build a VHF noise bridge
ICOM IC-28H
THE ONE FOR THE ROAD

- Compact Size
- Simple to Operate
- Large LCD Readout
- 25 or 45 Watts
- Packet Compatible
- 21 Memory Channels

The IC-28H has all the features you need for carefree 2-meter mobile operation. The only thing it doesn't have is a big price.

45 Watts. The IC-28H provides a full 45 watts of powerful output. The IC-28A 25-watt version is also available. Both units have a selectable low power.

Large LCD readout. A wide-view LCD readout can be easily read even in bright sunlight. An automatic dimmer circuit reduces the brightness for evening operation.

Wideband Coverage. The IC-28H performs from 138-174MHz (specifications guaranteed from 144.00-148MHz) and includes weather channels. Ideal for MARS and CAP operation.

Compact Size. The IC-28H measures only 2 inches high by 5½ inches wide by 7½ inches deep (IC-28A is 5½ inches deep). Great for mobile installations where space is limited.

21 Memory Channels. Store 21 frequencies into memory, or lock out certain memory channels. All memories are backed up with a lithium battery.

Scanning. Scan the entire band or the memory channels from the provided HM-12 mic.

Easy to Operate. With only 11 front panel controls, the IC-28H is simple to operate.

Available Options. IC-HM14 DTMF mic, PS-45 13.8V 8A power supply, UT-29 tone squelch unit, SP-10 external speaker, IC-HM16 speaker mic and HS-15/HS-15SB flexible boom mic and PTT switchbox.

The IC-27H 45 watt and IC-27A 25 watt ultra compact 2-meter mobiles continue to be available.
Presenting three intelligent, versatile, compatible terminal units.

"SMART" means an internal microprocessor is used to improve performance and add versatility. The "Smart" Kantronics TU's can transmit and receive CW/RTTY/ASCII/AMTOR or Packet when combined with your computer and transceiver.

Any computer with a serial RS232 or TTL port can connect directly to a Kantronics TU. A simple terminal program, like one used with a telephone modem, is the only additional program required. Kantronics currently offers Pac-term and UTU Terminal Programs for IBM, Kaypro, Commodore 64, VIC 20, and TRS-80 Models III, IV, and IVP. Disk version $19.95. Cartridge $24.95.

UTU The Universal Terminal unit (UTU) is the original "Smart" amateur TU. CW, RTTY, ASCII, and AMTOR can all be worked with this single unit. Switched capacitance filters and LED display tuning make using the UTU easy for even the Novice. 12 Vdc 300mv power supply required. Suggested retail $199.95.

UTU-XT The UTU-XT is an enhanced version of the UTU. Programmable baud rates, tone frequencies, and tone shifts give special versatility. Automatic Gain Control and Threshold Correction circuits greatly enhance sensitivity and selectivity. A RTTY signal detect circuit mutes copy with no carrier, and the CW filter center frequency and bandwidth are programmable. Power supply is provided. Suggested retail $359.95.

KPC-2 Kantronics AX.25 Version 2 TNC features a built-in HF modem, full duplex operation, multiple connects, and over 100 software commands. A serial RS-232 or TTL (C-64/VIC-20) port gives universal compatibility. The enhanced generic command structure fits any computer, even PC compatibles. All this combines to make KPC-2 the only TNC you'll ever need. Suggested retail $219.00.

For more information contact your local Kantronics dealer or write:

Kantronics
1202 E. 23rd Street (913) 842-7745
Lawrence, Kansas 66046
Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement" — that special feeling you get every time you turn the power on!

- Superb receiver dynamic range
- Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range (500 Hz bandwidth on 20 Hz)
- 100% duty cycle transmitter
- Super efficient cooling permits continuous key-down for periods exceeding one hour.

RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)

- Adjustable dial torque
- 100 memory channels
- Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.
- TU-8 CTCSS unit (optional)
- Subtone is memorized when TU-8 is installed.
- Superb interference reduction
- IF shift, tunable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT, and optional filters fight ORM.
- MC-42S UP/DOWN mic. included
- Computer interface port
- 5 IF filter functions
- Dual SSB IF filtering
- A built-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- VOX, full or semi break-in CW; AMTOR compatible.

Optional accessories:
- AF-440 internal auto. antenna tuner (80 m — 10 m)
- AT-200 external auto. tuner (160 m — 10 m)
- AF-130 compact mobile antenna tuner (160 m — 10 m) + IF-232C/IC-10 level translator and modem IC kit
- PS-50 heavy duty power supply + PS-430/PS-30 DC power supply + SP-430 external speaker + MB-430 mobile mounting bracket
- YK-88C/88CN 500 Hz/270 Hz CW filters + YK-88S/88SN 2.4 kHz/1.8 kHz SSB filters + MC-56A/56/80/85 desk microphones + MC-55 (BP) mobile microphone + HS-4/5/6/7 headphones + SP-40/47 mobile speakers + MA-5/WP-1HF 5 band mobile helical antenna and jumper mount + TLP-202A 2 kW PEP linear amplifier + SM-220 station monitor
- VS-1 voice synthesizer + SW-100A/200A/2000 SWR/power meters + TU-8 CTCSS tone unit
- PG-2C extra DC cable.

Kenwood takes you from HF to OSCAR!

Complete service manuals are available for all Tri-Kenwood transceivers and most accessories.
Specifications and prices are subject to change without notice or obligation.
JULY 1986
volume 19, number 7

T. H. Tenney, Jr., W1NLB
publisher
Rich Rosen, K2RR
editor-in-chief
and associate publisher
Dorothy Rosa, KA1LBO
assistant editor
Joseph J. Schroeder, W0JUV
Alfred Gruchalla, W6NIF
associate editors

editorial review board
Peter Bertini, K1ZJH
Forrest Gahrke, KB9T
Michael Pasko, F.E.
Bob Lewis, W2EBS
Mason Logan, K4MT
Vern Riportella, WA2LQQ
Ed Weinerhold, W3NCG

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA12X
advertising production manager
Susan Shorrock
circulation manager
Theresa Bourgault
circulation
cover art: Barbara Smullen

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0498
Telephone: 603 878 1444

subscription rates
United States:
one year: $27.95; two years, $55.95;
Canada and other countries via surface mail:
one year: $31.00; two years, $65.00; three years, $74.00
Europe, Japan, Africa via Air Forwarding Service:
one year: $57.00
All subscription orders payable in U.S. funds, via international postal money order or check drawn on U.S. bank.

international subscription agents: page 106

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Periodicals,
919 Walnut Street, Philadelphia, Pennsylvania 19107
Copyright 1986 by Communications Technology, Inc.
Title registered at U.S. Patent Office
Second class postage paid
at Greenville, New Hampshire 03048-0498
and at additional mailing offices
ISSN 0148-5989

Send change of address to Ham Radio
Greenville, New Hampshire 03048-0498

10 a VHF noise bridge
A. E. Popodi, OE2APM/AO3K
21 artificial transmission lines
Rudolf E. Six, KA8OBK
33 low-noise phase-locked UHF VCO part 1: the noise problem
Norman E. Foot, WA9HUV
43 practically speaking
Joe Carr, K4IPV
50 6-meter kilowatt amplifier
Lauren Libby, KX00
59 a broadband amplifier-attenuator
Bob Zavrel, W7SX
77 extending receive coverage for the IC-02 and IC-04
Robert K Morrow, Jr., WB6GTM
82 VHF/UHF world
Joe Reisert, W1JR
88 a tone burst generator for European repeaters
Ladimer S. Nagurney, WA3EEC
108 the Guerri report
Ernie Guerri, W6MGI
106 flea market
104 ham mart
99 new products
6 presstop
4 reflections
87 short circuits

contents

9 comments
91 DX forecaster
106 flea market
110 advertisers index and reader service
It took a late-night, long-distance phone call to remind me of what I used to easily perceive as the excitement of ham radio. The call came from a good friend who'd gotten into Amateur Radio at about the same time as I did, approximately 28 years ago. Catching up on recent history, I couldn't help noticing not only his present and continuing enthusiasm for the hobby, but also his accomplishments over the years. His interests included, but weren't limited to, antenna and propagation experimentation, modification of commercial equipment, the design and construction of new equipment, operation on the newer specialized communications modes, as well as teaching and helping other Amateurs. But what impressed me the most was his intensity — his desire to do the very best he could while enjoying what he was doing.

Not long ago I found myself feeling discouraged about the future of Amateur Radio. It's not difficult to get into this mood. Just listen to discussions on the air, at hamfests and at other meetings... or open up to the editorial page of any ham magazine. There you'll no doubt hear, or read, that the average age of Radio Amateurs in this country is rising steadily. If you really want to get discouraged, tune any of the HF bands (and the most popular VHF band). What do you hear?

- "CQ DX, CQ DX." (Translated, this means "I want to contact you, the rare station, as fast as I can and get your QSL card and then goodbye!")
- Or "Hey, Goofball, this is my frequency and I'm not moving!" (Translation: "I've been on this frequency for the past three hours and I own it.")
- Or "Hey, Joe, are you sure I'm only 37.5 dB stronger than that other W1? By my figuring I should be at least 40 dB up from him!" (Somewhere along the line many of us forgot that the FCC didn't intend for us to turn Amateur Radio into a horsepower race.)
- Or, as heard on 2 meters not too long ago, "Tom, I just got this new Loudenboomer amplifier. It's wired for 110 volts. How do ya wire it for 220?" (I guess that question wasn't on his Advanced class exam).

Is this what Amateur Radio is all about?

There are those who say we need some stimulation and that the solution is obvious: get more youth involved. Presto! Amateur Radio — if not the world itself — is saved. Quite frankly, I don't believe in simplistic cures and single-answer solutions. But it is true that in order for any organization to self-perpetuate, a constant influx of "newness" is required, be it youth itself or just youthful energy and spirit.

Even if we manage to attract young people to our hobby, it will still take Amateurs (like my friend) willing to share their enthusiasm and knowledge with them. By helping young people pursue their own interests, these Amateurs will encourage young people not only to enter Amateur Radio, but stay there. It won't be just young people who "save" Amateur Radio, but those hams like my friend who make that special effort.

Rich Rosen, K2RR
Editor-in-Chief
TR-751A
Compact 2-m all mode transceiver
It's the "New Sound" on the 2 meter band—Kenwood's TR-751A! Automatic mode selection, versatile scanning functions, illuminated multi-function LCD and status lights all contribute to the rig's ease-of-operation. All this and more in a compact package for VHF stations on-the-go!
- Automatic mode selection, plus LSB 144.0 144.1 144.5 145.0 146.0 148.0 MHz
- Optional front panel-selectable 38-tone CTcss encoder
- Frequency range 142-149 MHz (modifiable to cover 141-151 MHz)
- High performance receiver with GaAs FET front end
- VS-1 voice synthesizer option

• 25 watts high/5 watts adjustable low power, band, or mode scan with "COM" channel and priority alert
• 10 memory channels for frequency, mode, CTcss tone, offset. Two channels for odd splits.
• All mode squelch, noise blanker, and RIT
• Easy-to-read analog S & RF meter

- Dual digital VFOs
- Semi break in CW with side tone
- MC-48 16-key DTMF hand microphone included
- Frequency lock, offset, reverse switches
- Digital Channel Link (DCL) option

Optional accessories:
- CD-10 call sign display
- PS-430, PS-30 DC power supplies
- SW-100A/B SWR/power meter
- SW-200A/B SWR/power meter
- SWT-1 2-m antenna tuner
- TU-7 38-tone CTcss encoder
- MU-1 modem unit for DCL system
- VS-1 voice synthesizer
- MB-10 extra mobile mount
- SP-40, SP-50 mobile speakers
- PG-2K extra DC cable
- PG-3A DC line noise filter
- MC-60A, MC-80, MC-85 deluxe base station mics.
- MC-42S UP/DOWN mic.
- MC-55 (8-pin) mobile mic.

TR-9500
70 CM SSB/CW/FM transceiver
- Covers 430-440 MHz, in steps of 100-Hz, 1-kHz, 5-kHz, 25-kHz or 1-MHz.
- CW-FM Hi - 10W, Low - 1W, SSB 10W.
- Automatic band/memory scan. Search of selected 10-kHz segments on SSB/CW.
- 6 memory channels.

Actual size front panel

Complete service manuals are available for all TR-751A and TR-9500 transceivers and most accessories. Specifications and prices are subject to change without notice or obligation. Specifications guaranteed for the 144-148 MHz Amateur band only.
SEVERE SANCTIONS AGAINST CASUAL SWL'ING STILL REMAIN in the latest version of the "Electronic Communications Privacy Act of 1986" adopted unanimously by Rep. Kastenmeier's subcommittee. However, the Act specifically exempts any station transmitting in an Amateur band, it is still based on the negative philosophy that a U.S. citizen has no right to tune to any radio transmission except as permitted by the government (see the editorial in February's Ham Radio). Furthermore, this latest version now defines "interception" of radio or other electronic communications as the interception of the transmission itself rather than its content! The Act provides for fines up to $10,000 and a year in jail for tuning in remote broadcast pickups, possibly any ship-to-shore communications, any kind of encoded transmissions, RCCs (older type car phones), and any FM subcarriers.

The Cellular Telephone Industry Didn't Get Exactly what it wanted; the penalty for receiving cellular would be only $500 and/or six months in jail. However, when Rep. Mike DeWine (R-Ohio) offered an amendment to limit the Act to encrypted communications or the disclosure of the contents of protected but unencrypted communications, Rep. Kastenmeier responded saying he wanted his bill to discourage casual listening – even though the Justice Department has said it couldn't and wouldn't enforce the Act against casual listeners. That amendment, and another by DeWine to eliminate the six-month penalty for eavesdropping on cellular communications, were both voted down.

The Act (HR-3378) Now Goes To The House Judiciary Committee where it is expected to meet with little opposition. At the same time hearings on the Senate's version of the bill, S-1667, are expected to be scheduled in the very near future.

A 38-DAY WAIT BEFORE RETAKING AN AMATEUR EXAM IS INDEED UNNECESSARY, the FCC affirmed in deciding against ARRL's Petition for Reconsideration in PR Docket 85-31. The League had argued for retaining the delay because its program is set up so that ARRL VE's can use the same exam for some period of time, but the FCC said in its decision, "We will not retain it [the wait] merely to accommodate the administrative choices made by one or more VE's. It is far more important to eliminate unnecessary and outdated government regulations."

PRB-1 HAS APPARENTLY RESOLVED KATTVC'S ANTENNA PROBLEM with Kirkland, Washington authorities (see June Pressbox). His 2-meter vertical had been cited under a city ordinance restricting transmitting antennas, but Kirkland is considering its law firm's advice to revise its ordinance to agree with PRB-1 and has dropped its action against KATTVC.

An Ordinance Limiting Antennas To Six Feet Above Roof Line in the District of Columbia was up for first hearing at press time; ARRL has prepared a strong presentation against the proposal. Bills limiting all towers in New York State to 50 feet or tree-top height, whichever is lower, have been introduced in that state's legislature.

SUGGESTIONS AND COMMENTS FOR THE VEC PROGRAM ARE BEING SOUGHT by the Council for Amateur Radio Examining (CARE) in preparation for a meeting with the FCC tentatively set for August. The Washington meeting, for all accredited VE's, will review how well the program is working and how it might be improved. Write CARE, Box 688, Glenview, Illinois 60025.

A NEW BAND PLAN FOR 10-METER FM WAS SUPPORTED by nearly 100 Amateurs attending the 10-Meter FM Forum at the Dayton Hamvention. In brief, it would change the repeater offset to 400 kHz instead of 100 kHz and use 29.50-29.68 MHz for the repeater outputs. Repeater inputs would then be 29.18-29.28, on 20 kHz centers. 29.3-29.4 MHz would be used for FM simplex, with 29.4-29.5 MHz 'No-FM' slot for OSCAR downlinks so long as any Amateur 10-meter satellites remain operational. A formal Petition for Rule Making is being planned; Bob Hall, K9EID, would appreciate comments; write Bob at Box 78, Marissa, Illinois 62257.

Revision of 10-Meter Beacon Operation into a system similar to the 20-meter beacon system operating on 14,100 MHz has been proposed by the IARU. In Resolution 85-1 the Union would set aside 28.198-28.200 MHz for beacons, with a worldwide beacon network on 28.200 and regional networks from 28.198 to 28.199. Almost all 10-meter beacons now on the air operate between 28.200 and 28.300, but if the proposed expansion of 10-meter Novice privileges is adopted, the usefulness of these beacons -- most running low power -- would be seriously compromised. G3DME coordinates the International Beacon Project for IARU.

LABELS SPECIFYING RFI SUSCEPTIBILITY ON HOME ENTERTAINMENT EQUIPMENT are being sought by the ARRL in a Petition for Rule Making filed with the FCC. If adopted, the proposal would require every such device to carry an FCC-mandated label or tag that would specify just how susceptible that device is to interference from nearby transmitters.

In Canada VECSR Has Decided To Fight The Judge's Decision that put him off the air as a "nuisance" to his "neighbour" home entertainment equipment (see June Pressstop). Though it now looks as if he may receive some support from commercial two-way users who are concerned about the possible impact of the decision on their operations, he'll still need help from the Amateur community to meet the estimated $15,000 cost of the appeal.
Accessories

MA-5 80/40/20/15/10 meter mobile antenna. All resonators supplied, 200 W PEP max, VSWR 1.5 or less. Easily adjustable for center frequencies.

PB-1A Phone Patch (FCC Part 68 registered).

MC-85 (8-pin) Multi-function desk-top microphone (8-pin) 700Ω unidirectional electret condenser mic. Built-in audio level compensation with output and tone control, meter, and UP/DOWN switch. Selector switch for up to three transceivers. (Additional 4, 6, or 8-pin cables optional.)

SP-40 Compact mobile speaker.

SP-50 Mobile speaker.

HS-5 Deluxe headphones.

HS-6 Lightweight headphones.

LF-30A Low pass filter. 1 kW, 50Ω. Insertion loss less than 0.5 dB at 30 MHz.

MA-4000 2 m/70 cm dual band mobile gain antenna. Duplexer supplied. Ideal for use with the TW-4000A "Dual Bander" and TM-211A/TM-411A. (Mount not supplied.)

AL-2 Lightning and static arrester. 1 kW, 50Ω.

Not Shown:
MC-50 Desk-top microphone. Hi/Lo Z. 4-pin connector.
MC-48 Hand microphone with 16-key DTMF pad and UP/DOWN switches. (8-pin).
MC-46 As above, but with 6-pin connector.
MC-42S Hand microphone with UP/DOWN switches. (8-pin).
MC-35S Noise canceling hand microphone. 50 kΩ (4-pin).
MC-30S As above, but 500Ω.
PG-4A Microphone cable for MC-60A. Converts MC-60A to 4-pin connector.
PG-4B As above, but 6-pin.
PG-4C As above, but 8-pin, as supplied with MC-60A.
PG-4D Extra 4-pin cable for MC-85.
PG-4E As above, but 6-pin.
PG-4F As above, but 8-pin.
HS-7 Micro-headphones.
KPS-7A 13.8 V DC, 75 Ω interminent DC power supply.
RA-3 2 m, ¼A telescoping antenna with BNC connector.
RA-5 2 m ¼A /70 cm ¾A telescoping antenna with BNC connector.
RA-8B 2 m StubbyDuk® with BNC connector.
RA-9B As above, for 220 MHz.
RA-10B As above, for 440 MHz.
RD-20 Dummy load, 50Ω.
DC-500 MHz 20 W continuous, 50 W intermittent.
PG-3A DC line filter for mobile use.

Service manuals are available for all Kenwood transceivers and most accessories.

Specifications and prices subject to change without notice or obligation.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
COMPUTER INTERFACE

BEST

your

ahd

LCD CLOCKS

8

$19.95,

24 ahd 12 hour
tuning

interface

you may

pole

format.

AM

or

VLF

VIC-20

software

(101-000 Hz)

AM

FM

free

catalog,

for

1W

a.

for

1.8-30 MHz.

in

2x

3x5x2

in.

MFJ 24 HOUR LCD CLOCKS

These MFJ 24 hour clocks make your DXing, contesting, logging and SKEDding easier, more precise.

Read both UTC and local time at a glance with the MFJ-1108, $19.95, dual clock that displays 24 and 12 hour time simultaneously.

Or choose the MFJ-107, $9.95 single clock for 24 hour UTC time.

Both are mounted in a brushed aluminum frame, feature huge easy-to-see 5/8 inch LCD numerals and a sloped face that makes reading across-the-shadk easy and pleasant.

You can read hour, minute, second, month and day and operate them in an alternating time-date display mode. You can also synchronize them to WWV for split-second timing. Both are quartz controlled for excellent accuracy.

MFJ-108
$19.95

MFJ-107
$9.95

They are battery operated so you don’t have to reset them after a power failure, and battery operation makes them suitable for mobile and portable use.

MFJ-108 is 4½x1x2 in. MFJ-107 is 2¾x1x2 in.

RTTY/ASCII/AMTOR/CW MFJ-1229 COMPUTER INTERFACE $179.95

Everything you need is included for sending and receiving RTTY/ASCII/CW on a Commodore 64 or VIC-20 and your ham rig.

You get MFJ’s most advanced computer interface, software on tape and all cables. Just plug in and operate.

The MFJ-1229 is a general purpose computer interface that will never be obsolete. An internal DIP switch, TTL and RS-232 ports lets you adapt the MFJ-1229 to nearly any home computer and even operate AMTOR with appropriate software.

A crossbar “scope” LED tuning array makes accurate tuning fast, easy and precise.

You can transmit both narrow (170 Hz) and wide (800 Hz) shift while the variable shift tuning lets you copy any shift (100-1000 Hz) and any speed (5-100 wpm, 0-300 baud ASCII).

Automatic threshold correction and sharp multi-pole active filters give good copy under severe QRM, weak signal and selective fading.

There’s an FM (limiting) mode for easy trouble-free tuning that’s best for general use and an AM (non-limiting) mode that gives superior performance under weak signals and heavy QRM.

A handy Normal/Reverse switch eliminates retuning for inverted RTTY.

An extra sharp 800 Hz CW filter really separates the signals for excellent copy.

12½ x 12½ x 6 inches. Uses floating 18 VDC or 110 VAC with MFJ-1312, $9.95.

MFJ PORTABLE ANTENNA

MFJ’s Portable Antenna lets you operate 40, 30, 20, 16, 12, 10 meters from apartments, motel rooms, camp sites, vocation spots, any electrically clean location where space for full size antenna is a problem.

A telescoping whip (extends 54 in.) is mounted on self-standing 5½ x 6½ x 2¼ inch Phenolic case. Built-in antenna tuner held straight meter. 50 feet coax. Complete mini-band portable antenna system that you can use nearly anywhere.

300 watts PEP.

MFJ-162
$79.95

ORDER ANY PRODUCT FROM MFJ AND TRY IT—NO OBLIGATION. IF NOT SATISFIED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (less shipping).

• One year unconditional guarantee • Made in USA

• Add $5.00 each shipping/handling • Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.

Box 494, Mississippi State, MS 39762

ROLLERT INDUCTOR TUNER

MFJ-989 $329.95

Meet the “Versa Tuner” with compact roller inductor tuner that lets you run up to 3 KW PEP and match everything from 1.8 to 30 MHz.

Designed to match the new smaller rigs, the MFJ-989 is the best roller inductor tuner produced by MFJ. Our roller inductor tuner features a 3-digit turn counter plus a pointer knob for precise inductance control for maximum SWR reduction. Just take a look at all these other great features:

Built-in 300 watt, 50 ohm dummy load, built-in 4.1 balun and a built-in lighted meter that reads SWR and forward and reflected power in 2 ranges (200 and 2000 watts). Accuracy +/– 10% full scale. Meter light requires 12 VDC. 6 position antenna switch.

MFJ “DUMMY” LOADS

MFJ-262
$64.95

MFJ-250
$26.95

MFJ’s “Dry” dummy loads are air cooled—no messy oil. Just right for tests and fast tune up. Non-inductive 50 ohm resistor in aluminum housing with SO-239. Full load to 30 seconds, de-rating curve to 5 minutes. MFJ-260 (300 watt), SWR 1.1:1 to 30 MHz, 1.5:1 to 130 MHz, 25x25x6 in. MFJ-262 (1 KW), SWR 1:1 to 30 MHz, 3x3x13 inches.

MFJ ELECTRONIC KEYER

MFJ-407 Deluxe Electronic Keyer sends Iambic, automatic, semi-auto or manual. Use squeeze, single lever or straight key. Plus/minus keying, 8 to 50 WPM. Speed, weight, tone, volume controls. ON/Off, Tune, Semi-auto switches. Speaker. RF proof, 7 x 2 x 6 inches. Uses 9 V battery, 6-9 VDC or 110 VAC with AC adapter. MFJ-1305, $9.95.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE

800-647-1800

Call 601-323-5869 in Miss. and outside continental USA Telex 53-629 MFJ STKV

8 July 1986
amplifier parasitics

Dear HR:

Richard Measures’s article in the April, 1986, issue, “Grounded-Grid Amplifier Parasitics,” was most interesting. It provided insight into several amplifier circuit designs that are indeed troublesome.

I, too, experienced parasitic oscillations in my first SB-220. While the plate tuning capacitor did arc over, no damage was done. A local Amateur who was well versed in VHF equipment construction pointed to the silver mica capacitor and RF choke tied from each tube socket grid pin to ground as suspect. At his suggestion, the component leads were reduced to the shortest possible length. The choke was also re-positioned so that its “cold” end was laid against the chassis. This appeared to reduce the choke Q and lessen the probability of parasitic oscillation. After these simple modifications, the amplifier remained stable. The tuning capacitor never arc’ed again.

For the past eight years I’ve had first-hand production experience with several hundred HF linear amplifiers using the Eimac 8874 and 8877. To date I’ve not seen a single case of parasitic oscillation or instability of any kind with these tubes. In addition to careful circuit layout, the key to stable operation appears to be the use of Eimac’s recommended tube sockets. It’s no accident that a tube manufacturer specifies all relevant operating parameters — from airflow requirements, to element voltages, to such mundane items as heat-dissipating anode connectors and sockets. The E.F. Johnson socket specified for use with the 8874 can be mounted so that the grid pin terminal lugs are bent over and soldered directly to the socket saddle. The Eimac SK-2210 socket for the 8877 provides four short, direct, grid grounding spring clips. In both cases, the grid-to-ground connection has very low inductance and a large conductive area.

The possibility of interelectrode shorting demands the inclusion of a current limiting resistor in the plate supply. Without it, the tubes and HV rectifiers are in jeopardy. The resistance provides a voltage drop that’s dependent upon the current drawn. The voltage drop can actuate a plate current relay that turns off the amplifier if the dreaded short occurs. This resistor, like the “feedback resistors” in AG6K’s article, provides cheap insurance.

Reliable equipment operation isn’t magical. Nor is it accidental. It should be the heart of the design.

Ray R. Heaton, NJ0G
Canon City, Colorado 81212

directive antenna

Dear HR:

W4MB’s article, “A New Class of Directive Antenna,” (April, 1986, page 107) — with its coverage of the Landstorfer antenna — was very interesting. I was impressed when this idea was recently demonstrated by Frank Rutter, K3AW, at the Tropical Hamboree. Then I remembered that a little more gain can be developed with a straight shorter (5/4 wave) element Yagi which would be much simpler, mechanically, to reproduce. An example of this, the “extended double Zepp”-type Yagi beam antenna was described “The Extended Element Beam” in the December, 1983, issue of QST.

The Landstorfer antenna does make a nice exercise in wave theory. Maybe somebody will come up with a more compact structure that will provide increased gain and be useful for construction on the HF bands. A step in this direction is the log-Yagi as outlined by Leo D. Johnson, W3EB, in “Log Yagis Simplified” (ham radio, May, 1983). Wayne W. Cooper, AG4R
Miami Shores, Florida
a VHF noise bridge

Measure resistances and reactances to within 3 ohms at 146 MHz

Although there is no need to enumerate the many merits of the noise bridge, it is not used as often as one might expect. One of the reasons for its limited acceptance by the Amateur community may be that one needs some knowledge of the impedance-transforming properties of transmission lines as well as modest mathematical skills in order to take full advantage of its great measuring potential.

Several excellent articles about noise bridges operating in the frequency range of 3.5 to 30 MHz have been presented in this magazine. However, to date, nothing has been said about a VHF noise bridge.

The usefulness of a noise bridge depends mainly on its accuracy. Throughout the HF spectrum it is difficult to maintain a 1 percent accuracy over the relatively large frequency range of 3.5 to 30 MHz. In the VHF version bandwidth is small but the operating frequency is considerably higher, which poses the main difficulty. Conventional noise bridge construction with a variable resistor and a variable capacitor does not lead to success.

At VHF frequencies, a variable resistor of 200 ohms, for example, exhibits too much inductance. In addition, the sheer physical size of the variable capacitor in conjunction with the usually awkward position of its terminals makes it practically impossible to provide interconnections without adding prohibitively large inductances, thus degrading performance severely.

This article describes the construction of a noise bridge for the 2-meter band (144 to 148 MHz) that has sufficient accuracy to permit credible and reproducible measurements on multi-element antennas or antenna systems consisting of antenna and transmission line. A practical example of determining the impedance of an antenna via its feedline from the shack is presented.

The four items that control noise bridge accuracy are the wideband transformer, the variable resistor, the variable capacitor, and the physical layout (wiring). Obviously, single-point grounding is mandatory. If we replace the variable resistor with a PIN diode and the variable capacitor with five parallel connected tuning diodes, it is possible to shrink the size of the noise bridge to a minimum and achieve almost perfect wiring. A certain weakness exists because of the rather poor RF properties of the SO-239 jack; because most Amateurs use the PL-259 plug, it was retained.

The wideband transformer

The transformer must have electrical symmetry and close magnetic coupling between primary and secondary windings. It consists of four tightly twisted No. 24 enameled copper wires with 0.5 mm diameter. Two opposite wires of the bundle are the primary and secondary windings. The bundle is threaded about 3.5 times through a toroidal core — for example, an Amidon T 60-10. The beginning and end of each winding must be marked with short pieces of sleeving material and then connected per fig. 1. It is important to have equal wire lengths between transformer terminals A and D as well as between terminals B and C and point M. The toroidal transformer must be mechanically secured to the chassis with nylon hardware to prevent a change in calibration later on.

Noise bridge diagram

The complete schematic of the noise bridge, shown in fig. 2 consists of a separate noise source and bridge. The noise signal is fed to the bridge via two equally long, thin coaxial cables 26.8 inches (68 cm) in length, corresponding to a half-wavelength at 146 MHz. The noise source is a 6.2-volt Zener diode whose noise spectrum is amplified and fed to transformer T2, which is identical to the bridge transformer T1. The secondary center tap of T2 is connected only to the two shields of the coaxial cables and not to the ground system of the noise generator. This results in reduced chassis currents and guarantees a very sharp null indication by the bridge. The noise generator is housed in a shielded box away from the antenna system.

By A.E. Popodi, OE2APM/AA3K, Moosstrasse 7, Salzburg 5020, Austria
from the bridge section. The adjustable noise level results in improved null indication in some receivers and helps in finding the null. The center tap of the secondary winding of T1 is connected through a short piece of coax to the BNC connector (output to receiver). This BNC connector should be insulated from the chassis. The 22-μH choke provides the ground return for the diode current and the tuning voltage. A gear train is recommended for the R and C dials.

Mechanical Layout

Figure 3 shows the layout of the noise bridge components. A base plate of silver-plated brass serves as the common mounting surface for all bridge parts. Point A is a short, insulated standoff; points K and L are good high-frequency feedthrough capacitors. Additional bypass capacitors are provided in parallel with the feedthrough capacitors. All five diodes are mounted between two small metal plates that have five holes each. This diode package is then soldered between their respective points. Point M, the center tap of the secondary winding, is a plain feedthrough insulator. Point N is a heavy but short grounding standoff. It is also the grounding point for the two coaxial cables that carry the noise signal. The reference capacitor \(C_0 \) must be soldered directly, with short leads, to the SO-239 jack.
control signals

The PIN diode requires a stable, constant current source. A P-channel FET, Q1, serving as constant current source, is controlled by the FET-input operational amplifier U1. At its input, a Zener reference voltage is compared with the voltage drop that the diode current generates across the variable resistor R1 and range-limiting resistor R2. The dial of resistor R1 is calibrated in ohms. Current range is about 0.2 to 10 mA, which corresponds to a diode resistance variation of 150 to 4 ohms. The connection to the diode should be made using shielded cable.

The five parallel connected tuning diodes require a variable DC voltage of 0.5 to 28 volts, controlled by potentiometer R3. The purpose of the 5.1-kilohm resistor is to linearize the (nonlinear) relationship between tuning voltage and capacitance. Transistor Q2 provides a low impedance and its base-emitter junction serves to compensate for the temperature coefficient of the tuning diodes. The 15- and 28-volt supplies must be regulated.

calibrating the resistance dial

The calibration of the R dial requires a little test jig to determine the relationship between diode AC resistance and DC current. This is shown in fig. 4. A signal generator supplies a 30-MHz signal to point A of an SPDT switch that may consist of a small metal bar that makes contact with either point B (non-inductive test resistor) or point C (PIN diode). The DC current can be delivered by the constant current supply described above or from an external DC source. A DVM is used to measure the current accurately. A second instrument is used to monitor the RF voltage at point A. The DC current must be adjusted until the voltages at B and C are equal. Three identical, non-inductive resistors of 50 ohms are required. The first measurement is made with 25 ohms (two resistors in parallel). The next readings are taken with 50, 100, and 150 ohms. This test jig must be built on a copper-clad board, with short leads to all critical points; a common grounding point is important. If the values of current are plotted on 3-by-3 decade logarithmic graph paper, the four points will lie on a straight line because of the logarithmic relationship between diode resistance and diode current. From this graph, the DC currents for all other resistance values can be read and the R dial can now be calibrated. (See fig. 5.)

calibrating the capacitance dial

This requires the measurement of the relationship between diode capacitance and DC voltage. The previously mentioned diode package can be measured with a capacitance bridge, but the applied voltage must not exceed the tuning voltage. Capacitance meters that use constant current charging cannot be used because of the 6.2-kilohm resistor.
When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to ...

... yours

... and ours.

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now in it's "third wave" of innovation, thanks to its designed for the future architecture and new software releases. The '850 defines the industry standard in repeater control systems.

- Fully remotely programmable with Touch-Tone commands
- Front panel LED display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day of week Scheduler with 10 set-up states, 30 changeovers and events, over 100 scheduled items for hands off operation and automatic reminders.
- Full or half duplex autopatch, autodial (250 numbers), emergency autodial, reverse autopatch, antidual, toll restrict including telephone exchange tables, supports remote and multiple phone lines
- Informative remotely programmable ID's (17), tail messages (13), bulletin board (2)
- 16 channel voice response analog metering, automatic storage of min/max values on each channel, values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable features
- Mailbox for user-to-user, and system-to-user messages
- Paging – two-tone, 5/6 tone, DTMF, CTCSS, HSC display, user commandable and may be included in programmable messages (i.e. alarms)
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for others users when they aren't around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster™.

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with the family by handling third party traffic - its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

- Crossband linking – VHF/UHF to HF
- Telephone access to your home station
- BSR Home Control interface
- Electronic Mailbox
- ShackPatch™ intercom into the shack
- PersonalPatch™ simplex autopatch

If your repeater budget can't afford the '850, we offer the RC-850 Repeater Controller, which we like to call the "second best repeater controller in the world". It's a scaled down, simplified version of our '850, but overall, it offers more capability and higher quality than anyone else's control equipment at any price.

- Remotely programmable with Touch-Tone commands
- Over 175 word customized male speech synthesis vocabulary
- Selectable "Macro sets" for easy control operator selection
- Autopatch, autodial (200) numbers, emergency autodial, reverse patch
- Remotely programmable informative ID's (7), tail messages (3), bulletin board (2)
- Supports synthesized remote base transceiver, control receiver, alarm
- Selectable, informative courtesy tones
- Talking S-meter, Two-tone paging
- Easy hookup to any repeater

For those who like to "roll their own", we can get you off to a rolling start with our ITC-32 Intelligent Touch-Tone Control Board. Much more than just a decoder, it's a mini-control system of its own, with the basic repeater and remote base functions built-in. And it can be tailored by you with its Personality Prom.

- 28 remotely controllable latched or pulsed logic outputs
- 4 alarm or remote sensed logic inputs
- Response messages to confirm command entry
- Repeater functions including COR, Der, timers, courtesy tone, etc.
- Remote base functions including control of synthesized transceiver

All our products are documented with high quality, easy to read manuals. Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

To order one of these advanced control products, call 408-749-8330. Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment. For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to:

Visit and Mastercard accepted.

197

10816 Northridge Square • Cupertino, CA 95014 • (408) 749-8330
Another method of measuring the capacitance in the noise bridge is to connect an inductor in parallel with the tuning diodes via a large DC blocking capacitor. The DC voltage may be set to 3.5 volts. The anode terminals of the diodes must be isolated from the noise bridge circuitry and a 100-kilohm resistor connected from this point to the ground to provide a DC return for the tuning voltage. With the inductor connected, measure the resonant frequency first. Then add a known capacitance, 33 pF, in parallel with the diodes and measure the new resonant frequency, repeating this with 68 pF. The values of diode capacitance and inductance can now be calculated. After removing these additional capacitors, calibrate the C dial. For example, a capacitance of 70 pF is related to a specific frequency that is selected by adjusting the tuning voltage. A recommended inductance is 0.26 μH, about 7 turns of diameter No. 18 AWG wire with 0.35-inch (9 mm) coil diameter.

calibrating the noise bridge

In order to understand the alignment procedure and interpret noise bridge readings properly, it is important to analyze the effect of parasitic inductances.

The equivalent circuit of a resistor that has self-inductance (as a result of excessive lead inductance) is shown in fig. 6. If we convert the series R-L circuit into its equivalent parallel R-L circuit, resistor R1 is always larger than R and L1 is larger than L. Since L1 is in parallel with the reference capacitor C0, it reduces its apparent value and the noise bridge variable capacitor must be set to a smaller value than C0 in order to balance the bridge. Therefore, if we measure a resistor with self-inductance, the noise bridge indication is a higher R value and a capacitance value smaller than C0. As an example, at 145 MHz, the noise bridge will measure a 50-ohm resistor at 51.34 ohms and with 3.5 pF less capacitance than C0, if the series inductance is 9 nH. This happens to be the inductance of a 1-centimeter length of No. 28 wire.

