FEBRUARY 1987 / $2.50

ham radio magazine

packet radio PSK modem for JAS-1
THE IC-735
HF TRANSCEIVER

BUY YOUR HF FOR PERFORMANCE,
NOT BY THE POUND

- All HF Band Transceiver/
 General Coverage Receiver
- HM-12 Scanning Mic Included
- 12 Memories/Frequency and Mode
- 105dB Dynamic Range
- All Modes Built-In USB, LSB, AM, FM, CW

The IC-735 is a heavyweight when you compare features and performance. Other transceivers may weigh more than the advanced IC-735 compact HF transceiver, but inch-for-inch and pound-for-pound, the IC-735 outweighs them all.

Ultra Compact. Measures only 3.7 inches high by 9.5 inches wide by 9 inches deep and weighs only 11.1 pounds. Without question, the IC-735 is the best HF transceiver for mobile, marine or base station amateur operation.

12 Memories. Frequency and MODE may be easily stored and retrieved in the 12 tunable memories.

Exceptional Receiver. To enhance receiver performance, the IC-735 has a built-in receiver attenuator, preamp, and noise blanker. PLUS it has a 105dB dynamic range and a technologically advanced low-noise phase locked loop for extremely quiet rock-solid reception.

Simplified Front Panel. Controls which require infrequent adjustment are placed behind a unique hatch cover on the front panel of the radio. The hatch cover is designed to protect seldom used controls from being accidentally knocked off line, but also provides easy access. The large LCD readout and conveniently located controls enable easy operation, especially important for the mobile environment.

More Features. FM built-in, HM-12 scanning mic, program scan, mode scan and memory scan. Switchable AGC, automatic SSB selection by band and RF speech processor. Continuously adjustable output power up to 100 watts, 12V operation, 100% duty cycle and deep tunable notch filter.

Options. A new line of accessories are available, including the AH-2 mobile antenna system, AT-150 whisper quiet automatic bandswitching antenna tuner for base station operation and the PS-55 power supply. The IC-735 is also compatible with most of ICOM's existing line of HF accessories.

All Amateur Band Coverage. It's a high performer on all the ham bands, plus it includes general coverage reception from 100kHz to 30MHz. May be easily modified for MARS operation.

See the IC-735 performance heavyweight at your local authorized ICOM dealer.

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 / 3150 Premier Drive, Suite 126, Irving, TX 75063
ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada
International: (800) 345-3039 • Fax: (425) 649-3701

Our Numbers Are Growing

And There Are Good Reasons Why

Features and Support — Just a couple of reasons why so many amateurs are choosing Kantronics. Take our packet units. Only Kantronics TNCs have always included the HF modem as standard equipment. And only Kantronics offers high-speed 2400 bps packet.

Our RS-232/TTL jumper makes all Kantronics "SMART" TUs and TNCs universally compatible. You won't need special interfacing for Commodores when you choose Kantronics.

Kantronics prices are compatible too! Check and see.

And what about support? Kantronics full-time customer support departments have earned a reputation of excellence. From the time we answer your first call, our goal is to get you, and keep you on the air.

By providing updates and enhancements, Kantronics keeps you current too—like our 2.0 update.

Over 80% of our original Packet Communicator owners stayed current by updating to version 2.0.

We support our customers, and our products. And that's why Our Numbers Are Growing.

Kantronics
RF Data Communications Specialists
1202 E. 23rd Street Lawrence, Kansas 66046
(913) 842-7745

Kantronics TUs & TNCs

UTU™ UTU transmits/receives CW 6-99 WPM, RTTY 60, 67, 75, 100, and 132 WPM, ASCII 110, 150, 200, and 300 baud; and AMTOR modes A, B, and L. UTU features switched capacitance filters, and a ten-segment LED bargraph for extra easy tuning. Suggested Retail $189.95.

UTU-XT/P™ now operates HF PACKET along with CW 6-99 WPM, RTTY from 45-300 baud, ASCII from 110-300 baud, and AMTOR modes A and L. UTU-XT/P utilizes user programmable parameters, such as MARK/SPACE tones, multiple RTTY shifts, and limiter/limiterless operation. UTU-XT/P utilizes a 6803 microcomputer, 8K RAM, NOVDRAM, and 128K EPROM. Suggested Retail $289.95.

KAM™ The Kantronics designed All Mode unit operates HF and VHF packet; CW 6-99 WPM; RTTY/ASCII 45-300 baud; and AMTOR modes A, B, and L. KAM features HF and VHF radio ports, simultaneous HF and VHF packet connects and digipeating, HF/VHF gateway; bargraph tuning, and user programmable parameters, such as MARK/SPACE. KAM's separate CW demodulator is also center frequency and bandwidth programmable. Suggested Retail $319.00.

KPC-200™ Fully compatible with all other TNCs, the KPC-200 includes all the features of KPC-2 plus 2400 bps packet. KPC-2400 operates at 300, 1200, and 2400 bps, software selectable. Suggested Retail $329.00.

Kantronics has also designed the 2400 TNC Modem™ for TNC-1s and TNC-2s. This add-on modem adds 2400 bps packet, while retaining 1200 bps operation. Suggested Retail $149.00.

KPC-2™ This Kantronics designed AX.25 version 2 TNC features a built-in HF and VHF modem, full duplex operation, and multiple connects. The enhanced generic command structure fits any computer. KPC-2 includes 128K EPROM, 16K RAM - expandable to 32K, and 4K EEPROM. Suggested Retail $169.00.

Kantronics Terminal Programs
PacTerm/UTU-Term™ for IBM and compatibles. C-64, 128; TRS III, IV, W/P. Operates KPC-2, KPC-2400, KAM, UTU-XT/P and UTU. Disk $19.95. Cartridge $24.95, IBM disk $29.95.

Call or write Kantronics for a free catalog.

All Kantronics products are designed and manufactured in the U.S.A.
By Popular Demand!

TH-21BT/31BT/41BT

The smallest HT™ is now even better! The new “BT-Series” gives you a plus—a built-in DIP switch programmable CTCSS encoder! Now you can access more than one “private line” over the air! The original TH-21A Series (The Smallest HT™) is still available from the VHF leader—Kenwood!

- High or low power.
- Choose 1 watt high—enough to “hit” most local repeaters; or a battery-saving 150 mW low.
- Pocket portability! Kenwood’s TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and weighs 260 g (.57 lb) with PB-21.
- Expanded frequency coverage (TH-21BT/A).
 Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
 TH-31BT/A: 220.000-224.995 MHz in 5-kHz steps.
 TH-41BT/A: 440.000-449.995 MHz in 5-kHz steps.

DIP switch programmable CTCSS encoder built-in!

- Easy-to-operate, functional design.
 Three digit thumbwheel frequency selection and top-mounted controls increase operating ease.
- Repeater offset switch.
 TH-21BT/A: ±600 kHz, simplex.
 TH-31BT/A: ±16 MHz, reverse simplex.
 TH-41BT/A: ±5 MHz, simplex.
- Standard accessories:
 Rubber flex antenna, earphone, wall charger, 180 mAh NiCd battery pack, wrist strap.
- Quick change, locking battery case.
 The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.
- Rugged, high impact molded case.
 The high impact case is scuff resistant, to retain its attractive styling, even with hard use.

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAh battery
- PB-21H NiCd 500 mAh battery
- BC-2 wall charger for PB-21H
- BC-6 2-pack quick charger
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8/8T soft cases with belt hook
- BH-3 belt hook
- AJ-3 thread-loc to BNC female adapter
- RA-8A/9A/10A StubbyDuk antenna
- TU-6 sub-tone unit (TH-21AT/A only)

More information on the Smallest HT™ is available from Authorized Kenwood Dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
contents

8 a packet radio PSK modem
for JAS-1/FO-12
James Miller, G3RUH

25 360-degree MINIMUF
propagation prediction
Henry G. Elwell, Jr., N4UH

35 linear design by computer
R.P. Haviland, W4MB

43 ham radio techniques:
ever work a W10?
Bill Orr, W6SAI

51 VHF/UHF world:
the ubiquitous diode
Joe Reisert, W1JR

65 practically speaking:
testing diodes
Joe Carr, K4IPV

72 mmic multiplier chains
for the 902-MHz band
Jerry Hinshaw, N6JH

81 the weekender:
a mobile theft deterrent
Hugh Wells, W6WTU

110 advertisers index
and reader service

6 comments

88 DX forecaster

108 flea market

106 ham mart
looking ahead to the year 2000: 13 more exciting years for Amateur Radio

In last December's "Reflections" we reviewed the past 13 exciting years of Amateur Radio as reported in HR Report and Pressstop. It's hard to appreciate the extent to which Amateur Radio can change in such a short period until you see it summarized on one crowded page. But as the old saw has it, "You ain't seen nothing yet!"

The art and practice of radio communications has been in a state of flux since even before Hertz, Fessenden, Marconi, and a cast of dozens more started seriously experimenting with "the ether" toward the end of the last century. That's certainly not going to change as this century draws to a close. Look for smaller, smarter, more sophisticated, more efficient versions of the kinds of hardware (not to mention embedded software) we're enjoying today — that's inevitable. And, of course, there'll be comparable new technologies. Just as we've seen a tremendous increase of interest in and use of AMTOR, packet radio and, to a degree, spread spectrum (which, by the way, we in Motorola's Military Engineering Division were examining as an option for "secure battlefield communications" a quarter of a century ago), the next 13 years are sure to see the incorporation of both yet — unthought — of new techniques and revolutionary new applications for well-established techniques. For example, one need go no further than AMSAT's exciting Phase 4, which calls for a geostationary satellite (or satellites) uplinked through "gateway" stations all over the globe. Eventually, a handheld-equipped Amateur operating from almost anywhere will be able to call — selectively — any similarly equipped Amateur virtually anywhere else in the world at any hour of the day or night!

However, it's not in the hardware end of Amateur Radio that the most revolutionary things are likely to happen, but in the perception and application of the Amateur Service itself. Like it or not — and this is a trend that's already upsetting a number of thoughtful, dedicated, active, Amateurs — much of what Amateur Radio is today is going to change drastically or even disappear by the year 2000. Examples of some of these possible new directions may be found in the FCC's Working Paper 20: Alternatives For Improved Personal Communication, which was released last September. Authored by Jim McNally, WB3APV, of the FCC's Office of Plans and Policy, this provocative study begins with the assumption that there is a need for some form of readily available "personal communication." Furthermore, it asserts that this need is not being met by any current radio service — namely cellular radio or other common carriers, Amateur Radio, 27 MHz CB, or GMRS (for which McNally also holds a license).

This need, greatly stimulated by the CB explosion of the 1970s, isn't going to go away. If anything, it's going to grow, and services that are unwilling or unable to adjust themselves to accomodate at least some of that need are going to lose — both frequencies and support — to those that do.

What this means to Amateur Radio is that we're going to have to learn to take advantage of this evolution rather than fight it. McNally suggests, for instance, allowing an Amateur's family members limited access to some VHF or UHF frequencies, using the Amateur's callsign. At the same time, there'd also be a correlated relaxation in the limits of "permitted communications." Maybe — at last — we'll even be able to use the autopatch to order a pizza or warn the boss we'll be late for work because of a traffic jam!

Of course, the concept of the Amateur as an experimenter and/or professional communicator isn't going to go away. If anything, it's likely to expand as a more broadly conceived Amateur Radio Service attracts a more diverse group of users who can bring new skills and applications to what is, even today, too widely perceived as a narrow, elitist hobby. Though the popular image of an Amateur cloistered in his basement workshop, punching holes for a new rig in a bread pan chassis, will fade before a growth pattern dominated by entry-level "Communicators" talking through UHF handhelds, there'll still be plenty of room for EME or meteor scatter experimenters, hf traffic handling and DXing, and the kind of all-encompassing technological sophistication that created OSCAR 10 and conceived Phase 4.

Though all this may seem to be radical "pie-in-the-sky" fantasizing to some Amateurs, consider the following: greatly enhanced Novice and Tech privileges are in process at the FCC and may well have been adopted by the time this issue leaves the press. Furthermore, though code-free Amateur license proposals have been knocked flat a couple of times, the concept of further relaxing entry-level Amateur code requirements isn't "out." The Amateur community has demonstrated to the FCC that it is fully capable of running that most vital function of the Amateur licensing program, Amateur examinations. As a result, the Commission is now seriously considering delegating responsibility for issuing Amateur callsigns to the private sector. The long-term implications of this seem obvious — ever-increasing responsibility for self-maintenance and operation, by the Amateur service.

The logical result of all this could very well be — even before the year 2000 — a larger and broader-based, self-administered Amateur Radio Service. Are we ready for such radical change? I hope so!

The next 13 years promise to be most interesting ones for Amateur Radio. Unfortunately, based on the current age profile and the actuarial tables, a shocking proportion of us won't be around long enough to see the new century in and, consequently, all these exciting new developments in Amateur radio, come to pass. I hope I am, and I hope you will be as well.

Joe Schroeder, W9JUV
Associate Editor

Joe Schroeder, W9JUV
Associate Editor
Hear it All!

R-5000
High performance receiver

Kenwood's R-5000 receiver is here from the leader in communications technology—the Kenwood R-5000. This all-band, all mode receiver has superior interference reduction circuits, and has been designed with the highest performance standards in mind. Listen to foreign music, news, and commentary. Tune in local police, fire, aircraft, weather, and other public service channels with the VC-20 VHF converter. All this excitement and more is yours with a Kenwood R-5000 receiver!

- Covers 100 kHz–30 MHz in 30 bands, with additional coverage from 108-174 MHz (with VC-20 converter installed).
- Superior dynamic range. Exclusive Kenwood DynaMix™ system ensures an honest 102 dB dynamic range. (14 MHz, 500 Hz bandwidth, 50 kHz spacing.)

R-2000
160 kHz-30 MHz in 30 bands
- All modes • Digital VFOs tune in 50 Hz, 500 Hz, or 5 kHz steps • 10 memory channels • Programmable scanning • Dual 24-hour digital clocks, with timer • 3 built-in IF filters (CW filter optional) • All mode squelch, noise blanker, RF attenuator, AGC switch, S meter • 100/120/220/240 VAC operation • Record, phone jacks • Muting terminals • VC-10 optional VHF converter (108-174 MHz)

- 100 memory channels. Store mode, frequency, antenna selection.
- Voice synthesizer option.
- Computer control option.
- Extremely stable, dual digital VFOs. Accurate to ±10 ppm over a wide temperature range.
- Kenwood's superior interference reduction. Optional filters further enhance selectivity. Dual noise blankers built-in.
- Direct keyboard frequency entry.
- Versatile programmable scanning, with center-stop tuning.
- Choice of either high or low impedance antenna connections.
- Kenwood non-volatile operating system. Lithium battery backs up memories; all functions remain intact even after lithium cell expires.
- Power supply built-in. Optional DCK-2 allows DC operation.
- Selectable AGC, RF attenuator, record and headphone jacks, dual 24-hour clocks with timer, muting terminals, 120/220/240 VAC operation.

Optional Accessories:
- VC-20 VHF converter for 108-174 MHz operation • YK-88A-1 6 kHz AM filter
- YK-88S 2.4 kHz SSB filter • YK-88SN 1.8 kHz narrow SSB filter • YK-88C 500 Hz CW filter • YK-88CN 270 kHz narrow filter
- DCK-2 DC power cable • HS-5, HS-6, HS-7 headphones • MB-430 mobile bracket
- SP-430 external speaker • VS-1 voice synthesizer • IF-232C/IC-10 computer interface.

More information on the R-5000 and R-2000 is available from Authorized Kenwood Dealers.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

Specifications and prices are subject to change without notice or obligation.
Dear HR:

My name is Colleen Brady, KB2BRL. I am only 10 years old!
I first got started in learning to be a Ham this past summer. My Dad is an Amateur and I thought that it would be great to get a license too. I wanted to get my license before, but I still needed some more math in school. I have been working on code for a couple of years, but really did serious studying this past summer.

When I started to learn the theory I was surprised that we were covering some of the same things in school. My fifth-grade class was studying powers of 10, and I found out I had a use for them. Now I can note my frequency or even understand what a millamp is by using 10 to the \(-3\). I told my teacher, and I had the chance to explain how this math can really be useful, and that I was studying to get my license. Another area that I can use both at school and at home is geography. Now not only can I learn maps and countries in school, but I can use them at home too. On only my third contact I had a QSO with HK3IKP in Bogota, Columbia. The other kids in class have studied SA and Columbia, but I have had the chance to talk with Columbia! I am doing a Science report on sun spots, because we have studied these in school. My report will be a bit different than the others, since mine will talk about sun spots and propagation with radio waves. I guess there are some things in school that you can use.

In my first month as an Amateur I have had the opportunity to talk with 22 states and two countries. It seems that every time I get on there is a new place to look up on the map. Now I look forward to receiving QSL cards in the mail from these contacts. When learning the Morse Code I found it to be difficult at first. Now, even though it is still difficult at times, it is a lot of fun, and I look forward to making yet another QSO using this form of communications.

I feel I’m a lot luckier than other kids who may want to become a Ham. My Dad, W82WPM, already has all the equipment. We operate a Kenwood TS-440S, a Cushcraft A-3 Triband, and dipoles for 40 and 80 meters. There’s a lot of other equipment too, but until I upgrade I won’t be able to use it. I am looking forward to finding an upgrade class this fall so I can get my General class license.

In the picture enclosed you can see my good friend “Lasagna,” our 6-month-old Cocker Spaniel. Besides my Dad, my Mom has her Novice license too, KAZTDLG. My 8-year-old sister has an interest in being a Ham too. In a year or so I will be able to start to teach her the things she will need to know, so she can have a license too.

Colleen M. Brady, KB2BRL
East Aurora, New York 14052

wanted: M800 RTTY program

Dear HR:

Does anyone have an M800 RTTY program for the TRS80 Model 3 that they’re willing to share?

Bernard Gayrard, F6HGB
“Lou Bouis” Laa-Mondrans
64300 Orthez, France

HORANT for CP/M

Dear HR:

Regarding the HORANT program in the October, 1986, DX Forecaster (page 92). I’m sure that you’ve received many comments on the footnote giving a substitute for ARC SIN (ASN). I use a CP/M version of MBASIC; substituting

$$\text{ASIN}(Y) = \text{ATN}(Y) / \sqrt{1 - Y^2}$$

works fine. Looks like a useful program. Thanks.

Jack G. Hines, K4GIO
Vienna, Virginia 22180
New MFJ-1274 lets you work VHF and HF packet with built-in tuning indicator for $169.95 . . .

. . . you get MFJ’s latest clone of TAPR’s TNC-2. TAPR’s VHF/HF modem and built-in tuning indicator that features 20 LEDs for easy precise tuning

Now you can join the exciting world of packet radio on both VHF and HF bands with a precision tuning indicator . . . for an incredible $169.95!

You get MFJ’s top quality clone of the highly acclaimed industry standard TAPR TNC-2. We’ve made TAPR’s modem selectable for both VHF and HF operation, added their 20 segment LED tuning indicator, a TTL serial port, and a replaceable lithium battery for memory back-up. If you don’t need the tuning indicator or the convenience of a switchable VHF/HF modem, choose the affordable MFJ-1270 for $139.95.

All you need to operate packet radio is a MFJ-1274 or MFJ-1270, your rig, and any home computer with a RS-232 serial port and terminal program.

If you have a Commodore 64, 128, or VIC 20 you can use MFJ’s optional Starter Pack to get on the air immediately. The Starter Pack includes interfacing cable, terminal software on disk or tape and complete instructions . . . everything you need to get on packet radio. Order MFJ-1282 (disk) or MFJ-1283 (tape), $19.95.

Unlike machine specific TNCs you never have to worry about your MFJ-1274 or MFJ-1270 becoming obsolete because you change computers or because packet radio standards change. You can use any computer with an RS-232 serial port with an appropriate terminal program. If packet radio standards change, software updates will be made available as TAPR releases them.

Also speeds in excess of 56K bauds are possible with a suitable external modem! Try that with a machine specific TNC or one without hardware HDLC as higher speeds come into widespread use.

You can also use the MFJ-1274 or MFJ-1270 as an excellent but inexpensive digipeater to link other packet stations.

Both feature AX.25 Level 2 Version 2 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, multiple connects, 128K EPROM, 16K RAM (expandable to 32K with optional EPROM), simple operation, socketed ICs plus much more.

You get an easy-to-read manual, a cable to connect your transceiver (you have to add a connector for your particular radio), a connector for the TTL serial port and a power supply for 110 VAC operation (you can use 12 VDC for portable, remote or mobile operation).

Help make history! Join the packet radio revolution now and help spread this exciting network throughout the world. Order the top quality and affordable MFJ-1274 or MFJ-1270 today.

Now you can tune in HF, OSCAR and other non-FM packet stations fast! This MFJ clone of the TAPR tuning indicator makes tuning natural and easy . . . it shows you which direction to tune. All you have to do is to center a single LED and you’re precisely tuned in to within 10 Hz. 20 LEDs give high resolution and wide frequency coverage.

The MFJ-1273 tuning indicator plugs into the MFJ-1270 and all TNC-1s, TNC-2s and clones that have the TAPR tuning indicator connector.
Access the world’s first flying mailbox with your TNC

a packet radio PSK modem for JAS-1/FO-12

JAS-1, or "Fuji," the first totally Japanese Amateur Radio satellite, was launched flawlessly on August 12th, 1986, from Tanegashima Space Center, located on an island off the southern tip of Japan. It carries two transponders: a traditional one for voice and CW, and a second that functions as the first spaceborne store-and-forward packet radio mailbox. In orbit a thousand miles above the earth, it’s inclined at 50 degrees to the equator, with a period of 120 minutes, offering users an aggregate 2 hours of communication per day.

Suppose you want to send a message to someone halfway around the world. You simply send a message to the mailbox, and in less than an hour it’s available for retrieval by your addressee.

equipment

What do you need to use the mailbox? In fig. 1 you’ll see that four components are required — a pair of radios, a modem, an AX.25 protocol Terminal Node Controller (TNC) and a terminal. Regular OSCAR users with packet radio stations will have everything shown except the box labeled “modem.” Terrestrial packeters will certainly have the 2-meter equipment and may well have 70-cm SSB receive capability, together with a steerable Yagi. Elevation rotation is highly desirable, but by no means essential; much of any 20-minute satellite pass is low enough to be within the vertical beamwidth of even modest antennas.

Few stations, however, will have the special FO-12 modem. The built-in Bell 202 1200 Baud AFSK modem (modulator/demodulator) found in standard TNCs cannot be used with JAS-1/FO-12. You’ll have to dis-

By James Miller, G3RUH, 3 Benny's Way, Coton, Cambridge, CB3 7PS, England
connect the internal modem and substitute an external modulator/PSK demodulator such as the one described in this article. This isn’t particularly difficult. Just build the circuit, link it to your TNC with only four or five wires, adjust the audio connections, and the global mailbox is yours to enjoy!

Note: this modem is suitable for your TNC only if your TNC’s internal modem can be bypassed. Both the TAPR-1 and TAPR-2 designs allow this (as evidenced by the HD-4040, AEA’s PKT-1 and PK-80, PacComm’s TNC-200, GLB’s TNC2A, and the MFJ 1270, for example).

If your TNC isn’t based on the TAPR design, you may nevertheless be able to intercept the RXdata, TXdata and TXclock from their internal modem by cutting tracks. If this appears to be impossible, your best option may be to build a TAPR TNC-2 kit and integrate it with this JAS-1IFO-12 modem, thereby creating a satellite-dedicated TNC.

link format

For reference, here’s a brief technical summary of the JAS-1IFO-12 link format. I’ll explain unfamiliar terms as we go along:

You receive on 435.910 MHz, SSB/CW mode, in a 2.4 kHz bandwidth. The doppler shift will be up to ± 8 kHz, and there is a rate of change up to 40 Hz per second on the highest elevation passes. You transmit on 145.850, 145.870, 145.890, or 145.910 MHz fm; doppler shift correction is unnecessary. An uplink effective radiated power of 100 watts (for example, 10 watts to a 10-element Yagi) is quite sufficient.

The uplink modulation is fm; the downlink is Phase Shift Keying (PSK). Data rates are 1200 bits per second, normal packet NRZI, except that the uplink is exclusive/or (EXORed) with its own 1200-Hz clock.

modem description

This modem has been designed with as much flexibility as possible so you can tailor it for your particular application. As illustrated in fig. 2, it consists of an uplink modulator, a downlink demodulator, an automatic UP/DOWN tuner to track changing doppler shift on receive, and power supplies. Table 1 lists the modem’s specs.

The uplink modulator (U1 and U6) takes the signals TXdata (transmitted data) and TXclock from the host TNC and combines them into the TXaudio (transmit audio) signal for the 2-meter fm transmitter. As shown in fig. 2, signals flow from right to left. U1 pins 3 and 11 are used as non-inverting buffers. Diodes D1 and D2 prevent U1 from overloading the TNC when the modem is switched off. Note that the modulator ICs use a 5-volt, rather than a 12-volt, supply.

From a TNC-1, TXclock is at 32 times the bit rate. For a TNC-2, it’s 16 times, so link LKC selects the correct division ratio from divider U6. The 1200-Hz clock produced at test point TP4 is kept in phase with the data stream by resetting divider U6 on every data transition. This is done from U1 pin 10 and R6-C1, which generate short 16-μsecond pulses. Clock and data are EXORed (this is called “Manchester Coding”) in U1.
fig. 2. PSK packet radio modem schematic. Modem consists of uplink modulator, downlink demodulator, automatic UP/DOWN tuner, and power supplies.
pins 5 and 6, and the 5-volt peak-to-peak signal at U1 pin 4 is then filtered down to about 30 mV. You can reduce the output voltage if necessary by increasing R3. Superimposing a 1200-Hz clock on the data in this way simplifies the satellite’s own electronics considerably.

Note: you may recognize Manchester coding as just PSK in disguise! You can, therefore, use this modem for experimental PSK communication. This subject will be addressed under the heading, “use for terrestrial PSK packet” below.

Considerable effort has gone into the development of the downlink demodulator in order to meet the goals of elegance, robustness, simplicity, ease of alignment and testing, minimum number of discrete components, and proper matching to the FO-12 signal characteristics. While it owes its origin to my earlier OSCAR-10 demodulator, it was, in fact, not actually selected until a number of other candidates — both simpler and more complex — had been evaluated.

In contrast to conventional local packet radio, which uses two tones (AFSK) to signal binary 0 or 1, FO-12 uses PSK modulation. The carrier signal PHASE is changed 180 degrees (inverted) when a change in binary level is signaled. You can think of this as using a phase of +90 degrees for “1,” or vice versa. Either is acceptable because the TNC is interested only in changes.

To demodulate phase-shifted signals you need a phase reference and a phase detector. ICs U7, U8, U9 and U11 recover this reference “carrier” (available at TP1) from the signal. EXOR gate U7 pins 1 and 2 form the phase detector, the output of which is filtered (TP3), limited, level shifted and output to the TNC as RXdata.

A simple phase-locked loop (PLL) can’t be used to recover the carrier from a PSK signal because with random data there’s no discrete frequency available for a loop to lock onto. Most PSK demodulators have to rely on some non-linear multiplicative processing instead. The recovery circuit used here is a digital “squaring loop.”

U4 pins 2, 3, and 1 are a limiter, which simply makes all subsequent signal processing digital. The limited signal is multiplied by itself delayed by 1/4 cycle. The delay is provided by 4-bit shift register (U8), which samples the signal at its pin 7 and is clocked at 16 times the carrier frequency. The multiplication happens in EXOR gate U7 pins 5 and 6. This creates (at U7 pin 4) one cycle of twice the carrier frequency for every zero crossing of the signal. Mathematically we can say the signal is:

\[\cos (\omega t \pm \frac{\pi}{2}) \]

with the + or − corresponding to data 0 or 1. So the effect of this multiplication is (ignoring amplitude):

\[\cos (\omega t \pm \frac{\pi}{2}) \times \sin (\omega t \pm \frac{\pi}{2}) = 0 \]

\[\sin (2\omega t \pm \pi) = \sin 2\omega t \]

or

\[\text{signal} \times \text{delayed} = \text{constant phase at } 2\omega \]

The phase-locked loop U11 runs at 16 times carrier frequency. With associated divide-by-16 U9, it locks onto U7 pin 4’s double frequency signal, providing a smooth recovered carrier at U9 pin 11. Wide and narrow loop bandwidths can be selected with switch S1 to facilitate initial signal acquisition (use optional).

Recovered carrier, which will be around 1500 Hz, is applied to phase detector U7 pin 2, together with the received signal at pin 1. If they are (for example) in phase, U7 pin 3 will go low, with residual noise being smoothed away by R30-C3. The following op-amp, is used as a comparator/limiter, which then drives 12 volts to the TTL level converter, U2. Signal RXdata then goes off to the TNC.

Two additional circuits complete the demodulator. It’s valuable to have a “LOCK” indication. A simple EXOR gate, U7 pins 8 and 9, provides this by multiplying the PLL stimulating doubled-carrier frequency signal by the recovered 2f signal from divider U9 pin 12. When locked, U7 pin 10 goes high. U4 pins 5 and 6 form a threshold detector, which then drives LED L4 via Q1.

When not in mailbox mode, the satellite sends telemetry in Morse code on 435.795 MHz. Spare gate U10 pins 8 and 9 have simply been wired to provide a regenerated Morse output for (optional) computer use.

With the exception of output buffer U2, the demodulator operates from 12 volts.

This PSK demodulator is completely aperiodic. Its operating frequency is set by VR1, and could in principle operate at the i-f. As shown it tunes from approximately 700 Hz to 70 kHz. The tracking bandwidth is set by R29, and is nominally ±250 Hz. Designed loop bandwidths are 20 Hz and 100 Hz, with a damping factor of 0.7. Data rates faster than 1200 Baud are accommodated by reducing R30 accordingly.

auto-tuning

The received signal frequency changes considerably as a result of doppler shift; a total swing of 16 kHz is typical, with rates of change peaking at 40 Hz per second. Tuning a receiver by hand, maybe even adjusting rotators at the same time, and operating a data terminal keyboard clearly poses some logistic problems!

A solution is provided in the auto-tune circuits, which work by activating the UP/DOWN signals of your receiver. They are designed to suit all known ICOM, Kenwood, and Yaesu standards. All differ,
Table 1. JAS-1 FO-12 Modem PCB specifications.

Modem:
- **Downlink:** input 50mV to 5-volt rms RX audio. PSK demodulator to TTL digital, 1200 bps.
- **Uplink:** 1200 bps Manchester encoding modulator to Mic level (about 30 mV p-p) TX audio. RX carrier LOCK LED indication. Selectable loop bandwidth. Morse code regenerator.
- Connects to AX.25 TNC MODEM DISCONNECT jack. Suitable for TAPR TNC-1 or TNC-2, (and any other, provided the internal modem can be bypassed). TNC digital connections needed include TXdata, RXdata(in), RXdata(out), TXclock, GND.

Digital AFC: tracks changing doppler shift via the UP/DOWN signal lines of your RX rig. Designed for all known ICOM, Kenwood, and YAESU standards. Adjustable for 10-100 Hz per step. Positive pulses, negative pulses, and ICOM bi-level. Tracking ON/OFF switch. Manual tuning indication by LEDs and center-zero meter.

Set-up: three preset pots — for PLL frequency, local 6-volt supply, and UP/DOWN tuning gain.

Power: ac line, built-in PSU: 12-volt ac input, or 12-14 volts dc, a 40 mA.

PCB: 160 by 100 mm (single eurocard) double-sided, plated-through, labeled with instructions. Standard CMOS and LSTTL used. No hard-to-get parts.

even between models from the same manufacturer.

The VCO tuning voltage (about 20 mV/Hz) from U11 pin 2 is amplified by U5 pins 2 and 3, which have gain adjustable from x1 to x10 by VR3. This op-amp also drives a center-zero tuning meter. After filtering by R26-C23, the voltage (which increases for falling frequency) is offered to two comparators, with upper and lower thresholds set by resistor chain R11-R2-R4-R12, 1.28 volts above and below the 6-volt reference. When exactly on tune, outputs U5 pins 7 and 8 are low. If off tune, then the appropriate comparator output goes high.

U10 pins 1, 2, 5, and 6, if enabled by Tune ON switch S2, pass the signal via 12 volts to the 5-volt level shifter U2 to the open collector hex inverter U3.
When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to...

...yours

...and ours.

If your repeater budget can't afford the '850, we offer the RC-850 Repeater Controller, which we like to call the "second best repeater controller in the world". It's a scaled down, simplified version of our '850, but overall, it offers more capability and higher quality than anyone else's control equipment at any price.

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster™.

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with your family by handling third party traffic—its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

Crossband linking - VHF/UHF to HF
Telephone access to your home station
BSR Home Control Interface
Electronic Mailbox
ShackPatch™ intercom into the shack
PersonalPatch™ simplex autopatch

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster™.

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with your family by handling third party traffic—its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

Crossband linking - VHF/UHF to HF
Telephone access to your home station
BSR Home Control Interface
Electronic Mailbox
ShackPatch™ intercom into the shack
PersonalPatch™ simplex autopatch

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster™.

