, SWR calculation, plus 11 more! General Ham programs include: sunrise/sunset, great circle distances, grayline, vertical antenna design program, sunrise calendar plus 9 more! Phew. When you sit down to use these programs you'll be amazed at what you have. Super value at a super low price. The best value in computer software available today. © 1986.

- UN-Apple $19.95
- UN-MS (MS-DOS) $19.95
- UN-CPM/Kaypro $19.95
- UN-C-128 (COMMODORE) $19.95

Please enclose $3.50 for shipping and handling

BOOKSTORE

Greenville, NH 03048

Please add $3.50 for shipping and handling

ham radio
The BEST is still “made in U.S.A.”

Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty
- prompt U.S. service and assistance

RF AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B23</td>
<td>2W in = 30W out</td>
<td>(useable in: 100 mW-5W)</td>
</tr>
<tr>
<td>B108</td>
<td>10W in = 80W out</td>
<td>(1W=15W, 2W=30W) RX preamp</td>
</tr>
<tr>
<td>B1016</td>
<td>10W in = 160W out</td>
<td>(1W=35W, 2W=90W) RX preamp</td>
</tr>
<tr>
<td>B3016</td>
<td>30W in = 160W out</td>
<td>(useable in: 15-45W) RX preamp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C106</td>
<td>10W in = 60W out</td>
<td>(1W=15W, 2W=30W) RX preamp</td>
</tr>
<tr>
<td>C1012</td>
<td>10W in = 120W out</td>
<td>(2W=45W, 5W=90W) RX preamp</td>
</tr>
<tr>
<td>C22</td>
<td>2W in = 20W out</td>
<td>(useable in: 200mW-5W)</td>
</tr>
</tbody>
</table>

WATT/SWR METERS

- peak or average reading
- direct SWR reading

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Watts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1</td>
<td>(HF) 1.8-30 MHz</td>
<td>1W=25W</td>
<td></td>
</tr>
<tr>
<td>MP-2</td>
<td>(VHF) 50-200 MHz</td>
<td>1W=25W</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Watts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D24</td>
<td>2W in = 40W out</td>
<td>(1W=25W)</td>
</tr>
<tr>
<td>D1010</td>
<td>10W in = 100W out</td>
<td>(1W=25W, 2W=50W)</td>
</tr>
</tbody>
</table>

Available at local dealers throughout the world.

16890 Church St., Morgan Hill, CA 95037, (408) 779-7363
INSIDE VIEW - RS-12A

MODEL RS-50A

RM-A Series

MODEL RM-35A

RS-A SERIES

MODEL RS-7A

RS-M SERIES

MODEL RS-35M

VS-M SERIES

MODEL VS-20M

RS-S SERIES

MODEL RS-12S

ASTRON POWER SUPPLIES

- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mv peak to peak (full load & low line)
Tired of all the traffic on your band?

Discover the wide open spaces on 220MHz.

ICOM has a commitment to 220MHz.

ICOM has the most complete line of 220MHz gear to take you away from the traffic on other bands.

The IC-03AT Handheld reflects uncompromised top-of-the line quality and performance. Ultimately deluxe, with 10 full function memories, scanning, 32 built-in subaudible tones, three watts output (five watts optional) and an LCD readout. Direct frequency entry via DTMF keypad and adjustable offsets for non-standard repeaters.

The IC-3AT Handheld is ICOM's 220MHz version of the world's most popular and easy-to-use handheld. Provides superb transmit and receive performance, 1.5 watts output and excellent audio.

The IC-38A Mobile...ICOM's new compact and easy to operate mobile especially designed for operator convenience. It sports a large LCD readout and band/memory stepping from the provided IC-HM12 mic. Plus 21 memories, receive coverage from 215-230MHz, scanning and memory lock-out.

The IC-37A Mobile...ICOM's slim-line 220MHz mobile. There's band or memory scanning, nine memories, 32 built-in subaudible tones and an LED readout. Plus a reverse switch for offset checks and an internal speaker. Comes with the IC-HM23 DTMF touchtone mic with up/down frequency and memory scan.

Discover the wide open spaces on 220MHz. ICOM will help take you to the excitement.
New ARRL Publication!

Yagi Antenna Design is based on the series in Ham Radio Magazine by the late Dr. James L. Lawson, W2PV. Jim was a highly competitive person and this carried through to his Amateur Radio hobby and work with antennas. Although this book is primarily the work of the author, credit should be given to its editors: Bill Myers, K1GQ; Clarke Greene, K1JX; and Mark Wilson, AA2Z. This ARRL publication stands to be a "classic" that should be added to every radio amateur's technical library. The book is available only in hard cover, and is printed on high quality textbook paper. There are over 210 pages of detailed information on Yagi design. For more detail, refer to the column at right. The retail price is $15.00. Please add $2.50 ($3.50 for UPS) for postage and handling. Also available at your favorite ARRL dealer.

The American Radio Relay League, Inc.
225 Main St., Newington, CT 06111
Available Mid-January

CONTENTS

Chapter 1
Performance Calculations
Antenna Properties 1-2
Modeling 1-3
Computational Methodology 1-5
Element Self-impedance 1-5
Mutual Impedance 1-9
Element Currents 1-9
Input Impedance and Directivity 1-11
Writing Computer Programs 1-12
Validation 1-15
NBS Yagi Experiments 1-15
Yagi Gain and Patterns 1-16
Effect of Director Length 1-22
Gain Variations 1-24
Comparison Summary 1-26

Chapter 2
Simple Yagi Antennas
Two-Element Beams 2-1
More Than Two Elements 2-7
Performance Characteristics 2-22
Element Illumination 2-24
Summary 2-31

Chapter 3
Yagi Antenna Performance Optimization
Parasite Length Variations 3-3
Parasite Placement Variations 3-11
Front-to-back Optimization 3-19
Optimum Design 3-24
Design Example 3-24
Number of Reflectors 3-29
Missing Parasites 3-33
Summary 3-35

Chapter 4
Loop Antennas
Square Loop Model 4-1
Other Driven Loops 4-9
Multiloop Arrays 4-12
Summary 4-16

Chapter 5
The Effects of Ground
Reflections From A Plane Ground 5-1
Ground Curvature Effects 5-2
Image Models 5-3
Propagation Elevation Angles 5-4
Antenna Performance Over Ground 5-6
Best Height 5-12
Antenna Upward Tilt 5-14
Summary 5-15

Chapter 6
Stacking
Vertical Stacking Arrangements 6-2
Excitation 6-2
Two-Array Stack 6-3
Phase-Derived Fill 6-13
Three and Four-Array Stacks 6-15
Optimization of Stack Arrays 6-16
Orthogonal and Antiparallel Stacked Yagis 6-17
Summary 6-18

Chapter 7
Practical Design
Preferred Antenna Designs 7-1
Radius Scaling 7-3
Taper Corrections 7-5
Boom and Element Clamping Correction 7-11
Examples of Three-Element Beams 7-13
Summary 7-17

Chapter 8
Practical Amateur Yagi Antennas
Designs for 7.15 MHz 8-3
Designs for 14.2 MHz 8-4
Designs for 21.3 MHz 8-7
Designs for 28.5 MHz 8-8
Index
the ubiquitous diode: part 2

Last month's column discussed the electrical and mechanical properties of solid-state diodes, with emphasis on the most important parameters.¹

This month we'll focus on specific applications using solid-state diodes, emphasizing circuitry and how to select the right diode for each particular application. Some of the applications we'll cover are rectifiers/detectors, regulators, mixers, switches, limiters, tuning elements, multipliers, oscillators, and optical devices.

simple diode applications

VHF/UHFers seldom give adequate notice to the use and abuse of low-frequency diodes. They forget that the diodes in a power supply or dc protection scheme are often just as important to system reliability and performance as the VHF/UHF diodes in rf circuits.

For instance, it makes little sense to use vacuum tube rectifiers, which generate rf noise and have a very short lifetime when compared with properly installed solid-state rectifiers. Furthermore, solid-state diodes are instantly ready to operate; no warm-up time is required. This is particularly important in bias supplies for high-power vacuum tube amplifiers where you need to have proper bias applied before energizing the high voltage.

While on the subject of high-voltage rectifiers, the economy and reliability of a single packaged unit is recommended.* Using strings of diodes, resistors, and capacitors for high-voltage rectifiers is an open invitation to failure and is really no longer cost-effective. I can attest to this because I once used such arrangements before complete packaged units were available.

Before leaving dc applications, don't forget the lowly "idiot diode." If you leave it out you are an idiot.² Idiot diodes are used to prevent connecting the dc power with reverse polarity to a solid-state circuit. Few solid-state devices will survive such an accident.

Some typical reverse protection circuits are shown in fig. 1. The circuit in fig. 1A is by far the most common,² but will induce an additional voltage drop of approximately 0.7 volts, which may be unacceptable, especially in power amplifier applications.³ The circuit illustrated in fig. 1B eliminates the voltage drop problem. However, using a small signal type diode in this circuit may still cause burnout if the circuit is improperly powered. Forward current in this circuit is limited only by the supply and the diode resistance. Therefore, its protection effectiveness decreases if the power supply current capability is higher than the diode can handle.

The circuits illustrated in figs. 1C and 1D are recommended to prevent idiot diode burnout. They can be used with small signal diodes if the voltage drop across the series resistor is acceptable. This is often acceptable, especially when using low-voltage devices such as GaAsFETs.* Typically 50 to 100 ohms of series resistance is sufficient.

However, some diodes, especially high-speed types or those designed for use in computers, are fast enough to respond to hf signals. Any rf coupled into the power supply line, especially from a local hf transmitter, can be rectified by the idiot diode and increase the circuit voltage above that from the supply alone.⁵ Therefore a large (0.01 to 0.1 µF typical) bypass capacitor at the power supply input terminals is recommended to bypass any rf before it reaches the idiot diode.

Low-frequency diodes are also used to bypass relay coils (fig. 1E). This diode, which Amateurs often leave out, is recommended because the transient induced by the de-energizing of a simple T/R relay can cause large voltage spikes to appear on power supply lines.

Therefore, never connect solid-state circuits, especially those used for low-
noise amplifiers, to a power supply that is also used to supply a relay. This is an open invitation to disaster because the voltage spikes generated by opening a relay coil can destroy other circuits connected to the same power supply.6

The zener is another diode popular with VHF/UHFers. Actually, this type of diode is working in a normally forbidden mode — in the reverse biased or avalanche region. By careful manufacturing control, the breakdown voltage of the zener is predetermined along with the series resistance of the diode. The heat dissipation in the junction must also be removed so that thermal runaway or junction burnout does not occur.

A zener diode makes a reasonable voltage regulator or limiter with a stable breakdown voltage within a specified current range. Zeners should be used with care, however, especially as voltage regulators for oscillators, because they generate broadband low-frequency noise in the avalanche mode.

If you use a zener in an oscillator circuit, be sure to provide adequate low-frequency bypassing such as a high-value (10 to 100 μF) bypass capacitor (fig. 1G). Personally, I prefer to use the newer three-terminal voltage regulators rather than zeners because they are quieter and usually have a wider regulation range versus output current than most zeners.4

Finally, it has been shown that under certain operational conditions a three-terminal voltage regulator can be damaged. The addition of two extra diodes around the regulator is suggested (fig. 1F).4

rf detectors

One of the first major VHF-and-above applications of solid-state diodes was as rf detectors. This application, which dates back to the “good old a-m days,” is still quite prevalent, especially as the detector in police radars! Rf detector diodes are also widely used today in VSWR and rf power meter applications.

Good rf detector diodes can be quite sensitive. The lowly point contact diode can detect rf below -60 dBm (200 microvolts rms in a 50-ohm system).1 However, this will probably require some additional amplification at the output of the detector. At somewhat higher rf input levels (greater than -10 dBm or 70 millivolts), this same diode can directly drive a microammeter for power measurements.

Some typical rf detector circuits are shown in fig. 2. Figure 2A shows an optimized detector with an input matching network. Most detector diodes have a high input impedance. Therefore, the circuit in fig. 2A may exhibit narrow bandwidth.

If wide bandwidth is desired, the simple circuit in fig. 2B is usually used.7 It has lower sensitivity than a matched detector, but this is easily traded off for the wider bandwidth.
fig. 2. Typical diode detector circuits. (See text for recommended diode types.) In all cases C_b is an rf bypass capacitor. A feedthrough type 0.001 μF capacitor is recommended. R_L is the video load (10k ohms typical). (A) is recommended in narrowband applications where maximum detector sensitivity is desired. (B) shows a simple broadband detector. The 50-ohm resistor should have good rf characteristics. (C) illustrates a method for using the circuit shown in fig. 2B for power detection with a meter; (D) shows a method for increasing the sensitivity of an HCD by applying an external bias voltage. C_C is a dc blocking capacitor and R_B is the dc biasing current resistor as explained in the text.

fig. 3. Typical output voltages for different types of detector diodes versus rf input power level into a 10-k load resistor using the circuit shown in fig. 2A.

capabilities. If a meter is added in series with the detector output load (fig. 2C), a detector can be used directly as a power meter over a wide frequency range.

Before designing a detector, it is important to compare the various types of diodes that were mentioned in reference 1. The most common detector types are the point contact, the silicon junction, and the Schottky or hot carrier diode (HCD).

The point contact diode, the first sensitive solid-state detector diode, was followed by the much less sensitive junction diode in the late 1950s. First introduced in the 1960s, the HCD is 20 to 30 dB less sensitive than a typical point contact diode. However, the HCD is still more sensitive than the typical silicon junction diodes because it has a lower barrier voltage. In the mid-1970s, the zero-bias HCD was developed. It has a very low barrier voltage, making it an ideal small signal detector. Typical input-versus-output voltages for the types of detector diodes just discussed are illustrated in fig. 3.
Note in fig. 3 that below about -20 dBm (22 millivolts) most detector diodes have what is called a "square law" region where the output or detected voltage doubles each time the input power is doubled. However, above -10 dBm (70 millivolts) most detector diodes have a detected output voltage that is a linear function of the input power level. In between these rf levels is a very nonlinear region where compression takes place.

Nowadays, the low- to medium-barrier voltage HCD is usually preferred for detector applications. However, to make it competitive in dynamic range and sensitivity with point contact diodes, the barrier voltage must be overcome. This can be accomplished easily with a small amount (5 to 20 microamperes) of forward bias current applied as shown in fig. 2D.

Properly biased, the HCD offers greater forward conductivity (more output voltage for a given input power level), almost zero recovery time, and low cost. Furthermore, HCDs usually have a better impedance match than other types of diodes. They have vastly lower microphonics than other types of detector diodes. HCDs also have less flicker or 1/f noise, a phenomenon in which the noise figure of a device increases with decreasing frequency, especially below 10 kHz. Point contact diodes are very noisy and therefore unsuitable for radar applications, in which the information returned is in the very low or subaudible frequency range.

Some precautions must be observed with HCDs. They normally have a low peak reverse breakdown voltage as discussed in reference 1. When a higher reverse breakdown voltage (15 to 75 volts) is required, a "guard ring" structure must be added internally to the diode chip by the manufacturer. However, this increases junction capacitance and thus decreases the upper frequency limits of operation.

tunnel diodes

One diode that I didn’t mention previously, but is often used for rf detectors, is the tunnel diode, sometimes referred to as the Esaki diode after its inventor, Dr. Leo Esaki, who discovered the effect in 1959. It’s also referred to as a "back" diode because its main current flow is in the back biased rather than the forward biased direction. It has high sensitivity at very low rf input levels, utilizing the quantum mechanical tunneling effect.

Tunnel diodes may be manufactured using different semiconductor materials such as germanium, silicon, or gallium arsenide, depending on the frequency range desired. The main drawbacks of tunnel diodes are difficulty of manufacture (because they require a highly doped alloy junction), a lower burnout level, and a narrow dynamic range, typically only 40 dB, as opposed to 60 or more dB for a good point contact or zero bias hot carrier type diode (fig. 3).

mixers

Frequency conversion or mixing is the process which converts a signal at a low power level from one frequency to another by combining it with a higher level signal such as the local oscillator (LO) in a nonlinear device such as a mixer diode. In theory, this mixer diode generates an infinite number of sum and difference frequencies called the i-f or intermediate frequency as well as harmonics of the input and local oscillator frequency.

In practice, only a small portion of the available rf signal power is converted to the i-f. This ratio of signal level to i-f power is referred to as convers-
sion loss. This loss is primarily a function of the local oscillator level (or rf bias), the diode junction, the diode’s parasitics, and the mismatch at the rf and i-f frequencies. At higher frequencies, the junction capacitance becomes a primary limitation because it tends to bypass the junction resistance.

Figure 4A shows this mixing process schematically in a circuit which is usually referred to as a single-ended mixer. If the mixer is a downconverter, the typical receiver type, both the local oscillator and rf matching networks should be high-pass filters so that the i-f isn’t shunted to the input. Conversely, the i-f port should be a low-pass filter type of matching network so that only the i-f is present at the output. For upconversion, the filters/matching networks are reversed accordingly.

Most good detector diodes work well as mixers in a single-ended configuration. Point contact diodes were used for many years before the HCD was available. The HCD is preferred since it has lower parasitics, lower series resistance, higher conversion efficiency, and low storage time and the ability to switch from the on to the off state in almost zero time.

The single-ended mixer has many disadvantages. The matching networks all have loss and restrict bandwidth. As the i-f, rf, and LO frequencies converge, filtering becomes more complicated and the conversion loss increases accordingly. It is also difficult to adequately filter out all the frequencies causing increased conversion loss.

Some of the impedance matching disadvantages of the single-ended mixer can be overcome by using a 90- or 180-degree hybrid coupler in a balanced mixer such as shown in fig. 4B. The hybrid transformer isolates the LO and rf from each other. However, the i-f matching/filtering is still a problem and twice as much LO power is required. The double-balanced mixer or DBM solves most of these problems and is essentially two single-ended balanced mixers connected in parallel and 180 degrees out of phase (fig. 4C).

Actually, the DBM is really acting as a switch rather than a nonlinear junction. If the diodes are all similar (matched) and the transformers are well balanced, the rf, LO, and i-f ports will be well isolated from each other. Furthermore, there is suppression of the even-order harmonics, which significantly reduces intermodulation products. Finally, since the LO power is four times that required for a single-ended mixer, and less rf is across each diode, the intermodulation distortion is greatly improved.

Low series resistance and almost zero charge storage time make the HCD the ideal diode for a switching type of mixer. Furthermore, diode manufacturing technology now permits HCDs to be manufactured as either beam lead, monolithic pairs, or monolithic quads of diodes all closely matched on a single miniature sub-

To transform your shack into a DX powerhouse, combine the intelligence of Yaesu’s FT-767GX HF/VHF/UHF base station and the muscle of our powerful FL-7000 HF amplifier.

You’ll be amazed at how you can cut through pile-ups. Be heard anywhere in the world. And wake up otherwise inactive bands.

The brains of the operation: The FT-767GX. This intelligent HF/VHF/UHF base station includes four microprocessors for unparalleled flexibility and ease of operation.

Features include 160 to 10 meter transmit, including WARC bands. Optional plug-in modules for 6-meter, 2-meter and 70-cm operation. Receiver coverage from 100 kHz to 30 MHz. AM, FM, SSB, CW, AFSK modes built in. Ten memories that store frequency, mode, and CTCSS information (optional CTCSS unit for controlled-access repeaters). Memory check feature for checking memory status without affecting operating frequency. Dual VFOs with one-touch split frequency capability. VFO tracking for slaved VFO-A/VFO-B operation at a constant offset. Digital display in 10 Hz steps. Slow/fast main dial tuning. Synthesizer step programming at up to 99.99 kHz per step. Digital SWR meter. Digital RF power meter. Built-in RF preamplifier. Adjustable drive level from 0 to 100 watts. Blue fluorescent display. Built-in AC power supply.

RF clipping speech processor. IF shift for both receive and transmit (TX side allows you to adjust voice frequency response pattern). IF monitor. IF notch filter. Audio low-pass filter.

Built-in antenna tuner with memory of settings on each band. Separate antenna connectors for each VHF or UHF optional unit. Separate beverage antenna receive input on rear panel. Quick turnaround time from TX to RX for AMTOR, Packet, and QSK CW. AGC slow/medium/fast/off selection. Push-pull MRF422 transistors.
strate with a minimum of parasitics. The DBM works well as a mixer and is very simple to implement in up- or downconverters. Further use and applications of the DBM are discussed in references 8 through 10.

A newer type of mixer is the subharmonic configuration, which uses two diodes in antiparallel connection (fig. 4D). The chief advantage of this type of mixer is that the LO operates at half the normal frequency, so fewer LO multipliers are needed; this represents a significant breakthrough on millimeter-wave frequencies.

switches

Diodes can make excellent switches because they usually require only low forward current and can be remotely situated from the power supply. Therefore they can be located close to the circuitry to be switched.

Because of its high speed and fast recovery time, the HCD can be a good switch. However, its series resistance may be too high if low insertion loss is important. The HCD is also a good rectifier, as discussed earlier. Therefore HCDs can introduce some loss and intermodulation distortion, especially if the rf level across the diode is sufficient.

The PIN (positive-intrinsic-negative), a three-layer diode, was invented accidentally in 1956 and is now the most widely used solid-state switch. A PIN diode is actually no more than a lousy rectifier. The longer its “lifetime” (the inability to rectify in the presence of rf), the less likely it will be to cause intermodulation. Diodes with at least a 1- to 2-microsecond lifetime can be used in the hf region. Shorter lifetimes are fine at VHF and above.

