array analysis:

pattern vs. frequency
ICOM IC-28H
THE ONE FOR THE ROAD

- Compact Size
- Simple to Operate
- Large LCD Readout
- 25 or 45 Watts
- Packet Compatible
- 21 Memory Channels

The IC-28H has all the features you need for carefree 2-meter mobile operation. The only thing it doesn't have is a big price.

45 Watts. The IC-28H provides a full 45 watts of powerful output. The IC-28A 25-watt version is also available. Both units have a selectable low power.

Large LCD readout. A wide-view LCD readout can be easily read even in bright sunlight. An automatic dimmer circuit reduces the brightness for evening operation.

Wideband Coverage. The IC-28H performs from 138-174MHz (specifications guaranteed from 144.00-148MHz) and includes weather channels. Ideal for MARS and CAP operation.

Compact Size. The IC-28H measures only 2 inches high by 5½ inches wide by 7½ inches deep (IC-28A is 5½ inches deep). Great for mobile installations where space is limited.

21 Memory Channels. Store 21 frequencies into memory, or lock out certain memory channels. All memories are backed up with a lithium battery.

Scanning. Scan the entire band or the memory channels from the provided HM-12 mic.

Easy to Operate. With only 11 front panel controls, the IC-28H is simple to operate.

Available Options. IC-HM14 DTMF mic, PS-45 13.8V 8A power supply, UT-29 tone squelch unit, SP-10 external speaker, IC-HM16 speaker mic and HS-15/HS-15SB flexible boom mic and PTT switchbox.

ICOM America, Inc., 2380-115th Ave NE, Bellevue, WA 98004 / 3150 Premier Drive, Suite 126, Irving, TX 75063

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
Speed up your local area network with the new 2400 TNC Modem™. The 2400 TNC Modem is a PC-board that mounts directly above your existing TNC PC-board. By adding the 2400 TNC Modem to TNC-1 or 2, you gain 2400 baud while retaining 1200 baud operation, switch selectable.

Two 2400 TNC Modems will be available—one for TNC-1's, and another for TNC-2's. If you purchased a TNC-1 or TNC-2, manufactured or kit version, the 2400 TNC Modem should be compatible. If you have a home brew case, the installation may require case modification.

The 2400 TNC Modem will be available in late June. You may order the 2400 TNC Modem through a Kantronics dealer or directly through Kantronics, using check, money order, Visa or Mastercard. Suggested Retail $149.00 (includes shipping).

Trade In Your KPC-1 Or KPC-2 For a New KPC-2400

That's right—Now you can trade in your Packet Communicator (KPC-1), or KPC-2, and for just $149.00, you'll receive a NEW KPC-2400!

It's easy. All you have to do is fill out the KPC-2400 EXCHANGE SCHEDULING FORM, and mail it to Kantronics with check, money order, Visa or MC number. You'll be scheduled for exchange and notified by mail when to return your KPC-1 or KPC-2 to Kantronics. Once we receive your unit, a new KPC-2400 will be shipped directly to you.

You may also schedule your exchange by calling the Kantronics order desk and giving your Visa or MC number. Just call (913) 842-7745 between 9-12, 1-4 (Central Standard Time) Monday-Friday, and we'll take it from there.

To guarantee a quick turn-around time, Kantronics is scheduling ALL exchanges, and assigning authorization numbers. Any unit returned to the factory without prior scheduling and authorization number will not be given priority placement.

KPC-2400 EXCHANGE SCHEDULING FORM

To schedule your KPC-2400 exchange, please fill out the information below and mail this form, including $149.00 payment (shipping included) to Kantronics, 1202 E. 23rd Street, Lawrence, KS 66046. You will be notified by mail of your authorization number, and scheduled exchange date. DO NOT RETURN YOUR UNIT WITH THIS FORM. This form is being used to SCHEDULE returns.

When it is time to return your unit, please DO NOT SEND BACK ANY CONNECTORS, CABLES OR POWER SUPPLIES. Send back only the unit itself. Any cables, connectors, or power supplies received will not be returned. You will receive a new manual and a 9 pin connector with your new KPC-2400.

* KPC-2400 operates with a 2400 bits-per-second (BPS) data rate in the 2400 mode. The signal rate of 2400 BPS is derived from a DIBIT data stream operating at 1200 baud. Therefore, the 2400 mode may be used above 28 MHz.
Power-Full...70 Watts!

TM-2570A/2550A/2530A/3530A

Sophisticated FM transceivers

Kenwood sets the pace again! The all-new "25-Series" brings the industry's first compact 70-watt 2-meter FM mobile transceiver. There is even an auto dialer which stores 15 telephone numbers! There are four versions to choose from: The TM-2570A 70-watt, TM-2550A 45-watt, TM-2530A 25-watt and the TM-3530A 220 MHz, 25-watt.

- First 70-watt FM mobile (TM-2570A)
- First mobile transceiver with telephone number memory and auto-dialer (up to 15 seven-digit phone numbers)
- Direct keyboard entry of frequency
- Automatic repeater offset selection – a Kenwood exclusive!
- Extended frequency coverage for MARS and CAP (142-149 MHz; 141-151 MHz modifiable)
- 23 channel memory for offset, frequency and sub-tone
- Big multi-color LCD and back-lit controls for excellent visibility

- Front panel programmable 38-tone CTCSS encoder includes 97.4 Hz (optional)
- 16-key DTMF pad, with audible monitor
- Center-stop tuning – another Kenwood exclusive!
- Frequency lock switch
- New 5-way adjustable mounting system
- Unique offset microphone connector – relieves stress on microphone cord

Large heatsink with built-in cooling fan (TM-2570A)

High performance GaAs FET front end receiver
HI/LOW Power switch (adjustable LOW power)
TM-3530A covers 220-225 MHz
Digital Channel Link (optional)

Introducing...
Digital Channel Link

Compatible with Kenwood's DCS (Digital Code Squelch), the DCL system enables your rig to automatically QSY to an open channel. Now you can automatically switch over to a simplex channel after repeater contact! Here's how it works:

The DCL system searches for an open channel, remembers it, returns to the original frequency and transmits control information to another DCL-equipped station that switches both radios to the open channel. Microprocessor control assures fast and reliable operation. The whole process happens in an instant!

Optional Accessories
- TU-7 38-tone CTSS encoder
- MU-1 DCL modem unit
- VS-1 voice synthesizer
- PG-2K extra DC cable
- PG-3A DC line noise filter
- MB-10 extra mobile bracket
- CD-10 call sign display
- PS-430 DC power supply for TM-2550A/2530A/3530A

- PS-50 DC power supply for TM-2570A
- MC-60A/MC-80/MC-85 desk mics
- MC-48 extra DTMF mic. with UP/DWN switch
- MC-42S UP/DWN mic.
- MC-55 (8-pin mobile mic. with time-out timer
- SP-40 compact mobile speaker
- SP-50 mobile speaker
- SW-200A/SW-200B SWR/power meters
- SW-100A/SW-100B compact SWR/power meters
- SWT-1 2m antenna tuner

Actual size front panel

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
SEPTEMBER 1986
volume 19, number 9

T. H. Tenney, Jr., W1NLB
publisher

Rich Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KA1LBO
assistant editor

Joseph J. Schroeder, W3JUU
Alfred Wilson, W6NIF
associate editors

Susan Sharrock
editorial production

editorial review board

Peter Bentini, K1ZJH
Forrest Gehlke, K2BT
Michael Gruchalla, P. E.
Bob Lewis, W2EBS
Mason Logan, K4MT
Vern Roperella, WA2IQ
Ed Wetherhold, W3ON

publishing staff

J. Craig Clark, Jr., NT1ACH
assistant publisher

Rally Dennis, KA1JWF
director of advertising sales

Dorothy Sargent, KA1ZK
advertising production manager

Susan Sharrock
circulation manager

Therese Bourque
circulation

cover art:
Barbara Smullen

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 06038-0498
Telephone: 603 878 1411

subscription rates

United States
one year $22.95, two years $38.95, three years $49.95
Canada and other countries (via surface mail)
one year $31.00, two years $55.00, three years $74.00
Europe, Japan, Africa (via Air Forwarding Service)
one year $37.00
All subscription orders payable in U.S. funds, via international
postal money order or check drawn on a U.S. bank

international subscription agents: page 106

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106

On-line publication number 3976

Copyright 1986 by Communications Technology, Inc.
All rights reserved.

10 analyzing 80-meter delta loop arrays
Bill Myers, K1GO

30 NE5205 wideband RF amplifier
Michael E. Gruchalla

42 ham radio techniques
Bill Orr, W6SAI

48 remotely controlled stations:
a look at a successful remote base
Steve J. Noll, WA6EJO

59 extended-range VU meter
James Eagleson, W86JNN

67 a very sensitive LF or HF
field-strength meter
S. J. DeFrancesco, K1RGO

70 VHF Yagi CAD on the C-64
Olin K. McDaniel, Jr., W4PFZ

77 VHF/UHF world
Joe Reisert, W1JR

82 low-cost spectrum analyzer with
kilobuck features
Robert M. Richardson, W4UCH

92 practically speaking
Joe Carr, K4IPV

109 the Guerri report

110 advertisers index
and reader service

9 comments

98 DX forecaster

106 flea market

104 ham mart

100 new products

6 presstop

4 reflections

9 short circuits
This is an editorial that I wish never had to be written.

This past Field Day, Mike Mankey, WB0TEE, ARRL North Dakota Section Manager, was killed when the antenna he was erecting came into contact with a power line. According to the news report, the site was unfamiliar to Mike’s group, and they didn’t see the power lines hidden behind the trees.

I’d like to report that this is the first time something like this has ever happened, but it isn’t — and I’m afraid it won’t be the last, either. Perhaps as we share, with Mike’s family and friends, the sorrow of his loss, it would be appropriate to give some thought to the dangers we face in pursuit of our avocation.

We’ve all done foolish things while working with electricity. When I was wiring 220 volts for my amplifier, for example, I was certain the circuit was dead; I’d pulled the breaker to de-energize it. But when I clamped my wire cutters and squeezed them shut, POW! Sparks, smoke, a sudden dimming of the house lights, and a wife screaming down the stairs expecting to find the worst. I was stunned and ashamed by my stupidity — I’d pulled out the wrong circuit breaker!

As I calmed both myself and my wife down, I started to analyze what I’d done wrong. It was late. I was tired and in a hurry to get the work done. I thought I’d taken all precautions... if you pull the breaker, the circuit is dead — isn’t it?

I’ve done other very stupid things over my almost 20 years as a ham. Although I’m not proud of these experiences, I do hope I’ve learned something from them. WB0TEE’s untimely death serves as a reminder to us all that it’s imperative to always, always think safety, no matter where you are and no matter what you’re doing.

If you’re climbing a tower, make sure you’re safely belted to it. If you’re troubleshooting a live circuit, remove all rings, jewelry, and watches that could make you part of a complete circuit; keep one hand in your pocket. Make sure power supplies are properly built with the appropriate bleeder resistors. Don’t stick your hand into your amplifier when it’s turned on to “adjust” that bent plate choke. And watch out for power lines; they aren’t always easy to see.

By the way, if you were to receive an incapacitating shock, would your family know what to do? Would they know not to touch you directly, but to pull you away from the electrical source with a stick or some other nonconductive tool and turn off the power? Do they know CPR? Do they know how to get qualified emergency help as quickly as possible? Are the phone numbers posted by the phone — or better yet, on it?

We extend our deepest sympathy to Mike Mankey’s family. Although we cannot lessen their loss, we can learn from it — and switch to safety.

Craig Clark, N1ACH
Assistant Publisher
HF Superiority!

TS-930S All band transceiver with general coverage receiver

Throughout the contest and DX world, the TS-930S is recognized as THE HF rig to own—with the most outstanding performance per dollar ratio!

- Easily modified for HF MARS and CAP operation.
- Excellent receiver dynamic range.
- All solid state, 28 volt final amplifier for lowest intermodulation distortion.
- Power input rated at 250 watts on SSB, CW, FSK, and 80 watts on AM.
- Full break-in or semi-break-in CW.
- SSB slope tuning—Another Kenwood First!
- CW VBT and pitch controls.
- IF notch filter.
- Tunable audio filter built in.
- Dual mode noise blanker ("pulse" or "woodpecker") with threshold control.
- Eight memory channels.
- RF speech processor.
- High stability, dual digital VFOs.
- AC power supply built in.
- Fluorescent tube digital display.
- One year limited warranty on parts and labor.

TS-430S Compact all band transceiver with general coverage receiver

Kenwood engineering brings you "Digital DXterity"—QSY from band to band, mode-to-mode, and frequency-to-frequency with ease!

- Superb interference reduction
- Superior solid state design
- 8 memories store mode, frequency, band. Each channel may be used as a separate VFO
- Programmable scanning
- Dual digital VFOs
- VOX, semi break-in CW with sidetone

A complete line of accessories is available for these transceivers.
Complete service manuals are available for all Trio-Kenwood transceivers and most accessories.
Specifications and prices are subject to change without notice or obligation.
OSCAR 10 IS BACK ON THE AIR ON BOTH MODES B AND L, as a result of some masterful computer analysis and reprogramming! The sophisticated bird had shut down several months ago, apparently from radiation-induced memory damage. After extensive earlier efforts to regain control failed, it seemed almost certain OSCAR 10 would be off the air for good. However, analysis of the limited responses that could be induced by control station commands provided clues to what portions of its memory still seemed intact, and when DJ4ZC uploaded software written for those memory areas the satellite came back to life!

It Now Appears OSCAR 10 Will Be Usable In Both Modes for the foreseeable future, but with some limitations; at this time the most important is a 100-watt ERP limit on uplink signals. The CW/RTTY beacon is apparently gone for good, but attitude control has been restored so the control stations should be able to keep the batteries well charged. There's cautious hope that OSCAR 10 can be kept up and running at least until the Phase 3C satellite goes up, though recent problems with the French Ariane launch vehicle have pushed its launch well into 1987. Check the various AMSAT nets for further updates.

The Japanese JAS-1 Satellite's Launch, Scheduled For Late July, was also pushed back but at pre-estimate was still expected during the first half of August. In addition the launch of two new Russian Amateur satellites, RS-9 and RS-10, is likely in September.

AMSAT Has A New Illustrated Catalog of Membership Supplies, software, and publications. It's available from the AMSAT office (301 589-6062) or at AMSAT hamfest booths.

MIAMISBURG, OHIO'S TOXIC TANK CAR FIRE THAT BEGAN JULY 8 SPARKED one of the nation's largest mass evacuations ever and once more proved conclusively Amateur Radio's value in emergency situations. Almost 400 area Amateurs from about 20 clubs took part during the four-day emergency, providing the essential interconnecting link for participating local, state, and federal agencies. Since most agencies are limited to their own unique frequencies, and those in many cases were jammed with the volume of communications, Amateurs rode police cars, fire trucks, and even a helicopter to provide those working the disaster with the only common communications network that could tie them all together.

In Addition, Amateurs Also Set Up Weather Tracking Nets that provided firefighters with precise rain shower and wind shift information, vital to plotting the toxic cloud's path. Amateurs also coordinated the evacuation of more than 3000 nursing home residents to a safe location, monitored hospital emergency room loading, and arranged food shipments to the various evacuation centers. In the aftermath of the 100-hour-long operation the Amateur communicators received very high marks from those they were assisting and as well as plenty of very positive media exposure. Congratulations to all for a very fine job!

ARRL Has Asked The FCC FOR IMMEDIATE ACCESS TO THE 18-MHZ WARC band, based on belief that the U.S. government is no longer using that band. Unfortunately, the League's information wasn't accurate, so don't expect any favorable action on 18 MHz soon.

NEW EIA OPPOSITION TO THE COMMUNICATIONS PRIVACY ACT HAS RAISED HOPES that the bill may not make it through the Senate in its present form after all! In a well-thought out and strongly worded letter sent to all U.S. Senators, the Mobile Communications Division of the Electronic Industries Association cited a number of reasons for opposing S-1667. For example, with respect to radio communications, the letter says "...it is not reasonable to attempt to legislate privacy..." so that the bill would, in effect, "...instill a false expectation of privacy!" The letter then points out that the bill is inconsistent with the Communications Act of 1934, which recognizes that a prohibition against intercepting radio communications is impractical but establishes severe sanctions against the misuse of intercepted information. It further notes the bill is in itself inconsistent, since it admits that cordless telephone transmissions are easily intercepted and so can't be protected -- but provides unqualified protection to cellular transmissions! "This discrimination," the letter continues, "certainly cannot be rationalized on a technical basis...There is no justification for this legislation to treat one mode of radio communications differently from others!" Another point: "There can be no true expectation of privacy with radio communications unless the message is encrypted (scrambled)." It concludes, "The nature of radio communications cannot be changed by legislation..." but concedes that the problems cited could be changed by amendment.

Support For The Letter Is Far From Uniform Within The EIA, and at least one land mobile manufacturer has sent key senators a followup letter stating its opposition to the EIA position. Nevertheless, the EIA makes valid points, and the letter's arrival appears to have seriously compromised the bill's hopes of the bill's supporters for quick Senate passage.

Amateurs And Others Who Oppose S-1667 In Its Present Form should call or write their Senators to register support for the EIA Mobile Communications Division letter.

"CAPTAIN MIDNIGHT," WHO BROKE IN ON AN HBO MOVIE IN APRIL to object to scrambling of satellite TV, has been caught. He's John Mac Dougall, a 25-year-old satellite TV dealer and a part-time operator for an Ocala, Florida uplink station. Unfortunately, he's also KA4WJA, so some news reporters have also been condemning Amateur Radio along with Mac Dougall! In a plea-bargaining agreement he's been fined $5000 and sentenced to one year's probation with his Technician Class license suspended for a year.
Handy Handful...

TR-2600A/3600A

Kenwood's TR-2600A and TR-3600A feature DCS (Digital Code Squelch), a new signalling concept developed by Kenwood. DCS allows each station to have its own "private call" code or to respond to a "group call" or "common call" code. There are 100,000 different DCS combinations possible.

The Kenwood TR-2600A and the TR-3600A pack "big rig" features into the palm of your hand. It's really a "handy handful"!

Optional accessories:
- TU-35B built in programmable sub-tone encoder
- VB-2530 2-m 25 W RF power amp.
- ST-2 base stand/charger
- MS-1 mobile stand/charger
- PB-26 Ni-Cd battery
- DC-26 DC-DC converter
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- LH-3 deluxe leather case
- SC-9 soft case with belt hook
- BT-3 AA manganese/alkaline battery case
- EB-3 external C manganese/alkaline battery case
- RA-3 2-m telescoping antenna
- RA-5 2-m/70-cm telescoping antenna
- AX-2 shoulder strap w/ant. base
- CD-10 call sign display
- BH-2A belt hook

More TR-2600A and TR-3600A information is available from authorized Kenwood dealers.

TR-2600A shown. TR-3600A is available for 70 cm operation.

Complete service manuals are available for all Trio-Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
This may be the world's most popular 3 KW roller inductor tuner because it's small, compact, reliable, matches virtually everything and gives you SWR/Wattmeter, antenna switch, dummy load and balun—all at a great price!

Meet "Versa Tuner V". It has all the features you asked for, including the new smaller size to match new smaller rigs-only 10½" Wx4½" Hx4 7/8" D.

Matches coax, balanced lines, random wires—1.8 to 30 MHz. 3 KW PEP—the power rating you won't outgrow (250p to 6KV caps).

Roller Inductor with a 3-digit turns counter plus a spinner knob for precise inductance control to get that SWR down to minimum every time.

Built-in 300 watt, 50 ohm dummy load, built-in 4.1 ferrite balun.

MFJ's Fastest Selling TUNER

MFJ-9410 $99.95

New antenna switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.

New airwound Inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 RF power output. Matches everything from 2.8 to 30 MHz dipoles, inverted vee, random wires, verticals, mobile whips, beams, balanced and coax lines.

Built-in 4.2 balun for balanced lines. 1000 V capacitance spacing. Black, 11 x 3 x 7 inches. Works with all solid state or tube rigs. Easy to use anywhere.

MFJ's 1.5 KW VERSA TUNER III

MFJ-582 $229.95

Run up to 1.5 KW PEP and match any feedline continuously from 1.8 to 30 MHz: coax, balanced line or random wire.

Built-in SWR/Wattmeter has 2000 and 200 watt ranges, forward and reflected power. 2½ meter movement. 6 position antenna switch handles 2 coax lines (direct or through tuner), wire and balanced lines. 4:1 balun 250pf 6 KV variable capacitors. 12 position inductors. Ceramic rotary switch. All metal black cabinet and panel gives RFI protection, rigid construction and sleek styling. Flip stand tilts tuner for easy viewing. 5 x 14 x 14 in.

Accurate meter reads SWR plus forward and reflected power in 2 ranges (200 and 2000 watts). Meter light requires 12 VDC. Optional AC adapter, MFJ-1312 is available for $9.95.

6 position antenna switch (2 coax lines, through tuner or direct, random/balanced line or dummy load). 50-239 connectors, ceramic feed-throughs, binding post grounds.

Deluxe aluminum low-profile cabinet with sub-chassis for RFI protection, black finish, black front panel with raised letters, tilt ball.

MFJ's Best VERSA TUNER

MFJ-949C $149.95

MFJ's best 300 watt tuner is now even better! The MFJ-949C All-in-one Deluxe Versa Tuner II gives you a tuner, cross-needle SWR/Wattmeter, dummy load, antenna switch and balun in a new compact cabinet. You get quality conveniences and a clutter-free shack at a super price.

A new cross-needle SWR/Wattmeter gives you SWR, forward and reflected power—all at a single glance. SWR is automatically computed with no controls to set. Has 30 and 300 watt scale on easy-to-read 2 color lighted meter (needs 12 V).

A handsome new black brushed aluminum cabinet matches all the new rigs. Its compact size (10 x 3 x 7 inches) takes only a little room.

You can run full transceiver power output—up to 300 watts RF output—and match coax, balanced lines or random wires from 1.8 thru 30 MHz. Use it to tune out SWR on dipoles, vees, long wires, verticals, whips, beams and quads.

A 300 watt 50 ohm dummy load gives you quick tune ups and a versatile six position antenna switch lets you select 2 coax lines (direct or through tuner), random wire or balanced line and dummy load.

A large efficient airwound inductor—3 inches in diameter—gives you plenty of matching range and less losses for more watts out. 100 volt tuning capacitors and heavy duty switches gives you safe arc-free operation. A 4:1 balun is built-in to match balanced lines.

Order your convenience package now and enjoy.

2 KW COAX SWITCHES

MFJ-1702 $19.95

2 positions.
60 dB isolation at 490 MHz.
Less than 2 dB loss.
SWR below 1:1.2.

MFJ-1701, $29.95

6 positions. White marking surface for antenna positions.

Accurate meter reads SWR plus forward and reflected power in 2 ranges (200 and 2000 watts). Meter light requires 12 VDC. Optional AC adapter, MFJ-1312 is available for $9.95. 6 position antenna switch (2 coax lines, through tuner or direct, random/balanced line or dummy load). 50-239 connectors, ceramic feed-throughs, binding post grounds.

Deluxe aluminum low-profile cabinet with sub-chassis for RFI protection, black finish, black front panel with raised letters, tilt ball.

MFJ's Smallest VERSA TUNER

MFJ-901B $59.95

MFJ's smallest 200 watt Versa Tuner matches coax, random wires and balanced lines continuously from 1.8 thru 30 MHz. Works with all solid state and tube rigs. Very popular for use between transceiver and final amplifier for proper matching. Efficient airwound inductor gives more watts out. 4:1 balun for balanced lines. 5 x 2 x 6 inches. Rugged black all aluminum cabinet.

MFJ's Random Wire TUNER

MFJ-16010 $39.95

MFJ's ultra compact 200 watt random wire tuner lets you operate all bands anywhere with any transceiver using a random wire. Great for apartment, motel, camping operation. Tunes 1.8-30 MHz. 2 x 3 x 4 inches.

MFJ's Mobile TUNER

MFJ-945C $79.95

Designed for mobile operation! Small, compact. Takes just a tiny bit of room in your car. SWR/dual range wattmeter makes tuning fast and easy. Careful placement of controls and meter makes antenna tuning safer while in motion.

Extends your antenna bandwidth so you can operate anywhere in a band with low SWR. No need to go outside and readjust your mobile whip. Low SWR also gives you maximum power out of your solid state rig—runs cooler for longer life.

Handles up to 300 watts PEP RF output. Has efficient airwound inductor. 1000 volt capacitor spacing and rugged aluminum cabinet. 8 x 26 inches. Mobile mounting bracket available for $5.00.
happy endings

Dear HR:
I’ve been meaning to write for some time now to let you know of the response to my letter published in the October, 1985, issue of *hamradio*. I started a letter several times, but didn’t know exactly what I wanted to say. A simple “thank you” wasn’t quite enough.

I received many nice cards and letters and have made many new friends. The greatest surprise came late one evening when I received a call from a representative of ICOM America who reported he would be interested in an ICOM transceiver. Then she asked the question that left me speechless: if I had a choice of any ICOM radio, which would I choose? “A 751,” I replied. When she told me one would be shipped the following day, I honestly didn’t believe it. I thought it was some kind of joke.

When the UPS truck arrived with two large packages just two days later, I realized it was no joke, nor was it a dream. I opened the larger box and found a brand-new ICOM 751 complete with a factory-installed PS35 power supply, FL52A filter, voice synthesizer, hand mic, and all the power cables. WOW! In the other box was an ICOM 251A, 2-meter, all-mode transceiver with all the accessories and an SM8 Duo Desk microphone. Double WOW!

Is this the end of the story? No, far from it. Many hams responded with other equipment and good wishes. I have tried and believe I have responded to each person who contacted me, but I’d still like to express my sincere and deep appreciation to everyone who assisted me in any way, whether it was with equipment or just a kind word of encouragement.

And of course, my sincerest, heartfelt thanks go to those caring people at ICOM America.

My dream, from the beginning, has been to provide phone patches for missionaries in foreign countries. I’m on the air now and able to provide assistance in handling written traffic, but two more items are needed: a phone patch and an amplifier. God has truly blessed me in enabling me to become part of the fraternity of Amateur Radio. I hope that by providing phone patches I’ll be able to give someone a small token of pleasure or service they might not otherwise have had.

At 32, I don’t know what a toll MS will take on me, but I can assure you it will have a good fight. Somehow I feel that the day I give up or give into the limitations — if there really are any — will be the day my dream ends. That day must not come; I must not let it.

In the two years since I became disabled I’ve realized that I, like many, once found too many excuses for accepting limitations. But I’ve also discovered that a limitation is only an obstacle between you and your goal. If you can’t go through it, then you’ll just have to go around, under, or over it. The point is to reach your goal, any way you can . . .

John Statham, N5HTQ
McComb, Mississippi 36948

no problem!

Dear HR:
How often have you purchased an item that later developed a problem — and then found out that getting the item fixed was an even bigger problem?

I bought a Mirage amplifier and was pleased with its performance. But one day, after a particularly long-winded QSO, the power amp in my B3016 2-meter amplifier quit in a puff of smoke, despite its good heat sink and an attached blower.

I sent the unit, which was a couple of years old, back to Mirage for repair. Needless to say, I was surprised to have it returned promptly, with “NO CHARGE” marked on the invoice. I had expected a long exchange of purchase receipts, letters, charge card information, and the like. What a surprise to have a warranty repair done quickly and without a quibble!

I use three Mirage amplifiers, two at home and one mobile, and have found them all to be well made and long-lasting, even in the 100 percent duty cycle of ATV operation. I would recommend Mirage to anyone who wants a quality product.

Henry B. Ruh, KB9FO
Chicago, Illinois

narrowband filters

Dear HR:
Two versions of the program described in my March, 1986, article, “Build Narrowband RF Filters,” are now available for computers other than those originally mentioned.

Atari owners may contact Marion D. Kitchens, K4GOK, 2709 Colt Run Road, Oakton, Virginia 22124. Marion will provide a copy (on disk). Owners of the Timex 1000 can contact Rudy Knaack, W7FGQ, 11415-28th S.W., Seattle, Washington 98146. Rudy will provide a listing for an SASE, or will copy the program on cassette tape for $5.

I might add that both versions improve on my method of calculating Chebychev order and save program lines.

The ultimate line-saving version of the program comes from Ken Stringham, AE1X, who uses the equations that derive k and q values that I entered in table form (lines 1000-1500). Although Ken didn’t mention that he’d provide listings or copies, he did send me a copy. Someone interested in adapting the program to another machine might be interested in getting this listing (written in C-64 BASIC) from me.

I have had inquiries from owners of the IBM PC (and clones), but as yet have no information for them. If anyone is working on translating my program to any other machine, I’d appreciate knowing. I’ll act as a “clearing house” for information about the program and sources.

Bob Lombardi, WB4EHS
Melbourne, Florida 32935
During the early part of 1985, I finally managed to complete the installation of a "gain" antenna for the 80-meter band: a reflector-driver parasitic array with two equilateral triangular loop elements. Later in the year, I realized another ambition: the ability to analyze HF wire antennas over real ground with a trustworthy computer program. In this article, which describes the results of applying that capability to the analysis of my new antenna system, I'll show the behavior, over poor ground, of the peak gain and "average" front-to-back ratio across the band, along with a number of radiation patterns. I'll describe the antenna system itself in just enough detail to define the item under study.

Of course, the first question one always asks about any project is "How can I make it better?" Toward this end, I'll show, at a single frequency, the performance obtainable with a number of more-or-less feasible variations on the existing design, including the following:

- alternative feedpoints;
- higher boom;
- closer element spacing;
- both elements driven; and
- square loops.

I'll also discuss a few other "gain" parasitic antenna systems, including pairs of dipoles and inverted vees, and the half-wave sloper. Finally, I'll show the effect of a less convenient option — relocating to the seacoast — that provides the best results of all.

As suggested above, this isn't a construction article. Neither is it intended to present a design procedure. Even with the power available in current microcomputers, the number of trials required to find an "optimum" design is prohibitive unless one narrows the scope at the outset. This is the purpose of this article: to provide data on which to base an informed selection of basic design choices.

the antenna

After years of careful deliberation (i.e., procrastination), I ultimately decided to build a system very similar to the W2PV array that I discussed in a previous article. The two identical equilateral loops are supported, apex up, by a 46-foot boom at the 115-foot level on a 120-foot guyed tower. The loop's circumference is 264 feet (88 feet per side). I used No. 10 AWG copper wire, primarily because it was already "in stock."

Figure 1, a diagram of the configuration, shows the coordinate system that I'll use in defining radiation patterns. The x axis is parallel to the boom from the reflec-
tor end toward the driven element. The \(y \) axis lies in the ground plane and in the plane of the loops, and the \(z \) axis is positive upward.

