CAN YOU HANDLE THIS MUCH TRANSCEIVER?

- All HF Band Transceiver/General Coverage Receiver
- New Design
- 100% Duty Cycle Transmitter
- 105dB Dynamic Range
- All Modes Built-In USB, LSB, AM, FM, CW, RTTY
- 12 Volt Operation

The new IC-751A top-of-the-line HF base station transceiver is designed for the ham operator who demands high performance. Whether contesting or QSO’ing for pleasure, the 100 watt IC-751A incorporates the best features of the IC-751, plus brings you to the forefront with the following most-asked for additions.

More CW Control. For the CW enthusiast, the new IC-751A includes an electronic keyer unit. OSK rated at up to 40WPM, standard FL-32A 9MHz/500Hz CW filter and CW sidetone to monitor your code in RX or TX modes...great for practice!

Improved Smooth Tuning. The IC-751A features a newly designed tuning knob for velvet smooth tuning.

32 Memories. Mode and frequency may be stored in any of 32 memories...all the memory capability that you’ll ever need.

More Stable. Even in the receive mode, the IC-751A has a sophisticated thermal sensor to monitor the internal temperature. The sensor automatically activates the cooling fan which gives maximum stability...critical for contesting.

Newly Designed Features. The IC-751A boasts a number of newly designed features for better performance...new 9MHz notch filter to drastically reduce QRM, new AGC system, new compressor for better audio and a new AF gain control system to improve control of the CW sidetone volume.

Options Available. Options for the IC-751A include the IC-PS30 external AC system power supply, IC-PS35 internal AC power supply, IC-AT500 antenna tuner, IC-EX309 microprocessor interface connector, SM-8 or SM-10 desk mics, IC-2KL linear amplifier, RC-10 remote controller, SP-7 or IC-SP3 external speakers, IC-EX310 voice synthesizer, CR-64 high stability 30.72MHz crystal and GC-5 world clock.

Optional Filters. FL-52A CW 455kHz at 500Hz, FL-53A CW-N 455kHz at 250Hz, FL-63A CW-N 9.010MHz at 250Hz, and FL-33 AM 9.010MHz at 6000Hz filter.

ICOM America, Inc. 2380-116th Ave NE, Bellevue, WA 98004 / 3150 Premier Drive, Suite 126, Irving, TX 75038

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
Work VHF or HF Packet On Any Computer With Kantronics Complete Packet Communicator

KPC-2

From IBM to C-64, or any computer with an asynchronous serial port, you can now work packet on VHF or HF with one TNC, the KPC-2! Extra cost options are unnecessary. KCP-2 is packed full of features and backed by our full-time customer support departments. KPC-2 has totally new hardware and software, Kantronics designed. For more information contact Kantronics or a Kantronics dealer.

Suggested Retail $ 219.00

Features

- AX.25 Version 2.0 software
- Supports multiple connects, up to 26
- RS232 or TTL compatible (C-64 too!)
- HF modem included! (both U.S. and European tones)
- Carrier Detect, and software squelch operation
- FCC Part 15 Certified
- Kantronics industry standard extruded aluminum case
- Power supply and cabling included
- All EPROM software is Kantronics sourced and copyrighted
- 128K EPROM, 16K RAM — expandable to 32K, 4K EEPROM.
- Advanced software HDLC routines, eliminating costly out-of-date chips

Customer Support

- Extensive dealer network
- In-house programmers/engineers
- In-house service representatives
- Periodic software updates (like 2.0!)

Want more information on Packet? Contact us about our new PACKET VIDEO. $ 25.00 (shipping included), VHS or BETA format.
The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high-dynamic range receiver combine with superior transmitter design to give you no-nonsense, no-compromise performance that gets your signals through! The exclusive multi-function LCD sub-display graphically illustrates VBT, SSB slope, and other features.

- 100% duty cycle transmitter. Super efficient cooling system using special air ducting works with the internal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour.
- High stability, dual digital VFOs. An optical encoder and flywheel VFO knob give the TS-940S a positive tuning “feel.”
- Graphic display of operating features. Exclusive multi-function LCD sub-display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status.
- Low distortion transmitter. Kenwood’s unique transmitter design delivers top “quality Kenwood” sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- QRM-fighting features. Remove “fretful QRM” with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (QSK) CW.
- 40 memory channels. Mode and frequency may be stored in 4 groups of 10 channels each.
- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz.
- 1 yr. limited warranty. Another Kenwood First!
- Optional accessories:
 - AT-940 full range (160-10m) automatic antenna tuner
 - SP-940 external speaker with audio filtering
 - YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters
 - YK-88A-1 (6 kHz) AM filter
 - VS-1 voice synthesizer
 - SO-1 temperature compensated crystal oscillator
 - MC-42S UP/DOWN hand mic. MC-60A, MC-80, MC-85
 - Deluxe base station mics. PC-1A phone patch
 - TL-922A linear amplifier
 - SM-220 station monitor
 - BS-8 panorama display
 - SW-200A and SW-2000 SWR and power meters.

More TS-940S information is available from authorized Kenwood dealers.
JUNE 1986
volume 19, number 6

T. H. Tenney, Jr., W1NLB
publisher

Richard Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KAJ1BO
assistant editor

Joseph J. Schroeder, WVJUJ
Alfred Wilson, W6NIF
associate editors

Susan Shorrock
editorial production

global review board
Peter Burelli, K1ZH
Forrest Gaffke, K2BT
Michael Gruchalla, P.E.
Bob Lewis, W2ERS
Mason Logan, K4MT
Ed Wetherhold, W5V0V

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KAIJWF
director of advertising sales

Dorothy Sargent, KAI1ZK
advertising production manager

Susan Shorrock
circulation manager
Theresa Bourneault
circulation

cover art:
Barbara Smolen

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0498
Telephone: 603 878-1441

subscription rates:
United States:
one year, $22.95; two years, $38.95; three years, $49.95
Canada and other countries (air surface mail):
one year, $31.00; two years, $55.00; three years, $74.00
Europe, Japan, Africa via Air Forwarding Service: one year, $97.00
All subscriptions orders payable in U.S. funds, via international postal money order or check drawn on U.S. bank

international subscription agents: page 103

Microfilm and microfiche copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106

Order publication number 2076

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Periodicals,
919 Walnut Street, Philadelphia, Pennsylvania 19107

Copyright 1986 by Communications Technology, Inc.
Title registered at U.S. Patent Office
Second class postage paid
at Greenville, New Hampshire 03048-0498
and at additional mailing offices

ISSN 0148-5999

Send change of address to ham radio
Greenville, New Hampshire 03048-0498

contents

10 turning that big array
Victor Mozarowski, VE3AIA

17 secrets of successful
low-band operation: part 2
Richard Rosen, K2RR

30 ham radio techniques
Bill Orr, W6SAI

43 make a homebrew sheet metal brake
for chassis construction projects
Cliff Kleinert, W8BIH

51 a regulated screen grid
power supply
Richard Measures, AG6K

58 direct currents
reduce core permeability
Walter Kunde, KSBVM

68 VHF/UHF world
Joe Reisert, W1JR

85 a universal analog breadboard
Michael Gruchalla

95 practically speaking
Joe Carr, K41PV

108 the Guerric report
Ernie Guerric, W6MBI

110 advertisers index
and reader service

9 comments

105 new products

6 prestop

101 DX forecaster

4 reflections

103 flea market

36 short circuits

June 1986
Who is Dorothy Rosa?

For the past three years anyone who’s telephoned or corresponded with the ham radio editorial department has probably had the pleasure of hearing the pleasant, patient voice of or receiving a well-wrought response from Dorothy Rosa, our Assistant Editor. Magazines, of course, represent team effort, a necessity in the consistent publication of issue after issue of timely, accurate information. Dorothy, KA1LBO, is an important team member who’s involved in every aspect of production from initial edit to final proof just prior to press run.

Dorothy came to us at an important time in our development, replacing Marty Hanft, KA1ZM, and stepped into a position that requires an extremely fast learning curve. Deadlines and schedules in general do not conveniently wait for someone to come aboard and get up to speed. They’re planned, they arrive, and must be met. Then they rapidly become a thing of the past, only to be replaced by new ones.

Dorothy, in a sense, is not a newcomer to radio. Though recently licensed, she shared, at an early age, in the excitement of radio. Her father, an avid experimenter and SWL’er, had the normal collection of vacuum tubes, countless bins and small wooden drawers of parts, as well as innumerable carcasses of radios and various sorts of instrumentation. She remembers playing in the tube-lit glow of his repair shop, the smell of solder ever-present. It was, she says, the stuff of magic because even with his eighth-grade education, he could put all the pieces together and make a radio — and receive signals from thousands of miles away.

At the time, the unfortunate and mistaken notion that radio was for boys and reading was for girls was prevalent, so Dorothy became a voracious and compulsive reader, and as she likes to say, “a passable speller and moderately able writer.” Though her major and degree were in English, she studied “a little bit of everything” in high school and college because “it was all so interesting.” After college, she worked for a medical magazine in New York City, then moved on to a weekly newspaper and finally to dailies.

She spent several years as an advertising copywriter and photographer, trying to live what she calls “the simple life — which was anything but simple” in a log cabin in Vermont. She taught high school English while still finding time to tend the gardens. She traded all that in for the present position at ham radio and we are much the better for it.

Presently, while raising two sons and juggling multiple issues of the magazine at the same time, she’s working on upgrading her license. She says she feels that, in some very small way, she’s working off a debt here at HR . . . to her father for giving her the world through radio and to the hams who sent word of her first child’s birth to Vietnam in 1969.

Rich Rosen, K2RR
Editor-in-Chief
The Smallest HT!

TH-21AT/31AT/41AT

Kenwood's advanced technology brings you a new standard in pocket/handheld transceivers!

- High or low power. Choose 1 watt high—enough to "hit" most local repeaters; or a battery-saving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and weighs 260 g (57 lb) with PB-21.
- Expanded frequency coverage (TH-21AT/A). Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
 TH-31AT/A: 220.000-224.995 MHz in 5 kHz steps.
 TH-41AT/A: 440.000-449.995 MHz in 5 kHz steps.

- Easy-to-operate, functional design. Three digit thumbwheel frequency selection and handy top-mounted controls increase operating ease.
- Repeater offset switch. TH-21AT/A: ±600 kHz, simplex.
 TH-31AT/A: -1.6 MHz, reverse, simplex.
 TH-41AT/A: ±5 MHz, simplex.
- Standard accessories: Rubber flex antenna, earphone, wall charger. 180 mAH Ni-Cd battery pack, wrist strap.
- Quick change, locking battery case. The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.
- Rugged, high impact molded case. The high impact case is scuff resistant, to retain its attractive styling, even with hard use. See your authorized Kenwood dealer and take home a pocketful of performance today!

NEW BC-6 Charger! Charges in just 1 hr.

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 Ni-Cd 180 mAH battery
- PB-21H Ni-Cd 500 mAH battery
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8/8T soft cases
- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter
- BC-6 2-pack quick charger
- GC-2 wall charger for PB-21H
- RA-8A/9A/10A StubbyDuk antenna
- BH-3 belt hook

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
ARRL'S "NOVICE ENHANCEMENT" PROPOSAL IS NOW AN FCC NPRM, released by the Commission just in time for the Dayton Hamvention. As released, the Notice of Proposed Rule Making follows the League's original proposal very closely (see Pressstop, July and August, 1985).

In Brief, The 10-Meter Novice Band Would Become 26.1-26.5 MHz with CW, RTTY, AMTOR and packet on the bottom 200 kHz plus SSB from 28.3-28.5 MHz; the 200 W power limit (Novices and Techs only) would remain. Full privileges on the entire 220 MHz band plus 1246-1260 MHz are also proposed. Though 220 MHz had a 150 W power limit on 228 and 5 W on 23 cm.

Though 220 MHz is Included In The NPRM, There's A Serious Question as to whether it will remain as part of the final result. That band has been the subject of attack from other services in the past, and is presently part of an as yet unfinished FCC study. The latest threat is a Petition for Rule Making from the Association of Radio Reading Services, which proposes using frequencies in the 220-225 MHz band for a new service for the blind.

Though Originally Hailed As A Means Of Attracting New Novices, as written the proposal looks more effective as a means for retaining existing Novices. However, that in itself would be a worthwhile result as the Novice dropout rate has consistently been the highest. Comments will be due at the Commission on August 20.

ANY TWO REPEATERS WITH AN INTERFERENCE PROBLEM ARE "EQUALLY AND FULLY RESPONSIBLE" FOR RESOLVING IT, the FCC decided in its Report and Order on PR Docket 85-22. If only one of them is coordinated, however, the uncoordinated repeater has "primary responsibility" for resolving the problem. In the same action the Commission also dropped its restrictions on repeater power and antenna height. Effective date for the Report and Order is July 12.

RFI PROBLEMS HAVE BROUGHT THE SHUTDOWN AND FINING OF A CANADIAN AMATEUR, VE3SR. Ruling on a nuisance complaint brought by neighbors, the judge found that the neighbors' rights had been "unreasonably invaded by conduct which forms a basis for liability" and issued a permanent injunction against VE3SR operating a transmitter! In addition, he fined VE3SR $2500 for creating "inconvenience and interference with the enjoyment of various pieces of electronic equipment," $50.50 in Special Damages, plus costs and interest.

Canadian Amateurs Are Appalled At The Adverse Decision, as VE3SR had been supported by the Canadian Department of Communications as well as the CRRL, CARF, and a number of both Canadian and U.S. Amateur clubs. VE3SR had made a strong effort to resolve the problem, which involved a number of the neighbors' home entertainment devices, but met with little cooperation from them. At presestime he had not decided whether to appeal the decision, in light of the considerable investment he's already made in defending himself.

PRB-1's First "Victory." Lakeside Park, (Kentucky), Is Still Not Resolved. WM4T still has to appear before a Federal District Court judge to determine what constitutes a "reasonable" antenna, and now the city has adopted a new antenna ordinance that it calls "fair and reasonable" but area amateurs feel is little better than the old one.

Even A 2-Meter Vertical Can Get An Amateur In Trouble with the law. KATTVC put a 2-meter vertical on the roof of his Kirkland, Washington, apartment building with the owner's permission, then found himself in trouble with the city over a law requiring engineering drawings, a public hearing, and a $350 hearing examiner review fee before installation of any transmitting antennas! The law applies only to transmitting antennas, so the same antenna installed by a scanner user would not have been covered! KATTVC is appealing his citation, and hopes with ARRL and PRB-1 help to be able to have the ordinance rescinded on the grounds that it is vague and unenforceable.

ROY NEAL KADUE, HAS BEEN NAMED "RADIO AMATEUR OF THE YEAR" by the Dayton Hamvention. The NBC newsman received the award for his many years of personal and public dedication to the Amateur Radio Service, and specifically for his key role in initiating Space Shuttle Amateur Radio activity. He's also been directly involved in many film and video promotions on behalf of Amateur Radio. U.S. Senator and former astronaut John Glenn paid a surprise visit to the Hamvention banquet to help honor Roy, who was also the banquet's keynote speaker.

The 1985 "Special Achievement Award" Went To Fr. Michael Mullin, C.M., WA280W, President of the International Mission Radio Association. He was cited for his work with the CIRRI, the CARF, and his accomplishments in supplying Amateur equipment to missionaries worldwide.

Doug DeMaw, WB9, Received the 1986 "Technical Achievement Award" for his numerous contributions to Amateur Radio communications technology. Congratulations to all three!
Matching Pair

The TS-711A 2 meter and the TS-811A 70 centimeter all mode transceivers are the perfect rigs for your VHF and UHF operations. Both rigs feature Kenwood's new Digital Code Squelch (DCS) signaling system. Together, they form the perfect "matching pair" for satellite operation.

- Highly stable dual digital VFOs
 The 10 Hz step, dual digital VFOs offer excellent stability through the use of a TCXO (Temperature Compensated Crystal Oscillator).
- Large fluorescent multi-function display
 Shows frequency, RIT shift, VFO A/B, SPLIT, ALERT, repeater offset, digital code, and memory channel.
- 40 multi-function memories
 Stores frequency, mode, repeater offset, and CTCSS tone. Memories are backed up with a built-in lithium battery.

