ICOM HANDHELDs
SurrOne YOuRSElf WITh THE BEST!

Reliable. ICOM's extensive line of reliable, field-proven handhelds and interchangeable accessories give you the most options for handheld communications. 2-meter, 220MHz, 440MHz or 1.2GHz...ICOM has your frequency covered.

2-Meters. For 2-meter coverage, ICOM offers the IC-02AT and IC-2AT handhelds. The versatile IC-02AT covers 140.000-151.995MHz, the IC-2AT 141.500-149.995MHz...both include frequencies for MARS and CAP operation. The IC-02AT features an LCD readout, 32 PL tones standard, DTMF, direct keyboard entry, three watts output, (optional 5 watts output with IC-BP7 battery pack), 10 memories and three scanning functions. The IC-2AT, the most rugged handheld on the market, has a DTMF pad, 1.5 watts output and thumbwheel frequency selection. The IC-2A is also available and has the same features as the IC-2AT except DTMF.

220MHz. To get away from the crowd, ICOM has the IC-3AT 220.000-224.990MHz handheld with 1.5 watts output, thumbwheel selection and a DTMF pad.

440MHz. For 440MHz operation, ICOM has two handhelds available, the versatile IC-04AT and the IC-4AT. The IC-04AT and IC-4AT offer full coverage from 440.000-449.995MHz. The IC-04AT includes an LCD readout, 32 PL tones standard, DTMF direct keyboard entry, three watts output, (optional 5 watts output with IC-BP7 battery pack), 10 memories and three scanning systems. The IC-4AT has a DTMF pad, thumbwheel selection and 1.5 watts output.

1.2GHz. ICOM announces the IC-12AT 1260.000-1299.900MHz handheld, the first 1.2GHz handheld available. The IC-12AT features 10 memories, an LCD readout, DTMF direct keyboard entry, two scanning systems and one watt output.

Accessories. A variety of interchangeable accessories are available, including the IC-BP8 800mAh long-life battery pack, HS-10 boom headset, CPI cigarette lighter plug and cord, HM9 speaker mic (for IC-02AT, IC-04AT and IC-12AT), leather cases, and an assortment of battery pack chargers.

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 / 3150 Premier Drive, Suite 126, Irving, TX 75063
1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349
ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada
All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. HH786
Pick a Mode, Any Mode.

Kantronics lets you pick the modes, and the features you want for your multi-mode communications station.

If packet is your game, Kantronics features two TNCs, the KPC-2™ for 300 and 1200 BPS operation, and the new KPC-2400™ for 300, 1200, and 2400 BPS packet.

For CW, RTTY, ASCII, and AMTOR, Kantronics features the Universal Terminal Unit™ (UTU), and the UTU-XT™, both including true 170 HZ shift RTTY.

If an ALL-MODE station is what you’re after, combine a Kantronics TNC and TU for true, all-mode capability.

Whether you’re building your first computer-based station, or you’ve decided to expand into new modes, let Kantronics TNCs and TUs deliver top quality performance and uncompromised features to your multi-mode communications station.

NOW AVAILABLE 2400 BPS PACKET VIDEO $25.00 (includes shipping)
BASIC PACKET VIDEO $25.00 (includes shipping)
Listen Up!

R-5000
High performance receiver

THE high performance receiver is here from the leader in communications technology—the Kenwood R-5000. This all-band, all mode receiver has superior interference reduction circuits, and has been designed with the highest performance standards in mind. Listen to foreign music, news, and commentary. Tune in local police, fire, aircraft, weather, and other public service channels with the VC-20 VHF converter. All this excitement and more is yours with a Kenwood receiver!

- Covers 100 kHz-30 MHz in 30 bands, with additional coverage from 108-174 MHz (with VC-20 converter installed).
- Superior dynamic range. Exclusive Kenwood DynaMix™ system ensures an honest 102 dB dynamic range. (14 MHz, 500 Hz bandwidth, 50 kHz spacing).
- 100 memory channels. Store mode, frequency, antenna selection.
- Choice of either high or low impedance antenna connections.
- Extremely stable, dual digital VFOs. Accurate to ±10 ppm over a wide temperature range.
- Kenwood's superb interference reduction. Optional filters further enhance selectivity. Dual noise blankers built-in.
- Direct keyboard frequency entry.
- Versatile programmable scanning with center-stop tuning.
- Voice synthesizer option.
- Computer control option.
- Kenwood non-volatile operating system. Lithium battery backs up memories; all functions remain intact even after lithium cell expires.
- Power supply built-in. Optional DCK-2 allows DC operation.
- Selectable AGC, RF attenuator, record and headphone jacks, dual 24-hour clocks with timer, muting terminals, 120/220/240 VAC operation.

Optional Accessories:
- VC-20 VHF converter for 108-174 MHz operation
- YK-88A 1.6 kHz AM filter
- YK-88S 2.4 kHz SSB filter
- YK-88SN 1.8 kHz narrow SSB filter
- YK-68C 500 Hz CW filter
- YK-68CN 270 Hz narrow filter
- DCK-2 DC power cable
- HS-5, HS-6, HS-7 headphones
- MB-430 mobile bracket
- SP-430 external speaker
- VS-1/VS-2 voice synthesizer
- IF-212C/IC-10 computer interface

More information on the R-5000 and R-2000 is available from Authorized Kenwood Dealers.

Specifications and prices are subject to change without notice or obligation.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
contents

10 ACSSB: a level-one adapter
 James Eagleson, W66JNN

30 the ZIA connection: a multi-state 2-meter repeater link
 Alex F. Burr, K5XY

38 ham radio techniques
 Bill Orr, W6SAI

43 get on SSTV—with the C64
 Giuseppe Camerini, I2CAB, and Giancarla Morellato, I2AED; translation and additional text by Jim Grubbs, K9EI

52 convert an inexpensive CB mag-mount antenna into a superb 2-meter whip
 Donald K. Reynolds, K7DBA

59 VHF/UHF world
 Joe Reisert, W1JR

66 practically speaking
 Joe Carr, K4IPV

73 SPECIAL: expanded ham notebook
 Ed Marriner, W6XM; H.H. Hunter, W8TYX; Don Kadish, W10ER; Earl H. Hornbostel, Du1AE; Emile F. Alline, Jr., NE5S; Thomas A. Keely; and Jerome M. Havrel, W2RRX.

109 the Guerri report
 Ernie Guerri, W6MGI

110 advertisers index and reader service
104 ham mart
100 new products
9 comments
6 presstop
92 DX forecaster
4 reflections
106 flea market

October 1986
a monument to the past?

At the latest ARRL board meeting, the Board of Directors voted to approve in principle the construction of an Amateur Radio museum and visitors' center in Newington. As proposed, the new facility would include 6500 square feet of exhibit space, with several Ham stations representing the progress of Amateur radio through the years on display. There would be a member’s library, a lounge, a film viewing room, a small gift shop, and several other sundry rooms — plus extensive renovations for W1AW. The facility’s opening would coincide with festivities marking the League’s 75th Diamond Anniversary in 1989. Total cost: an estimated $2.7 million.

What comes immediately to mind upon hearing this proposal is that the Board has established a set of priorities that appear to be contrary to the needs of the hobby. By this I mean that we have a far greater need to ensure our future than we do to preserve the past.

This is not to say that the League is not thinking about the future of Amateur Radio. At the October, 1984 Board meeting, two optimistic goals were set: one, to recruit 50,000 new hams per year for the next five years and two, to increase ARRL membership by 25,000 by the end of 1985 and by 20 percent per year thereafter (see QST, 12/84, p. 52). At the most recent board meeting, however, the League’s executive vice president reported that League membership has grown from 129,698 to 139,910 — an increase of approximately 8 percent. *The same report disclosed only a 2.3 percent increase in the number of hams during 1985. (QST, 9/86, p. 63.)* So while the League has done a fair job increasing its membership, it hasn’t come close to meeting its number-one goal: increasing the Amateur ranks.

On the positive side, several good things are happening. Most notably, the Archie comic book — a $20,000 project, half-funded by the ARRL, promoting Amateur Radio to youngsters — is nearing completion and should be ready for distribution as you read this. A League-sponsored proposal for the expansion of Novice privileges awaits consideration by the FCC. The VEC program seems to be working successfully.

Bringing the museum and visitors’ center to completion will consume a tremendous amount of time in planning, fund-raising, construction, and installation and maintenance of the exhibits. Once established, operating costs will increase the League’s budget as new employees are added to meet the increased needs of the larger physical plant. Over the next few years, the executive vice president and ARRL staff will spend an inordinate amount of time on this project — time that would be better spent working to meet the goals set by the Board in 1984.

Can you imagine what could be done with a $2.7 million “war chest”? That’s more than 270 times the ARRL contribution to the Archie project alone! The scope of projects that could be instituted with this kind of funding is mind-boggling.

There’d be money to support a speakers bureau to send dynamic, persuasive representatives of Amateur Radio into schools, scout meetings, and other places where potential hams congregate. Attractive educational materials based on an upbeat theme (how about *Amateur Radio — 75 years young and looking for YOU!*?) could be professionally produced and distributed. Movies, public service announcements, posters, and other promotional materials could be made available. How about producing a set of low-cost, instructional videotapes (or disks for popular home computers) for self-teaching or small-group study of the fundamentals of Amateur Radio — a la *Tune In The World?* I’ve just scratched the surface; there are innumerable ways this money could be used to advance the cause of Amateur Radio.

A far better achievement to mark the 75th Diamond Anniversary of the ARRL would be to meet or exceed the goals established by the Board in 1984. Preserving the past is an admirable goal indeed — but not at the cost of the future!

Craig Clark, N1ACH
Assistant Publisher
ARRL Life Member

Of these numbers, only 129,698 are full members; the League figure excludes associate members and others who subscribe to QST but do not belong to the ARRL (ARRL, Letter, 7/86, p. 24).
"Dual-Band" Leader!

TW-4000A
2-m/70-cm FM transceiver.

The first is still the best! The original FM "Dual Band" TW-4000A delivers 25 watts output on both VHF and UHF in a single compact package.

- 2 m and 70 cm FM in a compact package.
- Covers the 2 m band (142.000-148.995 MHz), including certain MARS and CAP frequencies, plus the 70 cm FM band (440.000-449.995 MHz), all in a single compact package. Only 6-3/8 x 2-3/8 x 8-9/16 (217)D inches (mm), and 4.4 lbs. (2.0 kg.).
- Single-function keys allow easy operation.
- Large, easy-to-read LCD display. A green, multi-function back-lighted LCD display for better visibility. Indicates frequency, memory channel, repeater offset, "S" or "RF" level, VFO A/B, scan, busy, and "ON AIR". Dimmer switch.
- Front panel illumination.
- 10 memories with offset recall and lithium battery backup.
- Stores frequency, band, and repeater offset. Memory 0 stores receive and transmit frequencies independently for odd repeater offsets, or cross-band (2 m/70 cm) operation.
- Rugged die-cast chassis.
- Two separate antenna ports. Use of separate antennas is recommended. This simplifies antenna matching and minimizes loss. However, mobile installations may require a single antenna. The optional MA-4000 dual band mobile antenna comes with an external duplexer.
- Programmable memory scan with channel lock-out. Programmable to scan all memories, or only 2 m or 70 cm memories. Also may be programmed to skip channels.
- Band in selected 1-MHz segments. Scans within the chosen 1-MHz segment (i.e., 144.000-144.995 or 440.000-449.995, etc.). The scanning direction may be reversed by pressing either the "UP" or "DOWN" buttons on the microphone.
- Priority watch function. Unit switches to memory 1 for 1 second every 10 seconds, to monitor the activity on the priority channel.
- Common channel scan. Memories 8 and 9 are alternately scanned every 5 seconds. Either channel may be recalled instantly.
- High performance receiver/transmitter. GaAs FET RF amplifiers on both 2 m and 70 cm, high performance monolithic crystal filters in the 1st IF section, provide high receive sensitivity and excellent dynamic range. The high reliability RF power modules assure clean and dependable transmissions on either band.
- Optional "voice synthesizer unit." Installs inside the TW-4000A. Voice announces frequency, band, VFO A or B, repeater offset, and memory channel number.

More TW-4000A information is available from authorized Kenwood dealers.

Optional accessories:
- VS-1 voice synthesizer
- TU-4C two-frequency CTCSS tone encoder
- PS-430 DC power supply
- KPS-7A fixed station power supply
- MA-4000 dual band mobile antenna with duplexer
- SP-40 compact mobile speaker
- SP-50 mobile speaker
- MC-42 UP/DOWN microphone
- MC-55 8-pin mobile mic. with time-out timer
- SW-100B SWR/power meter
- SW-200B SWR/power meter
- SWT-1/SWT-2 2 m/70 cm antenna tuners
- PG-3A noise filter
- MB-4000 extra mounting bracket

Kenwood
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
AUTOMATIC TRANSMITTER IDENTIFICATION HAS BEEN PROPOSED BY THE FCC in a Notice of Proposed Rule Making released August 8. Though General Docket 86-337 is directed at video satellite uplink stations in response to "Captain Midnight" having broken into an HBO movie last spring, of more importance to Amateurs and other services is a Notice of Inquiry also included, asking whether an Automatic Transmitter Identification System (ATIS) shouldn't be required for all transmitters used by the various FCC licensed services.

Many ATIS Are Already In Use In Police and other U.S. communications systems. In the mid 70s, at the height of the CB craze, ATIS was also proposed for that service as a means of curbing the rule-breaking so rampant at that time. It was not adopted.

No Specific Suggestions For General ATIS Use were made by the FCC in its NOI. Instead, they ask only general questions (about the need for ATIS, its applicability, timing, format, and similar subjects) and seek user response to the proposal. They also solicit comments on adding ATIS to existing radios, though the resulting logistical and financial burden would make that possibility rather unlikely. In conclusion, the NOI also suggests that various user groups and other interested parties may wish to form an "Advisory Committee"-possible with FCC support--to review the many issues involved and devise a mutually acceptable ATIS format.

Comments On The ATIS Proposal, General Docket 86-337, are due at the Commission on October 20. Reply Comments must be submitted by November 19.

JAS-1, RENAMED "FUJI" BY THE JAPANESE, IS UP. Launched August 12 from Japan's Tanagashima Space Center, the new OSCAR's Mode JA transponder (145.9-146.0 MHz up, 435.9-435.8 MHz down--inverted) has been working well, though users report deep spin-induced fading because the satellite hasn't yet stabilized. Considerable user dexterity is also required to compensate for large doppler shift (up to 15 kHz) as a result of the satellite's rapid orbital travel. Users are reminded to correct for doppler shift with the transmitter's VFO rather than the receiver.

OSCAR 10 Continues To Come On And Shut Down as programmers try to determine what parts of the bird's damaged memory still function, then write software that will provide reasonably reliable operation. At pretime OSCAR 10's future is unknown.

FEDERAL RULES LIMITING RF EXPOSURE SEEM ALMOST CERTAIN, with three government agencies now involved in their development. The Environmental Protection Agency is leading the effort, with the Food and Drug Administration participating and the FCC also involved to some degree.

Exposure Limits Suggested By ANSI (American National Standards Institute) have long been voluntary in the U.S. The RF exposure limits in many other nations are more strict, however, and it appears that the EPA may adopt a standard that is five times stricter than the ANSI limits. U.S. commercial radio interests, though concerned about the proposed EPA rules, appear likely to go along with the federal effort in order to forestall further development of inconsistent individual state RF exposure regulations.

Though Amateur Radio Had Been Exempted from much previously proposed RF exposure rule making appears likely this time all services will be covered. What effect all this will have in the real world of transmitters and antennas remains to be seen.

RESPONSIBILITY FOR ALL AMATEUR EXAM QUESTIONS WAS DELEGATED to the Amateur Radio community through the Volunteer Examiner Coordinators in an FCC Report and Order released at the Commission's Washington VEC Conference August 9. The Commission's decision on PR Docket 85-186 had been opposed by the ARRL out of concern for exam uniformity; the FCC said "VECs are capable of satisfactorily performing the task and are in the best position to do it in their role as coordinators." However, the Commission did agree with the League that exam standardization was important, and an important result of the VEC conference was the establishment of a "Committee for Question Pool Maintenance" made up of N4BAQ (Western Carolina VEC), W81BH (ARRL VEC), and W6NLG (Sunnyvale VEC). Questions for Amateur exams can come from many sources, but their acceptance for the exam pool will be by this committee.

A New Class Of Volunteer Examiner, The "Preparing Volunteer Examiner," was another development of the Report and Order. Present VE's will now be known as "Administering VE's" (AVE's) while the PVE's will be individuals who submit questions or prepare exams for use by the VEC's or AVE's. PVE's will also be permitted to market packaged exams to AVE's.

"CARE KIT: A Complete Novice CM and Written Exam Package, is now available free to VE's and clubs on a first-come, first-served basis from CARE, Box 688H, Glenview, IL 60025.

STILL ANOTHER VERSION OF THE COMMUNICATIONS PRIVACY ACT was introduced in the Senate just before summer recess, but didn't make it to the Senate floor before adjournment. This new version permits monitoring Land Mobile transmissions and reduces some penalties for violations of the Act. Added, however, is a new 1 to 10-year prison term and up to $250,000 fine for willful interference to satellite communications ('Captain Midnight' vs. HBO).

Whether The Summer Recess Will Result In Still Further Changes in the Act is uncertain, though the pressure to further temper its repressive aspects continues.

A NEW "INTERFERENCE HANDBOOK" HAS BEEN ANNOUNCED by the FCC. The extremely well done 64-page manual covers essentially all kinds of TVI and RFI and also includes information on obtaining assistance from most home entertainment electronics manufacturers. It's available free for the asking from any FCC Field Office.
All-Mode Mobility!

TR-751A
Compact 2-m all mode transceiver

It's the "New Sound" on the 2 meter band—Kenwood's TR-751A! Automatic mode selection, versatile scanning functions, illuminated multi-function LCD and status lights all contribute to the rig's ease-of-operation. All this and more in a compact package for VHF stations on-the-go!

- Automatic mode selection, plus LSB 144.0 144.1 144.5 145.8 146.0 148.0 MHz
- Optional front panel-selectable 38-tone CTCSS encoder
- Frequency range 142-149 MHz (modifiable to cover 141-151 MHz)
- High performance receiver with GaAs FET front end
- VS-1 voice synthesizer option
- 25 watts high/5 watts adjustable low
- Programmable scanning—memory, band, or mode scan with "COM" channel and priority alert
- 10 memory channels for frequency, mode, CTCSS tone, offset. Two channels for odd splits.
- All mode squelch, noise blanker, and RIT
- Easy-to-read analog S & RF meter
- Dual digital VFOs
- Semi break-in CW with side tone
- MC-4B 16-key DTMF hand microphone included
- Frequency lock, offset, reverse switches
- Digital Channel Link (DCL) option

Optional accessories:
- CD-10 call sign display
- PS-430, PS-30 DC power supplies
- SW-100A/B SWR/power meter
- SW-200A/B SWR/power meter
- SWT-1 2-m antenna tuner
- TU-7 38-tone CTCSS encoder
- MU-1 modern unit for DCL system
- VS-1 voice synthesizer
- MB-10 extra mobile mount
- SP-40, SP-50 mobile speakers
- PG-2K extra DC cable
- PG-3A DC line noise filter
- MC-60A, MC-80, MC-85 deluxe base station mics.
- MC-42S UP/DOWN mic.
- MC-55 (8-pin) mobile mic.

TR-9500
70 CM SSB/CW/FM transceiver
- Covers 430-440 MHz, in steps of 100-Hz, 1-kHz, 5-kHz, 25-kHz or 1-MHz.
- CW-FM Hi—10 W, Low—1 W. SSB 10 W.
- Automatic band/memory scan.
- Search of selected 10-kHz segments on SSB/CW.
- 8 memory channels.

Actual size front panel
RTTY/ASCII/CW COMPUTER INTERFACE
MFJ-1224 $99.95
Free MFJ RTTY/ASCII/CW software on tape and cable for Vic-20 or C-64. Send and receive computerized RTTY/ASCII/CW with nearly any personal computer (VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64, etc.). Use Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including 170, 425, 850 Hz) and any speed (5-100 WPM RTTY/CW, 30 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170, 850 Hz shift. Normal/reverse switch eliminates re-tuning. Automatic noise limiter.

RX NOISE BRIDGE
Maximize your antenna performance! $59.95 MFJ-202B
Tells whether to shorten or lengthen antenna for minimum SWR. Measure resonant frequency, radiation resistance and reactance.
New Features: individually calibrated resistance scale, expanded capacitance range (+150 pf). Built-in range extender for measurements beyond scale readings. 1-100 MHz. Comprehensive manual. Use 9 V battery. 2x4x4 in.

INDOOR TUNED ACTIVE NEW! IMPROVED! ANTENNA
NEW! Higher gain "World Grabber" rivals or exceeds reception of outside wire! Unique tuned Active Antenna minimizes intermode, improves selectivity, reduces noise outside tuned band, even functions as preselector with external antennas. Covers 0.3-30 MHz. Tele scanning antenna. Tune, Band Gain. On-off bypass controls. 6x26 x. Uses 9 V battery. 18 VDC or 110 VAC with adapter. MFJ-1020A $79.95.

VHF SWR/ATTENUATOR
Low cost MFJ-812 $29.95
Covers all SWR ranges. Economical and compact. Reads SWR (14 to 170 MHz) and forward/reflected power at 2 meters. Has 30 and 300 watts scales. Also read relative field strength. 4x2x3 in.

POLICE/FIRE/WEATHER 2 M HANDHELD CONVERTER
Turn your synthesized scanning 2 meter handheld into a hot Police, Fire/Weather band scanner! $39.95 MFJ-311
144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA maritime coastal, VHF NAV, plus more on 160-164 MHz. Up to 100 Scan speeds. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. 2x1x1 1/8 in. BNC connectors.

MFJ/BENCHER KEYER COMBO
$109.95 MFJ-422
The best of all worlds in a bench size unit: Curtis 2044-1 IC, adjustable weight and tone, front panel voltage and current readouts. Built-in dot-dash memories. Speaker, sidetone, and push button selection of semi-automatic/tune or automatic modes. Solid state keying. Bench paddle is fully adjustable, heavy steel base with non-skid feet. Uses 9 V battery or 110 VAC with optional adapter. MFJ-1305, $9.95.

1 KW DUMMY LOAD
Tune up fast, extend life of finals, reduce QRM! $39.95 MFJ-250
Rated 1KW CW or 400 W PEP for 10 minutes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 30 MHz, 1.5 to 300 MHz. Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. 7x6x6 in.

24/12 HOUR CLOCK/ID TIMER
Switch to 24 hour UTC or 12 hour format! $19.95 MFJ-106
Battery backup maintains time during power outage. ID timer alerts every 9 minutes after reset. Red LED. 6 inch digits. Synchronize with WWV. Alarm with snooze function. 10 minute set, hour reset switches. Time set switch prevents mis-setting. Power out, alarm on indicators. Gray and black cabinet. 5x2.5x3 inches. 110 VAC, 60 Hz.

DUAL TUNABLE SSB/CW/RTTY FILTER
MFJ-7528 $99.95
Dual filters give unmatched performance! The primary filter lets you peak notch low pass or high pass with extra steel skirts. Auxiliary filter gives 70 db notch. 40 Hz peak. Both filters tune from 300 to 3000 Hz with variable bandwidth from 40 Hz to 300 Hz. Constant output as bandwidth is varied. Clear hear frequency control. Switch between notch filter for noise. Simulates street sound. CW lets ears and mind relax. Built-in 15 second timers. Plugs into phone jack, adds 2 watts for speaker. One filter replaces 2 SSB/RTTY tuners. Works with optional adapter MFJ-810, $9.95.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION-IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
- One year unconditional guarantee - Made in USA.
- Add $4.00 each shipping/handling - Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494, Mississippi State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 601-323-5669 in Miss. and outside continental USA Telex 53-4960 MFJ STK
YLS in Amateur Radio

Dear HR

Though once considered a man’s hobby, Amateur Radio is now seeing a growing influx of YLs. Although the theory and code requirements are the same for both genders, some are voicing their concerns about the growing number of licensed YLs and the long-term effect on “their” repeaters. Many have expressed fears that the bands will soon be overrun by inexperienced YLs who will turn 2 meters into a glorified CB band filled with meaningless gossip.

To be adequately prepared for entering the world of repeater operations, I—a newly licensed technician—first turned to the FCC manual on Rules and Regulations. Although a basic description of repeater operation was given, it was suggested that the local repeater be monitored to observe the accepted operating procedures. So, to avoid any further accusations of engaging in meaningless gossip, I monitored the local repeater for approximately four hours and compiled a list of accepted topics currently being discussed by the OMs and noted some basic acceptable operating procedures:

- You may talk about baseball, football, cheerleaders, and the girls in the stadium.
- You may talk about your favorite restaurant, the foods you are most hungry for, and how long it has been since your last meal. You can even exchange recipes.
- You may talk about car repairs, home repairs, or even vacations. But if you’re a YL, don’t mention household chores such as laundry or you’ll be accused of trashing the air waves with CB type communications.
- You may talk about your wife’s moods, her dermatological problems, and even her dental problems.
- You may discuss gardens, grandchildren, and pets or even “the old lady” back at the home QTH. (I thought Q signals were for non-verbal communications?)
- Hobby talk is acceptable if the hobby happens to be golf, cycles, fishing, guns, or photography.
- If it’s Sunday, you may discuss church services, choirs, attendance, and even have “roast minister.”
- You may comment on road construction or complain about the car in front of you or the car behind you. (But if you’re a YL, don’t mention that you’re mobile chauffeuring children or you’ll be accused of misusing the repeater.)
- OMs can ask: “What’s up?” or “What’s happening?” or “How are things with you?” But if you’re a YL, you’d best refrain—because you’ll be accused of attempting meaningless gossip and it will be implied that you should stick with the telephone.
- You can certainly talk about the weather . . .
- If something is funny, don’t laugh or you’ll be accused of being tacky. A verbal “HI HI” is acceptable, however. Don’t giggle—you’ll be accused of flirting.
- I’ve also observed that it’s apparently acceptable etiquette for an OM to sneeze, cough, clear his throat, or even burp into a keyed mike.

I don’t mean to cause undue strife in the Amateur Radio community or cause a battle between the sexes, but honestly, give us YLs a chance! We worked just as hard as you did to get our licenses and we hold the same pride in our accomplishments (and the same license) that you do. We too are unimpressed with the CB mentality and want the Amateur Radio bands to maintain the high standard of operation that first attracted us to this service.

So, OMs, please listen first before you cast stones.

(Name Withheld by Request)

inviting Amateur ranks

Dear HR

Recently three local Amateur clubs—the Enfield Radio Amateur Group (ERAG), the Mt. Tom Amateur Repeater Association, and the Pioneer Valley Repeater Association—joined in a venture to increase public awareness and to encourage growth of the Amateur fraternity.

A large local shopping mall allowed us to put on an Amateur Radio display in the central concourse; the mall agreed to provide professionally lettered display signs, assist in the erection of the tower, antennas, and power drops, and also agreed to supply tables and dropcloths. The radio clubs were required to have insurance coverage.

Several displays were set up to demonstrate packet radio, HF communications, traffic handling, and VHF repeater operations. A VCR presentation covered Amateur emergency communications. While several club members manned these exhibits, others talked to the public, answering questions and obtaining the names and addresses of those interested in becoming Radio Amateurs.

During the first day, several hundred people viewed the exhibit and 45 enrolled in Amateur licensing courses offered by ERAG.

Peter J. Bertini, K1ZJH
Somers, Connecticut

Invitation to Authors

Ham radio welcomes manuscripts from readers. If you have an idea for an article you’d like to have considered for publication, send for a free copy of the Ham Radio Author’s Guide. Address your request to Ham Radio, Greenville, New Hampshire 03048 (SASE appreciated).
ACSSB:
a level-one adapter

Expansion and compression techniques can yield significant S/N improvement

Everyone who uses communications frequencies is aware of the problems of channel sharing and interference. In many parts of the United States, repeater coordinating councils have declared the 2-meter sub-bands "full." The CB bands are hopelessly cluttered, and commercial users of VHF/UHF frequencies are searching for a solution to channel overcrowding in the land mobile bands. Obviously, better spectrum management — re-use of existing channels, for example — or new spectrum-saving techniques will be necessary if these problems are to be solved.

One spectrum-saving technique just beginning to be used in commercial communications is ACSSB (Amplitude Companded, or "combandored," SSB). This system consists of a compressor at one point in a communication path (to reduce signal amplitude) followed by an expander at another point (to improve the ratio of the signal to the interference entering the path between compressor and expander). Unfortunately, current implementations of the technology are quite expensive by Amateur standards (over $1200). ACSSB systems provide the following:

- 4:1 compression of speech during transmission;
- 1:4 expansion during reception;
- Transmitter spectrum equalization (pre-emphasis);
- Receiver spectrum equalization (de-emphasis); and
- Pilot tone reference for AGC control (up to 20-50 Hz fading, typical), automatic frequency control (phase locking), and squelch operation.

The process of compression on transmit and expansion on receive is called "companding" or "compan-

By James Eagleson, WB6JNN, 15 Valdez Lane, Watsonville, California 95076
For signals above a certain threshold level (5 dB for 4:1 and 10 dB for 2:1 systems), the apparent signal-to-noise ratio will be improved by the compander ratio (either two or four times).

Thus, these systems provide all of the normal conveniences of hands-off operation found in FM systems, but require a channel spacing of only 5 kHz instead of the usual commercial 20 to 25 kHz spacings. (Amateurs use 15 kHz in some instances, but for similar channel-to-channel protection ACSSB channels could be spaced 4 kHz apart). Furthermore, the quieting and capture performance is very similar to that of FM, with ACSSB having slightly improved threshold over FM, although FM has somewhat better transparency.* But $1200 is still $1200!

level-one circuit

A system offering several of the same performance advantages as commercial ACSSB, but at a fraction of the cost, has been developed by Project OSCAR for use with OSCAR 10. Unlike the commercial versions, which require complete integration of RF and processing circuits, this basic — or Level One — circuit will also work with most SSB transceivers and provide meaningful performance improvements when used on HF through UHF bands.

The Level One ACSSB adapter allows:

- 2:1 compression on transmit (fig. 1);
- 1:2 expansion on receive (fig. 1);
- Transmitter spectrum equalization (pre-emphasis) (fig. 2);
- Receiver spectrum equalization (de-emphasis) (fig. 2).

At this time there is no provision for a pilot tone AGC circuit (which could be termed Level Two); however, work is scheduled to provide a Level Two unit that will enhance the Level One adapter by providing a pilot-tone AGC system, squelch, and possibly a second level of companding (yielding a total of 4:1 companding). For simplicity the Level Two circuit will not use phase locking of the pilot, but will be manually tuned instead.

transmit adapter

The transmit adapter (fig. 3 and table 1) has a microphone preamplifier that increases the audio to the proper level for processing. This preamp also provides a moderate level of pre-emphasis — about 4-5 dB at 3000 Hz.

The microphone selected should be low impedance (under 500 ohms). Otherwise the remaining op amp in the 3403 (quad op amp) should be made into a buffer stage in front of the preamplifier stage (fig. 4).

As shown in fig. 2A, normal distribution of voice energy drops off rapidly above 700 to 800 Hz. The second stage in the transmit adapter equalizes this dropoff by boosting frequencies above 800 Hz to compensate for the rolloff. Thus the audio energy is spread evenly across the entire 300-3000 Hz spectrum (fig. 2B). Figure 2C shows system response with net or combined equalization.

This provides several advantages. First, it provides more high tones to allow the ALC to function more efficiently (more cycles per second allows faster attack time). Secondly, it reduces the intermodulation prod-

*Transparency — The ability to pass natural, uncolored sound. Related to SNR, harmonic & intermodulation distortion, tonal balance, transient and phase responses of a system.
FREOUENCY

fig. 2a. Typical spectral density of human voice relative to frequency.

- OSCAR TRANSMITTER ADAPTER
- AFTER TRANSMITTER CRYSTAL FILTER
- *AFTER RECEIVER AND TRANSMITTER CRYSTAL FILTERS

fig. 2b. Basic response of Level One transmission equalizer.

The advantage of the 2:1 compression used here over normal compression techniques is that the relative dynamic changes in speech levels, though modified, are maintained after compression. Most compressors merely suppress loud sounds falling above a certain level. A 2:1 compression ratio generally presents a more pleasing and natural sound to the audio since relative dynamics are maintained.

Furthermore, due to control of each syllable the average power will be raised somewhat. While not as effective as RF clipping, the 2:1 compressor has better harmonic and intermodulation distortion capability.