The two loops are configured as a reflector plus driven parasitic array by adding a 4 \(\mu \)H coil in series with the reflector element. An additional 12 \(\mu \)H is connected in series with each loop to switch the center frequency from 3.8 to 3.5 MHz. The necessary switching is accomplished using relays in a small box at each loop apex.

Equal lengths of RG-11A/U connect these boxes to a third relay box at the center of the boom. I use chokes (patterned after the W2DU balun\(^2\)) at these feedpoints to reduce currents on the outside of the feedlines. The central switchbox selects either or both loops to be connected to the main transmission line, which is 75-ohm CATV cable.

On 80 meters, transmission line losses are very small, even when the line is operated at high SWR (i.e., mismatched at the antenna). For simplicity, I decided not to attempt any matching at the antenna. Instead I use lumped-reactance networks at the station end, with additional relays to select different networks so that I can instantly switch between matched parasitic or driven configurations.

the computer program

I'm fortunate to have access to the resources needed to run the complete Numerical Electromagnetics Code (NEC).\(^3\) This program is ideally suited to analyzing the performance of wire antennas up to a few wavelengths in size, with arbitrary shapes and excitations, in the presence of "real" ground. For those familiar with the method of moments, I modeled the six straight wires that make up the two-element array with 11 segments each. Excitation was applied at the centers of the two segments surrounding the apex, since the NEC models sources at the segment centers rather than at the segment junctions. The ground characteristics were dielectric constant, 4, and conductivity, 0.001 S/m, the usual values for poor ground such as the rocky, hilly terrain behind my house.

radiation patterns

The NEC program produces an enormous listing of numbers that's difficult to fully assimilate. Fortunately, I've succeeded in compressing much of the information, without too much agony, into a more visual format — namely, polar radiation pattern plots. It's important to understand these plots well, so I'll explain an example of each of the two types of pattern charts in some detail.

Figure 2 shows the chart I'll refer to as the elevation pattern. The thick curve on the inside of the grid is the ratio (in dB) of the total radiation intensity, in the direction defined by the angular coordinate of the chart, to the radiation intensity that would be obtained if the antenna input power were uniformly distributed over a sphere. Most folks simply call this ratio "gain relative to isotropic," with the notation "dBi" when the ratio is expressed in decibels. The angular coordinate for this chart is measured in the vertical plane containing the boom; that is, the \(xz \) plane shown in **fig. 1**. The grid interval on the chart is 15 degrees, although the resolution for pattern data points is one degree.
The outermost radial of the elevation pattern grid corresponds to zero dB, relative to the peak gain in the xz plane. The value of peak gain is noted in each figure caption. This normalization creates good detail in the pattern characteristics. Notice also that the radial coordinate is non-uniform, as was first recommended by K1TD^4. My charts are drawn with the scaling:

\[\text{radius} = 10^{G/40} \]

where G is the normalized gain in dB. This scaling expands variations near zero dB so that the 3-dB beamwidth is easy to identify, without compressing variations in the sidelobe regions excessively.

The second type of radiation pattern plot is the azimuth pattern, as illustrated by fig. 3. Here the angular coordinate is measured in the horizontal plane — the xy plane of fig. 1. Although the elevation chart shows only the above-ground hemisphere, the azimuth chart must show a full circle to allow for possible asymmetries in the radiation pattern (for example, those caused by feeding the loop array at one of the lower corners).

Each azimuth pattern corresponds to a particular value of the elevation angle. The obvious choice for the elevation angle is that corresponding to the peak gain on the elevation chart. This angle is 36.5 degrees at 3.8 MHz for my delta loop array, but it varies from case to case. In order to reduce the number of computer runs, I used 36 degrees for the elevation angle in all azimuth charts presented in this article.

Most readers will have encountered the terms “H-plane” and “E-plane” in connection with radiation patterns. I’m avoiding these terms because their definition is more likely to cause confusion than illumination. Also, I’ve deliberately omitted labels for the angular coordinates in the radiation pattern charts because the standard coordinate system (as defined by the IEEE) is counter-intuitive for those of us who grew up in an azimuth-elevation world.

peak gain

The peak gain of an antenna system is the value of the gain in the direction of its maximum value. For most of the results discussed here, the direction of the maximum occurs in the vertical plane containing the boom. Thus, unless otherwise noted, the values quoted for peak gain are to be understood as the peak in the xz plane.

It is not my intent, in this article, to provide an exhaustive discussion of peak gains. There are two reasons for this. First, the number of interesting cases is overwhelming when one considers the range of applicable heights, frequencies, and ground characteristics in addition to the enormous variety of antenna designs. Second, there are many well-established myths that must be systematically dealt with in any such undertaking; doing so would expand the scope of this article substantially. Thus, the gains presented herein should not be extrapolated beyond the conclusions stated below.

average front-to-back ratio

The concept of front-to-back ratio needs some elaboration to provide a useful measure of 80-meter antenna performance. As suggested by fig. 2, the elevation pattern can exhibit deep nulls at selected elevation angles, while showing large lobes at other angles off the back. Thus, the ratio of forward gain at a specified elevation angle to the backward gain at the same angle can vary dramatically for different elevation angles.

On the 80-meter band, all of the elevation angles are
When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to...

... yours

... and ours.

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now in its 'third wave' of innovation, thanks to its designed for the future architecture and new software releases.

The RC-850 is the industry standard in full-featured repeater control systems.

- Fully remotely programmable with Touch-Tone commands
- Front panel LED display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day week Scheduler with over 1000 schedule items for full hands free operation and automatic reminders.
- Full or half duplex autopatch, autodial (250 numbers), emergency autodial, reverse autopatch, autodialer, toll restrict, fully featured telephone exchange tables, supports remote and multiple line phones
- Informative remotely programmable ID's (17), call messages (13), bulletin boards (5)
- 16 channel voice response analog metering, automatic storage of min/max values on each channel, values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable features
- Mailbox for user-to-user, and system-to-user messages
- Paging – two-tone, 5/6 tone, DTMF, CTCSS, HSC display, user commandable and may be included in programmable messages (i.e. alarms)
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, call messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated mailboxes lets your users easily record messages for other users when they aren’t around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster™

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable ham equipment being available to you 1% of the time, it’s available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that’s just part of ShackMaster’s story. It lets you communicate with the family by handling third party traffic – its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

Crossband linking – VHF/UHF to HF
Phone access to your home station
BSR Home Control interface
Electronic Mailbox
ShackPatch™ intercom into the shack
PersonalPatch™ simplex autopatch

If your repeater budget can’t afford the ‘850, we offer the RC-850 Repeater Controller, which we like to call the “second best repeater controller in the world”. It’s a scaled down, simplified version of our ‘850, but overall, it offers more capability and higher quality than anyone else’s control equipment at any price.

- Remotely programmable with Touch-Tone commands
- Over 175 word customized male speech synthesis vocabulary
- Selectable “Macro sets” for easy control operator selection
- Autopatch, autodial (200) numbers, emergency autodial, reverse patch
- Remotely programmable informative ID's (7), call messages (3), bulletin board (2)
- Supports synthesized remote base transceiver, call receiver, alarm
- Selectable, informative courtesy tones
- Talking S-meter, Two-tone paging
- Easy hookup to any repeater

For those who like to “roll their own”, we can get you off to a rolling start with our ITC-32 Intelligent Touch-Tone Control Board. Much more than just a decoder, it’s a mini-control system of its own, with the basic repeater and remote base functions built-in. And it can be tailored by you with its Personality Prom.

- 28 remotely controllable latched or pulsed logic inputs
- 4 alarm or remote sensed logic inputs
- Response messages to confirm command entry
- Repeater functions including CALL, ID'er, timers, courtesy tone, etc.
- Remote base functions including control of synthesized transceiver

All our products are documented with high quality, easy to read manuals. Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

To order one of these advanced control products, call 408-727-3330. Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment. For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to:

OCC, advanced computer controls, inc.
2356 Walsh Avenue, • Santa Clara, CA 95051 (408) 727-3330
fig. 5. Phone mode elevation patterns from 3.65 (A) through 3.95 MHz (J). See table 1.
significant, from the extremely low angles needed for very long DX paths to the nearly straight-up angles required for accepting (or rejecting) local signals. As far as I can determine, the question of which angles are most important, say for the path from New England to Western Europe, remains unanswered. G6XN claims that the only valid rule is "the lower the better." There seems to be ample evidence to the contrary, however. For example, many DXers in the Northeast have observed that high-angle antennas often perform better than low-angle antennas when the band first opens toward Europe in the evening. (The same observation applies to both 40 and 160 meters, as well.) In any case, 80-meter antenna systems with poor gain near the horizon (such as the delta loop array described here) are good overall performers, suggesting that angles in, perhaps, the 20- to 50-degree region are indeed useful for medium-range DXing.

In assessing the radiation pattern, we're usually interested in the ability of the antenna system to reject strong signals coming from the backward direction, which are most likely to arrive at relatively high elevation angles (the lower angles corresponding to longer paths and thus to weaker signals). Thus, I've chosen to display the ratio of the peak forward radiation intensity to the backward radiation intensity averaged over the elevation angles from 25 to 75 degrees. This power ratio is presented in the customary dB. I'll abbreviate this performance characteristic as "averaged f/b," rather than "peak forward power to backward power averaged over 25 to 75 degrees in the xz-plane." I believe this quantity is a more useful indicator of 80-meter antenna performance than the customary f/b ratio; furthermore, the values presented below seem to agree well with on-the-air observations.

impedance

Knowledge of the antenna input impedance is useful for two reasons. First, one can design a matching network to transform the input impedance to the characteristic impedance of the transmission line, thereby minimizing line losses due to mismatch. Second, the NEC calculation of gain requires an accurate value for the input impedance (in order to determine input power). The fidelity of the NEC input impedance computation is affected by the number of segments specified for the antenna model. More segments improve the impedance result (up to the onset of numerical difficulties), but also increase the run time dramatically. However, if the segment length is held constant from case to case, then the relative results can be trusted even though the absolute values may be suspect. In all of the cases presented here, the number of segments per straight wire section was selected to yield approximately the same physical segment length (8 feet).

performance

Figure 4 shows the computed performance versus frequency for my two-element array. The phone-mode peak gain reaches its maximum (8.68 dBi) right at the design frequency, 3.8 MHz. The peak in the average f/b is about 25 kHz higher. The CW-mode gain reaches its maximum just above 3.5 MHz, and the offset to the f/b peak is also about 25 kHz. The overall response appears slightly narrower for the CW mode, as should be expected for loaded loops, but the difference in bandwidth between modes is unimportant. The maximum CW peak gain (8.40 dBi at 3.525 MHz) is slightly below the phone mode maximum.

The gain and f/b peaks can be aligned at the same frequency by at least two methods. The reflector loading

Table 1. Phone mode elevation patterns vs. frequency.

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Peak Gain (dBi)</th>
<th>Angle (deg)</th>
<th>Average f/b (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.65</td>
<td>7.44*</td>
<td>38.0</td>
<td>-5.35</td>
</tr>
<tr>
<td>3.7</td>
<td>7.62*</td>
<td>36.0</td>
<td>-3.69</td>
</tr>
<tr>
<td>3.75</td>
<td>7.66</td>
<td>34.5</td>
<td>2.41</td>
</tr>
<tr>
<td>3.775</td>
<td>8.48</td>
<td>35.5</td>
<td>6.73</td>
</tr>
<tr>
<td>3.8</td>
<td>8.68</td>
<td>36.5</td>
<td>11.49</td>
</tr>
<tr>
<td>3.825</td>
<td>8.54</td>
<td>37.5</td>
<td>14.33</td>
</tr>
<tr>
<td>3.85</td>
<td>8.27</td>
<td>38.0</td>
<td>12.94</td>
</tr>
<tr>
<td>3.875</td>
<td>7.99</td>
<td>38.5</td>
<td>10.73</td>
</tr>
<tr>
<td>3.9</td>
<td>7.73</td>
<td>38.5</td>
<td>9.04</td>
</tr>
<tr>
<td>3.95</td>
<td>7.30</td>
<td>39.5</td>
<td>6.86</td>
</tr>
</tbody>
</table>

In the backward direction
EIMAC Tubes Provide Superior Reliability at radio station KWAV — over 112,000 hours of service!

Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 13 years of continuous duty!

Ken says, "In spite of terrible power line regulation, we've had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!"

Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don't want. More operating time and less downtime!

EIMAC backs their proven tube reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Send for our free Extended Warranty Brochure which covers this program in detail.

Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221

Quality is a top priority at EIMAC, where our 50-year charter is to produce long-life products.
inductance can be varied. Or one can simply redefine the range of angles over which the average is computed. The point here is that the 25-kHz offset is a silly amount to worry about.

A more significant result is the pattern reversal just below 3.75 MHz. Negative f/b ratio means that the direction of the peak gain is toward the reflector. This occurs because the parasitic element is electrically too short to act like a reflector. The potential for disaster caused by too-short loops is obvious; if I ever rebuild the loops I will probably increase the circumference 4 feet to move the design frequency down about 50 kHz.

Figure 5, a series of elevation radiation pattern plots at a number of frequencies surrounding the design frequency, shows the pattern reversal quite nicely (see also Table 1). Note that the elevation angle of the main lobe is nearly the same at every frequency, increasing uniformly from 34.5 degrees at 3.7 MHz to 38.5 degrees at 3.9 MHz. If we define the effective height of an antenna system as the height of a horizontal half-wave dipole, above perfect ground, which yields the same elevation for the first lobe of the ground reflection pattern, then:

\[h_e = \lambda/(4 \sin \theta) \]

where \(\theta \) is the elevation angle. The effective height for the parasitic array (at 3.8 MHz) is 0.42\(\lambda \), or 109 feet. Thus, even though most of the antenna structure is well below the effective height, the array still yields a relatively low angle for the main lobe.

This rather surprising result comes about because of the suppression of higher angle radiation by the array free-
space directivity. If the directions for the peak gains of the free-space pattern and the ground reflection pattern were aligned, we could expect gain in the neighborhood of 13 dBi (7 dBi from the array and 6 dB from the reflection). The actual peak gain is lower partly because the lobes are not aligned (the free-space array peak is on the horizon, where the ground reflection pattern has a null) and partly because the reflection isn't perfect.

The input impedances calculated by NEC for the delta loop array are plotted in fig. 6. The phone mode system is resonant near 3.815 MHz, with the resistive component equal to about 80 ohms. The CW mode resonance is about 3.535 MHz, at 65 ohms. These results don't correlate with SWR measurements or with admittance measurements at the transmission line input. This isn't too surprising, however, because the antenna model I provided as input to NEC isn't especially realistic in details that can influence impedance, such as adjacent towers and uneven terrain.

Figure 7 shows the CW mode elevation patterns for frequencies at the bottom of the band (see also table 2). The elevation angles for the gain peaks are slightly higher than for phone mode, but not enough to be of concern. The best pattern occurs a bit high in the band for an inveterate DXer, but I've found on-the-air performance to be excellent at the very bottom of the band.

In fact, in practice the apparent f/b ratio has been generally consistent with that indicated by the performance calculations. On both modes, S5 stations in Europe disappear into the band noise when the array direction is switched. Louder Europeans decrease in signal strength about 2 to 3 S-units, while US stations come up by the same amount. My receiver is a TS-930; I've checked the S-meter calibration and found it to be about 5 dB per S-unit. The array shows essentially no f/b at 3.75 MHz and is definitely backward (in the phone mode) at 3.7 MHz.

I currently have two other 80-meter antennas, a dipole at 120 feet parallel to the array boom, and a full-size quarter-wave vertical with 12 radials. Neither of these antennas should work well in the directions favored by the delta loop array... and they don't. On the other hand, the dipole is better to the Caribbean, South America, and Japan. While the loops do exhibit some rejection "off the side," it's not as much as the dipole exhibits off its ends. Overall, I'm quite pleased with the agreement between the theoretical results and actual performance, especially considering that the terrain surrounding my antenna system is far from planar.

bottom and corner feed

My loops are fed at the top. Full-wave loops can be fed anywhere on the circumference with no appreciable change in the input impedance or in the free space directivity. However, the selection of the feedpoint has a potentially devastating effect over real ground. Two interesting alternative feedpoints are at the center of the horizontal bottom side and at either of the two corners. The elevation patterns for these two cases, at 3.8 MHz, are shown in fig. 8. The bottom-fed pattern is indistinguishable from the top-fed pattern (the dashed curve) and the peak gains are nearly the same: 8.80 dBi versus 8.68 dBi, respectively. (This small difference may well
The ST-8000 HF MODEM is a high-performance, fully adjustable modulator/demodulator for use in high-frequency radio data systems. The HF Modem features fully adjustable frequencies and baud rates, memories, diversity, regeneration, print squelch, CRT tuning indicator, and multiple AM or FM detectors. The bandwidths of the input filter, Mark filter, Space filters, and post-detection filters are tracked with the selected data rate (10 to 1200 baud) to assure optimum signal recovery for all signals. Front panel parameters may be controlled from an external ASCII terminal or computer. A full complement of interface options allows use of the ST-8000 with virtually any terminal and radio system. Install the HAL DS3100ASR CRT terminal and ST-8000 HF Modem in your communications system and enjoy the benefits of a data system designed for radio operators.

- Tuneable from 500 to 4000 Hz in 1 Hz steps
- Set 10 to 1200 Baud in 1 baud increments
- Four input band-pass filters
- 32 matched Mark and Space filter bandwidths
- Mark and Space 7-pole linear phase LP filters
- Filter BW and selection computed and set by microprocessor front panel controls
- RTTY shifts from 40 to 3500 Hz
- Eight programmable non-volatile memories
- Split or transceive RX/TX tone selection
- FM or AGC-controlled AM signal processing
- -65 to +20 dBm dynamic range (AM or FM)
- Exclusive HAL Digital Multi-Path Correction (DMPC™)
- MS, Mark Only (MO) or Space Only (SO) detector modes using Adaptive Threshold Detector (ATD™)
- Adjustable Print Squelch and non-diversity Amplitude Squelch
- Exclusive HAL Infinite Resolution Diversity Control (IRDC™)
- Digital signal regeneration
- ASCII/Baudot code and speed conversion
- Quick Brown Fox and RYRY... test message generator
- Programmable Selective-call (SEL-CAL) printer control
- Transmitter PTT KOS control
- Antispace
- RS232C, MIL-18BC, or TTL Terminal I/O
- LP1200 Option for polar or neutral loop
- 8, 600, or 10K ohm input impedance
- 8 or 600 ohm output with adjustable level
- AFSK or FSK transmitter outputs
- Remote terminal or computer control of all demodulator parameters
- Exclusive HAL Spectra-Tune™ and X-Y Mark/Space CRT tuning indicators with automatic trace on/off control
- 100-130/200-250 VAC, 44-440 Hz power
- 3.5" high rack mounting cabinet (14" deep)
- Shielded and filtered for radio system use

TM Infinite Resolution Diversity Control (IRDC), Spectra-Tune, Digital Multi-path Correction (DMPC), and Adaptive Threshold Detector (ATD) are trade marks of HAL Communications, patents pending.

Write or call for complete ST-8000 specifications. We think you will agree that it opens new frontiers in radio data communications. Contact the Government & Commercial Products Division for price and delivery information.

HAL Communications Corp.
Government & Commercial Products Division
1201 W. Kenyon Road
P.O. Box 365
Urbana, IL 61801-0365
(217) 367-7373 TWX: 910-245-0784
The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut Verticals
Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
- 80, 40, 30, 20 15 and 10 meters automatic band switching.
- Add-on kit for 17 and 12 meters available now.
- 26 ft. tall

Model HF2V
- Designed for the low-band DXer
- Automatic band switching on 80 and 40 meters
- Add-on units for 160 and 30 or 20 meters
- 32 feet tall - may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure

BUTTERNUT ELECTRONICS CO.
405 East Market
Lockhart, Texas 78644

CALL LONG DISTANCE ON 2 METERS
Only 10 watts drive will deliver 75 watts of RF power on 2M SSB, FM, or CW. It is biased Class AB for linear operation. The current drain is 8-9 amps at 13.6 Vdc. It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit $109.95
Wired & Tested $129.95

LEARN ALL ABOUT TROUBLESHOOTING MICROPROCESSOR-BASED EQUIPMENT AND DIGITAL DEVICES
Attend this 4-day seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn special troubleshoot techniques. Fee is $745.00.

CURRENT SCHEDULE
- Memphis, TN—Sept 30-Oct 3
- Raleigh, NC—Oct 14-17
- Cincinnati, OH—Oct 21-24
- Dallas/Ft. Worth, TX—Nov 11-14
- Atlanta, GA—Nov 18-21
- Chicago, IL—Dec 2-5

MICRO SYSTEMS INSTITUTE
Garnett, Kansas 66032
(913) 898-4695

CANOPIES
All weather protection for outdoor shows
SLANT, PEAK OR FLAT ROOFS
FREE STANDING - FAST SET-UP
NO TOOLS REQUIRED
SNAPS TOGETHER
WHITE OR BLUE TARPS
FITS IN THE TRUNK OF A CAR
JOINTS & PARTS
PACKAGE COMPLETE
READY TO USE
MONEY BACK GUARANTEE

Free brochure on request

SCOPE BUY-OUT!!!

OS-106/USM-117 PORTABLE SCOPE, rugged military DC to 6 MHz unit, with MX-2996 high-gain plug-in. Sweep 0.1 us to 0.1 sec in 19 steps. Sensitivity 0.01 to 20 V/Div in 11 steps. 115 VAC 60 Hz; 8.5 x 9.8 x 15, 20 lbs sh.

$115 Checked ... $115
$385 $175

OS-106 with MX-2995 dual-trace plug-in (less MX-2996), reproducible $165 Checked $225
MANUAL for USM-117, partial repro ... $15
MANUAL for MX-2995, partial repro ... $12

Prices F.O.B. Lima, 0 - VISA, MASTERCARD Accepted. Allow for Shipping - Write for latest Catalog Supplement Address Dept. HR - Phone: 419/227-6079
be due to modeling errors that lead to small input impedance errors and thus to peak gain errors. The corner-fed pattern, on the other hand, is clearly inferior in the backward direction; furthermore, the peak gain is dramatically reduced to 5.48 dBi. The corner-fed azimuth pattern (fig. 9) shows that the pattern is skewed and the side null is filled in on the side of the boom corresponding to the driven corner.

The explanation for the inferior performance of the corner-fed arrangement is simple. The amplitude of the reflection coefficient for poor ground is much lower for vertical polarization than for horizontal polarization. Thus, the “gain” produced by ground reflection is smaller for vertically-polarized radiated fields. The corner feed produces a substantial vertically-polarized component in the total field, whereas the top and bottom feeds produce entirely horizontal polarization, so the corner feed has less gain (see Appendix for additional discussion).

increased height

Another feasible modification to my delta loop array would be to raise the antenna. Since I guy my towers every 30 feet, the next “natural” boom height above 115 feet is 145 feet. Figures 10 and 11 show the elevation and azimuth patterns at 3.8 MHz for this configuration. Interestingly, while the depth of the rearward null is increased, the magnitude of the rearward lobe is also increased and the average F/B is almost unchanged. The peak gain is quite a bit higher, up 1.29 dB to 9.97 dBi, and the elevation angle at the peak is 6 degrees lower, at 30.5 degrees. The change in the angle is not too important, but the potential for increased gain, which is rather hard to come by, may be worth the challenge of constructing and maintaining a 150-foot tower.

closer spacing

I chose an unusually wide spacing for my array because I guessed that the increase in radiation resistance...
As mentioned earlier, I designed the remotely controlled switches so that I could drive both loops together if I chose to. The feedpoint boxes are identical, and installed facing each other, so paralleling the feedlines at the center of the boom results in exactly out-of-phase drives to the two loops (with the feedlines from boom center to loop apex being equal in length).

A two-element array driven with 180-degree phase shift produces an end-fire pattern that's independent of spacing over a reasonable range near $\lambda/8$. The elevation pattern has a very deep null straight up, as seen in fig. 13. I thought this null might produce good effective f/b when listening to Europeans, assuming that signals from both loops driven

with increased spacing would partially offset the relatively lower value created by proximity to ground. Also, I expected that the bandwidth would be somewhat better at the larger spacing. Because the array is parasitic rather than driven, performance isn't terribly sensitive to spacing. Although I haven't verified all of these conjectures, I did examine performance for spacing reduced from 46 feet to 32.4 feet at $\lambda/8$ (3.8 MHz). The elevation pattern shown in fig. 12 has nearly the same peak gain (8.70 versus 8.68 dBi) at the same elevation angle, but the backward pattern is significantly better. The input resistance drops 19 ohms while the input reactance increases 15 ohms.
close-in W's would arrive at high elevation angles. However, in practice I found that the pattern of the parasitic array (fig. 2) rejected local signals better than the driven array.

The calculated peak gain for the driven array is 7.05 dBi. This is significantly below the gain of the parasitic array. Furthermore, the input resistance is much lower, so that the effect of losses in the CW loading coils becomes more significant (however, these coils aren't required for a driven array). I found that signals from Europe were never better with the driven arrangement, and occasionally were noticeably worse (note that 1.5 dB is generally not measurable except with laboratory instrumentation). I've abandoned this setup.

square loops

The mechanical challenges inherent in constructing an array of square loops in place of delta loops are severe but not outrageous. According to G6XN, we can't expect that the change in the shape of the elements will yield any appreciable change in gain, but the pattern may be improved (i.e., the side lobes can be decreased) with increased mutual coupling. Changing to square loops with the top horizontal side at the same height as the apex of the delta loops raises the effective height, which will increase peak gain and decrease the elevation angle at the gain peak.

These conclusions are supported by the results. The peak gain for the elevation pattern shown in fig. 14 is 9.71 dBi, about 1 dB higher than the delta loop array. The elevation angle at the peak is 5 degrees lower, at 31.5
degrees. And the pattern is outstanding; the average f/b for this case is 16.5 dB! The azimuth pattern is shown in fig. 15; this pattern is also excellent.

half-wave elements

Erecting closed one-wavelength loops on a guyed tower can be a major hassle when there are trees within shouting distance of the tower. (By the way, I have ample experimental evidence that shouting at trees in hope of convincing them to release captured wires is ineffective.) Because half-wave elements are much simpler to handle, I examined the performance of three two-element parasitic arrays with:

- horizontal half-wave elements at 115 feet;
- inverted vee half-wave elements from 115 feet, with 120-degree apex angle; and
- inverted vee elements with 90-degree apex angle.

Figure 16 shows the elevation pattern charts for these three cases. There’s a tendency for the pattern null to fill in as the apex angle decreases. However, even the horizontal dipole array pattern is inferior to the delta loop pattern (fig. 2). It may be possible to “tune up” the pattern by changing the element spacing and the loading inductance for the reflector, but I haven’t attempted this analysis. The azimuth pattern for the horizontal dipole case is given in fig. 17; the patterns for the two inverted vee cases are almost the same.

On the other hand, the peak gains are competitive with the delta loop array: 9.26, 8.54, and 8.04 dB, respectively, versus 8.68 dB for the loops. It appears that the inverted vee array with wires as flat as possible is a good substitute for the delta loops as far as gain is concerned.

the half-wave sloper

My previous 80-meter antenna system was a set of four half-wave slopers, slanting about 30 degrees from the vertical. Unfortunately, I had to dismantle this system before the delta loop array was operational, so I have no on-the-air comparison of the delta loops versus the slopers.

Figure 18 illustrates the elevation pattern for a single half-wave sloper (slanted 30 degrees from vertical), in the presence of a 120-foot tower grounded at its base. The backward rejection is rather good — the average f/b is 11.1 dB. The corresponding azimuth pattern is included in fig. 19, even though it’s unremarkable.

Now for the bad news: the peak gain (at 28.5 degrees) is a paltry 1.56 dB! Compare this with a simple inverted vee from 120 feet with 120-degree apex angle, which exhibits a peak gain of 6.18 dB at 31 degrees. Once again, the source of this inferior performance is polarization.

The field in the plane containing the sloper and the tower is entirely vertically polarized, which is disastrous over poor ground (see Appendix). In fact, the peak gain of the sloper over poor ground is less than the same antenna...
in free space (2.16 dBi). One possible explanation might be that the proximity to ground distorts the nominally-sinusoidal current distribution on the sloper so badly that the directivity is degraded. However, examination of the NEC printout for this case shows that the current is symmetrical about the feedpoint (the center) within a few percent in amplitude and within 1 degree in phase. Thus, the degradation must be due to destructive interference between the (attenuated) reflected field and the direct field.

Clearly, the sloper — like the corner-fed loop — is a poor choice for a transmitting antenna at sites with poor ground characteristics. I'm planning to reinstall one of my slopers to verify whether or not this computed 7-dB disadvantage appears in practice.

performance over good ground

I've disparaged the performance of vertically-polarized antennas over poor ground, but the fact is that poor ground degrades the performance of *any* type of antenna for 80 meters at other than grazing angles. Figures 20 and 21 show the radiation patterns for my delta loop array when moved to an island surrounded by salt water. The pattern nulls are filled in somewhat and the elevation angle for peak gain is increased to 42 degrees. However, the peak gain is considerably increased, by nearly 2 dB, to 10.47 dBi. This figure probably represents the maximum gain achievable with a two-element array of delta loops at 115 feet.

summary

I've presented polar plots, gains, and average f/b data for a number of 80-meter antennas. Table 1 collects all of the results in one place and includes the input impedances computed by NEC. These latter data are not reliable because I did not follow the procedures needed to confirm that enough segments were provided to assure that this calculation had "converged" to the true value. However, all cases were run with comparable segment lengths, so the trends in impedance should be representative of the true behavior.

The significant column in table 3 is the peak gain; it's possible that the average f/b for any of the variations could be tweaked somewhat by modifying the reflector's resonant frequency and the element spacing.

The primary conclusions of this study of 80-meter antennas over poor ground are:

- The delta loop array provides enough gain to be worth the effort, along with truly useful f/b ratios, even though the boom height is too low by conventional wisdom.
- Raising the boom 30 feet would add about 1.3 dB of gain at a slightly lower elevation angle.
- Changing from delta loops to square loops would increase gain about 1.0 dB and would improve the pattern.
YOU SUPPLY
THE TALENT.

WE'LL SUPPLY
THE TOOLS.

ISC Defense Systems, Inc. is firmly committed to creating tomorrow's state-of-the-art in such advanced technological areas as VHF/UHF and Microwave RF systems, Analog Engineering, Communications, Electronic Packaging, Radar, and Signal Processing. That's why we're also committed to attracting more of this nation's best engineers and to providing them with the tools and the environment for success.