When reverse biased, the middle or intrinsic layer of a PIN diode has extremely high resistance, with a small shunt capacitance. When a PIN diode is forward biased, it takes a finite time to switch to the “on” state. When forward biased, it acts like a current-controlled resistor: the greater the forward dc current, the lower the resistance.

PIN diodes are often used to switch rf because series resistances of less than 1.0 ohm are available. An example of a simple PIN diode switching circuit with low insertion loss is shown in fig. 5A. Low-capacitance PIN diodes will yield the highest isolation in the de-energized state, especially at the higher frequencies.

For very high isolation, two switch sections can be cascaded with a transmission line between the diodes (fig. 5B). For maximum isolation, the length of the interconnecting transmission line should be between 0.1 to 0.25 wavelengths, as explained in reference 5.

A typical two-pole PIN switch circuit is shown in fig. 5C. Commercially packaged two-pole, high-power switches suitable for switching over 100 watts through 1000 MHz (such as the M/A-Com MA8334 series) are now available. These high-power PIN diode pairs are available in a threaded stripline package for minimum VSWR.

AND THE BRAIN

And the brawn.

(rated dissipation 290 watts each) operated at 24 volts for excellent intermodulation rejection in transmitter.

Enhanced C.A.T. system for external control of transceiver from personal computer. (Software for Apple IIe/MAC, Commodore C-64, and IBM-PC is available through your Yaesu dealer.) There's also data communication with the FL-7000 linear amplifier for hands free amplifier operation.

The muscle to get you out: The FL-7000. This solid state amplifier covers 160 to 15 meters, and includes a built-in power supply, automatic tuner and lots of powerful operating features.

There's fast turnaround time for break-in (QSK) CW, HF packet radio, and AMTOR. Only 70 watts excitation for full output, and 1200 watts PEP input power. Fully protected push-pull parallel wideband "no-tune" amplifier circuit powered by 47V, 25A DC power supply. Yaesu's exclusive "DVC" (Direct Vertical Cooling Heatsink System) with bottom-mounted fan. Automatic antenna matching sensor turns off amplifier and rematches tuner circuitry if SWR rises above 2.1. Hands-free automatic band change when used with FT767GX, FT757GX or FT980. Lithium battery backup remembers antenna selection and tuner settings. Dual 2 speed fans with independent thermal sensors. Connect up to four antennas, including automatic selection via optional unit. Eight front panel LED status indicators. And more.

Get the DX advantage. Just combine the FT-767GX's brains, the FL-7000's brawn, and your special operating knowledge. What an impact you'll make on the world!
NEW
POCKET SIZE

SIZE: 4” H x 3.5” W x 1” D
MADE IN USA

$99.95 - $150.00

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden “bug” transmitters. Use with a grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

#1200HKC Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions .. $99.95

#1200HC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $137.50

#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $150.00

ACCESSORIES:

#TA-100S Telescoping RF pick-up antenna with BNC connector .. $12.00

#P-100 Probe, direct connection 50 ohm, BNC connector .. $18.00

#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories .. $10.00

ORDER FACTORY DIRECT

1-800-327-5912

OPTOelectronics inc

5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

Orders to US and Canada add 5% of total (52 min., $10 max)
Florida residents add 5% sales tax. COD fee $2.
fig. 5. Typical rf PIN switch circuits. \(C_B \) is a blocking or rf bypass capacitor. (A) is a simple series switch; (B) shows cascaded "switches" for additional isolation (see text for explanation of transmission line length). (C) shows a two-pole switch; (D) a shunt switch; (E) a typical T/R switch; and (F), typical PI type of variable attenuator.

and maximum heat dissipation.

So far, the circuits illustrated use the series configuration. PIN diodes can also be used in shunt as illustrated in fig. 5D. An example of a shunt and series switch combination used as a T/R switch to provide extra receiver protection is shown in fig. 5E. Again, note the diode separation as described in reference 5.

Often used as variable attenuators, PIN diodes can have a very linear attenuation characteristic. The circuit shown in fig. 5A can be used as a variable attenuator by making \(R_1 \) and/or the power supply voltage adjustable. More complicated circuits such as "L," "T," and "PI" types with up to three PIN diodes are also in wide use. An example of a typical "PI"-type variable attenuator circuit appears in fig. 5F.

Most PIN diodes specified for variable attenuator applications have a graded resistance versus control current, so you may need a wide range of current — 0.1 to 50 mA, typically, but this is a function of the type of PIN diode used. PIN diodes used for switching often require only a nominal fixed current. Remember that all PIN diodes used in the hf region must have longer charge carrier lifetimes to prevent intermodulation distortion.

tuning diodes

Varactors (sometimes called "varicaps" or tuning diodes) were first developed in 1958. Basically a voltage-dependent capacitor, as described in reference 1, it is always operated with reverse bias across the diode.

Most varactor diodes are used to vary the frequency of a filter or oscillator. Varactors are especially common in places where only a small capacitance change is required, such as in a BFO or RIT control. A typical remotely tuneable filter using a varactor diode is shown in fig. 6A; fig. 6B shows a VFO circuit application. High-\(Q \), low-capacitance varactors are still used in parametric amplifiers, where the diode is pumped with an external oscillator (usually called the pump) to act as a low-noise, high-gain amplifier. Note that the electronic symbol for a varactor diode is different from a standard diode with a sort of capacitor symbol tacked on to the cathode terminal.

In some applications there is sufficient rf voltage across a varactor diode to cause forward biasing, rectification, and distortion — a very undesirable situation. This phenomenon can be significantly improved or eliminated by using back-to-back varactors as illustrated in fig. 6C. However, the capacitance of each diode must then be doubled because they are now in series.

Because so many types of varactor diodes are available, many different capacitance-versus-voltage, or "CV" characteristics, may be obtained. Some examples of CV curves were provided in fig. 5 of reference 1, so they will not be repeated here. Examine the CV characteristics desired for your application to see whether abrupt or hyper-abrupt tuning characteristics are required.

Finally, when selecting a varactor diode, always check the supplier's data sheet carefully for the recommended frequency range, \(Q \), nominal capacitance at -4 volts (the standard reference voltage), and the available tuning range. Always operate a varactor so that it doesn’t become forward biased. If that is a problem, use a diode with twice the capacitance and the circuit recommended in fig. 6C as just described.

March 1987 63
ANTENNA POLARITY SWITCHER MODEL APS-1

The APS-1 is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis.

The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.

In addition to switchable outputs for two antennas, the APS-1 also contains a 6-13 volt regulated DC power supply. This feature is designed for powering items such as preamplifiers, VHF/UHF converters, etc., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

| Power Requirement (AC) | 117V ± 10% AC 50/60 Hz 15 Watt |
| Power Requirement (DC) | 11-16 VDC 500 mA |

Outputs: Two 12 VDC unregulated, switched (antenna relay supply). One 6-13 VDC variable regulated auxiliary supply.

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

P.O. BOX 1000
MORGAN HILL, CALIFORNIA 95037
(408) 779-7363

NEMAL ELECTRONICS

NEMAL ELECTRONICS, INC.
12240 N.E. 14 Ave., No. Miami, FL 33161
24-HR. FAX (305) 895-8178

This publication is available in microform from University Microfilms International.

MULTI-BAND SLOPERS

1986-87 CALL DIRECTORY

| Name Index | Geographic Index | $/All three | $/Shipping per order | $/Add $20

BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777

P.O. BOX 3924
MT. PROSPECT, IL 60056

Send for a complete listing of all other unique articles.
multipliers

Diodes play a very important function as frequency multipliers. There are at least three types of diode multipliers in common use: varactor, resistive, and "step." I'm sure that most readers have seen multiplier circuits where a diode is driven with a moderate amount of rf, typically 1 to 10 milliwatts, in order to generate harmonics. A typical circuit example is shown in fig. 7A.

In this particular application, the available harmonic power is primarily a function of the diode's nonlinear capacitance-versus-voltage characteristic and the stored charge in the diode, as mentioned earlier. In both regards, the point contact or typical silicon junction diodes (even 1N914s have worked!) are preferred because they generally have a greater nonlinear capacitance change near zero bias and are more likely to take longer to "dump" the stored charge, which is a desired characteristic of a good multiplier.

The HCD would be a less efficient multiplier in the above configuration because it falls into the resistive multiplier class. It has very little capacitance-versus-voltage change (see fig. 5 in reference 1) and is known for its quick switching response or ability to dump the stored charge almost instantly, as mentioned earlier.

However, if you operate an HCD in a balanced doubler configuration (analogous to a typical 60-Hz full wave power supply rectifier) similar to the frequency doubler circuit provided in reference 12, high efficiency can be obtained. Using HCDs in the circuit shown in fig. 7B yields good doubler efficiency results (only 6 to 12 dB conversion loss.) Furthermore, the fundamental and third harmonics are typically rejected by 20 to 30 dB. Hence less output filtering is required.

Although balanced HCD doublers have moderate conversion loss, they are very stable and have low noise. Sometimes they're easier to work with than transistor doublers. With the availability of silicon MMICs (microwave monolithic integrated circuits), the conversion loss of a balanced HCD or the single-ended diode multiplier as described above can be inexpensively brought back to unity or greater gain as described in reference 12. I've been using this technique for many years with great success, and was doing so even before MMICs were available.

Moderate power (5 to 50 watt) varactors have been used for many years as doublers and triplers up through 23 cm (1296 MHz). Diodes such as the surplus Microwave Associates MA 4060 low-cost, threaded-package, high-power varactor are in widespread use. Even small signal varactors such as those discussed earlier for tuning oscillators and filters will work well at low input power levels from 10 to 1000 milliwatts.

A typical varactor diode multiplier circuit (fig. 7C) consists of an input matching network, a varactor diode with its associated bias resistor, and the output filter network. Although their efficiency decreases when varactors are used as triplers, it can be enhanced considerably by adding an idler circuit. This circuit consists of a high-Q series circuit tuned to the second harmonic of the input frequency (fig. 7C).

SRD multipliers

The SRD (step recovery or "snap" diode) is the "king" of multiplier diodes, especially when high efficiency and higher order multiplication (greater than 3 times) is required. SRDs have a structure very similar to that of a PIN diode.

The capacitance of an SRD can usually be assumed to be independent of minor voltage changes and has a CV characteristic similar to that of an HCD. When the rf input voltage goes positive, the diode turns on and stores a charge in the intrinsic region. When the applied voltage goes negative, it takes a finite time for the stored charge to decrease (the "snap" time), at which time the diode will abruptly turn off. During this transition period, the
SRD conducts current for a very short period of time as if in a short circuit. This rf current is very rich in harmonics.

A typical SRD circuit is illustrated in fig. 7D. Note that the SRD has a different electronic symbol than other diodes. At first glance the circuit closely resembles that of the varactor multiplier (fig. 7C). However, there are a few subtleties. The input circuit has an extra section or “impulse” network, as illustrated. The bias circuit is slightly different. In the case of the SRD multiplier, a very low value bias resistor is used (typically 200 to 500 ohms, versus 50 to 100 kilohms for the varactor multiplier).

Another version of the SRD is the BIMODE™ or A mode™ diode, which is enhanced for high power and high efficiency operation as a doubler or tripler. For best efficiency as a tripler, this type of diode requires an idler circuit similar to the one in a varactor multiplier (fig. 7C).

SRD multipliers can have conversion losses as low as a few dB — hence their popularity as multipliers. SRDs are usually capable of operation at up to 5 to 10 watts of power. If higher power (up to 50 watts) is required, SRDs are available in stacked or multichip packages.

SRDs are often used as impulse or “comb” spectrum generators for generating harmonics over a large frequency spectrum, as described in reference 14. Further information on designing SRD multipliers or comb generators is beyond the scope of this month’s column, but interested persons are encouraged to seek out copies of references 15 and 16.

limiters

It’s often wise to place a circuit ahead of the input to your receiver to provide protection from stray rf, T/R relay leakage, or static. Such a circuit is often referred to as a limiter. The simplest limiter is a diode, typically an HCD, connected to ground across the input line to a receiver (fig. 8A) or from the base to emitter of a bipolar transistor (fig. 8B).

This type of circuit is poor at best because it conducts only on one side of the input signal. Back-to-back diodes (fig. 8C) are better. However, neither configuration provides any protection from stray out-of-band rf. As a result, if moderate rf power is present on your transmission line, harmonics that will overload or degrade receiver performance may be generated by the limiter. Furthermore, HCDs can handle only low power (less than 1.0 watt); because they have a very low barrier voltage, 0.3 volts, they are easy to overload.

Placing a bandpass filter ahead of a limiter (fig. 8D) helps. (This was recommended in references 2 and 6.) A further limiter improvement would be to include the diode within the filter so that the capacitance of the diode could be tuned out. If the HCD barrier voltage is too low, diodes can be hooked in series until a suitable “turn-on” voltage is obtained. However, the HCD is a poor choice for a limiter diode because it’s really a rectifier and doesn’t have a very low impedance, even when turned on hard.

On the other hand, a PIN diode with a very thin L (intrinsic layer), typically 2-10 microns thick, makes an excellent rf limiter. PIN limiter diodes act like a power-dependent variable resistor with very low turn-on resistance through the mechanisms of charge injection and storage similar to rectification. Because of the long carrier lifetime of the PIN diode, only one di-
Outstanding mechanical design makes the IsoPole the only logical choice for a VHF base station, especially for Packet operation. All Isopole antennas yield the maximum gain attainable for their respective lengths and a maximum signal on the horizon. Exceptional decoupling from the feed line results in simple tuning and a significant reduction in TVI potential. The IsoPole antennas are all impedance matched in the factory so that no field tuning is required. The IsoPoles have the broadest frequency coverage of any comparable VHF base station antenna. This means no loss of power output from one end of the band to the other, when used with SWR protected solid state tranceivers. Typical SWR is 1.4 to 1 or better across the entire band.

A standard 50 Ohm SO-239 connector is recessed within the base sleeve (fully weather protected). With the IsoPole you will not experience aggravating deviation in SWR with changes in weather. The impedance matching network is weather sealed and designed for maximum legal power. The aerodynamic cones are the only appreciable wind load and are attached directly to the support (a standard TV mast which is not supplied).

IsoPole Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. Coverage (Mhz)</th>
<th>144</th>
<th>220</th>
<th>440</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135-160</td>
<td>210-230</td>
<td>415-465</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>12Mhz @ 146Mhz</td>
<td>>15Mhz @ 220Mhz</td>
<td>>22Mhz @ 435Mhz</td>
<td></td>
</tr>
<tr>
<td>Power Rating</td>
<td>1 kw</td>
<td>1 kw</td>
<td>1 kw</td>
<td></td>
</tr>
<tr>
<td>Gain**</td>
<td>3 dbd</td>
<td>3 dbd</td>
<td>3 dbd</td>
<td></td>
</tr>
<tr>
<td>Radiating Element Length</td>
<td>125.5" (3.2m)</td>
<td>79.25" (2m)</td>
<td>46" (1.2m)</td>
<td></td>
</tr>
<tr>
<td>Amateur Net Price</td>
<td>$49.95</td>
<td>$49.95</td>
<td>$69.95</td>
<td></td>
</tr>
</tbody>
</table>

** dbd — db gain over a dipole in free space

High Performance Hand-Held Antenna — The Hot Rod

The Hot Rod antenna can be expected to make the same improvement to hand-held communications that the IsoPole antennas have made to base station operation. Achieve 1 or 2 db gain over ANY 5/8 wave two meter telescopic antenna. The factory tuned HR-1 is 20% shorter, lighter and places far less stress on your hand-held connector and case. It will easily handle over 25 watts of power, making it an excellent emergency base or mobile antenna. In the collapsed position, the Hot Rod antenna will perform like a helical quarter wave. Three Hot Rods are available; HR-1 1/2 wave 2M Ant., HR-2 for 220 Mhz, and HR-4 for 440 Mhz. Amateur Net Price on all Hot Rods is $19.95.

For either base station or hand-held operation AEA has the perfect VHF/UHF antenna. Put more punch in your Packet station with an AEA IsoPole or Hot Rod antenna. To order your new antenna contact your favorite Amateur Radio Distributor. For more information contact Advanced Electronic Applications, P.O. Box C-2160, Lynnwood, WA 98036, or call 206-775-7373.

** Prices and Specifications subject to change without notice or obligation.
CALL LONG DISTANCE ON YOUR HANDHELD

The Model 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate SSB or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, IC-2AT, Yaesu, Santec, and Ten-Tec. Only 300 mw input will deliver 5 watts out; 3 watts in will deliver 35 watts out. Maximum input drive level is 5 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 335A
Kit $69.95
Wired & Tested $89.95
Communications Specialists' latest excavation brings to light yet another dynamite discovery—our new dip switch programmable SD-1000. No need to tunnel your way through Two-Tone Sequential decoding anymore. We've mined this amazing unit! Now, for the first time, you can stock one unit that will decode all calls in a 1000-call paging system with \(\pm 0.2 \text{Hz} \) crystal accuracy. The EEPROM onboard memory can even be programmed for custom tones, and every unit includes group call. Universal switched outputs control your call light, squelch gate and horn. The SD-1000 can also generate CTCSS and decode Two-Tone Sequential. Its miniature size of \(2.0 \times 1.25 \times 0.4 \) in is no minor fact either, as it's a flawless companion for our PE-1000 Paging Encoder. We ensure one-day delivery and our one-year standard warranty. Tap the rich vein of Communications Specialists and unearth the SD-1000 or other fine gems.

$59.95 each
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

- Newsletter Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.
- Satellite Tracking Software Available for most popular PCs.
- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks
- Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
ode is needed, since it stays on for a longer period than the rf cycle.

A single such PIN limiter diode can be substituted for an HCD (fig. 8E). If the I region is very thin, the diode can respond in nanoseconds. PIN limiter types of diodes have very low resistance and don't rectify the same as HCDs, as described earlier.

Thicker I region diodes with up to 50 nanosecond turn-on times are used for higher power operation. Power handling up to/in excess of 10 kilowatts for 1 microsecond duration is now possible! A thin and thick PIN limiter diode can be cascaded for additional protection (fig. 8F). Again, separate the diodes by 0.1 to 0.25 wavelengths, as discussed in reference 6. The inclusion of an HCD in the circuit shown in

FEATURES

All CMOS logic switch
Changes filter/limiter parts for VHF or HF
Self contained — Fits inside the TNC case
No recalibration of tones
Same precise tones as original
Easy to build and install
One hour average
Prime quality parts

Now you can use your TAPR TNC:2 or TNC:1 (or any close clone — AEJ, MFJ, Heath, Paccom, etc.) on both VHF at 1200 baud and HF at 300 baud. The flick of a switch changes critical filter and timing components to optimize the TNC's on-board modem for VHF or HF operation. The APA switch uses all CMOS logic, has a current drain of less than 5ma and fits conveniently inside the TNC case. It is easy to build and install, takes less than an hour in most cases. APA supplies prime parts and IC and complete step by step instructions. You bought the best TNC — now make it complete. $30 air mail postage paid. Send check or money order (no credit cards please.)

AMATEUR PACKET ALASKA
AX.25 COMMUNICATIONS TRAIL
ESTER, ALASKA 99725

EXPLORE HF PACKET TNC VHF/HF SWITCH KIT

FEATURES

- All CMOS logic switch
- Changes filter/limiter parts for VHF or HF
- Self contained — Fits inside the TNC case
- No recalibration of tones
- Same precise tones as original
- Easy to build and install
- One hour average
- Prime quality parts

Now you can use your TAPR TNC:2 or TNC:1 (or any close clone — AEJ, MFJ, Heath, Paccom, etc.) on both VHF at 1200 baud and HF at 300 baud. The flick of a switch changes critical filter and timing components to optimize the TNC's on-board modem for VHF or HF operation. The APA switch uses all CMOS logic, has a current drain of less than 5ma and fits conveniently inside the TNC case. It is easy to build and install, takes less than an hour in most cases. APA supplies prime parts and IC and complete step by step instructions. You bought the best TNC — now make it complete. $30 air mail postage paid. Send check or money order (no credit cards please.)

AMATEUR PACKET ALASKA
AX.25 COMMUNICATIONS TRAIL
ESTER, ALASKA 99725

Dustcovers

by KAGIL

- PROTECT your GEAR
- Waterproof — PAK Nylon
- FIVE Colors
- Economical
- For ALL Amateur Radio Gear, Vintage thru Solid State...
- Custom covers
- MINI covers

Send SASE Today

Samples & Brochure
KAGIL Dustcovers
PO BOX 06780
Portland, OR 97206

TROUBLESHOOTING MICROPROCESSOR-BASED EQUIPMENT AND DIGITAL DEVICES

Attend this 4-day seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques.

Call or write for brochure with full details and current schedule. Fee is $795.00

- 8 and 16 bit systems
- Signature analysis
- Logic analysis
- Machine-language programming
- Diagnostic programs
- Emulation
- Bus Systems

MICRO SYSTEMS INSTITUTE
Garnett, Kansas 66032
(913) 858-4695
MR. NICAD REPLACEMENT BATTERIES FOR COMMUNICATIONS

Nickel-Cadmum, Alkaline, Lithium, etc.