Finally, the audio is attenuated to microphone audio levels once again then fed to the transmitter. To provide maximum flexibility with the adapter individual switching is provided for each stage. This can be used or not used, as required. A second level of equalization is provided for use with stations that do not have the receive adapter. Normally about 15 dB of boost is used. A switch setting giving only about 10 dB is available also. Of course, 2:1 compression only can also be used, though the slight pre-emphasis, 5 dB, is present all the time.

receive adapter

The receive adapter deprocesses the transmitted signal by restoring the original frequency response and dynamics. A schematic diagram and parts list are provided in fig. 5 and table 2.

A gain stage allows optimizing the levels into the adapter while using normal volume settings on the receiver’s volume control. It will also allow adapter use inside the receiver between the detector output and the top of the volume control pot. This latter is the best way to use the adapter since it will eliminate the...
When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to ...

... yours

... and ours.

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now in its "third wave" of innovation, thanks to its designed for the future architecture and new software releases. The, 850 defines the industry standard in repeater control systems.

- Fully remotely programmable with Touch-Tone commands
- Front panel LED display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day of week Scheduler with 10 set-up states, 30 changeovers and events, over 100 scheduled items for hands off operation and automatic reminders
- Full or half duplex autopatch, autodial (250 numbers), emergency autodial, reverse autodial, and remote access to your home phone exchange for subscribers, supports remote and multiple phone lines
- Informatively programmed ID's, tail messages, bulletin boards (5)
- 16 channel voice response analog metering, automatic storage of min/max values on each channel. Values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable features
- Mailbox for user-to-user and system-to-user messages
- Paging - two-tone, 5/6 tone, DTMF, CTCSS, HSC display, user commandable and may be included in programmable messages (i.e., alarms)
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a lower per-channel cost. Its Touch-Tone activated mailbox lets you start record messages for other users when they aren't around.

QST: Attention All Hams
If you own a shack, you should know about ShackMaster™.
ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with your family by handing third party traffic - its electronic mailbox and intercom let you keep in touch. And a simple patch lets you place important calls directly through your home phone.

ShackMaster 100
To order one of these advanced control products, call 408-727-3330. Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment. For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to:

ACC advanced computer controls, inc.
2336 Walsh Avenue • Santa Clara, CA 95051 (408) 727-3330

Visit our showroom...

Table 1. ACSSB Level One transmit adapter parts list.

<table>
<thead>
<tr>
<th>item</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>capacitors</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>C2</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>† C3</td>
<td>1000 pF Epoxy Dipped Ceramic (EDC) (272-154)**</td>
</tr>
<tr>
<td>† C4</td>
<td>1000 pF EDC (272-154)**</td>
</tr>
<tr>
<td>C5</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>† C6</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>C7</td>
<td>10 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>C8</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>† C9</td>
<td>1000 pF EDC (272-154)**</td>
</tr>
<tr>
<td>† C10</td>
<td>1000 pF EDC (272-154)**</td>
</tr>
<tr>
<td>C11</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>C101</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>C102</td>
<td>22 μF, tantalum (TM 22/6)*</td>
</tr>
<tr>
<td>C103</td>
<td>0.22 μF (TM 0.22/36)*</td>
</tr>
<tr>
<td>C104</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>C105</td>
<td>0.1 μF (TM 0.1/35)*</td>
</tr>
<tr>
<td>C106</td>
<td>10 μF, tantalum (TM 10/25)*</td>
</tr>
<tr>
<td>CBY</td>
<td>1 μF, tantalum (TM 1/35)*</td>
</tr>
<tr>
<td>integrated circuits</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>MC3403 or equivalent</td>
</tr>
<tr>
<td>U2</td>
<td>NE570 or 571</td>
</tr>
<tr>
<td>resistors</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>47 kilohm</td>
</tr>
<tr>
<td>R2</td>
<td>10 kilohm potentiometer</td>
</tr>
<tr>
<td>R3</td>
<td>1 kilohm</td>
</tr>
<tr>
<td>R4</td>
<td>not used</td>
</tr>
<tr>
<td>† R5,R6</td>
<td>470 kilohm</td>
</tr>
<tr>
<td>† R7</td>
<td>1 Megohm</td>
</tr>
<tr>
<td>R8,R9</td>
<td>10 kilohm</td>
</tr>
<tr>
<td>R10</td>
<td>36 kilohm</td>
</tr>
<tr>
<td>switches</td>
<td></td>
</tr>
<tr>
<td>S1.2</td>
<td>DPDT (275-1546)**</td>
</tr>
<tr>
<td>S3.4</td>
<td>SPDT (275-625 or 647)**</td>
</tr>
<tr>
<td>voltage regulators</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>7806 or 78L05</td>
</tr>
<tr>
<td>U4</td>
<td>7812 or 78L12</td>
</tr>
<tr>
<td>miscellaneous</td>
<td></td>
</tr>
<tr>
<td>box, lid Pomona 2902</td>
<td></td>
</tr>
<tr>
<td>knob to fit R2 potentiometer</td>
<td></td>
</tr>
<tr>
<td>connectors as required</td>
<td></td>
</tr>
<tr>
<td>standoffs 4-40 threaded x 1 inch (25.4 mm) long</td>
<td></td>
</tr>
<tr>
<td>Note: Select for about 3-6 dB loss through adapter in the out position with ΔG = 0 and drive potentiometer = max.</td>
<td></td>
</tr>
<tr>
<td>* JAMECO</td>
<td></td>
</tr>
<tr>
<td>** Radio Shack</td>
<td></td>
</tr>
<tr>
<td>† 5 percent tolerance, if possible</td>
<td></td>
</tr>
</tbody>
</table>

need for an external amplifier and speaker. It will also provide less distortion by eliminating any receiver audio distortion or hum at the input to the adapter.

The de-emphasis circuit is provided by two stages. The first is a simple 800-Hz low-pass filter, which provides a good compromise between tonal balance and sound quality when the unit is used in the expand mode on noncompressed, nonequalized input signals. The second filter is a 600-Hz band-pass filter, which can also be used for reception of noncompressed signals. Its tonal quality provides more punch to the received audio. When receiving fully compressed and equalized signals, both filters restore the original audio frequency response. Rolloff of low-pitched and high-pitched adjacent channel interference will also result to a certain extent.

Finally, the 1:2 expansion circuit decompresses the incoming audio in the opposite way from that in the 2:1 compressor. That is for each 1 dB of input audio change, the expander provides 2 dB of output change. Since this occurs on each syllable (at about a 100 ms time constant), noise between words will fall to a level that is much lower than the actual SNR of the incoming signal (for example, for 10-dB SNR incoming, the 1:2 expander drops the noise to -20 dB relative to peak audio output).

The expand limiter, fig. 5, biases the expander’s control port so that signals below a certain input level will not be expanded. This action reduces the peaky sound caused when the expander is used with noncompressed transmit signals. The value can be selected to suit the user, or a 10-Megohm pot may be used in series with a 1-Megohm resistor to provide continuous control of expansion in place of a switched position.

Since the audio is de-emphasized before applying 1:2 expansion, the SNR enhancement is somewhat better than 2:1. The audio bandwidth after de-emphasis is about 1 kHz out of 2.7 kHz of transmitted audio so that the SNR enhancement due to bandwidth limiting is about 4.3 dB (10 log_{10} 2.7/1.0). Thus an incoming 10-dB SNR signal would be improved to 14.3 dB (10 log_{10} 2.7/1.0) relative to peak audio output.

14 October 1986
fig. 3. ACSSB Level One transmit adapter schematic diagram.
For complete Details & Rules ask your Authorized Kenwood Dealer for a Kenwood Cash Rebate Self-Mailer

OFFER GOOD ONLY
JULY 21, thru NOVEMBER 15, 1986
Table 2: ACSSB Level One Receive Adapter Parts List

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1 (\mu)F (TM 1/35)*</td>
</tr>
<tr>
<td>C2</td>
<td>22 (\mu)F (TM 22/6)*</td>
</tr>
<tr>
<td>C3</td>
<td>1 (\mu)F (TM 1/35)*</td>
</tr>
<tr>
<td>C4</td>
<td>4700 pF 10 percent (MY 0.0047/100)* (272-155)**</td>
</tr>
<tr>
<td>C5</td>
<td>0.1 (\mu)F 10 percent (MY 0.1/100)* (272-158)**</td>
</tr>
<tr>
<td>C6</td>
<td>0.1 (\mu)F (TM 1/35)*</td>
</tr>
<tr>
<td>C7, C8</td>
<td>0.01 (\mu)F 10 percent (MY 0.01/100)* (272-156)**</td>
</tr>
<tr>
<td>C9, C10, C11</td>
<td>1 (\mu)F (TM 1/35)*</td>
</tr>
<tr>
<td>C12</td>
<td>4.7 (\mu)F (TM 4.7/35)*</td>
</tr>
<tr>
<td>C13</td>
<td>C13 1 (\mu)F 5 percent (TM 1/35 OK)*</td>
</tr>
<tr>
<td>C1Y</td>
<td>1 (\mu)F (TM 1/35)*</td>
</tr>
<tr>
<td>C101</td>
<td>10 (\mu)F (TM 1/35)*</td>
</tr>
<tr>
<td>C102</td>
<td>0.1 (\mu)F (MY 0.1/100)</td>
</tr>
<tr>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>10 kilohm</td>
</tr>
<tr>
<td>R2, R3</td>
<td>47 kilohm</td>
</tr>
<tr>
<td>R4</td>
<td>10 kilohm trim potentiometer</td>
</tr>
<tr>
<td>R5</td>
<td>36 kilohm</td>
</tr>
<tr>
<td>R6</td>
<td>(not used)</td>
</tr>
<tr>
<td>R7</td>
<td>36 kilohm</td>
</tr>
<tr>
<td>R8</td>
<td>18 kilohm</td>
</tr>
<tr>
<td>R9</td>
<td>47 kilohm</td>
</tr>
<tr>
<td>R10</td>
<td>36 kilohm</td>
</tr>
<tr>
<td>R11, R13</td>
<td>(not used)</td>
</tr>
<tr>
<td>R14, R15</td>
<td>47 kilohm</td>
</tr>
<tr>
<td>R16, R17</td>
<td>(not used)</td>
</tr>
<tr>
<td>R18</td>
<td>3.3 Megohm</td>
</tr>
<tr>
<td>R19</td>
<td>36 kilohm</td>
</tr>
<tr>
<td>Rl</td>
<td>(load resistor to match source. 8 ohms or 100 kilohms, typical)</td>
</tr>
<tr>
<td>R100</td>
<td>1 kilohm (jumper if more gain is needed)</td>
</tr>
<tr>
<td>R101</td>
<td>4.7 kilohm</td>
</tr>
<tr>
<td>R102</td>
<td>10 kilohm</td>
</tr>
<tr>
<td>Rv</td>
<td>potentiometer, 500 ohms (low impedance in) 100 kilohm (high impedance in) (audio taper)</td>
</tr>
<tr>
<td>Switches</td>
<td></td>
</tr>
<tr>
<td>SW1-4</td>
<td>DPDT (275-1546)**</td>
</tr>
<tr>
<td>SW5</td>
<td>SPDT (275-625 or 647)**</td>
</tr>
<tr>
<td>Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>MC3403 or equivalent*</td>
</tr>
<tr>
<td>U2</td>
<td>NE570 or NE571*</td>
</tr>
<tr>
<td>Voltage Regulators</td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>7806 (78L05 OK)* **</td>
</tr>
<tr>
<td>U4</td>
<td>7812 (78L12 OK)* **</td>
</tr>
<tr>
<td>* JAMECO</td>
<td></td>
</tr>
<tr>
<td>** Radio Shack</td>
<td></td>
</tr>
</tbody>
</table>
| † 5 percent tolerance, if possible

Fig. 4. Suggested Microphone Input Circuit to Make Pre-emphasis Impedance Insensitive (i.e., for medium/high Z microphones).

- dB after de-emphasis, then would be expanded 2:1 to 28.6 dB effective SNR.
- In reality, however, some of this SNR improvement, though measurable with instrumentation (such as a VU meter) is lost due to the human ear's frequency sensitivity. The Fletcher-Munson curve* shows a higher sensitivity to mid-range tones than to those above and below roughly 700-1000 Hz. Actual subjective SNR enhancement falls somewhere between 10-14.3 dB improvement over our incoming 10-dB SNR - a good guess being 22-24 dB equivalent SNR after expansion.

CW Filter

Though not directly intended for CW operation, it so happens that our lowpass filter, bandpass filter, and expander circuits provide a moderately good CW filter system. The combination lowpass filter/bandpass filter peaks in the 600-1000 Hz region, and the time constants of the expander are about right for normal CW speeds. The expansion provides selectivity about one-half the bandwidth of the bandpass filter/lowpass filter alone but does not cause the ringing often associated with audio filters. On the other hand, any fading present on the signal will be intensified when the expander is in operation.

AGC and Fading

Unfortunately, radio circuits are not telephone circuits and noise, fading, and interference are frequently present. While AGC circuits reduce fading significantly, many receivers have AGC overshoot, undershoot, and a control range that is only marginally acceptable. Any such anomalies in receiver AGC performance will be worsened by a 2:1 ratio when used with an expander circuit. Use of the RF gain control

*Also called equal-loudness contours. A group of sensitivity curves showing the characteristics of the human ear for different intensity levels between the threshold of hearing and the threshold of feeling. The reference frequency is 1000 Hz.
ATV MADE EASY WITH OUR SMALL ALL IN ONE BOX TC70-1 TRANSCIEVER AT A SUPER LOW $299 DELIVERED PRICE.

TC70-1 FEATURES:
- 10 pin VHS color camera and RCA phono jack video inputs.
- Crystal locked 4.5 mHz sound subcarrier.
- PTL (Push To Look) T/R switching.
- Sensitive UHF GaAsFet tuneable downconverter.
- Two frequency 1 watt pep xmt. 1 crystal included.
- Xmt video monitor outputs to camera and phono jack.
- Small 7 x 7 x 2.5" for portable, mobile, or base.
- Draws only 500 ma (exc. camera) at 13.8 vdc.

Just plug in your camera, VCR, or computer composite video and audio, 70 cm antenna, 12 to 14 vdc, and you are ready to transmit live action color or black and white pictures. Sensitive downconverter tunes the whole 420-450 mHz band down to channel 3 on your TV set to receive. Both video carrier and sound subcarrier are crystal controlled. Specify 439.25, 434.0, or 426.25 mHz. Extra crystal $15.

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any tech class or higher amateur can get on ATV. If you already have a source of video and a TV, it costs about the same as getting on 2 meters. Now you can be seen as well as heard.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the 440-6 for portable use such as parades, races, search and rescue, etc. You can add one of the two ATV engineered linear amps listed below for greater DX.

AT 70 cm, antenna height and gain is all important. Foliage can absorb much of the power. Also low loss tight braided coax such as the Saxton 8265 must be used along with type N connectors.

The TC70-1 has full bandwidth for color, sound, and computer graphics. You can now show the shack, computer programs, home video tapes and movies, repeat SSTV or even space shuttle video if you have a Home Satellite Receiver.

PURCHASE AN AMP WITH THE TC70-1 & SAVE!
20 WATT WITH ELH-730G....$412
50 WATT WITH D24N-ATV....$499

All prices include UPS surface shipping in cont. USA

ACCESSORIES:

MIRAGE D24N-ATV 50 WPEP AMP...$219
ATV, FM, SSB, 1 W IN. 13.8VDC @ 9A

KLM
- 440-27 14DBD ANT...$107
- 440-14 11DBD ANT.....$77
- 440-6 8DBD ANT.....$62

ALINCO
- ELH-730G 20 WPEP AMP....$129
ATV, FM, SSB, 1W IN. 13.8VDC @ 4.5A

HAMS! Call or write for for full line ATV Catalog.
fig. 5. ACSSB Level One receive adapter schematic diagram.
and/or fast AGC may be necessary to keep this kind of problem under control.

The Level Two adapter being developed by Project OSCAR should lessen these problems to some extent. It will also provide a tighter control of AGC performance under rapid fading conditions and allow use of carrier-operated relay (COR) and squelch circuits as well as an extra level of 2:1 companding (making a total of 4:1 for the combined system).

Level Two will also allow use of Gateway stations with automatic frequency locking by adding phase-locked-loop (PLL) circuits to the receiver (Level Three). This would use the pilot tone of Level Two as a known frequency reference. Level Three phase locking can also be implemented by experienced Amateurs with their home equipment, but thorough knowledge of the receiver's internal workings and phase-locked-loop techniques is probably a prerequisite to implementing such circuits.

construction

The OSCAR Level One adapter has no audio output stage. This is partially because there was no room in the Pomona 2901 box for the audio stage and partly because the adapter is really designed to use between

1Gateway stations — sophisticated ground stations that accept several inputs and act as an uplink to the satellite.
Wide Dynamic Range and Low Distortion—The Key to Superior HF Data Communications

- Dynamic Range > 75 dB
- 400 to 4000 Hz
- BW Matched to Baud Rate
- BER < 1×10^{-5} for $S/N = 0$ dB
- 10 to 1200 Baud
- Linear Phase Filters

Real HF radio teleprinter signals exhibit heavy fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm, not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX/Tones
- Split or Transceive TX/RX
- CRT Tuning Indicator
- RS-232C, MIL-188C, or TTL Data
- 8, 600, or 10K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, 44-440 Hz
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- 3.5” High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784
using level-one adapters

The effects of compression and expansion are best when used when all parts of the system are completely stable — that is, same gain and frequency response are maintained.

The compressor circuit is the easiest to understand in terms of set-up. It merely needs to be placed on an oscilloscope; microphone gain R2 should be adjusted so that the output at the top of R110 has the same peak value as unprocessed audio. Some adjustment of the values of R105 and R106 may be required if total balance is to be achieved between the various modes of the unit.

This can also be done using the transmitter output by adjusting the drive control, R110, for about half the normal transmitter output on the RF output meter of the transmitter, then adjusting microphone sensitivity, R2, and drive control, R110, until all modes give about the same level on the meter. Again, some adjustment of R105 and R106 might be required.

After this is done, boost the drive control for normal transmitter output. If ALC is used in the transmitter you may be able to boost the output slightly more into the ALC. This may provide slightly more output when using the 2:1 compressor since the peak value of the audio will be maintained more evenly than without the compression (that is, the peak-to-average is better).

You will probably find that the compressor is useful under most conditions to provide more even audio to your transmitter. On the other hand, 2:1 compression alone won't be noticed by most people unless you have high background noise or room echo.

The 10-dB equalization will definitely yield more "brightness" to your signal, thus increasing clarity under weak signal conditions. The 15 dB may be too "bright" without some amount of de-emphasis during reception, however. Then again, under weak signal conditions, either position will help improve clarity.

Note that a slight amount of pre-emphasis is present at all times. This is not extreme, but high-pitched microphones should probably be avoided. Also note that the input circuit assumes a 500-ohm or lower impedance microphone. Values of the input pre-emphasis must be changed (R103, C103, R104) if other impedance microphones are used.

To summarize: adjust R2, R110, R105, and R106 so that each mode gives your transmitter about equal output power. Run slightly into ALC by adjusting R110 after the earlier adjustments. You will probably want to run the 2:1 compressor under normal circumstances where background noise is no problem.

Setting up the receive adapter is sometimes more critical. First, the gain of the audio power amplifier following the unit is undefined (I don't know what you plan to use or its drive and gain requirements — but I recommend a TA 7205 IC.)

This amplifier should be capable of several watts of output for best results and be able to give about 2 watts output with less than 0.25 volt p-p into 10 kilohms at its input. Most output stages will do this (that is, inserting audio into the adapter from the top of the potentiometer then reinserting after the potentiometer). Many hi-fi amplifiers require 1 volt or more rms or several volts p-p, however. The NE570 will not provide several volts. A buffer stage must be provided in these cases (perhaps made from the remaining stage of the 3403).

With the unit in the expand position, the volume from your receiver and to your audio amplifier/speaker should be adjusted to a level somewhere below the point at which the expander starts to cause distortion. This should be adjusted with a clean signal using fast AGC (or on a pre-compressed station) and with the receiver audio in its normal position. Rv can be used to set the gain through the expander to your audio stage so that it does not overload. Your amplifier's gain can then be adjusted for a desired listening volume. Resistor R101 can then be adjusted so that the audio is at the same level as the expanded audio when the expander is switched out.

Resistor R4, by the way, should be adjusted so that Rv can provide up to 10 dB gain at full volume or can reduce signals to levels well below the input level. Resistor R4 could even be replaced with a 4.7 kilohm resistor.

When all is adjusted properly, signals coming through the adapter will be roughly the same peak level with or without de-emphasis and/or expansion. However, expansion using the 600-Hz bandpass filter only may be slightly higher in volume than with the 800-Hz lowpass filter. Furthermore, when both filters are used on an unprocessed incoming signal, the volume may seem lower due to suppression of high and low frequencies. Some back-and-forth adjustments between Rv and your amplifier's volume may be required before you find the right combination for your system. Adjustment of the value of R101 may be needed also.

To summarize, the level to the NE570 must be set so it does not distort. The value of R101 may then be set to balance the in-out levels. The 600-Hz bandpass filter may show slight volume increase when used with the expander. The 800-Hz lowpass filter provides the best "punch" and should be used in circumstances when this is useful. Expand only should be used with fast AGC if the station received has no clipping and/or compression. The full system should yield significant SNR enhancement at 10-dB SNR or higher levels. Adjacent channel and high- or low-pitched carriers and interference should also be reduced due to both filtering and expansion.
1986 GIFTS AT 1985 PRICES

Please enter my one year gift/renewal subscription(s) to Ham Radio Magazine as follows:

First Gift (or renewal) $19.95 Save $3
Two or more gifts (or renewals) $16.95 ea. Save $6

[Blank form for three gift/renewal subscriptions]

□ Start or □ Renew my own HR subscription.

□ Enclosed is a check or money order for $ for subscriptions. (use separate envelope)

□ VISA □ MasterCard □ Bill me later

Acct. # ______________________ Expires ________

My Name ______________________

Address ______________________

City ______________________ State ______ Zip __________

 Prices U.S. only
ASTRON POWER SUPPLIES

- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mv peak to peak (full load & low line)

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

RS-A SERIES

MODEL RS-4A
Continuous Duty (AMPS) 3
ICS* (AMPS) 4
Size (IN) HXWxD 3½ x 6½ x 9
Shipping WT (lbs) 5

MODEL RS-7A
Continuous Duty (AMPS) 5
ICS* (AMPS) 7
Size (IN) HXWxD 3½ x 6½ x 9
Shipping WT (lbs) 9

MODEL RS-7B
Continuous Duty (AMPS) 5
ICS* (AMPS) 7
Size (IN) HXWxD 4 x 7½ x 10½
Shipping WT (lbs) 10

MODEL RS-10A
Continuous Duty (AMPS) 7½
ICS* (AMPS) 10
Size (IN) HXWxD 4 x 7½ x 10½
Shipping WT (lbs) 11

MODEL RS-12A
Continuous Duty (AMPS) 9
ICS* (AMPS) 12
Size (IN) HXWxD 4½ x 8 x 9
Shipping WT (lbs) 13

MODEL RS-20A
Continuous Duty (AMPS) 16
ICS* (AMPS) 20
Size (IN) HXWxD 5 x 9 x 10½
Shipping WT (lbs) 18

MODEL RS-35A
Continuous Duty (AMPS) 25
ICS* (AMPS) 35
Size (IN) HXWxD 5 x 11 x 11
Shipping WT (lbs) 27

MODEL RS-50A
Continuous Duty (AMPS) 37
ICS* (AMPS) 50
Size (IN) HXWxD 6 x 13½ x 11
Shipping WT (lbs) 46

VS-M SERIES

MODEL VS-20M
Continuous Duty (Amps) @13.8VDC 16
ICS* (Amps) @10VDC@10VDC 9
Size (IN) H x W x D 5 x 9 x 10½
Shipping WT (lbs) 20

MODEL VS-35M
Continuous Duty (Amps) 25
ICS* (Amps) 15
Size (IN) H x W x D 5 x 11 x 11
Shipping WT (lbs) 29

MODEL VS-50M
Continuous Duty (Amps) 37
ICS* (Amps) 22
Size (IN) H x W x D 6 x 13½ x 11
Shipping WT (lbs) 46

RS-S SERIES

MODEL RS-7S
Continuous Duty (Amps) 5
ICS* (Amps) 7
Size (IN) H x W x D 4 x 7½ x 10½
Shipping WT (lbs) 10

MODEL RS-10S
Continuous Duty (Amps) 7½
ICS* (Amps) 10
Size (IN) H x W x D 4 x 7½ x 10½
Shipping WT (lbs) 12

MODEL RS-10L(FOR LTR)
Continuous Duty (Amps) 7.5
ICS* (Amps) 10
Size (IN) H x W x D 4 x 9 x 13
Shipping WT (lbs) 13

MODEL RS-12S
Continuous Duty (Amps) 9
ICS* (Amps) 12
Size (IN) H x W x D 4½ x 8 x 9
Shipping WT (lbs) 13

MODEL RS-20S
Continuous Duty (Amps) 16
ICS* (Amps) 20
Size (IN) H x W x D 5 x 9 x 10½
Shipping WT (lbs) 18

RS and VS SERIES

MODEL RS-50A
Continuous Duty (AMPS) 25
ICS* (AMPS) 35
Size (IN) HXWxD 5½ x 19 x 12½
Shipping WT (lbs) 38

MODEL RS-50M
Continuous Duty (AMPS) 37
ICS* (AMPS) 50
Size (IN) HXWxD 5½ x 19 x 12½
Shipping WT (lbs) 50

MODEL VS-50M
Continuous Duty (AMPS) 37
ICS* (AMPS) 50
Size (IN) HXWxD 5½ x 19 x 12½
Shipping WT (lbs) 50

RM-A Series

MODEL RM-35A
Continuous Duty (AMPS) 25
ICS* (AMPS) 35
Size (IN) HXWxD 5½ x 19 x 12½
Shipping WT (lbs) 38

MODEL RM-50A
Continuous Duty (AMPS) 37
ICS* (AMPS) 50
Size (IN) HXWxD 5½ x 19 x 12½
Shipping WT (lbs) 50

MODEL VS-50M
Continuous Duty (AMPS) 37
ICS* (AMPS) 50
Size (IN) HXWxD 5½ x 19 x 12½
Shipping WT (lbs) 50

Switchable volt and Amp meter

MODEL RS-12M
Continuous Duty (Amps) 9
ICS* (Amps) 12
Size (IN) H x W x D 4½ x 8 x 9
Shipping WT (lbs) 13

MODEL RS-20M
Continuous Duty (Amps) 16
ICS* (Amps) 20
Size (IN) H x W x D 5 x 9 x 10½
Shipping WT (lbs) 18

MODEL RS-35M
Continuous Duty (Amps) 25
ICS* (Amps) 35
Size (IN) H x W x D 5 x 11 x 11
Shipping WT (lbs) 27

MODEL RS-50M
Continuous Duty (Amps) 37
ICS* (Amps) 50
Size (IN) H x W x D 6 x 13½ x 11
Shipping WT (lbs) 46

Separate Volt and Amp Meters

MODEL VS-20M
Continuous Duty (Amps) @10VDC@10VDC@5VDC 16
ICS* (Amps) 9
Size (IN) H x W x D 5 x 9 x 10½
Shipping WT (lbs) 20

MODEL VS-35M
Continuous Duty (Amps) 25
ICS* (Amps) 15
Size (IN) H x W x D 5 x 11 x 11
Shipping WT (lbs) 29

MODEL VS-50M
Continuous Duty (Amps) 37
ICS* (Amps) 22
Size (IN) H x W x D 6 x 13½ x 11
Shipping WT (lbs) 46

Built in speaker

MODEL RS-12S
Continuous Duty (Amps) 5
ICS* (Amps) 7
Size (IN) H x W x D 4 x 7½ x 10½
Shipping WT (lbs) 10

MODEL RS-10S
Continuous Duty (Amps) 7½
ICS* (Amps) 10
Size (IN) H x W x D 4 x 7½ x 10½
Shipping WT (lbs) 12

MODEL RS-10L(FOR LTR)
Continuous Duty (Amps) 7.5
ICS* (Amps) 10
Size (IN) H x W x D 4 x 9 x 13
Shipping WT (lbs) 13

MODEL RS-12S
Continuous Duty (Amps) 9
ICS* (Amps) 12
Size (IN) H x W x D 4½ x 8 x 9
Shipping WT (lbs) 13

MODEL RS-20S
Continuous Duty (Amps) 16
ICS* (Amps) 20
Size (IN) H x W x D 5 x 9 x 10½
Shipping WT (lbs) 18

INSIDE VIEW - RS-12A
The perfect 1986 Holiday Gift at 1985 Prices

One Year / 12 issues

$19.95
SAVE
OVER 10%

FOR ONE GIFT SUBSCRIPTION OR RENEWAL

OR

$16.95
SAVE
25%

FOR TWO OR MORE GIFT SUBSCRIPTIONS OR EXTENSIONS INCLUDING YOUR OWN

A gift card will be sent if your order is received before December 15, 1986

Giving Ham Radio is both fun and thoughtful.

And at the receiving end of a Ham Radio gift subscription, it's remembered all year long as a token of your friendship.

We have a super busy year planned for 1987, just take a look at a sampling of what your special Amateur friend(s) will see in their 12 big gift issues next year: The very latest in state-of-the-art projects and technical discussions, our Annual Antenna issue in May and our Receiver issue in November, computers, monthly columns by Orr, Stonehocker, Schroeder, Carr, Reisert, and Guerri plus much, much more.

There's no time like the present to give the gift of HAM RADIO Magazine to that "hard to buy for" ham friend. While you're at it, why not treat yourself to another year of HR and save!

CALL TOLL FREE

800-341-1522

M-F 8-9 EST • SAT 9-5 EST

DATATEL 800™

ORDERS ONLY

ALL OTHER CALLS

603-878-1441 8-4:30 EST

Greenville, NH 03048

Prices US only
the receiver's volume control and the receiver's audio stage. This provides the best overall performance and is recommended.

The Radio Shack TA-7205 audio output IC is a good choice for a 3 to 5 watt output stage. It is readily available and comes with a schematic diagram. It can be built into a third Pomona Box or on a heat sink mounted in the external speaker box. I do not recommend such old standby ICs as the LM380, which does not have enough "headroom." Certain 2 watts per channel hi-fi parts with built-in heatsinks can be paralleled with good results, however.

Parts placement diagrams for the receive and transmit adapters are provided in figs. 6 and 7, respectively.** No special construction procedures are required beyond good RF shielding and grounding. When used with OSCAR stations, for example, it isn't acceptable

**An information sheet including prices on adapter PC boards is available from ham radio, Greenville, New Hampshire 03048. Please enclose SASE with your request.
A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV® you will receive a FREE LCD Calendar/Clock.

- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED ...

OnSat

The best in satellite programming! Featuring: ★ All Scheduled Channels ★ Weekly Updated Listings ★ Magazine Format ★ Complete Movie Listing ★ All Sports Specials ★ Prime Time Highlights ★ Specials Listing and ★ Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV®/OnSat®

P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384

SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020

to have audio rectification in the audio amplifier coming from your uplink transmitter! This is one reason we chose the Pomona 2901 box. This box, once the paint is scraped off around the internal lip and screw mounting posts, provides excellent shielding. Furthermore, it is easy to drill and looks very nice when the project is completed.

Radio Shack also sells several nice boxes for those who desire to put both transmitter and receiver adapters into one box. Be sure to use a few more screws than you normally would and scrape off a little paint here and there to ensure good RF shielding. Also remember that looping to both transmitter and receiver circuits from a common external box can create ground-loop problems.

ham radio

K.V.G.
CRYSTAL
PRODUCTS

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$72.05</td>
</tr>
<tr>
<td>XF-9C</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9D</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>125.65</td>
</tr>
<tr>
<td>XF-9E</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9F</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9G</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9H</td>
<td>CW</td>
<td>500 kHz</td>
<td>4</td>
<td>54.10</td>
</tr>
<tr>
<td>XF-9I</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9J</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>17.15</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

WRITE FOR FULL DETAILS OF CRYSTALS AND FILTERS
Export inquiries invited. Shipping: $3.75

MICROWAVE MODULES EQUIPMENTS

Use your existing HF or 2M rig on other VHF or UHF bands.