Our commitment begins with a newly constructed, 102,000 sq ft. facility that offers room to advance and achieve. It continues with our ambitious capital equipment acquisition program designed to give our engineers access to the latest in R&D, Manufacturing, Test and QA tools. And it manifests itself in challenging systems engineering projects that allow our technical professionals to display their talent and utilize their expertise to make their mark now on the future of the company as well as the future of technology.

The defense community we serve demands absolute excellence in advanced engineering solutions. That's why we're looking for the best — engineers like you — to supply it.

We have immediate and ongoing requirements for the following, top-level professionals:

• **Group Leader**—VHF/UHF/MICROWAVE
• **Staff Level**—COMMUNICATIONS/JAMMING SYSTEMS
• **Project Engineers**—RADAR DESIGN
• **Sr. RF Engineer**—RADAR & COMMUNICATIONS
• **Sr. Analog Engineer**—DESIGN & ANALYSIS
• **Assoc. Engineer**—RF SYSTEMS

ISC Defense Systems, Inc. is located in Lancaster, PA where the quality of life adds to our environment for success. Situated in the heart of the famed Pennsylvania Dutch country, Lancaster features affordable housing, excellent schools, numerous colleges and universities, plus a tranquil lifestyle. Major cities such as Philadelphia, New York, Washington, and Baltimore are all less than 2½ hours away.

In addition to competitive salaries, and relocation allowances, we offer benefits that include tuition assistance, an on-site Master's Degree program, a 401(k) Plan, and an employee fitness center as well as fully paid insurance, vacations, and holidays.

Please send resume to: William Van Anglen, Manager of Professional Resources, Dept. HRM, ISC Defense Systems, Inc., 3725 Electronics Way, P.O. Box 3025, Lancaster, PA 17604-3025.

An Equal Opportunity Employer.
Moving the feedpoint to the bottom center would have essentially no effect; moving it to a corner would be disastrous.

Shortening the boom to \(\lambda/8 \) would lower the radiation resistance and improve the pattern somewhat, but would not change the gain.

Replacing the loops with dipoles or flat inverted vees would not affect gain very much, but the pattern would be degraded.

My half-wave sloper system should not have worked.

I should retire to an island off the coast of Maine.

acknowledgements

Many thanks are due John Kenny, W1RR, and Doug Grant, K1DG, who constructively reviewed this article.

references

appendix

ground reflection amplitudes

The effects of real ground on Amateur antenna installations have been reported many times, so I don’t propose to reiterate those analyses. However, I did develop an unusual polar plot which helps in clarifying some of those effects. To understand the chart, a bit of prefatory explanation is needed.

The presence of ground is modeled by constructing a reflected field that is vectorially summed with the direct field of the antenna. The reflected field from a given point on the ground is proportional to the field incident from the direct field of the antenna; the proportionality constant is called the reflection coefficient. The reflection coefficient depends on polarization of the incident wave and on the angle of incidence, as well as the characteristics of the ground (which depend on frequency). This rather complicated modeling problem is simplified somewhat by decomposing the incident field into horizontal (parallel to the ground) and vertical (in a plane normal to the ground) components and applying separate horizontal and vertical reflection coefficients. Expressions for these coefficients are given in many texts; for example, Chapter 4 of Ma’s Theory and Application of Antenna Arrays.

The two reflection coefficients are complex numbers; that is, the reflected field components are modified in both amplitude and phase. The effect of phase shifts is a modification of the positions of peaks and nulls in the final pattern, which is developed by constructive and destructive recombinations of the incident and reflected fields. The effect of amplitude modification is to change the gain.

<table>
<thead>
<tr>
<th>Table 3. Summary of Antenna Cases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>GQ Delta Loop Array</td>
</tr>
<tr>
<td>GQ at 3.5 MHz</td>
</tr>
<tr>
<td>GQ bottom fed</td>
</tr>
<tr>
<td>GQ corner fed</td>
</tr>
<tr>
<td>GQ 30° higher</td>
</tr>
<tr>
<td>GQ on 32.4° boom</td>
</tr>
<tr>
<td>GQ over salt water</td>
</tr>
<tr>
<td>GQ with square loops</td>
</tr>
<tr>
<td>GQ with both driven</td>
</tr>
<tr>
<td>Two dipoles</td>
</tr>
<tr>
<td>120 deg Inverted vees</td>
</tr>
<tr>
<td>90 deg Inverted vees</td>
</tr>
<tr>
<td>Sloper & tower</td>
</tr>
</tbody>
</table>

Fluke 70 Series Analog/Digital multimeters are like money in the bank. Buy one, and you’re guaranteed to save both time and money.

Money, because you get longer battery life and longer warranty coverage — 3 years vs. 1 year or less on others.

And time, because 70 Series meters are easier to operate and have more automatic measurement features.

So before buying any meter, look beyond the sticker price. And take a closer look at the new low-priced $79 Fluke 73, the $99 Fluke 75, and the deluxe $139 Fluke 77. In the long run, they’ll cost less, and give higher performance, too. And that, you can bank on.

For a free brochure, and your nearest distributor, call toll-free 1-800-227-3800, ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
KPA5 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races, & other public service events, remote VCR, etc. Remote control of F/F airplanes or robots. Show home video tapes, computer programs, repeat SSTV to local ATVers. DX depends on antennas and terrain type 1 to 40 miles.
- FULL COLOR VIDEO & SOUND on one small 3.25x4" board.
- RUNS ON EXTERNAL 13.8 VDC or 300 ma battery.
- TUNED WITH ONE CRYSTAL on 426.25, 434.0, or 439.25 MHz.
- 2 AUDIO INPUTS for low Z dynamic and line level audio input found in most portable color cameras, VCRs, or home computers.
- APPLICATION NOTES & schematic supplied for typical external connections, packaging, and system operation.
- PRICE ONLY $159 delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with a TVC or TVC-4200-650 MHz to channel 1 downconverter. 70 cm antenna, and coax cable to receive. Package up the KPA5, add 12 or 14 vdc antenna, and an TV camera, VCR, or computer with a composite video output. Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG & more info on ATV downconverters, antennas, cameras, etc. or who is on in your area. TERMS: Visa, Mastercard, or cash only. UPS COD by telephone or mail. Telephone orders & portal MO usually shipped within 2 days, all others must clear before shipment. Transmitting equipment sold only to licensed amateurs verified in 1964 Callbook. Call include sales tax.

(818) 447-4565 m-f 8am-6pm pst.
P.C. ELECTRONICS
Tom W6ORG Maryann WB6YSS
2522 Paxton Lane Arcadia CA 91006

NEW from BARKER & WILLIAMSON!

1.8 - 30 MHz. Continuous Coverage Antenna for Commercial and Amateur Service

Model AC 1.8 - 30

The AC 1.8 - 30 Antenna uses only 80 feet horizontally, and, when space is limited, can be shortened even further with only slight loss of radiation efficiency.

U.S. Patent No. 4,514,898

- SWR Maximum 2:1, 1:4:1 Average
- Handles 1 KW input ICAS
- Can be installed in approximately 80 feet of space
- Higher power models available (contact factory)

$159.50

BALUN DIRECT COAX FEED

SHIPPING AND HANDLING ADD $4.00

BARKER & WILLIAMSON
Quality Communication Products Since 1932
ALL OUR PRODUCTS MADE IN USA
At your Distributors write or call, 10 Canal Street, Bristol PA 19007
(215) 788-5581

levels of the peaks and nulls. For example, if the reflected wave amplitude is one-half of the incident wave, the combined field will have peaks no greater than 1.5 times the amplitude of the original field (+3.52 dB). The maximum combined field with perfect reflection is 2 times the original amplitude, or 6.02 dB, so 2.50 dB of "potential" gain has been lost.

The horizontal and vertical reflection coefficients are rather messy functions of angle of incidence, dielectric constant, conductivity, and frequency. To illustrate the behavior of these parameters at 3.8 MHz, I've plotted the reflection amplitude versus angle of incidence in the same format I used for the elevation patterns. That is, the radial coordinate represents the amplitude of the reflected radiation intensity (power) relative to the incident radiation intensity, and the angular coordinate corresponds to the elevation angle for the incident field. Figure 22 shows this chart for poor ground, with dielectric constant = 4 and conductivity = 0.001 S/m. The solid curve is the amplitude for the horizontal reflection coefficient and the dashed curve is for the vertical reflection coefficient. Note that both are unity (zero dB) for grazing angle incidence, and both are equal for normal incidence. The very pronounced null in the vertical reflection coefficient amplitude shows graphically why vertical polarization is superior to horizontal polarization over poor ground, except at extremely low angles. (To be fair, it must be noted that at low antenna heights, vertical polarization is superior — even though the amplitude of the vertical coefficient is always less than that of the horizontal component. This is because the phase shift for the horizontal polarization guarantees destructive recombination, whereas the recombination for vertical polarization is constructive in the region above the null.)

This situation changes dramatically over good ground. Figure 23 shows the same chart for salt water, with dielectric constant equal to 80 and conductivity equal to 5 S/m. Both coefficients are essentially unity for all angles of incidence, except for the narrow null near grazing incidence for the vertical coefficient. The advantage of horizontal over vertical polarization does not occur in this environment.

ham radio
ASTRON POWER SUPPLIES

- **HEAVY DUTY**
- **HIGH QUALITY**
- **RUGGED**
- **RELIABLE**

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mv peak to peak (full load & low line)

19" X 5 1/4 RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>50</td>
<td>50</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35M</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50M</td>
<td>50</td>
<td>50</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 1/2 x 6 1/2 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 1/2 x 6 1/2 x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 1/2 x 7 1/2 x 10</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>5 x 9 x 10</td>
<td>18</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/2 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

- Switchable volt and Amp meter

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 1/2 x 10 1/2</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 1/2 x 7 1/2 x 10</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 1/2 x 7 1/2 x 10</td>
<td>12</td>
</tr>
<tr>
<td>RS-10L (For LTR)</td>
<td>7.5</td>
<td>10</td>
<td>4 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10</td>
<td>18</td>
</tr>
</tbody>
</table>
NE5205 wideband RF amplifier

Inexpensive IC functions as small-signal amplifier to 600 MHz

Simple, inexpensive, wideband RF amplifiers are always much-needed items when experimenting in RF and constructing RF projects. Because each project has its various unique requirements that must be satisfied — minimum cost, low operating current, maximum bandwidth, and high output power, for example — one can never have too many different configurations from which to choose. But the ideal amplifier that satisfies all potential needs has yet to be invented; consequently, a different approach or new design is always welcome.

This brief article describes the construction of a relatively high-performance RF amplifier that uses a Sig- netics NE5205 wideband RF amplifier. The NE5205 is an integrated wideband RF amplifier that serves as an excellent general-purpose RF gain block for applications from a few Hertz to above 600 MHz. It provides a non-inverting 20-dB gain and, although not an LNA, its typical 6-dB noise figure (50-ohm input) is quite good and should be adequate for many RF projects.

The NE5205 is available in either a TO-46 metal package or an eight-pin small-outline (SO) package. Although samples were distributed in the conventional eight-pin mini DIP (“N” package), that package isn’t shown in the NE5205 literature and doesn’t appear to be available from distributor stock.

The SO package is a very inexpensive plastic unit with the same operating characteristics as the TO-46. A minor problem with the SO package, however, is size; it’s about one-twentieth the volume of the more common eight-pin mini DIP. The leads, on 0.05-inch centers and bent at the ends in the form of small feet, are much too short to go through even a thin PC board. This is a surface-mount device (SMD) designed to be mounted on the trace side of the PC board or other substrate. The package is small, but it isn’t difficult to handle; you will, however, have to be quite careful and you may have to buy a small tip for your soldering iron.

NE5205 features

The functional schematic for the NE5205, shown in fig. 1, is considerably more complex than typical integrated wideband RF amplifier gain blocks. The small die size, offering low propagation delays and low parasitic elements, in part give this component its good operational characteristics. A particularly useful feature is the use of several different feedback loops to stabilize the gain and operating point and provide good input and output impedance matching. While this is too lengthy a topic to be covered here, the NE5205 data sheet provides complete details.

Don’t try to build the circuit shown in fig. 1 from discrete components; such a construction might work to a few tens of megahertz, but in general its performance will be very poor at best. The success of this circuit design depends as much on the small die size and integrated construction as on the actual circuit configuration. In any event, it’s much less expensive to use the NE5205 than to build a discrete version.

In a minimum basic circuit, the NE5205 needs only three external components: input and output coupling capacitors and a supply bypass capacitor. Adding a few inexpensive components, however, results in a more versatile amplifier with much better tolerance for the abuse of experimenting than a minimum parts-count amplifier would offer.

By Michael E. Gruchalla, 4816 Palo Duro NE, Albuquerque, New Mexico 87110

September 1986
amplifier circuit

Figure 2 shows the schematic of the complete amplifier. The input diode, CR1, prevents reverse-bias damage to the input transistor of the NE5205. The input can generally tolerate short pulses of high forward bias since the input transistor is simply forward-biased. However, even short pulses of reverse (negative) input bias as low as a few volts will avalanche the input emitter-base junction, totally destroying the part or seriously degrading its noise performance. When CR1 is included, it will conduct with a reverse input drive of about 1.4 volts, limiting the input level to the NE5205 to a safe value. This diode is reverse-biased at about 1 volt by the input potential of the NE5205. Since the maximum usable input of the NE5205 is about 80 mV peak (−12 dBm), the 1-volt reverse bias of CR1 prevents its conduction with normal signals and helps reduce the diode capacitance to minimize loading of the input. CR1 is a Schottky diode with a faster response speed than the NE5205 and it has minimum capacitance. If you can't find the 1N5711 device specified for CR1, a 1N4148 or 1N914 will work reasonably well; the high-frequency cutoff may be reduced, however. CR1 may simply be omitted, but the finished amplifier will then be quite sensitive to input damage.

Resistors R1, R2, and R3 form a Pi pad to allow a little adjustment of the amplifier gain and input impedance. They also provide some additional input protection. Similarly, R4, R5, and R6 form an output pad for gain and output impedance adjustment. These two pads may be omitted for maximum gain, but I find that keeping about a 0.5-dB pad at each place provides better stability in general applications. The resistors should be a high-quality carbon composition type. Low-noise carbon film or metal film may be used if their high-frequency performance is adequate.

The coupling capacitors, C1 and C2, must be dipped tantalums to minimize the physical size and provide good high-frequency performance. Don’t try to use aluminum electrolytics; if you do, you’re likely to end up with an oscillator. Capacitors C3 and C4 are supply bypass capacitors. High-frequency bypassing is provided by C3, with C4 providing low-frequency
I mode rig for each transceive. 2 Watts output vhf, 1 Watt uhf. For SCANNER FM, AN, etc. NF=2dB or less. Power levels from 10 to 45 Watts. Several models, (Also available for commercial bands)

FEATURES:

- SENSITIVITY SECOND TO NONE: 0.15uV (VHF), 0.2uV (UHF) TYP.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE XTAL FILTER & CERAMIC FILTER FOR > 100dB AT ± 12KHZ. HELICAL RESONATOR FRONT END TO FIGHT DESENSE & INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

RECEIVING CONVERTERS

Models to cover every practical UHF & VHF range to listen to SSB, FM, ATV, etc. NF = 2dB or less.

LOW-NOISE PREAMPS

Hamtronsics Breaks the Price Barrier!

FEATURES:

- Very Low Noise: 0.7dB VHF, 0.8dB UHF
- High Gain: 13 to 20dB. Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAsFET, Very Stable

NEW

Model LNW (") Only $19/k, $34/wired

UNF. GaAsFET Preamps with features similar to LNG, except designed for LOW COST and SMALL SIZE: only 5B/8 x 1B/8 x 3/44. Easily mounts inside many radios.

NEW

GaAsFET Pre-amp with features like LNG. Automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W. Tower trans contents incl.

ACCESSORIES

- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATOR
- COR-2 KIT with audio mixer, local speaker amplifier, tail & time-out timers.
- COR-3 KIT with "courtesy" beep!
- DTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater auto-patch, reverse patch, phone line remote control of repeater, secondary control.
- CW/KEY KITS

THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(BAND KIT WIRED)
6M, 2M, 220 $630 $880
440 $730 $980

(Also available for commercial bands)

HELICAL RESONATOR PREAMPS

Low-noise preamps with helical resonators reduce intermod and cross-band interference in critical applications. 12 dB gain.

NEW

Model TUNES RANGE KIT WIRED
LNS-144 120-175 MHz $59 $79
LNS-220 200-240 MHz $59 $79
LNS-432 400-500 MHz $59 $79

SEND S1 for Complete Catalog
(Band $2.00 or 4 IRC's for overseas mailing)

ORDER by phone or mail * Add $3 S & H per order (Electronic answering service evenings & weekends)

USE VISA, MASTERCARD, Check, or UPS COD.
bypassing. The ferrite bead, FB1, prevents the lead inductance of C4 from forming a parallel resonance with C3. Here the bead is acting like a very lossy inductance that totally destroys the Q of the C3/C4 resonant circuit. Without the bead, the parallel resonant network formed by C3 and the leads of C4 will cause the effective power supply impedance to be high at the resonant frequency. This can cause an artifact in the frequency response and in some cases can cause instability (oscillation) due to coupling into the amplifier's internal circuitry through the power supply paths.

Resistor R7 helps to decouple high frequencies from the power supply pin, improving stability with cascaded amplifiers. With its associated components, regulator U2 protects the amplifier from over-voltage damage and stabilizes operation with unregulated supplies. It too may be omitted if a good 5- to 8-volt regulated supply is available, but it's generally more convenient to provide regulation as part of the basic amplifier design.

Diode CR2 protects the amplifier from the application of a reversed power supply voltage, probably one of the more common types of damage to experimental circuits. The power input filter FL1 prevents noise from coupling into the amplifier from the power supply leads. Bead FB2 on the filter lead provides a little additional filtering of the power supply input.

choosing the correct PC board material

The 3:1 artwork for the amplifier is shown in fig. 3. This layout is tailored for installation in the enclosure discussed later; if you choose to use a different enclosure, you'll have to make some alterations to the mounting details, but don't change the basic circuitry unless you're experienced in RF PC board layout.

This board was designed for surface-mounting of all components even though only the SO-package NE5205 is a true surface-mount part. The PC board should be constructed of 1/32-inch, 2-ounce double-clad epoxy-glass material. Standard PC board doesn't make a good substrate for surface mounting because the pads will pull off easily, particularly during soldering. However, if you're careful, you can achieve quite adequate results. The only component holes necessary are those that tie to the ground plane. Since there are no component holes other than those grounded, there's no need to clear the ground plane from any of the component leads on the ground-plane side of the board. Only single-sided PC board construction is then required. A full ground plane is needed on the nontrace side, but no etching is required on the ground plane. This makes the board a bit easier to duplicate and consequently a little less expensive if you have it fabricated.

Though it's easier to have the PC board fabricated, it's actually simple enough to make using a cut-and-peel technique. A small hobby knife can be used to
Expanding Our Horizons
Introducing
Mirage/KLM 1.2–44 LBX

The first 1260 MHz to 1300 MHz
Made in the U.S.A.

- Factory Tested
- Completely Assembled
- Completely Weatherized Balun
- Also Available Soon . . .
 Power Dividers

SPECIFICATIONS

Electrical
- Band Width 1260–1300 MHz
- Gain 18.2
- VSWR Better than 1.5 to 1
- Feed Imp 50 Ohms
- Balun 4:1 Rigid Coax

Mechanical
- Beam Length 12’ 4”
- Element Length 4.5”
- Mast 2” O.D.
- Windload 1 sq. ft.

Mirage Communications Equipment, Inc.
P.O. Box 1000
Morgan Hill, CA 95037
(408) 779-7363
cut the trace outline through the cladding on one side of a precut piece of double-clad PC board and a needle-nose or heavy tweezer used to peel the unwanted cladding from the board. While peeling, use a soldering iron to soften the adhesive and heat the cladding to be removed.

PC board assembly

As I indicated earlier, the only component of this circuit designed to be surface mounted is the NE5205. The leads of the other components must therefore be bent to allow them to be mounted. **Figure 4** shows how to bend the leads of the various components so that they can be mounted. Try to follow this lead dress carefully since lead length is reasonably critical because of the high maximum frequencies of operation of this amplifier.

Although assembly of the PC board is straightforward, some care is necessary because of the tight packing of the components. You’ll need a soldering iron with a 1/16th-inch tip to prevent solder from bridging between pads. Also, be very careful when mounting the five capacitors and the regulator. These are large components and their pads can be lifted very easily from the board when soldering. Both during and after mounting these components, take care not to bend them out of position; this would put considerable stress on the mounting pad and could cause the
Table 1. Component mounting sequence.

1. NE5205 Pin 1 is at the Signetics "S".
2. C3 Above the NE5205, solder ground plane.
3. C4 Observe polarity, remember the bead, solder ground plane.
4. R3 Solder ground plane.
5. R4 Solder ground plane.
6. CR1 Observe polarity, solder ground plane.
7. C1 Observe polarity.
8. C2 Observe polarity.
9. R1 Solder ground plane.
10. R6 Solder ground plane.
11. R2
12. R5
13. R7
14. R8
15. R9 Solder ground plane.
16. REG1 Observe mounting orientation.
17. C5 Observe polarity, solder ground plane.
18. C6 Observe polarity, solder ground plane.
19. CR2 Observe polarity, leave anode lead full length.

pad to become separated, particularly after soldering. When soldering to the ground plane, keep the solder buildup to a minimum, since there's very little space under the board in the enclosure.

Figure 5 shows the assembly drawing of the PC board. Because it's probably the most difficult of the board components to mount — and because it will be partly covered by other components — mount the NE5205 first. The pin next to the "S" in Signetics is pin 1. The other components must be mounted in the order shown in table 1 because of the tight packing. After mounting the amplifier, mount C3 over the top of the amplifier with its leads straddling the NE5205. Then mount the remaining components in the order shown in table 1, noting the associated comments.

When all the components have been mounted, bend four pieces of the resistor leads that were cut off during assembly into a "U" shape as shown in fig. 4 and insert them from the ground plane side into the four pairs of holes at the corners of the board and solder them to the ground plane side of the board. Make sure that the portion of each of these leads that's on the ground-plane side of the board is flush against the ground plane. They will be used to ground the board and hold it in the box. Finally, solder pieces of cut-off resistor leads to the input and output pads (again, bend as shown in fig. 4).

After the board is assembled, clean it in isopropyl alcohol; a 91 percent solution — probably available from your local drug store — works best. Don't use denatured ethanol because the denaturing agent isn't known. I prefer alcohol to trichloroethylene for PC board cleaning because it presents no known health hazard. But it is flammable, so take appropriate precautions.

Figure 6 shows the assembled PC board before mounting in the enclosure.

eavement modifications

Enclosures for small RF projects are always a problem. The one I used for this amplifier was a small die-cast chassis box. This is a reasonably convenient enclosure; only two additional holes must be added for the power entry filter and the ground terminal. Figure 7 shows the details of the modifications to the box, the two RF connectors, and the mounting screws. A word of caution here: don't try to cut the screws with a pair of diagonal cutters; the screws are very hard and trying to cut them will damage the cutters. The tips of the screws will break off easily enough if you use a pair of pliers to hold the tip while you bend the screw body with your fingers. Carefully lay out the holes using a precision scale and scribe. Center-punch the hole positions before drilling to prevent the drill from "walking." Tap the holes carefully; the tap is very brittle and will break with only slight side pressure.
While tapping, use plenty of oil on the tap to prevent binding. Every turn or two, back the tap out to clear the chips. This will also help prevent binding.

final assembly

Now for the final task of putting it all together. With the connectors and power filter removed from the box, place the assembled PC board into the box, component side up and oriented so that the regulator is at the side of the box with the power entry filter. Loosely mount the input and output connectors, using only the upper two holes and the two short screws provided with the enclosure. As you place the connectors on the enclosure, be sure that the input and output connecting leads fit inside the connector holes. Now insert the longer screws into the bottom holes and make sure that they’re on the component side of the PC board and between the pairs of leads coming up from the ground plane. Tighten all the screws. Now, bend the pairs of leads near each lower screw over the screw, laying them in the relief at the end of the screw. Solder all four screws to the wires and PC board. You’ll need a larger soldering iron than you used for the board assembly to get enough heat for a good solder joint. Make sure that the tip of each screw has a good solder bead to the PC board; the PC board is grounded to the box only at these four places. Try to avoid getting solder in the screw threads so that the screws can be removed if you have to remove the board for repair later on. Solder the input and output leads to the connectors. Mount the ground terminal and power entry filter. If you cannot find a ground terminal, use a 4-40 brass screw about 1/2 inch long. Place a nut on the screw and screw it into the box until it’s just penetrating the inside by a thread or two. Then tighten the nut down against the box to lock the screw in place. Place the bead, FB2, over the filter lead and attach the lead of CR2 to the power filter. Hold the body of CR2 with needle-nose pliers while bending its lead to prevent stressing its PC board mounting pad. Trim off the excess filter and diode lead.

Do a final cleaning by filling the assembled box with alcohol and letting it sit for a few minutes. Place your hand over the open top and shake the unit to stir the alcohol. Pour it out. Rinse with a little more alcohol and pour that out. Let the alcohol evaporate for a few minutes and then fasten the cover.
Figure 8A shows the completed amplifier assembly with the cover removed; fig. 8B shows the completed assembly.

Performance

Now for the proof test: how well does the amplifier work? If you followed the assembly instructions carefully, it should work rather well. Figure 9 shows the frequency response of the unit that I built. The gain was 20 dB with a lower 3-dB point of 270 Hz and an upper of 608 MHz with usable gain to beyond 1.2 GHz. The bandpass flatness in the bandpass was better than ± 0.5 dB. The wideband noise figure was about 5 dB — not an LNA but certainly quite good. The output power at the 1-dB compression point at 100 MHz was +6.7 dBm, and the compression was reasonably constant with frequency up to about 600 MHz (the upper 3-dB cutoff frequency). The total supply current was about 35 mA and the minimum operating potential about 10 V. Figure 10 shows the S-parameters S_{11} and S_{22} for the completed unit. These parameters are a ratio of the forward and reflected power at a given port. In fig. 10 S_{11} is below about –20 dB up to about 500 MHz. The S_{11} parameter in this measurement was made at the input port. The –20 dB value shows that the power reflected back from the input is 20 dB below the power incident at the input port. That implies that the input impedance is reasonably close to the 50-ohm impedance of the test system; no power is reflected from a perfectly matched load. With a 20-dB return loss, the input impedance is within about 0.5 ohm of the characteristic 50-ohm impedance. S_{22} is the output port measurement. Up to about 500 MHz the reflected power from the output port is more than about 20 dB below the incident power at the output port. In this S_{22} measurement, power is actually applied to the output and the reflected power measured. So the output impedance is also reasonably close to 50 ohms (within about 0.5 ohm).

Conclusion

This amplifier, if carefully constructed, provides very good performance for general RF experiments and RF projects where a relatively low cost, stable, low-noise, wide-bandwidth gain block is needed. The characteristics of the NE5205 make it a good choice for this application and the recommended circuit design assures both RF and DC stability as well as protection from typical experimental abuse. The recommended packaging provides good RF shielding and isolation, assuring stable, noise-free operation in most common RF environments. It is also relatively easy to construct. This amplifier should be a very useful addition to your collection of general RF amplifier designs.

References

1. Signetics NE5205 data sheet, January, 1985, Signetics Corporation, 811 East Arques Avenue, P.O. Box 3409, Sunnyvale, California 94088-3409.
2. Newark Electronics, 277 Fairfield Road, Fairfield, New Jersey 07006.
SAVE $7.05 with HOME DELIVERY (one year newstand cost $30.00)

- 1 year 12 issues $22.95
- 2 years 24 issues $38.95
- 3 years 36 issues $49.95

(U.S. ONLY)

Payment Enclosed
Bill me later
Check here if this is a renewal

(subscribe to Ham Radio)

CALL NOW AND PLACE YOUR ORDER ON OUR TOLL FREE ORDER LINE
1 (800) 341-1522
8 AM - 9 PM EDST Orders Only
Have your credit card ready.

For other information call Ham Radio direct
(603) 878-1441 8 A.M. - 4:30 PM

Name __________________________
Address _________________________
City _____________________________
State ___________ Zip ____________

Please allow 4-6 weeks for delivery of first issue.

FOREIGN RATES: Europe, Japan and Africa, $37 for one year by air forwarding service. All other countries $31 for one year by surface mail.
The BEST is still "made in U.S.A."

Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty • prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE
B23 2W in = 30W out
(useable in: 100 mW-5W)
B108 10W in = 80W out
(1W = 15W, 2W = 30W) RX preamp
B1016 10W in = 160W out
(1W = 35W, 2W = 90W) RX preamp
B3016 30W in = 160W out
(useable in: 15-45W) RX preamp
(10W = 100W)

220 MHz ALL MODE
C106 10W in = 60W out
(1W = 15W, 2W = 30W) RX preamp
C1012 10W in = 120W out
(2W = 45W, 5W = 90W) RX preamp
C22 2W in = 20W out
(useable in: 200mW-5W)

430-450 MHz ALL MODE
D24 2W in = 40W out
(1W = 25W)
D1010 10W in = 100W out
(1W = 25W, 2W = 50W)

WATT/SWR METERS

- peak or average reading
- direct SWR reading
MP-1 (HF) 1.8-30 MHz
MP-2 (VHF) 50-200 MHz

Available at local dealers throughout the world.

COMMUNICATIONS EQUIPMENT, INC.

16890 Church St., Morgan Hill, CA 95037, (408) 779-7363
the grounded-grid amplifier

During the last decade a quiet revolution has taken place in Amateur Radio — the vacuum tube has virtually disappeared from the ham shack. I can’t think of a new Amateur receiver, exciter, or transceiver using vacuum tubes that’s sold in today’s market.

But it’s a different story in high-power, high-frequency amplifiers. In these, the vacuum tube remains supreme, in spite of several attempts to market a solid-state kilowatt amplifier. Such a device simply isn’t cost-effective; I doubt that a practical 2-kW (so-called) solid-state linear amplifier will be available at a modest cost in the near future.

This leaves the power tube as the available high-power device. Today it’s primarily a high-μ triode in a cathode-driven circuit (fig. 1) that’s the popular choice for high-frequency SSB and CW service.

This circuit is ideal for Amateur service. It has good power gain and usually requires no neutralization in the HF region. Furthermore, it’s hard to overdrive, and a certain portion of the drive power shows up as “free” power in the output circuit. The linearity of the grounded-grid amplifier is quite good and, all in all, it’s a hard act to beat.