ICOM - BP-2, BP-3, $12.00
BP-2C, BP-3C, BP-3CP, $10.00
NEW HSD PACKS FOR ICOM 28, 2AT, 705, $50.00 each.
Ham, CB, etc.

Yamaha, Kenwood, Ten-Tec, Icom, etc.

MR. NICAD E.H. YOST & CO.

EVERETT H. YOST

RETAIL BOX #37

SAPAK, WA 98383

(608) 843-3194

Send for nickel battery price list.

BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- NO EXPENSIVE INTERFACE REQUIRED
- EASY TO TIE UNTIE KNOTS
- EASY TO CUT WITH YOUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

FOR MORE INFORMATION CONTACT

GIVE YOUR EARS A BREAK!

AUTO-KALL AK-10

The AUTO-KALL AK-10 is the direct selecting unit that will connect to any external speaker jack on your VHF / UHF FM transceiver, scanner, etc. Four spoken words are transmitted that will allow you to dial in the frequency that you desire. It will allow you to listen to the most remote frequencies that you would normally not be able to hear. It can be used to play back any audio signal. It can be used to play back any audio signal.

AUTO-KALL AK-10

$89.95

Auto Mail Xtreme

117 VAC power supply and audio patch cord included.

DOPPLER SYSTEMS, INC. P.O. Box 31819 Phoenix, AZ 85046 (602) 488-9755

DIRECTION FINDING

- Interference Location
- VHF and UHF Coverage
- Computer Interface
- Speech Synthesizer
- 12 VDC Operation

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

ARNOLD COMPANY NEW PHONE: 214-395-2292 FOR SUPER FAST PRICES
fig. 8G will help speed up turn-on time of a thick PIN limiter, especially at low power levels, for further low-power protection.

noise diodes

So far I haven’t mentioned the noise diode, a special type that works in the avalanche mode similar to the operation of a zener diode. These diodes aren’t always easy to construct and therefore are usually more expensive than conventional ones.

Noise diodes are particularly useful for testing receiver noise figures. Often Amateurs use point contact diodes (such as the old standby 1N21 type) in noise figure generators. Back biased transistor base to emitter junctions have also been used. Both of these diodes are tricky to use because they may have a low impedance and some reactive component when generating noise. Therefore, if you use them, place a large value (greater than 20 dB) attenuator pad between the diode noise generator and the device under test.

Good noise diodes generate “flat” or white noise over a wide frequency spectrum. Several microwave diode suppliers now supply noise diodes that are broadband and have excess noise ratios exceeding 35 dB. If you’re interested in the subject, I’d suggest that you contact one of the suppliers, since this is a very specialized area.

oscillator diodes

These diodes were very popular before the arrival of efficient multipliers and bipolar/GaAsFET rf sources. Probably one of the earliest microwave diode oscillators used the negative resistance characteristic of a tunnel diode. However, tunnel diodes didn’t generate much rf power.

Great excitement followed the invention, in 1963, of the Gunn diode, named for its inventor, Dr. J. B. Gunn, of IBM Research. A bulk-effect device that uses GaAs as the semiconductor material, it is terribly inefficient (typically less than 5 percent) but will generate up to several hundred milliwatts of microwave power in the 4- to 100-GHz spectrum if properly biased and designed into a suitable tuning structure. Gunn diodes are the main component in GunnPlexers.8

The many other types of microwave and millimeter-wave oscillator diodes include but are not limited to the TEO (transferred electron oscillator), TRAPATT (trapped plasma avalanche triggered transit), BARITT, IMPATT (IMPact-ionization Avalanche Transmit Time), and avalanche. The choice of an oscillator diode represents a tradeoff between frequency range, output power, power supply requirements, efficiency, and noise characteristics. No further discussion will be conducted at this time because there is probably only limited interest among Amateurs and stable sources followed by multipliers seem to be in current favor.

optical diodes

It would be unfair to ignore optical
short circuit rewinding with CAD

Two corrections should be made to "Rewinding Transformers with CAD" by Hugh Wells, W6WTU (December, 1986, page 83). One should be added and another changed as follows:

935 IP = VA/(0.9*EP) : REM INTERIM CURRENT CALCULATION
940 CP = RC*IP/2: REM CALCULATES COPPER LOSS

diodes because they're really operational in the upper or top of the millimeter-wave region, beyond 300 GHz! Most operate in the visible light region. Probably the most inexpensive and well known is the LED or light emitting diode.

Another well known type of optical diode is the LASER (Light Amplification by Stimulated Emission of Radiation). Amateur QSOs have been reported using lasers in the 474 THz region (474,000 GHz) region. In this instance, a photodiode is used as the detector. I'd highly recommend reference 17 for those interested in communications by light waves.

Finally, let's not forget the common photovoltaic (solar) cells, which can be used to provide power for operating Amateur gear, especially in remote areas where commercial power is either unreliable or not readily available. Typical solar cells will generate approximately 0.5 volts per cell, so several may be connected in series to power typical Amateur equipment.

summary

In this and last month's columns, I've tried to show that diodes are still very important to the VHF/UHF/microwave and millimeter-wave enthusiast. Time and space didn't allow all diode types to be described nor full applications of all types to be noted.

Diodes are too often taken for granted because they're so small and have only "two terminals!" Just because diodes appear so simple is no reason to treat them lightly. I hope that the information and circuits provided here will answer some questions that I often hear asked about diodes and encourage greater appreciation for their proper use in Amateur applications.

new DX records

Last month's column announced a new 9-cm (3456 MHz) microwave DX record. Since that time more details have become available. WB5LU A, operating portable with 10 watts and a 4-foot dish at 2680 feet ASL in Mena, Arkansas (EM24U0) contacted WA5TNY, who was operating portable at 600 feet ASL with 1.5 watts and a 6-foot dish in Fairly, Texas (EM11AU). Using CW, the two established a new North American DX rec-
UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140,000-153,000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz.

CAP/MARS/NAVY MARS, BUILT IN: Extends the wide frequency range by facilitating use of CAP and all MARS FREQUENCIES including NAVY MARS. COMPARE!

TINY SIZE: Only 2 inches high, 5 1/2 inches wide and 7 1/4 inches deep!

MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.

UP TO 11 NONSTANDARD SPLITS: COMPARE this with other units!

20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.

DUAL MEMORY SCAN: Scan memory banks separately or together. ALL memory channels are tunable independently. COMPARE!

MEMORY SCAN LOCKOUT: Allows you to skip over channels you don't want to scan.

TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!

BLSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-reume.

DISCRIMINATOR CENTERING: COMPARE!

PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when a channel is occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored for up to 5 years even if power is removed.

FREQUENCY REVERSE: Allows you to listen to repeater input frequency.

ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly.

CRISP, BACKLIT LCD DISPLAY: Easily read no matter what the lighting conditions!

DIGITAL S/RF METER: Shows incoming signal strength and relative transmitter power.

MULTI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.

FULL 16-KEY TOUCHTONE PAD: Keyboard functions as auto-patch when transmitting.

MICROPHONE CONTROLS: Up/down frequency control and priority channel recall.

PL TONE GENERATOR BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE!

TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!

HIGH/LOW POWER: Select 25 watts or 5 watts output — fully adjustable.

SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for 20-dB quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!

DIRECT FREQUENCY ENTRY: Streamlines channel selection and reprogramming.

OTHER FEATURES: Rugged dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.
The standard of the electronics industry is setting a new standard for amateur radio use as well.

The Fluke 77 multimeter is ideal for testing and repairing any amateur radio gear. It's inexpensive, easy to use, and filled with professional features. Plus a full line of accessories let you measure high frequency, high voltage and current, and temperature. Made in the U.S.A. and backed by a 3-year warranty, the new Fluke 77 is the world's first handheld meter to combine analog and digital displays.

For a free brochure or the distributor nearest you, call toll-free 1-800-227-3800, ext. 229. Or write John Fluke Mfg. Co., Inc., P.O. Box C9090, Everett, WA 98206. Distributor programs available.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

<table>
<thead>
<tr>
<th>FLUKE 73</th>
<th>FLUKE 75</th>
<th>FLUKE 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>$79</td>
<td>$99</td>
<td>$141</td>
</tr>
</tbody>
</table>
| Suggested U.S. list price, effective January 2, 1987

Specialized Communications
For Today’s Radio Amateur!

If you are active in FSTV, SSTV, FAX, OSCAR, PACKET, RTTY, EME, LASERS, or COMPUTERS, then you need “SPEC-COM!”

Published 10 Times
Per Year
By W8QCD
(Serving Amateur Radio Since 1967!)

48 Pages per issue. Loaded with News, Articles, Projects, and Ads.

SIGN UP TODAY AND GET 3 BACK ISSUES “FREE”!

Join our growing membership at the regular $20 per year rate and we will send you 3 back issues (of your choice) absolutely “free”! We also have 2 and 3 year discounts at just $38 and $56. Foreign surface and air mail subscriptions also available, please write for details. Add $2.00 for a special 19-year “master article index” issue. Allow 2–3 weeks for your first issue. Special TRS-80C, Commodore 64, Apple, IBM Software Catalog Available!

THE SPEC-COM JOURNAL
P.O. BOX H,
LOWDEN, IOWA 52255

Credit Card Orders (5% added)
160-meter equipment: problems and design hints

The 160-meter band occupies a very special place in the history of Amateur radio. On the night of November 27, 1923, a striking event occurred. Using a special wavelength near the "top band," 1MO and 1XAM of the United States made a transatlantic contact with French 8AB. American and European Amateurs were in QSO for the first time! A mighty ocean had been spanned and, at the same time, millions of dollars worth of commercial long-wave communication equipment had been rendered obsolete. Short waves were the coming thing, and the rush to explore the very short waves - possibly as short as 20 meters - was on.

Over the years, Amateur interest in the 160-meter band has waxed and waned. It's now on the increase, and there's a lot going on in this historic portion of the radio spectrum. Most modern transceivers cover the 160-meter band, and more Amateurs are turning to the "gentleman's band" as a source of enjoyment.

special problems of 160 meters

The 160-meter band is a lot closer to the a-m broadcast band than it is to any other Amateur band, and some Amateurs find that everyday techniques they're comfortable with, say, on 80 meters, don't seem to work as well on 160. This can bring about problems that are unique to this band.

Many Amateurs have transceivers that use the popular 6146B tubes in the output stage. Some of them have found, to their chagrin, that the transceiver won't load properly at 1.8 MHz, even though everything seems to work properly at 1.9 MHz or higher in the band. But at the low end, adjustments seem to "run off the end of the dial." In my case, my transceiver worked perfectly well down to about 1830 kHz, loading properly and providing a good 100-watts output into a 50-ohm dummy load. Alas, when I tuned up at 1800 kHz, the tuning control was fully counterclockwise, loading seemed sluggish, and the power output dropped to about 80 watts. Worst of all, the amplifier tubes ran very hot.

It didn't take much investigation to show that the amplifier plate circuit wouldn't tune that low in frequency - everything "fell apart" at about 1830 kHz. A phone call to the factory service center brought about the reluctant admission that operation was indeed "marginal" at the low-frequency end of the 160-meter band.

So - what to do? There was plenty of action around 1800 to 1810 kHz, and I thought it would be nice if the transceiver worked properly in this critical range - so near to the "outer limit" of the transceiver's design.

To determine the possibilities, the plate circuit of the transceiver (fig. 1) was examined with a computerized pi-network program, using the circuit values shown in the schematic in the transceiver manual. Sure enough, reaching the low-frequency end of the 160-meter band was outside the tuning limit of the transceiver - by the merest margin — about 30 kHz in my case.

I didn't like the idea of tearing into the transceiver to modify the circuitry, so I looked for another answer via the pi-network program. Table 1 lists the component values needed for two different output impedances. Holding the plate impedance, circuit Q, and frequency constant, the output impedance was increased from 50 ohms to 75 ohms. The latter value was chosen because it's easy and inexpensive to obtain 75-ohm coax cable (RG-59/U and RG-11/U) and most transceivers are rated for a 75-ohm load. Note that while the value of the plate circuit inductance (L) remains fairly constant,
The solution to most interference, intermod, and desense problems in AMATEUR and COMMERCIAL systems.

- 40 to 1000 MHz - tuned to your frequency
- 5 large helical resonators
- Low noise - high overload resistance
- 8 dB gain - ultimate rejection > 80 dB
- 10 to 15 Volts DC operation
- Size 1.6 x 2.6 x 4.75" excl. connectors
- FANTASTIC REJECTION!

Typical rejection:

<table>
<thead>
<tr>
<th>Band</th>
<th>Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>±600 KHz @ 144 MHz</td>
<td>-28 dB</td>
</tr>
<tr>
<td>±6 MHz @ 220 MHz</td>
<td>-40 dB</td>
</tr>
<tr>
<td>±5 MHz @ 450 MHz</td>
<td>-50 dB</td>
</tr>
</tbody>
</table>

Price - CALL bipolar w/RCA jacks
Connector options: BCN $5, UHF $6, N $10
SUPER HOT! GaAs FET option $20

AUTOMATIC IDENTIFIERS

- For transceivers and repeaters - AMATEUR and COMMERCIAL
- Automatic operation - adjustable speed and amplitude
- Small size - easy installation - 7 to 15 volts DC
- 8 selectable, reprogrammable messages - each up to 2 min long
- Wired, tested, and programmed with your messages

Model ID-1 - $49.95 Model ID-2 w/2 to 10 minute timer - $69.95

We offer a complete line of transmitter and receiver strips and synthesizers for amateur and commercial use.

Request our free catalog - Allow $2 for UPS shipping - Mastercard and VISA welcome

GLB ELECTRONICS, INC.
Dept H, 151 Commerce Pkwy., Buffalo, NY 14224
716-675-6740 9 to 4

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED...

OnSat

The best in satellite programming! Featuring:
- All Scheduled Channels
- Weekly Updated Listings
- Magazine Format
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights
- Specials Listing and Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV®/OnSat®
P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384
SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020
both the tuning (C1) and loading (C2) capacitance values decrease by a noticeable amount. Switching to a 75-ohm feed system, therefore, can provide a greater tuning margin at 1.8 MHz for a given amplifier plate circuit network. Since the actual pi-network inductor wasn’t changed, the tuning latitude gained isn’t as much as predicted in this exercise, but it’s still enough to permit an otherwise out-of-tune amplifier plate circuit to resonate properly at 1800 kHz. Accordingly, the transceiver was connected to a 75-ohm dummy load via RG-59/U coax and a 75-ohm model SWR meter. It was now possible to tune up properly at 1.8 MHz, with the amplifier tubes running much cooler.

Although switching to a 75-ohm feed system offered one solution, another equally satisfactory method consisted of adjusting the 50-ohm feed system to reflect the proper reactance back into the final amplifier that would detune the pi-network circuit in the proper phase to allow sufficient tuning range on the tuning and loading controls. This can be done by changing the coax line length between the antenna and the transmitter. Accordingly, various lengths of 50-ohm coax were inserted into the original antenna feed system until a length was found that permitted proper tuning of the transceiver. It’s difficult to specify the “magic” length because that depends upon the antenna installation and the equipment in use. By changing coax cable length from antenna to transceiver, the tuning settings of the amplifier stage could be varied to produce a reasonable tuning sequence for the transceiver.

Note that changing the length of the coax did not change the SWR on the antenna system — it merely moved the transceiver back and forth along the coax line so that the combination of SWR and phase shift along the line produced the wanted results, namely, the ability of the transceiver to tune and load properly.

160-meter amplifier construction hints

Building a linear amplifier for 160 meters? No big problem, provided you remember that this creation is operating at a frequency closer to the broadcast band than to any other ham band, and design accordingly. The amplifier shown in fig. 2 serves as an example. Only the rf circuitry is considered; the metering and control circuits aren’t involved in this examination.

The first consideration is that all bypass capacitors have to be an order of magnitude larger than those values used on the higher frequency bands. For low-voltage, low-power circuits, a bypass or coupling capacitor of 0.05 µF is satisfactory. For high-voltage circuits, such as plate blocking and

| Table 1. Pi network component values for different load impedances. |
|-----------------|-------|---------|---------|---------|-------|
| Q | Frequency | C1(Input C) | L(Induct.) | C2(Output C) | Load Z |
| 0 | 0.18 MHz | 682 pF | 0.93 | 3708 pF | 50 ohms |
| 0 | 0.18 MHz | 660 pF | 14.00 | 3020 pF | 75 ohms |
New rigs and old favorites, plus the best essential accessories for the amateur.

PACKET POWER

- New rig programs and trade in your old HT
- Kenwood TS-440S
- Icom IC-704
- Kenwood Ten-Tec ZS10
- KDK FM-240NT
- Meave Amps 15% off
- Tokyo Hy Power H11K AMP No. 4C250B 690.00

ACCESSORIES

- Newer AMPS
- Newer RIGS
- Newer HTS
- Newer UNITS
- Newer HEADS
- Newer本書
- Newer accessories

Belden

- Newer cables
- Newer types
- Newer connectors
- Newer Free Sample Booklet

AMPHENOL

- Newer cables
- Newer connectors
- Newer Free Sample Booklet

ICOM

- Newer antennas
- Newer accessories
- Newer Free Sample Booklet

USED EQUIPMENT

- All equipment, used, clean, with 90 day warranty and 30 day trial
- Six monthfull trade in against new equipment. Safe price refunded if not satisfied
- KWM 3802/CW
- ETOALPHA 77, Clean
- ICOM IC-745
- Ten-Tec 505 Argonaut
- YAESU FT-101F Call for latest used gear list
- YAESU FT-901 DMCW
- Kenwood TS-430S/CW
- TS-430S/acc
- TS-520S
- Drake TR40w, clean

TOWER ACCESSORIES

- 1/4" E.H. Guy cable
- 3/16" E.H. Cable
- 1/4" Guy Cable
- 3/16" Guy Cable
- 3/8" x 6" Tubing
- 3/16" Wire Rope Clips
- 1/4" wire clips
- 1/4" Thimbles
- Porcelain 5000 Guy Insulator (3/16")
- Porcelain 502 Guy Insulators (3/16"

POLICIES

- Minimum order $10.00
- Mastercard, VISA, or C.O.D.
- All items F.O.B. Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call to check the status of your order. Texas residents add sales tax. All items full factory warranty plus MADISON warranty.

DON'S CORNER

- Beginners Guide to Antennas & The Butternut HF-6V is the most popular Amateur Antenna being sold today.
- Thousands in use all over the world today.

STOCK ITEMS

- Call for prices
- Frequency Bands (MHz)
- Power (W)
bypass units, a value of 0.005 μF will suffice.

In low-voltage circuits, the Sprague "cera-mite" series of capacitors will do the job: the type 5HKP10 or 5GAP10 rated at 500 volts are satisfactory. For medium-high voltages, the Sprague 0.0047 μF, 6 kV (dc) capacitor, type 60GAD47 is suggested. Sangamo also makes a 500-volt dc-rated, 0.02 μF mica capacitor (FD203J03) that is satisfactory for low voltage circuits. Two of these units can be paralleled for 0.04 μF.

A larger-than-normal filament choke (RFC2) should be employed on 160 meters. If the choke is too small in inductance, it will tend to detune the pi-network input circuit because the choke is in parallel with capacitor C2 and introduces "negative capacitance" across C2, in addition to allowing rf power to pass down the choke and into the filament transformer. A suitable choke consists of 20 bifilar turns of No. 12 wire (Formvar) on a 0.5-inch diameter, 7-inch long ferrite rod (μ = 950).

A pi-L plate circuit is recommended to provide additional harmonic attenuation over that of a pi-network. Using high power, it's possible for the second harmonic of a 160-meter transmitter to fully meet FCC specifications, yet provide enough power in the 80-meter band to seriously affect nearby Amateurs operating close to the harmonic frequency. In this case, the pi-L configuration provides an extra 15 dB of second-harmonic attenuation at very little additional cost to the amplifier.

The greater rejection of this circuit allows the designer to decrease the network Q to provide smaller component values. In this case, a Q of 8 was chosen. The required component values for resonance at 1.8 MHz are given in the drawing. A total of 300 pF, with at least 100 pF of it variable, will serve as the tuning capacitor, and a total value of 2000 pF, with 1000 pF of it variable, will do the job as the output loading capacitor.

Transmitting-type, zero-coefficient ceramic capacitors (such as the Cen-tralab type 850S) may be used to pad capacitor C3. Large, mica transmitting-type capacitors (often found at flea markets) can be used for padding the loading capacitor, C4.

The plate rf choke (RFC 1) must have sufficient inductance so that it doesn't affect the pi-L network to any great extent. From an rf point of view, the choke is in parallel with tuning capacitor C3. If the choke is too small, the value of C3 must be increased to compensate for the inductance of the choke. A minimum inductance for RFC 1 for 160-meter operation is about 250 μH. An inductance value up to 1 mH is more acceptable.

Note that the plate blocking capacitor has a value of 0.005 μF. This is considerably larger than found in amplifiers designed for the higher frequency bands.

A 20-ohm, 20-watt wire-wound resistor is connected in series with the B-plus lead. This serves as a low-Q rf choke for VHF harmonic suppression as well as a safety device in case of an ion flashover in the amplifier power tubes. The plate bypass capacitors on each side of this choke are 0.005 μF, 5 kV-ceramic units.