Optional accessories
- IF-10A computer interface
- IF-232C level translator
- CD-10 call sign display
- SP-430 external speaker
- VS-1 voice synthesizer
- TU-5 CTCSS tone unit
- MB-430 mobile mount
- MC-60A, MC-80, MC-85 deluxe desk top microphones
- MC-48 16-key DTMF, MC-42S UP/DOWN mobile hand microphones
- SW-200A/B SWR/power meters:
 SW-200A 1.8-150 MHz
 SW-200B 140-450 MHz
- SWT-1 2-m antenna tuner
- SWT-2 70-cm antenna tuner
- PG-2J DC power cable

- Versatile scanning functions
 Programmable band and memory scan (with channel lock-out). "Center-stop" tuning on FM. An "alert" function lets you listen for activity on your priority channel while listening on another frequency. A Kenwood exclusive!
- RF power output control
 Continuously adjustable from 2 to 25 watts.
- Automatic mode selection
 You may select the mode manually using the front panel mode keys. Manual mode selection is verified in International Morse Code.
- All-mode squelch
- High performance noise blanker
- Speech processor
 For maximum efficiency on SSB and FM.
- IF shift
 "Quick-Step" tuning
 Vary the tuning characteristics from "conventional VFO feel" to a stepping action.
- Built-in AC power supply
 Operation on 12 volts DC is also possible.
- Semi break-in CW, with side tone
- VS-1 voice synthesizer (optional)

More TS-711A/811A information is available from authorized Kenwood dealers.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

Complete service manuals are available for all Trio-Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
AFFORDABLE PACKET RADIO FROM MFJ

An identical TAPR TNC 2 clone with a new cabinet and added features... for an incredible $129.95!

All you need is your rig, home computer with a RS-232 serial port and a terminal program. If you have a Commodore 64, 128 or VIC-20 you can use MFJ’s optional Starter Pack to get on the air immediately. You get interfacing cable, terminal software on tape or disk and complete instructions... everything you need to get on packet radio. Order MFJ-1282 (disk) or MFJ-1283 (tape). $19.95 each.

Unlike machine specific TNCs, you never have to worry about your MFJ-1270 being obsolete because you change computers or because packet radio standards change. You can use any computer with a RS-232 serial port and an appropriate terminal program. If packet radio standards change, software updates will be made available as TAPR releases them. Also speeds in excess of 56K bauds are possible with a suitable external modem! Try that with a machine specific TNC or one without hardware HDLC as higher speeds come into widespread use. You can also use the MFJ-1270 as an inexpensive digipeter. It features the latest AX 25 Version 2.0 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, 16K RAM, simple operation plus more.

Join the packet radio revolution now and help make history. Order the MFJ-1270 today.

Here are MFJ’s latest and hottest products for improving your station’s performance.

SUPER KEYBOARD

MFJ-406
$169.95

Price slashed 50% to $169.95! Get a full feature Super Keyboard that sends CW/RTTY/ASCII for the price of a good memory keyer.

You get the convenience of a dedicated keyboard—no program to load—no interface to connect—just turn it on and it’s ready to use.

This 5 mode Super Keyboard lets you send CW, Baudot, ASCII, use it as a memory keyer and for Morse Code practice. You get text buffer, programmable and automatic message memories, error detection, buffer preload, buffer hold.

TRIPLE OUTPUT LAB POWER SUPPLY

MFJ-4002 $149.95

Lab quality power supply gives you plenty of voltage and current for all your analog and digital circuits. 3 completely isolated outputs. 2 variable 1.5-20 VDC at 0.5 amp and a fixed 5 VDC at 1 amp. Connect in series or parallel for higher voltage and current. It’s short circuit protected; has excellent line (0.01% / V) and load regulation (0.1%). Lighted meters monitor volt./cur. 12x6x6 in. 110 VAC.

CROSS-NEEDLE SWR/WATT METER

MFJ-815 $59.95

MFJ’s cross-needle SWR/Wattmeter gives you SWR, forward and reflected power—all at a single glance! SWR is automatically computed—no controls to adjust. Easy-to-use push buttons select three power ranges that give you QRP to full legal limit power readings. Reads 20/200/2000 W forward, 5/50/500 W reflected and 1:1 to 1:5 SWR on easy-to-read two color scale. Lighted meter needs 12 VDC ± 10% full scale accuracy. 6 x 3/4 x 4/9 inches.

ORDER ANY PRODUCT FROM MFJ AND TRY IT—NO OBLIGATION. IF NOT SATISFIED RETURN WITHIN 30 DAYS FOR PROMPT REFUND (less shipping).

* One year unconditional guarantee. Add $5.00 each shipping/handling. Call or write for free catalog, over 100 products.
improving "a frequency and level standard"

Dear HR:

While I always find several articles of interest in each issue of *ham radio*, the January, 1986 issue — with PA0CX's article, “A Frequency and Level Standard” (page 10) — was especially timely. I have needed a frequency standard usable up to the 70-cm ham band for some time. To get one with calibrated amplitude was too much to miss, so out came my breadboard.

I've since made several improvements to the circuits that appeared in the article.

The first change was to use a different oscillator circuit. I couldn't get the author's circuit shown in fig. 3 (page 12) to oscillate with any 1-MHz crystal that I owned. The circuit shown below has worked with all 1-MHz crystals that I've tried. One advantage of this circuit is that it uses the 74LS00, which draws less current than the 7400. This aids frequency stability because the IC doesn't heat up as much. I measured approximately 15 Hz of drift at 200 MHz for a 7400, while the 74LS00 had less than 5 Hz from turn-on.

![Circuit Diagram](image)

The second change is to substitute another 74LS00 for U3; this lowers current consumption and thus increases battery life.

I first built the circuit on a protoboard. The output amplitude was within 1 dB through 150 MHz, as the author, Hans Evers, had stated. This was without the use of any of the bypass capacitors shown in the schematic.

I then wired a final version on vector board for enclosure in a shielded box. This version did not have the flat amplitude response that protoboard had. In fact, there were a number of peaks in the response. Adding the 2.2 μF capacitors (especially the ones on U2 and U3) improved the response at the higher frequencies, but the problems at 100 kHz and 1 MHz mentioned by the author still remained. This was cured by placing a 2.2 μF capacitor from the 78L05 input to case ground (not circuit ground). I'm not sure if the regulator was oscillating or if there was a ground loop problem. I wired the IC grounds together with one long piece of No. 26 wire, although the protoboard has a good, wide low-impedance ground bus. The author's version appears to be wired in a similar fashion.

With the above changes the output amplitude was —73.0 ± 0.5 dBm from 100 kHz to 150 MHz and ±1 dB to 220 MHz, as measured with an HP-71100A Spectrum Analyzer. For such a simple circuit, I couldn't ask for more.

The schematic (fig. 3) omits one important detail: pins 2, 3, 6, and 7 of U4 and U5 need to be grounded. This is correctly shown in fig. 4 (page 14), but is easily overlooked when wiring up the circuit from the schematic diagram.

Thanks for the excellent article. I'll be waiting for the next issue of *ham radio*.

Steve Lund, WA8LLY
Santa Rosa, California 95401

on novice proposals

Dear HR:

I've been reading some negative comments about the proposals before the FCC to enhance Novice privileges. Both the ARRL's RM-5038 and my own RM-5025 request small band segments, restricted power, and the inclusion of digital modes. We never intended to "give the store away," nor do we expect the FCC to grant all the privileges we requested. Our common interest is the growth of our hobby in a responsible way.

I fail to see what those who oppose these proposals fear. There will be no loss of "higher class" privileges. Who protested the access we gained to 30 meters, or 12 meters, or 902 MHz? The Novice operators have gained nothing. The Technicians gained a band, but it is not really an incentive to Novices to upgrade. The big incentive to Novices seems to be 2-meter FM, and that is why my proposal did not include that band.

The ARRL's proposal includes more kHz than mine and is less practical with its inclusion of the 1246 MHz band. I have seen my proposal mentioned in only one publication (*Worldradio*, September, 1985) and have received no comments. My aim is to offer non-hams a Novice license that will attract intelligent adults and young people. We need computer enthusiasts, story tellers, teachers, students, accountants, laborers, etc., etc. Our record shows that we cannot lure them in any numbers with our CW-only Novice license.

Teach a Novice or an upgrade course like I do and you will see the work that goes into each new ham. You old-timers may forget that ham radio and electronics are a new language to the non-ham. We can help squash the myth that equipment is too expensive if we offer new hams phone and digital modes as well as CW. The equipment will be of more use and will [therefore] seem a better value. Besides, Novices really do earn a license.

If, after reading this, you still think enhanced Novice privileges are a bad idea, go read the actual proposals and then comment to the FCC.

Larry W. Garens, WD5H
Brady, Texas
turning that big array

Homebrew this inexpensive, quiet rotator

I recently bought, and was faced with the problem of rotating, some large five-element monobanders made by a manufacturer whose promotional materials emphasize their products' ruggedness and resistance to wind damage. Until that time, my largest antenna had been a loaded 2-element beam for 40 meters that could be handled by a HAM IV rotor. But my new antennas were much more massive—for example, my booms measured 3 inches (7.6 cm) in diameter, thus presenting a wind load that was not only large, but unbalanced as well because the boom length each side on the mounting mast differs slightly. This imbalance increases the stress on any rotator in high winds. Wise heads, then, agreed that disaster would be certain unless I obtained a heavier rotator.

Unfortunately, such rotators are expensive. In the past, Amateurs used World War II surplus prop-pitch motors designed for bomber aircraft; these, however, are no longer plentiful and also come with their own set of problems. I concluded that it should be entirely possible, in a city as diverse as Toronto, to find enough surplus mechanical components to homebrew a rotator at reasonable cost. What follows is not a detailed, step-by-step construction article, but instead a description of a general approach that can be adapted to suit the materials at hand.

mechanical design

A trip to the local surplus store uncovered a 20-to-1 worm gear reduction drive and a powerful single-phase, capacitor-start induction motor with integral gear reduction. The shaft speed of the motor is 56 rpm at 50 in.-lb (5.6 N.m) torque. It draws 2.1 amperes at 115 VAC. These two parts form the heart of the rotator and should be purchased first because the rest of the design will depend on how these have to be mounted and coupled together. The type of worm drive shown in fig. 1 is ideal, in that the input drive shaft is horizontal, and the output drive shaft is vertical; this facilitates running a chain drive to the mast. Furthermore, it mounts with four bolts at the bottom, making it easy to mount on a horizontal plate. Because a worm drive cannot be back-driven, no brake is required.

The type of motor used, common on the surplus market, is available with various speed and torque ratings. The exact rating isn’t too critical, as long as the product of speed and torque is at least 1500 and the

By Victor Mozarowski, VE3AIA, 1 Belgrove Drive, Islington, Ontario M9B 1S2, Canada
speed is low enough so that the rest of the drive train can reduce it to the desired antenna rotation speed.

drive motor and gearbox

A tremendous amount of torque is not required; the ruggedness of the gearbox is far more important. After all, if static friction is overcome, the antenna will eventually come up to speed, at which point its inertia will help keep it moving. Since most installations now use a high-quality ball-type mast bearing, starting would be a problem only if this bearing were iced up solid. Be that as it may, with the sprocket and gear ratios I used, and disregarding losses, the torque at the antenna mast works out to approximately 4500 in.-lb (508 N.m). (I suspect it might be possible to have a too-powerful motor that might damage the gearbox if the antenna mast were frozen.) There are formulas in machinery handbooks for calculating the size of components in the worm drive, but because these are based on a continuous running load and a certain working life, they're of little use if you want to know the ultimate yield strength under catastrophic load conditions. With carefully selected components, this type of failure would seem unlikely — and, in any case, as I'll show later, this type of failure isn't really catastrophic after all.

other components

As for the various other drive parts, suppliers sell a standard range of mechanical components, such as bearings, drives, gears, sprockets, and chains, at reasonable prices. The particulars of these components can be found in specialized catalogs (such as from Boston Gear Company, 14, Hayward Street, Boston, Massachusetts 01271), in the same way that we select standard values of electronic components from manufacturers' and distributors' catalogs. If a part isn't in stock, the supplier can almost always get it quickly through a distribution network. All the components used here except the motor and gearbox, which were bought at surplus, and the mast coupling, which was custom-machined, are standard components.

When I disassembled the gearbox, I found that its gears were also standard Boston Gear parts, so that in the unlikely event of a failure, it could also be repaired. This is one advantage of building your own rotator; because the parts are standard, reasonably priced, and readily available.

The mechanical parts required include the following:

- **Flanged cartridge.** A high-quality, sealed, ball-bearing unit set in a horizontal mounting flange (fig. 2), it can support both thrust and radial loads. The one I used could take about 2000 pounds (907 kg), although it's only a small unit and takes a 1-1/8 inch shaft (2.85 cm). Mounted at the bottom of the mast, it takes the full weight of the antenna array through the machined adapter shown in figs. 2 and 3. My unit's mounting holes were very close to the standard rotator mounting bolt pattern, so only a bit of
filing was necessary on the tower’s existing mounting holes.

- **Sprockets.** These are quite similar to bicycle sprockets. The type I used is available for various shaft sizes and is keyed for convenience in mounting and to prevent any slippage between shaft and sprocket. When the sprockets are pinned with a piece of key-stock, slippage is impossible; no clamping method can ensure this.

- **Rolled pin (or split dowel).** This is a hollow steel pin with a slot running the length of it. It holds the mast adapter (fig. 2) in the mast, and is driven with a sledge hammer into a hole drilled through mast and adapter. The slot allows it to compress as it’s driven in, for a tight fit. There are two good reasons to use a rolled pin or split dowel rather than a bolt: one, there’s absolutely no free play—and any free play in a large system is dangerous, because the antennas can slam back and forth, loosening or even shearing hardware — and two, there’s no protrusion as long as the correct length is used. I used two 2-inch (5 cm) rolled pins, each measuring 3/8 inch (9.5 mm) in diameter, at right angles. One is visible in the lower hole in fig. 3; the hole above allows ventilation to protect the mast against condensation. The pins are available in various sizes and lengths (check the Yellow Pages under Fasteners — Industrial), but are probably not available at your local hardware store.

- **Gears for the direction potentiometer.** Small aluminum gears in various ratios that gear down the mast rotation to drive the direction-indicator potentiometer are available from hobby shops. Make sure both gears have the same tooth size (pitch). This is readily visible; inspect carefully.

- **Chain.** Chain is available in various sizes from the same sources as the sprockets (see above). For the final drive to the mast, I used a No. 50 chain, which also happens to be a common motorcycle chain. Note that it’s much cheaper to buy this from a motorcycle parts counter than from a machinery supplier. It may also be possible to scrounge the short length actually needed from a motorcycle or bicycle repair shop.

- **Keystock.** This steel rod, square in cross section, is available in 1-foot (30.48 cm) lengths. You cut the length you need with a hacksaw. The keystock fits into a keyslot machined in the sprocket and the shaft to prevent slippage.

- **Mast adapter.** This is a straightforward piece of custom-machined steel (fig. 2). The end with the two transverse holes slides into the bottom of your mast and is secured with two rolled pins through mast and adapter. The length of this portion isn’t too critical, though it probably shouldn’t be shorter than 3 inches (7.6 cm), which is what I used, to minimize play. To determine the diameter for close fit, your machinist should measure the inside diameter of your mast, since it can vary significantly from nominal. Mine was 0.01 inch (0.5 mm) undersize, which means that if the adapter had been machined to nominal, it could not have been inserted! The sprocket fits into the middle part of the adapter, which should be long enough so you can line up this sprocket with the one on the gearbox. A keyslot should be machined to correspond to the keyslot in your sprocket. Be aware that sprockets for different shaft diameters will also use different key sizes. This portion was turned down to 1.5 inches (3.8 cm), which was the maximum shaft diameter for a keyed No. 50 sprocket with 24 teeth.

If you’re using a large-diameter mast, I recommend machining a shoulder between the portion that slides into the mast and the portion that takes the sprocket. In this way, the shoulder takes the weight instead of the rolled pins or through-bolts.

The bottom part of the adapter, of smaller diameter, fits into the bearing in the flanged cartridge, resting on the shoulder formed by the middle part, which is of larger diameter. It should be long enough to protrude far enough below the rotor plate to mount a small gear for transmitting the motion to the direction pot. The end face was drilled and tapped in the center to take an insert onto which the gear could be mounted. Although the end could be machined down to the required 1/8 inch (31 mm) diameter, you would be unhappy if this little bit ever broke off. The insert is easy to machine.

The method described above for transmitting motion to the mast is superior to any mast clamping arrangement because the forces concentrated on this area are tremendous. The clamp on a popular commercial rotator has been known to loosen even in
ShackMaster™ puts your home station in the palm of your hand. Whether portable, mobile, around the yard or around town you'll be linked through your handheld to your high performance equipment at home. Even call home from any Touch-Tone phone and operate.

Scan the bands, change modes, select antennas, turn gear on and off – all from your Touch-Tone keypad. Check into nets, work skeds, ragchew and DX without being tied down to the shack.

Exchange electronic mailbox messages with your family – like “I’ll be late”, or “All is OK”. Or talk with your family directly through ShackPatch™, with you in remote control of your home station. Report traffic accidents or disabled motorists through your home phone while mobile or portable with PersonalPatch™.

All the power of your home station (and more) really can follow you anywhere... to find out more about ShackMaster™ just write, send us your QSL, or call and talk with us at 408-749-8330.