The circuit may be operated either as an amplifier or an oscillator depending on tuning. The tube grid is at (or near) RF ground potential and the driving signal is applied between cathode and ground. In amplifier service, when the cathode is driven positive by the exciting signal (with respect to the grid), the plate becomes more positive with respect to the cathode and also with respect to ground. In effect, the instantaneous plate voltage is developed in series and in phase with the exciting signal voltage. The driver and amplifier may then be considered as operating in series delivering power to the load (see fig. 2).

In the better-designed cathode-driven amplifiers, a tuned circuit is used in the cathode to improve the regulation of the driver, to provide proper termination of the driver over the operating cycle, and to complete the plate circuit RF return path to the cathode of the amplifier. If the tuned cathode circuit is omitted, the various tasks fall upon the output circuit of the exciter. Many solid-state exciters cannot stand this set of operating conditions and may exhibit instability and undesired oscillation. The operator may jump to the conclusion that the amplifier is oscillating even though the problem is really in the exciter.

neutralize the grounded ground amplifier?

In the HF region, most grounded-grid amplifiers don’t require neutralization because the feedback path from plate to cathode is small. However, the feedback path does exist and some Amateurs have discovered that the grounded-grid amplifier can become unstable and tricky to tune, especially on 10 meters and above.

It’s easy to determine the degree of unwanted feedback in your amplifier. When fully loaded and tuned with carrier injection, maximum power output, minimum plate current, and maximum grid current should all coincide at one setting of the plate tuning capacitor. What? This doesn’t happen in your amplifier? Maximum power output and
fig. 3. Inductive neutralization of cathode-plate feedback circuit. Resonant circuit is tuned to operating frequency.

fig. 4. Bridge neutralization of cathode-plate feedback circuit.

fig. 5. Voltage (e_g) develops across internal grid lead inductance which can increase or decrease driving voltage, e_p.

fig. 6. Below self-neutralizing frequency of tube, series inductor shifts point of self neutralization to operating frequency.

The grid isn’t truly at ground, because of the inherent grid lead inductance and other factors, a voltage may appear on the grid which can either increase or decrease the driving voltage. With sufficient unwanted grid voltage of the proper phase, the cathode-driven stage may oscillate, even though the tube has been neutralized.

There is, however, a certain frequency at which the two feedback paths tend to be self-canceling. This is termed the "self-neutralizing frequency" of the tube and is usually found in the lower portion of the VHF band. This frequency is determined by physical tube size and the internal length of the conductors and elements within the tube.

Below the self-neutralizing frequency, the tube can be neutralized by the addition of a small inductance in the grid-to-ground path (fig. 6). Above this frequency, the tube can be neutralized by the addition of a series capacitance (fig. 7). Each of these neutralizing circuits is frequency-sensitive and the circuit must be adjusted if an appreciable change in operating frequency is made.

VHF neutralization

In the VHF region (above 30 MHz) a second feedback path must be considered in amplifier operation. This path involves the grid-to-plate capacitance, the cathode-grid capacitance, and the grid lead inductance (fig. 5). Because
New rigs and old favorites, plus the best essential accessories for the amateur.

NEARLY NEW

- New KX440 amateur radio (440 MHz)
- New Rig for Sale... (details not provided)
- New Rig for Sale... (details not provided)
- New Rig for Sale... (details not provided)

ACCESSORIES

- B & W VHF/18 Meter Antenna Tuner

USED EQUIPMENT

- Used Equipment (details not provided)

SERVICES

- Alignment, any model rig

STOCK ITEMS

- IC28A 1962... (details not provided)

STOCK ITEMS CALL

- Stock Items Call...

POLICIES

- Minimum order $10.00.
- Mastercard, VISA, or C.O.D.
- All prices FOB Houston, unless noted.
- Prices subject to change without notice.

BOOKS

- We stock SAMS, TAB, APRIL, HR 56B, and others.
- We stock SAMS, TAB, APRIL, HR 56B, and others.
- We stock SAMS, TAB, APRIL, HR 56B, and others.
- We stock SAMS, TAB, APRIL, HR 56B, and others.
- We stock SAMS, TAB, APRIL, HR 56B, and others.

PACKET POWER

- ACE PK 232, etc.

SURPLUS

- 24 Pin Solderless dip sockets...

STOCK ITEMS

- AMTRONICS X 100-

STOCK ITEMS

- AMTRONICS X 100-

STOCK ITEMS

- AMTRONICS X 100-
a docile beast

In general, neutralization isn't required in Amateur amplifiers using cathode-driven circuitry below 30 MHz. The cathode-driven amplifier is a docile beast, with relatively low power gain when triode tubes are used and amplifier shielding is adequate. Amplifier instability at the operating frequency can often be cured by careful attention to feedback paths external to the amplifier (proper bypassing of primary power leads) and by ensuring that the exciter and amplifier are operating at the same ground potential. An extra-short, heavy ground strap between exciter and amplifier will often cure an unstable amplifier.

amplifier parasitics

Much has been written about amplifier parasitics. Some of it is true. As I said before, the cathode-driven amplifier is docile, and parasitics, when they occur, are usually mild (amplifier efficiency when oscillating in a parasitic mode is very low) and commonly above the self-neutralizing frequency of the tube.

A sure-fire cure for a parasitic is to load the circuit at the parasitic frequency until the amplifier refuses to oscillate. The tube lead common to all parasitic circuits is the plate; this is where parasitic suppression should take place (fig. 8). A simple resistor-inductor circuit will do the job. The inductor places the resistor across an appreciable portion of the plate lead at the parasitic frequency and thus loads the circuit. At the operating frequency, the resistor is across only a small portion of the electrical length of the plate lead and is almost "invisible." Too many turns in the inductor will couple the resistor too tightly at the operating frequency and the resistor will dissipate a portion of the amplifier's fundamental power and will probably overheat. If the parasitic is truly suppressed, then there will be no parasitic power. Too few turns in the inductor and the suppressor won't do its job. Cut-and-try is the keynote to success in this operation.

the "Rocky Point" effect

The vacuum in a modern power tube is on the order of 10 Torr (millimeters of mercury) in order to maintain proper cathode (filament) emission and to provide adequate insulation between the electrodes. In spite of the high vacuum employed, it sometimes happens that the insulation between the anode and other electrodes suddenly breaks down, with flash-over occurring inside the tube.

This phenomenon has been referred to as the "Rocky Point" effect, after the RCA transmitting site where it was first observed in the 1930s. The effect can occur at low voltages and in relatively small tubes. Though it's not attributable to a gradual deterioration of the vacuum, it can be brought about by a small quantity of ions liberated from an electrode. Ionization causes an electrical discharge, whereupon the ions disappear, either because of absorption or action of the getter within the tube. If the equipment is power-supply limited, the discharge usually causes no damage. However, most Amateur equipment makes use of a high-capacitance filter in the power supply, and the energy of this capacitor is "dumped" into the flashover. Since the tube, at that instant, forms a virtual short circuit, the discharge current can run very high, damaging the tube electrodes, metering circuits, and associated components.

The flashover is very sensitive to a drop in plate potential. The easiest way to control it is to insert a small series resistor in the plate supply (fig. 9). The voltage drop across the resistor during a flashover will lower the plate voltage and extinguish the vacuum arc.

Without the resistor, substantial damage may occur to tube and amplifier components. With the resistor in place, in the case of a rare flash-over, the operator will be aware only of a soft "pop" or "snap" and amplifier operation will continue as before. The resistor limits the current while the energy in the filter capacitor is being dissipated. In most cases a 50-ohm, 20-watt resistor incorporated in the B-plus lead after the filter capacitor (either in the amplifier or in the power supply) should provide adequate protection. Inexpensive and easy to install, the resistor can protect a power tube worth many hundreds of dollars.

The resistor is in a high-voltage circuit and should be adequately insulated from ground. Mounting it on ceramic insulating pillars is a good idea.

filament voltage

It's a good idea to check your filament...
voltage at the socket in a cathode-driven amplifier. A voltage drop may exist across the filament choke and thus reduce available filament voltage at the tube. The voltage should be checked with an RMS-responding meter (iron-vane type, for example) and not with the garden-variety volt-ohmmeter which, more often than not, employs a DC meter and a series-connected diode rectifier to measure AC voltages. This combination is often inaccurate as the diode ages and its response to the rough waveform of the common AC primary line is questionable.

Filament voltage should be held to the tube manufacturer’s specification limits, generally ±5 percent of the designated voltage. For Amateur service, it is generally prudent to remain on the low side of the voltage limit, rather than on the high side. (I generally run my tube filaments about 2 percent below the suggested operating voltage.)

RF feedback

In some cathode-driven amplifiers, a small degree of negative RF feedback is incorporated. This absorbs some excess drive power, tends to make the amplifier more stable, and improves the intermodulation distortion figure slightly. The feedback circuit is made up of the plate-to-grid capacitance, which is set by the equipment manufacturer. A representative circuit is shown in fig. 10. Feedback is about 2 to 3 dB in the case illustrated. Decreasing the grid-to-ground capacitance raises the feedback level, but also tends to degrade the grid-filament isolation at the operating frequency. A happy compromise must be found for the circuit to do its job. In the case of an amplifier using two 3-500Z high-

found for the circuit to do its job. In the case of an amplifier using two 3-500Z high-

power triodes, 600 pF seems to be satisfactory. This is accomplished by placing a 200-pF capacitor at each grid pin to ground. The capacitors are shunted by an RF choke to complete the DC ground return for grid current. The choke has nothing to do with the operation of the RF circuit.

summary

The grounded-grid (cathode driven) configuration is admirably suited to Amateur service in the HF and VHF regions and the circuit performs well in a properly designed and operated amplifier.

the EME directory

A second printing of the EME 144 MHz Directory lists active moonbounce stations, their addresses and locations, equipment used, and other pertinent information. For a copy, send five first-class stamps (or IRCs) to me at: Varian EIMAC, 301 Industrial Way, San Carlos, California 94070.

ham radio
A4, with wideband performance, easy installation, 4 band operation and moderate price will give you more enjoyment and satisfaction from your hobby. You'll like the 40 meter operating possibilities with the A744 add-on kit.

A4 is designed with you in mind because it has fewer parts to assemble, less weight and minimum wind load on your tower. With the 10' boom, A4 gives excellent gain and front-to-back ratio. If your interest is rag chewing, DX-ing or contesting, A4 is the perfect 4 band beam for you.

MODEL A4 10, 15, 20 METERS

MODEL A744 40 METER ADD ON KIT

SPECIFICATIONS

F/B ratio 25 dB, SWR 1.2-1 bandwidth 500 kHz, boom 18 ft., longest element 32 ft., wind area 5.5 ft.², turn radius 18.4 ft., weight 37 lbs. Excellent gain.

MORE CONTACTS, MORE SATISFACTION WITH CUSHCRAFT BEAMS

More contacts, less interference and a better signal at the receiving end are yours with this 2 element 40 meter Skywalker Yagi. The computer design maximizes gain and reduces side lobes. The design also gives low SWR with excellent bandwidth.

Holder of the North American contact record. This compact two element antenna has quickly become "the most wanted" 40 meter beam. Make it your first choice.

MODEL 40-2CD 40 METERS

SPECIFICATIONS

F/B ratio 20 dB, boom 23 ft., longest element 42 ft., beamwidth 70°, 1.5-1 bandwidth 180 KHz, turn radius 24 ft., windload 6.3 ft.², 1.5-1 bandwidth 180 KHz, turn radius 24 ft., windload 6.3 ft.², weight 40.7 lbs. Excellent gain.

P.O. BOX 4680 48 PERIMETER ROAD
MANCHESTER, NH D08 USA/603-627-7877
TELEX 953-166 CUSHSIG MAN

More Details? CHECK — OFF Page 110
Imagine having a “big gun” 160-meter station — but with no antenna consuming your back yard. Imagine running 1 kW on 6 meters — with no fear of TVI. Imagine DXing into the next state on 1296 MHz — but the only rig at your QTH is a 450-MHz handheld! All this is possible using a remotely controlled station, commonly known as a “Remote Base” or simply a “Remote.”

A Remote may consist of as little as a simple wireline control link operating a single-channel 2-meter rig, or it may be a complex array of computer-controlled gear, covering HF through microwave and controlled via 450 MHz-FM. Ideally, it’s positioned on top of a mountain or tall building, like a repeater, but it could be located anywhere — even in the trunk of a car!

Possibly the biggest advantage of a Remote is that it allows antennas to be located at a better site than may be available at home. Many housing developments, for example, don’t allow outside antennas. And even where they’re allowed, TVI may prohibit HF or 6-meter operation at appropriate transmitter power levels. Or perhaps you just need to get your antennas out of the “RF gulch” you’re trapped in.

But a better antenna location isn’t the only reason to go Remote. A Remote allows several hams to consolidate their resources into one superior station, accessible to all. A group of operators then needs to purchase only one HF rig, one 1296-MHz station, and a single antenna farm instead of duplicating their efforts individually at great expense.

The sharing of talents is valuable, too. In any group of hams there are likely to be those with specialized knowledge of RF, digital communications, and antennas, for example. Working together and pooling resources, each can contribute his or her skills toward building a station far superior to what each might accomplish separately.

Located on a 2000-foot mountain near Ventura, W6ORE Remote (fig. 1), the station described in this article, has been operating successfully for ten years. Using a 450-MHz FM control channel, this Remote allows the users to operate an HF rig covering 160 to 10 meters and an FM VHF/UHF station covering 144 to 148 MHz, 220 to 225 MHz, and 440 to 450 MHz. Also controlled are an X-band beacon and a programmable speech synthesizer, along with other miscellaneous functions.

Every one of these items can be controlled from the user’s home QTH or automobile (or boat, in one case), with a rig as simple as a handheld equipped with a rubber duck antenna and a touchtone pad.

The HF rig can be set directly to any frequency, or scanned or stepped up or down the bands in 100-Hz steps. A speech synthesizer reads out the frequency and reports if the transmitter is becoming overheated, or if a band edge has been reached while scanning, and to what portion of the band (Novice, General, Advanced, or Extra) the operator is tuned.

The VHF/UHF station, a Drake UV-3, can also be directly set to any frequency, scanned, or stepped up or down. Repeater splits are set automatically, but any odd split, even cross-band, is possible. All of this is controlled, “on-the-fly” with just a few keystrokes on a touchtone pad!

the computer

As you may have guessed, a computer (fig. 2) controls the system. Indeed, the heart of this Remote is a custom designed Z80™ computer built and programmed by Bob Schellhorn, W6ORE. The Z80 CPU was chosen for its rich instruction set and extensive I/O (Input/Output) capacity.

By Steve J. Noll, WA6EJO, 1288 Winford Avenue, Ventura, California 93004-2504
The software was written entirely in assembly language for speed and efficient use of memory. The software, known as "firmware" at this point, is contained in a 27128 UV EPROM (ultra violet light erasable, programmable, read-only memory). Transient and changeable information is stored in a 6264 CMOS RAM (complementary metal oxide semiconductor random access memory).

The Z80 and memory are built on an S-100 breadboard, although the S-100 bus protocol isn't used. S-100 cards afford generous wiring space and a 100-pin edge connector provides for plenty of I/O and allows the card to be easily removed for modifications (see fig. 3).

The CPU card is enclosed in an RF-tight box fashioned from un-etched copper-clad printed circuit board. Custom RF-tight enclosures constructed with surplus printed circuit board are often cheaper than store-bought aluminum chassis, which also never seem to be available in just the right size. An RF-tight CPU box is a must, as computers are notorious for generating excessive radio "trash." And in this case, the computer is mounted within inches of several radio receivers.

The Z80 runs at a fairly low speed to minimize RFI. The I/O is further slowed by a combination of special software and hardware techniques and brought out of the CPU box using feedthrough capacitors. A card cage receives the CPU I/O lines and distributes them to various 5 x 7-inch I/O cards. The card cage isn't shielded, but because the I/O is slowed at this point, no noticeable RFI is generated.

The I/O cards provide the digital and audio interfaces to the HF rig, the VHF/UHF rig, the 450-MHz control up-
Now you can communicate vital information even when the station you are calling is not on the air — with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you - any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your callsign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.

Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging.

- Create messages just by talking. Message Master's 'real-voice' technique saves YOUR VOICE in digital memory to deliver messages in your own voice, language and dialect.
- Mailbox-style operation gives individual message delivery service to 100 system users.
- Easily added to any repeater or base station for remote operation with only four connections.
- Special features include callsign identifications, tail messages, and bulletin messages.
- Digital message storage provides instant playback of stored messages.
- Modular memory meets your exact needs from 2 to 8 minutes of total message storage.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical price.
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.

KENDECOM INC. MICRO CONTROL SPECIALTIES

23 Elm Park
Groveland, MA 01834
(617) 372-3442
link receiver and downlink transmitter. One card contains the speech synthesizer, which is so necessary to the operation of such a complex system.

a speech synthesizer is a must

The speech synthesizer is built around the Votrax SC-01 speech chip. This is a phoneme-based chip, which makes it completely user-programmable. It doesn't provide the latest, state-of-the-art high-quality speech; in fact, it sounds rather like a robot. However, it's far superior to many other speech chips in that it can say absolutely anything. No compromises (such as spelling out words not in the limited vocabulary common to other synthesizers) have to be made. It's also very memory-efficient. Only about five phonemes, or five bytes of memory, are required to store an average word.

the HF station

The HF rig (figs. 4 and 5) is an ICOM IC-701, a model no longer in production but a natural for computer control because of its 24-pin connector for plugging in a remote control unit. Through this connector the computer can set frequencies, scan or step in 100-Hz increments, and transmit. The computer keeps track of the current frequency, the band edges and the license class boundaries. Of course, frequency can be read at will (a single touchtone on the uplink) and is announced politely on the downlink — i.e., “Fourteen-point-three-one-four.”

All is not perfect, though. Outputs weren't provided for mode switching (USB/LSB) or for over-temperature warning. Minor surgery provided these needed outputs — two, in fact, for the over-temperature alert. When the rig's fan comes on, the speech synthesizer announces **"Overheat warning"** on the 450-MHz downlink. If the PA temperature continues to rise, the transmitter shuts down and the synthesizer announces, **"Overheat shutdown."**

A ground-mounted Butternut vertical allows 160- to 10-meter coverage without an antenna tuner. Because the Remote is located on cattle grazing land, a small coral was built around the vertical to ward off any itching Elsies. A 160-meter wire antenna is planned for the future; there will be no problem in having the computer switch over automatically when a 160-meter frequency is selected.

the VHF/UHF station

Another out-of-production rig, a Drake UV3, provides the 144/220/450-MHz coverage. This rig was designed with a removable control head to allow the RF section to be located in the trunk of a car, while the head is mounted under the dash — again, a wonderful opportunity for easy computer control. The removable head is replaced by a homebrew interface box allowing the computer full access to frequency setting and band and power level changing.

The VHF/UHF antennas are a simple ground plane on 2 meters and short KLM log-feed Yagis for 220 and 450 MHz. Luckily, most of the action is in one direction from the Remote site so that directional (gain) antennas can be used. The short log-feed Yagis afford wide bandwidth and a not-too-narrow beam shape (see fig. 7).

the control link

Primary to the operation of the Remote is the 450-MHz uplink, which allows controlling and talking through the
HF and VHF/UHF stations. The 450-MHz downlink pipes the HF/VHF/UHF receive audio back to the user.

The uplink receiver is a Yaesu 708R, somewhat modified to accommodate a Motorola squelch chip. The downlink transmitter is a cannibalized ICOM IC-30. Each connect through a four-cavity Phelps Dodge duplexer to a homebrew Quagi. All of the users live and work in the same general direction from the Remote site, which permits the luxury of using a high-gain directional link antenna.

some legal points

The Remote control requirements of Part 97 are often violated or ignored by remotely controlled station users. Because the regulations, which are quite complex and often confusing, require careful study for compliance, some definitions are in order:

- **Auxiliary operation**: radio communication for remotely controlling other amateur radio stations (97.31). All amateur frequency bands above 220.5 MHz, except 431-433 MHz and 435-438 MHz, are available for auxiliary operation (97.86d).

- **Remote control**: manual control, with the control operator monitoring the operation on duty at a control point located elsewhere than at the station transmitter, such that the associated operating adjustments are accessible through a control link (97.3m2).

- **Control link**: apparatus for effecting remote control
between a control point and remotely controlled station (97.3n).

Thus, a station can be remotely controlled through a control link; this is considered auxiliary operation. Note that Part 97 never uses the popular terms "Remote" or "Remote Base."

Of course, "The frequencies available for use by a control operator of an amateur station are dependent on the operator license classification of the control operator . . . " (97.63c). Even if a Remote is licensed to an Extra, a General class control operator is still restricted to the General bands.

On identification: . . . a station in auxiliary operation shall transmit the word "auxiliary" at the end of the station call sign (97.84d2). So on the control uplink, I identify as "WA6EJO AUXILIARY." The control downlink identifies itself as "W6ORE AUXILIARY." When transmitting through the Remote's HF station, however, the only required ID is that of the remotely controlled station licensee.

On control link security: A station in auxiliary operation shall be used only to communicate with stations shown in the system network diagram (97.86d). To comply with this regulation, a non-member of a Remote breaking into the link should be informed that it is a control link and politely asked to leave.

On remotely controlled station security: Each remotely controlled station shall be protected against unauthorized station operation, whether caused by activation of the control link, or otherwise (97.88g). "Automatic control" is not advisable.

can a remote be used for gaining contest points?

Use of repeaters is usually prohibited for contesting, but a Remote is merely a station operated by remote control, not a repeater. The ARRL has affirmed this and does not differentiate between Remote and "regular" station contacts. Note that users of a given Remote can't make contest points under their own calls. The transmitter(s) of a Remote are licensed to the licensee of the Remote and therefore bear only his or her call sign, not each individual user's.

operating particulars

Nowadays, most 450-MHz rigs include built-in subaudible tones (PL). The ICOM IC-04AT is one example. All PL frequencies are built in and merely selected from the keyboard. The result is increased convenience but at the cost of reduced security. A remotely controlled station isn't very secure if left unattended with only PL protection. And Part 97 requires that Remotes be well protected.

For that reason the W6ORE Remote is left off when not in actual use. A user turns the Remote on by sending a touchtone code on the uplink and is responsible for...
operation of the station until turned off, or until control is passed on to another user. On turn-on, and every 10 minutes thereafter, the synthesized voice IDs the downlink, “W6ORE Auxiliary.” At this point, the user can enter modes for controlling the VHF/UHF station, the HF station, or miscellaneous functions.

If VHF/UHF station control is selected, any frequency that the UV3 can cover can be entered via a touchtone pad. Any split, normal, reverse, or odd can be set. Of course, all frequencies and split settings are announced on the downlink by the speech synthesizer. If the UV3 transmitter is enabled, a beep is sent on the downlink every time the user drops his or her uplink carrier to serve as a reminder that the transmission is occurring on another frequency.

Now the computer really proves its worth. Each user is assigned a “scan memory.” Each scan memory holds 32 “channels,” just like a regular scanner. A user can place any mixture of 2-meter, 220-MHz, and 450-MHz frequencies in his or her scan memory. After turning the Remote on, the user needs to send only a single touchtone on the uplink to activate the scan memory and the UV3 to begin scanning! Scanning, of course, stops on a “talking” channel, but channels can also be “locked out” temporarily or permanently with a keystroke.

Operation of the HF rig is similar. A frequency can be entered directly with touchtones. Then a touchtone code starts the IC-701 tuning up, or down, in 100-Hz steps. Keying a mike on the uplink briefly will reverse the scan direction and slow it down. Keying the mike a little longer will stop the IC-701 from tuning. At any time a certain touchtone will cause the speech synthesizer to announce the current frequency being monitored. Another touchtone will single-step the rig in 100-Hz steps; yet another will toggle the rig between WWV and the last frequency.

Of course, none of these features are built into the HF rig. The computer controlling the Remote has added them. In addition to the user scan memories, the computer provides 90 single-channel “slots.” Each slot can hold any VHF, UHF, or HF frequency. Simply entering a slot number turns on the appropriate rig and sets it to that frequency. For example, one slot holds the 20-meter Maritime Mobile net frequency, a few slots are assigned to local 2-meter repeaters, and one series of slots contains all of the HF W1AW voice bulletin frequencies.

HF apprehensions

There certainly were apprehensions about Remote operation of the HF rig before it was installed. What would tuning a rig several miles away be like without having a frequency display to watch or even a knob to grasp? Would we have to operate duplex, tuning on the uplink while listening on the downlink? The concept of blind operation and computer control was first tested by connecting the HF rig to the author’s NorthStar Horizon S-100 computer. A program in BASIC took commands from the computer keyboard and sent them to the rig through parallel ports. It worked great. There were no problems in operating the rig without seeing its front panel. With a little practice a sideband signal could be scanned up to and stopped directly on.

There is a utility mode that allows users to control a multitude of items. Uplink squelch characteristics can be adjusted. The Remote’s battery charger and a 140-mW X-band beacon can be controlled. (See fig. 8.) The speech synthesizer can be programmed on the phoneme level to say any word or message. Any portion of the EPROM memory can be read (the speech synthesizer reads out the locations in hex). The static RAM can be read and also written to. The speed that the HF rig tunes can be adjusted. These are just a few of the things that can be controlled.

keeping the commands simple

Even though there are several dozen different touchtone commands, the majority of the most used are only single digit. This makes life much easier. There are no vast tables of long commands to be memorized. This is achieved mainly by dividing major operating areas,
i.e., HF, VHF/UHF and utility, into separate "modes." The touchtone decoder has to be fairly good to keep uplink voice falsing down when single-digit codes are used. The Mitel MT8860/8865 chip set is used.

bells and whistles (figs. 9 and 10)

A weather station addition is now nearing completion. It is built around a National ADC 0817 16-channel analog to digital (A/D) conversion chip. The chip has 16 analog inputs and an 8-bit digital output. It is quite easy to connect to a computer. The computer needs to send the chip a 4-bit address to set the chip to read the desired channel. The chip then measures the voltage on that channel and presents the data in an 8-bit, 0-255 format. It is then up to the computer to multiply or divide this number by a constant to come up with a meaningful measurement. For example, the home-made anemometer generates 0.027 volt/mile/hour. An op amp amplifies this signal by 2.47. The A/D converter sensitivity is 0.02 volt/bit. Thus, if a 10 mph wind is blowing, the A/D will put out \((10 \times 0.027 \times 2.47) / 0.02 = 33\) rounded. The computer then multiplies the A/D output by 0.303 to get 10 mph, which is announced by the speech synthesizer on command. Also measured are inside and outside temperature, humidity, AC line voltage, battery voltage, charger current, and HF antenna VSWR.

summary

Building a remotely controlled station is unquestionably a major project, but the rewards are well worth the effort. Computer control and synthesized speech feedback are a must for all but the simplest systems. There is commercial hardware available for remote control, but you might want to consider "rolling your own" to gain the ultimate in versatility.
SALE! $549
55' TUBULAR TOWER

SALE! $899
Handles 10 sq. ft. at 50 mph
Pleases neighbors with tubular streamlines look

SPECIAL NEW PRICE!
PTENSV5

KENWOOD HAND-HELDs
TH-21AT/31AT/41AT
Compact. Only 2.4"W, 4.74"H, 11"D. Outstanding performers in an ideal package size.
TR-2600A/3600A
Deserves its well-earned reputation as the leading HT

CALL FOR PRICE

KENWOOD SM-220
STATION MONITOR
10 MHz Scope

SPECIAL NEW PRICE!

ELH-230D AMPLIFIER
2 METER 3 IN/30 OUT
AT GREAT, LOW PRICES

ASTERISTIC

ICOM IC-2KL
LINEAR AMPLIFIER
• Auto Band Switching
• Broadbanded
• HF 500 Watt Linear

ICOM IC-751A
HF TRANSCEIVER

ICOM IC-37A
CALL FOR PRICE

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

FREE SHIPPING

Tell 'em you saw it in HAM RADIO!
Superior Grade General Coverage Receiver

SALE! CALL FOR PRICE

NEW

ICOM IC-R71A

ICOM IC-3200A DUAL BANDER

Covers Both 2 Meters & 70 cm

LATEST EDITION

1.2 GHz Transceiver:
The First Full-featured 1240-1300 MHz Transceiver

AT GREAT LOW, LOW PRICES

2-METER MOBILES
IC-28A (25w) \ IC-28H (45w)

SPECIAL NEW PRICE!

ICOM IC-28A/28H

The Latest in ICOM's Long Line of HF Transceivers

CALL FOR LOW, LOW PRICE

ICOM IC-735

ICOM IC-R7000

25 MHz-1300 MHz

IN STOCK FOR IMMEDIATE DELIVERY

HF TRANSCEIVER

SPECIAL NEW PRICE!

ICOM IC-751A

NEW

ATLANTA, GA 30304
6071 Buford Hwy (404) 766-2000

NEIGHBORHOOD SPECIALS

FREE DELIVERY

NEW

INCREDIBLE NEW PRICING

NEW

ICOM IC-02AT IC-02AT IC-04AT IC-04AT IC-3AT IC-3AT

COAST TO COAST

To Our Customers

CALL TOLL FREE (800) 854-6046

Toll free including Hawaii. Phone Hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest stores. California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
We're Building the West's Largest Convention of Amateur Radio Operators

Las Vegas, Nevada

EXCUSE OUR DUST! We're busy building the largest annual convention of amateur radio operators in the West and we're not stopping to rest along the way. Last year we called it "OCTOBERVENTION" and it was incredible! Now it's HAM/WEST and it's going to be even bigger and better! We have only one goal — to be the biggest ham convention in the West! We've got it all — prizes, technical talks, exhibitors with those new products for Christmas, giant flea market, free VEC exams, free cocktail party, awards banquet and ladies' programs, not to mention all the fun, excitement and glamour of Las Vegas and the beautiful Western scenery and climate!

ALL WE NEED TO COMPLETE OUR CONSTRUCTION PROJECT IS YOU! How do you become a part of this exciting new chapter in amateur radio history? Just send us this form, call your travel agent or fire up your mobile rig, and plan to BE THERE!