When such large coils as L2 and L3 are used in the plate circuit, it's imperative that they not couple to the cabinet. If an all-metal cabinet is used, it can easily become a one-turn, shorted inductor closely coupled to the output tank. This fact was brought to light in a homemade amplifier built within a steel enclosure. The efficiency of the amplifier was mysteriously low and the cabinet ran very warm — warmer than one would think, since an efficient cooling system was used. It was found that the circulating rf currents in the enclosure accounted for nearly 200 watts of output power! No wonder the cabinet ran uncomfortably warm! Re-arranging the amplifier coils cured the power loss problem.

design summary

Coupling and bypass capacitors for a 160-meter amplifier have to be an order of magnitude larger than those chosen for an amplifier whose lowest
The document contains technical specifications and features of the Super Com Shack 64 Remote Control/Dual Remote/Autopatch, along with pricing information and other related products. The text is organized in a list format, detailing various functions and specifications of the equipment.

Super Com Shack 64

- **Remote Control/Dual Remote/Autopatch**
 - Control your shack from your mobile H/T
 - System control interface
 - Cartridge Option
 - repeater TX/RX

Super Remote Controller

- Remotely programmable with Touchtones/character to change up to 999 access codes from your H/T or telephone
- Synthesized speech consisting of high-quality male or female digitized human voice
- Dual Remote base (H/T & VHF)
- Autopatch & Super Repeat Controller
- Program voice dial tone message from your H.T.
- Automatic voice clock & activity timers
- Multiple commands can be executed at once (up to 16 digits per command string)
- Sub-audio tone & speed dial compatible
- Alarm clock & auto-exclude command string
- Option to programmable (no disk drive needed)
- Send system commands from telephone line!

Special Club Features

- Generates random code practice at any speed with voice feedback after each 20 random code group!
- Set CW speed for your H.T.
- Input up to 22 words, letters & symbols as ID or mail box message(s) speed dial compatible
- Auto number memory backatch
- Enable/disable up to 50 area codes + wildcard codes
- Full or half duplex (repeaters)
- Stroage of MCI/Sprlnt code
- Call waiting allows switching to second phone line
- Touchtones are regenerated onto the dial speed dial
- Touchtone or dial pulse modes
- Reverse patch active in all modes

Touchtone Decoder on/off Latch

- 50,000 combinations
- Program and decode multi-digit strings
- 300 Touchtone loadable
- 10 Emergency Auto dial (quick access)
- 300 Reverse patch call signs uploaded from your H.T./general or directory page modes
- Incoming call messages or messages to enter 3 digit code to select a call sign (DID mode)
- Call waiting allows switching to second phone line
- Touchtones are regenerated onto the dial speed dial
- Touchtone or dial pulse modes
- Reverse patch active in all modes

Touchtone 4 Digit

- Decoder & on/off latch
- 50,000 combinations
- Program and decode multi-digit strings
- 300 Touchtone loadable
- 10 Emergency Auto dial (quick access)
- 300 Reverse patch call signs uploaded from your H.T./general or directory page modes
- Incoming call messages or messages to enter 3 digit code to select a call sign (DID mode)
- Call waiting allows switching to second phone line
- Touchtones are regenerated onto the dial speed dial
- Touchtone or dial pulse modes
- Reverse patch active in all modes

Duplexer

- Turn off the repeater & change all access codes from an H.T. or any telephone

Dual Remote Base Specifications

- Kenwood FT-757/767/780
- Kenwood TS-140/940, icom IC-735
- 2nd remote control data supports: Yaesu FT-727/727
- Automatic USB/LSB/FM/AM mode select
- Scan up/down, fast, or 1000Hz steps
- Control CS-8 relay/latch/master reset Status (up to 16 digits per command string)

System Options

- Automatic battery charge & activity timers
- Multiple commands can be executed at once (up to 16 digits per command string)
- Sub-audio tone & speed dial compatible
- Alarm clock & auto-exclude command string
- Option to programmable (no disk drive needed)
- Send system commands from telephone line!

Audio Blaster Module

- IC-02AT/IC-04AT/IC-07AT
- Module installs inside the radio in 15 Min. Boost audio to 1 watt!
- Low standby drain/Corrects low audio/1000s of happy users (Works in other H.T.'s too)

Make Your Own Canopies

- SNAP JOINTS & PARTS FOR 3/4" & 1" TUBING
- BUNGEE & ACCESSORIES
- COMPLETE PACKAGES AVAILABLE
- FREE BROCHURE ON REQUEST

7 MILLION TUBES

- FREE CATALOG
- Includes all current, obsolete, antique, hard-to-find receiving, broadcast, industrial, radio/TV types
- LOWEST PRICES, Major Brands, In Stock

Elaine Martin, Inc.

- POB 261, Dept. H
- Highwood, IL 60040
- Phone: 312-433-1016

Ham Radio

- Frequency of operation is 80 meters. In the same fashion, 160-meter rf chokes have to be at least twice the size (inductance) of their 80-meter counterparts. In particular, the B+ lead must be well filtered, or rf will skip down this lead, pass through the power supply and disappear down the primary power line, perhaps to light up a lamp bulb in a nearby receptacle! It's costly to generate rf watts on 160 meters and easy to lose them if care isn't taken in designing the equipment.

FREE CATALOG

- Includes all current, obsolete, antique, hard-to-find receiving, broadcast, industrial, radio/TV types
- LOWEST PRICES, Major Brands, In Stock

UNITY Electronics Dept. H

- P.O. Box 213
- Elizabeth, NJ 07206

- 73

MAKE YOUR OWN CANOPIES

- SNAP JOINTS & PARTS FOR 3/4" & 1" TUBING
- SILVER, WHITE OR BLUE TARPS
- BUNGEE & ACCESSORIES
- COMPLETE PACKAGES AVAILABLE
- FREE BROCHURE ON REQUEST

7 MILLION TUBES

- FREE CATALOG
- Includes all current, obsolete, antique, hard-to-find receiving, broadcast, industrial, radio/TV types
- LOWEST PRICES, Major Brands, In Stock

UNITY Electronics Dept. H

- P.O. Box 213
- Elizabeth, NJ 07206

- 73
Amateur Commercial Radio

The most complete repair facility on
Electronic Repair Center

AUTHORIZED WARRANTY

ACCESSORIES

Trevose, Pa. 19047

Maos AM1

AMST ADAPTEES

Call for Catalog and dealer information.

CONVERTERS

CONVERTERS

THE "PX" SHACK

CALLING HOURS

11 AM - 3 PM EST

6 PM - 10 PM technical

March 1987 83
Model DELTA-4

Lightning Surge Protected
4 Position Coax Switch

Superior RF switching and equipment protection for Amateur, commercial and military communications stations. *Exclusive "center-off" ground position internally disconnects and grounds all antenna circuits for maximum protection when operator is away from the station.* Incorporates the famous Alpha Delta replaceable ARC-PLUG cartridge for active antenna protection while grounding other 3 antenna positions. An Alpha Delta FIRST! *Features custom designed cast aluminum housing with constant impedance micro-strip cavity construction for low loss performance from 1.5 to 450 MHz. No messy water switch. "Positive" contact ball bearing switch drive snaps firmly into place. *Inches for legal power, built with pride in the USA.*

Model DELTA-4 4 POSITION COAX SWITCH (UHF CONNECTORS) $69.95

Available from your Alpha Delta dealer or order direct. Please add $4.00 shipping and handling, US only. Exports quoted.

ALPHA DELTA COMMUNICATIONS, INC.
PO Box 571
Centerville, OH 45459 (513) 435-4772
current solutions to current problems

RADIOSPORTING

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by world's best in their fields.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame, World Contest Championship and World Radio Championship contest.

"Your publication is superb! Keep it up!"

Joe Reisert, W1JR

"Your W2PV articles are priceless. Your magazine is superb!"

Rush Drake, W7RM

"Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contester!"

Dick Moen, N7RO

"RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again."

Chas Browning, WAPA

Subscription rates: 1 year USA $18, Canada CAN$24, Overseas US$21; 2 years $22, $44, $39 respectively. Single issue $2.

TRY US! SUBSCRIBE OR SEND $1 FOR YOUR SAMPLE COPY.
ham radio

Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit of 15 inquiries per request.

NAME ________________________ CALL __________
ADDRESS ______________________
CITY __________________________ STATE ______ ZIP __________

Please use before April 30, 1987

March 1987
C-64 and GLB PK-1
interface circuit

Get on packet quickly,
easily with readily available components

Until just a few years ago, I thought that packet radio was an interesting part of our hobby, but one that was too difficult and too expensive to enter. I'd heard stories of people who spent months scrounging for parts and equipment.

All that changed when GLB introduced the PK-1 Terminal Node Controller. For those of us who already owned a Commodore 64 computer, the PK-1 was about the cheapest way to go. Intrigued, Neil Abitabi-lo, WA2EZN, and I ordered two units from GLB.

We should have planned ahead. The PK-1s were only days from delivery when we realized that neither of us had the foggiest idea of how we were going to interface them with the C-64. One thing was clear; no one was offering an interface off the shelf.

Neil and I began making inquiries on the 145.135 repeater in Carmel, New York, where a large number of packeteers hang out. Eventually we got the information we needed to design a circuit that provides the necessary functions.

interface requirements

The DATA IN and DATA OUT lines between the PK-1 and the C-64 must be inverted. RTS and CTS lines from the PK-1 to the D and K pins on the user port must be linked without inverting polarity. A pc board serves as the common point for the three cables that link the various units.

Two ribbon cables connect J1 and J2 on the rear of the PK-1 to the solder pads on the pc board. A third cable (see fig 1) goes from the pc board to the transceiver for +12 volts, receive audio, transmit audio, push-to-talk, and squelch back-off (if used — see sidebar).

John B. Meagher, W2EHD/ex-W8JGN, 27 Fourth Street, Closter, New Jersey 07624
construction

Flexibility was a key consideration in board layout. S1 is a 4PST DIP switch which permits the operator to positively disable SQUELCH, BACK-OFF, PTT, RECEIVE-AUDIO and TRANSMIT-AUDIO. Neil and I found that there were times when we needed to isolate the PK-1 and the transceiver from the outside world for checks or experimentation.

Refer to the schematic (fig. 2) while reading the next few paragraphs. Note that R6 is optional. If the PK-1 packet audio to the transmitter can't be sufficiently reduced by R30 on the PK-1 board, then R6 can be inserted. The value can be determined experimentally. More than likely, however, it won't be needed, so it can simply be jumpered out.

R7 is also optional. We obtain receive audio for the

PK-1 directly from the discriminator. Initially, I was afraid that R29 (in the PK-1) might not provide adequate isolation to avoid overloading the discriminator. C1 is also an option. Some packeteers claim that oper-
connection is more reliable if the high frequency components of the receive audio are rolled off. The values for base resistors R1-R4 are not critical. I used 10 k, but any value from 3.9 k to 15 k worked just as well.

At first we had a tough time finding a proper 12/24 pin, 0.156-inch pc edge connector to mate with the C-64 user port. The initial version of the interface board uses a connector that was cut to length with a hand-held jigsaw. Later, Terry McGraw, WA2UDG, discovered that TI makes one that's an exact fit (see parts list).

connections

The PK-1 requires 12 volts at 200 milliamperes. The simplest source is the transceiver with which the PK-1 will be used. After etching and drilling the pc board (figs. 4 and 5), connect the ribbon cable to the "IDC" (Insulation Displacement Connector) cable plugs for J1 and J2 on the rear of the PK-1. (Neil and I bought the connectors and the cable from GLB when we ordered the PK-1s.) Strip the other end of the ribbon cable conductors; before soldering them through the pc board holes, however, make sure that the appropriate conductor from the plug goes to the correct pc board hole. Double-check against the pin-out illustration in the GLB PK-1 owner's manual. (On the original version, the ribbon cables from the PK-1 terminate in DIP headers and plug into IC sockets on the board.)

The umbilical to the transceiver is next. You'll have to decide how to access the +12 volt bus, PTT, audio-
SPECIAL

SYSTEM #1
$399.00
Motherboard with bios and first 64K of RAM. Upgradable to a full 640K of RAM. Flip top case. K8XT (at look alike) keyboard. 150 watt power supply. Dual Disk Drive card with cables. One floppy drive. DS DD 360K. A color graphics card with RGB and composite output.

SYSTEM #2
$699.00
Motherboard with bios and first 256K of RAM. Upgradable to a full 640K of RAM. Flip top case. K8XT (at look alike) keyboard. 150 watt power supply. Dual Disk Drive card with cables. One floppy drive. DS DD 360K. A color graphics card with RGB and composite output. (All you need is a monitor)

SYSTEM #3
$999.00
Motherboard with bios and first 256K of RAM. Upgradable to a full 640K of RAM. Flip top case. K8XT (at look alike) keyboard. 150 watt power supply. Color graphics card with RGB and composite outputs. Multi I/O card with two disk drive ports, one parallel port, one serial port and one serial port option, one game port, clock and calendar with battery backup. Two floppy disk drives DS DD 360K and a composite monitor.

SHIPPING INFORMATION: PLEASE INCLUDE 10% OF ORDER FOR SHIPPING AND HANDLING CHARGES. MINIMUM $25.00, MAXIMUM $100. CANADIAN ORDERS, ADD $750 IN U.S. FUNDS. MICHIGAN RESIDENTS ADD 4% SALES TAX FOR FREE FLYER, SEND 22 STAMP OR SASE.

HAL-TRONIX, INC. (313) 281-7773
12671 Dix-Toledo Hwy
P.O. Box 1101
Southgate, MI 48195

HAL” HAROLD C. NOWLAND
W8XK

Come to Florida for the WINTER HAMFEST
ORLANDO AMATEUR RADIO CLUB, INC.

HAMCATION
AND COMPUTER SHOW
at Expo Centre
MARCH 13, 14, 15, 1987
1987 ARRL
Southeastern Region
Convention

AIRCONDITIONED SWAP AREA TABLES $20
REGISTRATION:
S5 Advance $7 At The Door
Banquet $12.50

For tickets & swap table reservations SEND check and SASE to:
Orlando Hamcation & Computer Show
Dept. HAM. P.O. Box 547811, Orlando, FL 32854-7811

Interested in
SAVING
MONEY?
Want to find
the BEST
BARGAINS
on NEW and
USED ELECTRONIC
EQUIPMENT available?

You’ll Find Them
in the Nation’s No. 1
Electronic Shopper Magazine

NUTS & VOLTS
Now in our 7th Year

Nuts & Volts is published MONTHLY and features:

- NEW STATE-OF-THE-ART PRODUCTS
- SURPLUS EQUIPMENT • USED BARGAINS
- 50% DISCOUNT TO SUBSCRIBERS ON CLASSIFIED ADS • EVENTS CALENDAR
- NEW PRODUCTS • LOW COST DISPLAY AD RATES • NATIONAL CIRCULATION
- AND A FREE 40-WORD CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

☐ One Year - 3rd Class Mail $10.00
☐ One Year - 1st Class Mail $15.00
☐ One Year - Canada & Mexico (in U.S. Funds) $18.00
☐ Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!
Send: ☐ Check ☐ Money Order ☐ Visa ☐ MasterCard
TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

IF YOU’RE INTO ELECTRONICS,
THIS MAGAZINE WILL SAVE YOU MONEY!

Dealer Inquiries Invited
in, and audio-out on your rig. Ben Spieker, WB2YSJ, kindly milled five fins from my Azden PCS-2000’s heat sink and bored a 5/8-inch hole for a multipin connector. Note that there’s a seventh conductor on the pc board labeled “Reset” (fig. 6). It’s there if you want or need an external connection to the PK-1’s reset line. Solder the lower (foil side) pins of the edge connector to each of the 12 “contact fingers” etched on the underside of the pc board. For mechanical strength, you could flow 5-minute epoxy or hot glue between the top pins and the component side of the pc board or use a couple of threaded spade lugs from the connector mounting holes to the pc board.

operation

Before applying power, check for any wiring errors. With power off, plug the interface cable into the transceiver. Turn on the transceiver, and with a voltmeter, check to see if +12 volts exists on pin 4 of J2. You should be able to key the rig by grounding the PTT line. A scope should indicate noise on the receive-audio line. (If you are picking off from the discriminator, 25 to 50 millivolts of noise will be present under no-signal conditions.) Turn power off and plug the cable connectors (J1 and J2) into the back of the PK-1. Make absolutely sure the plugs go to the correct locations! Since they’re identical and nonpolarized, it’s a good idea to mark which is which to make sure they’re not swapped or installed upside down!

Make sure all four DIP switches on S1 are open, then turn on the power. The LED on the front of the PK-1 should light. (Note, so that you don’t go crazy, when you input +12 volts via J2, the PK-1 front panel on-off switch is bypassed and has no effect.)

Remove power and plug the interface board (component side up) into the user port on the rear of the C-64. Turn on the computer, the transceiver, and the PK-1. Load whatever terminal program you wish to use for packet radio. (Neil and I have used a series of programs including SuperTerm, Vidtex 4.0, and the Texas Packet Radio Society’s TNC64.

Once the program is running and you have packet traffic coming through the receiver, close the DIP switch that interrupts audio. Packet traffic passing by should begin showing up on the computer monitor screen. Make sure the PK-1 is not in any of the following modes: 00 (display only connected packets); OA (display only stations with specified call signs) or OQ (store the packets in the PK-1 RAM). If you’re in any of these modes, no passing traffic will appear on the screen.

To test transmit, close the audio-out and PTT DIP switches and connect with a friend or with yourself through a local digipeater. As good as it is, the PK-1 has no output timer to prevent a mishap from locking the transmitter on the air. WA3EZN and I have designed one we call the “Packetimer”; it’s described in the following article.

monitor squelch status

with "Back-off"

"Back-off" (Pin J2-3) permits the PK-1 to monitor the squelch status of the receiver. If the “back-off” pin is pulled LOW by a signal other than one from a packet station, the PK-1 is inhibited from transmitting. Without “back-off,” the PK-1 and other TNCs ignore the presence of other non-packet signals and will transmit right over them. The interface has a transistor inverter (Q5) because the unsquelched signal from my transceiver (an Azden PCS-2000) is a HIGH.

Back-off is especially helpful where packet and fm phone operators attempt to coexist. It isn’t as important if the channel is exclusively packet because TNCs are always inhibited from transmitting if they “hear” another packet signal.
GLB ELECTRONICS presents

THE FIRST CONTROLLER DESIGNED FOR PORTABLE AND SOLAR-POWERED STATIONS

NEW SOFTWARE FEATURE:
INTELLIGENT “BUDLIST” - Provides selective callsign filtering for Digipeating, Monitoring and Connecting.
- LOW 25 mA Current Drain.
- Miniature size - Lightweight.
- Rugged metal, shielded case.
- Lithium Battery backup for RAM.
- Onboard Watchdog for reliability.
- Standard DB25 Connectors.
- “Connected” Status output line.
- Remote Commands in Unattended Mode with Hardware Lockout.
- Retains all other PK-1 features.
- Extra I/O lines for special applications.

Power requirement:
9 to 15 Volts DC @ 25 mA typical

Dimensions:
4.6 X 5.9 X 1.0 inches

Total Weight:
12 ozs.

PKIL—Wired and Tested
List price—
$209.95
Amateur net—
$179.95

SEE US AT DAYTON
BOOTH 318

PACKET RADIO GOES PORTABLE

GLB ELECTRONICS, INC.

151 Commerce Pkwy.,
Buffalo, NY 14224
716-675-6740 9 to 4
"packetimer" for the PK-1

Handy circuit prevents lockup

In the previous article we described an interface circuit that allows the GLB PK-1 TNC to work with a Commodore 64. Soon after we put that combination into operation, one fact became obvious: the PK-1 has no fail-safe method of preventing accidental, long-term key-up. Amateurs not on packet may not realize the implications of this, but when it happens, your TNC "hears" the carrier of another packet station on the channel and automatically prevents the other transmitter from going on the air!

One evening, for reasons still unknown, my PK-1 locked up and sent 25 watts of rf through an 11-element beam for several hours. An unknown number of packet stations in the North Jersey/New York City area were suddenly struck dumb. No doubt their operators cussed out the dingbat whose carrier was blanketing 145.010. (If you were affected, my sincerest apologies!)

That's why we devised the Packetimer (see fig. 1), which is designed to go into action if the transmitter is on the air continuously for a length of time that exceeds the time-out period. Using the suggested component values, the device permits transmissions lasting up to about 30 seconds. Since 99 percent of the packet transmissions last well under 10 seconds, plenty of leeway is permitted, but a lockup (such as the one that occurred at this station) is no longer a threat.

operation

The Packetimer monitors the push-to-talk line from the PK-1 to the transmitter. Whenever the PK-1's keying transistor, Q3, pulls the PTT line LOW, U1 (the 4060 oscillator/14-stage binary counter) is activated through CR1 (see fig. 2).

The suggested values for C1, R2, and R3 yield a clock frequency of approximately 15 Hz. Within U1, the clock pulses are sent through a series of 14 flip-flops. Each flip-flop divides the incoming pulse train by a factor of two. In normal operation, the counters in U1 remain at zero because RESET (pin 12) is held HIGH through pullup resistor R1. Only when the PTT line goes LOW (transmit mode) can the flip-flops operate. The counters in U1 are reset to zero at the end of every transmission when the PTT line goes HIGH again.