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with your family by handling third party traffic—its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

Crossband linking - VHF/UHF to HF
Telephone access to your home station
BSR Home Control Interface
Electronic Mailbox
ShackPatch™ intercom into the shack
PersonalPatch™ simplex autopatch

All our products are documented with high quality, easy to read manuals. Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

To order one of these advanced control products, call 408-727-3330. Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment. For specifications and a copy of our ACC Notes newsletter, just write or send in your QST call to:

2356 Walsh Avenue Santa Clara CA 95051
(408) 727-3330

2356 Walsh Avenue
Santa Clara CA 95051
(408) 727-3330
Table 2. Parts list.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.001μF, 10 percent</td>
</tr>
<tr>
<td>C2-13</td>
<td>0.01μF, 10 percent</td>
</tr>
<tr>
<td>C14</td>
<td>0.0022μF, 10 percent</td>
</tr>
<tr>
<td>C15-20</td>
<td>0.1μF, 10 percent</td>
</tr>
<tr>
<td>C21-23</td>
<td>1μF 16-volt tantalum</td>
</tr>
<tr>
<td>C24</td>
<td>470μF 25-volt</td>
</tr>
<tr>
<td>C25</td>
<td>560 pF, 5 percent</td>
</tr>
<tr>
<td>CR1-4</td>
<td>1N4004, etc.</td>
</tr>
<tr>
<td>D1-2</td>
<td>1N4148, etc.</td>
</tr>
<tr>
<td>DS1-4</td>
<td>LED 10mA</td>
</tr>
<tr>
<td>J1</td>
<td>Standard 20-pin IDC Male PCB header, straight</td>
</tr>
<tr>
<td></td>
<td>(vertical) or right angle. Straight: RS 471-058,</td>
</tr>
<tr>
<td></td>
<td>3M 3428-6202JL or 392-6002JL, Ansley 612-2024</td>
</tr>
<tr>
<td></td>
<td>or 609-2027. Right-angle: RS 471-137, 3M 3428-</td>
</tr>
<tr>
<td></td>
<td>5202JL or 392-5002JL, Ansley 612-2004 or 609-2007,</td>
</tr>
<tr>
<td></td>
<td>and many others — e.g. Fujitsu, Berg, ITT Canon,</td>
</tr>
<tr>
<td></td>
<td>BI CCC Vero, etc.</td>
</tr>
<tr>
<td>J2-J11</td>
<td>Terminals (about 30) for external connections.</td>
</tr>
<tr>
<td></td>
<td>Can also use 0.1-inch pitch (center-to-center</td>
</tr>
<tr>
<td></td>
<td>hole pattern) SIIL connectors, (1x2 pin, 5x3pin,</td>
</tr>
<tr>
<td></td>
<td>1x4pin, 2x5pin, 1x10pin).</td>
</tr>
<tr>
<td>M1</td>
<td>± 100 μA meter, RS 259-549, Farnell 143-510</td>
</tr>
<tr>
<td>Q1-3</td>
<td>BC107, 2N3904, etc. (NPN)</td>
</tr>
<tr>
<td>R1-R4</td>
<td>270 k</td>
</tr>
<tr>
<td>R5</td>
<td>1.8 k</td>
</tr>
<tr>
<td>R6</td>
<td>22 k</td>
</tr>
<tr>
<td>R7-9</td>
<td>4.7 k</td>
</tr>
<tr>
<td>R10-13</td>
<td>1 M</td>
</tr>
<tr>
<td>R14-17</td>
<td>1.5 k</td>
</tr>
<tr>
<td>R18-20</td>
<td>15 k</td>
</tr>
<tr>
<td>R21</td>
<td>10 k</td>
</tr>
<tr>
<td>R22</td>
<td>1 k</td>
</tr>
<tr>
<td>R23-26</td>
<td>100 k</td>
</tr>
<tr>
<td>R27-29</td>
<td>470 k</td>
</tr>
<tr>
<td>R30</td>
<td>27 k</td>
</tr>
<tr>
<td>R31</td>
<td>750 k</td>
</tr>
<tr>
<td>R32</td>
<td>56 k</td>
</tr>
<tr>
<td>R33-35</td>
<td>68 k</td>
</tr>
<tr>
<td>R36-39</td>
<td>47 k</td>
</tr>
<tr>
<td>R41-42</td>
<td>470 ohms</td>
</tr>
<tr>
<td>S1-2</td>
<td>SPDT toggle switch</td>
</tr>
<tr>
<td>T1</td>
<td>12 volt, 3VA Transformer, RS 207-829, Farnell</td>
</tr>
<tr>
<td></td>
<td>141-471</td>
</tr>
<tr>
<td>TP0-1,2,</td>
<td>test points</td>
</tr>
<tr>
<td></td>
<td>3,4</td>
</tr>
<tr>
<td>U1,7</td>
<td>4070 Quad Exor</td>
</tr>
<tr>
<td>U2</td>
<td>4049 Hex Inverter Buffer</td>
</tr>
<tr>
<td>U3</td>
<td>74LS05 Hex Inverter O.C.</td>
</tr>
<tr>
<td>U4-5</td>
<td>TL084 Quad op-amp</td>
</tr>
<tr>
<td>U6</td>
<td>4040 12 stage divider</td>
</tr>
<tr>
<td>U8</td>
<td>4015 Four-bit shift register</td>
</tr>
<tr>
<td>U9</td>
<td>40161 Divide-by-16 (MC14161)</td>
</tr>
<tr>
<td>U10</td>
<td>4011 Quad two-input Nand</td>
</tr>
<tr>
<td>U11</td>
<td>4046 Phase Locked Loop</td>
</tr>
<tr>
<td>U12</td>
<td>78L05 5 volt Regulator</td>
</tr>
<tr>
<td>U13</td>
<td>78L12 12 volt Regulator</td>
</tr>
<tr>
<td>VR1-3</td>
<td>1M Trimmer, 3/8-inch square, flat mounting: RS</td>
</tr>
<tr>
<td></td>
<td>187-321, Dubilier D79-30, A-B E2B, Bourns 3386F,</td>
</tr>
<tr>
<td></td>
<td>Spectrol 63-M or BSM-T-607</td>
</tr>
<tr>
<td>LKC, LKI</td>
<td>are made from hookup wire</td>
</tr>
<tr>
<td>Modular PSU is 12-volt, 100mA (RS 591-281), Farnell 147-545 and others.</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

The meter, LEDs, and switches are not mounted on the board.

Power supply components T1, CR1-4, C16, C24, U13 (or modular PSU) are optional.

Use of an IDC connector is not obligatory.

Capacitors: 560-pF, 0.4-inch pitch, ±5 percent polystyrene; 0.001-0.1, 0.2 inch pitch, 10 percent dipped ceramic or polyester, 63 to 100 volts typical. 1μF, 0.2-inch pitch, bead tantalum. 470μF 25-volt electrolytic, 1.2-inch pitch, 1.0 x 0.4 inches.

Resistors: Carbon film, 0.25- or 0.5-watt, 0.4-inch pitch.

which creates two pairs of signals. These are high-going UP/DOWN tune signals at J4-1, J4-2, and low-going signals at J4-4, J4-5. All can sink up to 8 mA.

You have to choose the set that suits your rig by referring to your owner’s manual. For example, the Yaesu FT726R needs high-going signals, while the Yaesu FT790R uses low-going. The Kenwood 9500 needs low-going. ICOM has a special bi-level standard for the IC741 and similar rigs, where a 0-volt low signals up, and a 1.3-volt level means down, and neither (about 4.2 volts) means no action. So for ICOM rigs, install link LKI, and use J4-5 . . . unless the microphone is left connected. In this case, the link can be omitted, because an R40 will be connected inside the mic housing.

For many rigs that use low-going pulses, the pull-ups R36-R39 can be omitted. You may also have to experiment with the Scan control settings on the receiver. Some rigs tune in 100-Hz steps, others in steps as small as 10 Hz — hence the reason for including an adjustable gain control (VR3).

Power supplies

Flexibility is provided so you can choose your own power supply arrangement: either 12 to 14 volts dc, stabilized at 40 mA, or 12 volts ac (about 0.5 VA), or ac mains (line) or a modular encapsulated PSU.

If you supply 12-volt dc (probably the same as used by the TNCL), then fit all components on the circuit diagram to the right of U13 (i.e., C22, C5, U12, etc.). Connect power to J10 pins 1 and 2. Pin 3 is 12 volts, too, so if you use SIL (single in-line) connectors, a reversed plug won’t lead to disaster.

If you have a 12-volt ac supply, then connect to J11 and fit all the PSU components shown on the bottom of the circuit diagram. The voltage on C24 should nei-
EIMAC Tubes Provide Superior Reliability at radio station KWAV — over 112,000 hours of service!

Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 13 years of continuous duty!

Ken says, "In spite of terrible power line regulation, we've had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!"

Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don't want. More operating time and less downtime!

EIMAC backs their proven tube reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Send for our free Extended Warranty Brochure which covers this program in detail.

Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221

Quality is a top priority at EIMAC, where our 50-year charter is to produce long-life products.
fig. 4A. PSK packet radio modem: top board art (side 1, full-scale).

fig. 4B. PSK packet radio modem: bottom board art (side 2, shown full-scale).
fig. 4C. PSK modem: component layout diagram, shown superimposed on side 1 art. Note components are placed on side 1.

Photo D. Completed circuit board. AC power supply components have been omitted; link LKC is shown for a TAPR TNC-2.
ther drop below 14.9 volts at full load nor exceed 22 volts.

The associated transformer can probably be screwed to the PCB, though you may feel it wiser to place it remotely. The board is drilled for the specified T1, and also for a popular modular PSU (see parts list, table 2). Line voltage is applied to J9, at the edge of the board.

If there is 110-volt or 230-volt ac power on this PCB, you must exercise caution any time the circuit is removed from its enclosure.

connecting the modem to your system

The modem can be connected to the rest of the system in a number of ways; the minimum requirements are shown in fig. 3. First decide whether you’re going to use connectors or hard wire it. Select the type of connectors and/or cable you plan to use, and where you’re going to locate the PCB. Do you want to dedicate the TNC and modem solely to the satellite application? If so, you could install the PCB permanently within the TNC housing. Do you want to be able to restore instant terrestrial (normal) operation? Then you’ll have to use a multi-pole changeover switch (S3) to do this, and put the modem in a properly rf-screened box.

For the radio connections (speaker, mic, and PTT), a socket identical to the one on your TNC can be provided on the modem enclosure, with the signals passing to the changeover switch S3 and then — via a hand-wired connection or another connector plus jumper lead — to the TNC radio port.

connecting to the TNC

The connections necessary for replacing the TNC’s standard internal modem with this one are provided on the TNC board at the so-called “Modem disconnect Jack,” labeled J5 on the TNC-1 and J4 on the TNC-2. There is no actual connector; the pinout was designed by TAPR to accept a 20-pin IDC plug if required. (See table 2.)

Four connections are essential; TXdata, RXdata(in), TXclock, and GND. One PCB track must be cut. A fifth connection — internal modem’s RXdata(out) — may also be brought out if you want to be able to restore standard operation with a remote switch. (See fig. 3.)

Ironically, there’s little point in using a 20-conductor ribbon cable if you house the modem in an external enclosure, because screening ribbon is rather messy, and only four or five of the 20 wires are used anyway. However, if your new modem is placed inside the TNC enclosure, then it’s worthwhile using. For this reason, a 20-conductor IDC facility, J1, has been provided on the PCB. But you’ll probably prefer to use J2 instead.

If an external modem is used, select your own method of entry into the TNC enclosure. There are lots of spare pins on the RS232c D-25 wire connector — enough for five digital signals, plus two more for 12-volt power. Choose your pins very carefully, checking that there will be no clash with the regularly used services. I’d suggest pins 12, 15, 17, 18, 19, and 13, 25. Shield all the connections between TNC and the JAS-1/FO-12 modem.

construction

The ready-made PCB for this project is double-sided, plated through, and labeled. Full-scale artwork is detailed in figs. 4A, B, and C. Board and component sources are provided at the end of this article.

The usual caveats apply when assembling the board. Use a fine-tipped iron and fine-gauge resin-core solder. Proceed methodically, checking each soldered joint for integrity immediately after you’ve done it. Sloppy soldering might send 12 volts back to the 5-volt TNC logic, which will give you no pleasure. I know, I’ve done it!

Good soldering will flow smoothly through the holes and be visible from both sides. All component leads must be bright and shiny. Any junk box parts — and the PCB as well, if it’s been handled too much — will probably need cleaning.

IC sockets are strongly recommended.

If you do manufacture your own non-plated-through PCB, you’ll have to drill about 500 holes measuring 0.032 inch (0.8 mm) on the small pads and 0.048 inch (1.2 mm) on the large. Remember to solder every component on both sides, and note that there are 31 through-holes to be wired. Do these first; some will be hidden by components. In addition, if you omit any components, you must also install through-wires in their place. Before fitting IC sockets, make sure they’re of a type that can be soldered on both sides (many can’t) and carefully check for accidental solder bridges between adjacent pins.

Fit components in ascending order of height: diodes, resistors, IC sockets, capacitors, trimmers, transistors, and connectors (if you want them). Observe polarity of C21-C24 and all semiconductors. Do not install ICs yet; install them only after PSU testing. Note that the meter, LEDs, and switches are not mounted on the board.

Wire connections to the PCB can simply be soldered into the holes round the board’s edge. Note, however, that these holes are spaced 0.1 inch apart to allow for the optional use of SIL plugs and sockets.

For the finishing touch, deflux the board, using a solvent such as 1:1:1 trichlorethylene or alcohol. Besides improving the board’s appearance, this will help expose any solder defects. Further excellent advice can be found in reference 2, which also provides useful packet radio information.
SEE AND HEAR THOSE ELUSIVE SCPC SIGNALS WITH AVCOM’S NEW STA-70D TEST ANALYZER!

The AVCOM STA-70D IF and FM Test Analyzer was developed to assist in the installation and maintenance of Single-Channel Per Carrier (SCPC) satellite reception systems. Designed to be connected to the 70 MHz IF output of a C or Ku Band downconverter the STA-70D displays signal level, interference, and all carriers present. When an antenna is connected to the RF INPUT the FM Broadcast spectrum can be examined. A built-in audio demodulator allows the STA-70D to operate as a fixed tune receiver at zero span. This means you not only see the carriers but you can listen to them as well. Price $1960

The STA-70D is adaptable to other than the 50 to 110 MHz frequency band used in SCPC satellite communications. For example the STA-70D can be ordered for use as a spectrum display monitor for special ECM requirements. Possible applications are unlimited call or write AVCOM with your requirements.

NEW PSA-35A PORTABLE SPECTRUM ANALYZER

The PSA-35A Portable Spectrum Analyzer accurately measures wide band signals commonly used in the United States and European satellite communications industry. The PSA-35A frequency coverage is from less than 10 to over 1750 MHz, and from 3.7 to 4.2 GHz in 6 bands. The PSA-35A features switch selectable sensitivity of either 2 dB/Div or 10 dB/Div. The portable, battery or line operated, PSA-35A spectrum analyzer is the perfect instrument for the critical dish alignment and tracking requirements necessary for maximum signal reception.

Price $1965

AVCOM manufactures many helpful and unique accessories for the PSA-35A, such as the TISH-40 Terrestrial Interference Survey Horn, the WCA-4 Waveguide to Coax Adapter, the SCC-70 Signal Sampler and Calibrator, the ORM-35 Quick Release Rack Mount, AVSAC, and Overlays. Other AVCOM accessories include 2, 4, and 8 way power dividers (with or without DC power block), broad band amplifiers, DC power blocks, line amplifiers, isolated power dividers, and others.

AVCOM manufactures a full line of economical spectrum analyzers, test equipment and accessories for the satellite communication and microwave industries. These include the MSA-65A Spectrum Analyzer, Sweep Generators, Tracking Generators, and others. AVCOM also manufactures SCPC, audio subcarrier, and video satellite receivers for domestic and international reception; including commercial, broadcast, SMATV, institutional, and private use receivers.

AVCOM

500 SOUTHLAKE BOULEVARD, RICHMOND, VIRGINIA 23236 TELEPHONE (804) 794-2500 FAX: 804-794-8284 TELEX: 701-545
final checkout

You will need an oscilloscope, an audio signal source and a multimeter. A frequency counter is desirable, but not essential.

Assuming there are no faults whatsoever, just three preset pots need to be adjusted. However, you should also perform the further tests. The meter, LEDs, and switches must be wired to the PCB. Do not attach the TNC or radios at this stage.

First remove all the ICs (U1-U11). Connect the power supply of your choice, verifying that a regulated +12 volts is maintained at J10 pin 1. Verify that +5 volts is found on pin 1 of U2. Do not proceed if these tests fail. If they do, you have a power supply problem, which obviously must be fixed first. Check for solder bridges or faulty or misplaced components.

initial alignment

1. Set VR1, VR2 and VR3 to their mid-positions. Set the Loop Bandwidth switch (S1) to NARROW and the Tune switch (S2) to OFF.
2. With power off, insert all ICs. Switch on the power, verifying that both +12 volt and 5-volt supplies are still present. The POWER LED should come on. Ignore all other LEDs.
3. Measure the frequency at TP1, adjusting VR1 until this becomes 1500 Hz; frequency increases clockwise. TP0 is a ground (0 volt) terminal.
4. Adjust VR2 (with VR3 at mid-travel) so that the meter is exactly centered.
5. Set VR3 fully clockwise, re-adjusting VR2 if the meter moves from center. Reset VR3 to mid-position. Neither UP, DOWN nor LOCK LEDs should be lit.
6. Connect a 1500-Hz audio generator at a level of 100 mV to 5 volts rms to the RX audio input, J3-3/4. The LOCK LED should light. If the frequency is high, the UP LED will light, with a corresponding movement of the meter. Vary the frequency and check that the DOWN LED lights appropriately.
7. Fine adjustment of the auto-tuning UP/DOWN sensitivity control VR3 is done later.
8. Now for a vital safety check: measure the voltage on every pin of J1, J2, J3, and J4. They should lie between 0 and +5 volts. If for any reason a higher voltage is measured, find out why — and correct it. There will almost certainly be a soldering error, component failure, or incorrect component used, which could therefore cause extensive and expensive damage to your TNC or receiver.

demodulator tests

1. Vary the input frequency very slowly, verifying that the PLL stays in lock over a ±250 Hz range approximately. Though the LOCK LED may go out at tuning extremes, the UP/DOWN LEDs will be properly lit, and the meter will indicate one extreme or the other.
2. With the audio generator still connected, and with the LOCK LED lit, verify that the demodulator output signal RXdata is either high (±5 volts) or low (0 volts). Repeat several times by disconnecting the audio, and checking again.
3. Now input receiver noise instead of pure audio. The RXdata signal should jump about at random. The LOCK LED will go out, and the UP/DOWN LEDs and tuning meter may flicker.
4. Final demodulator testing requires a Phase Shift Keyed (PSK) signal. We do this when the modulator has been tested (see “audio loopback,” below).

modulator tests

1. The signals TXdata, TXclock and ground must now be connected to the TNC. Switch on the TNC. PCB link LKC should also be connected.
2. Measure the frequency at TP4, which should be a 1200-Hz square wave. If it isn’t, check to make sure you’ve connected link LKC correctly.
3. Examine TXdata; you should find regular data bits present — “Idling.”
4. Now examine the 1200-Hz clock (TP4) and TXdata together. Verify that data transitions are seen only when the 1200-Hz clock makes a negative transition.
5. Examine the modulator output TXaudio at J3-1,2, which will have an amplitude of about 30 mV peak-to-peak. It should have a 1200-Hz clock-like appearance. Each change in TXdata will cause this clock to invert, giving rise to characteristic gaps in the trace.

audio loopback

1. The TNC should now be connected to a terminal. Temporarily link TXaudio to RXaudio (J3-1 to J3-3). Re-adjust VR1 very slightly counterclockwise towards 1200 Hz at TP1 until the LOCK LED comes on, and fine tune exactly.
2. You should now find that you can CONNECT to
your own callsign, and thereby talk to yourself at the terminal. Take this opportunity to study some of the waveforms — for example, the important U7 pins 6, 5, 4, 1, 2, 3, and TP3. Use TP2 as a 1200-Hz negative-going scope trigger; all signals will be synchronized to this. Observe the effect of mis-tuning by varying VR1 slightly.

3. Don't forget to return VR1 to 1500 Hz at TP1 when this test is over.

UP/DOWN tuning

1. If your receiver tunes in 100-Hz steps, you will need to set the loop bandwidth switch (S1) to WIDE. For radios with 10- or 20-Hz steps, use the NARROW position.

2. First verify that the four up-down signals work correctly. Connect a 1500-Hz audio signal to the RXaudio input; set Tune switch (S2) to OFF. Vary the frequency up and down so that the LEDs flash. Verify that there is no change on the UP/DOWN lines on J4. (J4-1, J4-2 will be low; J4-4, J4-5 will be high).

3. Throw the Tune switch to the ON position and see that the four UP/DOWN lines change in the expected manner when the frequency is varied (see circuit diagram). For example, if the UP LED comes on, J4-2 will go high and J4-5 will go low. The others will remain unchanged. Naturally, pull-ups R36-R39 must be installed to measure this. Wire link LKI may need to be connected for ICOM rigs.

4. Place the Tune switch in the OFF position and adjust the frequency to 1500 Hz. Now connect the appropriate UP/DOWN line(s) to the receiver. Turn the switch ON, vary the audio input frequency, and check that an up or a down change in displayed frequency results. Many rigs give a beep when this happens.

5. Set the switch to OFF. Connect receiver audio to the demodulator input (J3-3) as before. Tune in a steady radio carrier exactly, as indicated on the tune meter and LEDs. Set the switch ON. Carefully change the receiver frequency. If the auto-tune system is working satisfactorily, the receiver will automatically retune to the original frequency.

6. Slowly adjust the sensitivity control, VR3, clockwise. Eventually the tuning system will burst into rapid oscillation, hunting rapidly up-down-up-down Reduce the gain counterclockwise until this stops and back off a little more.

7. You will find that it pays to experiment with performance. You may also have to change the Scan control settings of your receiver. If you have an rf signal generator, a spare transmitter, or a helpful friend on the air, you can quickly optimize performance. Otherwise you must wait for a real satellite signal with changing doppler shift, such as JAS-1/F0-12 in Morse code or digital mode, or UOSAT (145.825 or 435.025 MHz, with your receiver set to CW mode).

using the satellite mailbox

Set the Tune switch to OFF and the bandwidth to WIDE. Locate the mode JD signal at 435.910 MHz, with ± doppler shift of up to 8 kHz. Slowly tune the receiver (in SSB/CW mode, maximum bandwidth) until the LOCK LED lights. Center the tuning, set the bandwidth to NARROW (10- to 20-Hz RX steps only), and set Tune to ON if required.

Choose one of the four uplink frequencies: 145.850, 145.870, 145.890, 145.910 MHz fm. Doppler correction is not needed. The mailbox callsign is 8J1JAS, so establish contact (TNC in COMMAND mode) with: CONNECT 8J1JAS. When connected, the satellite responds with the prompt: JAS. You communicate with single-letter commands, which may be followed by additional specifiers — for example:

H Help (respond with commands’ syntax)
F Files (list titles of ten files)
K Kill (delete specified file or files)
M Myfiles (list titles of file or files addressed to current user, presumably you)
R Read (contents of specified file or files)
W Write (message to mailbox)

When you are finished, return to TNC COMMAND mode, and DISCONNECT.

The mailbox software can be modified by the JARL command station, but the above description is essentially correct. As you can see, it's just like a terrestrial mailbox. LOGIN, and let me know you're winning!

use for terrestrial PSK packet

You can also use this modem to experiment with two-way PSK modulation for terrestrial communications (remember the audio loopback test?) Simply use the transmitter in SSB mode instead of fm. PSK offers at least 10-dB improvement over terrestrial AFSK on fm.

The local audio carrier generated this way is 1200 Hz, which is not at the center of most transmitter SSB passbands. You can change this to another frequency by first breaking link LKC and then injecting the frequency of your choice into the adjacent test point TP4. Use a single-pole, double-throw switch and you can restore normal operation at any time. The frequency needed will lie somewhere in the range 1400-1600 Hz, at a 5-volt TTL level.

follow-up support

You are invited to contact me with any technical queries about this project. You’ll get a reply by return mail, provided you supply a self-addressed envelope
with 4 IRCs. I can also build and/or test your modem PCB by prior arrangement.

suppliers

For information on the availability of PCBs only, contact AMSAT-UK, London E12 5EO, England. (Profits will help finance new Amateur satellites.) bona fide AMSAT groups who wish to order 10 or more PCBs should contact the author directly.

Complete kits including PCBs and components are available from RADIOfIT. (Contact Carl Huether, KM11H, P.O. Box 973, Pelham, New Hampshire 03076).

Readers in the U.K. may order from AMDAT, Crofters, Harry Stoke Road, Stoke Gifford, Bristol, BS126QH, England.

references

SAVE $7.05 with HOME DELIVERY (one year newstand cost $30.00)

- 1 year 12 issues $22.95
- 2 years 24 issues $38.95
- 3 years 36 issues $49.95
 (U.S. ONLY)

☐ Payment Enclosed
☐ Bill me later
☐ Check here if this is a renewal
 (Attach Label)

Name __________________________
Address _______________________
City ___________________________ Zip ___________
State __________________________

Please allow 4-6 weeks for delivery of first issue.

FOREIGN RATES: Europe, Japan and Africa, $37 for one year by air forwarding service. All other countries $31 for one year by surface mail.

SUBSCRIBE TO ham radio TODAY
CALL NOW AND PLACE YOUR ORDER ON OUR TOLL FREE ORDER LINE
1 (800) 341-1522
8 AM - 9 PM EST Orders Only
Have your credit card ready.

DATATEL 800*
For other information call Ham Radio direct
(603) 878-1441 8 A.M. - 4:30 PM
360-degree propagation MINIMUF prediction

Simultaneous view of MUF in all directions — on your C-64

MINIMUF, a method of determining propagation modes and paths by computer, has received wide acceptance and use. Provide the sunspot number or solar flux quantity and the latitude and longitude of the two points between which communication is desired, and a 24-hour prediction of the maximum usable frequency (MUF) is obtained for that path. It's especially helpful for determining the band to use when you're interested in contacting that specific country.

However, what if you're interested in knowing where the band's open to in general? Sure, you could "Listen, listen, listen — as any successful DXer will tell you. But just now you want to get on the air, call "CQDX" and work somebody. Perhaps the whole band is filled with listeners; somebody has to break the ice. There's no point in rotating the beam to a nonproductive direction; you have to have some knowledge as to where to point the antenna. Unless you have some other tool at your disposal, all you'll have to go on is your own experience with conditions on that band.

How many of you old-timers remember "Instantaneous Prediction of Radio Transmission Paths," the 1962 QST article written by the W6YG boys of Stanford University? It discusses using a rotary beam to generate short transmissions of 50 WPM CW and receiving the backscatter signals in a radar-like manner, then presenting the results on a PPI (plan position indicator). What they saw, in a 360-degree view, were the areas of the world that were open to propagation, including the first hop as well as second and third hop returns. Marvelous! They could actually see the 20-meter band openings in the morning and the different paths available during the day, and watch the band close when nighttime came. That's what we need for casual operation — a method of determining, with confidence, which direction to point our beam. There's only one problem, however; the FCC won't let us do it.

an alternate method

Dreams like that lie dormant in the mind until the state-of-the-art produces a means of accomplishing the same thing by different (and legal) means. If we accept the validity of the MINIMUF program for prediction of propagation paths — and most of us do — why not modify it to predict 360 degrees of propagation for any given hour, rather than just propagation in only one direction for 24 hours?

Suppose we scribe a circle about our QTH along great circle paths, every 10 degrees. Hold the hour constant in the MINIMUF program and have it predict the MUF for every 10 degrees of bearing. If you

<table>
<thead>
<tr>
<th>DEG.</th>
<th>LAT.</th>
<th>LONG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>71.7</td>
<td>HOME</td>
</tr>
<tr>
<td>10</td>
<td>70.4</td>
<td>LONG.</td>
</tr>
<tr>
<td>20</td>
<td>67</td>
<td>49.7</td>
</tr>
<tr>
<td>30</td>
<td>62.3</td>
<td>41.5</td>
</tr>
<tr>
<td>40</td>
<td>56.9</td>
<td>37</td>
</tr>
<tr>
<td>50</td>
<td>51.2</td>
<td>34.9</td>
</tr>
<tr>
<td>60</td>
<td>45.3</td>
<td>34.4</td>
</tr>
<tr>
<td>70</td>
<td>39.4</td>
<td>35.1</td>
</tr>
<tr>
<td>80</td>
<td>33.7</td>
<td>36.7</td>
</tr>
<tr>
<td>90</td>
<td>28.2</td>
<td>39</td>
</tr>
<tr>
<td>100</td>
<td>22.9</td>
<td>41.8</td>
</tr>
<tr>
<td>110</td>
<td>18</td>
<td>45.3</td>
</tr>
<tr>
<td>120</td>
<td>13.5</td>
<td>49.2</td>
</tr>
<tr>
<td>130</td>
<td>9.5</td>
<td>52.6</td>
</tr>
<tr>
<td>140</td>
<td>6.1</td>
<td>58.4</td>
</tr>
<tr>
<td>150</td>
<td>3.4</td>
<td>63.7</td>
</tr>
<tr>
<td>160</td>
<td>1.4</td>
<td>69.2</td>
</tr>
<tr>
<td>170</td>
<td>1</td>
<td>74.7</td>
</tr>
<tr>
<td>180</td>
<td>-1.3</td>
<td>HOME</td>
</tr>
<tr>
<td>190</td>
<td>-1</td>
<td>86.5</td>
</tr>
<tr>
<td>200</td>
<td>1.5</td>
<td>92.2</td>
</tr>
<tr>
<td>210</td>
<td>3.4</td>
<td>97.8</td>
</tr>
<tr>
<td>220</td>
<td>6.1</td>
<td>102</td>
</tr>
<tr>
<td>230</td>
<td>9.5</td>
<td>107.9</td>
</tr>
<tr>
<td>240</td>
<td>13.5</td>
<td>112.7</td>
</tr>
<tr>
<td>250</td>
<td>18</td>
<td>116.2</td>
</tr>
<tr>
<td>260</td>
<td>22.9</td>
<td>119.6</td>
</tr>
<tr>
<td>270</td>
<td>26.1</td>
<td>122.5</td>
</tr>
<tr>
<td>280</td>
<td>33.7</td>
<td>124.8</td>
</tr>
<tr>
<td>290</td>
<td>39.4</td>
<td>126.4</td>
</tr>
<tr>
<td>300</td>
<td>45.2</td>
<td>127.1</td>
</tr>
<tr>
<td>310</td>
<td>51.1</td>
<td>128.1</td>
</tr>
<tr>
<td>320</td>
<td>56.9</td>
<td>124.6</td>
</tr>
<tr>
<td>330</td>
<td>62.3</td>
<td>120</td>
</tr>
<tr>
<td>340</td>
<td>67</td>
<td>111.8</td>
</tr>
<tr>
<td>350</td>
<td>70.4</td>
<td>98.7</td>
</tr>
</tbody>
</table>

fig. 1. Table of bearing vs. latitude/longitude for the periphery of a 4000 km radius circle around the transmitting site at Cleveland, North Carolina.

Henry G. Elwell, Jr., N4UH, Route 2, Box 20G, Cleveland, North Carolina 27013
Table 1. Program determines latitude and longitude of great circle locations 4000 km from a specified transmitting site.

```
10 H=CHR$(177):REM CURSOR DOWN
20 B=CHR$(180):REM REVERSE ON
30 C=CHR$(29):REM CURSOR RIGHT
40 D=CHR$(147):REM CLEAR/HOME
50 PRINT D
60 DIM H(40),F(40),T(40)
70 OPEN 4:PRINT\CHR$(177)\CHR$(195):CLOSE
80 REM PROGRAM WRITTEN BY HENRY ELWELL MAY 1986
90 PRINT\"PROGRAM TO DETERMINE THE 4000K\"\"LATITUDE AND LONGITUDE 360 DEG\".
100 PRINT\"AROUND THE TRANSMITTING SITE TO PROVIDE PROPAGATION PREDICTIONS 360\".
200 PRINT\"PLEASE WAIT FOR PRINTOUT\"
90 OPEN 1
95 PRINT\"PRINTOUT OF 4000K LATITUDE/LONGITUDE FROM 0 TO 350 DEG.\"\"10 DEG. ST EPS\".
97 PRINT\"CLOSE\"
100 FOR H=0 TO 350 STEP 10
110 L%=SIN(H/180)+1.01745*D0.3690178
120 M%=SIN(H/180)*D0.3690178+1.01745:
130 IF H<90 THEN PRINT\CHR$(16)\CHRS(16)\"26\"
140 IF H=90 THEN PRINT\CHR$(16)\"10\"
150 IF H>90 THEN PRINT\CHR$(16)\"07\"
160 IF H=180 THEN PRINT\CHR$(16)\"07\"
170 IF H=270 THEN PRINT\CHR$(16)\"10\"
180 IF H>270 THEN PRINT\CHR$(16)\"26\"
190 IF H<0 THEN PRINT\CHR$(16)\"26\"
200 IF H=0 THEN PRINT\CHR$(16)\"26\"
210 IF H>360 THEN GOTO 10
```

Table 2. Program provides 360-degree propagation prediction for a given hour of the day.

```
```

figs. 2, 3, 4: MUF propagation predictions from North Carolina at 09, 10, 11, UTC (solar flux = 70).
plot the MUF vs. circular degrees on polar coordinate paper, you’ll have something very similar to the radar plots of W6YG. For any given hour you’ll be able to see which bands are open or closed and in what direction you should point your beam.

One of the inevitable questions that follows this suggestion is “What distance from the home QTH should be used as a constant?” Ordinarily, you’re not faced with that question in the MINIMUF program because you’re concerned only with the latitude and longitude of the sending and receiving locations. True, some of the MUF programs give you the distance just for information; however, now we’re going to select some arbitrary constant distance from our QTH and determine the latitude and longitude of those places every ten degrees from 0 to 360 degrees.

The following logic was used to arrive at that arbitrary distance. The W6YG boys got back-scatter from the first hop, the second hop, and even the third hop. We can get theoretical first hop by using the assumptions of the ITS group who use 4000 km as the reference hop length. Four thousand km per hop length requires very low elevation angles of radiation and reception — less than about 3 degrees. Not many of us have antennas that will provide substantial energy at those angles, but let’s stretch it. Bob Rose, W6GKU, in his December, 1982, QST article says the MINIMUF program is good from 250 miles to 6000 miles, so 4000 km (2500 miles) should be an acceptable number to use. We’ll use it for the first hop point.

The data describing the great circle around your QTH with a radius of 4000 km must be tailored specifically to your location. You have to determine the latitude and longitude of the periphery of that circle.
figs. 11, 12: MUF predictions from North Carolina at 04 and 05 UTC (solar flux = 70).

fig. 13. MUF propagation prediction from Los Angeles, California at 1600 UTC at North Carolina at 1700 UTC at a solar flux of 70.

fig. 14. MUF propagation prediction from North Carolina at 1700 UTC at a solar flux of 180.

Table 2. continued.

<table>
<thead>
<tr>
<th>Data</th>
<th>2, 9, 12, 11, 2, 9, 64, 32, 210, 255</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>206, 192, 40, 208, 256, 152, 24, 10</td>
</tr>
<tr>
<td>DATA</td>
<td>255, 131, 255, 144, 2, 230, 254, 202</td>
</tr>
<tr>
<td>DATA</td>
<td>206, 205, 169, 13, 32, 210, 255, 32</td>
</tr>
<tr>
<td>DATA</td>
<td>204, 256, 164, 127, 76, 195</td>
</tr>
<tr>
<td>REM</td>
<td>MINIMUF FOR COMMODORE-64/ALON REMLEY, KEADV</td>
</tr>
<tr>
<td>POKE</td>
<td>52260.14</td>
</tr>
<tr>
<td>POKE</td>
<td>52261.6</td>
</tr>
<tr>
<td>PRINT</td>
<td>05</td>
</tr>
<tr>
<td>PRINT</td>
<td>F$</td>
</tr>
<tr>
<td>DIMMS</td>
<td>(37) 65, (41), M(12)</td>
</tr>
<tr>
<td>DATA1</td>
<td>20, 21, 30, 21, 30, 31, 30, 31, 30, 31</td>
</tr>
<tr>
<td>FOR1</td>
<td>=1012 READ1(1) NEXT</td>
</tr>
<tr>
<td>MS</td>
<td>="JANFEBMARCAPRJUNJULAGUSAUGSEPNOVDEC"</td>
</tr>
<tr>
<td>RO</td>
<td>=180</td>
</tr>
<tr>
<td>P</td>
<td>=28</td>
</tr>
<tr>
<td>R1</td>
<td>=180</td>
</tr>
<tr>
<td>PW</td>
<td>=2</td>
</tr>
<tr>
<td>PWX</td>
<td>=180</td>
</tr>
<tr>
<td>PWZ</td>
<td>=180</td>
</tr>
<tr>
<td>LI</td>
<td>=35, 35, 40, 75</td>
</tr>
</tbody>
</table>
| L1 | =35, L1=PO
Table 2, continued.