<table>
<thead>
<tr>
<th>I WANT TO REGISTER FOR HAM/WEST '86:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: ____________</td>
</tr>
<tr>
<td>Address: ____________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I WANT TO TAKE A VEC EXAM, CLASS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Please enclose a self-addressed, stamped envelope marked "VEC Exam" with this application if you are planning to take an exam.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLEASE RESERVE A ROOM FOR ME AT THE HACIENDA HOTEL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register room: ____________</td>
</tr>
<tr>
<td>Arrival day/date: ____________</td>
</tr>
<tr>
<td>How many persons will stay in this room? () One ($55.00/night) () Two ($55.00/night) () Three ($65.00/night) () Four ($75.00/night)</td>
</tr>
<tr>
<td>How many beds do you need? () One double bed () Two double beds () One king-size bed</td>
</tr>
<tr>
<td>Any special requests?</td>
</tr>
<tr>
<td>Amount for room: $__________</td>
</tr>
<tr>
<td>Plus 7% room tax: $__________</td>
</tr>
<tr>
<td>Advance reg., $12/person: $__________</td>
</tr>
<tr>
<td>Banquet, $20/person: $__________</td>
</tr>
<tr>
<td>Flea market, $20/pace: $__________</td>
</tr>
<tr>
<td>Total amount: $__________</td>
</tr>
</tbody>
</table>

Note: We will bill your credit card account in full when your registration form is received.

HAM/WEST, P.O. Box 19675, Las Vegas, NV 89132, 702-361-3331

November 7 - 8
All day Friday and Saturday

GENERAL INFO: Plan to travel on Thursday. Exhibits and forums will be open 8 a.m. - 5 p.m. Friday and 8 a.m. - 4 p.m. Saturday. Awards banquet will be at 8 p.m. Saturday.

REGISTRATION INFO: Every person taking part in the HAM/WEST activities must be registered. Advance registration is $12 before October 24 ($15 at the door) and includes prize tickets and admission to all HAM/WEST activities except the banquet. It is not necessary to be registered to purchase tickets for the Saturday evening's awards banquet. Flea-market sellers must be registered; outdoor spaces measure 16'x20' (two parking spaces). Born in 1966 or later? Request complimentary "admission-only" tickets (no prizes) at the door. And — there's no fee for VEC exams taken at the convention!

HOTEL INFO: To guarantee your room, you must make your room reservations directly with HAM/WEST, either on this form or by phone (if charging to a credit card), and make payment in full before October 1, 1986. Reservations not paid by that time will be accommodated on a space-available basis only. Call HAM/WEST at 702-361-3331.

RV INFO: Call Camperland directly at 800-634-6942 to reserve a space with full hookups right on the hotel grounds. Be sure to mention HAM/WEST. Call now. These spaces fill up early!
extended-range VU meter

NE570 circuit compresses 40 dB-range into 20 dB

In Amateur Radio we’re accustomed to signal-to-noise ratios of less than 15-20 dB. On UHF, however, there’s sometimes a need to measure SNR higher than 20 dB. An example of this would be in setting up VHF or UHF networks or linking systems to minimize hum, noise, or PL leakage.

One method of extending the range of a standard VU meter from its usual 20-22 dB to 40-45 dB is to use an NE570 or NE571 2:1 compression amplifier between the source signal and the VU meter. This device provides a very accurate 2:1 curve so that accurate SNR readings can be achieved (see fig. 1).

Circuit description

The NE570 consists of three basic blocks: a 741-like op amp, a gain control amplifier, and a precision detector. It can be set up to compress or expand at a 2:1 ratio, depending on how these elements are connected (see fig. 2).

The output of the NE570 is buffered by an MC3403 op amp to provide gain in the unit and better drive to the VU meter (the NE570 is limited in this regard). I chose the MC3403 because it has low crossover distortion and requires only a single voltage supply.

(The circuit board artwork from the Project OSCAR ACSSB Level 1 TX Adapter is shown in fig. 3). A layout for the VU Extender and its schematic are also included (fig. 4). You may wish to use the extra op amp sections to provide a standard audio weighting curve for some kinds of measurements. There are three op amps still available in the MC3403 to provide this function.

Calibration is accomplished by setting the input attenuator pot (Rn) in fig. 4 to mid-scale, then adjusting Rb with the selector switch (S1) in the “OUT” position until you read “0” VU with 0.773 volts AC

By James Eagleson, WB6JNN, 15 Valdez Lane, Watsonville, California 95076
fig. 3. VU extension circuit printed circuit board: (A) component side; (B) solder or ground side. Note: if reader interest warrants, Project OSCAR will prepare printed circuit boards. Address inquiries to author (enclose SASE).
at the input. This can be checked with a VOM or digital voltmeter. After switching S1 to "IN," adjust R_C for the same reading. You'll now notice that by dropping the input level 10 dB in the "OUT" position, you'll read −5 dB when you switch to the "IN" position.

All readings taken with the adapter "IN" should be multiplied by 2 (i.e., $-5\,\text{dB} = -10\,\text{dB}$) to obtain actual SNR.

Performance

The unit works well for normal speech and CW because the time constants have been chosen to complement the usual syllabic rate of voice and CW, which is about the same.

The 2.2 μF capacitor specified for (C_T) gives good performance down to about 100 Hz.

There will be some overshoot and undershoot on the system (no AGC amplifier is perfect), but it will certainly give results within a few dB of correct levels and costs far less than equivalent commercial units capable of measuring the same information. I've found it a useful addition to my shack.
THE FIRST NAME IN ELECTRONIC TEST GEAR

NEW 35 MHZ DUAL TRACE OSCILLOSCOPE

A heavy duty and accurate scope for service as well as production use. Features include full width bandwidth operation, optimal sensitivity, extremely bright display, delayed sweep, trigger inhibit, single sweep, TV sync, 5X magnification, X-Y operation, HF/LF noise reduction.

Ideal for field/bench applications, this scope can display up to 15 MHZ signals. Internal battery pack allows 2 hours operation on a single charge.

Ramsay D-4400 COMPACT SINGLE CHANNEL OSCILLOSCOPE

Compact sized reliability and accuracy. This LCD digital multimeter easily fits in your pocket. You can take it anywhere.

It features full overload protection, 3 digit LCD readout, remote input jacks, safety probes, diode check, and 2000 hours battery life.

NEW 15 MHZ DUAL TRACE PORTABLE OSCILLOSCOPE

Ramsay D-4400 COMPACT SINGLE CHANNEL OSCILLOSCOPE

15 MHz dual trace portable oscilloscope includes 2 high quality probes.

MINI-100 FREQUENCY COUNTER

Features include a built-in battery charger, can be used in the field, and has a built-in battery charger.

CT-70 7 DIGIT 525 MHZ COUNTER

15 digit LED display counter with 5 MHz frequency range. 1% digital counter.

$119.95

CT-90 9 DIGIT 600 MHZ COUNTER

9 digit LED display counter with 600 MHz frequency range. 1% digital counter.

$119.95

DM-100 DIGITAL MULTIMETER

Professional quality at a breakthrough price. Features include 20 different ranges and 5 decade digital LED display.

$119.95

PS-2 AUDIO MULTIPLIER

The PS-2 is highly for high resolution audio measurements, multiples Up in frequency, great for PLL tuning measurements, multiples by 10 or 100, 0.01 Hz resolution, built-in signal source/conditioner.

$49.95

PS-108 1.5 GHz PRESCALER

Extends the range of your present counter to 1.5 GHz. Great for 2 stage prescaler, improves waveform quality. 50 MHz typical accuracy, 10 MHz accurate.

$39.95
YOU ALREADY OWN 75% OF A COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what’s required to receive and send color video world-wide!

Add a ROBOT™ Video Transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your favorite mode is SSB or FM or AM—direct, via repeater or satellite—you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

Please send me the following Robot equipment. I understand that if I am dissatisfied for any reason, I can return the unit and receive a full refund.

1. 1200C high resolution video transceiver $1995
2. 450C standard resolution $795
3. 400C upgrade kit $395
4. More Information

ROBOT RESEARCH, INC.
7591 Convoy Court
San Diego, California 92111
Phone (619) 279-9430

Name: ____________________ Call: ____________________
Address: ____________________
City: ____________________ Zip: ____________________
COD □
Enclosed check or money order $ ________________ Exp. Date: __________
MC □ VISA □ ____________________ ____________________
Measure Up With Coaxial Dynamics Model

83000A RF Peak Reading Wattmeter

Take a PEAK with Coaxial Dynamics "NEW" Model 83000A, designed to measure both FWD/RFL power in CW and FM systems simply and quickly. Then with a "FLIP" of a switch, measure "PEAK POWER" in most AM, SSB or pulse systems. Our Model 83000A features a complete selection of plug-in-elements plus a 2 year warranty. This makes the Model 83000A an investment worth looking at. So go ahead, take a "PEAK", you'll like "WATT" you see!

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex 98-0630

Service and Dependability...a Part of Every Product
220 MHz is alive and well at Falcon

FALCON produces 8 different Base/Repeater and 9 different Mobile amplifiers. Six of these amplifiers are for the 220 MHz operator.

For example, consider the following two MOSFET Base/Repeater amplifiers. Remember, FALCON is the only manufacturer bringing you amplifiers with the advantages of RF power MOSFET's.

Model 4112C
RF Power In
RF Power Out

10 Watts in - 100 Watts out
1 W to 15 Watts
10 Watts in - 100 Watts out
3 Watts in - 50 Watts out

Model 6135C
RF Power In
RF Power Out

2 Watts in - 100 Watts out
.300 mW to 3 Watts

Features:
- Frequency range . . . 220-225 MHz
- New, long life MOSFET transistors
- Low broadband noise (Low dense)
- Automatic Internal or External Keying
- Use for FM, SSB, CW
- Excellent high order intermod specs
- Continuous Duty (With customer fan)
- Built-in Thermal Protection
- 1 Year Warranty Made in the U.S.A.

P.O. Box 8979 • Newport Beach, CA 92658
(714) 760-3622

HIGH PERFORMANCE PRESELECTOR-PREAMP

The solution to most interference, intermod, and dense problems in AMATEUR and COMMERCIAL systems.

- 40 to 1000 MHz - tuned to your frequency
- 5 large helical resonators
- Low noise - High over load resistance
- 8 dB gain - ultimate rejection > 80 dB
- 10 to 15 volts DC operation
- Size: 1.6 x 2.6 x 4.75" exc. connectors
- FANTASTIC REJECTION!

Typical rejection:
+ 100 KHz at 144 MHz: -26dB
+ 1.6 MHz at 220 MHz: -40dB
+ 5 MHz at 450 MHz: -50dB

SUPER HOT! GaAs Fet option $20

AUTOMATIC IDENTIFIERS

- For transceivers and repeaters - AMATEUR and COMMERCIAL
- Automatic operation - adjustable speed and amplitude
- Small size - easy installation - 7 to 15 volts DC
- 8 selectable, reprogrammable messages - each up to 2 min. long
- Wired, tested, and programmed with your messages(s)

Model ID-1 $49.95
Model ID-2 $69.95

We offer a complete line of transmitter and receiver strips and synthesizers for amateur and commercial use.

GLB ELECTRONICS, INC.
Dept H.
151 Commerce Pkwy., Buffalo, NY 14224
716-675-6740 9 to 4

ORDER TOLL-FREE
800-835-2245 ext. 115

MACPACKET
Terminal Software for Macintosh
- Full down menu, split screen
- Works with any "TNC" or dial tone
- Stores dailer routing tables
- File upload and download and more

PC-PACKET
Terminal Software for Your PC
- Split screen or multi-color display
- Multiple, selectable pages of receive buffer
- Fully configurable PC and TNC parameters
- Works with any TNC's (including GLB PK-1)
- Pop-up windows for operator interface
- User definable function keys
- Printer/sketch logging, DOS access

PC-100
Dual Port Packet Controller
- Dual Port TNC on a half size card
- Use With Your PC or combox
- TNC software included
- Dual 100/1200 high performance modems
- Provisions for high speed external modem
- Uses Standard Connectors, Switches, etc

ORDER TOLL-FREE
800-835-2245 ext. 115

PAC-COMM PACKET RADIO SYSTEMS, INC.
4010 W. KENNEDY BLVD., TAMPA, FL 33609
TELEX 500295525

PAC-COMM GIVES YOU MORE CHOICES

TNC-200

PTU-200

Packet Turning Indicator/HF Modem
- Single push button selection of HF/W1X
- Active channel list helps copy on QRM
- 20 segment red LED bar graph display
- Internal TAPR design
- Works with any TAPR TNC or TNC-2 clone
- Cabinet include TNC-200 design
- Installation is simple and convenient

Assembled and Tested $149.95
Full Kit and Cabinet $114.95

MACPACKET
Terminal Software for Macintosh
- Full down menu, split screen
- Works with any "TNC" or dial tone
- Stores dailer routing tables
- File upload and download and more

Available now for only $69.95

PC-PACKET
Terminal Software for Your PC
- Split screen or multi-color display
- Multiple, selectable pages of receive buffer
- Fully configurable PC and TNC parameters
- Works with any TNC's (including GLB PK-1)
- Pop-up windows for operator interface
- User definable function keys
- Printer/sketch logging, DOS access

PC-100
Dual Port Packet Controller
- Dual Port TNC on a half size card
- Use With Your PC or combox
- TNC software included
- Dual 100/1200 high performance modems
- Provisions for high speed external modem
- Uses Standard Connectors, Switches, etc

Assembled and Tested $149.95
Full Kit $114.95

Sales and Technical Information Call
813-889-3523

FREE SHIPPING IN CONTINENTAL USA
Florida addresses must add 5% sales tax.
There are two ways you can operate an amateur dual band UHF/VHF radio: you can go through the extra expense and bother of using two antennas... or, you can install the new Larsen 2/70—the single antenna that brings you both bands.

The Larsen 2/70 blends a half-wave element for 2-meter (144-148MHz) amateur band and collinear elements for 70cm (440-450MHz) amateur band. One antenna serves both bands, and is available with three different mounts for any mobile needs.

The self-resonant design of the Larsen 2/70 allows most applications for vessels and base stations outfitted with standard Larsen BSA-K hardware. With or without a ground plane, the Larsen 2/70 gives you the highest performance attainable, whether you are using a dual band radio or two separate radios.

If your radio does not have a built-in band splitter, we can even provide that. Performance... savings... convenience... and a non-nonsense warranty—four great reasons for banding together with the Larsen 2/70. See your favorite amateur dealer or write for a free catalog today.

FREE CATALOG!
Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-to-find precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.

JENSEN TOOLS INC.
Dept. HR
7815 S. 46th Street
Phoenix, AZ 85044
(602) 965-6241

BAND TOGETHER

Larsen Antennas
The Amateur's Professional

See your favorite amateur dealer or write for a free amateur catalog.

AMATEUR RADIO MAIL LISTS
Self-stick 10x13 labels

NEWLY LICENCED HAMS
ALL NEW UPGRADES
UPDATED EACH WEEK

Total List = 462,728 (ZIP sorted)
Price is 9.5 cents each (4-up Cheshire)

BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-684-5777
a very sensitive
LF or HF field-strength meter

Detect small changes
with this handy circuit

While the simple resonant tank, diode detector, and
microammeter-type field strength meter (fig. 1) may be
usable for HF signal evaluation, it's almost useless for
any reasonable measurements on 1750 meters, where
a 1-watt input restriction applies and very low ERP is the
rule.

Using the standard diode detector scheme, I found
that the usable scale readings for 1750-meter tests were
limited to a maximum of 30 feet away from the antenna
to be evaluated. To compensate for this insensitivity, a
larger antenna connected to a field strength meter would
be required. But this would make field-level measure-
ments cumbersome. One solution to this problem would
be a DC amplifier at the output of the detector to provide
the gain required for driving the meter indicator.

circuit description

In fig. 2 the complete LF field strength meter circuit
is shown. C1 and L1 are made to resonate on the
1750-meter band, with the total coverage being from 150
kHz to 500 kHz. L1 can be slug-tuned for 160-to-190 kHz
coverage alone or a 2.5-mH choke can be used for L1,
if desired, using C1 for tuning. A 1N270 germanium di-
ode rectifies the RF signal and C2 is charged at the peak
RF level. This DC level is amplified by U1, an LM358
operational amplifier requiring only a single 9-volt sup-
ply for operation. The gain is determined by R2 and R3.
R3 is a 100-kilohm linear potentiometer that varies the
DC gain from 1 to 100, driving the 50-microampere me-
ter, which acts as a voltmeter in conjunction with R5. A
normally closed 3.5-mm jack is connected in series with
the analog 50-microampere meter for remote meter read-
ings and/or a DC level which can power an audio

By S.J. DeFrancesco, K1RG0, 17 Jeffry Road,
East Haven, Connecticut 06512
oscillator for CW sidetone operation. An LED was added to indicate the "on" status.

You can expect long battery life because the amplifier will continue to operate even when the battery voltage drops to 4 volts. With 9 volts applied, the total current drain is only 3 mA.

This field strength meter need not be limited to LF use only. Table 1 shows the L1 and C1 values for HF operation and broadband operation.

At first try, the added sensitivity was a blessing. I could easily make field strength measurements at distances that were impossible with the simple diode detector barefoot meter. At 200 feet from my LF antenna, testing on 186.5 kHz, I could easily get 30 percent scale readings.

I then began checking my 1750-meter antenna system. When the antenna was dry, I noted a 1-dB increase in field strength over readings taken when it was wet. I ran a 600-volt "Megger" test on a dry day and also on a rainy day, noting 10,000 Megohms on the dry day and 3 Megohms on the rainy day. In the past, under similar conditions, I couldn't detect this variation in field strength because of unusable readings. Noticing the substantial difference in field strength, I cut several tree branches that were touching my antenna and found that just doing this increased the field strength by another 2 dB. The field strength meter proved to be quite a useful tool.

Table 1.

<table>
<thead>
<tr>
<th>L1</th>
<th>C1</th>
<th>Frequency Range</th>
<th>Ham Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 μH</td>
<td>30-365 pF</td>
<td>1-4 MHz</td>
<td>160, 80 meters</td>
</tr>
<tr>
<td>3 μH</td>
<td>30-365 pF</td>
<td>5-16 MHz</td>
<td>40, 30, 20 meters</td>
</tr>
<tr>
<td>0.9 μH</td>
<td>30-365 pF</td>
<td>9-30 MHz</td>
<td>30, 20, 15, 12, 10</td>
</tr>
<tr>
<td>2.5 mH</td>
<td>-</td>
<td>Broadband at reduced gain</td>
<td></td>
</tr>
</tbody>
</table>

operation

WEBSAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

BEAM RADIO BOOKSTORE

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

BEAM RADIO BOOKSTORE

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

BEAM RADIO BOOKSTORE
Unadilla Amateur Antenna Baluns
For 20 years, preferred by Amateur, Commercial and Military Operators
First with built-in lightning arrester-minimizes TVI, maximizes power handling.

For 20 years, preferred by Amateur, Commercial and Military Operators
First with built-in lightning arrester-minimizes TVI, maximizes power handling.

The Perfect Dipole!

Only $65.00
Complete Kit
• W2AU 1:1 Balun
• Pair of W2VS KW-40 Traps
• Pair of End-sulators
• 125' #14-7 Copper Wire
• Complete Installation & Pruning Instructions

W2AU Broadband Ferrite Core Baluns
For medium power (1000 watts RF)
W2AU 1:1
* 50 to 50 or 75 to 75 ohms
* For dipoles, V's, beams, quads
W2AU 4:1
* 200 to 50 or 300 to 75 ohms
* For high impedance antennas such as folded dipoles

W2DU Non-Ferrite Very High Power Baluns
W2DU-HF (High Power)
* 1.8-30 MHz
* 3000-9000 watts with 1:1 antenna SWR
* 1500-5000 watts with 2:1 antenna SWR
W2DU-VHF (High Power and Extended Range)
* 30-300 MHz
* 2000-4000 watts with 1:1 antenna SWR
* 1200-2400 watts with 2:1 antenna SWR

DATATEL 800™
800-341-1522
Weekdays 8 AM - 9 PM EST • Saturdays 9 AM - 5 PM EST
IN MAINE CALL COLLECT (207) 236-2896
OUR 800 NUMBER IS FOR SUBSCRIPTION ORDERS ONLY!

For Errors or Change of Address CALL ham radio direct at (603) 878-1441 8-5 EST
When VK4ZF's article, "Computer-aided Design of Long VHF Yagi Antennas," appeared in the May issue of *ham radio,* I decided to convert his design program, written for the Apple III, to run on the Commodore 64. **Figure 1** lists the revised program.

The most significant conversions appear in the section of the main program that reads back data files (lines 1130-1190) and in the file saving program shown in **fig. 2.** All the commands to the printer required modification, especially with the addition of lines 5000-6220 to provide decimal alignment of the numerical results. The data tables from the original article must be typed in using the program shown in **fig. 2.**

reference

By Olin K. McDaniel, Jr., W4PFZ, 1327 Pinckney Avenue, Florence, South Carolina 29501
The AEA model PK-80 is a wired, tested, and calibrated version of the famous TAPR TNC-2 and comes with a one-year conditional AEA warranty.

You can interface the PK-80 with any ASCII terminal or a personal computer and standard terminal software. The PK-80 is loaded with all the latest SX.25 version 2.0 software and advanced packet hardware circuitry that makes the TNC-2 the newest benchmark for comparison.

Compare the following as representative of the advanced new features relative to the competition:

- Hardware HDLC for full duplex
- True Data Carrier Detect (DCD) for HF operation
- Operates with 300, 1200, 2400, 4800, and 9600 baud terminals
- Five front-panel status indicators
- Multiple connect
- Connect check (poll final bit)

The PK-80 is cheaper than its competitors and is loaded with all the famous TNC-2 features. It is an inexpensive and rugged construction for those who are looking for a complete package.

Prices and Specifications Subject to Change Without Notice or Obligation.

Advanced Electronics Applications, Inc.
P.O. Box C-2160, Lynnwood, WA 98036-0918
TELEX: 6972496 AEA INTL UW
(206) 775-7373
POPULAR PA 19 Wideband Preamplifier

- 8,000 sold since 1976
- 0.5 - 200 MHz bandwidth
- 19 dB gain
- 50 Ohm output
- Increase sensitivity of receivers or counters
- Built, tested, & ready-to-go

ONLY $9.95 PPD

NEW POCKET SIZED 500 MHz Freq. Counter

- Compact design-pocket sized
- Measures frequency from 1 MHz to 500 MHz to within 1 kHz
- Built-in telescoping "antenna"
- Uses 1 standard 9 volt battery
- All units pre-tested and calibrated to 0.01% accuracy
- Professional and dependable performance

ONLY $49.95 PPD

DIGITREX
Division of NC
10073 N. Mary Ann, Northville, MI 48167
(313) 547-7413
WEST COAST DISTRIBUTOR
R. Lukaszewicz
20610 Alaminos Drive
Saugus, CA 91350
(805) 252-6021

148 PAGES OF NEW PRODUCTS

100'S OF NEW PRODUCTS

GET IT NOW!

More pages, more products, and it's not off the press! Get the new 1986/7 Dick Smith Electronics Catalog and find anything for the electronics enthusiast! The data section alone has 100 pages of 4-color pictures! Send for your copy today.

Please reserve my copy of the 1986 Dick Smith Catalog. I enclose $1 to cover shipping.

Name: __
Address: __
City: __
Zip: __

Dick Smith Electronics, Inc.
P.O. Box 2289, Redwood City, CA 94063
EVERYTHING FOR THE ELECTRONICS ENTHUSIAST!
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit of 15 inquiries per request.

NAME
ADDRESS
CITY ______________________ STATE __________ ZIP __________

Please use before October 31, 1986

September 1986
ATTN: Reader Service Dept.
Invitation to Authors

ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

(continued on page 102)
New Technology (pending patent) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. New SRF-2000 receiver converts any external speaker jack into receiver's speaker system and external speaker jack. Low-noise, high sensitivity for weak signal detection. Call or write for full details and prices.

DOPPLER SYSTEMS, INC.
5540 E. Charter Oak, Scottsdale, AZ 85254
(602) 998-1151

NEW COMPUTER BOOKS

YOUR COMMODORE 64: A GUIDE TO THE C-64 COMPUTER

YOUR COMMODORE 128: A GUIDE TO THE C-128 COMPUTER

These books cover in great detail the best selling Commodore C-64 and C-128 home computers. You get a complete introduction to the operating systems used, BASIC, graphics, programs, and much more. All discussed are hardware and peripheral considerations. The C-128 book covers C-64 emulation, extended memory, and disk drives, printers and memories. Excellent source books for beginners and experts alike.

- **1985 1st Edition**
 - OS-C 454 pages
 - Softbound $14.95
 - OS-C 128 450 pages
 - Softbound $14.95

MS-DOS USER’S GUIDE

by Chris Devone

MS-DOS computer users will find this handbook to be an essential addition to their computer library. Includes a full explanation of MS-DOS commands in clear, concise language and examples of command syntax. Hints on command usage and explanations of the hierarchial directory and /D0 redirection will enable you to get maximum benefit from your computer investment. For novice and expert users.

- **1984 1st Edition**
 - 330 pages
 - Softbound $19.95

PC SECRETS: TIPS FOR POWER PERFORMANCE

by James Kelly

Here is one of those unheralded gems we stumbled upon recently. This nifty book is jam-packed with ideas and suggestions on how to get more out of your PC-DOS or MS-DOS computer. Not a tutorial, more for the intermediate user who is looking to get more speed and efficiency. Improve your keyboard, enhance your display, optimize your files, and manage your printer better than ever before. You’ll be amazed what this book can add to your PC. Also covers Lotus 1-2-3 and Wordstar.

- **1985 1st Edition**
 - 244 pages
 - Softbound $16.95

APPLE II USER’S GUIDE, Apple Plus and II series

by Poole, McNulty and Cook

All time Apple best seller! Now available in updated third edition. Learn from the experts how to get the most out of your Apple home computer and peripherals. You also get a complete explanation on how to use DOS 3.3 and Pro-DOS. Easy-to-use tutorial explanation of BASIC programming will teach you how to use all the sound and graphics capabilities as well as the Apple II high-resolution graphics. This book is worth it’s weight in gold.

- **1985 1st Edition**
 - 512 pages
 - Softbound $18.95

We’re really proud of the next two books! Doug was Jim Fish’s right hand man during the early seventies. His first computer book, the introduction to TURBO Pascal, quickly went best seller. The Turbo Library is an invaluable addition to TURBO user’s libraries.

INTRODUCTION TO TURBO PASCAL

by Doug Stilson W.A1JKW (ex Ham Radio assistant editor)

Thousands have learned Pascal programming with this popular best seller. A tutorial this book enhances the unique aspects of Turbo Pascal by concentrating on the extended capabilities offered. Includes graphics, look-up tables, word processor, typesetting conversion tables. 155 to ASCII conversion and fast sort/search routines.

- **1985 1st Edition**
 - 256 pages
 - Softbound $14.95

TURBO PASCAL LIBRARY

by Doug Stilson W.A1JKW

Perfect complement to the Turbo Pascal Introduction book above. Stilson shares his extensive collection of proven programs and will save experienced programmers time and illustration to Turbo Pascal. Good programming techniques and Turbo versions of standard algorithms. Includes games, systems utilities, and routines for business and engineering applications.

- **1986 1st Edition**
 - 386 pages
 - Softbound $14.95

Please Enroll $30° to cover shipping and handling.

HAM RADIO’S BOOKSTORE

Greenville, NH 03048
RF connectors: part 1

Though the subject of RF connectors has been mentioned here many times, time and scheduling have not permitted a detailed discussion of this seemingly simple and straightforward subject.

I often hear Amateurs make all kinds of wild claims, or see them distribute misinformation on the subject. These stories typically involve power handling, impedance matching, and insertion loss. Also, many Amateurs seem unaware of the many types of connectors — besides the so-called “standard” or preferred types — that are available. These same Amateurs would probably also wonder why so many types are required.

This all reminds me of the story circulated in the early 1950s, just after the transistor was invented. The general notion was that all possible applications could be accommodated by the development of just a few types of transistors! Today there are over 10,000 types of numbered transistors, and new ones are becoming available weekly!

While there aren’t nearly as many series of RF connectors available as of transistors, there surely must be almost as many types of distinctly different RF connectors and adapters available. Therefore, this month’s column will serve as sort of a primer, in which we’ll try to sift through the major series of RF connectors. Next month’s column will expand on the various tradeoffs, especially in the area of applications. Tables will help put the whole selection of RF connectors in perspective and, I hope, help make selection easier in the future.

overview

RF connectors are designed to join or separate two components or units — such as an antenna and a transceiver — with relative ease. They’re also used to gain access to a specific unit. The proper choice of an RF connector type is particularly important when considering frequency of operation, passing high level RF power, or connecting to a low-noise preamplifier. It’s also necessary if you’re using a modular approach. Proper connectors permit convenient access to a unit so that adjustments can be made without disassembling or disturbing the circuit under test.

The actual choice of an RF connector depends on many things: application, availability, relative cost, electrical performance, mechanical durability, and environmental conditions. The choice of an optimum RF connector for a specific application, therefore, isn’t always possible. Trade-offs are often necessary.

Furthermore, connectors are available in many forms. They may be threaded, bayonet, snap-on, or push-on. They may also be used on standard coaxial line, Triax™ (cable with two separately isolated braids for maximum shielding effectiveness), or Twinax™ (for connecting to 95-ohm balance line such as RG-22). The connector may be male, female, or neither.

An RF connector may be used either to terminate a transmission line, an in-series or between-series adapter, a panel mount, or feedthrough. What’s the method used to attach to the connector to the line? Is it a solder connection, screw-on, push-on, or crimp type? Is the center pin free-floating or captive? Or is it fabricated from the actual transmission line center conductor itself, such as with RG-17 and UT-141 semi-rigid coax.

Basically speaking, RF connectors can be separated into three main families; standard, miniature, and subminiature. Standard connectors are for cables that are larger than 0.25 inches in diameter. Miniature connectors fit cable measuring between 0.10 and 0.25 inches. Subminiature connectors are sized for cables measuring less than 0.10 inches in diameter.

RF connector series

Table 1 is a list of most of the major series in common use, along with some technical data. More data will be provided in next month’s column.

The UHF connector was the forerunner of most of the modern RF connectors. Developed in the mid-1930s, it was inexpensive and easy to assemble and use. It quickly became an industry standard. The most common types used by Amateurs are the PL-259 plug and the SO-239 chassis mount.

Unfortunately the UHF connector series doesn’t have a constant impedance and is therefore usually limited to 500 MHz and below; in fact, I wouldn’t recommend using UHF connectors above 150 MHz. What’s more, it’s not weatherproofed and therefore can’t be recommended for outdoor use.

Connector development was spurred on by radar and VHF communications gear designed during WW II. Later progress resulted from the development of more demanding applications, especially at the higher microwave and millimeter-wave regions.