Figure 7 shows the actual electrical circuit of the noise bridge X terminal area. L is the inductance between the center pin of the SO-239 connector and transformer, including leakage inductance. The reference capacitor C is assumed to be non-inductive. R is the load resistor. **Figure 8** shows the calculated resistive and capacitive components of the impedance measured between points A and B as a function of R, under the assumption that L = 2.5 nH and C = 58 pF. It is interesting to note that for resistance larger than 23 ohms the apparent capacitance is larger than C. This capacitance enhancement is caused by the inductance L, which is in series with C, creating a series L-C tuned circuit that operates below its resonant frequency. We also see that a 50-ohm resistor appears to be only 38.8 ohms. If we reduce R from 50 to 25 ohms, the resistance decreases fairly linearly, but the capacitance decreases non-linearly from 64.5 to 60.1 pF. In other words, the resistance variation results in a resistance and capacitance change.

From the above it may appear that building an accurate noise bridge is very difficult, if not impossible. However, if we provide the same inductance of 2.5 nH in the other branch of the noise bridge, the same capacitance enhancement occurs, but in the opposite direction and the above 38.8-ohm resistor becomes 50 ohms again. Therefore, the criteria for correct noise bridge operation are as follows:

1. A resistance change at the X terminal must not affect the capacitance reading.
2. A capacitance change at the X terminal must not affect the R reading.
3. A capacitance variation at the X terminal must be equal to the change of the variable capacitor. If we add, for example, a 33-pF capacitor in parallel with the reference capacitor and if the variable capacitor is increased by only 25 pF to obtain bridge null, then the capacitance enhancement at the X terminal side is too small. We must therefore add inductance to the X terminal side.

How well these criteria are met depends on transformer construction and alignment. Despite the low impedance level of the bridge circuitry, parasitic capacitances also affect noise bridge accuracy. PIN- and tuning diodes may also introduce self-inductance.
THE MOST COMPATIBLE ACCESSORIES
ON THE BLOCK, JA?

Ja.

Because component compatibility is what it takes to get the most out of a satellite TV system.

Which in turn keeps customers happy and out of your hair.

That's why all of our Luxor components—from the receiver to the antenna—are precisely engineered to be perfectly matched with each other.

Including our fine quality accessories for multiple receiver installations.

(1) DC-Passing Amplifier which pushes signal 20 dB to increase the cable length or the number of receivers. (One amplifier allows approximately 200 more feet of RG6.)

(2&3) 4-Way and 2-Way DC-Passing Power Dividers. 4-Way splits signal to up to four receivers; 2-Way to two receivers. (Each port passes DC from LNB input allowing complete flexibility in switching receivers on/off.)

(4) DC-Passing 10 dB Signal Attenuator which reduces signal level where there is a short run in a system that requires higher signal levels elsewhere.

(5) DC-Passing V/H Switch for selection of polarity at the receiver. It also passes the +18 volts only to the LNB it is selecting.

TI Filter (not shown) clears up the picture in heavy interference or urban areas. On/off switch for transponders not exposed to TI.

For more information on Luxor's complete line of compatible components, see your Luxor distributor. Or call toll free 1-800-245-9995.

Luxor of Scandinavia.
The birthplace of satellite TV.
\[Z_L = R_L + jX_L = Z_o \frac{Z_o \sinh (a + jb) - (R_{IN} + jX_{IN}) \cosh (a + jb)}{(R_{IN} + jX_{IN}) \sinh (a + jb) - Z_o \cosh (a + jb)} \quad (1) \]

\[Z_{IN} = R_{IN} + jX_{IN} = Z_o \frac{(R_L + jX_L) \cosh (a + jb) + Z_o \sinh (a + jb)}{(R_L + jX_L) \sinh (a + jb) + Z_o \cosh (a + jb)} \quad (2) \]

\[R_L = Z_o \frac{Z_o R_{IN} (1 + A^2 + B^2) - A (Z_o^2 + R_{IN}^2 + X_{IN}^2)}{Z_o^2 + (A^2 + B^2) (R_{IN}^2 + X_{IN}^2) + 2Z_o (BX_{IN} - AR_{IN})} \quad (3a) \]

\[X_L = Z_o \frac{Z_o X_{IN} (1 - A^2 - B^2) + B (R_{IN}^2 + X_{IN}^2 - Z_o^2)}{Z_o^2 + (A^2 + B^2) (R_{IN}^2 + X_{IN}^2) + 2Z_o (BX_{IN} - AR_{IN})} \quad (3b) \]

\[R_{IN} = Z_o \frac{(R_L + Z_o A) (Z_o + AR_L - BX_L) + (R_L + AZ_o) (AX_L + BR_L)}{(Z_o + AR_L - BX_L)^2 + (AX_L + BR_L)^2} \quad (4a) \]

\[X_{IN} = Z_o \frac{(X_L + BZ_o) (Z_o + AR_L - BX_L) - (R_L + AZ_o) (AX_L + BR_L)}{(Z_o + AR_L - BX_L)^2 + (AX_L + BR_L)^2} \quad (4b) \]

\[D = 1 + e^{4a} + 2e^{2a} \cos (2b) \quad A = \frac{e^{4a} - 1}{D} \quad B = \frac{2e^{2a} \sin (2b)}{D} \quad (5) \]

\[a - \text{Nepers} \quad b - \text{Radians} \]

\[e = 2.71828 \]

Parallel to series conversion:

\[R_S = R_P \frac{X_P^2}{R_P^2 + X_P^2} \quad X_S = X_P \frac{R_P^2}{R_P^2 + X_P^2} \quad (5) \]

Series to parallel conversion:

\[R_P = \frac{R_S^2 + X_S^2}{R_S} \quad X_P = \frac{R_S^2 + X_S^2}{X_S} \]

Table 1. Conversion formulas.

recommended calibration procedure

All parts must be added directly in parallel to the reference capacitor \(C_o \), using the shortest possible leads.

1. Connect a non-inductive, 1/4-watt resistor in parallel to \(C_o \).

2. Set the resistance dial to 50 ohms and the capacitance dial to a value equal to the sum of \(C_o \) and the SO-239 socket capacitance (in our case, 59.5 pF). If there is no noise null, slight bending or reshaping of the transformer leads will help. A small piece of ferrite held close to one of the wires indicates where to correct.

3. Add a 33 pF capacitor to \(C_o \), if the capacitance dial must be increased by less than 33 pF to obtain bridge null, additional inductance must be added at the X terminal side (this inductance may consist of a simple 0.157 inch, wire loop). If necessary, the taps on the center balancing inductors shown in fig. 3, may be changed. This balancing inductor consists of three turns of bare wire, its center point soldered to the feedthrough insulator. If equality cannot be achieved, the ratio of the two capacitance values (which is larger than unity) can be used as an instrument correction factor so that any reading on the capacitance dial is multiplied by that factor. This improves bridge accuracy.

4. Add another 50-ohm resistor in parallel to the first one. The R dial should indicate 25 ohms, and the C dial setting should not change.

5. Adding a 33-pF capacitor to the first 50-ohm resistor should not affect the R dial indication.
measuring admittances with the noise bridge

The ideal location for admittance measurements is on the C_n side of the SO-239 connector, but this is not convenient. Measurements on the other side of the connector are easier to make. However, the additional inductance of the 0.748-inch center pin reduces accuracy, especially if adapters must be used. For example, the difference in R and C readings is about 1.5 ohms and 2 pF if a 50-ohm BNC termination resistor is measured, using a PL to BNC adapter. However, the error is small.

measuring antenna impedance: example

The block diagram of the test setup is shown in fig. 9. It is assumed that the antenna may be represented by the series connection of a 24.846-ohm resistor and a 24.91-pF capacitor. The noise bridge is connected to the cable input with the 2-meter receiver serving as bridge null indicator.

At this point we must digress and remember that we can calculate the load impedance Z_L of a transmission line from the (measured) input impedance Z_{IN} if the cable parameters — attenuation, length, and characteristic impedance — are known. Likewise, we can determine Z_{IN} if Z_L is known. These conversions can be made with

K.V.G. CRYSTAL PRODUCTS

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$72.95</td>
</tr>
<tr>
<td>XF-9C</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>4</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9D</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>4</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9E</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9F</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9G</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>4</td>
<td>$54.10</td>
</tr>
<tr>
<td>XF-9H</td>
<td>FM</td>
<td>500 kHz</td>
<td>4</td>
<td>$54.10</td>
</tr>
<tr>
<td>XF-9I</td>
<td>FM</td>
<td>250 kHz</td>
<td>4</td>
<td>$54.10</td>
</tr>
<tr>
<td>XF-9J</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>$17.15</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

[Full Details of CRYSTALS AND FILTERS]

BASEBALL CAP

How about an attractive BASEBALL style cap that has name and call on it. It gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion. Hats come in the following colors:

- GOLD
- BLUE
- RED
- KELLY GREEN

Please send call and name in maximum 6 letters per line.

- UID Engraved I.D. Badge
- LOOP YAGIS

I.D. BADGES

No ham should be without an I.D. badge. It’s just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/ blue, red/white, gold/white, metallic gold/black, metallic silver/black.

- UID Engraved I.D. Badge
 - METAL $2.50
 - PLASTIC $2.00

Ham Radio's Bookstore

Greenville, NH 03048

Please Enclose $2.00 to cover shipping and handling
Smith charts, but formulas are more accurate and convenient, especially if a programmable calculator or computer is available. **Table 1** is a listing of the required formulas. Formulas 1 and 2 can be used if you have a programmable calculator with complex operating mode (for example, an HP-15C). Formulas 3 and 4 lead to the same result, but are more cumbersome to use.

Since the noise bridge readings are in parallel resistance values and the formulas assume series configuration, we must convert parallel-into-series circuits and vice versa. These formulas are also listed in **table 1**.

The most important cable parameter is length, represented by the term b in the formulas; it must be known fairly accurately. One method of determining the cable length, besides actually measuring it with a scale, is to disconnect the antenna from the coax and connect instead a suitable known resistor. You can then calculate with formulas 2 or 4 the cable input impedance Z_{IN} and compare it to the input impedance that was measured with the noise bridge. If there is a difference, try other values for b until agreement is reached.

In our example, assume the cable length is not precisely known and estimate a length of 31.3 feet (9.55 meters). *(Figure 9 shows the exact length as 31.49 feet, or 9.598 meters.)* The cable length corresponding to one wavelength at 145 MHz is

$$\frac{3 \times 10^8}{145 \times 10^6} \times 0.66 = 1.3655 \text{ m or 4.48 feet} \quad (1)$$

where the factor 0.66 is the velocity constant of the cable. Since we have assumed a length of 31.3 feet (9.55 meters), the value of b in formulas 1 and 2 becomes

$$b = 360^\circ \cdot \frac{9.55}{1.3655} \cdot \frac{1}{57.296} = 43.943 \text{ radians} \quad (2)$$

The factor 57.296 converts degrees into radians. If we use formulas 3 and 4, b must be expressed in degrees.

The value of a, the attenuation of the 31.3-foot (9.55-meter) cable, can be found from a handbook. Assuming 3 dB per 100 feet (30.48 meters), we obtain:

$$a = \frac{3 \times 9.55}{30.48} \times 0.115 = 0.1081 \text{ Nepers} \quad (3)$$

The factor 0.115 converts dB into Nepers. The characteristic impedance Z_0 is assumed to be 50 ohms.

Now terminate the coax with a known resistor. Select a value that renders readings well within the range of the noise bridge. Obviously, values too close to 50 ohms must be avoided. The resistor must be accurately measured with a DVM. Solder the non-inductive (preferably 1/4-watt) resistor, keeping leads as short as possible, between the center pin and flange of an SO-239 socket and then plug it into the coax. The load impedance in our example is:

$$Z_L = 101.3 + j0$$

(all values are expressed in ohms). Using formulas 2 or 4, the input impedance Z_{IN} is calculated to be with $a = 0.1081$ and $b = 43.943$ to:

$$Z_{IN} = 87.299 + j4.046$$

This is the input impedance measurement that should be indicated by the noise bridge.

The noise bridge readings (taken at 145 MHz) are: $R_{NB} = 77.5$ ohms and $C_{NB} = 65$ pF. Since the capacitance setting for a pure resistor is 59.5 pF, the capacitance difference is 5.5 pF. This represents, at 145 MHz, a capacitive reactance of $-j199.57$ ohms. The noise bridge readings are therefore 77.5 ohms in parallel with $-j199.57$ ohms. Converting into its series equivalent, using formula 5, we have $Z_{IN} = 67.34 - j26.15$. Comparing this with the above calculated value for Z_{IN} from Z_L for another set of parameters, a and b, we find, after a few trials, that $a = 0.109$ and $b = 44.3406$ render the best agreement between measured and calculated Z_{IN}. This value is

$$Z_{IN} = 69.67 - j27$$

This compares favorably with the noise bridge measured input impedance of $Z_{IN} = 67.34 - j26.15$.

Having found the correct cable parameters, reconnect the antenna (in our example, the test load) and measure the input impedance Z_{IN} with the noise bridge. The readings are: $B_{NB} = 40$ ohms, $C_{NB} = 83.5$ pF. The actual capacitance is 83.5 - 59.5 = 24 pF. Capacitive reactance is $-j45.73$. Converting into its series equivalent with formula 5, we obtain: $Z_{IN} = 22.66 - j19.82$. This is the measured cable input impedance with the antenna connected. This value must be inserted in formulas 1 or 3 to calculate the antenna impedance Z_L, using $a = 0.109$ and $b = 44.3406$. The result is:

$$Z_L = 27.195 - j43.97.$$ This is the measured antenna impedance.

As shown in *fig. 9*, the actual load impedance is $Z_L = 24.846 - j44.066$.

This is a remarkably good result, considering the high operating frequency and the fact that the assumed values for cable attenuation and characteristic impedance may not be correct. However, errors in a and Z_0 are much less significant than errors in b.

In this example, the actual load consists of a 103-ohm resistor in parallel with an 18.9-pF capacitor, which is the parallel equivalent. This permits a more inductance-free connection, thereby reducing the instrumentation error.

summary

The construction of a VHF noise bridge that is accurate enough to permit credible and reproducible measurements on antenna systems is possible if a PIN diode serves as variable resistor and tuning diodes replace the variable capacitor. The component layout must be such that no wiring interconnections are necessary. Undesirable ground currents that degrade the null indication are
avoided using single point grounding, a brass mounting surface, balanced noise injection, and proper transformer construction.

For antenna measurements via the feedline, we must know its exact length. If the length is not known, it can be found from measurements of the cable input impedance with the noise bridge and by comparing this value with the calculated input impedance, using a known termination resistor. One advantage of this method is in the fact that the calculated value of \(b \) represents the actual cable condition and includes its velocity constant, which does not have to be known. All necessary formulas to calculate load impedance from input impedance, and vice versa, are presented as are network conversion formulas.

If the above method cannot be used because we cannot connect the test load, or if the cable length is not known accurately enough, the noise bridge readings are still the exact load impedance that the transceiver "sees." This load is the antenna impedance, which may be transformed by the transmission line into a completely different value, depending on cable length.

If you want to measure impedances directly at the X terminal, be careful to avoid undesirable inductances and capacitances. Series connection of several adapters will degrade accuracy. Generally, a resistor with series inductance (or self-inductance) measures higher; the capacitance reading is below the reference value.

To circumvent the deficiencies of the SO-239 connector, measure the unknown impedance using a coaxial cable half a wavelength long at the frequency of interest, with properly integrated PL-259 plugs on both ends. Thus, the SO-239 connector becomes part of the coax geometry and does not affect accuracy. Components must be connected with the shortest possible leads, preferably using an SO-239 jack that is then connected to the cable.

Possible sources of error are the instrument tolerance and noise injection in the assumed values for cable attenuation and characteristic impedance. The validity of the formulas may also be questioned. But according to numerous tests — and bearing in mind the statistical distribution of errors — the RMS error of this VHF noise bridge is less than 3 ohms in both the resistive and reactive components.

There is still room for improvement of the presented design, possibly in transformer construction, bridge alignment, and in establishing electrical symmetry between the X terminal and reference branch of the noise bridge.

references

FULL CHARGE FAST

Replace your old slow charger.
Handheld battery packs full to capacity in as little as 45 Min.

STATE OF THE ART DESIGN.
Provides precise measurement and control of charge and discharge parameters.

- F 1. Power connector and transformer supplied
- E 2. Pocket size charger 4"x2½"x1½"
- A 3. Laser trimmed precision resistor
- T 4. Reverse polarity protection built in
- U 5. Solid state circuit measures charge and discharge
- R 6. Automatic shutoff
- E 7. Simple modification to adapt (special adapter for ICOM)
- S 8. Controlled automatic discharge and auto switch to charge mode eliminates memory problem with Ni-Cd Batteries

Quick charge or discharge
Utilize your Ni-Cd To full capacity

<table>
<thead>
<tr>
<th>115 VAC or 12 VDC to</th>
<th>24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>$149.95</td>
</tr>
<tr>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>R.V.</td>
<td></td>
</tr>
<tr>
<td>Boat</td>
<td></td>
</tr>
<tr>
<td>Plane</td>
<td></td>
</tr>
</tbody>
</table>

Mail Orders To: NRGCONTROL
P.O. BOX 1602
Chelan, WA 98816
(509) 682-2381
Step Up To Power

With Mirage™/klm

Antennas And Amplifiers.
artificial transmission lines

Construction of striplines and hybrid couplers using hand tools

Impedances can be matched in a variety of ways; some examples are the well known 1/4-wave stub and its lesser known cousin, the series-section matching line. For OSCAR work, where circular polarization is required, the branch line hybrid is ideal.

In most matching methods, transmission lines of non-standard impedances are required. The easy way out is to parallel two or more coax cables to come close to the required impedance; the harder way is to fabricate transmission line from copper pipe and brass tubing. Series-section matching uses two or more lengths of different, but standard value impedance coax. The problem with these, however, is splicing them together.

One form of transmission line used at UHF is called stripline. It is basically two printed circuit board strips. One PC board has a ground plane on one side and the transmission line center conductor etched on the other side. The other PC strip has a ground plane only. The two are assembled as in fig. 1A. To complete the self-shielding feature, such as in coaxial cable, a conductive foil covers the exposed edges of the dielectric. The impedance of a stripline transmission line impedance is directly proportional to the width, \(W \), of the line and inversely proportional to the ground-plane spacing, \(b \). The \(W/b \) ratio and the dielectric constant, \(\epsilon \), of the laminate determine the impedance of line (see fig. 1B).

But there's a problem with stripline. Printed circuit boards are fairly thin, and the center conductor width is small for the more popular line impedances. Thin traces are suitable for printed-circuit manufacturing but are rather awkward for the average ham to manufacture. The way to circumvent this problem is to widen the ground-plane spacing with Plexiglass®. The center line thus becomes proportionally larger for the same impedance (see fig. 2).

A quarter-wave artificial line was made with a printed circuit board exterior, two Plexiglas spacers and 0.002 inch (0.5 mm) brass shim stock for the center wire (fig. 3). Measurements were made with a General Radio admittance meter type 1602-A (fig. 4) at 150 MHz. The result for 0.25 inch, 0.125 inch and 0.062 inch Plexiglass is shown in fig. 5. Some advantages are obvious; for a line impedance of 50 ohms and using 0.25 inch (6.5 mm) spacers the center conductor width is 0.4 inch (10 mm), a dimension easily cut with average tools. But consider, too, the surface area. Most readers know about skin depth at radio frequencies. RF travels on the skin of a conductor. At

By Rudolf E. Six, KA8OBL, 30725 Tennessee, Roseville, Michigan 48066
a depth, \(\delta \), ("skin depth") the current decreases to 37 percent of its surface value. For a copper conductor,

\[
\delta = 2.6 \sqrt{1/f}
\]

where

- \(\delta \) = skin depth (inches)
- \(f \) = frequency (Hertz).

As an example, at 150 MHz skin depth would be 0.00021 inch (0.005 mm). Thus, 0.002 inch (0.05 mm) shim stock is adequate for UHF. A width of 0.4 inch (10 mm) is equivalent to a round center conductor of approximately 0.25 inch (6.4 mm) diameter.

The resonant length depends on the dielectric of the Plexiglass:

\[
V = \frac{1}{\sqrt{\epsilon}}
\]

where

- \(V \) = velocity of propagation
- \(\epsilon \) = dielectric constant
and

\[
L = \frac{3 \times 10^{10} \cdot V}{f}
\]

where

- \(L \) = electrical wavelength (cm)
- \(f \) = frequency (Hertz)
- \(V \) = velocity factor

The measured velocity factor was 0.60 or a dielectric constant of 2.78, close to the listed constant of 2.8 for Plexiglass. The Fiberglass part of the PC board is part of the line dielectric \((\epsilon = 4)\) and affects the total dielectric constant as the Plexiglass gets thinner. I used a velocity factor of 0.6 for the length calculation of quarter-wave stubs. The SWR, being the important factor, is flat over a wide frequency range. The hybrid coupler, however, has a sharp isolation bandwidth and several factors affecting resonant length, which are discussed later.

construction of stripline

The center conductor is 0.002 inch (0.05 mm) brass. This is available as brass shim stock in sheets or rolls.
from machine tool supply firms. **Figure 6** shows the fixture used for accurately slicing the shim stock. The base is a thick slab of Plexiglass. Formica or bakelite would also work, but the material must be hard enough so an Xacto® blade won’t cut into it. I bought two steel rulers and mounted one firmly to the Plexiglass. I attached the second ruler with two DeStaco hold-down clamps, also available from tool supply firms.

To cut an accurate strip, the shim stock edge is placed against the fixed ruler. The second ruler, with the shim underneath, is spaced to the required width with vernier calipers. The clamps are secured and an Xacto knife is used to slice the brass shim stock. It takes a little practice, but the results are much better than you’d get with scissors.

The plastic spacers are Plexiglass brand Lucite.® I used this well-known brand because of its widespread availability and the possibility of variations in the dielectric constant of other brands. Check the thickness of the Plexiglass; it does have some rather wide tolerances. The printed circuit board is standard 0.0625 inch (1.5 mm) G-10 glass epoxy. A table saw with a fine-tooth blade was used to cut the Plexiglass and the PC board.

To mount the RF connector, a hole is first drilled through one of the PC boards and both Plexiglas spacers. The bottom PC board is left undrilled. The diameter of the hole is the width of the mounting flange of the RF connector. I used BNC connectors because most of my test equipment uses BNCs. BNC connectors, however, are prone to be intermittent. Use UHF connectors for 2-meter work and N connectors for 70 cm and above. The TNC connector is excellent for low-power work at UHF. Not well known to Amateurs, the TNC is small and has low SWR characteristics.*

A small hole was drilled into the brass strip for soldering to the connector. This presented quite a problem since the spinning drill grabbed the thin brass, but the problem was solved by squeezing the brass strip between two pieces of scrap Plexiglass (**fig. 7**). The top piece has a hole predrilled to the right diameter. The brass strip is positioned accurately underneath, then the hole is drilled through. The result is a nice clean hole in the right place.

*Microwave Components, 11216 Cape Cod, Taylor, Michigan 48180.
The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

- Unique design reduces size
 but not performance.
- No lossy traps; full element radiates on all bands.
- Retrofit kit for 17 meters coming soon.
- Turns with TV rotator
- Only 17 lbs.

Butternut Verticals
Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
- 80, 40, 30, 20 15 and 10 meters automatic bandswitching.
- Add-on kit for 17 and 12 meters available now.
- 26 ft. tall

Model HF2V
- Designed for the low-band DXer
- Automatic bandswitching on 80 and 40 meters
- Add-on units for 160 and 30 or 20 meters
- 32 feet tall - may be top loaded for additional bandwidth.

For more information see your dealer or write for a free brochure.

CALL LONG DISTANCE ON YOUR HANDHELD
The Model 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate SSB or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, IC-2AT, Yaesu, Santec, and Ten-Tec. Only 300 mw input will deliver 5 watts out; 3 watts in will deliver 35 watts out. Maximum input drive level is 5 watts.

Butternut Electronics Co.
405 East Market
Lockhart, Texas 78644

[Ad for various products and services related to amateur radio, including new products and upgrades.]

AMATEUR RADIO MAIL LISTS
Self-stick 1x3 labels

*** NEWLY LICENCED HAMS ***
*** ALL NEW UPGRADES ***
*** UPDATED EACH WEEK ***
Total List = 462,728 (ZIP sorted)
Price is 2.5 cents each (4-up Cheshire)
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703/994-5777

PROCESSOR CONCEPTS
P.O. BOX 32908
MINNEAPOLIS, MN 55432
(612) 780-0472 7pm-10pm evenings
CALL OR WRITE FOR FREE CATALOG AND SPECIFICATIONS

Microcomputer Repeater Control
$129

- Two CW ID Memories
- Tone Out Timer
- Pre Toneout Warning MSG
- Post Toneout CW MSG
- Frequency Change
- Auxiliary Inputs
- Digital Frequency
- Recalibratable COR Input
- High Current PTT Interface
- SHINE Wave Tone Generator
- Low Power 9.15 VDC @ 200 ma
- Size 3.5" x 3.5"
- All Connectors Included

RFT 2A Kit Only $129 plus $3.00 shipping
The transmission line is ready for final assembly after the center conductor has been soldered to the RF connectors. I could have drilled a number of holes and held the transmission line together with nuts and bolts, but I found it easier to glue the whole assembly. I simply held everything together with C-clamps and wicked plastic glue along the edges with a hypodermic needle. The glue is methylene chloride.**

Avoid using plastic glue with acetic acid as an ingredient (vinegar odor); it is conductive. A variety of glues are available from commercial firms selling plastics. The outer conductor is completed by soldering 0.001 inch (0.03 mm) brass shim stock between both PC boards.

How wide should the line be made? Or in other words, how far away should the center conductor edge be from the outer shield? If the transmission line is too wide, it tends to be inductive; if it’s too narrow, the line impedance is affected by the outer shield being

*Weldon 3", available from Industrial Polychemical Service, P.O. Box 379, Gardena, California 90247.
too close to the center conductor. I found the best distance between center strip and outer shield to be equal to the thickness of the spacers. Thus if 0.125 inch plastic spacers are used, the total width of the stripline is 0.375 inch (including the 0.0625 inch PC boards) larger than the width of the center conductor.

matching lines

A quarter-wavelength matching line is used to demonstrate the first practical use of these striplines. The impedance transforming properties of quarter-wave transmission lines are well known. Most Amateurs use them to couple antennas with an impedance different from that of the feed coax. Basically

the input impedance, Z_d, of a quarter-wave line terminated in a resistive impedance, Z_b, is

$$Z_d = Z_1 Z_b$$

where $Z_1 = \text{impedance of quarter-wave line}$, rearranging

$$Z_1 = \sqrt{Z_d Z_b}$$

This means that the matching line, commonly called

fig. 10. Completed hybrid couplers for 2 meters and 70 cm.

fig. 11. Impedance and phase shift relationships in a hybrid coupler.

fig. 12. Isolation port is necessary to keep unwanted currents out of the system, resulting in isolation between ports.

fig. 13. Reflected current due to poor port matching.
a Q section, must have an impedance, \(Z_1 \) to match an antenna \(Z_a \) to coax \(Z_b \). If two antennas of 50 ohms are paralleled, the impedance is 25 ohms, and a Q section of 35 ohms is required to match this combination to 50-ohm coax.

The dimensions and layout for such a power splitter are shown in fig. 8A. With 0.25 inch (6.4 mm) spacers, the SWR was less than 1.1:1 from 144-148 MHz. A UHF connector was soldered to each side of the line to make it possible to solder them side by side. Even so, their mounting base had to be filed down to make them fit fig. 8B. The mounting hole for the UHF connector was drilled through both PC and Plexiglass strips so the center conductor could be soldered to each connector from the back. A completed power splitter is shown in fig. 8C. Various types of power dividers are covered in reference 1.

hybrid couplers

Made up of interconnected transmission lines, the branch-arm hybrid coupler provides a 3-dB power split and a 90-degree phase shift between both outputs (fig. 9). Complete units for 2 meters and 70 cm are shown in fig. 10. This is ideal for OSCAR 10 communications, in which two Yagis are mounted at right angles to each other and fed out of phase by 90 degrees. Depending on which antenna is fed first, we can get right-hand or left-hand circular polarization. The hybrid coupler can be used in reverse to combine the signal returning from the satellite. Ernie Franke, WA2EWT, wrote an excellent article on this device.2

I constructed a hybrid-coupler from coax for the receiving end of my OSCAR 10 station. Three coax cables, including the outer shields, had to be soldered to each RF connector. Because the physical result didn’t exactly excite me, I tried to come up with a better way of making these couplers; this led to the work presented here. (Although the basic idea behind these couplers is covered in this article, I would also recommend that anyone interested read parts 1 and 2 of reference 2.)

The quarter wavelength 50-ohm line parallels port 1 and port 2 with a total resistance of 25 ohms at port 2 (fig. 11). Note that port 1 has a 90-degree phase shift from port 2. The 35-ohm line is used to convert the...
Adding a second leg (fig. 12) sets up the following conditions. The current from the generator divides itself between port 2 and port 1 as before. A much smaller current also flows towards the isolation port from the generator following two paths. The long way around is one-half wavelength longer, or 180 degrees out of phase. These signals arrive in opposite polarity and cancel. This virtual short at the isolation port sets up two shorted quarter-wave stubs, one toward the generator and one toward port 1. Their high impedance prevents current from flowing into the isolation port.

Now what happens when reflected current flows back into port 1 because of poor port matching? The reflected current is absorbed by the isolation port and the generator. Again a small current flowing toward port 2 by way of two paths creates a virtual short at port 2. The resulting shorted quarter wave stubs prevent current flow from port 1 to port 2. The result is isolation between ports (fig. 13).

The first hybrid coupler constructed was for 2 meters. With care in fabrication, excellent isolation can be achieved between ports (fig. 14A). Inside and outside cuts on the Plexiglass and PC frame were made with a table saw. Make sure the result is square. The distance between the RF connectors was marked accurately before a pilot hole was drilled. Good isolation depends on equal distances between ports. Even if the frame isn’t perfectly square, make sure these distances are equal. Note the width of the frame legs, 0.625 inch (16 mm) and 0.775 inch (19.7 mm). One might think that a fractional value would be hard to duplicate; buy a pair of inexpensive plastic vernier calipers and practice on a piece of scrap before making the final cut. All the hybrid couplers used 0.125 inch (3 mm) Plexiglass. The completed assembly was held together with eight small C-clamps. Methylene Chloride was wicked between the pieces with a hypodermic needle (a small brush or Q-tip® would also work). After approximately an hour’s drying time, the shield is completed by soldering on the 0.001 inch (0.03 mm) brass shim stock.

Width of the stripline also affects the frequency resonance of the coupler. The line becomes inductive with increasing width. Since 0.125 inch (3 mm) Plexiglass is used, the line width is 0.375 inch (9.5 mm) wider (including the 0.0625 inch [1.5 mm] PC boards) than the brass center conductor. All these factors are much more apparent in the hybrid coupler than in the simpler power splitter because the hybrid coupler tunes more sharply.

I also ran some tests with the 2-meter hybrid coupler at the third harmonic in the 70 cm band. Each leg
The ST-8000 HF MODEM is a high-performance, fully adjustable modulator/demodulator for use in high-frequency radio data systems. The HF Modem features fully adjustable frequencies and baud rates, memories, diversity, regeneration, print squelch, CRT tuning indicator, and multiple AM or FM detectors. The bandwidths of the input filter, Mark filter, Space filters, and post-detection filters are tracked with the selected data rate (10 to 1200 baud) to assure optimum signal recovery for all signals. Front panel parameters may be controlled from an external ASCII terminal or computer. A full complement of I/O interface options allows use of the ST-8000 with virtually any terminal and radio system. Install the HAL DS3100 ASR CRT terminal and ST-8000 HF Modem in your communications system and enjoy the benefits of a data system designed for radio operators.

- Tuneable from 500 to 4000 Hz in 1 Hz steps
- Set to 10 to 1200 Baud in 1 baud increments
- Four input band-pass filters
- 32 matched Mark and Space filter bandwidths
- Mark and Space 7-pole linear phase LP filters
- Filter BW and selection computed and set by microprocessor front panel controls
- RTTY shifts from 40 to 3500 Hz
- Eight programmable non-volatile memories
- Split or transceive RX/TX tone selection
- FM or AGC-controlled AM signal processing
- –65 to +20 dBm dynamic range (AM or FM)
- Exclusive HAL Digital Multi-Path Correction (DMPC™)
- MIS, Mark Only (MO) or Space Only (SO) detector modes using Adaptive Threshold Detector (ATD™)
- Adjustable Print Squelch and non-diversity Amplitude Squelch
- Exclusive HAL Infinite Resolution Diversity Control (IRDC™)
- Digital signal regeneration
- ASCII/Baudot code and speed conversion
- Quick Brown Fox and RYRY... test message generator
- Programmable Selective-call (SEL-CAL) printer control
- Transmitter PTT KOS control
- Antispace
- RS232C, MIL-188C, or TTL Terminal I/O
- LP1200 Option for polar or neutral loop
- 8, 600, or 10k ohm input impedance
- 8 or 600 ohm output with adjustable level
- AFSK or FSK transmitter outputs
- Remote terminal or computer control of all demodulator parameters
- Exclusive HAL Spectra-Tune™ and XY Mark/Space CRT tuning indicators with automatic trace on/off control
- 100-130/200-250 VAC, 44-440 Hz power
- 35° high rack mounting cabinet (14" deep)
- Shielded and filtered for radio system use

TM Infinite Resolution Diversity Control (IRDC), Spectra-Tune, Digital Multi-path Correction (DMPC), and Adaptive Threshold Detector (ATD) are trade marks of HAL Communications, patents pending.

Write or call for complete ST-8000 specifications. We think you will agree that it opens new frontiers in radio data communications. Contact the Government & Commercial Products Division for price and delivery information.

HAL Communications Corp.
Government & Commercial Products Division
1201 W. Kenyon Road
P.O. Box 365
Urbana, IL 61801-0365
(217) 367-3731 TWX: 910-245-0784
THREE EXCITING NEW BOOMERS

HIGHEST GAIN BOOMER XL
Boomer XL is "the antenna for 2 meter DX" with higher gain and cleaner pattern; this antenna is designed to perform and survive in harsh environments. It has 18 elements on a 28.8 ft. 8.8 m tapered boom.
MODEL 4218XL 144-145 MHz

WIDEBAND BOOMER 215WB
Featuring the latest in wideband technology. The 215WB is high performance across the entire 2 meter band, for FM, SSB or CW. It features 15 elements on a 15 ft. 4.57 m boom.
MODEL 215WB 144-148 MHz

FM BOOMER POWER PACK
A combination of 215WB Boomer vertically polarized with support boom, power divider, and interconnect harness. Like all Boomer antennas, it features all stainless steel hardware. You'll easily work those distant repeaters.
MODEL 230WB 144-148 MHz

OSCAR BOOMERS
Enjoy the thrill of OSCAR 10 with a Cushcraft antenna system, featuring the fabulous 416TB BOOMER, giving more performance through better electrical design and superior construction.

Order a complete package as shown left: 416TB, A144-20T and A14T-MB. For less than $200.00 you'll enjoy the thrill of worldwide OSCAR communications.

Cushcraft Corporation
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108 USA
TELEPHONE 603-627-7877
TELEX 953-O50 CUSHSIG MAN
then becomes 1 and 1/2 wavelengths. The frequency tripled almost perfectly (fig. 15) and again with good isolation.

The second coupler was made for the 70 cm band. Dimensions are shown in fig. 16. As the coupler becomes smaller, care in construction becomes even more important. The center of the frame had to be cut with a sabre saw because the unit is too small for a table saw blade. A file was used to finish the dimensions. This unit will be used for the transmitting end of OSCAR 10.

Presently the rig has one low-power amplifier and the output drives two crossed Yagis with a matching arrangement. I can now double the output by adding an amplifier. Impedances are 50 ohms, and the advantage here is that I can tune antennas for minimum SWR with a standard 50-ohm SWR bridge.

conclusions

The aim of this article has been to present a simple method of constructing matching devices of high quality, in which connector problems commonly encoun-

Appendix A (See fig. 5.)
The information below is provided for the benefit of readers who wish to make their own graph for the data shown in fig. 5.