<table>
<thead>
<tr>
<th>150 M</th>
<th>1500 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>430</td>
<td>GOTO600</td>
</tr>
<tr>
<td>478</td>
<td>REM THE BEARING, LATITUDE & LONGITUDE OF THE USER'S LOCATION MUST REPLACE</td>
</tr>
<tr>
<td>479</td>
<td>REM THAT SHOWN, WHICH IS FOR CLEVELAND RC</td>
</tr>
</tbody>
</table>
every 10 degrees (or every 20 degrees, if you prefer) from 0 to 360 degrees. One way to do this is to solve the great circle equations for distance and bearing.

equations and calculations

Equations 1 and 2 provide a relationship between the distance (D) in nautical miles (2160 nautical miles $= 4000$ km), the heading (H) in degrees from your QTH (every 10 degrees), and the latitude/longitude of your location, and the first hop location.

\[
D = 60 \arccos \left(\frac{\sin L_1 \cdot \sin L_2 + \cos L_1 \cdot \cos L_2 \cdot \cos (L_01 - L_02)}{\cos L_2} \right) \quad (1)
\]

\[
H = \arccos \left(\frac{\sin L_2 - \sin L_1 \cos (D/60)/\sin(D/60) \cos L_1}{} \right) \quad (2)
\]

where

\[
L_1 = \text{latitude (your QTH)}
\]

\[
L_2 = \text{latitude (each 4000-km hop location)}
\]

\[
L_01 = \text{longitude (your QTH)}
\]

\[
L_02 = \text{longitude (each 4000-km hop location)}
\]

The plan of attack is to solve for L_2 in eqn. 2 since everything else is known, then solve for L_02 in eqn. 1. Simplify by setting $\sin (D/60) = 0.587783$ and $\cos (D/60) = 0.809017$, substituting these values in eqn. 2 and rearranging terms:

\[
L_2 = \arcsin \left[0.587783 \cos L_1 \cos H + 0.809017 \sin L_1 \right] \quad (3)
\]

After you enter your latitude, which is a constant, L_2 simplifies to:

\[
L_2 = \arcsin \left[(0.587785) \right] \quad (4)
\]

(latitude constant)$\cos H + (0.809017) (different latitude constant)$

The arc sin (inverse sine) function is available on most hand calculators. Solve for L_2, starting with 0 and continue in 10-degree steps to 360 degrees. This provides 36 latitudes around the periphery of the circle. Now all you need are the corresponding longitudes, which you can calculate from eqn. 1. The program in table 1 will do all this for you automatically, but it's good to understand what you're doing. Part of a typical printout is shown in fig. 1.

solving for the 4000-km longitudes

By rearranging terms in eqn. 1, the last unknown, L_02 can be determined.

\[
L_02 = \arccos \left\{ \cos L_01 \cdot \cos L_1 \cdot \cos L_2 \right\} \quad (5)
\]

At this point we now have constants for all bearings of $\cos (D/60)$, $\sin L_1$, $\cos L_1$, and L_01. $\cos L_2$ can be determined for each azimuth with a hand calculator with \sin / \cos functions if you don't want to use the program in table 1. Note that there is a + or - before the L_01. Use the minus sign for all calculations of L_02 from 0 to 180 degrees, and a plus sign for all values from 190 to 350. When you've completed the calculations, you'll have a table of bearing vs. latitude/longitude for the periphery of a 4000-km radius circle around your transmitting site. For the 0- and 180-degree bearings, you mustn't use the same longitude as your transmitting site even if it's the same as your transmitting site. If they do correspond, just add 0.1 degree to your own longitude, as shown in fig. 1, if only to keep the mathematics under control.

MINIMUF program modifications

The updated MINIMUF program of Alan Memley, KE6UY, was modified to provide a 360-degree propagation prediction in tabular form on the screen or a printer (see table 2). It's necessary to provide data statements in the program for latitude and longitude crossings of the 4000-km great circles around the transmitting site, and a means for inputting time of prediction (i.e., the hour you're interested in). The basic information for month, date, solar flux, and computation of the prediction was retained. A printout for the 360-degree prediction is shown in table 3.

The data statements are included in lines 480-486 of the revised program. Each data point has three numbers; bearing, latitude, and longitude. The latitude and longitude are specific to your location, and have to be calculated by hand, or by the program shown in table 1. Remember that commas must separate each number, and the word "DATA" must be at the beginning of each line. If your location has three digits for latitude and/or longitude, it will be necessary to use lines 488 and 489. Be sure "DATA-1,0,0' is the last data item, because that ends the use of the data and restores the data pointer to the beginning of the READ information. (Basically, it helps the computer keep its bookkeeping in order.)

examples of 360-degree predictions

Let's look at several examples and see what the program tells us. We'll consider a day when the solar flux was 70. Figures 2 through 12 show how propagation varied to different parts of the world from North Carolina from 0900 UTC through 0500 the following morning. At 0900 UTC, the maximum usable frequency (MUF) would be 10.4 MHz with propagation to all parts of the world up through 40 meters except for bearings of 310 through 50 degrees; 20 meters would not yet have opened. By 1000 UTC, 20 meters opens for the middle African countries only. By 1100 UTC, propagation is possible into Europe, all of Africa, and all except the westernmost sections of South America; the MUF into Africa is now 19.9 MHz. By 1200 UTC, the path into northern Europe, Finland (OH) is open on 20 meters and 15 meters is open to Africa, with an MUF of 21.8 MHz for Togo and countries along that bearing of 90 degrees.

Between 1600 and 2300 UTC, world-wide operation
Table 2, continued.

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1580</td>
<td>K9 = 0</td>
</tr>
<tr>
<td>1590</td>
<td>GO = 0</td>
</tr>
<tr>
<td>1600</td>
<td>M9 = -3.5</td>
</tr>
<tr>
<td>1610</td>
<td>Sl = 5</td>
</tr>
<tr>
<td>1620</td>
<td>1.510</td>
</tr>
<tr>
<td>1630</td>
<td>IFW = POTHEN</td>
</tr>
<tr>
<td>1640</td>
<td>M9 = 1.04</td>
</tr>
<tr>
<td>1650</td>
<td>Y9 = 1Z - ATN</td>
</tr>
<tr>
<td>1660</td>
<td>T4 = KB - Y2</td>
</tr>
<tr>
<td>1670</td>
<td>T6 = KB + Y2</td>
</tr>
<tr>
<td>1680</td>
<td>T = KB - Y2</td>
</tr>
<tr>
<td>1690</td>
<td>T9 = 0.1</td>
</tr>
<tr>
<td>1700</td>
<td>M9 = 2.5</td>
</tr>
<tr>
<td>1710</td>
<td>IFM9 = POTHEN</td>
</tr>
<tr>
<td>1720</td>
<td>T9 = 0.1</td>
</tr>
<tr>
<td>1730</td>
<td>M9 = 2.5</td>
</tr>
<tr>
<td>1740</td>
<td>IFM9 = POTHEN</td>
</tr>
<tr>
<td>1750</td>
<td>T9 = 0.1</td>
</tr>
<tr>
<td>1760</td>
<td>M9 = 2.5</td>
</tr>
<tr>
<td>1770</td>
<td>IFM9 = POTHEN</td>
</tr>
<tr>
<td>1780</td>
<td>T9 = 0.1</td>
</tr>
<tr>
<td>1790</td>
<td>M9 = 2.5</td>
</tr>
<tr>
<td>1800</td>
<td>IFM9 = POTHEN</td>
</tr>
<tr>
<td>1810</td>
<td>T9 = 0.1</td>
</tr>
<tr>
<td>1820</td>
<td>M9 = 2.5</td>
</tr>
<tr>
<td>1830</td>
<td>IFM9 = POTHEN</td>
</tr>
<tr>
<td>1840</td>
<td>T9 = 0.1</td>
</tr>
<tr>
<td>1850</td>
<td>M9 = 2.5</td>
</tr>
<tr>
<td>1860</td>
<td>IFM9 = POTHEN</td>
</tr>
<tr>
<td>1870</td>
<td>T9 = 0.1</td>
</tr>
</tbody>
</table>

Fluke 70 Series Analog/Digital multimeters are like money in the bank.

Buy one, and you're guaranteed to save both time and money. Money, because you get longer battery life and longer warranty coverage — 3 years vs. 1 year or less on others. And time, because 70 Series meters are easier to operate and have more automatic measurement features.

Before buying any meter, look beyond the sticker price. And take a closer look at the new low-priced $79 Fluke 73, the $109 Fluke 75, and the deluxe $145 Fluke 77. In the long run, they'll cost less, and give higher performance, too. And that, you can bank on.

For a free brochure, and your nearest distributor, call toll-free 1-800-327-3800, ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
Expanding Our Horizons

Introducing
Mirage/KLM 1.2-44 LBX

The first 1260 MHz to 1300 MHz
Made in the U.S.A.

- Factory Tested
- Completely Assembled
- Completely Weatherized Balun
- Also Available Soon...
 Power Dividers

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Electrical</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band Width</td>
<td>Beam Length</td>
</tr>
<tr>
<td>1260-1300 MHz</td>
<td>12' 4"</td>
</tr>
<tr>
<td>Gain</td>
<td>Element Length</td>
</tr>
<tr>
<td>18.2</td>
<td>4.5"</td>
</tr>
<tr>
<td>VSWR</td>
<td>Mast</td>
</tr>
<tr>
<td>Better than 1.5 to 1</td>
<td>2" O.D.</td>
</tr>
<tr>
<td>Feed Imp.</td>
<td>Windload</td>
</tr>
<tr>
<td>50 Ohms</td>
<td>1 sq. ft.</td>
</tr>
<tr>
<td>Balun</td>
<td></td>
</tr>
<tr>
<td>4:1 Rigid Coax</td>
<td></td>
</tr>
</tbody>
</table>

Mirage Communications Equipment, Inc.
P.O. Box 1000
Morgan Hill, CA 95037
(408) 779-7363
is possible in all directions on 20 meters, with the MUF extending as high as 25 MHz on bearings into Pitcairn Island at 230 degrees, although the heavily populated areas of middle Europe had dropped out by 2200 UTC. At 0000 UTC, the next day, the prediction says 20-meter propagation is possible to South America and west up through Hawaii. A possible 15-meter capability is indicated into the southwest.

By 0200 UTC, 4000 km propagation is still possible on 20 meters for South America and the South Pacific. The band is still open at 0400 UTC, with an MUF of 14.5 in the 210-220 degree bearing for some possible Central American stations. Twenty meters is dead at 0500 UTC, with an MUF of 13.3 MHz. To provide a comparison with North Carolina and Los Angeles, California, a prediction was run for 1600 UTC on the same day with a solar flux of 70 for Los Angeles; see fig. 13. California is three hours earlier than North Carolina, but it still shows world-wide propagation possibilities on 20 meters, with good openings into Africa and South America on 15 meters.

Just for fun, a prediction for the 21st of June - in a year when the solar flux was 180 - was run (fig. 14). As expected, practically the whole world is open on the 10-meter band at 1700 UTC. (I believe the model used for the prediction is quite conservative, since it would appear that the MUF should be higher than 35.9 MHz with such a high solar flux.)

This type of presentation - i.e., 360 degrees - brought out what may be an anomaly in the prediction model. It appears that the 140-degree prediction for North Carolina is always significantly lower than the 130- and 150-degree bearing. Also, the 170-200-degree predictions seem to be lower than adjacent bearings. I'd be interested in hearing from any reader who could explain this.

A word of caution

It's important to remember that hops greater than the 4000-km prediction may not be possible because of propagation conditions at the far end. However, this modified program can suggest possible contacts. It's also good to keep in mind that the predicted openings may provide the long path for distant points even when no short path conditions are indicated.

The next step, should anyone want to continue this work, would be to provide the code for a graphic presentation such as the one shown in figs. 2 through 14. It should be an easy task to combine the point-to-point prediction with the 360-degree prediction, since the basic MINIMUF program is used by both methods.

references

Table 3. 360 degree MINIMUF prediction for Cleveland, North Carolina at a solar flux of 70.

<table>
<thead>
<tr>
<th>BEARING</th>
<th>MUF</th>
<th>BEARING</th>
<th>MUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.7</td>
<td>190</td>
<td>15.8</td>
</tr>
<tr>
<td>10</td>
<td>16.9</td>
<td>200</td>
<td>15.7</td>
</tr>
<tr>
<td>20</td>
<td>17.2</td>
<td>210</td>
<td>22.0</td>
</tr>
<tr>
<td>30</td>
<td>17.5</td>
<td>220</td>
<td>21.9</td>
</tr>
<tr>
<td>40</td>
<td>17.9</td>
<td>230</td>
<td>22.0</td>
</tr>
<tr>
<td>50</td>
<td>18.2</td>
<td>240</td>
<td>22.0</td>
</tr>
<tr>
<td>60</td>
<td>18.5</td>
<td>250</td>
<td>21.9</td>
</tr>
<tr>
<td>70</td>
<td>18.8</td>
<td>260</td>
<td>22.0</td>
</tr>
<tr>
<td>80</td>
<td>19.1</td>
<td>271</td>
<td>21.9</td>
</tr>
<tr>
<td>90</td>
<td>19.4</td>
<td>280</td>
<td>21.7</td>
</tr>
<tr>
<td>100</td>
<td>19.7</td>
<td>290</td>
<td>21.4</td>
</tr>
<tr>
<td>110</td>
<td>20.0</td>
<td>300</td>
<td>21.2</td>
</tr>
<tr>
<td>120</td>
<td>20.3</td>
<td>310</td>
<td>16.7</td>
</tr>
<tr>
<td>130</td>
<td>20.6</td>
<td>320</td>
<td>16.6</td>
</tr>
<tr>
<td>140</td>
<td>20.9</td>
<td>330</td>
<td>16.5</td>
</tr>
<tr>
<td>150</td>
<td>21.2</td>
<td>340</td>
<td>16.5</td>
</tr>
<tr>
<td>160</td>
<td>21.5</td>
<td>350</td>
<td>16.6</td>
</tr>
<tr>
<td>170</td>
<td>21.8</td>
<td>360</td>
<td>16.6</td>
</tr>
<tr>
<td>180</td>
<td>22.1</td>
<td>370</td>
<td>16.6</td>
</tr>
<tr>
<td>190</td>
<td>22.4</td>
<td>380</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Ham Radio

High Performance Preselector-Preamplifier

The solution to most interference, intermod, and dense problems in **AMATEUR** and **COMMERCIAL** systems.

- 40 to 1000 MHz - tuned to your frequency
- 5 large helical resonators
- Low noise - High overload resistance
- 8 dB gain - ultimate rejection
- 80 dB 10 to 15 volts DC operation
- Size: 1 1/2 x 2 3/4 x 4 3/4" exc. connectors
- **FANTASTIC REJECTION!**

Typical rejection:

- ± 600 KHz@ 144 Mhz - 28dB
- ± 1.6 MHz@220 Mhz - 40dB
- ± 5 MHz@450 Mhz - 50dB

Price - CALL bipolar w/RCA jacks
Connector options: BCN $5, UHF $6, N $10
SUPER HOT! GaAs Fet option $20

Automatic Identifiers

ID-1 ID-2

- For transceivers and repeaters - **AMATEUR and COMMERCIAL**
- Automatic operation - adjustable speed and amplitude
- Small size - easy installation - 7 to 15 volts DC
- 4 selectable, reprogrammable messages - each up to 2 min. long
- Wired, tested, and programmed with your messages

Model ID-1 $49.95 Model ID-2 w/2 to 10 minute timer $69.95

We offer a complete line of transmitter and receiver strips and synthesizers for amateur and commercial use.

Request our free catalog. Allow 32 for UPS shipping Mastercard and VISA welcome.

GLB ELECTRONICS, INC.

Dept H, 151 Commerce Pkwy, Buffalo, NY 14224
716-675-6740 9 to 4

February 1987 14 33
Wide Dynamic Range and Low Distortion – The Key to Superior HF Data Communications

- Dynamic Range > 75 dB
- BER < 1×10^{-5} for $S/N = 0$ dB
- 400 to 4000 Hz
- 10 to 1200 Baud
- BW Matched to Baud Rate
- Linear Phase Filters

Real HF radio teleprinter signals exhibit heavy fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm, not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX Tones
- Split or Transceive TX/RX
- CRT Tuning Indicator
- RS-232C, MIL-188C, or TTL Data
- 8, 600, or 10K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, 44-440 Hz
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectro-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- 3.5" High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784
C64/128 routines determine optimum Class B or C operation

linear design by computer

A few years ago *ham radio* published an article of mine on low-cost linear design and construction. Judging from the number of letters and phone calls I’ve received, the techniques have been widely used. It seems that linear construction is second only to antennas as an Amateur activity.

Recently, while doing some study on a new linear to fit our new regulations, I went through these design steps a number of times. Finally, I decided that this was a lot of unnecessary work, so I took time to reduce the process to a computer routine.

The core of the computer routines are the tables and relations given in the booklet, *RCA Transmitting Tubes, Technical Manual TT-5*. (My copy is dated October, 1962.) As far as I know, the book is out of print, but copies are occasionally found at hamfests. It isn’t necessary to have the book to use the program — just refer to the manufacturer’s literature for design data on the types of tubes you plan to use.

As written, the program listed in table 1 is for the Commodore 64/128. However, only routine constructions are used, so only minor changes would be needed to make it run on other computers.

Lines below 500 are introductory. Line 180 sets up a function for output formatting. The amplifier design goals are established in lines 500-990. The last lines allow either acceptance of the “preliminary” design developed at that point or redesign. On the C-64, it isn’t necessary to re-enter all values; you need enter only the ones you wish to change. Other computers may require complete re-entry.

The basic design parameter chosen is power output, which seems to be the most common goal. The next two inputs are the number of tubes to use and the operating class. The program assumes that the tubes will be in parallel, as is universal in today’s hf designs. The program also assumes that designs will be either Class B, with a 180-degree conduction angle, or Class C at 140 degrees. For convenience, a set of values for 100-degree angle is listed in the REM statement at line 550. These may be substituted for the 140-degree ones if desired, or a third mode programmed. Although an increase in output will be obtained, harmonic content will increase, so this step is not recommended.

Lines 530-550 introduce some “K” values, and more are used later. These are the core of the RCA design technique, and are tabulated in the RCA booklet. They are derived from the way parameters of truncated sine waves behave. Clipped sine waves are generated by the non-linear relation between driving grid voltage and resulting plate current pulses. (See any good book on vacuum tube amplifiers if you’re interested in details.) For calculation, most of the K-factors are used as tabulated; however, one is calculated from a least-squares relation.

The values of plate and screen voltage and plate dissipation are entered in lines 570-600. A minus screen voltage is used to indicate a triode. Note that the plate dissipation is specifically a design parameter, but that there is no built-in check for screen or grid dissipation; these are calculated and output later, to check against tube specification values.

It is usually best to operate near the upper limit of

R. P. Haviland, W4MB, 1035 Green Acres Circle N., Daytona Beach, Florida 32019

February 1987
AMATEUR TELEVISION

ATV MADE EASY WITH OUR SMALL ALL IN ONE BOX TC70-1 TRANSCEIVER AT A SUPER LOW $299 DELIVERED PRICE!
CALL 1-818-4474565 AND YOURS WILL BE ON ITS WAY IN 24 HRS (VIA UPS SURFACE IN CONT. USA).

TC70-1 FEATURES:
* Sensitive UHF GaAsfet tuneable downconverter for receiving
* Two frequency 1 watt p.e.p. transmitter. 1 crystal included
* Crystal locked 4.5 MHz broadcast standard sound subcarrier
* 10 pin VHS color camera and RCA phono jack video inputs
* PTL (push to look) T/R switching
* Transmit video monitor outputs to camera and phono jack
* Small attractive shielded cabinet - 7 x 7 x 2.5”
* Requires 13.8vdc @ 500 ma. + color camera current

Just plug in your camera or VCR composite video and audio, 70cm antenna, 12 to 14 vdc, and you are ready to transmit live action color or black and white pictures and sound to other amateurs. Sensitive downconverter tunes whole 420-450 mHz band down to channel 3. Specify 439.25, 434.0, or 426.25 mHz transmit frequency. Extra transmit crystal add $15.

Transmitting equipment sold only to licensed radio amateurs verified in the Callbook. If recently licensed or upgraded, send copy of license.

WHAT ELSE DOES IT TAKE TO GET ON ATV?
* Any Tech class or higher amateur can get on ATV. If you are now on SSTV, or have a home camera or VCR & TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70cm antennas on ATV.
* DX with TC70-1 and KLM 440-27 antenna line of sight and snow free is about 22 miles, 7 miles with the 440-6 normally used for portable uses like parades, races, search & rescue, damage assessment, etc. Add one of the two ATV engineered linear amplifiers below for greater DX or punching thru obstacles.

The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes, computer programs, repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook for more info & Repeater Directory for local ATV nps.

PURCHASE AN AMP WITH THE TC70-1 & SAVE!
20 WATT WITH ELH-730G....$412
50 WATT WITH D24N-ATV....$499

All prices include UPS surface shipping in cont. USA

ACCESSORIES:

<table>
<thead>
<tr>
<th>ACCESSORY</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRAGE D24N-ATV</td>
<td>50 WPEP AMP</td>
<td>$219</td>
</tr>
<tr>
<td>KLM 440-27</td>
<td>14DBD ANT</td>
<td>$107</td>
</tr>
<tr>
<td>KLM 440-14</td>
<td>11DBD ANT</td>
<td>$77</td>
</tr>
<tr>
<td>KLM 440-6</td>
<td>8DBD ANT</td>
<td>$62</td>
</tr>
<tr>
<td>ALINCO ELH-730G</td>
<td>20 WPEP AMP</td>
<td>$129</td>
</tr>
</tbody>
</table>

HAMS! Call or write for full line ATV catalog....downconverters start at only $59
Table 1. Linear amplifier design program for the C64.

```basic
100 PRINT "" ;
110 PRINT "VACUUM TUBE" ;
120 PRINT "" ;
130 PRINT "REFERENCE RCA TECH MANUAL" ;
140 PRINT "" ;
150 PRINT "" ;
160 PRINT '"';
170 PRINT "" ;
180 PRINT "" ;
190 PRINT "" ;
200 PRINT "" ;
210 PRINT "BEST DESIGN REQUIRES INPUT FROM TUBE DATA CURVES" ;
220 PRINT "" ;
230 PRINT "" ;
240 PRINT "" ;
250 PRINT "" ;
260 PRINT "" ;
270 PRINT "" ;
280 PRINT "" ;
290 PRINT "" ;
300 PRINT "" ;
310 PRINT "" ;
320 PRINT "" ;
330 PRINT "" ;
340 PRINT "" ;
350 PRINT "" ;
360 PRINT "" ;
370 PRINT "" ;
380 PRINT "" ;
390 PRINT "" ;
400 PRINT "" ;
410 PRINT "" ;
420 PRINT "" ;
430 PRINT "" ;
440 PRINT "" ;
450 PRINT "" ;
460 PRINT "" ;
470 PRINT "" ;
480 PRINT "" ;
490 PRINT "" ;
500 PRINT "" ;
510 PRINT "" ;
520 PRINT "" ;
530 PRINT "" ;
540 PRINT "" ;
550 PRINT "" ;
560 PRINT "" ;
570 PRINT "" ;
580 PRINT "" ;
590 PRINT "" ;
600 PRINT "" ;
610 PRINT "" ;
620 PRINT "" ;
630 PRINT "" ;
640 PRINT "" ;
650 PRINT "" ;
660 PRINT "" ;
670 PRINT "" ;
680 PRINT "" ;
690 PRINT "" ;
700 PRINT "" ;
710 PRINT "" ;
720 PRINT "" ;
730 PRINT "" ;
740 PRINT "" ;
750 PRINT "" ;
760 PRINT "" ;
770 PRINT "" ;
780 PRINT "" ;
790 PRINT "" ;
800 PRINT "" ;
810 PRINT "" ;
820 PRINT "" ;
830 PRINT "" ;
840 PRINT "" ;
850 PRINT "" ;
860 PRINT "" ;
870 PRINT "" ;
880 PRINT "" ;
890 PRINT "" ;
900 PRINT "" ;
910 PRINT "" ;
920 PRINT "" ;
930 PRINT "" ;
940 PRINT "" ;
950 PRINT "" ;
960 PRINT "" ;
970 PRINT "" ;
980 PRINT "" ;
990 PRINT "" ;
```

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K30</td>
<td>±52</td>
</tr>
<tr>
<td>K14</td>
<td>±1.52</td>
</tr>
<tr>
<td>V1</td>
<td>±1.5V</td>
</tr>
<tr>
<td>V2</td>
<td>±1.5V</td>
</tr>
<tr>
<td>V3</td>
<td>±1.5V</td>
</tr>
<tr>
<td>V4</td>
<td>±1.5V</td>
</tr>
<tr>
<td>V5</td>
<td>±1.5V</td>
</tr>
<tr>
<td>V6</td>
<td>±1.5V</td>
</tr>
<tr>
<td>R1</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R2</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R8</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R9</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R10</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R11</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R12</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R13</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R14</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R15</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R16</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R17</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R18</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R19</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R20</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R21</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R22</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R23</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R24</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R25</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R26</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R27</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R28</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R29</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R30</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R31</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R32</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R33</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R34</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R35</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R36</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R37</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R38</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R39</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R40</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R41</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R42</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R43</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R44</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R45</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R46</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R47</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R48</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R49</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R50</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R51</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R52</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R53</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R54</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R55</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R56</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R57</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R58</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R59</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R60</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R61</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R62</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R63</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R64</td>
<td>10kΩ</td>
</tr>
<tr>
<td>R65</td>
<td>10kΩ</td>
</tr>
</tbody>
</table>

Notes
- Selected high gain matched quad available
- VHF/HF TRANSISTORS
- RF TRANSISTORS
- MISC. TRANSISTORS & MODULES
- WE SHIP SAME DAY - C.O.D./VIS/A/MC
- Minimum Order - Twenty Dollars
- Quality parts with calls for quote
The "Flying Horse" sets the standards

Continuing a 66 year tradition, there are three new Callbooks for 1987.

The North American Callbook lists the calls, names, and address information for licensed amateurs in all countries from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists the amateurs in countries outside North America. Coverage includes South America, Europe, Africa, Asia, and the Pacific area.

The 1987 Callbook Supplement is a new idea in Callbook updates; it lists the activity in both the North American and International Callbooks. Published June 1, 1987, this Supplement will include all the new licenses, address changes, and call sign changes for the preceding 6 months.

Publication date for the 1987 Callbooks is December 1, 1986. See your dealer or order now directly from the publisher.

North American Callbook
incl. shipping within USA $28.00
incl. shipping to foreign countries 30.00

International Callbook
incl. shipping within USA $28.00
incl. shipping to foreign countries 30.00

Callbook Supplement, published June 1st
incl. shipping within USA $13.00
incl. shipping to foreign countries 14.00

SPECIAL OFFER
Both N.A. & International Callbooks
incl. shipping within USA $53.00
incl. shipping to foreign countries 58.00

Illinois residents please add 6% tax. All payments must be in U.S. funds.

Turn a few hours work into years of fun with Amateur Television.

Convert any TV receiver to a fast scan ATV monitor with the Communication Concepts ATV-2 converter.

It allows you to monitor 420Mhz ATV signals using channel 1 or 3 on a standard TV set without modification to the set. The circuit uses a parallel demodulator design for stability and simplicity. The combination of a parallel design, and the hot-cargarode double balanced mixer reduces UHF TV intermod problems. Additional features not found on other ATV downconverters.

ATV-2-PK Kit includes detailed step by step instructions, printed circuit board, and all electronics components as shown $44.95
ATV-2-W Wired and tested $59.95

1640 PRINT "TOTAL POWER, EXCLUSION TO LOAD, AMPS=",(FP+FP+FP+FP+FP+)
1670 PRINT "TOTAL OUTPUT AMPLIFIERS, (FP+FP+FP+FP+FP+)
1680 PRINT "FULL CIRCUIT LOSS" (FP+FP+FP+FP+FP+)
1670 PRINT "TOTAL OUTPUT AMPLIFIERS, INTS=", (FP+FP+FP+FP+FP+)
1680 PRINT "FULL CIRCUIT DESIGN" (FP+FP+FP+FP+FP+)
1700 INPUT "ENTER TUBE OUTPUT CAPACITY, " PINT
1700 INPUT "ENTER CAPABILITIES, " PLINT
1700 INPUT "ENTER OUTPUT CAPACITY, " PINT
1700 INPUT "ENTER OUTPUT CAPABILITY, " PINT
1700 PRINT "FULL CIRCUIT DESIGN" (FP+FP+FP+FP+FP+)
OPPORTUNITY CALLING FROM NRI

Start your own telephone/cellular radio service & repair business

New Bootstrap Industry Lets You Be Your Own Boss

Since the breakout of AT&T, things aren’t the same in the telephone business. Now there’s a perfect new business opportunity for thousands of independents who have been trained to service, install and repair old phones, plus all the new cordless and cellular mobile car phones, that are becoming more and more popular. NRI’s training and start-up equipment offer you the option of starting your own bootstrap business or cashing in on the jobs being created by the new telephone technologies.

NRI shows you how you can make a good living in telephone servicing, with a practical combination of electronic fundamentals and hands-on experience with all types of phones in use today in homes and offices—cord, cordless and cellular.

Learn troubleshooting—with cordless and memory phones you keep!
The heart of NRI telephone training is eight Action Learning kits. You master the "reason-why" theory, then you move immediately into "hands-on" practices. Using a digital multimeter and a telephone line analyzer, you’ll test every function of a telephone line, zeroing in on the problem spots and correcting them.

As an NRI student, you learn at home, at your convenience. Without rigid night-school schedules or classroom pressures, NRI’s tested "bite-size" lessons lead you step-by-step toward your goal of independence as a telephone service expert.

Send coupon for FREE catalog

Find out for yourself exactly what this new NRI training can do for you. NRI’s free catalog gives you all the facts on training for Telephone Servicing & Repair or other technical fields such as Microcomputers, TV/Audio/Video System Servicing and Communications Electronics. If coupon has been removed, write to NRI Schools, 3939 Wisconsin Ave., Washington, DC 20016.
Table 2. Results of a typical run of the program, using approximations (*indicates an input).

<table>
<thead>
<tr>
<th>Example Tube Type</th>
<th>4-1000M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>1600 watts</td>
</tr>
<tr>
<td>One tube</td>
<td></td>
</tr>
<tr>
<td>Class K</td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>3500 volts</td>
</tr>
<tr>
<td>Screen</td>
<td>- 0 volts = 60</td>
</tr>
<tr>
<td>Dissipation</td>
<td>1000 watts</td>
</tr>
<tr>
<td>Plate current</td>
<td>2031 ma peak</td>
</tr>
<tr>
<td>Ed min.</td>
<td>- 0= approximation</td>
</tr>
<tr>
<td>Plate input</td>
<td>2264.7 watts</td>
</tr>
<tr>
<td>Dissipation</td>
<td>664.7 watts</td>
</tr>
<tr>
<td>Plate current</td>
<td>647.1 ma average</td>
</tr>
<tr>
<td>Load line</td>
<td></td>
</tr>
<tr>
<td>Screen dissipation</td>
<td>8.9 watts</td>
</tr>
<tr>
<td>Excitement to load</td>
<td>177 watts</td>
</tr>
<tr>
<td>Total drive</td>
<td>239.1 watts + losses</td>
</tr>
<tr>
<td>Total output</td>
<td>1777 watts</td>
</tr>
<tr>
<td>Z-drive</td>
<td>274 ohms</td>
</tr>
<tr>
<td>Tube C-out</td>
<td>1.1 pf</td>
</tr>
<tr>
<td>C-stray</td>
<td>15 pf</td>
</tr>
<tr>
<td>F max, min</td>
<td>30, 3.5 mhz</td>
</tr>
<tr>
<td>Plate impedance</td>
<td>2709 ohms</td>
</tr>
<tr>
<td>Q max</td>
<td>12</td>
</tr>
<tr>
<td>Max C tune</td>
<td>201.8 pf</td>
</tr>
<tr>
<td>Max C load</td>
<td>1779 pf</td>
</tr>
<tr>
<td>Max L</td>
<td>11.3 uh</td>
</tr>
<tr>
<td>Coil 4" dia, 5" long</td>
<td>13.2</td>
</tr>
<tr>
<td>14 mhz tap</td>
<td>3.5 (approx)</td>
</tr>
<tr>
<td>Cathode Filter</td>
<td></td>
</tr>
<tr>
<td>L-in 70.7 pf</td>
<td></td>
</tr>
<tr>
<td>L-out 12.4 pf</td>
<td></td>
</tr>
<tr>
<td>L 1.1 oh</td>
<td></td>
</tr>
<tr>
<td>Bridge Rectifier</td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>2692 volts rms</td>
</tr>
<tr>
<td>Filter</td>
<td>5 mF</td>
</tr>
</tbody>
</table>

Plate voltage if maximum output is needed. In the low duty-cycle services, it may be desirable to exceed the usual oscillator-amplifier rating. Up to about 1.5 times the plate modulated amplifier rating seems to work well, with little loss of service life.

Line 700 calls for the plate voltage at estimated maximum plate current, which is the intersection of the load line and the plate current curve for the peak instantaneous grid voltage. Since this is not yet determined, several trials will be necessary to select a reasonable value. Maximum output is usually the design goal in the Amateur Service. For this, use the plate current at the knee of the curve for the maximum grid voltage shown on the tube curves, then follow the instructions. The program allows this important step to be replaced by an approximation, but this is only for the initial design.

After this step, accumulated design values are output for checking. This includes power input, tube dissipation, and current. The type of service the design values are suited to is output; this is based on typical duty factors. Note that these assume good cooling. The design values can be accepted, or new ones calculated.

Program lines 1000-1680 calculate and output further design data based on curve data. One input is the tube amplification factor, which is the screen factor for tetrodes. Typical values are 4-9 for tetrodes and 20-150 for triodes. Grid and screen dissipation values must be checked against rated values. A small amount of instantaneous overload is allowable for the low duty-cycle services, but there is some risk of shortening tube life if rated values are exceeded. Sometimes it is best to increase plate voltage to reduce drive requirements.

This section also allows estimation of the drive impedance for grounded grid amplifiers. Drive requirements and power fed to the load are calculated.

The section from lines 2000-2490 relates to the plate tank circuit. A simple tapped coil pi-section tank is assumed. Values are calculated for the lowest frequency. Tap points for higher bands are developed by an approximation. The actual tap points should be determined by a test for maximum output. The reason for this is the difficulty of estimating inductance and stray capacitance of the band switch and leads.

The tank design assumes a Q of 10 at the lowest frequency. A flag is printed if the Q at the highest band exceeds 15, as a result of high tube plus stray capacitance. (See reference 1 for a means of avoiding this by designing the circuit as a L-PI network).

Lines 2500-2580 give design data for a PI network grounded grid excitation input circuit. This assumes cutoff at 1.5 times the highest operating frequency. In principle, this design is not as good as a separate tank circuit for each band (Q = 2, approximately), but it is far simpler and has presented no problems in years of use.

Lines 2600-2710 give power supply parameters for three types of rectifiers. (When working with surplus transformers, it may be necessary to base the design on a particular transformer voltage rather than on plate voltage.) Remaining lines relate to re-runs.