<table>
<thead>
<tr>
<th>RECEIVE CONVERTERS</th>
<th>LINEAR TRANSVERTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMx 1631-137</td>
<td>Mx 1288-144</td>
</tr>
<tr>
<td>MMx 1296-144G</td>
<td>Mx 1288-144</td>
</tr>
<tr>
<td>MMx 433-ATV</td>
<td>Mx 433-28(S)</td>
</tr>
<tr>
<td>MMx 433-28(R)</td>
<td>Mx 433-28(P)</td>
</tr>
<tr>
<td>MMx 144-28(HF)</td>
<td>Mx 144-28</td>
</tr>
<tr>
<td>MMx 144-28</td>
<td>Mx 433-28(S)</td>
</tr>
<tr>
<td>MMx 144-30-L</td>
<td>Mx 433-30-L</td>
</tr>
<tr>
<td>MMx 144-50-S</td>
<td>Mx 433-30-Q</td>
</tr>
<tr>
<td>MMx 144-100-S</td>
<td>Mx 433-100</td>
</tr>
<tr>
<td>MMx 144-100-L</td>
<td>Mx 433-100</td>
</tr>
<tr>
<td>MMx 144-200-S</td>
<td>Mx 433-200</td>
</tr>
</tbody>
</table>

LINEAR POWER AMPLIFIERS

MML 144-30-L	189.95
MML 144-50-Q	209.95
MML 144-100-S	439.95
MML 144-200-S	439.95

ANTENNAS

2M X10X2M	749.95
70CM	1268-LY
70/8MHz28	449.95
70/8MHz18	649.95
70/8MHz18	949.95
DY20-900 MHz	79.95

Send 664 (3 stamps) for full details of all our VHF & UHF equipments and KVG crystal products.

Shipping: FOB Concord, Mass.

(617) 263-2145
SPECTRUM
INTERNATIONAL, INC.
Post Office Box 1024
Concord, MA 01742, U.S.A.
The SONY AIR-8 Is Here!

Hand-Held Programmable PLL Scanner/Receiver For
AIR BAND-2M/PSB-FM-AM(LW-MW-SW)

NOW ONLY
$269.00
Plus $4.00 UPS

HERE ARE SOME OF THE AIR-8'S OUTSTANDING FEATURES!

- Computer controlled PLL tuning system
- 40 memory presets
- Multi scan system (manual and auto)
- 11" Helical antenna w/BNC connector
- Priority channel
- Squelch (auto and manual)
- Direct tuning

HERE'S TRUE SONY QUALITY! Feel the rugged construction, and listen to the high quality sound, and you'll know it's a Sony! The new AIR-8 can scan four different frequency ranges in either direction and can store a total of forty frequencies in its four memory banks. You can recall any memorized frequency with the touch of a key, and can scan the ten channels in each of its four memory banks in any order. The AIR-8 also has a delay function that prevents dropout enabling you to hear both sides of a conversation, and also a priority feature that samples a chosen frequency every three seconds for a signal. The quick-disconnect BNC connector allows different types of antennas to be easily coupled to the AIR-8 for maximum performance.

The AIR-8 measures 3¾" x 7½" x 2", and weighs just 21 oz. This is truly a sturdy little companion that will give you years of dependable performance wherever you go.

PACKED WITH SONY STATE-OF-THE-ART TECHNOLOGY

1. POWER Switch
2. Volume Control
3. 11" Helical Antenna
4. BNC Antenna Connector
5. Squeelch Control
6. Earphone Jack
7. AM External Ant Jack
8. Band Selector: Selects Air, PSB, AM, or FM.
9. LCD Display (See detailed illustration above)
10. Counter Keys: Used to program frequencies for direct tuning and memories, and also to recall memories.
11. EXECUTE Key
12. SCAN Keys: Used for scan tuning and manual tuning.
13. LIGHT Switch
14. KEY PROTECT: Locks out all keys on front face.
15. EXTERNAL DC INPUT
16. High Quality Speaker
17. ENTER Key: Used to memorize frequencies.
18. Battery Compartment (rear)
19. 9kHz/10 kHz Selector (Inside battery compartment)
20. DIRECT Key: Used for direct tuning.
21. LED Receive Indicator
22. MEMORY Scan Key: Used for scan tuning each memory bank.
23. PROGRAM Key: Used to initiate the program function.
24. DELAY Key
25. PRIORITY Key: Used for sampling a priority channel every 3 seconds.

AND DON'T FORGET... IT'S A SONY!

SPECTRONICS, INC.
1099 GARFIELD ST., OAK PARK, IL 60304
WORLD'S LEADING SONY COMMUNICATIONS SPECIALISTS!

PHONE (312) 848-6777

More Details? CHECK - OFF Page 110

October 1986

268
the Zia connection: a multi-state 2-meter repeater link

Regional VHF/UHF system covers 100,000 square miles in three southwestern states — and Mexico.

"K7DLN, this is WB5A0X in Artesia. Has that storm reached Phoenix yet?"...not an unusual ham transmission — except that WB5A0X is sitting in his kitchen, talking to a mobile station 500 miles away on a 2-meter HT. This kind of conversation has come to be perfectly routine in the area of the southwestern United States covered by the Zia Connection, a VHF/UHF communications super-system that takes its name from the ancient sun symbol of the Zuni Indians.

Zia links eleven 2-meter repeaters in what amounts to one 2-meter repeater with tremendous coverage. The dotted line in fig. 1, illustrating the area covered, represents the approximate limit of the system for an average mobile station running 10 to 25 watts with a 5/8 wavelength antenna. If the range available to fixed stations with large antennas or remote bases were included, the area covered would be even larger; as is, about 100,000 square miles are accessible to mobile stations within the system. About 1300 miles of six separate interstate highways are covered. Six hundred-mile QSOs between handheld stations are routine.

The major repeater sites include Tucson (population: 350,000); Phoenix (800,000); Albuquerque (350,000); El Paso (450,000); and Ciudad Juarez, Mexico (600,000). Given these numbers — and the nature of the geographical area covered — opportunities for public service (conducting weather watch and swap nets, reporting highway accidents, providing travel directions and locating travelers) abound. Hams are never out of touch in this vast area, even if they’re miles from the nearest telephone...and much of the area is miles from the nearest telephone! In October, 1983, when flash floods wiped out telephone service to communities throughout the center of the region for several days, Zia provided trouble-free communication for the Red Cross and National Guard until services were restored.

Obviously Zia didn’t spring into existence without precedent or without a lot of work by many hams. The western United States has long been noted for long-range repeaters situated on high mountain tops. Partly because the population density is low, there’s been a drive toward even greater coverage. During the 1960s, shortly after 2-meter FM repeaters were first introduced to the region, there was a time when the major New Mexico repeaters were linked together. The first regular link between New Mexico and Arizona was established in 1977 between the 16-76 repeater of the Mesilla Valley Amateur Radio Club and the 31-91 repeater of the Eastern Arizona Amateur Radio Society. This was a part-time, tone-controlled link between well-established repeaters. Because the sponsors often differed as to how the link should be operated, however, it was eventually discontinued.

The Zia Connection acts just like a single wide-range repeater. The links are completely transparent to users and the whole system is open 24 hours a day to all who wish to use it, without any controlling necessary. The only time portions of the system aren’t available is when technical difficulties or emergencies occur. There are no multiple squelch tails and no lost words at the beginning of a transmission. If one of the linked repeaters is timed out by a long-winded user, only that repeater — not the whole system — is shut down.

Each 2-meter repeater is similar to each of the others. All have CW identifiers and the same time-out timers, courtesy beeps, and controlled audio levels. The equipment must be highly reliable, available 24 hours a day, and able to withstand a high duty cycle. All stations are well designed, with such refinements as notch filters in the audio lines of the link receivers to remove the CW identification of the links, which are on 420 MHz.

Figure 2 shows the block diagram of a typical repeater node. The main component is the 2-meter repeater shown at the top. There is provision for up to three

By Alex F. Burr, K5XY, 2025 O’Donnell, Las Cruces, New Mexico 88001

30 October 1986
fig. 1. Mobile coverage range of the Zia Connection.
UHF channels to act as control links. Two additional link ports are available with the addition of one more link board.

All three subsystems use typical Amateur equipment. The main antenna is a commercial grade 2-meter antenna; the UHF link antennas are home-brewed. The duplexers are standard, as are the various receivers and transmitters, which are mostly retuned commercial rigs. The links are full duplex, so there's only minimal delay in switching them.

The equipment used by the Caballo Mountain 144.81-145.41 repeater in central New Mexico, typical of what's available at each node, is a combination of commercial, modified commercial, and ham-built equipment. Four surplus Motorola MoTran 406-420 MHz transceivers used for the UHF links (Photo A) underwent minor modifications to insert audio level controls, bypass internal audio amplifiers, speed up the squelch action, and provide full duplex capability. The original 12 VDC power supplies have been replaced with external 24-volt power supplies. A General Electric MasterPro, modified in a manner similar to the UHF transceivers, is used for the 2-meter repeater. The 2-meter duplexer is a WACOM; the UHF duplexers are Phelps Dodge mobile duplexers.

The 2-meter feedline is Heliax and the UHF feedline uses RG213 coax. The antennas are mounted on a TV translator tower; the 2-meter antenna is a Phelps Dodge 340 and the UHF directional antennas—either 6- or 14-element verticals, depending on path requirements—are home-brewed models patterned after KLM designs. Photos B and C show another typical Zia installation at Benson Ridge, New Mexico.

Of course the key to the whole operation is the rather uncomplicated control system (fig. 3). With the emphasis on audio quality and fast keying response, it's designed to have a dropout time (time of response to loss of carrier on the 2-meter receiver) from one end of the system to the other of about 200 ms. The pickup time (time of response to the presence of a signal on one of the receivers) is about 300 ms for the complete system.

The control system consists of four main parts, three of which are quite conventional. Based on an EPROM,
fig. 2. Block diagram of typical single site.
For Serious Packeteers and Well-Advised Beginners, the Pac-Comm TNC-200 is the tnc of choice! You probably know by now that the TNC-200 is a licensed version of the world-standard TAPR TNC-2. Any packet old-timer will tell you that Pac-Comm has the quality components, the workmanship and, above all, the depth of experience you want when you select a tnc. The TNC-200 is the only tnc which has stayed with the TAPR design, not swaying for any reason. We take pride in this and want you to understand that we take the hobby as seriously as you do. Whether you choose the kit or the assembled TNC-200, Pac-Comm stands behind it.

Write for a catalog of our complete line of packet hardware, software and accessories.
the identification board (I.D.) on the right-hand side of the block diagram shown in fig. 3 provides the required CW identification signal with speed, level, and tone controls. Its only unusual feature is the maximum of eight identification lines from which to select.

The control board on the left accepts audio from the UHF control receiver to a 16-digit DTMF decoder with eight latched output lines. Six of these lines are reserved for specific functions: the first turns the repeater on or off, the second connects the repeater to the link or lets it operate as an isolated repeater, the next three turn the link systems on or off, and the sixth turns the repeater carrier delay on or off. The remaining two lines are for any other link equipment that might be added. All controls are independent of the others. The input to a particular board is accessed via UHF by the control stations for this particular part of the system.

The carrier operated relay (COR) board, also quite conventional, allows for setting audio levels, time-out protection, carrier delay timing, push-to-talk, and the courtesy beep for the repeater. The only unusual features are the audio and keying information input from the links, a similar output, and a mixing circuit to include the audio from the 2-meter receiver with the audio from the links.

The link board, the least conventional part of the system, has to process and mix the audio to and from as many as three links and the 2-meter repeater. It also has to provide and respond to the appropriate keying information and accept the eight output lines from the control board.

It should be obvious that no single piece of the system’s hardware is particularly sophisticated; instead, the Zia Connection is more of a triumph of organization and cooperation, of hard work and commitment, than of technology. Of the several factors in its successful operation, the most important is the dedicated leadership of Milt Jensen, N51A, who started the network with three linked repeaters in August, 1982. Milt is the first to ad-

Photo C. View from the top the Zia Connection tower at Benson Ridge, New Mexico. The photograph was taken during construction.
mit that he hasn’t done it alone, but has relied on the help of many others who’ve designed and built components, set up repeaters, made repairs, and performed regular maintenance. Site acquisition and frequency coordination have been no small jobs, either. But it was N51A who decided to establish the Zia Connection, set the first parts in place and get them working, and continues to plan, guide, and help with expansion.

Because previous experience with repeater linking showed that it’s difficult for established groups to agree on a single plan, N51A decided to start afresh, without benefit of existing repeaters or radio clubs. Only individuals who would wholeheartedly support the basic concept were recruited. Table 1 lists repeater sites and equipment owners; fortunately, at about the time this operation was begun, the number of repeater channels was increased so that new repeaters could be installed with little or no inconvenience to users of existing repeaters.

Milt received significant assistance from Joe Montierth, WA7ZNY, who designed the control and inter-
Our Special Issue on

face circuits and performed many of the equipment modifications. Rick Fultz, KC5EJ, provided the control and interface circuit board layouts, and Norm Smith, K7DLN, built the link antennas.

An example of the kind of cooperation common to Zia activities was the Jack’s Peak antenna-raising party, coordinated by N51A, which was necessitated by a severe ice storm that coated guy wires with 5 inches (i.e., 4 tons) of ice and brought the tower down (see Photo D). The operation involved building a concrete base (with 3 cubic yards of concrete mixed in a 1/3-sack mixer), raising a 135-foot tower, and setting eleven antennas and feedlines in two and a half days. All this was done on top of an 8000-foot mountain 150 miles from the nearest large city. Twelve people — including two from El Paso (200 miles away), two from Tucson (200 miles away), and two from Los Angeles (800 miles away) — were recruited for this project. The group even included a video tape camera operator who shot many minutes of tape showing the tower being slowly inched into position.

Several factors over which nobody has any control contribute to the success the Zia Connection. One is the low population density of the area. There are enough hams to ensure that somebody is likely to be listening, and therefore able to respond to a request for emergency aid, but not so many that the channel is always busy. The present duty cycle is a comfortable 65 percent. Another factor is the apparent dearth of “squirrels” (or “nuts,” if you prefer) among the ham population of the region. The network hasn’t been significantly bothered by unstable operators and everybody gets along without the need for formal rules or control operator intervention. No area of the system has preference over any other area; in all aspects, the system operates as if it were just one large, friendly repeater.

Of course the availability of mountain-top repeater sites helps, although remote mountain sites do have their disadvantages. But N51A is quick to point out that the system can be duplicated, and even improved upon, anywhere that people have the desire to do so. A greater number of links, for example, could compensate for an insufficient supply of barely-accessible mountain-top sites.

The separate units in the network belong to individual owners and two small clubs, who are responsible for all aspects of their repeaters and the associated links. Owners or owner-recruited volunteers such as Martin Raue, WB5LJO, Jim Devenport, WB5AOX, and John Braden, K7LKL, are responsible for maintenance. N51A owns four of the eleven repeaters; others own the rest. Financing has been mostly by individuals, with some donations for maintenance and operation. There are no dues, and no soliciting; donations are made for the purpose of contributing to a good cause, rather than, for example, expecting x hours of operating time.

Even after the network was established and running, lots of effort had to be — and still must be — expended to keep it going. Time is the biggest problem; N51A often feels that he has to be in several places at once. When you have to drive 150 miles (one way) to repair a repeater, it’s bound to cut into your free time. Storms, with their antenna icing or lightning-induced failures, present the greatest challenge.

As it is, the region is fortunate to have a group of Amateurs who find pleasure in providing a remarkable service to a large number of hams.

Table 1. Zia connection nodes.

<table>
<thead>
<tr>
<th>Site</th>
<th>Altitude (feet)</th>
<th>Equipment Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Lemmon</td>
<td>9357</td>
<td>John Vanzo, AK7Z</td>
</tr>
<tr>
<td>Porter Mountain</td>
<td>7857</td>
<td>Kachina Radio Club</td>
</tr>
<tr>
<td>White Tanks</td>
<td>4010</td>
<td>Ken Simpson, WB7DRD</td>
</tr>
<tr>
<td>Jack’s Peak</td>
<td>8000</td>
<td>Milt Jensen, N5IA</td>
</tr>
<tr>
<td>Caballo Mtn.</td>
<td>7560</td>
<td>Milt Jensen, N5IA</td>
</tr>
<tr>
<td>Benson Ridge</td>
<td>9686</td>
<td>Milt Jensen, N5IA</td>
</tr>
<tr>
<td>Sandia Peak</td>
<td>10,678</td>
<td>Rick Fultz, KC5EJ</td>
</tr>
<tr>
<td>Comanche Peak</td>
<td>5220</td>
<td>Eastern Arizona Amateur Radio Society</td>
</tr>
<tr>
<td>Guthrie Peak</td>
<td>6573</td>
<td>Bob Perkins, KUSJ</td>
</tr>
<tr>
<td>Maljamar</td>
<td>4250</td>
<td>George Lewis, WA7SBZ, & Joe Montierth, WA7ZNY</td>
</tr>
<tr>
<td>Pinel Peak</td>
<td>7848</td>
<td></td>
</tr>
</tbody>
</table>

The network hasn’t been significantly bothered by unstable operators and everybody gets along without the need for formal rules or control operator intervention. No area of the system has preference over any other area; in all aspects, the system operates as if it were just one large, friendly repeater.
ham radio
TECHNIQUES

the grounded grid amplifier: part 2

In my last column I discussed the grounded grid (cathode driven) amplifier with respect to neutralization, RF feedback, flashover, and operating filament voltage. This column continues the discussion with respect to other features of this interesting circuit.

metering circuit

Correct operation of the grounded grid amplifier is determined by observing the grid and plate currents of the tube. Ideally, two meters are required; these should be placed in the circuit where they measure the wanted currents and no others, and where the meters are at (or near) ground potential so they present no high voltage hazard to the operator. Placing a meter in the B+ lead, for example, is risky business unless the meter is specifically designed for operation at high potential above ground. Most meters are not designed for this type of operation.

Figure 1 shows one solution to the metering problem. Since all tube currents flow in the cathode (filament) circuit, one terminal of each meter is common to this circuit where they measure the wanted currents and no others, and where the meters are at (or near) ground potential so they present no high voltage hazard to the operator. Placing a meter in the B+ lead, for example, is risky business unless the meter is specifically designed for operation at high potential above ground. Most meters are not designed for this type of operation.

Figure 1 shows one solution to the metering problem. Since all tube currents flow in the cathode (filament) circuit, one terminal of each meter is common to this circuit where they measure the wanted currents and no others, and where the meters are at (or near) ground potential so they present no high voltage hazard to the operator. Placing a meter in the B+ lead, for example, is risky business unless the meter is specifically designed for operation at high potential above ground. Most meters are not designed for this type of operation.

The difference in potential between the negative of the plate supply, point A, and chassis ground, B, is only a few tenths of a volt, but it’s sufficient to allow metering to take place. Plate current flows from the filament (cathode) at point A, through the plate meter and plate supply to the anode of the tube. Grid current flows from point A, through the grid meter to the grid of the tube, which also happens to be point B, or chassis ground.

Although this circuit works, it isn’t safe. Assume there is a DC arc to ground in the plate circuit. A typical arc in air has a resistance of about 12 ohms. This means that the whole energy in the power supply is “dumped” into the arc (fig. 2). Most Amateur transmitters have a high capacitance filter arrangement that stores many joules of energy. The arc current can be several hundred amperes for a fraction of a second. During the arc, the plate side of the supply is effectively at ground potential. This means that the negative side of the supply is now above ground by a large fraction of the supply voltage. At the same time, the high arc current flows through the plate and grid meters. ZAP! The meters literally disintegrate and the negative terminal of the supply is now above ground by the amount of the plate potential. This is a truly deadly situation that could kill you if you were in contact with the equipment negative and chassis ground at the same time.

The same can occur if the plate meter is overloaded and opens up. Again, the DC return to the power supply is opened and the negative terminal floats above ground at a dangerous potential.

The whole point is that dangerous conditions can exist when meters are simply placed in the negative return leads of a power supply without the inclusion of protective measures.

The circuit designer can protect the user from this lethal situation by never allowing the negative terminal of the power supply to leave near-ground potential. This can be accomplished by placing a low-value resistor, R, from the negative of the supply to chassis ground. The value of the resistor must be high enough so that it doesn’t alter the accuracy of the meter readings to

![fig. 1. Grid and plate meters are placed in low-potential leads to protect the operator. Circuit creates as many problems as it solves.](image)
any degree. Usually several hundred ohms will do the job. The resistor can be placed from negative to ground directly, or it can be split in two, with separate resistors placed across each meter. I prefer to use a single resistor to ground, as shown in fig. 3.

How big (physically) should the resistor be? That depends upon the energy storage capability of the power supply. Hams who blithely use hundreds of microfarads of filter capacitance in their power supplies have a 0.7-volt drop across them that’s sufficient to allow the meter to function properly. Type 1N2071 or 1N4005 diodes will do the job.

Even if the short current damages the diode, it commonly fails in a short circuit mode, protecting the rest of the circuit. Figure 4 shows the protective system across representative meters.

vacuum-arc protector

It’s possible for any power tube operating at a moderately high plate potential to experience a vacuum arc. This is known as the “Rocky Point” effect, named after the RCA transmitting site in the United States is standardized on 117 volts, ±5 volts. That’s about ±4 percent. Variations in primary line voltage can thus “eat up” the filament voltage tolerance of the power tube.

fig. 2. The plate circuit from a DC point of view during an arc.

fig. 3. Resistor from negative of power supply to ground provides operator protection from DC fault in high voltage circuit.

if it were to blow, the circuit would be opened. The meter might be saved, but the circuit could float above ground and pose a hazard to the operator or perhaps to other components.

A good solution is to place reverse-connected diodes across the meters. Ordinary silicon diodes of the type used in power supplies have a 0.7-volt drop across them that’s sufficient to allow the meter to function properly. Type 1N2071 or 1N4005 diodes will do the job.

Even if the short current damages the diode, it commonly fails in a short circuit mode, protecting the rest of the circuit. Figure 4 shows the protective system across representative meters.

complete protective circuit

The metering and protective circuit, with all components included, is shown in fig. 4. The additional components are inexpensive and can save plenty of more valuable components from biting the dust when trouble occurs in the amplifier.

filament voltmeter

All power tubes have a filament voltage tolerance specified by the manufacturer. In many cases it’s ±5 percent of the nominal value. For a tube with a 5-volt filament, the limits, therefore, are 4.75 and 5.25 volts.

The primary power circuit in the United States is standardized on 117 volts, ±5 volts. That’s about ±4 percent. Variations in primary line voltage can thus “eat up” the filament voltage tolerance of the power tube.
Our guaranteed savings plan.

Fluke 70 Series Analog/Digital multimeters are like money in the bank. Buy one, and you’re guaranteed to save both time and money.

Money, because you get longer battery life and longer warranty coverage — 3 years vs. 1 year or less on others.

And time, because 70 Series meters are easier to operate and have more automatic measurement features.

So before buying any meter, look beyond the sticker price. And take a closer look at the new low-priced $79 Fluke 73, the $99 Fluke 75, and the deluxe $139 Fluke 77. In the long run, they’ll cost less, and give higher performance, too.

And that, you can bank on.

For a free brochure, and your nearest distributor, call toll free 1-800-227-3800, ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

fig. 4. Complete meter protection plus vacuum-arc protection (R1).

Many prudent Amateurs run the filaments of their power tubes from a separate filament transformer set to the correct voltage by means of a variable voltage transformer ("Variac" or "Powerstat" are two trade names for such a device.) The filament voltage is set "on the nose" by means of a filament voltmeter. Or is it?

Primary voltage in most of the United States is affected by industrial loads that can alter the waveform from the classic sine wave. The primary line is full of harmonics, spikes, and other unpleasant surges and dips. This makes an easy job difficult because inexpensive voltmeters and other instruments that employ a rectifier and DC meter to measure AC voltage simply lose their accuracy when confronted with a distorted waveform.

An accurate method of measuring filament voltage is to use an "RMS responding" AC meter. The old Weston Model 301 AC instruments often found at flea markets are of this type. Beware of a meter bearing a label that says "rectifier-type instrument." It won’t do the job as well.

When you find an RMS-responding AC meter, take it to an instrument laboratory, if there’s one nearby, or perhaps a local college. Ask their standards lab to calibrate your meter for you. This is a cheap and easy way to obtain a 1 percent meter for a few dollars and just a little effort. You can then use the meter to monitor your filament voltage or your line voltage.

I picked up a nifty 0-150 volt Weston laboratory-type meter with a mirror-scale for a few dollars at a local swap meet. A local standards lab checked the meter out and, now I have a "standard" meter, good to 1-percent accuracy. I leave it permanently connected across the primary line to observe the daily fluctuations of line voltage. In my case, the voltage varies with the time of day, ranging from 118 to 124 volts! Since it’s always above 117 volts, I have a multi-tap filament transformer connected as an autotransformer. I usually set the voltage to my transmitter at 115 volts, slightly under normal, in the hope that everything will run cooler and with less stress than if I operated it directly off the line. The voltmeter is atop the operating table and the tapped transformer is suspended under the tabletop, to the right of my equipment.

After these alterations, I might not be any louder on the air, but I am a lot safer and my equipment is protected from misfortune, which often occurs at just the wrong moment.

From the World Leader in Digital Multimeters.

© 1986 Fluke

FLUKE

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

fig. 4. Complete meter protection plus vacuum-arc protection (R1).

Many prudent Amateurs run the filaments of their power tubes from a separate filament transformer set to the correct voltage by means of a variable voltage transformer ("Variac" or "Powerstat" are two trade names for such a device.) The filament voltage is set "on the nose" by means of a filament voltmeter. Or is it?

Primary voltage in most of the United States is affected by industrial loads that can alter the waveform from the classic sine wave. The primary line is full of harmonics, spikes, and other unpleasant surges and dips. This makes an easy job difficult because inexpensive voltmeters and other instruments that employ a rectifier and DC meter to measure AC voltage simply lose their accuracy when confronted with a distorted waveform.

An accurate method of measuring filament voltage is to use an "RMS responding" AC meter. The old Weston Model 301 AC instruments often found at flea markets are of this type. Beware of a meter bearing a label that says "rectifier-type instrument." It won’t do the job as well.

When you find an RMS-responding AC meter, take it to an instrument laboratory, if there’s one nearby, or perhaps a local college. Ask their standards lab to calibrate your meter for you. This is a cheap and easy way to obtain a 1 percent meter for a few dollars and just a little effort. You can then use the meter to monitor your filament voltage or your line voltage.

I picked up a nifty 0-150 volt Weston laboratory-type meter with a mirror-scale for a few dollars at a local swap meet. A local standards lab checked the meter out and, now I have a "standard" meter, good to 1-percent accuracy. I leave it permanently connected across the primary line to observe the daily fluctuations of line voltage. In my case, the voltage varies with the time of day, ranging from 118 to 124 volts! Since it’s always above 117 volts, I have a multi-tap filament transformer connected as an autotransformer. I usually set the voltage to my transmitter at 115 volts, slightly under normal, in the hope that everything will run cooler and with less stress than if I operated it directly off the line. The voltmeter is atop the operating table and the tapped transformer is suspended under the tabletop, to the right of my equipment.

After these alterations, I might not be any louder on the air, but I am a lot safer and my equipment is protected from misfortune, which often occurs at just the wrong moment.

From the World Leader in Digital Multimeters.

© 1986 Fluke

FLUKE

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
EIMAC Tubes Provide Superior Reliability at radio station KWAV — over 112,000 hours of service!

Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 13 years of continuous duty!

Ken says, "In spite of terrible power line regulation, we've had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!"

Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don't want. More operating time and less downtime!

EIMAC backs their proven tube reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Send for our free Extended Warranty Brochure which covers this program in detail.

Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221

Quality is a top priority at EIMAC, where our 50-year charter is to produce long-life products.
Message Master™

Real-voice message system
For any repeater or base

Now you can communicate vital information even when the station you are calling is not on the air — with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you — any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your callsign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.

Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging.

- Create messages just by talking. Message Master's 'real-voice' technique saves YOUR VOICE in digital memory to deliver messages in your own voice, language and dialect.
- Mailbox-style operation gives individual message delivery service to 100 system users.
- Easily added to any repeater or base station for remote operation with only four connections.
- Special features include callsign identifications, tail messages, and bulletin messages.
- Digital message storage provides instant playback of stored messages.
- Modular memory meets your exact needs from 2 to 8 minutes of total message storage.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical price.
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.

KENDECOM INC.
MICRO CONTROL SPECIALTIES

23 Elm Park
Groveland, MA 01834
(617) 372-3442
get on SSTV — with the C-64

Software approach/uses BASIC and/machine language routines

Although the Commodore 64 computer has proved to be a popular addition to many hamshacks, its full potential hasn’t always been realized. The Commodore has excellent graphics capabilities that are easily accessible to a knowledgeable programmer — and these capabilities are directly applicable to slow-scan television.

Several years ago, Edwin Cox designed and published an SSTV send and receive program for the VIC-20, later upgrading it for the C-64. Others have written programs to allow weather facsimile to be displayed using the Commodore machines. Numerous articles and books have explored what can be done with the versatile Commodore machines; the possibilities described in the Amateur literature go far beyond applications available commercially.

While the earlier programs required additional hardware in order to use the Commodore for visual reception, the programs described in this article make full use of the hardware already contained in the C-64. The only interface necessary is protection of the sensitive ICs from the fluctuations of the outside world.

What follows is the brainchild of two Italian computer and radio enthusiasts. Once you’ve typed in the programs, you’ll be ready to send and receive black and white SSTV pictures with very little additional work. — Jim Grubbs, K9EI.

slow-scan basics

Before we program the computer for transmission and reception, let’s briefly review the basics of SSTV. SSTV is transmitted as a continuous series of tones using normal voice bandwidth channels. While most SSTV activity occurs on HF using standard SSB techniques, it’s equally well-suited to FM modulation on UHF/VHF or even transmission over standard grade telephone lines.

First the image to be transmitted is scanned. For a standard black and white picture, it takes about 8 seconds to scan and send a single frame of video. In order to know when a new scanning line begins and when a new picture frame begins, certain tones are reserved to indicate synchronization signals. A 1200-Hz tone represents a sync pulse. A horizontal sync pulse consists of a 1200-Hz tone for a period of 5 milliseconds. A longer 1200-Hz tone for 30 milliseconds represents a vertical sync signal.

In order to distinguish between black and white portions of the picture, the tones between 1500 and 2300 Hz are used to specify everything from pure black to pure white — including all the shades of gray in between.

making the computer speak SSTV

In order for the computer to interpret an SSTV signal accurately, it has to know exactly what frequency is present during each sampling period. By connecting the audio to the user port, (see fig. 1) of the Commodore 64, we can count the number of zero crossings present and determine the frequency of the incoming signals. We use pin "B" on the user port, which is available as a general-purpose interrupt input on the 6526 complex interface adapter chip.

The sampling of the input frequency must be done continuously using a very short time interval in order to reproduce a slow-scan picture accurately. This is achieved by rewriting the Non-Maskable Interrupt (NMI) routine that’s resident in the C-64. By modifying the pointers to the NMI routine, we can substitute a program designed to suit our needs for SSTV. The pointers are located at hex locations $0318 and $0319.

taking a break

The central processing unit in the C-64 is kept very busy; all the pretty graphics and sounds available take their toll on processor time. For the purpose of SSTV reception, this can present a problem if we don’t focus the attention of the CPU on our assigned task. Normal-

By Giuseppe Camer0ni, I2CAB, and Giancarla Morellato, I2AED, Via Damiano Chiesa 26, Vigevano 27029, Italy. Translation and additional text by Jim Grubbs, K9EI.
The "Flying Horse" sets the standards

Continuing a 66 year tradition, there are three new Callbooks for 1987.

The North American Callbook lists the call, names, and address information for licensed amateurs in all countries from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawaii and the U.S. possessions.

The International Callbook lists the amateurs in countries outside North America. Coverage includes South America, Europe, Africa, Asia, and the Pacific area.

The 1987 Callbook Supplement is a new idea in Callbook updates; it lists the activity in both the North American and International Callbooks. Published June 1, 1987, this Supplement will include all the new licenses, address changes, and call sign changes for the preceding 6 months.

Publication date for the 1987 Callbooks is December 1, 1986. See your dealer or order now directly from the publisher.

Table 1. SSTV reception program listing.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Station</th>
<th>Country</th>
<th>Signal Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 kHz</td>
<td>W112999</td>
<td>USA</td>
<td>30</td>
</tr>
<tr>
<td>1010 kHz</td>
<td>W123456</td>
<td>USA</td>
<td>25</td>
</tr>
<tr>
<td>1020 kHz</td>
<td>W123456</td>
<td>USA</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2. SSTV transmission program listing [BASIC].

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Station</th>
<th>Country</th>
<th>Signal Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 kHz</td>
<td>W112345</td>
<td>USA</td>
<td>30</td>
</tr>
<tr>
<td>1010 kHz</td>
<td>W123456</td>
<td>USA</td>
<td>25</td>
</tr>
<tr>
<td>1020 kHz</td>
<td>W123456</td>
<td>USA</td>
<td>20</td>
</tr>
</tbody>
</table>

(continued on page 47)
ly the C-64 stops everything it's doing and takes time out to update the graphics screen. If these video interrupts are left intact, our program will work, but there will be "holes" in the picture where the CPU goes and does other things.