<table>
<thead>
<tr>
<th>Zt</th>
<th>W</th>
<th>1/Zc conductance (μmhos)</th>
<th>Z1 impedance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>termination spacers</td>
<td>inch (mm)</td>
<td>1/2.5 Zt/Zc</td>
<td>Zt = √Zt/Zc</td>
</tr>
<tr>
<td>0.25 inch</td>
<td>50.2</td>
<td>0.047 (1.19)</td>
<td>3.4</td>
</tr>
<tr>
<td>0.097 (2.46)</td>
<td>5.1</td>
<td>0.15</td>
<td>83.6</td>
</tr>
<tr>
<td>0.150 (3.8)</td>
<td>7.2</td>
<td>0.15</td>
<td>83.6</td>
</tr>
<tr>
<td>0.203 (5.16)</td>
<td>9.5</td>
<td>0.3</td>
<td>72.6</td>
</tr>
<tr>
<td>0.245 (6.22)</td>
<td>11.4</td>
<td>0.3</td>
<td>66.3</td>
</tr>
<tr>
<td>0.297 (7.54)</td>
<td>13.9</td>
<td>0.5</td>
<td>60.0</td>
</tr>
<tr>
<td>0.349 (8.94)</td>
<td>16.35</td>
<td>0.9</td>
<td>55.4</td>
</tr>
<tr>
<td>0.403 (10.2)</td>
<td>19.2</td>
<td>20.8</td>
<td>1.4</td>
</tr>
<tr>
<td>0.445 (11.3)</td>
<td>22.2</td>
<td>17.5</td>
<td>1.4</td>
</tr>
<tr>
<td>0.498 (12.6)</td>
<td>25.2</td>
<td>16.25</td>
<td>2</td>
</tr>
<tr>
<td>0.550 (13.9)</td>
<td>14</td>
<td>1.3</td>
<td>41.9</td>
</tr>
<tr>
<td>0.600 (15.2)</td>
<td>12.55</td>
<td>1.5</td>
<td>39.7</td>
</tr>
<tr>
<td>0.650 (16.5)</td>
<td>11.15</td>
<td>1.3</td>
<td>37.4</td>
</tr>
<tr>
<td>0.750 (19.0)</td>
<td>9.25</td>
<td>1.3</td>
<td>34.1</td>
</tr>
<tr>
<td>0.850 (21.6)</td>
<td>7.55</td>
<td>1.3</td>
<td>30.8</td>
</tr>
<tr>
<td>1.000 (25.4)</td>
<td>6.00</td>
<td>1.3</td>
<td>27.4</td>
</tr>
<tr>
<td>0.125 inch</td>
<td>50.3</td>
<td>0.047 (1.19)</td>
<td>4.6</td>
</tr>
<tr>
<td>0.097 (2.46)</td>
<td>7.8</td>
<td>0.6</td>
<td>80.2</td>
</tr>
<tr>
<td>0.150 (3.81)</td>
<td>11.55</td>
<td>0.8</td>
<td>65.9</td>
</tr>
<tr>
<td>0.203 (5.16)</td>
<td>16.1</td>
<td>0.6</td>
<td>55.8</td>
</tr>
<tr>
<td>0.245 (6.22)</td>
<td>20.3</td>
<td>1.0</td>
<td>49.8</td>
</tr>
<tr>
<td>0.297 (7.54)</td>
<td>15.1</td>
<td>0.7</td>
<td>43.5</td>
</tr>
<tr>
<td>0.348 (8.94)</td>
<td>12.4</td>
<td>0.6</td>
<td>39.4</td>
</tr>
<tr>
<td>0.403 (10.2)</td>
<td>10.2</td>
<td>0.9</td>
<td>35.7</td>
</tr>
<tr>
<td>0.446 (11.3)</td>
<td>8.8</td>
<td>0.9</td>
<td>33.2</td>
</tr>
<tr>
<td>0.498 (12.6)</td>
<td>7.6</td>
<td>1.0</td>
<td>30.9</td>
</tr>
<tr>
<td>0.550 (13.9)</td>
<td>6.55</td>
<td>1.0</td>
<td>28.7</td>
</tr>
<tr>
<td>0.650 (16.5)</td>
<td>5</td>
<td>1.0</td>
<td>25</td>
</tr>
<tr>
<td>0.750 (19.0)</td>
<td>4</td>
<td>1.2</td>
<td>22.4</td>
</tr>
<tr>
<td>0.850 (21.6)</td>
<td>3.25</td>
<td>1.4</td>
<td>20.2</td>
</tr>
<tr>
<td>0.0625 inch</td>
<td>50.1</td>
<td>0.047 (1.19)</td>
<td>6.4</td>
</tr>
<tr>
<td>0.097 (2.46)</td>
<td>11.85</td>
<td>0.2</td>
<td>66.1</td>
</tr>
<tr>
<td>0.150 (3.81)</td>
<td>19.15</td>
<td>0.2</td>
<td>51.1</td>
</tr>
<tr>
<td>0.203 (5.16)</td>
<td>15.0</td>
<td>0</td>
<td>43.4</td>
</tr>
<tr>
<td>0.245 (6.22)</td>
<td>11.7</td>
<td>0.1</td>
<td>38.3</td>
</tr>
<tr>
<td>0.297 (7.54)</td>
<td>8.9</td>
<td>0.4</td>
<td>33.4</td>
</tr>
<tr>
<td>0.403 (10.2)</td>
<td>5.5</td>
<td>0.5</td>
<td>26.2</td>
</tr>
<tr>
<td>0.498 (12.6)</td>
<td>4.0</td>
<td>0.6</td>
<td>22.4</td>
</tr>
<tr>
<td>0.600 (15.2)</td>
<td>2.9</td>
<td>0.9</td>
<td>19.4</td>
</tr>
<tr>
<td>0.750 (19.0)</td>
<td>1.9</td>
<td>0.9</td>
<td>15.4</td>
</tr>
</tbody>
</table>

1/4-wave measuring above 50 ohms
1/2-wave measuring below 50 ohms

Z1 = √ZtZc
Z1 = √2.5 Zt/Zc
GLB Electronics, the first commercial producer of packet controllers joins the "APR Revolution" to bring you the GLB Model TNC2A Kit. This kit is the latest APR design and is equipped with top quality components. The GLB TNC2A is backed by over 14 years of experience in amateur radio kit products and our technical staff is available to assist you daily from 8 to 5 PM Eastern time.

FEATURES
- AX.25 Version 2.0 Software
- Terminal baud rates: 300, 1200, 2400, 4800, 9600
- Multiple connects up to 10 stations
- Date/time stamping
- Standard DB25 for RS232 connection
- Simple radio hook-up
- Radio modem built-in for calibration
- Low-power CMOS option
- Tuning indicator socket for MF & satellite work
- Modem disconnect for future options
- Lithium battery backup for RAM

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Items</th>
<th>Quantity discount schedule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNC2A Kit N/MOS</td>
<td>$154.95</td>
<td>2-5 pcs: 5% off</td>
</tr>
<tr>
<td>TNC2A Kit CMOS</td>
<td>$169.95</td>
<td>6-10 pcs: 10% off</td>
</tr>
</tbody>
</table>

LEDs
- Power: lights when power is applied
- Status: lights when you have no packets or data in your buffers
- Connect: lights when you are in the error-free mode
- RTTY: lights when the RTTY generator is active

Power
- 10 to 15 VDC CMOS: 110 mA
- N/MOS: 260 mA

Shipping weight
- 4 lbs

Appendix B. Data for figs. 14, 15, and 16.

2-meter hybrid coupler Port 1-2 isolation.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.95 MHz</td>
<td>-34 dB</td>
</tr>
<tr>
<td>144.4 MHz</td>
<td>-36 dB</td>
</tr>
<tr>
<td>144.8 MHz</td>
<td>-39 dB</td>
</tr>
<tr>
<td>145.13 MHz</td>
<td>-41 dB</td>
</tr>
<tr>
<td>145.88 MHz</td>
<td>-44 dB</td>
</tr>
<tr>
<td>146.37 MHz</td>
<td>-41 dB</td>
</tr>
<tr>
<td>146.8 MHz</td>
<td>-38 dB</td>
</tr>
<tr>
<td>147.34 MHz</td>
<td>-36 dB</td>
</tr>
<tr>
<td>148.04 MHz</td>
<td>-32 dB</td>
</tr>
</tbody>
</table>

2-meter hybrid coupler (operated in 70-cm band) Port 1-2 isolation.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.065 MHz</td>
<td>-20 dB</td>
</tr>
<tr>
<td>431.695 MHz</td>
<td>-23 dB</td>
</tr>
<tr>
<td>433.475 MHz</td>
<td>-25 dB</td>
</tr>
<tr>
<td>434.42 MHz</td>
<td>-27 dB</td>
</tr>
<tr>
<td>435.56 MHz</td>
<td>-30 dB</td>
</tr>
<tr>
<td>437.5 MHz</td>
<td>-33 dB</td>
</tr>
<tr>
<td>438.95 MHz</td>
<td>-30 dB</td>
</tr>
<tr>
<td>440 MHz</td>
<td>-27 dB</td>
</tr>
<tr>
<td>440.97 MHz</td>
<td>-25 dB</td>
</tr>
<tr>
<td>442.64 MHz</td>
<td>-23 dB</td>
</tr>
<tr>
<td>444.035 MHz</td>
<td>-20 dB</td>
</tr>
<tr>
<td>447.035 MHz</td>
<td>-18 dB</td>
</tr>
<tr>
<td>449.92 MHz</td>
<td>-15 dB</td>
</tr>
</tbody>
</table>

70-cm hybrid coupler Port 1-2 isolation.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>449 MHz</td>
<td>-35 dB</td>
</tr>
<tr>
<td>448 MHz</td>
<td>-37 dB</td>
</tr>
<tr>
<td>447 MHz</td>
<td>-39 dB</td>
</tr>
<tr>
<td>446 MHz</td>
<td>-40 dB</td>
</tr>
<tr>
<td>445 MHz</td>
<td>-39 dB</td>
</tr>
<tr>
<td>444 MHz</td>
<td>-37 dB</td>
</tr>
<tr>
<td>443 MHz</td>
<td>-35 dB</td>
</tr>
<tr>
<td>442 MHz</td>
<td>-33 dB</td>
</tr>
<tr>
<td>441 MHz</td>
<td>-31.5 dB</td>
</tr>
<tr>
<td>440 MHz</td>
<td>-30 dB</td>
</tr>
<tr>
<td>439 MHz</td>
<td>-29 dB</td>
</tr>
<tr>
<td>438 MHz</td>
<td>-28.5 dB</td>
</tr>
<tr>
<td>437 MHz</td>
<td>-27.5 dB</td>
</tr>
<tr>
<td>436 MHz</td>
<td>-26.5 dB</td>
</tr>
<tr>
<td>435 MHz</td>
<td>-25.5 dB</td>
</tr>
<tr>
<td>434 MHz</td>
<td>-25.5 dB</td>
</tr>
<tr>
<td>433 MHz</td>
<td>-24 dB</td>
</tr>
<tr>
<td>432 MHz</td>
<td>-23.5 dB</td>
</tr>
<tr>
<td>431 MHz</td>
<td>-23 dB</td>
</tr>
<tr>
<td>430 MHz</td>
<td>-22.5 dB</td>
</tr>
</tbody>
</table>

The problem could be avoided by operating on an odd harmonic such as shown above.

references

The problem could also be avoided by using styrofoam rather than Plexiglass in a ring hybrid; the size problem could be avoided by operating on an even harmonic such as shown above.
New type of PLL beats the phase noise barrier

low-noise phase-locked UHF VCO
part 1: the noise problem

Much has been written about voltage-controlled oscillators. In a recent ham radio article Hans Roensch, W0DTV, described a free-running UHF VCO, correctly acknowledging that such an oscillator cannot be used effectively in narrowband systems where low phase noise is required. W0DTV’s article referenced an earlier article of mine, which included a description of a way to phase lock oscillators to reduce noise.

One of the major disadvantages of the phase-locked loop I described in reference 2 is the lack of AFC, requiring that the VCO be set on frequency manually to effect phase lock. Under adverse conditions, drift of the oscillator’s tuned circuit may exceed the hold-in capability of the loop, causing the VCO to unlock or jump to another phase-lock point. In this scheme the oscillator’s frequency is divided by a factor of 40 to make it compatible with the phase detector. This, as we shall see, is another disadvantage, which adds 32 dB of excess noise to the VCO.

To make this a more practical system, two additional features are needed: automatic frequency control (AFC) and UHF phase detection to avoid the need for prescaling.

background

A free-running VCO intended for use as a receiver’s local oscillator (LO) in the 1215-1300 MHz band will generally exhibit a very broadband phase noise characteristic. Without the benefit of crystal control, its spectrum may be so wide that the carrier is not readily identifiable on a spectrum analyzer because the deviation factor is so large. While the degree of phase modulation is relatively minor on the HF and VHF bands, as frequency is increased the modulation angle becomes proportionally larger. Self-excited TV oscillators, for example, often sound like buzz saws on a UHF receiver as they wander around. Something better than this is obviously needed for use as a local oscillator in a narrowband receiver intended for reception of NBFM, SSB, or CW in the 1215-1300 MHz band.

The 1296-MHz transceiver I put together fifteen or twenty years ago was built around a 1152-MHz crystal-controlled signal source. I added a 144-MHz SSB signal to the 1152-MHz generator in an upconverter to develop the 1296-MHz SSB exciter signal. Conversely, I used the 1152-MHz generator as the LO in a down-converter and a 2-meter receiver as the IF. This is a scheme in general use by many UHFers. Note that twice the 1152-MHz oscillator frequency is 2304 MHz, a fact of considerable interest to those operating both bands.

The original 1296-MHz exciter employed a crystal-oscillator-multiplexer chain driving a step-recovery diode. By Norman J. Foot, WA9HUV, 293 East Madison Avenue, Elmhurst, Illinois 60126
SUMMER IDEAS

New rigs and old favorites, plus the best essential accessories for the amateur.

3621 FANNIN ST
HOUSTON, TX 77004-3913

CALL FOR ORDERS
1-713-520-7000 or
1-713-520-0550

ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT

Kenwood
Call for prices on all Kenwood
Kenwood TS940S, contender's delight
Call
Kenwood TS520S
Call for details
Icom R7000 25-2000 MHz
849.00
Icom IC2200
483.95
Siriton HF/5 Handie Talkie
288.00
Icom IC735
799.00
Ten-Tec 2510 (Easy OSCAR)
489.00

ACCESSORIES

B&W Viewstar Antenna Tuner
89.95
Holm H3SC3/400s
320.00
Holm BM10 Boom Mike headset
59.95
CSI Private Patch III
495.95
FLITE 72 auto-ranging digital multimeter
125.00
Alinco ELH 230D-Excellent buy
79.00
Nye EM5A (for the big boy's)
529.00
Shure 441D
54.95
Wahl 7479 Soldering Station
49.00
Kenwood KF-B1A Stock
10.50
Kenwood KF 230C Level translator
49.00
Miller Citation Low pass filter
43.50
B & K Test Equipment VOM, oscilloscopes, generators, etc. CALL

ANTENNAS

Isopole 144 MHz
44.95
A4A
269.00
400CD
279.95
402B
84.00
215WB New, 15 El, 2M beam
79.95
AEPI-1 Complete Olympic Antenna
149.95
Butternut HF6B 80 100 vertical
125.00
HFVY 80 & 40 vertical
119.00
HFVY 60
188.00
Hustler G7 144
119.95
Hustler 618 TV
199.00
Hustler G9 129, CD45 2
349.00

Kenwood Hi-World Class Series Antennas
CALL Don

Alpha Delta Twin Sloper
49.00
Coax Seal
2.00
B&W Dipole
Less 10%
Hy Gain T/H 3X5s
489.00
Explorer 14
349.00
Discover 1 element 40M
169.00
dis many 40M
169.00
3 element only
249.00
CD 45-2 Great Tribander Rotor
66.95
V2S (dipole)
59.00
H3SOSV200 crankup tower
199.00
Prepaid freight when you order other Hy Gain items with tower

KL-KM 13-A4
339.00
40M 2
299.00
New Tele Hy Gain 2 1/8" Complete
HD 350 3010
Let 385.00
You Choose tower

OTHER ANTENNAS

Larson Kukuduck
17.00
Larsen HRW 1/2 wave Kukuduck
25.00
Avanti AP151 3G on Glass Antenna
36.00
Antene 2M & 8M Mag Mount Comp
25.00
Avanti AP450 5G on glass
39.00
Oxion 2M 1/2 wave handy Antenna
19.00
Van Gordon SL A 160 80 40 Sloper
34.00
Vapor Air 5 Mobile
79.95
Stover DA 100 D Active NV Antenna
190.00
DC Tennis Heath 3/8 3/4 Thread
25.95

NEW

ALPHA DELTA 4 HEAVY DUTY COAX SWITCH
with ground plane & lightning protection
69.00

Collins KWM2/32 line xtal.
10 each

KEYS

Bencher & Vibroplex
Less 10%
Bencher is now improved. Screws & springs, all stainless steel and extra hard polishing
Trade in your old hand key on new Vibroplex/Bencher $5.00
Nye ESK 001 Keyer
58.00

TUBES

Collins & Drake Replacement tubes
stock
GE 6146B
11.95
Eimac 8-500Z
109.95
GE Industrial Tubes
Call
GE 12BY7A
7.00
GE 6S60
12.95
Cotone 572B
69.00
GE 8950
14.00

BOOKS

We stock SAMS, TAB, ARRL, RSGB, Ameco Radio
Pubs Call
PASSED' your code yet? Try Gordon West's Code Tapes
Philmore Field Strength/SWR Meter
19.95
3:1500 MHz KX

SURPLUS

24 Pin Solderless dip sockets
25 each
150MM D400V DC
1.95
1 Amp 500V full wave bridge rectifier
1.95
2 5A/1000V Rectifier diodes
29 each or 19 03/100
0015/10kV or 0015/20kV
1.95 each
3N201
956
4 inch ferrite rod
1.95
369G cap
1.95
Sanyo 2A 1A AC Adapter 120VAC
2.00
2.4 5.6 pin mic plugs
3.00
1/8, 1/4, wall carbon resistors
05 each
Meters 0-3000VDC 2% Square 0-1 Amp DC
9.95
Drake-Collins mike plug
2.00
Miniature toggles 5A 125VAC
1.50 each
Close out on rigs & accessories
All the time
Call
We may have what you're looking for

BELDEN

9913 Low loss, solid center, tool belt shield
51.00
8714 RG8 Foam
49.00
8237 RG59
39.00
8267 RG213
55.00
5000 14 ft stranded copper ant. wire
13.00
4448 B conductor cable
33.00
4905 Heavy duty 2 1/2 Ga 6 18 Ga
56.00
9068 RG59
20.00
9069 RG 62A/U
15.00
8400 Mic Cable, 3 conductor & shield
70.00
100 ft, 4214 air/wire insulated
5.00
8666 7/16" nickel braid connector
1000'
International Wire RG214, non-mil, good cable
70.00
International Wire 9096 exact replacement for Belden 9913
38.00

International 16 Ga stranded antenna wire
50.00
International 4063 RG 213
26.00

AMPHENOL

8015 PL-259 Silverplate
1.25
UGI-76 reducer RG6U
30.00
8311 Double Female UHF
3.00
8261 N Male
3.00
8297 N Female Bulkhead
3.00
8263 Female UHF
4.00
8298 N Male
9.00
31-212 BNC RG6U
15.00
31-212 BNC RG59
15.00
3402S N Male RG59
3.00
34125 N Female UHF male
9.00
3412B Female PC259
3.00

TOWER ACCESSORIES

1/4" E H S. Guy cable
1500 ft
250.00
3/16" E H S. Guy cable
210.00
1/4" Guy Cable 6 10# 7 strand, import
150.00
3/16" Guy Cable 3700 #7 x 7 strand, import
125.00
3/8 x 6 E & J Turbuckle
7.95
3/16" Wire Rope Clips
7.00
1/4" Wire clips
5.00
1/4 Thimbles
1.45
Porcelain 5020 Guy Insulator (3/16)
19.95
Porcelain 502 Guy insulator (1/4)
3.39

COMPUTER STUFF

Kantronics UTU 1X
319.00
Fits any computer (even yours)
Morse University (Great CW program for C-64)
39.00

PACKET POWER

AEA 54-64, does RTTY ASCⅢAM OR also
199.00
AEA 54-88 TAPR II
199.00
New Kantronics Packet II
199.00
MFJ 1720
115.00
AEA PM-1

SERVICES

Alignment, any late model rig
50.00
Flat fee Collins rebuild
Call

USED EQUIPMENT

All equipment, used, clean, with 90 day warranty and 30 day trial. Six months full trade against new equipment. Sale price refunded if not satisfied.

POLICIES

Minimum order $10.00. Mastercard, Visa, or C.O.D. All prices FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call any time to check the status of your order. Texas residents add tax. All items full factory warranty plus Madison warranty.

STOCK ITEMS CALL

MADISON Electronics Supply

3621 FANNIN
HOUSTON, TEXAS 77004
1-713-520-7300 OR 1-713-520-0550
ode (SRD) multiplier associated with a cavity resonator to develop the 1152-MHz local-oscillator signal. A 64-MHz crystal oscillator was followed by a tripler, a doubler, and two stages of 384-MHz amplification. The second amplifier, a 2N3866, was used to drive the SRD. The power output from the cavity resonator was +10 dBm. Most of the circuitry was relatively straightforward, but the SRD and cavity resonator circuits were quite complicated mechanically. Many contacts were made on 1296 MHz using this signal source for the exciter and downconverter, even before the 1296-MHz band was as well populated as it is today. Figure 1 is a block diagram showing the crystal-oscillator multiplier system.

instrumentation

Since that time I have acquired an HP-8551B spectrum analyzer, which gives me the opportunity to look more closely at the oscillator’s noise and spurious performance. The frequency spectrum showed spurious signals about 30 dB below the carrier and amplitude and phase noise at or below the noise floor of the spectrum analyzer. An oscillogram of its spectrum is shown in fig. 2, with a photo of the unit.

The 8551 can measure 70 dB below the carrier in a 1-kHz bandwidth. Phase and amplitude noise of an oscillator can be observed on this spectrum analyzer if the noise is great enough; however, for phase noise measurements of a clean and highly stable source, the spectrum analyzer leaves much to be desired. Nevertheless, it does represent a benchmark against which the noise and spurious signal characteristics of other oscillators can be compared.

Why be concerned with oscillator spectral purity? Because sideband amplitude and phase noise can convert directly into the receiver’s passband and limit overall sensitivity under multiple signal conditions. For example, when a weak signal is being detected in the presence of a stronger signal, oscillator phase noise — beating with the strong signal — appears at the mixer’s output and enters the IF even though the strong signal may not. If the phase noise of the local oscillator is great enough, the desired signal may be completely buried in noise. Therefore, it is important that the phase noise of the local oscillator be made as small as possible. Low phase noise is one of the most important characteristics of an oscillator.

specifications

The VCO described here was intended to replace the 1152-MHz crystal-controlled oscillator-multiplier chain discussed above. The ground rules I set were to achieve performance as close to that of the original unit as possible and to accomplish this in a simple manner. The oscillator would be operated directly at 1152 MHz without the need for frequency multipliers or cavity resonators and would be phase locked to a crystal reference signal in a relatively simple phase-lock loop. AFC would be included to avoid the possibility of any frequency ambiguity.

phase-locked loops

The theoretical aspects of phase-locked loops have been well covered in the references listed at the end of this article. It might be a good idea to do some reviewing before proceeding further. In particular I suggest reading (or re-reading) the two articles by Craig Corsetto, WA60AA. For the most part, I will use Corsetto’s notation to make this article easy to follow.

phase noise at VHF

It is less difficult to design a PLL around a digital phase detector than an analog one, especially when the VCO operates in the HF or VHF bands. But going beyond VHF into the UHF region introduces problems
that call for a considerable amount of ingenuity to keep phase noise low. The alternative would be to use multiple loops, but this increases the circuit complexity considerably.

To start out, I used a CD4046 phase/frequency detector; this required that the frequency of the VCO be prescaled (divided) by a large number so it would be compatible with the CD4046's upper frequency limit. I used an RCA CA3179 prescaler followed by a 74LS191 divider. The prescaler operated in the divide-by-256 (UHF) mode, and the 74LS191 was programed to divide by eight. Total division was 2048, providing 562.5 kHz to the phase detector. By itself, this circuit was effective in providing AFC and phase detection, but, as we shall see, the noise introduced due to the division factor would be unacceptably high.

loop bandwidth

The loop bandwidth, \(f_p \), is a key factor in terms of phase noise because frequencies less than \(f_p \) are under the control of the PLL while those greater than \(f_p \) are not. \(f_p \) is the frequency corresponding to unity open-loop gain:

\[
 f_p = \frac{K_v}{2\pi N}
\]

where:

- \(K_v \) = phase detector sensitivity in volts/radian.

- \(K_{vio} = 42 \text{ MHz/volt, voltage tuning sensitivity.} \)

- \(N = 2048, \text{ oscillator division factor.} \)

For the CD4046, \(K_v = 0.7 \). Plugging in these values yields \(f_p = 2285 \). The significance of this number will now be discussed.

It is possible to calculate to a fairly good approximation the phase noise of a free-running oscillator as a function of sideband frequency, using the following relationships: \(^7\text{8}9\)

\[
\xi(f_m) = 10 \log \left\{ \frac{F K T}{2 P_{av}} \left[1 + \left(\frac{f_m}{2 f_p} \right)^2 \right] \right\} \text{dBc/Hz}
\]

This equation is not as formidable as it may seem. The first term is Johnson noise divided by the oscillator's power output, which is \(1/\text{SNR} \) (1/signal-to-noise ratio). \(F \) is the noise factor of the active device, \(K \) is Boltman's constant, and \(T \) is the absolute temperature, \(^\circ K \).

The second term represents the manner in which noise is distributed on each side of the carrier frequen-
The term \(f_m \) is the distance away from the carrier that a measure of phase noise might be made. Note that when \(f_m \) is very large, the second term approaches unity, and

\[E(f_m) \approx 10 \log \left(\frac{1}{2 \text{SNR}} \right) \]

This is generally referred to as the single-sideband noise floor.

Going away from the carrier, VCO noise decreases until it intersects the noise floor at \(f_m = f_0/2Q_L \). At a VCO frequency \(f_0 = 1152 \text{ MHz} \) and loaded \(Q, Q_L = 25 \), the noise floor corner is 23 MHz. (As a rule of thumb, \(Q_L = 0.2 Q_U \), where \(Q_U \) is the unloaded \(Q \).)

closing the loop

Using the various values of \(f_m \), the dotted curve of fig. 3 was drawn, including the noise floor, noise corner, and unity gain band edge, \(f_\beta \). When the loop is closed, the noise departs from the 20-dB/octave slope and tends to become constant from \(f_\beta \) to the carrier. The solid curve of fig. 3 represents the noise response of a fictitious VCO phase locked to a reference oscillator. Because \(N \) is so large, VCO noise near the carrier is relatively high.

The importance of \(f_\beta \) cannot be overemphasized. As the loop bandwidth is widened, more and more phase noise comes under the influence of the loop, making for a quieter VCO.

One way to widen the loop bandwidth is to reduce \(N \). Unfortunately, the upper frequency limit of the CD4046 is about 2.5 MHz, based on a propagation time of 200 ns between terminals 15 and 13. The lower limit on \(N \) is therefore about 450, giving \(f_\beta \approx 10 \text{ kHz} \).

This reduces in-band phase noise by about 15 dB, which is better, but still not good enough.

phase noise characteristics

The phase-noise floor of a well designed crystal oscillator is about 165 dB below the carrier at offsets beyond 20 kHz but increases rapidly at lower frequencies as shown in fig. 3.\(^\text{10}\) This curve was extrapolated from various manufacturer's specifications and includes low-frequency flicker noise. Since the noise of a VCO locked to this reference is increased by \(20 \log N \) above the noise of the reference, the best that can be expected of the VCO under these conditions is about \(-80 \text{ dBm/Hz} \) at offsets below \(f_\beta \). Notice that the phase-locked noise level is only 10 to 15 dB lower than for the free-running mode, because \(N \) is so large and \(f_\beta \) so low. The curve of the free-running VCO was calculated and has been verified only indirectly. While the curve is referred to as "fictitious," it may in fact be quite representative of the VCO's actual performance. Use of such a VCO as the LO in a communications receiver would surely degrade overall performance, especially in a multi-signal environment. An alternative would have to be found.

phase/frequency detector — part of the solution

The CD4046 is an interesting device because it is a
combination phase and frequency detector. In this dual role, it first steers the VCO toward the desired frequency (i.e., provides AFC) and then phase locks it to the reference. While the 4046 is not the only means to this end, it is far simpler than most other schemes. However, because it requires the use of a prescaler, phase noise is relatively high at UHF. What would happen if somehow N could be made equal to unity? fβ would then become 2.55 MHz, providing a theoretical reduction in phase noise of over 60 dB! This would put the VCO noise in the vicinity of -150 dBc/Hz and allow the noise specification of the UHF oscillator to be met.

In an earlier *Ham Radio* article I wrote about a programmable HF receiver that uses direct synthesis (N = J). For AFC I added a counter, digital comparator, and a DAC (digital-to-analog converter). This receiver is still the workhorse of my station. It occurred to me recently that I might be able to use a similar direct phase detection scheme to provide phase locking and low noise at UHF, together with a CD4046 for AFC purposes. The question was, could these two circuits be made to work together? If so, this would finally solve the noise problem.

The final scheme

The UHF PLL that finally evolved is illustrated in functional block form in fig. 4. The main loop includes a phase detector operating directly at 1152 MHz. The auxiliary loop includes the CD4046, which provides AFC. A "picket fence" of reference signals 36 MHz apart in the vicinity of 1152 MHz, is fed from the spectrum generator to one port of the phase detector. Another port receives a sample of output RF from the oscillator. The third port receives a frequency-steering signal from the CD4046. The output of the phase detector feeds a loop filter and amplifier driving the reactance port of the VCO.

With this configuration, the noise of the VCO is basically the same as that of the reference oscillator. Assuming that the noise curve of the reference shown in fig. 3 is accurate, then the VCO phase noise should be -90 dBc/Hz near the carrier, dropping down to -150 dBc/Hz 10 kHz from the carrier and beyond. These are very respectable numbers indeed.

Frequency programming

Using the numbers associated with fig. 4 establishes 1152 MHz as the UHF oscillator's only operating frequency. However, a number of other options have been made available:

- Provisions have been made to enable selection of N = 7, 8, or 9, corresponding to VCO frequencies of 1008, 1152, or 1296 respectively (fVCO = 144N).
- A VXO can be used instead of the fixed-frequency crystal oscillator to vary the UHF oscillator's frequency by a small amount, typically ±1.0 MHz.
- Other output frequencies may be selected by changing the crystal frequency. Given a desired UHF output frequency, the corresponding crystal frequency will be as follows:

\[
f_x = \frac{64 f_{VCO}}{2048}
\]

for N = 8 or

\[
f_x = 0.03125 f_{VCO}
\]

For example, if the VCO frequency is to be 1116 MHz, f_x = 0.03125 × 1116 = 34.875 MHz.

As another example, suppose the UHF oscillator is to be used as the LO for an OSCAR 10 upconverter. If the SSB generator is at 28 MHz, fVCO = 463 MHz and f_x = 14.46875 MHz. Of course, in this situation both the crystal oscillator and UHF oscillator inducances would have to be increased appropriately.

If you are planning operation on the new 902-928 MHz band, and if you use 29 MHz as the IF, a high-side VCO will operate at 933 MHz and f_x = 29.15625 MHz, or a low-side VCO will operate at 875 MHz with f_x = 27.34375 MHz.

The circuits described here are by no means all-inclusive. The basic circuitry can easily be applied to other frequencies and other schemes, including fully-synthesized systems. For example, a frequency synthesizer could be substituted for the reference oscillator; however, this is beyond the scope of this article. The objective here is based on the concept that most Amateur UHF applications can be satisfied by providing a dedicated output frequency per individual circuit board.

Next month: construction, testing, and performance.

References

SAVE $7.05 with HOME DELIVERY (one year newstand cost $30.00)

□ 1 year 12 issues $22.95
□ 2 years 24 issues $38.95
□ 3 years 36 issues $49.95 (U.S. ONLY)

□ Payment Enclosed
□ Bill me later
□ Check here if this is a renewal (Attach Label)

SUBSCRIBE TO ham radio TODAY
CALL NOW AND PLACE YOUR ORDER ON OUR TOLL FREE ORDER LINE
1 (800) 341-1522
8 AM - 9 PM EDST Orders Only
Have your credit card ready.

For other information call Ham Radio direct
(603) 878-1441 8 A.M. - 4:30 PM

Name______________________________
Address______________________________
City__________________________Zip________
State__________________________

Please allow 4-6 weeks for delivery of first issue.
FOREIGN RATES: Europe, Japan and Africa, $37 for one year by air forwarding service. All other countries $31 for one year by surface mail.
Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 13 years of continuous duty!

Ken says, “In spite of terrible power line regulation, we’ve had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!”

Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don’t want. More operating time and less downtime!

EIMAC backs their proven tube reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Send for our free Extended Warranty Brochure which covers this program in detail.

Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221

Quality is a top priority at EIMAC, where our 50-year charter is to produce long-life products.
PAKRATT™ Model PK-64
shown with enhanced
HFM-64 option installed

★ MORSE ★ BAUDOT ★ ASCII ★ AMTOR ★ PACKET ★

FIRST FIVE MODE
DATA CONTROLLER

The Pakratt model PK-64 by AEA is the world's first computer interface that offers Morse, Baudot, ASCII, AMTOR and Packet all in one box (hardware and software included) at a price many competitors charge for Packet alone (from $219.95 Amateur net). Do not let the low price fool you; coming from any other company but AEA it WOULD be too good to be true. The PK-64 works with virtually any voice transceiver. The Pakratt is the easiest of any to hook up and have operating in just a few minutes.

In Packet mode, the PK-64 offers virtually all the features of every other Packet controller on the market, plus many important features left out by others due to cost constraints. For example, we have included a hardware HDLC, true Data Carrier Detect (DCD), multiple connect with up to ten stations simultaneously and full implementation of version 2.0 of the AX.25 protocol.

Because the PK-64 was designed specifically for the Commodore 64 (or C-128 and SX-64) computer, we have been able to do many things not economically feasible with general RS-232 interface controllers. For example, the Pakratt includes true split screen operation with on-screen status indicators and an on-screen tuning indicator.

ENHANCED HFM-64 MODEM OPTION

The standard PK-64 will operate all modes with a phase-lock-loop (PLL) detector roughly equivalent to all popular packet modems in the marketplace (except we have included extra filtering). The enhanced HFM-64 modem option offers true independent dual channel filtering with A.M. detection (like the famous CP-100 Computer Patch™). The enhanced HFM-64 option also offers a hardware LED tuning indicator (like the CP-100) and a front panel variable threshold control for setting maximum sensitivity under various band conditions. We recommend the HFM-64 option for anyone keenly interested in weak-signal heavy-QRM HF operation. For anyone desiring to operate FM RTTY with the standard North American tone pair or CW receive, the HFM-64 is required. The HFM-64 is field installable with no soldering or test equipment required.

WORKS WITH THE POPULAR
C-64 COMPUTER

AEA designed the PK-64 around the low-cost C-64 because of the special architecture features making it especially suited to Amateur Radio applications. The C-64 should not be viewed as a mainframe, but rather a very economical accessory to your data communications system. Many owners of expensive computers such as IBM, TANDY, APPLE, KAYPRO, ATARI, etc., are now buying the low cost C-64 and dedicating it to their operating position. They simply cannot find software for their machine that even approaches the power and user friendliness of the PK-64. Plus, think of the convenience of having only one controller and keyboard to go from one mode to another without having to redo cabling!

The PK-64 is so complete that all you need to do is wire up a microphone connector to the end of a cable (provided) and you are ready to go. There is no need to track down special terminal software, cabling or even a power supply. It all comes with the PK-64. So do not be the last on your block to own the most exciting new product in years. See the PK-64 at your favorite dealer or write for our specification sheet now.

Prices And Specifications Subject To Change Without Notice Or Obligation

Advanced Electronic Applications, Inc.
P.O. Box C-2160, Lynnwood, WA 98036-0918
(206) 775-7373 Telex 6972496 AEA INTL UW
using the multimeter

In last month’s column we discussed various forms of multimeters Amateur Radio and other electronic hobbyists use in making electronic measurements. This month we’ll discuss how these instruments are used in practical applications. The proper use of volt, current and ohmmeters — as well as how to make high voltage and RF voltmeter probes — will also be discussed.

how to connect meters

It’s essential that you learn the correct way to connect meters into a circuit, because using these instruments incorrectly can lead to catastrophe. Figure 1 shows the correct methods for connecting the various forms of a basic meter. Note well that voltage, current, and resistance aren’t measured in the same ways; this fact leads to a high potential for damage to multimeters because the different functions are switch-selected. It’s all too easy to “misconnect” a multimeter by switching ranges without first changing the position of the probes. The connections for voltmeters and current meters are shown in fig. 1A.

There are two simple rules to memorize:

1. Voltmeters are connected in parallel with the load.
2. Current meters are connected in series with the load.

Don’t ever violate these rules! The second rule — always connect the ammeter in series and never in parallel — is especially important. If an ammeter is connected across the load, its low internal resistance will draw large current from the power supply of the circuit under test, and that current is usually much larger than the full-scale range of the meter. On an analog meter (a “pointer type” rather than digital) the pointer will often bend around the peg and a puff of smoke will waft from the edge of the case. The problem may be reduced in some digital multimeters (DMM), but is still present. fortunately, most manufacturers now place fuses in series with their multimeter probes.

The rule for ohmmeters is to disconnect the resistance being tested from the circuit even though the power is turned off. There are two reasons for this procedure: first, there may be parallel alternate paths for current to follow, and these will cause an erroneous lower reading; second, there may be current stored in capacitors in the circuit, and that current can be large enough to destroy the meters.

Power supply filter capacitors are particularly dangerous to meters. Although even professional electronics workers may ignore this rule, it’s a good habit to follow even if disconnecting components is a bit of a nuisance.

voltmeter “errors”

I can recall an incident in a laboratory class in which an electrical engineering instructor couldn’t tell a certain student why the voltages read in an experiment were considerably lower than called for in the lab manual — and lower than the results of other students. The reason for the error turned out to be loading of the circuit by the voltmeter.

A voltmeter has an input impedance. For a volt-ohm-milliammeter (VOM) type of instrument, the input impedance can be determined by the sensitivity rating in ohms per volt. Most good meters have a sensitivity of 20,000 ohms per volt, and some especially fine meters are rated at 100,000 ohms per volt. Many inexpensive imported meters, on the other hand, have a 1000 ohms/volt sensitivity, which is very bad. Incidentally, the sensitivity reflects the full-scale “natural” range of the meter movement used in the VOM. The 20,000 ohms/volt instrument uses a 50 pA movement, while the 1000 ohms/volt meter uses a 1 mA meter movement.

Figure 2 shows a sample circuit to illustrate the problem of loading. The circuit consists of a 10-volt source, V, and two series resistors, R1 and R2. What we need to know is the voltage across resistor R2 — that is, voltage V2. The correct voltage will be:

![Figure 1](https://example.com/figure1.png)

![Figure 2](https://example.com/figure2.png)
Significant changes for 1986 mandate that all hams get both the North American and International Callbooks. DX'ers and Contesters note — Having both books is the only way you’ll have all Foreign Amateur listings.

NORTH AMERICAN CALLBOOK
The old US Callbook has been expanded and now contains the listings of all hams in North America plus Hawaii and US Possessions. This improved operating aid has all the latest calls and QTH information available at press time and will be an invaluable reference guide. With calls from Panama to Greenland, every ham should have a copy of this new book in their shack.