ShackMaster™ is a trademark of Advanced Computer Controls, Inc. 10816 Northridge Square, Cupertino, CA 95014. (408) 749-8330.
hardened aluminum plate bought from a junkyard (also a good source of gearboxes). If normal aluminum is used, I would recommend at least 1/4 inch (0.635 cm) thickness. Steel is preferable because of greater stiffness, but is much harder to work with, especially when filing or cutting, since it can’t be cut on a shear. The mounting holes for the motor and gear drive must be slotted to allow the chains to be tensioned. Since the main drive chain is too heavy to tension directly by hand, a mechanical method had to be incorporated. Fig. 1 shows the steel bar across the front face of the gearbox. Screws passing through it and the L-shaped blocks on either side of the gearbox are tightened to pull the gearbox in the direction away from the mast, thus tightening the chain. The gearbox mounting nuts and bolts are then tightened. The sprockets can be aligned by sliding them along the shafts, then securing them with the set screws. Fig. 3 shows the mounting plate braced to a cross member across the tower face to prevent excessive flexing.

If you live in the North, make sure the grease in the gearbox doesn’t solidify at low temperatures. Also, build or buy an enclosure to protect the rotator against rain. (I built another small box below the rotor plate to house the direction pot.) The mounting holes for the potentiometer bracket should be slotted to allow alignment of the gears, as shown in fig. 4.

electrical design

For obvious reasons, the motor must be reversible. A capacitor-start motor can be reversed by reversing the current in the starting winding. To do this, I used a 1:1 isolation transformer in the starting winding; the rotation switch reverses the output leads for the reverse direction (fig. 5). The starting winding is the one with the higher resistance; the other is the running winding. Since the entire motor is rated at 2.1 amperes, I would think that a 100-watt transformer would be more than adequate. Usually only three wires are brought out from the motor, since a common return is used for both windings. If you’re lucky and find a motor with the windings brought out separately, no transformer will be needed for reversing.

rotation switch and indicator pot

I didn’t incorporate overtravel limit switches for a number of reasons. It was very awkward to mount microswitches and actuate them; also, many more heavy conductors would have been needed in the control cable. To minimize risk of overtravel, a spring-loaded rotation switch is used, with a center off position. Also, a meter was used for direction indication. Unlike a selsyn, this has no 0/360-degree ambiguity. If you want to use selsyns, install limit switches.

Since a pot turns only about 270 degrees, I used...
it's best done on a sunny day. Take the control box outside for convenience. After deciding which scale markings on the meter will be your 0 and 360-degree points, turn the antenna for 0 degrees indicated. At this time the antenna heading isn’t important because we’re first calibrating the meter only for full-scale deflection. Place a long stick on the ground, in line with the antenna boom, or in line with the shadow of the boom. Rotate the antenna 360 degrees so the boom once again lines up with the stick. The antenna should have turned in a clockwise direction. Adjust trimpot R1 for 360 degrees indication on the meter. Double check the 0-degree point and repeat the above if necessary. Now you’re ready to calibrate the true heading of the antenna.

Using one of the usual methods, rotate the antenna until it points to true North. The meter should show between 0 and 360 degrees. Loosen the mounting nut on the pot and turn the body until the meter reads 0 degrees. Your control box is now calibrated.

One of the nice features of this rotator is quiet operation. The tower doesn’t resonate with the clang of a wedge brake disengaging and engaging, since no brake is provided or needed. Rotation is totally audible from the ground. Maintenance consists of keeping the chain greased and tight (though not too tight) and greasing the bearing once in a while.

I hope you have as much pleasure homebrewing and using your own rotator as I did.

antenna direction

Antenna direction is displayed on a large panel meter. I painted over the original calibration, retaining only the scale, and used dry transfer lettering to re-label it in degrees. I wouldn’t recommend using the original zero on the meter scale as your 0-degree azimuth point, but rather the next major scale marking. This is because a pot wiper seldom goes to 0 ohms, and you would risk damaging the pot or losing your calibration by having the pot rotate on its mounting if you accidently went a bit past 0 degrees. I used a meter with a 250 microampere movement, but other movements (up to 1 milliampere) would be appropriate if the resistors in the control box were changed.

calibration

The direction indication can be calibrated as follows;

![Control box schematic](image-url)
45 Affordable Watts!

TM-201B/401B

Super-compact mobile transceivers

The TM-201B boasts a powerful 45 watts output, easy-to-operate front panel controls, and ultra-compact size. The GaAsFET receiver front end provides high sensitivity and wide dynamic range. Receive and transmit characteristics are tailored for minimum distortion and excellent audio quality. Both the TM-201B and the TM-401B are supplied with a high-quality external speaker, 16-key DTMF microphone and mounting bracket.

- 45 watt output, with HI/LO power switch (TM-401B has 25 watts output) 5 W low.
- Dual digital VFOs
 - TM-201B covers 142-149 MHz, includes certain MARS and CAP frequencies
 - TM-401B covers 440-450 MHz
- 5 memories plus "COM" channel, with lithium battery back-up

Other accessories:

- Programmable, multi-function scanning
- High quality external speaker supplied
- Audible beeper confirms operation

Optional accessories:

- PS-430 power supply
- TU-3 or TU-3A two frequency tone encoder
- FC-10 frequency controller
- MC-55 (8-pin) mobile microphone
- SP-40 compact mobile speaker

Optional FC-10 frequency controller

Convenient control keys for frequency UP/DOWN, MHz shift, VFO A/B, and MR (memory recall or change memory channel).

More information on the TM-201B/401B is available from authorized dealers.
Careful planning, quality components give DXing’s “big guns” the competitive edge

This concluding section examines site requirements, lightning precautions, construction, maintenance, performance, and propagation. In addition, some of the most competitive stations reveal their plans for further improvements.

siting

Though most stations surveyed opt for the highest, quietest location possible, several work within the same constraints that the majority of us (the “little pistols”) must deal with. Those surveyed were asked to describe their sites in terms of near and far field topography, obstructions, and noise.

Near field topography is a description of the contours of land in the immediate vicinity (i.e., within approximately one wavelength) of the antenna system. Of those who responded to this question, 83 percent described their near field topography as being flat or having a negative slope; the remaining 17 percent indicated a positive slope. It’s important to remember that especially on the lower bands, optimum launch angles often exceed 30 degrees, so perhaps that mountain range in your backyard doesn’t have as deleterious an effect as it might on the higher HF bands.

Far field topography in which the land rises at some distance should have an even less pronounced effect on the reception and transmission of low-band signals. However, the actual slope is important (in both the near and far field) and can be determined through the use of United States Geological Survey 7.5-minute (1:24,000) or 15-minute (1:62,500) maps.* Those surveyed described their far field conditions in basically the same terms as near field: flat or negative horizon. For example, they used the words “flat to ocean,” “flat many miles,” “mountains 26 miles away,” “top of hill,” “top of ridge,” “flat and drops off,” “flat to within 1/2 mile in all directions,” and “80 meters above local terrain.” So you see what most of the big guns have in common: a good site — topographically speaking, at least.

Obstructions. In terms of obstructions on those sites, the worst offender appears to be trees. Yet many of the low-band installations depend on these trees for supporting wire antennas. To date I haven’t seen any definitive studies indicating whether the presence or absence of trees greatly affects patterns or performance of low-band antennas. (Any reader who has information on this subject, please contact me.)

Many of those surveyed indicated “none” when asked about obstructions; it’s no accident that the FCC at its various monitoring facilities has extremely stringent requirements with regard to the height and location of any obstructions (even in what’s defined as the far field). Apparently development of many of the high-performance stations involved site examination and evaluation as a first necessary step. An example of a good near and far field site is seen from the boom’s perspective of W6NLZ’s 80-meter Yagi (fig. 1).

Noise. The oft-spoken adage, “If you can’t hear them, you can’t work them,” certainly applies to low-band operation. (There are some who have a particular knack for working stations that just aren’t there, but that’s another story). The limiting factor in the reception of signals is noise, be it man-made or atmospheric.

*Maps for areas east of the Mississippi are available in the United States from the United States Geological Survey, 1200 South Eads Street, Arlington, Virginia 22202. Maps for areas west of the Mississippi may be ordered from the United States Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225. USGS maps are also sold by more than 1650 commercial dealers listed in the pamphlet, “Index to Topographic Maps,” available without charge from either USGS distribution center listed above.

By Rich Rosen, K2RR, Editor-in-Chief, ham radio

June 1986
After reviewing all the responses and assigning a range of 10 (no manmade noise whatsoever) to 1 (terrible), the average value appears to be around 8. Although most of the high-performance stations have a quiet noise environment, one of the top stations surveyed — with over 300 countries worked on 80 meters and well over 100 on 160 — described his location as "high noise," with a 115-kv high-voltage line within 0.5 mile. Don’t give up hope for successful low-band operation if you have a high noise level. If it’s the result of faulty electrical equipment, power companies can be helpful in tracking down the source of the noise and correcting the problem.

Other sources of interference can sometimes be located using portable equipment (for example, a pocket AM radio with a ferrite loop or circuit designed especially for that purpose). Noise cancellation techniques have been used for many years with some degree of success. Many who use directional arrays (phased verticals, for example) probably notice that switching the antennas around produces a noticeable increase or reduction in noise level. Sometimes it’s better to point the antenna’s null at the interference, trading off a dB or two of gain from the preferred signal direction. A suggestion from some of the veteran 160-meter operators is for newcomers to be aware of noise from TV horizontal oscillators, either your own or your neighbors’.

lightning

The expression, “Into each life a little rain must fall” could be particularly applicable to big guns, whose large antenna systems are more exposed to the elements than others. Lightning poses a real threat to some of these stations, with their high towers and negative horizons. Precautions can be taken, however, and the danger lessened.

Two locations worthy of attention are in the shack and out at the antenna. Precautions taken at the shack include the simple expediency of disconnecting all transmission lines, grounding the equipment and/or antennas or a combination of both. Outdoor precautions include using antennas that are permanently DC grounded by design; for example, the base of a shunt-excited vertical is at DC ground. One method of DC grounding a horizontal wire antenna would be to attach a quarter-wave shorted stub (or odd multiple of a quarter wave) across the dipole’s feedpoint and ground it at the shorting bar at the opposite end. This technique, primarily used to drain off static charge, works well only if the antenna is used over a narrow band of frequencies. Otherwise the short reflects back to the feedpoint as other than an open circuit and must be accounted for (in matching). Some of those surveyed were quite satisfied that the grounding system designed as part of their antenna installation would prevent any lightning damage.

Even if a lightning discharge should occur at your antenna, shack damage is not inevitable. One "big gun" responding to the survey said he felt that by locating the antenna a considerable distance from the shack, the danger of damage occurring at the station end was greatly lessened.

Those who have taken direct strikes reported losses ranging from only a fuse box on one hand to almost total destruction of their home, with walls and windows blown out and ceilings collapsed. Anyone who’s ever experienced even a very close lightning strike knows that this is a subject to be taken seriously, with every reasonable precaution applied.

construction

It’s one thing to design, on paper, a three-element 80-meter Yagi. It’s quite another matter to build, install, and keep it up. Wire antennas, though easier to install, still require an investment in quality materials, labor, and time.

Several of those surveyed built their own rotary Yagis. Noel, VE2HQ, described his efforts to construct his three-element, 515-pound, 43 square foot (windswept area) Yagi, the result of three years of planning, determination, and hard work, marked by several setbacks.

Working all winter in his basement, he built the linearly loaded elements, starting with 3-inch O.D. tubing and down to 0.5 inch in increments of 0.25 inch (11 different diameters). The linear loading was added 125 inches from the butt of each element by cutting the 2-inch diameter section, inserting a fiberglass tube and winding the coil with copper-clad wire. Additional element support was provided by double element guying on each side with Phillystran.**

The boom consisted of two 35-foot long flag poles

**Phillystran is a registered trademark of Philadelphia Resins Corp.
designed for supporting large microwave antennas and fabricated a 50-foot triangular extension measuring 33 inches on a side to be mounted on top of that.

The first time Noel installed his antenna at 110 feet, it resonated too high in frequency and had to be taken down. It was made to resonate at 3625 kHz at 15 feet above ground so that it would resonate at 3785 kHz at its final height.

Chris, I5NPH, erected an even larger three-element Yagi using full-size elements. A careful examination of fig. 2 provides an appreciation of the size of the components used in this antenna. The structure at the right that looks like a tower is the end of the boom; the large tubing at the left, which looks like a large boom, is one of the parasitic elements. Notice the size of the vertical strut used to support the long elements. Figure 3 shows the method used to attach the parasitic elements to the boom. When one considers the difficulty of installing a completed antenna, eight bolts in the element-to-boom clamp don’t represent “overkill.”

While W6RJ put his three-element KLM Yagi together on the tower, K3ZO completed his Yagi's construction on the ground and raised it with a 164-foot crane. WAI1EKV used ropes strung from his tower in a vee to slide and pull his Yagi to the top.

Because wire antennas tend to break at the worst times, a quick means of lowering and raising them is necessary. Ropes, pulleys, and continuous halyards are successfully used by some to provide this capability. In addition, if you want your antenna to stay up, use the best quality material. One of those surveyed has had success with white/blue marine rope. Polypropylene rope, though less expensive, disintegrates after exposure to sunlight. It might take several years, but it will deteriorate; be sure to wear gloves when working with old polypropylene.

installation and maintenance

Two more practical questions were asked of those questioned in this survey: “What precautions did you take in installing your system to make sure it would stay up?” and “What periodic maintenance procedures do you follow?”

In general the consensus of opinion can be summed up in a single word: quality. Though topnotch material costs more initially, it delivers years of consistent good performance and pays for itself.

The “big guns” offered specific advice on the subject of non-wire antennas (rotaries and towers). Here’s what they recommend:

- Tighten all guy wires and clips to specification.
- Choose all materials carefully — anything that isn’t aluminum or stainless steel will rust.
- Paint all towers and masts.
- Lubricate all moving parts properly.
AMATEUR TELEVISION

INTRODUCING OUR NEW SMALL ALL IN ONE BOX TC70-1 ATV TRANCEIVER AT A SUPER LOW $299 DELIVERED PRICE.

TC70-1 FEATURES:
- 10 pin VHS color camera and RCA jack video inputs.
- Crystal locked 4.5 mHz sound subcarrier.
- PTL (Push To Look) T/R switching.
- Dual gate GaAsfet tuneable downconverter.
- Two frequency 1 watt pep xmr. 1 xtal incl.
- Xmit video monitor outputs to camera and jack.
- Small 7 x 7 x 2.5" for portable, mobile, or base.
- Draws only 500 ma (exc. camera) at 13.8 vdc.

Just plug in your camera, VCR, or computer composite video and audio, 70 cm antenna, 12 to 14 vdc, and you are ready to transmit live action color or black and white pictures. Sensitive downconverter tunes the whole 420-450 mHz band down to channel 3 on your TV set to receive. Both video carrier and sound subcarrier are crystal controlled. Specify 439.25, 434.0, or 426.25 mHz. Extra crystal $15.

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any tech class or higher amateur can get on ATV. If you already have a source of video and a TV, it costs about the same as getting on 2 meters.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 15 miles, 7 miles with the 440-6 for portable use such as parades, races, search and rescue, etc. You can add one of the two ATV engineered linear amps listed below for greater DX.

AT 70 cm, antenna height and gain is all important. Foliage can absorb much of the power. Also low loss tight braided coax such as the Saxton 8285 must be used.

The TC70-1 has full bandwidth for color, sound, and computer graphics. You can now show the shack, computer programs, home video tapes and movies, repeat SSTV or even space shuttle video if you have a TVRO.

20 WATT SPECIAL $399
SAVE $9 on the TC70-1 & ELH 730G when purchased together

ACCESSORIES:

Mirage D24N 50 watt amp ATV, SSB, FM. 9 amps. $189
KLM 440-27 14.5 dbd antenna $89
KLM 440-6 8 dbd antenna $38
Alinco ELH-730G 20 watt amp ATV, SSB, FM. 4.5 amps. $109
With regard to wire antennas, they advise the following:

- Use quality halyards — for example, white/blue marine rope.
- Use steel line for the halyard section that goes over tree branches.
- Avoid the use of galvanized steel wire for radials.
- Protect all critical connections with a good weather-resistant sealant such as Coax-seal.

Periodic maintenance procedures include:

- Tightening of guy wires, clips and hardware.
- Lowering wire antennas with pulleys to check the condition of the halyards, wire, and insulators.
- Cleaning insulators with a rag and water.
- Clearing foliage away from verticals.
- Repairing thin wire ground radial systems.
- Protecting systems with the same paint used on the undersides of boats.

Many of the big guns found that they experimented so frequently with new antennas that the short life cycle of their old antennas precluded the need for periodic maintenance.