By making a small compromise in operating convenience, this problem is easy to overcome. The SSTV receive program has been written so that by pressing the F7 function key, the video interrupts normally processed by the CPU are suspended until the F7 key is pressed again. This results in the screen being blanked during reception of a picture, but ensures that no data is lost during the reception. (The Cox SSTV program suffered from the same problem and used a similar solution).

Because no external processing is being done, it's necessary to keep the audio gain of the receiver fairly high in order to saturate or clip the signal. The computer doesn't understand much other than square waves.

Two interfaces are presented here (see figs. 2 and 3). The first is definitely intended for those in a hurry, but it works! Just about any NPN transistor will do; its primary purpose is to protect the 6526 chip in the computer from damage. The second, a slightly more complex single-chip interface, allows a much more acceptable audio level to be used from the receiver. It uses a single LM311 voltage comparator IC and a few resistors.

getting the picture

Once you've typed in the program and built either of the two interfaces, you're ready to receive black and white SSTV pictures.

For convenience, the program for SSTV reception is presented in BASIC (table 1). Because the timing for SSTV is in the millisecond range, only a machine language routine is fast enough to provide the needed accuracy. This program "pokes" in the machine language program from BASIC.

To begin, connect the interface, making sure that the power to the computer is turned off; trying to connect the interface with power on could damage the C-64's sensitive circuitry.

Next, load and run the program. There will be a short delay while the machine language routines are poked into memory. After that the screen should turn black.

The best place to look for SSTV activity is around 14.230 MHz, particularly on Saturday and Sunday mornings. Be aware that several formats are in use; much of the activity you'll hear will be color transmissions not well-suited to this simple program. Many SSTV nets, however, ask their participants who work in color to also send their pictures in standard 8-second black and white format for those with less sophisticated equipment.

The best way to tune an SSTV signal is to adjust the receiver for normal-sounding speech and then leave the tuning alone during picture transmission. If everything is working smoothly, you'll see a picture begin to be traced in the center of the computer screen. The image will occupy only a portion of the screen.

The best images for this simple program will consist of graphics that don't contain subtle color changes. Signals generated using a SSTV keyboard or employing block-type graphics will come through best.

Using this program we've been able to display live images of distant SSTV operators. The display is somewhat grainy, but the image is still quite interpretable as a person.

Once you can receive pictures, you may want to transmit some yourself. While the simple program shown in **table 2** won't allow you to create and send fancy pictures...
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

- Newsletter Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.
- Satellite Tracking Software Available for most popular PCs.
- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks
- Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

SID sends a picture

Normally we think of the SID sound chip in the Commodore machine as being the hardware necessary to make music. For SSTV, however, it becomes an important part of getting a "picture" on the air.

The simple SSTV transmit program takes a portion of the regular text screen available on the C-64 and provides a conversion for everything typed in this special "window." The window consists of seven lines of up to eight characters each. Any of the standard Commodore characters, including the graphics characters, can be used. I did find that the program acted strangely when I tried to send reverse-image characters. — K9EI

The characters you type on the screen are presented, one at a time, to a special interpreter program. Every character consists of individual points of light; by processing these points and applying them to the sound chip, we can create an SSTV signal in standard format.

Since we're using only standard characters, all of the information will represent either pure black or pure white, depending on whether the point being "scanned" by the program is on or off. The computer itself will allow us to specify up to 255 different shades of gray. A more advanced program could use the main subroutines from this one to send a true bit-mapped image, perhaps prepared with one of the graphics programs like Koalapainter.

Every line of the video from our SSTV transmit program consists of 64 memory locations. A $00 specifies white, which is represented by a 2300-Hz tone sent for 0.93 milliseconds. A value of $FD indicates black, sent at 1500 Hz, while $FE indicates a horizontal sync pulse and $FF is used to indicate vertical sync.

Each frame of transmitted video consists of seven text lines containing eight characters each. Each character is represented by an 8 x 8 matrix. The image definition will be 63 points horizontal (8 x 8 less one horizontal sync pulse) by 128 points (7 characters by 8 x 2 — each line is transmitted twice — plus 16 lines of buffer). The extra lines of buffer were inserted to allow for easy reception of the picture even if the monitor isn't set up perfectly.

Finally the SID chip is turned on and the frequency is changed according to the values stored in the matrix. The resulting standard SSTV audio signal can be heard coming out of the monitor speaker.

Once you've created your picture, you can send it by pressing the "backarrow" key located in the upper left hand corner of the keyboard. You can move the text window around using the cursor keys. You can return to the upper left hand corner of the window by pressing the RETURN key. To terminate transmission, you must press and hold the RETURN key. The key is scanned during the vertical sync period.
1140 print chr$(147);printtab(10);"sety transmission"
1150 for x = 1 to 8
1160 print chr$(17)
1170 next x
1180 print tab(3);"activate transmission by the ";
1190 print chr$(18);chr$(95);" key";chr$(146)
1200 print tab(2);"stop transmission by pressing ";
1210 print chr$(18);"return";chr$(116)
1220 print chr$(19);for i = 0 to 6 print chr$(17);next
1230 for j = 0 to 7 print tab(1);i
1240 print chr$(19)
1250 for p = 1 to 7 "i:
1260 print tab(1);p
1270 print chr$(19)
1280 for q = 1 to 7 "i:
1290 print tab(1);q
1300 print chr$(19)
1310 next q
1320 print chr$(19)=n=0
1330 print tab(6)
1340 poke p1+54,72,1; poke p1,peek(p1);126
1350 poke p1+56,73,1; poke p1,peek(p1);128:goto1350
1360 if asc(x)=102thenprinttab(3);"no
1370 print tab(2);"stop transmission by pressing ";
1380 print chr$(18);"return";chr$(116)
1390 load 128:print p1,peek(p1)-128i:goto1350
1400 print tab(1):10then print asc(x):"no
1410 print tab(2);"stop transmission by pressing ";
1420 print chr$(18);"return";chr$(116)
1430 poke p1,peek(p1)-128:print x:p1=p1+1
1440 if asc(x)=13 then n=0:print p1,peek(p1)-128:goto1330
1450 if n=0 then p1=p1+32:print
1460 if n=1 then p1=p1-32:print
1470 if n=2 then p1=p1-32:print
1480 if n=3 then p1=p1-32:print
1490 if n=4 then p1=p1-32:print
1500 if n=5 then p1=p1-32:print
1510 if n=6 then p1=p1-32:print
1520 goto 1350
1530 print 1350
1540 print 1350
1550 print 1350
1560 print 1350
1570 print 1350
1580 print 1350
1590 print 1350
1600 print 1350
1610 print 1350
1620 print 1350
1630 print 1350
1640 print 1350
1650 print 1350
1660 print 1350
1670 print 1350
1680 print 1350
1690 print 1350
1700 print 1350
1710 print 1350
1720 print 1350
1730 print 1350
1740 print 1350
1750 print 1350
1760 print 1350
1770 print 1350
1780 print 1350
1790 print 1350
1800 print 1350
1810 print 1350
1820 print 1350
1830 print 1350
1840 print 1350
1850 print 1350
1860 print 1350
1870 print 1350
1880 print 1350
1890 print 1350
1900 print 1350
1910 print 1350
1920 print 1350
1930 print 1350
1940 print 1350
1950 print 1350
1960 print 1350
1970 print 1350
1980 print 1350
1990 print 1350
2000 print 1350
2010 print 1350
2020 print 1350
2030 print 1350
2040 print 1350
2050 print 1350
2060 print 1350
2070 print 1350
2080 print 1350
2090 print 1350
2100 print 1350
2110 print 1350
2120 print 1350
2130 print 1350
2140 print 1350
2150 print 1350

(continued on page 51)
ARGEST HAM OUTLET IN THE WORLD

7 STORE BUYING POWER

KENWOOD TS-940S
TOP-OF-THE LINE HF TRANSCEIVER
GREAT PRICE, CALL

KENWOOD HAND-HELDs
TH-21AT/31AT/41AT
Compact, Only 2.4"W, 4.74"H, 11.7"D. Outstanding performers in an ideal package size.
TR-2600A/3600A
Deserves its well-earned reputation as the leading HT

KENWOOD SM-220
STATION MONITOR
10 MHz Scope
LOW PRICE!

ELH-230D AMPLIFIER
2 METER 3 IN/30 OUT
AT GREAT, LOW PRICES

MA-40
40 TUBULAR TOWER
SALE! $549

MA-550
55 TUBULAR TOWER
SALE! $899
- Handles 10 sq. ft. at 50 mph
- Please neighbors with tubular streamlined look

TX-455
55 FREESTANDING CRANK-UP
- Handles 18 sq. ft. at 50 mph
- No guying required
- Extra-strength Construction
- Can add raising and motor drive accessories

IN STOCK FOR QUICK DELIVERY
OTHER MODELS AT GREAT PRICES

ICOM IC-28A/28H
2-METER MOBILES
IC-28A (25w) IC-28H (45w)
LOW PRICE!

YAESU FT-727R
5 WATT 2M/440 MHz
Dual Band
CALL FOR PRICE

ICOM IC-37A
HF TRANSCEIVER
LOW PRICE!

ICOM IC-751A
HIGH PERFORMANCE TRANSCEIVER
CALL FOR PRICE

CALL TOLL FREE (800) 854-6046

All Major Brands in Stock Now!

Toll free including Hawaii. Phone Hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store. California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

Tell 'em you saw it in HAM RADIO!
Superior Grade General Coverage Receiver
SALE! CALL FOR PRICE

ICOM IC-3200A
DUAL BANDER
Covers Both 2 Meters & 70 cm LIMITED QUANTITY AT OLD PRICES

ICOM IC-28A/28H
2-METER MOBILES IC-28A (25w) IC-28H (45w) LOW PRICE!

ICOM IC-735
The Latest in ICOM's Long Line of HF Transceivers CALL FOR LOW, LOW PRICE

ICOM IC-R7000
25 MHz-1300 MHz IN STOCK FOR IMMEDIATE DELIVERY

ICOM IC-751A
HF TRANSCEIVER LOW PRICE!

CALL TOIL FREE (800) 854-6046

More Details? CHECK OFF Page 110
Or This Inexpensive
It Really Shouldn’t Be This Easy

Remember just a few years ago, how it took a roomful of equipment just to work RTTY. And if you wanted more than one mode it took a dedicated computer system costing thousands of dollars. The new AEA Pakratts are proving it doesn’t take lots of equipment or money to enjoy working all bands in five different modes.

First, A Good Idea

The idea behind the Pakratt is very simple. One controller that does Morse, Baudot, ASCII, AMTOR, and Packet, and works both HF and VHF bands. Of course the decoding, protocol, and signal processing software must be included in the unit, and connection to the computer and transceiver have to be easy. The unit also has to be small and require only 12 volts, so it will work both in the shack and on the road.

Second, Computer Compatible

It doesn’t matter what kind of computer you have, we have a Pakratt for you. The PK-64 works with the popular Commodore 64 or 128, and the PK-232 works with any other computer or terminal that has an RS-232 serial port. The PK-64 doesn’t require any additional programs. Simply connect to the computer and transceiver and you’re on the air. The PK-232 needs a terminal or modem program for your computer. The one you’re using with your telephone modem will work just fine.

Third, Performance and Features

The real measure of any data controller is what kind of on-air performance it gives. While the PK-64 and PK-232 use different types of modems, both give excellent performance on VHF. The optional HF modem of the PK-64 uses independent four-pole Chebyshev filters for both Mark and Space tones, and A.M. detection. The HF option can be factory or field installed. The PK-232 uses an eight-pole bandpass filter followed by a limiter discriminator with automatic threshold correction. The internal modem automatically selects the filter parameters, CW $F_c = 800 \text{ Hz}$, $BW = 200 \text{ Hz}$; HF $F_c = 2210 \text{ Hz}$, $BW = 450 \text{ Hz}$; VHF $F_c = 1700 \text{ Hz}$, $BW = 2600 \text{ Hz}$.

The PK-64 uses on screen indicators to show status, mode, and DCD (Data Carrier Detect) while the PK-232 uses front panel indicators. Both units use discriminator style tuning for HF operation. And that’s just the tip of the iceberg. Features like multiple connects on packet, hardware HDLC, CW speed tracking, and other standard AEA software features are included in both the PK-64 and PK-232.

Fourth, AEA Quality and Price

Not many manufacturers like to discuss quality and price at the same time. AEA thinks you want high quality and low price in any product you buy, so that’s what you get with the Pakratts. Ask any friend who owns AEA gear about our quality. The people who buy our products are our best salespeople. As for price, the PK-64 costs $219.95, or $319.95 with the HF option. The PK-64A, an enhanced software unit with a longer flexible computer cable, costs $269.95 or $369.95 with the HF option. The PK-232 costs $319.95 with the HF modem included. All prices are Amateur Net and available from your favorite amateur radio dealer. For more information contact your local dealer or AEA.

Prices and specifications subject to change without notice or obligation.
Incidentally, it does take a few seconds for the program to assemble the text into the matrix, so anticipate a few seconds delay when you press the transmit key. Like the receive program, the transmit program is presented in BASIC language form, although it does use machine language subroutines that are accessed from the BASIC program using the SYS command.

The SSTV audio tones will be present on the regular audio output connection of your monitor cord. If you’re using a TV set as a monitor, the tones will appear in the TV speaker.

It’s best to establish a direct connection between the audio output of the computer and your transmitter. You may wish to insert a small potentiometer in the line to allow adjustment for the proper level.

apples and oranges

How does this software-only method of SSTV reception and transmission compare with other methods that involve some external hardware? The original program published by Ed Cox in *vicComm* allowed SSTV reception on an expanded VIC-20 but required a two-channel interface. Because of the memory limitations of the VIC-20, the picture was a somewhat elongated, compressed image. The reception program presented here maintains the proper aspect ratios but doesn’t produce a larger image. Later versions of the Cox program for both the VIC-20 with additional memory and the C-64 did give a full-screen presentation and at least got the aspect ratio pretty close.

On reception I found the Cox program and this one to be nearly identical in their level of clarity. They certainly aren’t commercial quality, but are still a great way to get your feet wet on SSTV.

For transmit, the Cox program is somewhat more nicely configured, but does require the external interface. The picture quality coming from the software-only program is virtually identical, with the advantage of no external interface.

When compared to the program and hardware combination available from Kinney Software, both programs show their limitations. While the Kinney approach is still not up to the state-of-the-art, it does produce a fairly high resolution image both in receive and transmit that neither of the other programs can produce. Still, it’s a larger investment, so better results are to be anticipated.

While the SSTV software here has inherent limitations, it certainly shows what can be done by talented programmers with a machine as “simple” as the Commodore 64. With very little more than an expenditure of time, you can put your C-64 to work sending and receiving SSTV signals. Imagine what else it can do!

postscript

Questions or comments should be addressed directly to the authors at the address given at the beginning of this article, which was originally published in a somewhat different form in the national magazine of The Associazione Radioamatori Italiani (ARI).

references

Note: *vicComm* is available from: *vicComm*, Box 5491, Duke Station, Durham, North Carolina 27706.

Kinney Software, 121 North Hampton Road, Donnelsville, Ohio 45319.

Available from Ham Radio’s Bookstore, $15.95 plus $3.50 shipping and handling.

Crystal Filters

TRIPLE DISCOUNT SALE

SAVE - SAVE - SAVE

On a single order, save 10% on your first filter, 20% on second, 30% on third (or more).

EXAMPLES: 1 $60 Filter for $54, 2 for $102, 3 for $144, 4 for $186, etc. To save most, get a group together; combine your orders. Save on Discounts. Save on Shipping Costs. Mix or Match Filter types in the same Price Group.

8-POLE FILTERS FOR KENWOOD

8.3MHz for TS110 through TS940 - Reg. $60

Bandwidths: 250, 400, 1800, 2100, 6000Hz

Cascading Boards (used with 2100 Filter) for TS430S - $20, TS2025 - $15, TS820S - $15

455 KHz for TS830/930/940 - Reg. $110

Bandwidths available: CW 400 Hz, SSB 2.1KHz

NOTE: Do not mix with $60 units for discounts.

Matched-Filter Pairs for Above - Reg. $170 ea.

(8.3MHz and 455KHz) SSB: 2100: CW: 400Hz, Super-Special. One pair - $140, Two - $260

3.95MHz

If for TS520, TS511, R599 - Reg. $60

Bandwidths Available: 250, 400, 1800, 2100, 6000Hz

EXTRA SPECIALS!

*3.95MHz 1800Hz use $50 List, then discount TS4405S Pair (CW & SSB) discounted price $95

Same deal for

YAESU, DRAKE, ICOM and HEATH

Write or PHONE for Sale Prices.

LIMITED QUANTITIES - ORDER NOW!

SPECIFY: Make and Model Number of your Rig. Frequency and Bandwidth of filter(s)

ORDER by Mail or Phone - VISA/ MC or COD OK.

SHIPPING: $5 US and Canada, $12 elsewhere

GO FOX-TANGO — TO BE SURE!

GET THE BEST — FOR LESS!

FOXTANGO Corp.

Box 15944, W. Palm Bch, FL 33416

Telephone: (305) 683-9587

October 1986

51

Ham Radio
convert an inexpensive CB mag-mount antenna into a superb 2-meter whip

In mounting mobile antennas, position is everything

Radio Shack sells an inexpensive CB mag-mount whip antenna (Model No. 21-1005A, shown in fig. 1) that can easily be converted to hamband use. It's a rugged unit with a chrome-plated disc-shaped base housing the magnet and a 16-foot length of RG-58/U cable attached. The necessary modifications don't alter the external appearance of the antenna in any way.

From the tip to the bottom of the conical aluminum base, it measures 37 1/2 inches — close to the 1/2-wave resonant length at 146 MHz. It's tuned at CB frequencies by placing an inductor between the base of the whip and ground that resonates with the short monopole capacitive reactance. Tapped a short distance up the coil from the grounded end, it produces a 50-ohm resistive impedance.

modifying the base

Dismantling the base is easy. The conical aluminum base unscrews by hand from the black plastic housing, separating the aluminum base from the disc-shaped magnetic mount below. The plastic housing is then pulled gently from the magnetic mount, revealing the matching assembly: a tapped-inductor tuner! The only damage to the assembly caused by taking it apart is to a ring of caulking compound (probably silicone rubber) that breaks loose from the base of the black plastic housing. Weatherproofing can be restored — even improved — by replacing this and adding more caulking compound to the periphery of the hole where the RG-58/U cable emerges from the plastic housing.

matching network design

The existing matching system for the Archer antenna is ideally suited for modification into an L-network. The coil form, measuring 5/8 inch in diameter, is made of solid plastic. The No. 18 wire of the existing coil is entirely satisfactory. Even the mounting terminals on the coil form can all be conveniently used. A small variable capacitor is the only component that must be added. I used a compression mica capacitor from my junk box (the screw-adjustable kind, mounted on a little white rectangular ceramic base). Since the capacitance required will be in the order of 5 pF, I recommend one that's ad-

By Donald K. Reynolds, K7DBA, 749 San Jude Avenue, Palo Alto, California 94306
justable in the 3- to 10-pF range. The ceramic-based compression mica type should handle powers of up to 100 watts.

I achieved a practically perfect match at 146 MHz by using the usual cut-and-try methods. My final coil had exactly five turns, from a bottom pin on the coil form (which is internally grounded to the magnetic base) to the pin directly above it at the top of the coil form, which is internally connected to the 1/4-20 screw onto which the aluminum base of the antenna is threaded. Since the spacing between the bottom and top pins to which the coil is attached is slightly over 1-1/2 inches, the turns are considerably spread out. In my final version, the top four turns are spaced about 1 inch apart; the bottom turn descends more steeply to reach the bottom pin. Three pins are on the coil form, each one extending horizontally through the plastic form so as to be accessible from either side.

The finished L-network is shown in fig. 2. The terminals on the capacitor have been bent out flat so that they can be soldered directly to the pins on the coil form. One terminal of the capacitor is soldered to the other end of the pin to which the center conductor of the coaxial cable is already soldered, and the other terminal of the capacitor is soldered to the opposite end of the pin to which the top of the inductor is soldered (that is, the base of the antenna). Nothing has to be done to the outer braid of the RG-58/U cable because it's already securely grounded to a lug under the coil form.

Figure 3 shows the schematic diagram of the final L-network. For those unfamiliar with the operation of these simple matching sections, they are ideally suited for transforming primarily resistive impedances from one value to another. Resistance R, the input resistance presented to the base of the whip and ground at the whip resonant frequency, will have a value in the neighborhood of 1000 ohms. The load resistance is shunted by the inductor so that the parallel combination is equivalent to a resistance of 50 ohms, in series with an inductive reactance. This reactance is then tuned out by the capacitive reactance of the adjustable capacitor. Assuming that the antenna represents a pure resistance of 1000 ohms at 146 MHz, calculated values for the L network are: $L = 0.25 \mu H$ and $C = 5.0 \mu F$.

measured results

The final tuning of the antenna should be done with the antenna mounted at the selected location on the vehicle. It can be done with the black plastic covering of the matching network removed and the whip screwed to the top of the coil form. With a reflected power meter in series with the coaxial line, the capacitor is adjusted with an insulated tuning tool at a frequency near the center of the band. A deep minimum in the reflected power should be obtainable. I used a Bird Wattmeter; on the 25-watt scale, using 25 watts of transmitted power, my reflected power between 144 and 148 MHz did not exceed 0.3 watt. This corresponds to a maximum VSWR of 1.25. When the plastic cover is put back in place, the tuning is hardly affected. From past experience, I know that with a more sensitive directional coupler and a little more tweaking, I could reduce the reflected power at the center of the band to practically zero. However, at present, it's close enough.

positioning mobile whip antennas

A monopole antenna is really an abstraction implying a single conductor extending out from an infinite conducting plane. Its most familiar practical implementation is a broadcast antenna tower, in which an RF voltage is applied between the base of the tower and the earth. Even here, one could regard the antenna as a very unbalanced dipole, one side being the tower and the other the earth. In mobile whips, the dipole consists of the whip
and the car, between which RF drive is applied.

It’s a common mistake to think that the radiation pattern of a given antenna, such as a 1/4-wave, 1/2-wave, or 5/8-wave whip, is the same when mounted on a vehicle as when it’s mounted above an infinite conducting plane. At 146 MHz the car’s roof is a small ground plane elevated about 3/4 wavelength above the earth ground. This elevation affects the whip antenna radiation pattern.

When VHF antennas are mounted on cars, the main differences between antennas show up in the lack of symmetry of their respective radiation patterns in the horizontal plane. The most circular pattern is always obtained with the whip mounted at the center of a metal-topped roof. Contrary to popular belief, little gain differences are noted between 1/4-, 1/2-, and 5/8-wave whips when they’re mounted on finite ground planes (car roofs), certainly not the 3-dB improvement realized when comparing a 1/4-wave to a 5/8-wave vertical working against an infinite-conductivity, infinite-extent ground system. (This is related to the fact that at low take-off angles, as in mobile-to-mobile contacts, none of these antennas produces a maximum field component. It would be necessary to tilt the car and antenna system as a unit, adjusting the incline for each antenna/ground optimum take-off angle, in order to properly compare maximum developed field strengths. — Ed)

feedpoint currents

At very asymmetrical locations, such as at one side of a trunk lid, or on one side of the hood, rather large differences between different antennas may appear. This is because of the different levels of current that emerge from the feedpoint at the bases of different antennas and spread out over the surface of the car. Of the three lengths of whips popularly used, the 1/4-wave whip spreads the most current; the current from the 5/8-wave whip is about 70 percent of the value of the 1/4-wave whip, and the current from the 1/2-wave is the lowest, being in the order of 20 percent of the value of the 1/4 wave (depending on the diameter of the whip). These differences in current spreading out over the car have little effect when the antenna is placed at a point of symmetry. However, when the whip is in a highly asymmetrical location, the patterns can be drastically affected.

radiation intensity measurements

Some years ago a group of professors at the University of Washington (including myself), who were also licensed Amateurs, made a series of measurements of the radiation intensity in the horizontal plane from 2-meter whips mounted on vehicles. The cars were mounted on a rotator, flush with the ground, and the radiation intensity was measured using a distant pickup antenna in conjunction with a Scientific Atlanta pattern recorder. The best antenna location, as expected, was the center of the roof, where the maximum variation in intensity throughout 360 degrees of rotation was about 3 dB. The worst case was for a 1/4-wave whip mounted at the side of the trunk of a sedan, just forward of the hinge. In this case, the pattern was very irregular, showing a 17-dB hole in one direction. The most surprising result was in the case of a 1/2-wave whip mounted on the centerline of the top at the rear end, just above the tailgate window of a station wagon. The pattern for this case had a maximum-to-minimum variation of only 3 dB in 360 degrees.

There seems to be little doubt, then, that the 1/2-wave base-driven whip is the most tolerant of mounting location. It is therefore an excellent choice for a magnetically mounted antenna, especially when placed beside the trunk lid or to one side of the hood, just ahead of the windshield. Since maximum current occurs halfway up the whip, the 1/2-wave antenna can “see” over the car top better than a 1/4-wave whip at the same location.

acknowledgment

I want to thank my friend and colleague, Eric Lindahl, WN7WNL, who first noticed this antenna, bought one, and converted it for 2-meter use.

references

NEW
POCKET SIZE
SIZE: 4” H x 3.5” W x 1” D
MADE IN USA

FREQUENCY COUNTERS
TO 1.3 GHZ

8 LED DIGITS • 2 GATE TIMES
ANODIZED ALUMINUM CABINET
INTERNAL Ni-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY
AC-DC • PORTABLE OPERATION

$99.95 - $150.00

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden “bug” transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
#1200HKC Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions ... $ 99.95
#1200HC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger ... $137.50
#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger ... $150.00

ACCESSORIES:
#TA-100S Telescoping RF pick-up antenna with BNC connector ... $12.00
#P-100 Probe, direct connection 50 ohm, BNC connector ... $18.00
#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories ... $10.00

ORDER FACTORY DIRECT
FLA (305) 771-2050
1-800-327-5912

OPTOelectronics inc
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

AVAILABLE NOW!
Orders to US and Canada add 5% of total ($2 min., $10 max)
Florida residents add 5% sales tax. COD fee $2.
The Excitement of Satellite Communications

An ever increasing number of radio amateurs are joining the excitement of Phase III-type satellite communications, and there are some good reasons. This new medium combines the communications range of the 20 and 80 meter bands with the line of sight reliability of 2 meters in a completely perfected manner. It’s equivalent to a totally new band, it’s unaffected by sunspot variations, and a vast technical background isn’t necessary for enjoying the action.

ICOM America stands ready to help you enjoy the fascinating new capabilities of OSCAR 10 and future amateur satellites, and it has a full line of equipment to back that statement. Its all mode 2 meter and 70 cm base transceivers bring the operating conveniences of low band units to the VHF and UHF amateur bands. They can be used for local FM operations via repeaters or for SSB/CW communications via any Phase III OSCAR satellite. The new IC-1271 all mode 23 cm transceiver is in a class of its own, providing mode L satellite uplink capability (mode L is 23 cm uplink, 70 cm downlink) and optional fast scan amateur TV operations using home video equipment.

The overwhelming preference of mode B equipment (435MHz band transmit, 145MHz band receive), among OSCAR groups and users, is ICOM’s IC-271H and IC-471H transceivers. Why? Satellite relayed signals are somewhat weak in nature, and the IC-271H’s low noise/high sensitivity receiver gives the highest possible performance for hearing everyone regardless of their uplink performance. The IC-271H’s noise blanker also prevents pulse-type electrical interference from masking some highly desired DX signals, and its selectable AGC can follow fast fades associated with spin modulation. There are also 32 all mode memories which can be used for intermixed FM repeater and SSB/CW operations. When the IC-271H is equipped with the optional mast-mounted AG-25 GaAsFET preamp, it becomes a satellite operator’s dream come true.

ICOM’s IC-471A (25 watts output) or IC-471H (75 watt output) 70 cm transceivers boast an output signal that’s recognized on the satellite by its crystal clear audio. Power output of either unit IC-471A/IC-471H is continuously front panel adjustable to adjust to daily signal variations. This sidesteps the taboo practice of overloading a satellite’s on-board receiver. The IC-471A/IC-471H also includes 32 all-mode memories for the ultimate in operating flexibility.

ICOM’s IC-PS30 system DC power supply is an ideal single cabinet unit for simultaneously powering both satellite transceivers, or the IC-271A and IC-471A can be equipped with an optional PS-25 internal DC power supply for “stand alone” operation. A pair of small 16 element antennas, one for 435MHz operation and one for 145MHz operation, connect to their respective transceivers to complete the space-age setup. No complex interwirings are necessary in the previously described setup.

Operating OSCAR 10’s popular mode B is almost as easy as operating an HF band. The satellite’s band centers are 435.100MHz uplink (receive from ground operators) and 145.900MHz downlink (transmit back to ground operators), with its band edges roughly 50KHz above and below those frequencies. Assuming both transceivers are tuned to band centers, ones own satellite-relayed signals can be received while transmitting and used for “tweaking” antenna positions and offset-tuning doppler shift. OSCAR 10’s inverting passband is then tracked as follows: for each KHz the IC-271H’s receiver is tuned above 145.900MHz, the IC-471A/471H’s transmitter should be tuned an equal number of KHz below 435.100MHz to “zero beat” others. The accurate readout of ICOM’s digital displays even eliminate the need to “talk one-self onto frequency.”

If you’re interested in joining today’s most exciting era of amateur communications, OSCAR 10 and future Phase III satellites are the medium to use. If you appreciate top performance equipment for those activities, ICOM is the logical choice. It’s simply the best, and it’s backed by an uncompromised policy of top service. Isn’t it time you enjoyed these exciting pleasures?
1.2GHz Pioneers

ICOM 1.2GHz
THE ONLY 1.2GHz SYSTEM... ANYWHERE

- IC-1271A Base Station
- IC-12AT Handheld
- IC-120 Mobile
- IC-RP1210 Repeater

Explore 1.2GHz with ICOM. Only ICOM offers the most complete line of ham gear for 1.2GHz...the IC-1271A full-featured base station transceiver, the new IC-12AT handheld, the IC-120 mobile and the IC-RP1210 repeater. So, get away from the crowd and be a pioneer on 1.2GHz.

The IC-1271A 1240-1300MHz base station transceiver features 10 watts of RF output power, 32 memories, scanning and multi-mode operation including ATV (amateur TV).

A variety of options are available for the IC-1271A including the IC-EX310 voice synthesizer, UT155 CTCSS encoder/decoder, IC-PS25 internal AC power supply, AG1200 preamplifier and the TV1200 TV interface unit.

The new IC-12AT covers from 1260-1299.990MHz, has ten memory channels, memory scan, program scan and programmable offset. It also features an LCD readout, RIT and VXO, 32 built-in tones and a DTMF pad.

The IC-120 1.2GHz mobile transceiver has six memory channels, scanning, an HM-14 up/down scanning mic, RIT, LED readout and three tuning rates. Accessories include the ML12 10 watt amplifier and the PS45 slim-line external power supply.

The IC-RP1210 completes your 1.2GHz system. It features a field programmable (198 channel, DIP switch), high stability PLL, repeater access to CTCSS, three-digit DTMF decoder for control of special functions, 10 watts, selectable hang time and ID er.

First in Communications

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 / 3150 Premier Drive, Suite 126, Irving, TX 75063
1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349

ICOM CANADA, A Division of ICOM America, Inc., 3071 - #5 Road, Unit 9, Richmond, B.C. V6X 2T4 Canada

All stated specifications are approximate and subject to change without notice or obligation. All ICOM ratios significantly exceed FCC regulations limiting spurious emissions. 1.2GHz/86
We're Building the West's Largest Convention of Amateur Radio Operators

November 7-8
All day Friday and Saturday

Las Vegas, Nevada

EXCUSE OUR DUST! We're busy building the largest annual convention of amateur radio operators in the West and we're not stopping to rest along the way. Last year we called it "OCTOBER-VENTION" and it was incredible! Now it's HAMIWEST and it's going to be even bigger and better! We have only one goal — to be the biggest ham convention in the West! We've got it all — prizes, technical talks, exhibitors with those new products for Christmas, giant flea market, free VEC exams, free cocktail party, awards banquet and ladies' programs, not to mention all the fun, excitement and glamour of Las Vegas and the beautiful Western scenery and climate!

ALL WE NEED TO COMPLETE OUR CONSTRUCTION PROJECT IS YOU! How do you become a part of this exciting new chapter in amateur radio history? Just send us this form, call your travel agent or fire up your mobile rig, and plan to BE THERE!

GENERAL INFO: Plan to travel on Thursday. Exhibits and forums will be open 8 a.m.-5 p.m. Friday and 8 a.m.-4 p.m. Saturday. Awards banquet will be at 8 p.m. Saturday.