Table 2 shows results of a typical run of the program.

references

ham radio
Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty - prompt U.S. service and assistance

RF AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Power In</th>
<th>Power Out</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B23</td>
<td>2W</td>
<td>30W</td>
<td>useable in: 100 mW-5W</td>
</tr>
<tr>
<td>B108</td>
<td>10W</td>
<td>80W</td>
<td>(1W=15W, 2W=30W) RX preamp</td>
</tr>
<tr>
<td>B1016</td>
<td>10W</td>
<td>160W</td>
<td>(1W=35W, 2W=90W) RX preamp</td>
</tr>
<tr>
<td>B3016</td>
<td>30W</td>
<td>160W</td>
<td>(useable in: 15-45W) RX preamp (10W = 100W)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Power In</th>
<th>Power Out</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C106</td>
<td>10W</td>
<td>60W</td>
<td>RX preamp</td>
</tr>
<tr>
<td>C1012</td>
<td>10W</td>
<td>120W</td>
<td>(2W=45W, 5W=90W) RX preamp</td>
</tr>
<tr>
<td>C22</td>
<td>2W</td>
<td>20W</td>
<td>(useable in: 200mW-5W)</td>
</tr>
</tbody>
</table>

220 MHz ALL MODE

220-450 MHz ALL MODE

<table>
<thead>
<tr>
<th>Model</th>
<th>Power In</th>
<th>Power Out</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>D24</td>
<td>2W</td>
<td>40W</td>
<td>(1W=25W)</td>
</tr>
<tr>
<td>D1010</td>
<td>10W</td>
<td>100W</td>
<td>(1W=25W, 2W=50W)</td>
</tr>
</tbody>
</table>

RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Power In</th>
<th>Power Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1</td>
<td>1.8-30 MHz</td>
<td>1-15W</td>
<td>1-15W</td>
</tr>
<tr>
<td>MP-2</td>
<td>50-200 MHz</td>
<td>2-5W</td>
<td>2-5W</td>
</tr>
</tbody>
</table>

Available at local dealers throughout the world.
SSTV SOFTWARE
Introducing A New Dimension In SSTV
Gest VideoTools
- MS/DOS based advanced software package for 1200 c Robot users.
- Create/transmit your own high resolution graphic images.
- Full Paint Package Features:
 - 65K on screen colors out of a range of 256K
 - ICOM-based menus, mouse-driven, easy to use
 - Over 70 functions
 - Enlarge, reduce, save, load video image and image fragments
 - Combine video images, graphics and text
 - Full image processing including noise reduction filters
 - Save images, live off air
 - Animation
 - Zoom
 - Full function robot control through software
 - Auto I.D.

Now available to amateur market
Send check or money order, $599 per system to:
Torontel Technology Systems Ltd.
174 Bellamy Rd. North
Scarborough, Ontario
Canada M1J 2L5
416-292-9952
ever work a W10?

Prefix hunters should snap to attention at this one! But the bad news is that W10 prefixes were consigned to the scrap-heap shortly after World War II. The W10 prefix was a catch-all for mobile, experimental stations, and many of the calls were issued to expeditions who wished to keep in touch with home via Amateur Radio.

The most famous of these unusual calls was W10XDA, the ham-band call of the schooner Effie M. Morrissey, under Captain Robert Bartlett, a noted Arctic explorer. The Morrissey made numerous trips to Northern Greenland from 1936 through 1939, and the call was well-known on the 20-meter phone band.

The adventures of the Morrissey and Captain Bob had slipped to the back of my mind until I read an article about Ernestina, an 1894 schooner presently being restored at anchor in New Bedford. The author mentioned the Ernestina, an 1894 schooner presently being restored at anchor in New Bedford. The author further stated that this was formerly the famous Morrissey, which had not only explored the Arctic, but also served as an immigrant packet in the 1890s.

So Amateurs wishing to review some of their own history might visit this famous schooner, which once bore the proud call sign W10XDA that started a hundred pile-ups on 20 meters, so many decades ago.

more about the super-cathode driven amplifier

Judging from mail received, there is considerable interest in the cathode driven circuit and the super-cathode driven offspring. Here are some specifics on the 4-400A as used in that circuit (see fig. 1).

In conventional grounded grid service, a single 4-400A can run at 1 kW PEP input, requiring about 40 watts PEP drive power. While many Amateurs have operated one or two tubes in this fashion, with both grids grounded, the margin of error for excessive grid dissipation is small. In addition, grid and screen currents are quite high.

When the 4-400A is run in super-cathode driven service, grid and screen dissipation drop, along with the corresponding currents, and grid drive power rises. The circuit for a single 4-400A, in fact, may be adjusted to "soak up" the drive power of most modern hf SSB exciters, which usually run 100 to 130 watts output.

An experimental amplifier was constructed using a single 4-400A; the operating characteristics are summarized in table 1. Note the unusually high value of cathode input impedance.

The amount of drive required by the amplifier is determined by placement of the cathode tap. The nearer the tap is to the filament end of the choke, the greater the required drive. When the tap is at the "ground" end of the choke, the tube operates in the conventional grounded grid mode. For the typical 100-watt output exciter, the tap is placed about one-third of the distance down the choke from the tube end.

It is necessary to use a blocking capacitor between the tap point on the choke and the grid in order to prevent the ac filament voltage from reaching the grid. The dc grid return is then completed through a small rf choke.

In any case, total grid current (sum of grid and screen currents) should be limited to about 150 mA.

the tapped filament choke

A handy filament choke can be made by winding two equal lengths of wire on a ferrite rod. One wire is Formvar (or enamel) insulated, the other is...
The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut Verticals
Butternut's HF verticals use
highest-Q tuning
circuits (not lossy traps!) to outperform
all multiband designs of comparable size!

Model HF6V
* 80, 40, 30, 20 15 and 10 meters
* Designed for the low-band DXer
* Automatic bandswitching on 80 and
40 meters
* Add-on units for 160 and 30 or 20
meters
* 32 feet tall - may be top loaded for
additional bandwidth.

Model HF2V
* Add-on kit for 17 and 12 meters
available now.
* 26 ft. tall

For more information see your
dealer or write for a free brochure.

RETURN OF AN
OLD FAVORITE

AVAILABLE NOW!
$2.95 each — 3 for $6.95

Please enclose $3.50
Shipping and handling

Ham Radio's Bookstore
Greenville, NH 03048

7 MILLION TUBES
FREE CATALOG
Includes all Current, Obsolete, An-
tique, Hard-To-Find Receiving,
Broadcast, Industrial, Radio/TV
types. LOWEST PRICES, Major
Brands, In Stock.

UNITY Electronics Dept. H
P.O. Box 213
Elizabeth, NJ 07206

AMATEUR RADIO
LOG

station ___________________________
log book number ___________________
from __________________ to __________

Prepared by the New Radio Publishing Board

AUTHORIZED KENWOOD
I-COM RADIO DEALER

BLACK DACRON® POLYESTER
ANTENNA ROPE

* UV-PROTECTED
* HIGH ABRASION RESISTANCE
* REQUIRES NO EXPENSIVE
POTTING HEADS
* EASY TO TIE & UNTIE KNOTS
* EASY TO CUT WITH OUR HOT KNIFE
* SIZES: 3/32" 3/16" 5/16"
* SATISFIED CUSTOMERS DECLARE
EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON®
ROPE TO YOU * SEND YOUR NAME
AND ADDRESS AND WE'LL SEND YOU
FREE SAMPLES OF EACH SIZE AND
COMPLETE ORDERING INFORMATION

Authorized Kenwood I-Com Radio Dealer
203 Buckhannon Pike, Clarksburg, W. Va.

H. L. HEASTER INC., 203 Buckhannon Pike, Clarksburg, W. Va.
Phone: (304) 624-5485 or W. Va. Toll-Free 1-800-352-3177

G ARDENS, KABHK, 91 Ridgefield Place, Ormond
Beach, Fl, 32074 Florida Phone (804) 673-4066

NEW NATION-WIDE TOLL-FREE TELEPHONE 1-800-94-RADIO
1-800-94-72346

Call us for a quotation, WE WILL SAVE YOU MONEY!

BLACK DACRON® POLYESTER
ANTENNA ROPE

SIZES:
3/32" 3/16" 5/16"

SATISFIED CUSTOMERS DECLARE
EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON®
ROPE TO YOU — SEND YOUR NAME
AND ADDRESS AND WE’LL SEND YOU
FREE SAMPLES OF EACH SIZE AND
COMPLETE ORDERING INFORMATION

Authorized Kenwood I-Com Radio Dealer
203 Buckhannon Pike, Clarksburg, W. Va.

H. L. HEASTER INC., 203 Buckhannon Pike, Clarksburg, W. Va.
Phone: (304) 624-5485 or W. Va. Toll-Free 1-800-352-3177

G ARDENS, KABHK, 91 Ridgefield Place, Ormond
Beach, Fl, 32074 Florida Phone (804) 673-4066

NEW NATION-WIDE TOLL-FREE TELEPHONE 1-800-94-RADIO
1-800-94-72346

Call us for a quotation, WE WILL SAVE YOU MONEY!

BLACK DACRON® POLYESTER
ANTENNA ROPE

SIZES:
3/32" 3/16" 5/16"

SATISFIED CUSTOMERS DECLARE
EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON®
ROPE TO YOU — SEND YOUR NAME
AND ADDRESS AND WE’LL SEND YOU
FREE SAMPLES OF EACH SIZE AND
COMPLETE ORDERING INFORMATION

Authorized Kenwood I-Com Radio Dealer
203 Buckhannon Pike, Clarksburg, W. Va.

H. L. HEASTER INC., 203 Buckhannon Pike, Clarksburg, W. Va.
Phone: (304) 624-5485 or W. Va. Toll-Free 1-800-352-3177

G ARDENS, KABHK, 91 Ridgefield Place, Ormond
Beach, Fl, 32074 Florida Phone (804) 673-4066

NEW NATION-WIDE TOLL-FREE TELEPHONE 1-800-94-RADIO
1-800-94-72346

Call us for a quotation, WE WILL SAVE YOU MONEY!
Table 1. Suggested operating parameters for 4-400A in Super cathode driven service.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate voltage (key down)</td>
<td>3000 VDC</td>
</tr>
<tr>
<td>Plate current (carrier insertion)</td>
<td>333 mA</td>
</tr>
<tr>
<td>Power input (peak)</td>
<td>1000 W</td>
</tr>
<tr>
<td>Power output (measured)</td>
<td>600 W</td>
</tr>
<tr>
<td>Power drive</td>
<td>100-125 W</td>
</tr>
<tr>
<td>Plate load impedance</td>
<td>4100 ohms</td>
</tr>
<tr>
<td>Cathode input impedance</td>
<td>420 ohms</td>
</tr>
</tbody>
</table>

Drive power depends on tap setting on filament choke.

Note: The above data has been determined experimentally by Bill Orr, W6SAI, and does not represent the opinion of Varian/EIMAC.

bare, tinned. The tinned wire allows the experimenter to tap along the choke; the Formvar insulation on the other wire prevents the solder from flowing onto the adjacent turns and causing a short circuit.

The super-cathode driven amplifier tunes up in the conventional way. Plate voltage is applied and plate circuit resonance is established at a low drive level. Drive power should be checked with an in-line wattmeter in the coax lead to the amplifier. The tap tunes up in the conventional way.

Drive level. Drive power should be checked with an in-line wattmeter in the coax lead to the amplifier. The tap tunes up in the conventional way.

Warning! Keep your hands out of the circuit when the high voltage is on. After turning off the power supply, short the B-plus lead to ground in the amplifier with a plastic-handle screwdriver or other insulated tool to make sure the filter capacitors are discharged before you do any work on the amplifier. *High voltage is deadly!*

"stealth" technology — in police radar!

We've all read about the new stealth technology, by which a fighter plane is rendered "invisible" to radar. Well, science has taken another gigantic step. The September issue of Defense Electronics tells about an advertise-

ment in a leading auto magazine offering motorists the opportunity to elude police radar for only $17.95. According to the ad, the technique involved is the same as the one used to make U.S. aircraft invisible to enemy radar. A breakthrough in low-cost countermeasures? No. Just an aerosol can of silicone spray unconditionally guaranteed to deflect radar waves!

The editor of Defense Electronics tried telephoning the company, but the line was always busy. . . no doubt Washington was calling to learn about the benefits of this momentous idea.

Reminds me of the time I saw a big crowd of curious onlookers outside a shop in the golden days of CB radio. What could be causing the commotion? I stopped and found a fellow selling "SWR grease" from the back of his truck. Smear the grease on your mobile whip antenna, he told the onlookers, and your SWR will instantly drop to 1:1. I should have bought some and tried it on my three-element beam, but I had to finish paying off my purchase of the Brooklyn Bridge first.

how good is a rubber ducky?

The Lee DeForest Club (California) decided to make some meaningful measurements on typical handheld units in the 2-meter band. Willie Say-
er, WA6BAN, sent along the results of those tests, along with a description of the setup. The field strength measured at a distance was converted into antenna efficiency, taking into account the power output of the handheld. The winner of the event was KG6NL, who was using an AEA "Hot Rod" anten-
na, which exhibited an efficiency of about 57 percent. WA6BAN's hand-
held, with a conventional "Rubber Ducky" produced a reading that indi-
cated efficiency of only 7 percent. Other handhelds with comparable antennae were in the same ballpark.

rf light bulbs — a continuing problem

Light bulbs that actually generate RFI, causing interference to nearby ra-
dios, are on the market in quantity.
Sold under various brand names — GE’s “Miser Maxi-light” and North American Philips’ “SL-8” are two — they use less wattage to provide light and presumably last longer than conventional bulbs. Their threat to a-m radio (and possibly 160- and 80-meter Amateur operation) is in the way they generate light.

The rf light bulbs have an arc tube containing a metal vapor (mercury, in some cases) under pressure of several atmospheres. Instead of using ordinary line voltage to heat the arc tube, ac is converted to dc through a rectifier and then switched on and off to produce square waves at frequencies of 30 to 60 kHz. The square wave voltage heats the arc tube and the light stays lit. If the arc tubes cool below operating temperature while the lamp is in use, there is a restrike, and rf is generated again. Worst of all, as the lamp ages, restrike occurs more often. The square wave and higher harmonics raise havoc with nearby a-m radios, the interference level from a single bulb is of the same order as that of a light dimmer of the triac variety.

Because the rf bulb may come into widespread use, it is wise to see how the interference problem can be solved before the QRM factor becomes overwhelming.

The National Association of Broadcasters, concerned about the problem, conducted tests on the new bulbs, along with both inexpensive and expensive lamp dimmers. It was found that the more expensive dimmers had rf-suppression built in. Attenuated rf noise caused by their operation was about 8 dB for conducted measurements, and about 30 dB for radiated measurements.

The rf bulbs radiated about the same amount of noise as the inexpensive dimmers. The GE MaxiLight generated noise only during startup and restrike, which resulted in rapid bursts of noise. The Philips bulb, on the other hand, generated continuous noise.

The NAB and the FCC are discussing possible limitations on rf radiation from these devices. So far, nothing has been decided, and the best Amateurs can do is to make sure their receiving antennas are well removed from these rf pests. This is more easily said than done.

old coax never dies

How good is old coax? I had a 50-foot roll of coax in the garage unused since it was bought in 1944. Leaving it in its original coiled state, I shipped the coax back to Ron Stier, W9ICZ, at Belden Cable and asked him to check it, in his spare time, for attenuation. Was it contaminated? Had the rf loss increased over the decades? I pointed out that the cable had been protected from sunlight, but had been exposed to both high and low temperatures over the 42 years that had passed. He tested the cable, and this is what he found:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>W6SAI cable</th>
<th>New. Standard cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.8 dB</td>
<td>1.6 dB</td>
</tr>
<tr>
<td>100</td>
<td>2.0 dB</td>
<td>2.2 dB</td>
</tr>
<tr>
<td>200</td>
<td>4.0 dB</td>
<td>3.2 dB</td>
</tr>
<tr>
<td>400</td>
<td>6.5 dB</td>
<td>4.7 dB</td>
</tr>
<tr>
<td>1000</td>
<td>12.4 dB</td>
<td>8.9 dB</td>
</tr>
</tbody>
</table>

Ron pointed out that up to 200 MHz, any difference in attenuation may be attributed to minor differences in cable manufacture, and cable made to the old JAN specifications did not have design requirements above 400 MHz.

It looks, then, that continuing ham-talk about contaminating and non-contaminating jackets and coax cable life are not necessarily valid, if care is taken in the use and storage of cable. Operating old cable under harsh environmental conditions may be another matter. But coax cable used in a protected environment seems to last forever — at least at frequencies below 200 MHz.

reference
The Largest Satellite TVRO Seminar/Trade Show In The World!
Join SBCA/STTI In Las Vegas!

Bally's Las Vegas Hotel
Las Vegas, Nevada
March 2-3-4, 1987

★ Over 500 Exhibit Booths!
★ Major National Manufacturers!
★ Hundreds of Operating Antennas!
★ Satellite Seminar Training!
★ TVRO Programming! Marketing!
★ Sales Opportunities!
★ Fun In The World's Most Exciting City!

FOR DETAILS: Call STTI at 1-800-354-5279 or 702-367-1471 or Write STTI, 4270 S. Arvada, Suite 102, Las Vegas, Nevada 89118
I/O FOR REAL WORLD CONTROL

NOW ANY PERSONAL COMPUTER CAN HAVE THE MOST COST EFFECTIVE AND VERSATILE I/O BOARD ON THE MARKET TODAY!

- Serial Link Interface
 RS-232 or TTL
- 8 Relay Outputs. High Current AC/DC Form A & C
- 8 Opto-Isolated Inputs
 Plus 8 Bit Counter
- 8 Bit A/D with Span Adjust 0 to 5V.
 Provisions for up to 8 input Channels
- EASILY Programmed & Controlled
 Using BASIC Statements
- Perfect for Lab Work. Machine Control, Security Systems, & Data Acquisition
- Unprecedented Usability as Attested by University, Government & Industrial Users
- Complete Documentation
 with Software Examples & Total Engineering Support

$199.95 CALL OR WRITE FOR MORE INFORMATION

MODEL
CP/35A
SHOWN
WITHOUT COVER

Sias Engineering, Inc.
831 S. POWERS RD. / SALINA, KS 67401 / (913) 823-9209

HOW TO BE A HAM
3rd Edition

By W. Edmund Hood, W2FEZ

Great beginner's book—brand new and fully up-to-date. Assumes no prior knowledge of radio or electronics. Includes information on how to learn the Morse code, details Amateur license requirements from Novice through Extra with exam study guides, FCC syllabus, sample tests and other important information. Also contains helpful hints on how to set up your shack, what antennas to use, fundamentals of wave propagation plus much more. © 1986 3rd Edition 302 pages.

□ T-2653 Softbound $12.95

Please enclose $3.50 for shipping and handling

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band
 open 10 hours a day.

- Rag Chew With Rare DX Stations
 in an uncrowded, gentlemanly fashion.

- Popular Modes In Use:
 SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges
 open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
It Really Shouldn’t Be This Easy

Remember just a few years ago, how it took a roomful of equipment just to work RTTY. And if you wanted more than one mode it took a dedicated computer system costing thousands of dollars. The new AEA Pakratts are proving it doesn’t take lots of equipment or money to enjoy working all bands in five different modes.

First, A Good Idea

The idea behind the Pakratt is very simple. One controller that does Morse, Baudot, ASCII, AMTOR, and Packet, and works both HF and VHF bands. Of course the decoding, protocol, and signal processing software must be included in the unit, and connection to the computer and transceiver have to be easy. The unit also has to be small and require only 12 volts, so it will work both in the shack and on the road.

Second, Computer Compatible

It doesn’t matter what kind of computer you have, we have a Pakratt for you. The PK-64 works with the popular Commodore 64 or 128, and the PK-232 works with any other computer or terminal that has an RS-232 serial port. The PK-64 doesn’t require any additional programs. Simply connect to the computer and transceiver and you’re on the air. The PK-232 needs a terminal or modem program for your computer. The one you’re using with your telephone modem will work just fine.

Third, Performance and Features

The real measure of any data controller is what kind of on-air performance it gives. While the PK-64 and PK-232 use different types of modems, both give excellent performance on VHF. The optional HF modem of the PK-64 uses independent four-pole Chebyshev filters for both Mark and Space tones, and A.M. detection. The HF option can be factory or field installed.

The PK-232 uses an eight-pole bandpass filter followed by a limiter discriminator with automatic threshold correction. The internal modem automatically selects the filter parameters, CW FC = 800 Hz, BW = 200 Hz; HF FC = 2210 Hz, BW = 450 Hz; VHF FC = 1700 Hz, BW = 2600 Hz.

The PK-64 uses on screen indicators to show status, mode, and DCD (Data Carrier Detect) while the PK-232 uses front panel indicators. Both units use discriminator style tuning for HF operation. And that’s just the tip of the iceberg. Features like multiple connects on packet, hardware HDLC, CW speed tracking, and other standard AEA software features are included in both the PK-64 and PK-232.

Fourth, AEA Quality and Price

Not many manufacturers like to discuss quality and price at the same time. AEA thinks you want high quality and low price in any product you buy, so that’s what you get with the Pakratts. Ask any friend who owns AEA gear about our quality. The people who buy our products are our best salespeople. As for price, the PK-64 costs $219.95, or $319.95 with the HF option. The PK-64A, an enhanced software unit with a longer flexible computer cable, costs $269.95 or $369.95 with the HF option. The PK-232 costs $319.95 with the HF modem included. All prices are Amateur Net and available from your favorite amateur radio dealer. For more information contact your local dealer or AEA.

Prices and specifications subject to change without notice or obligation.

AEA
Advanced Electronic Applications, Inc.
P.O. Box C-2160, Lynnwood, WA 98036-0918
206-775-7373 Telex 6972496 AEA INTL UW

February 1987
No other repeaters or controllers match Mark 4 in capability and features. That’s why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-channel filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

here is the next generation Repeater

MARK 4CR

The only repeaters and controllers with REAL SPEECH!

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

NEMAL ELECTRONICS

HARDLINE — 50 OHM

CONNECTORS — MADE IN U.S.A.

Nemal No. Description Each
NE220 Type N for Belden 9913 4.25
NE223 N Female Belden 9913 4.75
PL258AM Amphenol Barrel 1.45
PL259 Standard Plug RGR 212 0.50
PL259A Amphenol PL259 0.50
PL259RA PL259 R ~IlS 0.50
PL259MA Amphenol PL259 0.50
PL259RA PL259 R ~IlS 0.50

COAXIAL CABLES

Nemal No. Description Per Ft.
1100 RG 8 95% Shielded Mil. Spec. 28.00
1102 RG 8 95% Shielded Foam 28.00
1110 RG 8 95% Shield (jacket) 28.00
1130 RG 223/U Mil. Spec. 95% Shield 38.00
1140 RG 224/U Mil. Spec. DBL Silver 150.00
1180 Belden 993 32 Gm 1.25
1705 RG 1429/U Teflon/Silver 140.00
1710 RG 171/U 5/5 50/50 DBL Silver 80.00
1740 RG 223/U Mil. Spec. DBL Silver 80.00
1450 RG 214 95% Shielded Mil. Spec. 12.00

ROTOR CABLE — 8 COND.

Nemal No. Description Per Ft.
BC1822 2/18 Ga. 622 Ga. 19.00
BC1620 2/16 Ga. 622 Ga. Heavy Duty 24.00

GROUND STRAP — BRAID

Nemal No. Description Per Ft.
GC08 3/16” Tinned Copper 40
GC12 1/2” Tinned Copper 40
GS16 3/16” Tinned Copper 35
GS16S 3/16” Silver Plate 35

GROUND WIRE — STRANDED

Nemal No. Description Per Ft.
HW06 4 Ga. Insulated stranded 35
the ubiquitous diode: part 1

If there’s one solid-state component that’s taken for granted and seemingly understood by all Amateurs, it’s the diode. However, in discussions with fellow Amateurs, it’s clear to me that although the basic concept of its operation is understood, its almost unlimited uses are rarely known.

For instance, when you mention diodes, most Amateurs think of power supplies, zeners, “idiot diodes” (if you don’t use them, you’re an idiot), detectors, and perhaps mixers. But there are many other types of diodes such as varactors, PIN, noise, Gunn, SRD, tunnel, LED, laser, photo, and so forth. These and other diode types are very important to VHF/UHF/microwave Amateurs.

This month’s column will be devoted to the electrical and mechanical properties of the different types of VHF/UHF and microwave diodes. Next month’s column will discuss specific applications using these diodes.

early solid-state diodes

The dictionary describes a diode as “a two-element electron tube or semiconductor through which current can pass in only one direction.” This definition, however, doesn’t mention anything about the diode’s forward or reverse voltage/current characteristics, or its resistance, current handling capacity, junction capacitance, or applications.

Solid-state diodes were first described in a paper by Braun in 1874. However, they weren’t used extensively until the days of the crystal radio sets to detect a-m from broadcast stations. This detection scheme — the process of changing rf to dc — is commonly referred to as rectification. Many years later, diodes were developed as low-voltage rectifiers for power supplies.

point contact diodes

Solid-state diodes are available in two major types, point contact and junction. Point contact diodes, the oldest solid-state type, date back to 1874 as noted above. They were the most common types used in the days of the crystal set.

The point contact diode is aptly named because in the early days it consisted of a piece of galena crystal (lead sulfide) or other suitable semiconductor material and a “cat’s whisker” or fine wire that came to a point and contacted the crystal as shown in fig. 1A. By properly adjusting the point of contact on the galena crystal, a semiconductor junction is formed.

Low efficiency and the need to constantly readjust the contact on the early point contact diodes led to a change to vacuum tubes in the mid-1920s. However, by the early 1940s, solid-state diode performance was improved by the use of other semiconductor materials with better purity as well as different contact materials.

Some of the improved materials included but were not limited to copper oxide, carborundum, and selenium. Later yet, higher-performance materials such as germanium, silicon, and gallium arsenide became available. Development of materials continues to this day.

The improved point contact diodes performed well for many decades. Probably two of the most famous packaged point contact diodes were the 1N21 and 1N34 types, which are still in widespread use today. However, point contact diodes usually have limited current handling capacity and are difficult to reproduce in large quantities at low cost. They also are very fragile both mechanically and electri-
ANTENNA POLARITY SWITCHER MODEL APS-1

The APS-1 is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis.

The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.

In addition to switchable outputs for two antennas, the APS-1 also contains a 6-13 volt regulated DC power supply. This feature is designed for powering items such as preamplifiers, VHF/UHF converters, etc., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

Power Requirement (AC) 117V ± 10% AC 50/60 Hz 15 Watt
Power Requirement (DC) 11-16 VDC 500 mA

Outputs Two 12 VDC unregulated, switched (antenna relay supply).
One 6-13 VDC variable regulated auxiliary supply.

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

P.O. BOX 1000 MORGAN HILL, CALIFORNIA 95037 (408) 779-7363

DESIGN EVOLUTION IN RF P.A.'s
Now with GaAs FET Preamp

- Linear (all model) RF power amp with automatic T/R switching (adjustable delay). Amplifier usable with drive powers as low as ½ watt.
- Receive preamp option, featuring GaAs FETs (lowest noise figure, better IMD). Device NF typically 5 dB.
- Thermal shutdown protection incorporated
- Remote control capability built-in
- Rugged components and construction provide for superior product quality and performance
- All models include a complete operating/service manual and carry a factory warranty on all components
- Designed to ICAS ratings, meets FCC part 97 regulations
- Approximate size is 2.8 x 5.8 x 10.5” and weight is 5 lbs.

Specifications/price subject to change

This publication is available in microform from University Microfilms International.

1. Models with G suffix have GaAs FET preamps. Non-G suffix units have no preamp.

SEND FOR FURTHER INFORMATION

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

□ Please send information about these titles:

Name ____________________________
Company/Institution ____________________________
Address ____________________________
City ____________________________ State _____ Zip ______
Phone ____________________________

Call toll free 800-521-3044. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail query to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
cally because the contact wire and junction are so small.

junction diodes

Fortunately an important technological breakthrough occurred when the Planar™ semiconductor manufacturing process was developed by Fairchild Semiconductor in the late 1950s. This patented process is now widely used to manufacture junction diodes, which offer both economy and repeatable electrical characteristics.

Most junction diodes are available in two geometries, planar and mesa. The typical planar geometry, shown in fig. 1B, resembles a flat plane. Note that the top of the diode is usually covered with a thermal oxide or overlay that adds some additional stray capacitance to the diode. This oxide is a result of passivation, a process meant to help seal the diode against external moisture and impurities.

The mesa geometry (fig. 1C), a variation of the planar type, was pioneered by Motorola, ostensibly to lower the capacitance across the junction of the diode. It supposedly takes its name from the geological mesa, a steep-sided hill with a flat top. I’ve also been told, however, that this geometry was named after the city where it was conceived — Mesa, Arizona — rather than from its apparent shape.

Usually less fragile than point contact types, junction diodes can be designed to have large current handling capacity. Many thousands of these diodes can be easily manufactured simultaneously on a single 2, 3 or 6-inch diameter semiconductor wafer and later divided into individual units.

Schottky diodes

By now you’re probably wondering why I haven’t mentioned the Schottky barrier or “hot carrier” diode. The reason is that it’s a more recent configuration that works on an entirely different principle than the previously mentioned diodes.

The diodes discussed so far operate on the principle of minority carrier current, where the actual junction of the diode is buried within the semiconductor material. The hot carrier diode works on the principle of majority carrier current, where the rectification takes place right at the junction of the two materials.

The hot carrier diode was first theorized in 1938 by W. Schottky, who described an idealized diode that would consist of metal contacts on a semiconductor material. The hot carrier diode as we know it today wasn’t produced commercially until the mid-1960s. It uses the planar process but a different metalization scheme (fig. 1D).

electrical parameters of solid-state diodes

Let’s first review some of the major characteristics of semiconductor diodes and the materials used to produce them. The most important electrical parameters of a semiconductor diode usually are forward voltage drop, reverse breakdown voltage, junction capacitance, and current handling capacity.

The forward voltage characteristic of a diode is a very important parameter. Often referred to as the “barrier” voltage or forward “knee,” forward voltage is the minimum voltage required for a specific current to flow in the diode. In point contact diodes, this barrier voltage can approach zero volts. But in junction diodes, the barrier voltage is primarily a function of the solid-state material and the resistance of the metal contacts used to form the diode.

semiconductor materials

The most common semiconductor materials presently used in the manufacturing of junction diodes are germanium, silicon, and gallium arsenide. Germanium has the lowest barrier voltage, typically 0.3 volts at 1 milliampere of forward current at room temperature. However, germanium has poor thermal stability, especially as temperature increases.

Silicon is surely the most common semiconductor diode material in use today. When used in junction diodes it has a medium barrier voltage of about 0.6 volts at 1 milliampere. Silicon is plentiful, inexpensive to produce, easy to use, has good cutoff frequencies (typically greater than 10 GHz), and reasonable thermal stability.

The use of gallium arsenide in diodes is more recent. It is often used in the microwave and millimeter-wave spectrum since it has a much higher mobility and hence a higher cutoff frequency than either germanium or silicon. Its barrier voltage is high, typically around 1.1 volts.

The barrier voltage of a hot carrier diode is influenced by the semiconductor material as well as by the metalization contact materials. By changing the contact metals to the semiconductor material, the barrier voltage can be altered.

Hot carrier diodes usually use either silicon or gallium arsenide for the semiconductor material. Silicon hot carrier diodes have a typical barrier voltage of 0.3 volts, about half that of a typical silicon junction diode. Furthermore, hot carrier diodes can now be made with almost no barrier voltage. These devices are usually used as detectors and are often referred to as “zero-biased Schottkys”.

For comparison, the typical low-level forward voltage versus current characteristics of point contact and junction diodes using germanium, silicon, and gallium arsenide are shown on the graph in fig. 2. Zero-biased as well as low, medium, and high barrier silicon hot carrier diodes are also shown.

Notice in fig. 2 that as the current increases, the forward voltage drop across the diode increases. This is true because as current increases, there is an additional voltage drop across the total series resistance, R_T.

This total resistance is the sum of the series resistance, R_S, and the junction resistance, R_J, of a diode. This is shown schematically in fig. 3 and in eqn. 1 below.

$$R_T = R_S + R_J$$

where R_T, R_S, and R_J are in ohms. R_S is primarily a function of the resistance
of the connecting wire and the metali-
ization resistance of the semiconduc-
tor material. \(R_J \) is a function of the
forward current in the diode junction
and can be approximated by:

\[
R_J = \frac{26}{I_T}
\]

(2)

where \(I_T \) is the total current in the
diode in milliamperes.

For instance, if the series resistance,
\(R_S \), of a diode is 5 ohms and the
forward current is 1.0 milliampere, the
total resistance of the diode, \(R_T \), will be
approximately 31 ohms. At 10 milliam-
peres of forward current, the total re-
sistance will drop to about 7.6 ohms.

\(R_T \) is very important since the
higher the series resistance, the higher
the voltage drop across the diode, and
the lower the efficiency (especially at
small signal levels). High series resis-
tance also means that more power will
be dissipated as heat in the diode.

It can be shown that to lower the
forward resistance and raise the cur-
rent handling capacity of a diode, the
area of the semiconductor material
must be increased. However, this
usually increases the junction capaci-
tance and hence decreases the max-
imum frequency of operation.

breakdown voltage

Reverse breakdown voltage is an-
other very important electrical param-
eter of a semiconductor diode. Typi-
cally speaking, at low reverse voltage
little (perhaps microamperes) or no re-
verse current flows through the diode.

Each diode has a specific reverse
breakdown voltage at which the junc-
tion avalanches and high current flows,
limited only by the resistance of the di-
ode itself and any external resistance
in series with the power source. If this
avalanche current is not sufficiently
limited, the diode will be destroyed
quickly.

The reverse breakdown voltage of a
diode is a function of the material and
the metallization. Figure 4 shows some
typical breakdown voltages versus
type of diodes. Generally speaking, it
is only a few volts on the point con-
tact and zero-biased hot carrier diodes
used for low-level signal detection. On
the other hand, power supply rectifi-
ers can have high reverse breakdown
into the hundreds of volts.

diode capacitance

One of the most important para-
eters for high frequency operation is
the total capacitance across the diode,
\(C_T \).

This capacitance is:

\[
C_T = C_J + C_O + C_P
\]

Referring to the equivalent circuit of a
diode in fig. 3, \(C_J \) is the junction ca-
pacitance, \(C_O \) is the overlay capaci-
tance (usually kept to a minimum, as
described earlier), and \(C_P \) is the capa-
tance due to the package (if any), all
in pF.

Package and overlay capacitance
are fixed quantities, but junction capa-
citance decreases to some nominal
value when the diode is reverse-
biased. For detector and mixer diodes,
this capacitance is usually measured at
zero volts or at some low reverse volt-
age — for example, 1 to 4 volts (de-
pending on the reverse breakdown
YOU ALREADY OWN 75% OF A
COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and
audio tape recorder, you already have 75% of what's
required to receive and send
color video world-wide!

Add a ROBOT™ Video Transceiver
and your station is complete.