Performance

The next question posed was, “How does your present antenna system perform in comparison to others — either your own or the competition’s?” In general most felt that the latest was the best. Specifically:

K3ZO found that his three-element KLM rotary at 140 feet was 25 dB better than a half-wave sloper and up to 8 dB better than his previously used three-element, 80-foot boom delta loop beam.

OH1RY found his full-size three-element Yagi outperformed a dipole by 20 to 30 dB on the long path shot to the United States.

4X4NJ uses four tilted verticals on 160 meters, fed in various phase combinations with passive reflectors to create an electronically rotatable vertical beam system. He feels “it’s almost as good as having a full rosette of Beverages, with the added advantage of having a good low-angle rotatable transmitting antenna.”

W2JB, another 160-meter operator, stressed the importance of being able to hear. “Most of the DX runs low power and signals are usually at the noise level. That’s where you need your Beverage antennas,” he wrote.

SP3GEM, who trades off between a vertical and a delta loop, doesn’t see much difference between the two in the favored delta loop direction. However, he prefers the vertical in other directions — that is, where the delta loop exhibits a null.

KG7D, like many others, believes slopers provide good performance by launching a low angle signal, showing nulls off the sides, and having reasonable feedpoint impedances and consequently high efficiency.

One of the truly big signals from Japan on 80 meters, **JF1IST**, uses the Create Manufacturing CY-703 three-element Yagi and is very pleased with its electrical and mechanical performance. The specification sheet lists its forward gain, F/B ratio and 2:1 VSWR bandwidth as approximately 8.5 dBi, 20 dB and 100 kHz, respectively. JF1IST has his centered on 3.80 MHz, right in the middle of the Japanese SSB window.

W1NH, formerly W1SWX, can often be heard pulling out the rarest of stations on 80 meters, thanks to his three slopers and inverted vee from a 100-foot skyhook and six 1000-foot long Beverages. To illustrate its performance, he enclosed copies of QSL cards from VS5MC, HS5ABD (both short and long path) and JT0DAQ — all very difficult shots from the East Coast on 80.

K5UR attributes his success on the low bands to a superior receiving capability (Beverages once again). Considering that he holds the CQ Worldwide DX Contest U.S. record on 160 meters, his transmitted signal must also be outstanding to be heard above some of his competition on the East Coast. He does mention that his new 130-foot vertical appears to work noticeably better than his old 70-footer.

YU7PFR’s three-element wire Yagi at 56 feet outperforms his previous single vertical or dipole while providing a 2:1 VSWR bandwidth of 250 kHz. With one of the strongest signals from Yugoslavia, he’s consistently heard in the United States.

SM4CAN has noticed as much as a 6 dB improvement in signal level using his Bobtail curtain as compared to his gamma fed tower with 120 radials. However, on long path to the United States his delta loop performs better than the Bobtail during the month of November.

According to **SM6EHy**, it’s possible to have too low an angle radiator. He says that his four-element phased vertical array just doesn’t have that extra punch when high angle signals are propagated, and goes on to say that “the greatest advantage in using phased antennas is that you can reduce noise and QRM pickup from unwanted directions to such a degree that you can hear everything on the band.”

VE2HQ compared his home-brewed three-element Yagi with a sloper at 155 feet and found the Yagi to be superior in terms of signal strength. He also estimated the front-to-back ratio to be 22 dB.

With over 300 countries worked on 80 meters, **W4DR**, in comparing his four-element phased vertical array with other antennas, says he believes that the really high horizontal beams still have the edge.

N4AR uses a pair of phased Bobtail curtains on 80...
meters and finds that the F/B ratio on low-angle signals is often in the 15-20 dB range and the front-to-side is "astronomical." He prefers this antenna over Beverages for receiving as well. He also says that having an antenna with noticeable gain and a very definite controllable pattern has provided him with insights on propagation on 80 meters. He's probably one of the few to have worked Laos (XW8BP) on 80 from the East Coast

Attributing his success to a two-element delta loop array, DJ0IA says he's experimented with other antennas but keeps on coming back to it. W1FV, showing true ham ingenuity, fit a well-designed and constructed phased vertical array into very narrow confines without any compromise in performance. He rates its overall performance on 80/75 meters as excellent. Winner of the single-band category in the 1984 CQ WW CW contest, he observed: "The vertical array is the best antenna I have ever used for the difficult paths (central Asia, Japan, deep Pacific, and Indian Ocean)." He has tried many slopers, high dipoles, and delta loops but finds the present configuration to be the best.

EA8ADP proves that sometimes a simple antenna can be a top performer if other conditions are met. His inverted vee has accounted for 225 countries worked on 80 meters in less than three years. He can normally be heard in the States when the rest of Europe is barely being copied. His inverted vee is supported at the 33-foot level on a tower atop a 148-foot high building situated on top of a hill.

propagation

As far as I'm concerned, this has to be one of the most interesting areas considered in the survey. The perspective gained by being able to review responses from different countries, continents — and in general, both ends of a communications path — starts to explain observations made over the years but not understood. I feel fortunate to be the compiler of this work because of the insights and the rest to you. A special vote of thanks is due to SM6EHY, who provided an extremely detailed account of his observations made during 20,000 hours of listening on the low bands.

160-meter propagation

For those not familiar with 80 and 160 meters, there is a tendency to lump them both together as "those noisy, short-range bands." That static exists on the lower frequencies is undeniable; that the communications range is limited is true sometimes, but not always. How else could one explain stations working over 300 countries on 80 and 200 countries on 160 meters, given the right conditions and activity? Furthermore, 160-meter enthusiasts are quick to point out that there's sometimes a world of difference between propagation modes on 160 meters and on 80 meters, and that one band should not be judged by the performance of the other.

K1MEM best expressed this when he said "The basic creed is, don't go by 80-meter conditions to judge 160. 160 can be great to Europe or Africa when 80 is poor and vice-versa. QRM on one band is no indicator of the other. Also the beacons from Europe seem to have no relation to Amateur signals."

K5UR finds propagation to be best towards Africa and the Indian Ocean in the early evenings. At this time of day he's occasionally observed long path signals from Asia (YB, 9M, . . .) coming from the direction of South America. The same stations are also heard on a skewed path at a bearing of 235 degrees in the morning. Signals from Russia appear on a bent path with a heading of 75 degrees.

From the northwest, KG7D believes that chordal propagation is the mode on 160 when Europe is being heard at his QTH, yet not being copied at other locations in the United States. He believes this occurs when the F1 and F2 layers fail to merge. "It would be nice to know the optimum takeoff angle for chordal propagation. For me it appears medium angle north/south, low to the east, and again medium angle to the west. Frequent openings do definitely occur along the terminator lines, with signals coming from over the poles. Frequently we see enhanced propagation effects from the auroral zone."

VE7BS found a good opening occurring to VK almost every day throughout the summer of 1985. It started well before his sunrise and ended well afterwards. The observation of this path, he believes, is largely a function of the operating habits of Australians, pointing out that in June and July, VE7 sunrise occurs at a reasonable time in the VK evening. At other times of the year — for example, when VE7's sunrise occurs at 1430Z — the VKs have already gone to bed . . . thus no communications. The path may still exist. This is somewhat analogous to a tree's falling in the forest; is a sound made even though no one's there to hear it? The answer is an emphatic yes.

SM6EHY echoed this same point in discussing the polar path between Sweden and stations on the East Coast of the United States and in the Midwest. Stations can be worked from 0800 to 1200Z on 80. Bjorn believes that the same conditions should hold true for 160 and attributes the lack of contacts to the low level of activity in the northern United States at this time. Bjorn also wishes United States Amateurs would improve their receiving capability; for example, on the 10th of June he failed to attract the attention of W9s after 15 attempts. He also feels that 160 can open up on occasions to a degree that has never been observed on 80 meters. For example, ZL3GQ was 599
The ST-8000 HF MODEM is a high-performance, fully adjustable modulator/demodulator for use in high-frequency radio data systems. The HF Modem features fully adjustable frequencies and baud rates, memories, diversity, regeneration, print squelch, CRT tuning indicator, and multiple AM or FM detectors. The bandwidths of the input filter, Mark filter, Space filters, and post-detection filters are tracked with the selected data rate (10 to 1200 baud) to assure optimum signal recovery for all signals. Front panel parameters may be controlled from an external ASCII terminal or computer. A full complement of I/O interface options allows use of the ST-8000 with virtually any terminal and radio system. Install the HAL DS3100ASR CRT terminal and ST-8000 HF Modem in your communications system and enjoy the benefits of a data system designed for radio operators.

- Tuneable from 500 to 4000 Hz in 1 Hz steps
- Set 10 to 1200 Baud in 1 baud increments
- Four input band-pass filters
- 32 matched Mark and Space filter bandwidths
- Mark and Space 7-pole linear phase LP filters
- Filter BW and selection computed and set by microprocessor front panel controls
- RTTY shifts from 40 to 3500 Hz
- Eight programmable non-volatile memories
- Split or transceive RX/TX tone selection
- FM or AGC controlled AM signal processing
- -65 to +20 dBm dynamic range (AM or FM)
- Exclusive HAL Digital Multi-Path Correction (DMPC™)
- M/S, Mark Only (MO) or Space Only (SO) detector modes using Adaptive Threshold Detector (ATD™)
- Adjustable Print Squelch and non-diversity Amplitude Squelch
- Exclusive HAL Infinite Resolution Diversity Control (IRDC™)
- Digital signal regeneration
- ASCII/Baudot code and speed conversion
- Quick Brown Fox and RYRY... test message generator
- Programmable Selective-call (SEL-CAL) printer control
- Transmitter PTT KOS control
- Antispace
- RS232C, MIL-188C or TTL Terminal I/O
- LP1200 Option for polar or neutral loop
- 8, 600, or 10K ohm input impedance
- 8 or 600 ohm output with adjustable level
- AFSK or FSK transmitter outputs
- Remote terminal or computer control of all demodulator parameters
- Exclusive HAL Spectra-Tune™ and X-Y Mark/Space CRT tuning indicators with automatic trace on/off control
- 100-130/200-250 VAC, 44-440 Hz power
- 3.5" high rack mounting cabinet (14" deep)
- Shielded and filtered for radio system use

Write or call for complete ST-8000 specifications. We think you will agree that it opens new frontiers in radio data communications. Contact the Government & Commercial Products Division for price and delivery information.

HAL Communications Corp.
Government & Commercial Products Division
1201 W. Kenyon Road
P.O. Box 365
Urbana, IL 61801-0365
(217) 367-7373 TWX: 910-245-0784
+10 dB at 1652Z on December 24 for about 1 minute. The best he’s been able to observe on 80 was 589 over both the short and long path.

80-meter propagation

Consisting of two DX segments separated by approximately 300 kHz, 80 meters sometimes also acts as if it were two different bands. Conditions can be excellent on the short path to Europe on SSB and poor on the CW portion and vice-versa.

More responses were received for this band than for 160 meters. Consequently the subject is divided into several sections: short path, bent path, long path and other influences.

- **Short path.** For the most part, those surveyed concentrated on the unusual paths either long path, bent, or skewed. Perhaps it’s because the normal great circle path is in reality not all that common or at least certainly not as exciting. If one assumes that several “short paths” exist between two locations at the same time and one path is more severely attenuated than the other, then it’s reasonable that the latter path will be observed as the only path and classified as a bent path. For example, suppose a station in New Hampshire is in contact with a station in the U.K., and that they’re both using single verticals. If at the time of the QSO the geomagnetic field is disturbed and the normal great circle path, at a bearing of 54 degrees, is severely attenuated, then signals coming from the second path, off the coast of North Africa, will provide the only viable means of communications. This situation, which has often been observed over the past several years from K2RR to the U.K., normally coincides with a fairly high K index. However, even the latter path disappears at still higher values of K approximately 24 to 36 hours after a major solar event. It’s at these times that only signals from the South can be copied and usually only unilaterally.

A case in point was during the recent expedition, XF4MDX. It was as if a traveling blanket (east) and somehow these far western Asiatic and Pacific signals scatter into the terminator line [Gray-line — Ed.] and somehow these far eastern Asiatic and Pacific signals scatter into the terminator line path,” he says.

This bent path is clearly in the direction of the terminator line and perhaps more strongly on this bent path than from the great circle direction. During auroral conditions, he has worked W6NLZ with signals appearing to come from South America; this correlates with Peter’s (W6NLZ) observation from his end of the path.

ZL4BO attributes his success in bent path propagation to his extreme southern latitude, utilizing the path over both the North and South Poles when the normal (short path) and long path conditions aren’t good.

SM4CAN notices that the best direction for working United States stations “short path” is at a bearing of 270 degrees as opposed to the indicated 330-degree great circle azimuth. During auroral conditions, he has worked W6NLZ with signals appearing to come from South America; this correlates with Peter’s (W6NLZ) observation from his end of the path.

N4AR has observed signals from Japan, Hong Kong, and Indonesia from the Southeast. In fact, he always hears VS6DO and YB5ASO more strongly on this bent path than from the great circle direction.

“This bent path is clearly in the direction of the terminator line [Gray-line — Ed.] and somehow these far eastern Asiatic and Pacific signals scatter into the terminator line path,” he says.

Using his full-size three-element Yagi, OH1RY observes signals from Hawaii at a bearing of 90 degrees (east), whereas great circle calculations would indicate a northerly direct path.

W1FV, as well as many others on the east coast of
the United States, has observed the same bent path towards Japan and Southeast Asia in the morning by beaming to the southwest. Not only have other stations observed this path, but they've also seen it change abruptly (within a matter of minutes) from the southwest to the northwest when hearing Japanese stations. Using a rapidly switched phased vertical array, John finds that it often exhibits ill-defined directional characteristics for long-haul paths around sunset and sunrise, although the antenna is otherwise quite directional. "Perhaps this is explained by multipath propagation or some unusual radiation-angle and/or polarization effects?" he wonders, adding that "this ill-defined directionality is also noted on most signals during periods of a disturbed geomagnetic field."

long path

It's not uncommon to hear stations calling CQ long path around sunset from the east coast. What are they hoping to accomplish? And what's this phenomenon called "long path"? It's reasonable to assume that the practice first gathered momentum with stations on the higher HF bands — for example, on 20, 15, and 10 meters years ago. They observed that it was possible to contact stations by pointing their highly directional antennas in the opposite direction of the great circle short path. At the time very few stations on 80 meters had directional antennas and it was even less likely that both stations at opposite ends of the path would have directional arrays. That long path contacts occurred on 80 meters in those years was, however, certain; they just weren't called "long path." (I would like to hear from anyone who operated 80-meter long path years ago.)

N4RJ, W4DR, K2FV and W1FV have been able to work into western Australia, Indonesia, and Japan at their sunset by beaming southeast, utilizing primarily the "long path."

From the other side of the path, VK6LK finds that his long path opening to the East Coast of the United States normally starts about 15 to 20 minutes after his sunrise and lasts 20 to 30 minutes when the conditions are good. "My first long path opening was with W1FC on 13 September this year, and I would expect the path to close sometime next May. One problem here is short skip from YB. They can drown the weaker long path signals from the United States." From Japan, JA1FRE has also noticed the existence of a US-JA long path through his (reception) observations of east coast United States stations at 2130Z.

Other, long path shots not well known by US stations of course still occur. JA1FRE works into the UK and Scandinavian countries at 0800Z, taking advantage of this mode. SP3GEM and other European stations are able to work into the Pacific areas using the long path. KSUR has a morning long path into Europe that isn't too common, but when it does occur, produces high signal levels.

Using his phased Bobtail curtain, N4AR has shown how reliable the early morning long path into central Asia can be. He has maintained a schedule over the years with UL7GW, talking to him approximately 100 times per season using this mode. "During that period, many other Asiatic Russians were easily worked on a daily basis," he wrote. Besides these USSR stations, he also worked XW8BP and other southeast Asians at this time of day.

What's even more interesting is that he found that the path essentially disappeared during the sunspot minimum of 1974-1975. This is contrary to the widely accepted belief that sunspot minimum years provide the best low-frequency DX. N4AR commented, "While stronger signals (during this period) were evident from Europe in the evening and an occasional UA9 or UL7 QSO was possible in the evening, for all practical purposes the morning long path disappeared."

As stated earlier, this path returned during the most recent solar maximum. Fortunately at that time, HS1ABD and UL7GW were again active, serving as markers for band openings.

N4AR remarked that with the phased Bobtails, "There's no question deciding if signals are indeed coming from the direction of the long path. This tends to be along the terminator line during the 1130 to 1230Z window. Looking at the MUF limited F2 hops doesn't seem to explain the loss of signal (during sunspot minimum) adequately. In any event, it's certainly a real phenomenon, at least from this part of the world."