REGISTRATION INFO: Every person taking part in the HAMIWEST activities must be registered. Advance registration is $12 before October 24 ($15 at the door) and includes prize tickets and admission to all HAMIWEST activities except the banquet. It is not necessary to be registered to purchase tickets for the Saturday evening awards banquet. Flea-market sellers must be registered; outdoor spaces measure 16'x20'(two parking spaces). Born in 1966 or later? Request complimentary "admission only" tickets (no prizes) at the door. And — there's no fee for VEC exams taken at the convention!

HOTEL INFO: To guarantee your room, you must make your room reservations directly with HAMIWEST, either on this form or by phone (if charging to a credit card), and make payment in full before October 1, 1986. Reservations not paid by that time will be accommodated on a space-available basis only. Call HAMIWEST at 702-361-3331.

RV INFO: Call Camperland directly at 800-634-6942 to reserve a space with full hookups right on the hotel grounds. Be sure to mention HAMIWEST. Call now. These spaces fill up early!

I WANT TO REGISTER FOR HAMIWEST '86:

Name __________________________ Call letters __________________________
Address __________________________ State _______ ZIP __________

I WANT TO TAKE A VEC EXAM, CLASS __________________________
(If self-addressed, stamped envelope marked "VEC Exam" with this application if you are planning to take an exam.)

PLEASE RESERVE A ROOM FOR ME AT THE HACIENDA HOTEL:

Register room to __________________________
Last name __________________________ First name __________________________
Arrival day/date __________________________ Arrival time __________________________
Departure day/date __________________________ Number of nights _______
How many persons will stay in this room? () One ($55.00/night) () Two ($55.00/night) () Three ($65.00/night) () Four ($75.00/night)
How many beds do you need? () One double bed () Two double beds () One king-size bed
Any special requests? __________________________

Amount for room $_________ Check or money order enclosed
Plus 7% room tax $_________ Charge to credit card # __________________________
Advance reg., $12/person $_________ Exp. date __________________________
Banquet, $20/person $_________ Print your name __________________________
Flea market, $20/space $_________ Phone __________________________

Total amount $_________ Note: We will bill your credit card account in full when your registration form is received.

HAM/WEST, P.O. Box 19675, Las Vegas, NV 89132, 702-361-3331

October 1986
RF connectors: part II

Last month’s column introduced the subject of RF connectors, described some of the major series, and provided relevant mechanical and electrical data. This month’s column will complete the subject and present additional data on the mechanical and electrical aspects of the RF connectors most often used by Amateurs.

Mechanical considerations

RF connectors come in many types, shapes, and sizes, depending on whether the cable to be connected has a braided, solid, or helical/annular outer shield. The most common RF connectors are designed for flexible coaxial cable. Hardline and Heliax™ cables require special connectors which are usually bigger and more difficult to attach, frequently requiring the use of a hacksaw or tubing cutter. Crimp-type connectors, which are becoming very popular, will be discussed later.

RF connectors are manufactured from many different materials. The most common materials in the outer conductor are brass, stainless steel, aluminum, die-cast zinc, or beryllium copper. Stainless steel, one of the most durable materials, is expensive. Aluminum, usually cheapest, is the least durable.

Connector plating is very important, especially on active metals. Even stainless steel connectors are usually plated. Until the price of precious metals soared, the most common platings were silver or gold; nowadays, less expensive platings such as nickel, tin, or chrome are used.

Another important but frequently overlooked indicator of quality in an RF connector is the material of which the delicate center pin is made. The most common materials — brass, beryllium copper, and phosphor bronze — are preferred because they can be readily soldered. Center pins are usually plated with a precious metal.

Depending on the connector series and type, the center pin can be captive, connected to the center conductor of the cable, or actually fabricated from the center of the cable itself. If the center pin is captive, proper positioning inside the connector body will usually be assured. However, if the center pin is connected directly to the cable, its position on the center conductor is very critical during the time when the connection is assembled. If it’s too long, it may protrude too far and damage the mating connector. If it’s too short, contact may be either lacking or intermittent.

Because the center pin may move in or out with changes in the environment (such as temperature, for example), the latter can be a problem at temperature extremes or when a cable is coiled up. This is why connector manufacturers usually provide detailed assembly instructions indicating exact cutting lengths on all the sections of the cable being prepared to mate with a connector. Furthermore, coaxial cables should always be secured to a tower or mast so that no pressure is placed on the connector itself.

![fig. 1 Typical maximum VSWR versus frequency for type BNC, TNC, N and SMA connectors.](image)
The quality of the RF connector’s threads is also important. Although the threads are usually quite durable, those on less expensive connectors — such as the UHF type — generally don’t work well after many matings. If the connector body is aluminum, the threads may seize; sometimes a lubricant is necessary.

Before mating connectors, always make sure that the connectors are properly aligned to avoid cross-threading. Sometimes it helps to first rotate a connector either one half or one full turn in the reverse direction before turning it in the desired direction. Finger-tightening as is absolutely necessary. Too much pressure may damage the connector either one half or one full turn in the reverse direction before turning it in the desired direction. Finger-tightening as is absolutely necessary. Too much pressure may damage the connector permanently.

Connectors use many types of dielectrics, including air or polystyrene, teflon, Rexolite™, glass-teflon, and mica-filled bakelite. Because these materials often require a precise fit, they must be properly handled when connectors are assembled. Any heat (such as that applied by a soldering iron during assembly) or external side-pressure can permanently distort the dielectric.

It should go without saying that all connectors must be properly assembled, especially if they’re to be used near their frequency limits. Designers have spent countless hours ensuring that connectors will meet their specifications; if improperly assembled, the specified impedance or insertion loss may be exceeded.

One frequently overlooked mechanical parameter of RF connectors is the quality of the environmental seal. Is the connector weatherproofed? Does it have a gasket or washer made of synthetic rubber, silicon rubber, or neoprene? If it doesn’t, it should never be used outdoors or in indoor applications where moisture is present.

electrical performance

The most important electrical properties of an RF connector are frequency of operation, impedance, power handling capability, and insertion loss. Reference 1 details the typical maximum frequencies for the major series of connectors. Above the maximum recommended frequencies, the impedance of an RF connector may wander and “suckouts” attributable to resonances may occur. This can severely limit performance, perhaps without your knowledge.

Connectors may be damaged if subjected to high RF levels, especially if there’s a VSWR mismatch. VSWR performance is usually tightly controlled on RF connectors; for UG-type connectors, it’s generally spelled out in the various military standards. Remember that this maximum VSWR applies only if the connector is properly assembled to a low-VSWR cable. If the cable has a poor VSWR, or if the connector is improperly assembled, all bets are off.

VSWR usually increases with frequency at a fairly predictable rate below the cutoff frequency of the connector. It can be defined mathematically by the following equation:

\[
VSWR = K_1 + K_2 f
\]

where \(K_1\) and \(K_2\) are VSWR constants (that depend on the connector series) and \(f\) is the operating frequency in GHz. The lower the constant, the lower the VSWR.

The typical VSWR constants for the RF connector series most popular with Amateurs are shown in table 1. For instance, using eqn. 1, a properly assembled N connector should have a VSWR below 1.088 at 4 GHz and 1.13 at 10 GHz. Figure 1 shows some typical connector VSWR variations with frequency.

Insertion loss is another important RF connector parameter. The maximum insertion loss of a connector can be estimated using eqn. 2:

\[
I.L. = K\sqrt{f}
\]

where I.L. is insertion loss in dB, \(K\) is the insertion loss constant from table 1 and \(f\) is frequency in GHz. For instance, using the constants in table 1, the maximum insertion loss of a properly assembled N connector at 4 and 10 GHz will be 0.1 and 0.158 dB, respectively. Figure 2 has been prepared to show some typical losses of RF connectors at different frequencies.

In last month’s column I alluded to the fact that some Amateurs throw connector specifications around quite loosely. For example, I’ll bet most of you have heard somebody say that connectors should be avoided at all cost since a typical RF connector has up to 0.5-dB insertion loss. A 0.5-dB insertion loss is equal to a power dissipation of 11 percent. Said another way, if 1000 watts of RF power were...

<table>
<thead>
<tr>
<th>Connector series</th>
<th>Peak RF Voltage at 100 MHz</th>
<th>Peak power in watts</th>
<th>Impedance in ohms</th>
<th>Max freq in GHz</th>
<th>VSWR constants</th>
<th>Max insertion loss constant</th>
<th>RF leakage in dB**</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC</td>
<td>1000</td>
<td>500</td>
<td>50*</td>
<td>4</td>
<td>1.12 ± 0.007f</td>
<td>0.1</td>
<td>-60 ± f</td>
</tr>
<tr>
<td>N</td>
<td>1000</td>
<td>1000</td>
<td>50*</td>
<td>11</td>
<td>1.06 ± 0.007f</td>
<td>0.05</td>
<td>-85 ± f</td>
</tr>
<tr>
<td>SMA</td>
<td>1000</td>
<td>500</td>
<td>50</td>
<td>18</td>
<td>1.02 ± 0.005f</td>
<td>0.03</td>
<td>-100 ± f</td>
</tr>
<tr>
<td>TNC</td>
<td>1000</td>
<td>1000</td>
<td>50</td>
<td>11</td>
<td>1.07 ± 0.007f</td>
<td>0.06</td>
<td>-90 ± f</td>
</tr>
<tr>
<td>UHF</td>
<td>500</td>
<td>500</td>
<td>50-70</td>
<td>0.3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

*75-ohm versions are in use, especially in the CATV and computer industries.

**f in GHz (see text for further explanation).
to pass through a connector with a 0.5-dB insertion loss, 110 watts would be dissipated. Goodbye connector! Even a 0.1-dB loss is about 2.25 percent, or, under the same conditions, a 22.5-watt dissipation. This is still enough loss to destroy most RF connectors when sufficient power is applied.

Another important RF connector parameter is power handling capability. It’s painfully obvious from the material just presented that insertion loss, to a great extent, is the determining parameter when specifying power. Indirectly linked to power is the breakdown voltage of the connector. Power handling is inversely related to frequency. Hence the power rating of an RF connector decreases with increasing frequency. Figure 3 has been prepared to show typical manufacturers’ ratings of RF power versus frequency for some of the most popular RF connectors.

Most Amateurs running high power on 70 cm and above have probably exceeded the ratings on N connectors at one time or another even with the old FCC power limits. Furthermore, the power limits assume a 1:1 VSWR. What do you do if your VSWR isn’t 1:1? You must derate the power handling capabilities of the connector accordingly.

Table 2 shows the recommended percentage of RF power derating for an RF connector with a VSWR greater than 1:1. For instance, if your VSWR is 2:1, the connector power rating shown in fig. 3 should be decreased to 88 percent. Therefore, the maximum rating of an N connector at 1:1 VSWR operating at 432 MHz is approximately 450 watts. With a 2:1 VSWR at the same frequency, the maximum power rating should be dropped to approximately 400 watts!

The voltage breakdown on RF connectors isn’t always clear. Manufacturers usually do a high potential breakdown, but this is at DC. The actual RF breakdown, typically done at 5 MHz, is much lower. Some typical limits are shown in table 1, where f is frequency in GHz.

RF leakage is sometimes a criterion, especially if the connector is operated in a strong field (such as the output of a down-converter feeding a 28 MHz I-F.). Typical values of RF leakage are shown in table 1, where f is frequency in GHz. Hence a BNC connector at 4 GHz will have a leakage of only 56 dB below the internal or external signal level, while an SMA connector at the same frequency will have a leakage of typically 96 dB!

adapters

So far we’ve been discussing only RF connectors. RF adapters are also very common. Generally speaking, they’re about two to three times poorer than a single connector. Therefore, to estimate the VSWR or insertion loss of a coaxial adapter, double or triple the value shown for a single connector.

crimp connectors

Although most Amateurs use standard RF connectors that can be assembled with simple hand tools, crimp-type connectors have been available for many years. These connectors, however, weren’t always reliable, were often more costly than comparable non-crimp types, and usually required expensive crimping tools.

In recent years this situation has changed. Crimp-type connectors have become less expensive and more reliable; any necessary crimping tools have also decreased in price. In fact, Gilbert Engineering* has developed type-N crimp connectors for RG 8/U, RG 213/U, RG214/U, and Belden9913 that are less than two-thirds the price of comparable non-crimp-type connectors. They all use the same crimping tool, which costs about $45.00.

Once you’ve assembled about 30 crimp-type connectors, the crimp tool

Table 2. This table lists the recommended deratings of a connector’s RF power handling if the VSWR is higher than 1:1.1

<table>
<thead>
<tr>
<th>VSWR</th>
<th>Derating factor (in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5:1</td>
<td>94</td>
</tr>
<tr>
<td>2.0:1</td>
<td>88</td>
</tr>
<tr>
<td>2.5:1</td>
<td>83</td>
</tr>
<tr>
<td>3.0:1</td>
<td>78</td>
</tr>
<tr>
<td>3.5:1</td>
<td>73</td>
</tr>
<tr>
<td>4.0:1</td>
<td>70</td>
</tr>
<tr>
<td>4.5:1</td>
<td>67</td>
</tr>
<tr>
<td>5.0:1</td>
<td>65</td>
</tr>
</tbody>
</table>

*Gilbert Engineering Co., P.O. Box 23189, Phoenix, Arizona 85063-3189
has paid for itself and you’ll save money on each connector thereafter — not to mention the considerable savings in assembly time. I’ve used all Gilbert Engineering types mentioned and can attest to their performance and ease of assembly. No more tight trimming or filing down the center of the coax!

The only problem with most crimp-type RF connectors is that they’re not waterproofed. However, if you slip a small (2- to 3-inch) piece of heat-shrinkable tubing over the rear portion of each connector, you’ll have a very weatherproof connector that probably has a better seal than the typical non-crimped connector with its built-in environmental seal. These connectors should be especially useful in alleviating the drudgery of assembling a large antenna array!

availability and cost

Good new RF connectors aren’t cheap. The price of most common connectors runs from $2 to $5 each in small quantities. The smaller the connector and the higher the frequency of the operation, the more costly they’re likely to be. Likewise, connectors with silver or gold plating or teflon dielectric are more expensive. If you’re going to use a connector outdoors, make sure it has a weatherproof seal.

Connectors for hardline and Heliax™ are much more expensive. This is easy to understand because they’re bigger, more complex, and more difficult to manufacture. However, once they’re installed on a line, they’ll give many years of service and will pay for themselves in improved performance.

Don’t skimp on connectors, especially if you use an expensive transmission line. Low-cost connectors could break down or allow moisture to form inside the connector and thereby ruin an expensive transmission line. Do shop for bargains, especially at flea markets, but don’t be penny wise and pound foolish.

tips

Always be sure that a neoprene washer or equivalent seal is used on all connectors mounted outdoors. Sealing connectors from the weather is tricky business. Some Amateurs recommend special sealing techniques on the connectors, while others say not to worry about any of the above. I suggest taking a position somewhere in between; if you try to seal off a connector completely (using tape, acrylic strays, or rubber/silicon-type compounds) and any moisture enters (and believe me, it will), you’re in real trouble. I’ve tried placing silicon grease inside RF connectors only to have it degrade with time and then take on moisture; this can result in an explosion, however, if the VSWR gets too high!

If you do decide to seal a connector, Coax-Seal™ is highly recommended. It’s reasonably priced and does a good job of filling most of the places where moisture can enter. It’s also reworkable if the connector has to be opened. But unsealed RF connectors aren’t always as much of a problem as you might think. If water enters a UG21/U type-N connector, it will frequently evaporate in a day or so.

It’s best to position connectors so that rain is less likely to enter and then take reasonable precautions. For example, moisture will often creep along the threads of a connector via capillary action. You can prevent this by applying a light coating of silicon grease to the exposed threads of one of the connectors just before final connection to the antenna. Once the connector is screwed together, the protective coating will prevent moisture from entering.

As mentioned earlier, RF connectors should never be subjected to pushing or pulling. Mount cables securely with tape, Tiewraps™, or Kellum clamps (“torture fingers”) so that no external pressure is exerted on the connector. This is particularly true with RG 17/U coax, which has a different expansion coefficient between the center conductor and the shield. Tie RG 17/U down carefully, without bends, to prevent pin pullout in cold weather.²

It’s important to pay close attention to the assembly of an RF connector so that the center pin is properly located. (This is especially important with the
The BEST is still "made in U.S.A."

Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty
- prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE
- B23 2W in = 30W out
 (useable in: 100 mW-5W)
- B108 10W in = 80W out
 (1W = 15W, 2W = 30W) RX preamp
- B1016 10W in = 160W out
 (1W = 35W, 2W = 90W) RX preamp
- B3016 30W in = 160W out
 (useable in: 15-45W) RX preamp
 (10W = 100W)

220 MHz ALL MODE
- C106 10W in = 60W out
 (1W = 15W, 2W = 30W) RX preamp
- C1012 10W in = 120W out
 (2W = 45W, 5W = 90W) RX preamp
- C22 2W in = 20W out
 (useable in: 200mW-5W)

RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading

MP-1 (HF) 1.8-30 MHz
MP-2 (VHF) 50-200 MHz

430-450 MHz ALL MODE
- D24 2W in = 40W out
 (1W = 25W)
- D1010 10W in = 100W out
 (1W = 25W, 2W = 50W)

Available at local dealers throughout the world.

MIRAGE/KLM

COMMUNICATIONS EQUIPMENT, INC.

16890 Church St., Morgan Hill, CA 95037, (408) 779-7363
“captivated” type of connectors.) One test I perform involves placing a fingertip on the center pin of the assembled connector. If the finger lightly touches the pin, then the pin is probably assembled properly. If the pin tries to puncture your fingertip, it’s probably protruding too far. Conversely, if you can’t feel the pin, then it’s too far inside the connector body and probably won’t have sufficient overlap for a reliable connection.

For maximum reliability, test all connectors for VSWR after assembly. If possible, also check insertion loss. It’s a lot easier to test and repair an RF connector in the shack than on an antenna mounted 100 feet in the air!

summary
RF connectors are constantly being improved, and Amateurs who follow these developments will reap the benefits. Those who take the time to properly assemble connectors — following the manufacturer’s instructions — will have the least amount of downtime and the most pleasure in operation.

With the data provided in last month’s and this month’s columns, you should have all the information necessary to choose the right RF connector for your application. Remember to use a connector type that will have low loss and be able to handle the RF power required at the frequency of operation.

acknowledgments
I’d particularly like to thank Charlie Button of Gilbert Engineering for his helpful suggestions with the use of crimp-type connectors.

references

Important VHF/UHF events:
October 4-5: Mid-Atlantic States VHF Conference, Warminster, Pennsylvania (contact WA2OMY)
October 4-5: International Region 1 UHF/SHF Contest
October 7: EME perigee
October 9: Predicted peak of the Draconids Meteor Shower at 0300 UTC
October 10-11: First ARRL 10 GHz Cumulative Contest, second weekend
October 20: Predicted peak of the Orionids Meteor Shower at 0800 UTC
October 25-26: ARRL EME contest, first weekend
November 2: Predicted peak of the Taunus Meteor Shower at 1520 UTC
November 3: Predicted peak of the Cassiopeids Meteor Shower at 1515 UTC
November 4: EME perigee
November 17: Predicted peak of the Leonids Meteor Shower at 0850 UTC
November 22-23: ARRL EME contest, second weekend

ham radio

PRC®
SERVICE CENTER
for
ICOM, KENWOOD
and YAESU

Fully equipped repair shop Amateur, Marine and Land Mobile repairs.

FCC NABER Lic
Mon-Fri 10:00-4:00 pm
(206) 776-8993

PACIFIC RIM COMMUNICATIONS
Bob KG7D
23332 58th Ave. West
Mounlake Terrace, Wa 98043

& C.O.D.S. Welcome
UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140.000-151.000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz.

CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range facilitates use of CAP and ALL MARS FREQUENCIES including NAVY MARS. COMPARE!

TINY SIZE: Only 2 inches high, 5 1/2 inches wide and 7 1/4 inches deep!

MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.

UP TO 11 NONSTANDARD SPLITS: COMPARE this with other units!

20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.

DUAL MEMORY SCAN: Scan memory banks separately or together. ALL memory channels are tunable independently. COMPARE!

MEMORY SCAN LOCKOUT: Allows you to skip over channels you don't want to scan.

TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!

BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-resume.

DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency desired when scanning.

PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when channel is occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored for up to 5 years even if power is removed.

FREQUENCY REVERSE: Allows you to listen to repeater input frequency.

ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly.

CRISP, BACKLIT LCD DISPLAY: Easily read no matter what the lighting conditions!

DIGITAL S/RF METER: Shows incoming signal strength and relative transmitter power.

MULTI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.

FULL 16-KEY TOUCHTONE PAD: Keyboard functions as auto- patch when transmitting.

MICROPHONE CONTROLS: UP/DOWN frequency control and priority channel recall.

PL TONE GENERATOR BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE!

TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!

HIGH/LOW POWER: Select 25 watts or 5 watts output — fully adjustable.

SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for 20-db quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!

DIRECT FREQUENCY ENTRY: Streamlines channel selection and programming.

OTHER FEATURES: Rugged dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.
transistor substitution: part II

Last month we discussed the use of crossover guides, derating specs for mobile and other over-temperature applications, and certain other matters. In this second and final installment we'll look at frequency response and mechanical problems with replacement transistors.

frequency response

Suppose you've installed a "universal" small-signal replacement transistor and it doesn't amplify. According to the DC voltages, however, it draws normal current and doesn't heat excessively — yet still fails to operate. Chances are good that the transistor selected has a bandwidth that's too narrow, and so the amplification is insufficient.

As you know, there's no one way of measuring the frequency response of transistors. Worse yet, the manufacturers can't seem to agree on the correct method of rating the frequency response. In fact, I've seen examples of three different methods all used in the same crossover guide!

Probably that's the reason you can...
install a transistor rated “50 MHz” and yet find it won’t properly amplify a signal in a 10.7-MHz IF amplifier in a 2-meter FM radio receiver. In rating the transistor at 50 MHz, the manufacturer wasn’t lying — but he may have inadvertently used a rating system that doesn’t fit your circuit.

As shown in fig. 1, one factor in rating transistors is the capacitances between the junctions. Another factor is the thickness and geometry of the base region and the time necessary for the majority of the electrical carriers to cross it. If the capacitances of the replacement are too far out of tolerance, then the gain will be reduced at high frequencies and any LC tank circuits in the transistor amplifier will be mistuned.

There’s also the Miller effect, which is the effective capacitance produced by internal feedback from the output signal back to the input “amplifying” the actual capacitance. Because of the Miller effect, a small difference in internal capacitance can create a larger change in effective capacitance.

alpha and beta gain

Transistor alpha gain, the ratio of the collector current to the emitter current, can never exceed 1. Alpha gain is often measured in a common-base circuit. Beta gain, the ratio of collector current to base current, is usually measured in the common-emitter configuration. As illustrated in fig. 2, the frequency cutoff point is greatly different for these two kinds of ratings. A manufacturer who rates transistors by the common-base method might correctly list them as having a far wider response than would be possible if the common-emitter method were used. Of course, the common-base rating can provide a no-gain 10.7-MHz IF stage!

gain-bandwidth product

Another way of rating frequency response is the gain-bandwidth product.
product method, defined as the frequency at which the common-emitter gain drops to unity. For example, let's look at a transistor with a low-frequency (1000 Hz) beta rating of 50 and a gain-bandwidth product of 50 MHz. The gain-bandwidth product equals beta times the common-emitter cutoff frequency, so the common-emitter cutoff frequency is found to be only 1 MHz. That's why you can act on some of the short-form specifications and still obtain a dud that won't amplify.

analyzing maximum ratings

Care must be used in analyzing the manufacturer's maximum voltage and current ratings. Just because a transistor is listed for certain maximum collector voltage and current doesn't mean it can always operate safely at those levels. Figure 3 shows that the transistor can safely stand either high current or high voltage, but not both at the same time. Maximum collector dissipation (watts), the product of both

fig. 4. Plan and elevation view of flat lead rf power transistor.

fig. 5. Power transistor configurations (A) TO-3, diamond shaped package; (B) TO-66; (C) TO-36.
Our first transistor package is the RF power transistor shown in Fig. 4. This device uses thin, flat "low inductance" leads. Several sizes are available, and size doesn't necessarily indicate relative power dissipation rating (although it usually does). There was one kit-form 2-meter FM mobile power amplifier that came with either of two different types of power transistor. The hole in the printed wiring board was cut for the larger type and rubber "O-rings" were placed around the smaller to make them fit.

Figure 5 shows several types of power transistor package. The TO-3 transistor in Fig. 5A is the so-called "standard" power transistor in a diamond-shaped package. A smaller diamond-shaped package is the TO-66 shown in Fig. 5B. There's also a Japanese "similarity-TO66" package that looks, at first glance, like the TO-66 but has slightly different pin spacings. Finally, the big horse shown in Fig. 5C is the TO-36. This high-power transistor is used extensively in automotive audio applications, mobile solid-state HV multivibrator DC power supplies, and in industrial electronics applications.

Figure 6 shows several popular plastic power transistor packages. Some of these are listed as replacements for TO-3 or TO-66 diamond-
shaped power transistors. The package in fig. 6A is the TO-220 (once called “P-66”) and is common in small, low- to medium-powered audio applications and most car radios. Two additional tab-mounted plastic power transistors are shown in figs. 6B and 6C. Finally, the device shown in fig. 6D represents a class of Motorola power transistors that are not tab-mounted, but instead have a mounting hole through the body of the transistor.

Figure 7 shows how a plastic, tab-mounted TO-220 power transistor can replace a TO-3 power transistor. The center terminal (collector) is cut off the TO-220; it won’t be needed because the tab mount is also connected to the collector. The base and emitter leads are bent down and the mounting screw is passed through the tab hole into the original mounting hole for the TO-3 transistor.

Conclusion

Ideally, when a replacement transistor is needed we’ll have an original from the manufacturer of our rigs or an easily available. But sometimes we’re either unable to obtain such a transistor or the cost is prohibitive. In such cases we can usually make an educated guess at a proper replacement type.
MOBILE RADIO

WE MOUNT IT ALL
Our exciting new mounts will mount your communication gear in all vehicles for new operating enjoyment. All models feature steel construction, satin black finish, and all mounting hardware. Available in two and four radio models priced from $79.50 to $239.50, these mobile mounts will put you in the communications driver's seat. Mounts/ system 100 information sheet and Y-4 general catalog available FREE. Contact:
IXX Equipment Ltd.
P. O. Box 9
Oaklawn, IL 60454
(312) 423-0665

SPECIALISTS IN FAST TURN P.C. BOARDS

PROTO TYPE P.C. BOARDS
AS LOW AS $25.00

• SINGLE & DOUBLE SIDED
• PLATE THROUGH HOLES
• TEFON AVAILABLE
• P.C. DESIGN SERVICES

FOR MORE INFORMATION

34374 EAST FRONTAGE ROAD
BOZEMAN, MT 59715 (406) 586-1190

Free hi-tech catalog

A very special electronics and computer guide that brings you the exciting world of amateur radio kitbuilding and much more

The Heathkit® Catalog is filled with high-quality HAM radio products that you'll enjoy. Plus you'll get the unique challenge and satisfaction of kitbuilding. So send NOW for your FREE Heathkit Catalog.

We've Got Books
Plenty of Books
Send SASE for free flyer
Ham Radio's Bookstore
Greenville, N. H. 03048

Yes! I want to see what kitbuilding can do for me.
Send to: Heath Company, Dept. 122-462
Benton Harbor, Michigan 49022

Name
Address
City State Zip

Heathkit
Heath Company
A subsidiary of Zenith Electronics Corporation AM-448R1

244 244 244
COMING SOON
THE 1987 ARRL HANDBOOK FOR THE RADIO AMATEUR
Great gift idea for a ham friend or for yourself!

The latest edition of the Ham’s bible has been updated with plenty of exciting new projects, new theory and information chapters and the latest in state-of-the-art technology. Check out these new features:
- Passive LC filter design including standard value capacitor tables,
- Overview of 23cm FM fast scan TV weather satellites basics,
- Complete revision of the radio frequencies and transmission section (chapter 22) and satellite communications section (chapter 23.)

Some of the exciting new projects are:
- A new hf legal limit, all band amplifier using the 8877 tube,
- A dedicated CRT for Wefax image display and a new marker generator project for general purpose use to name just a select few.

Over 200 pages have been revised and updated. Great reference book that should be in every Ham’s shack. Order your’s today!
Over 1100 pages. ©1986

Pre-publication
SPECIAL
SAVE $2
if order placed by October 31.

□ AR-HB87 Reg. $17.95 Softbound Pre-publication Special $15.95
(available early November)
□ AR-BB87 Reg. $26.95 Hardbound Pre-publication Special $24.95
(available in December)
matching linears to transceivers on 10-15 meters

Grounded grid linear amplifiers don't always present a perfect 50-ohm resistive input for the transceiver. And long leads from the transceiver sometimes present a reactive load on the 10- and 15-meter bands. What happens? The transceiver goes into self-oscillation when the amplifier is driven.

To solve this problem I first tried a transmatch, but it didn't work because of the difficulty of obtaining short leads. An "L" network didn't work, either.

But the "T" match (fig. 1), with its short leads, worked the first time. The transceiver loaded up to full power, driving the linear with no ensuing oscillations. I was delighted with the results.

The matcher was built in a small LMB Flange Lock Box (No. EL532), measuring 5 1/4 x 3 x 2 1/2 inches (fig. 2). With the capacitor bolted to the front panel and the two input and output BNC coax fittings on the back, leads were kept short. The capacitor should tune 10 meters with a 50 pF setting and adjustment coil. For 15 meters I just increased the setting to about 70 pF. The SWR dipped 1:1 without any switching or shorting out turns for 10 meters. I could cover both bands.

Calculations would show about 50 pF for 15 meters and 45 pF for 10 meters, adjusting the coil for that value. However, I don't find this necessary.

Ed Marriner, W6XM
New rigs and old favorites, plus the best essential accessories for the amateur.

ACCESSORIES

B & W VIEWSTAR ANTENNA TUNER... 89.95
Heil HC304/HC35... Stock
Heil BM-100 beam mike head... 53.95
GSI Private Patch... 469.95
Trofeet 3360 VOM (same as FLUKE 77) 69.00
Dwyer N506A 30/300/3000 watts... 109.95
Alcino ELH 230D Excellent buy... 88.00
Nye MBS A (for the big boys) 39.95
Shure 545... 54.95
Wahler 7470 Soldering Station... 49.00
Kenwood IF 10A, B, C... Stock
Kenwood IF 232C Levitation... 43.50
Miller GISAT Low paras filter... B & K Test Equipment VOM, oscilloscopes, generators, etc... CALL
120/25A 12VDC Supply (16 continuous) 99.00

BELDEN

9913 low loss, solid center, foil/braid shield... 51.95
8124 RFI foam... 45.00
8257 RFI... 38.95
8267 RG213... 35.95
8000 14 Ga stranded copper antenna wire... 13.95
6448 B conductor rotor cable... 33.95
9405 Heavy duty 2 16 Ga, 6 Ga, 18 Ga... 56.95
9258 RG11... 20.95
9256 RG6/U... 14.95
8403 Mc Cable, 3 cond & shield... 45.00
100 feet 3024 twisted installed... 54.00
8669 7/16" threaded copper braid... 1.90

International Wire RG214: non-med. good quality... 70.00
International Wire 90667 exact replacement for Belden 9913... 360.00
International 16 Ga stranded antenna wire... 6.00
International 4903 RG121... 23.00

AMPHENOL

8315P-PL 259 Silverplate... 1.50
11711 reducer RG8x... 30.00
831U Double Female UHF... 2.00
82 61 N Male... 3.00
82 97 N Female Bulkhead... 3.00
82 93 Inline Female N... 4.00
82 98 N elbow... 9.00
31 212 BNC RG59... 1.50
31 2 BNC RG6U... 1.50
34025 N Male, RG59... 3.00
34125 N Female RG59U... 6.95
31295 BNC Female PL 259... 3.50
For N Male Connector (Fits 9913) 4.50

PACKER POWER

AFA PK-232... 299.00
Kantorics KPC 2400... 119.00
Kantorics 2400U... 149.00
Kantorics Packet II... 199.00
MF 11270... 115.00
EAFA 1.5 M... 66.00

NEW YORK 102 Tuner... 189.00

I65C

1/4" HQ S. Guy cable, New US, 1000 ft... 250.00
3/16" E.H.S. cable, New US, 1000 ft... 210.00
1/4" Guy Cable, 6100 # 7 strand, import... 7.55
1/4" Cable, 7000 # 7 strand, import... 7.55
3/16" E U.I. Turnbuckle... 7.55
3/16" Wire Rope Clips... 5.00
1/4" Wire clips... 50.00
1/4" Treniers... 45.00
Porcelain 5000 Guy Insulator (3/16) 1.99
Porcelain 5002 Guy Insulators (4/32) 3.39

COMPUTER STUFF

Kantorics UTU XT... 319.00
Fits any computer (even yours) and Morse University (Great CW program for C-64) 39.00

SERVICES

Alignment, any late model rig... 50.00
Flat fee Collins rebuild... Call

USEMENT

All equipment, good clean, with 90 day warranty and 30 day trial. Six months full refund against new equipment with price refunded if not satisfied.