However, in the event of a lockup condition, the counters keep going until the Q output to which CR2 is connected goes HIGH. When that happens, latch U3 is SET and its Q output (pin 2) goes HIGH. The HIGH from pin 2 of U3 does two things: it turns on Q1, which puts a stranglehold on the base of the PK-1's keying transistor, Q3. That takes the transmitter off the air and keeps it off. U3's output also turns on CR6, the blinking LED, and U4 (555) so that a continuous tone warns the station operator of the lockup condition.

The Packetimer must be manually reset via S1 before the packet station can transmit again. With the recommended values for C1, R2, and R3, and with CR2 connected to pin 1 (Q12 output) of U1, the transmitter can remain on the air for about 30 seconds before the Packetimer goes into action. Coarse divider increments (doubling or halving the time) can be achieved by shifting the jumper wire from CR2 to the next higher or lower Q output on U1.

John B. Meagher, W2EHD/ex-W8JGN, 27 Fourth Street, Closter, New Jersey 07624

fig. 1. Side view of PK-1 with Packetimer installed. The wires from the PC board plug go to S1, CR6, +5v and the base and collector of PK-1 keying transistor, Q3.
<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-735 HF transceiver/SC/8 meter</td>
<td>$998</td>
</tr>
<tr>
<td>IC-745 External power supply</td>
<td>$450</td>
</tr>
<tr>
<td>AT-150 Automatic antenna</td>
<td>$199</td>
</tr>
<tr>
<td>FL-32 500 Hz CW filter</td>
<td>$65</td>
</tr>
<tr>
<td>EX-743 Electronic keyer unit</td>
<td>$60</td>
</tr>
<tr>
<td>EX-743 Electronic keyer unit</td>
<td>$60</td>
</tr>
<tr>
<td>IC-745 9-band xcvr w/ 1-30 MHz tcv</td>
<td>$109</td>
</tr>
<tr>
<td>PS-35 Internal power supply</td>
<td>$199</td>
</tr>
<tr>
<td>EX-241 Marker unit</td>
<td>$22</td>
</tr>
<tr>
<td>EX-241 FM unit</td>
<td>$44</td>
</tr>
<tr>
<td>EX-243 Electronic keyer unit</td>
<td>$60</td>
</tr>
<tr>
<td>FL-45 500 Hz CW filter</td>
<td>$65</td>
</tr>
<tr>
<td>FL-54 270 Hz CW filter</td>
<td>$53</td>
</tr>
<tr>
<td>FL-52A 500 Hz CW filter (2nd IF)</td>
<td>$108</td>
</tr>
<tr>
<td>FL-52A 250 Hz CW filter (2nd IF)</td>
<td>$108</td>
</tr>
<tr>
<td>FL-44A SSB filter (2nd IF)</td>
<td>$178</td>
</tr>
<tr>
<td>IC-751A 9-band xcvr w/ 1-30 MHz tcv</td>
<td>$139</td>
</tr>
<tr>
<td>PS-35 Internal power supply</td>
<td>$199</td>
</tr>
<tr>
<td>FL-61 250 Hz CW filter</td>
<td>$65</td>
</tr>
<tr>
<td>FL-52A 500 Hz CW filter</td>
<td>$108</td>
</tr>
<tr>
<td>FL-53A 250 Hz CW filter (2nd IF)</td>
<td>$108</td>
</tr>
<tr>
<td>FL-53A 250 Hz CW filter (2nd IF)</td>
<td>$108</td>
</tr>
<tr>
<td>FL-53A 250 Hz CW filter (2nd IF)</td>
<td>$108</td>
</tr>
<tr>
<td>FL-53A 250 Hz CW filter (2nd IF)</td>
<td>$108</td>
</tr>
<tr>
<td>RC-10 External frequency controller</td>
<td>$39</td>
</tr>
<tr>
<td>Other Accessories</td>
<td></td>
</tr>
<tr>
<td>IC-2KL 160-150m solid state amp w/ PS-35</td>
<td>$199</td>
</tr>
<tr>
<td>IC-250A external power supply</td>
<td>$168</td>
</tr>
<tr>
<td>PS-30 SSB power supply</td>
<td>$299</td>
</tr>
<tr>
<td>OPC Opt. cord, specify 2 or 4-pin</td>
<td>$10</td>
</tr>
<tr>
<td>MB Mobile mount, 735/745/751A</td>
<td>$25</td>
</tr>
<tr>
<td>PF-5 External speaker</td>
<td>$52</td>
</tr>
<tr>
<td>SF-7 External speaker</td>
<td>$49</td>
</tr>
<tr>
<td>CR-64 High stab rel xtal</td>
<td>$63</td>
</tr>
<tr>
<td>PP-1 Speaker/pitch</td>
<td>$15</td>
</tr>
<tr>
<td>DS-6 Disc microphone</td>
<td>$44</td>
</tr>
<tr>
<td>SM-2 Disc mic, w/ 2 cables, Scan</td>
<td>$78</td>
</tr>
<tr>
<td>SM-10 Compressor/graphics EQ, pin mic</td>
<td>$136</td>
</tr>
<tr>
<td>AT-100 100W b-and-audio autopr</td>
<td>$450</td>
</tr>
<tr>
<td>AT-500 500W b-and-audio autopr</td>
<td>$450</td>
</tr>
<tr>
<td>AH-2 Band filter/antenna</td>
<td>$625</td>
</tr>
<tr>
<td>AH-2 Antenna tuner system, only</td>
<td>$450</td>
</tr>
<tr>
<td>$50 FACTORY REBATE on AT-150</td>
<td></td>
</tr>
</tbody>
</table>
The Packetimer beeps for about half a second whenever the PK-1 triggers the transmitter to send a packet. If the muted “tweet” from inside the PK-1 case gets on your nerves, simply ground pin 13 on U2 to shut it off. Don’t worry; even if you decide to mute the beep, if the Packetimer is triggered, the continuous alarm will sound.

The purpose of C2 (between the +5-volt bus and the SET pin on the U3 latch) is to ensure that the Packetimer is latched ON (timed-out mode) at power-up.
This eliminates the possibility that a power glitch might wipe your terminal program from the computer and latch the transmitter on the air.

construction

The pc board (figs. 3 and 4) is straightforward. Note, however, that to avoid going to a double-foil board layout, three jumpers must be installed on the component side. Note, too, that R11 (820 ohms) is optional. If you use the Radio Shack blinking LED or the one from Marlin P. Jones, R11 is then replaced by a jumper. The devices contain their own current-limiting circuitry. If you install an ordinary LED, R11 must be installed to limit the LED current to a safe level. Both CR6 and S1 (the Packetimer manual set/reset switch) are added to the PK-1 front panel.

connections

Two connections must be made to the PK-1 keying transistor, Q3. The first goes to the collector of Q3. This is where the Packetimer monitors the PTT line. The second connection is to the base of Q3 from the Packetimer's key-inhibit transistor (Q11). The ground connection on the Packetimer goes to the ground foil on the PK-1. The LM7805 voltage regula-
tor (Z6) in the PK-1 is a convenient source for the +5 volts needed by the Packetimer. With the GLB board edge terminals facing away from you, the +5-volt output terminal is the one on the right-hand side. If there’s any uncertainty, it’s easy to double-check with a voltmeter while the GLB is powered up. You’ll find +12 volts on one side, zero volts (ground) on the middle terminal, and +5 volts on the other side.

installation

There are a number of options for mounting the Packetimer in the PK-1. A small piece of double-sided foam tape works well to attach the pc board to the top of one of the 6116 RAM chips. The circuit pads for external connections to the Packetimer are on 0.1-inch centers to facilitate a plug and harness installation (see fig. 5). If the Packetimer is removed, there’s no effect on the operation of the PK-1 other than loss of the time-out protection.

testing

You can check the completed Packetimer on the bench. Connect ground and +5 volts. LED CR6 should start to blink and a steady tone should come from the transducer. If you short the pin that goes from the arm of the reset switch (S1) to the reset pin, the flashing and the noise should stop. With power still applied to the Packetimer board, ground the pin that will be connected to the push-to-talk line. It should give you a brief beep. Next, hold the PTT pin low with a grounded alligator clip and see how much time it takes for the alarm to go off. If the anode of CR2 is wired to pin 1 on U1 (4060), the Packetimer should sound the alarm in roughly 30 seconds.
QUALITY TEST GEAR
YOU CAN COUNT ON

INCLUDES 2 HOOK-ON PROBES
20 MHz DUAL TRACE
Features component testing circuit for resistors, capacitors, digital circuits and diodes—TV sync filter—high sensitivity. 2-axis XY mode—built-in calibrator—SX horizontal magnifier

$369.95*

INCLUDES 2 HOOK-ON PROBES
35 MHz DUAL TRACE
Wide frequency bandwidth—optimal sensitivity—delayed triggering sweep—hold-off—ALT trigger—single sweep TV sync 5X magnification—KY or XY operation—HF LF noise reduction

$499.95*

INCLUDES 2 HOOK-ON PROBES
15 MHz DUAL TRACEx PORTABLE
Field/pench applications—built-in charger and battery pack—up to 2 hours operation per charge—SX horizontal magnification—high brightness CRT—front panel trace rotator

$499.95*

RAMSEY OSCILLOSCOPES
All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby, service and production applications.

*Add an additional $10.00 for each unit for shipping.

MINI-100 COUNTER
CT-70 7 DIGIT 525 MHz
$119.95
CHASSIS, N.C.A. BATTERIES, AC ADAPTER INCLUDED

$139.95
WIRE, INCLUDES AC ADAPTER

$169.95
WIRE, INCLUDES AC ADAPTER

$189.95
WIRE, INCLUDES AC ADAPTER

CT-90 9 DIGIT 600 MHz
CT-50 8 DIGIT 600 MHz
CT-125 9 DIGIT 1.2 GHz

RAMSEY FREQUENCY COUNTERS

PR-2 COUNTER PREAMP
The PR-2 is ideal for measuring weak signals from 1 to 10 MHz—flattest 50-ns gate—BNC connectors—great for sniffing IF—ideal receiver TV preamps

$449.95

PS-2 AUDIO MULTIPLIER
The PS-2 is handy for high resolution audio measurement resolutions. Multiples up in frequency great for PLL tuning measurements—multiples by 10 or 100—0.01 Hz & Built-in signal preamp conditions

$69.95

PS-101G COUNTER PRESCALER
Extends the range of your present counter to 1 GHz—2 stage preamp—divides by 1000 circuit—Super sensitive (600 mV typical)—BNC connectors—1 GHz, 1 MHz out—drives any counter

$89.95

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

TONE DECODER
A complete tone decoder on a single PC board. Features 400-000 Hz adjustable range 10dB per decade, voltage regulated 5V DC. Perfect for tone burst detection. FSK, etc. Also can be used in a stable tone encoder into 10 to 500 Hz. Complete kit 10.95

$5.95

40 WATT 2x12 P.A. AMP
PA Power Amp with features & power handling far beyond the best. Like for 10 or 20 kw. Max output of 400 watts maximum. Includes incandescent lamps, switches, and power supply. Complete kit 9.95

$22.95

ACCESSORIES FOR RAMSEY COUNTERS

ACCESSORIES FOR RAMSEY COUNTERS

TELEPHONE TRANSMITTER
Look for any crystal controlled telecommunication. Features a crystal-controlled microphone sensitivity. Ideal for 200 mV into 300 ohm circuit. Excellent speech quality. Attractive case. Complete kit 15

$14.95

FM MINI MIKE
Super high performance FM wireless make kit. Complete kit includes speaker, microphone, crystal, amplifier, transceiver, tuning unit—all you need to build your own radio. Complete kit 15

$19.95

PHONE ORDERS CALL
716-586-3950
TELEX 466735 RAMSEY CI
FAX 716-586-4754

TERMS: *Satisfaction guaranteed *exchange for 30 days. If not satisfied, return for a full refund. *Free parts exchange for defective parts. *Price list contains 10% for orders paid in cash or by personal check (outside US & Canada charge $12.50). *Price list contains 10% for orders paid in cash or by personal check (outside US & Canada charge $12.50). *Price list contains 10% for orders paid in cash or by personal check (outside US & Canada charge $12.50). *Price list contains 10% for orders paid in cash or by personal check (outside US & Canada charge $12.50).
building the "poor man's spectrum analyzer"

In September 1986 an exciting article on spectrum analyzers appeared in ham radio ("Low-Cost Spectrum Analyzer With Kilobuck Features," page 82). Having been in both communications servicing and engineering school, I'd used spectrum analyzers, but never owned one. (Most professionals can't afford them.) I once considered purchasing a plug-in spectrum analyzer to fit our existing biomedical electronics laboratory oscilloscope mainframe, but it cost over $12,000! Then came W4UCH and his article on the very affordable WA2PZO/Science Workshop "Poor Man's Spectrum Analyzer." I decided to build my own spectrum analyzer.

The WA2PZO concept is based on the fact that modern TV tuners, especially the "cable-ready" variety, are varactor-tuned. The familiar switched inductor tuner is replaced by a voltage-tuned varactor oscillator. Two types are available: one, which was used in the W4UCH article, has separate low-VHF, high-VHF, and UHF bands. A switch is used to select band coverage. The second is a wide-range "cable-ready" tuner that tunes from low VHF through UHF television bands in one 0-35 volt (some are 0-30 volt) range. Obviously, if you can modulate the tuning voltage with a sawtooth waveform (see "Practically Speaking," January, 1987, page 89), then you have a swept tuner. Demodulate its amplified i-f output and display it on a 'scope, and you have a spectrum analyzer. Sheer genius! I bought both forms of tuner from Science Workshop; fig. 1 shows the cable-ready, wide-range model.*

The i-f board used in the W4UCH article and sold by Science Workshop is shown in fig. 2. The term "i-f" used here actually means a fixed frequency, single-conversion superheterodyne fm receiver tuned to 45.75 MHz (the tuner's i-f output frequency), and down-converted to the standard 10.7 MHz used for fm receiver i-f amplifiers. Because the i-f strip is actually a single-conversion receiver, the overall spectrum analyzer is a dual-conversion superhet. In fact, it can be used as a VHF receiver if the sweep is turned off (see Sweep On/Off in fig. 3).

The literature that came with the i-f board suggested that it be well shielded, and that feedthrough capacitors be used on all leads except the i-f input. The shielded enclosure is a standard chassis box with foldover flanges. Beware of many "shielded boxes" now on the market. The flanged type shown in fig. 2 is minimally acceptable for shielded projects. The type of box that doesn't have overlapping flanges isn't acceptable at all. Some LMB boxes use little dimples on each edge for support, so they won't provide adequate shielding for most rf projects. While they're fine for audio and DC projects, they leave a great deal to be desired at rf.

Being an "older guy" in radio, I still called the feedthrough capacitors by that name and had a difficult time finding them locally; it seems that they're now called "EMI filters." Luckily, a local number for Newark Electronics was listed in the Yellow Pages, so I was
able to buy them directly from the source called for in the article.

In retrospect, “next time” I might try using a single connector for all leads other than the i-f, and 0.002-μF disk ceramic capacitors on each lead at the connector. A good chassis-mounted connector costs about $5 (or less), and high quality disk capacitors cost only about 80 cents each and even less per unit in bargain packs. The EMI filters called for in the article are about $4 each; about 12 are required.

Adding a sweep circuit

A significant problem with the W4UCH article for many readers is the lack of a sawtooth circuit. W4UCH used the sawtooth output of his Heath OL-1 oscilloscope to sweep the tuner. That approach works if your oscilloscope provides this waveform. But modern oscilloscopes rarely have the sawtooth available on the front or rear panels. Also, many don't have a horizontal input. Look at your own oscilloscope's front panel. Some two-channel oscilloscopes have an "X-Y" mode on the vertical selector. If yours does, then one of the vertical channels can be re-configured as a horizontal channel at the flick of a switch.

If you don't have a horizontal input, or X-Y capability, you can still build the "Poor Man's Spectrum Analyzer" if you have either an "EXTERNAL TRIGGER" input (most 'scopes do) or a "TRIGGER GATE" output. The former allows an external signal, such as the falling edge of an external sawtooth, to trigger the sweep. The latter outputs a narrow pulse every time the oscilloscope triggers. By allowing the 'scope to self-trigger, you get a string of pulses that can be used to trigger certain types of sawtooth generators.

Science Workshop makes a board available (fig. 3) that can be used for generating and controlling an external sawtooth. Although it suffices at this point, I'm not totally happy with the design. As I see it, there are two problems (see fig. 4): first, the sawtooth isn't very linear (see fig. 4A), and its fall time is too long. Second, the sawtooth clips at various settings of the center frequency and sweep rate controls. Perhaps in the future I'll find time to re-design these circuits, but for now the sawtooth board is satisfactory.

Dc power supply

The Poor Man's Spectrum Analyzer requires a two-voltage, single-polarity dc power supply: +12 VDC and +24 VDC. The schematic diagram of a power supply that meets these requirements is shown in fig. 5.

I used a pair of small 12.6-VAC transformers (T1 and T2), with the primaries connected in parallel and the secondaries connected in series, to obtain the required voltage. I used available components — a pair of brand-new Radio Shack pc-mount transformers. You can use instead either a 25.6-VAC transformer or a dual-secondary transformer stocked by Digi-Key.* Dick

* Digi-Key Corporation, P.O. Box 677, Thief River Falls, Minnesota 56701.
THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

Now Available With PACKET RADIO

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

SPECIAL SALE

$795

SHOWN WITH OPTIONAL KANTRONICS KPC2400 AND MFJ-1270 TNC-2

Everything built in — nothing else to buy!

- AUTOMATIC SEND/RECEIVE—ANY SPEED ANY SHIFT • BUILT IN COMPUTER GRADE 5" MONITOR • EXTERNAL MONITOR JACK • TIME CLOCK ON SCREEN • TIMED TRANSMISSION AND RECEIVING • SELCAL • CRYSTAL CONTROLLED AFSK MODULATOR • PHOTOCOUPLE CW, FSK KEYER • ASCII KEY ARRANGEMENT • 15 CHANNEL BATTERY BACK-UP MEMORY • 1,280 CHARACTER DISPLAY MEMORY • SPLIT SCREEN TYPE-AHEAD BUFFER • FUNCTION SCREEN DISPLAY • PARALLEL PRINTER INTERFACE • SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL, 100 BAUD ARQ/FEC AMTOR • ATC • RUB-OUT FUNCTION • AUTOMATIC CR/LF • WORD MODE • LINE MODE • WORD WRAP AROUND • ECHO • TEXT CURSOR CONTROL • USOS • DIDOLE • TEST MESSAGES (RY AND ORF) • MARK AND BREAK (SPACE AND BREAK) SYSTEM • VARIABLE CW WEIGHTS • AUDIO MONITOR CIRCUIT BUILT IN • CW PRACTICE FUNCTION • CW RANDOM GENERATOR • BARGRAPHP LED METER FOR TUNING • OSCILLOSCOPE OUTPUTS • BUILT IN 100-120 / 220-240 VAC 50/60HZ AND 13.8VDC POWER SUPPLIES • AND MUCH, MUCH MORE • SIZE: 14W x 140 x 5H

EXCLUSIVE DISTRIBUTOR DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER

AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102

46 Greensboro Highway, Watkinsville, Georgia 30677 Telephone (404) 769-8706 Telex: 4930709 ITT

MANUFACTURER

TONO CORPORATION
98 Motosofza Machi, Maebashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS

**Dual AMTOR. Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur AMTOR codes and all of the CCIR recommendations 476-2 for commercial requirements.

Specifications Subject to Change.

Texas Radio

BUGCATCHER MOBILE HF ANTENNA

- 5 BAND COVERAGE: All Amateur, Maru, and C4F frequencies from 10 to 60 meters!
- HANDSWITCHING: Switches instantly to pre-set bands on any band!
- HIGH Q RESONATOR: Air inductor provides great efficiency on all bands!
- FUNCTIONAL DESIGN: Provides low wind load, easy tuning, and pleasing appearance! Rugged construction for long life and easy maintenance.
- 500 WATT CAPACITY: Completely rated!
- COMPLETE ANTENNA READY TO MOUNT

PRICE $69.95

Handsensing High Q Resonator only - $45.00

Shipping prepaid with check or money orders. Shipping charges added to credit card sales and shipment out of the lower 48 States.

TEXAS RADIO PRODUCTS
5 East Upshur
Temple, Texas 76501
(817) 771-1188

BATTERY MEMORY ADAPTER for KWM-380/TRANSCEIVER

- Easy installation
- WARC frequencies
- No board modifications
- Plugs into ROM socket
- Battery sealed in memory IC
- Ten year battery life
- All memories and A/B VFO saved
- Top quality construction
- $149 (shipping cont. USA included)
- SASE for flyer

Kiyon Corporation 1601 W. Fifth Ave. Suite 1411
Columbus, OH 43212

LCR METER w/ D Factor

"...MEASURES BOTH YOUR COIL'S INDUCTANCE AND LOSS FACTOR"

Measurement range

L: 0.1µH - 1.999 H
C: 0.1 pF - 99.9 µF
R: 10 - 199 MΩ
D: 0.01 - 19.99

* The Industry's first hand-held, low-cost, LCR meter with D Factor

$199.95

Freight pd.