Thousands of amateur video operators around the world are
exchanging beautiful color images every day. Whether your
favorite mode is SSB or FM or AM—direct, via repeater or
satellite—you can join in the high-tech fun without modifying your
present equipment. Just add a Robot to your station!

ROBOT RESEARCH, INC.
7591 Convoy Court
San Diego, California 92111
Phone (619) 579-9430

Please send me the following Robot equipment. I understand that if I am
disatisfied for any reason, I can return the unit and receive a full refund.

☐ 1900C high resolution video transceiver $1995
☐ 450C standard resolution $795
☐ 400C upgrade kit $395
☐ More Information

Name_________________________Call__________
Address__________________________
City_________________________Zip__________
☐ COD
☐ Enclosed check or money order $__________________________
☐ MC ☐ VISA #__________________________Exp. Date__________
KENWOOD TS-940S
TOP-OF-THE LINE HF TRANSCEIVER
GREAT PRICE, CALL

KENWOOD TR-2600A
SUPER SALE!
A few left at $269.95 plus free spare PB-26

US TOWER
MA-40
40 TUBULAR TOWER
SALE! $549
MA-550
55 TUBULAR TOWER
SALE! $899
- Handles 10 sq. ft. at 50 mph
- Pleases neighbors with tubular streamlined look

TX-455
55° FREESTANDING CRANK-UP
- Handles 18 sq. ft. at 50 mph
- No guying required
- Extra-strength Construction
- Can add raising and motor drive accessories
IN STOCK FOR QUICK DELIVERY OTHER MODELS AT GREAT PRICES

KENWOOD R-5000
High Performance Receiver
- Covers 100 kHz - 30 MHz in 30 bands
- Superior dynamic range
- Computer control option
LOW PRICE!

YAESU FT-727R
5w. Dual Band 2m/440 MHz
Enhanced Version Now Available!
GREAT PRICE!

HY-GAIN CRANKUP SALE!
Single Strength
(handles 9 sq. ft.)
HG37SS - 37° Tower
HG52SS - 52° Tower

Heavy Duty
(handles 16 sq. ft.)
HG54HD - 54° Tower
HG70HD - 70° Tower
- All steel
- Includes base & rotor plate
- No guying required
- Hot dip galvanized
- Accessories available
CALL FOR PRICE!

LUNAR
MODEL 2M30-100P
$219.95
From the Originator of the QUALITY VHF AMP/PREAMP COMBO!
Full Line Now Includes UHF Models with GaAs FET PREAMPS!

HAM RADIO HOME STUDY
NOVICE VOICE COURSE
- Updated novice voice questions
- 6 stereo code & theory cassette tapes
- 2 text books, code oscillator, key & battery
- Color Ham Bands wall chart & frequency list
- Sealed novice exam for a Ham friend to give you the code & theory test in your home
- FCC license application forms & instructions to your examiner. Ideal for spouse & the kids!
$49.95

Free Shipping

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046
Toll free including Hawaii. Phone Hrs. 7:00 am to 6:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store. California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

February 1987
Tell 'em you saw it in HAM RADIO!
NEW
POCKET SIZE
SIZE: 4” H x 3.5” W x 1” D
MADE IN USA

$99.95 - $150.00

OPTOelectronics inc
FREQUENCY COUNTERS
TO 1.3 GHZ

8 LED DIGITS • 2 GATE TIMES
ANODIZED ALUMINUM CABINET
INTERNAL NI-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY

AC-DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden “bug” transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams; CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

#1200HC Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions .. $99.95

#1200HKC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $137.50

#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger .. $150.00

ACCESSORIES:

#TA-100S Telescoping RF pick-up antenna with BNC connector .. $12.00

#P-100 Probe, direct connection 50 ohm, BNC connector .. $18.00

#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories .. $10.00

ORDER FACTORY DIRECT
1-800-327-5912

FLA (305) 771-2050

OPTOelectronics inc
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

AVAILABLE NOW!

Orders to US and Canada add 5% of total ($2 min., $10 max) Florida residents add 5% sales tax. COD fee $2.
voltage of the diode). The total capacitance of a typical UHF hot carrier diode versus bias voltage is shown in fig. 5.

The effect of the total capacitance on the operation of a diode can be envisioned intuitively. The greater the shunt capacitance, the more likely that the signal entering the diode will bypass the junction resistance, where it can offer the most rectification. Therefore the greater the total capacitance across the diode, the lower the maximum frequency of operation. The maximum frequency of operation versus junction capacitance for a typical hot carrier detector diode can be estimated based on the data shown in table 1.

tuning diodes

Capacitance in the junction of a diode is not always bad. If the semiconductor material is properly doped, a diode can be developed and used as a voltage-variable capacitor or tuning diode, which is often referred to as a "varactor" diode. Varactors are used in modulators, tuned filters, voltage-controlled oscillators, and frequency multipliers.

There are two major types of varactor diodes, abrupt and hyper-abrupt junction. In the abrupt junction type, the capacitance versus reverse voltage follows a logarithmic characteristic as shown in fig. 5.

Abrupt junction diodes are most often used where high Q and a moderate (i.e., 2:1 or 3:1) capacitance tuning ratio is acceptable. Most abrupt junction diodes are specified at a nominal capacitance with ~4.0 volts applied across the junction, a defined tuning ratio, and Q at a specified frequency. The Q of a diode increases as frequency and the capacitance decreases.

It is seldom desirable to operate a varactor diode with low reverse voltages (1.0 volts or less) since the diode may begin to rectify.

Hyper-abrupt junction diodes are most often used where very large (i.e., greater than 3:1) tuning ratios are required. Tuning ratios approaching 10:1 are possible. Hyper-abrupt varactors typically have lower reverse breakdown voltage specifications, are more sensitive to temperature variations, and usually have a lower Q than equivalent abrupt junction diodes. Furthermore, they are usually operated over a narrower tuning voltage range. For comparison, a typical hyper-abrupt tuning capacitance versus reverse voltage characteristic is shown in fig. 5.

diode packages

In extremely demanding applications, diodes are often used in chip form because this tends to lessen any parasitic elements in the operation of the diode. But this isn't always desirable, especially for Amateurs. Unpackaged diodes are small, fragile, and difficult to handle. Furthermore, they're often not hermetic, even when passivated.

As a result, most Amateurs prefer to use packaged diodes, which are not only easier to handle but also generally easy to remove or change if that becomes necessary. Therefore, it is very important that due consideration be given to the choice of the package.

One of the oldest semiconductor diode packages is the so-called 1N21 style, as mentioned above (fig. 6A). Polarity is usually marked on the package. In some versions, the diode package can actually be separated into two pieces and reversed if the opposite polarity is desired. This package is most often used for older and replacement point contact diodes.
HAVE YOU EVER SEEN A MILLENNIUM SEAL?

The Land Mobile Communication industry recognizes the open dipole base station antenna, with a direct feed to each element, as the most versatile and efficient gain antenna available. Why doesn't everyone use this type of antenna? The answer is obvious; DURABILITY. The antennas supplied by major manufacturers of Open Dipole Antennas to the communications market today, have one common fault. After a short period of time, contaminants leak into the cable harness junctions and destroy the performance of the antenna. Finally, the problem has been solved by Telewave's new MILLENNIUM-SEAL™. This space-age compound forms a permanent protective bond on the cable junctions that long outlasts all previous protective methods. Using our new MILLENNIUM-SEAL™ enhances the time proven design and by the application of our black epoxy coating over the anodized aluminum surface sets a new standard for the communications industry. Telewave is a full line supplier of all types of antenna systems, including end fed fiber glass, and yagi antennas. We also offer a full compliment of communications cables and connectors for land mobile and microwave that meet every installation requirement.
By far one of the most common diode packages used by Amateurs is the glass or plastic axial lead type (fig. 6B). The diode substrate is bonded to one lead of the package. The other package lead may be bonded by thermocompression to the other side of the diode lead if high reliability is required. Where economy is important, the second lead is usually attached to the diode with a whisker or pressure-type lead, which is often referred to as a “C” spring. This package usually has low shunt capacitance. However, it also has high (i.e., at least several nanohenries) series inductance shown as L_s in the diode equivalent circuit in fig. 3.

Another popular type of package is the microwave pill. Used where dissipation or extremely low inductance contact is required, it is shown in one form in fig. 6C. If heat is a real problem, the base of the package may be threaded as shown in fig. 6D.

Stripline pill type packages are also used (fig. 6E). In special situations, the beamlead diode is popular because it has the diode integrated into the leads as shown in fig. 6F. However, this type of diode mounting may also be difficult to handle because it’s so small and fragile.

The choice of the proper package for a microwave diode is very important. Hundreds of different diode packages are now in common use. Each one has its advantages and disadvantages. When cost is important, some compromise in performance may be justified. However, in applications where the ultimate in performance is required, the package will be costly and perhaps difficult to use.

Summary

In this month’s column we discussed the basic electrical and
mechanical properties of VHF/UHF and microwave solid-state diodes. Other less well-known properties must be understood before you can choose the appropriate diodes for specific applications; some of these properties will be discussed next month. Other types of diodes suitable for specific applications will also be discussed. See you next month!

new dx records

In last month's column we updated all the latest North American DX records. But as the January issue went to press, two more records were broken!

As predicted in that column, the 33-cm (903 MHz) record was further extended. On September 14, 1986, a Georgia VHF/UHF contest group signing WS4F/4, operating from Mount Toxaway, North Carolina (EM8SMN), worked W4OOW in Niceville, Florida (EM60SM). This extends the 33-cm tropo DX record to 377 miles (606 kilometers). Congratulations to all involved.

I have also just been informed that the North American 9-cm (3456 MHz) tropo DX record was also broken by a comfortable margin when WB5LSA/5 in Mena, Arkansas, worked WA5NY/5 in Fairy, Texas. I hope to include all the details on this contact in next month's column. Congratulations to Al and Rick!

Important VHF/UHF Events:
February 25: EME perigee
March 21: ±2 weeks. Optimum time for TE propagation
March 24: EME perigee

references

ham radio

SAY YOU SAW IT IN HAM RADIO
Yagi Antenna Design is based on the series in Ham Radio Magazine by the late Dr. James L. Lawson, W2PV. Jim was a highly competitive person and this carried through to his Amateur Radio hobby and work with antennas. Although this book is primarily the work of the author, credit should be given to its editors: Bill Myers, K1GQ; Clarke Greene, K1JX; and Mark Wilson, AA2Z. This ARRL publication stands to be a “classic” that should be added to every radio amateur’s technical library. The book is available only in hard cover, and is printed on high quality textbook paper. There are over 210 pages of detailed information on Yagi design. For more detail, refer to the column at right. The retail price is $15.00. Please add $2.50 ($3.50 for UPS) for postage and handling. Also available at your favorite ARRL dealer.

The American Radio Relay League, Inc.
225 Main St., Newington, CT 06111
Available Mid-January

YAGI-ANTENNA DESIGN by Dr. James L. Lawson, W2PV
testing components

A basic question often asked is how to test diodes. You can use an ohmmeter to measure the diode’s resistance in both directions. If the diode conducts current in only one direction, you’ll find — as expected — a large, seemingly infinite resistance when the ohmmeter probes reverse-bias the diode under test. When the probes forward-bias it, you’ll find a very low resistance.

For small signal diodes, use the X100 or X1000 scales of a VOM; for power supply rectifiers, use the X1 scale. Note the values obtained in both directions. The positive (the red lead, normally) should show low resistance; the second reading (with leads reversed) should be very much higher than the first.

What does “very much higher” mean? When I first started out as an apprentice technician in 1959, selenium rectifiers showed only a 2:1 ratio between forward and reverse resistances; 500-mA silicon rectifiers (which were all in “top-hat” packages in those days) showed 5:1 or so. Later, the 1N4xxx-series devices showed 10:1 or greater. Similarly, germanium small signal diodes (1N34, 1N60, etc.) showed 5:1 when good, while silicon devices (1N23, 1N914, 1N4148, etc.) showed 10:1. Modern varieties of these same diodes show 100:1, according to ohmmeter tests that I ran for this article. Keep the older values in mind, however, because “antique” diodes tend to show up in bargain packs, in older equipment under repair, and in hamfest “specials”.

testing SCRs

Although silicon controlled rectifiers (SCRs) can be tested with an ohmmeter in a similar manner, it’s first necessary to determine whether or not the gate of the SCR is capable of controlling the diode. Three questions must be asked. Will the gate turn on the device? Does the SCR act like a regular diode after turn-on? And does it turn off when the current drops below a certain value?

Note: this method works only on low-current SCRs; the ohmmeter current is less than the hold-on current of high-amperage SCR devices.

Because other (parallel) circuit resistances can affect results, testing diodes with an ohmmeter is done out of circuit. When troubleshooting, disconnect one end of the diode before attempting to test. In dc power supplies, there are good reasons to disconnect both ends of the diode under test. Stored charges, even in low-voltage circuits, can destroy the diode — or even the ohmmeter — in the event of a mistake. Considering the voltages present in high-voltage power supplies, it can also be dangerous.

VOM versus DMM

VOMs typically used a 1.5-volt battery in the ohmmeter circuit. Bench model vacuum tube voltmeters (VTVM) also used 1.5-volt batteries (or electronic power supplies in a very few models) for the ohmmeter, even though they were also powered from the 110-volt ac line. Be careful when using ancient VOM/VTVM instruments, by the way; some pre-1956 models used 22.5-volt batteries for the ohmmeter, and these instruments will blow every diode you try to test. Suspect this as the cause if you’re using an older instrument, or if every diode you test seems to be shorted (they are!).

Modern digital multimeters typically use low-voltage sources for the ohmmeter function. The voltage levels used won’t forward-bias the diode, so the diode will test open. Most instruments of recent design have a “high-power” ohmmeter function specifically for testing diodes. The high-power function will sometimes be marked, but in most instruments it’s
AVAILABLE NOW

THE 1987 ARRL HANDBOOK

The latest edition of the Ham’s bible has been updated with plenty of exciting new projects, new theory and information chapters and the latest in state-of-the-art technology. Check out these new features: Passive LC filter design including standard value capacitor tables, overview of 23cm FM fast scan tv weather satellites basics, a complete revision of the radio frequencies and transmission section (chapter 22) and satellite communications section (chapter 23). Some of the exciting new projects are: a new hf legal limit, all band amplifier using the 8877 tube, a dedicated CRT for Wefax image display and a new marker generator project for general use to name just a select few. Over 200 pages have been revised and updated. Great reference book that should be in every Ham’s shack. Order your’s today! Over 1100 pages. © 1986

ORDER YOURS NOW

Softbound $17.95
Hardbound $26.95

Please enclose $3.50 to cover shipping and handling

BOOKSTORE
Greenville, NH 03048
designated on the function switch with just a diode symbol. On a few instruments, a Hi/Lo Ohms switch is used for exactly the same purpose.

One reader wrote to ask why different meters give different readings in diode testing. This is because different meters use different voltage sources and have different internal circuit resistances. This same effect is seen when switching scales on the same ohmmeter.

matching diodes

Matched diodes are needed in a variety of circuits — for example, in ratio detectors, in discriminators and other FM demodulators, and in quadrature phase detectors, which are used, in instrumentation applications. With modern diodes and most circuits (note the caveats!), diode matching isn’t necessary unless you’re trying to squeeze every last little drop of performance out of the circuit. Some replacement part manufacturers offer matched pairs of 1N60 diodes for high fidelity FM tuners; in communications applications, diode matching is only rarely important.

If you feel you must match diodes, use an ohmmeter to measure the forward and reverse resistances of several diodes, selecting those with the closest resistance readings.

build a simple diode curve tracer

Figure 1 shows a method by which an oscilloscope can be used to trace the I vs. V curve of a PN junction diode. Transformer T1 is a low-voltage filament transformer. I used a 25.6-VAC, 300-mA model, but anything from 6.3 VAC to 26 VAC can be used. The high resistances, effectively in series with the diode under test, prevent burn-out. Figure 2 shows several oscilloscope traces under various conditions. Figure 2A shows the normal diode trace for a good 1N914; fig. 2B shows the trace for an open diode. Figure 2C shows a shorted diode, and fig. 2D, a very leaky diode (simulated by shunting 2.2 k across the 1N914).

additional notes on transistor substitution

In recent columns [September and October, 1986] we discussed transistor substitution. A reader from California reminded me of something I’d seen in repair shops a decade ago but forgotten. When dealing with older equipment, or with project circuits designed more than 20 years ago, be careful in making substitutions with modern devices. In fact, you can even run into problems with transistors of the same type number, but of modern manufacture. The problem is two-fold.

First, older transistors didn’t attain the frequency specs that modern transistors do. Even though recently manufactured units may have the same type number, they’ll now have a much higher frequency response. This situation is especially likely when using a substitute from a replacement line, where the original type is no longer available but a “better” substitute is offered. Years ago, circuit designers didn’t have to worry as much about layout and stabilization because the transistor was self-limiting. At frequencies where oscillation could occur with a high-frequency device, the gain was too low to support Barkhausen’s criteria for oscillation; that isn’t the case today. If a high-frequency transistor is substituted for an older device, it might oscillate.

Second, the C-E, C-B and B-E leakage resistances were much worse in older devices, and designers had to compensate for these parallel resistances in the circuits. As a result, a circuit that is properly biased using older devices is not properly biased for the modern replacement. In the late 1960s I worked in a car radio shop after engineering school every day. I once...
Dual Remote Base (H.F. and V.H.F.)

Autopatch and Repeater Controller

10 H.F. Memory channels/enter or recall

Programable CW or voice ID and courtesy beep

Automatic USB/LSB/FM mode select

Scan up/down, fast/slow, or 100hz steps

Control CS-8 relay/latch option with master reset & status announcement

All control inputs are voice confirmed including frequency, mode, scan status, time, outputs on/off autopatch audible ring/page in all modes

System Options

- 6 Relay control (CS-8) @ 79.95
- 3 DPTA delays, 5 pin collector outputs
- user defined 2 letter function name
- on/off position user defined
- automatic PTT fan/blower control line enables
- Optional CMOS auto-boot 72k EPROM Cartridge programmed with your parameters @ 199.95
- CP1 keypad controller for VHF remote @ 149.95

model C564S-$349.95 (wired and tested)

includes computer interface, disc, cable & manual, duplex & simplex versions are supplied

Cardstock/VISA/Check/M.O./COD

Engineering Consulting
583 Candlewood St.
Brea, Ca. 92621
tel: 714-671-2009

Audio Blaster Module
IC-02AT/IC-04AT/IC-2AT
Module installs inside the radio in 15 min. Boost audio to let your low standby drain/Corrects low audio of happy users (Works in other H.T.'s too)

12V
Model: A81 -$19.95

Touchtone 4 Digit Decoder & on/off latch 50,000 combinations

Remote Keypad Rows & Columns Controller Plus 2 digit decoders (on/off/All) control frequency of any keypad entry radio such as the Kenwood 7950/2530/IC04-AT. Easy to install in series with keypad/Use with ComShack 64 as a free controller or with Pro Search controller control box A versatile board for all remote control applications. The latches may be used for on/off or momentary.

"REMOTE-A-PAD" $149.95

Touchtone Decoder Kit
H917 Tallyn 5 10v 21.5ma
(SSI-201 compatible)/Inc. 3.58 MHz Crystal, 22 pin socket, Data Sheet. Sample circuits, decoder specs, all 16 touchones, BCD/HEX

No filters req $22.95

Super ComShack 64

Repeater Controller/Dual Remote/Autopatch

Dual Remote Base

2nd Remote or Link

Relay option

The Super ComShack has features never before available & the cost is so low!!!

CODE PRACTICE GENERATOR WITH GOOD TOUCHTONE INCLUDED! TURN IT ON WITH YOUR ACCESS CODE!

Super Repeater Controller

- Remotely programable with Touchtones change up to 9 sets of access codes & parameters from H.T.
- Synthesized speech consisting of high quality male or female digitized human voice
- Dual Remote base (H.F. and V.H.F.)
- Autopatch and Repeater Controller
- Programable CW or voice 10 andcourtesy beep
- Automatic voice clock & activity timers
- Multiple commands can be executed at once (up to 16 digits per command string)
- Sub-audible tone compatible
- Alarm clock & auto-execute command string!
- Optional cartridge eliminates disk drive!

Special Club Features

- Generates random code practice @ any speed with voice repeat back in 20 random code groups!
- Set CW speed & pitch from your H.T.
- $5 Touchone defined voice 10 dial messages!

Autopatch Specifications

- 300 Touchone loadable Autodial numbers plus 10 Emergency Autodial (Quick access)
- 300 Reverse patch call signs loaded from your H.T./general or directed or directed paging modes
- Immediate caller receives voice message & may select the first to third digit codes
- Phone number memory feedback
- Toll restrict-loading 1/0 and 3 digit prefix
- Full or half duplex (repeat on/off)
- Storage of MSG/255 integers
- Call waiting letting switches to second phone line
- Touchtones are re-generated to the last speed/dial mode
- Ring detected while in all remote modes
- Last number redial memory
- Single digit resets autopatch to dial tone

short circuit

vhf/uhf world

The following text should accompany fig. 3 of W1JR's December, 1986, column: The boom is 1-inch square tubing with 0.062-inch wall. One-inch diameter round tubing may be directly substituted, as discussed in the text, though with decreased mechanical strength. The boom should be supported as discussed. All elements are made from 3/16-inch diameter aluminum rod and pass through the boom with insulated shoulder washers and keepers as described. The ends of all elements should be bevelled approximately 1/32 inch. The length of the driven element and/or the spacings and lengths of the T-match are not critical and may have to be modified slightly to obtain a low (1.2:1 maximum) VSWR.

Figure 3 should include the following note in the second part of the figure: Note 3: The UG21 connector is attached to the boom with an L-shaped aluminum plate approximately 1.5 by 7/16 inch. Drill out two of the UG27 connector holes with a 0.142-inch diameter drill. Prepare a 1/8" dia. balun made from an 11-inch piece of 0.741-inch diameter, 50-ohm semirigid coax with 3/8 inch of the outer tubing stripped off each end and 1/4 inch of PTFE removed for connection to the T-match. Bend the coax in a "U" shape and pass the two ends through the two drilled-out holes in the UG21 connector. Solder the coax on both sides where it passes through the connector.
XEROX® COMPUTER FOR BUSINESS, AND PERSONAL USE!

XEROX®...The Name You Can Trust!
Since 1906 Xerox® has been the world leader in office automation and copying equipment. They have set standards that others can only imitate. The Xerox® 6064 Personal Computer was designed to meet the demands of business, professional, and personal computing today, and into the future! We are proud to offer this complete Xerox® System at a remarkably LOW price. Compare for yourself...then buy your Xerox® 6064 from C.O.M.B.!

Get the Xerox® Advantage! The Xerox® PC offers you the advantage of running IBM® compatible MS™-DOS, so you can run the hundreds of business and professional software programs available today! And the Xerox® PC is easy to use! It's designed to get you up and running as quickly as possible with computer-aided instruction and superior documentation covering all aspects of personal computing.

Xerox®...Service You Can Count On! If you're considering an IBM™-compatible, don't be misled by price alone! The system we are offering is a complete system...very easy to hook up and use...and very affordable. But more than that, each system we sell is backed by Xerox® service and support. When you buy this system, your name and computer's serial number is automatically registered with Xerox®. Should you need service or advice, a network of over 150 service centers stands ready to help you. Before you buy...compare! Xerox® is your best value! Check all these features:

- IBM™-PC Compatibility.
- Standard 83-Key PC Keyboard with Mouse Interface (Mouse Not Included.)
- High-Resolution Monochrome Monitor, with 10" Diagonal Non-Glare Screen, Swivel and Tilt Housing.
- Two 5 1/4" Floppy Disk Drives.
- 256KB Memory. 8MHz Intel 8086-2 Microprocessor for Faster Speed, Less Waiting Time.
- Seven Expansion Slots, Serial Port for Communications or Printer, and Parallel Printer Port.
- Comes with ScreenMate™, a User Friendly Guide to the Functions of the MS™-DOS Operating System.
- Menu Driven...No Need to Remember Complicated Commands! ScreenMate™

Over 150 Service Centers Nationally.
Manufacturer's Limited 90-Day Warranty on Parts/Labor.

List Price $2764.80
Liquidation Priced At Only $999

Credit Card customers can order by phone, 24 hrs. a day, 7 days a week.

SEND TO:
C.O.M.B. Direct Marketing Corp.
1405 Xenium Lane N/Minneapolis, MN 55441-4494
Send the items indicated at left, (Minnesota residents add 6% sales tax. Sorry, no C.O.D.)
Charge: ☐ VISA* ☐ MasterCard* ☐ Discover ☐ American Express*

Acct. No. Exp./

SEND ME THE ITEMS I HAVE LISTED BELOW
Sales outside 48 contiguous states are subject to special conditions. Please call or write to inquire.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Qty.</th>
<th>Item</th>
<th>Price</th>
<th>S/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL (Products plus shipping, handling)

Authorized Liquidator

Authorized
COMB

Authorized
COMB
For Computerists and Amateur Radio

Your Number One Source of PACKET Information

Why you Should Subscribe!

Read what our subscribers say!

- Your magazine is the finest innovation that I have seen in ham radio since 1953 - except... maybe the all-solid state transceiver. Carl Soltetz • Twelve more, please. Ed Shaughnessy • Love the articles on Timex-Sinclair computers. A. Neuwenhoff, Sutton, MA • ...have most certainly received my moneys worth in software... Michael Regan, K8WVB • ...information contained in the articles has made me more "computer literate" than would have been possible reading only publications dedicated to my particular computer. Donald H. Halsccher, W6MRR, Martinsburg, WV • Here it is renewal time already -- time sure passes fast when you are having fun (reading CTM). Bob Streikis, Holly Hill, FL • ...thank your for a great magazine. Frank Davis, Peru, IN • Another year goes by and another subscription dollar well spent. R. P. Campbell, LaPlace, LA • CTM and you have found the way to an advertisers heart. Quality of publication and reasonable advertising rates are basic criteria you have achieved better than your competition. But what really sets you apart from others is empathy, a tasteful quality in which you excell while others can't even pronounce the word. Bob Harris Sr., BCD Electra, Richardson, TX • ...you have found a nice niche for CTM in packet... you have me getting interested... Charlie Currie, ADF Chattanooga, TN • The packet/computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homely style of your magazine and the many fine computer articles. Andy Kosiorck, Lakewood, OH • I was both pleased and dismayed upon becoming acquainted with your magazine at HAM-COM. Pleased that I discovered your magazine - dismayed that I didn't long before now. Bill Lathan, AK5K • ...CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet/amateur radio articles and computer articles. Barry Siegfried, K2SB • Thank you for an excellent magazine, and the only magazine I read over 75% of. W. F. Pence Jr. • ...your publication is the most enjoyable computer magazine on the market. Andrew Zerbe • Congratulations on your informative magazine. Looking forward to each issue. Curt & Nancy Jones, Kodiak, AK • ...received my moneys worth with just one issue... I. Tenbick • always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination... Fred Bleichman, KG6GT • (a year later) thought you would like to know, it still goes... Fred Bleichman, KG6GT • Of the three HAM magazines I received each month QST, 73 and CTM, CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, KA1BT •

<table>
<thead>
<tr>
<th>U.S.A.</th>
<th>1 Yr</th>
<th>$18.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico & Canada</td>
<td>1 Yr</td>
<td>$32.00</td>
</tr>
<tr>
<td>All Other Countries</td>
<td>1 Yr</td>
<td>$68.00</td>
</tr>
<tr>
<td>(Air)</td>
<td></td>
<td>$43.00</td>
</tr>
<tr>
<td>(Surface)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. $ FUNDS ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent U.S. Subscription</td>
</tr>
<tr>
<td>Sample Copy</td>
</tr>
</tbody>
</table>

Cut out and mail coupon at right to:

Circulation Manager
1704 Sam Drive
Birmingham, AL 35235
(205) 854-0271
The Pac-Comm DR-100 and DR-200 are packet radio digipeater controllers which have been especially designed for dedicated repeater service. The DR-100 provides single-port controller capability at low cost. It is well-suited to any application where a single-frequency digipeater is required.

The DR-200 is a dual-port controller, capable of digipeating on two separate frequencies and able to switch packets between ports. It is a basic network building block.

SOFTWARE OPTIONS

DR-100 Single-Port Software
- AX.25 Level 3 Switch
- AX.25 Level 2 Digipeater

DR-200 Dual-Port Software
- AX.25 Level 3 Switch
- KE3Z Dual-Port Digipeater
- Southern California Dual-Port
- Internet Protocol (TCP/IP)

Amateur Net Price Schedule

<table>
<thead>
<tr>
<th>Product</th>
<th>Kit</th>
<th>Assembled</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR-100</td>
<td>$84.95</td>
<td>$99.95</td>
</tr>
<tr>
<td>DR-200</td>
<td>$139.95</td>
<td>$159.95</td>
</tr>
</tbody>
</table>

Both digipeaters use a Z-80 processor which has up to 32k bytes of EPROM and two JEDEC sockets for 2/8/16/32k bytes of battery-backed RAM. Packet HDLC operations are handled in hardware by a Zilog 8530 SCC. Both use the AMD 7910 LSI modem chip. Each modem channel has a standard disconnect header and time-out timer. The CPU itself has a hardware watchdog timer and external hard reset line. The circuit board is RFI shielded by our extruded aluminum case. All connections are soldered to feedthroughs.

Write For Free Packet Catalog.

Pac-Comm Packet Radio Systems, 3652 West Cypress St., Tampa, FL 33607

1987 CALLBOOKS NOW AVAILABLE

The 1987 CALLBOOKS are in! Place your order now so you can get full use out of your valuable investment. All the latest names, callsigns and addresses make these two books invaluable operating aids.

NORTH AMERICAN CALLBOOK
Fully updated with all the latest up-to-date call-signs and addresses for all North American Hams. Includes handy operating aids such as; time charts, QSL bureaus, census information and much more. With calls from Panama to Greenland, every ham should have one in their shack. © 1986.

INTERNATIONAL CALLBOOK
Callsigns and addresses for all Amateur Radio operators outside of the North American continent. Invaluable aid to getting QSL cards from foreign DX'ers. Includes plenty of extra information too! Universally recognized as the source of QSL information. © 1986.

Order Both and SAVE. SPECIAL PRICE
Reg. Price $49.95 $44.95

Order NOW.

February 1987
mic multiplier chains for the 902-MHz band

Doublers with gain and simple filters produce reliable results

It's possible to design a simple frequency multiplier chain for UHF and microwave transceiving converters using stable and easily reproduced silicon MMIC (Microwave Monolithic Integrated Circuit) amplifier blocks. In this article, I'll first discuss the use of MMIC amplifiers as multipliers, then describe a specific application — a local oscillator for the 902-MHz band.

MMIC multipliers have gain

The key to the design of this multiplier chain was the realization that silicon MMIC amplifiers not only make good active multiplier stages, but can also provide gain — i.e., the harmonic output power level can be greater than the fundamental input power. MMIC amplifiers offer several advantages over more conventional active multipliers. First, MMIC amplifier “building blocks” are internally matched and unconditionally stable, so there's no need to worry about pulling them into spurious oscillation modes, as can happen when a discrete transistor multiplier is tuned with external networks. MMIC amplifiers are small and inexpensive, too, and consequently attractive for multiple use. Unfortunately, they require a fair amount of dc power to operate.

Initial tests

The Avantek MSA 03 MMIC was tested for use as a multiplier. It was biased normally and an input signal at 0 dBm was applied. The second harmonic, viewed on a spectrum analyzer, was typically 10 to 15 dB below the fundamental output. Since the gain of the MSA 03 is about 12 to 14 dB, the second harmonic is about equal in power to the drive signal. This suggests that to build an active doubler with this MMIC, all that's required is a filter to reject the fundamental output and enhance the desired second harmonic.

Higher order multiplication has disadvantages

Of course it's possible to multiply by a number other than two. Triplers and even quadruplers aren't uncommon in transistor multiplier circuits. However, there are a couple of factors that led me to use only doublers. First, the gain of a multiplier falls off as the multiplication factor is increased. As discussed before, to get unity or greater gain with an MMIC multiplier, a doubler is most effective. Second, the filtering is simplified when doubling, since the undesired products are 50 percent away from the desired passband. This ratio decreases for higher order multiplication, to 33 percent in a ×3 multiplier and down to 25 percent for a quadrupler. As the fractional bandwidth between desired and undesired products narrows, the filter complexity increases to maintain a given amount of rejection. In the interest of keeping the filtering simple and easy to tune, I elected to go to the higher number of stages needed for doublers and pay the price in increased power consumption. This approach worked, since the multiplier chain proved easy to tune and results were repeatable. No undesired spurious oscillations were encountered at any time during the development of these MMIC multiplier stages.

Filters are needed

Filters are the key elements in the multiplier chain. Each MMIC stage must be followed by a filter to remove the fundamental while at the same time passing the desired second harmonic. Much of the justification for using doublers was to permit the use of simple, easily tuned filters.

At lower frequencies it's easy to build filters using lumped circuit techniques and designs provided in the

By Jerry Hinshaw, N6JH, 142 Kensington Place, Frederick, Maryland 21701

*For example, when doubling 100 MHz to 200, the nearest undesired products are the fundamental (X1) at 100 MHz and the third harmonic at 300 MHz. Each is separated by 50 percent from the desired 200-MHz output. Similarly, when tripling 100 to 300, the undesired X2 and X4 products are 100 MHz away, or 33 percent of the 300-MHz center frequency.
As one approaches UHF, it becomes more difficult to control the stray capacitances and inductances, and individual components themselves resonate in undesired ways. At this point, it’s good to change over to another type of filter, one that’s more appropriate to UHF work. It would be nice if such filters were also simple, easy to tune, and fit in well with the other circuitry.

The two higher-frequency bandpass filters were designed using printed inductors (printed coupled microstrip transmission lines). This was done for several reasons. First, at higher UHF frequencies, pure inductances in lumped element filters are smaller and more difficult to make, while the printed coupled lines are easier to construct. In addition, once the coupled lines are designed and printed on the circuit board, they have known, stable characteristics.

These filters are the equivalent of the familiar comb-line bandpass filters often encountered in microwave work. The difference is that here the usual air-dielectric resonator rods have been replaced by a microstrip version. The two lines, shorted to ground at one end, and capacitively loaded at the far end, are coupled by the electric fields both in the dielectric substrate and in the air above the microstrip lines. Here, the substrate is the usual Amateur microwave printed circuit board material, G-10. The coupling between the lines depends mainly upon their width, the spacing between them, and their lengths.*

A number of references contain graphical aids to the design of coupled line pairs, and earlier articles describing the use of similar structures have appeared in the Amateur literature. Several CAD programs including models for coupled lines on microstrip are available; I used such a program to optimize the design of the two filters incorporated in this multiplier. The mechanical details of the filters are given in the PC layout (fig. 3).

The characteristics of these filters include good low-frequency response, with no undesired passband below the center frequency. They also offer good high-frequency response up to approximately three times the center frequency. Near the third harmonic, the rods are again quasi-resonant, and there is a second, undesired passband. However, in a multiplier, this band is at approximately the sixth harmonic of the doubler’s input signal, and it has generally not caused any problems because the sixth harmonic is quite low in power.