POLICIES

Minimum order $10.00. Mastercard, Visa, or COD. All prices FOB Houston, except as noted. Price subject to change without notice. Items subject to prior sale. Call anytime to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty.

DON'S CORNER

FREE GIFT

Send us photocopies of your log & QSL card for your best 19 & 24 MHz TX QSO. We'll send you a nice gift.
coupling to a GG linear

Some of the grounded linear amplifiers, especially home brew jobs, capacitively coupled directly into the filament RFC match.

A simple matching device to match the output of the transceiver to 150 ohms is a pi-network. Many handbooks show a pi-network using fixed capacitors. I found being able to vary the capacitors made it easier to match. Fig. 3 shows a network I used for matching a Swan 350B 50-ohm output to a 3-500Z 150 input.

The unit was constructed in a small box and inserted in the coax line to the amplifier. The capacitors were small 0-400 RF coupling capacitors, and did not arc over. The coil can be either five turns of Airdux #806 or five turns of No. 14 AWG wire wound six turns per inch on a 3/4-inch coil form. It takes very little inductance for 15 meters. First I loaded the Swan 350B into a 50-ohm load. Then fed a signal into the amplifier and adjusted both capacitors for maximum output. Next, the loading capacitor on the Swan 350B was adjusted slightly for maximum output again on the linear. I found it took a lot less drive from the 350B to drive the linear over the old method, without a matching device. It’s worth the effort to build one for each band if necessary. The received signal has to come through this network, but it does not seem to cause any deterioration in signal sensitivity.

Ed Marriner, W6XM

line regulator

It’s often desirable to adjust the 120-volt AC line voltage if you’re using a computer or other equipment that won’t tolerate high or low line voltage.

Although line voltage could be varied with a large variac, there is a way to do this inexpensively — through a system called “line bucking” — using a small variac and a filament transformer (fig. 4).

In line bucking, a 120-volt line runs through the low voltage secondary of a filament transformer. This winding must carry the current of whatever you’re drawing with your equipment. I used a 10-ampere, 5-volt filament transformer.

By varying the voltage on the primary side, you can add or subtract on the secondary. I used a surplus General Radio 200-B 2-ampere variac to perform this operation. By varying the arm on the variac I can adjust the line voltage by several volts plus or minus. I bring my 127-volt line down to 120 volts very nicely and don’t have to worry about burning out my equipment.

The project is well worth the effort required to locate parts. I found mine — for less than $10 — at a radio swap meet and surplus store.

Ed Marriner, W6XM

MULTI BAND TRAP ANTENNAS

TRAP DIPLOES:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50186 Coastal 700-800 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50187 Coastal 136-144 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50188 Coastal 280-297 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50189 Coastal 506-525 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50190 Coastal 1000-1200 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
</tbody>
</table>

TRAP VERTICALS: "SLOPERS":

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50201 50/150 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50202 100/240 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50203 150/450 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50204 200/400 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50205 240/500 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
<tr>
<td>50206 300/800 MHz</td>
<td>10'</td>
<td>NO</td>
</tr>
</tbody>
</table>

COAX CABLE: (includes PL-259 connector on each end):

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50211 RG-58</td>
<td>50'</td>
<td>NO</td>
</tr>
<tr>
<td>50212 RG-58</td>
<td>100'</td>
<td>NO</td>
</tr>
</tbody>
</table>

DELUXE CENTER CONNECTOR:

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50213 RFI</td>
<td>50'</td>
<td>NO</td>
</tr>
<tr>
<td>50214 RFI</td>
<td>100'</td>
<td>NO</td>
</tr>
</tbody>
</table>

DELUXE ANTENNA TRAPS: Completely sealed & weatherproof. Solid brass terminals. Handles Full Power. NO jumpers. NO soldering. Instructions included. For 4 band Dipole Ant. 40/20/15/10 $36.00/pr. For 5 band Dipole Ant. 40/30/20/15/10 $38.00/pr.

ORDER DIRECT FROM FACTORY. All orders shipped UPS VISA/MA. include Card. Exp. date. Signature.

SPI-RO MANUFACTURING, INC
Dept. 103, P.O. Box 1538
Hendersonville, NC 28793
Dealer Inquiries Invited
an easy way to measure capacitance

Like many hams, I have a can of capacitors whose values are either unmarked or marked in a code I don’t understand. I use a simple method to measure their values.

The equipment required is modest: all you need is a signal generator, a frequency counter (if you don’t have one, use the frequencies indicated on the signal generator) and an indicating meter together with a few resistors, capacitors, and diodes. The signal generator should cover the audio and low radio frequencies. The indicating meter can be a VOM.

Figure 5 shows the basic circuit. A signal from the generator is applied to a known resistance, R, connected in series with the unknown capacitor, C. The frequency of the signal is adjusted so that the RMS voltage across the resistance and the capacitance are equal as measured by two voltmeters, V_{ac}. Then,

$$X_c = \frac{1}{2\pi f} = R$$ \hspace{1cm} (1)

where:

X_c = reactance of the capacitor, ohms
f = frequency of the applied signal, Hz
C = capacitance, Farads
R = resistance, ohms

After some calculations I chose R to be 1000 ohms. Rearranging eqn. 1, substituting 1000 for the value of R, and changing a constant so that C is now in μF, we have:

$$C = \frac{159.15}{f}$$ \hspace{1cm} (2)

Figure 6 illustrates the actual circuit I used. Instead of measuring the AC voltage across the resistance and the capacitance, the AC is rectified by each of the two diodes and used to charge the two 4-\μF capacitors. The resulting DC then is measured by a voltmeter that’s connected as indicated.

Accuracy of the results will depend on the actual value of the known resistance, R, and your ability to determine the frequency of the applied signal. Use a high-tolerance resistor or measure it and substitute the actual value into eqn. 1. The values of the other resistors and capacitors aren’t critical. The diodes can be any signal diodes.

operation

The unknown capacitor is connected and a signal from the generator is applied to the circuit. The frequency of the signal is adjusted so that the output as indicated by the DC voltmeter is zero. The frequency of the applied signal is noted (or measured if you have a frequency counter) and the capacitance is calculated from eqn. 2.

For the DC voltmeter, I used a zero-center meter I happened to have. If you don’t have such a meter, use an ordinary DC voltmeter and connect the polarity of the meter as required. Remember that when you measure a capacitor, the DC output voltage will be of one polarity when the frequency of the signal generator is too low and of the opposite polarity when the frequency is too high. You could add a polarity-reversing switch for the meter or use the bridge arrangement shown in fig. 7, although this scheme would broaden the frequency range for the zero-voltage indication somewhat because of the voltage drop across the bridge diodes.

Table 1. Measurements of known capacitors.

<table>
<thead>
<tr>
<th>Nominal capacitance, μF</th>
<th>Zero-voltage output frequency, Hz</th>
<th>Calculated capacitance, μF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>3305</td>
<td>0.048154</td>
</tr>
<tr>
<td>0.02</td>
<td>8509</td>
<td>0.018704</td>
</tr>
<tr>
<td>0.01</td>
<td>15,761</td>
<td>0.010098</td>
</tr>
<tr>
<td>0.005</td>
<td>32,404</td>
<td>0.004911</td>
</tr>
<tr>
<td>0.002</td>
<td>82,875</td>
<td>0.001920</td>
</tr>
<tr>
<td>0.001</td>
<td>168,915</td>
<td>0.000942</td>
</tr>
<tr>
<td>0.000510</td>
<td>317,853</td>
<td>0.000501</td>
</tr>
<tr>
<td>0.000470</td>
<td>358,631</td>
<td>0.000444</td>
</tr>
<tr>
<td>0.000330</td>
<td>498,930</td>
<td>0.000319</td>
</tr>
</tbody>
</table>

fig. 6. Simple circuit uses just one DC voltmeter.

fig. 5. Equal voltage drops indicate equal resistance/reactance values.

fig. 7. Bridge arrangement corrects for polarity change.
performance

I built the circuit shown in fig. 6 and checked it using some 5-percent tolerance capacitors. Table 1 shows the nominal value of those capacitors, the frequencies at which I obtained zero-output voltage, and the calculated values of the capacitors using eqn. 2. The calculated values of capacitance are in good agreement with the nominal values. I didn't have any 5-percent capacitors larger than 0.05 μF, but the system should work well with larger capacitors. From eqn. 2, if your signal generator goes down to 100 Hz, you can measure capacitors as large as 1.59 μF. If a smaller value of R is used, even larger capacitors can be measured.

For my tests I used a Hewlett-Packard model 200-CD signal generator and a Heathkit model 2410 frequency counter.

A word of caution: this method measures the impedance of an unknown. For a capacitance, with the exception of electrolytics, the impedance is nearly the same as the reactance. However, this is not true for an inductance. You can measure the impedance of an inductance with this method — but unless you know the AC resistance of the inductance, you can't determine the L value of the inductor. The AC resistance is different from the DC resistance, so a measurement made with an ohmmeter won't solve that problem.

H.H. Hunter, W8TYX

TRS-80C to video monitor interface

This article describes a video amplifier-filter used in conjunction with a Radio Shack Color Computer and a video monitor.

Severe RFI from my radio transmitter into a television set used as a monitor convinced me to try a number of possible solutions. A low-pass filter at the transmitter output along with a high-pass filter at the input to the television set minimized the RFI somewhat, but not enough to call it a cure. I then decided to try a black and white video monitor and use the direct video approach. Much better character resolution is also achieved by this method.

My first thought was to use a wide bandwidth operational amplifier with a gain setting high enough to produce a standard composite video amplitude of 1 volt peak-to-peak. The output signal from the op-amp is then applied to a black and white or color monitor. Figure 8 shows an OEI model 9804 op-amp; however, any op-amp with a bandwidth of 30 MHz or higher should work well. Input to U1 is connected to U12, pin 12 in the TRS-80C. This point can be found at resistor R16 (3.9k), located at the rear and center of the computer printed circuit board (component side up).

Connect the left-hand lead of the resistor to the input of U1 with miniature coax and ground the shield of the coax to the ground plane of the circuit board housing U1. Amplifier gain is set by adjusting R2. A simple alignment approach is to adjust the monitor contrast control for maximum contrast. R2 is then adjusted until the black and white picture has attained proper contrast and the sync pulses are not overloading the monitor. If a scope is available the op-amp output can be monitored until 1 volt peak-to-peak is observed.

A problem develops with the color signal from the computer driving a black and white monitor. The color burst signal riding on the composite video signal distorts the displayed characters observed on the screen. I solved the problem by installing a notch filter at the output of the op-amp tuned to the 3.58-MHz color burst frequency. While observing the monitor screen, adjust L1 until the characters look the best (you
COM-SHACK 64 SIMPLEX/OR DUPLEX SHACK CONTROL

AUTOPATCH *H.F. REMOTE* *REPEATER CONTROL*

- C64 CONTROLS YOUR CB/257 IC/235 1/440/7040 WITH YOUR H.T.
- CHOOSE EITHER SIMPLEX OR DUFEPLEX CONTROL MODES!
- ALL CONTROL FUNCTIONS ARE ACKNOWLEDGED WITH A CLEAR MALE OR FEMALE VOICE!
- VOICE CLOCK* SET TIME FROM YOUR H.T.
- ALL USER PARAMETERS SAVED FOR FAST START-UP!

AUTOPATCH TONE OR PULSE CALL WAITING, ANSWER SECOND INCOMING CALL LAST NUMBER MEMORY, VOICE PAGE ON INCOMING CALL *AUTODIAL* *REIAL* 9 MEMORY FREQUENCIES, SCAN UP/DOWN, FAST, SLOW * ENTER OR RECALL ANY FREQUENCY FROM MEMORY * CHANGE MODES USB/LFS/FM/AM

H.F. REMOTE CONTROL 3 RELAYS (CSB OPTION) ON/OFF WITH VOICE CONFIRMATION *NEW 100 HZ SINGLE STEP TUNE MODE!

STRIPEX MODE (1 UHF OR UHF TRANSCEIVER)

- MENU SETS ALL TIME WINDING, TIME BETWEEN WINDOWS, TIMES, ACCESS CODES, CALL SIGN *LISTENS FOR CLEAR FREQUENCY BEFORE TRANSMITTING

TOUCHTONE DECODER KIT

- SSI 201 DTMF RECEIVER KIT
- RECEIVE ALL 16 DTMF DIGITS
- NO ADDITIONAL FILTERING
- OUTPUT BCD OR HEX FORMAT
- 10/40 POWER DIAPHRAGM (29MA/12V)
- Includes 350 MHz XTRAL
- 22 PIN IC SOCKET, RESISTOR CAPACITOR DATA SHEET

4 DIGIT SEQUENCE DECODER (ON/OFF)

- WIRE DTMF AND TESTED, 5 TO 12V
- USER PROGRAMMABLE 50,000 COMBINATIONS ANY 16 DTMF TONES* SEND CODE ONCE TO TURN ON, AGAIN TO TURN OFF
- MOMENTARY AND LATCHING OPEN COLLECTOR TRANSISTOR LED DECODE INDICATOR

DUPELEX MODE & REPEATER CONTROL

- REPEATER *H.F. REMOTE* *AUTOPATCH*
- ALL ABOVE FEATURES PLUS REPEATER CONTROLLER WITH HANG TIME COURTESY BEEP, REPEATER ON/OFF ACCESS CODES AUTOMATIC REPEATER OFF, 10 ALARM TIME SET FROM 10-UP MENU
- YAESU 2700 UHF/UHF MAKES INSTANT CROSSBAND REPEATER NO DUPELEX OR SIMPLEX CONTROL PLUS 3.00 S/H

MODEL CS64 $249.95

OPTIONAL CMOS AUToload CARTIDGE FOR HILLTOP USE MODEL CS64R/CART. $99.95

CS 8 LATCH CONTROL OPTION

- TURNS UP TO EIGHT DEVICES ON AND OFF WITH VOICE CONFIRMATION WHEN IN THE H.F.
- REMOTE MODE * 3 DPDT 2 AMP RELAYS INCLUDED
- MORE OFEN OR 2 DOOR 100MA*REFERENCES TO JOYSTICK
- PLUGS INTO JOYSTICK

MODELS CS-8 $79.95

TWO METER REMOTE CONTROL

- REMOTE*PAD* ROW-COLUMN KEYPAD CONTROL PLUS 2 TWO DIGIT SEQUENCE DECODER (TSO)* USE THIS BOARD TO CONTROL
- 96 DIGIT KEYPAD REMOTELY WITH DTMF
- SIMPLY HOOK UP ROWS & COLUMNS FROM YOUR KEYPAD YOU WISH TO CONTROL TO THE RAP-1*
- UNLEASH THE POWER OF YOUR RIG'S MICROCOMPUTER* SCAN, ENTER FREQUENCIES
- TURN YOUR LINKS ON & OFF CONTROL

MODEL RAP-1 $149.95

ICOM IC-02A USER'S AUDIO BLASTER

- MODULE INSTALLS INSIDE THE RADIO IN 10 MIN.
- BOOST AUDIO TO NEARLY ONE WATT * LOW POWER DIAPHRAGM 1WATT COMPLETE INSTALLATION
- INSTRUCTIONS INCLUDED
- CORRECTS THE LOW AUDIO PROBLEM
- 1000'S OF SATISFIED CUSTOMERS FOR IC02AT/IC04AT/IC06AT

MODEL IAB1 $19.95

HOW THAT'S LOUD NOW!

ICOM LLC, 3 CANDILOOM ST.
BREA, CA 92621
TEL 714-671-2009

NAME

ADD

STATE ZIP

MC/USA *

78 October 1986
should see sharp corners with no over-shoot or smearing). Again, if a scope is available, L1 can be adjusted until the color burst disappears. The color burst will be seen as a burst of RF sinewaves after the horizontal sync pulse. If a color monitor is used the notch filter can be eliminated or switched out of the circuit as shown in fig. 8.

Approximately 40 mA is drawn from the op-amp so the power supply can be very simple in design. Any junkbox 12-volt center-tapped transformer can be used.

construction

I built the op-amp circuit on a perforated ground plane circuit board and enclosed it in a well-shielded aluminum box (very important for RFI elimination). The box should be thin enough to fit inside the computer enclosure underneath the top cover. I also installed the power supply inside the computer enclosure. The power supply parts were installed on the metal cover inside the computer (top side). Connect feed-through caps (1500 pF) onto the video circuit box in series with each power supply voltage lead. This will bypass the small amount of remaining RF from the transmitter into the video amplifier enclosure. Use miniature coax (RG174) between the output of the amplifier and the video monitor.

The results from this effort were very rewarding in that I can now run a kilowatt input from the transmitter with a clean screen. Character resolution was improved markedly because the maximum bandwidth of the monitor is realized. This is especially true with a black and white monitor such as mine, which has an 8 MHz bandwidth.

Don Kadish, W1OER

some thoughts on quad construction

Over the years, the quad antenna — frequently in the form of a three-band unit for 10, 15, and 20 meters — has been used extensively by Amateurs. It’s a compact antenna that offers good performance.

spreaders

The quad’s ability to survive strong winds depends largely upon the spreaders and how they’re attached to the boom. The cast aluminum type of spider mounting on the boom is light-weight and relatively inexpensive, but may crack under wind stress. In an attempt to overcome this problem, I began, about 20 years ago, to use nylon monofilament as a means of reinforcing the spreaders (fig. 9). This method of reinforcement has been quite successful.

When the last major typhoon hit Manila in 1970, damage was extensive. Many houses, power and telephone utility poles, and main distribution lines were blown down. Most of the city was without power for two weeks. One of my antennas was a multi-band quad and delta system, with a total boom length of 50 feet, mounted atop a self-supporting 75-foot tower. The boom had a two-element 40-meter quad, a three-element 20-meter quad, a four-element 15-meter delta loop above the boom, and a five-element 10-meter delta loop below the boom. The largest antenna — which consisted of the 40-meter quad, the reflector of the 20-meter quad, and the director of the 20-meter quad — measured about 28 feet across. The rest of the boom was the bow sprit, where the antenna stays were attached. While one might not expect such a structure to survive a typhoon, the only significant damage was that the 2-inch solid steel shaft on which the boom was mounted was badly bent at the point at which it entered the retaining bearing at the top of the tower. The prop-pitch rotor, set about 5 feet lower, suffered no harm. There was a crack, however, in one of the 40-meter spreaders, which were made of the best material obtainable — phenolic resin molded with fiberglass.

Although I’d used 200-pound monofilament fishing line to reinforce the spreaders of this antenna, a less elaborate antenna, such as two- or three-element 20-meter quad, need not use anything heavier than line rated at 150 pounds. In such cases, the boom extension doesn’t need to be quite as strong as the boom itself; the most practical thing to do is use the next smaller size of tubing — preferably about the same length as the quad spreaders themselves — so as to make a snug fit in the main boom. All assembly work should be done on the ground to make sure that all stays are of equal length, type, and shape. This means that the boom will have to be placed on an improvised sawhorse about 12 feet off the ground (for a 10-, 15-, and 20-meter antenna), so that the antenna and boom assembly can be rotated axially to provide access to all spreaders.

home-brewed spreaders

Hams in third-world countries may have difficulty finding spreaders; if they can be located, the cost of shipping may be prohibitive. Ordinary PVC pipe is now available almost anywhere, however, and can be used successfully.

There’s a problem with PVC pipe, however. Even in the thicker wall sizes, it’s too flexible and must be reinforced for rigidity. One way to do this is to obtain a piece of straight-grained lumber as long as the spreader and split it lengthwise into several square pieces whose dimension across the flats is slightly greater than the inner diameter of the tubing, using knives and coarse sandpaper to bring each to the correct dimension. One could also use a lathe.

After preparing the wood, it should be treated with preservative, allowed to dry thoroughly, and then inserted into the PVC pipe. Seal the ends with epoxy to keep moisture out. (It’s a good idea to keep the wood slightly shorter than the pipe (perhaps one-fourth inch overall) to allow for this layer of epoxy.)

This type of spreader has been successfully used here in the Philippines. We find it will greatly outlast bamboo; it’s also stronger. And while it may not compare with the best pressure-molded phenolic fiberglass, it costs much less. It does weigh more, but not as much as one might assume.
fig. 9.10 through 20 meter quad antenna (A) three dimensional view shows spreader and nylon support structure; (B) end view (in the line of fire); (C) side view shows the relationship between the boom extension and elements.
selecting wire

Using insulated wire in a quad would result in unexpected difficulty in resonating the antenna. This is because the velocity of propagation is slower in insulated wire than in uninsulated wire in air. It's possible to use magnet wire, which doesn't have this problem because its very thin coating has little effect. Older types of magnet wire may crack in the sun, but newer types, coated with tougher enamels, offer greater protection against corrosion and are more durable.

The ideal wire would be small-diameter copperweld such as 18 AWG, which has greater breaking strength than ordinary copper wire of larger diameter. I don't know of a source of enamel copperweld, but considering the advantages of copperweld — even without enamel — I would prefer to use it rather than any other material. Though it's more difficult to handle, less wind resistance and greater strength mean that there's less chance of damage from vibration in heavy winds.

Plated electric fence wire is even cheaper than copperweld and is strong and durable. It can be used on quads, although not in high-power applications.

weatherproofing

When putting up your coax, take particular care to protect the ends of the coax from moisture by using protective materials (for example, Coax Seal™). To make your antenna look more balanced to the transmission line, convert a section of the coax near the joint with the antenna, into a choke, winding the coax around a ferrite rod. The handbooks and various magazine articles have covered this subject; it costs little and will reduce susceptibility to noise with vertical polarization. If you use a two-element, three-band quad, you would probably find that a 75-ohm cable will give a better overall SWR than a 50-ohm cable, and for the same loss or power handling capacity, cost a bit less.

installation and adjustment

One of the serious problems of putting up a beam antenna is the difficulty in adjusting the antenna near the ground, whether it's a quad or Yagi. If one has a four-legged, self-supporting tower such as mine, the solution is easy — simply build a temporary scaffold (with a railing) extending out from the tower at the level necessary for working on the boom out to the farthest element. For other types of masts, you'll have to find your own solution, for the true tuning-up must be done on the spot.

Earl H. Hornbostel, DU1AE
Manila, Philippines

audio switcher for mobile operation

I don't know about you, but I have a very annoying problem. Even though blessed with two ears, I can't seem to really listen to more than one thing at a time. And, sad to say, the problem seems to be growing worse with age! Lately it seems that all the cocktail-party conversations and the rare DX seem to get mangled and mauled by ORM.

The problem was especially acute on the road while scanning the repeaters and trying to listen to the stereo at the same time. No amount of fiddling with the volume controls would produce the right result, and I was always lurching to turn down the stereo volume before pressing the PTT, which I usually squeezed instinctively. I'd be driving along the highway, shouting into the mic and groping for the stereo's volume control.

solving the problem

The circuit shown switches the car's speakers from the stereo to the rig whenever the PTT is pressed or whenever the rig's squelch is opened. Neither the rig nor the stereo has to be modified. Compact enough to fit into any small space, the circuit can be built and installed in a day. Parts selection is neither critical nor costly. Everything you need is probably right there in your junk box; even if you were to purchase all new parts, their cost should not exceed $15 to $20.

Before beginning construction, check to make sure that your stereo has four "hot" speaker leads and a common ground. Some stereo systems — Sanyo, for example — use a "matrixed" speaker output consisting of four speaker leads with no common ground. I know of no way around this except to use the phone or amplifier outputs and an external amplifier with the normal four "hot" channel outputs and one common ground.

The circuit shown in fig. 10 consists of a quad op amp, two transistors, a relay, and a few resistors and capacitors. Construction techniques aren't particularly demanding. I pushed the parts through perf board and just soldered the component leads together (fig. 11). The relay was hot-glued to the perfboard and the completed unit was installed in a hinged plastic box that had once held standard-size staples. (A DIP socket was used for the op amp for development purposes, but it isn't necessary.)

operation

Audio output from the rig is fed into two successive stages of the LM324 op amp, where it's amplified and effectively clipped at a 12-VDC signal level. Capacitor C1 and variable resistor R1 determine the time constant for signal decay. This acts like a VOX delay to prevent relay dropout between words or pauses in the conversation. An additional op amp stage sharpens the signal and acts as a buffer. The signal is then fed into a 2N2222 PNP or equivalent transistor which drives the 4PDT relay. This relay switches all four speaker leads from the normal stereo position to the rig's audio output. The 1N4004 diode
Expanding Our Horizons
Introducing
Mirage/KLM 1.2-44 LBX
The first 1260 MHz to 1300 MHz
Made in the U.S.A.

- Factory Tested
- Completely Assembled
- Completely Weatherized Balun
- Also Available Soon...
 Power Dividers

SPECIFICATIONS

Electrical
- Band Width 1260-1300 MHz
- Gain 18.2
- VSWR Better than 1.5 to 1
- Feed Imp 50 Ohms
- Balun 4:1 Rigid Coax

Mechanical
- Beam Length 12' 4"
- Element Length 4.5"
- Mast 2" O.D.
- Windload 1 sq. ft.

Mirage Communications Equipment, Inc.
P.O. Box 1000
Morgan Hill, CA 95037
(408) 779-7363
fig. 10. Audio switcher: layout and component choices are not critical.

shunts any harmful spikes when the relay opens. Sensitivity is high enough so that almost any audible output from the rig will operate the relay and switch the speakers from stereo to rig audio. The fourth op amp in the package is used to drive a 2N3906 NPN (or equivalent) transistor to pull in the relay when the PTT switch is pressed. This mutes the stereo system while you’re talking into the microphone.

Use of switch S1 is optional. It’s normally used in the open position; when it’s closed, it locks in the relay and the speakers are connected to the rig’s audio output only. This may be useful under marginal receive conditions, but I usually just turn the rig off.

No tweaking or alignment is necessary after construction. However, you should double-check all wiring, solder joints, etc. If you’ve installed a socket for the op amp, leave it empty while you check relay operation and voltages. Check pin 4 for a nominal +12 VDC. Ground the transistor side of the relay coil and see if it actuates. If it’s working up to this point, plug in the op amp and proceed. If not, double-check everything again.

Once everything is operating to your satisfaction, enclose it all in a small plastic case. At approximately 1 x 1.5 x 4 inches, my board fit into the staple box neatly, without movement. I placed a piece of non-conducting foam underneath the board and concealed the unit behind the ashtray above the radios. If space is a problem, you could, with a little effort, reduce the size of the board by at least 50 percent.

Operation is very simple. The only “set once and forget” adjustment is R1, which should be adjusted just as you would any VOX delay circuit. Listen to a few typical QSOs on the rig and adjust the resistance until the relay stops dropping out between words. That’s all there is to it.

Some additional ideas came to mind after I built this nifty little circuit. One is to use some form of solid-state switching if relay noise becomes bothersome. Those running a “full house” of VHF, HF, scanners, and such may want to add a digital voting scheme. This would require a much costlier and complex circuit, however.
<table>
<thead>
<tr>
<th>Equipment</th>
<th>List</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-735 Gen. Cvg Xcvr</td>
<td>$999.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-745 Gen. Cvg Xcvr</td>
<td>$1049.00</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF71A Gen. Cvg Xcvr</td>
<td>$1649.00</td>
<td>Call $</td>
</tr>
<tr>
<td>Receivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-7000 25-1300 MHz</td>
<td>$1099.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-711A 100 kHz-30 MHz</td>
<td>$949.00</td>
<td>Call $</td>
</tr>
<tr>
<td>VHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-271A All Mode Base 25w</td>
<td>$859.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-271H All Mode Base 100w</td>
<td>$1099.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-27A FM Mobile 25w</td>
<td>$429.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-27H FM Mobile 45w</td>
<td>$459.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-28A FM Mobile 25w</td>
<td>$429.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-28H FM Mobile 45w</td>
<td>$459.00</td>
<td>Call $</td>
</tr>
<tr>
<td>ICF2AT FM HT</td>
<td>$299.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-02AT FM HT</td>
<td>$399.00</td>
<td>Call $</td>
</tr>
<tr>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-471A All Mode Base 25w</td>
<td>$979.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-471H All Mode Base 75w</td>
<td>$1329.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-47A FM Mobile 25w</td>
<td>$549.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-4AT FM HT</td>
<td>$339.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-04AT FM HT</td>
<td>$449.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-3200A FM 2m/70cm 25w</td>
<td>$599.00</td>
<td>Call $</td>
</tr>
<tr>
<td>220 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-37A FM Mobile 25w</td>
<td>$499.00</td>
<td>Call $</td>
</tr>
<tr>
<td>IC-3AT FM HT</td>
<td>$339.00</td>
<td>Call $</td>
</tr>
<tr>
<td>Receivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICRP3010 440 MHz</td>
<td>$1229.00</td>
<td>Call $</td>
</tr>
<tr>
<td>ICRP1210 1.2 GHz</td>
<td>$1479.00</td>
<td>Call $</td>
</tr>
<tr>
<td>HF Equipment</td>
<td>List</td>
<td>June</td>
</tr>
<tr>
<td>TS-9405A Gen. Cvg Xcvr</td>
<td>$2249.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-9405S Gen. Cvg Xcvr</td>
<td>$2049.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-9305A/AT Gen. Cvg Xcvr</td>
<td>$1849.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-9305X Cnv Xcvr</td>
<td>$1099.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-5305P Cnv Xcvr</td>
<td>$899.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-4305 Gen. Cvg Xcvr</td>
<td>$819.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-4405/AT Gen. Cvg Xcvr</td>
<td>$1199.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-4405 Gen. Cvg Xcvr</td>
<td>$1049.95</td>
<td>Call $</td>
</tr>
<tr>
<td>Receivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coming Soon! New Receiver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-2000 150 kHz-30 MHz</td>
<td>$649.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-670 All Mode Quad 6 M</td>
<td>$799.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-7711A All Mode Base 25w</td>
<td>$899.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-7712 All Mode Mobile 25w</td>
<td>$599.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TM-201B FM Mobile 45w</td>
<td>$369.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TM-211A FM Mobile 25w</td>
<td>$399.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TM-2505A FM Mobile 45w</td>
<td>$429.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TM-2550A FM Mobile 45w</td>
<td>$469.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TM-2550A FM Mobile 70w</td>
<td>$559.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TH-21AT FM, HT</td>
<td>$249.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TR-3600A FM, HT</td>
<td>$359.95</td>
<td>Call $</td>
</tr>
<tr>
<td>UHF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS-811A All Mode Base 25w</td>
<td>$1049.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-401B FM Mobile 25w</td>
<td>$399.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TS-411B FM Mobile 25w</td>
<td>$449.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TH-41AT FM HT</td>
<td>$259.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TR-3600A FM, HT</td>
<td>$369.95</td>
<td>Call $</td>
</tr>
<tr>
<td>220 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-3505A FM 220 MHz</td>
<td>$449.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TH-31AT FM 220 MHz HT</td>
<td>$259.95</td>
<td>Call $</td>
</tr>
<tr>
<td>TL-922A HF Amp</td>
<td>$1499.95</td>
<td>Call $</td>
</tr>
</tbody>
</table>

HF ANTENNAS — The Easy Way

by John Haerle, WBSIIR

This book has been published as a memorial to WBSIIR's work as an Amateur Radio teacher. Originally given as a series of speeches or papers, this tutorial is an excellent source book on antenna theory and applications. Examples of areas covered are: Fundamentals, antenna and feedline terminology, baluns, ground systems, lightning protection, The Basic Antenna, the dipole, the zepp, G5RV, Windom, Special Antennas, the sloper, DDR, Beverage, folded unipole, Booms, W8JK, Yagi, two element quad, and the 160 meter band story. John's writing is in an easy-to-understand conversational style and is full of examples and handy tips and hints. There are no drawings or illustrations but John's prose paints pictures for clear and complete understanding of the information being presented.

- Softbound $11.95
- Please add $3.50 for shipping and handling.
I've been using this circuit for several months. It's indeed a pleasure to listen to one radio at a time and to enjoy complete silence when keying the microphone button.

Emile F. Alline, Jr., NE5S

simple IC function generator

The Exar XR-2206 is a widely available IC function generator (see fig. 12). The VCO frequency is controlled by the current drawn from either pin 7 or 8. Three volts is applied as bias on pins 7 and 8. Frequency of oscillation is given by:

\[f = \frac{320 \cdot I (mA)}{C \, (\mu F)} \]

where \(I \) is the current drawn at pin 7 or 8 and \(C \) is the value of a capacitor placed across pins 5 and 6.