INTERNATIONAL CALLBOOK
The Foreign Callbook is no more! In its place, the new International Callbook includes all amateurs outside of the North American continent. All the latest callsigns and QTH’s are listed to help ensure you get that prized QSL card. Universally recognized as the source of information, Order yours today 1985.

- CB-86 Softbound $20.95
- CB-US86 Softbound $21.95

Order All Three and SAVE. SPECIAL PRICE $46.95

Reg. Price $52.85
SAVE $5.90 **$46.95**

Order All Three and SAVE. SPECIAL PRICE $46.95

Reg. Price $52.85
SAVE $5.90 **$46.95**

Please enclose $3.50 to cover postage and handling.

RADIO SPORTING

Dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns written by world’s best in their fields. DX news, DXpeditioning, propagation, contest rules and results, emergency - traffic, FCC news, new products, antenna and technical articles, equipment reviews and modifications, computer programs, YL, RTTY, VHF, UHF, ATV, SSTV, AMTOR, classified ads and much more.

"Your publication is superb! Keep it up!" Joe Reinert, W1JR

"Your WS2PV articles are priceless. Your magazine is superb!" Rush Drake, W7RH

"Let me congratulate you on a very impressive magazine. Just what I’ve been looking for as a DXer and Contestor!" Dick Moen, N7RO

"RADIO SPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." Chas Browning, W4KGO

Subscription rates: 1 year USA $16, Canada $22, Overseas U$3 19
Membership in International Radio Sport Assn $4/yr

TRY US! PHONE OR SEND YOUR QSL CARD FOR SAMPLE COPY!
Rl

OOh

lov

v

[~~p~TEK

looh

fig. 2. Simple circuit illustrates problem of loading.

\[V_2 = \frac{V \cdot R_2}{R_1 + R_2} = \frac{10 \text{ volts} \times 10K}{100K + 10K} \]

\[V_2 = 0.909 \text{ volts} \]

Now, consider what happens when we connect the voltmeter across resistor R2. The total resistance of this branch of the circuit is now the parallel combination of R2 and the meter’s input resistance. Consider a 1.5 volt full-scale setting for the meter. At this setting, the 20,000 ohm/volt model has an input impedance of 30,000 ohms, and the 1000 ohms/volt has an input impedance of 1500 ohms. When connected in parallel with R2 to measure the voltage drop across the resistance, the combination of R2 and the input impedance forces new values of “R2” of 7500 and 1300 ohms, respectively. These highly loaded resistances reduce the measured voltages from 0.909 to 0.697 and 0.128 volts, respectively. These errors, which are substantial, clearly illustrate the reason for using a voltmeter with a high internal impedance.

high voltage probes

Most high voltage meters are really ordinary voltmeters with a multiplier resistor or voltage divider network added. Figures 3 and 4 show two alternate methods for adding high voltage ranges to the standard multimeter. The HV probe of Fig. 3 is used on those meters that have a specified input impedance of 10 Megohms (for example, VTVMs). When the series resistance inside the probe is 990 Megohms, the voltmeter will read 1/100 the actual voltage. Thus, a 30,000 volt potential will read 300 volts on the meter. This type of probe is widely available from electronic supply houses, especially those that cater to television service technicians, who often use such probes in conjunction with regular voltmeters for measuring anode potentials on color TV sets.

The basis for the probe shown in Fig. 3 is the resistor voltage divider circuit, in which one element is the series resistance and the other is the voltmeter input impedance. These probes require an input impedance of 10 Megohms. However, modern electronic voltmeters, including FETVMs and DMMs, have input impedances much higher than 10 Megohms. For these cases we use a circuit such as the one shown in Fig. 4. Again, when you buy an HV probe for your instrument it’s likely to have this circuit inside; in fact, some of the “universal” probes on the market are little more than circuits such as the one shown in Fig. 4 with 100:1 or 1000:1 reduction ratios.

You can, if you prefer, make such a probe yourself. I once made one for a hospital electronics lab that was based on the old-fashioned model shown in Fig. 3. We had the old probe, which mated with a traditional VTVM, but it didn’t work on the new DMM with its advertised 1000-Megohm input impedance. Since the meter had a pair of banana jacks spaced 0.75-inch apart (a standard value), I mounted resistor R2 on a dual banana plug and soldered the combination to the ends of the old HV probe. The value of R2 was 1 Megohm, so with the 990 Megohms of the probe resistor I had a new probe with a 1000:1 reduction. We needed the probe for measuring the 12-15 KV anode potential of some elderly Sanken scopes. In that case, a reading of 1.2 to 1.5 volts indicated the correct value. In other applications, one could use the same 10 Megohms for R2 as was common for VTVM input impedances to make a 100:1 reduction HV probe.

A high voltage probe should be equipped with a good alligator clip for this connection. If you use an ordinary alligator probe, or a poor quality alligator clip for the common lead, then all bets are off — you could easily zap
the meter. Damage to the meter is especially likely when it and the circuit under test are both grounded. If the common lead comes loose, the current from the high voltage circuit will try to find ground through the instrument.

meters in RF circuits

Very few multimeters are designed to operate in RF circuits. There are two problems: first, we sometimes need to measure DC voltages in the presence of large RF voltages; second, we might want at least a relative indication of the value of the RF voltage present in the circuits. Fortunately, we can build our own probes that serve both functions.

The RF blocking probe shown in fig. 5 is designed to allow measurement of DC voltages in circuits where RF is likely to be present, such as in a radio transmitter. The circuit inside the probe is a low-pass filter consisting of a 2.5 mH RF choke and a 0.01 μF capacitor. This circuit will block enough RF in most cases to permit a reading of the DC component. If there's still a problem, try two or three sections of the RFC/capacitor circuit to provide additional attenuation.

There are problems to be aware of when using the RF blocking probe shown in fig. 5, however. The most obvious is that the RFC and the capacitor might interact with LC elements in the circuit and could thus distort the readings. It's also possible to damage certain circuits by detuning them—as in detuning a plate tank circuit while the circuit is live, for example.

Another problem is that RF chokes have a resonant frequency. This frequency is a result of the inductance and interwinding capacitance of the choke. When using the probe at the choke's natural resonant frequency, it will act like any other resonant circuit and perhaps destroy itself.

RF voltmeter probe circuits are shown in fig. 6. Both of these are sometimes called “demodulator probes” because they'll demodulate AM signals. A service instrument called a signal tracer is little more than an audio amplifier with a low capacitance probe up-front to pick up audio signals. If we replace the low capacitance probe with one of the circuits shown in fig. 6, we'll be able to troubleshoot AM receiver RF and IF circuits. With the diodes shown, we can measure RF potentials up to about 50 or 60 volts peak. For greater potentials, use two or more diodes in series. The diodes, by the way, are old-fashioned germanium diodes. Although largely supplanted in the market by silicon diodes, there are still many 1N60 diodes used as video detectors in TV receivers. You can still buy 1N60 diodes under the ECG-109 and certain other “universal” replacement part numbers.

The probe shown in fig. 6A was used in a number of low-cost demodulator probes associated with signal tracers a few years ago. The circuit shown in fig. 6B, on the other hand, has been popular among Radio Amateurs for decades because a similar circuit was published in the ARRL's Handbook. Finally, there's another circuit, shown in (fig. 6C) that's also very popular, and can be calibrated in terms of RMS voltage.
The BEST is still “made in U.S.A.”

Under New Ownership

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty • prompt U.S. service and assistance

RF AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B23</td>
<td>2W in = 30W out (useable in: 100 mW-5W)</td>
</tr>
<tr>
<td>B108</td>
<td>10W in = 80W out (1W = 15W, 2W = 30W) RX preamp</td>
</tr>
<tr>
<td>B1016</td>
<td>10W in = 160W out (1W = 35W, 2W = 90W) RX preamp</td>
</tr>
<tr>
<td>B3016</td>
<td>30W in = 160W out (useable in: 15-45W) RX preamp (10W = 100W)</td>
</tr>
</tbody>
</table>

WATT/SWR METERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C106</td>
<td>10W in = 60W out (1W = 15W, 2W = 30W) RX preamp</td>
</tr>
<tr>
<td>C1012</td>
<td>10W in = 120W out (2W = 45W, 5W = 90W) RX preamp</td>
</tr>
<tr>
<td>C22</td>
<td>2W in = 20W out (useable in: 200mW-5W)</td>
</tr>
</tbody>
</table>

RC-1 AMPLIFIER

- Duplicates all switches, 18’ cable

Available at local dealers throughout the world.

MIRAGE/KLM

COMMUNICATIONS EQUIPMENT, INC.

16890 Church St., Morgan Hill, CA 95037, (408) 779-7363
NEWS BULLETIN

For more than 40 years we have been serving the amateur community with QUALITY PRODUCTS and dependable "SERVICING" and, we fully intend to carry on this proud tradition with even MORE new product lines plus the same "fair" treatment you've come to rely on. Our reconditioned equipment is of the finest quality with 30, 60 and even 90 day parts and labor warranties on selected pieces.

And, remember...

WE SERVICE WHAT WE SELL

- AEA
- AMECO
- AMETRONIC
- ANTEK
- ARRJ
- ASTRON
- ANTENNA
- KIT SPECIALISTS
- B & B
- BENBEST
- BUTTENUT
- CUSHCRAFT
- DIAWA
- DRAKE
- ECO-CON
- HUSTLER
- ICOM
- JAN
- KTRAN
- KX K
- LARSEN
- MSJ
- MIRAGE
- MOSELEY
- Nye
- PALOMAR
- RADIO CALIBRATOR
- ROBOT
- Rohn
- ROHM
- TELESYS
- HYGIN
- TRIO-KENWOOD
- UNADILLA REYCO
- YAEL

FREE CATALOG

Includes all current, obsolete, antique, hard-to-find receiving, broadcast, industrial, radio TV equipment. LOWEST PRICES, Major Brands, In Stock.

UNITY Electronics Dept. H
P.O. Box 213
Elizabeth, NJ 07206

COMPUTER PROGRAMS FOR THE RADIO AMATEUR

by Wayne Overbeck, N6NB and Jim Steffen, K6CA

Here's the first source book of computer programs for the Radio Amateur. Besides covering computer basics, this book gives you programs that will help you log, determine sunspot data, track the moon's path across the sky, use Greynly propagation, and set up record systems for WSX, DXCC, and VUCC, or any other award. You can either buy the book alone or you can buy the book with the programs already on disk. Take full advantage of your computer with this well written source book. (01864, 1st edition, 327 pages.

- HA-0657 Softbound $16.95
- HA-0657 with program $29.95
- Specify computer (see list below)

- Program disk alone $19.95

Programs available for: Apple II (Q0S and CP/M), IBM (DOS), TRS-80 Model I and III and Commodore C-64. Please mark your order with the program disk you want.

Please include $3.00 shipping and handling.

Ham Radio's Bookstore
Greenville, NH 03048

THE JOY OF QRPO STRATEGY FOR SUCCESS

The experts reviewed Ade Weiss's (WRSP) book and wrote: George Dobbs, G3JRV. Radiocom: "I am most impressed both with the scope and content of the book...the sections on computer planning, operating...a comprehensive guide to the whole subject of QRPO - a great book for QRPO's and a lot of QRPO operators would benefit from reading it." Doug DeMaw, W1TB, QST: "I found the book easy to read, and the text is interesting throughout. I would have no hesitation in recommending WRSO's book to any amateur interested in QRPO operation...In fact, it will provide great reading for nearly any active ham." Bill Walsh, W0QD, Novice Ed. CD: "151 pages covering QRPO from basics to fine points in 8 interesting chapters. Novices will have no difficulty understanding the explanations." Fred Bobu: W1GM, QRP Quarterly: "In no other place have I encountered such a well-founded statement of the philosophy of QRP operating."

POSTPAID $10.95 (U.S.), $12.95 (Foreign)

MILLIWATT BOOKS, 833 Duke St. #83, Vermillion, SD 57069
The TITAN final amplifier may be your final amplifier!

Model 425 TITAN
Linear Power Amplifier

We have been accused of "over designing" the TITAN. And certainly, by cutting corners, it could be built at lower cost. But we think, in the long run, it will be an investment in reliability, flexibility, and the pure enjoyment of a permanent addition to your station — long after the price is forgotten.

Every component is chosen to work well below its rating. The power transformer is our own, using a Hypersil® tape wound core, generously designed for excellent regulation. Capacitors and inductors are also made in-house for close quality control.

The TITAN uses two 3CX800 tubes that will loaf along at 1,500 watts output. And, as they require lower plate voltage than older tubes, insulation breakdown is less likely.

We think we have included present and future needs. Things such as full break-in and operation on 160 meters and all authorized bands. A separate power supply makes station layout easy for most convenient operating. And if you use AMTOR, SSTV or RTTY, there is no problem with continuous operation.

The TITAN could easily be your final FINAL AMPLIFIER.

FULL ONE YEAR Warranty On All Ten-Tec Products

*Commercial version available
Several years ago I became interested in VHF contesting and soon realized that contests require the ultimate in VHF operating skill, knowledge of propagation, and the best equipment an operator can muster.

Six meters, located in the "gray zone" between HF and VHF, but exhibiting characteristics of both, has made or broken many a VHF contest effort. If it's open, working 6 meters requires topnotch skills to maintain rate and sift through pileups on or near 50.10. If 6 is dead, then high power, good antennas, and scatter techniques are the name of the game.

It was the urge to work the 6-meter scatter circuits — and the rigors of contesting — that made me consider obtaining a full legal-limit kilowatt for the band. The amplifier had to be able to deliver full power output without strain for hours. It had to be a trouble-free design; after all, who likes to doctor an amp during a band opening? Because of second harmonic problems in the FM broadcast band and proximity to channel 2, it would also have to have a very clean signal.

Quite an order!

There simply weren't any commercial 6-meter amps that met my requirements. Ten-year old marginal commercial amps built before the "amplifier ban" days and 150-watt bricks were the sum total of selections available. Because most of the older units used a pi output circuit that just wouldn't provide enough harmonic rejection, they weren't clean and had second harmonics only 40 dB down. By today's standards, amps built for use above 50 MHz must exhibit second harmonic attenuation of at least 60 dB below the fundamental signal.

So I began to look for a design that would fit these parameters. After some research, it became clear that the pi-L output circuit, which provided a clean signal and sufficient harmonic suppression, would be the right way to go.

A 1000-watt dissipation tube was necessary. This meant that I'd have to use a pair of tubes such as those of the 8874 series or a single tube in the 8877 class. I ruled out glass envelope tubes because of high internal capacitances.

I chose the Eimac 3CX1000A7, a 1000-watt plate dissipation triode that's very similar to the 8877 except for a different socket. Parts are available from most parts supply houses. I used my junk box, RadioKit, Amp Supply, and a local parts supply house to obtain the necessary items.

The amplifier is built on a 10 x 12 x 3-inch Bud chassis. (fig. 1). Aluminum panels (0.040 inch thick) are used for the chassis bottom cover, sides, and top plate. Aluminum "L" stock, available from most hardware stores, is used to hold the sides and top plate securely. All metalwork was done in my workshop using standard hand tools.

circuit description

The amplifier uses a grounded grid circuit with either the Eimac 3CX1000A7 or 8877, ceramic/metal triodes intended for linear service in the HF and VHF ranges. The amp provides the legal power output of 1500 watts PEP and CW service with no effort and requires a driver delivering between 50 and 80 watts at 50 MHz. This is well within the limits of multi-mode rigs.

With a plate voltage of 3000 volts at 0.8 amps the pi-L output circuit, which provided a clean signal and sufficient harmonic suppression, would be the right way to go.

A 1000-watt dissipation tube was necessary. This meant that I'd have to use a pair of tubes such as those of the 8874 series or a single tube in the 8877 class. I ruled out glass envelope tubes because of high internal capacitances.

I chose the Eimac 3CX1000A7, a 1000-watt plate dissipation triode that's very similar to the 8877 except for a different socket. Parts are available from most parts supply houses. I used my junk box, RadioKit, Amp Supply, and a local parts supply house to obtain the necessary items.

The amplifier is built on a 10 x 12 x 3-inch Bud chassis. (fig. 1). Aluminum panels (0.040 inch thick) are used for the chassis bottom cover, sides, and top plate. Aluminum "L" stock, available from most hardware stores, is used to hold the sides and top plate securely. All metalwork was done in my workshop using standard hand tools.

circuit description

The amplifier uses a grounded grid circuit with either the Eimac 3CX1000A7 or 8877, ceramic/metal triodes intended for linear service in the HF and VHF ranges. The amp provides the legal power output of 1500 watts PEP and CW service with no effort and requires a driver delivering between 50 and 80 watts at 50 MHz. This is well within the limits of multi-mode rigs.

With a plate voltage of 3000 volts at 0.8 amps the pi-L output circuit, which provided a clean signal and sufficient harmonic suppression, would be the right way to go.

A 1000-watt dissipation tube was necessary. This meant that I'd have to use a pair of tubes such as those of the 8874 series or a single tube in the 8877 class. I ruled out glass envelope tubes because of high internal capacitances.

I chose the Eimac 3CX1000A7, a 1000-watt plate dissipation triode that's very similar to the 8877 except for a different socket. Parts are available from most parts supply houses. I used my junk box, RadioKit, Amp Supply, and a local parts supply house to obtain the necessary items.

The amplifier is built on a 10 x 12 x 3-inch Bud chassis. (fig. 1). Aluminum panels (0.040 inch thick) are used for the chassis bottom cover, sides, and top plate. Aluminum "L" stock, available from most hardware stores, is used to hold the sides and top plate securely. All metalwork was done in my workshop using standard hand tools.

By Lauren Libby, KXOO, 6166 Del Paz Drive, Colorado Springs, Colorado 80918
amplifier performs at 60 percent efficiency. The grid is grounded by means of the grid ring of the 3CX1000A7 socket providing a low-inductance path to ground. The amplifier is completely stable.

One notable feature of the amplifier is the use of a vacuum variable capacitor for tuning and loading controls in the plate circuit. The plate tuning capacitor is a 3-30 pF and the loading capacitor is a 0-250 pF. I used these units because they were available. The tuning capacitor should be a vacuum-variable because of the high voltages and currents present. An air-variable with large spacing could be used — just be sure not to exceed the voltage rating of the capacitor. The loading capacitor can be an air-variable that is of good RF transmitting design and rated for at least 2000 volts.

The pi-L circuit provides good harmonic suppression and broad frequency coverage. Most designs for the 6-meter band cover only the first couple of Megahertz of the band because of exotic designs using "floating turns" and expandable coil arrangements.
A 1000-pF ceramic doorknob capacitor is used between the BNC input connector and the variable inductor in the input circuit. A transmitting mica would have worked just as well, as long as it was capable of handling 100 watts of drive power. Silver mica capacitors are used to isolate the filament line.

bias circuit

The bias circuit is built on a subassembly consisting of a brass plate and components. The subassembly is mounted on 1-inch spacers above the bottom of the chassis. The large resistors shown near the zener diode are suspended on a teflon rod hung from mounting supports.

plate circuit

Figure 3 shows the layout of the pi-L circuit. The plate choke is 43 turns of No. 16 gauge wire wound on a 3/4-inch diameter teflon rod measuring 6-1/2 inches long. I threaded the rod using an NC (National Course thread) die and then spacewound the coil in the threaded grooves. Half-inch copper strap is used to connect the plate circuit components. (This again is to accommodate the rigorous operating conditions.) Since the plate circuit has a high Q, large circulating currents are present. The vacuum variables are mounted with 0.060-inch aluminum "L" brackets that were fashioned with metal shears and bent to shape. The plate inductor L3 is wound from 1/4-inch copper tubing. The "L" portion of the circuit is mounted away from the loading capacitor at a 90-degree angle and is connected to a Z-50 (Ohmite) RF choke and antenna connector.

The layout is clean and easy to reproduce. Notice that an aluminum shield protects the filament transformer from stray RF.

fig. 2. Grid compartment, bias supply, and input circuits. All connectors outside the compartment are made through feed-through capacitors. The input components are pictured in the lower center of the grid compartment.

These designs have been attempts to deal with high internal capacitances present in transmitting tubes. Only about 30 pF of capacitance are needed to resonate most circuits at 50 MHz, and many tubes have almost that much capacitance. So, in essence, the tube is a fixed tuning capacitor resulting in no tuning range for a variable capacitor.

This amplifier circuit provides for this condition by raising the Q of the circuit to allow for more capacitance tuning range. By increasing the Q, harmonic suppression is improved.

A 12-volt 50-watt zener diode is placed in series with the cathode return line to set the desired plate idling current and bias. The plate and grid circuits are metered in the cathode return lead.

the input circuit

The input circuit is a "T" design consisting of two coils and a shunt capacitor. One coil and capacitor are variable. With these two adjustments it's possible to cover a broad range of input impedances.

The controls are brought out the side of the unit for easy tuneup. Since the input circuit is a fairly broadband circuit, no tuning is needed once it's set for the first Megahertz of the band.

The input matching circuit can be seen in the lower center of the under-chassis photograph (fig. 2). The filament choke, a commercial unit obtained from Amp Supply, is capable of handling 30 amps of current at 5 volts.

fig. 3. View of plate compartment. Note the location of the high voltage capacitor, plate choke, and plate circuit. This is an uncluttered layout and easy to reproduce.
fig. 4. Rear view of completed unit. High-voltage connector and input tuning controls are pictured. The blower is positioned to pressurize the lower portion of the chassis.

fig. 5. Completed rear view showing the feedthrough capacitors, output connector, meter mountings, and blower location.

The high-voltage connector is encased in an aluminum mini-box and connected to the high-voltage feedthrough capacitor. Safety is paramount when dealing with lethal voltages such as those used in this design (see fig. 4).

The tube chimney used with the 3CX1000A7 is a piece of teflon sheet (0.030 inch) cut to fit around the anode of the tube and fastened with teflon tape. Airflow is directed from below the chassis and through the socket, and is then exhausted through the tube and out the top of the amplifier (see fig. 5).

tube performance data

Either a 3CX1000A7 or an 8877 can be used in the circuit. The 3CX1000A7 uses either the Eimac SK-860 or SK-870 air system socket, a breechlock type. The 8877 uses a plug-in Johnson 122-247-202 socket.

Both tubes use 5 volts for the filament voltage. The primary difference is that the 3CX1000A7 requires 30 amps of current, since it has a directly heated filament, and the 8877 requires 10 amps.

Many operating parameters were tried with this piece of equipment. The most suitable ones for Amateur use are listed for the 3CX1000A7 below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Voltage</td>
<td>3000 Volts</td>
</tr>
<tr>
<td>Plate Current (Single Tone)</td>
<td>0.800 A</td>
</tr>
<tr>
<td>Plate Current (Idling)</td>
<td>0.125 A</td>
</tr>
<tr>
<td>Grid Voltage (Bias)</td>
<td>-12 Volts</td>
</tr>
<tr>
<td>Grid Current (Full Drive)</td>
<td>0.200 A</td>
</tr>
<tr>
<td>Filament Voltage</td>
<td>5 Volts</td>
</tr>
<tr>
<td>Filament Current</td>
<td>30 Amperes</td>
</tr>
<tr>
<td>Power Input</td>
<td>2400 Watts</td>
</tr>
<tr>
<td>Power Output</td>
<td>1450 Watts</td>
</tr>
<tr>
<td>Drive Power</td>
<td>75 Watts</td>
</tr>
</tbody>
</table>

adjustment and tuneup

The completed amplifier is shown in fig. 6. Before applying any operating voltages, grid dip the input and output circuits to 50 MHz with the tube in the socket. This can be accomplished by putting a 50-ohm load on both the input and output connectors. Tune the variable inductor and capacitor in the input circuit to resonate at 50 MHz. Note that this will have to be tuned again after the amplifier is operating; this will put it in the ballpark, however.

Grid dip the plate tuning circuit to 50 MHz without applying any voltages. You may have to expand or compress L3 to resonate the circuit. L4 should not require any adjustment and is not as critical as L3. However, it should resonate near 50 MHz.

Turn on the blower and apply filament voltage. Let the tube warm up, check the filament connections at the tube to ensure that a full 5 volts is present. Sometimes a voltage drop can occur across the filament choke. The tube should be within 0.25 volt either side of 5 volts.

Place a wattmeter in the input and output line of the amplifier. The input meter should be capable of handling at least 100 watts and the output meter should be capable of measuring 1500 watts output. I used a 2500-watt slug in my Bird meter. Tuneup was executed into a 1500-watt dummy load.

After the tube has warmed up, apply reduced plate voltage (about 2000 volts) and look for any evidence of arcing or other abnormal conditions. If everything appears to be operating normally, apply a small amount of drive and adjust the input circuit for minimum SWR. Do this quickly and with no more than 10 watts of drive.

Apply more drive gradually and adjust the plate tuning and loading controls for maximum output power. Look for any abnormal conditions. If none are observed, increase the drive and retune. If everything looks good, increase the plate voltage to 3000 volts and quickly tune the amplifier with about 50 watts of drive applied. Read the output power, compute the input power by multiplying plate voltage by the plate power and the SWR, and compare the results to the calculated power output.
current and compare it with the output power measured. This will give you an idea of the plate circuit efficiency. If everything appears normal, increase the drive to 80 watts, set the parameters suggested in this article, and you'll have a commanding signal on the 6-meter band.

final comments

Several lessons were learned in designing and building this amplifier. One was not to hook the connection of the high-voltage strap going to the tube to a bolt running through the teflon rod of the RF plate choke. During tuneup I had flaming teflon rod as a result of all the circulating currents running through a 6-32 screw. Make sure the connection of the tube strap is on the same side as the one to which the choke winding is attached.

Before you begin construction of this amplifier, I'd suggest you do some reading: Bob Sutherland, W6PO's "Two-Kilowatt Amplifier for Six Meters," which appeared in _ham radio_ in February, 1971, and Bill Orr's _Radio Handbook_, regarding the design parameters of the pi-L circuit, are "must" reading.

Although you don't have to be an electrical engineer to build this amplifier (I'm an economist), it's not a project for the first-time builder. But if you have some experience, you may want to build it and enjoy the operating possibilities it affords. As you build, it may help to keep in mind something I've found to be true over several years of building amplifiers: for cleaner signals and years of trouble-free operation, it's best to over-build.

Because many good high-voltage circuits have already been published, I haven't included a power supply circuit with this article. Just be sure to make your power supply husky; if you have trouble lifting it, it's big enough.

acknowledgments

Many thanks to Ray Uberecken, AA0L, and Hal Bergeson, W0MXY, for their encouragement and help. Special thanks to Reed Brandon of Eimac for hours of help in the initial design of the circuit.

J. Trenbick
"...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination..."
—Fred Blechman, K6UGT

"...received my moneys worth with just one issue..."

CURRENT
U.S.A. $15.00 for 1 year
Mexico, Canada $25.00
Foreign $35.00(land) - $55.00(air)
(U.S. funds only)
Permanent (U.S. Subscription)........ $100.00
Sample Copy $3.50

Circulation Manager
1704 Sam Drive
Birmingham, Alabama 35235
Phone 205/854-0271

姗.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT)

<table>
<thead>
<tr>
<th>BAND</th>
<th>KIT</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M, 2M, 220</td>
<td>$630</td>
<td>$880</td>
</tr>
<tr>
<td>440</td>
<td>$730</td>
<td>$980</td>
</tr>
</tbody>
</table>

(Also available for commercial bands)

FEATURES:
- SENSITIVITY second to none: 0.15 uV (VHF), 0.2 uV (UHF) typ.
- SELECTIVITY THAT CAN’T BE BEAT! BOTH 8 POLE XTAL FILTER & CERAMIC FILTER FOR > 100 dB at ± 12 KHz. HELICAL RESONATOR FRONT ENDS TO FIGHT DESENSE & INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.

LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

* No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.4 dB UHF
- High Gain: 13 to 20 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAsFET, Very Stable

MINIATURE PREAMPS

NEW

Model LN4-1(*) Only $19/kit, $34/wired

Models available to tune the following bands:
*Specify band

NEW

GaAsFET Preamp with features similar to LN4, except designed for LOW COST and SMALL SIZE: only 58W x 142L x 34H. Easily mount inside many radios.

IN-LINE PREAMPS

Model LNS-144 120-175 MHz $59 $79
Model LNS-220 200-240 MHz $59 $79
Model LNS-432 400-500 MHz $59 $79

ACCESSORIES

- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATOR
- COR-2 KIT With audio mixer, local speaker amplifier, tail & time-out timers.
- COR-3 KIT with “courtesy beep”
- RTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
- CWID KITS • SIMPLEX AUTOPATCH

Send $1 for Complete Catalog
(Head $2.00 or 4 IRC's for overseas mailing)
Order by phone or mail • Add $3 S & H per order
(Electronic answering service evenings & weekends)
Use VISA, MASTERCARD, Check, or UPS CODE.

Hamtronics Breaks the Price Barrier!
KENWOOD
TS-940S
TOP-OF-THE LINE
HF TRANSCIEVER
GREAT PRICES. CALL

KENWOOD
HAND-HELD
TH-21AT/41AT
Compact Only 2 4/"W, 4 7/"H, 11"D. Outstanding performance at an ideal package size.

TR-2600A
Deserves its well-earned reputation as the leading HT
CALL FOR PRICE

ELH-230D
2 METER
3 IN/30 OUT
WE SHIP DIRECT TO YOU FROM ANY ONE OF OUR NATIONWIDE OUTLETS.

ICOM
IC-751A
COMPACT 2-METER
ALL MODE TRANSCEIVER
SPECIAL NEW PRICE!

US TOWER CORPORATION
MA-40
40 TUBULAR TOWER
$745 SALE! $549
MA-550X
55 TUBULAR TOWER
$1245 SALE! $899
- Handles 10 sq. ft. at 50 mph
- Pleases neighbors with tubular streamlined look

TX-455
55 FREESTANDING CRANK-UP
- Handles 18 sq. ft. at 50 mph
- No guyning required
- Extra-strength Construction
- Can add raising and motor drive accessories
IN STOCK FOR QUICK DELIVERY OTHER MODELS AT GREAT PRICES

ICOM
IC-2KL
LINEAR AMPLIFIER
- Auto Band Switching
- Broadbanded
- HF 500 Watt Linear
AT GREAT LOW, LOW PRICES

IC-27A (25W, 2M, FM)
IC-27H (45W, 2M, FM)
IC-37A (25W, 220MHz, FM)
IC-47A (25W, 70cm, FM)

YAESU
HANDHELD
FT 209RH
5 WATT 2M/HT
CALL FOR PRICE

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

FREE SHIPMENT ON SAME SERIES

Toll free including Alaska & Hawaii. Phone Hrs: 7:00 a.m. to 5:30 p.m. Pacific Time. California and Arizona customers call or visit nearest store. California and Arizona residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
ICOM IC-R71A
Superior Grade General Coverage Receiver
SALE! CALL FOR PRICE

ICOM IC-3200A
DUAL BANDER
Covers Both 2 Meters & 70 cm
LATEST EDITION

ICOM IC-1271A
1.2 GHz Transceiver:
The First Full-featured 1240-1300 MHz Transceiver
AT GREAT LOW, LOW PRICES

ICOM IC-28A/28H
2-METER MOBILES IC-28A (25w) IC-28H (45w)
SPECIAL NEW PRICE!

ICOM IC-735
The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

ICOM IC-R7000
25 MHz-1300 MHz IN STOCK FOR IMMEDIATE DELIVERY

NEW COAST TO COAST
To Our Customers

HAND-HELD
VHF/UHF
IC-02AT IC-04AT IC-2AT IC-3AT
WE SHIP DIRECT TO YOU FROM ANY ONE OF OUR NATIONWIDE OUTLETS.

All Major Brands in Stock Now!

ANHEIM, CA 92801
2620 W. La Palma
(714) 761-3033, (213) 860-2930
Between Disneyland & Knott's Berry Farm

ATLANTA, GA 30315
6011 Buford Hwy
404-763-6700
Natl. Mgr. RC4MK
Decatur, 1mi. north of I-285

BURLINGTON, CA 94010
99 Rafter Ave
(415) 347-5757
George, Mgr. WRB6DSV
5 miles south on 101 from SF

OAKLAND, CA 94606
2210 Livingstone St
(415) 584-5757
Jr. Mgr. K690H

PHOENIX, AZ 85015
1702 W. Camelback Rd
(602) 242-3515
Bob, K70GH
East of Hwy 17

SAN DIEGO, CA 92123
5375 Kearny Villa Rd
(619) 560-4500
Glenn, Mgr. W5BNA
Hwy. 163 & Claremont Mesa Blvd

VAN NuYS, CA 91401
6265 Sepulveda Blvd.
(818) 988-2712
At Mgr. KE9HA
San Diego Hwy.
at Victory Blvd.

STORE HOURS
10 AM-5:30 PM CLOSED SUNS

CALL TOLL FREE (800) 854-6046
Toll free including Alaska & Hawaii. Phone Hrs: 7:00 a.m. to 5:30 p.m. Pacific Time. California and Arizona customers call or visit nearest store. California and Arizona residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

More Details? CHECK — OFF Page 110

July 1986
Portable radios can be a trade-off. In return for mobility you get loss of performance.

Well now you can cut your losses significantly. All you need is the new Larsen UHF KuLDUCKIE® KD14-HW half-wave antenna. It's a mouthful but it'll do your ears a lot of good.

Because it's half-wave, the KD14-HW is fully resonant despite the poor ground plane portables are faced with. Under ideal ground plane conditions, it delivers performance equal to a full quarter-wave. And that's a powerful improvement over most portable antennas!

And because it is inherently resonant, the KD14-HW can also be easily remoted with a length of coax.

The KD14's flexible, easy-to-get-along-with radiating element measures a scant 12 inches. At the base is a 3½ inch impedance transformer that gives added strength.

The KD14 half-wave series is also available in a collapsible 2-meter version.

Cut your losses and improve your gain when you operate with the new Larsen UHF KuLDUCKIE® KD14-HW, with no-nonsense warranty. You can see it at your favorite amateur dealer.

*For units with BNC output.

SATELLITE DECODER MANUAL

Reveals How Signals are De-Cy-Phared

- Three different types used.
- Detailed/schematics
- Digital audio processors
- Error correction & filtering
- 100 pages bound... $24.95.

NEW LADY-X-TASY KITS FROM $59.95 ASSEMBLED. READY TO GO FROM $179.95
OTHER TYPES OF DECODERS AVAILABLE.
SCHEMATICS & BOARDS AVAILABLE.
SEND $5 FOR INFORMATION CATALOG

Pilgrim Video Products
P.O. Box 3325 H
Plymouth Ctr., MA 02361

Save Time-Money with HAZER

- Never climb your tower again with this elevator system.
- Antenna and rotator mount on HAZER, complete system transmits in vehicle upright position.
- Safety lock system on HAZER operates while raising-lowering & normal position. Never can fail.
- Weight transferred directly to tower. Winch cable used only for raising & lowering. Easy to install and use.
- Will support most antenna arrays.
- High quality materials & workmanship.
- Safety - speed - convenience - smooth travel - inexpensive.
- Complete kits includes winch, 100 ft. of cable, hardware and instructions.
- For Rohr 6-1/2 G Tower.
- Hazer 2-Heavy duty aluminum 12 sq. ft. load $275.00 ppd.
- Hazer 3-Standard aluminum 8 sq. ft. load 215.00 ppd.
- Hazer 4-Heavy galv. steel 16 sq. ft. load 275.00 ppd
- Yacht mast bearing 10-25 for any of above 42.50 ppd.
- Satisfaction guaranteed. Call today and charge to Visa or MasterCard.
- As an alternative, purchase a Martin M-13 or M-18 aluminum tower engineered specifically for the HAZER system, or a truly self-supporting steel tower. Send for free details.

GLEN MARTIN ENGINEERING INC.
P.O. Box 213
Boooneville, Mo. 65233
816-882-2734

PACKET RADIO for the Apple Macintosh

- Enhances your TNC so you can enjoy Packet Radio!
- Split screen display to separate send and receive data.
- Full Macintosh User Interface.
- I NC Commands and Parameters on pull down menu.
- Routing file for digipeater routes.
- File transfer using Sccasian Laser protocol.
- Command procedure files.
- I ve upgrades for one year after purchase.
- Manuals, support manuals with MacPort.
- I for used.

MacPacket/Tappetterm... $69.95
TAPR TNC-2... AEA PK 80... GLB TNC-2A
ML Electronics M-1720... Pac Com TNC-200
MacPacket/Tappetterm... $69.95
TAPR TNC-1... AEA PK 11... Heath HD-4060
MacPacket/RANter... $69.95
Kamronics Packet Communicator (KPC-1 V2.0 & KPC-2)

According to dealers or from:

Brincomm Technology
3155 Resin Street
Marietta, GA 30066

See your favorite amateur dealer or write for a free amateur catalog.

IN USA: Larsen Electronics, Inc., 11611 N.E. 56th Ave., P.O. Box 1799, Vancouver, WA 98668-1066, 206-573-2722
IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6th Ave., Vancouver, B.C. V5Y 1K3, 604-872-8517

LARSEN® KULROD® AND KULDUCKIE® ARE REGISTERED TRADEMARKS OF LARSEN ELECTRONICS, INC.
Inexpensive IC makes front end “uncrunchable”

a broadband amplifier-attenuator

The step attenuator is an important RF building block. On the workbench it can be used for testing the performance of amplifiers, mixers, or entire receiver systems; they’re particularly useful for intermodulation tests. In test equipment they’re useful for level references in spectrum analyzers and other instruments requiring wide dynamic range RF level measurements.

It’s unfortunate, however, that step attenuators aren’t often used in Amateur Radio receiver front ends. Anyone who’s ever operated contests with a low dynamic range receiver knows the disastrous consequences of receiver overload and intermodulation interference; it’s usually the third-order intermod products that cause problems in receivers.\(^1\)\(^2\)

The equations that define the third-order product levels indicate that if you reduce the input signal levels by 1 dB, the third-order products will decrease by 3 dB. Thus if you “switch in” 5 dB of attenuation at the front end, the intermod products will go down 15 dB. With multiple strong signals coming through the receiver bandpass, the step attenuator can indeed be a useful feature; under contest conditions, for example, there’s no need for an expensive receiver to become less useful than it might be when the addition of a few resistors and switches could have been used to eliminate the problem (fig. 1).