These coupled microstrip filters are also easy to tune to their center frequency because their response is fairly broad. The microstrip lines, once printed on the substrate, are, of course, unadjustable, so that only the two trimmer capacitors have to be tuned. Fixing the inductors by printing them on the board has its advantages: fixed-tuned inductors need not be blindly tuned, and it’s easier to avoid tuning to the wrong harmonic when the tuning range is restricted.

The other main ingredient in this type of multiplier is the active stages. Here, they are MMIC amplifiers, silicon integrated circuits designed to provide very wideband gain. Packaged in small, transistor-like plastic housings, they contain almost all of the biasing and matching circuitry for a complete rf amplifier. Devices from Avantek have been described in a number of publications recently. In addition, a new, even lower-cost entry into the MMIC field has been announced by Mini-Circuits Labs. Other manufacturers will undoubtedly announce silicon MMICs of their own soon. Most of these amplifiers are suited for multiplier use if they’re driven to near saturation. All are unconditionally stable, which is a great aid to the design of a multiplier gain stage with a reactive filter terminating the output. The multiplier described below uses Avantek amplifier MMICs, but other similar devices could probably work as well.

A local oscillator circuit

A multiplier based on MMIC gain blocks represented an easy and repeatable design approach to 902-MHz band operation. I wanted to build a converter that would translate this band down to the 144-MHz band so that I could use my 2-meter transceiver; doing this would call for a local oscillator operating at approximately 758 MHz. A local oscillator (LO) 144 MHz above the operating frequency would also be possible, but that would invert the sidebands in an SSB system, and otherwise offer no particular advantages.

The choice of exact LO frequency is worth a moment of thought, as many UHF operators have discovered (the hard way) in the past. It’s best not to choose an LO frequency that will produce undesired responses at the i-f. Here, we must avoid a local oscillator frequency whose harmonics fall in-band either on the 2-meter i-f or within the 902-MHz band. A second possible problem can occur when there’s a strong signal at the i-f from external sources — for example, if the i-f is 144.2 MHz when operating on the suggested calling frequency of 903.1, there will be problems with i-f feedthrough of strong signals on 144.2. These signals leak around the converter and appear on top of the real signals downconverted from the 902-MHz band. It can be difficult to shield the i-f sufficiently to avoid this entirely, so it’s prudent to pick a less congested frequency for the i-f. In my area, 144.5 is usually quiet. So, for my example, the LO was designed at 903.1 – 144.5 = 758.6 MHz.

Because I wanted to use only doublers in the multiplier chain, the choice of multiplication factors was restricted to powers of 2, with 4, 8, or 16 the most

*for a given substrate material and thickness.
The TNC-220 is a new, low-cost Packet Terminal Node Controller evolved from the Pac-Comm TNC-200 (TAPR TNC-2). It uses more large scale integrated circuits and fewer components to provide greater functionality, reliability and sensitivity with reduced size and cost. The single chip modem used for both 300 baud HF and 1200 baud VHF operation has two radio ports. Switching between ports is done entirely in software and no cable changing, no switch setting and no retuning is required! The HF port has an active bandpass filter and provides either FSK or AFSK keying. An optional tuning indicator slides inside the cabinet. A standard modem disconnect header will connect accessory high-speed or satellite modems.

- Two radio ports
- 7910 single-chip modem
- 300 and 1200 bauds
- Enhanced command set
- Multi-color status LED's
- Supports RS-232 and TTL computers
- Active HF bandpass filter
- Tuning indicator option
- 12 volt DC operation
- Premium quality case
- 6" w x 2" h x 7" d

The TNC-220 has the familiar TAPR command set and AX.25 Level 2 Version 2 protocol running on a Z-80 processor with 32k bytes of EPROM and 16k bytes of battery-backed RAM. A Zilog Z8530 SCC performs all packet HDLC in hardware. The terminal port can select either RS-232 or TTL for your C-64/128, VIC-20 or other TTL computer. Five large, color-coded LED's clearly indicate status at a glance. The power switch is now located on the front panel. The TNC-220 is enclosed in a rugged extruded aluminum cabinet with an attractive two-tone blue front panel. All indicators and controls have large, clear labels.

Tech Line (813) 874-2980
Write For Free Packet Catalog

ORDER DIRECT 800-223-3511 FREE UPS BROWN
Pac-Comm Packet Radio Systems, 3652 West Cypress St., Tampa, FL 33607

HF
VHF Terminal Node Controller

$124.95
KIT

$159.95
ASSEMBLED

Pac-Comm TNC-220

NEW!
758.6 MHz, is further amplified after filtering to produce a power level sufficient to drive a standard-level double-balanced mixer.

The first bandpass filter, centered at 189 MHz, consists of two series-resonant sections and a single capacitive shunt element. The series sections use air-wound coils. I've long found inductors of this type reasonable choices. However, if the total multiplication were only 4, the crystal operating frequency would have to be approximately 188 MHz. Such crystals are available, but they're neither common nor economical. Three doublers in series gives a multiplication of 8 and calls for an input of about 94 MHz, which is a readily available frequency in common series-resonant, fifth overtone crystals. Four doublers would yield a X16 output, with a crystal at 47 MHz, but there appears to be no reason to go beyond an X8 stage. I ordered a crystal for

$$\frac{758.6}{8} = 94.825000 \text{ MHz}$$

The block diagram of this LO chain is shown in fig. 1. The crystal oscillator's (approximate) 94-MHz output is buffered and amplified by an MMIC stage, which drives a lumped element bandpass filter centered on 189 MHz. (See schematic of MMIC multiplier chain in fig. 2.) This filter presents a good VSWR at its center frequency, but a very poor match at the oscillator's fundamental operating frequency. The fundamental output of the amplifier is reflected back into the MMIC, where it has a second chance to contribute to second harmonic output.*

Though the next two multiplier stages are similar in design, they differ mainly in that their bandpass filters use coupled microstriplines rather than lumped elements. At each stage, there's an MMIC amplifier driving a bandpass filter tuned to the second harmonic of the MMIC's input frequency. The final output, at

* I have no idea if such conversion is significant; however, it would be interesting to experiment.

The block diagram of the LO chain is shown in fig. 1. The crystal oscillator's (approximate) 94-MHz output is buffered and amplified by an MMIC stage, which drives a lumped element bandpass filter centered on 189 MHz. (See schematic of MMIC multiplier chain in fig. 2.) This filter presents a good VSWR at its center frequency, but a very poor match at the oscillator's fundamental operating frequency. The fundamental output of the amplifier is reflected back into the MMIC, where it has a second chance to contribute to second harmonic output.*

Though the next two multiplier stages are similar in design, they differ mainly in that their bandpass filters use coupled microstriplines rather than lumped elements. At each stage, there's an MMIC amplifier driving a bandpass filter tuned to the second harmonic of the MMIC's input frequency. The final output, at

* I have no idea if such conversion is significant; however, it would be interesting to experiment.

Parts list for the multiplier.

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR1-4</td>
<td>Avantek MSA0304 MMIC Amplifier</td>
</tr>
<tr>
<td>C1,6,7,15,17,19,21</td>
<td>0.01 μF ceramic disc capacitors</td>
</tr>
<tr>
<td>C2</td>
<td>1.7 pF nominal 0.8-8pF</td>
</tr>
<tr>
<td>C5</td>
<td>1.7 pF trimmer capacitor</td>
</tr>
<tr>
<td>C11</td>
<td>3.9 pF nominal 0.8-8pF</td>
</tr>
<tr>
<td>C12</td>
<td>3.9 pF trimmer capacitor</td>
</tr>
<tr>
<td>C3</td>
<td>10 pF ceramic capacitor</td>
</tr>
<tr>
<td>C4</td>
<td>2-8 pF trimmer capacitor</td>
</tr>
<tr>
<td>C8</td>
<td>10 pF nominal 4-20 pF</td>
</tr>
<tr>
<td>C9</td>
<td>10 pF trimmer capacitor</td>
</tr>
<tr>
<td>C10,13,14</td>
<td>33 pF chip capacitor</td>
</tr>
<tr>
<td>C16,18,20,22</td>
<td>0.01 μF (non-critical value)</td>
</tr>
<tr>
<td>CR1</td>
<td>Silicon rectifier diode</td>
</tr>
<tr>
<td>1N4002 or equivalent</td>
<td></td>
</tr>
</tbody>
</table>

L1, L2	16-1/2 turns No. 24 AWG, 0.3 μH. Bare wire wound in threads of nylon 6-32 screw.
L7,8,9,10	10 to 15 turns No. 30 AWG Kynar insulated wire-wrap; Wire close-wound on No. 60 drill.
R1-4	200 ohm, 1/4-watt carbon composition
hard to predict, mainly because of the difficulty in winding the coil to the design's dimensions. For this reason, I wound the coils on a form — a nylon screw. The No. 24 wire lies in the threads neatly and evenly, so that the predicted coil spacing is maintained. The nylon apparently doesn't cause an excessive increase in the filter insertion loss, even though nylon is generally a poor rf material. (This simple coil form is available at better hardware stores.) Variable capacitors are used to provide tuning range for the filter. The two capacitors in the series arms of the filter are the main tuning, while the adjustment of the shunt element is not as critical.

The second and third filters, centered at 379 and 758 MHz, were made with printed microstriplines. The key to their performance is in the accurate reproduction in copper of the design dimensions. It isn't necessary, however, to maintain fantastic accuracy; a number of filters have been built with hand-cut lines and work well. Pay attention to the grounding (as always in rf work, poor grounding will rise to cripple otherwise fine circuits). An eyelet at the base of the filter is good insurance, as is wrapping the edge of the top ground traces to the bottom ground with foil and soldering both sides.

The loading capacitors at the ends should be physically small, electrically short, and high Q. That's the ideal. In practice, adequate filtering is achievable with a wide range of capacitors. The best capacitors for the job seem to be the subminiature microwave tubular trimmers, but the circular ceramic types work, too. The main problem with lower-cost ceramic capacitors is really only an irritation; their entire tuning range is compressed into one-half turn of the rotor, so that fine peaking of the filter requires a steady hand and patience.

The only other main concern in the layout is a familiar one in all high-frequency work — the substrate.
The microstriplines require a good ground plane on the far side of the board, a ground plane that should be as unbroken as possible, and well coupled to the ground traces on the top of the board. The thickness of the material is important, too, if the line impedances are to be as designed. Ideally, the dielectric constant of the material should be well controlled, but in practice most Amateur construction is done on G-10 board, which is not intended for microwave work. However, G-10 works well enough for noncritical circuitry. The dielectric constant of G-10 varies with frequency, but is about 4.2 at the high end of the UHF band.

Each MMIC is mounted to the surface of the board with its plastic package recessed in a clearance hole. The amplifiers receive their dc bias via a small decoupling coil, well bypassed to ground at its far end. The MMIC operating voltage is obtained from the 13.6-volt supply and dropping resistor. The resistor is positioned on the bottom side of the circuit board to keep it out of the way. More details of device biasing are given in the references.

construction

The printed circuit board negative shown in fig. 3 depicts only one side of the board. The other side of the circuit board is unetched copper, which serves as a ground plane for the microstriplines. Component placement is indicated in fig. 4. Where component leads pass through the board, small clearance holes should be made to prevent the leads from shorting to ground. Ground plane side artwork isn’t needed, since no circuit traces exist on this side, and a few minutes’ work with a drill bit will clear the lead holes.

The board doesn’t have to be all that precise; the filters are tolerant of inaccurate layout because of their low selectivity. In fact, I’ve had good results with handcut boards. I make a 1:1 photocopy of the artwork and glue it to the surface of a piece of G-10 board. Then I use a sharp knife and cut through the paper to nick the copper cladding. I then peel the cladding away with the knife and a pair of pliers. The results aren’t particularly attractive, but the process is quick and effective.

The crystal oscillator circuit is similar to the one described in Hilliard’s article, which was designed to operate around a 2N4124 at 16 percent lower frequency. It’s also quite similar to designs described in detail in Frerking. The oscillator uses a fifth overtone crystal, with resonant network in the feedback path to peak the circuit’s gain at the desired overtone. Only one minor alteration was needed to get the circuit working: the base of the oscillator transistor requires a good rf ground, and when using only a disc capacitor as a bypass, I had problems with spurious modes and poor starting. I added a small (physically and electrically) chip capacitor to ground and the problems vanished. The final circuit is shown in fig. 5.

The oscillator (fig. 7) was built on a piece of copper-clad board. I didn’t make a circuit board for this circuit because I felt the layout wasn’t particularly critical. Where insulated mounting points are needed, a teflon-insulated terminal can be installed on the board, or an isolated island of copper can be cut with a pad cutter. Many of the construction details are visible in fig. 7.
This design, like most oscillators, tends to be sensitive to variations in its environment. Stray fields, temperature variations, load variations, power supply changes and even nearby movement can alter the operating frequency. The oscillator’s output is multiplied eight times before mixing, so even changes of a few hertz can be noticed at the output of a narrow-band converter (consider how a 50- to 100-Hz step can change the pitch of an SSB voice signal). For these reasons, I chose to put the oscillator in its own shielded box, use a voltage regulator, and leave room for a temperature controller.

Shielding helps prevent changes in the local fields of the circuitry and helps lengthen the oscillator’s thermal time constant. It’s important to note the distinction between temperature compensation, which reduces the total drift of the oscillator, and changing the thermal time constant, which reduces the rate of change of frequency, but not the ultimate magnitude of the change. In an Amateur system, it’s usually unimportant if the circuit drifts a bit, as long as the drift rate is quite slow. After all, we don’t tend to sit on one frequency for hours (or even for many minutes). So lengthening the thermal time constant is a good strategy for UHF oscillator circuitry, and is easier than temperature compensation or control.

The closed aluminum box, stuffed with fiberglass insulation, helps greatly in slowing the drift rate. The two large resistors visible on the board in the photograph were included for use as heaters if a temperature controller were needed. So far, I haven’t seen any need, but if the local oscillator were mounted outside and exposed to wide temperature ranges, temperature control could be added. The space between the two power resistors is sufficient for an LM3911 integrated circuit temperature regulator.

tuning

Start the tuning process by getting the oscillator going. If all is well, the oscillator will start up as the variable capacitor is adjusted. The adjustment range of the capacitor should be broad. Set the capacitor to the middle of the range, making sure that the oscillator will restart when power is interrupted. The oscillator should provide 5 to 10 milliwatts at the output of the attenuator. There is no trimming of the series resonant crystal.

Unfortunately, tuning the multiplier can be more complicated. The tuning range of the three filters is limited, so it should be difficult, but still possible, to tune to the wrong harmonic. Start by presetting the variable capacitors to the calculated capacitance. For example, the output filter calculations predict that 3.9 pF will be needed, so if a 2- to 8-pF trimmer is used, preset it visually to about half-meshed. The calculated values for all of these capacitances are shown on the
schematic diagram.

Apply the oscillator output signal to the multiplier, and then apply dc power. See that the MMIC device voltages specified are present, which should verify that the amplifier stages are working. Peak the output for maximum power and measure the output frequency with a counter.

I found that this tuning could be accomplished with just a diode detector to peak the tuning and a counter to verify that the output of the multiplier was at the correct frequency. I then examined the output of the chain with a spectrum analyzer, which produced the plot shown in fig. 8.

If this method of tuning doesn’t work, it might be better to tune each stage separately. Tap into the circuit at the output of each filter in turn, and peak it for best output power at its center frequency. This method will take longer, but it’s less “blind” than tuning for the final 758-MHz output all at once.

summary

MMIC devices in circuits similar to the one just described can be configured as simple and well-behaved multiplier chains. Silicon MMIC amplifiers now provide good gain to 3 or 4 GHz, so that multipliers using them should be practical to at least such frequencies. The concept outlined here — using doublers followed by simple filtering — provides adequate spectral purity and output power sufficient to drive a mixer directly. The components are inexpensive, and no machine shop work is needed. The only real drawback to this cascaded system is its healthy appetite for dc power due to the MMIC’s internal biasing circuitry. The phase noise of the multiplier wasn’t measured, but it appears to be quite adequate for Amateur narrowband communications.

I can provide some of the parts for this project, including printed circuit boards; send an SASE to me for a list of what I have available.

references
Are you concerned that your car — and your prized mobile equipment — might be stolen? If you are, read on... because this circuit will let your car fight back if it's stolen.

It’s almost impossible to stop a really determined thief from trying to steal your car. Alarms may discourage amateurs, but seldom deter professional thieves, who know that most people passing by a sounding alarm will just keep on going.

The circuit described in fig. 1 allows a car to be driven for about 60 seconds. During that period, the car may be driven to a busy intersection or roadway, where it will stall, never to be started again by the thief. It would be possible to prevent the engine from starting in the first place; however, this could irritate the thief and invite vandalism. It’s safer, and usually less costly, to allow the car to be driven briefly, creating a situation in which the thief will be placed in a vulnerable position and possibly caught. At the very least, your car will be abruptly abandoned, minimizing the possibility of vandalism. You may have to pay for towing — and possibly a charge for impoundment — but you’ll have your car.

do’s and don’ts

The effectiveness of any deterrent device depends partly upon how well its presence can be concealed. Obviously, any would-be thief who wants your car and knows about the device will try to disarm it. Don’t tell even your best friend that you’ve installed a theft deterrent; people talk.

You may want to install a hood lock, which will not only discourage hot-wiring, but will also prevent disarming the deterrent. Some protection is provided by the circuit itself, should the wires be cut; cutting either of the wires marked CA-CB or BA-BB will remove power from the ignition coil. Unfortunately, if the ignition is hot-wired (by placing a jumper from 12 volts to the ignition coil), the jumper simply bypasses the deterrent, removing the theft protection.

Hugh Wells, W6WTU, 1411 18th Street, Manhattan Beach, California 90266

Obviously you’ve got to be able to disarm the deterrent to drive your car. An automatic circuit built into the deterrent arms the circuit whenever the engine is started. It’s up to you to remember to disarm the deterrent before time-out.

It’s better to use a pushbutton rather than a toggle switch, installing it where it can be reached comfortably, conveniently, and inconspicuously, even with passengers in the car. It’s best to locate it within arm’s length, where one hand can reach it without stretching or making any unusual movement. As far as a thief is concerned, it could even be positioned in the middle of the dashboard — after all, who’d suspect that a “secret” switch would be placed where everyone could see it?

oops!

If you forget to press the disarming button after starting the engine, the circuit will time out, leaving you momentarily stranded and embarrassed. If this happens, just turn the ignition switch on and press the button to start the 20-second recovery process.

Twenty seconds feels like an eternity when you’re caught in traffic. (If you’re uncomfortable, think how a thief would feel) But the delay is necessary; you want to prevent the thief — had he found the button and pressed it — from associating the action of pushing the button with disarming the deterrent.

What happens when the car goes back to the dealer or into the shop for service? Somebody else, probably a stranger, will be driving it. One solution is to place a clip lead or small alligator clip across the disarm button contacts. Another would be to place a clip lead across Q4. Either action would disable the deterrent so that service people could drive the car without having to know about the device. (Remember to remove the jumper after service to restore protection.) For shorter periods, such as with valet parking and car washes, you can leave the engine running when you get out. If time-out occurs, you can simply remark that your car is temperamental and that you know how to handle it.

circuit description

A small SCR (Q1), used as a remote disarming latching switch, is “fired” when the disarm button is pressed. Once fired, Q1 keeps the circuit from starting the time-out cycle. A 555 (or 556) is used as a timing mechanism for removing power from the ignition system after time-out. A simple RC time constant provides a time-out delay of approximately 1 minute. A specific time-delay value isn’t important, but enough time must be allowed for the car to be driven to a vulnerable location. Any additional time could allow the car to be driven too far from the starting point.
QUALITY TEST GEAR
YOU CAN COUNT ON

INCLUDES 2 HOOK-ON PROBES
20 MHz DUAL TRACE
$369.95*
Features component testing circuit for resistors, capacitors, digital circuits and diodes—12:1 unique high-sensitivity Z-axis, X-Y mode—built-in calibrator—5X horizontal magnifier

INCLUDES 2 HOOK-ON PROBES
35 MHz DUAL TRACE
$499.95*
Wide frequency bandwidth—optional sensitivity—delayed 5X magnification—HALT trigger—single sweep TV-sync 5X magnification—X-Y or X2-Y operation—HF/LL noise reduction

INCLUDES 2 HOOK-ON PROBES
15 MHz DUAL TRACE PORTABLE
$449.95*
Field/ bench applications—built-in charger and battery pack—up to 2 hours operation per charge—5X horizontal magnification—high brightness CRT—front panel trace rotator

RAMSEY OSCILLOSCOPES
All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby, service and production applications.

*Add an additional $10.00 for each unit for shipping.

MINI-100 COUNTER
CT-70 7 DIGIT 525 MHz
$119.95
$139.95 W/BOUNDS AC ADAPTER

CT-90 9 DIGIT 600 MHz
$169.95 W/BOUNDS AC ADAPTER

CT-50 5 DIGIT 600 MHz
$189.95 W/BOUNDS AC ADAPTER

RAMSEY FREQUENCY COUNTERS

RAMSEY D-4100 COMPACT DIGITAL MULTIMETER
$249.50
Compact sized reliability and accuracy. This LCD digital multimeter easily fits in your pocket and can take anywhere. It features full overload protection. 3 1/2 digit LCD readout. Accessory interface kit—safety fused. 2000 hours battery life.

RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING MULTIMETER
$49.95
Includes Probes 1 Year Warranty

PR-2 COUNTER PREAMP
$449.95
The PR-2 is ideal for measuring weak signals from 300 mV to 60000 MHz. Features 25 dB gain. BNC connectors—great for sniffing IF—ideal receiver/TV preamp

PS-2 AUDIO MULTIPLEXER
$69.95
The PS-2 includes for fundamental audio resolution measurements. Multiples by 10 or 100. 5 MHz resolution & built-in signal conditioner

PS-10B 1 GHz PRESCALER
$89.95
Extends the range of your present counter to 1 GHz or 10 MHz. Features true 1 GHz. BNC connectors—super sensitive (50 mV typical)—BNC connectors—1 GHz input, 1 MHz output.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

ACCESSORIES FOR RAMSEY COUNTERS

Telescopiwhip antenna—BNC plug... $6.95
High impedance probe, light loading... 19.95
Low pass probe, audio use... 16.95
Direct probe, general purpose... 13.95
Tilt ball, for CT-70, 90, 125... 13.95

PHONE ORDERS CALL
716-586-3950
TELE GRAPHIC RAMSEY CI
716-586-4754
The R5 and C2 combination determines the timeout period. Their values have been selected for about the maximum time obtainable when using a low-leakage electrolytic capacitor for C2. Tantalum capacitors are generally not suitable in this application because of their high leakage current.

When power is first applied to the ignition system, pins 2 through 6 of U1 will start out with a logic high of about 11 volts and drift down as capacitor C2 charges through resistor R5. Pin 3 of U1 will remain at a logic low until pins 2 and 6 drop below a threshold voltage value of approximately 4 volts. Then pin 3 will go high, turning off the base drive to transistors Q3 and Q4. They, in turn, remove power from the ignition system. In the deterrent, U1 operates as an electronic teeter-totter with a resistor and capacitor combination on pins 2 and 6 for timing. The other end of the teeter-totter is pin 3, which provides output drive. When pins 2 and 6 are high (Q1 fired), pin 3 is low, driving the base of Q2 low. Transistor Q2 operates as an inverter, driving the bases of transistors Q3 and Q4. Transistors Q3 and Q4 are connected as a Darlington for high gain (H_FE above 2000). The high gain is required to hold Q4 in saturation when the base drive is at a logic high. Transistor Q4 functions as a pass transistor/switch for controlling ignition current values up to 7 amps. A 7-amp current capability is sufficient for most ignition systems.

Diodes are used in the circuit to perform various functions. CR1 protects the gate of SCR Q1 from negative voltage spikes. CR2 isolates C2, preventing it from becoming charged through resistors R3 and R4. CR2 and CR3 isolate capacitor C2 from circuit power, allowing C2 to retain its charge status regardless of the presence or absence of circuit power. CR4 protects transistors Q3 and Q4 from reverse voltage spikes generated by ignition coil flyback upon power removal. With CR4 in place, the reverse voltage across the transistors will not exceed 1 volt.

construction

The circuit is divided into two assemblies for mounting convenience. All of the electronic circuitry may be placed in a metal box separate from Q4, which is mounted on a heatsink near the ignition coil. Placing the circuit in a grounded metal box ensures rf protection from high voltage ignition pulses and mobile transmitters. Disc ceramic capacitors are used at the input and output of the circuit to prevent rf from disturbing the SCR and 555 logic states. A screw terminal block may be mounted on the side of the box for wiring connections.

Transistor Q4 requires a heatsink to improve its reliability, even though it operates in saturation. At 7 amps of current flow, about 5 watts of power will be dissipated by Q4. That amount of heat requires a heatsink with a surface area of about 5 square inches and a thickness of 1/8 to 1/4 inch. A heatsink with fins, mounted in line with the engine air flow, will provide...
DUAL BAND ANTENNAS FOR ULTIMATE PERFORMANCE!!

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Sug. List</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X4Z</td>
<td>Base/Repeater 200 Watt</td>
<td>$168.95</td>
</tr>
<tr>
<td></td>
<td>Gain 146 MHz 8.2dB, 446 MHz 11.5dB</td>
<td></td>
</tr>
<tr>
<td>2X4SR</td>
<td>Mobile with Mag. Mt. 150 Watt</td>
<td>71.90</td>
</tr>
<tr>
<td></td>
<td>Gain 146 MHz 3.8dB, 446 MHz 6.2dB</td>
<td></td>
</tr>
<tr>
<td>2X4S6Y</td>
<td>Mobile with Mag. Mt. 100 Watt</td>
<td>65.95</td>
</tr>
<tr>
<td></td>
<td>Gain 146 MHz 2.15 dB, 446 MHz 3.8dB</td>
<td></td>
</tr>
<tr>
<td>HT 702</td>
<td>146/446 MHz Hand Held BNC 50 Watt</td>
<td>29.95</td>
</tr>
<tr>
<td>C7-71</td>
<td>Base/Repeater 920 MHz</td>
<td>$115.95</td>
</tr>
<tr>
<td></td>
<td>50 Watt 7.14 dB Gain</td>
<td></td>
</tr>
<tr>
<td>C202N</td>
<td>Mobile 920 MHz with Mag. Mt.</td>
<td>72.95</td>
</tr>
<tr>
<td></td>
<td>5 dB Gain 50 Watt</td>
<td></td>
</tr>
<tr>
<td>1234E</td>
<td>Base/Repeater 200 Watt</td>
<td>$178.95</td>
</tr>
<tr>
<td></td>
<td>Gain 446 MHz 8.5dB, 1.2 GHz 10.1dB</td>
<td></td>
</tr>
<tr>
<td>124X</td>
<td>Mobile with Mag. Mt. 100 Watt</td>
<td>104.95</td>
</tr>
<tr>
<td></td>
<td>Gain 446 MHz 2.5dB, 1.2 GHz 3.5dB</td>
<td></td>
</tr>
<tr>
<td>1221S</td>
<td>1.2 GHz Base/Repeater 100 Watt</td>
<td>$158.95</td>
</tr>
<tr>
<td></td>
<td>Gain 15.5dB, 21 Step colinear</td>
<td></td>
</tr>
<tr>
<td>1210M</td>
<td>1.2 GHz Mobile with Mag. Mt. 50 Watt</td>
<td>76.95</td>
</tr>
<tr>
<td></td>
<td>Gain 8.8dB</td>
<td></td>
</tr>
<tr>
<td>415M</td>
<td>High power duplexer 146 MHz 400 Watt</td>
<td>59.95</td>
</tr>
<tr>
<td></td>
<td>446 MHz 250 Watt</td>
<td></td>
</tr>
<tr>
<td>412N</td>
<td>UHF/GHz Duplexer 446/1400MHz</td>
<td>68.95</td>
</tr>
<tr>
<td></td>
<td>Max. 70 Watt</td>
<td></td>
</tr>
</tbody>
</table>

NEW CODE TAPES FROM
AVC INNOVATIONS
by John Kargiecz N9AVC
QSO TRAINER
This tape has been designed to teach you to copy complete words instead of letter by letter, simply, with a minimum of effort and fuss. Using the standard QSO format, beginners and old timers alike will find that their code speed will improve dramatically as they learn the secrets of word copying. For years, high speed pros have used this tried and true method—learn their secrets and join the fun! Two 60 minute tapes complete with instruction sheet. $14.95

QSO MASTER
Takes you past the General class code requirement and heads you toward the Extra class ticket. Four thirty minute programs cover 8, 10, 12 and 14 wpm. Two 60 minute tapes with instructions. $12.95

QSO PRO
One more jump and you've got your Extra! These tapes are designed with that goal in mind. Maximize your copying skills with four programs that cover 16, 18, 20 and 22 wpm. Two 60 minute tapes with instructions. $12.95

Please enclose $3.50 shipping and handling.

Electronic Repair Center
Serving Amateur & Commercial Radio
The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400

SYNTHESIZED SIGNAL GENERATOR
MADE IN USA
MODEL 5G-100F $429.95

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial • Accuracy +/− 1 part per 10 million at all frequencies • Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate • External FM input accepts tones or voice • Spur and noise at least 60 dB below carrier • Output adjustable from 5-500 mV at 50 Ohms • Operates on 12 Vdc @ ½ Amp • Available for immediate delivery • $429.95 delivered • Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator • Call or write for details • Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.

IF YOU COLLECT OLD RADIOS, YOU NEED
ANTIQUE RADIO CLASSIFIED
Published Monthly
Classifieds — Informative Articles
Ads for Services & Hard-To-Find Parts
Also: Early TV, Ham Equip., Books, Telegraph, 40's & 30's Radios & more...
Free 20-word ad each month
Sample Copy · Free
6-Month Trial Subscription (US) $9.00
A.R.C., PO Box 2-A1, Carlisle, MA 01741

84 February 1987
additional cooling. If desired, the amount of heatsink surface may be reduced for currents around 3 amps. However, a generous amount of heatsink material is cheap insurance for long transistor life.

Transistor Q4 must be insulated with a mica washer from the ignition switch if the heatsink is to be grounded. All metal burrs must be removed from heatsink holes. Small burrs around the holes will puncture the mica washer (insulator) and ground the transistor. Apply thermal grease to both sides of the mica washer to provide heat transfer from the transistor to the heatsink. A small amount of nonconductive silicon grease makes a suitable thermal conductor.

deterrent placement

Two types of ignition systems are in common use today. Both can be controlled by the theft deterrent as long as the car battery has its negative terminal grounded (the deterrent would have to be redesigned for a positive ground system). The oldest and most common is the standard ignition system, which consists of an ignition coil and a set of breaker points. The second type is an electronic system consisting of an electronic converter, ignition coil, and a breakerless timing trigger.

It doesn’t matter whether the Q4 heatsink assembly is mounted on the engine, firewall, or fender well, but the assembly should be mounted near the ignition coil power wire.

Avoid long extension wires to keep series resistance to a minimum. Finding the correct wire to intercut or cut is usually fairly easy when only one power wire is routed to the ignition system. Some electronic systems have two large wires routed to the system; one of them provides power from the ignition switch, and is the wire that must be intercepted to insert the Q4 assembly. The second wire is used to provide power from the starter solenoid during starting. It will be left alone.

Standard-ignition systems use a resistor or resistance wire in series with the ignition switch and ignition coil to reduce power dissipation in the coil. The Q4 assembly is connected in series with that resistor wire at either the coil terminal or at the resistor terminal. If the resistor can’t be located, assume that the connecting wire is also the resistor. Note: do not cut the resistance wire.

Mount the electronic circuit box in any convenient location where the box will be grounded. Connect a wire from the ignition switch (+12 volts) to the terminal marked BA (Q3 collector). Connect a wire from terminal BA to terminal BB (Q4 collector). Route a wire to the pushbutton from terminal A (resistor R1), and another wire from terminal CA (emitter of Q3) to terminal CB (base of Q4). Connect terminal D (emitter of Q4) to the ignition coil.
Interested in SAVING MONEY? Want to find the BEST BARGAINS on NEW and USED ELECTRONIC EQUIPMENT available?

You’ll Find Them in the Nation’s No. 1 Electronic Shopper Magazine

NUTS & VOLTS

Now in our 7th Year

Nuts & Volts is published MONTHLY and features:
- NEW STATE-OF-THE-ART PRODUCTS
- SURPLUS EQUIPMENT • USED BARGAINS
- 50% DISCOUNT TO SUBSCRIBERS ON CLASSIFIED ADS • EVENTS CALENDAR
- NEW PRODUCTS • LOW COST DISPLAY AD RATES • NATIONAL CIRCULATION
- AND A FREE 40-WORD CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

<table>
<thead>
<tr>
<th></th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Year - 3rd Class Mail</td>
<td>$10.00</td>
</tr>
<tr>
<td>One Year - 1st Class Mail</td>
<td>$15.00</td>
</tr>
<tr>
<td>One Year - Canada & Mexico (in U.S. Funds)</td>
<td>$18.00</td>
</tr>
<tr>
<td>Lifetime - 3rd Class Mail (U.S. Only)</td>
<td>$35.00</td>
</tr>
</tbody>
</table>

ORDER NOW!

Send: X Check X Money Order X Visa X MasterCards

TO: NUTS & VOLTS MAGAZINE P.O. BOX 1111-H PLACENTIA, CALIFORNIA 92670 (714) 632-7721

Name
Address
City
State Zip
Card No.
Exp Date

IF YOU’RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited

for diesels

The theft deterrent may also be used on diesel automobile engines. A warm engine usually starts immediately, providing the thief an opportunity to drive to a street intersection. But cold starts present a challenge, because the “cold” glow plug timing is nearly equal to the deterrent time-out time. A thief might not get the engine started before time-out. In either case, the car won’t be driven very far before the engine quits.

To install the deterrent on a diesel engine, locate the electric fuel shut-off valve near the fuel injector pump. There’s usually one control wire attached that provides power to operate the valve when the ignition switch is turned on. Connect the Q4 deterrent circuit in series with the control wire. Terminal BA connects to the ignition switch end of the control wire, and terminal D connects to the fuel shut-off valve.

ham radio

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

IRP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS

IRP-WA Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS

Simple to build, lightweight, and high performance make the Quad at DX’ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition.

IRP-CQ Softbound $9.95

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. ©1976. 1st edition.

IRP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!

BAND KIT WIRED
6M, 2M, 220 $630 $880
440 $730 $980
(Also available for commercial bands)

FEATURES:
• SENSITIVITY SECOND TO NONE: 0.15uV/VHF, 0.2uV/UHF TYP.
• SELECTIVITY THAT CAN’T BE BEAT! BOTH 8 POLE XTL FILTER & CERAMIC FILTER FOR > 100dB AT ± 12KHz. HELICAL RESONATOR FRON TO ENDS TO FIGHT DESENSE & INTERMOD.
• OTHER GREAT RECEIVER FEATURES: FLITTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
• CLEAN, EASY TUNE TRANSMITTER, UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY XMTR & RCVR MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.
• R144/R220 FM RCVR'S for 2M or 220 MHz, 0.15uV sens, 8 pole xtal filter & ceramic filter in l-1, helical resonator front end for exceptional selectivity, >100dB at ± 12KHz, best available today, Flitter-proof squelch, AFC tracks drifting xmtrs. Xtal oven avail. Kit only $138.
• R451 FM RCVR Same but for uhf. Tuned line front end, 0.3uV sens. Kit only $138.
• R76 FM RCVR for 10M, 6M, 2M, or 220. As above, but w/o AFC or hel. res. Kit only $118. Also avail w/4 pole filter, only $36/kit.
• R110 VHF AM RECEIVER kit for VHF aircraft or ham bands or Space Shuttle. Only $98.
• T451 VHF FM EXCITER for 10M, 6M, 2M, or 220 MHz. 2 Watts continuous, up to 3W intermittent. Kit only $68.
• T451 VHF FM EXCITER 2W cont., up to 3W intermittent. Kit only $68. Xtal oven avail.
• VHF & UHF LINEAR AMPLIFIERS. For either FM or SSBB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $76.