The type N connector — supposedly named for its inventor, Paul Neill of Bell Labs — was one of the first developed for both the VHF and UHF frequencies. Its most significant contribution to the state of the art was the addition of the separate outer contact, which wipes against the female body jack.
The N connector has a constant impedance and is usable to at least 11 GHz. Its gasket seals were later improved along with the braid clamp, making it an excellent choice for outdoor use. Amateurs usually prefer the UG-21 and UG-58 plug and jack, respectively. One caution: N connectors are sometimes made for 70-ohm impedances. To accomplish this, the diameter of the center pin is very small. Inserting a 50-ohm male connector into a female 70 ohm type will break the receptacle pin. Also, if a 70-ohm male "N" is inserted into a 50-ohm female N connector, there may be no electrical contact. I've seen these 70-ohm N connectors at flea markets, so beware. If you're not sure, compare the pin diameters with a known 50-ohm connector.

The type C connector, developed by Carl Conceelman, is similar to the N connector. It was the first connector to use the bayonet-lock mating system so that it could be easily connected or disconnected. Though it's not as popular as the N connector, it's usable to at least 10 GHz.

Widely distributed by the Omni Spectrum Manufacturing Corporation, which called it an "OSM" connector, the SMA connector is now manufactured by many companies. This connector, defined as a miniature type, is popular on UHF and above, especially where low-loss, constant impedance, and small size are required.

The SMA connector was primarily developed to mate with 0.141-inch semi-rigid metal jacketed cable. In the early 1970s, the E.F. Johnson Company introduced the JCM connector, a lower-frequency version of the SMA connector which is specified to 4 GHz and also mates with RG-174 miniature flexible cable. This low-cost connector is very popular in UHF applications.

SSM subminiature connectors were designed later. Primarily suited for 0.085 semi-rigid coax, these work up to 26 GHz. Improved SSM connectors will work up to 40 GHz!
is primarily used in video and IF equipment, where small-diameter flexible cabling is used. The SMB is threaded; the SMC is a push-on type. Both are relatively inexpensive; SMC is the more common of the two, especially on military equipment.

The APC 3.5 is the ultimate in precision. Resonance-free through 34 GHz, it will mate directly with the SMA connector series.

The APC-7 is an expensive precision connector used primarily for 0.250-inch semi-rigid coax. It’s a hermaphrodite, which making it an excellent connector for instrumentation.

An E1A connector is very unusual in that it doesn’t have a threaded or bayonet connection. Instead it consists of body and moveable flange that’s bolted to the mating connector. It’s primarily used on air lines, where low-loss, high-power 7/8 to 6 1/8-inch lines such as on Heliax (TM) are used.

The inexpensive “F” connector is popular on CATV installations, especially for connecting units together with RG-59-type 75-ohm cable. Usually a crimp-type, it often uses the center wire of the cable for the center pin. Unfortunately, it’s not rugged, weather-proofed, or very usable above about 300 MHz.

General Radio Corporation designed the GR connector primarily for instrumentation — hence its initials. A hermaphrodite push-on type connector most commonly seen as the G-874 or GR900 types, it’s especially good on patch panels and where equipment must be frequently connected or disconnected.

The HN connector is basically a larger-diameter offshoot of the N connector with a higher voltage rating. It’s primarily used with large-diameter (7/16 to 7/8-inch) cables when breakdown voltages up to 5000 volts are required.

The SM connector isn’t too common. It’s not weatherproofed and is recommended only for IF work. It may be used at different impedances if match isn’t important.

A subminiature version of the SMA connector, the SSM is primarily used where the smallest possible size and highest possible frequency are required.

The TM series isn’t often seen. Basically, it’s a 2/3 size version of the TNC connector sometimes seen on IF connections.

The Triax and Twinax connector series are used when balanced lines are required. The Triax type allows a cable with two insulated shields to be used. The Twinax connector provides for superior shielding. Some Twinax connectors are polarized, while others are not. They’re popular on video transmission and computer installations.

Adapters

So far we’ve been discussing only coaxial connectors such as plugs, jacks, and chassis types. But other RF connectors function as adapters, both within and between series adapters.

There may be as many different RF adapter types as cable connectors. The
most common ones are probably the female-to-female or male-to-male barrel connectors for connecting cables together in the same series. Between-series adapters are also common. Right-angle and "T" types are popular since they allow flexibility when you want to hook similar connectors together.

It's particularly important to choose the proper adapter. I often see installations with two or even three adapters placed in series even though there's a single adapter available that will make the connection. The loss through each adapter is about two to three times that of a normal connector.

Your best bet is to choose a single adapter with the desired transition between series. Flea markets seem to have just about every imaginable type. If you're in doubt, bring one of your connectors along and check the fit.

Be particularly careful when using adapters outdoors. The more adapters used, the more likely it is that moisture will seep into one of the connections.

next month

Next month's column will go further into the mechanical and electrical aspects of connector design and use.

Tips on proper use will also be given. This information should aid in your choice for the optimum connector for your application.

references

Important VHF/UHF Events:
Sept. 6-7 International Region 1 VHF Contest
Sept. 12 EME perigee
Sept. 13-14 ARRL VHF OSO Party
Sept. 26-27 First ARRL 10 GHz Cumulative Contest, first weekend
Oct. 4-5 Mid Atlantic States VHF Conference, Warnimister, PA (contact WA2OMY)
Oct. 4-5 International Region 1 UHF/SHF Contest
Oct. 7 EME perigee
Oct. 10-11 First ARRL 10 GHz Cumulative Contest, second weekend
Oct. 20 Predicted peak of the Orionids Meteor Shower at 1645 UTC
Oct. 25/26 International EME contest, first weekend

This publication is available in microform from University Microfilms International.

Please send information about these titles:

Name

Company/Institution

Address

City

State

Zip

Phone

Call toll-free 800-521-3044. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
E-X-P-A-N-D

REPEATER SITE CAPABILITIES

IN STOCK – THE LARGEST SELECTION OF CAVITIES, DUPLEXERS AND FILTERS AVAILABLE FOR IMMEDIATE DELIVERY!

Improve and expand your communications performance with reliable Telewave High "Q" Cavities, Duplexers, & Filters. Telewave Cavities are ideal for use in frequency-congested areas, where protection is required from transmitter interference, spurious radiations, and receiver desensitization.

- **Bandpass, Bandpass Band Reject, & Notch Cavities**
 - 30 to 50 MHz and 66 to 88 MHz
 - Single, Double and Triple Cavities in 5", 6", 8", and 10" diameters.
 - 66 to 88 MHz and 118 to 174 MHz
 - Single, Double and Triple Cavities in 5", 8", 10", and 12" diameters.
 - 220 to 400 MHz and 406 to 512 MHz
 - Single, Double and Triple Cavities in 4", 5", 6", 8", and 10" diameters.
 - 806 to 960 MHz and 1.1 to 1.3 GHz
 - Single Cavities available in 4", 6", 8" diameters.

When frequencies are specified, all cavities are tuned prior to shipping. Telewave quality cavities are engineered for stability in temperature and stress extremes, and require no further adjustments.

Free Catalog

Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast, Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.

UNITY Electronics Dept. H
P.O. Box 213
Elizabeth, NJ 07206

7 MILLION TUBES

Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast, Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.

UNITY Electronics Dept. H
P.O. Box 213
Elizabeth, NJ 07206

QEP's Coax. Sale

Genuine Belden Cables

<table>
<thead>
<tr>
<th>Twg</th>
<th>Nom. DC Resistance</th>
<th>Noise Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG-8</td>
<td>$18.60</td>
<td>35</td>
</tr>
<tr>
<td>RG-213</td>
<td>$18.60</td>
<td>35</td>
</tr>
<tr>
<td>RG-58</td>
<td>$18.60</td>
<td>35</td>
</tr>
<tr>
<td>RG-60</td>
<td>$18.60</td>
<td>35</td>
</tr>
</tbody>
</table>

COLLINS KWM-380 KEYBOARD

Pipo Communications has the Keyboard That is Used With the Collins KWM-380 For Remote Entry.

FREE CATALOG

Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast, Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.

UNITY Electronics Dept. H
P.O. Box 213
Elizabeth, NJ 07206

1500 WATT PEP TRANSMATCH KIT

Basic Kit

$154.95

Plus $3.00

Shipping and handling

BASIC KIT

1. rotary inductor 284h
2. 6:1 ball drives
3. 1-0-100 turns counter
4. 200-1000 pf 3500 v rms
5. 2 variable capacitors 23-208 pf 3500 v rms

OPTIONS

enclosure (painted in Sept. 86 Q0) $60.00

4:1 balun kit $18.75

November 1986
low-cost spectrum analyzer
with kilobuck features

Build WA2PZO’s
useful instrument
for operating position
and lab bench

Although laboratory-grade spectrum analyzers
cost $4500 or more, you can build a spectrum analyzer offering many features of its costlier cousins for about $50. How can such amazing capabilities be had at such incredibly low cost?

- **Through the use of a commercially mass-produced varactor tuned TV tuner that covers the VHF low, VHF high, and UHF TV bands.** It will tune down through the 2-meter and 6-meter Amateur bands without modification, with better than 1-microvolt sensitivity. By using a crystal-controlled converter and a narrower IF filter, any one of the HF Amateur bands could be viewed as well, by simply upconverting to a TV channel.

- **Through the use of consumer-grade integrated circuits in the oscillator/mixer, dual ceramic filter, IF amplifiers/detector, and audio amplifier (offering audio as well as scope output it is really a spectrum monitor).**

- **Through the use of your own oscilloscope.** Just about any scope may be used; I used a 1951 Heathkit Model OL-1 with its original cathode ray tube.

Spectrum analyzer applications

Spectrum analyzers allow the user to observe in real time an adjustable/variable bandwidth of radio frequencies. One of the earliest spectrum analyzers for the ham bands was the “Panadaptor,” manufactured by Hallicrafters in the early 1950s. I used one to check for F2 propagation 6-meter band openings in the mid-1950s and credit the panadaptor with my earning the IARU 6-meter WAC award (phone) issued by the ARRL.

The band of frequencies swept by the spectrum analyzer described in this article may be varied from zero up to about 38 MHz on VHF low TV = 50 MHz – 88 MHz, zero up to about 85 MHz on VHF high TV = 135 MHz – 220 MHz, and zero up to about 300 MHz on the UHF TV = 500 MHz – 800 MHz. When the sweep width is set at zero, each of these bands of frequencies may be manually tuned just as in a single-frequency receiver. Both wideband FM and narrowband FM signals, and surprisingly, even amplitude modulated signals are detected quite well by the FM IF amp/detector IC and amplified by the audio IC.

Figure 1 is a block diagram of this spectrum analyzer using a Sanyo varactor tuned TV tuner. A ten-turn, 10k pot with +35 VDC across it is used to adjust the center frequency of the tuner. A low varactor bias yields low frequency and a high varactor bias provides higher frequency on the TV band to which the tuner is set. The sawtooth sweep voltage that is capacitively coupled into the tuner’s varactors has the horizontal sweep voltage from the oscilloscope. If your scope doesn’t have the horizontal sweep output (the Heathkit OL-1 does not), just mount an RCA phono jack on the front of the scope and bring out the horizontal sweep from the scope’s horizontal multivibrator to this point. The 100 kilohm load across the horizontal sweep output should have little or no effect on the scope’s operation.

Besides the TV tuner and scope, the rest of the circuit consists of only three integrated circuits. The second mixer/oscillator chip is a Siemens SO42P. The ceramic filter is a Murata SFJ two-section filter at 10.7 MHz. The combination IF amp/detector/AGC amp is a National LM-3089N, and the 1/2-watt audio amp is a National LM-386N.

Construction, testing, and alignment

Figure 2 is a schematic of the analyzer. A printed circuit board is available from WA2PZO; I recommend using this and WA2PZO parts kits. (Although the pots, S-meter, and speaker aren’t furnished, most are available from Radio Shack.) **Figure 2A** shows the component layout on the WA2PZO printed circuit board (foil side down). Alternatively, you could use perfboard and point-to-point wiring.

Figure 3 is a schematic diagram of the interconnections between the Sanyo tuner, the three-IC printed circuit board, and the scope. Once everything is connected as shown in fig. 3, alignment can begin. (It should be easy, since there are only four adjustments,

By Robert M. Richardson, W4UCH, 22 North Lake Drive, Chautauqua, New York 14722

82 September 1986
the ferrite cores in L1, L2, L3, and L4.)

With all the parts on hand — and assuming you’re using the PCB — assembly time is at most an hour or two. I tuned up my unit using only a grid dip meter as a signal source in about 20 minutes.

Construction of the PCB proceeds as follows:
1. Install the jumper at the lower edge of U3 as illustrated in fig. 2A.
2. Install the 11 resistors as shown in fig. 2A.
3. Install the 16 capacitors as indicated in fig. 2A. Since C6 and C7 are electrolytics, be sure to observe the polarity indicated in fig. 2A.
4. Install the Murata ceramic filter, FL1. Because it’s symmetrical, it can be installed in either direction.
5. I recommend carefully installing sockets for U1 (16-pin DIP), U2 (8-pin DIP), and U3 (14-pin DIP).
6. Install L1 through L5, carefully bending the pins slightly so that they fit easily into the PCB’s pre-drilled

fig. 1. Block diagram of WA2PZO spectrum analyzer.

fig. 2. Schematic of WA2PZO spectrum analyzer.
Meet the Eliminator.

Don't let its small dimensions (4"x3"x2") fool you—the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the 100 kHz-30 MHz frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

Grove Enterprises
140 Dog Branch Road
Brasstown, N.C. 28902

Shop Grove for fantastic values in shortwave receivers, antennas, cable, performance boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!

BRAND NEW — JUST RELEASED

GET *** CONNECTED to Packet Radio
by Jim Grubbs, K9EI

Beginners' guide to Packet Radio operation.
Packet communications is one of the hottest subjects in Amateur Radio these days. Noted computer author Jim Grubbs, author of the Commodore Ham's Companion and Command Post, has put together one of the first books on how to get on Packet Radio. Packet basics are fully discussed in a step-by-step manner. Subjects also covered are: selecting a TNC, setting up your computer, Packet organizations and publications, protocol, networking, Packet answering machine, file transfers, accessories and more! 1986 208 pages, 1st Edition. Softbound $12.95

Also available The Commodore Ham's Companion, Order code JG-CC, $15.95, and Command Post, Order code JG-CP, $9.95.

Please add $3.50 for shipping and handling

Ham Radio's Bookstore
Greenville, NH 03048

Want to Advertise in HAM RADIO?
Call Rally Dennis
(603) 878-1441
today for more information
holes. Because L5, the 150 μH inductor, is symmetrical it can be installed in either direction.
7. Most important: lubricate the small ferrite cores of L1, L2, L3, and L4 with a drop or two of WD-40 before attempting adjustment. These cores are extremely brittle; use a plastic or nylon tuning tool matched to the width of the ferrite slots (using a metal one will guarantee their destruction).
8. If you're not using a 200-μA S-meter, install a jumper from 'A' to ground.

Testing and alignment proceed as follows:
1. Connect the TV tuner's VHF input to your 2-meter antenna.
2. Set the VHF/UHF switch to the VHF position.
3. Set the Hi/Lo switch to Hi.
4. Make sure the top of the ferrite core in L1 is exactly even with the top of its shielded housing.
5. Set the squelch control to zero and adjust the volume control for a slight hiss from the speaker with the gain control at maximum resistance (10 kohms).
6. Set the width control (sawtooth sweep from scope) to zero.
7. Connect a volt meter to pin 10 of the TV tuner (varactor input). Use the +30-volt voltmeter range (adjust the center frequency 10k-turn pot so that varactor bias is below +30 VDC).
8. Turn the center frequency pot slowly down (reducing varactor bias voltage) until a local TV video carrier is both heard on the speaker (buzz) and seen on the scope. If no TV stations are nearby, use a signal generator with modulated output or a grid dip meter.
9. Peak the ferrite slugs in L2 and L3 for maximum signal output on the scope.
10. Continue tuning the center frequency pot until a TV audio signal is found, then adjust L4 for maximum
Subscription rates:

- Championship contest, Hall of Fame, World Contest Championship and more in a magazine format with the speed of a bulletin.
- IncludesPropagation, Awards, contest rules and much more in a magazine format.
- Articles are priceless. Your magazine is a must for the avid contest and great radio accessory for any Ham Shack.

Features:
- Superior natural voice quality
- Microprocessor controlled
- 32 seconds of message time
- PTT/VOX operation
- Dynamic/condenser mic input
- Selectable monitor amplifier with preset level controls
- The sound of the future is here today. Contact your local Amateur Radio dealer or NTL for further information.

$34.95 SUGGESTED AMATEUR SELLER PRICE 157 DEALER INQUIRIES INVITED

/NEL-TECH LABS, INC.
28 DEVONSHIRE LANE • LONDONDERRY, NH 03053
603-434-8234

ANNOUNCING THE DIGITAL VOICE KEYER

Now for the first time you can experience the truly unique operation of a Digital Voice Keyer. Our New DVK-100 represents the latest technology in digital audio processing. Create your own natural voice contest calls. CO's etc. Your voice is stored in digital memory, ready to be played back at the touch of a key. The Digital Voice Keyer is not a tape recorder or robotic sounding synthesizer but a true full fidelity natural voice record/playback system.

- The DVK-100 is a must for the avid contest and great radio accessory for any Ham Shack.

STV THE HOME SATELLITE TELEVISION MAGAZINE

A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV® you will receive a FREE LCD Calendar/Clock.
- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

STV® WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED...

OnSat

The best in satellite programming! Featuring:

- All Scheduled Channels
- Weekly Updated Listings
- Magazine Format
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights
- Specials Listing and Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV®/OnSat

P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384

SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020
audio output and minimum background noise from the speaker.

11. Though each varactor tuned TV tuner will have somewhat different voltage versus frequency response, see fig. 10 to see the response we obtained using a Sanyo varactor tuned TV tuner.

Figure 4 is a photo of our finished spectrum analyzer. The tuner and PCB are mounted on top of a 2

![Image of spectrum analyzer](image)

x 5 x 9-inch (5 x 13 x 23 cm) aluminum chassis. The PCB is mounted on 1/2-inch (1.3 cm) threaded standoffs. Left to right, the five pots are: volume, squelch, center frequency, sweep width, and tuner gain. The two mini-toggle switches on the right of fig. 4 are VHF-UHF (top) and VHF LOW—VHF HIGH (bottom). On the rear of the chassis are six RCA phono jacks: +35 VDC for tuner center frequency; +20 VDC for tuner; +12 VDC for oscillator/mixer, second IF amps, U3 audio amp; horizontal sweep from scope; vertical output to scope; and audio output to the 8-ohm speaker.

operation

Now the fun really begins. For antennas, I used my two 23-element Cushcraft 2-meter "Boomers." (No, I don't bounce signals off the moon with them, but I can work into 2-meter repeaters in Toronto, some 125 miles away. My QTH is on the south shore of Chautauqua Lake, some 65 miles southwest of Buffalo; because of this distance, and the presence of a range of hills about 300 feet (90 meters) high between Buffalo and Chautauqua, TV signals aren't par-
MICROWAVE MODULES LTD.
A Connoisseurs Choice in VHF/UHF

CONVERTERS - SOLID STATE AMPLIFIERS - TRANSVERTERS

MTM 114/28R
144Mhz. TRANSVERTER
High Quality DSM
Repeater Offset
GaAsFET Receiver
25 WATTS OUTPUT

$335.00

Selectabe Input:
3w,10w,25w

MML 114/200–S
144Mhz. SOLID-STATE LINEAR
GaAsFET Pre-Amp
Bargraph Display
200 WATTS OUTPUT

$385.00

AVAILABLE FROM:
THE "PX" SHACK
VHF/UHF EQUIPMENT

NEMAL ELECTRONICS
Your Authorized Distributor For

INTRODUCTORY SALE!

Belden Nema No. No. Description Per Per

8214 1102B RS8 /U Foam 96% $45.00 .50
8237 1100B RS8/U Poly 96% 39.00 .40
8241 1500B RS8/U Poly 96% 13.00 .15
8267 1130B RS213/U Poly 96% 53.00 .60
9269 1600B RS62A/U Poly 96% 15.00 .17
8216 1450B RS214/U Poly 96% 12.00 .14
9113 1150 Low Loss 50 Ohm 46.00 .58

OTHER QUALITY CABLES

Nema No. No. Description Per Per

1110 RS8X 95% Shield (mini 8) 15.00 .17
1130 RS213/U Mil Spec. 96% 34.00 .36
1140 RS214/U Mil Spec. - Silver 155.00 .65
1705 RS142B/U Telfon - Silver 140.00 .60
1310 RS217/U.5/8” 50 Ohm Dbl. Shld. 80.00 .85
1470 RS223/U Mil Spec. - Silver 80.00 .85

ROTOR CABLE — 8 COND.

8C1822 216 Ga., 6-22 Ga. 19.00 .21
8C1620 216 Ga., 6-20 Ga. Heavy Duty 34.00 .36

HARDLINE — 1/2”

FXA12 Smooth Alum. w/black jacket 79.00 .99

PLC12 Corrugated Copper (E.G. Helix LF) 159.00 1.69

CONNECTORS — MADE IN U.S.A.

NE720 Type N for Belden 9913 4.75

PL259 Standard Plug for RG8, 213 .65
PL259AM Amphenol PL259 .89

PL250TS PL259 Telfon/Silver 1.59

UG321D Type N for RG8, 213, 214 3.00

UG175 Adapter for RG58 2.22

Call or write for complete Price List
COD add $2.00

Shipping: Cable — $3.00 per 100 ft.
Florida Residents add 5%
Connectors — and 10%. $3.00 minimum
Orders under $20 Add $2 Handling

Nema's new 32 page Cable & Connector Selection Guide now available at no charge with orders of $50 or more or at a cost of $4.00 individually.

DO YOU KNOW WHERE TO FIND REAL BARGAINS

on NEW and USED ELECTRONIC Equipment?

You’ll Find Them in the Nation’s No. 1
Electronic Shopper Magazine

NUTS & VOLTS
Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:
• NEW STATE-OF-THE-ART PRODUCTS
• SURPLUS EQUIPMENT • USED BARGAINS
• LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

□ One Year - 3rd Class Mail .. $10.00
□ One Year - 1st Class Mail .. $15.00
□ One Year - Canada & Mexico (in U.S. Funds) $18.00
□ Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!

SEND: □ CHECK □ MONEY ORDER □ VISA □ MASTER CARD

TO: NUTS & VOLTS MAGAZINE
P.O. BOX 11111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name __________________________ Address __________________________
City __________________________ State __________________________ ZIP ______
Card No. __________ Exp. Date __________

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!

Dealer Inquiries Invited

NEMAL ELECTRONICS
12240 N.E. 14th Ave., Dept. Q., Miami, FL 33181
Telephone (305) 893-3924

September 1986

v 161
particularly strong. Nevertheless, all the TV channels on both the VHF low TV and VHF high TV bands were displayed on the first try. Both the vestigial sideband video signal and its accompanying FM audio signal were clearly displayed for each channel.

Figures 5 through 10 are sketches of the oscilloscope display in the noted modes of operation. (Oscilloscope cameras cost about $300; I chose not to add one to my $39.95 Heathkit scope.)

Figure 5 shows the VHF low TV band with the horizontal sweep amplitude set to maximum. Each TV channel pair displayed (video and audio) is noted. The height of each signal is proportional to signal strength; some Canadian TV stations really pack a wallop even though they’re 125 miles away.

Figure 6 illustrates about 8 MHz horizontal sweep width (left side of CRT to right side of CRT) with the video signal of Channel 2 on the left and the audio from Channel 2 on the right side.

Figure 7 displays the sweep width reduced to about 2 or 3 MHz with the center frequency set to Channel 2’s video carrier. Note the blanking and vertical sync pulse riding on top of the carrier.

Figure 8 is the Channel 2 video carrier with the horizontal sweep set to zero. The blanking pulse with the vertical sync pulse on top is on the left side. The eight squiggles to the right of the vertical sync pulse on top of the blanking pulse are the color burst; all the hazy, wavy signals to the right are the video information. The top of the vertical sync pulse represents 100 percent modulation and the bottom of the video information represents the white level of video at about 15 percent modulation.

Although some scope photos or sketches show 100 percent modulation at the bottom, I prefer it at the top. If you insist on having it at the bottom, simply turn the figure upside down and view it in a mirror.

Figure 9 illustrates the 2-meter band with horizontal sweep representing about 3 MHz. The left side of the CRT is at 145 MHz and the right side of the CRT is at 148 MHz. Spread between 146 and 148 MHz, we can see about six 2-meter repeaters located in the Buffalo and Toronto areas.

Figure 10 is a plot of varactor tuning voltage versus frequency on my Sanyo TV tuner. The 10-turn, 10-ohm pot used for setting the varactor voltage is an absolute “must” for fine tuning.

By reducing the sweep width to zero and single-signal tuning across each band, I was able to copy the audio on the VHF TV low band from the following stations: WGRZ-TV (Channel 2, Buffalo) WPSX-TV (Channel 3, Rochester), WIVB-TV (Channel 4, Buffalo), CBLT-TV (Channel 5, Canada), and CTGN-TV (Channel 6, Canada). On the VHF TV high band we copied audio from air-to-ground and air traffic control stations; 2-meter repeaters in western New York and the Toronto area; commercial FM pagers; Toronto Coast Guard marine weather on 161.775 MHz; the Erie, Pennsylvania, weather bureau on 162.40 MHz; the Buffalo, New York, weather bureau on 162.55 MHz; WKBW-TV (Channel 7, Buffalo); WROC-TV (Channel 8, Rochester); CFTO-TV (Channel 9, Canada); CFPL-TV (Channel 10, Canada); CHCH-TV (Channel 11, Canada); WICU-TV, (Channel 12, Erie); and CKCO-TV (Channel 13, Canada). On the UHF TV
Fig. 10. Varactor voltage versus frequency (will vary from tuner to tuner).

VHF low band

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Frequency MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>50.00 6-meter band</td>
</tr>
<tr>
<td>2.0</td>
<td>55.25 channel 2 video</td>
</tr>
<tr>
<td>3.5</td>
<td>59.75 channel 2 audio</td>
</tr>
<tr>
<td>4.0</td>
<td>61.25 channel 3 video</td>
</tr>
<tr>
<td>6.0</td>
<td>65.75 channel 3 audio</td>
</tr>
<tr>
<td>7.0</td>
<td>67.25 channel 4 video</td>
</tr>
<tr>
<td>9.5</td>
<td>71.75 channel 4 audio</td>
</tr>
<tr>
<td>13.5</td>
<td>77.95 channel 5 video</td>
</tr>
<tr>
<td>17.1</td>
<td>81.75 channel 5 audio</td>
</tr>
<tr>
<td>20.1</td>
<td>83.26 channel 6 video</td>
</tr>
<tr>
<td>34.8</td>
<td>87.75 channel 6 audio</td>
</tr>
</tbody>
</table>

VHF high band

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Frequency MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>135.00 air to ground</td>
</tr>
<tr>
<td>1.0</td>
<td>144.00 2-meter band</td>
</tr>
<tr>
<td>2.0</td>
<td>148.20 commercial paging</td>
</tr>
<tr>
<td>4.0</td>
<td>162.55 Buffalo weather</td>
</tr>
<tr>
<td>6.5</td>
<td>175.25 channel 7 video</td>
</tr>
<tr>
<td>7.6</td>
<td>179.75 channel 7 audio</td>
</tr>
<tr>
<td>7.9</td>
<td>181.25 channel 8 video</td>
</tr>
<tr>
<td>9.0</td>
<td>* 185.75 channel 8 audio</td>
</tr>
<tr>
<td>9.3</td>
<td>187.25 channel 9 video</td>
</tr>
<tr>
<td>10.6</td>
<td>191.75 channel 9 audio</td>
</tr>
<tr>
<td>11.0</td>
<td>193.25 channel 10 video</td>
</tr>
<tr>
<td>12.3</td>
<td>197.75 channel 10 audio</td>
</tr>
<tr>
<td>13.0</td>
<td>199.25 channel 11 video</td>
</tr>
<tr>
<td>14.7</td>
<td>203.75 channel 11 audio</td>
</tr>
<tr>
<td>15.2</td>
<td>206.25 channel 12 video</td>
</tr>
<tr>
<td>17.5</td>
<td>209.75 channel 12 audio</td>
</tr>
<tr>
<td>19.0</td>
<td>211.25 channel 13 video</td>
</tr>
<tr>
<td>25.5</td>
<td>216.75 channel 13 audio</td>
</tr>
</tbody>
</table>

Figures each price group separately. For combos (matched pairs only) see prices below.

8.83MHz 8-POLE FT FILTERS FOR KENWOOD - Reg. $60 ea.
Bandwidths: CW 250 - 400Hz; SSB 1.8 - 2.1 AM 6.0KHz Suitable for all models from TS120 through TS940. TS440S introductory. Take $5 off sale price for two.

Filter Cascading Kits with FT Filter
TS430S - Discounted 2 1 filter plus $20 for amp board
TS820S - Discounted 2 1 filter plus $5 for parts.

455KHz 8-POLE FT FILTERS FOR KENWOOD - Reg. $110 ea.
Bandwidths available: CW 400Hz; SSB 2 kHz. Suitable for RB30, TS930, TS990. TS940 Matched Filter Pairs for Above Models - Reg. $170 ea SSB 2 kHz (455 and 8.83); CW 400Hz (455 and 8.83) Discounted Pairs: one for $147, $279 for both.

3.395MHz FILTERS FOR TS520, 511, R599 - Reg. $60 ea.
Bandwidths available: 250, 400Hz, 1.8", 2.1kHz. 1 8 special - Take $10 off list, then discount!

Same deal for YAESU, KRAKE, ICOM, and HEATH filters!
Check your GREEN SHEET for List prices or PHONE

LIMITED QUANTITIES — ORDER NOW TO AVOID DELAY

When ordering, specify Make and Model Number of your rig. Frequency and Bandwidth of filter(s) desired.

SHIPPING: $5 US and Canada, $12 elsewhere
Order by Mail or Phone VISA/MC or COD accepted

GO FOX - TANGO—TO BE SURE! GET THE BEST—FOR LESS!

FOXX-TANGO Corp.
Box 15944, W. Palm Beach, FL 33416
Telephone: (305) 683-9587

1986-87
ARRL
REPEATER
DIRECTORY

$3 + $2.00 shipping and handling

Send $5.00 to:
Ham Radio's Bookstore
Greenville, N. H. 03048

90 September 1986
• Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
• Accuracy +/- 1 part per 10 million at all frequencies
• Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
• External FM input accepts tones or voice
• Spurs and noise at least 60 dB below carrier
• Output adjustable from 5-500 mV at 50 Ohms
• Operates on 12 Vdc @ 3/4 Amp
• Available for immediate delivery $429.95 delivered
• Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
• Call or write for details
• Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 486-2720 Mon. thru Thu.