A typical method of varying the frequency is to place a potentiometer between pin 7 and ground. The frequency of oscillation now becomes

\[f = \frac{320 \cdot 3}{CR} \]

where \(R \) is the value of the pot. The frequency of oscillation is proportional to the inverse of the pot's resistance. If the pot has a linear taper, most of the frequency change takes place at the end of rotation. A better frequency control scheme is needed.

A solution is the voltage-to-current converter. A basic V to I converter is shown in fig. 13. The improved frequency control is shown in fig. 14.

The 2k turn pot has a maximum voltage range of about 2 volts and the V to I converter has a “gain” of 1V to 1mA.
KePRO CIRCUIT MAKER

For art supplies, kits and economical equipment to produce at home professional quality print circuit boards, ask for the pro's - KePRO Circuit Systems, Inc. KePRO has been producing prototype and short run equipment, as well as providing PCB supplies to industrial companies for years. Their specialized experience and knowledge provides the home-hobbyist an economical and convenient source of equipment and supplies for a professional, one-of-a-kind, printed circuit board. Shears, etchers, sensitized and non-sensitized copperclad laminates, art supplies, kits and KePROclad...all you need to make a professional quality printed circuit board at home and at a cost you can afford.

Write or call KePRO for their catalog and price list:
1-800-325-3878 or 1-314-343-1630 (MO)
630 Axminster Dr., Fenton, MO 63026

BENCHET SHEAR

COPPER CLAD LAMINATES

NEMAL ELECTRONICS

Your Authorized Distributor For

INTRODUCTORY SALE!

Belden Nemal No. Description Per Per
6214 1102B RG8 / U Foam 96% $45.00 .50
6217 1102B RG8 / Poly 96% 39.00 .44
6241 1502B RG59 / Poly 96% 13.00 .15
6257 1130B RG213 / U Mil Spec 50 Ohm 53.00 .59
6299 1602B RG62A / Poly 96% 15.00 .17
6216 1450B RG174 / Poly 96% 12.00 .14
9913 1180 Low Loss 50 Ohm 46.00 .56
OTHER QUALITY CABLES
Nemal No. Description Per Per
1110 RG8X 95% Shield (mini B) 15.00 .17
1130 RG213 / U Mil Spec. 96% Shield 34.00 .36
1140 RG214 / U Mil Spec. Silver 155.00 1.65
1706 RG1428 / U Teflon - Silver 140.00 1.50
1310 RG217 / U 5/8’ 50 Ohm Dbl. Shld. 80.00 .85
1470 RG223 / U Mil Spec. Silver 80.00 .85
8C182B 2-16 Ga., 6-22 Ga. 19.00 .21
8C162B 2-16 Ga., 6-20 Ga. Heavy Duty 34.00 .36
FXA12 Smooth Alum. w/black jacket 79.00 .89
FCLC12 Conrug’d. Copper (EQ. Hellax LDF) 159.00 1.69
CONNECTORS — MADE IN U.S.A.
NE720 Type N for Belden 9913 4.75
PL259 Standard Plug for RG8, 213 65
PL259AM Amphenol PL259 69
PL259S PL259 Teflon/Silver 1.59
UG212 Type N for RG8, 213, 214 3.00
UG175 Adapter for RG86 2.22

Call or write for complete Price List
Shipping: Cable — $3.00 per 100 ft.
Connectors — 10%, $3.00 minimum
Orders under $20 Add $2 Handling

NEMAL ELECTRONICS
12240 N.E. 14th Ave., Dept. Q, Miami, FL 33181
Telephone (305) 893-3924

BILAL COMPANY
S.R. 2, Box 62, Dept. 91
Eucha, OK 74342 PH: 918-253-4094

The ISOTRON NO TUNERS! NO RADIALS!
ANTENNAS FROM 160-10 METERS NO COMPROMISE!

Just a few comments from our satisfied customers:

"...I have used your 80/Meter ISOTRON while stationed in Guantanamo Bay Cuba and it worked great..."
"On January 15th, 1986, we entered the 27th Annual 48 hour contest. I didn't try for a high number of contacts. I tried for maximum number of stations. In less than 3 hours total time I worked 48 stations and K4WEZ, that last one is about 8800 mile haul from Aurora, Colorado. Not too bad for what looks like a bird feed."

"I just got my ISOTRON 40 on the air and it has surpassed my wildest expectations. My first evening QSO was with KB6EUC and well...my finish was with HX8GUP in Columbia, South America. The ISOTRON sits on a 80 foot mast and that is it. My RTTY report was 5799."

"I first heard of the ISOTRON from an old friend. I think it's a super, compact antenna whose performance really counts. KASWZ."

"About two months ago, I presented an ISOTRON 60 and just recently got it out of the snow and put it on a 18-foot pole. I am really intrigued by it and have been having fun trying to convince other stations that it is on! I worked California when it was hanging by a string from the ceiling of the shack and works even better on a pole... "NA7DP"
(Phot: Isotron 180)

WHY NOT ENJOY THEIR OPERATING PLEASURE & GIVE US A CALL. WE WILL LOOK FORWARD TO TALKING WITH YOU.
*40 METER - $529.95 PLUS $1.75 SHIPPING
80 METER - $63.95 Plus $4.75 Shipping
160 METER - $149.95 PLUS $5.50 SHIPPING
80-40 Combination - $110.00 plus $8.50 Shipping
ASK FOR PRICES ON OTHER MODELS
*See review in October 71, 1981. *March antenna in March 73, 1986

October 1986
so that the maximum current drawn from pin 7 is about 2 mA. Exar says that current drawn from pin 7 or 8 should be less than 3 mA.

The Op amp is supplied with -4.5 volts to allow full-range operation down to 0V input. The -4.5 volts is supplied by an ICL 7660 voltage converter chip. The schematic is shown in fig. 15.

The 35 \(\mu \)F capacitor on the output provides extra filtering to reduce voltage variations to the V to I converter.

The results have been pleasing. Figure 16 is a graph showing frequency versus pot rotation.

Thomas A. Keely

Yaesu FT707 DC power cable

Just a word of caution if you plan to make your own DC power cable for the Yaesu FT707 using off-the-shelf, four-contact Jones plugs. The pin numbering system of the Yaesu plug is different from that of the off-the-shelf plugs. On the Yaesu, pins 1 and 2 (horizontal blades) have a jumper, pin 3 is positive, and pin 4 is negative. On the off-the-shelf Jones plug, pins 1 and 3 should have the jumper, pin 2 is positive, and pin 4 is negative.

Jerome M. Havel, W2RRX

ham radio

40m Phased Array — the Easy Way!

OPTI-PHASOR™ by BaileyTech

- Change direction instantly
- High F/B, adjustable phasing
- Low SWR over entire 40m band
- Just 2 dipoles gives 4 db gain

$119.95

Also available with matched dipoles and feed lines

Check, MO, VISA, MC
Call or Write for complete catalog
TET Antennas, Larsen, Hy-Gain, Alpha Delta, etc.

SULTRONICS
1587 U.S. 68 N
Xenia, OH 45385
(513) 376-2700

POPULAR PA 19
Wideband Preamp

- Over 8,000 sold since 1976
- 0.5 - 200 MHz bandwidth
- 19 dB gain
- 50 \(\Omega \) in/output
- Increase sensitivity of receivers or counters
- Built, tested & ready-to-go

ONLY $9.95 PPD

NEW POCKET SIZED
500 MHz Freq. Counter

- Compact design-packet sized
- Measures frequency from 1 MHz to 500 MHz to within 1 kHz
- Built-in telescoping antenna
- Uses 1 standard 9 volt battery
- All units pre-tested and calibrated to .001%
- Professional and dependable performance at a low cost

ONLY $49.95 PPD

DIGITREX
Division of NCI
10073 N. Mary Ann, Northville, MI 48187
(313) 348-7313
WEST COAST DISTRIBUTOR
R. LUKASZEWICZ
20610 ALAMINDS DRIVE SAUGUS, CA 91350
(805) 252-6021

WACOM DUPLIXERS

Our Exclusive Bandpass-Reject Duplexers
With Our Patented

Bp B, CIRCUIT FILTERS

provide superior performance especially at close frequency separation.
Models available for all commercial and ham bands within the frequency range of 30 to 960 MHz.

WACOM PRODUCTS, INC.
P.O. BOX 21145
WACO, TEXAS 76702 • 817/848-4435

October 1986
Why you Should Subscribe!
Read what our subscribers say!

- it's in the fine print

- Your magazine is the finest innovation that I have seen in ham radio since 1953 - except maybe the all-solid state transceiver. Carl Soltesz
- Twelve more, please. Ed Shaugnessy • Love the articles on Timex-Sinclair computers. A. Nieuwenhoff, Sutton, MA • have most certainly received my moneys worth in software... Michael Regan, K8WRB • information contained in the articles has made me more "computer literate" than would have been possible reading only publications dedicated to my particular computer. Donald H. Haitscher, W8MHR, Martinsburg, WV • Here it is renewal time already -- time sure passes fast when you are having fun (reading CTM). Bob Sirekis, Holly Hill, FL • thank you for a great magazine. Frank Davis, Peru, IN • Another year goes by and another subscription dollar well spent. R. P. Campbell, LaPlace, LA • CTM and you have found the way to an advertisets heart. Quality of publication and reasonable advertising rates are basic criteria you have achieved better than your competition. But what really sets you apart from others is empathy, a tasteful quality in which you excell while others can’t even pronounce the word. Bob Harris Sr., BCD Electra, Richardson, TX • you have found a nice niche for CTM in packet... you have me getting interested... Charlie Curie, ADF Chattanooga, TN • The packet/computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homely style of your magazine and the many fine computer articles... Andy Kostorck, Lakewood, OH • I was both pleased and dismayed upon becoming acquainted with your magazine at HAMCOM. Pleased that I discovered your magazine - dismayed that I didn’t long before now. Bill Lathan, AK5K • CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet/amateur radio articles and computer articles. Barry Siegfried, K2MF • Thank you for an excellent magazine, and the only magazine I read over 75% of. W. F. Pence Jr. • your publication is the most enjoyable computer magazine on the market. Andrew Zerbe • Congratulations on your informative magazine. Looking forward to each issue. Curt & Nancy Jones, Kodiak, AK • received my moneys worth with just one issue... J. Trenbick • always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination... Fred Blechman, K6UGT • (a year later) thought you would like to know, it still goes... Fred Blechman, K6GT • Of the three HAM magazines I received each month QST, 73 and CTM, CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT •

U.S.A. $18.00 1 Yr
$33.00 2 Yr
$48.00 3 Yr

Mexico & Canada $32.00 1 Yr

All Other Countries $68.00 1 Yr
(Air)
$43.00
(Surface)

U.S. $ FUNDS ONLY
Permanent U.S.
Subscription $150.00
Sample Copy $ 3.50

Cut out and mail coupon at right to:
Circulation Manager
1704 Sam Drive
Birmingham, AL 35235
(205) 854-0271
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

<table>
<thead>
<tr>
<th>101</th>
<th>113</th>
<th>125</th>
<th>137</th>
<th>149</th>
<th>161</th>
<th>173</th>
<th>185</th>
<th>197</th>
<th>209</th>
<th>221</th>
<th>233</th>
<th>245</th>
<th>257</th>
<th>269</th>
<th>281</th>
<th>293</th>
<th>305</th>
<th>317</th>
<th>329</th>
<th>341</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>114</td>
<td>126</td>
<td>138</td>
<td>150</td>
<td>162</td>
<td>174</td>
<td>186</td>
<td>198</td>
<td>210</td>
<td>222</td>
<td>234</td>
<td>246</td>
<td>258</td>
<td>270</td>
<td>282</td>
<td>294</td>
<td>306</td>
<td>318</td>
<td>330</td>
<td>342</td>
</tr>
<tr>
<td>103</td>
<td>115</td>
<td>127</td>
<td>139</td>
<td>151</td>
<td>163</td>
<td>175</td>
<td>187</td>
<td>199</td>
<td>211</td>
<td>223</td>
<td>235</td>
<td>247</td>
<td>259</td>
<td>271</td>
<td>283</td>
<td>295</td>
<td>307</td>
<td>319</td>
<td>331</td>
<td>343</td>
</tr>
<tr>
<td>104</td>
<td>116</td>
<td>128</td>
<td>140</td>
<td>152</td>
<td>164</td>
<td>176</td>
<td>188</td>
<td>200</td>
<td>212</td>
<td>224</td>
<td>236</td>
<td>248</td>
<td>260</td>
<td>272</td>
<td>284</td>
<td>296</td>
<td>308</td>
<td>320</td>
<td>332</td>
<td>344</td>
</tr>
<tr>
<td>105</td>
<td>117</td>
<td>129</td>
<td>141</td>
<td>153</td>
<td>165</td>
<td>177</td>
<td>189</td>
<td>201</td>
<td>213</td>
<td>225</td>
<td>237</td>
<td>249</td>
<td>261</td>
<td>273</td>
<td>285</td>
<td>297</td>
<td>309</td>
<td>321</td>
<td>333</td>
<td>345</td>
</tr>
<tr>
<td>106</td>
<td>118</td>
<td>130</td>
<td>142</td>
<td>154</td>
<td>166</td>
<td>178</td>
<td>190</td>
<td>202</td>
<td>214</td>
<td>226</td>
<td>238</td>
<td>250</td>
<td>262</td>
<td>274</td>
<td>286</td>
<td>298</td>
<td>310</td>
<td>322</td>
<td>334</td>
<td>346</td>
</tr>
<tr>
<td>107</td>
<td>119</td>
<td>131</td>
<td>143</td>
<td>155</td>
<td>167</td>
<td>179</td>
<td>191</td>
<td>203</td>
<td>215</td>
<td>227</td>
<td>239</td>
<td>251</td>
<td>263</td>
<td>275</td>
<td>287</td>
<td>299</td>
<td>311</td>
<td>323</td>
<td>335</td>
<td>347</td>
</tr>
<tr>
<td>108</td>
<td>120</td>
<td>132</td>
<td>144</td>
<td>156</td>
<td>168</td>
<td>180</td>
<td>192</td>
<td>204</td>
<td>216</td>
<td>228</td>
<td>240</td>
<td>252</td>
<td>264</td>
<td>276</td>
<td>288</td>
<td>300</td>
<td>312</td>
<td>324</td>
<td>336</td>
<td>348</td>
</tr>
<tr>
<td>109</td>
<td>121</td>
<td>133</td>
<td>145</td>
<td>157</td>
<td>169</td>
<td>181</td>
<td>193</td>
<td>205</td>
<td>217</td>
<td>229</td>
<td>241</td>
<td>253</td>
<td>265</td>
<td>277</td>
<td>289</td>
<td>301</td>
<td>313</td>
<td>325</td>
<td>337</td>
<td>349</td>
</tr>
<tr>
<td>110</td>
<td>122</td>
<td>134</td>
<td>146</td>
<td>158</td>
<td>170</td>
<td>182</td>
<td>194</td>
<td>206</td>
<td>218</td>
<td>230</td>
<td>242</td>
<td>254</td>
<td>266</td>
<td>278</td>
<td>290</td>
<td>302</td>
<td>314</td>
<td>326</td>
<td>338</td>
<td>350</td>
</tr>
<tr>
<td>111</td>
<td>123</td>
<td>135</td>
<td>147</td>
<td>159</td>
<td>171</td>
<td>183</td>
<td>195</td>
<td>207</td>
<td>219</td>
<td>231</td>
<td>243</td>
<td>255</td>
<td>267</td>
<td>279</td>
<td>291</td>
<td>303</td>
<td>315</td>
<td>327</td>
<td>339</td>
<td>351</td>
</tr>
<tr>
<td>112</td>
<td>124</td>
<td>136</td>
<td>148</td>
<td>160</td>
<td>172</td>
<td>184</td>
<td>196</td>
<td>208</td>
<td>220</td>
<td>232</td>
<td>244</td>
<td>256</td>
<td>268</td>
<td>280</td>
<td>292</td>
<td>304</td>
<td>316</td>
<td>328</td>
<td>340</td>
<td>352</td>
</tr>
</tbody>
</table>

Limit of 15 inquiries per request.

NAME
ADDRESS
CITY
STATE
ZIP

Please use before November 30, 1986

October 1986
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(GIVES YOU TO AS STANDARD EQUIPMENT!)

<table>
<thead>
<tr>
<th>BAND</th>
<th>KIT</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M, 2M, 220</td>
<td>$630</td>
<td>$880</td>
</tr>
<tr>
<td>440</td>
<td>$730</td>
<td>$880</td>
</tr>
</tbody>
</table>

(Also available for commercial bands)

FEATURES:
- SENSITIVITY SECOND TO NONE: 0.15 uV (VHF), 0.2 uV (UHF) TYP.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE XTAL FILTER & CERAMIC FILTER FOR > 100 dB AT ± 12KHz HELICAL RESONATOR FRONT ENDS TO FIGHT DESENSE & INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 13 to 20 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Very Stable

NEW
Model LNW-() …. Only $19/kit, $34 wired
Models available to tune the following bands:

ACCESSORIES
- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATORS
- COR-2 KIT With audio mixer, local speaker amplifier, tail & time-out timers.
- COR-3 KIT with "courtesy" beep.
- DTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
- CWID KITS
- SIMPLEX AUTOPATCH
antenna-to-ionospheric path match

Up North, October is probably your last chance to work on your antennas before winter and the contest season begin in earnest. Winds and temperature changes can take their toll. If your antennas and towers haven’t been checked recently, hardware needs to be tightened and wires checked for cracks or worn places.

How have your antennas been performing? Perhaps a different antenna or configuration might be in order. At this point of the sunspot cycle, emphasis is now on the lower bands. What improvements could you incorporate to enhance your signal to your favorite DXing area?

Re-read K2RR’s article, “Secrets of Successful Low-Band Operation (ham radio, May and June, 1986).” Might there be something in it that would help improve your signal — analyzing your ground reflection areas, for example?

In January, 1985 I presented HORANT, a short computer program, written in BASIC, designed to provide the elevation angle, take-off angle, and the lobes of maximum radiation from a horizontal antenna mounted a selected height above ground for specific frequencies. I’ve since found that adding two lines to each of four places will also provide the ground reflection distance (associated with each lobe) away from the antenna feedpoint. A revised version of HORANT is listed in fig. 1.*

In part two of his article, K2RR pointed out (in table 10) that the quality of this reflection was the crux of the comparison of the efficiency of low horizontal antennas and verticals under poor ground conditions. Some horizontal antennas were able to provide more signal at the identical angle under poor soil conditions. HORANT can determine where your ground reflection point is and the take-off angle for comparison to the required radiation angle for your ionospheric path to your DX. (The latter angle can be found by using the modification of the MINIMUF 3.5 program or table 1 of February, 1986’s “DX Forecaster.”)

After analyzing your ground reflection condition, there are a couple of things you can do to improve the situation. You can alter the reflection condition by soil management (add more radials or ground screen) or move the antenna to a point at which the ground reflection location is better. Relating the take-off angle and ground reflection terms is called coupling the signal to the ionosphere. Doing this allows for the efficient use of HF propagation, regardless of whether you’re interested in conveying information over long distances or merely having some fun with DX.

last-minute forecast

Beginning with the first week of October and continuing through the second and third weeks of the month, MUFs are expected to be lower. This will result in poorer conditions on the 10- through 30-meter bands, making the lower bands — and nighttime conditions — more appropriate for DXing. During the fourth week, expect to see a return to better higher-band conditions until the

* The original text contains a table that is not visible in the image. The table likely contains data related to the HORANT program, but it is not included in the provided text. The figure mentioned at the end of the text refers to a graph or diagram that is not part of the visible content. The context suggests that the graph or diagram is related to the application of the HORANT program and its use in determining takeoff angles and distances to associated ground reflection points.
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

Look at next higher band for possible openings.
end of the month; transsequatorial openings associated with a disturbed geomagnetic field from the 20th to 23rd may even be possible. Another period of disturbance may occur from the 7th to 20th. Because both of these disturbances are within the equinoctial season, they may have more effect than we've seen recently. Look for openings on east-west paths, with DX signals arriving from some unusual directions.

The Orionids meteor shower will be visible from the 15th to 24th of October, with a maximum rate of between 10 to 20 per hour on the 20th and 21st of the month. A full moon will occur on the 25th; perigee will take place on the 7th. An annular eclipse of the sun extending from Alaska to northern South America begins on October 3 at 1657 UTC. It moves to the east, reaching Eastern Canada and Greenland by 2030 UTC, then ending at 2114 as it approaches Great Britain and Africa.

band-by-band summary

Ten, twelve, fifteen, and twenty meters provide many openings during the daytime. The higher bands will experience shorter openings; these will occur around local noon mainly in a southerly direction. Fifteen meters is now only a transition band between 12 and 20. Twenty is the daytime band for the northern directions and transsequatorial openings may occur in the evening. Distances may reach 2000 miles per hop if antenna take-off angles are as low as 10 degrees.

Thirty, forty, eighty, and one-sixty meters are all useful for nighttime DX. Thirty and 40 meters are the night frequencies for the east-west and northern directions and for distances of up to 1600 miles tivity. In these days of low solar activity, the MUFs can drop as low as the 80-meter band frequencies, resulting in higher propagated signal levels. These bands should be much quieter now that the thunderstorms have moved back down to the tropics.

Sub Problem?

Contact Sue. She'll fix it for you!

(603) 878-1441

Ham Radio

Greenville, N. H. 03048

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter

- Expandable to 32 Channel by Just Adding Cards
- Continuous Voting
- LED Indicators of OR and Anded Signals
- Remote control
- Built in Calibrator
- Remote Disable Inputs
- Manual

Built, tested and calibrated with manual $350.00

NEW PRODUCT

Telephone interface now available

HALL ELECTRONICS

Voter Department

811 E. Hudson Street

Columbus, Ohio 43211

(614) 261-8871

MICROWAVE MODULES TRANSVERTERS

- MM1296/1400, 1296-1400 MHz, 26 MHz, GASSET $349
- MM1296/2800, 1296-2800 MHz, 26 MHz, GASSET $379
- MM1296/2800, 1296-2800 MHz, 26 MHz, GASSET $349
- MM1444/2800, 1444-2800 MHz, GASSET $439
- MM1444/3200, 1444-3200 MHz, GASSET $439

SEB ELECTRONIC TRANSVERTERS & PREAMPS

- LRT25, 196-1960 MHz, 26 MHz, GASSET $349
- LRT35, 196-1960 MHz, 26 MHz, GASSET $479
- LRT45, 196-1960 MHz, 26 MHz, GASSET $479
- LRT55, 196-1960 MHz, 26 MHz, GASSET $479
- LRT65, 196-1960 MHz, 26 MHz, GASSET $479
- LRT75, 196-1960 MHz, 26 MHz, GASSET $479
- LRT85, 196-1960 MHz, 26 MHz, GASSET $479
- LRT95, 196-1960 MHz, 26 MHz, GASSET $479
- LRT105, 196-1960 MHz, 26 MHz, GASSET $479
- LRT115, 196-1960 MHz, 26 MHz, GASSET $479

EFE ELECTRONICS

HF 400, High power relay, 34-2700 MHz, 34-2700 MHz, $30

TRANSVERTERS UNLIMITED

BOX 6289, STATEN ISLAND, N.Y.

- TRANSVERTERS UNLIMITED

- HIRSCHER (disagrees)

- (041) 726-5567

October 1986
SWL's: Are You Plagued By Phantom Signals?

Meet the Eliminator.

Don't let its small dimensions (4''x3''x2'') fool you—the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the 100 kHz-30 MHz frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

Grove Enterprises
140 Dog Branch Road
Brastown, N.C. 28902
MC. Visa or COD call: 1-800-438-8155

Shop Grove for fantastic values in shortwave receivers, antennas, cable, performance boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!
THE FIRST NAME IN ELECTRONIC TEST GEAR

NEW RAMSEY 1200 VOM MULTITESTER

Check transistors, diodes and LEDs with this professional quality meter. Other features include: decimal scale • 200 volt metering system • 3½" mirrored scale • polarity switch • 20 megohm input resistance • safety probes • high impact plastic case.

$249.95 test leads and battery included.

MINI KITS—EASY TO ASSEMBLE, FUN TO USE BEGINNERS & PROS WILL HAVE A GREAT TIME WITH THESE KITS

FM MINI MIKE

Color Organ

See music come alive with this electric light wacker. One light for each for high, mid range and bass. Each individually adjustable and driven up to 300 W. Runs on 110 Vac. Complete kit: ML-1 $85.95

FM Wireless Mike Kit

Transmits up to 300 ft. FM broadcast radio. Includes earphone. Type FM-2 has added sensitive mike preamp circuit. FM-1 Kit $3.95 FM-2 Kit $4.95

Whisper Light Kit

An interesting kit. Small mike picks up sounds and converts them to light. The louder the sound, the brighter the light. Each includes 3-color panel and 110-120 VAC. Complete kit: WH-1 $6.95

Universal Timer Kit

Provides the basic parts and PCB board required to produce a clock. Includes: 555 timer IC. Includes a range of parts for making your own. UT-1 Kit $5.95

30 Watt 2 mtr PWR AMP

Sample Class C power amp features 8 power gain 1 W in for 8 W. 2 W in for 10 W. 4 W in for 30 W. Max output of 35 W. Incredible value, complete with all parts, less case and T/R relay. PA-1, 30 W PWR. $229.95

PHONE ORDERS CALL 716-586-3950

ACCOMMODERS FOR RAMSEY COUNTERS

Telescopic whip antenna—BNC plug $8.95
High impedance probe, light loading $16.95
Low pass probe, audio use $11.95
Direct probe, general purpose use $13.95
Tilt ball, for CT-70, 90, 122 $3.95

PHONE ORDERS CALL 716-586-3950

TELE 466735 RAMSEY CI

October 1986
Measure Up With Coaxial Dynamics
Model 81000A RF Directional Wattmeter

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL C.W. power in Coaxial transmission lines.

81000A is comprised of a built-in line section, direct reading 3-scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty.

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.
15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 98-0630

Service and Dependability...A Part of Every Product

LEARN ALL ABOUT
TROUBLESHOOTING
MICROPROCESSOR-BASED
EQUIPMENT
AND
DIGITAL DEVICES

Attend this 4-day seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques. Fee is $745.00

CURRENT SCHEDULE
- Memphis, TN—Sept 30-Oct 3
- Raleigh, NC—Oct 14-17
- Cincinnati, OH—Oct 21-24
- Dallas/Ft. Worth, TX—Nov 11-14
- Atlanta, GA—Nov 18-21
- Chicago, IL—Dec 2-5

MICRO SYSTEMS INSTITUTE
Garnett, Kansas 66032
(913) 898-4695

SATELLITE
DECODER MANUAL

Reveals How Signals are De-Cy-Phared

- Three different types used.
- Detailed schematics
- Digital audio processors
- Error correction & filtering

100 pages bound... $24.95.

NEW LADY X TASY KITS FROM $49.95
ASSEMBLED READY TO GO FROM $159.95
OTHER TYPES OF DECODERS AVAILABLE
SCHEMATICS AND BOARDS AVAILABLE
DEALERS INQUIRIES INVITED!
SEND $5 FOR INFORMATION CATALOG
Payment by Money Order preferred

PILGRIM VIDEO PRODUCTS
P. O. Box 3325 H
Plymouth Ctr., MA 02361

1986 Summer Radio
Amateur Call Book
Supplement

$9.95 + $3.50 shipping
Send $13.45 to:

Ham Radio's Bookstore
Greenville, N. H. 03048
Don't buy from Hamtronics . . .

Unless you want the best possible equipment at the lowest possible price!!

The "wheeler-dealer" is back and he's beating everyone else's "deals."

We all know there's no such thing as a free lunch . . . so How Can We Do This?

- **We don't** run alot of ads featuring sale items
- **We don't** spend alot of money on full page ads
- **We don't** have sales on just the fastest selling products
- **We don't** short cut you on service. We are a factory warranty repair facility for everything we sell!
- **We don't** mail out free catalogs
- **We don't** have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimmicks.

Hamtronics puts the savings into your pocket.

Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!!

Let Hamtronics be your Ham Radio equipment dealer. We're celebrating our 35th year in the Ham business at the same location.

software for ICOM repeaters

Processor Concepts has announced its new RPS-1 repeater program for the ICOM repeater series. The RPS-1 software is a program written for the ICOM repeater series that will add new features and custom programming to ICOM RP-1210s, RP-2010s, RP-3010s, or commercial repeaters.

A direct EPROM replacement for the ICOM repeater controller memory chip, the RPS-1 supports many new features such as two separate CW-ID messages and enough memory to include a club name or city and state. The CW-ID is sent at the speed you request; the ID timer is programmable from 30 seconds to 10 minutes. The timer can be reset without having to wait for the repeater transmitter to drop out. A courtesy beep tone signals the next user; the repeater stays on the air for a smooth transition. Pre- and post-timeout CW warning messages keep users informed and reduce confusion during timeouts.

The software is custom programmed for individual CW and timing requirements. A reprogramming service is also available.

The RPS-1 software is priced at $74.00 plus $3.00 shipping. For information, contact Processor Concepts, P.O. Box 26023, St. Paul, Minnesota 55126.

Circle #201 on Reader Service Card.

half-wave VHF Kulduckie™

Larsen Electronics has announced a new half-wave Kulduckie™ portable antenna, Model KD14-2M. The VHF antenna operates at frequencies from 144-148 MHz with a resonant half-wave design that allows it to function independently of a ground plane. Its performance is said to equal that of a full quarter-wave on a perfect ground plane. The rigid impedance transformer at the base contributes to performance and adds extra strength.

Finished in black chrome, the KD14-2M HW also telescopes, using internally shorted collapsing joints. The unit extends to 41 inches for operation and collapses to 7 3/4 inches. The antenna uses a special double spring BNC connector to reduce wear in the female contact on the radio.

For details, contact Larsen Electronics, P.O. Box 1799, Vancouver, Washington 98686.

Circle #302 on Reader Service Card.

tone panel offers digital CTCSS

Digital CTCSS is now available as an option on Communications Specialists' TP 38 Shared Repeater Tone Panel. The new option, called the
TP-DCS, is compatible with Motorola's Digital Private Line, General Electric's Digital Channel Guard, and E.F. Johnson's Digital Call Guard. A TP-38 equipped with TP-DCS allows up to 14 DCTCSS subscribers as well as 37 CTCSS subscribers in a single repeater panel. Tone translation may be made from one DCTCSS code to any other DCTCSS code. Time and hit accumulation, remote access, and remote data retrieval functions are applicable to all DCTCSS subscribers. All DCTCSS codes between 000 and 777 Octal are available in normal or inverted polarity; squelch tail elimination is provided.

The TP-DCS is available as an option in new TP-38 Shared Repeater Panels or may be retrofit into existing TP-38s. Priced at $149.95, the TP-DCS is in stock for immediate shipment and is covered by a one-year warranty.

For information and a free catalog, contact Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92665-4296. Circle 1303 on Reader Service Card.

GaAsFET ATV down-converter

A new GaAsFET ATV downconverter for the new 33 cm (902-928 MHz) band from P.C. Electronics features a dual gate GaAsFET in both the RF preamp and the mixer stage for low noise and wide dynamic range. A varicap VCO tunes the whole band down to TV channel 3 (2 or 4 can also be used). Total conversion gain is ± 25 dB, more than enough to reach the noise floor with most TV sets (even if one wants to remote the downconverter at the antenna to get the most sensitivity.)

The new band will provide relief for ATVers in high population density areas plagued with interference from radar, geophysical survey locators, and other modes users in the 70 cm (420-450 MHz) band. Parts and equipment should be available and less expensive in this band than in the 12 cm band because of the proximity of cellular and business band radios. Path loss is a little less too.

Model TVC-9G includes a wall-mounted 120-VAC to 12-VDC power supply. Just add an antenna, coax, and your TV set. Antenna input is a BNC connector, and the TV output is type F. The shielded cabinet measures 4 X 2.5 X 7 inches. For those who want to make their own cabinet, the TVC-9G is available as a wired and tested board measuring 2 X 4 inches. With the on-board regul...
Electronic Repair Center
Servicing
Amateur Commercial Radio

The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400

1986-87 CALL DIRECTORY
(on microfiche)

Call Directory Name Index
All three $20 Shipping per order $3
Geographic Index 88
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777

This publication is available in microform from University Microfilms International.