Another problem arises during low signal level conditions, particularly at higher frequencies. Since the signal-to-noise ratio and “noise figure” of the receiver are largely determined by the front end, using a low-noise amplifier will improve ultimate sensitivity. The typical HF receiver front end consists of a tuned amplifier complemented with some type of gain-control circuitry. This gain control can be automatic (AGC) or manual (RF). Front-end design is complicated by the tuned circuits necessary for image rejection if a low IF is chosen (<20 MHz). However, the trend in modern Amateur Radio receiver design is to first “up-convert” to a relatively high IF (typically 45 MHz). This technique places the image well up into the VHF spectrum and eases the front-end filtering requirements.

broadband constant gain and impedance

Some type of bandpass and impedance matching circuit is still required as an interface between the antenna and the usual discrete amplifier device. Unfortunately the input and output impedances of the familiar bipolar and FET devices do not match the universal 50-ohm standards.

The front-end amplifier problem can be greatly reduced by designing with a new broadband amplifier, the Signetics NE5025 (fig. 2). Priced at about $1.50, the 5205 is a 20-dB gain block using a multiple feedback scheme that normalizes the input impedance over a very wide range. Both gain and impedance show only slight variation from DC to 650 MHz! The input impedance of the amplifier is simply “imaged” by the output termination; that is, if you terminate the output in 50 ohms, the input impedance will also be 50 ohms. This particular characteristic, in monolithic form, should be of interest to RF experimenters.

The 5025 also works in systems of 75 ohms and higher impedance. JFET double-balanced mixers (for example, the Siliconix U350) and the new ultra-high performance DMOS quad rings (such as the Siliconix Si8901) have a relatively low but constant input impedance, typically 12 ohms. Thus the 5205 can feed an 8901 through a 4:1 broadband balun for broadband front-end operation up to a few hundred MHz. This example completes a high-performance radio front-end concept free of resonant tuned circuits.

By Robert J. Zavrel, Jr., W7SX, 707 Borello, Mountain View, California 94041

July 1986
CONTINUOUS COVERAGE FOLDED DIPOLE ANTENNA

MODEL AC 3.5 - 30
(formerly Model 3.0-15)

- Fully Assembled
- 52 OHM
- Only 90 feet long
- SWR less than 2:1 from 3.5 thru 30 MHz. Average SWR 1.4:1
- Will handle 1 KW power (2 KW PEP)
- Can be installed as flat top, sloper, or inverted "V"
- Used the world over in government & commercial communication installations
- Ideal for all operations - amateur, commercial. MARS - any frequency from 3.5 - 30 MHz

PRICE $167.50
PLUS $1.00 Shipping and Handling

ALL OUR PRODUCTS MADE IN USA

BARKER & WILLIAMSON
Quality Communication Products Since 1932
At your Distributors. Write or call:
10 Canal Street, Bristol PA 19007
(215) 786-5581

Measure Up With Coaxial Dynamics Model 83000A RF Peak Reading Wattmeter

Take a PEAK with Coaxial Dynamics "NEW" Model 83000A, designed to measure both FWD/RFL power in CW and FM systems simply and quickly. Then with a "FLIP" of a switch, measure "PEAK POWER" in most AM, SSB or pulse systems. Our Model 83000A features a complete selection of plug-in-elements plus a 2 year warranty. This makes the Model 83000A an investment worth looking at. So go ahead, take a "PEAK", you'll like "WATT" you see!

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex 98-0630
Service and Dependability...a Part of Every Product

WELCOME TO 12 METERS!
Add all three WARC Bands to your FT-101
- Increases Resale Value of your Rig.
- Installs easily, detailed instructions.
- Includes all crystals, relays, wire, etc.
- Tested, fool-proof design for all but ZD

FT-101 3-band WARC Kit...$25
FT-901 30M Only WARC Kit...$10

Shipping $5 (US & Canada), $10 Elsewhere
Order by mail or phone. VISA/AMC or ZOD Accepted

GO FOX TANGO - TO BE SURE!
Ask About our FOX Filters for Many Other Rig

FOX TANGO CORPORATION
Box 15844 H, W. Palm Beach, FL 33416
(305) 683-9587

Ideal for Packet Radio

Teletype Model 43 $195.00 OR
TI 745 $165.00
KSR Terminals with RS-232 serial I/O

We have fully reconditioned Model 43 Teletype and Texas Instruments 745 terminals that have come off lease and are now available for immediate delivery. These are well maintained units furnished with a 30 day return to depot warranty.

Huron Leasing, Inc. 1-800-572-6060
Ask for Diane 166 (312) 690-3550

This publication is available in microform from University Microfilms International.

□ Please send information about these titles:

Name:

Company/Institution:

Address:

City_________________________State__________Zip__________

Phone _______________________

Call toll-free 800-321-3044. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
fig. 1. 35-db step attenuator and gain stage improve intermod performance.

Table 1. Pi-network resistive attenuator (50 ohms).

<table>
<thead>
<tr>
<th>dB Attenuation</th>
<th>R1 (ohms)</th>
<th>R2 (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>870.0</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>436.0</td>
<td>11.6</td>
</tr>
<tr>
<td>3</td>
<td>292.0</td>
<td>17.6</td>
</tr>
<tr>
<td>4</td>
<td>221.0</td>
<td>23.8</td>
</tr>
<tr>
<td>5</td>
<td>178.6</td>
<td>30.4</td>
</tr>
<tr>
<td>6</td>
<td>150.5</td>
<td>37.3</td>
</tr>
<tr>
<td>7</td>
<td>130.7</td>
<td>44.8</td>
</tr>
<tr>
<td>8</td>
<td>116.0</td>
<td>52.8</td>
</tr>
<tr>
<td>9</td>
<td>106.0</td>
<td>61.6</td>
</tr>
<tr>
<td>10</td>
<td>96.2</td>
<td>71.2</td>
</tr>
<tr>
<td>11</td>
<td>89.2</td>
<td>81.6</td>
</tr>
<tr>
<td>12</td>
<td>83.5</td>
<td>93.2</td>
</tr>
<tr>
<td>13</td>
<td>78.8</td>
<td>106.0</td>
</tr>
<tr>
<td>14</td>
<td>74.9</td>
<td>120.3</td>
</tr>
<tr>
<td>15</td>
<td>71.6</td>
<td>136.1</td>
</tr>
<tr>
<td>16</td>
<td>68.8</td>
<td>153.8</td>
</tr>
<tr>
<td>17</td>
<td>66.4</td>
<td>173.4</td>
</tr>
<tr>
<td>18</td>
<td>64.4</td>
<td>195.4</td>
</tr>
<tr>
<td>19</td>
<td>62.6</td>
<td>220.0</td>
</tr>
<tr>
<td>20</td>
<td>61.0</td>
<td>247.5</td>
</tr>
<tr>
<td>21</td>
<td>59.7</td>
<td>278.2</td>
</tr>
<tr>
<td>22</td>
<td>58.6</td>
<td>312.7</td>
</tr>
<tr>
<td>23</td>
<td>57.6</td>
<td>351.9</td>
</tr>
<tr>
<td>24</td>
<td>56.7</td>
<td>394.6</td>
</tr>
<tr>
<td>25</td>
<td>56.0</td>
<td>443.1</td>
</tr>
<tr>
<td>30</td>
<td>53.2</td>
<td>789.7</td>
</tr>
<tr>
<td>35</td>
<td>51.8</td>
<td>1406.4</td>
</tr>
<tr>
<td>40</td>
<td>51.0</td>
<td>2500.0</td>
</tr>
<tr>
<td>45</td>
<td>50.5</td>
<td>4446.0</td>
</tr>
<tr>
<td>50</td>
<td>50.3</td>
<td>7905.6</td>
</tr>
<tr>
<td>55</td>
<td>50.2</td>
<td>14,058.0</td>
</tr>
<tr>
<td>60</td>
<td>50.1</td>
<td>25,000.0</td>
</tr>
</tbody>
</table>

fig. 2. Pin configuration of Signetics NES205.
Some filtering is still required, however. The use of upconversion techniques allows installation of a simple multi-pole 35- or 40-MHz low-pass filter ahead of the attenuator for image rejection. Inclusion of a broadcast band high-pass filter is also desirable for strong AM signal rejection.

overcoming circuit constraints

The circuit shown in fig. 1 allows both attenuation and amplification. Although using mini-toggle switches limits the frequency response to about 350 MHz, they are easy to mount, inexpensive, and rugged. This circuit is practical for the 160- through 2-meter bands.

A few precautions are necessary when using the 5205. It’s usually easy to use if good RF techniques (i.e., providing adequate grounding and keeping the leads as short as possible) are employed. Care must be taken, however, when switching both the input and output circuits with a common switch assembly. The switch forms a capacitor between the input and output, while the switch leads and circuit board etching form a strip inductance. The resulting series LC circuit in the feedback loop will cause the amplifier to oscillate at a VHF or UHF frequency. The circuit shown oscillates at about 600 MHz, but the level is well below saturation, and the spectrum is very clean below 400 MHz. All oscillations can be eliminated by
THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE
COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

Now Available With PACKET RADIO

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

SPECIAL SALE $695
With Packet Radio — $765/$849

*AUTOMATIC SEND/RECEIVE — ANY SPEED ANY SHIF T • BUILT IN COMPUTER GRADE 5" MONITOR • EXTERNAL MONITOR JACK • TIME CLOCK ON SCREEN • TIMED TRANSMISSION AND RECEIVING • SELCAL • CRYSTAL CONTROLLED AF SK MODULATOR • PHOTOCOUPLER CW, FSK KEYER • ASCII KEY ARRANGEMENT • 15 CHANNEL BATTERY BACK-UP MEMORY • 1,280 CHARACTER DISPLAY MEMORY • SPLIT SCREEN TYPE-AHEAD BUFFER • FUNCTION SCREEN DISPLAY • PARALLEL PRINTER INTERFACE • SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL, 100 BAUD ARD/FEC AMTOR, ATC, RUB-OUT FUNCTION • AUTOMATIC CR/LF • WORD MODE • LINE MODE • WORD WRAP AROUND • ECHO • TEXT CURSOR CONTROL • USOS • DODBLE • TEST MESSAGES (RY AND QBF) • MARK AND BREAK (SPACE AND BREAK) SYSTEM • VARIABLE CW WEIGHTS • AUDIO MONITOR CRICUIT BUILT IN • CW PRACTICE FUNCTION • CW RANDOM GENERATOR • BARGRAPH LED METER FOR TUNING • OSCILLOSCOPE OUTPUTS • BUILT IN 100-120 / 220-240 VAC 50/60Hz AND 13.8VDC POWER SUPPLIES • AND MUCH, MUCH MORE • SIZE: 14W x 14D x 5H • 1 YEAR LIMITED WARRANTY •

$777 THE MOST ADVANCED COMPUTER INTERFACE EVER DESIGNED FOR COMMERCIAL AND AMATEUR USE.

RTTY, BIT INVERSION (RTTY), ASCII, AMTOR (MODE A [ARG], MODE B [FEC AND SEL-FEC], MODE I), CW, ANY SPEED ANY SHIFT (ASCII AND BAUDOT)*

SPECIAL SALE $249

* AUTOMATIC DECODING: Automatically decodes signal and displays mode, speed and polarity on the CRT — COMPARE!

28 BAR-LED'S and LED'S plus a Bar-Graph Tuning Indicator indicate function, mode, and status — COMPARE!

The awesome power of the $777 is limited only by the imagination of the user and the terminal program of the computer.

Use with Any computer that has RS232 or TTL 1/0, IBM, Apple, Commodore, TRS80, etc.

Everything Built In - Including Software — Nothing Else To Buy!

* SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL, AND RS232 OR TTL LEVEL DATA CONNECTION - 100-2400 BAUD (ASCII) OR 45.5-200 BAUD (BAUDOT) • SELCAL • MEMORY: 15 CHANNELS • 768 CHARACTER INPUT BUFFER • AUTO PTT • CW ID • DODBLE • USOS • ECHO • AUTO CR/LF • ATC • RUB-OUT • CW PRACTICE GENERATOR • VARIABLE CW WEIGHTS • TEST MESSAGE (RY AND QBF) • FULL CRT FUNCTION DISPLAY • MARK AND BREAK (SPACE AND BREAK) SYSTEM • XTAL AFSK • AUDIO MONITOR • OSCILLOSCOPE OUTPUTS • AND MUCH, MUCH MORE • POWER SUPPLY REQUIREMENTS: 13.8 V DC, 700MA • SIZE: 9W x 10D x 2H • 1 YEAR LIMITED WARRANTY •

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:

AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 80-3356

MANUFACTURER:
TONO CORPORATION
98 Motosoja Machi, Maebashi-Shi, 371, Japan

PLEASE CALL FOR DETAILS

Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.

Specifications Subject to Change.
using a miniature ceramic rotary switch configured as fig. 4. The goal is to raise the feedback resonant frequency above the gain cut-off point of the 5205. This is accomplished by reducing switch capacitance and lead inductances. The 5205 can also be left “on” at all times, thus eliminating the oscillation problem.

construction techniques

The test unit was built on a 1 × 3-inch PC board with double-sided ground planes. The PC board can be mounted in a die-cast minibox that also holds the input and output sockets (BNC, N, or UHF) and the mini-toggle switches. The 5205 is available in standard N, surface mount, and TO-46 packages. If the TO-46 is used, the package should be mounted in a snug hole and the case soldered to the ground plane. Miniature ceramic input and output capacitors should be soldered directly to the 5205 leads. Good UHF design techniques must be employed even if the unit is used only at HF.

good intermod performance

Attenuation in 5-dB steps was chosen. This is somewhat arbitrary; other steps can be selected. Tables 1 and 2 are included for convenience. This circuit, shown in fig. 1, allows gains of −35 to +20 dB in 5-dB steps, which should be adequate for any HF receiver requirements. The attenuators should precede the amplifier to maximize amplifier linearity.

The noise figure of the 5205 is less than 6 dB at 100 MHz for 50-ohm systems, dropping to 4.8 dB at 75 ohms. The third-order output intercept point is +17 dBm. This indicates that it will take two signals 33 dB above S9 to produce a third-order product at an S1 level. With only 5 dB of attenuation inserted, two signals must be 48 dB above S9 to produce an S1 level third-order intermod. This is indeed a strong front end!

summary

This simple project can greatly enhance the utility of a step attenuator on the test bench. In a receiver front end the NE5205 can eliminate bandpass filters while exceeding the intermodulation characteristics of many common mixers. Finally, when combined with a very strong mixer (such as the SI8901) an entire broadband, high-performance receiver system becomes possible.

references

Table 2. T-network resistive attenuator (50 ohms).

<table>
<thead>
<tr>
<th>dB Attenuation</th>
<th>R1 (ohms)</th>
<th>R2 (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.9</td>
<td>433.3</td>
</tr>
<tr>
<td>2</td>
<td>5.7</td>
<td>215.2</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>141.9</td>
</tr>
<tr>
<td>4</td>
<td>11.3</td>
<td>104.8</td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>82.2</td>
</tr>
<tr>
<td>6</td>
<td>16.6</td>
<td>66.9</td>
</tr>
<tr>
<td>7</td>
<td>19.0</td>
<td>55.8</td>
</tr>
<tr>
<td>8</td>
<td>21.5</td>
<td>47.3</td>
</tr>
<tr>
<td>9</td>
<td>23.8</td>
<td>40.5</td>
</tr>
<tr>
<td>10</td>
<td>26.0</td>
<td>35.0</td>
</tr>
<tr>
<td>11</td>
<td>28.0</td>
<td>30.5</td>
</tr>
<tr>
<td>12</td>
<td>30.0</td>
<td>26.8</td>
</tr>
<tr>
<td>13</td>
<td>31.7</td>
<td>23.5</td>
</tr>
<tr>
<td>14</td>
<td>33.3</td>
<td>20.8</td>
</tr>
<tr>
<td>15</td>
<td>35.0</td>
<td>18.4</td>
</tr>
<tr>
<td>16</td>
<td>36.3</td>
<td>16.2</td>
</tr>
<tr>
<td>17</td>
<td>37.6</td>
<td>14.4</td>
</tr>
<tr>
<td>18</td>
<td>38.8</td>
<td>12.8</td>
</tr>
<tr>
<td>19</td>
<td>40.0</td>
<td>11.4</td>
</tr>
<tr>
<td>20</td>
<td>41.0</td>
<td>10.0</td>
</tr>
<tr>
<td>21</td>
<td>41.8</td>
<td>9.0</td>
</tr>
<tr>
<td>22</td>
<td>42.6</td>
<td>8.0</td>
</tr>
<tr>
<td>23</td>
<td>43.4</td>
<td>7.1</td>
</tr>
<tr>
<td>24</td>
<td>44.0</td>
<td>6.3</td>
</tr>
<tr>
<td>25</td>
<td>44.7</td>
<td>5.6</td>
</tr>
<tr>
<td>30</td>
<td>47.0</td>
<td>3.2</td>
</tr>
<tr>
<td>35</td>
<td>48.2</td>
<td>1.8</td>
</tr>
<tr>
<td>40</td>
<td>49.0</td>
<td>1.0</td>
</tr>
<tr>
<td>45</td>
<td>49.4</td>
<td>0.56</td>
</tr>
<tr>
<td>50</td>
<td>49.7</td>
<td>0.32</td>
</tr>
<tr>
<td>55</td>
<td>49.8</td>
<td>0.18</td>
</tr>
<tr>
<td>60</td>
<td>49.9</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Learn Radio Morse Code on your IBM PC, PC JR., PC-XT, PC-AT, or IBM compatible with CODE TUTOR

- Learn the letters, numbers, and punctuation marks
- Practice receiving code at any speed from 1 to 40 words per minute (like having your own code machine)
- Includes 10 user-alterable messages, help screen, and function menu

$9.95 Postpaid
ARCHWAY DATA SYSTEMS
13 Timber Road
Edison, NJ 08820

The Electronic Orphanage
427-3 Amherst Street, Suite 174
Nashua, NH 03063
Phone: (603) 882-8740 - BBD: (603) 882-8312

Our orphans include:
- Weller TCD22 or Unigar 9200 soldering stations, refurbished, 30 day guarantee $25.00.
- MAC XL (same accessories as Lisa 2 plus 10 Mb hard disk), New $2600. Demo $2500. Used $2400.
- Accessories for above systems: $12K memory card $350 NEW
- 5 Mb PROFILE disk $450 USED
- 10 Mb PROFILE disk $500 USED, $1200 NEW
- Parallel interface $160 NEW
- Lisa 777 V2.1 $350 NEW
- FACIT plotters - serial port, parallel port, HPGL, 90 day factory warranty, slightly used.

Call for Model and Price
FACIT Letter quality daisy wheel printers, serial interface, DIABLO emulation, 40 CPS, 90 day warranty, slightly used.

Call our bulletin board for details and other small quantity specials.

Electronic Repair Center Servicing Amateur Commercial Radio
The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing “Hams” for 30 years, no rig too old or new for us.

TEN-TEC ULTIMATE

TEN-TEC’s ULTIMATE high frequency mobile antenna compliments today’s smaller cars with a sleek high performance design measuring less than 6½ feet and weighing a bare 12 ounces. You’ll never have to fold the ULTIMATE antenna...or guy it with fishing line to keep it vertical and resonant at highway speeds. There’s less mass to resist the wind, yet the ULTIMATE is ruggedly built, easy to install, and packs a no compromise punch so necessary in mobile operations.

The ULTIMATE features a longer coil housed in a durable fiberglass shaft. Air is forced from the coil housing and replaced with helium, a stable gas that mixes with no other elements so it helps eliminate corrosion.

A telescoping stainless steel whip helps facilitate tuning. The mounting ferrule is chrome-plated brass and fits standard 3/8” x 24 mounts. Seven “easy-on-easy-off” antennas cover 10 through 80 meters. Switchable Mobile Matcher available for all bands.

See your dealer or write
TEN-TEC, INC.
SEVIERVILLE, TENNESSEE 37862

BELDEN 9913/9914 CABLE “N” Connectors $3.50 Crimp or Solder Type

FOX INTERNATIONAL, INC.
717 W. UNION HILLS DR. #3-190
PHOENIX, AZ 85027
(602) 971-2755

“We Specialize In Custom Connectors”
a summer miscellany

Summer's here! Even though the sunspot cycle doesn't promise much DX, these are the months for antenna work. Here are some interesting designs you may want to try.

7-MHz sloping antenna

Many Amateurs have had success with the delta loop on the lower frequency bands. I've had queries about the effect of mounting the loop at an angle in order to conserve pole height. Does tilting the plane of the loop impede its fine DX record? I didn't know the answer to this question, but Kjell, SM6CTO, decided to try out the sloping loop shown in fig. 1. He found out that it worked very well; while he couldn't make a direct comparison with a vertical loop, he found it to be "a useful DX performer." (The antenna was described in the September, 1985, issue of Radio Communication, a publication of the Radio Society of Great Britain.)*

broadband 80-meter dipole

There's been a lot of sound and fury about the so-called broadband dipole for the 80-meter band (3.5 to 4.0 MHz). Many designs have been published and some of them work. One design that does work was recently described by Malcolm Johnson, VK6LC, in the November, 1985, issue of Amateur Radio, published by the Wireless Institute of Australia.* The layout is shown in fig. 2.

In brief, it's a cage dipole about 102 feet long, fed by a matching transformer and a 1-to-1 balun. The SWR on a 50-ohm transmission line across the 3.5- to 3.8-MHz range is less than 1.8-to-1, with a minimum SWR of 1.3-to-1 at the design frequency of 3.65 MHz. It's ideally suited for use with a solid-state transmitter. Less than half a wavelength long, the five-wire cage exhibits a capacitive reactance at the feedpoint that's transformed by the parallel line transformer to become slightly inductive. A shunt capacitor at the feedpoint parallel-resonates with the inductive reactance to aid in improving antenna bandwidth response.

The dipole is erected in inverted-V fashion, with the center apex at 36 feet above ground.

Malcolm used a four-way splice connector called a "Queblock" to make his insulated spreaders. In any event, it seems that a little ingenuity will produce a spreader that will do the job. Six spreaders are required.

The two-wire transformer is about 0.08 wavelength long (20.7 feet) and has an impedance of 300 ohms. VK6LC used a home-made line, but I think that 300-ohm ribbon line could be used for low-power operation, provided the velocity factor of the line is taken into account. The shunt capacitor can be a high-voltage disc unit or mica capacitor of 1 kV or better, for powers up to several hundred watts.

In order to obtain an accurate SWR profile of the antenna, VK6LC used a half-wave long transmission line.

The center resonant frequency of the antenna can be easily changed by adding or subtracting 5 inches of the 300-ohm line for each 20 kHz of desired frequency change.

Results? Plenty of DX worked, including such juicy examples as A71AD, ON5YA, YU4BL, H44IA, WA6SLO, HA5XW and others—all with 100 watts! That’s not bad for any antenna on the QRM-filled 80-meter band!

all you need is . . .

. . . a bunch of 200-foot towers! I just received a letter from Willy, WB3GCG, who has changed occupations and moved to a new QTH. He’s had some big 160-meter antennas in the past and is looking forward to great DX days ahead. On 20 acres of land, he’s erecting three 200-foot high steel towers arranged in a triangle, approximately 500 feet apart. The towers will support the ends of several Beverage antennas, each 2000 feet long. Relays will be placed along the Beverage wires so the wire can be either 500, 1000, or 2000 feet long. When he’s finished, Willy will have eight Beverage antennas. The feed system for the antennas is as shown in fig. 3. Each wire section is terminated in a 9-to-1 transformer. Coax lines run to the operating position; the wire lengths and terminating resistors are selected through a control box.

But that isn’t all. Willy uses separate antennas for transmitting and receiving. For transmitting, he favors a large vertically polarized loop (fig. 4). Similar loops are used as directors and reflectors. He can switch to horizontal polarization by means of a vacuum relay located at the apex of the loop.

A large number of loops are strung on catenary cables between the towers. Willy aims to have three separate 160-meter delta loop beams, each consisting of back-to-back four-element parasitic arrays with a common driven element (see fig. 5), strung between the towers! With the use of multiple feedlines and vacuum relays, each delta beam can be quickly reversed in direction. It takes a total of seven loops and 3500 feet of No.14 four-strand, vinyl-covered wire for one beam!

In closing, Willy remarks that the
QUALITY PARTS... DISCOUNT PRICES... FAST SHIPPING!

1986 CATALOG...
48 PAGES!

ALL ELECTRONICS CORP.

EDGE CONNECTORS
ALL ARE 1.55 SPACING.

22 EDGE CONNECTOR 31.25 as
solder lug style. 10 for $11.00
22/4 EDGE CONNECTOR
$2.00 ea. PC style 10 for $18.00
22/6 EDGE CONNECTOR
solder lug style $2.50 each
26/56 EDGE CONNECTOR
$5.50 pkg. 25 ea. 1 for $8.00
36/72 EDGE CONNECTOR
PC style $3.00 each
45/25 EDGE CONNECTOR
PC style $4.50 each

TRANSISTORS

SN7405 4 for $1.00
SN7406 3 for $1.00
SN7412 2 for $1.00
SN7412A 3 for $1.00
SN7413 2 for $1.00
SN7414 2 for $1.00
SN7415 2 for $1.00
SN7415A 2 for $1.00
SN7416 2 for $1.00
SN7417 2 for $1.00
M0303 3 for $1.50
M0304 3 for $1.50
M0305 3 for $1.50
M5010 3 for $1.50
TIP 122 7 for $1.50
TIP 129 7 for $1.50

TRANSFORMERS

120 turn primaries
5.5 volts 4 in 750 ma. $3.00
6 volts 4 in 150 ma. $1.25
6.6 volt 4 in 150 ma. $2.00
12 VCT 4 in 150 ma. $3.00
12 VCT 4 in 200 ma. $3.50
12 VCT 4 in 400 ma. $3.50
12 VCT 4 in 1 amp. $4.00
12 VCT 4 in 2 amp. $4.00
12 VCT 4 in 4 amp. $7.00
24 VCT 4 in 150 ma. $2.50
24 VCT 4 in 200 ma. $3.00
24 VCT 4 in 400 ma. $3.00
24 VCT 4 in 1 amp. $3.50
24 VCT 4 in 2 amp. $3.50
24 VCT 4 in 4 amp. $5.00
36 VCT 4 in 150 ma. $3.00
36 VCT 4 in 200 ma. $3.00
36 VCT 4 in 400 ma. $3.00
36 VCT 4 in 1 amp. $3.50

WALL TRANSFORMERS
all plug directly into wall power outlet

4 VDC @ 70 ma. $2.00
6 VDC @ 500 ma. $4.00
6 VDC @ 750 ma. $4.50
6 VDC @ 1 amp. $5.00
6 VDC @ 2 amp. $6.00
9 VDC @ 1 amp. $5.00
12 VDC @ 1 volt. $5.00
12 VDC @ 2 volt. $5.00
12VDC @ 5 volt. $5.00
12VDC @ 10 volt. $5.00
MULTI-VOLTAGE @ 500 ma. $4.50
3.6/4.5/5.5/6.0/6.3/7.5/8.0/9.0 VDC $3.50

MINI-BOX
Phono plug #204 $1.00 EACH
Heavy-duty black phonopact project box with cover and screw. 2 x 4 x 1.75 in.

FUSES
3AG (A/C) SIZE 1.5, 2.5, 3.0, 4.0, 5.0, 6.0... 1.5, 2.5, 3.5, 4.0, 5.0, 6.0... 1.5, 2.5, 3.5, 4.0, 5.0, 6.0$1.00 EACH
High-quality brown or black tubular.
delta loop beam really works. All of this reminds me of the song, "Will everyone here/kindly step to the rear/and let a winner lead the way!" Good luck, WB3GCG, and may the wintry winds be kind to your antennas.

the "rinky-dink" antenna at K6FD

Yes, that’s what Ray, K6FD, calls his tuned 40-meter V-doublet (fig. 6). He uses it on the 30, 40, 80, and 160-meter bands. The antenna is "tuned" from the operating position with a T-network. The included angle between the legs is about 75 degrees, and the wires slope down slightly towards the ground. The antenna is decoupled from the feedline with a simple 14-turn coil, 3 inches in diameter, of small RG-141/U coax. The remainder of the feedline is RG-58/U.

The simple network allows unity SWR to be achieved on all bands. The coax feedline is about 100 feet long. Ray says that with appropriate coils in the network, the system will tune through the broadcast band.

Ray recommends this antenna to those operators who would like to try 80- and 160-meter operation but haven’t done so because they haven’t room for large antennas.

a cheap, top-loaded antenna for 160 meters

Arne, K0AS, is lucky in that he has a number of tall trees on his property. He wanted to work the low end of 160 meters and found design information for a top-loaded vertical antenna in an article in an old copy of QST. Following that design, he used a 50-foot high wire with plenty of top loading. The top loading disk, a rectangle in this case covering 480 square feet, is made of No. 10 copper wire. An L-network is placed at the base of the antenna to match it to a 50-ohm coax line. Beneath the antenna are 50 radials, each 125 feet long. A sketch of the antenna and the matching network is given in fig. 7. The feedpoint resistance of the antenna is about 18 ohms.

The resonant frequency of the antenna can be raised to about 1850 kHz by manipulating the switches in the base network. At this frequency, the operating bandwidth between the 2-to-1 SWR points on the feedline is about 60 kHz.

Arne says the antenna is "quite inexpensive and the results are most gratifying." You couldn't ask for much more than that.

another nifty low-band antenna

Bob, K9EVI, wanted an antenna that would cover 160, 80, 40, and 30 meters and fit in his back lot. What to do? He had a tower that supported a tribander for 20, 15, and 10 meters — now he needed an antenna for the low bands.

His solution was to use a center-fed dipole, 45 feet on a leg. The antenna is slung, in inverted-V fashion, from the top of his 45-foot tower. The ends are about 15 feet above ground level. Bob uses a 600-ohm, open wire feedline about 45 feet long that runs down to his station and into a simple matching network (fig. 8) for 80- and 160-meter operation. For the other bands, he uses an old Johnson "Matchbox" tuner. On 80 and 160 meters, the antenna feeders are tied together and the system works as a
The first radio handbook

The Wireless Experimenter

fig. 6. Multiband antenna and T-tuner at K6FD.

fig. 7. The antenna and matching unit at K8AS.

proclaimed it “the publishing event of the year.” Experimenter in the United States and Canada bought out the first edition even before it was on the presses. And the General Electric Company bought 500 copies sight-unseen.

Starting with Marconi’s famous experiments at the turn of the century, the advance of wireless (i.e., radio) rushed ahead in Europe. Following in the footsteps of Marconi, experimenters and engineers in Germany quickly advanced the radio art. But very little of this advanced knowledge crossed the Atlantic to the United States. Hearsay, letters, and months-old magazines were the only sources of information available to experimenters and Radio Amateurs in the United States.

There were, however, rumors of a wonderful handbook, written in German, entitled Lehrbuch für Dratlose Telegraphie (Textbook for Wireless Telegraphy). A few copies could be found in college libraries, but the information was obviously accessible only to those who had a good command of technical German.

The 1912 version of the book — written in 1905, published in Braunschweig in 1908, and revised in 1912 — was translated by A.E. Seelig of Wellsville, New York, and published by McGraw-Hill in the fall of 1915. And what a wonderful book it was! Written by Professor Jonathan Zenneck of the Technical High School of Danzig, the 440-page hardbound book clearly defined and explained the wonderful world of wireless. The book bristled with photographs of arc and spark transmitters and various types of crystal, carborundum, magnetic, and diode receivers. Much attention was given to antenna design and installation. Long-range propagation via the ionosphere was discussed along with gray-line propagation at sunrise and sunset.

Interestingly, comprehensive data was provided on voice transmission using an arc transmitter, a technique seemingly known to only a handful of experimenters.
STATE OF THE ART

NEW ICOM

New IC-735
Compact HF Transceiver
Call for introductory price

New IC-735A
HF XCVR/Gen Coverage Receiver.

VHF/UV

50W, 50W, 25W, 10W, 4W
450 MHz, 430 MHz, 410 MHz, 400 MHz

IC-92A, 04AT
Small, light MFI for 9M or 160M; great for a mobile station or portable operation. Meets RFI and HF requirements. Also includes battery pack and/or charger.

IC-52AT, 3AT, 4AT
Handheld for 10M, 900 MHz, 440 MHz.

New IC-55 in stock
Aircraft handheld.

SHORTWAVE

Sony
Panasonic
YAESU
KENWOOD

SCANNERS

Uniden/Bearcat/Reynco

MORE HELPERS

Marine radios by Regency Powls and others

COMMERCIAL LAND MOBILES

Ando by Uniden, Midland, Cobra

TELEPHONES

AT&T, Cobra, Southwestern Bell, and Panasonic

RADAR DETECTORS

By Uniden and Whistler

NEW POCKET SIZED

500 MHz Freq. Counter

- Compact design-pocket sized
- Measures frequency from 1 MHz to 500 MHz to within 1 kHz
- Built-in telescoping antenna
- Uses 1 standard 9 volt battery
- All units pre-tested and calibrated to .01%
- Professional and dependable performance at a low cost

DIGITREX

1005 BLOOMER
ROCHESTER, MI 48063
WEST COAST DISTRIBUTOR
R. LUZASZEWICZ
20610 ALAMINOS DRIVE SAUGUS, CA 91350
(805) 252-6021

THE AMERICAN RADIO RELAY LEAGUE

225 MAIN ST.
NEWINGTON, CT 06111

POPULAR PA 19

Wideband Preamp

- Over 8,000 sold since 1976
- 0.5 - 200 MHz bandwidth
- 19 dB gain
- 100 W in/out
- Increase sensitivity of receivers or counters
- Built, tested & ready-to-go

ONLY $9.95 PPD

IRON POWDER AND FERRITE

TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDÔN ASSOCIATES

Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany, Elektronikladen, Wilhelm - Mellies Str. 88 4930 Dormund 18 West Germany
In Japan, Toyamada Electronics Company Ltd., 7-9-2 Chome Sato Kanda, Chiyoda-ku, Tokyo, Japan

DISCOUNTS FOR AMATEURS

Orders & Quotes Toll Free: 800-336-4799
(In Virginia: 800-577-4901)
Information & Service: 703-541-1601
Service Department: 703-498-7901
3600 Jefferson Davis Highway
Woodbridge, Virginia 22191
Store Hours: Mon-Fri 9 am - 4 pm
Sat: 10 am - 2 pm
Order Hours: Mon-Fri 9 am - 4 pm
Sat 10 am - 2 pm

NEW ENGLAND STORE

Visit Our New
New England Store
5 Sky Road
Salem, New Hampshire 03079

New Hampshire: Orders - Information & Service: (603) 839-3700
Vermont: Orders - Information & Service: (802) 577-5001

Store Hours: Mon-Tue, Thurs 9 am - 5 pm
Wed 9 am - 8 pm
Fri 9 am - 5 pm

Terms: No personal checks accepted. Prices do not include sales tax. All prices subject to change without notice. No returns accepted. Prices are not valid for use inside the ARRL Handbook. Products are not subject to change without notice. All products are guaranteed for 90 days from date of sale. Claims for shortages must be made within 10 days of receipt of shipment. Claims for damaged products must be made within 7 days after receipt. Claims for damaged merchandise are accepted only if product is returned at publisher's expense. Not responsible for loss or damage in transit. All disputes subject to arbitration. ARRL Handbook. Copyright 1986 American Radio Relay League, Inc.

ANTENNAS

HF, VHF, UHF, scanner, marine, & commercial for mobile or base.
Cushcraft Mini-Products • Larsen
BAE • Van Gordon
Butternut • KLM
Mobile • Hustler
Telex Hy-Gain

TOWERS

Unarco-Rohn, Hy-Gain, Tri-Ex

Ask for special quotes on package deals, including aerials, towers, connectors, turntables, etc.

HY-GAIN REBATES

$100-300 rebate from manufacturer on selected towers and $50 rebate on HF antenna-rotator combinations.

Call for models. Offer valid July 1 - September 30, 1986.

ACCESSORIES

Philipsian Kenpro • Alliance
B&W • Telcom Hy-Gain
Dania • MFJ
Bender • Amphenol
Astron • Weiz
& K Precision

AMPLIFIERS

Dania • American
AMP Supply, • Vocom
TE Systems
Tokyo Hy-Power

COMPUTER STUFF

Packet Radio Hardware and Software for RTTY/Mode
Ham Data Amateur Software

July 1986
The Department of Justice is said to look upon Professor Zenneck as one of the most dangerous German subjects in this country. Germany looks upon him as one of her most skilled wireless telegraph experts, and he came to this country especially to direct German wireless activities. For a long time he was in charge of the German radio station at Sayville. Of late he has been living at Boonton, at which point he was arrested by Deputy Denny.

Before coming to America Professor Zenneck served in the German Army in an official capacity. He participated in the memorable German drive through Belgium and later by falsifying his passports gained admission to the United States.

The 16-page directory of active 2-meter "moonbounce" stations worldwide, listing each station's name, QTH, and equipment used, has been reprinted. For a copy, write to me at EIMAC, 301 Industrial Way, San Carlos, California 94070. Enclose five first-class stamps (or five IRCs) for postage.
ham radio Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We’ll hustle your name and address to the companies you’re interested in.