CA RES. + tax

ORDER TODAY

AMERICAN RELIANCE, INC. (800) 654-9838
9241 E. VALLEY BLVD.
CA (818) 287-8400

1987 CALLBOOKS NOW AVAILABLE

The 1987 CALLBOOKS are in! Place your order now so you can get full use out of your valuable investment. All the latest names, callsigns and addresses make these two books invaluable operating aids.

NORTH AMERICAN CALLBOOK
Fully updated with all the latest up-to-date callsigns and addresses for all North American Hams. Includes handy operating aids such as: time charts, QSL bureaus, census information and much more. With calls from Panama to Greenland, every ham should have one in their shack. ©1986

INTERNATIONAL CALLBOOK
Callsigns and addresses for all Amateur Radio operators outside of the North American continent. Invaluable aid to getting QSL cards from foreign DX'ers. Includes plenty of extra information too! Universally recognized as the source of QSL information. ©1986.

Order Both and SAVE. SPECIAL PRICE $44.95
Reg. Price $49.95 SAVE $5

Please enclose $3.50 to cover shipping and handling.

Order NOW.

Order BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441
8-4 PM EST

AVAILABLE NOW

THE 1987 ARRL HANDBOOK

The latest edition of the Ham’s bible has been updated with plenty of exciting new projects, new theory and information chapters and the latest in state-of-the-art technology. Check out these new features: Passive LC filter design including standard value capacitor tables, overview of 23cm FM fast scan TV weather satellites basics, a complete revision of the radio frequencies and transmission section (chapter 22) and satellite communications section (chapter 23). Some of the exciting new projects are: a new hf legal limit, all band amplifier using the 8877 tube, a dedicated CRT for Wefax image display and a new marker generator project for general use to name just a select few. Over 200 pages have been revised and updated. Great reference book that should be in every Ham’s shack. Order your’s today! Over 1100 pages. © 1986

Order YOURS NOW

Please enclose $3.50 to cover shipping and handling

Softbound $17.95
Hardbound $26.95

Order BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441
Smith Electronics,** and other distributors. The current requirements for this project aren't critical, so almost any transformer with a rating of 300 mA or more is acceptable.

Two three-terminal IC regulators are used in this project. The 7824 (also usable: LM-340T-24) provides the needed +24 VDC, while a 7812 (or LM-340T-12) provides the +12 VDC. Both regulators are standard, but I found that the 7824 was a little hard to find locally. The NTR line of replacement semiconductors, stocked by many local distributors, carries a good replacement number.

There's nothing critical about the parts layout, and perf board can be used for construction. The diodes (CR1 and CR2) are used to prevent the charge in the output capacitors from damaging the voltage regulators at turn-off. Don't delete them, even though you may see many circuits using these regulators without charge dump diodes. The shielded construction and the 0.1-µF output capacitors are needed because one might be using this device in close proximity to a high-power transmitter. The capacitors must be mounted on the output terminal, or at least as close as physically possible.

performance

Figure 6 shows an oscilloscope photo of the spectrum analyzer display. The center frequency was adjusted to the low end of the fm broadcast band. The large center spike is the signal from my Measurements Model 80 signal generator set to approximately 85 MHz. The small spike to its right is WAMU-FM (88.5 MHz), my favorite public radio station; the other spikes are other fm band signals. The large signal barely visible on the left side is, I believe, Channel 5 TV in Washington, DC.

Those who don't have a horizontal input must use the sawtooth to trigger the sweep through the EXTERNAL TRIGGER input. I recommend using the negative trailing edge of the sawtooth waveform for this purpose (set TRIGGER SLOPE — or equivalent switch — to the negative position). Also, be sure to make the sweep time across the entire horizontal aspect of the 'scope graticule equal to the period of the sawtooth leading edge. Otherwise, the 'scope and sawtooth won't sweep in sync.

future projects

The spectrum analyzer project has given me a few ideas for changes or improvements. First, I plan to redesign the sawtooth generator (possibly generating the sawtooth digitally). Second, I plan to add an amplifier/attenuator based on Mini-Circuits fixed attenuators and a Signetics NE-5205 amplifier.1 The range will be -60 to +19 dB. Third, there may be a converter for hf, and tuners to band-limit the spectrum analyzer at will to certain VHF Amateur bands. This modification will punch out certain local signals that tend to drive receivers into intermod problems at my QTH. Fourth, WA2PZO is working on a tracking oscillator circuit, and in fact has a tentative approach to its design. A tracking oscillator produces an output at the spectrum analyzer's center frequency. Besides its obvious use as a signal source, it's also useful for driving a frequency counter. Presently, tuning indication is by seat-of-the-pants calibration of the voltage control. I plan to buy the WA2PZO tracking oscillator kit if, and when, it becomes available.3

Varactor tuners are inherently non-linear in their voltage-vs-frequency

Dick Smith Electronics, P.O. Box 8021, Redwood City, California, 94063-8021.
fig. 6. FM broadcast band signals from my spectrum analyzer project. Central spike is a signal generator on 85 MHz (± 25-year-old dial calibration).

characteristic and the resulting curve looks parabolic in shape. Digitally generating the sawtooth signal is a worthwhile consideration. If you want to try it yourself, write to me and I’ll send you a brief on the method. (Please enclose a No. 10 SASE.) A very brief discussion of the digital linearization method is given on pages 300-302 of my book, How to Design and Build Electronic Instrumentation.* Although my method is based on discrete logic circuits, it can easily be applied to digital computers should you want to provide computer control of your spectrum analyzer.

conclusion

WA2PZO deserves accolades (and our business) because of the Poor Man’s Spectrum Analyzer project, which offers opportunity for experimentation in areas previously closed to Amateurs solely for reasons of cost. If you have an idea for its use, a new or different modification, or a particularly well-built version of the W4UCH/WA2PZO project, send me the details.

references

Azotic Industries

2026 W Belmont
Chicago, Ill 60618
312-975-1288

Visi

Our Retail Store

Iron Powder and Ferrite

Toroidal Cores

Shielding Beads, Shielded Coil Forms

Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free ‘Tech-Data’ Flyer

Amidon

Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen, Wilhelm — Mettes Str 88, 4930 Dehmland 18, West Germany
In Japan: Tatsunuma Electronics Company, Ltd. 7-9-2 Chome Sota Kanda, Chiyoda-Ku, Tokyo, Japan

** Shielding Beads, Shielded Coil Forms

Ferrite Rods, Pot Cores, Baluns, Etc.**

Small Orders Welcome
Free ‘Tech-Data’ Flyer

Azotic Industries

2026 W Belmont
Chicago, Ill 60618
312-975-1288

Visit Our Retail Store

Iron Powder and Ferrite

TOROIDAL CORES

Shielding Beads, Shielded Coil Forms

Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free ‘Tech-Data’ Flyer

Amidon

Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen, Wilhelm — Mettes Str 88, 4930 Dehmland 18, West Germany
In Japan: Tatsunuma Electronics Company, Ltd. 7-9-2 Chome Sota Kanda, Chiyoda-Ku, Tokyo, Japan
THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter
- Expandable to 32 Channel by Just Adding Cards
- Continuous Voting
- LED Indicators of Good and Voter Signals
- Built-in Calibrator
- Remote Voter Indicators Plugged In
- 4 x 6 Double Sided Gold Plated 44 Pin Card
- Remote Dual Inputs
- MORE
 Built, tested and calibrated with manual

$350.00

NEW PRODUCT
Telephone interface now available.

HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

 Measure Up With Coaxial Dynamics
Model 85A Termination Wattmeter

A direct-reading instrument for servicing 50 ohm communication systems and maintaining them at peak operation.
The Model 85A features:
- Dry load no coolant required.
- Replaceable connectors, interchangeable without affecting instrument calibration.
- Four power ranges easily switchable —
 0-3/15/50 and 150 watts full scale.
- Frequency Range: 20 to 512 MHz
- Accuracy: ± 5% OFS
- Temperature Compensated
Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.
15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 98-0830

“INSTANT” MORSE CODE

Beginners: Deliciously Easy

Experts: Automatically Fast

CURLYCODE™ MANUAL
ONLY $6.50

Guaranteed

 Minds eye Publications, Dept. H21
1350 Beverly Rd.
McLean, VA 22101

LINEARITY is our SPECIALITY
100 Hz to 900 MHz

- Receiver Multicouplers
- Solid State RF Sources
- Preamplifiers, Power Amplifiers
- Power Dividers
- Intermodulation Test Sets
- Directional Power Couplers
- Receiver Signal Protectors

WI-COMM ELECTRONICS INC.
P.O. Box 5174, MASSENA, N.Y. 13662
(315) 769-8334

DESIGN EVOLUTION IN RF P.A.’s

Now with GaAs FET Preamp

• Linear (all mode) RF power amp with automatic T/R switching (adjustable delay). Amplifier usable with drive powers as low as 1/2 watt.
• Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD). Device NF typically .5 dB.
• Thermal shutdown protection incorporated
• Remote control capability built-in
• Rugged components and construction provide for superior product quality and performance
• All models include a complete operating/service manual and carry a factory warranty on all components
• Designed to ICAS ratings, meets FCC part 97 regulations
• Approximate size is 2.8 x 5.8 x 10.5” and weight is 5 lbs.

Specifications/price subject to change

SEND FOR FURTHER INFORMATION

TE SYSTEMS
P.O. Box 25685
Los Angeles, CA 90025
(213) 478-0591

March 1987
equinox problems

Most of the year, strong, stable DX reception occurs when one operates close to the MUF (maximum usable frequency). There are, however, two seasons during which the ionosphere doesn’t “cooperate.” These are the equinoctial periods (from March through April and from September through October), when the Earth’s geomagnetic field is anything but stable. This field guides ion diffusion and drift from the D, E, and lower F layers (where ionization occurs) up to the higher part of the F layer, the main region used for DX.

The geomagnetic field’s variability is related to the characteristics of the solar wind. Variations in solar wind particles streaming out from the sun are passed on to the geomagnetic field. This in turn affects the ionosphere’s ions and electrons — and, consequently, the propagated signals.

It’s the alignment of the Earth’s polar regions to the sun’s spiraling solar wind (see fig. 1) that makes the equinox seasons troublesome. Subsequent ionospheric variations influence a signal’s azimuthal and elevation angle of arrival as well as its amplitude and phase.

Paths that have high latitude (i.e., greater than 50 degrees north or less than 50 degrees south) reflection points are most affected; equatorial regions are less disturbed. Mid-latitude reflection points at about 25 through 50 degrees are the least affected and therefore the most stable. There is also a diurnal variation superimposed on this seasonal occurrence. This variation is divided into two parts: one, a period from midnight to 0400 universal time; and two, the period from 10 pm to 5 am, local time. Consequently, nighttime (from 10 pm to 5 am) is a more unstable time for everyone. The universal time segment, on the other hand, is different for each location, depending upon where (i.e., at which longitude) you live. If the two time periods overlap at your QTH, then the effects of the disturbed conditions are even greater. Such is the case for Amateurs who live between 75 degrees East and 150 degrees West longitude; unfortunately, this area encompasses Europe and the Americas. This effect is particularly potent along the east coast of the USA. On the positive side, this phenomenon often lets us work DX from unusual locations. Check WWV at 18 minutes after the hour for geomagnetic K figures of four to seven as a guide to the unusual DX openings.

last-minute forecast

DX conditions for the higher frequency bands, 10 through 30 meters, are expected to be excellent toward the end of the first week and through the second week of March. The favorable conditions are partly due to transequatorial openings at southeast through southwest headings.

From about March 6 through the 10th, expect some increase in solar flare SIDs (sudden ionospheric disturbance), which will appear as increased attenuation of signals for up to an hour during the daytime. A geomagnetic disturbance (signal attenuation and QSB, mainly at night) can be expected two to three days later. The same situation will occur during the third week of the month. The lower bands are more affected by these disturbances, but are still expected to be very good for evening and nighttime DX the third and fourth weeks of the month. Some thunderstorm QRN can be experienced as springtime weather fronts pass your QTH. Spring equinox occurs on March 21st at 0352 UTC. The moon is full on the 15th and at perigee on the 24th.

band-by-band summary

Ten, twelve, fifteen, and twenty meters provide many openings during the daytime. As you go up in frequency (i.e., into the higher bands) the openings will be shorter, centered around noon, and mainly toward southerly directions. Fifteen meters is now only a transition band between 12 and 20. Twenty meters, the mainstay daytime band, will be useful toward the south in the evenings for northerly directions. Transequatorial openings might occur in evening hours to locations up to 2000 miles if antenna radiation angles are down to 10 degrees.

Thirty, forty, eighty, and one-sixty meters are all good for nighttime DX. Thirty and 40 meters are the night frequencies for the east-west and northerly directions and for distances of 1600 miles if increased solar activity has occurred. With little solar activity, the MUF will approach 80 meters and signals will usually be stronger. These bands should generally be quiet, since thunderstorm activity is still not pronounced.

Garth Stonehocker, KØRYW
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

*Look at next higher band for possible openings.
Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitsu, Seas, Spillbury, Neutec, etc. Call or write for information 212-925-7000.

1500 WATT PEP TRANSMATCH KIT

1986-87 CATALOG

$1.00

BASE

- **Nel-Tech DVK-100**
 - **$249.00**
 - **B&W PT-2500 A**
 - **Amplifier in STOCK**
 - **Basic Kit**
 - **$154.95**
 - Plus $4.00
 - Shipping and handling

OPTIONS

- 1-41 balun kit

- 4.1 balun kit

- **$60.00**

- **$18.75**

RADIO KIT

BOX 973H

Pemberton, NH 03076

(603) 635-2235

THE QSYer - the best thing next to your FT-757GX - or your ICOM IC-735!

The popular 757GX has been joined by the 757QSYer for the ICOM IC-735! Both units are ideal for digital voice and power up. In operation, we allow immediate switching to any frequency in the transceiver's range, while the rig retains absolutely all of its operational controls. We install in seconds, connecting the rig's data terminal and power supply output. Our durable metal enclosures are painted classic metallic gray and black. $50 plus $2.95 shipping and handling and 7.5% sales tax for CA residents. Marked $ and $ quantities please send name, number, expiration date, and signature, or call us at 408-796-0241. 10 day money back guarantee.

Stone Mountain Engineering Co.

Box 1573 - Stone Mills, GA 30086

Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitsu, Seas, Spillbury, Neutec, etc. Call or write for information 212-925-7000.

UNABILLA

CONTACT YOUR DEALER

FOR MORE INFORMATION

Amateur Radio Baluns

Traps-Remote Coaxial Switches

Or Write To:

UNABILLA DIV. of ANTENNA'S ETC.

P.O. Box 215 BV ANDOVER, MA 01810

617-745-7831
OPTO 1.3 GHz shirt pocket frequency counter

A friend has something he calls his "$4000 gutbuster." A sixties-vintage 1-MHz Beckman-berkeley nixie tube digital frequency counter, it claims a fair plot of acreage in his closet-sized ham shack, sitting atop a $2000 gutbuster and supporting a $5000 gutbuster — all treasures acquired, long past their prime, for a few dollars each at some long-forgotten flea market.

For those of us who grew up with solid-state equipment and therefore take it pretty much for granted, OPTO's new 1.3 GHz shirt pocket frequency counter is impressive in terms of size (3-1/2 x 4 x 1 inches). Cost ($99.95 in kit form), maximum frequency (1.3 GHz), and sensitivity. For our friend, it's nothing short of miraculous.

Operating from either ac or a 9-volt internal rechargeable NiCad battery pack, the Model 1300 covers 1 through 1300 MHz. Though we didn't have the opportunity to check it out on the 1296-MHz band, it worked like a champ on 2 meters and hf.

The OPTO counter sports two switch-selected sensitivity ranges. In the high range with the optional telescoping antenna attached, front end gain causes a continuous spurious count that's easily identified by the randomizing of the three or four least significant digits. In the presence of even a weak signal (i.e., for a counter), the count stabilizes and you know the unit's working. In one quick test, the counter performed faultlessly on a handheld unit putting 500 mW into a rubber duck over distances up to about 50 feet through an exterior (wooden) wall.

In addition to two sensitivities (with accuracy said to be within ±1 count LSD, thanks to an RTXO time base), the counter offers two gate periods, 0.25 and 2.5 seconds. (As with any counter, if the source either comes on or goes off during the gate period, the count will be incorrect).

Both the mechanical and electronic quality of the OPTO counter are excellent. Housed in a sturdy anodized aluminum case — which, by the way, you don't have to open to adjust calibration — it has endured several months' careless handling without complaint. Eight bright red 0.28-inch LEDS make reading it easy, even under a variety of difficult lighting situations.

Priced at $150 assembled, it's also available in kit form for $99.95. Both the finished unit and kit include NiCads and a 110 VAC/9 VDC adapter for ac operation and charging. Optional accessories include a carrying case, probe, and the abovementioned telescoping antenna.

For details, contact OPTOelectronics, Inc., 5281 Northeast 14th Avenue, Fort Lauderdale, Florida 33334.

KAILBO

Circle #301 on Reader Service Card.

orbital predictions

Project OSCAR, Inc. is preparing a new set of orbital predictions for 1987. The predictions will provide the UTC times and longitude for all south-to-north equatorial crossings of the two active Russian satellites carrying Mode A transponders (RS5 and RS7), the two University of Surrey-AMSAT scientific satellites (O9 and Q11), and the recently launched JARL/JAMSAT satellite, JAS-1, recently renamed Fuji OSCAR 12 (F012), which carries both analog and digital Mode J transponders.

Used with the appropriate plotter, these predictions allow the user to determine the access times to all presently available Amateur Radio satellites. The cost in the U.S., Canada, and Mexico is $10 ($12 for overseas).

For details, write Project OSCAR Inc., P.O. Box 1136, Los Altos, California 94023-1136.

Circle #311 on Reader Service Card.

6- and 8-pole crystal filters

IRI has announced the addition of 14 new 6- and 8-pole crystal filters designed for both general experimental use and for use in recent Kenwood and ICOM hf transceivers and receivers. These filters vary in bandwidth from 250 Hz to 2.2 kHz. Kenwood and ICOM filter models range in price from $99 to $125. The 6-pole experimenter's filters are priced at $50; the 8-pole filters, $60.

For details on models and specifications, contact International Radio, Inc., 747 South Macedo Boulevard, Port St. Lucie, Florida 33452.

Circle #310 on Reader Service Card.
ultra-compact VHF transceiver

ICOM's new IC-275 is a new ultra-compact all-mode VHF transceiver that's jam-packed with all the most wanted features. It boasts 25 watts (the IC-275A includes a built-in power supply) or 100 watts (IC-275H with an external optional power supply) output, 99 tunable memories, wideband receive coverage from 138-174 MHz (Tx from 140.100-150.000 MHz), 32 built-in subaudible tones (actual subaudible frequency is displayed), odd offset capability, and a call channel.

Ideal for satellite operation, it also features full scan of the entire frequency spectrum, program scan, memory scan (120 memories in only 1 second), memory lock-out in scan function, and mode scan. The packet-compatible IC-275 incorporates a data switch for 5-ms switching time, a new velvet touch tuning knob, and an easy-to-read amber LCD readout. It comes ready to operate with an HM-12 up/down scanning mic and dc cord.

Options include a tone squelch unit, speech synthesizer, a module for OSCAR operation that allows tracking with its new IC-475 UHF companion and an FL-83 500 Hz 10.7491 MHz CW filter. The AG-25 mast-mounted preamp is also available.

The IC-275A is priced at $1199. ICOM America, Inc., 2380 – 116 Avenue, N.E., P.O. Box C-90029, Bellevue, Washington 98009-9029.

pocket digital multimeter

Eaglestone, the new direct marketing division of Silver Hegner North America, offers a card-size digital multimeter with increased voltage and ohm ranges to 500 volts ac/dc and 2 megohms, respectively. Model DM1000 folds to approximately 4.5 x 3 x 0.5 inches and weighs only 3 ounces.

Complete with velcro-attached probes, the DM1000 offers 0.7 percent basic dc accuracy, autoranging, diode testing and an easy-to-read LCD. During wiring checks, a tone sounds to indicate continuity. A single rotary switch immediately accesses all functions – dc or ac volts, ohms, and continuity/diode.
Model DM1000 sells for $35 with a risk-free, 30-day money-back return and a full one-year warranty. For details, contact Eaglestone, 5 Landmark Square, Stamford, Connecticut 06901. Circle 807 on Reader Service Card.

service monitor

CT Systems of Beech Grove, Indiana, has introduced the Model 3100 Communications Service Monitor, which includes such features as duplex/offset generation, spectrum analysis, sweep testing, filter alignment, cellular testing, and tone/digital signaling — all in a lightweight, compact unit. Simple to operate, the unit offers built-in "real time" self-diagnostics, SINAD, dc and ac oscilloscope, RMS ac voltmeter, DTMF and digital coded squelch, and other features. Priced at $9,650, the 3100 can store 20 complete sets of instrument parameters, allowing radio data and various test conditions to be saved into memory.

For details, contact CT Systems, Inc., 5245 Hornet Avenue, Beech Grove, Indiana 46107. Circle 803 on Reader Service Card.

new rf power meter

Bird Electronic Corporation has announced the release of its Model 4421 RF Power Meter, a programmable, microprocessor-based instrument which measures forward and reflected rf power, VSWR, and return loss in watts or dBm. The model 4421's accuracy is ±3 percent of the reading. The 4421 package includes a new remote sensor head based on Bird's proven Thruline® principles for in-line, un terminated measurements to 1kW without the need for directional couplers or attenuators. The frequency range of 1.8 MHz to 1 GHz is covered by only two sensors for fast, flexible operation. Each sensor carries its own calibration profile in a reprogrammable memory. Bird plans other sensors' to extend the measurement range into the milliwatt and microwatt region. Optional interfaces provide for remote, programmed operation. Under control of a personal computer, the 4421 can both acquire and store data. Other highlights include simple front panel operation with push-button function selections and auto or manual ranging.