Want to Advertise in HAM RADIO?
Call Rally Dennis
(603) 878-1441
today for more information

□ Please send information about these titles:

Name
Company/Institution
Address
City
State Zip
Phone

Call toll-free 800-521-3044. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
lator, the power requirement can be anywhere from 11 to 18 VDC at 30 mA. A removable 10-k trim pot is used for frequency tuning.
P. C. Electronics also offers a DC decoupler (Model DCD) and remote control box (Model DCB) for tuning and powering up through the channel-3 downconverter output.
For more information, contact P.C. Electronics, 2522 Paxson Lane, Arcadia, California 91006.
Circle #304 on Reader Service Card.

compact mobile radio mounts
IXX Equipment, Ltd. has announced the addition of two new compact mobile radio mounts to its Mount 100 system. The additions bring the model count to four, which can handle all types of communications gear needed in mobile operations. Models MM1007 (7 inches) and MM10010 (10 inches) represent a new design that provides the user with a strong, adjustable two-radio mount that will fit in most vehicles. The mounts are constructed of welded steel finished in satin black, with necessary hardware supplied. UPS shipping is included in the price of $79.50 for the smaller MM1007 and $84.50 for the larger MM10010. A free catalog and information sheet are available from IIX Equipment, Ltd., P.O. Box 9, Oaklawn, Illinois 60454.
Circle #305 on Reader Service Card.

coax lightning arresters
New coax lightning arresters from Cushcraft feature fast-action gas discharge elements. Four models offer choices of 200-watt or 2-kw power handling and type N or UHF connectors. They're precisely manufactured to give very low insertion loss from 2 to 1000 MHz. Replacement cartridges are available. Dimensions are 3.5 x 1.375 x 1.875 inch.
For more information, contact Cushcraft Corporation, P.O. Box 4680, Manchester, New Hampshire 03108.
Circle #306 on Reader Service Card.

digital capacitance tester
Mercer Electronics, a division of Simpson Electric Company, has introduced a new digital capacitance tester. The Model 9670 features nine ranges that will measure from 0.1 pF to 20,000 pF with 0.5 percent accuracy.
Priced at $99, the Model 9670 has a 0.5-inch LCD display with over-range and an "LO BAT" indication. The tester measures 6.85 x 3.54 x 1.42 inches, weighs 3/4 pound and uses a standard 9 volt battery. Convenient features include input discharge protection, easy-insert "cap-lead" jacks, color coded test leads with alligator clips, a flame retardant plastic case with an acrylic window, and a tilt bail.
For information write Mercer Electronics, 859 Dundee Avenue, Elgin, Illinois 60120.
Circle #307 on Reader Service Card.

(continued on page 106)
<table>
<thead>
<tr>
<th>State</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY 1988 DREW STREET CLEARWATER, FL 33755 813-461-4267 Clearwater Branch West Coast's only full service Amateur Radio Store. Hours M-F 9-5:30, Sat. 9-3</td>
<td>AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE. ORLAND, FL 32803 305-894-3239 Fla. Wats: 1 (800) 432-9424 Outside Fla: 1 (800) 327-1917 Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION 220 N. FULTON AVE. EVANSVILLE, IN 47710 812-422-0231 Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others. BASE for New & Used Equipment List.</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>MARYLAND RADIO CENTER 8576 LAURELDALE DRIVE LAUREL, MD 20707 301-725-1212 Kenwood, Ten-Tec, Alinco, Azden. Full service dealer. T-F 10-7 SAT 9-5</td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>TNT RADIO SALES 4124 WEST BROADWAY ROBBINSDALE, MN 55422 (Mpls/St. Paul) TOLL FREE: (800) 328-0250 In Minn: (612) 535-5050 M-F 9 AM-6 PM Sat 9 AM-5 PM Ameriton, Bencher, Butternut, Icom, Kenwood</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>JUNE'S ELECTRONICS 3919 SEPULEDA BLVD. CULVER CITY, CA 90230 213-390-8003 800-862-1343 Trades Habla Espanol</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>COLORADO COMM CENTER 525 EAST 70TH AVE. SUITE ONE WEST DENVER, CO 80229 (303) 288-7373 (800) 227-7373 Stocking all major lines Kenwood Yaesu. Encomm, ICOM Connective CT</td>
<td>COLORADO COMM CENTER 505 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881 Call today. Friendly one-stop shopping at prices you can afford.</td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS 500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881 Call today. Friendly one-stop shopping at prices you can afford.</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>AMATEUR & ADVANCED COMMUNICATIONS 3208 CONCORD PIKE WILMINGTON, DE 19803 (302) 478-2757 Delaware’s Friendliest Ham Store. AMATEUR & ADVANCED COMMUNICATIONS 71 MEADOW ROAD NEW CASTLE, DE 19720 302-328-7728 800-441-7008 Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>DOC'S COMMUNICATIONS 702 CHICKAMAUGA AVENUE ROSSVILLE, GA 30741 (404) 866-2302 ICOM, Yaesu, Kenwood, KDK, Bird... 9AM-5:30PM We service what we sell.</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS 819 KEEAUMOKU STREET HONOLULU, HI 96814 (808) 949-5564 Serving Hawaii & Pacific area for 53 years.</td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY 78 SOUTH STATE STREET PRESTON, ID 83263 (208) 852-0830 M 9-2; T-F 9-6; S 9-2 Stock All Major Brands Over 7000 Ham Related Items on Hand</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC. 5450 N. MILWAUKEE AVE. CHICAGO, IL 60630 312-631-5181 Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
<td>ERICKSON COMMUNICATIONS, INC. 220 N. FULTON AVE. EVANSVILLE, IN 47710 812-422-0231 Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others. BASE for New & Used Equipment List.</td>
</tr>
<tr>
<td>Minnesota</td>
<td>TNT RADIO SALES 4124 WEST BROADWAY ROBBINSDALE, MN 55422 (Mpls/St. Paul) TOLL FREE: (800) 328-0250 In Minn: (612) 535-5050 M-F 9 AM-6 PM Sat 9 AM-5 PM Ameriton, Bencher, Butternut, Icom, Kenwood</td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>MISSOURI RADIOL CENTER 102 NW BUSINESS PARK LANE KANSAS CITY, MO 64150 (800) 227-7923 Missouri: (816) 741-8118 ICOM, Kenwood, Yaesu Same day service, low prices.</td>
<td></td>
</tr>
</tbody>
</table>

Dealers: **YOU SHOULD BE HERE TOO!** Contact Ham Radio now for complete details.
Amateur Radio Dealers

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9:5-30, Sat 9-3

New Hampshire

RIVENDELL ELECTRONICS
8 LONDONDERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-9
Closed Sun/Holidays

New Jersey

KJI ELECTRONICS
68 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 339-4389
Gene K2KJI
Maryann K2RSH

QEP's
110-4 ROUTE 10
EAST HANOVER, N. J. 07936
201-887-6424
Bill KA2OEP
Jim KA2RVQ
VISA/Mastercard
Belden Coaxial Cable
Amphenol Connectors
Hours: 9:30 am-7:00 pm

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-5345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York’s finest Amateur dealer.

North Carolina

F & M ELECTRONICS
3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty — Sales & Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH 44092(Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9:5-30, Sat 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS, DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOS, PENNSYLVANIA 18509
717-343-2124

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1485 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
MF 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Amtron, etc.

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78236
Stocking all major lines. San Antonio's Ham Store. Great Prices — Great Service. Factory authorized sales and service.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4038 W. FONDI DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 242-5195
M-F 9-5, Sat 9-3

MICROCOMPUTER REPEATER CONTROL

$129

Introducing the MICRO REPEATER CONTROLLER RPT-2A, a new concept in LOW COST, EASY TO INTERFACE microcomputer repeater control. Replace older log boards with a state of the art microcomputer that adds NEW FEATURES: HIGH RELIABILITY, LOW POWER, SMALL SIZE, and FULL DOCUMENTATION to your system. Direct interface (drop-in) with most repeaters. Detailed interface information included. Original MICRO REPEATER CONTROL article featured in QST Jan 1983.

- Two CW ID Modules
- Readout Timer
- Built-in System Monitor
- Post Timeout CW MSG
- Courtesy Beep
- Auxiliary Inputs
- Recelverized CW Input
- High Current PTT Interface
- High-Capacity Power Inputs
- Low Power 9.5 VDC, @ 250 ma
- Size 3.75" X 3.5"
- All Connectors Included

RPT-2A Kit Only $129 plus $3.00 shipping

PROCESSOR CONCEPTS

P.O. BOX 26033
ST PAUL, MN 55126
612-780-0472 7pm-10pm evenings

CALL OR WRITE FOR FREE CATALOG AND SPECIFICATIONS

October 1986
R39A/UUR Rev c, 5.12 MHz, Central 20A, Trans w/459 vfc, all new, good condition, $105.00. 2100 VAC, 550 ADC transformer $15.00 U-Play shipping Mike Nichols, K6AGD (303) 685-2294.

MEASUREMENTS CORP., signal generators, etc. Copies of in management seminars and Sales and market data. W2BLL, RD3, Box 72, Boonston, NJ 07005.

TALKING DIGITAL DIAL FOR ICON 720A, very useful for partially sighted or blind Amateurs. Uses Kenwood speech board. Plugs into 20A UDR or may be used as a stand-alone unit. $35.00 plus tax or version for almost any transmitter $100.00. Jan Uplinger, 7176 Houten Hill NE, Cary, Alberta, Canada T2K 4A4, Ph. (403) 274-4258.

CABLE TV CONVERTER & EQUIPMENT: Plans and parts. Build or buy SASE for information, C & D Electronics, PO Box 1402. Dept 9H, Harrisburg, PA 17105.

YAESU OWNERS: Hundreds of modifications and improvements for your rig. Select the best from fourteen years of experience. Top rated Fox Tango Newsletter by using our new 2-page Cumulative Index. Only 45 postage cash or check with $4 Re-International News and Supporting Organizations receive one free Flea Market ad in advance. Organizations receive one free Flea Market ad in advance.

D-104, it will carry the trade name “Silver Class- mail. For complete copy of our trade name. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. J. 06348.

DX ANTENNAS FOR DIGITAL AUTOMATIC DISPLAYS. All transceivers. Send SASE to YR3HNL, 376 Celaye Rd, Manchester, OH 43031 for detailed list.

SPEECH SYNTHESIZER KIT C-64 uses allophones to obtain virtually unlimited vocabulary. $3.50 C.O.D., board, all parts, instructions $3.00 plus 50c UPS. Dave Roscoe, W1DZV, 49 Cedar Street, East Bridgewater, MA 02333.

DIGITAL AUTOMATIC DISPLAYS. All transceivers. Six 1/2-20, $5.00 each. $5.00 each. Send SASE for full catalogue.

ANTIQUE RADIOS, schematics, tabs and literature. Send SASE to YR3EF, South Side Blvd, Manchester, OH 43031 or list for free.

SPECIAL CONTESTED TEST EQUIPMENT October 11st for catalog. Walter, 2627 Nickel, San Pablo, CA 94806.

COMING EVENTS

OKLAHOMA: October 5. The Salt Plains Amateur Radio Club will sponsor the 10th annual Hamfest, Howard County Fairgrounds, west of Stillwater, 10:00 AM to 3:30 PM. Admission $5.00. Spouses and children free. Reserves today $10.00 to Sept 30. 800-90. Outdoors gathering 9:00 AM. In theater equipment. Send SASE for more information.

MARYLAND: October 5. The Columbus Amateur Radio Association’s 10th annual Hamfest, Howard County Fairgrounds, west of Baltimore, 11:00 AM to 3:30 PM. Admission $5.00. Send SASE for list of equipment.

PENNSYLVANIA: October 4. Pack Rats (MT. Airy VHF-ARC) invites all amateurs to the 19th annual Mid Atlantic VH C Conference. Warrington Motor Lodge, Rt 61, Warrington, PA, 18976. Send SASE and $10 for entry. Registration Oct 3rd or 4th.

GEORGIA: November 2, 1986. The Albriton Memorial Radio Club of Savannah is sponsoring the Savannah Ham Radio and Computer Expo ‘86, Savannah County Fairgrounds, 25 minutes NE of Atlanta, 9 AM to 5 PM Saturday, 9 AM to 4 PM Sunday. Admission $5.00 per vehicle.

The user can produce artwork simply with graph paper and tracing paper or use camera shots or CAD plots, positives or negatives. Alternatively, the machine comes with CAD interface that allows the circuit designer to proceed directly from schematic capture to printed board.

Prototex II handles materials as large as 7 x 16 inches and makes flexible circuits in 140 minutes or less, depending upon the size of the board, with resolving power down to 0.010 inches in lines and spaces.

The system’s technique eliminates messy chemicals used in acid etching systems and allows the machine to be housed in a desktop-sized case measuring approximately 31 x 10 x 17 inches and weighing about 70 lbs.

For information, contact Girard Electronics, 13914 West Oak Park Circle South, Afton, Min-
MODEL 610 scope memory back-up batteries

Plainview Electronics has introduced its PMB series of rechargeable nickel cadmium batteries for printed circuit board mounted memory back-up. They are available in 2.4, 3.6, and 4.8-volts, with capacitance of either 35 mAh or 110 mAh. The batteries measure only 16.5 and 23.5 mm, respectively, in diameter.

These batteries are a direct second source to Motorola’s MMB series of batteries. Availability is stock to 6 weeks. For information, contact Plainview Electronics, 29 Cain Drive, Plainview, New York 11793.

microloop™ monoband antennas

Advanced Design Networks (ADN) has announced a new generation of compact monoband antennas called Microloop. Across-the-loop dimensions vary from 27 inches for 10 meters to 40 meters. Performance is said to be approximately equivalent to a full-size dipole in a much smaller space.

A comprehensive overview of the Microloop is available to readers on request. For information, contact Advanced Design Networks, 8601 66th Street N., Pinellas Park, Florida 33785.

Operating Events

Things to do . . .

COLUMBUS DAY SPECIAL EVENT: October 11, 12 OUS to 2002. Open to all amateur radio operators worldwide. To promote the Columbus Day Celebrations, the city of Columbus, Ohio, and Amateur Radio. Exchange name, OUS and RST for all requests. All packets will be sent to ARS W6SO, Special Event Coordinator, 200 E. Broad Street, Columbus, OH 43215

HELP CELEBRATE: The Virginia Beach Amateur Radio Club’s 45th anniversary, October 4. Saturday, October 4 and Sunday, October 5 and 6. For a special 8 x 10 QSL certicate, send $5 to address below and two 1st class stamps to w8fim, Saint Petersburg, FL 33701.

LONDON BRIDGE: Amateur Radio Association, W3JDSW, will operate from Lake Havasu City, the home of the London Bridge. October 11 from 1600Z to 2000Z to celebrate the dedication of the London Bridge. For certificate send OSQ to Don Harrington, WB7JAL, 1208 McCulloch Blvd. South, Lake Havasu City, AZ 86403

October 11 and 12: Members of the Dalton Amateur Radio, Dalton, GA will operate during the event

W.E.C.A. (Westchester Emergency Communications Association) invites you to meet your neighbors.

October 1986 107
MICROWAVE MODULES Ltd.
LIVERPOOL, ENGLAND

LINEAR TRANSVERTERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC 144/28-1</td>
<td>144 MHz</td>
<td>10 Ws</td>
<td>£105.00</td>
</tr>
<tr>
<td>MMC 128/28-1</td>
<td>128 MHz</td>
<td>10 Ws</td>
<td>£110.00</td>
</tr>
</tbody>
</table>

CONVERTERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC 432-28-1</td>
<td>432 MHz</td>
<td>10 Ws</td>
<td>£120.00</td>
</tr>
</tbody>
</table>

FREE BOOK FLYER
Send SASE to
Ham Radio's Bookstore
Greenville, N. H. 03048

“Making Life Easier With Magnets”
electronic sleuths detect fatal flaws

A high-performance F-15 fighter streaks toward a target, its pilot depending on radar for accurate environmental data. But suddenly the radar picture changes — and then returns to “normal.”

Was the pilot in error, or did the radar give erroneous information?

Unfortunately, this was not a simulation, but a real-life situation confronted by radar designers at Hughes. Apparently an intermittent problem in the radar was causing incorrect responses in testing. Worse yet, the problem would also appear in the field, then disappear without explanation.

To solve the problem, Hughes turned to a group of “electronic pathologists” at a division of Gould in Los Angeles. An exhaustive “autopsy” on hundreds of hybrid modules revealed that tin from the plating on the hermetic covers of the modules was contaminating the circuit. The underlying cause was subtle: chemical reactions within the hybrid caused tin “whiskers” — only 0.0001 inch in diameter and about 0.1-inch long — to “grow” inside the module. At random intervals, these whiskers would detach themselves from the case and fall into the active circuitry, causing intermittent operation of just one portion of a complex hybrid. Moreover, random vibration, or current through the whisker, would cause the problem to disappear — frequently without damage to the hybrid.

This was a difficult problem because the whiskers don’t begin growing until three to seven years after manufacture, and therefore cannot be detected by any type of screening during the manufacturing process. The only solution may be to design Hi-Res modules with hermetically-sealed packages that don’t use plated materials. Unfortunately, this will mean greatly increased complexity and expense.

As the first electronic “MDs” appear on the scene, will it be only a matter of time before the local TV repair shop becomes a “clinic?”

high-power satellites may affect terrestrial systems

There is growing concern that increased transmitter power on some satellites may begin to affect certain terrestrial activities that depend on low power to accomplish their tasks. A particularly important case in point are the various test ranges operated by NASA and the Department of Defense. These ranges typically use signals in the 2.2 GHz region for telemetry links. Missiles and targets are usually very limited in the amount of power they can spare for telemetry transmitters, and the typical transmitter is not more than 3 to 5 watts, with a very simple antenna. The antenna, which usually conforms to the shape of the vehicle’s skin, may have little gain (or even a slight loss) with respect to a dipole.

The major concern is that signals from high-power satellites may mask or interfere with these low-power measurement signals, causing erroneous results. Since some tests may require months of planning and cost several million dollars, the consequences of not gathering the intended data are potentially quite serious. It may be possible to coordinate results with the known passing of a given satellite if it belongs to an entity willing to cooperate. However, not all satellite owners and operators have our best interests at heart.

One possible remedy involves using range antennas with more carefully-shaped patterns. Unfortunately, this runs counter to the desire of most range operators, who would like to “look at” the maximum amount of space, to make sure they don’t miss anything if a vehicle departs abruptly from its planned course. Another possibility involves establishing polarization standards for satellites and ground stations using the same frequency assignments. While this would add considerable complication to the telemetry ranges, it would be an effective cure — if everyone were to cooperate.

Cooperate? Sounds like the big guys have the same problems in their bands that we see every day on the Amateur bands!

new super-speed semiconductors

Continuing advances in semiconductor technology have been made possible by parallel progress in fabrication techniques. More than 20 years ago it was shown that very high switching speeds could be achieved at room temperatures by an atomic energy-state process known as electron tunneling.

Developed by Esaki in Japan, the theory was brought to practical maturity at IBM and GE in the United States. The early results were the germanium tunnel diodes of the 1960s. In those days, these were the only semiconductor devices capable of oscillating and providing gain in the microwave region.

Modern fabrication methods have made it possible to assemble very complex, multi-layer transistors which embody the Esaki concept. The results are still being investigated, but these “resonant tunneling” devices, as they are called, offer the prospect of switching speeds of as fast as 0.1 picosecond (a tenth of a trillionth of a second). Experimenters have reported observing the phenomena at frequencies of about 2.5 THz (1 THz = 1000 GHz).

Don’t expect to see commercial devices using these technologies for a long time. Although the ultra-low-noise HEMT has been in the labs for nearly ten years, the first commercial devices were offered on the market just this year.
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue. Select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td>Advanced Computer Controls, Inc. 13</td>
</tr>
<tr>
<td>248</td>
<td>Advanced Receiver Research 70</td>
</tr>
<tr>
<td>253</td>
<td>AEA 50</td>
</tr>
<tr>
<td>206</td>
<td>All Electronics Corp 102</td>
</tr>
<tr>
<td>239</td>
<td>Amateur Electronic Supply 99</td>
</tr>
<tr>
<td>258</td>
<td>Amateur Wholesale Electronics, Inc. 62</td>
</tr>
<tr>
<td>269</td>
<td>Ansco Corp 26</td>
</tr>
<tr>
<td>298</td>
<td>Barker & Williamson 110</td>
</tr>
<tr>
<td>26</td>
<td>Barr Electronics 86</td>
</tr>
<tr>
<td>290</td>
<td>Buckmaster Publishing 101</td>
</tr>
<tr>
<td>216</td>
<td>Cadett Coil Corp 100</td>
</tr>
<tr>
<td>16</td>
<td>Cable Dynamics, Inc. 98</td>
</tr>
<tr>
<td>274</td>
<td>Communications Concepts, Inc. 70</td>
</tr>
<tr>
<td>200</td>
<td>Communications Specialists 112</td>
</tr>
<tr>
<td>299</td>
<td>CTM 88</td>
</tr>
<tr>
<td>231</td>
<td>Dick Smith Electronics 64</td>
</tr>
<tr>
<td>228</td>
<td>Digitrex 87</td>
</tr>
<tr>
<td>217</td>
<td>Down East Microwave 94</td>
</tr>
<tr>
<td>216</td>
<td>The DX Edge 96</td>
</tr>
<tr>
<td>209</td>
<td>EGI, Inc 108</td>
</tr>
<tr>
<td>28</td>
<td>Engineering Consulting 78</td>
</tr>
<tr>
<td>259</td>
<td>Flupe Mfg. Co. 40</td>
</tr>
<tr>
<td>275</td>
<td>Fox River Radio League 106</td>
</tr>
<tr>
<td>224</td>
<td>Fox Tango Corp 11</td>
</tr>
<tr>
<td>251</td>
<td>Gem Quated Products Ltd 64</td>
</tr>
<tr>
<td>261</td>
<td>GLB Electronics 36</td>
</tr>
<tr>
<td>221</td>
<td>Grove Enterprises 96</td>
</tr>
<tr>
<td>218</td>
<td>H.L. Heather, Inc. 96</td>
</tr>
<tr>
<td>270</td>
<td>HAL Communications Corp. 21</td>
</tr>
<tr>
<td>226</td>
<td>Hall Electronics 94</td>
</tr>
<tr>
<td>254</td>
<td>Ham Radio Outlet 48, 49</td>
</tr>
<tr>
<td>250</td>
<td>'Ham Radio's Bookstore 25, 37, 54, 57, 84, 95</td>
</tr>
<tr>
<td>256</td>
<td>'The Ham Station 72</td>
</tr>
<tr>
<td>230</td>
<td>Ham West 58</td>
</tr>
<tr>
<td>213</td>
<td>Hamtronics, N.Y. 91</td>
</tr>
<tr>
<td>238</td>
<td>Hamtronics, PA 100</td>
</tr>
<tr>
<td>224</td>
<td>'Hamtronics, PA 102</td>
</tr>
<tr>
<td>245</td>
<td>Health Company 71</td>
</tr>
<tr>
<td>275</td>
<td>ICCM America, Inc. 311</td>
</tr>
<tr>
<td>250</td>
<td>ICCM America, Inc. 56, 57</td>
</tr>
<tr>
<td>214</td>
<td>IIX Equipment Ltd. 71</td>
</tr>
<tr>
<td>236</td>
<td>'Jan's Electronics 84</td>
</tr>
<tr>
<td>274</td>
<td>Kantronics 1</td>
</tr>
<tr>
<td>257</td>
<td>Kendecoin/MCS 13</td>
</tr>
<tr>
<td>235</td>
<td>'Kenwood Communications 2, 5, 7, 16, 'CIV'</td>
</tr>
<tr>
<td>234</td>
<td>Kepco Circuit Systems 86</td>
</tr>
<tr>
<td>242</td>
<td>Madison Electronics Supply 74</td>
</tr>
<tr>
<td>277</td>
<td>Glen Martin Engineering 94</td>
</tr>
<tr>
<td>273</td>
<td>MJE Enterprises 8</td>
</tr>
<tr>
<td>215</td>
<td>Metro Systems Institute 98</td>
</tr>
<tr>
<td>243</td>
<td>Midland Technologies 71</td>
</tr>
<tr>
<td>224</td>
<td>Minds Eye Publications 95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>Mirage/KLM 63</td>
</tr>
<tr>
<td>240</td>
<td>Mirage/KLM 82</td>
</tr>
<tr>
<td>255</td>
<td>Mosley Electronics 47</td>
</tr>
<tr>
<td>263</td>
<td>Naval Electronics, Inc. 34</td>
</tr>
<tr>
<td>262</td>
<td>NEC 111</td>
</tr>
<tr>
<td>263</td>
<td>Net Tech Labs, Inc. 36</td>
</tr>
<tr>
<td>234</td>
<td>Nemen Electronics 86</td>
</tr>
<tr>
<td>303</td>
<td>Nets & Volts 111</td>
</tr>
<tr>
<td>252</td>
<td>Optoelectronics, Inc. 55</td>
</tr>
<tr>
<td>271</td>
<td>P.C. Electronics 18</td>
</tr>
<tr>
<td>265</td>
<td>Pacific Packet Radio Systems, Inc. 34</td>
</tr>
<tr>
<td>237</td>
<td>Pacific Rim Communications 64</td>
</tr>
<tr>
<td>214</td>
<td>Pilgrim Video Products 98</td>
</tr>
<tr>
<td>206</td>
<td>Processor Concepts 105</td>
</tr>
<tr>
<td>204</td>
<td>'The PX Shack 108</td>
</tr>
<tr>
<td>223</td>
<td>QEP'S 95</td>
</tr>
<tr>
<td>256</td>
<td>Radio Amateur Callbook 44</td>
</tr>
<tr>
<td>201</td>
<td>Radiosporting 111</td>
</tr>
<tr>
<td>222</td>
<td>Ramsey Electronics, Inc. 97</td>
</tr>
<tr>
<td>212</td>
<td>RF Parts/World Engineering 67</td>
</tr>
<tr>
<td>220</td>
<td>S-Corn 96</td>
</tr>
<tr>
<td>211</td>
<td>Spec-Com 98</td>
</tr>
<tr>
<td>268</td>
<td>Spectronics 29</td>
</tr>
<tr>
<td>266</td>
<td>Spectrum International 29</td>
</tr>
<tr>
<td>241</td>
<td>Spis-Ro Manufacturing, Inc. 26</td>
</tr>
<tr>
<td>267</td>
<td>STVOSat 28</td>
</tr>
<tr>
<td>232</td>
<td>Subtronics 87</td>
</tr>
<tr>
<td>219</td>
<td>Synthentic Textiles, Inc. 96</td>
</tr>
<tr>
<td>211</td>
<td>Telewave, Inc. 103</td>
</tr>
<tr>
<td>210</td>
<td>Texas Magnetic Corp 108</td>
</tr>
<tr>
<td>225</td>
<td>Transverters Unlimited 94</td>
</tr>
<tr>
<td>226</td>
<td>University Microfilm Int. 102</td>
</tr>
<tr>
<td>213</td>
<td>'Vanguard Labs 108</td>
</tr>
<tr>
<td>250</td>
<td>Varian 41</td>
</tr>
<tr>
<td>246</td>
<td>WSUS Antennas 70</td>
</tr>
<tr>
<td>237</td>
<td>Wacom Products, Inc. 87</td>
</tr>
<tr>
<td>207</td>
<td>Western Electronics 102</td>
</tr>
<tr>
<td>264</td>
<td>World Tech Products 34</td>
</tr>
<tr>
<td>199</td>
<td>Yase Electronics Corp CII</td>
</tr>
</tbody>
</table>

PRODUCT REVIEW \& NEW PRODUCTS

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>308</td>
<td>ADN</td>
<td>107</td>
</tr>
<tr>
<td>310</td>
<td>Asonic</td>
<td>106</td>
</tr>
<tr>
<td>303</td>
<td>Communications Specialists</td>
<td>100</td>
</tr>
<tr>
<td>306</td>
<td>Cishcraft Corp</td>
<td>102</td>
</tr>
<tr>
<td>311</td>
<td>Girad Electronics</td>
<td>106</td>
</tr>
<tr>
<td>305</td>
<td>IIX Equipment Ltd.</td>
<td>103</td>
</tr>
<tr>
<td>302</td>
<td>Laisser Electronics</td>
<td>100</td>
</tr>
<tr>
<td>307</td>
<td>Mercer Electronics</td>
<td>103</td>
</tr>
<tr>
<td>304</td>
<td>P.C. Electronics</td>
<td>101</td>
</tr>
<tr>
<td>309</td>
<td>Planview Electronics</td>
<td>107</td>
</tr>
<tr>
<td>301</td>
<td>Processor Concepts</td>
<td>100</td>
</tr>
<tr>
<td>312</td>
<td>Sibex, Inc</td>
<td>107</td>
</tr>
</tbody>
</table>

* Please contact this advertiser directly. Limit 15 inquiries per request. Please use before November 30, 1986.
NOW! A Phone Interconnect with Hardline Quality

- Land mobile-marine-aeronautical mobile.
- Using DPD VOX Technology allows all mode operation: FM-AM-SSB-ACSB — Simplex, half duplex, or duplex.
- No internal modifications or connections required to base transceiver.
- Programmable ID and access codes. 3-12 minute timer.
- Remote mobile when permitted or manual control on all bands.

Nuts & Volts

Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:
- NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS • LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES
- One Year - 3rd Class Mail $10.00
- One Year - 1st Class Mail $15.00
- One Year - Canada & Mexico (in U.S. Funds) $18.00
- Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!

SEND: □ CHECK □ MONEY ORDER □ VISA □ MASTERCARD

TO: NUTS & VOLTS MAGAZINE P.O. BOX 1111-H PLACENTIA, CALIFORNIA 92670 (714) 632-7721

Name:
Address:
City:
State:
Zip:
Card No.:
Exp. Date:

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited
We just struck gold with a miniature, high quality and very reliable DTMF decoder at a rock bottom price of $59.95. Our DTD-I will decode 5040, 4 digit codes with the security of wrong digit reset. It contains a crystal controlled, single chip DTMF decoder that works great in bad signal to noise environments and provides latched and momentary outputs. Why carry that heavy gear when its size is only 1.25 x 2.0 x .4 inches and it comes with our etched in stone, legendary, one year warranty.

Instead of sifting through the field... searching, use our super quick one day delivery and cash in on a rare find.
Finally, an HT that's built to take the realities of life.

Let's face it. It's easy to bump, drop, or get rain on an HT. But if your HT is Yaesu's mini 2-meter FT-23R or 440-MHz FT-73R, such mishaps are a lot less worrisome. They're built to last, with rugged aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. Plus, their moisture-resistant seals really help keep the rain out.

Built for the realities of operating. Despite their miniature size, both radios have all the operating capabilities of larger microprocessor-controlled HTs. Yet operating them couldn't be easier. Consider: • You get a 10-volt, 2-watt battery pack. (Optionally, a 12-volt, 5-watt pack, or a 10-volt miniature 2-watt pack.) 10 memories that store frequency, offset and PL tone. (7 memories can store odd splits.) Memory scan at 2 frequencies per second. Band scan at 10 frequencies per second. Tx offset storage. Priority channel scan. Tuning via tuning knob, or up/down buttons.

Yaesu

Our 30th Anniversary.

Yaesu Cincinnati Service Center 9070 Gold Park Drive, Hamilton, OH 45011 (513) 874-3100.

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc.
By Popular Demand!

TH-21BT/31BT/41BT

The smallest HT™ is now even better! The new "BT-Series" gives you a plus—a built-in DIP switch programmable CTCSS encoder! Now you can access more than one "private line" over the air! The original TH-21A Series (The Smallest HT™) is still available from the VHF leader—Kenwood!

- High or low power. Choose 1 watt high—enough to "hit" most local repeaters; or a battery-saving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and weighs 260 g (57 lb) with PB-21.
- Expanded frequency coverage (TH-21BT/B).
 Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
 TH-31BT/B: 220.000-224.995 MHz in 5-kHz steps.
 TH-41BT/B: 440.000-449.995 MHz in 5-kHz steps.

- Easy-to-operate, functional design. Three digit thumbwheel frequency selection and top-mounted controls increase operating ease.
- Repeater offset switch.
 TH-21BT/B: ± 600 kHz, simplex.
 TH-31BT/B: ± 1.6 MHz, reverse simplex.
 TH-41BT/B: ± 5 MHz, simplex.
- Standard accessories:
 Rubber flex antenna, earphone, wall charger, 180 mAH NiCd battery pack, wrist strap.
- Quick change, locking battery case. The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.
- Rugged, high impact molded case. The high impact case is scuff resistant, to retain its attractive styling, even with hard use.

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAH battery
- PB-21H NiCd 500 mAH battery
- BC-2 wall charger for PB-21H
- BC-6 2-pack quick charger
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8/BT soft cases with belt hook
- BH-3 belt hook
- AJ-3 thread loc to BNC female adapter
- RA-6A/9A/10A StubbyDuk antenna
- TU-6 sub-tone unit (TH-21ATI/A only)

More information on the Smallest HT™ is available from Authorized Kenwood Dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220