SM6EHY disagrees with the contention that a true long path condition exists with signals originating and terminating in the same hemisphere. "Long path — with the meaning of true long path direction — does not occur on 80 meters," he wrote. Signals arriving at SM6EHY's OTH from KL7, KH8, VE7, W7 and W6 have the same azimuth angle: 110 degrees. "They arrive at a very high angle (50 to 60 degrees), with some noticeable echo. This holds true only for the same hemisphere. Signals coming from the southern hemisphere have all true azimuth angles for both short and long paths." He also believes that at W0, W6, and W7 sunrise, stations should not be beaming long path but using the Arctic path instead.

other influences

Through his 20,000 hours of low-band observations, SM6EHY credits the significant influence of the aurora on propagation. "The conditions this far north are very heavily affected by aurora with regards to paths to stations in the northern hemisphere such as JAs and Ws. The maximum particle radiation from the sun (which causes the auroral) is predicted to occur ap-
Our Very-Hard-To-Find Components List

- CAMBIAN RF CHOKES
 - 15, 22, 33, 47, 100, 120, 220, 330, 470, 680, 1000 pf

- UNDERWOOD/SEMCO METAL-CLAD MICA CAPACITORS
 - Type J101: 10, 15, 22, 33, 47, 68, 1000 pf
 - Type J102: 1000 pf

- P.C. BOARDS FOR MOTOROLLA BULLETINS
 - AN 762, EB-27A, EB-63, AN-758, EB-67
 - AN 791

- FERROXCUBE DEVICES
 - NK50/200 200/4B RF Choke
 - VK100/50/2 Ferrite Bead

- MISCELLANEOUS
 - Anco 403 Trimmer Cap 3.35 pf
 - Sprague GYA10000 Poly Trim 2-10 pf
 - NF2-12V Aromat Relay

We also carry a line of VHF, UHF amplifiers and ATV equipment. Call or write for our free catalog.

Our Very-Hard-To-Find Components List

Butternut Verticals

Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
- 80, 40, 30, 20, 15 and 10 meters automatic bandswapping
- Add-on kit for 17 and 12 meters available now.
- 26 ft. tall

Model HF2V
- Designed for the low-band DXer
- Automatic bandswapping on 80 and 40 meters
- Add-on units for 160 and 30 or 20 meters
- 32 feet tall - may be top loaded for additional bandwidth.

For more information see your dealer or write for a free brochure.
proximately two years after the sunspot maximum. In this last cycle the aurora has consistently occurred from December, 1981, until now (March, 1986) leaving the polar path open only on special occasions." When this polar path is open SM6EHY can work the east coast and midwestern United States from 0800 till 1200Z. Japanese stations can be worked 24 hours a day. This occurs from mid-November until mid-February, when the path is open.

where is this auroral activity?

SM6EHY continued, "The aurora expands between Spitzbergen (JX) and northern Norway (LA) and under most conditions the maximum activity is experienced close to 64 degrees N (latitude). From 144 MHz observations, the reflection belt travels from the far east through the north to the west and then disappears. Occasionally, it's the other way around.

Bjorn went on to mention that the aurora can change very rapidly — within a period of seconds — virtually closing down a good path. When the auroral activity is south of his location the "arctic is like an open field where signals experience very little attenuation."

what other paths does it affect?

"A bent path has been observed during auroral activity," Bjorn wrote. "The signals coming from W1 [stations] just cannot travel through the arctic region [the auroral can be considered to be a 0 to 30 dB pad, depending on the level of activity and signal path — Ed.] and must be reflected in an area close to the equator and other places at the same time. This causes the signal to be heard with some echo and QSB."

benefits of a low-angle radiator

With his phased vertical array and large ground system, Bjorn feels he’s able to launch an extremely low-angle signal that can go under the aurora’s attenuation belt. "The lower you go in frequency, the more important is the takeoff angle; the angle fluctuations are more pronounced at lower, rather than higher, frequencies," he said.

Bjorn believes it’s important to transmit at angles between 0 degrees and 10 degrees on 80 meters. "A low takeoff angle antenna can be used very effectively during auroral activity to contact some stations at least part of the way through the auroral region. A case in point is when he’s not able to hear the W1s, but can still work OK or VE8 stations with good signal strengths."

ducting

Another propagation mode noticed by SM6EHY and others involves signals entering at one location, traveling and being trapped between ionospheric lay-

ers, and finally exiting at a second location, whereby stations in-between cannot copy either end point. Specifically, on north-south paths signals from stations as far south as 15 degrees follow normal paths. Further south, ducting appears to occur. There are times when Swedish stations north of SM6EHY are able to communicate with South Africa but not be heard by him.

Ducting also possibly occurs on the North Atlantic path between the east coast of the United States and Europe. This might explain the high signal strengths received across the Atlantic by stations using low dipoles that launch high-angle signals. If it were simply a case of multihop propagation between the ionosphere and earth, signal levels would be lower. However, reflections between layers, on the other hand, would account for less loss. The entrance and exit requirements for ducting might be high-angle.

when are low-band conditions best?

SM6EHY echoes the sentiment expressed by N4AR that low-band conditions are probably best during the period of maximum solar activity (sunspot maximum). He explains that it’s probably not noticed, since proportionately fewer stations operate on the low bands when the MUF is high and 10 through 20 meters are more heavily utilized at that time. It’s possible to test this hypothesis during the next sunspot maximum, because there’ll be more stations on than ever before using high-performance directional 80-meter antennas.

disturbed geomagnetic field affects path

N4AR kept close track of WWV’s A and K indices for many years and believes that neither the bent path nor the great circle long path appear to be beneficially influenced by geomagnetic disturbances. However, with the onset of a geomagnetic field disturbance, spectacular increases in signal strength are occasionally evident over the short path. Also observed by others, the latter situation is normally a precursor of the arrival of the lower energy electrons from the sun 24 to 36 hours later and its associated high level of D layer absorption.

plans for the future

Because improvements are always possible in any station — big guns not excluded — the final question asked in the survey was "What improvements are you considering making to your station?" The responses to this question included ideas for improving receiving capability, installing higher performance transmitting arrays, increasing tower height, using a bigger radial system, installing lower loss transmission line and even acquiring a better site.

- Receiving capability improvement. K3ZO wants to improve his 160-meter reception in general. N1ACH
Ham Radio's Bookstore conveneons, and get-togethers, and you have a plastic blue. No ham should be I.D. BADGES

Please send call and name (maximum 6 letters per line).

The secrets of successful low-band operation. Well, not quite. One necessary ingredient that’s hard to quantify is, of course, the desire to succeed — in this case, to have the very best signal on the band. Besides the other three factors mentioned before (hard work, time, and expense) there’s also the dream, the enthusiasm that keeps you climbing to greater heights, laying out just ten more radials and extending that Beverage even further, hoping that one night as you’re scanning, that BY4 will come pounding through on 3.505 with a never-before-heard clarity and strength.

references

N&G Airport
"Right next to Miami Int. Airport."

7201 N.W. 12th St. Miami, Fla. 33126
(Dade) (Broward)
1-(305) 592-9685 1-(305) 763-8170

More Details? CHECK—OFF Page 110
a wrangle over Wrangell

Want to work a “new country?” Maybe you can. Unknown to most radio Amateurs, the United States has claims to Wrangell Island (UA0) and other island territories north of the Soviet Union. The situation isn’t clear, and maritime-boundary discussions about this region — spurred on by the discovery of oil — are underway.

In a recent editorial The Wall Street Journal called attention to deliberate Soviet harassment of U.S. drilling rigs in the Navarin Basin. This harassment, which includes dangerous overflights by Soviet aircraft, is one of several subjects of discussion between the two powers. Although the issue bears watching, only limited information about it has appeared in the daily press.

Little-known Wrangell Island seems to be assuming an importance greater than its size. I doubt if there will be much radio Amateur activity from that part of the world until the boundary issue is settled.

the five-band coffee pot

Mobile antennas for the HF bands have always been a problem because of low operating efficiency and restricted bandwidth. A mobile enthusiast, Varouj Kalinian, (N6DBH, ex-OD5CS and FOHN) has solved this problem to his satisfaction. His solution is to use a short mobile antenna, but to increase the diameter of the element below the loading coil (fig. 1). For the base section, he used an old coffee pot about 8 inches (20 cm) in diameter and 14 inches (35 cm) tall. His loaded whip sections were mounted to the top of the pot (fig. 2).

Varouj removed the electrical components of the pot, drilled a hole in the middle of the plastic cover, screwed the cover to the pot, screwed a 40-meter Hustler resonator and whip to the top and then adjusted the antenna to resonance. He found that he had a bandwidth of 150 kHz between the 1.75-to-1 SWR points on the feedline on 40 meters.

Encouraged by the results, Varouj added other resonators and antenna tops for the other HF bands. The results were a bandwidth of 60 kHz on 80 meters, 200 kHz on 20 meters, 300 kHz on 15 meters, and 800 kHz on 10 meters. In a short time he had a “five-band coffee pot antenna.”

Varouj admits the antenna looks a trifle bizzare and that he gets curious stares from other drivers. He reports that one driver pulled alongside, handed Varouj a coffee cup, and yelled, “Fill me up!”

a mini-antenna for 160 meters

It’s unfortunate that a halfwave antenna for 160 meters has to be so big. Walt Bollinger, AF8V, must have thought about this as he tried to put out a reasonable signal on that band from a small lot. His solution to this problem is shown in fig. 3. This configuration is a loaded Marconi antenna whose overall length is about 50 feet (15 meters). It is mounted about 20 feet (6 meters) above the ground. A 6-foot (1.8 meters) ground rod is used in conjunction with a 65 foot (19 meters) long counterpoise wire running beneath the antenna, just below the surface of the soil. As illustrated, the antenna operates over the range of 1.8 to 1.825 kHz with an SWR figure of 1.5-to-1 or less. If a variable capacitor is connected in series at the feed-point (X), the antenna will operate over the rest of the band with low SWR. The approximate capacity necessary to achieve this without exceeding the 1.5-to-1 SWR is as follows: 1.85 to 1.92 MHz, 700 pF; 1.92 to 1.97 MHz, 450 pF; 1.97 to 2.00 MHz, 350 pF.

Walt uses a three-gang variable capacitor long ago removed from an old tuned-RF broadcast receiver (QRP only). It has three 365 pF capacitors on a common shaft. “For its size,” Walt
says, "I think this antenna will surprise most everyone. It seems reasonably omnidirectional and provides me with a lot of fun on the "top band.""

a rectangular loop antenna for 80-10 meters

Walt, AF3V, checks in with a second interesting multiband antenna fig. 4. A rectangular loop in the vertical plane, its overall length is about 58 feet (17.6 meters) with the bottom wire about 7 feet (2.13 meters) above ground. Its unique feature is the knife switch (SW) placed across the insulator in the center of the bottom wire. Easily reached, the switch permits the operator to change from an open loop to a closed one quickly. The feedline is a home-made, open wire line about 42 feet (12.8 meters) long. It drops down vertically to within 8 feet (2.4 meters) of the ground and then extends horizontally to the station, perpendicular to the plane of the antenna. The antenna is adjusted to resonance by means of an old Johnson "Matchbox" tuner. The antenna switch is closed for operation on 7, 10, and 21 MHz and is open on the other bands. With a different length feedline, different switch settings may be necessary.

Walt supports the center of the top section to offset the weight of the feedline. He says that the antenna outperforms the center-fed horizontal wire that he had previously and reports that the pattern appears reasonably omnidirectional on all bands.

a simple antenna for 40 and 30 meters

Many Amateurs say they enjoy the 30-meter (10 MHz) band because there are no disconcerting contests on it and because it’s possible to rag-chew with a DX station without having a horde of eager beavers making rude noises on the frequency, unhappy that they’re thwarted in their search for a "new one."

Harvey Hunter, W8TYX, enjoys 40- and 30-meter operation with the simple antenna shown in fig. 5. Basically, it consists of a 30-meter ground plane antenna, roof-mounted, with a ground screen of 60 radials. The radials also serve with the 40-meter antenna, which is mounted a few feet away from the 30 meter whip. About 5 feet (1.5 meters) of the 40-meter antenna is vertical; the remainder is more or less horizontal, about 25 feet (7.62 meters) above the ground.

Slightly longer than a quarter-wavelength, the 40-meter wire antenna has a feedpoint impedance of close to 50 + j50 ohms. A good match to the 50-ohm transmission line is achieved by using a series capacitive reactance of −j50 (450 pF) between the feedline and the base of the antenna.

The 30-meter antenna has a feedpoint resistance of about 35 ohms, so a simple L-network is used to match it to the transmission line. The antenna adjustments are slightly interactive, but tune-up using an SWR meter quickly compensates for that.

the "hy-tower" antenna operates 160-10 meters

The many Amateurs who have the "Hy-Tower" vertical antenna may find the automatic tuning arrangement for multiband operation used by Paul Scholz, W6PYK, of interest. The scheme should work well for any vertical antenna over 35 feet (10.7 meters) high.

The basic network, shown in fig. 6, consists of a series-connected LC circuit (L₁, C₁) in parallel with a second inductor (L₂). The series network is adjusted for minimum SWR on 75 meters with the parallel inductor set to maximum value. The last step is to adjust the parallel coil for resonance on the 160-meter band. The two adjustments don’t interact if the 75-meter adjustment is done first. Operation of the antenna is normal on the higher frequency bands.
For 75-meter operation, a range of 200 kHz is obtained between the 2-to-1 SWR points. On 160 meters, operational bandwidth is about 50 kHz.

Although Paul recommends the component values shown in fig. 6, he has a computer program that provides component values for different LC ratios in the network. For low-power operation, 5 kV transmitting-type mica capacitors can be used; for high power, he recommends a variable air capacitor with 0.125 inch (3.2 mm) spacing.

a rugged, long-life quad

Many exasperated Amateurs have wondered how it's possible to keep the Quad antenna alive and well year after year. The common weak point of many Quads is the junction between the wire and the Quad arm; the wire tends to either break at this point or "saw" its way through the Quad arm.

In my February, 1986, column I suggested one way of easing this vexing problem. I recently received a communication from Paul Atkins, K20Z, suggesting a different (and simpler) technique that has permitted his Quad to stay aloft for over 13 years. On the advice of a friend in the wire business, Paul rebuilt his Quad with silverplated teflon-coated wire. The teflon coating shed water easily and retards ice buildup. The manner in which he attached the wire to the Quad arm is shown in fig. 7. The teflon covering is removed from the Quad wire about 10 inches (25 cm) out from each arm. The slug of teflon removed is about 2 inches (5 cm) long. A thermal stripper is recommended. Next, two pieces of No. 14 tinned copper wire long enough to be twisted in opposite directions are tightly wrapped around the wire element. Using a large iron, the ends of the twisted wires are soldered to the stripped portions of the antenna element. Run solder over the connections to stiffen them. This brings the moment arm away from the spreader arm and minimizes flexing at the point the element is secured to the spreader. Finally, the flux is wiped off the connections, which are then wrapped with...
TELEWAVE'S "PROBLEM SOLVERS"

Transmitter Combiners • Receiver Multcouplers
• Monitor Equipment • Test Equipment • Ferrite Isolators and Terminations • High Q Cavities and Filters • Duplexers • Systems Engineering

Bandpass, Pass-Reject & Notch Cavity Filters

Transmitter Combining

Receiver Multicoupling

IM Suppression Panels

R.F. Power Monitoring

Duplexers & Preselectors

GSA Number 00K86AG50646

Telewave, Inc.
(415) 968-4400
1155 Terra Bella Ave., Mountain View, CA 94043

in Canada - contact Telewave Ltd., 11151 Horseshoe Way #4
Richmond, B.C. Canada V7A4S5 (604) 274-8300

June 1986
The final addition to Paul's Quad was to tie the driven element to the reflector element with polyethylene cord. The tie is made near the tips of the spreaders to keep the arms from distorting too badly in high winds or under heavy ice loading. The black polyethylene cord — about 1/8 inch (0.32 cm) in diameter — is still in service.

The 40-meter DX beam at K6NQ/7

Forty-meter DX operators have heard the strong signal of Jim Villasana, K6NQ/7. This is a tough band for serious DX competition because some of the "big guns" use multielement Yagi and Quad beams. Great antennas, if you have the time, money and space to put 'em up!

Jim's solution to the 40-meter DX problem is to use two sloper dipoles hung from a 140-foot (42 meters) fir tree and fed 270 degrees out-of-phase (fig. 8). The slopers are at a 45 degree angle with respect to ground. The centers of the dipoles are at the same height. This places the top ends of the dipoles at 100 feet (30.48 meters).

The dipoles are fed with equal lengths of RG-8X coax (230 feet/70.1 meters) and the phasing of the reflector element is accomplished by adding an extra 3/4 wavelength of line (approximately 86 feet, or 26 meters) coiled up inside the operating room. While Jim has tried various other antenna arrangements, he finds that this simple antenna works best for DX. Dismayed to find that the array exhibited little gain on short-haul contacts, he was amazed at how well it worked on long-haul DX. He found, to his gratification, that his 7-MHz signal was as strong in Europe as those of other west coast DXers running high two- and three-element Yagi beams. On very good openings, the simple
sloper antenna was better than 1 S-unit over competitive Yagi antennas located at the 120-foot (36.6-meter) level.