The model 4421 RF Power Meter is priced in the $2,000-$3,000 range, depending on accessories. For more information on the 4421 or other Bird products, contact Bird Electronic Corporation, 30303 Aurora Road, Cleveland (Solon), Ohio 44139. Circle 804 on Reader Service Card.

portable communications service monitor

Ramsey Electronics' new COM-3 Service Monitor, designed for analyzing and testing transceivers in the 100-kHz to 1000-MHz range, features a programmable microprocessor memory that stores and recalls up to ten commonly used test set-ups. It covers every band and frequency, and 11 parameters of 100 kHz to 1000 MHz in 1 kHz steps. The keyboard features programmable offset keys that simplify frequency entry for duplex or repeater radios, and incremental step keys to facilitate receiver testing. The COM-3 monitor weighs less than 20 pounds and has a built-in, rechargeable battery pack. A Cordura travel case with zipper pockets and shoulder strap is optional. The manufacturer's introductory list price for the COM-3 is $1995. For details, contact Ramsey Electronics Inc., 2575 Baird Road, Penfield, New York 14526. Circle 805 on Reader Service Card.

new shortwave "sloper"

Universal Shortwave's new Alpha Delta DX-SWL Sloper Antenna covers medium-wave and all major shortwave bands, as well as the 90- and 120-meter bands, often overlooked by dipole antennas. The overall length of the slope wire is 60 feet. It includes a single 50-ohm coaxial feedpoint (for PL259) at the apex for user-supplied 50-ohm coaxial lead-in. The American-made DX-SWL Sloper, constructed with heavy-duty components and stainless steel hardware, utilizes broadband low-Q rf choke resonators for multiband frequency selection. It is fully assembled and requires no adjustments or "trimming"; only one end of the antenna needs to be elevated (25 feet or higher). The price is $99.95 plus $2.75 for shipping and handling.

For information, contact Universal Shortwave, 1280 Aida Drive, Reynoldsburg, Ohio 43068. Circle 806 on Reader Service Card.

SAY YOU SAW IT IN HAM RADIO
Grand banquet tickets are limited, please place your reservations early.

- Giant 3 day flea market • Exhibits
- Door prizes • License exams
- CW proficiency test

Flea Market Tickets
We increased Flea Market area by nearly 400 spaces this year and all were sold out by January 10.

Special Awards
Nominations are requested for 'Radio Amateur of the Year', 'Special Achievement' and 'Technical Achievement' awards. Contact: Awards chairman, Box 44, Dayton, OH 45401.

License Exam
Novice thru extra exams scheduled Saturday & Sunday by appointment only. Send current FCC form 610, copy of present license and check for $4.35 (payable to ARRL/VEC) to: Exam Registration, 8830 Wind bluff Point, Dayton Oh 45459

Slide Show
35 mm slide/tape presentation about the HAMVENTION is available for loan. Contact Dick Miller 2853 La Cresta, Beavercreek, OH 45324

Parking
Free parking is available at Hara Arena. In addition, there will be free shuttle bus service from all major motels and designated parking lots. Parking and road information will be available on DARA's 146.34/.94 repeater.

Free Bus Service
Free Bus Service will be provided between many Motels and Hara Arena. See the schedules at the motel registration desks. Avoid parking problems at the Arena by taking the HAMVENTION buses.

CAMMENCHAIR
General Chairman, Jim Simpson, WB8QZZ
Asst. General Chairman, Bill McNabb, WD8SA

Campers & Trailers
Campers and Trailers may be parked at Montgomery County Joint Vocational School. A HAMVENTION bus will provide transportation between the camper parking area and the Arena. No campers or travel trailers will be permitted to park in the Arena lot or Flea Market area.

Wheelchairs
Wheelchairs will be available. Send S.A.S.E. for details to 'Wheelchair' F.O. Box 44, Dayton, OH 45401.

Alternate Activities
HAMVENTION is for everyone. We have planned activities for the YL or your non-ham family members.

Deadlines
Award Nominations: April 4
Lodging: April 4
License Exams: March 28
Advance Registration and banquet: USA - April 11
Canada - April 4

Information
General Information: (513) 433-7720
or DARA Box 44 Dayton, OH 45401
Flea Market Information: (513) 223-0923
Lodging Information: (513) 223-2612
(No Reservations By Phone)

This is the year for you to attend the internationally famous Dayton HAMVENTION. Come with your friends to hear enlightening forums, see the latest equipment, and visit a flea market that has everything! No matter what you are looking for, you can find it in Dayton!

HAMVENTION is sponsored by the Dayton Amateur Radio Association Inc.
RATES: Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash deposits or commissions allowed.

HAMFESTS: Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check ad advertisee and must be held responsible for claims made. Liability for corrected or limited corrected to ad in next available issue.

DEADLINE: 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

HOT NEW PACKETS PROGRAM FOR your IBM PC: Several high-quality software programs to choose from, custom-written to interface with your pocket calculator with your IBM or compatible display. Features like Full Screen Line, Line Screen edit and copy, dynamic data transfer, BCD, Binary, Hex to Decimal, input of various calculus statements, and more are included. All manuals, Plus Software. Write for new information and pricing. KALT B 5553, 4400 E. Tidwell Rd. Houston, TX 77016.

IBM'S TRAFFIC IN the complete RTTY program for IBM PCs and compatibles! Now with larger buffers, better support for pocket units, pictures, much more. Virtually ready to go. CW. Teletype vs built in screen editor! Adaptable split screen display. Instant mode selection. Get your copy today! IBM/PC. KX9P, 25625 29th Street. Vista, CA 92084.

YAESU OWNERS: Hundreds of modifications and improvements for your rig. Select the best from fourteen years of general interest material. Include $4 rebate with order for Free Catalog. Mail order. F. Charles. P.O. Box 4471, Hawthorne, New Jersey 07507.

SAVE $500 ON SYNTHESIZERS! Standard version $295. Moneyback guarantee. $10.00 Bahr, 17041 San Pablo Ave., P.O. Box 5006, El Cerrito, CA 94530.

HF WFXF: use for most personal computers. For info SASE to A to B ENGINEERING, 2571 W. Palmla Tico, Anchorage, AK 99507. (907) 269-6113. Papers available.

LEARN MORSE CODE IN 1 HOUR. Amazing new easy technique. Moneyback guarantee. $10.00, 254980 11th St., P.O. Box 1339, Claremont, NH 03743 or call 603-278-0147 in NH.

SUPERMORSE CODE SUPREME. Superfast CW Morse. Moneyback guarantee. $90.00, 258470 Tenth St., P.O. Box 1339, Claremont, NH 03743.

TEN-TEC now shipping new US-made USA made iots! 1978 factory models Consul II, Century 22, Argo II transceivers. Top selling amplifier 2226 A 2 meter tuner plus precision antennas. For the best Ten Tec deal write or phone Bill Steg, W4OSL, 9401 Old Nine Mile Road, Lake Worth, FL 33460.

WANTED: Schematic for Reicrat 100 Electro, Model BC-100 Scopemaster. Please contact Ralph E. Smith, 857 Hougemount St. Sylmar, CA 91342.

HEALTH Delia antenna tuner meter Model Sa200 $2 in a beauty best condition. (401) 769-1975.

CHASSIS, CABINET KITS. SASE. KJW1. 5120 Harmony Grove Road, Dover, PA 17315.

BACK ISSUES OF HAM RADIO Magazine from March 1968 to June 1974. Complete your collection. Individual issues $0.00 each. KX9P (319) 377-3653.

IBM/APPLE computer program, "Hamlog". 18 modules listed to choose from. GC, Logs, Hamlog, etc. Also OFM Apple $19.95, IBM $24.95. KX9P 254980 11th St., P.O. Box 5006, El Cerrito, CA 94530.

LO COST Sensitive HF receiver system. Ideal 1st

station equipped. Novice $15.10/80m coverage. Send 2 stamps for free info. L. Mengef, K2ZEF, 729 Lions Dr. #101, Palm Beach, FL 33461.

HOBBY, EDUCATIONAL, INDUSTRIAL PRODUCTS. 70 kits. Amateur and commercial. Partic. built-in Ham Radio system, power supply. Send $13.00 to HOBIE ELECTRONIC, PO Box 1329, Claremont, NH 03743 or call 603-543-0003.

SOLAR ELECTRICAL PANELS and System Components. 1st since 1959. Start with a 12 Volt 3 Amp Panel! Send to: Solar Express, 30030 Dorrie, Ade. CA 49301. (616) 874-8999.

WAGFRF CRYSTAL FILTER. $15.00 includes H/D HF/ VHF/UHF-BAND propagation and Smith Chart impedance matching features. 5 MHz, 10 MHz, 15 MHz, 20 MHz, 25 MHz, 30 MHz and 36 MHz are available in MOS/DOS BASIC. Lynn Greig, 6147 Morgan Rd, Monroe, NV 86731.

IBM/APPLE computer program, "Hamlog". 18 modules listed to choose from. GC, Logs, Hamlog, etc. Also OFM Apple $19.95, IBM $24.95. KX9P 254980 11th St., P.O. Box 5006, El Cerrito, CA 94530.

COMPUTER program "Hamlog". 18 modules listed to choose from. GC, Logs, Hamlog, etc. Also OFM Apple $19.95, IBM $24.95. KX9P 254980 11th St., P.O. Box 5006, El Cerrito, CA 94530.
NEW JERSEY: March 13. The Siplock Amateur Radio Association's 2nd annual Evening Hamfest. Drew University Center, Room 307, Rt. 24, Madison. Setup 6 PM. Doors open 7 PM. Admission for buyers $2.00. Table fee $2.00 to $5.00 per table. In and on 146.385 outside Madison area. For information write DARVIA, PO Box 3, Whippany, N.J. 07981 or call Steve Hallibuey, W2550, or 360-9642.

NEW JERSEY: March 28. The Short Points ARC invites everyone to a Springfest. 9 AM to 2 PM. Atlantic County 4 H Center, Rt. 50, Egg Harbor City, approx. 15 miles west of Atlantic City. Indoor, heated, seating 500. Per space, table fee $3. Outdoor tailgating, weather permitting. Food and drink available. Talk on 146.385 and 52. For information write SPARC, PO Box 142, Absecon, N.J. 86261.

OHIO: April 24, 25, 26. DAYTON HAMVENTION.

The Dayton Amateur Radio Association is now accepting applications for its 1987 Scholarship Program. Any licensed amateur who is attending college or high school in 1987 is eligible to enter. For applications and application forms write DARARA Scholarship Committee, 317 East Avenue, Dayton, Ohio 45404. Deadline is April 24. The 18th annual 1BACI9G will be held on FRIDAY NIGHT of the Hamvention at the Conference Center of the HARA (Ham Radio Association of America) Conference Center. (The same location as the Hamvention) starting at 7 PM. There is no admission charge, and free continuous entertainment. Hot dogs, hamburgers, sandwiches and beverages are available. Two exciting top (and many more) contest. Stay right here when the Hamvention closes on Friday evening and meet your friends and enjoy an evening of fun and entertainment. Sponsored by the Miami Valley FM Association, PO Box 263, Dayton, Ohio 45402.

PENNSYLVANIA: March 15. The Beaver Valley Amateur Radio Association's third annual Tri-State Hamfest. 8 AM to 4 PM. Community College of Beaver County "Golden Center", Monaca. All exachts. Amateur license testing, forums, refreshments. Free vendor spaces. Table rental available. Talk in 146.31/71 W3RSJ/G and 52. Contact Mike Pastorik, K3JRR, 115 West Woodland Ave, Aliquippa, PA 15001.

TEXAS: March 14. The Midland Amateur Radio Club will hold its annual St. Patrick's Swapfest. 10 AM to 5 PM. Midland County Exhibition Hall, Highway 80, West of Midland. Pre-registration 25.00, single, at the door. Tables $6.00 each. Refreshments and food available. All tests for all categories. Midland Amateur Radio Club, PO Box 494, Midland, Texas 79704.

WEST VIRGINIA: April 5. Charleston WV Area Hamfest and Computer Show in Charleston Civic Center. 8 AM to 5 PM. Admission $4.00. Tickets $3.50. Admission tickets will be sold at the door. Refreshments and food available. West Virginia Hamfest. West Virginia Hamfest, POB 156, Charleston, WV 25307. (304) 768-9364.

WISCONSIN: March 7. The Milwaukee School of Engineering ARC, W9HWH, will hold its annual Hamfest. 8 AM to 2 PM. 1271 N. Wauwatosa St., downtown Milwaukee. Tickets $2.00 for 4 tables $3.00. Talk on 146.19/16.79 and 146.52. For information, tickets or tables, call W9HWH, 146.55, 146.92 or 16.79. Milwaukee School of Engineering, ARC, POB 644, Room C 16, Milwaukee, WI 53201 0644.

WISCONSIN: March 22. The Tri-State Amateur Radio Group, W9MGB, will hold its annual Hamfest. 8 AM to 3 PM. Jefferson Fairgrounds, Jefferson. Tickets $2.00 advance, $3.00 at the door. Tables $3.00 advance, $4.00 at the door. Plenty of free parking. Admission by members of the Milwaukee Volunteer Core Group. Doors open at 7 AM for buyers. Talk on 146.33/49 or 146.52. For information, tickets or tables call W9MGB, 146.52 or 146.92. Tri-State Amateur Radio Group, W9MGB, POB 644, Jefferson, WI 53549.

WISCONSIN: April 5. The Madison Area Repeater Association (M.A.R.A.) is pleased to announce its 15th annual Madison Hamfest. Dane County Expo Center, Forum Building, Madison. Doors open 7:30 AM for flea market sellers, 8 AM and 8 PM for the general public. An all-you-can-eat pancake breakfast available at the Swapfest. Admission is $3.00 at the door. For information, tickets or tables call W9AR, 146.52 or 146.92. Madison Area Repeater Association, POB 550, Madison, WI 53704 or call (608) 274-5153 day or night.

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria
Karen Utter
2723 Roeschweg
D-8080, Lechach
West Germany

Ham Radio Belgium
Boulevard Auguste Van der Nüell 16
1040, Brussels
Belgium

Ham Radio Holland
Postbus 26
2300 CA, Zutphen
Netherlands

Ham Radio Europe
Box 8084
1208 MD Jeans
The Netherlands

Ham Radio France
15B, Rue des Grands Sablons
75008, Paris
France

Ham Radio Germany
Karen Utter
P.O. Box 3403
Madison, WI 53704

Ham Radio Italy
C/o Radio Italia
1208 MD Jeans
The Netherlands

Ham Radio Netherlands
Kooystraat 12
1003 AD Amsterdam
The Netherlands

Ham Radio England
CG RS 198
Althe House
Cranborne Road
Bath BA1 4NB
England

Ham Radio Germany
Karen Utter
P.O. Box 3403
Madison, WI 53704

Ham Radio Norway
Karen Utter
P.O. Box 3403
Madison, WI 53704

Ham Radio Scandinavia
Kooystraat 12
1003 AD Amsterdam
The Netherlands

Fuller Communications

1275 NORTH GROVE ST
ANAHEIM, CALIF. 92802
(714) 884-8544

CARL C. NAGAOLUZ
FAX (714) 560-3024

Dealer prices may be different than list.
Prices and specifications subject to change without notice or obligation.

FALCON COMMUNICATIONS

Falcon Communications, Well Known for MOSFET Repeater Power Amplifiers, Also Makes a High Working Line Of Bipolar Power Amplifiers For Mobile Use. For Information On Our Complete Line See Your Local Dealer Or Call Factory Direct

P.O. Box 8979 • Newport Beach, CA 92658 • (714) 760-3622

March 1987
California

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Colorado

COLORADO COMM CENTER
525 EAST 70TH AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7373
(800) 227-7373
Stocking all major lines
Kenwood, Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store.

DELWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-326-7728
800-441-7088
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more.
One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1988 DREW STREET
CLEARWATER, FL 33755
813-461-4267
Clearwater Branch
West Coast's only full service Amateur Radio Store
Hours M-F 9:30-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302
1 861-5610
Icom, Yaesu, Bird...
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUOMOKU STREET
HONOLULU, HI 96814
(808) 949-5554
Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830
M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon. Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kentronic, Santec and others.
SASE for New & Used Equipment List.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
M-F 10-7
SAT 9-5

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Michigan

ATLANTIC SOLAR POWER/ENCON
(SINCE 1979)
37279 W. SIX MILE RD.
LIVONIA, MI 48152
(313) 591-7745
Call Paul, WD8AHO

Minnesota

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, ICOM, Kenwood

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323
Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
<table>
<thead>
<tr>
<th>Nevada</th>
<th>North Carolina</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>F & M ELECTRONICS</td>
<td>MADISON ELECTRONICS SUPPLY</td>
</tr>
<tr>
<td>1072 N. RANCHO DRIVE</td>
<td>3520 Rockingham Road</td>
<td>3621 FANNIN</td>
</tr>
<tr>
<td>LAS VEGAS, NV 89106</td>
<td>Greensboro, NC 27407</td>
<td>HOUSTON, TX 77004</td>
</tr>
<tr>
<td>702-647-3114</td>
<td>1-919-299-3437</td>
<td>713-520-7300</td>
</tr>
<tr>
<td>Dale Porray “Squeak,” AD7K</td>
<td>9AM to 7PM Closed Monday</td>
<td>Christmas?? Now??</td>
</tr>
<tr>
<td>Outside Nev: 1 (800) 634-6227</td>
<td>ICOM our specialty — Sales & Service</td>
<td>KENNEDY ASSOCIATES</td>
</tr>
<tr>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
<td>AMATEUR RADIO DIVISION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5707A MOBD</td>
</tr>
</tbody>
</table>

New Hampshire

RIVENDELL ELECTRONICS	**AMATEUR ELECTRONIC SUPPLY**	**MISSION COMMUNICATIONS**
8 LONDON DERRY ROAD	28940 EUCLID AVE.	11903 ALEIF CLODINE
DERRY, N. H. 03038	WICKLiffe, OH 44092(Cleveland Area)	SUITE 500 (CORNER HARWIN & KIRKWOOD)
603-647-5371	216-585-7388	HOUSTON, TEXAS 77082
Hours M-S 10-5; THURS 10-9	Ohio Wats: 1 (800) 362-0290	(713) 879-7764
Closed Sun/Holidays	Outside Ohio: 1 (800) 321-3594	Now in Southwest Houston—full line
	Hours M-F 9-5:30, Sat. 9-3	of equipment. All the essentials and

New Jersey

KJI ELECTRONICS	**DEBKO ELECTRONICS, INC.**	**LaRUE ELECTRONICS**
86 SKYTOP ROAD	3831 EDWARDS RD.	1112 GRANDVIEW STREET
CEDAR GROVE, NJ 07009	CINCINNATI, OHIO 45209	SCRANTON, PENNSYLVANIA 18509
(301) 239-4389	(513) 531-4499	717-343-2124
Gene K2KJ	Mon-Sat 10AM-9PM	ICOM, Bird, Cushcraft, Beckman,
Maryann K2R VH	Sun 12-6PM	Larsen, Amphenol, Astron, Belden,
Distributor of: KLM, Mirage, ICOM, Larsen, Lunar, Astron. Wholesale - retail.	We buy and sell all types of electronic parts.	Antenna Specialists, W2AU/W2VS,
QEP's	**UNIVERSAL AMATEUR RADIO, INC.**	Tokyo Hy-Power Labs, WELZ, Daiwa,
110-4 ROUTE 10	1280 AIDA DRIVE	Sony, Saxton, Vibroplex, Weller.
EAST HANOVER, N. J. 07936	REYNOLDSBURG (COLUMBUS), OH	
201-887-6424	614-866-4267	
In N.J. 1-800-USA-9913	Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.	
Bill K2AEP		
Jim N2GKW		
VISA/Mastercard		
Belden Coaxial Cable		
Amphenol Connectors		
Hours: 9:30 am-7:00 pm		

New York

BARRY ELECTRONICS	**HAMTRONICS, DIV. OF TREVOS ELEcTRONICS**	**ENARIO ELECTRONICS**
512 BROADWAY	4033 BROWNSVILLE ROAD	1112 GRANDVIEW STREET
NEW YORK, NY 10012	TREVOS, PA 19047	SCRANTON, PENNSYLVANIA 18509
212-925-7000	215-537-1400	717-343-2124
New York City’s Largest Full Service	Same Location for over 30 Years	ICOM, Bird, Cushcraft, Beckman,
Ham and Commercial Radio Store.		Larsen, Amphenol, Astron, Belden,
		Antenna Specialists, W2AU/W2VS,
		Tokyo Hy-Power Labs, WELZ, Daiwa,
		Sony, Saxton, Vibroplex, Weller.