<table>
<thead>
<tr>
<th>101</th>
<th>113</th>
<th>125</th>
<th>137</th>
<th>149</th>
<th>161</th>
<th>173</th>
<th>185</th>
<th>197</th>
<th>209</th>
<th>221</th>
<th>233</th>
<th>245</th>
<th>257</th>
<th>269</th>
<th>281</th>
<th>293</th>
<th>305</th>
<th>317</th>
<th>329</th>
<th>341</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>114</td>
<td>126</td>
<td>138</td>
<td>150</td>
<td>162</td>
<td>174</td>
<td>186</td>
<td>198</td>
<td>210</td>
<td>222</td>
<td>234</td>
<td>246</td>
<td>258</td>
<td>270</td>
<td>282</td>
<td>294</td>
<td>306</td>
<td>318</td>
<td>330</td>
<td>342</td>
</tr>
<tr>
<td>103</td>
<td>115</td>
<td>127</td>
<td>139</td>
<td>151</td>
<td>163</td>
<td>175</td>
<td>187</td>
<td>199</td>
<td>211</td>
<td>223</td>
<td>235</td>
<td>247</td>
<td>259</td>
<td>271</td>
<td>283</td>
<td>295</td>
<td>307</td>
<td>319</td>
<td>331</td>
<td>343</td>
</tr>
<tr>
<td>104</td>
<td>116</td>
<td>128</td>
<td>140</td>
<td>152</td>
<td>164</td>
<td>176</td>
<td>188</td>
<td>200</td>
<td>212</td>
<td>224</td>
<td>236</td>
<td>248</td>
<td>260</td>
<td>272</td>
<td>284</td>
<td>296</td>
<td>308</td>
<td>320</td>
<td>332</td>
<td>344</td>
</tr>
<tr>
<td>105</td>
<td>117</td>
<td>129</td>
<td>141</td>
<td>153</td>
<td>165</td>
<td>177</td>
<td>189</td>
<td>201</td>
<td>213</td>
<td>225</td>
<td>237</td>
<td>249</td>
<td>261</td>
<td>273</td>
<td>285</td>
<td>297</td>
<td>309</td>
<td>321</td>
<td>333</td>
<td>345</td>
</tr>
<tr>
<td>106</td>
<td>118</td>
<td>130</td>
<td>142</td>
<td>154</td>
<td>166</td>
<td>178</td>
<td>190</td>
<td>202</td>
<td>214</td>
<td>226</td>
<td>238</td>
<td>250</td>
<td>262</td>
<td>274</td>
<td>286</td>
<td>298</td>
<td>310</td>
<td>322</td>
<td>334</td>
<td>346</td>
</tr>
<tr>
<td>107</td>
<td>119</td>
<td>131</td>
<td>143</td>
<td>155</td>
<td>167</td>
<td>179</td>
<td>191</td>
<td>203</td>
<td>215</td>
<td>227</td>
<td>239</td>
<td>251</td>
<td>263</td>
<td>275</td>
<td>287</td>
<td>299</td>
<td>311</td>
<td>323</td>
<td>335</td>
<td>347</td>
</tr>
<tr>
<td>108</td>
<td>120</td>
<td>132</td>
<td>144</td>
<td>156</td>
<td>168</td>
<td>180</td>
<td>192</td>
<td>204</td>
<td>216</td>
<td>228</td>
<td>240</td>
<td>252</td>
<td>264</td>
<td>276</td>
<td>288</td>
<td>300</td>
<td>312</td>
<td>324</td>
<td>336</td>
<td>348</td>
</tr>
<tr>
<td>109</td>
<td>121</td>
<td>133</td>
<td>145</td>
<td>157</td>
<td>169</td>
<td>181</td>
<td>193</td>
<td>205</td>
<td>217</td>
<td>229</td>
<td>241</td>
<td>253</td>
<td>265</td>
<td>277</td>
<td>289</td>
<td>301</td>
<td>313</td>
<td>325</td>
<td>337</td>
<td>349</td>
</tr>
<tr>
<td>110</td>
<td>122</td>
<td>134</td>
<td>146</td>
<td>158</td>
<td>170</td>
<td>182</td>
<td>194</td>
<td>206</td>
<td>218</td>
<td>230</td>
<td>242</td>
<td>254</td>
<td>266</td>
<td>278</td>
<td>290</td>
<td>302</td>
<td>314</td>
<td>326</td>
<td>338</td>
<td>350</td>
</tr>
<tr>
<td>111</td>
<td>123</td>
<td>135</td>
<td>147</td>
<td>159</td>
<td>171</td>
<td>183</td>
<td>195</td>
<td>207</td>
<td>219</td>
<td>231</td>
<td>243</td>
<td>255</td>
<td>267</td>
<td>279</td>
<td>291</td>
<td>303</td>
<td>315</td>
<td>327</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>124</td>
<td>136</td>
<td>148</td>
<td>160</td>
<td>172</td>
<td>184</td>
<td>196</td>
<td>208</td>
<td>220</td>
<td>232</td>
<td>244</td>
<td>256</td>
<td>268</td>
<td>280</td>
<td>292</td>
<td>304</td>
<td>316</td>
<td>328</td>
<td>340</td>
<td></td>
</tr>
</tbody>
</table>

Limit of 15 inquiries per request.

NAME ____________________________ CALL ____________________________

ADDRESS ____________________________ STATE ____________________________ ZIP ____________________________

CITY ____________________________

Please use before August 31, 1986

July 1986
INSIDE VIEW - RS-12A

MODEL RS-50A

RM-A Series

MODEL RM-35A

RS-A SERIES

MODEL RS-7A

RS-M SERIES

MODEL RS-35M

VS-M SERIES

MODEL VS-20M

RS-S SERIES

MODEL RS-12S

ASTRON POWER SUPPLIES

- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE -

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mV peak to peak (full load & low line)

RS-4A 3 4
RS-7A 5 7
RS-7B 5 7
RS-10A 7.5 10
RS-12A 9 12
RS-20A 16 20
RS-35A 25 35
RS-50A 37 50

RS-50A 37 50
RS-35A 37 50
RS-50M 37 50

RS-12M 9 12
RS-20M 16 20
RS-35M 25 35
RS-50M 37 50

RS-7S 5
RS-10S 7.5
RS-10L (For LTR) 7.5
RS-12S 9
RS-20S 16

Switchable Volt and Amp meter

VS-20M 16 9 4
VS-35M 25 15 7
VS-50M 37 22 10

Separate Volt and Amp Meters
- Output Voltage adjustable from 2-15 volts
- Current limit adjustable from 1.5 amps to Full Load

Continuous Duty
(Amps)
@12.8VDC @100VDC @60VDC
VS-20M 16 9 4
VS-35M 25 15 7
VS-50M 37 22 10

Built in speaker

Continuous Duty
(Amps)
RS-7S 5
RS-10S 7.5
RS-10L (For LTR) 7.5
RS-12S 9
RS-20S 16

Switchable Volt and Amp meter

Continuous Duty
(Amps)
RS-4A 3 4
RS-7A 5 7
RS-7B 5 7
RS-10A 7.5 10
RS-12A 9 12
RS-20A 16 20
RS-35A 25 35
RS-50A 37 50

VS-20M 16 9 4
VS-35M 25 15 7
VS-50M 37 22 10

Built in speaker

Continuous Duty
(Amps)
RS-7S 5
RS-10S 7.5
RS-10L (For LTR) 7.5
RS-12S 9
RS-20S 16

INSTALL YOUR OWN SATELLITE SYSTEM
SAVE $$ $$ $$
WE CAN FURNISH COMPLETE SYSTEMS OR COMPONENTS

QUALITY AUDIO AND VIDEO COMPONENTS AT DISCOUNT PRICES. CHOOSE FROM SUCH NAMES AS CHAPARRAL, DRAKE, DX, JVC, PANASONIC, ROHN, SANSUI, TRACKER, UNIDEN AND OTHERS.

Volunteer Electronics

CALL OR WRITE FOR FREE CATALOG OR QUOTE

SUBSCRIBE AND RENEW TOLL-FREE

DATATEL 800™
800-341-1522

1 YR - $22.95 2YRS - $38.95
3 YRS - $49.95
Prices U.S. only

For Errors or Change of Address CALL ham radio direct at (603) 878-1441 8-5 EST
extending receive coverage
for the IC-02 and IC-04

Simple, reversible
modifications
let you monitor
public service
frequencies

The ICOM IC-02 (2 meters) and IC-04 (70 cm)
handhelds are a natural step up from the earlier IC-2
and IC-4. Microprocessor controlled, these newer
models feature a liquid crystal display, an S-meter, a
built-in CTCSS (continuous tone-coded squelch sys-
tem), and scanning capability, all in a water-resistant
package that accepts accessories designed for the IC-2
series.

The United States version of the IC-02 transceives
from 140 to 149.995 MHz; the IC-04 will transceive on
the upper 10 MHz of the 70-cm band from 440 to
449.995 MHz. With the simple modifications described
in this article, the IC-02 can be adapted to receive from
140 to approximately 163 MHz; the IC-04 can be modi-
fied to receive up to about 465 MHz. Transmit capa-
bility is unaffected, and any frequency entered will be
properly stored in memory. Because this isn’t a per-
manent modification, each rig can easily be returned
to its original state.

Extending the receive capability of either unit will
let you listen to the public service frequencies (police,
fire, and radiotelephone, for example) located just
above the 2-meter and 70-cm bands. Modifying the
IC-02 also permits reception of National Weather Serv-
ice broadcasts at 162.40, 162.475, or 162.55 MHz in
most metropolitan areas. Receive sensitivity for fre-
quencies this far removed from the 2-meter band is
reduced, but should be adequate for most applica-
tions.

the microprocessor

The IC-02 and the IC-04 are each controlled by a
Hitachi HD44795 80-pin microprocessor which oper-
ates the display, keyboard, and frequency synthesizer.
The processor operating environment is determined
by an initialization matrix (figs. 1 and 2) consisting of
four output and four input lines connected to each
other in a specific pattern with isolating diodes. This
pattern determines processor reset frequency, upper
and lower band limits, step size, method of frequency
entry from the keyboard, and other functions. The
modification procedure described here changes the
initialization matrix to remove the receive frequency
limits as determined by the microprocessor. Receiver
coverage, however, is still limited by the tuning range
of the synthesizer VCO and by receiver sensitivity.

disassembling the units

Before you start, make sure you have a soldering
iron with a very fine tip; you’ll be working with
extremely small components. [If you’ve never worked
with such small components, in such tightly confined
space, you may want to practice first. — Ed.]

Begin by disassembling the battery pack and
antenna from the transceiver. Then remove the bat-
tery mounting plate and locking lever assembly.
Unfasten the five screws holding the metal back cover
to the rig and take off the cover, using care not to
damage the “O” rings that seal the back cover to the
rest of the case. (On the IC-04 only: remove the large
metal shield covering the PLL circuitry.) Now sepa-
rate the chassis and top section and place them next
to the front case; note the ribbon cable connecting
the chassis to the front section. Undo the two screws
on the DTMF/CTCSS board and set the board off to
the other side of the front case (02AT/04AT only). The
unit is now ready for modification.

By Robert K. Morrow, Jr., WB6GTM, RR 1,
Box 6F, Flora, Indiana 46929
initialization matrix

The microprocessor board is identical in the IC-02 and IC-04 except for the diodes attached to the initialization matrix area located at the top left corner of the board (fig. 3). We'll be working with the portion of the matrix connecting microprocessor lines R10-R13 to R20 and R21.

ICOM uses very small three-pin chip diodes — type A3, D3, or E3 (indicated on the diode itself) — to pro-

Fig. 3. Initialization diodes can be located at positions D1-D4, which are found at the top left corner of the microprocessor circuit board. The factory diodes are surface mounted on the triangular pads at D2 and D3 for the IC-02, and at D1 and D2 for the IC-04. The IC-02 is modified by simply removing the diode at position D2. To modify the IC-04, remove the diode at position D2 and replace it with a 1N914-type connected from the top pad (anode) to the lower right pad (cathode).

Fig. 4. These chip diodes are used to initialize the microprocessor on the IC-02/04. Type A3, D3, E3, or no diode at all will be found at various points in the initialization matrix.

Fig. 5. The IC-02 is shown completely reassembled except for the back panel. The test clip is connected to the VCO test point, which is the only vertically mounted resistor in the area with a bare upper lead. The arrow on the VCO shield points to the coil which should be adjusted for 0.75 VDC at the test point.
fig. 6. Graph of sensitivity vs frequency for the IC-02. S1 is also called the squelch sensitivity, and can be considered the minimum useable signal level. S5 is the signal level required to activate five pairs of LCD bars on the transceiver S-meter.

dogram the initialization matrix; in this way component count and size are minimized (fig. 4). Do not confuse diode types with their locations, (D1, D2, D3, D4) printed directly on the microprocessor circuit board. These locations are labeled D401, D402, D403, and D404 on the ICOM schematic, but only for the diodes which are actually present.

IC-02 modification

The IC-02 is factory-wired with a type D3 diode at position D2 and a type E3 diode at position D3. The diode at position D2 restricts the receiver to the 140-151.995 MHz range. Remove this diode with care.

Now reassemble the IC-02, but leave the back cover off. Connect a high-impedance voltmeter to the VCO test point shown in fig. 5, attach the battery pack, and turn on the rig. Select 144.0 MHz from the keyboard. *

Adjust the coil in the VCO shield (lower hole) for a reading of 0.75 VDC. Be sure to use a properly fitting plastic alignment tool (or try whittling down a standard one with a razor blade). This alignment procedure maximizes the receive frequency range by setting the VCO near its lower voltage limit at the lowest transceive frequency desired. The receiver will now operate from slightly below 140 MHz to slightly above 163 MHz, and the transmitter will generate a clean signal throughout the 2-meter band. Figure 6 shows receiver sensitivity for the entire VCO range. Now reinstall the back cover.

IC-04 modification

The IC-04 is factory-wired with a type E3 diode at position D1 and a type A3 diode at position D2. Carefully remove the diode at position D2 and replace it with a 1N914-type silicon diode connected from the top pad at D2 (anode) to the bottom right pad at D2 (cathode). This removes the receive limit portion of the matrix but still initializes the processor at 440 MHz.

Now reassemble the IC-04 except for the installation of the PLL shield and back cover. Carefully peel away the metal tape covering the VCO shield. Connect a high-impedance voltmeter to the VCO test point shown in fig. 7. Attach battery pack, turn on the rig, and select 440.0 MHz from the keyboard. **

Adjust the capacitor through the lower right hole in the VCO shield for a reading of 0.25 VDC. This sets the VCO at its lower limit to maximize receiver coverage.

*This modification is for units with serial numbers below 34,000. Units with serial numbers above 34,000 have a new CPU with different programming; diode matrix is also different. —Ed.

**If the display should power up in the wrong 10 MHz band segment, follow the procedure under "operation" to put the rig in the proper 10 MHz segment, or press reset button on main chassis.
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062

age above the 70-cm band. Note that this voltage is lower than the voltage for the IC-02; this is because of a smaller negative VCO shift in the IC-04 when transmitting. The IC-04 receiver will now operate from slightly below 440 MHz to slightly above 466 MHz, and the transmitter will operate cleanly throughout the upper half of the 70-cm band. (Figure 8 shows receiver sensitivity for the entire VCO range.) Now reinstall the VCO metal tape, PLL shield, and back cover.

operation

With the modification completed, normal transmit/receive capability of the IC-02 and IC-04 is unaffected. Within a particular 10-MHz band segment, the frequency may be selected by direct keyboard entry or by using the step-up or step-down keys. To change to a different 10-MHz segment, use the step-up or step-down keys after entering the highest or lowest frequency within the present band segment. Any frequency entered will store properly in memory. If you select a receive frequency outside the VCO limits the PLL will unlock; no indication of this condition will be given on the display. However, if you push the transmit switch with an unlocked PLL, the display will blink.

conclusion

This simple modification increases the versatility of the IC-02/04 without affecting normal operation. Incidentally, the display and microprocessor will support initialization to the 23-cm (1260-1300 MHz) band. Is this an indication of things to come?

I'll be happy to answer any questions; please enclose an SASE for a prompt reply.

brand new!! just released!!

Explore the world of Microwave communication!
One of Amateur Radio's last frontiers is the microwave region. This book is the first available to give this ever expanding area of Amateur communications unique treatment. Areas covered include: communications equipment for 1.2, 2.3, and 10 GHz, networking and data packeting concepts with special attention to 24 GHz systems, design parameters, rf and environmental considerations and system design suggestions for future growth and modification, projects and much more. You also get information on TVRO and MDS systems with suggestions and ideas on how to build your own. © 1985 184 pages 1st Edition.

brand new!! just released!!

The Radio Amateur's Microwave Communications Handbook
by Dave Ingram, K4TWJ

Ham Radio's Bookstore
Greenville, NH 03048

Please add $3.50 for shipping and handling.
COM-SHACK 64

SIMPLEX or DUPLEX SHACK CONTROL

CONTROL YOUR Yaesu FT 757 or ICOM IC 735 with your H.T.

Simplex or Duplex Control System

AUTOPATCH

TONE OR PULSE CALL, WAITING ANSWER SECOND INCOMING CALL, LAST NUMBER MEMORIZED, VOICE PAGE ON INCOMING CALL *AUTODIAL NUMBER*

H.F. REMOTE

9 MEMORY FREQUENCIES, SCAN UP, DOWN, FAST, SLOW * ENTER OR RECALL ANY FREQ.

CONTROL 8 RELAYS (C58 OPTION) ON/OFF WITH VOICE CONFIRMATION *(FM/AM IC735 ONLY)* KENWOOD SOON

SIMPLEX SYSTEM

MODEL CS64 SIMPLEX

MENU SETS UP ALL TIME WINDOWS, TIME BETWEEN WINDOWS, TIME OUT, ACCESS CODES, CALL SIGN LISTENS FOR CLEAR RFQ BEFORE TRANSMITTING

DUPLEX SYSTEM & REPEATER CONTROL

MODEL CS64R FULL DUPLEX SYSTEM

ALL ABOVE FEATURES PLUS REPEATER CONTROLLER, WITH HANG TIME, COURTESY BEEP, REPEATER ON/OFF, ACCESS CODES, AUTOMATIC VOICE ID, ALL TIMERS SET FROM START-UP

INC SOFTWARE DISK-HARDWARE-CABLES-MANUAL

MODEL CS64 USB/LSB MOD KIT FT757 $29.95

CS-8 LATCH CONTROL OPTION

TURNS UP TO EIGHT DEVICES ON AND OFF WITH VOICE CONFIRMATION WHEN IN THE H.F. REMOTE MODE* 2 DPD2 2 AMP RELAYS INCLUDED & 5 MORE OPEN COLLECTOR 100MA OUTPUTS* PLUGS INTO JOYSTICK PORT* INC 24 PIN Conn

TWO METER REMOTE CONTROL

REMOTE-APAD* ROW-COLUMN KEYPAD CONTROL PLUS 2 FOUR DIGIT SEQUENCE DECODERS (TSD) USE THIS BOARD TO CONTROL ANY 16 DIGIT KEYPAD REMOTELY WITH DTMF SIMPLY HOOK 4 ROWS & 4 COLUMNS FROM YOUR KEYPAD YOU WISH TO CONTROL TO THE RAP-1 *

UNLEASH THE POWER OF YOUR RIG'S MICROCOMPUTER* SCAN, ENTER FREQUENCIES TURN YOUR LINKS ON & OFF, CONTROL KENWOOD 2500/7950 & MORE, ADD 2MTR REMOTE TO CS64

ENGINEERING CONSULTING

CO CS64

589 CANDLEWOOD ST.
BRER CA 92621
TEL: 714-671-2009

<table>
<thead>
<tr>
<th>SUN</th>
<th>05000UT</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.17000M</td>
<td>N6R</td>
</tr>
</tbody>
</table>

ADD

STATE

MC/VISA

EXP

July 1986

TOUCHTONE DECODER KIT

- SS1 201 DTMF RECEIVER KIT
- RECEIVE ALL 16 DTMF DIGITS
- NO ADDITIONAL FILTERING
- OUTPUT BCD OR HEX FORMAT
- LOW POWER DRRAIN (29mA/12V)
- KIT INCLUDES 3.58 MHZ XTAL

4 DIGIT SEQUENCE DECODER (ON/OFF)

- Wired and tested, 5 to 12V.
- User programmable, 50,000 combinations any 16 DTMF tones send code once to turn on; again to turn off.
- Momentary and latching output.
- Custom IC assures high reliability.

DTMF TO RS 232 300 BAUD INTERFACE

Use your computer to decode DTMF touchtones.

- Receive all 16 digits as fast as they can be transmitted.
- Easily program your computer in BASIC to decode multdigit "strings", display digits, sound alarms, observe secret codes.

TWO METER REMOTE CONTROL

ADD 2MTR REMOTE TO CS64

module installs inside the radio in 10 min. Boost audio to nearly one watt!

Loud Now!

ICOM IC-02AT USER'S "AUDIO BLASTER"

NO MORE EYE STRAIN

- Module installs inside the radio in 10 min.
- Boost audio to nearly one watt! *Low power drain (9mA)

COMPLETE INSTALLATION INSTRUCTIONS INCLUDED

CORRECTS THE LOW AUDIO PROBLEM

- 1000's of satisfied customers! For IC-02AT/IC-04AT/IC-2AT

D.They $19.95

More Details? CHECK — OFF Page 110
microwave and millimeter-wave propagation: part 1

Summer is traditionally the time when Amateurs take to the higher bands (and to the hills) for mountaintopping; the weather is agreeable, and the pioneering spirit is spurred on by several major VHF/UHF contests.

Regardless of season, the frequencies above 900 MHz are still the region of exploration and discovery. This is true because, in comparison with the HF/VHF frequencies, so little Amateur work has been conducted there. Until recently, equipment was scarce and anyone interested in exploring microwave frequencies had to "roll their own" equipment.

But this is changing rapidly. Commercial gear is now available through 13 cm (2320 MHz), as are Amateur Gunnplexers for the 3-cm (10-GHz) and 12.5-mm (24-GHz) bands.¹ One equipment manufacturer is rumored to have 3-cm weak signal gear almost ready for market!

Although much has been written on VHF and UHF propagation, information on microwave and millimeter propagation is scattered hither and yon.²³ With all the interest in the microwave bands, the addition of our newest band at 33 cm (902-928 MHz)⁴ and the increased availability of microwave gear, this seems like a good time to start pushing these bands and promoting propagation research.

our microwave bands

Before we can talk about our microwave and millimeter bands we have to know what frequencies are available. I guess it’s fair to say that — in Amateur terminology — the frequencies between 900 and 10,500 MHz are probably best referred to as the microwave bands while the Amateur frequencies above 10.5 GHz are really in the millimeter territory.

The major worldwide Amateur frequency allocations on and above 33 cm were listed in last January’s column.⁵ Since that time, the FCC has implemented the WARC ’79 frequencies and changed the United States frequency allocations significantly. Therefore, I’ve updated last winter’s list, (table 1), to show the latest USA frequency allocations. (I don’t have any post-WARC ’79 worldwide frequency allocation lists to compare it to at this time; I’d appreciate it if readers would share some with me.)

challenges

Once microwave and millimeter gear is constructed or purchased, there’s always the question of what to do with it. Obviously it can be used in a variety of ways such as communications links, ATV, repeaters, or beacons. However, the real challenge is to see what performance can be attained primarily by DXing. This will truly exercise power, receiver sensitivity, and antenna gain to their fullest.

To show the whole perspective of the possibilities of DX on the microwave and millimeter bands, I’ve updated the records first shown here in last July’s column.⁶ Tables 2 and 3 show the worldwide claimed DX records for terrestrial and EME operation. Note that the 13-cm band is still the upper frequency for a completed EME QSO.

In keeping with the spirit of regional DX, the North American DX records have also been updated in table 4. You’ll note that since these records were first published, several have been broken.

Because the 33-cm band didn’t even exist last summer, the DX record on that band can’t begin to compare with the adjacent bands. I expect this, too, will rapidly change. Nevertheless, it offers a big challenge to see what kind of propagation is in store.

Amateur 33-cm gear is already commercially available, though it’s primarily limited to the FM citizens-band type. Information on homebrew gear was recently published in this column⁷; commercial weak-signal gear is, as I indicated above, reportedly just around the corner. Because of the 33-cm band’s proximity to the land mobile communications band, suitable components — especially high-power transmitting tubes — should become available; far more equipment, certainly, than can be expected to be available for the 23-cm band.

microwave and millimeter tradeoffs

These bands offer many advantages over the VHF/UHF bands. First, there’s over 13,000 Megahertz — not counting the unlimited territory above 300 GHz. This is more than 275 times the bandwidth of all of the dozen lower-frequency bands combined! How long do you think it will be before microwave and millimeter wave QRM will be a problem?

These bands have very little noise
and static. Except for a small potential for VCR around 915 MHz, TVI and RFI are virtually nonexistent. Very compact antennas are the norm, with a 1-meter diameter dish considered a moderate to large antenna, especially on 3 cm and above.

Loop Yagis are often used on the lower microwave bands. Parabolic dishes are the most common antenna type as the frequency increases because they're usually inexpensive, easy to feed, low in noise pickup, and have high gain.6,7 As a result, QRP operation (often much less than 1 watt) can be very productive.

There are a few disadvantages, however, to operating on the microwave and millimeter wave bands. The higher antenna gain makes precise aim a serious concern. For example, a 1-meter parabolic dish antenna at 12 mm (24 GHz) has a 45-dBi gain and a beamwidth of only 1 degree!

Other problems are associated with operating above the UHF bands. Solid-state RF power generation is in the early developmental stages. Feedline losses are considerable, propagation modes are somewhat limited, and foliage attenuation and water vapor can also present difficulties.

There is hope, however. Solid-state RF power is rapidly increasing, with power GaAs FETs (up to several watts) now in commercial production. Short feedlines are the norm, with transmitters and receivers often mounted right at or only a short distance away from the antenna feed. And many of the apparent propagation problems can be solved, as we'll see shortly.

microwave propagation

The types of propagation modes available on the microwave and millimeter wave bands are more limited than on the VHF/ UHF bands. Some of the lower-frequency propagation modes such as meteor scatter, sporadic E, F2, TE, and FAI, for example, are not usable.3,4 Other exciting scatter propagation modes are available, however, that may be either poor or simply not feasible on the VHF/UHF bands.

The most common microwave propagation modes are line-of-sight (LOS), tropospheric bending, tropospheric ducting, and EME. Less used but readily accessible are various scatter modes using the troposphere, weather-related phenomena such as lightning and rain scatter, aurora, and both man-made and natural objects.

Because describing the various microwave and millimeter wave propagation modes and how they can best be exploited would take considerable space, only LOS microwave and millimeter-wave propagation will be discussed this month. The other modes will be discussed in detail in next month's column.

line-of-sight propagation

The most common mode of propagation on the microwave and millimeter wave frequencies is probably LOS, for apparently obvious reasons. If two stations' antennas can see each other without intermediate obstructions, it is assumed that communication is possible.

This does, however, assume several things. First, there must be sufficient transmitter power and receiver sensitivity for communication to take place.

Table 1: This table lists the latest USA frequency allocations for Amateur microwave and millimeter wave bands. Many of the listings were recently changed, as indicated in the notes.

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequencies</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 cm</td>
<td>902-928 MHz</td>
<td>Restrictions in CO, WY, White Sands, NM & Region Ill areas. Available as of Sept. 28, 1985.</td>
</tr>
<tr>
<td>23 cm</td>
<td>1240-1300 MHz</td>
<td>1215-1240 MHz removed on March 1, 1986.</td>
</tr>
<tr>
<td>13 cm</td>
<td>2300-2310, 2390-2450 MHz</td>
<td>2310-2390 MHz removed on November 6, 1984.</td>
</tr>
<tr>
<td>9 cm</td>
<td>3300-3500 MHz</td>
<td></td>
</tr>
<tr>
<td>6 cm</td>
<td>5650-5925 MHz</td>
<td></td>
</tr>
<tr>
<td>3 cm</td>
<td>10-10.5 GHz</td>
<td></td>
</tr>
<tr>
<td>12 mm</td>
<td>24-24.25 GHz</td>
<td></td>
</tr>
<tr>
<td>6 mm</td>
<td>47-47.2 GHz</td>
<td>48-50 GHz removed on March 1, 1986.</td>
</tr>
<tr>
<td>4 mm</td>
<td>76-81 GHz</td>
<td>71-75.5 GHz removed on March 1, 1986.</td>
</tr>
<tr>
<td>3 mm</td>
<td>119.98-120.02 GHz</td>
<td>New assignment on March 1, 1986.</td>
</tr>
<tr>
<td>2 mm</td>
<td>142-149 GHz</td>
<td>165-170 GHz removed on March 1, 1986.</td>
</tr>
<tr>
<td>1 mm</td>
<td>300 GHz & up</td>
<td>240-250 GHz removed on March 1, 1986.</td>
</tr>
</tbody>
</table>

Table 2: This table shows the latest claimed worldwide microwave and millimeter wave terrestrial DX records.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Record Holder</th>
<th>Date of QSO</th>
<th>Prop. Mode</th>
<th>DX Miles(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>903 MHz</td>
<td>AF1T-WB1KF</td>
<td>1-13-86</td>
<td>Tropo</td>
<td>53(85)</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>KH6HME-N8CA</td>
<td>6-24-86</td>
<td>Tropo duct</td>
<td>2472(3977)</td>
</tr>
<tr>
<td>2.3 GHz</td>
<td>VK5QR-VK6WG/P</td>
<td>2-17-78</td>
<td>Tropo duct</td>
<td>1170(1883)</td>
</tr>
<tr>
<td>3.4 GHz</td>
<td>VK5QR-VK6WG</td>
<td>1-25-86</td>
<td>ducting</td>
<td>1171(1884)</td>
</tr>
<tr>
<td>5.7 GHz</td>
<td>G32EZ-SM6HYG</td>
<td>7-12-83</td>
<td>ducting</td>
<td>610(981)</td>
</tr>
<tr>
<td>10 GHz</td>
<td>I6SNY/EA9-10YUJ/E9</td>
<td>7-08-83</td>
<td>ducting</td>
<td>1032(1665)</td>
</tr>
<tr>
<td>24 GHz</td>
<td>I3SOV/3,</td>
<td>4-25-83</td>
<td>LOS</td>
<td>180(289)</td>
</tr>
<tr>
<td></td>
<td>IW3EEQ/3 - 148ER/6,</td>
<td>4-25-83</td>
<td>LOS</td>
<td>33(53)</td>
</tr>
<tr>
<td>47 GHz</td>
<td>HB9AM/H-P/HB9MIN/P</td>
<td>6-11-84</td>
<td>LOS</td>
<td>15(24)</td>
</tr>
<tr>
<td>474 THz</td>
<td>K8MEP-WA6EJO</td>
<td>6-09-79</td>
<td>LOS</td>
<td></td>
</tr>
</tbody>
</table>
WE SHIP WORLDWIDE
Barry Electronics Corp.
WORLD WIDE AMATEUR ELECTRONICS SINCE 1950
Your one source for all Radio Equipment!

Kitty Says: We are now open 7 days a week!
Saturday & Sunday 10 a.m. to 5 p.m.
Monday-Friday 9 to 5:30. Thurs. to 5:00.
Come to Barry's for the best buys in town.
ONV Safety belts in stock.

ICT

For the best buys in town call:
212-925-7000
Los Precios Mas Bajos en Nueva York

Rayfield

184 July 1986

THE CHAMP

BIRD MODEL 4304

NO ELEMENTS
25-1000 MHZ
RF SAMPLING PORT

AUTHORIZED
DISTRIBUTOR

WEBSTER COMMUNICATIONS INC.
115 BELLARMINE
ROCHESTER, N.Y. 14603
315-375-0420
CALL TOLL FREE
800-521-2333
800-482-3610

WEBSTER COMMUNICATIONS INC.
115 BELLARMINE
ROCHESTER, N.Y. 14603
315-375-0420
CALL TOLL FREE
800-521-2333
800-482-3610

Please reserve my copy of the 1986 Dick Smith Catalog. I enclose $1 to cover shipping.

Name: ____________________________
Address: __________________________
City: ____________________________
State: ____________________________
Zip: ____________________________

DICK SMITH ELECTRONICS INC.
P.O. Box 2749
Redwood City, CA 94063
EVERYTHING FOR THE ELECTRONICS ENTHUSIAST!
Second, the gain of the antenna at both ends of the path must be sufficient. And third, the weather must be cooperative. (More on this next month.)

But what is sufficient power, sensitivity, and antenna gain? These parameters are all interrelated. If sufficient RF power — say 100 to 1500 watts — is available, the effective radiated power, even from a low-gain antenna (less than 10 dB) will be high.

Conversely, if transmitter power is low, even in the milliwatt range, communication is also possible, providing that the gain of the antennas at both ends of the path is sufficient and that the receiver has sufficient sensitivity. These tradeoffs will be addressed in a future column. This month's column will be limited to a discussion of "path loss," the apparent number of dBs of attenuation that a transmitted signal will incur between two isotropic antennas. This is the standard method used in the communications industry to determine whether there will be a high probability that communications is possible between two stations.

path loss

What is path loss and how is it determined? We all know that as you go higher in frequency, losses become more critical. We also hear that the path losses increase. Yet at the same time, we hear about tremendous DX accomplishments on the microwave frequencies, using low power and relatively small antennas. How can this be?

The main reason for this is the "wavelength factor." As you go higher in frequency, the size of a half-wavelength dipole antenna becomes smaller. Therefore its "capture area" becomes smaller and it consequently picks up less RF. For example, the "effective aperture" of a half-wavelength dipole is approximately 0.75 by 0.25 wavelengths. At 33 cm this represents a capture area of about 32 square inches (0.00017 square meters), a reduction of over 120 times.

It's said that the answer to this dilemma is simple: just increase the capture area of the antenna commensurately and you'll gain back what you lost because of the wavelength of the transmitted signal. This is only partially true. Antenna gain is usually a two-way street, receiving and transmitting (if the same antenna is used for both). Hence, if the antenna size is increased to offset the capture area loss, you gain considerable advantage, depending on frequency.

Herein lies the secret of successful use of low power on the microwave and millimeter frequencies. If the antenna gains is increased sufficiently, the overall signal-to-noise ratio can actually increase for the same transmitter power and receiver sensitivity.

How is the path loss determined?

There are straightforward formulas for this. The most common one is:

$$\text{Path loss} = 37.6 + 20 \log F + 20 \log R \quad (eq\ 1)$$

where path loss is in dB referenced to an isotropic radiator (2.15 dB less gain than a dipole), F is frequency in MHz, and R is range in miles.

If you prefer to work in kilometers, the formula can be modified as follows:

$$\text{Path loss} = 33.6 + 20 \log F + 20 \log R \quad (eq\ 2)$$

where path loss is in dB referenced to an isotropic radiator, F is frequency in MHz, and R is range in kilometers.

For example, the path loss for 10 miles is approximately 116.7 dB at 903 MHz and 137.6 dB at 10 GHz. If the range is increased to 20 miles, the path loss is 122.7 and 143.6 dB, respectively. You'll note that every time the fre-

Table 3: This table shows the latest claimed worldwide microwave EME DX records.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Record Holder</th>
<th>Date of QSO</th>
<th>Prop. Mode</th>
<th>DX Miles(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>903 MHz</td>
<td>None reported.</td>
<td>1-13-86</td>
<td>Tropo</td>
<td>53 (85)</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>K2UYH-VK5MC</td>
<td>12-06-81</td>
<td>EME</td>
<td>10,562 (16,995)</td>
</tr>
<tr>
<td>2.3 GHz</td>
<td>PA0SSB-W6YFK</td>
<td>4-05-81</td>
<td>EME</td>
<td>5491 (8836)</td>
</tr>
<tr>
<td>3.4 GHz</td>
<td>K6HJL/6-W6IFE/6</td>
<td>6-18-70</td>
<td>LOS</td>
<td>214 (344)</td>
</tr>
<tr>
<td>5.6 GHz</td>
<td>K5FUD-K5PJR</td>
<td>9-20-77</td>
<td>Tropo</td>
<td>267 (430)</td>
</tr>
<tr>
<td>10 GHz</td>
<td>WA4GHK/4-WD4NGG</td>
<td>8-07-84</td>
<td>Ducting</td>
<td>297 (478)</td>
</tr>
<tr>
<td>24 GHz</td>
<td>KX00/0, W0MXY/0, NK8P/0, WA8VSL/0</td>
<td>8-24-85</td>
<td>LOS</td>
<td>74 (119)</td>
</tr>
<tr>
<td>48 GHz</td>
<td>W2SZ/1-W2AAM/4, W2S/1</td>
<td>9-08-84</td>
<td>LOS</td>
<td>0.3 (0.5)</td>
</tr>
<tr>
<td>50-300 GHz</td>
<td>None reported.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>474 TzH</td>
<td>K6MEP-WA6EJO</td>
<td>6-09-79</td>
<td>LOS</td>
<td>15 (24)</td>
</tr>
</tbody>
</table>

Table 4: This table shows the latest claimed North American microwave and millimeter wave DX records listed by suspected propagation modes. Note that most of these records are far short of the worldwide claims and therefore offer a great challenge to North American radio amateurs. (Note: the records are listed alphabetically by propagation mode. Where the path is mostly over water, ducting is suspected. No efforts are made to separate out ducting on overland paths, so it's grouped under tropo.)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Record Holder</th>
<th>Date</th>
<th>Prop. Mode</th>
<th>DX Miles(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>903 MHz</td>
<td>None reported.</td>
<td>1-13-86</td>
<td>Tropo</td>
<td>53 (85)</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>K2UYH-VK5MC</td>
<td>12-06-81</td>
<td>EME</td>
<td>10,562 (16,995)</td>
</tr>
<tr>
<td>2.3 GHz</td>
<td>PA0SSB-W6YFK</td>
<td>4-05-81</td>
<td>EME</td>
<td>5491 (8836)</td>
</tr>
<tr>
<td>3.4 GHz</td>
<td>K6HJL/6-W6IFE/6</td>
<td>6-18-70</td>
<td>LOS</td>
<td>214 (344)</td>
</tr>
<tr>
<td>5.6 GHz</td>
<td>K5FUD-K5PJR</td>
<td>9-20-77</td>
<td>Tropo</td>
<td>267 (430)</td>
</tr>
<tr>
<td>10 GHz</td>
<td>WA4GHK/4-WD4NGG</td>
<td>8-07-84</td>
<td>Ducting</td>
<td>297 (478)</td>
</tr>
<tr>
<td>24 GHz</td>
<td>KX00/0, W0MXY/0, NK8P/0, WA8VSL/0</td>
<td>8-24-85</td>
<td>LOS</td>
<td>74 (119)</td>
</tr>
<tr>
<td>48 GHz</td>
<td>W2SZ/1-W2AAM/4, W2S/1</td>
<td>9-08-84</td>
<td>LOS</td>
<td>0.3 (0.5)</td>
</tr>
<tr>
<td>50-300 GHz</td>
<td>None reported.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>474 TzH</td>
<td>K6MEP-WA6EJO</td>
<td>6-09-79</td>
<td>LOS</td>
<td>15 (24)</td>
</tr>
</tbody>
</table>
HOT!