Electronic Repair Center
Servicing Amateur Commercial Radio
The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing “Hams” for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400
substituting transistors

part 1: using resources at hand

Every Amateur who spends at least some time at the workbench repairing or building electronic equipment will eventually need a transistor that’s not on hand — and perhaps not even available. In some cases, the type number will be found in one of the standard transistor replacement catalogs. In other cases, well . . . you’re on your own.

Although the subject of transistor substitution is one that’s been talked about to the point of exhaustion among hams, serious problems continue to reappear. The tips given in this two-part series, while most appropriate to the types of transistors normally used in Amateur Radio equipment, are also applicable to a variety of other situations as well.

The main premise is that we are servicing Amateur Radio equipment that once worked properly and then failed. While much of what is discussed is also applicable to construction projects, construction project debugging is something of an arcane art and is thus not suitable for general, too-broad guidelines. I can recall several projects over the years that depended for proper operation on selected parameters of specific transistors, and wouldn’t even work with all otherwise-working versions of the same “2N” number devices.

There are even cases on record in which only those devices made by certain manufacturers will work properly in the circuit. (Ancient history note: those of us who go back to vacuum tube days recall a very costly ham receiver that would retain its “frequency meter” dial calibration only when RCA tubes were used for the local oscillator; there are transistor equivalents to that situation.) As a result, we must limit our consideration to repair of working — and, one would hope, properly designed — equipment.

easy replacements

The easiest way to obtain a replacement solid-state device that will install easily and operate correctly is to order it from the original equipment manufacturer or an authorized distributor. As we’re all painfully aware, however, this is not always either possible or practical.

industry-standard type numbers

If the defective transistor has a standard “2N” type number, then you just obtain a replacement device with the same number, without regard to brand name. Unfortunately, some “Original Equipment Manufacturer” (OEM) transistors aren’t marked with these standard numbers. They often have a house code number that’s meaningless to anyone except the manufacturer. Sometimes the house number is created because the transistor is specially selected from others for the same “2N” series, so only a similarly tested device will work properly in the circuit. In some cases, the house number is used because it suits the manufacturer’s inventory control system; in other cases, manufacturers simply want to ensure replacement parts business.

crossover guidelines

Crossover guides, which would seem to be a nearly perfect source of replacement numbers, should be used whenever possible. But there are gremlins that can pop up unexpectedly. Theoretically, the cross-matching has been done in advance by the use of an “infal-lible” computer. When we follow those recommendations, however, we sometimes find that suggested replacements have insufficient power or voltage ratings, too narrow a bandwidth, a different physical shape that would cause mounting or space problems, or different mounting dimensions that would require modification of the chassis. Many of these discrepancies occur because the crossovers are compiled from printed lists that sometimes contain errors. It’s an open secret that the recommended substitutes are seldom tried in any kind of equipment or circuit, so it’s best to test the reasonableness of any selection by looking at the crossover device’s specifications and comparing them with what you know about the circuit and its requirements.

During my years in the electronic service business, it was my policy to return, along with a note of explanation, any crossover transistors that either didn’t work properly or would require major reworking of the chassis or rewiring of the circuit. If everyone did this, manufacturers might take the hint. The economic impact of a service shop’s annual semiconductor purchases makes it easy for them to obtain refunds on bad crossovers; unfortunately, Amateurs rarely have such clout.

Another problem has nothing to do with electrical specifications, but rather with proper identification. In some cases it’s relatively easy to guess the required transistor type. But what if two manufacturers have each accidentally assigned the same designation to two
such problems, though some do accommodate such ambiguities.

I remember one case years ago where I needed to replace a Delco Electronics DS-25. Now, the DS-25 has been around for about 20 years as an RF amplifier, IF amplifier, and converter in Delco-General Motors car radios. The DS-25 germanium transistor was packaged in a “smaller-than-TO-5” case. Unfortunately, a small hi-fi manufacturer also used the DS-25 designation for a medium-power PNP germanium power transistor in a TO-3 case. One crossover guide I consulted at that time listed the TO-3 type without noting that it wasn’t the Delco part number, even though it was listed among the various Delco “DS-Series” type numbers.

Remember the old rule from high school math: Things equal to the same thing are — you hope — equal to each other. Or, if A = B, and B = C, then A = C. We can use this observation to make crossover selections. Furthermore, we can use this technique in at least two additional ways. First, we can look up the device needed to find the replacement type number. For example, suppose a 2N5xxx is found in the Zotch Electronics Crossover Guide as a “ZE-234.” We can look for other “2N” series devices also equal to ZE-234 and use one of those.

This method is especially useful when crossing house numbers to 2N numbers, which is our second way to use the “A = C” theory. Suppose that your Wombat Thunderbolt VI transceiver uses a transistor with the part number “8501234.” Well, the Zotch guide calls it a ZE-234. By looking over the “2N” series columns in the Zotch Guide To Replacement Things, you find that a 2N5xxx is also equal to a ZE-234. Chances are good that the Wombat engineers selected the 2N5xxx and then relabeled it “8501234.” It may not be the exact transistor, but it’s a fair bet that it will work unless the 8501234 is a specially selected 2N5xxx. (There are no guar-
For Computerists and Amateur Radio

Your Number One Source of PACKET Information

Why you Should Subscribe!

Read what our subscribers say!

- it's in the fine print -
- Your magazine is the finest innovation that I have seen in ham radio since 1953 - except... maybe the all-solid state transceiver. Carl Soltesz • Twelve more, please. Ed Sheehney • Love the articles on Tucker-Sierra computers. A. Nieuwenhoff, Sutton, MA • ... have most certainly received my moneys worth in software... Michael Regan, KEWRB • ... information contained in the articles has made me more "computer literate" than would have been possible reading only publications dedicated to my particular computer. Don H. Haischer, Martinsburg, WV • Here it is renewal time already... time sure passes fast when you are having fun (reading CTM). Bob Sirekis, Holly Hill, FL • ... thank your for a great magazine. Frank Davis, Peru, IN • Another year goes by and another subscription dollar well spent. R. P. Campbell, LaPlace, LA • CTM, and you have found the way to an advertiser's heart. Quality of publication and reasonable advertising rates are basic criteria you have achieved better than your competition. Bob Harris Sr., BCD Electro, Richardson, TX • ... you have found a nice niche for CTM in packet... have me getting interested... Charlie Curle, AD4F Chattanooga, TN • The packet/computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homey style of your magazine and the many fine computer articles... Andy Kosior, Lakewood, OH • I was both pleased and dismayed upon becoming acquainted with your magazine at HAM-COM. Pleased that I discovered your magazine - dismayed that I didn't long before now. Bill Lathan, AKSK • ... CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet/amateur radio articles and computer articles. Barry Siegfried, K2MF • Thank you for an excellent magazine, and the only magazine I read over 75% of. W. F. Pence Jr. • ... your publication is the most enjoyable computer magazine on the market. Andrew Zerbe, K6CT • Congratulations on your informative magazine. Looking forward to each issue. Carl & Nancy Jones, Kodiak, AK • ... received my moneys worth with just one issue... J. Trenbick • ... always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination... Fred Blechman, K6UGT • (a year later) thought you would like to know, it still goes... Fred Blechman, K6GT • Of the three HAM magazines I received each month QST, 73 and CTM, CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT •

NAME
CALL SIGN
ADDRESS
CITY ST
ZIP PHONE
DATE
SIGNATURE

U.S.A. $18.00 1 Yr
$33.00 2 Yr
$48.00 3 Yr
Mexico & Canada $32.00 1 Yr
All Other Countries $68.00 1 Yr
(Air) $43.00
(Surface)

U.S. $ FUNDS ONLY
Permanent U.S.
Subscription $150.00
Sample Copy $ 3.50

Cut out and mail coupon at right to:
Circulation Manager
1704 Sam Drive
Birmingham, AL 35235
(205) 854-0271
especially if you attempt to use "five-
to-crossmatch and you can’t locate an
tor seem meaningless. There’s no way
to explain why a transistor that’s operat-
tage rating could be destroyed by using
it in a hot car. Watch for such hazards,
beyond crossmatching
One car manufacturer became con-
cerned about the excessive number of failures in his first all solid-state car ra-
dio models (circa 1962) and decided to
investigate the possibility of passenger
cabin heat as the culprit. The company
asked its electronics plant employees to
leave their car doors unlocked for one
day. During that day of 90-degree
weather, the engineers measured the
temperatures inside many of the closed
cars and were surprised to find that the
average reading was 160 degrees F on
the seat and 180 degrees behind the
dashboard.
derating the specs
Published transistor power ratings
are usually specified at room tempera-
ture, generally accepted to be 25
degrees C (77 degrees F). If transistors
are used at higher temperatures, as in
mobile applications, then the maximum
collector dissipation (in watts) must be
reduced to prevent extra failures which
could occur even when all the electrical
specifications are fulfilled.
A typical derating curve is show in
fig. 1. Notice that a transistor having a
collector dissipation of 550 mW at 25
degrees C can safely dissipate only 375
mW at 65 degrees (142 degrees F). This
explains why a transistor that’s operat-
ing below its maximum published watt-
tage rating could be destroyed by using
it in a hot car. Watch for such hazards,
especially if you attempt to use “five-
for-a-buck” bargain-basement replace-
ments in which the collector dissipation
rating was “optimistic.”
beyond crossmatching
Often the numbers on a bad transis-
tor seem meaningless. There’s no way
to crossmatch and you can’t locate an
OEM replacement from the equipment
maker. The next step is to find a univer-
sal replacement from one of the many
convenient sources. To do this, you
have to become an electronic detective
and find out the following things about
the transistor:
- Is it a silicon or germanium type?
- Is it a PNP or NPN?
- What is the gain (alpha or beta)?
- What frequencies must it amplify?
- What are the collector power dissi-
pation requirements?
- Are there any special mechanical
mounting requirements?
Once you’ve answered these ques-
tions, you can make a satisfactory selec-
tion from most any brand of universal
replacements.
silicon or germanium?
Silicon transistor junctions measure
higher DC resistances than germanium
junctions. In fact, silicon transistors
usually read “open” on all measure-
ments except with base/emitter and
base/collector forward biasing polarity.
If even one junction remains intact on a
blown transistor, then you can tell
which material it is by comparing read-
ings with those of known types in the
size and power category.
Forward bias voltages for all stages
other than oscillators (and certain pulse
circuits used in video equipment) should
be 0.2 to 0.3 volts for germanium tran-
sistors and 0.5 to 0.7 volts for silicon
transistors. Check the schematic, or
another of the intact junctions (or a sim-
larly numbered good transistor in the cir-
cuit) to see which voltage levels are
found. The answer will tell you whether
to look for Ge or Si transistor replace-
ments.
PNP or NPN?
When the collector voltage is more
positive (or less negative) than the emit-
ter, then the transistor is an NPN type.
If the collector is more negative (or less
positive) than the emitter, then the tran-
sistor is a PNP type. Most schematics
give these voltage readings. On the
other hand, you can measure the collec-
tor/emitter voltages accurately enough
for this purpose, right in the circuit in
most cases.
Even if only one junction of the defec-
tive transistor is intact, you still can de-
termine the polarity by using the
ohmmeter. If you obtain a normal low-
resistance diode-type reading with the
positive ohmmeter lead on the base and
the negative lead on the collector or
emitter, then it’s an NPN type. If you
must reverse the leads to obtain a low-
resistance reading, the transistor is a
PNP type. This measurement must be
made with an old-fashioned VOM/
VTVM or a modern digital meter with a
“diode” or “high power” ohmmeter
function.
next month
Next month we’ll look at the frequen-
cy response of the selected transistor
and certain mechanical considerations.

Ham radio
FULL CHARGE FAST
Replace your old slow charger.
Handheld battery packs full to capacity in as little as
45 Min.
STATE OF THE ART DESIGN.
PROVIDES PRECISE MEASUREMENT AND CONTROL
OF CHARGE AND DISCHARGE PARAMETERS.

F 1. Power connector and transformer supplied
E 2. Pocket size charger 4"x2½"x1"
A 3. Laser trimmed precision resistors
T 4. Reverse polarity protection built in
U 5. Solid state circuit measures charge and discharge
R 6. Automatic shutoff
E 7. Simple modification to adapt (special adapter for ICOM)
S 8. Controlled automatic discharge and auto switch to charge mode
Quick charge or discharge
Utilize your Ni-Cd To full capacity
115 VAC or
12 VDC to
24V
Home $149.95
Auto
R.V.
Boat
Plane

Mail Orders To:
NRG CONTROL
P.O. BOX 1602
Chelan, WA 98816
(509) 682-2381

Join AMSAT...Today
Amateur Radio Satellite OSCAR 10 provides:

• A New Worldwide DX Ham Band
 open 10 hours a day.

• Rag Chew With Rare DX Stations
 in an uncrowded, gentlemanly fashion.

• Popular Modes In Use:
 SSB, CW, RTTY, SSTV, Packet

• Full Operating Privileges
 open to Technician Class
 licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news,
orbital elements, product reviews, DX news,
and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator
Support, Forum Talks

Construction of Future Satellites For Your
Enjoyment!

AMSAT Membership is $24 a year, $26 out-
side North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
Save Time-Money with HAZER

- Never climb your tower again with this elevator system.
- Antenna and rotator mount on HAZER, complete system trims tower in vehicle upright position.
- Safely lock system on HAZER operates while raising-lowering & normal position. Never can fail.
- Weight transferred directly to tower. Winch cable used only for raising-lowering. Easy to install and use.
- Will support most antenna arrays.
- High quality materials & workmanship.
- Safety - speed - convenience - smooth travel - inexpensive.
- Complete kit includes winch, 100 ft. of cable, hardware and instructions. For Rohn 25 G Tower.

Hazer 2 Heavy duty steel, 12 sq. ft. load 3,200 lb. both.
Hazer 2 Standard alum. 8 sq. ft. load 2,100 lb. both.
Hazer 4 Heavy duty steel, 16 sq. ft. load 2,700 lb. both.
Rail thrust bearing 25 for any of above 42.50 gpd.
Satisfaction guaranteed. Call today and charge to Visa or MasterCard.

Asian alternative, purchase a Martin M-13 or M-18 aluminum tower engineered specifically for the HAZER system, or a truly self-supporting steel tower. Send for free details.

GLEN MARTIN ENGINEERING INC.
P.O. Box H 253
Boonville, Mo. 65223
816-882-2734

Orders & Quotes Toll Free: 800-336-4799
(In Virginia: 800-572-4031)
Information & Service: 800-453-5843
Service Department: 713-404-8160
1100 Jefferson Street, Woodbridge, Va 22191
Stock hours: M-F 9:30-5:30 pm
W 10 am-8 pm
Sat 10 am-4 pm
Order hours: M 9:30 am 1 pm
Sat 10 am-4 pm

Visit Our New England Store
8 Dean Road
Salem, New Hampshire (03079)

New Hampshire Orders:
Information & Service: 603-983-3350
New England Orders: 800-572-0007
NEW Store Hours:
M-F 9:30 am-5 pm
TUE 10 am-8 pm
Sun Closed
Order and will not accept cash with this for the call

LACOMBE DISTRIBUERS
Our Authorized Store
Lacombe Distribution
835 18th St., S.W.
Washington, D.C. 20009

Texas: To purchase discount priced parts do not include shipping. 100% of all sales are package charged no minimum order permitted.

More Help
- Marine radio by Kenwood Helm and Icom
- Commercial Land Mobile by Yeasu and others
- Telephones by AT&T, Cobra, Southwestern Bell and Panasonic
- CBs by Uniden, Midland, Cobra
- Radar Detectors by Uniden and Whistler

More Radios
Encore/Santec KDK
Ten-Tec

MORE Details?
CHECK-OFF Page 110

MORSE CODE the essential language
by L. Peter Caron W3OKX
Learning the Morse code is one of the most difficult tasks facing prospective new Amateurs. This well written text describes in great detail the background history of Morse code and how it relates to Amateur Radio. Full of helpful hints and tips as well as info on equipment, high speed operation, distress calls and the future. Includes 7 learning exercises. - 1986 1st Edition
AR-MC
Softbound $4.95

Please enclose $3.50 for shipping
equinox season DX

Even though this is a sunspot minimum year, and the sun’s activity has decreased, an occasional energy burst (flare) or increase in the solar wind causes a geomagnetic field disturbance. We experienced these phenomena in February and May of this year, and it’s likely that we’ll have another in September or October. Whenever they occur, you can expect them to affect your DXing.

Geomagnetic disturbances, or storms, affect propagation — and DX — in three ways. First, particles from the sun entering the auroral zone at 50 to 70 degrees North and South latitudes come down into the ionospheric D and E regions, increasing signal absorption. This results in weak east-west path signals and few transpolar signals.

Second, the particles form a reflective curtain along the equatorial side of the auroral zone (for those of us in North America, this is south), enhancing VHF auroral scatter propagation. Six-meter openings to Europe are one result of this phenomenon. Third, the F region of the ionosphere (for U.S. stations, this is south of the auroral zone) has a depleted area of electrons that form an electron density trough. The maximum usable frequency (MUF) for paths through this area decreases by 30 to 40 percent. (Tables of MUF statistics were presented in this column in January, 1986.)

However, still further south at ± 20 degrees from the geomagnetic equator, an equivalent-size enhancement of the F region occurs, resulting in evening Trans-Equatorial (TE) openings during the equinox and winter seasons. These three effects vary in intensity and time on a short to long basis (seconds through hours), causing what we experience as fading and blackout. These effects continue to occur each night for two to three days before ionospheric equilibrium is re-established. The larger the geomagnetic storm (the higher the value of the K or A indices), the closer to the equator these effects occur.

Just as the particle density and speed of the solar wind vary, so do the characteristics of the geomagnetic field and ionosphere. Ionospheric variation causes signal reflection focusing and defocusing, which simply means that the signals arriving at your QTH will vary in both strength and angle of arrival. Some directions and locations you haven’t heard from in a long time may suddenly be workable.

last-minute forecast

The higher-level 27-day sunspot activity may push the maximum usable frequencies up during the first and last weeks of September, giving better 10-, 12-, and 15-meter DX. September marks the beginning of the return of transequatorial one-long-hop propagation for the winter season; during some evenings, it will probably be useful for DX. Its effect will be enhanced by an equinoctial increase in geomagnetic disturbances, which are more probable near the end of the second week and into the third.

The lower bands will experience less QRN caused by weather storm frontal thunderstorms passing through. But the geomagnetic disturbances will have greater effect on these bands; lower MUFs will occur on east, west, and north paths. Signal strength variability, QSB, is also associated with the disturbances. Listen carefully for new, unusual DX openings at these times.

A full moon will occur on September 26th and its perigee on the 12th. The autumnal equinox will be on the 23rd at 0759 UTC. No significant meteor showers are expected this month.

band-by-band summary

Six meters may have a few sporadic E openings around local noon, but don’t count on them this last month of the season.

Ten, twelve, and fifteen meters should provide a few short-skip openings and many long-skip openings to most southern areas of the world, especially if there is any solar flux increase during the daylight hours this month. Some of these openings will result from transequatorial propagation, mainly during disturbed conditions.

Twenty, thirty, and forty meters will support propagation from east, west, and north areas of the world during the daytime and into evening hours almost every day. Distances to 2000 miles via long-skip or some short-skip Es to 1000 miles per hop are usual.

Thirty, forty, eighty, and one-sixty meters are all good for nighttime DX. The bands will be open in the east soon after sundown, swing toward the north and south about midnight, and end in the Pacific areas during the hour or so before dawn. The time-and-frequency stations in England and Hawaii make good band monitors. On some nights these bands will be as good as they are during the winter DX season; on others, QRN may be a problem. Distances will be a little shorter than those mentioned above.
SEPTEMBER

<table>
<thead>
<tr>
<th></th>
<th>0000</th>
<th>0300</th>
<th>0600</th>
<th>0900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>FAR EAST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUROPE</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>10</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>OCEANIA AUSTRALIA</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>JAPAN</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

WELCOME TO THE HAM RADIO WORLD

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

Look at next higher band for possible openings.

The New Zealand League's 1986 Schedule

- September 1986

September 1986

- ham radio
RS 232-compatible computer interface units

Trio-Kenwood Communications has announced the release of RS 232 compatible computer interface units for the TS-440S, TS-940S, TS-711A, and TS-811A transceivers: the IF-106; and the TS-711A or TS-440S transceivers: the IF-100.

Two units are required to control the transceivers: the IF-232C level translator and the appropriate plug-in computer interface module. The TS-440S requires the IC-10 chip set; the TS-940S, the IF-10B; and the TS-711A or TS-811A, the IF-10A.

All digital functions on the transceivers — including VFO tuning, RIT/XIT, memory input and recall, and voice synthesizer activation — are controllable. Programming is simple; one program should work with several rigs.

The suggested retail prices are IF-232C, $49.95; IF-10A/IF10 B, $41.95; IC-10, $22.95.

A simplified sample program will be available from Kenwood dealers. Write to Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220, for information.

PCB kits from Kepro

A new line of Kepro pre-packaged materials and kits includes the following:

- a standard manual resist-etched circuit kit for producing basic PC boards;
- a photo-reversing kit for making line negatives from artwork prepared on transparent film or reversing negatives to positives;
- an immersion tin-plating kit to improve solderability by depositing 0.0001 inch of tin on the oxide-free copper surface of etched PCBs;
- a photo-resist-etched circuit kit, basic artwork or master photo layout kits, screen printing or nameplate kits.

In addition, Kepro also offers KeproClad,™ for the production of industrial quality, negative acting dry film photo-sensitized PCBs. KeproClad is available with foam on one or two sides, in sizes ranging from 4 x 6 through 7 x 12 inches, and is priced as low as $3.50.

For details, contact Kepro, Inc., 630 Axminster, Fenton, Missouri 63026.

Circle #307 on Reader Service Card.

New computer-based instruments from Heath

Models IC-4802 and ID-4850 oscilloscopes from Heath Company are designed to work with personal computers.

The IC-4802 Digital Oscilloscope is a sophisticated interface that attaches to an IBM PC compatible computer and is available in kit form or assembled. This interface turns an IBM PC compatible computer into a full-featured 50 MHz dual trace oscilloscope that allows full control of the scope from the keyboard of the computer, harnessing the computer's computational abilities. With the IC-4802, oscilloscope waveforms can be collected and stored on disk for later recall. The digitally stored waveforms may be printed out on the computer's printer.

The ID-4850 Digital Memory Oscilloscope is an interface that may be used with either a personal computer or a 5 MHz or greater bandwidth oscilloscope that has the ability to trigger from an external source and triggered sweep. Used with a computer, the ID-4850 provides a personal computer with 50 MHz oscilloscope capabilities and allows waveforms to be digitally stored for later recall. When using an oscilloscope, the ID-4850 upgrades it to a full-featured 50 MHz dual trace oscilloscope. The Digital Memory Oscilloscope is available in kit or assembled form.

More information on these and other products is available in Heathkit's free catalog. For a copy, contact Heath Company, Dept. 150-775, Benton Harbor, Michigan 49022.

Circle #309 on Reader Service Card.

personal frequency standard

Wenzel Associates, Inc., offers the new Counter Mate personal frequency standard that provides stable 1-MHz and 10-MHz reference signals to improve the accuracy of counters and other instruments. A precision third-overtone 10-MHz crystal is mounted in a controlled oven in an installation that provides minimum aging and drift. Both outputs will drive TTL or 50 ohms with 5 ns rise and fall time square waves. The output impedance properly matches power splitters for generating isolated signals to operate several instruments.

The price is $350.

Further information is available from Wenzel Associates, Inc., 11124 Jollyville Road, Austin, Texas 78759.

Circle #310 on Reader Service Card.

new Hamtronics catalog

Hamtronics, Inc. has announced publication of their new 40-page, two-color catalog, which features many new products, including several GaAs FET preamps, a five function DTMF decoder/controller, a transmit/receive relay module, digital FSK equipment, and packet radio VHF power amplifiers. Also included is a comprehensive listing of FCC type accepted transmitters, receivers, and repeaters for commercial service. Hamtronics reports that because of recent high volumes of production, it has been able to reduce prices on many products.

To receive a copy by return first class mail, send $1 (82 for overseas mailing) to Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14468 9635.

surge protector

Alpha Delta has announced availability of a new, improved version of its Transi-trap Electrical Surge Protector.

The new Transi-trap "Arc plug" has been redesigned to meet government and industry protection standards for Electromagnetic Pulse (EMP) in accordance with the National Communications System report, NCS TIB 85-10. The "ARC plug" has a DC clamping level of 350 volts to provide proper transmitter protection. The pulse clamping level (per NCS EMP test, 4,500 volts at 50 ohms) is 230 volts. The unit will respond in 80 to 100 nanoseconds and has a very low interelectrode capacitance of less than 1 pF.

The Transi-trap design offers low loss — typically 0.1 db through 500 MHz for the R-T and 0.3 db loss through 1 GHz for the units with N connectors.

For more information, contact Alpha Delta, P.O. Box 571, Centerville, Ohio 45459.

Circle #314 on Reader Service Card.

RF test equipment catalog

A new 60 page catalog of Thruline® directional wattmeters, coax load resistors and attenuators, calorimeters and RF components is available from Bird Electronic Corporation.

Included are such items as high-accuracy instruments using plug-in elements with 5000 to 1 power ranges, a frequency power meter combination and relative field-strength devices, as well as more than 300 standard RF products.

This reference work of RF measurement instrumentation and components from 2 milliwatts to 250 kilowatts in the frequency range of 0.235 to 2300 MHz features triple indexing — by function, power level and model number — making it easy to use as both a desktop reference and specification tool.

Catalog GC 85 is available from Bird Electronic Corporation, Cleveland (Solon), Ohio 44139 2794.

Circle #315 on Reader Service Card.

trailer-mounted towers

Trailer-mounted communication towers, available from Aluma Tower Company, are well suited for mobile testing, site selection for earth stations, civil defense, or other applications requiring a temporary communication tower. Towers up to 100 feet can be provided with either manual crank mechanisms or 12-V winch operation. Towers are supplied with a 2-inch ball hitch, spring suspension, and tail lights for day/night service.

100 September 1986
new multimode xcvr from Yaesu

Yaesu U.S.A. has announced the release of the new FT-767GX, the world’s first HF/VHF/UHF multimode transceiver. The FT-767GX comes factory-equipped for HF operation on the Amateur bands plus general coverage on receive from 100 KHz to 29.99 MHz. Features include an automatic antenna tuner for 160-10 meters, CW filter, electronic keyer, speech processor, digital wattmeter, IF shift, IF notch filter, CW audio peak filter, and a dual VFO tracking system for OSCAR Mode A or repeater operation. All popular operating modes are included: SSB, CW, AM, FM, and FSK. Optional modules extend coverage to 6 meters, 2 meters, and/or 70 cm, and an optional CTCSS unit is available for tone-access repeater work.

The FT-767GX is compatible with Yaesu’s CAT (Computer Aided Transceiver) external computer protocol, for remote control operation and enhanced operating flexibility. For teletype operation, the FT-767GX is rated at 100 watts output continuously for up to 30 minutes.

The introductory price of the FT-767GX is $1759.95, with the 6-meter and 2-meter modules priced at $169.95 each. Prices are subject to change due to the extreme volatility in international exchange rates.

For information, contact Yaesu, Inc., 17210 Edwards Road, Cerritos, California 90701.

Circle #1305 on Reader Service Card.

DX beam heading chart

John Daley, KB6JGH, has announced the availability of his DX Beam Heading Chart. Each report is individually calculated by computer and packaged in an attractive 8 1/2 x 11 inch binder. Nine categories of data including callsign, country, state, city, longitude, latitude, beam heading, Great Circle distance, nautical miles, and statute miles are provided for each of 540 DX locations. All data are based on the user’s exact station location.

Geared to both the ham and SWL, numerous listings are given for the USSR and China, making unknown site estimation easier.

The price of this chart is $9.95. It’s available from John Daley, KB6JGH, P.O. Box 4794, San Jose, California 95150.

Circle #1302 on Reader Service Card.
IC-48A 440-MHz mobile

ICOM has announced the release of the new IC-48A 440-MHz compact mobile. The IC-48A offers the same features as the new IC-28A and IC-28H, with 440-450MHz frequency coverage. Features include compact size (5 1/4 x 5 1/2 x 2 inches); a large LCD readout, with automatic dimmer; 21 memory channels; scanning, plus an internal speaker and an HM-12 mic. With only 11 front panel controls, the unit is easy to operate.

Options include the IC-HM14 DMF mic, PS-45 13.8-volt power supply, UT-29 tone squelch unit, SP-10 external speaker, HM-16 speaker mic and HS-15/HS-15B flexible boom mic, and PTT switchbox.

For information, contact ICOM America, Inc., 2380 116th Avenue NE, Bellevue, Washington 98004.

Circle #313 on Reader Service Card.

Satellites Today — 2nd edition

Universal Electronics announced the release of the enlarged second edition of Frank Baylin’s popular book, Satellites Today, containing the latest satellite information.

Satellites Today, which can be understood by a non-technical reader, reviews satellite history and technology. Topics include uplinking, foot-prints, programming, home satellite TV systems, and more.

Retailing for $12.95, Satellites Today can be ordered from the publisher, Universal Electronics, Inc., 4555 Groves Road, Suite 13, Columbus, Ohio 43232.

Circle #301 on Reader Service Card.
Edek "R" series enclosures

The Edek "R" series enclosures are distinctive, ruggedly built enclosures suitable for the hobbyist, engineer, or anyone needing an attractive cabinet.

Dark walnut stained natural wood ends, contrasted with a bright aluminum chassis, are featured. If a different color scheme is desired, the ends and chassis may be painted, or the aluminum chassis may be sanded for a brushed look. The ends may be grooved with a hand saw for PCB mounts; heavy components may be fastened with wood screws. The galvanized steel bottom is easily soldered or drilled. Non-marring rubber feet conceal hidden screws.

Enclosures are available in an unlimited number of sizes, with no minimums and no tooling charge. Delivery is from stock for the most popular sizes. Many variations are possible on the "R" series. A sample is available for $3.00 plus $2.00 shipping. A new slope-front enclosure ("S" series) will be available soon.

For information, contact Energy Engineering, Route 4, Fayetteville, Arkansas 72701.

Circle #310 on Reader Service Card.

9-volt Rechargeable NiCads

Plainview Electronics announces the introduction of its 9-volt rechargeable NiCad "transistor" battery. Unique in a rechargeable transistor battery is its 8.4-volt nominal voltage, 110 mAh, and its low self-discharge characteristic, which will maintain 50 per cent capacity even after a year in storage at room temperature.

For information, contact Plainview Electronics, 28 Cain Drive, Plainview, New York 11803.