Its beam pattern is broad enough to cover Europe and Northern Africa; Jim estimates about 90 degrees beamwidth to the -3 dB points. He tried several phasing schemes to get the required 90-degree phase difference and found out the hard way that the best results were obtained when the rear element used 3/4 wavelength phasing.

Jim wishes he had the room to string up two or three arrays of this type to get full coverage, but that will have to wait until he has more real estate. Meanwhile, he does a fine job with a very inexpensive antenna!

the British "zip code"

Some time ago I admitted that the British Postal Code was a mystery to me - and to most other Amateurs as well, I suspect. Jim Miller, G3RUH, very kindly sent me a Post Office brochure explaining the system in such a lucid manner that even I could understand it. (The Canadian code works on the same principle, I am told).

In brief, the code is a simplified address, with each part of it focusing on a progressively smaller area. The United Kingdom is divided into 120 areas, each being identified by the first two letters of the code. As an example, the code MK42 8LA is given. The MK indicates the Milton Keynes area of England; the 42 stands for a district within the Milton Keynes area; the digit 8 indicates a sector in district 42; and the LA designation identifies the street. The code is read by a machine which converts it to two rows of blue dots imprinted on the envelope. The dots, in turn, are read by a mechanized system which sorts it on its way. Thus, the code helps identify an individual person on a particular mail route! It's also often imprinted on bicycles, automobiles, and other vehicles to assist in the return of stolen property.

amateur service bulletins

The popular "moonbounce" notes have been reprinted and are again available. For a copy, send five first-
class stamps or five IRCs (no envelope is necessary) to me at EIMAC, 301 Industrial Way, San Carlos, California 94070. Request bulletin AS-49.

Additional copies of “Design Considerations for Linear Amplifiers” are at hand, too. For a copy, send four first-class stamps or four IRCs to me at the above QTH. Ask for Bulletin AS-53.

Finally, copies of the 144-MHz EME Directory (AS-49-37), which lists worldwide EME operators, their QTHs, and station equipment, are available for five first-class stamps or IRCs.

ham radio

short circuits

narrowband filters

In WB4EHS’ March article, “Build Narrowband RF Filters (page 10), the word “smaller” in the second sentence on page 14 should be changed to “larger.”

In the program listing on page 15 (fig. 7), line 145 should be corrected to read as follows:

145 INPUT 0:IF 0<1 OR 0<5 THEN GOTO 145

signal generator

Values for four capacitors and labels for three resistors were omitted from fig. 8 of YB9ATA’s article, “Two-tone Signal Generator” (February, 1986, page 26). The corrected portion of the schematic is shown below.
BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE & UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32", 3/16", 5/32"

SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU... SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

SYNTHESIZED SIGNAL GENERATOR

MADE IN USA

MODEL 5G-100F $429.95

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/−1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery

SP28VD 28-30 <1.2 15 0 12 DGFET $59.95
SP50VD 50-54 <1.3 15 0 12 DGFET $59.95
PS60VD 50-54 <0.55 24 +12 GaAsFET $109.95
PS144VD 144-148 <1.6 15 0 12 DGFET $59.95
PS144VDA 144-148 <1.1 15 0 12 DGFET $59.95
PS220VD 220-225 <1.9 16 0 12 GaAsFET $109.95
PS220VDA 220-225 <1.3 15 0 12 DGFET $59.95
PS320VD 320-425 <1.9 15 -20 Bipolar $62.95
PS320VDA 320-425 <1.2 17 -20 Bipolar $79.95
PS432VD 432-520 <0.55 16 +12 GaAsFET $109.95

Every preamplifier is precision aligned on ARR’s Hewlett Packard HP6820A/H2546A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are re switched for use with transceivers and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7 1/2% sales tax, C.O.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or inline preamplifier today and start hearing like never before.

Advanced Receiver Research

Box 1242 • Burlington, CT 06013 • 203 582-9409

BELDEN 9913/9914 Cable

“N” Connectors $3.50 Crimp or Solder Type

FOX INTERNATIONAL, INC.

717 W. UNION HILLS DR. #3-190
PHOENIX, AZ 85027
(602) 971-2755

“We Specialize In Custom Connectors”
SWL's: Are You Plagued By Phantom Signals?

Meet the Eliminator.

Don't let its small dimensions (4"x3"x2") fool you—the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the 100 kHz-30 MHz frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

Grove Enterprises
140 Dog Branch Road
Brockton, N.C. 28902

Shop Grove for fantastic values in shortwave receivers, antennas, cable, performance-boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!
We just struck gold with a miniature, high quality and very reliable DTMF decoder at a rock bottom price of $59.95. Our DTD-I will decode 5040, 4 digit codes with the security of wrong digit reset. It contains a crystal controlled, single chip DTMF decoder that works great in bad signal to noise environments and provides latched and momentary outputs. Why carry that heavy gear when its size is only 1.25 x 2.0 x .4 inches and it comes with our etched in stone, legendary, one year warranty.

Instead of sifting through the field...searching, use our super quick one day delivery and cash in on a rare find.
RTTY-AMTOR Packet

RTTY—AMTOR—PACKET

EIB is one of the leading Amateur dealers that actually demonstrates the latest high tech equipment. We test every new item and only sell what we feel confident in. If you have a question, or need a Call, we are here to help you! (Ask for Scott, WR4U or Ted, AA4GM at 703-638-3350.) If you are in the DC area, step in and visit us at our dedicated RTTY room.

PARKATT PK-64—World’s Best Price/Performance Ratio

The Parkatt 64 is the world’s first 5 mode in one Amateur Radio ASCII data controller. 2795 $19.95

NEW PK-60 Packet Controller

Utilizes TTY/Radio board inventory in all the PK-62/63/64 compatible computers. 327.95

CP-1 AEA Computer Paraphrase Interface

Convert your personal computer and transceiver into a full featured RTTY station with the CP-1 Paraphrase Interface and software/4 AEA. 179.95

• New, improved 64 mode
• Complete with cables for the AEA CP-1
• Automatic overlays and manual $9 CALL
• RS-232 option available

KANTRONICS UTU

Now Available at EIB
• Can be used on CW, ASCII, AMTOR and RTTY
• Easy for beginners.

EIB is Bird’s No. 1 East Coast Dealer:
Large inventory. Package Deal. 5 CALL & Bird 43—elements—tools.

ELECTRONIC EQUIPMENT BANK

516 Mill Street NE
Vienna, VA 22180 USA

Prices & specs subject to change. Shipping charges not included. Returns subject to 20% restock charge. Freeshipping in USA, all other 3 IRC’s. ORDER TOLL FREE 800-368-3279

WRITE FOR FREE BOOK CATALOG

Ham Radio’s Bookstore
Greenville, NH 03048
Radio Amateurs have been bending aluminum at home for years, making brackets, panels, and boxes for electronic construction projects. Light weight, workability, good corrosion resistance, and electrical conductivity make aluminum an ideal material for small hand-fabrication projects. But classical bending techniques that require a hammer, vise, and pliers can result in dents and scratches, and extra work straightening undesired bends.

This article describes how to make a sheet metal bending tool that makes quality bends in thin metal without damage. The tool is made with just a few dollars worth of steel angle stock and some common household hardware.

Because the correct choice of material is important, information is included to enable you to identify aluminum alloys for bendability, strength, and corrosion resistance. A construction project of a small box is included as an example.

bending theory

Figure 1 shows the physical arrangement required to bend sheet metal without causing deformation in areas other than the bend. The bar holds the workpiece to the table while the leaf forms the corner around the bar's "knife edge." The major objective illustrated in fig. 1 is to maintain a precise hinge centerline between the moveable leaf and fixed table at the bend corner. Figure 1B shows the direction of maximum bending force at the completion of the bend. The leaf must be rigid and the bar must be held securely to maintain a consistent bend radius along the work.

By Cliff Klinert, WB6BIH, 1126 Division Street, National City, California 92050
We will later see that this can be a limiting factor in bending thicker or stronger material.

Selection of alloys for bending

Availability of the correct material may limit the practicality of homebrew sheet metal projects. To determine which materials will be bendable, it helps to understand the use of alloy numbers. The most common system of alloy numbers uses a four-digit alloy number followed by a combination of a letter and numbers that indicate the temper or hardness. The two major types of hardening are the "H" (strain hardened) and "T" (thermal hardened) processes. In the strain hardened system, the H is followed by two or more numbers, the second of which indicates the relative hardness of the material. The T in the temperature hardening system is followed by one or more numbers, the first of which indicates the relative hardness. If the four-digit alloy number is followed by an "0," the material has been annealed to make it as soft as possible and is readily bendable. The 0 material is soft for easy forming with the possibility of being hardened later. Incidentally, material marked "alclad" is covered with a thin layer of relatively pure aluminum for extra corrosion resistance.

The most desirable alloy used for bending and forming is 3003-H14, which combines optimum strength and workability, making it the ideal material for box and chassis construction. The "3003" indicates that this series of alloys is strain hardened without any subsequent heat treatment. The first temper digit, "1," indicates strain hardening without any subsequent heat treatment. (Another digit in the first position, such as a "3," could be used to indicate a low-temperature thermal "soak" to improve ductility.) The "4" indicates the relative hardness. A higher number denotes a harder material.

Table 1 is a shopping list of alloys appropriate for bending. Since low cost is almost always a consideration, the best source of materials in small quantities will usually be a salvage or surplus store. Aluminum manufacturers typically require a $300 minimum purchase, and hardware store material is usually quite expensive in the small quantities required. For best results, take a pair of gloves, a tape measure, and a copy of table 1 to all the metal salvage yards in your area. Prices should range from 75 cents to $1.50 per pound. Sheets are marked in alloy numbers (as shown in table 1) and thickness in thousandths of an inch. The optimum thickness is "0.040" (1.02 mm). If a sheet is not marked, try to bend a corner with your fingers to determine bendability. You'll usually be expected to buy the entire piece, and cutting service may or may not be provided. Cutting may cost from 50 cents to a few dollars, so you may wish to take some sort of cutting tool with you if you want to buy a piece too large to carry home uncut.

Salvage steel angle stock for making the bending tool should be available for ten to 25 cents per pound. The type of industries in your area will determine the type of salvage material available. Please note that "3003-H14-.040" is the optimum material for our projects. Thicker or harder material may produce bends with larger radii and make more crude-looking parts.

The construction of the bender, location of the hinges, attachment of the bar with bolts, and a small piece of sheet metal being bent.
The bend sequence for making a small box. The material was 6061-0.062 thick, somewhat too thick for making precise bend corners. Note that a small hole was drilled at the intersection of the double bends to allow space for the material thickness.

building the bender

The photographs show how the bender was assembled from angle steel and two door hinges. The overall width was about 3 feet (1 meter). You can select dimensions appropriate to the material available. The wider the bender, the more likely it is to warp in use. The photographs were taken to illustrate the geometry of the bender as shown in fig. 1A. Depending on the shape of the hinges used, the ends of the angle stock must be notched for clearance. In shimming the hinges with washers, locating the hinge centerline required some patience.

The corners were cut with a circular saw using a metal cutting blade (i.e., a carborundum disc). Grinding or filing the angle steel edges along the hinge centerline to produce a square corner is optional since even a fairly crude tool will produce good results with the right material. The “bar” is another piece of the angle steel bolted to the table. The bar could be secured with C-clamps, but the bending force shown
This piece was cut from a steel bar to allow making a double bend.

in fig. 1B may cause the bar to slide away from the leaf when you bend stronger material. You may wish to reinforce the leaf by bolting another piece of steel behind it, if you have problems with warping later.

Clamp the table in a vise, attach Vise-grip® pliers to the leaf for handles, and the bender is ready for use.

making a box

Obtain a sheet of bendable alloy and cut some pieces for practice bends. Mark bend lines on the aluminum as shown in the photographs. Some practice will be necessary to determine where to place the material relative to the bend line and to anticipate the amount of springback in the bend angle. You can use tin snips or a nibbler; most wood sawing methods (using power tools) can be applied to aluminum as well. A bandsaw is ideal for thin material, and a circular saw with a plywood cutting blade is excellent for thicker sheet. A router works well for trimming or shaping, and most of the bendable alloys can also be whittled with a pocket knife. Use paraffin to lubricate the blade, wear ear plugs, and observe the normal safety precautions.

The photographs illustrate the sequence of bends for making a small box. A die was made from a piece of steel bar with an angle cut for a knife edge. (The size of the die determines the size of the box to be bent.) The die was used as a “finger” in a pan brake to make a bend perpendicular to a previous bend. The bar in a pan brake is made of several removeable fingers in various widths to allow for making double bends like this.

It is common to etch the finished part in a lye and water bath to produce an attractive finish. If lye is not available, welding supply stores sell aluminum cleaning solutions that work faster, but are somewhat more expensive. A quart bottle of cleaning solution costs about $5, but it can be diluted in water for several uses. Be sure to follow the safety instructions of the bottle since these solutions may contain a very powerful acid. Alloys receiving an A or B corrosion rating in table 1 require no further treatment to prevent destructive corrosion for several years of use. A coating of clear lacquer or acrylic spray may be used to protect the porous metal surface from stains and cosmetic corrosion.

conclusion

I don’t expect anyone to start manufacturing chassis boxes at home; the process is far too time consuming. The main point in having a simple bending tool is to enable you to fabricate a special part in a size and shape not available commercially, with a professional, high-quality appearance.

references

1. Product and Data Catalog, Reynolds Aluminum Supply Company, free to Reynolds customers at Reynolds distributors.

Ham radio
Frequency standard upgrades your counter

Get the precision you paid for from your frequency counter. Connect the Counter-Mate to the “EXT STD” input or periodically check the internal oscillator to get traceable accuracy instead of just resolution.

The Counter-Mate frequency standard employs a precision third-overtone 10 MHz crystal in a proportionally controlled copper oven maintained at a computer optimized temperature. The excellent long-term and short-term stability is in a class with units costing much more.

Check the specifications—the Counter-Mate out-performs and is less expensive than most counters’ oven oscillator options, it needs no installation, and it has sufficient drive to serve several instruments.

The Counter-Mate comes calibrated against national standards and you do not lose your counter when it is time to recalibrate! The unique 50-turn adjustor makes calibration easy and mechanically stable. Periodic calibration at Wenzel Associates is just $15 plus shipping.

Wenzel Associates, Inc.
11124 Jollyville Road
Austin, TX 78759
(512) 345-2703 TWX 910-997-4554

COUNTER-MATE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>1 MHz and 10 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output Drive</th>
<th>TTL and 50 Ohm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rise & Fall Time</th>
<th>5 msec</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aging Rate</th>
<th>3x10^-8/Month</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>5x10^-8 to 40^°C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stability</th>
<th>2x10^-9, 50 turns</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Warm-Up</th>
<th>10 minutes at 25^°C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Requirements</th>
<th>9V Adapter included</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>4.6” x 4.8” x 1.6”</th>
</tr>
</thead>
</table>

WACOM DUPELEXERS

Our Exclusive Bandpass-Reject Duplexers With Our Patented Bp, Bc, CIRCUIT FILTERS

Provide superior performance especially at close frequency separation.

Models available for all commercial and ham bands within the frequency range of 30 to 950 MHz.

CALL
817/848-4435

H.L. HEASTER, INC.
203 Bucknam Pike, Clarksburg, W. Va. 26301 Clarksburg Phone (394) 624-5485 or W. Va. Toll-Free 1-800-352-3177

SAY YOU SAW IT IN HAM RADIO

More Details? CHECK—OFF Page 110
Announcing!

Commander II VHF 2M AMPS

With

3CX800A7

• Modern Stripline Circuit with tuned input for excellent efficiency.

• 650 Watts Output with 25 watts drive!

• Compact — 6” x 15” x 17” only 55 lbs.

• Includes Power Supply and Relays — 115/240 v.

• Precision ball drives with 6 to 1 ratio on all tuning controls for Smooth and Easy Tuning.

• Made in U.S.A. by Hams for Hams

Direct from the Manufacturer, only

$988.00

UPS Shipable

Prices Subject to Change Without Notice

Complete Service for all Dentron products Clipper-ton V updates, and quality stripline Modifications.

CCIE Manufacturing

104 W. Vine, Edgerton, Ohio 43517
419-298-3051

B&W Miniductors® and Air-Dux® have been the industry standard for over 50 years, wherever radio-frequency coils are used.

• For the experimenter, the radio amateur, the manufacturer
• Available in diameters from ½” to 6”
• Wire sizes from #24 to #8 AWG
• Also edge-wound and tubing coils for high-power applications.

Call or write for complete specifications.