RECEIVING CONVERTERS
Models to cover every practical rf if range to listen to SSBB, FM, ATV, etc. NF = 2 dB or less.

Hamtronics Breaks the Price Barrier!
No Need to Pay $300 to $125 for a GaAs FET Preamp.

FEATURES:
• Very Low Noise: 0.7dB VHF, 0.8dB UHF
• High Gain: 13 to 20dB, Depending on Freq.
• Wide Dynamic Range for Overload Resistance
• Latest Dual-gate GaAsFET, Very Stable

NEW
Model LNW-1(*) \dots Only $19/kit, $34 wired

NEW
GaAs FET Preamps with features similar to LNW except designed for lower cost and smaller size. Only 58W x 58B x 34H. Easily mounts inside many radios.

IN-LINE PREAMPS
GaAs FET Preamp with features similar to LNW. Automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W. Tower mount $65 incl.

TRANSMIT CONVERTERS
For SSBB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output uhf, 1 Watt uhf.

For VHF:
Model XV2 28-30 144-166
Model XV4 28-30 144-166
Add $49 (Specify band)

HAMSTER 2020 RCVR'S
For UHF:
Model XV2 28-30 432-470
Model XV4 28-30 432-470
Add $49

NEW
Add $50 for 2M input
VHF & UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $78.

• Send $1 for Complete Catalog
(Send $2.00 or IRC’s for Overseas mailing)
• Order by phone or mail • Add $3 S & H per order
(Electronic answering service evenings & weekends)
• Use VISA, MASTERCARD, Check, or UPS COD.

hamtronics, inc.
65-E MOUL ROAD • HILTON NY 14468
Phone: 716-392-9430
Hamtronics® is a registered trademark
more DX propagation tips

Last month we discussed weak signal reception in terms of the chart that accompanies this column each month. Numbers shown in the chart represent the highest frequency bands that should be used at specified hours. As a general rule, operate on the highest band available in order to optimize signal strength by minimizing the number of hops through the absorbing D region of the ionosphere.

To fully utilize this optimum propagation mode, the takeoff angle (TOA) of your antenna must be approximately 10 degrees. If the elevation pattern of the antenna doesn't include significant energy at this low angle*, operate on the next lower frequency band but be prepared to pay the price in signal loss, due to the greater number of hops (more hops mean greater loss at the points of reflection/refraction and passage through the D layer). For the shorter paths — for example, Europe to Japan — dropping down to the next lower band raises the TOA required by 12 degrees, but unfortunately means one more hop will be required with an additional loss in signal level of 10 dB. Dropping down two bands nets a TOA 23 degrees higher, one to two more hops, and 24 dB of additional signal loss. Using a lower frequency band on the longer paths accounts for a 4-degree elevation in TOA and a loss of 6 dB for each hop. These longer paths represent five to six maximum-length hops. With this number of long hops and accumulated per-hop absorption, one more hop doesn’t make as much difference in the TOA or attenuation, compared to shorter ones.

Knowing your antenna’s pattern and using this information, questions of tradeoffs arise. Should I lower frequency to take advantage of my antenna’s TOA and lose signal level from more hops, or should I use the antenna on the highest band and be a few dB down from the antenna pattern maximum? If your tradeoff calculations come out about even, consider signal quality parameters (such as stability) rather than available signal strength. Stable signals in frequency, phase, and amplitude over a short time — i.e., seconds or minutes — are needed to “read” the transmitted information.

The length of time needed to decipher the information is a function of the modulation being “read,” but in most cases greater stability represents an improvement. This occurs when you operate just below the MUF. As a general rule, for stability, choose a frequency that is just 15 percent below the MUF. If you drop too low in frequency, a form of multipath distortion occurs that sounds like interference. The frequency just below the MUF is the most stable and therefore experiences minimum fading — QSB. Of course, when the geomagnetic field becomes variable, as during a disturbance from a solar wind particle influx, even frequencies near the MUF become more unstable in frequency, phase, and amplitude. After a few years experience or training, DXers can “read” signals having some of these poor characteristics. If you consider these propagation rules and practice learning to “read” the difficult signals, you’ll enjoy the experience of rare DX QSOs more often.

last-minute forecast

The higher frequency bands (10-30 meters) are expected to peak the second week of this month. Long-skip openings during periods of higher solar activity and flux should raise the MUFs about 15 to 20 percent over median mid-latitude noontime values. Look for evening transequatorial long-hop openings, especially if the geomagnetic field becomes disturbed as the solar flux drops off toward the end of the week. The lower frequency bands should remain in their winter “finery” during the first and last weeks of the month. Expect geomagnetic (field) disturbances during the middle of the last week.

No significant meteor showers are scheduled to appear in February. A full moon will occur on the 13th, with its perigee on the 25th.

band-to-band summary

Ten and twelve meters, the highest day-only DX bands, are nearest the MUF for southern hemisphere paths. They will be open most days when the solar flux is above 75 during the 7- to 10-hour period centered around local noon. These bands open on paths toward the east and close toward the west. The paths may be as long as 2400 miles in single-hop length, and occasionally twice as long during evening transequatorial openings.

Fifteen and twenty meters, almost always open to the southern part of the world, will be the main daytime DX bands. Twenty should stay open on long southern paths into the night, while 15 will drop out in the afternoon. Total path lengths of from 5000 to 7000 miles are expected on these bands and one-long-hop transequatorial propagation is also possible, favoring evening

*Most don't, unless a rather large ground system is used with verticals or the horizontal array is over a wavelength above the earth — Ed.
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit of 15 inquiries per request.

NAME
ADDRESS
CITY
STATE
ZIP

February 1987
ATTN: Reader Service Dept.
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

Look at next higher band for possible openings.
hours during periods of high solar flux
and disturbed geomagnetic field
conditions.

Thirty and forty meters are both day
and night bands. Intermediate dis-
tances (up to 1000 miles) in any direc-
tion represent daytime DX. Nightime
DX on these bands is expected to ex-
ceed those distances encountered on
80 meters and, as on 80, will follow
the darkness path across the sky. Reduced
midday signal strengths and distances
may occur on days of high solar flux
values or periods of anomalous ab-
sorption.

Eighty and one-sixty meters
will exhibit short-skip propagation during
the daylight hours and lengthen for DX
at dusk. These bands follow darkness,
opening to the east just before local
sunrise, swinging more to the south to-
ward midnight, and ending up in the
Pacific areas during the hours before
dawn. Except for daytime short-skip
signal strengths, high solar flux values
hardly affect these bands. On some
days, however, the condition known
as anomalous absorption will diminish
day and night signal strengths. The
160-meter band opens later and ends
earlier.

AMATEUR RADIO MAIL LISTS

Self-stick 1x3 labels

*** NEWLY LICENCED HAMS ***

*** ALL NEW UPGRADES ***

*** UPDATED EACH WEEK ***

Total List = 462,728 (ZIP sorted)

Price is 2.5 cents each (4-up Cheshire)

BUCKMASTER PUBLISHING

Mineral, Virginia 23117

703-994-5777

CHARGE YOUR CLASSIFIED ADS

to your MC or VISA, write or call

HAM RADIO MAGAZINE

Greenville, NH 03048

(603) 878-1441

SAY YOU SAW IT IN ham radio!
HF EQUIPMENT

List	Juns
IC-735 Gen. Cvg Xcvr | $999.00 | Call $ |
IC-745 Gen. Cvg Xcvr | 1049.00 | Call $ |
IC-751A Gen. Cvg. Xcvr | 1649.00 | Call $ |

Receivers

IC-R7000 25-1300 MHz Xcvr | 1099.00 | Call $ |
IC-R71A 100 kHz-30 MHz Xcvr | 949.00 | Call $ |

VHF

IC-27A All Mode Base 25w | 869.00 | Call $ |
IC-27H All Mode Base 100w | 1099.00 | Call $ |
IC-27A FM Mobile 25w | 429.00 | Call $ |
IC-27H FM Mobile 45w | 459.00 | Call $ |
IC-28A FM Mobile 25w | 429.00 | Call $ |
IC-28H FM Mobile 45w | 459.00 | Call $ |
IC-32A FM Mobile 25w | 429.00 | Call $ |
IC-32A FM Micro HT | 329.00 | Call $ |

UHF

IC-471A All Mode Base 25w | 979.00 | Call $ |
IC-471H All Mode Base 75w | 1339.00 | Call $ |
IC-47A FM Mobile 25w | 549.00 | Call $ |
IC-48A FM Mobile 25w | 459.00 | Call $ |
IC-4AT FM HT | 339.00 | Call $ |
IC-3200A FM 2m/70cm 25w | 599.00 | Call $ |

220 MHz

IC-37A Mobile 25w | 499.00 | Call $ |
IC-3AT FM HT | 339.00 | Call $ |

Repeaters

IC-3R3010 440 MHz | 1229.00 | Call $ |
IC-RP1210 1.2 GHz | 1479.00 | Call $ |

TS-440S/AT

List	Juns
TS-940S Gen. Cvg Cxvr | $2249.95 | Call $ |
TS-940S Gen. Cvg Cxvr | 2049.95 | Call $ |
TS-930S/AT Gen. Cvg Cxvr | 1849.95 | Call $ |
TS-83S0 Cxvr | 1099.95 | Call $ |
TS-830SP Cxvr | 899.95 | Call $ |
TS-430S Gen. Cvg Cxvr | 819.95 | Call $ |
TS-440/AT Gen. Cvg Cxvr | 1199.95 | Call $ |
TS-440S Gen. Cvg Cxvr | 1049.95 | Call $ |

VHF

R-5000 NEW! | 899.95 | Call $ |
R-2000 150KHz-30 MHz | 649.95 | Call $ |
TS-670 All Mode Quad 5 M | 799.95 | Call $ |

UHF

IC-71A All Mode Base 25w | 899.95 | Call $ |
TR-751A All Mode Mobile 25w | 599.95 | Call $ |
TM-201B FM Mobile 45 | 369.95 | Call $ |
TM-211A FM Mobile 25w | 399.95 | Call $ |
TM-230A FM Mobile 25w | 429.95 | Call $ |
TM-250A FM Mobile 45 | 469.95 | Call $ |
TM-257A Mobile 70w | 559.95 | Call $ |
TH-21 BT FM, FT | 239.95 | Call $ |
TH-205AT, NEW 2M FT | TBA | |
TR-2600A FM, HT | 359.95 | Call $ |

UHF

TS-611A All Mode Base 25w | 1099.95 | Call $ |
TM-401B FM Mobile 25w | 399.95 | Call $ |
TM-411A FM Mobile 25w | 449.95 | Call $ |
TH-41BT FM, HT | 269.95 | Call $ |
TR-3600 FM HT | 369.95 | Call $ |

220 MHz

TM-3530A FM 220 MHz | 449.95 | Call $ |
TH-31BT FM, 220 MHz | 269.95 | Call $ |
TL-22A HF Amp | 1499.95 | Call $ |

HF EQUIPMENT

List	Juns
FT-ONE Gen. Cvg Xcvr | $2859.00 | Call $ |
FT-757 GX Gen. Cvg Xcvr | 999.00 | Call $ |
FT-767/4 Band New | 1899.00 | Call $ |

Receivers

FRG-8800 150KHz-30 MHz | 599.95 | Call $ |
FRG-9000 60-900 MHz | 679.95 | Call $ |

VHF

FT-270R FM Mobile 45w | 439.95 | Call $ |
FT-290R All Mode Portable | 579.95 | Call $ |
FT-27 RRT Mini HT | 299.95 | Call $ |
FT-290R FM Handheld 5w | 359.95 | Call $ |

UHF

FT-770R FM Mobile 25w | 479.95 | Call $ |
FT-73 RRT Mini HT | 314.95 | Call $ |
FT-709R FM HT 4w | 359.95 | Call $ |

VFUHFJ Full Duplex

FT-276R All Mode Xcvr | 1095.95 | Call $ |
HF/726 Module for 10, 12, 15M | 269.95 | Call $ |
FT-690R 6m, All Mode, Portable | 569.95 | Call $ |
430/270 440 MHz | 329.95 | Call $ |
460/270 440-450 MHz | 329.95 | Call $ |

HF-726 10-15-20M | 289.95 | Call $ |
SU-726 Sato Duplex | 129.95 | Call $ |

Dual Band

FT-2070HF FM 2m/70cm 25w | 599.95 | Call $ |
FT-727R 2m/70cm HT | 479.95 | Call $ |

Repeater

FT-2410 2m Repeaters | 124.95 | Call $ |
FT-5410 70cm Repeaters | 128.95 | Call $ |

CLOSING OUT SALE

KENWOOD TR-2600A w/PB-26 $255.95

ENCOM • TE • MIRAGE • AMERITRON • BIRD • AMP. SUPPLY • KANTRONICS • AEA • ASTRON

• AMATEUR • TWO WAY • MARINE
• CELLULAR MOBILE PHONE • SCANNER
☆ Free U.S. Cash Order • SE HABLA ESPAÑOL
(Most Items, Most Places)

(213) 390-8003
3919 Sepulveda Blvd. Culver City, CA 90230

HF ANTENNAS — The Easy Way

by John Haerle, WB5UJR

This book has been published as a memorial to WB5UJR's work as an Amateur Radio teacher. Originally given as a series of speeches or papers, this tutorial is an excellent source book on antenna theory and applications. Examples of areas covered are: Fundamentals, antenna and feedline terminology, baluns, ground systems, lightning protection, The Basic Antenna, the dipole, the zepp, G5RV, Windom, Special Antennas, the sloper, DDR, Beverage, folded unipole, Beams, WBJK, Yagi, two element quad, and the 160 meter band story. John's writing is in an easy-to-understand conversational style and is full of examples and handy tips and hints. There are no drawings or illustrations but John's prose paints pictures for clear and complete understanding of the information being presented. ©1984 1st Edition.

JH-AT

Softbound $11.95

Please add $3.50 for shipping and handling.

ham magazine BOOKSTORE

GREENVILLE, NH 03048
(603) 878-1441
ASTRON POWER SUPPLIES

RS and VS SERIES

- **SPECIAL FEATURES**
 - SOLID STATE ELECTRONICALLY REGULATED
 - FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shunted output.
 - CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
 - MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
 - HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
 - THREE CONDUCTOR POWER CORD
 - ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS

- **INPUT VOLTAGE**: 105 - 125 VAC
- **OUTPUT VOLTAGE**: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- **RIPPLE**: Less than 5mv peak to peak (full load & low line)

RS-A SERIES

MODEL RS-50A

<table>
<thead>
<tr>
<th>RM-A Series</th>
<th>19" X 5 1/4 RACK MOUNT POWER SUPPLIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL</td>
<td>RM-35A</td>
</tr>
<tr>
<td>Continuous</td>
<td>25</td>
</tr>
<tr>
<td>Duty (AMPS)</td>
<td>35</td>
</tr>
<tr>
<td>ICS*</td>
<td>Size (IN) X W X D</td>
</tr>
<tr>
<td>(AMPS)</td>
<td>5 1/4 x 9 x 12 1/2</td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 9 x 12 1/2</td>
</tr>
<tr>
<td></td>
<td>3 1/4 x 9 x 12 1/2</td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 9 x 12 1/2</td>
</tr>
</tbody>
</table>

RS-M SERIES

MODEL RS-35M

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RS-12M</th>
<th>RS-20M</th>
<th>RS-35M</th>
<th>RS-50M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>Duty (AMPS)</td>
<td>12</td>
<td>20</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>ICS*</td>
<td>Size (IN) X W X D</td>
<td>Shipping Wt. (lbs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Amps)</td>
<td>5 1/4 x 9 x 12 1/2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 9 x 12 1/2</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 9 x 12 1/2</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 9 x 12 1/2</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VS-M SERIES

MODEL VS-20M

<table>
<thead>
<tr>
<th>MODEL</th>
<th>VS-20M</th>
<th>VS-35M</th>
<th>VS-50M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>16</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>Duty (Amps)</td>
<td>9</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>ICS*</td>
<td>Size (IN) X W X D</td>
<td>Shipping Wt. (lbs)</td>
<td></td>
</tr>
<tr>
<td>(Amps)</td>
<td>4 1/2 x 8 x 9</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 11 x 11</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 1 1/4 x 11 x 11</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

RS-S SERIES

MODEL RS-12S

<table>
<thead>
<tr>
<th>MODEL</th>
<th>RS-75</th>
<th>RS-10S</th>
<th>RS-10L (For LTR)</th>
<th>RS-12S</th>
<th>RS-20S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Duty (Amps)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>ICS*</td>
<td>Size (IN) X W X D</td>
<td>Shipping Wt. (lbs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Amps)</td>
<td>5 1/2 x 7 1/2 x 10 1/2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 1/2 x 7 1/2 x 10 1/2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 x 9 x 10 1/2</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1/4 x 9 x 10 1/2</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ICOM IC-38A 220-MHz mobile

ICOM has announced the IC-38A, a 25-watt, 220-MHz compact mobile that expands ICOM's existing line of IC-28A/H 2-meter and IC-48A 440-MHz mobiles.

The compact unit measures 5.5 x 2.0 x 6.1 inches, transmits from 220 to 225 MHz, and receives from 215 to 230 MHz. It features 21 memory channels, an internal speaker, and a large LCD readout with automatic dimmer circuit to reduce brightness. Scanning is included; you can scan the entire band or just the memory channels from the HM-12 mic. With only 11 front panel controls, the IC38A is easy to operate.

Options include the IC-HM14 DTMF mic; PS-45 13.8-volt, 8-amp power supply, SP-10 external speaker, HM-16 speaker mic and HS-15/HS-15SSB flexible boom mic, and PTT switchbox.

The suggested retail price for the IC-38A is $459.00.

For details, contact ICOM America, Inc., 2380-116 Avenue N.E., Bellevue, Washington 98009-9029.

Circle #311 on Reader Service Card.

magnetic tool racks

Texas Magnetics Corporation — no stranger to Amateur Radio — is celebrating their 10th anniversary. TMC is the largest U.S. supplier of magnetic base assemblies used in the manufacture of mobile antennas. Other “Magna-Grab” products available from TMC include magnetic tool racks, cable and wire routers, fishing tool retrievers, plus permanent magnets and assemblies of all types.

Made of heavy-duty chrome-plated steel, “Magna-Grab” magnetic tool racks come in two sizes: 13 inches (the TMC-100, $12.95 plus $3.50 S&H) and 25 inches (the TMC-200, $18.95 plus $3.50 S&H). No assembly is required; mounting hardware is included.

For information, contact Texas Magnetics Corporation, Special Products Division, Department 100R, 2714 National Circle, Garland, Texas 75041.

Circle #316 on Reader Service Card.

transfer function analysis/synthesis program

BV Engineering has just released XFER, a transfer function analysis and synthesis program that uses short-circuit transfer impedance functions around an operational amplifier to compute circuit element values and circuit configurations which will synthesize a desired transfer function. Conversely, given a circuit configuration and element values, XFER will compute a circuit’s transfer function. Multiple stages of short-circuit transfer impedance functions using forward and feedback elements in operational amplifier configurations enable the user to synthesize and analyze most any transfer function having real roots.

Once a circuit or transfer function has been specified, XFER quickly computes the magnitude and phase response, enabling performance of sensitivity and Monte Carlo analysis. Circuit configurations can be viewed on the screen; complete circuit and transfer function editors are built into XFER.

XFER is menu-driven and interactive, with free-format input, and “understands” common engineering abbreviations. Data files generated by XFER are compatible with other BVE software such as SPP, PCLPLOT, PDP and TEKCALC. Transfer function files generated by XFER can be used by the SPP program to perform transient and time-domain analysis of user generated waveforms.

XFER is available under the PCDOS and MSDOS operating systems for $72.95 from BV Engineering, 2200 Business Way, Suite 207, Riverside, California 92501.

Circle #312 on Reader Service Card.

AVCOM portable spectrum analyzer

AVCOM’s PSA-35A portable spectrum analyzer offers frequency coverages of 10 to 1750 MHz and 3.7 to 4.2 GHz for checking signal strength, inband attenuations, terrestrial interference, filter alignment, faulty connectors, LNA’s, feed horn isolation, and cable loss at all commonly used satellite communication frequencies, including 12 GHz downconverters.

The PSA-35A features a built-in DC block with + 18 VDC for powering LNA’s and BDC’s with the flip of a switch, calibrated signal amplitude display, and rechargeable internal battery with built in charger. Portable and easy to use in field test situations, the PSA-35A is also suited for applications in research and development or classroom use. The PSA-35A is priced at $1965.00.

For information, contact AVCOM of Virginia Incorporated, 500 Southlake Boulevard, Richmond, Virginia 23236.

Circle #309 on Reader Service Card.

tools and test equipment

A new catalog of tools and test equipment is offered free by Jensen Tools, Inc. Illustrated in full color, the 160-page catalog contains information on more than 1000 items.

Two new sections feature supplies and equipment in support of fiber optics and wire/cable systems. An expanded line of circuit board equipment includes breadboard kits, cutter and drill sets, anti-static carrying cases and racks, test cables, insertion/extraction tools, and many other production tools.

For a free catalog, contact Jensen Tools Inc., 7815 South 46th Street, Phoenix, Arizona 85044.

Circle #314 on Reader Service Card.

new signal generators

John Fluke Manufacturing Company, Inc. has introduced its 6061A Programmable Synthesized Signal Generator, the latest addition to its 6060 signal generator family.

The 6061A’s high performance is targeted at RF applications, with increased demands on spectral purity. Residual FM is guaranteed to be less than 6 Hz rms (0.3 to 3 kHz) in the frequency range of 245 to 512 MHz (typically 4 Hz rms), non-harmonic spurious are less than -80 dBc,
with -123 dBc typical SSB phase noise at 500 MHz. The 6061A has a frequency range of 0.01 to 1050 MHz with 0.1 Hz resolution. Amplitude range is from -127 to +13 dBm with 0.1 dB resolution and an absolute accuracy of ±1 dB. Internal and external a-m and fm can be used in combination or separately.

For more information or a demonstration of the Fluke 6061A, write, John Fluke Manufacturing Company, Inc., P.O. Box C9090, Everett, Washington 98206.

Circle #320 on Reader Service Card.

new 2-meter all-mode mobile transceiver

Trio-Kenwood Communications has introduced the TR-751A, an all-new 2-meter, all-mode mobile transceiver. Features include automatic mode selection, many scanning functions, an illuminated LCD display, status lights, and an analog S- and r-f meter for easy viewing. The unit puts out 25 watts on high power and 5 watts on adjustable low power.

It covers 142-149 MHz, and can be modified to cover 141-151 MHz (note that a MARS or CAP permit is required to operate on these frequencies). Ten memory channels plus COM channel store frequency, mode, and CTCSS tone offset. Two channels for "odd split" operation are featured, as are all-mode squelch; a noise blanker; RIT; dual, digital VFOs; and semi break-in CW with sidetone. A 16 key DTMF hand microphone and mounting bracket are supplied. Options include a VS-1 voice synthesizer and a front-panel selectable 38-tone CTCSS encoder.

The suggested retail price for the TR-751A is $599.95. Trio-Kenwood Communications, 1111 West Walnut Street, P.O. Box 7065, Compton, California 90224.

Circle #319 on Reader Service Card.

ac power line monitor

The Testware LDM-120 is a very low-cost ac power line disturbance monitor designed to measure and store worst-case ac line voltage variations caused by surges and sags. An LED bar graph display covers from 60 to 160 VAC RMS. Priced at less than $100, the unit features a built-in audible alarm, an external alarm output, and selectable time constants.

For details, contact Testware Electronic Test Instruments, 4425 Canoga Avenue, Woodland Hills, California 91364.

Circle #315 on Reader Service Card.

computer rotor control interface

The KR-001 computer rotor control interface from Encomm, Inc., gives satellite enthusiasts automatic control of antenna azimuth and elevation. Used with the Kenpro KR-5400A, which provides the electro-mechanical interface to the rotor motors, the KR-001 provides the hardware interface to the computer, converting analog signals to digital for both the elevation and azimuth channels. It also provides the drive signal for driving the motors in the desired direction.

The unit plugs into the cartridge port of the C-64 and operates with tracking software written by N4HY for AMSAT available only from the AMSAT software exchange. Kenpro and Encomm provide the software needed to point the antenna from data entered into the program in real time; tracking software is not available from Encomm or Kenpro. Subroutines of the automatic tracking program which apply to the KR-001 for those who wish to write their own tracking software. The suggested retail price is $149.95.

For information, contact Encomm, Inc., 1506 Capital, Plano, Texas 75074.

Circle #315 on Reader Service Card.
Early Reservation Information

- Giant 3 day flea market • Exhibits
- License exams • Free bus service
- CW proficiency test • Door prizes

Flea market tickets and grand banquet tickets are limited. Place your reservations early, please.

Flea Market Tickets
A maximum of 3 spaces per person (non-transferable). Tickets (for all 3 days) will be sold IN ADVANCE ONLY. No spaces sold at gate. Vendors MUST order registration ticket when ordering flea market spaces.

Special Awards
Nominations are requested for "Radio Amateur of the Year", "Special Achievement" and "Technical Achievement" awards. Contact: Awards chairman, Box 44, Dayton, OH 45401.

License Exams
Novice thru Extra exams scheduled Saturday and Sunday by appointment only. Send current FCC form 610, copy of present license and check for $4.25 (payable to ARRL/VEC) to: Exam Registration, 8836 Windbluff Point, Dayton, OH 45459.

Slide Show
35 mm slide/tape presentation about the HAMVENTION is available for loan. Contact Dick Miller, 2853 La Cresta, Beavercreek, OH 45324

1987 Deadlines
Award Nominations: April 4
Lodging: April 4
License Exams: March 28
Advance Registration and banquet:
USA - April 11
Canada - April 4
Flea Market Space:
Orders will not be accepted before January 1

Information
General Information: (513) 433-7720
or DARA, Box 44, Dayton, OH 45401
Flea Market Information: (513) 223-0925
Lodging Information: (513) 223-2612
(No Reservations By Phone)

HAMVENTION is sponsored by the Dayton Amateur Radio Association Inc.

Advance Registration Form
(Please attach your name, address, and telephone number to this form.)

How Many
Admission (valid all 3 days) @ $8.00* $_______
Grand Banquet @ $15.00**$_______
Women's Luncheon (Saturday) @ $7.25 $_______
(Sunday) @ $7.25 $_______
Flea Market (Max. 3 spaces) @ $23.00 $_______
Admission ticket
must be ordered with
flea market tickets $_______

Total $_______

Make checks payable to - Dayton HAMVENTION.
Mail to - Dayton Hamvention, Box 2205, Dayton, OH 45401
* $10.00 at door ** $17.00 at door, if available
EXPLORE HF PACKET TNC VHF/HF SWITCH KIT

FEATURES
- All CMOS logic switch
- Changes filter/timing parts for VHF or HF
- Self contained — fits inside the TNC case
- No recalibration of tones
- Same precise tones as original
- Easy to build and install
- One hour average
- Prime quality parts

Now you can use your TAPR TNC-2 or TNC-1 (or any close clone — AEA, MFJ, Heath, Paccom, etc.) on both VHF at 1200 baud and HF at 300 baud. The flick of a switch changes critical filter and timing components to optimize the TNC’s board modem for VHF or HF operation. The APA switch uses all CMOS logic, has a current drain of less than 5mA and fits conveniently inside the TNC case. It is easy to build and install; takes less than an hour in most cases. APA supplies prime parts and IC and complete step by step instructions. You bought the best TNC — now make it complete. $30 air mail postage paid. Send check or money order (no credit cards please).

AMATEUR PACKET ALASKA
AX.25 COMMUNICATIONS TRAIL
ESTER, ALASKA 99725

GIVE YOUR EARS A BREAK!

AUTO-KALL
AK-10

The Auto-Kall AK-10, a 4-watt switchable unit, is connected to the transceiver's lines and alternately connects them to an RF source (your VHF or HF transmitter, etc.). You can switch between HF and VHF at will without any cost to your station. No external components are required other than a source of 12 volts for the on-off switch. The Auto-Kall unit can be used with any amateur transceiver or radio, including those that have a built-in switch. The unit has a built-in speaker which sounds a different tone for each key as it's pressed. The QSTer's all-metal enclosure measures 3.1 x 3.5 x 2 inches, and is color-matched to the 757's finish. The unit installs in seconds — with only two plugs — into the 757's rear panel jacks.

The QSYer is available for $89.50, plus $2.50 shipping and handling. For further information, or to order, contact Stone Mountain Engineering Co., Box 1573, Stone Mountain, Georgia 30086.

Circle #310 on Reader Service Card.

changing winds

Though residential-scale wind power is far from being a widely popular energy source, home-generated wind power hasn't disappeared; its following has just gotten smaller. To serve that market, the Thermax Corporation of Burlington, Vermont, manufactures a scaled-down wind generator designed for such modest tasks as charging batteries to supply daily or emergency power to remote cabins, boats, or Amateur radio equipment.

The Windstream Wind Generator, which stands 20 inches high and weighs only 20 pounds, puts out 12 volts of direct current in an 8 mph wind and has an automatic system that tilts the rotor out of harm's way in strong winds. Priced at $589, the generator won an award from the Department of Energy last year.

For details, contact Thermax, 1 Mill Street, Burlington, Vermont 05401.

Circle #321 on Reader Service Card.

keypad frequency entry

Stone Mountain Engineering has announced the 757 QSYer, a frequency keypad accessory for the Yaesu FT-757GX, which permits the transceiver's operating frequency to be changed to any other frequency in the unit's range as often and as rapidly as desired.

The QSYer is a tiny computer terminal that interfaces directly with the 757's accessory jack. It contains its own 8-bit microprocessor, support circuitry, full-size telephone-type keypad, and a sub-miniature speaker which sounds a different tone for each key as it's pressed. The QSTer's all-metal enclosure measures 3.1 x 3.5 x 2 inches, and is color-matched to the 757's finish. The unit installs in seconds — with only two plugs — into the 757's rear panel jacks.

The QSYer is available for $89.50, plus $2.50 shipping and handling. For further information, or to order, contact Stone Mountain Engineering Co., Box 1573, Stone Mountain, Georgia 30086.

Circle #310 on Reader Service Card.

linear power amplifier

The Commander II is a grounded-grid, class AB2 linear power amplifier that operates on the Amateur band. An Eimac A622 anode triode with forced air cooling and modern line drive circuitry insures efficient and conservative operation. Reduced ratio vernier drives on all tuning controls allow smooth, easy tuneup.

Front panel input tuning control allows a higher circuit Q for excellent linearity and a very low input SWR to excite all across the 2-meter band. A built-in automatic delay circuit insures proper cathode conditioning before input drive can be applied, greatly extending tube life.

With a frequency range of 144-148 MHz (others available), it can be used on USB, LSB, CW, RTTY, fm, and packet. Priced at $1988.00 plus shipping, its power requirements are 117/234VAC, with the latter recommended). RF Drive power is 15 watts nominal, 25 watts with optional relay; rf output is 800 watts, with 15 watts drive.

For complete details, contact C.C.I. Electronics, 104 West Vine Street, Edgerton, Ohio 43517.

Circle #308 on Reader Service Card.

repeater products
demo cassette

Advanced Computer Controls, Inc., is pleased to announce that it has a new audio cassette available which describes and demonstrates its repeater control products. Included in the demonstration are the RC-850 and RC-850 Repeaters, the Digital Voice Recorder, and the ITC-32 Intelligent Touch-Tone Control Board.

The cassette is suitable for individual listening or for club meeting presentation. It lets the listeners hear ACC's repeater control products in operation and how users can benefit from using them on their repeaters. The demonstration cassette is available on request at no charge.

ACC manufactures microcomputer based control systems for Amateur Radio, commercial, and government radio users. For additional information, contact Advanced Computer Controls, Inc., 2356 Walsh Avenue, Santa Clara, California 95051.

Circle #318 on Reader Service Card.
THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

SPECIAL SALE $795

- AUTOMATIC SEND/RECEIVE—ANY SPEED ANY SHIFT • BUILT IN COMPUTER GRADE 5" MONITOR • EXTERNAL MONITOR JACK • TIME CLOCK ON SCREEN • TIMED TRANSMISSION AND RECEIVING • SELCAL • CRYSTAL CONTROLLED AFSK MODULATOR • PHOTOCOUPLE CW, FSK KEYER • ASCII KEY ARRANGEMENT • 15 CHANNEL BATTERY BACK-UP MEMORY • 1,280 CHARACTER DISPLAY MEMORY • SPLIT SCREEN TYPE-AHEAD BUFFER • FUNCTION SCREEN DISPLAY • PARALLEL PRINTER INTERFACE • SPEEDS: CW 5-100 WPM (AUTO/TRACK), 12-300 BAUD (ASCII AND BAUDOTT). 12-600 BAUD TLL: 100 BAUD ARQ/FEC AMTOR • ATC • RUB-OUT FUNCTION • AUTOMATIC CR/LF • WORD MODE • LINE MODE • WORD WRAP AROUND • ECHO • TEXT CURSOR CONTROL • OSD • DIDDLE • TEST MESSAGES (RY AND DBF) • MARK AND BREAK (SPACE AND BREAK) SYSTEM • VARIABLE CW WEIGHTS • AUDIO MONITOR CIRCUIT BUILT IN • CW PRACTICE FUNCTION • CW RANDOM GENERATOR • BARGRAPH LED METER FOR TUNING • OSCILLOSCOPE OUTPUTS • BUILT IN 100-120/220-240 VAC 50/60HZ AND 13.8VDC POWER SUPPLIES • AND MUCH, MUCH MORE • SIZE: 14W x 14D x 5H

EXCLUSIVE DISTRIBUTOR DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
46 Greensboro Highway, Watkinsville, Georgia 30677 Telephone (404) 769-8706 Telex: 4930709 1TT

MANUFACTURER TONO CORPORATION 98 Motosogas Machi, Maebashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS
**Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modules to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.

THE STANDARDS OF EXCELLENCE

SPECIALISTS IN FAST TURN P.C. BOARDS

PROTO TYPE P.C. BOARDS AS LOW AS $25.00
- SINGLE & DOUBLE SIDED
- PLATE THROUGH HOLES
- TEFLON AVAILABLE
- P.C. DESIGN SERVICES

FOR MORE INFORMATION... 220

Midland Technologies
34374 EAST FRONTAGE ROAD BOZEMAN, MT 59715 (406) 586-1190

MR. NICAD
REPLACEMENT BATTERIES FOR COMMUNICATIONS

NICKEL-CADMIUM, ALKALINE, LITHIUM, ETC.
ICOM - BP-1J REPACK $25.00
BP-2, BP-5, BP-6 REPACKS.
NEW HOT MOD PACKS FOR ICOM 8A, 8AT, 821, 821D, 9200, 9201, 9202, 9203, 9204, 9205, 9206, 9207, 9208, 9209, 92010, 92011, 92012, 92013.
12.5A - 50A MAX, $49.95 EACH.