$129.95
(C64 Version)

DIGITAL
STORAGE
OSCILLOSCOPE
And More With The
MB230 WORKSHOP

The MB230 is designed for use with your home or personal computer. It is a complete Electronic Instrument and Electro-Mechanical Workshop which contains Interface Unit, D.C. Motors, Gears, Sensors, Construction Components, Disk Based Software and instructions for 50 sample projects.

Included are:
- Digital Storage Oscilloscope
- Digital Voltmeter
- Digital Speech & Sound (Record/Playback)
- A/D/D/A Conversion
- D.C. Motor Control (Var. Speed)
- Infrared Control
- Motors, Gears, Generators
- Motorized Mechanical Robotics
- Cars, Cranes, Toys, Etc.

The heart of the MB230 Workshop is the B100 Interface Unit which connects to all types of sensors and is able to control lights, motors, relays and other external devices. The MB230 manual contains instructions and instructions for many advanced projects such as antenna positioning and relay control.

Available for the following computers:
- Commodore 64 ($129.95), Apple 2+, 2E ($159.95).
- Atari 800 ($139.95)
- Coming soon for IBM, Amiga, Atari 520ST.

To order or for more information call toll free 1-800-824-2549.
Cashier's check, Money order, VISA, or Mastercard orders accepted.
Order now to avoid delay!

NEMAL ELECTRONICS
2561 South 1560 West
Woods Cross, Utah 84087

DO YOU KNOW WHERE TO FIND REAL BARGAINS on NEW and USED ELECTRONIC Equipment?

You'll Find Them in the Nation's No. 1
Electronic Shopper Magazine

NUTS & VOLTS
Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:
- NEW STATE-OF-THE-ART PRODUCTS
- SURPLUS EQUIPMENT • USED BARGAINS
- LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

☐ One Year - 3rd Class Mail $10.00
☐ One Year - 1st Class Mail $15.00
☐ One Year - Canada & Mexico (in U.S. Funds) $18.00
☐ Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!

SEND: ☐ CHECK ☐ MONEY ORDER ☐ VISA ☐ MASTERCARD

TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name:
Address:
City:
State:
Zip:
Card No.:
Exp. Date:

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited
quency or range is doubled, the path loss increases by 6 dB.

Calculations of path loss are often computer-aided. For those not so inclined, I've prepared fig. 1, which shows at a glance the path loss on each of the microwave and lower millimeter Amateur bands.

summary

This month's column served as an introduction to radio propagation on the microwave and millimeter wave Amateur bands. FCC frequency allocations and DX records were also shown. The latter will quickly reveal the challenges available to the adventuresome Amateur.

Time and space allowed us to investigate only line-of-sight propagation, presently the most common use of these bands. Next month's column will explore the other modes of propagation, with particular emphasis on those useful for DXing. A review of references 2 and 3 is strongly recommended.

short circuits

meteor shower program

In a footnote to W1JR's June column, "VHF/UHF World: Meteor Scatter Communications" (page 68), the address of Gary Field, WA1GRC, was shown incorrectly. Gary's correct address is 5 Pluff Avenue, North Reading, Massachusetts 01864.

solving transmission line problems on the C-64

Gary Myers, K9CZB, author of "Solving Transmission Line Problems on the Commodore 64" (May, 1986, page 74), recently learned that some of the older C64s have an operating system that doesn't poke the graphic symbol in lines 180-240 properly. On these machines, the arrow symbol is generated in the same color as the background, thus rendering it invisible. This won't affect the program's operation, but there will be no visual confirmation that the desired key was pressed.

Gary reports that WB9PGO has devised a program modification that will make the symbol visible on these machines. Those who don't see the graphic arrow after selecting the transmission line type should change line 20 to read as follows:

```
POKE53281,14:PRINTCHR$(147):
POKE53281,6
```

and change the last statement in line 670, which currently reads GOTO70, to GOTO20.

credit where it's due

Credit lines were inadvertently omitted from the art in Walter Kunde's June article, "Direct Currents Reduce Core Permeability" (page 58). All figures appeared courtesy of Magnetics, Inc., P.O. Box 391, Butler, Pennsylvania 16003.
a tone burst generator
for European repeaters

Use 7168 kHz crystals, divided down output for 1750 Hz output

Before a recent trip to Europe, I received licenses to operate and decided to take my ICOM 2AT along with me. While searching through *Radio Communication* and other journals to find information on repeaters, I noticed that most European repeaters must be brought up with a 1750 Hz tone. Obviously my 2AT could not do this.

Looking through the ads, I noticed that ICOM makes a European version of the 2AT called the ICOM 2E. Besides offering coverage from 144 to 145 MHz only, this model appeared to employ either a switch-operated 1750 Hz tone or a 1750 burst at the beginning of each transmission. A phone call to ICOM confirmed this. I considered converting my 2AT to a 2E... but the touchtone pad on the 2AT is located where the burst components would have to be and uses several tracks on the circuit board for different functions. In addition, the tone switch on the 2AT is a push-button switch activated by pushing the volume control; one look into the possibility of removing that control eliminated that idea. I concluded that while conversion would be possible, it wouldn’t be reasonable to make the conversion, use the unit abroad, and then reconvert it when I returned home.

My initial thought was to use a 555 timer. But I wasn’t sure it would survive the trip and still make the 25 Hz frequency tolerance required. Without test equipment, I would be unable to make any repairs while in Europe.

The ICOM service manual for the 2AT showed that the tone burst circuitry consisted of a single integrated circuit, a crystal, and several discrete components. The integrated circuit, which functions as an oscillator/divider, was a TC5082 packaged in a 9-pin single-in-line package with an SK3733 indicated as its replacement. A quick phone call showed the device, also known as an ECG1197, was available locally for under $10.00. It contains a crystal oscillator and divide-by-256, 1024, 2048, and 4096 and is often used in CB radios as a reference oscillator for the PLL.

The final circuit, shown in fig. 1, is almost identical to the ICOM burst generator. A 7168-kHz crystal was used so the divide-by-4096 output would be 1750 Hz. The output was capacitively coupled to the external microphone jack of the 2AT. Since the 2AT requires DC continuity for transmit, the PTT bar on the side had to be pushed for transmit.

Construction was on a small piece of 3-pad-per-hole board. The chip is CMOS, so standard CMOS handling procedures — i.e., using a grounded soldering iron, inserting the chip last, etc. — were used. The case, recycled from an old GE pager, had enough room for the circuit and a 9-volt battery. The press-to-silence switch already on the case was used to activate the burst. A short audio cable coupled the two units.

Tuneup was easy. I just asked a friend to listen to my simplex signal and report on its loudness. I adjusted the pot until the level was approximately the same as my voice or the touchtone pad.

Coupling to another rig should be simple. Since most HTs have external microphone jacks, that should be the way to go. One could build an adapter to enable this unit and the external microphone to be used simultaneously.

By Ladimer S. Nagurney, WA3EEC, 73 Blackberry Lane, Amherst, Massachusetts 01002

-ham radio-
MIAMI'S LEADING YAESU DEALER...
N&G DISTRIBUTING CORP.

FRG 9600
60-905 MHZ Scanner

FT 757 GX
All Mode H.F.
Transceiver

FT 270 R/H
2 Meter 45 Watt
Mobile

FT 209
R/H
2 Meter
5 Watt
H.T.

FRG 8800
General Coverage
H.F. Receiver

N & G Airport
"Right next to Miami Int. Airport."
7201 N.W. 12th St. Miami, Fla. 33126
(Dade) (Broward)
1-(305) 592-9685 1-(305) 763-8170

Our New 17,000 Sq. Ft. Facility
at 1950 NW 94th Avenue in Miami
Will be Open June 15.

NOSOTROS LE ENTREGAMOS SU ORDEN A
cualquier EXPORTADOR, EMBARCADOR, o
al Aeropuerto Internacional de Miami
GRATIS! . . . Llámenos desde cualquier
parte del mundo y le preparemos su
ENVIO a SU PAÍS.
ENCODERS THAT LIGHT

An ultra high quality Touch-Tone® Encoder for absolute reliability and function. Incandescent illumination is a feature that makes night operation easy.

- Completely self contained
- Simple 3 wire connection
- Relay or solid state
- PT output
- Crystal controlled
- Sounder
- Wide voltage range 9-16 VDC
- Wide temp. range -221 to +160°F
- Easy level & timing adjustment
- Supplied with instructions, schematic, template and hardware.

Mail Order To: Pipo Communications
P.O. Box 3435
Hollywood, California 90078
213/932-1516

Want to Advertise in HAM RADIO?
Call Rally Dennis
(603) 878-1441

today for more information
a geomagnetic-ionospheric disturbance

Because the full effects of solar flares and storms will be upon us again in a year or so, a brief review of the solar flare-to-ionospheric storm sequence may be beneficial, particularly for those who’ve joined the DXing ranks since 1982.

Several years have passed since the sun has been active enough to cause concern over the weak signals resulting from geomagnetic-ionospheric disturbances in any great number or intensity. Although one or two disturbances a year have been of the geomagnetic-ionospheric variety, most of those we’ve experienced during the last four years have been mild solar wind enhancements. However, single events — such as that witnessed from the 5th through the 10th of February, 1986 — do occur unexpectedly.

When a sunspot region flares or brightens, ultraviolet and x-rays cause increased ionization in the D and E regions of the ionosphere. Signals are immediately weakened on the daylight side of the earth. This sudden ionospheric disturbance lasts about an hour. With the eruption of the flare, many solar particles (protons and electrons) ejected into the solar wind start toward the earth along a spiral path toward the polar regions. The higher-energy protons arrive within approximately one to five hours, causing polar cap absorption — even blackout — of signals crossing the top and bottom of the earth above 80 degrees latitude during each period of daylight for a couple of days. The more numerous, but slower, electrons arrive within 20 to 30 hours; their arrival often causes a shock wave which suddenly begins to move the geomagnetic field around, then lasts for two to three days. This phenomenon is called SC, or “sudden commencement.” The presence of many particles results in further weakening and level fluctuation of signals as a result of movement in the auroral zone (70 to 80 degrees latitude).

The ionospheric F region is affected after the SC, first by an increase in maximum usable frequency (MUF) for a few hours over the transmission path that’s in sunlight. Over the path that’s in darkness, the MUF decreases from the auroral latitudes southward, depending upon the intensity of the storm. (See the MUF distribution tables in the January and February, 1986, columns.)

Figure 1 provides a graphic representation of the effects of the February 1986 ionospheric disturbance. The top curve (fig.1A) is the percentage change in foF2; the middle curve (fig. 1B) is the solar flux value; the lower curve (fig. 1C) is the geomagnetic A index for each day during February. By looking at each day individually and then reading across the days, one can see the storm variation. To see how the storm actually developed from February 5th to the 10th, see table 1, which shows the percentage of foF2-MUF change, and in parenthesis the geomagnetic K figure associated with that 2-hour period. The median foF2 for that hour of the month is indicated in the bottom line of the table.

The storm MUF decrease was probably not as extreme as the geomagnetic field A and K figures indicate because the solar flux was high and the initial SC 1313 UT was coincident with sunrise, the foF2 rise of the day. A second SC was on the 7th at about 0500 UT; the main decrease in foF2-MUF began about 1100 UT with the large K figures. The 8th, which was a Saturday, was particularly bad, as anyone trying to communicate over any significant distance will remember. Several days later MUFs returned to normal. Such is the morphology of a geomagnetic-ionospheric disturbance.

last-minute forecast

The higher frequency bands, 10 through 20 meters, are expected to improve during the first week of the month. They should be best during the
second and third weeks, when the solar flux 27-day maximum is expected. Though still not very good, the lower bands will be best during the fourth and last weeks of the month. Disturbances are more probable on the 3rd to the 4th, the 17th to the 18th, and on the 23rd through the 25th during the solar flux transition and minimum time periods. Lunar perigee (closest approach of the moon) is on the 19th, with a full moon occurring on the 28th. The Aquarids meteor shower begins July 18, peaks on the 28th, and lasts until August 7. The radio-echo rate at maximum is expected to be about 34 per hour.

band-by-band summary

Six meters will have occasional openings to South Africa and South America around local noon via E_s short skip. These can occur at any time of the month and favor a five-to-six day cycle.

Ten and fifteen meters will have many short-skip openings near local noontime and long-skip, especially during any solar flux rise, to most southern areas of the world during daylight. No long-hop transequatorial openings are expected to occur at this time of the year.

Twenty, thirty, and forty meters will have DX conditions from most areas of the world during the daytime and into the evening almost every day, either long-skip to 2500 miles per hop or short-skip E_s to 1000-mile hops. The length of daylight is still near maximum, providing many hours of high maximum usable frequencies for good DXing.

Thirty, forty, eighty and one-sixty meters are all good for nighttime DX if you can beat the buildup of thunderstorm ORN in the evenings. Some enhanced signal strength levels via short-skip E_s may help overcome the noise. Some operators get up during the predawn hours, after the thunderstorms have dissipated, taking advantage of quieter conditions to the east. Time-and-frequency station MSF, in Rugby, England, can be used to monitor 2.5 and 5 MHz for band conditions.
| JULY | 0000 | 0100 | 0200 | 0300 | 0400 | 0500 | 0600 | 0700 | 0800 | 0900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 0000 |
|------|
| ASIA FAR EAST | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 20 | 20 | 20 | 30 | 20 | 20 | 30 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| EUROPE | 20 |
| S. AFRICA | 20 | 10 |
| S. AMERICA| 20 | 12 |
| ANTARCTICA| 20 | 30 |
| NEW ZEALAND| 20 |
| OCEANIA AUSTRALIA | 20 | 10 |
| JAPAN | 20 |

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

Look at next higher band for possible openings.

The table above is a time duration chart for ham radio communications, detailing the band recommendations for various regions at different times of the day. The chart includes entries for Asia Far East, Europe, South Africa, South America, Antarctica, New Zealand, Oceania/Australia, and Japan, across different time zones and frequency bands.

July 1986
SWL's: Are You Plagued By Phantom Signals?

Meet the Eliminator.

Don't let its small dimensions (4"x3"x2") fool you—the Grove Minutuner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the 100 kHz-30 MHz frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

Grove Enterprises
140 Dog Branch Road
Brasstown, N.C. 28902

MC, Visa or COD call:
1-800-438-8155

Shop Grove for fantastic values in shortwave receivers, antennas, cable, performance boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!

1986 Summer Radio Amateur Call Book Supplement

$9.95 + $3.50 shipping
Send $13.45 to:
Ham Radio's Bookstore
Greenville, N. H. 03048

33 cm. • 23 cm. • 13 cm.

You NEED CURLYCODE because to learn:
• An exciting NEW learning experience:
 • Each code WORD grows an "unforgettable" letter shape in your mind's eye.
 • Each sound ADDS to the growing letter shape.
 • So all LETTERS that start the same way
grow SHAPES that start the same way.
 • Your LISTENING brain is now the perfect KB in the trapped letters.
 • When the LETTERS stop, the SHAPE stops, and it is the letter, so just WRITE IT!

• Perfect for BEGINNERS: 60 senseless study - "CURLY CODE" shape and nonsense. Know only EIGHT shapes and you know half of EVERYTHING and most of the LETTERS.
 • Know only TWO new endings for each shape and you will know everything!

IT'S LIKE "INSTANT CODE!"

• Perfect for EXPERTS: no struggling to break your "learning plateau"
• once you know the CURLYCODE shapes they are part of your mind's eye at any speed.
 • So take some time to REALLY KNOW the eight basic CURLYCODE shapes at slow speed to be well on your way to breaking your plateau.

IT'S LIKE "SUPERSONIC CODE!"

• Price for CLUBS: Attractive colored wall chart.
 • SAVE with a 10% discount on ten or more wals!

PRICE: Complete set (Manual, Wall chart, Packet card, Beginner's chart). $7.50
Money back guarantee. Phone (704)480-8088

MINDS Publications, Dept. H-15
Suite 113-119
1350 Beverly Rd.
McLean, VA 22101

Tell 'em you saw it in HAM RADIO!
THE FIRST NAME IN ELECTRONIC TEST GEAR

Save $30 on the RAMSEY 20Mhz Dual Trace Oscilloscope
Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope compares to others costing hundreds more. Features include a component test circuit for resistor, transistor, capacitor and diode, digital circuit and diode testing, TV video sync filter, waveform analyser and test chart. STRONG SALE!

NEW RAMSEY 1200 VOLTS MULTITESTER
Check transistors, diodes and LEDs with this professional quality meter. Other features include, digital scale, 20kV voltmeter system, 3/4" illuminated scale, polarity switch, 20 measurements, safety probes, high quality plastic case.

MINI-KITS—EASY TO ASSEMBLE, FUN TO USE BEGINNERS & PROS WILL HAVE A GREAT TIME WITH THESE KITS

MINI-100 FREQUENCY COUNTER
Features and capabilities of counters costing twice as much. Digits, scale, sensitivity, display, low power consumption and lead zone. Includes 7 MHz 15M Hz 100 MHz range, diode probe, 7 digit display.

PR-2 COUNTER PREAMP
The most versatile for less than $300. Features 3 selectable gain times 5 digits, display, low power consumption and lead zone. Includes 7 MHz 15M Hz 100 MHz range, 6 digit display, 6 digit display.

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna—BNC plug $5.95
High impedance probe, light loading $16.95
Low pass probe, audio use $16.95
Direct probe, general purpose use $16.95
Tilt ball, for CT-70, 90, 125 $3.95

PHONE ORDERS CALL 716-586-3950
TELEX 467537 RAMSEY CI

RAMSEY ELECTRONICS, INC.
2575 Baird Rd.
Penfield, NY 14626

July 1986

NEW 35 MHZ DUAL TRACE OSCILLOSCOPE
A heavy duty and accurate scope for service as well as production use. Features include wide frequency range, high sensitivity, low current drain, memory, single sweep, 5X magnification, and alarm. Includes 2 probe models.

NEW 15 MHZ DUAL TRACE PORTABLE OSCILLOSCOPE
Ideal for field bench applications, this scope can display up to 15 MHz signals, with battery pack allows up to 2 hours operation at a charge. Features include built-in battery charger, 5X horizontal magnification, high brightness CRT, front panel trace generator, internal rechargeable battery pack.

DAM-700 DIGITAL MULTIMETER
Professional quality at a breakthrough price. Features include 6 digit display, 5 digit linear, and 5 function and 1 sales. Includes 31 single channel digital displays, automatic measurement, automatic polarity and automatic range selection.

PS-2 AUDIO MULTIPLEXER
The PS-2 is ready for high resolution audio measurements. Multiples up to 24 VAC, DC, +5 VDC. Excellent load regulation, high fidelity, and small size. Requires 8-Bit and 24 VCT Complete kit $125.95

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna—BNC plug $5.95
High impedance probe, light loading $16.95
Low pass probe, audio use $16.95
Direct probe, general purpose use $16.95
Tilt ball, for CT-70, 90, 125 $3.95

PHONE ORDERS CALL 716-586-3950
TELEX 467537 RAMSEY CI

RAMSEY ELECTRONICS, INC.
2575 Baird Rd.
Penfield, NY 14626

July 1986

NEW RAMSEY D-4100 COMPACT DIGITAL MULTITESTER
Compact sized reliability and accuracy. This LCD digital multitester easily fits in your pocket. It can be used for testing in a variety of conditions, such as moisture, lightning, and high temperature. Features include a built-in digital voltmeter, 200 ohm resistance, 20 megohm insulation, and AC and DC current measurements.

MINI-100 FREQUENCY COUNTER
Features and capabilities of counters costing twice as much. Digits, scale, sensitivity, display, low power consumption and lead zone. Includes 7 MHz 15M Hz 100 MHz range, 6 digit display, 6 digit display.

PR-2 COUNTER PREAMP
The most versatile for less than $300. Features 3 selectable gain times 5 digits, display, low power consumption and lead zone. Includes 7 MHz 15M Hz 100 MHz range, 6 digit display, 6 digit display.

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna—BNC plug $5.95
High impedance probe, light loading $16.95
Low pass probe, audio use $16.95
Direct probe, general purpose use $16.95
Tilt ball, for CT-70, 90, 125 $3.95

PHONE ORDERS CALL 716-586-3950
TELEX 467537 RAMSEY CI

RAMSEY ELECTRONICS, INC.
2575 Baird Rd.
Penfield, NY 14626

July 1986
SUPER LOG

the entry Super Log also allows you to...
Get lightning, EMP and static protection for receivers, transceivers, amplifiers...

With EMP Series Transi-Trap® Surge Protectors

Model R-T and LT EMP Series Arc-Plug® cartridges are designed to protect against nuclear electromagnetic pulse (EMP), as well as lightning surge voltages.

The EMP Series design is based on the National Communications System Technical Information Bulletin 85-10 covering EMP protection for communications equipment. All Transi-Trap Protectors feature "isolated ground" to keep damaging arc energy from the chassis.

Don't hook up your coax without one!

The 200 W models are most sensitive, best for RCVRS and XCVRS. 2 kw models designed for amplifiers. For maximum protection use both, with 200 W model between XCVR and AMP. All models include replaceable Arc-Plug cartridge and are designed for 50 ohms.

UHF "T-type" Connectors, for use through 30 MHz:
- MODEL LT, 200 W $19.95
- Super Ruggedized Super Low Loss Models (0.1 dB at 500 MHz), for use through VHF/UHF, with UHF connectors:
 - MODEL R-T, 200 W $29.95
 - MODEL HV, 2 kW $32.95

At your Alpha Delta dealer. Or order direct in U.S.: add $2 for postage and handling. MasterCard and VISA accepted. Ohio residents add Sales Tax. See Data Sheet for surge limitations.

CANOPIES

All weather protection for outdoor shows
- SLANT, PEAK OR FLAT ROOF
- FREE STANDING - FAST SET-UP
- NO TOOLS REQUIRED
- SNAPS TOGETHER
- WHITE OR BLUE TARPS
- FITS IN THE TRUNK OF A CAR
- JOINTS & PARTS
- PACKAGE COMPLETE - READY TO USE
- MONEY BACK GUARANTEE

Free brochure on request
- DEPT. H
- P.O. Box 261
- Highwood, IL 60040
- (312) 433-0106

MICROWAVE EQUIPMENT

For easy test and adjustment of 2.3 GHz microwave amplifiers.

- Gain vs frequency display for RMBLA-2.3 2.3 GHz amplifier with 2.3 GHz center frequency, 100 MHz horizontal and 5 MHz vertical sensitivity.
- An RMSWG-2.1-3.0 Sweep Generator - $144.00
- RMSLG-2 Detector - $24.00
- RMSL-2 Line Stretcher/ dc return - $19.00
- 20 & 30 ft. RG-58 cables (attenuators) and an oscilloscope with 5 MHz vertical sensitivity were used in this test.
- 2.3 GHz Bipolar Amplifier (RMBLA-2.3) +12 VDC, Greater than 14 dB gain at 2.3 GHz - $45.00
- 2.3 GHz GasFet Amplifier (RMBLA-2.3) +12 VDC, Greater than 14 dB gain at 2.3 GHz - $60.00
- 2.3-2.45 GHz Signal Generator (RMSG-2) 8-30 VDC - $55.00
- Prices include postage/handling. All orders includes check or M.O. FOB Brookfield, NO for C.O.D. or charge orders

ROENSC MICROWAVE
- R.R. 1, Box 156B, PH: 816-855-5431
- BROOKFIELD, MISSOURI 64428

SPECIALIZED COMMUNICATIONS FOR TODAY’S RADIO AMATEUR!

If you are ACTIVE in FSTV SSTV, FAX, OSCAR, PACKET, RTTY, EME, LASERS, TVRO, or COMPUTERS, you need "THE SPEC-COM JOURNAL™"

Published 10 Times Per Year By WBØQCD

CALL TOLL-FREE 1-800-628-2828 ext. 541

...and place your subscription order today! Our membership Services HOTLINE is good for all 50 U.S. States including Hawaii & Alaska and ALL of CANADA! U.S. subscriptions $20 per year. Foreign slightly higher. A Master Article Index Special Issue is available for $3.00 postpaid.

THE SPEC-COM JOURNAL
- P.O. BOX H
- LOWDEN, IOWA 52255

Credit Card Orders (5% added)
Iowa Residents Add 4% State Sales Tax
personal pocket DMM

This compact, inexpensive, new instrument from North American Soar features simplicity of operation and rugged design. The fully autoranging Model 3010 doesn’t require fuses because it’s electronically protected from operator misuse. Even applying 250 volts AC to this meter in the ohms position won’t hurt it.

Several features, such as permanently mounted test probes that can’t be lost or connected incorrectly, have been added to ensure good performance in the field. The lightweight design, durable ABS plastic housing, and the carrying case all afford “drop-proof” protection at modest cost: only $29.95. For further information, contact North American Soar Corporation, 126 Cornell Avenue, Cherry Hill, New Jersey 08002.

Circle #302 on Reader Service Card.

new IC-28A and IC-28H 2-meter mobiles

ICOM has announced the availability of the new IC-28A 25-watt and IC-28H 45-watt packet-compatible 2-meter rigs with all the features necessary for mobile operation. These features include compact size (the IC-28A measures 5 1/4 x 5 1/2 x 2 inches, the IC-28H 7 1/4 x 5 1/2 x 2 inches) and a large LCD readout with an automatic dimmer circuit to reduce brightness.

The units operate from 138-174 MHz, with specifications guaranteed from 144.00-148 MHz, making them ideal for MARS and CAP operation. Twenty-one memory channels are included. It’s possible to scan the entire band or the memory channels from the provided HM-12 mic. Easy to operate, each unit features only 11 front panel controls.

Options include the IC-HM14 DTMF mic, PS-45 13.8-V, 8A-power supply, UT-29 tone squelch unit, SP-10 external speaker, HM-16 speaker mic and HS-15/HS-15SB flexible boom mic, and PTT switchbox.

For information, contact ICOM America, Inc., 2380 116th Avenue N.E., Bellevue, Washington 98009-9029.

Circle #303 on Reader Service Card.

antenna switch

MFJ Enterprises, Inc., is now producing the MFJ-1701, a six-position antenna switch that allows switching antennas with the turn of a knob. It organizes tangles of coax cables and eliminates the need to keep plugging in and unplugging cables.

The MFJ-1701 retails at an affordable $29.95 (plus $5.00 shipping and handling). The equipment is mounted in a rugged, yet handsome, black aluminum cabinet that matches most rigs.

This six-position antenna switch has SO-239 connectors, negligible insertion loss, low VSWR, and low crosstalk between adjacent outlets. All unused terminals are automatically grounded for static/lightning/RF protection. The MFJ-1701 can be used for 52- to 75-ohm systems and can be mounted with equal ease on a desk or on a wall. In addition, the MFJ-1701 handles 2000 watts SSB or 1000 watts CW.

This product is backed by MFJ’s one-year unconditional warranty. If ordered directly from MFJ, it has an additional 30-day guarantee — return it within 30 days for a full refund (minus shipping and handling) if not completely satisfied.

For details, contact MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, Mississippi 39762.

Circle #304 on Reader Service Card.

new amateur equipment from Heath

Four new Amateur Radio kit products have been introduced by Heath Company, the world’s largest manufacturers of high-technology electronic kit products. The new products are the HD-1420 VLF Converter, HD-1422 Antenna Noise Bridge, HD-1424 Active SWL Antenna, and the HD-1530 Touch-Tone Decoder.

The HD-1420 Very Low Frequency (VLF) Converter allows a standard shortwave receiver to tune the 10 to 500 kHz band using the receiver’s 3.5 to 4.0 MHz band.

The HD-1422 Antenna Noise Bridge is a useful antenna tuning aid which reveals the cause of any mismatch between a station’s transmitter and its antenna.

The HD-1424 Active SWL Antenna allows a shortwave radio to receive signals between 300 kHz to 30 MHz.
NEW!

Antennas

<table>
<thead>
<tr>
<th>BUTTHERT</th>
<th>80-10 vertical</th>
<th>120.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP2V</td>
<td>80-10 horizontal</td>
<td>110.00</td>
</tr>
<tr>
<td>HP6</td>
<td>80-20 vertical</td>
<td>52.95</td>
</tr>
<tr>
<td>2MCYS</td>
<td>2MC vertical</td>
<td>52.95</td>
</tr>
<tr>
<td>7MCYS</td>
<td>7MC vertical</td>
<td>52.95</td>
</tr>
<tr>
<td>7MSYS</td>
<td>root mig kit.</td>
<td>41.15</td>
</tr>
<tr>
<td>TBR16DS</td>
<td>160m add on</td>
<td>5.50</td>
</tr>
<tr>
<td>NMD</td>
<td>paid post</td>
<td>5.50</td>
</tr>
<tr>
<td>ANS</td>
<td>more!</td>
<td></td>
</tr>
</tbody>
</table>

C/LASHERT

4	4 et triband	224.00
3T	3 et triband	342.00
3T150	15.10 remote tuned	275.95
AS2	10 band trap	209.50
AS19	19 et. 2m booster	98.95
215WB	15.16 wide band 2m	79.95
41B	24 et. 70cm booster	82.95
41TD	16 et. OSCAR 435	45.95
NMD	60.00	
A-141/10T	10 et. OSCAR 145	53.00
AP-1	OSCAR pack 2m	170.00
ARX	2m vert. range	27.00
AIFG2	2m vert. range	27.00
AIFG2O	2m vert. range	30.00
HUSTLER	6GBT	
6GBT	6 band trap	129.00
5RTB	5 band trap	109.00
4GRTB	4 band trap	84.95
GP1-144	fix. stat.	
2M1C	collinear	116.95
MO1M2/3	mobile mast	21.95
FR15M15	15m bos. mast	16.75
RM10M150S	super resonator	16.95
RM20M200S	super resonator	16.95
RM30M300S	super resonator	16.95
RM40M400S	std and std.	17.95
RM75M750S	75 and std	18.95
RM75M750S	75 and std.	18.95
BM1	booster mt	17.95
SSM1	stainless bull mt	28.95
SSM2	stainless bull mt	28.95
OD-1	quick disconnect	13.95
SGM-2	2m/5 mag. kit.	28.95
RX7	trimmers w/ switch	28.95
ANS5	more!	

RTTY-AMTOR Packet

RTTY-_AMTOR_PACKET EBE is one of the few Amatuer dealers that actually demonstrates the latest tech equipment. We test each item and only sell what we feel comfortable with. If you are considering Packet, call and we'll tell you the best. (Ask for Scott, WR4G or Ted, AA4MG at 703-938-3350. If you are in the DC area, stop in and visit our dedicated RTTY room.

PAKRTK PK-64-World's Best Price/Performance Ratio The Pakrtk 64 is the world's first five mode in one Amateur Radio smart data controller $219.95 NEW PK-80 Packet Controller Utilizes TAPPII board -factory wired for all Keyboard on top of the board. Now at $214.95 CP-1 AEA Computer Patch Interface Connect your personal computer to a PC through a loaded RTTY station w/ the CP-1. One of the most powerful packet software and user interface AEA4G. Now available for the Commodore 64. AEA4G also available with Caron and its keyboard on the market. AEA4G also available with a Commodore 64. AEA4G also available with a Commodore 64. AEA4G also available with a Commodore 64.

Antennas

<table>
<thead>
<tr>
<th>BUTTHERT</th>
<th>80-10 vertical</th>
<th>120.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP2V</td>
<td>80-10 horizontal</td>
<td>110.00</td>
</tr>
<tr>
<td>HP6</td>
<td>80-20 vertical</td>
<td>52.95</td>
</tr>
<tr>
<td>2MCYS</td>
<td>2MC vertical</td>
<td>52.95</td>
</tr>
<tr>
<td>7MCYS</td>
<td>7MC vertical</td>
<td>52.95</td>
</tr>
<tr>
<td>7MSYS</td>
<td>root mig kit.</td>
<td>41.15</td>
</tr>
<tr>
<td>TBR16DS</td>
<td>160m add on</td>
<td>5.50</td>
</tr>
<tr>
<td>NMD</td>
<td>paid post</td>
<td>5.50</td>
</tr>
<tr>
<td>ANS</td>
<td>more!</td>
<td></td>
</tr>
</tbody>
</table>

C/LASHERT

4	4 et triband	224.00
3T	3 et triband	342.00
3T150	15.10 remote tuned	275.95
AS2	10 band trap	209.50
AS19	19 et. 2m booster	98.95
215WB	15.16 wide band 2m	79.95
41B	24 et. 70cm booster	82.95
41TD	16 et. OSCAR 435	45.95
NMD	60.00	
A-141/10T	10 et. OSCAR 145	53.00
AP-1	OSCAR pack 2m	170.00
ARX	2m vert. range	27.00
AIFG2	2m vert. range	27.00
AIFG2O	2m vert. range	30.00
HUSTLER	6GBT	
6GBT	6 band trap	129.00
5RTB	5 band trap	109.00
4GRTB	4 band trap	84.95
GP1-144	fix. stat.	
2M1C	collinear	116.95
MO1M2/3	mobile mast	21.95
FR15M15	15m bos. mast	16.75
RM10M150S	super resonator	16.95
RM20M200S	super resonator	16.95
RM30M300S	super resonator	16.95
RM40M400S	std and std.	17.95
RM75M750S	75 and std	18.95
RM75M750S	75 and std.	18.95
BM1	booster mt	17.95
SSM1	stainless bull mt	28.95
SSM2	stainless bull mt	28.95
OD-1	quick disconnect	13.95
SGM-2	2m/5 mag. kit.	28.95
RX7	trimmers w/ switch	28.95
ANS5	more!	

Radios

ALNICO ALR-206T

ATM

ALNICO ALR-207T

SALE $ CALL

DON'T buy any RTTY until you study this fantastic unit. Programmatically identical to ALR-206T, also available with fully featured scan, memory, 5 watts, 2 sub audio tones. Requires 140 MHz.

ICOM R7A HP—High Performance

ED

New software for RC-850 repeater controller

Advanced Computer Controls, Inc. has announced Version 3.4 software that adds many new features to repeater systems.

The controller's autopatch is enhanced to support multiple telephone lines, including up to three remote phone lines linked by radio. Remote phone lines allow autopatch and autodial services on repeaters at inaccessible sites and allow the repeater's patch coverage to match its RF coverage, with calls automatically directed to the proper site.

Additional access and control modes allow custom tailoring of PL and touchtone access to the repeater. Eight hundred individual user access codes may be enabled and disabled by the repeater owner, for secure controlled access to selected functions.

Four links or remote bases are supported, with touchtone command entry permitted from the remote. Remote phone lines allow autopatch and autodial services on repeaters at inaccessible sites and allow the repeater's patch coverage to match its RF coverage, with calls automatically directed to the proper site.

Numerous additional paging formats are supported for selective call to users with decoders or paging receivers. New formats include five-
new Transi-trap™

Alpha Delta has just announced availability of a new improved version of its Transi-trap™ electrical surge protector.

The Transi-trap “Arc-plug” has been re-designed to meet industrial and governmental protection standards for protection against Electromagnetic Pulse (EMP), in accordance with the National Communications System report, NCS TIB 85-10. The new “Arc-plug” has a DC clamping level of 350 volts to provide proper transmitter protection. The pulse clamping level (per NCS EMP test: 4,500 volts at 50 ohms) is 230 volts. The unit will respond in 80 to 100 nanoseconds and has a very low interelectrode capacitance of less than 1 pF.

For more information, contact Alpha Delta, P.O. Box 571, Centerville, Ohio 45459.

Circle 1308 on Reader Service Card.

Kantronics Packet Communicator II™

The complete Kantronics Packet Communicator II (KPC-2) is an AX.25 Version 2.0 TNC that features a completely new design, the latest in technology updates, and over 100 software commands. A serial RS232 or TTL port allows connection to any computer. KPC-2 is also compatible with existing TNCs. The unit is ready to use and easy to operate.

Priced at $219, the KPC-2 is compatible with any computer having a serial, asynchronous I/O. It offers standard computer-to-communicator baud rates between 300 and 9600, and packet radio baud rates of 300, 400, 600, and 1200.

Software selectable VHF and HF modes are included. Six software selectable tone pairs including Bell 103, 202, CCITT V.21, and CCITT V.23, and full duplex capability are also featured. Full 16K is RAM standard, with memory expandable to 32K RAM.

Any terminal or communications software program can be used to establish communication between your computer and the KPC-2.™ Kantronics offers Pactor™, a special packet terminal program for many popular computers.

Power supply, connectors, and cables are provided with the KPC-2, but the user must supply the transceiver mic jack and the computer RS232/TTL connector.

For information contact Kantronics, Inc., 1202 E. 23rd Street, Lawrence, Kansas 66046.

Circle 1307 on Reader Service Card.

hidden signals

Universal Electronics has announced the release of the second edition of The Hidden Signals on Satellite TV, the first book to completely cover the field of non-video satellite services carried on domestic satellites.

These services include stereo subcarriers, telephone channels, world news and press services, Teletext, and other VBI Systems, Single Channel Per Carrier (SCPC) Systems, plus other data and business services.

Hidden Signals deals with all phases of this expanding side of the satellite business: the systems, how they work, who uses them, how they are received, and how the services can be utilized. Despite its sophisticated content, the illustrated 240-page book is easy to read and understand.

The book is available for $19.95, plus $2.00 shipping and handling from Universal Electronics, Inc., 4555 Groves Road, Suite 13A, Columbus, Ohio 43232. (Also available from Ham Radio’s Bookstore, Greenville, New Hampshire 03048 for $19.95 plus $3.50 shipping and handling.)

Circle 1309 on Reader Service Card.

ICOM REPEATER PROGRAM UPGRADE

The RPS-1 is an entirely new repeater program written for the ICOM REPEATER controller board that will add NEW FEATURES and CUSTOM PROGRAMMING to your ICOM RP-150, RP-10, and RP-30. The RPS-1 will take your generic sounder repeater and give it a whole new personality.