ALL OUR PRODUCTS MADE IN USA

BARKER & WILLIAMSON
Quality Communication Products Since 1932
At your Distributors. Write or Call.
10 Canal Street, Bristol PA 19007
(215) 788-5581

Tell 'em you saw it in HAM RADIO!
THE STANDARD OF EXCELLENCE
Definitely Superior!
AZDEN PCS-5000
COMMERCIAL GRADE

UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140,000-151,000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz.
CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range facilitates use of CAP and ALL MARS FREQUENCIES including NAVY MARS. COMPARE!
TINY SIZE: Only 2 inches high, 5½ inches wide and 7½ inches deep!
MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.
UP TO 11 NONSTANDARD SPLITS: COMPARE this with other units!
20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.
DUAL MEMORY SCAN: Scan memory banks separately or together. ALL memory channels are tunable independently. COMPARE!
MEMORY SCAN LOCKOUT: Allows you to skip over channels you don’t want to scan.
TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!
BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-resume.
DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency desired when scanning.
PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when channel is occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored for up to 5 years even if power is removed.
FREQUENCY REVERSE: Allows you to listen to repeater input frequency.
ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly.
CRISP, BACKLIT LCD DISPLAY: Easily read no matter what the lighting conditions!
DIGITAL S/RF METER: Shows incoming signal strength and relative transmitter power.
MULTI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.
FULL 16-KEY TOUCHTONE PAD: Keyboard functions as auto-patch when transmitting.
MICROPHONE CONTROLS: Up/down frequency control and priority channel recall.
PL TONE GENERATOR BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE!
TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!
HIGH/LOW POWER: Select 25 watts or 5 watts output — fully adjustable.
SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for 20-db quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!
DIRECT FREQUENCY ENTRY: Streamlines channel selection and programming.
OTHER FEATURES: Rugged dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 80-3356

MANUFACTURER:
JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku, Mitaka. Tokyo, 181 Japan
Telex: 781-2822452
TH-2lAT

TH-2570

TR-2600

TS-940S

“DX-cellence”

COD’S WELCOME

ANTENNAS FROM 160-10 METERS NO COMPROMISE!

Just a few comments from satisfied customers:

“...I have used your 80/40 METER ANTENNA, and I was impressed with its performance. It worked great in my 20 watt rig!”

“On January 15, 1986 I got into the 25MHz DX contest. I didn’t try for the 25 MHz DX contest. I tried for maximum number of contacts. In less than 30 minutes I worked 15 states and 20 countries! I was just a 800 mile haul from Aurora, Colorado. Not too bad for what looks like a bird feeder!”

“I just got my Isotron 40 on the air and it has surpassed my wildest expectations. My first evening was with the 25-meter DX to the States and another 20 countries!”

Congratulations on developing the Isotron. I am spreading the good word among my friends. I think it’s a very compact antenna whose coverage is excellent!”

“About two months after I got the Isotron on 80 and just recently got it out of the box. I am really intrigued by it and be sure I am having fun trying to convince other stations that it is on the air. I worked California when it was hanging by a rope from the ceiling of the shack and you couldn’t even tell it was on a pole... MBDEP!”

(Photograph: Isotron 160)

WHY NOT ENJOY THEIR OPERATING PLEASURE & GIVE US A CALL.
WE WILL LOOK FORWARD TO TALKING WITH YOU.

*40 METER: $6.50 + $3.75 Shipping
80 METER: $6.95 + $4.75 Shipping
160 METER: $7.99 + $6.00 Shipping

S A L E ! $124.95 - $5.50 shipping Good through Sept. 30, 1986
80-40-Combination: $110.00 plus $8.50 Shipping
ASK FOR PRICES ON OTHER MODELS

*See review in Ham Radio, July 1986
**See review in March 73, 1986

BILAL COMPANY
S.R. 2, Box 62, Dept. 91
Eucha, OK 74342
PH: 918-253-4094

GET YOUR
COMMERCIAL LICENSE

AMECO has the only books available written for the FCC administered General Radiotelephone and Marine Radio Operator Permit. General electronic theory is fully covered in the Commercial Radio Operator Theory Course, cat. #15-01. Two Q&A books cover the specific requirements for the FCC administered exams; Element 3, for the General Radiotelephone License, is contained in cat. #9-01 and Elements 1 and 2, for the Marine Radio Operator Permit, are covered in cat. #8-01. Fully up-to-date and revised per the current FCC exam syllabus.

15-01 Commercial Radio Operator Theory Course $8.95
9-01 Q&A Element 3 General Radio Telephone $5.95
8-01 Q&A Marine Radio Operator $3.95

Please include $3.50 shipping and handling

Ham Radio’s Bookstore
Greenville, NH 03048
1-603-878-1441
a regulated screen grid power supply

An easy-to-build solid-state design using Motorola's new TMOS power-FET technology

For about the last 20 years, the most common type of amplifier used by hams has been the grounded-grid, class AB2 linear, sometimes erroneously referred to as "Class B." In Class B operation, no quiescent plate current is drawn; Class AB2, on the other hand, has quiescent plate current. Both classes run grid current when a signal is present. If there were no idling current in a grounded-grid amplifier, it wouldn't be linear. There is no such thing as a single-ended "grounded-grid Class B linear."

Every linear amplifier type has some advantages and some tradeoffs. One advantage of a grounded-grid amplifier is that it supposedly does not need to be neutralized. This is probably true for 813 tubes, which wouldn't take off and oscillate on a VHF parasitic frequency even if you wanted them to. An 813 doesn't even like to work at 29 MHz. Tubes such as the 3-5002 are designed to amplify well, or oscillate, at 100 MHz.

During the last ten years I have been involved in more than 30 cases of amplifier repair. More than 80% of these failures involved damage from parasitic oscillation in grounded grid amplifiers that supposedly do not need to be neutralized. A stable grounded grid amplifier design is not as easy as the popular literature on the subject indicates. This subject is covered in detail in the April 1986 issue of this magazine.

Another advantage of the grounded-grid configuration is that no screen or control grid bias supplies are needed. Control grid bias supplies are simple for Class AB-1 grid-driven amplifiers, since, typically, no current flows. Screen grid supplies are a different matter because they must also furnish current — sometimes over 100 mA. One disadvantage in grounded-grid operation is that separate tuned inputs must be constructed for each band in use.

The grid-driven linear offers certain advantages. A separate tuned input is not required for each band, and up to approximately 23 dB of amplification can be obtained instead of the typical 12 dB gain from grounded-grid. This means you can drive a legal-limit amplifier with a 10-watt QRP transceiver. To do this you'd have to neutralize the amplifier; this would complicate the grid input circuit because the easy, 50-ohm grid swamping resistor circuit would not work. One disadvantage, however, is that you'd have to build a high-voltage screen supply. For a 4-1000A, a screen voltage of 1000 volts is required for Class AB1 linear amplifier service. With 6000 volts on the plate, this tube will deliver 1500 watts output. Another good tetrode for ham service is the 4CX1500A, which requires up to 750 volts for the screen grid.

The choice between grounded-grid and grid-driven Class AB1 would have to go to grounded-grid up until the World Administrative Radio Conference of 1979; until that time, amplifiers were in use on only about five Amateur Radio bands below 30 MHz, and building five tuned inputs for the common grounded-grid Class AB1 amplifier posed no problem. The advantages of using grid-driven Class AB1 amplifiers were not yet apparent, especially in light of the grief of building a regulated high-voltage screen supply. Most people would rather build the separate tuned inputs for the simpler grounded-grid triode circuit than use the inherently broad-band Class AB1 input circuit.

Today amplifiers are used on eight Amateur bands below 30 MHz, and can be used with reduced output on the 30-meter band. In a while we'll have nine bands on which amplifiers can be used below 30 MHz. Building nine separate Pi-networks requires 27 components

By Richard Measures, AG6K, 6455 LaCumbre Road, Somis, California 93066
and a rare nine-position bandswitch; in comparison, the Class AB1 input circuit begins to look very simple. Perhaps building a screen supply isn’t really that much of a problem after all.

For the Amateur who is also a MARS member, the new general-coverage transceivers are a blessing. A general coverage amplifier would be a nice accessory for a general coverage transceiver.

to regulate or not

According to Eimac, “The power output from a tetrode or pentode is very sensitive to screen voltage. For this reason, any application requiring a high degree of linearity through the amplifier requires a well-regulated screen supply.”

For some small tetrodes, it’s possible to use gas voltage regulator tubes. For larger tetrodes with higher than about 25 mA of screen current the VR tube isn’t practical; a better choice is a conventional series pass regulator circuit, which offers the added benefit of adjustable screen voltage, to either control power output or to set the idling plate current to the desired value, a nice feature for those times when 100 watts isn’t enough, but 1500 watts is too much. If a rollercoil is used for the plate tank inductor, a general coverage 1.8 to 30 MHz amplifier is yours. The only band-switching operation needed is that of adding loading capacitor padders for frequencies below about 5 MHz.

With the common grounded-grid amplifier, reducing power is not easy; in a Class AB1 amplifier, it’s simple. Series pass transistor regulator circuits are used in 12- to 14-volt power supplies for Amateur transceivers and other low-voltage applications. Screen supplies for Class AB1 amplifiers typically must provide between 500 and 1500 volts. Until recently, a regulated supply for these voltages required tube circuits because transistors couldn’t handle the required voltages and currents.

Bipolar transistors that would handle high voltages, at low current, for TV applications have been around for some time. The Motorola BU207 was one example. It could withstand either high voltage (up to 1300 volts) or high current — but not both at the same time, because of secondary breakdown effects: a 1500-volt, 8 ampere bipolar may be able to handle only 0.2 amps at 200 volts. Your 100-watt transistor is now a 40-watt transistor. Three transistors are required for 100 watts dissipation. High voltage bipolar transistors have another trade-off: low current gain. So you need a driver transistor to provide high base current. It was possible to use bipolar in high-voltage regulated supplies, but it took a bank of them to form the series pass element. (The first high-voltage regulated supply I built used six BU207 bipolar to produce 1500 volts at 0.2 amps. It worked, but it wasn’t as simple as I’d have liked it to be.)

There has been progress, however. Just as FET RF power transistors are taking over jobs from bipolars, the high-voltage FET is now available for use in high-voltage applications such as regulated supplies. Motorola is using this new technology in its TMOS power FET. The TMOS offers high gain and virtually no secondary breakdown problems that would reduce the dissipation rating.

A TMOS FET is similar to a triode electron tube; the more positive the control element, the more current flows in the load. Tubes have some nasty disadvantages: they lose linearity when the control grid goes positive and start to draw lots of grid current at the same time. TMOS devices don’t exhibit this effect.

The gain of a triode is rated in micromhos — or more recently, in microSiemens. A triode with a transconductance of 25,000 microSiemens is considered a “hot” tube.

The TMOS device I used to construct the power supply for this article has a transconductance of about 500,000 microSiemens in its linear range. As you may have guessed, the device drives so easily it can be a problem to keep it from taking off unless you swamp the control gate with a resistor and a capacitor.

design considerations

In a typical 13.8-volt supply the filter capacitor is charged to about 22 volts. If a short circuit were placed across the output, 22 volts would appear across the pass transistor — until the fuse in the primary burned out. In a 1500-volt supply the filter capacitor can be charged to 1900 volts in the no-load condition. In this case a short would place 1900 volts on the pass transistor. Twenty-two volts isn’t a problem for a typical 40-volt bipolar, so no protection is needed; 1900 volts, however, is a completely different matter. To protect the high-voltage power supply series pass element from short circuits, some kind of pass element crowbar is required. I used an SCR whose gate is fired by a string of zener diodes when the voltage gets into the danger region above 520 volts difference across the pass element. Since it takes about 2 microseconds to fire the SCR, an RC delay circuit is used (R3C1) to protect the pass element while the SCR is reaching threshold. R2 limits the current through the SCR to less than its rated 160 peak amps. R2 is 10 ohms for up to 1000 volts output and 20 ohms for up to 2000 volts output.

The voltage rating of the pass element needs to be slightly greater than the difference between no-load voltage across the filter capacitor and the desired regulated output voltage. Naturally, the power supply must provide enough voltage at full load or regulation is not going to occur. In addition, the product of current and voltage across the pass element must not exceed its dissipation rating.
Most capacitor filter power supplies see a voltage drop of about 15 per cent from no-load to full load. This means that the pass element needs to withstand only about 15 percent of the output voltage plus a small safety factor. A 600-volt pass element can easily regulate a 3000-volt supply. The highest rated voltage available in the Motorola TMOS series is 1000 volts, which means you could build a regulated 5000-volt supply with an output current of 2 amps if you needed one. To achieve the current requirement it would be necessary to parallel some TMOS devices and connect equalizing resistors of a few ohms in each source lead. The comparator circuit, Q1, is simplicity itself, since no driver transistor is required for the TMOS pass device.

circuit operation

The positive output terminal is the common reference point, or circuit common. When the output voltage rises to a high enough negative value V_z begins to conduct, causing Q1 to conduct. This increases the voltage drop across R4, causing the gate voltage of Q2 to be less positive, which causes Q2 to conduct less. If Q2 is conducting less, then the output voltage begins to fall because of the increased voltage drop across the pass element. As the output voltage falls, V_z conducts less, causing Q1 to conduct less. This causes Q2's gate to go more positive. Q2 conducts more heavily, causing the output voltage to rise again. The process repeats and regulation results.

The threshold voltage for turn-on/turn-off is determined by the voltage division ratio of the R1, R5, R6 voltage divider and the V_z zener voltage. R6 is adjusted to the desired output voltage as long as not much more than 500 volts is dropped across the pass device. Setting the output voltage too low fires the pass-protect crowbar, causing the output voltage to rise to the voltage on the power supply filter capacitor less about 1 volt. At this point you need to turn the power off and on, unlocking the crowbar, and then make a mark on the R6 scale to indicate how low you can go. Starting the power supply with a heavy load in place will also fire the crowbar. This isn't a problem in screen supplies because the amplifier won't be operated until the final amplifier tube's filament comes up to temperature. This is about 1 second for a 4CX1500A. If you want to be able to start with a heavy load connected, you'll need to add one or more zener diodes from the drain to the gate of Q2 to start conduction when the voltage drop is about 20 volts less than the crowbar trigger voltage.

performance

The load regulation is more than adequate for this application. With the output set for 900 volts on my prototype supply, the voltage drops to 896 volts with a 225 mA load. Reverse screen current up to about 20 mA is no problem. Beyond 20 mA reverse current, you'll need to add an appropriate bleeder resistor across the output terminals.

This screen supply can provide conventional positive output, or, negative output for grounded screen Class AB1 grid-driven amplifiers, in which the positive output terminal is grounded and the screen negative voltage is connected to the cathode or filament transformer center-tap. This configuration is used in many commercial short-wave transmitters because there's no need for a screen bypass capacitor and the unwanted added inductance associated with it.

choosing the right fuse

It's important to fuse this supply in order to protect the screen of your amplifier tube from excessive dissipation, which will never occur unless you tune up under light load conditions, as might occur, for example, if your antenna were not connected. Light loading allows the instantaneous plate voltage to fall to a level that fails to attract the electrons coming from...
the cathode. These electrons will then find the relatively positive screen very attractive, causing an unhappily large flow of current in the screen grid. The screen grid will suffer a melt-down unless something is done quickly. An ordinary fuse will perform this duty faithfully if the right ampere rating is used.

With a capacitor filter supply, which normally has high peak currents in the primary of the power transformer, a fuse that is about 1.5 times larger than the screen dissipation rating would indicate is adequate. For example, with a 120-VAC primary, a 1-amp fuse would allow 120 watts to flow. This would be adequate for a screen grid rated at 80 watts maximum dissipation. The screen supply transformer should be connected to the same step-start source used for the plate transformer so that the regular fuse won’t burn out at turn-on. A one-third duty cycle tuning pulser will save fuses if you make an error during tune-up.

choosing the transformer

When you’re selecting a power transformer for a screen supply, “heavy duty” is out. You don’t want a screen supply that can do double duty as an arc-welder. A screen supply transformer should have about the same CCS current rating as the typical screen current on the tube’s spec sheet. The transformer selected should also have a filament winding to provide the voltage to operate the comparator circuit, as shown in fig. 1. The current drawn by this circuit is about 6 mA — so any 6.3-volt or 12.6-VCT winding will do the job. Other transistors can be used in the comparator as long as they are high Beta and PNP.

Motorola TMOS power FETs have many other interesting uses besides series pass regulators. The MTM 6N60 I used in this article will make a nice shunt regulator at up to 600 volts at 100 watts dissipation — if you keep it cool. If that’s not enough, the MTM 6N60 has a big brother, the MTE 40N60, which is a 40 amp, 600-volt device.