MR. NICAD E.H. YOST & CO.
EVERETT H. YOST RR #1 BOX #37 KIBBIE SAUK CITY, WISCONSIN 53583 (608) 943-3194

Send for NICAD catalog B Nicholson P.O. Box. 221

Dustcovers by KAGIL™
- PROTECT your GEAR
- Waterproof PAK Nylon
- FIVE Colors
- Economical
- For ALL Amateur Radio Gear, Vintage thru Solid State...
- Custom covers
- MINI covers

Send (SASE) Today 219 Samples & Brochure KAGIL dustcovers P.O.Box 06780 Portland, OR 97206
Measure Up With Coaxial Dynamics
Model 81000A RF Directional Wattmeter

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL C.W. power in Coaxial transmission lines.

81000A is comprised of a built-in line section, direct reading 3-scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty.

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 98-0650

Service and Dependability...A Part of Every Product

new Midian catalog
Midian Electronics' new 1987 full-color, 32-page product catalog offers a bright new presentation of its standard tone-signaling products plus an introduction to many new products. Also featured are products from Midian's sister company, Advanced Signaling Technologies, manufacturers of microprocessor-based paging, display, status, and radiotelephone terminals that are system-compatible with Midian's portable and mobile signaling product line. In addition to the listing and description of the product line is a section illustrating the operations of Midian and AST's various departments. Copies are available upon request from Midian Electronics Incorporated, 2302 East 22nd Street, Tucson, Arizona 85713.

Circle 1317 on Reader Service Card.

antenna switch
Alpha Delta has announced its new four-position rf switch, the DELTA-4. Designed to give years of trouble-free use, the DELTA-4 is rated at full Amateur power, 1500 watts. It will ground four antennas not in use or, when an antenna is selected, it will ground the antennas not in use. Lightning surge protection is provided by a field-replaceable ceramic gas tube ARC-PLG cartridge.

The DELTA-4 is designed with both hf and UHF applications in mind. Insertion loss is rated at 0.1 dB at 30 MHz and 0.5 dB at 450 MHz. It's priced at $69.95. For more information, contact Alpha Delta, P.O. Box 571, Centerville, Ohio 45459.

Circle 1307 on Reader Service Card.

high-power duplexers
Two new duplexers are available from NCG. The new CF-412 Broad Range Duplexer has a very broad frequency range: 1.3-450 MHz on the low input and 900-1400 MHz on the high frequency side, giving the dual-band operator the same freedom as the VHF/UHF operator enjoys. Maximum power is 70 watts, with isolation more than 39 dB.
The Heath Company of Benton Harbor, Michigan, has announced the publication of the Kit Builder's Journal. Premiering in January, 1987, the bi-monthly Journal covers all aspects of building electronic and non-electronic kits - both Heath's and others.

Articles will cover kitbuilding tips, Heathkit news and reviews of products, tips from Heath's technical consultants, and other valuable do-it-yourself information. Subscribers will also be offered special discounts on selected Heath Company products.

For a six-issue subscription, order KBJ-2000-NM and send $9.95 to Heath Company, Box 1288, Benton Harbor, Michigan, 49022.

Circle #306 on Reader Service Card.

continuous coverage receiver

ACE Communications, Inc. has introduced the model AR-2002, a professional grade scanning monitor receiver that covers 25-550 MHz and 800-1300 MHz continuously.

The AR-2002 utilizes latest microprocessor and circuit technology to offer features that include a 20-channel memory scan, priority scan, band search, multi-mode reception, conventional dial tuning, selectable frequency increments, and a bar graph signal strength indicator.

The unit incorporates commercial-type receiver technology such as 750 MHz receiver i-f, a high-level double-balanced mixer, a low-noise wide-band rf amplifier, and a high-stability VCO unit.

The user price for the AR-2002 is $499.00. For further details, contact ACE Communications, Inc., 22511 Asplan Street, Lake Forest (El Toro), California 92630 6321

Circle #304 on Reader Service Card.

basic service kit

Jensen Tools Inc. has developed a new Basic Service Kit for the budget-minded electronic technician. Ideal for field service, in-house maintenance, trade school and personal use, this new addition to Jensen's Telvac economy line contains over 40 hand tools in a solid wood/vinyl case with removable pallets, document pouch, and key-lock latches. Priced at $189, the kit includes standard service tools such as screwdrivers, pliers, nut and hex drivers, punches, wrenches and soldering equipment, as well as a 5-inch hemostat, reverse action tweezers, combination spring tool, wire crimper/stripper, and other specialty items. A choice of test meters is also offered as an optional accessory.

For more information or a free catalog, contact Jensen Tools Inc., 7815 S. 46th Street, Phoenix, Arizona 85044.

Circle #305 on Reader Service Card.
Meet the Eliminator.

Don't let its small dimensions (4" x 3" x 2") fool you—the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the 100 kHz-30 MHz frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

Shop Grove for fantastic values in shortwave receivers, antennas, cable, performance boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!
NEW COMPUTER BOOKS

YOUR COMMODORE 64: A GUIDE TO THE C-64 COMPUTER
YOUR COMMODORE 128: A GUIDE TO THE C-128 COMPUTER

These books cover in great detail the best selling Commodore C-64 and C-128 home computers. You get a complete introduction to the operating systems, BASIC tutorials, graphics, sound and much more. Also discussed are hardware and peripheral considerations. The C-128 book covers C-64 emulation, extended memory, CP/M mouse, disk, printers and more! Excellent source books for beginners and experts alike. 1983 1st Edition

OS-C64 464 pages Softbound $14.95
OS-C128 480 pages Softbound $14.95
Buy 'em Both Special Reg $29.90
OS-C Save $4.95 $24.95

MS-DOS USER'S GUIDE
by Chris DeVoney

MS-DOS computer users will find this handbook to be an essential addition to their computer library. Includes a full exploitation of MS-DOS commands in clear, concise language and examples of command syntax. Hints on command usage and explanations of the hierarchical directory and I/O redirection will enable you to get maximum benefit from your MS-DOS experience and expert users. 1984 1st Edition 330 pages

QUE-061 Softbound $19.95

PC SECRETS: TIPS FOR POWER PERFORMANCE
by James Kelly

Here's one of those unheralded gems we stumbled upon recently. This nifty book is jam-packed with ideas and suggestions on how to get more out of your PC-DOS or MS-DOS computer. Not a tutorial, more for the immediate user who is looking to get more speed and efficiency. Improve your keyboard, enhance your display, organize your files, and manage your programs better than ever before! You'll be amazed at what this book can add to your PC. Also covers Lotus 1-2-3 and Wordstar 1985 1st Edition 224 pages

OS-PCS Softbound $16.95

APPLE II USER'S GUIDE. Apple Plus and II series
by Poole, McNuff and Cook

All time Apple II best seller! Now available in updated third edition. Learn from the experts how to get the most from your Apple home computer and peripherals. You also get a complete explanation on how to use DOS 3.3 and Pro-DOS. Easy-to-use tutorial explanation of BASIC programming will teach you how to use all the sounds and graphics capabilities as well as the Apple II resource management. The book is worth it's weight in gold! 1985 1st Edition 512 pages

OS-UG Softbound $18.95

We're really proud of the next two books! Doug was Jim Fisk's right hand man during the early seventies. His first computer book, The Introduction to Turbo Pascal, quickly went best seller. The Turbo Pascal Library is an invaluable addition to Turbo user's libraries.

INTRODUCTION TO TURBO PASCAL
by Doug Stallivelihood WAKUJK (ex Ham Radio assistant editor)

Thousands have learned Pascal programming with this popular best seller. As a tutorial this book enhances the unique aspects of Turbo Pascal by concentrating on the extended applications capabilities offered. Includes graphics, look-up tables, word processor to typesetting equipment conversion tables, TTS to ASGUL conversion and fast sort/search routines. 1985 1st Edition 268 pages

SY-269 Softbound $14.95

TURBO PASCAL LIBRARY
by Doug Stallivelihood WAKUJK

Perfect compliment to the Turbo Pascal Introduction book listed above. Stallivelihood offers an extensive collection of proven programs and will save experienced programmers time and labor to beginners good programming techniques and Turbo versions of standard algorithms. Includes games, systems utilities, and routines for business and engineering applications. 1986 1st Edition 350 pages

SY-330 Softbound $14.95

Please Enclose $3.00 to cover shipping and handling

Ham Radio Bookstore
Greenville, NH 03048

ALL BAND TRAP VERTICAL ANTENNAS!

Sub Problem?
Contact Sue. She'll fix it for you!
(603) 878-1441

Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shimway, Fujitas, Sears, Spillbury, Neutele, etc. Call or write for information. 212-925-7000.
Every preamplifier is precision aligned on ARR's Hewlett Packard HP8707A/HP3404A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are r.f. switched (for use with transverters) and handle 20 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7-1/2% sales tax. O.D.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or inline preamplifier today and start hearing like never before!

Advanced Receiver Research 253
Box 1242 • Burlington, CT 06013 • 203 582-9409

SOFTWARE

NEW SOFTWARE FOR THE C-64 COMPUTER from CaGen

CONTEST LOG
This fast acting, machine language program has been designed with the active contester in mind. It has a capacity of 2500 QSO's per disk. You enter call and exchange—date, time, serial number, band and mode and all are automatically logged. Includes accurate clock that is not affected by the disk drive. Each QSO is automatically read to disk upon entry—no need to foal a power outage. Prints the entire contest log and dupe sheet. Also computes QSO rate and displays on screen.

CG-CL (C-64) $34.95

SUPER DUPER
High speed duping program provides immediate feedback for accurate log keeping. Can be used "real time" or alter the contest and has full editing capability. Dupes are r.f. switched and printed out at the end of the contest dupe sheet noted as dupes. Each disk can hold up to 2500 QSO's.

CG 3D (C-64) $34.95

UNIVERSAL LOG
This general purpose logging program is written in machine language and will meet the needs of the most demanding ham. Will hold up to 1200 records of 110 characters each per disk. Record number, call sign and a special key are all stored in the computer's RAM for quick search and access. To view the record, enter the key and the item desired quickly displayed. Plenty of extra features are too numerous to be mentioned here.

CG-UL (C-64) $34.95

LOW BAND DX-ING COMPUTER PROGRAMS
by John Devekula, 8NAUI

for Apple II, MS-DOS and Kaypro CPM Computers

Here's a collection of computer programs written by 8NAUI. Just about every interest or need is covered. Programs include sunspots/sunrise, great circle distance and direction, grayline, SWR calculation and iteration, FCC, calculation, parallel-impedance, horizontal antenna wave angles, lumped constant loaded vehicles, design of capacity factors for verticals, mutual-impedance calculation, voltage and feed broadcast around the world, transmit and receive network operation, network design plus much more. When you sit down to use this, you'll be amazed at what you have. One of the best values in computer software available today.

UN-Apple II $19.95

UN MS $19.95

UN-CPM/Kaypro $19.95

BOOKS

1987 WORLD RADIO TV HANDBOOK
41st Edition

Often referred to as the SWL's Bible. It's loaded with all the latest call signs, schedules, frequencies, and other important information for TV and radio broadcasts around the world. Covers LF, MF and SW broadcasting services as well as TV stations from around the world. Also includes equipment reviews and other special features. If you haven't seen a copy before, you don't know what you're missing! 1987 41st edition

GL-WRVTW7 Softbound $19.95

GIL-A COLLECTION OF CLASSIC QST CARTOONS
drawn by Phil "Gill" Guildersleeve, W1CDJ

From the late 20's through 1966 "Gill" contributed over 1250 drawings and covers to QST. Hams around the world recognize this art. The handy man who could handle just about any problem and identify members of their clubs in Gil's Field Day covers. Fun reading for old timers—great reading for all! 1969 110 pages

AR-GIL Softbound $5.00

Please enclose $5.00
Shipment and Handling

Ham Radio's Bookstore

Greenville, NH 03048

BRAND NEW — JUST RELEASED

GET ** CONNECTED to Packet Radio
by Jim Grubbs, K9E1

Beginners' guide to Packet Radio operation.

Packet communications is one of the hottest subjects in Amateur Radio these days. Noted computer author Jim Grubbs, author of the Commodore Ham's Companion and Command Post, has put together one of the first books on how to get on Packet Radio. Packet basics are fully discussed in a step-by-step manner. Subjects also covered are: selecting a TNC, setting up your computer, Packet organizations and publications, protocol, networking, Packet answering machine, file transfers, accessories and more! 1986 208 pages, 1st Edition.

JG-PR Softbound $12.95

Also available The Commodore Ham's Companion, Order code JG-CC, $15.95, and Command Post, Order code JG-CP, $9.95.

Please add $3.50 for shipping and handling

Ham Radio's Bookstore

Greenville, NH 03048

HOT OFF THE PRESS!!!

1987 WORLD RADIO TV HANDBOOK
41st Edition

Often referred to as the SWL's Bible. It's loaded with all the latest call signs, schedules, frequencies, and other important information for TV and radio broadcasts around the world. Covers LF, MF and SW broadcasting services as well as TV stations from around the world. Also includes equipment reviews and other special features. If you haven't seen a copy before, you don't know what you're missing! 1987 41st edition

GL-WRVTW7 Softbound $19.95

GIL-A COLLECTION OF CLASSIC QST CARTOONS
drawn by Phil "Gill" Guildersleeve, W1CDJ

From the late 20's through 1966 "Gill" contributed over 1250 drawings and covers to QST. Hams around the world recognize this art. The handy man who could handle just about any problem and identify members of their clubs in Gil's Field Day covers. Fun reading for old timers—great reading for all! 1969 110 pages

AR-GIL Softbound $5.00

Please enclose $5.00
Shipment and Handling

Ham Radio's Bookstore

Greenville, NH 03048
A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV you will receive a FREE LCD Calendar/Clock.

- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED ...

OnSat

The best in satellite programming! Featuring: ★ All Scheduled Channels ★ Weekly Updated Listings ★ Magazine Format ★ Complete Movie Listings ★ All Sports Specials ★ Prime Time Highlights ★ Specials Listing and ★ Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV®/OnSat®
P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384
SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020

CYPRESS GARDENS • SILVER SPRINGS

Come to Florida for the WINTER HAMFEST

The foremost

HAMCATION

AND COMPUTER SHOW

at Expo Centre

MARCH 13, 14, 15, 1987

1987 ARRL Southeastern Region Convention

AIRCONDITIONED SWAP AREA TABLES $20
REGISTRATION:
$5 Advance $7 At The Door
Banquet $12.50

For tickets & swap table reservations SEND check and SASE to:
Orlando Hamcation & Computer Show
Dept. HAM, P.O. Box 547811, Orlando, FL 32854-7811

EPCOT • DISNEY WORLD • SEA WORLD

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by world's best in their fields.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame, World Contest Championship and World Radio Championship contest.

"Your publication is superb! Keep it up!" Joe Reisert, W1JR

"Your W2PV articles are priceless. Your magazine is super!" Rush Drake, W7RM

"Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and contest enthusiast." Dick Moore, N7RO

"RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." Chas Browning, WAPKA

Subscription rates: 1 year USA $18, Canada CDN$24, Overseas US$21; 2 years $33, $44, $39 respectively. Single issue $2.

TRY US! SUBSCRIBE OR SEND $1 FOR YOUR SAMPLE COPY.
<table>
<thead>
<tr>
<th>State</th>
<th>Dealers</th>
</tr>
</thead>
</table>
| **California** | JUN'S ELECTRONICS
3919 SEPUVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol |
| **Colorado** | COLORADO COMM CENTER
525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7373
(800) 227-7373
Stoking all major lines
Kenwood Yaesu, Encomm, ICOM |
| **Connecticut** | HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1681
Call today. Friendly one-stop shopping at prices you can afford. |
| **Delaware** | AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store. |
| **Florida** | AMATEUR ELECTRONIC SUPPLY
1698 DREW STREET
CLEARWATER, FL 33775
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9:5:30, Sat. 9-3 |
| **Florida** | AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:5-30, Sat. 9-3 |
| **Georgia** | DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302 / 861-5610
ICOM, Yaesu, Kenwood, Bird...
9AM-5:30PM
We service what we sell. |
| **Hawaii** | HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Kenwood, ICOM, Yaesu, Hy-Gain,
Cushcraft, AEA, KLM, Tri-Ex Towers,
Fluke, Belden, Astron, etc. |
| **Idaho** | ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0630
M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on
Hand |
| **Illinois** | ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed & Fri;
9:30-6:00 Thurs; 9:00-3:00 Sat. |
| **Indiana** | THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic,
Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.
SASE for New & Used Equipment List. |
| **Maryland** | MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full
service dealer.
T-F 10-7
SAT 9-5 |
| **Massachusetts** | TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
(800) 821-7323
ICOM, Kenwood, Yaesu
Same day service, low prices. |
| **Michigan** | TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSVILLE, NJ 08691 (MPLS/ST.
PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, ICOM,
Kenwood |
| **Missouri** | MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323
Missouri: (816) 741-8188
ICOM, Kenwood, Yaesu
Same day service, low prices. |
<table>
<thead>
<tr>
<th>Nevada</th>
<th>Ohio</th>
<th>Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>MADISON ELECTRONICS SUPPLY</td>
</tr>
<tr>
<td>1072 N. RANCHO DRIVE</td>
<td>28940 EUCLID AVE.</td>
<td>3821 FANNIN</td>
</tr>
<tr>
<td>LAS VEGAS, NV 89106</td>
<td>WICKLiffe, OH 44092 (Cleveland Area)</td>
<td>HOUSTON, TX 77004</td>
</tr>
<tr>
<td>702-647-3114</td>
<td>216-585-7388</td>
<td>713-520-7300</td>
</tr>
<tr>
<td>Dale Porray "Squeak," AD7K</td>
<td>Ohio Wats: 1 (800) 362-0290</td>
<td>Christmas?? Now??</td>
</tr>
<tr>
<td>Outside Nev: 1 (800) 634-6527</td>
<td>Outside Ohio: 1 (800) 321-3594</td>
<td>KENNEDY ASSOCIATES</td>
</tr>
<tr>
<td>Hours M-F 9:30-5, Sat. 9-3</td>
<td>Hours M-F 9:30-5, Sat. 9-3</td>
<td>AMATEUR RADIO DIVISION</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>DEBCO ELECTRONICS, INC.</td>
<td>5707A MOBUD</td>
</tr>
<tr>
<td>RIVENDELL ELECTRONICS</td>
<td>3931 EDWARDS RD.</td>
<td>SAN ANTONIO, TX 78238</td>
</tr>
<tr>
<td>8 LONDON DERRY ROAD</td>
<td>CINCINNATI, OHIO 45209</td>
<td>Stacking all major lines. San Antonio’s Ham Store. Great Prices — Great Service. Factory authorized sales and service.</td>
</tr>
<tr>
<td>DERRY, N. H. 03038</td>
<td>(513) 531-4489</td>
<td>Hours: M-F 10-6; SAT 9-3</td>
</tr>
<tr>
<td>603-434-5371</td>
<td>Mon-Sat 10AM-5PM</td>
<td>MISSION COMMUNICATIONS</td>
</tr>
<tr>
<td>Hours M-S 10-5; THURS 10-9</td>
<td>Sun 12-6PM</td>
<td>11903 ALEIF CLODINE</td>
</tr>
<tr>
<td>Closed Sun/Holidays</td>
<td>We buy and sell all types of electronic parts.</td>
<td>SUITE 500 (CORNER HARWIN & KIRKWOOD)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>UNIVERSAL AMATEUR RADIO, INC.</td>
<td>HOUSTON, TEXAS 77082</td>
</tr>
<tr>
<td>KJI ELECTRONICS</td>
<td>1280 AIDA DRIVE</td>
<td>(713) 879-7764</td>
</tr>
<tr>
<td>66 SKYTOP ROAD</td>
<td>REYNOLDSBURG (COLUMBUS), OH</td>
<td>Now in Southwest Houston — full line of equipment. All the essentials and extras for the "ham."</td>
</tr>
<tr>
<td>CEDAR GROVE, NJ 07009</td>
<td>43068</td>
<td>Wisconsin</td>
</tr>
<tr>
<td>(301) 238-4389</td>
<td>614-866-4267</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
</tr>
<tr>
<td>Gene K2KJI</td>
<td>Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.</td>
<td>4828 W. FOND DU LAC AVE.</td>
</tr>
<tr>
<td>Maryann K2RVH</td>
<td>Pennsylvania</td>
<td>MILWAUKEE, WI 53216</td>
</tr>
<tr>
<td>QEP's</td>
<td>DIV. OF TREVOSE ELECTRONICS</td>
<td>Wisc. Wats: 1 (800) 242-5195</td>
</tr>
<tr>
<td>110-4 ROUTE 10 EAST HANOVER, N. J. 07936</td>
<td>4033 BROWNsville ROAD</td>
<td>Outside Wisc: 1 (800) 558-0411</td>
</tr>
<tr>
<td>201-887-8424</td>
<td>TREVOSE, PA 19047</td>
<td>M-F 9-5:30; SAT 9-3</td>
</tr>
<tr>
<td>In N.J. 1-800-USA-9913</td>
<td>215-357-1400</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>Bill KA2QEP</td>
<td>Same Location for over 30 Years</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>Jim N2GW</td>
<td>LaRUE ELECTRONICS</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>VISA/Mastercard</td>
<td>1112 GRANDVIEW STREET</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>Belden Coaxial Cable</td>
<td>SCRANTON, PENNSYLVANIA 18509</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>Amphenol Connectors</td>
<td>717-343-2124</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>Hours: 9:30 am-7:00 pm</td>
<td>ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AU/W2VS, Tokyo Hy-Power Labs, WELZ, Daiwa, Sony, Saxton, Vibroplex, Weller.</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>New York</td>
<td>MEMPHIS AMATEUR ELECTRONICS</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>BARRY ELECTRONICS</td>
<td>1465 WELLS STATION ROAD</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>512 BROADWAY</td>
<td>MEMPHIS, TN 38108</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>NEW YORK, NY 10012</td>
<td>Call Toll Free: 1-800-238-6168</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>212-925-7000</td>
<td>M-F 9-5; Sat 9-12</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>New York City’s Largest Full Service Ham and Commercial Radio Store.</td>
<td>Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>VHF COMMUNICATIONS</td>
<td>DEBCO ELECTRONICS, INC.</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>915 NORTH MAIN STREET</td>
<td>3931 EDWARDS RD.</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>JAMESTOWN, NY 14701</td>
<td>CINCINNATI, OHIO 45209</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>716-664-6345</td>
<td>(513) 531-4489</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York’s finest Amateur dealer.</td>
<td>Mon-Sat 10AM-5PM</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>Ohio</td>
<td>Sun 12-6PM</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>Tennessee</td>
<td>unIVERSAL AMATEUR RADIO, INC.</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>MEMPHIS AMATEUR ELECTRONICS</td>
<td>1280 AIDA DRIVE</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>1465 WELLS STATION ROAD</td>
<td>REYNOLDSBURG (COLUMBUS), OH</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>MEMPHIS, TN 38108</td>
<td>43068</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>Call Toll Free: 1-800-238-6168</td>
<td>614-866-4267</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>M-F 9-5; Sat 9-12</td>
<td>Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.</td>
<td>Tennessee</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>HAMTRONICS,</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>DIV. OF TREVOSE ELECTRONICS</td>
<td>LaRUE ELECTRONICS</td>
<td>Greenville, N. H. 03048</td>
</tr>
<tr>
<td>4033 BROWNsville ROAD</td>
<td>1112 GRANDVIEW STREET</td>
<td>FREE BOOK FLYER</td>
</tr>
<tr>
<td>TREVOSE, PA 19047</td>
<td>SCRANTON, PENNSYLVANIA 18509</td>
<td>Send SASE to</td>
</tr>
<tr>
<td>215-357-1400</td>
<td>717-343-2124</td>
<td>Ham Radio’s Bookstore</td>
</tr>
<tr>
<td>Same Location for over 30 Years</td>
<td>ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AU/W2VS, Tokyo Hy-Power Labs, WELZ, Daiwa, Sony, Saxton, Vibroplex, Weller.</td>
<td>Greenville, N. H. 03048</td>
</tr>
</tbody>
</table>
Microwave Modules Transverters
- MMT1296/144: 1296/144MHz, 1440/2500 MHz, 290 MHz, $239
- MMT1902/28: 1902/28MHz, 1902/2800 MHz, 290 MHz, $429
- MMT2412/28: 2412/28MHz, 2412/2800 MHz, 290 MHz, $499
- MMT3302/21: 3302/21MHz, 3302/2100 MHz, 290 MHz, $599

SSB Electronic Transverters & Preamps
- LTI025: 142/25 kHz, 25 kHz, $65
- LTI335: 1903/35 kHz, 22 MHz, $75
- LTI339: 1903/39 kHz, 22 MHz, $85
- MIC 35: 1903/35 kHz, 22 MHz, $55
- MIC 39: 1903/39 kHz, 22 MHz, $65

Multiplexers
- MIC 49: 49 MHz, $85
- TX 144: 144 MHz, $95
- TX 492: 492 MHz, $95
- TX 1192: 1192 MHz, $95
- TX 2104: 2104 MHz, $95

Preamplifiers
- MV144: 144 MHz, $95
- MV 325: 325 MHz, $145
- MV 902: 902 MHz, $195

EM Electronic Transverters
- HT 400: High Power Relay, 144/220 MHz, $69
- T232/28: 220 MHz, $220
- PA 23200: 120 MHz, $275

Accessories
- WA 101: Water cooled PA, 2 tube, 2000W, $275

Digirex Electronics
- Division of NCI
- 10073 North Maryann
- Northville, MN 54167
- 805-497-2397

Where's my Catalog?

YES! Send me your copy of the 1986-87 USE catalog today! Enclosed is $1.00 for postage.

Name:

Address:

City:

State:

Zip:

Dick Smith Electronics, Inc.

P.O. Box 2249, Redwood City, CA 94063

Subscribe and Renew Toll-Free

Ham Radio Magazine

1 YR - **$22.95**
2 YRS - **$38.95**
3 YRS - **$49.95**

Prices U.S. only

OUR 800 NUMBER IS FOR SUBSCRIPTION ORDERS ONLY!

For Errors or Change of Address CALL **ham radio** direct at (603) 878-1441 8-5 EST

DATATEL 800

800-341-1522

Weekdays 8 AM - 9 PM EST • Saturdays 9 AM - 5 PM EST

IN MAINE CALL COLLECT (207) 236-2896
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from the above list, and fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

READER SERVICE #	PAGE #
213 | 50
198 | 39
189 | 86
208 | 58
170 | 105
235 | 36
257 | 115
258 | 74
239 | 39
204 | 60
199 | 66
175 | 102
202 | 62
198 | 98
234 | 38
170 | 105
193 | 82
205 | 37
215 | 55
254 | 44
179 | 101
251 | 48
252 | 46
244 | 100
243 | 22
241 | 29
171 | 47
229 | 105
201 | 52
205 | 60
212 | 50
236 | 42
177 | 66
197 | 109
222 | 70
240 | 44
191 | 52
246 | 84
187 | 15
227 | 92
172 | 42
186 | 103
221 | 99

PRODUCT REVIEW/NEW PRODUCTS

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>101</td>
</tr>
<tr>
<td>318</td>
<td>98</td>
</tr>
<tr>
<td>307</td>
<td>100</td>
</tr>
<tr>
<td>309</td>
<td>95</td>
</tr>
<tr>
<td>312</td>
<td>95</td>
</tr>
<tr>
<td>308</td>
<td>98</td>
</tr>
<tr>
<td>315</td>
<td>99</td>
</tr>
<tr>
<td>320</td>
<td>98</td>
</tr>
<tr>
<td>306</td>
<td>101</td>
</tr>
<tr>
<td>311</td>
<td>95</td>
</tr>
<tr>
<td>305</td>
<td>95</td>
</tr>
<tr>
<td>300</td>
<td>101</td>
</tr>
<tr>
<td>310</td>
<td>98</td>
</tr>
<tr>
<td>319</td>
<td>96</td>
</tr>
<tr>
<td>316</td>
<td>95</td>
</tr>
<tr>
<td>321</td>
<td>98</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

Please use before March 31, 1987.

Limit 15 inquiries per request.
DISCOUNTS FOR AMATEURS

Orders & Quotes Toll Free: 800-336-4799
(In New England: 800-237-0047)
(In Virginia: 800-572-4021)

EGE VIRGINIA
Information & Service: (703) 643-1063
Service Department: (703) 494-8750
13646 Jefferson Davis Highway
Woodbridge, Virginia 22191
Store Hours: M-Th: 10 am-4 pm
Sat: 10 am-4 pm
Order Hours: M-Th: 9 am-7 pm
Sat: 10 am-4 pm

EGE NEW ENGLAND
9 Stiles Road
Salem, New Hampshire 03079
New Hampshire Orders:
Information & Service: (603) 898-3750
New England Orders: 800-237-0047
Store Hours: M-Th: 10 am-4 pm
Sat: 10 am-4 pm
Sun: Closed
*Order and we'll credit you with $1 for the call.

LACOMBE DISTRIBUTORS
Our Associate Store:
Lacombe Distributors
Davis & Jackson Road, P.O. Box 293
Lacombe, Louisiana 70441
Information & Service: (504) 892-5355

Terms: No personal checks accepted. Prices do not include shipping UPS COD fees. 15.25 per package.
Prices subject to change without notice or obligation. Products are not sold for evaluation. Authorized returns are subject to a 15% restocking and handling fee and credit will be issued for the cost on your next purchase. ECG supports the manufacturer's warranties. To get a copy of a warranty prior to purchase, call customer service at 703-643-1063 and it will be furnished at no cost.

MORE HELPERS
- Marine radios by Icom
- Commercial Land Mobile by Yaesu
- Telephones by AT&T, Cobra, Southwestern Bell, & Panasonic
- CBs by Uniden, Midland, Cobra
- Radar Detectors by Uniden, Cobra and Whistler

Extended Service Agreements Available

Antennas
HF, VHF, SWL, scanner, marine, & commercial for Mobile or Base.
Cushcraft
Mini-Products • Larsen
B&W • Van Gorden
Butternut • KLM
Mosley • Hustler
Telex Hy-Gain

Towers
Unarco-Rohn, Hy-Gain, Tri-Ex
Ask for special quotes on package deals including cable, guys, connectors, turnbuckles, etc.

Accessories
Phillystran
Kenpro • Alliance
B&W • Telex Hy-Gain
Daiwa • MFJ
Bench • Amphenol
Astron • Velz
B & K Precision

Amplifiers
Daiwa • Ameritron
Amp Supply • Voycom
TE Systems
Tokyo Hy-Power

Computer Stuff
Packet Radio
Hardware and Software
for RTTY/Morse
Hal • Kantronics
Microlog • MFJ
Ham Data Amateur Software.

Shortwave
Sony
Panasonic
Yaesu
Kenwood
Icom

Scanners
Uniden/Bearcat
Regency

More Radios
Encomm/Santec
KDK
Ten-Tec

SOFTWARE
GX Turbo and Catpack for the FT-757GX and Catpack for the FT-950 Receiver

KENWOOD

NEW FT-23/73
Mini handheld for 2m or 440 MHz. 2.5 W output. 10 memories. LCD display.

FT-767GX
All-mode transceiver. Cat system.

FT-757GX

FT-757G
Dual-band handheld for 2m/440 MHz

SOFTWARE
GX Turbo and Catpack for the FT-757GX and Catpack for the FT-950 Receiver

KENWOOD

TS-440
HF XCVR with built-in Antenna Tuner.

TS-940

TM-2530A/50A/70A
95/45/70-watt mobile 2m rigs.

TM-291B
2m mobile, 45-watts

Handhelds
TR-2600A, TR-3600, TR-21AT, 31AT, 41AT. Call for quotes

ICOM

IC-735
Compact HF Transceiver

IC-751A
HF XCVR/General Coverage Receiver.

VHF/UHF
2m: 97A, 97H, 971A, 971H
220 MHz: 37A
440 MHz: 471A, 471H, 47A

IC-02AT, 04AT
Small, light HTs for 2m or 440 MHz. 10 memories and scan functions.

IC-A2 in stock
Aircraft handheld

IC-2AT, 3AT, 4AT, 12AT
Handhelds for 2m, 900 MHz, 440 MHz, 1.2 GHz

Package Quotes on Radios/Accessories & Antennas/Towers
Dynamite Discovery

Communications Specialists' latest excavation brings to light yet another dynamite discovery—our new dip switch programmable SD-1000. No need to tunnel your way through Two-Tone Sequential decoding anymore. We've mined this amazing unit! Now, for the first time, you can stock one unit that will decode all calls in a 1000-call paging system with ±.2Hz crystal accuracy. The EEPROM onboard memory can even be programmed for custom tones, and every unit includes group call. Universal switched outputs control your call light, squelch gate and horn. The SD-1000 can also generate CTCSS and decode Two-Tone Sequential. Its miniature size of 2.0" x 1.25" x .4" is no minor fact either, as its a flawless companion for our PE-1000 Paging Encoder. We ensure one-day delivery and our one-year standard warranty. Tap the rich vein of Communications Specialists and unearth the SD-1000 or other fine gems.

$59.95 each
Finally, an HT that's built to take the realities of life.

Let's face it. It's easy to bump, drop, or get rain on an HT. But if your HT is Yaesu's mini 2-meter FT-23R or 440-MHz FT-73R, such mishaps are a lot less worrisome. They're built to last, with rugged aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. Plus, their moisture-resistant seals really help keep the rain out.

Built for the realities of operating. Despite their miniature size, both radios have all the operating capabilities of larger microprocessor-controlled HTs. Yet operating them couldn't be easier. Consider: You get a 7.2-volt, 2-watt battery pack. (Optionally, a 12-volt, 5-watt pack, or 7.2-volt miniature 2-watt pack.) 10 memories that store frequency, offset and PL tone. (7 memories can store odd splits.) Memory scan at 2 frequencies per second. Band scan at 10 frequencies per second. Tx offset storage. Priority channel scan. Tuning via tuning knob, or up/down buttons.

*Modification required. Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc.
The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100% duty cycle transmitter. Super efficient cooling system using special air ducting works with the internal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour.
- High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning “feel.”
- Graphic display of operating features. Exclusive multi-function LCD sub-display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status.
- Low distortion transmitter. Kenwood's unique transmitter design delivers top “quality Kenwood” sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- QRM-fighting features. Remove “rotten QRM” with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (QSK) CW.
- 40 memory channels. Mode and frequency may be stored in 4 groups of 10 channels each.
- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz.
- 1 yr. limited warranty. Another Kenwood First!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-43S UP/DOWN hand mic.
- MC-60A, MC-80, MC-85 deluxe base station mics.
- PC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-8 pan display
- SW-200A and SW-2000 SWR and power meters.

More TS-940S information is available from authorized Kenwood dealers.

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220