Wisconsin

AMATEUR ELECTRONIC SUPPLY	**HAMEVIN ELECTRONICS**	**MAKE CIRCUIT BOARDS THE NEW, EASY WAY**
4828 W. FOND DU LAC AVE.	4824 EUROPA LANE	WITH TEC-200 FILM
MILWAUKEE, WI 53216	SCRANTON, PA 18509	JUST 3 EASY STEPS:
414-442-4200	717-728-6273	• Copy circuit on TEC-200 film using any plain paper copier
Wisc. Wats: 1 (800) 242-5195		• Iron film on to copper clad board
Outside Wisc: 1 (800) 558-0411		• Peel off film and etch
M-F 9-5:30, Sat 9-3		SATISFACTION GUARANTEED
		conventional 8½ x 11 size
		5-Sheets for $3.95
		10 sheets only $5.95
		add $1.00 postage - NY res add sales tax

Tennessee

MEMPHIS AMATEUR ELECTRONICS	**LaRUE ELECTRONICS**	**The MEADOWLAKE Corp.**
1465 WELLS STATION ROAD	1112 GRANDVIEW STREET	DEPT HR, P.O. Box 497
MEMPHIS, TN 38108	SCRANTON, PENNSYLVANIA 18509	Northport, New York 11768
Call Toll Free: 1-800-238-6168	717-343-2124	
M-F 9-5; Sat 9-12	ICOM, Bird, Cushcraft, Beckman,	
Kenwood, ICOM, Ten-Tec, Cushcraft,	Larsen, Amphenol, Astron, Belden,	
Hy-Gain, Hustler, Larsen, AEA, Mirage,	Antenna Specialists, W2AU/W2VS,	
Ameritron, etc.	Tokyo Hy-Power Labs, WELZ, Daiwa,	
	Sony, Saxton, Vibroplex, Weller.	
Step up
to the world's most-
advanced antenna system!
WITH NOT A SINGLE
WATT WASTED IN LOSSY
TRAPS! (There aren't any!)
Hams in over 50 DXCC coun-
tries have done so already!

The DJ2UT-Multiband-Systems
offer:
- Maximum gain plus F/B
 ratio with low VSWR across
each band
- 2 kW CW output power
- 10/15/20/30/40-meter bands
 with up to 7 band
 coverage incl. WARC bands
 with self-supporting
 "TWIN-BOOM" and boom-
 legs from 8 to 20 ft
- Air-core teflon dielectric coax-
 balun and stainless-steel
 hardware at no extra cost
- traditional Blackforest crafts-
manship

The DJ2UT-MULTIBANDERS
provide the superior full-size
monoband-beam performance
required during the present
sunspot minimum.

For further information contact:

H.J. Thaller Corp.
P.O. Box 5369
Spartanburg, SC 29304
(803) 576-5566
or our distributor in Canada:
Dollard's Radio West
P.O. Box 58236
762 S.W. Marine Drive
Vancouver, B.C. V6P 6E3
Selected dealerships available.

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix postage
stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham
radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>3</td>
</tr>
<tr>
<td>142</td>
<td>67</td>
</tr>
<tr>
<td>44</td>
<td>53</td>
</tr>
<tr>
<td>166</td>
<td>3</td>
</tr>
<tr>
<td>152</td>
<td>32</td>
</tr>
<tr>
<td>160</td>
<td>101</td>
</tr>
<tr>
<td>186</td>
<td>111</td>
</tr>
<tr>
<td>181</td>
<td>111</td>
</tr>
<tr>
<td>149</td>
<td>70</td>
</tr>
<tr>
<td>195</td>
<td>108</td>
</tr>
<tr>
<td>159</td>
<td>72</td>
</tr>
<tr>
<td>334</td>
<td>55</td>
</tr>
<tr>
<td>117</td>
<td>27</td>
</tr>
<tr>
<td>108</td>
<td>111</td>
</tr>
<tr>
<td>140</td>
<td>84</td>
</tr>
<tr>
<td>141</td>
<td>64</td>
</tr>
<tr>
<td>196</td>
<td>109</td>
</tr>
<tr>
<td>158</td>
<td>81</td>
</tr>
<tr>
<td>147</td>
<td>68</td>
</tr>
<tr>
<td>165</td>
<td>81</td>
</tr>
<tr>
<td>132</td>
<td>120</td>
</tr>
<tr>
<td>204</td>
<td>74</td>
</tr>
<tr>
<td>161</td>
<td>115</td>
</tr>
<tr>
<td>162</td>
<td>76</td>
</tr>
<tr>
<td>179</td>
<td>92</td>
</tr>
<tr>
<td>115</td>
<td>40</td>
</tr>
<tr>
<td>107</td>
<td>11</td>
</tr>
<tr>
<td>108</td>
<td>10</td>
</tr>
<tr>
<td>106</td>
<td>51</td>
</tr>
<tr>
<td>113</td>
<td>120</td>
</tr>
<tr>
<td>112</td>
<td>111</td>
</tr>
<tr>
<td>109</td>
<td>64</td>
</tr>
<tr>
<td>106</td>
<td>70</td>
</tr>
<tr>
<td>105</td>
<td>64</td>
</tr>
<tr>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>103</td>
<td>70</td>
</tr>
<tr>
<td>102</td>
<td>64</td>
</tr>
<tr>
<td>101</td>
<td>97</td>
</tr>
<tr>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>109</td>
<td>72</td>
</tr>
<tr>
<td>108</td>
<td>78</td>
</tr>
<tr>
<td>107</td>
<td>115</td>
</tr>
<tr>
<td>106</td>
<td>45</td>
</tr>
<tr>
<td>105</td>
<td>106</td>
</tr>
<tr>
<td>104</td>
<td>84</td>
</tr>
<tr>
<td>103</td>
<td>28</td>
</tr>
<tr>
<td>102</td>
<td>107</td>
</tr>
<tr>
<td>101</td>
<td>118</td>
</tr>
<tr>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>99</td>
<td>76</td>
</tr>
<tr>
<td>98</td>
<td>72</td>
</tr>
<tr>
<td>97</td>
<td>38</td>
</tr>
<tr>
<td>96</td>
<td>106</td>
</tr>
<tr>
<td>95</td>
<td>111</td>
</tr>
<tr>
<td>94</td>
<td>108</td>
</tr>
<tr>
<td>93</td>
<td>111</td>
</tr>
<tr>
<td>92</td>
<td>84</td>
</tr>
<tr>
<td>91</td>
<td>107</td>
</tr>
<tr>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>89</td>
<td>118</td>
</tr>
<tr>
<td>88</td>
<td>111</td>
</tr>
<tr>
<td>87</td>
<td>111</td>
</tr>
<tr>
<td>86</td>
<td>111</td>
</tr>
<tr>
<td>85</td>
<td>111</td>
</tr>
<tr>
<td>84</td>
<td>111</td>
</tr>
<tr>
<td>83</td>
<td>111</td>
</tr>
<tr>
<td>82</td>
<td>111</td>
</tr>
<tr>
<td>81</td>
<td>111</td>
</tr>
<tr>
<td>80</td>
<td>111</td>
</tr>
<tr>
<td>79</td>
<td>111</td>
</tr>
<tr>
<td>78</td>
<td>111</td>
</tr>
<tr>
<td>77</td>
<td>111</td>
</tr>
<tr>
<td>76</td>
<td>111</td>
</tr>
<tr>
<td>75</td>
<td>111</td>
</tr>
<tr>
<td>74</td>
<td>111</td>
</tr>
<tr>
<td>73</td>
<td>111</td>
</tr>
<tr>
<td>72</td>
<td>111</td>
</tr>
<tr>
<td>71</td>
<td>111</td>
</tr>
<tr>
<td>70</td>
<td>111</td>
</tr>
<tr>
<td>69</td>
<td>111</td>
</tr>
<tr>
<td>68</td>
<td>111</td>
</tr>
<tr>
<td>67</td>
<td>111</td>
</tr>
<tr>
<td>66</td>
<td>111</td>
</tr>
<tr>
<td>65</td>
<td>111</td>
</tr>
<tr>
<td>64</td>
<td>111</td>
</tr>
<tr>
<td>63</td>
<td>111</td>
</tr>
<tr>
<td>62</td>
<td>111</td>
</tr>
<tr>
<td>61</td>
<td>111</td>
</tr>
<tr>
<td>60</td>
<td>111</td>
</tr>
<tr>
<td>59</td>
<td>111</td>
</tr>
<tr>
<td>58</td>
<td>111</td>
</tr>
<tr>
<td>57</td>
<td>111</td>
</tr>
<tr>
<td>56</td>
<td>111</td>
</tr>
<tr>
<td>55</td>
<td>111</td>
</tr>
<tr>
<td>54</td>
<td>111</td>
</tr>
<tr>
<td>53</td>
<td>111</td>
</tr>
<tr>
<td>52</td>
<td>111</td>
</tr>
<tr>
<td>51</td>
<td>111</td>
</tr>
<tr>
<td>50</td>
<td>111</td>
</tr>
<tr>
<td>49</td>
<td>111</td>
</tr>
<tr>
<td>48</td>
<td>111</td>
</tr>
<tr>
<td>47</td>
<td>111</td>
</tr>
<tr>
<td>46</td>
<td>111</td>
</tr>
<tr>
<td>45</td>
<td>111</td>
</tr>
<tr>
<td>44</td>
<td>111</td>
</tr>
<tr>
<td>43</td>
<td>111</td>
</tr>
<tr>
<td>42</td>
<td>111</td>
</tr>
<tr>
<td>41</td>
<td>111</td>
</tr>
<tr>
<td>40</td>
<td>111</td>
</tr>
<tr>
<td>39</td>
<td>111</td>
</tr>
<tr>
<td>38</td>
<td>111</td>
</tr>
<tr>
<td>37</td>
<td>111</td>
</tr>
<tr>
<td>36</td>
<td>111</td>
</tr>
<tr>
<td>35</td>
<td>111</td>
</tr>
<tr>
<td>34</td>
<td>111</td>
</tr>
<tr>
<td>33</td>
<td>111</td>
</tr>
<tr>
<td>32</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>109</td>
</tr>
<tr>
<td>188</td>
<td>105</td>
</tr>
<tr>
<td>112</td>
<td>22</td>
</tr>
<tr>
<td>130</td>
<td>51</td>
</tr>
<tr>
<td>138</td>
<td>64</td>
</tr>
<tr>
<td>135</td>
<td>59</td>
</tr>
<tr>
<td>115</td>
<td>32</td>
</tr>
<tr>
<td>157</td>
<td>72</td>
</tr>
<tr>
<td>163</td>
<td>78</td>
</tr>
<tr>
<td>203</td>
<td>115</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>139</td>
<td>64</td>
</tr>
<tr>
<td>136</td>
<td>97</td>
</tr>
<tr>
<td>135</td>
<td>90</td>
</tr>
<tr>
<td>134</td>
<td>28</td>
</tr>
<tr>
<td>133</td>
<td>109</td>
</tr>
<tr>
<td>200</td>
<td>110</td>
</tr>
<tr>
<td>129</td>
<td>45</td>
</tr>
<tr>
<td>193</td>
<td>108</td>
</tr>
<tr>
<td>171</td>
<td>83</td>
</tr>
<tr>
<td>126</td>
<td>44</td>
</tr>
<tr>
<td>192</td>
<td>108</td>
</tr>
<tr>
<td>176</td>
<td>84</td>
</tr>
<tr>
<td>182</td>
<td>98</td>
</tr>
<tr>
<td>146</td>
<td>68</td>
</tr>
<tr>
<td>121</td>
<td>37</td>
</tr>
<tr>
<td>206</td>
<td>118</td>
</tr>
<tr>
<td>131</td>
<td>76</td>
</tr>
<tr>
<td>199</td>
<td>59</td>
</tr>
<tr>
<td>194</td>
<td>108</td>
</tr>
<tr>
<td>164</td>
<td>78</td>
</tr>
<tr>
<td>156</td>
<td>72</td>
</tr>
<tr>
<td>116</td>
<td>38</td>
</tr>
<tr>
<td>190</td>
<td>105</td>
</tr>
<tr>
<td>168</td>
<td>81</td>
</tr>
<tr>
<td>184</td>
<td>101</td>
</tr>
<tr>
<td>128</td>
<td>47</td>
</tr>
<tr>
<td>207</td>
<td>111</td>
</tr>
<tr>
<td>173</td>
<td>43</td>
</tr>
<tr>
<td>174</td>
<td>82</td>
</tr>
<tr>
<td>175</td>
<td>44</td>
</tr>
<tr>
<td>176</td>
<td>44</td>
</tr>
<tr>
<td>177</td>
<td>44</td>
</tr>
<tr>
<td>178</td>
<td>44</td>
</tr>
<tr>
<td>179</td>
<td>44</td>
</tr>
<tr>
<td>180</td>
<td>44</td>
</tr>
<tr>
<td>181</td>
<td>44</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before April 30, 1987.
THE CHAMP

BIRD MODEL 4304

NO ELEMENTS
25-1000 MHZ
RF SAMPLING PORT

WEBSTER COMMUNICATIONS INC.
115 BELLAIREME
ROCHESTER, MI 48063
313-375-0420

CALL TOLL FREE
800-521-2333
800-482-3610

Gunnplexers & accessories

A. Microwave Associates 10 GHz Gunnplexer. Two of these transceivers can form the heart of a 10 GHz communication system for voice, mcw, video or data transmission, not to mention mountaintop DXing! MA87141-1 (pair of 10 mW transceivers) $251.95. Higher power units (up to 200 mW) available. B. Microwave Associates 24 GHz Gunnplexer. Similar characteristics to 10 GHz unit. MA87820-4 (pair of 20 mW transceivers) $739.20. C. This support module is designed for use with the MA87141 and MA87820 and provides all of the circuitry for a full duplex audio transceiver system. The board contains a low-noise, 30-MHz fm receiver, modulators for voice and mcw operation, Gunn diode regulator and varactor supply. Meter outputs are provided for monitoring received signal levels, discriminator output and varactor tuning voltage. RXM30VD assembled and tested $119.95. D. Complete, ready to use communication system for voice or mcw operation. Ideal for repeater linking. A power supply capable of delivering 13 volts dc at 250 mA (for a 10 mW version), microphone, and headphone and loudspeaker are the only additional items needed for operation. The Gunnplexer can be removed for remote mounting to a tower or 2 or 4 foot parabolic antenna. TR10GE (10 GHz, 10 mW) $399.95. Higher power units available. TR24GA (24 GHz, 20 mW) $699.95. Also available: horn, 2 and 4 foot parabolic antennas, Gunn, varactor and detector diodes, search and lock systems, oscillator modules, waveguide, flanges, etc. Call or write for additional information. Let ARR take you higher with quality 10 and 24 GHz equipment!

Advanced Receiver Research

Box 1242 • Burlington CT 06013 • 203 582-9409
Get Wind of These High-Flying Savings

EGE VIRGINIA
10646 Jefferson Davis Highway Woodbridge, Virginia 22191 Information: (703) 643-1063 Service Dept: (703) 494-8750 Store Hours: M-Th 10-6:F 10-8:Sat 10-4 Order Hours: M-F 9-7 Sat 10-4

EGE NEW ENGLAND 8 Stiles Road Salem, New Hampshire 03079 New Hampshire Orders:* Info & Service: (603) 898-3750 Store Hours: MTWSat. 10-4 ThF-Noon-8* Order & we'll credit you $1 for the call.

LACOMBE DISTRIBUTORS Our associate store Dave & Jackson Road P.D. Box 293 Lacomb, Louisiana 70445 Info & Service: (504) 882-5355

Terms: No personal checks accepted. Prices do not include shipping. UPS COD fee: $2.35 per package. Prices are subject to change without notice or obligation. Products are not sold for evaluation. Authorized returns are subject to a 15% restocking and handling fee and credit will be issued for use on your next purchase. EGE supports the manufacturers' warranties. To get a copy of a warranty prior to purchase, call customer service at 703-643-1063 and it will be furnished at no cost.

Antennas
Amateur HF Bands Cushcraft, Butternut, KLM, Mosley, Hy-Gain, Mini-Products, B&W, Van Gorden, Hustler, Larsen, Antenna Specialists, Centurion, Smiley

Antennas in Stock for Mobiles, Base Stations, and Handhelds
Everything from mini rubber ducky's to huge monobanders

ASK FOR PACKAGE DEALS ON ANTENNAS AND ACCESSORIES

Also...
Antennas for Scanners, CBs, Marine, Commercial, and Short Wave Listening

Towers
UNARCO-ROHN
Tri-Ex
Hy-Gain

Packet Controllers Kantronics and MFJ

Amateur Software Ham Data Software for Commodore Computers Ask for Descriptions

RTTY/Morse/Amtor Hardware and Software and packages by Kantronics, Microlog, HAL, MFJ, & more

ROTATORS Kenpro, Alliance, Dawa, Telex Hy-Gain

For Orders & Quotes Call Toll Free: 800-336-4799
In New England Call 800-237-0047 In Virginia Call 800-572-4201
Decisions, decisions, decisions.

Should you choose one, two, or all three?

Choose one—Yaesu's FT-109RH, FT-209RH or FT-709R—and you gain the maximum performance available in any single-band HT.

Choose two—or even three, and you also get interchangeable accessories, options and operating procedures. Making it easy and affordable to work all your favorite VHF and UHF bands.

However you decide, you get all this operating flexibility: Powerful 5-watt output (4.5 watts on 440 MHz), Battery saver. Push-button recall of 10 memories, each that independently stores receive frequency, standard or non-standard offset, even optional tone encode and decode.

Push-button scanning routines for scanning all memory channels, selected ones, or all frequencies between adjacent memories. And a priority feature to return you to a special frequency.

You also get a high/low power switch, power meter, backlit display, 500 mAH battery, wall charger, and soft case. Plus a choice of many interchangeable options, including a VOX headset, fast charger, hard leather case, and plug in subaudible tone encoder/decoder for controlled-access repeaters.

Let Yaesu's 220-MHz FT-109 RH, 2-Meter FT-209 RH and 440-MHz FT-709 R give you the decided advantage in HT performance and upgrade ability. It may be the most enjoyable HT buying decision you ever make.

220 MHz

2 Meters

440 MHz

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847.

Yaesu Cincinnati Service Center 9020 Gold Park Drive, Hamilton, OH 45011. (513) 874-3100.

Prices and specifications subject to change without notice.
Here's One for You!

TM-221A/421A

2 m and 70 cm FM compact mobile transceivers
The all-new TM-221A and TM-421A FM transceivers represent the "New Generation" in Amateur radio equipment. The superior Kenwood GaAs FET front end receiver; reliable and clean RF amplifier circuits, and new features all add up to an outstanding value for mobile FM stations! The optional RC-10 handset/control unit is an exciting new accessory that will increase your mobile operating enjoyment!

- TM-221A provides 45 W. TM-421A is the first 35 W 70 cm mobile! Both models have adjustable 5 W low power.
- Selectable frequency steps for quick and easy QSY.
- TM-221A receives from 138-173.995 MHz. This includes the weather channels! Transmit range is 144-148 MHz. Modifiable for MARS and CAP operation. (MARS or CAP permit required.)
- The TM-421A covers 438-449.995 MHz. (Specifications guaranteed for Amateur band use only.)
- Built-in front panel selection of 38 CTCSS tones. TSU-5 programmable decoder optional.
- Simplified front panel controls makes operating a snap!
- 16 key DTMF hand mic, mic. hook, mounting bracket, and DC power cable included.
- Packet radio compatible!
- Kenwood non-volatile operating system. All functions remain intact even when lithium battery back-up fails. (Lithium cell memory back-up - est. life 5 yrs.)

- 14 full-function memory channels store frequency, repeater offset, sub-tone frequencies, and repeater reverse information. Repeater offset on 2 m is automatically selected. There are two channels for "odd split" operation.
- Programmable band scanning.
- Memory scan with memory channel lock-out.
- Super compact: approx. 1-1/2"Hx5-1/2"Wx7"D.
- New amber LCD display.
- Microphone test function on low power.
- High quality, top-mounted speaker.
- Rugged die-cast chassis and heat sink.

Optional Accessories:
- RC-10 Multi-function handset remote controller
- PG-4G Extra control cable, allows TM-221A/TM-421A full duplex operation
- PS-50/PS-330 DC power supplies
- TSU-5 Programmable CTCSS decoder
- SW-100A Compact SWR/power/volt meter (18-150 MHz) SW-100B Compact SWR/power/volt meter (140-450 MHz)
- SW-200A/200B SWR/power meter (18-150 MHz)
- SWT-1 Compact 2 m antenna tuner (200 W PEP)
- SWT-2 Compact 70 cm antenna tuner (200 W PEP)
- SP-40 Compact mobile speaker
- SP-50B Mobile speaker
- PG-2N Extra DC cable
- PG-3B DC line noise filter
- MC-60A, MC-80, MC-85 Base station mics
- MC-55 (8-pin) Mobile mics with 260B Mic. hook
- MA-4000 Dual band external antenna with cross band (mount not supplied)
- MB-201 Extra mobile mount

Specifications and prices subject to change without notice or obligation.
Complete service manuals are available for all the Kenwood Transceivers and most accessories.

RC-10 Remote Controller
Optional telephone-style handset remote controller RC-10 is specially designed for mobile convenience and safety. All front panel controls (except DC power and RF output selection) are controllable from the RC-10. One RC-10 can be attached to either or both TM-221A and TM-421A with the optional PG-4G cable. When both transceivers are connected to the RC-10, cross band, full duplex repeater operation is possible. (A control operator is needed for repeater operation.)

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220