Circle #311 on Reader Service Card.

callback supplement

The new combined Callback Supplement includes all the changes in both the North American and International Callbooks for the six months since the publication of the regular Callbooks. Published once a year on June 1st, it lists thousands of new licensees, address changes, and "then and now" call changes from countries around the world.

Unlike previous updates, this new Supplement is available through regular Callback dealers and is priced lower than previous Supplements.

For more information, contact Ham Radio's Bookstore or the publisher, Radio Amateur Callbook Inc., 925 Sherwood Drive, Lake Bluff, Illinois 60044.

Circle #306 on Reader Service Card.
California

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUN’S ELECTRONICS</td>
<td>3919 SEPULVEDA BLVD. CULVER CITY, CA 90230</td>
<td>(213) 390-8003</td>
<td>Habla Espanol</td>
</tr>
</tbody>
</table>

Colorado

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORADO COMM CENTER</td>
<td>525 EAST 70th AVE. SUITE ONE WEST DENVER, CO 80229</td>
<td>(303) 288-7373</td>
<td>Stocking all major lines</td>
</tr>
<tr>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114</td>
<td>(203) 527-1881</td>
<td>Friendly one-stop shopping at prices you can afford.</td>
</tr>
</tbody>
</table>

Connecticut

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>3208 CONCORD PIKE WILMINGTON, DE 19803</td>
<td>(302) 478-2757</td>
<td>Delaware’s Friendliest Ham Store.</td>
</tr>
</tbody>
</table>

Delaware

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>71 MEADOW ROAD NEW CASTLE, DE 19720</td>
<td>(302) 328-7728</td>
<td>Delaware's biggest Ham store.</td>
</tr>
<tr>
<td>DELAWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD NEW CASTLE, DE 19720</td>
<td>(302) 328-7728</td>
<td>One mile off I-95, no sales tax.</td>
</tr>
</tbody>
</table>

Florida

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 DREW STREET CLEARWATER, FL 33757</td>
<td>(813) 361-4267</td>
<td>West Coast's only full service Amateur Radio Store.</td>
</tr>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>621 COMMONWEALTH AVE. ORLANDO, FL 32803</td>
<td>(305) 994-3238</td>
<td>Fls. Wats: 1 (800) 432-9424</td>
</tr>
</tbody>
</table>

Georgia

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC’S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE ROSSVILLE, GA 30741</td>
<td>(404) 866-2302</td>
<td>ICOM, Yaesu, Kenwood, KDK, Bird...</td>
</tr>
</tbody>
</table>

Hawaii

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEEAUMOKU STREET HONOLULU, HI 96814</td>
<td>(808) 949-5564</td>
<td>Serving Hawaii & Pacific area for 53 years.</td>
</tr>
</tbody>
</table>

Idaho

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>78 SOUTH STATE STREET PRESTON, ID 83201</td>
<td>(208) 852-0830</td>
<td>Stock All Major Brands</td>
</tr>
</tbody>
</table>

Illinois

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE. CHICAGO, IL 60630</td>
<td>(312) 363-5181</td>
<td>Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
</tr>
</tbody>
</table>

Indiana

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE HAM STATION</td>
<td>220 N. FULTON AVE. EVANSVILLE, IN 47710</td>
<td>(812) 422-0231</td>
<td>Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.</td>
</tr>
</tbody>
</table>

Maryland

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARYLAND RADIO CENTER</td>
<td>8576 LAURELDALE DRIVE LAUREL, MD 20707</td>
<td>(301) 725-1212</td>
<td>Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.</td>
</tr>
</tbody>
</table>

Massachusetts

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEL-COM, INC.</td>
<td>675 GREAT ROAD, RTE. 119 LITTLETON, MA 01460</td>
<td>(617) 486-3400</td>
<td>Amateur Radio, Repeaters, Satellite, Computer applications.</td>
</tr>
</tbody>
</table>

Michigan

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCON PHOTOVOLTAICS</td>
<td>27600 SCHOOLCRAFT RD. LIVONIA, MICHIGAN 48150</td>
<td>(313) 523-1850</td>
<td>Call Paul WD8AHO</td>
</tr>
</tbody>
</table>

Minnesota

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT RADIO SALES</td>
<td>4124 WEST BROADWAY ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)</td>
<td>TOLL FREE: (800) 328-0250</td>
<td>In Minn: (612) 535-5050</td>
</tr>
</tbody>
</table>

Missouri

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSOURI RADIO CENTER</td>
<td>102 NW BUSINESS PARK LANE KANSAS CITY, MO 64150</td>
<td>(800) 821-7323</td>
<td>Same day service, low prices.</td>
</tr>
</tbody>
</table>

Dealers: YOU SHOULD BE HERE TOO!

Contact Ham Radio now for complete details.
Nevada
AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak." AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Hampshire
RIVENDELL ELECTRONICS
8 LONDON DERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5, THURS 10-9
Closed Sun/Holidays

New Jersey
KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4389
Gene K2KJI
Maryann K2RVH
QEP's
110-4 ROUTE 10
EAST HANOVER, N. J. 07936
201-887-6424
Bill KA2QEP
Jim KA2RVD
VISA/Mastercard
Belden Coaxial Cable
Amphenol Connectors
Hours: 9:30 am-7:00 pm

New York
BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.
VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs, Featuring ICOM "The World System." Western New York’s finest Amateur dealer.

North Carolina
F & M ELECTRONICS
3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty — Sales & Service

Ohio
AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH 44092 (Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-866-8267

Pennsylvania
HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years
LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Tennessee
MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat. 1-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Amertron, etc.

Texas
MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
Stocking all major lines. San Antonio’s Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6, SAT 9-3

Wisconsin
AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc.
Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-041
M-F 9-5:30, SAT 9-3

SATELLITE DECODER MANUAL
Reveals How Signals are De-Cy-Phared
- Three different types used.
- Detailed/schematics
- Digital audio processors
- Error correction & filtering
100 pages bound . . . $24.95.

NEW LADY-X-TASY KITS FROM $59.95
ASSEMBLED. READY TO GO FROM $179.95
OTHER TYPES OF DECODERS AVAILABLE.
SCHEMATICS & BOARDS AVAILABLE.
DEALERS INQUIRIES INVITED.
SEND $5 FOR INFORMATION CATALOG

Pilgrim Video Products
P. O. Box 3325 H
Plymouth Ctr., MA 02361

SATELLITE DECODER MANUAL
Reveals How Signals are De-Cy-Phared
- Three different types used.
- Detailed/schematics
- Digital audio processors
- Error correction & filtering
100 pages bound . . . $24.95.

NEW LADY-X-TASY KITS FROM $59.95
ASSEMBLED. READY TO GO FROM $179.95
OTHER TYPES OF DECODERS AVAILABLE.
SCHEMATICS & BOARDS AVAILABLE.
DEALERS INQUIRIES INVITED.
SEND $5 FOR INFORMATION CATALOG

Pilgrim Video Products
P. O. Box 3325 H
Plymouth Ctr., MA 02361
CALIFORNIA: October 4. San Quentin 9 AM to 3 PM. Contour Park, 2441 Contour Avenue, West Covina. Cousin. Hands-on sessions on boards and equipment. Free refreshments available. For more information: Ed Sadek, KA1HR, 49 Circle Drive, Mansfield, CT 06042 Phone: 527-2079.

MICHIGAN: September 20. GRARA Swap and Shop, Hudsonville, 8 AM. Admission $10. 4 PM to 6 PM. For more information: Larry K. Wood, WB4CWE, 864 Coldbrooke NE, Grand Rapids, MI 49506 (616) 459-8722.

ILLINOIS: September 21. The Chicago ARC will host an Open House in conjunction with its 60th anniversary. 10 AM to 8 PM at the North Park Village, 5001 N. Pulaski, Chicago. Special event station ZN2 will operate during those hours. All hams and those interested in Amateur Radio are invited. For more information call (312) 545-3622 or write CARC, 501 W. Irving Park Road, Chicago, IL 60613.

OPERATING EVENTS
"Things to do..."

September 4-7: The Stu Rockwell Amateur Radio Society of Plymouth, MI will be celebrating their 25th anniversary, in concert with the Plymouth Fall Festival, operating special event station W2ZM, 1 certificate will be awarded for GCSI and SASE. GCSI via W8NH or W9RAE CBA.

September 13, 14, and 21: The Valley of the Moon ARC will operate special event station ZN3 for commemorative event ending September 21. For more information: Jack Johnson, W4JWB, vice president of the VOMC, 900 N. Main Street, Independence, IA 50143. The ARRL Foundation will provide a QSL card to each amateur who contact the special event station. GCSI and SASE via W9RAE CBA.

September 27: California QSO Party. Sponsored by the Northern California Contest Club. Stations operating in California work as many stations in as many counties as possible. Stations in California must be active. GCSI and SASE via W9RAE CBA.

September 28: The WA2LZ Club will operate special event station ZN4K during the Annual Rotary Octoberfest Celebration. For more information: WA2LZ, 129 S. Railroad Street, Cuyahoga Falls, Ohio 44221.

September 30: The Mail boxing Valley ARA will operate special event station ZW4Y from the Grand National Race Track. For more information: WA2LZ, 129 S. Railroad Street, Cuyahoga Falls, Ohio 44221.

W.E.C.A.: A group of enthusiastic Communications Associations interested in providing equipment and assistance to help new hams get on the air. More information about the club can be found at 107 North Main Street, North Tonawanda, NY 14120.

DX CERTIFICATE. Nigerian Amateur Radio Society announces its "NARS at 25 Award". To encourage more contact with Nigerian hams and DX stations, members of the Nigerian Amateur Radio Society will be operating four special event stations in Nigeria. These stations will be in operation for limited times, and some will be in operation only for limited hours. Each station will have a special event certificate. For more information contact the Nigerian Amateur Radio Society, P.O. Box 19085, Lagos, Nigeria.

MAKE CIRCUIT BOARDS THE NEW, EASY WAY

THE WEARSTERO COMMUNICATIONS ASSOCIATION (W.E.C.A.) will host the "W.E.C.A. Hamvention" on September 11-13. The event will feature over 300 exhibitors, including manufacturers, suppliers, and hobbyists and will be held at the U.S. Cellular Coliseum in downtown Harrisburg. For more information contact John A. Bolen, WB2HQC, 7245 Market Street, West Columbia, SC 29170.
THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

Now Available With PACKET RADIO

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

SPECIAL SALE $595
With Packet Radio—$709/$884

- AUTOMATIC SEND/RECEIVE—ANY SPEED ANY SHIFT • BUILT IN COMPUTER GRADE* MONITOR • EXTERNAL MONITOR JACK • TIME CLOCK ON SCREEN • TIMED TRANSMISSION AND RECEIVING • SELCAL • CRYSTAL CONTROLLED FSK MODULATOR • PHOTOCOUPLER CW, FSK KEYER • ASCII KEY ARRANGEMENT • 15 CHANNEL BATTERY BACK-UP MEMORY • 1,200 CHARACTER DISPLAY MEMORY • SPLIT SCREEN TYPE-AHEAD BUFFER • FUNCTION SCREEN DISPLAY • PARALLEL PRINTER INTERFACE • SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL, 100 BAUD ARQ/FEC AMTOR • ATA • RUB-OUT FUNCTION • AUTOMATIC CR/LF • WORD MODE • LINE MODE • WORD WRAP AROUND • ECHO • TEXT CURSOR CONTROL • USOS • DIDDLE • TEST MESSAGES (RY AND OB) • MARK AND BREAK (SPACE AND BREAK) SYSTEM • VARIABLE CW WEIGHTS • AUDIO MONITOR CRICUIT BUILT IN • CW PRACTICE FUNCTION • CW RANDOM GENERATOR • BARGRAPH LED METER FOR TUNING • OSCILLOSCOPE OUTPUTS • BUILT IN 100-120 / 220-240VAC 50/60HZ AND 13.8VDC POWER SUPPLIES • AND MUCH, MUCH MORE • SIZE: 14W x 140 x 9H • 90 DAY WARRANTY*

Everything built in — nothing else to buy!

- Sizes: 12.5W x 21W x 7H • 90 DAY WARRANTY*

- FEATURES: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL, AND RS232 OR TTL LEVEL DATA CONNECTION • 100-2400 BAUD (ASCII) OR 45.5-300 BAUD (BAUDOT) • SELCAL • MEMORY: 15 CHANNELS • 768 CHARACTER INPUT BUFFER • AUTO PTT • CW ID • DIDDLE • USOS • ECHO • AUTO CR/LF • ATA • RUB-OUT • CW PRACTICE GENERATOR • VARIABLE CW WEIGHTS • TEST MESSAGE (RY AND OB) • FULL CRT FUNCTION DISPLAY • MARK • AND • BREAK (SPACE AND BREAK) SYSTEM • XTAL AFSK • AUDIO MONITOR • OSCILLOSCOPE OUTPUTS • AND MUCH, MUCH MORE • POWER SUPPLY REQUIREMENTS: 13.8 V DC, 700MA • SIZE: 9W x 100 x 2½H • 90 DAY WARRANTY*

POWER REQUIREMENTS: 13.8 V DC, 700MA • SIZE: 9W x 100 x 2½H • 90 DAY WARRANTY*

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:

AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 493079 ITT

MANUFACTURER:
TONO CORPORATION
98 Motoosja Machi, Maedashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS
**Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 478-2 for commercial requirements.

Specifications Subject to Change.
Transmission lines, filters, inductors, etc. may have line widths as small as one thousandth of an inch. Since the characteristics of filters at high microwave frequencies will depend on accurate physical dimensions, great care goes into the selection of the piece of PC material that will be used for a given design. At these frequencies it's not unusual for a designer to finalize his design only after he has procured enough material to assure that he can make all of the circuits of a given type that he expects to produce.

Next time you pick up a modern complex circuit card, remember that the card itself is one of the miracles of our current revolution.

signal encryption techniques reach maturity

Recent legislative activities aimed at preventing the reception of certain commercial signals may be less relevant in light of the technical means for security employed by many electronic communications systems. In the early 1970s a data encryption protocol called DES-Date Encryption Standard was developed. This technique is used to protect computer records, financial transactions, diplomatic traffic, and so on. More recently, the operators of broadcast satellites have begun using DES subsets to encode entertainment signals for C-Band satellites.

The basic technique is along the following lines... The data is organized into 64 bit words whose right and left 32 bits are swapped in accordance with a coded scheme. The code is a 56 bit word which organizes the structure and rate at which the 32 bit words are swapped. Additional logic operations are performed to compare the right and left hand words. If they don't match in a certain way, one of the words is replaced and a new sequence generated. This process can be extended to several levels, and the code can be changed almost continuously. If you think for a moment about the size of number like 2^{56} you quickly see why this system has substantial security — the number of possible combinations is astronomical. At this time there are no validated reports of any person or organization having successfully developed a technique for decoding DES data without a prior knowledge of the code.

Several companies are already producing both encryption and decoding systems using the DES standard. Although the cost is still a bit high for the very low end of the business communication market, prices are coming down. As it has done for us in so many other areas, the TV market is providing the impetus for mass production of DES decoders. One can only hope that those commercial users who would support highly restrictive legislation on the use of the airwaves, can be equally enthusiastic about using modern technology to protect their customer interests.

The possible amateur uses of these advanced coding techniques is not clear, since encryption is prohibited in amateur communications. However, the basic techniques (and especially the custom chips) might eventually make low cost audio and video digitizers available to the amateur service. This may made possible considerable improvements in spectrum utilization through data compression and frequency/time multiplexing.

by Ernie Guerri, W6MGI
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>Advanced Computer Controls, Inc.</td>
</tr>
<tr>
<td>175</td>
<td>Advanced Receiver Research</td>
</tr>
<tr>
<td>145</td>
<td>AEA</td>
</tr>
<tr>
<td>147</td>
<td>All Electronics Corp.</td>
</tr>
<tr>
<td>180</td>
<td>Alumna Tower Company</td>
</tr>
<tr>
<td>182</td>
<td>Amateur Electronics</td>
</tr>
<tr>
<td>173</td>
<td>Amidon Associates</td>
</tr>
<tr>
<td>166</td>
<td>AMSAT</td>
</tr>
<tr>
<td>143</td>
<td>Antennas, etc.</td>
</tr>
<tr>
<td>133</td>
<td>ARRL</td>
</tr>
<tr>
<td>118</td>
<td>Astron Corp.</td>
</tr>
<tr>
<td>119</td>
<td>Barker & Williamson</td>
</tr>
<tr>
<td>121</td>
<td>Barry Electronics</td>
</tr>
<tr>
<td>141</td>
<td>Buckmaster Publishing</td>
</tr>
<tr>
<td>125</td>
<td>Butternut Electronics</td>
</tr>
<tr>
<td>144</td>
<td>Caddell Corp.</td>
</tr>
<tr>
<td>134</td>
<td>Coxial Dynamics, Inc.</td>
</tr>
<tr>
<td>111</td>
<td>Communication Concepts, Inc.</td>
</tr>
<tr>
<td>187</td>
<td>Communications Specialists</td>
</tr>
<tr>
<td>165</td>
<td>CTM</td>
</tr>
<tr>
<td>122</td>
<td>Cushcraft Corp.</td>
</tr>
<tr>
<td>127</td>
<td>Dick Smith Electronics</td>
</tr>
<tr>
<td>137</td>
<td>Digimat Instrument Corp.</td>
</tr>
<tr>
<td>144</td>
<td>Digitex</td>
</tr>
<tr>
<td>148</td>
<td>Doppler Systems, Inc.</td>
</tr>
<tr>
<td>155</td>
<td>Down East Microwave</td>
</tr>
<tr>
<td>172</td>
<td>EGE, Inc.</td>
</tr>
<tr>
<td>114</td>
<td>Engineering Consulting</td>
</tr>
<tr>
<td>110</td>
<td>Fair Radio Sales</td>
</tr>
<tr>
<td>115</td>
<td>Falcon Communications</td>
</tr>
<tr>
<td>116</td>
<td>Filko Mfg. Co.</td>
</tr>
<tr>
<td>120</td>
<td>Fox Tango Corp.</td>
</tr>
<tr>
<td>136</td>
<td>GLB Electronics</td>
</tr>
<tr>
<td>154</td>
<td>Grove Enterprises</td>
</tr>
<tr>
<td>178</td>
<td>H.L. Heister, Inc.</td>
</tr>
<tr>
<td>130</td>
<td>HAL Communications Corp.</td>
</tr>
<tr>
<td>142</td>
<td>Haltronics</td>
</tr>
<tr>
<td>184</td>
<td>Hall Electronics</td>
</tr>
<tr>
<td>127</td>
<td>Ham Radio Outlet</td>
</tr>
<tr>
<td>128</td>
<td>Ham Radio's Bookstore</td>
</tr>
<tr>
<td>129</td>
<td>The Ham Station</td>
</tr>
<tr>
<td>130</td>
<td>Ham West</td>
</tr>
<tr>
<td>185</td>
<td>Hamtronics, NY</td>
</tr>
<tr>
<td>186</td>
<td>Hamtronics, PA</td>
</tr>
<tr>
<td>146</td>
<td>Hanlon Leasing, Inc.</td>
</tr>
<tr>
<td>105</td>
<td>ICOM America, Inc.</td>
</tr>
<tr>
<td>155</td>
<td>I/X Equipment, Ltd.</td>
</tr>
<tr>
<td>139</td>
<td>Jensen Tools, Inc.</td>
</tr>
<tr>
<td>106</td>
<td>Kantronics</td>
</tr>
<tr>
<td>124</td>
<td>Kenedon/MCS</td>
</tr>
<tr>
<td>123</td>
<td>Keno-Kenwood Communications</td>
</tr>
<tr>
<td>136</td>
<td>Larsen Antennas</td>
</tr>
<tr>
<td>125</td>
<td>Madison Electronics Supply</td>
</tr>
<tr>
<td>113</td>
<td>Elastone Martin, Inc.</td>
</tr>
<tr>
<td>169</td>
<td>Glen Martin Engineering</td>
</tr>
<tr>
<td>181</td>
<td>The Meadowlark Corp.</td>
</tr>
<tr>
<td>197</td>
<td>MFJ Enterprises</td>
</tr>
<tr>
<td>112</td>
<td>Micro Systems Institute</td>
</tr>
<tr>
<td>129</td>
<td>Minds Eye Publications</td>
</tr>
<tr>
<td>119</td>
<td>Mirage/KLM</td>
</tr>
<tr>
<td>120</td>
<td>Mirage/KLM</td>
</tr>
<tr>
<td>168</td>
<td>Naval Electronics, Inc.</td>
</tr>
<tr>
<td>125</td>
<td>NCG</td>
</tr>
<tr>
<td>157</td>
<td>NetTech Labs, Inc.</td>
</tr>
<tr>
<td>162</td>
<td>Nemal Electronics</td>
</tr>
<tr>
<td>167</td>
<td>NIFG Control</td>
</tr>
<tr>
<td>163</td>
<td>Nuts & Volts</td>
</tr>
<tr>
<td>117</td>
<td>P.C. Electronics</td>
</tr>
<tr>
<td>137</td>
<td>PacComm Packet Radio Systems, Inc</td>
</tr>
<tr>
<td>170</td>
<td>Pacific Rim Communications</td>
</tr>
<tr>
<td>179</td>
<td>Pilgrim Video Products</td>
</tr>
<tr>
<td>152</td>
<td>Pip Communications</td>
</tr>
<tr>
<td>130</td>
<td>Processor Concepts</td>
</tr>
<tr>
<td>161</td>
<td>The PY Shack</td>
</tr>
<tr>
<td>149</td>
<td>QSEP'S</td>
</tr>
<tr>
<td>200</td>
<td>Radiokit</td>
</tr>
<tr>
<td>158</td>
<td>Radiosporting</td>
</tr>
<tr>
<td>132</td>
<td>Ramsey Electronics, Inc.</td>
</tr>
<tr>
<td>136</td>
<td>- RF Parts/Westcom Engineering</td>
</tr>
<tr>
<td>128</td>
<td>Robot Research, Inc.</td>
</tr>
<tr>
<td>177</td>
<td>S-Corn</td>
</tr>
<tr>
<td>186</td>
<td>Sommer</td>
</tr>
<tr>
<td>173</td>
<td>Spectroloop</td>
</tr>
<tr>
<td>159</td>
<td>Spectrum International</td>
</tr>
<tr>
<td>176</td>
<td>Sufronics</td>
</tr>
<tr>
<td>183</td>
<td>Synthetic Textiles, Inc</td>
</tr>
<tr>
<td>174</td>
<td>TE Systems</td>
</tr>
<tr>
<td>151</td>
<td>Telewave, Inc.</td>
</tr>
<tr>
<td>140</td>
<td>Transmitters Unlimited</td>
</tr>
<tr>
<td>150</td>
<td>Unility Electronics</td>
</tr>
<tr>
<td>129</td>
<td>University Microfilm Info</td>
</tr>
<tr>
<td>160</td>
<td>Vanguard Labs</td>
</tr>
<tr>
<td>109</td>
<td>Varian</td>
</tr>
<tr>
<td>171</td>
<td>WRAMs Antennas</td>
</tr>
<tr>
<td>154</td>
<td>Webstar Communications, Inc</td>
</tr>
<tr>
<td>131</td>
<td>Western Electronics</td>
</tr>
<tr>
<td>126</td>
<td>World Tech Products</td>
</tr>
<tr>
<td>188</td>
<td>Yaesu Electronics Corp.</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

PRODUCT REVIEW/NEW PRODUCTS

304	Alpha Delta Communications, Inc.	100
303	Alumna Tower Company, Inc.	100
312	Bird Electronic Corporation	100
310	Energy Engineering	100
309	Heath Company	100
313	ICOM America, Inc.	102
302	John Daley, K6DUG	101
307	Kepro, Inc.	100
311	Plainview Electronics	103
306	Radio Amateur Callbook	103
301	Universal Electronics, Inc.	102
308	Westnet Associates, Inc	100
305	Yaesu Electronics Corp.	101

Please use before October 31, 1986.
Don't buy from Hamtronics . . .

Unless you want the best possible equipment at the lowest possible price! ! !

The "wheeler-dealer" is back and he's beating everyone else's "deals."

We all know there's no such thing as a free lunch . . . so How Can We Do This?

- **We don't** run alot of ads featuring sale items
- **We don't** spend alot of money on full page ads
- **We don't** have sales on just the fastest selling products
- **We don't** short cut you on service. We are a factory warranty repair facility for everything we sell!
- **We don't** mail out free catalogs
- **We don't** have a free WATS number.

You and every other Ham is paying for all these do-dads and sales gimmicks.

Hamtronics puts the savings into your pocket.

Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer. We're celebrating our 35th year in the Ham business at the same location.

NEW FROM ARRL

AMATEUR RADIO FIELD RESOURCES DIRECTORY 1986-87

Have a question that no one can answer????

"Fred will" the "white" pages list the folks who can almost answer any Amateur Radio related problems or question you might have: ARRL Directors, Vice Directors, Assistants, Advisory Committee members, Field volunteers, VEC Volunteer examiners, all organized geographically by ARRL Division. The "Blue" pages contain a QST 10 year cumulative index. QEX and Gateway bibliographies. TIS into and more! Every ham should have a copy of this book in their shack. AR FRD

GIL-A collection of classic QST cartoons drawn by Phil "Gil" Gilindersieve, W1CJD

From the late 20's through 1966, "Gil" contributed over 1500 drawings and covers to QST. Hams around the world recognize "Gil". the funny man who could handle just about any project and can identify members of their clubs in Gil's Field Day covers. Fun reading for newcomers--nostalgia for old timers--great reading for all. **1986-110 pages**

Please enclose $3.50 to cover shipping and handling

FREE BOOK FLYER

Send SASE to

Ham Radio's Bookstore
Greenville, N. H. 03048

REPEATER VOTER

4RV Four Channel Repeater Voter

- Signal to Noise Type
- Expandable to 32 Channels by Just Adding Cards
- Designed for Commercial and Amateur Service
- Continuous Instant Vetoing
- Dual or Single 12 Volt Supply
- LED Indicators of CCH and Voted Signals
- Front Mounted Level Pots
- Built in Calibrator
- Remote Voted Indicators Pinned Out
- 4-1/2" x 6" Double Sided Gold Plated 44 Pin Card
- Uninsulated Audio Input
- On Board Audio Switching and Mixing
- Audio Mixer Input Available for External Input
- Open Collector or Relay Contact input
- Open Collector NPN Output
- Remote Distrable Inputs
- More

4RV Kit including board and parts with 20 page manual... $200.00

Built, tested, and calibrated with manual... $350.00

(Kit will be discontinued Oct. 1986)

VOTER Hall Electronics
815 E. Hudson Street
Columbus, Ohio 43211

BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISIFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION
The SS-32HB is a new hybrid sub-audible encoder plucked from Communications Specialists' Hothouse. It has grown through a cross of the time tested SS-32, the subminiature SS-32M and space age micro circuitry. This programmable 32 tone encoder measures a scant .5 x 1.0 x .15 inches; no small wonder it allows the addition of continuous tone control to a bunch of hand held transceivers that lack space.

Why not snip your problems in the bud, with our fast, one day delivery and attractive one year warranty.
Introducing all-mode radios for your mode of travel.

Yaesu's 2-meter FT-290R and 6-meter FT-690R Mark II Series are the perfect all-mode traveling companions.

On the road, simply snap on the heat sink, apply 12 volts of power, and you've got a 25-watt mobile station. (FT-690R: 10 watts).

On foot, attach the optional C-cell battery pack and shoulder strap, and take off with 2.5 watts RF output.

You get around fast on SSB, CW and FM with ten memories, dual VFOs, LCD display, automatic storage of repeater shift into memory register, offset tuning during receive or transmit for satellite operation, relative power output/S-meter, and optional CTCSS unit.

And everything fits into a lightweight-yet-rugged case, measuring just 2 3/4 x 6 1/8 x 8 3/4 inches.

The FT-290R and FT-690R Mark II are perfect for emergency use, camping trips, talking around town, and DX work.

Plus each is priced to maximize your ham budget's mileage. So discover Yaesu's 2-meter FT-290R Mark II and 6-meter FT-690R Mark II all-mode transceivers today. They're just a quick trip away at your nearest Yaesu dealer.

YAESU

Our 30th Anniversary.

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700
Customer Service: (213) 404-4884 Parts: (213) 404-4847
Yaesu Cincinnati Service Center 9070 Gold Park Drive, Hamilton, OH 45011 (513) 874-9100

Prices and specifications subject to change without notice.
KENWOOD
...pacesetter in Amateur radio

“DX-citing!”

TS-440S Compact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citation"—that special feeling you get every time you turn the power on!

- Covers All Amateur bands
- General coverage receiver tunes from 100 kHz – 30 MHz. Easily modified for HF MARS operation.
- Direct keyboard entry of frequency
- All modes built-in
- Covers VHF – 10 meters.
- VS-1 voice synthesizer (optional)
- Antenna tuner (optional)

Superior receiver dynamic range
- Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range: (500 Hz bandwidth on 20 m)
- 100% duty cycle transmitter
- Superb efficient cooling permits continuous key-down for periods exceeding one hour.
- RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)
- Adjustable dial torque
- 100 memory channels
- Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.
- TU-8 CTCSS unit (optional)
- Subtone is memorized when TU-8 is installed.
- Superb interference reduction
- IF, shift, tunable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT, and optional filters: VLF, CPM.
- MC-42S UP/DOWN mic. included
- Computer interface port
- 5 IF filter functions
- Dual SSB IF filtering
- A built-in SSB filter is standard. When an optional SSB filter (YK-88 or YK-88SN) is installed, dual filtering is provided.
- VOX, full or semi break-in CW;

Optional accessories:
- AT-440 internal auto. antenna tuner (80 m – 10 m)
- AT-250 external auto. tuner (160 m – 10 m)
- AT-130 compact mobile antenna tuner (160 m – 10 m) • AT-250C/AT-10 level translator and modem IC kit • PS-50 heavy duty power supply • PS-430/PS-30 DC power supply • SP-430 external speaker • MB-430 mobile mounting bracket • YK-88C/88CN 500 Hz/270 Hz CW filters • YK-88S-88SN 2.4 kHz/3 Hz CW filter • MC-60A/80/85 desk microphones • MC-55 MF mobile microphone • HS-45/65/67 headphones • SP-45/50 mobile speakers • MA-50/1 HF S band mobile helical antenna and bumper mount • TL-922A 2 kw PEP linear amplifier • SM-220 station monitor • VS-1 voice synthesizer • SW-100A/200A/2000 SWR power meters • TU-8 CTCSS tone unit • PS-2C extra DC cable.

Kenwood takes you from HF to OSCAR!

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.