New CW ID operation provides two separate CW ID messages, and can include city/state, or club name. Plus the CW messages are sent at the speed you request. The new Courtesy Beep tone prompt al lows a short courtesy wait period before beeping and resetting the timed timer — while the repeater transmitter stays on. New transmit operation clears immediately with no down delay, and provides CW warning messages to reduce confusion. Custom programming of all cw and tone parameters.

The ICOM REPEATER is a well built, reliable repeater, and adding the PROCESSOR CONCEPTS RPS-1 will add new features and personalized programming to make a good repeater even better.

• TWO SEPARATE CW ID MESSAGES
• FREE TIME-Out CW WARNING MSG
• POST TIMEOUT CW MSG
• DIRECT IDMP CPMPLACEMENT
• COURTESY BEEP TONE PROMT
• TIMEOUT RESET ON BEEP
• CHOICE OF CW ID SPEEDS
• EASY TO INSTALL

RPS-1 PROGRAMMED MEMORY and MANUAL only $74.00 plus $3.00 shipping.

PROCESSOR CONCEPTS

P.O. BOX 32908
MINNEAPOLIS, MN 55432
(612) 780-0472 7 pm-10pm evenings
CALL OR WRITE FOR FREE SPECIFICATIONS AND PROGRAMMING ORDER SHEET

ATU

This converter covers all the 400-445 MHz ATV frequencies. This converter uses a crystal reference lock onto the 435-25 MHz standard service - a second channel at 421.25 or 436.25 MHz. This converter also supports a manual tuning mode for non-standard frequencies. The V output can be conformed for channel 2 or 3. This ATV module is small and only requires 12VDC. A small 12V transformer is supplied with this assembled and tested converter.

This converter uses a full-featured RF stage with a highly selective band-pass filter that will cut out strong UHF, TV and other strong out-of-band signals.

Typical rejection @ 500 kHz is >500 db, 1000 kHz > 65 db, and 1844 MHz > 60 db or greater. The pass-band is 400-445 MHz. Voltage regulation is very stable under varying DC input. Conversion gain is approximately 20 dB with input and output surge protection. Input is via type “T” connector. Output is via a type “T” connector. Size is 5.125” x 5.5” x 1.5”.

$96.50

QUANTITY PRICING AVAILABLE FOR GROUP PURCHASES

TECHNICAL DEVELOPMENT SYSTEMS

3608 CHARLES STREET
FORT WORTH, TEXAS 76118
(817) 284-4290

TERMS: money order, certified check, UPS cash COO. Allow 2 weeks for personal or company checks to clear. Add $4.50 for shipping & handling. Texas add 5.125% state sales tax.

MULTI-BAND SLOPERS

Also Dipoles and Limited-Space Antennas.

Box 210, 1923 N. Leona, Laredo, Texas 78041

CALL OR WRITE FOR FREE SPECIFICATIONS AND PROGRAMMING ORDER SHEET

ANTENNAS

Starline Antennas

200 W. pornstar, 11,5005

July 1986 ASY YOU SAW IT IN HAM RADIO
REALLY cramped for space?
Want a 10, 15 or 20M concealable or portable antenna?
Want a "bird dog" for your beam?
Want 40M in a small space?
Want to try the new WARC bands?

MICROLOOP

These compact monoband loops provide omnidirectional (no rotator) horizontally-polarized (low-noise) coverage when parallel to ground, or performance approaching a full-size dipole when vertical. Tunable (SWR < 1.5:1) to your favorite band segment via built-in adjustable coaxial capacitors capable of continuous 200 watts CW or PEP. Cover other band segments via antenna tuner. Rugged low-loss copper with stainless steel hardware. 3" PVC mast required (not provided), or suspend from tree or ceiling with nylon rope. Prices include US shipping (except HI, AK). Florida add 5% sales tax. Send check with your order or call us with your Visa or MasterCard.

10, 12, 15, 16 or 20M MICROLOOP (20M is 54" across, others smaller) .. $83.50
30M or 40M MICROLOOP (108" across for 40M, 30M smaller) .. $93.50

ADN Advanced Design Networks, Inc.
8601 66th Street North • Pinellas Park, FL 33782
CALL TODAY (813) 544-2596

QUALITY ETCHED PC BOARDS IN LESS THAN 5 MINUTES.

Convenient economical, high quality production of 12"x12" panels is obtained using Kepro's Bench-Top Spray Etcher, only $765. Kepro—the one stop source for all your Prototype and Short Run PCB needs.

kepro

Kepro Circuit Systems, Inc.
Write for full line catalog or call
1-800-325-3878 • 1-314-343-1630 (Missouri)
630 Axminster Drive • Fenton, MO 63026-2992

WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV you will receive a FREE LCD Calendar/Clock.

- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED ...

OnSat

The best in satellite programming! Featuring: ★All Scheduled Channels ★Weekly Updated Listings ★Magazine Format ★Complete Movie Listing ★All Sports Specials ★Prime Time Highlights ★Specials Listing and ★Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:
STV/OnSat®
P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384
SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020
get connected — to packet radio

Get Connected to Packet Radio, by Jim Grubbs, K9EI, is the first book devoted exclusively to packet radio operation. Three major sections cover packet radio from the beginning through intermediate levels.

In the first chapters, Jim offers a quick look at packet radio history. For those contemplating the purchase of a terminal node controller for packet radio, information is included on the rapidly growing number of units available. A comparison of several major designs is included.

Once readers assemble the necessary equipment, Get Connected to Packet Radio takes them by the hand in a step-by-step process leading to their first successful packet QSO.

The introductory section continues with information on possible problems, useful commands, and a discussion of high-frequency packet operation versus VHF operation. You’ll learn where to find additional packet information in magazines and newsletters and how to contact packet organizations, no matter where you live.

The second section begins with a look at packet protocol. Information on the Xerox 820 computer for use as both a packet terminal and as a bulletin board are included. A special chapter on accessories takes a look at everything from special software to contact alarm switches.

In other chapters, details on special packet operations (running a bulletin board, for example) are outlined. The final pages include an extensive appendix containing a handy glossary, a bibliography, and lists of pertinent addresses, frequencies, command summaries, and more.

Get Connected to Packet Radio is available from Ham Radio’s Bookstore, Greenville, N. H. 03048, for $12.95 plus $3.50 shipping and handling.

MFC sells ham products division

Microwave Filter Company, Inc. has sold its Unadilla/Reyco Amateur Radio Products Division to Ralph H. Jannini of Antennas, etc., of Andover, Massachusetts. The division produced baluns, traps, switches, and antenna kits that were distributed through approximately 200 dealers nationwide and to exporters in Canada, South America, and Europe. Jannini will add Unadilla/Reyco to his present operations and will continue to serve MFC’s Amateur Radio customers.

For information on Unadilla/Reyco products, contact Antennas, etc., 16 Hansom Road, Andover, Massachusetts 01810.
Ham Radio’s guide to help you find your local

California

C & A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best — Since 1962.

FON'TA ELECTRONICS
8628 SIERRA AVENUE
FON'TA, CA 92335
714-462-7710
714-462-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Colorado

COLORADO COMM CENTER
4262 LOWELL BLVD.
DENVER, CO 80211
(303) 433-3355
(800) 227-7373
Stocking all major lines
Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more.
One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33757
813-461-4267
Clearwater Branch
West Coast’s only full service Amateur Radio Store.
Hours M-F 9:5-30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLAND, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:5-30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302
ICOM, Yaesu, Kenwood, KDK, Bird...
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUAKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 53 years.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830
M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

Illinois

ERICSSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed & Fri;
9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.
MAS for New & Used Equipment List.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
T-F 10-7 SAT 9-5

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

Michigan

ENCOR PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
(313) 523-1850
Amateur Radio, Repeaters, Satellite, Computer applications.
Call Paul WD8AHO

Minnesota

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, Icom, Kenwood

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323
Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porr "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Hampshire

RIVENDELL ELECTRONICS
8 LONDON DERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-9
Closed Sun/Holidays

New Jersey

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4389
Gene K2KJI
Maryann K2RVT

OEP's
110-4 ROUTE 10
EAST HANOVER, N. J. 07936
201-887-6424
Bill KA2QEP
Jim KA2RVI
Amphenol Connectors
Hours: 9:30 am-7:00 pm

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM “The World System.” Western New York’s finest Amateur dealer.

North Carolina

F & M ELECTRONICS
3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty — Sales & Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLIFFE, OH 44092(Cleveland Area)
216-585-7368
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBEO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
Stocking all major lines. San Antonio’s Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9:30 SAT 9-3

REPEATER VOTER

SEE YOU AT DAYTON

BOOTH 237 & 238

4RV Four Channel Repeater Voter
- Signal to Noise Type
- Expandable to 32 Channel by Just Adding Cards
- Designed for Commercial and Amateur Service
- Continuous Instant Voting
- Dual or Single 12 Volt Supply
- LED Indicators of COR and Voted Signals
- Front Mounted Level Pots
- Built in Calibrator
- Remote Voted Indicators Pinned Out
- 4½” x 6” Double Sided Gold Plated 44 Pin Card
- Unsquelched Audio Input
- On Board Audio Switching and Mixing
- Audio Mixer Input Available for External Input
- Open Connector or Relay Contact Input
- Open Collector NPN Output
- Remote Disable Inputs
- More

4RV Kit including board and parts with 20 page manual
- $200.00

Built, tested, and calibrated with manual
- $350.00

For more information call or write:

VOTER Hall Electronics
815 E. Hudson Street
Columbus, Ohio 43211

July 1986
RATES
Noncommercial ads 10¢ per word; commercial ads 60¢ per word payable in advance. No cash discounts or agency commissions allowed.

HAMPSE Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

90000 7850 20B4 Radlo Germany
78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.

78255 15121 449-9727. Inforrnation: Melvin L. Longlick, 7 Holly Circle, State College, PA 16801.
OPERATING EVENTS

THINGS TO DO...

OHIO STATE FAIR Special Event, August 1-17. Listen for WBTQ-800. 90-10 meters. Exchange QTH and RST correspondence and requests for awards to W8JBOO, at: State Fair event coordinator, 280 East Broad St., Columbus, Ohio 43219.

The Eastern Michigan ARC will operate K0KE on the annual Port Huron to Mackinac Island Yacht Race, July 19-20. 1400Z to 0200Z both days. For certificate send GSL and SASE to CBA or 653 Amador, Marysville, MI 48040.

High Plains ARC will operate K7YT at historic Fort Laramie, July 4 and 5. GSL for business to K7YT, PO Box 7, Torrington, WY 82240.

The Texas ARRL and WFLM Society convention, Alamo City, TX. WSSC continues the annual Spring Southeastern celebration of Texas independence. July 12 to 13, 10, 15, and 20 meters. GSL, No mail exchanges. SASE to W6DOC, 30 Below Blvd, San Antonio, TX 78209.

ALBANY, NY, is celebrating its 300th anniversary. The year-long activities will peak during Tritonemic, July 18-22, 1986. The Albany Amateur Radio Association will be providing a field day service communication for events and special QSL cards as well as sponsoring the "Working Albany Radio Members" WA7WQM Award.

OKLAHOMA Amateur Radio operators will conduct their 3rd annual "Field Day" exercises Saturday and Sunday, July 12 and 13. Lake Canton Dam between 2-7 PM and continuing through noon Sunday in conjunction with the annual TCU Radio Club DX Contest. For information: Tom Moulton, WAS/LT, Lake Canton Field Day, PO Box 19097, Oklahoma City, OK 73144. (405) 521-5048.

EAST AURORA, NY, July 27-12th annual Racing Day. Pioneer Radio Operators Society will operate W20FC to help the community celebrate its heritage as a turn of the century capital of breeding and racing champion horses. GSL with business to W20FC, 308 Parkdale avenue, East Aurora, NY 14052.

The Illinois Valley ARC will operate special event station K9DUL from the 25th anniversary of the old train station on Saturday, July 16, 1983. Contact W9DUL for times and operating. For a certificate and QSL send GSL and SASE to the Illinois Valley ARC, P.O. Box 102, South Theatre, WI 5172-0102.

1986 "BLOOMFIELD BLAST" Sunday, October 5, 1986. Write "BLAST", P.O. Box 175, St. Joseph, MI 49085.

CALIFORNIA VHF, Lick Marcia, 4450 N. 9th Ave., Los Angeles, CA 90013. More information is available by mail.

BRITISH COLUMBIA: Maple Ridge Hamfest, July 12 and 13. St. Patrick's Church, 259A 121 Avenue, Maple Ridge. Admission $5.00, non-members $12.30. Under 12 free. Two ham in family free. Commercial displays, flea market, food. Children's programs. Nearby shopping and recreation areas. Camper space available. Talk on 146.20 and 146.80 MHz. For more information contact: Bob Haughton, VE8ZGP, Box 290 Maple Ridge, BC V2X 5Q5 or phone (604) 467-4615.

WEST VIRGINIA: The 8th annual TARC Wheeling Hamfest Computer Fair, Sunday, July 20, 9:00 AM to 3:00 PM. WV's largest Hamfest. Dealers welcome, 30,000 sq. ft. under roof. 5 acres of flea market. Family activities at Park. Admission $5.00 in advance, $6.00 at door. To reserve space contact: Jay Pauls, W3DI, RD 2 Box 281, Wheeling, WV 26003. (304) 222-6976. For tickets: TARC, Box 240, RD 1, Parkersburg, WV 26101. (304) 486-3369.

INDIANA: The 7th annual Indiana ARRL Convention and Indianapoiss Hemfest, Saturday and July 12 and 13. Marion County Fairgrounds, Indianapolis. Featuring the largest electronic flea market and new Amateur Radio equipment displays at the state. Gates fees will be free with 50 cents on ground. Gates open 6:00 AM. Large covered flea market. Inside tables $10/8. No camping allowed in state. GSL to USPS. For information contact: Bill Evans, W8JRFN at (317) 745-6389.

MASSACHUSETTS: The MIT UHF Repeater Association and the MIT Society of Amateur Radio Operators. All classes. November 4-6. $60.00 per person. Contact: W1EJ, MIT Radio Club, Room 9-306, Cambridge, MA 02139.

The Eastern Michigan ARC will operate K0KEP on the annual Port Huron to Mackinac Island Yacht Race, July 19-20. 1400Z to 0200Z both days. For certificate send GSL and SASE to CBA or 653 Amador, Marysville, MI 48040.

High Plains ARC will operate K7YT at historic Fort Laramie, July 4 and 5. GSL for business to K7YT, PO Box 7, Torrington, WY 82240.

The Texas ARRL and WFLM Society convention, Alamo City, TX. WSSC continues the Spring Southeastern celebration of Texas independence. July 12 to 13, 10, 15, and 20 meters. GSL, No mail exchanges. SASE to W6DOC, 30 Below Blvd, San Antonio, TX 78209.

ALBANY, NY, is celebrating its 300th anniversary. The year-long activities will peak during Tritonemic, July 18-22, 1986. The Albany Amateur Radio Association will be providing a field day service communication for events and special QSL cards as well as sponsoring the "Working Albany Radio Members" WA7WQM Award.

OKLAHOMA Amateur Radio operators will conduct their 3rd annual "Field Day" exercises Saturday and Sunday, July 12 and 13. Lake Canton Dam between 2-7 PM and continuing through noon Sunday in conjunction with the annual TCU Radio Club DX Contest. For information: Tom Moulton, WAS/LT, Lake Canton Field Day, PO Box 19097, Oklahoma City, OK 73144. (405) 521-5048.

EAST AURORA, NY, July 27-12th annual Racing Day. Pioneer Radio Operators Society will operate W20FC to help the community celebrate its heritage as a turn of the century capital of breeding and racing champion horses. GSL with business to W20FC, 308 Parkdale avenue, East Aurora, NY 14052.

The Illinois Valley ARC will operate special event station K9DUL from the 25th anniversary of the old train station on Saturday, July 16, 1983. Contact W9DUL for times and operating. For a certificate and QSL send GSL and SASE to the Illinois Valley ARC, P.O. Box 102, South Theatre, WI 5172-0102.

ACB RADIO AMATEURS: A special interest affiliate of the American Council of the Blind (ACB) will operate special event station K9W4U from 0030Z June 29 to 2400Z, July 5 at the Hilton Hotel in London, TN. In conjunction with ACB's Silver Anniversary convention. Submit GSL card confirming QSO with K9W4U during convention week and receive an attractive commemorative certificate. Send QSL's to John Martin, K9W4U, 2105 N. Illinois Street, Arlington, VA 22205.

40m Phased Array - The Easy Way

OPT PHASOR by Bailey Tech
- Change direction instantly
- High F/B, adjustable phasing
- Low SWR over entire 40m band
- Just 2 diodes give 4 db gain
$119.95
- Also available with matching
- dipoles and feed lines

Check, MO, VISA, MC
Call or write for complete catalog
TET Antennas, Larsen, Hy-Gain, Alpha Delta, etc.

1587 U.S. 68 N
Xenia, OH 45385
(513) 376-2700

FLUKE

FLUKE 73
$195
- Analog/digital display
- Wtch, 100A, 10A, diode test
- Autoranging
- 0.7% basic accuracy
- 1000 - hour battery life
- 1 year warranty
- Multiplier probe

FLUKE 75
$395
- Analog/digital display
- Wtch, 100A, 10A, 100V, diode test
- Autoranging
- 0.7% basic accuracy
- 1000 - hour battery life
- 1 year warranty
- Multiplier probe

FLUKE 77
$1015
- Analog/digital display
- Wtch, 100A, 10A, 100V, 1000V, diode test
- Autoranging
- 0.7% basic accuracy
- 1000 - hour battery life
- 3 year warranty
- Multiplier probe

* Suggested U.S. list price effective, November 1, 1985.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Notice: The information in this publication represents a unique and proprietary compilation of data that provides a collection of information which has not been previously collected. The use of the information and/or data contained herein is subject to the limited license granted herein.
Don't buy from Hamtronics...

Unless you want the best possible equipment at the lowest possible price! ! !

The “wheeler-dealer” is back and he’s beating everyone else’s “deals.”

We all know there’s no such thing as a free lunch . . .

so How Can We Do This?

• We don't run alot of ads featuring sale items
• We don't spend alot of money on full page ads
• We don't have sales on just the fastest selling products
• We don't short cut you on service. We are a factory warranty repair facility for everything we sell!
• We don't mail out free catalogs
• We don't have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimpicks.

Hamtronics puts the savings into your pocket.

Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer.

We’re celebrating our 35th year in the Ham business at the same location.

HAMTRONICS, INC.

A DIVISION OF TREVOSE ELECTRONICS
4033 BROWNSVILLE RD., TREVOSE, PA 19047
(215) 357-1400

SYNTHESIZED SIGNAL GENERATOR

Made in USA

MODEL
SG-100F
$199.95 delivered

• Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
• Accuracy +/- 1 part per 10 million at all frequencies
• Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
• External FM input accepts tones or voice
• Spurs and noise at least 60 dB below carrier
• Output adjustable from 5-500 mV at 50 Ohms
• Operates on 12 Vdc @ 1/2 Amp
• Available for immediate delivery • $249.95 delivered
• Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
• Call or write for details • Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 469-2720 Mon. thru Thu.

QEP'S COAX. SALE

Belden 9913 Low Loss Cable
100 ft. & up - 38c/ft. Up to 99 ft. - 39c/ft.
Belden 9258 RG-8X
$160 per reel of 100 ft. or 150$.
Belden 8214 RG-8X
Up to 99 ft. - 39c/ft., 100 ft. and up 33c/ft.

Amphenol connectors:

UC-210 N Male cable end
1.00

UC-211 N Female cable end
1.50

UC-234A N Barrel connector, 4.75

UC-580 N Female chassis mount
1.50

UC-146 N Plug to UHF jack
1.00

UC-81 N Jack to UHF plug
8.50

PL-259 UHF Male cable end silver
1.65

PL-258 UHF Barrel connector
2.00

UC-175 Reducer for RG-58 cable
.35

UC-176 Reducer for RG-59/Mic
.35

UC-88 BNC Plug for RG-58
2.00

UC-260B BNC Plug for RG-59
2.10

UC-260B BNC Plug for Mini-8 tantal
1.60

8 gauge hook-up wire 28c./ft.

Perfect for power supplies, RED or BLACK only
COMPLETE STOCK, SAME DAY SHIPPING.

U.S. Geological Survey Maps
Complimentary stock
201-887-6424
210-4 Route 10
E. Hanover, NJ 07936

QEP's

HEWLETT-PACKARD 1707B SCOPE

Portable dual-trace DC to 75 MHz scope with 6x10 cm display and .4.7 nS risetime. Deflection 10 mm - 5 V/div in 9 ranges. Sweep 0.5 us - 2.5 div in 23 ranges, delay 0.1 us - 0.5 div. 7.8 x 12.8 x 16.32 lbs. HP-quality at import price: $795.00

HP-8518/8518 SPECTRUM ANALYZER, popular 10.1 MHz - 40 GHz unit, 60 db dynamic range. 20 x 16.8 x 18.140 lbs. Used with HP oscillator output. $1500.00

Prices F.O.B. Lima, OH • VISA, MASTERCARD Accepted
Allow for Shipping • Send for NEW FREE CATALOG 86
Address Dept. HR • Phone: 419/227-9073

FAIR RADIO SALES

1016 E. EUREKA • Box 1105 • LIMA, OHIO • 45802

RECEIVE OSCAR 10 TELEMETRY

Complete Kit
$139.95

plus $3.00 shipping and handling

PSK DEMODULATOR—
decodes satellite's housekeeping status reports, environmental data collected and plain text bulletins

INPUT—
audio output of SSB receiver or cassette player.

OUTPUT—
RS232 compatible serial bit stream at 1200 baud

1986-87 CATALOG
$1.00
new technique uses lasers to etch microchips

In the traditional process for manufacturing ICs, as many as 100 individual steps may be required. Each step introduces the possibility of error and increases the risk that the finished product will contain some flaw that renders the chips unusable. Depending on the size and complexity of the chip, less than half of the finished wafer may yield acceptable chips, leaving the surviving chips to recover the entire cost of fabrication.

Not surprisingly, IC manufacturers are constantly seeking ways to improve yield and reduce costs. In one new technique, a laser used as a photoetching device scans the surface of a silicon wafer in the presence of certain gases. Under static conditions, these gases have no effect on silicon; the energy of the laser, however, decomposes the gases into compounds that define active elements and interconnects by either etching away unwanted material or by deposition onto the substrate. The source and drain regions of a transistor are made by doping the silicon with phosphorus, which the laser creates by breaking molecules of phosphine gas. Hydrogen chloride, which serves as an etchant, is activated by the thermal energy of the laser beam. Interconnects on the chip are made by similarly decomposing gases that contain tungsten, nickel, and polysilicon.

One of the major incentives for this new method is a national program, led largely by the Departments of Defense and Energy, to develop new classes of supercomputers. Much of this work has been done at the Lawrence Livermore National Laboratory, where experiments indicate that the technique can produce as many as 1000 transistors per second. At this rate, it would be possible to fabricate supercomputer chips — consisting of about 100,000 transistors each — at the rate of one per day.

Other exciting possibilities include repairing damaged high-value chips and turning a new design into a prototype chip in one day or less, as opposed to today’s turnaround time of one to four weeks.

One company (XMR of Santa Clara, California) already offers commercial equipment for this technology. If the technique achieves its promise, we can expect a whole new generation of advanced-capability semiconductors.

“WaferScale” integration

Still on the subject of semiconductors, and one of the major beneficiaries of laser fabrication, is another technique just coming into its own — WaferScale integration. This technique uses the surface of a silicon wafer to implement an entire functional capability. Examples include complete 32-bit microprocessors, with memory and all relevant I/O functions, a “silicon” hard disk with 20Mb of storage, RAM speed, and all disk controller functions on a single wafer.

This technique promises to make very complex functions available in a single package. But this improvement is not without peril. Because of the large amount of circuitry and the extensive processing required on such devices, any mistake in fabrication results in a very expensive piece of scrap. Also, the large number of circuits and functions possible with WSI makes packaging considerations a major concern; it may be necessary to have hundreds of pins on a very complex functional element — more than can now be accommodated. However, the general benefits of WSI seem to justify the complexities of making such devices, and within the next few months the first few WSI products are expected to be announced.

new super-magnet makes smaller motors

An essential component of many motors is the large, heavy permanent magnet associated with the non-excited element of the motor. Magnequench™, a new product developed by the Delco Division of General Motors, is about 25 percent stronger than any other known magnetic material.

Currently, the most widely used high-power magnets, composed of samarium-cobalt, are expensive and difficult to manufacture. But GM’s new material is so low in cost that the auto maker plans to use the material in starter motors on some 1986 cars. GM reports that only 5 ounces of the material are needed for the newly designed motors.

This tremendous saving in weight and size offers several benefits. Using a smaller, lighter starter, for example, simplifies design of the engine area. Using Magnequench instead of conventional magnets in all the control motors of a car would presumably produce a measurable effect on fuel economy as well.

Because samarium-cobalt is the material sometimes used to make very small, high-performance loudspeakers, it should be interesting to see if the speakers manufacturers put in our HTs get any better as supermagnets become more widely available.

ham radio
STUDY GUIDES

AMECO STUDY GUIDES

Designed for VEC Exams

AMECO study guides are taken from the FCC Amateur Exam syllabus PR-102 and have answers keyed to ARRL’s recently released study material. These study guides are compatible with ARRL and all other VEC Exams. It is nothing that you will pass, AMECO Study Guides will make sure that you are fully prepared and ready to go with a full right down for the exam. Written in clear, concise, easy-to-read format, each question fully explained Novice and General books cross reference to AMECO’s 102-01 for a more thorough explanation.

READER SERVICE # PAGE #

27-01 Novice Class Softbound $3.50
12-01 General Class Softbound $4.95
16-01 Advanced Class Softbound $4.95
17-01 Extra Class Softbound $4.95
IAML Get All Four $14.95

ARRL Q&A LICENSE MANUALS

ARRL License Manuals are keyed to the latest FCC Exam syllabus in their basic outline and all technical subjects are explained in clear terminology and with plenty of illustrations, diagrams and schematics. Complete and easily covered. Each book has the official ARRL multiple choice question pool with answers and a key to the FCC Exam syllabus for reference to other study books. These are the study guides to have. All books © 1985 1st Editions.

ARR-TG General Softbound $5.00
ARR-AG Advanced Softbound $5.00
ARR-EG Extra Softbound $5.00
ARR-SG Get All Three $17.95

NEW TITLES

FIRST STEPS IN RADIO
by Doug DeMaw, W1FYB

This new anthology has been taken from DeMaw’s 84 and 85 series in CQ magazine. It has been written to give beginners the basic electronic theory needed for upgrading and the ins and outs of how radios work. Using a building block approach, DeMaw first explains what the different components are, then how they fit together, and ends up with how these circuits work and what you can do with them in your radio. You also get articles on antennas, propagation and beginners level RF problems and suggestions on how to resolve them. Great review for more experienced Hams. Perfect for the beginner. © 1985

ARR-2 Softbound $4.95

LANDMOBILE AND MARINE RADIO TECHNICAL HANDBOOK
by Edward A. Noll, WJFPJ

This is the HANDBOOK for those who operate, install or service two-way radios. Covers private landmobile service, marine radiotelephone and radiotelegraph, marine navigation and Citizen’s Band. A self-paced study reference book for the NABER or C0A exam. The handbook covers everything from transmission and modulation systems, basic solid state theory, digital and microprocessor electronics, antenna systems, test equipment, repeaters and much more. © 1985 1st edition. 576 pages. $29.50

THE COMMODORE 64 HAM’S COMPANION
by Jim Grubb, K8EI

Here’s your guide to using the Commodore C-64 computer in your Ham shack. Good solid information on where to find software and hardware for CW, RTTY, AMTOR, SSTV, programmatic programming, antenna modeling, satellite tracking and much more. Includes a list of over 60 sources of software and hardware. Also includes a bibliography of over 60 magazine articles and reviews about using the Commodore. © 1985, 160 pages, 1st edition.

JG-CC Softbound $15.95

Please add $3.50 to cover postage and handling.

Ham Radio’s Bookstore
Greenville, NH 03048

ADVERTISER’S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, call the company and ask for the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

READER SERVICE # PAGE #

169 Glenn Martin Engineering 58
196 MFJ Enterprises 8
121 MilliWatt Books 48
139 Minds Eye Publications 94
177 Mirage/KLM 47
153 Multibotics, Inc. 86
147 NRG Distributing Corp 89
180 Naval Electronics, Inc. 44
154 Nermal Electronics. 86
154 NRG 19
196 Nuts & Vents 86
193 P.C. Electronics 94
140 Pac-Com Packet Radio Systems, Inc. 57
124 Pacific Rim Communications 103
168 Pilgrim Video Products 58
146 Pip Communications 107
127 Processing Concepts 90
190 Processor Concepts 24
186 The PX Shack 32
113 DIP’s 108
142 QSKY Publishing 44
157 RadioKit 108
179 Radiosporting 44
143 Ramsey Electronics, Inc. 95
1’ RF Parts/Westcom Eng 103
132 Rohens Microwave 56
156 Silicon Solutions, Inc. 96
* Spec-Con 98
195 Spectrum International, Inc. 17
120 Spi-Ro Distributing 96
150 STV/OrSat 102
115 Subronics 107
131 Synthetic Textiles, Inc. 98
161 TE Systems 97
128 Technical Development Systems 101
94 Test 95
174 Transvertis Unlimited 46
175 Unity electronics 46
* Universitiy Microlab Int. 60
112 Vanguard Labs 108
182 Varian 41
207 Volunteer Electronics 76
129 WSJN Antennas 101
137 Webcom Communications 84
146 Western Electronics 90
135 World Tech Products 99
108 Yaeasu Electronics Corp. Cover III

PRODUCT REVIEW/NEW PRODUCT

306 Advanced Computer Controls 100
308 Alpha Delta Communications 101
* Hamtronics, NY 100
305 Heath Company 100
303 Icom America, Inc. 97
307 Kantronics 101
304 MFJ Enterprises 101
302 North American Soar Corp 99
309 Universal Electronics 101

*Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before August 31, 1986.

July 1986

110

111 AMTOR
132 Extra Class Softbound $4.95
110 A Don
135 Advanced Receiver Research 96
181 AWA 42
160 All Electronics Corp. 68
130 Alpha Delta Communications, Inc. 98
144 Aluma Tower Co. 90
164 Amateur Wholesale Electronics 63
204 Aeronaut Associates 71
152 AMSAT 80
116 Archway Data Systems 65
201 ARRL 71
196 Anton Corp. 75
6 6 -Burr Electronics 84
170 Brincom Technology 58
191 Buckmaster Publishing 24
173 Burghardt Amateur Center 48
101 Butternut Electronics 60
165 Cruxial Dynamics, Inc. 60
188 Communication Concepts, Inc. 24
107 Communication Specialists 112
127 CTA 54
206 Crushcraft Corp. 39
* Dick Smith Electronics 84
202 Digiwave 71
151 Doppler Systems 84
138 Down East Microwave 30
111 E.L.B. 56
203 ECI, Inc. 71
162 The Electronic Orphanage 71
* Engineering Consulting 81
139 EIS 7
159 Fire Radio Sales 108
109 Fleck Mfg. Co. 107
163 Fox International, Inc. 65
103 Fox Tango Corp. 60
192 Fry Electronics 54
141 Grove Enterprises 94
134 H L Heaster, Inc. 99
107 Hill Communications Corp 29
114 Hill Electronics 106
171 Hitek 55
181 * Ham Radio’s Bookstore 60, 61, 97, 110
* The Ham Station 90
116 Hamtronics, NY 55
126 Hamtronics, PA 108
* Hamtronics, PA 65
* Hamtronics, PA 65
* Hamtronics 65
* Hamtronics 65
200 -ICOM America, Inc. Cover II
122 IWX Equipment 103
119 Imaging Tools, Inc. 96
199 * Kantronics 96
110 Kenneth/Murphy 111
* RKO Kenwood Communications , 2, 5, 7, Cover IV
149 Kope Circuit Systems, Inc. 102
167 Lusen Antennas 58
166 Luxor (North American Corp. 15
183 Madison Electronics Supply 34
132 Elaine Martin, Inc. 99

*Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before August 31, 1986.
Real-voice message system
For any repeater or base

Now you can communicate vital information even when
the station you are calling is not on the air — with
Message Master. Message Master is a solid state voice
recording system which can record messages just by
listening to you speak, store messages in memory, and
deliver messages on demand. If you can't be there to
deliver your messages let Message Master deliver them
for you - any messages in any language and in your own
voice!

Message Master connects easily to any radio system for
remote access: repeaters, base stations, even transceiv-
ers. It can even be connected to an autopatch device to
exchange messages between your radio system and the
telephone network.

Message Master is a multi-user system with mailbox
style personalized message service for a hundred users.
With 8 minutes of message storage it can store
hundreds of messages simultaneously making it ideal
for large, active repeater groups.

Would you like your callsign identifications,
tail messages, and bulletin messages sent in
real-voice? Message Master can send them
too. Record several identification messages
and it will even send a different ID each time.
Almost like magic, Message Master knows
when to send identifications and tail mes-
sages so it needs no special control signals
from your base or repeater.

Call or write for further information before
you make another wasted call.

Commercial users: Ask for a brochure on
the Message Master Electronic Dispatcher
with group and all call messaging.

- Create messages just by talking. Message Master's
real-voice' technique saves YOUR VOICE in digital
memory to deliver messages in your own voice, lan-
guage and dialect.
- Mailbox-style operation gives individual message
delivery service to 100 system users.
- Easily added to any repeater or base station for re-
 mote operation with only four connections.
- Special features include callsign identifications, tail
 messages, and bulletin messages.
- Digital message storage provides instant playback of
 stored messages.
- Modular memory meets your exact needs from 2 to 8
 minutes of total message storage.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PER-
 FORMANCE LEADERS with real voice, more autodial numbers,
 more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high per-
 formance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical
 price.
- MR-4 Receivers with 7 helical resonators are the only receivers
 to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a
 continuous duty high power signal.

COMING SOON: A 4-channel re-
ceiver voting system which oper-
ates on true signal-to-noise ratio to
extend your coverage by linking to
remote receivers.
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ±.1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021

SS-32 $29.95, TS-32 $59.95
Yaesu's big gun. The FT-980.

DX and contest operation is no place for a lightweight.
That's why the FT-980 combines the latest in HF technology to give you the muscle to get you through.
To begin with, its front panel gives you unsurpassed operating flexibility.
Store your favorite frequencies and operating mode independently in each of the 12 memory channels.
Review the contents of any memory location without disturbing the QSO in progress with the checking function.
Quickly go from one programmed channel to another, or meet your buddy "five up" by simply touching a button.

And you'll be hard-pressed to find a cleaner transmitter. In fact, our conservatively designed final amplifier loafs at just a fraction of its rated output. And cuts distortion to new lows.
Then consider the receiver. A triple-conversion design with separate front ends for ham and general coverage reception. That way, ham-band operation is not compromised.
Also, cascaded IF filtering assures outstanding rejection of unwanted signals close to your operating frequency.
Even imperfect antennas are no problem for the FT-980. There's essentially no turn-down with an SWR of 2.1 and just 25% turn-down at 3:1.

Finally, if all this isn't enough, hook up the FT-980 to your personal computer for 21 advanced functions including mode, frequency and band shift. An assortment of interfaces and software are available.
So when you really want to flex your muscles, go with Yaesu's FT-980. The serious radio for the serious operator.

Yaesu USA
1220 Edwards Road, Cerritos, CA 90703
(213) 494-2700
Yaesu Cincinnati Service Center
9000 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.
Power-Full...70 Watts!

TM-2570A/2550A/2530A/3530A

Sophisticated FM transceivers

Kenwood sets the pace again!
- The all-new "25-Series" brings the industry's first compact 70-watt 2-meter FM mobile transceiver.
- There is even an auto dialer which stores 15 telephone numbers! There are four versions to choose from: The TM-2570A 70-watt, TM-2550A 45-watt, TM-2530A 25-watt and the TM-3530A 220 MHz, 25-watt.
- First 70-watt FM mobile (TM-2570A)
- First mobile transceiver with telephone number memory and auto-dialer (up to 15 seven-digit phone numbers)
- Direct keyboard entry of frequency
- Automatic repeater offset selection - a Kenwood exclusive!
- Extended frequency coverage for MARS and CAP (142-149 MHz; 141-151 MHz modifiable)
- 23 channel memory for offset, frequency and sub-tone
- Big multi-color LCD and back-lit controls for excellent visibility

- Front panel programmable 38-tone CTSS encoder includes 97.4 Hz (optional)
- 16-key DTMF pad, with audible monitor
- Center-stop tuning - another Kenwood exclusive!
- Frequency lock switch
- New 5-way adjustable mounting system
- Unique offset microphone connector - relieves stress on microphone cord

Large heatsink with built-in cooling fan (TM-2570A)

Optional Accessories
- TU-7 38-tone CTSS encoder
- MU-1 DCL modem unit
- VS-1 voice synthesizer
- PG-2K extra DC cable
- PG-3A DC line noise filter
- MB-10 extra mobile bracket
- CD-10 call sign display
- PS-430 DC power supply for TM-2550A/2530A/3530A
- PS-50 DC power supply for TM-2570A
- MC-60A/MC-80/MC-85 desk mics.
- MC-48 extra DTMF mic. with UP/DWN switch
- MC-42S UP/DWN mic.
- MC-55 (8-pin) mobile mic. with time-out timer
- SP-40 compact mobile speaker
- SP-50 mobile speaker
- SW-200A/SW-200B SWR/power meters
- SW-100A/SW-100B compact SWR/power meters
- SWT-1 2m antenna tuner

- High performance GaAs FET front end receiver
- HI/LOW Power switch (adjustable LOW power)
- TM-3530A covers 220-225 MHz
- Digital Channel Link (optional)

Introducing...
Digital Channel Link

Compatible with Kenwood's DCS (Digital Code Squelch), the DCL system enables your rig to automatically GSY to an open channel. Now you can automatically switch over to a simplex channel after repeater contact! Here's how it works:

The DCL system searches for an open channel, remembers it, returns to the original frequency and transmits control information to another DCL-equipped station that switches both radios to the open channel. Microprocessor control assures fast and reliable operation. The whole process happens in an instant!

Actual size front panel

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1117 West Walnut Street
Compton, California 90220