I believe we’re going to see a lot more TMOS devices in Amateur Radio equipment. Military transceivers already use TMOS output amplifiers. How about 300 watts output on 2 meters with 5 watts of drive? That’s a pair of Motorola MRF 150s, which will do the same job on 160 meters. TMOS RF amplifiers produce less intermodulation distortion than conventional bipolar RF amplifiers. Their use could represent a pleasant improvement on the ham bands. With RF-negative feedback it is possible to make a solid-state TMOS SSB signal as clean as some of the cleanest tube-type equipment such as the TS830S.

references

Care and Feeding of Power Grid Tubes, EIMAC Division, Varian Inc., 301 Industrial Way, San Carlos, California 94070.

ham radio
The BEST is still "made in U.S.A."

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.
- 5 year warranty
- prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE
B23 2W in = 30W out (useable in: 100 mW-5W)
B108 10W in = 80W out (1W=15W, 2W=30W) RX preamp
B1016 10W in = 160W out (1W=35W, 2W=90W) RX preamp
B3016 30W in = 160W out (10W = 100W)

220 MHz ALL MODE
C106 10W in = 60W out (1W=15W, 2W=30W) RX preamp
C1012 10W in = 120W out (2W=45W, 5W=90W) RX preamp
C22 2W in = 20W out (useable in: 200mW-5W)

RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18' cable

WATT/SWR METERS

2 WATTS-ALL MODE
MP-1 (HF) 1.8-30 MHz
MP-2 (VHF) 50-200 MHz

430-450 MHz ALL MODE
D24 2W in = 40W out (1W = 25W)
D1010 10W in = 100W out (1W = 25W, 2W = 50W)

Available at local dealers throughout the world.
Tell 'em you saw it in HAM RADIO!
1240-1300 MHz Transceiver
AT GREAT LOW, LOW PRICES

HAND-HELDs

IC-28A (25w)
IC-28H (45w)

SPECIAL NEW PRICE!

June 14 at New Atlanta Store

Special Pricing for ICOM

ICOM DAY!

The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

2-METER MOBILES
IC-28A (25w) IC-28H (45w)

NEW IC-28A/28H

The Latest in ICOM's Long Line of HF Transceivers
CALL FOR LOW, LOW PRICE

NOW! RAPID DELIVERIES FROM OUR OUTLETS

COAST TO COAST

To Our Customers

ICOM IC-3200A
DUAL BANDER
Covers Both 2 Meters & 70 cm
LATEST EDITION

1.2 GHz Transceiver: The First Full-featured 1240-1300 MHz Transceiver
AT GREAT LOW, LOW PRICES

ICOM IC-1271A

ICOM IC-735

Special New Price!

Call Toll Free (800) 854-6046

FREE SHIPMENT

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

Tell free including Alaska & Hawaii. Phone Hrs. 7:00 a.m. to 5:30 p.m. Pacific Time. California and Arizona customers call or visit nearest store. California and Arizona residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
direct currents reduce core permeability

BASIC program shows how to compensate for this effect

Applications involving coils that carry DC are common. Perhaps not so common, however, is the understanding that inductance determination requires a knowledge of the anticipated DC current. A DC bias reduces the inductance value and must be taken into consideration for accurate results.

Although this toroidal-inductor design program was written for Microsoft™ BASIC and tested on a Commodore Pet Computer with 32k of memory, no special machine-dependent functions were used; therefore, it can be used on virtually any home computer with little or no modification. Remark statements are liberally provided throughout the program listing to identify operations.

design procedure

The design sequence of calculations for each wire size is as follows:

• Calculation of the number of turns (N) assuming a winding factor of 0.525.
• Calculation of DC resistance (RDC).
• Calculation of copper weight.
• Calculation of maximum DC current.
• Calculation of inductance (mH).
• Calculation of wound outside, inside diameter, and height of wire and core.
• Calculation of temperature rise in No. 30 AWG wire considering copper losses only.

A complete enamel wire table is included in the program for wire sizes No. 12 AWG through No. 46 AWG. Coils are designed to have a winding factor of 52.5 percent maximum.

Selection of a core size and core material for a desired inductance can be determined by doing a set of iterative calculations using vendor curves (fig. 1) showing percent permeability reduction versus DC. The magnetizing force, \(H \), (in oersteds) is:

\[
H = 0.4\pi NI/P
\]

where \(N \) = number of turns
\(I \) = current in amperes
\(P \) = magnetic path length in centimeters

In fig. 1, a certain percent permeability reduction is initially assumed for material of the selected permeability. This establishes the maximum magnetizing force, \(H \), in oersteds, which must not be exceeded if the application's determined requirements are to be met. AC flux density (BAC) is assumed to be small.

The design program uses this information and other core data from the selected vendor data sheet to compute a table of inductor designs.

Toroidal Molypermalloy Powder (MPP) cores are a useful alternative for gapped cores in applications where there is a direct current component which tends to saturate the core. MPP cores are well suited for low inductances, below 2 mH. Advantages of using MPP cores are largely in elimination of assembly and labor costs for handling two core halves, fitting gap spacers and mechanical parts.

One vendor has published a core and permeability selection procedure that simplifies the choice of a core. Because selection of the core to avoid saturation is a most significant choice in inductor design, a modified version of this procedure, courtesy of Magnetics, Inc., is used here as a part of the computer design program user instructions.

program user information

Only two parameters for each (design) application must be known: inductance required under DC bias conditions and the amount of DC current.

Calculate the product \(LI^2 \) where:

\[
L = \text{inductance required with DC bias (millihenries)}
I = \text{DC current (amperes)}
\]

Locate the \(LI^2 \) value on the DC bias core selector chart (fig. 2). Follow this coordinate to the intersec-

* Magnetics, Inc., P.O. Box 391, Butler, Pennsylvania 16003.
tion with the first core size that lies within the family of solid permeability lines. This core size is the smallest that can be used. (In fig. 2, small core sizes are at the bottom and large sizes at the top.)

Any solid permeability line that passes through the intersection point of the \(L.I^2 \) and core size coordinates or crosses the \(L.I^2 \) coordinate below this intersection point may be used.

The choice of permeability can be based on \(Q \) requirements at the operating frequency of the application. Use the \(Q \) curves in fig. 3 for this selection. If \(Q \) is not a consideration, use the highest permeability indicated. This choice will yield the lowest winding factor.

The design application may call for a \(Q \) requirement at a higher frequency than the core/permeability combinations indicated in steps 2 and 3. By following the \(L.I^2 \) coordinate to lower permeabilities and larger core sizes, an optimum choice for this type design may be made. For a given permeability, always use the core size just above the permeability line.

Inductance, core size and permeability are now known. The remaining core data is obtained from the selected core data sheet, see fig. 4. Use core dimensions which include the core finish.

Load the program and respond to input commands when requested.

Inputs include the following:

- core outside diameter (in inches)
- core inside diameter (in inches)
- core height (in inches)
- core permeability
- core mH/1000 turns
- magnetic path (in inches)
- window area (in circular mils) — CMIL\(^*\) \(\times 10^6 \)
- MLT (mean length of turn) — full winding (in inches)
- HDC (Peak) Maximum
- percent Nom. Perm @HDC (Peak) Maximum

Upon completion of the last input, "***CALCULATING***" will appear on the monitor screen as the program calculates all values. Results are displayed as printer outputs; see figs. 5 and 6.

core selection example

Choose a core meeting the following requirements:

- minimum inductance with DC bias, 25 \(\mu \)H
- DC current, 2 amps.
- operating frequency, 8 kHz.
- optimum \(Q \) is required.

The product of \(L.I^2 = 0.1 \). Following this coordinate, the first core size encountered that falls within the solid line permeability family is the 55050 size.

The intersection point of the 0.1 coordinate and the 55050 core size coordinate falls between the 60\(\mu \) curve and the 125\(\mu \) curve. Only those permeability lines intersecting the \(L.I^2 \) coordinate below the core intersection are usable; either 125\(\mu \) or 160\(\mu \) may be used.

A review of the \(Q \) curves (fig. 3) indicates that a 55050 core in 160\(\mu \) peaks in the neighborhood of 8 kHz, whereas this size in 125\(\mu \) peaks near 20 kHz. For optimum \(Q \) at 8 kHz, 160\(\mu \) is chosen, core 55048. From fig. 1, determine magnetizing force \(H \) for the percent-

- Makes Upgrading of Morse Skills Easy and Fun
- Does Away With Drudgery
- Skilled Operators Enjoy the Realism
- Operate Anytime—Requires Only a Commodore C-64 (or C-128) and A TV Set
- Removes the "Mystery" of what to Say in On-the-Air Contacts
- Excellent Practice for Beginners and Old "Pro's"
- Standard Format and Common Abbreviations Used for All Exchanges
- Send Morse with your keyboard
- Select Appropriate QRM and QRN Levels
- Select the Portion of the "Band"—Novice or Low End

Prices and Specifications Subject to Change Without Notice or Obligation

ADVANCED ELECTRONICS APPLICATIONS, INC.
P.O. Box C-2160, Lynnwood, WA 98036
TELIX: 597-2466
AEA INTL. UW
(206) 778-7373

PRICE REDUCTION

DX EDGE $16.95
GRAYLINE AND LONG PATH PREDICTOR
Price Stacked on 2nd OP $2.95

HAM RADIO'S BOOKSTORE
GREENVILLE, NH

60 June 1986
fig. 3. Using Q curves helps determine permeability.

June 1986
Pac-Comm
Introduces the TNC-200

- Official TAPR TNC-2 design
- Top quality components throughout
- Standard AX 25 version 2 protocol
- Full duplex hardware HDLC
- Five terminal data rates to 9600 baud
- Modem adaptable for HF packet
- 16k battery backed-up RAM
- 32k EPROM, software clock
- Latest multiconnect software
- Five labeled LED status indicators
- Level 3 networking compatibility
- Choose CMOS version for low power (100ma typical) or NMOS for lower cost

Assembled and tested
CMOS: $219.95
NMOS: $199.95

Full kit with cabinet
CMOS: $169.95
NMOS: $154.95

Full kit without cabinet
CMOS: $144.95
NMOS: $129.95

Hard-to-find parts kit
CMOS: $84.95
NMOS: $79.95

Bare PC board + assy manual $39.95
Reference manual (100 pg) $9.95
Cabinet with end plates $29.95

Macintosh Owners: MACPACKET / TNC200 gives pull-down menus, split screens, file transfers, automatic routing and more!! MACPACKET/TNC200 $69.95

Free UPS shipping in continental USA

Discount 10% for orders of five or more TNC-200s to the same address

ORDER TOLL FREE (24 hours)
800-835-2246 ext. 115
(Kansas 800-362-2421 ext. 115)

Information 813-689-3523

No COD

Florida addresses add 5%

PAC-COMM PACKET RADIO SYSTEMS, INC.
4040 W. Kennedy Blvd, Tampa, FL 33607
Intl TELEX 6502881526 WUI

fig. 4. Core data.

SPECIAL SALE — SAVE $5 EACH
Have a name — but need the Call Sign?
Traveling — and want to meet local Hams?

1985 1986 Amateur Radio
NAME INDEX
By Name and Call 583 pages

1985 1986 Amateur Radio
GEOGRAPHICAL INDEX
By State, City, Street No. and Call 653 pages

NAME INDEX — $25.00 $19.95
GEOGRAPHICAL INDEX — $26.00 $19.95

BUY BOTH SPECIAL $35.95
Add $3.50 shipping to all orders.

June 1986
Exmet, your source for Metallurgical Assistance and Discounted Pricing on Aluminum Tubing and Shapes, plus Carbon, Alloys, and Galvanized Tubing. Examples below are only a small fraction of our stock. Please call or write for additional stock sizes.

Aluminum Tubing (Alloy 6061-T6)

<table>
<thead>
<tr>
<th>O.D. x Wall Length</th>
<th>Price per Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" x .058" 12 ft</td>
<td>$10.26</td>
</tr>
<tr>
<td>7/8" x .058" 12 ft</td>
<td>$18.40</td>
</tr>
<tr>
<td>1" x .058" 12 ft</td>
<td>$21.82</td>
</tr>
<tr>
<td>1-1/4" x .058" 12 ft</td>
<td>$27.35</td>
</tr>
<tr>
<td>1-1/2" x .058" 12 ft</td>
<td>$33.37</td>
</tr>
<tr>
<td>1-1/2" x .125" 24 ft</td>
<td>$76.20</td>
</tr>
<tr>
<td>2" x .058" 12 ft</td>
<td>$44.93</td>
</tr>
<tr>
<td>2" x .065" 12 ft</td>
<td>$76.20</td>
</tr>
</tbody>
</table>

Stainless Steel, Carbon Steel, Alloys, and Galvanized Steel Tubing in stock that meets ASTM Standards.

Lines: All prices FOB Twinsburg, Ohio. Payment by MC or Visa, check or money order or COD. Minimum order $50.00. Volume and club discounts available. Ohio residents add 5.75% sales tax.

Exmet, INC.
2170 E. Aurora Rd., P.O. Box 117
Twinsburg, Ohio 44088 • 216-425-8455

Save Time-Money with HAZER

- Never climb your tower again with this elevator system
- Antenna and rotator mount on HAZER, complete system, ships in vehicle upright position
- Safety lock system on HAZER operates while raising-lowering & normal position. Never can fail
- Weight transferred directly to tower. Winch cable used only for raising-lowering. Easy to install and use.
- Will support most antenna arrays.
- High-quality materials & workmanship.
- Safety - Speed - Convenience - Smooth travel - Inexpensive
- Complete kit includes winch, 100 ft. of cable hardware, and instructions. For Radio 25' G Tower.
- Hazer 2: Heavy-duty aluminum 12 sq. ft. load 2797.00 pds.
- Hazer 3: Standard aluminum 9 sq. ft. load 2330.00 pds.
- Hazer 4: Heavy-galvanized steel 16 sq. ft. load 2783.00 lbs. Ball bearing 35.55 for any of above 475.00.
- Satisfaction guaranteed. Call today and charge to Visa or MasterCard.

At an alternative price, a Martin-M-13 or M-18 aluminum tower engineered specifically for the HAZER system, or a truly self-supporting steel tower. Send for free details.

Glen Martin Engineering, Inc.
P.O. Box 213
Blacksburg, Va. 24060
816-882-2734

WRITE FOR FREE BOOK CATALOG

Ham Radio's Bookstore
Greenville, NH 03048

ALL BAND TRAP VERTICAL ANTENNAS!

- FULL WAVE - All Bands, Automatic Selection with proven M-8 Traps. No traps! All new supporting, tension, or support mount. Hi strength fiberglass tubing over all. No wobbles, lumped traps. No undue h.f. clamp! Size 1/4" all the way up. Traps handle up to 50 watts. You can use it 1/2" on all band. Prepaid for apartments, homes, motorhomes, condos, etc. Where maximum space and near perfection is needed.
- Gain of 8 dB on ground mount included. Use with or without radios (unlicensed) (All single roof mount - Extra trap added automatically.)
- No adjustments needed ever! No tuner needed for most traps. Covers the radio noise, peaky noise, and most traps. Send full price for PP DEL IN USA. (Canada to $0.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.)
- Stack up to 8 traps. Send $10.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send $15.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send $15.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send $15.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send full price for PP DEL IN USA. (Canada to $0.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.)
- Stack up to 8 traps. Send $10.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send $15.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send $15.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.
- Send full price for PP DEL IN USA. (Canada to $0.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.)
- Stack up to 8 traps. Send $10.00 extra postage, dealer. Cables for dealer only to pay for USPS, or master card or other: $1.50.

June 1986
<table>
<thead>
<tr>
<th>WIRE SIZE</th>
<th>FULL COIL</th>
<th>DC RES OHMS</th>
<th>I CU</th>
<th>PEAK AMPS</th>
<th>INDUC MHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5.4</td>
<td>0.01</td>
<td>9.19</td>
<td>1.6E-03</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6.7</td>
<td>0.01</td>
<td>7.41</td>
<td>2.5E-03</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8.4</td>
<td>0.01</td>
<td>5.91</td>
<td>4E-03</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10.5</td>
<td>0.01</td>
<td>4.72</td>
<td>6.3E-03</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>13.2</td>
<td>0.01</td>
<td>3.76</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16.3</td>
<td>0.01</td>
<td>3.04</td>
<td>.0153</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>20.5</td>
<td>0.01</td>
<td>2.42</td>
<td>.0242</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>25.4</td>
<td>0.01</td>
<td>1.95</td>
<td>.0371</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>31.8</td>
<td>0.01</td>
<td>1.56</td>
<td>.0582</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>39.4</td>
<td>0.01</td>
<td>1.26</td>
<td>.0894</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>49.1</td>
<td>0.05</td>
<td>1.01</td>
<td>.1388</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>51.1</td>
<td>0.06</td>
<td>.81</td>
<td>.2143</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>75.7</td>
<td>.14</td>
<td>.65</td>
<td>.33</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>99.6</td>
<td>.21</td>
<td>.53</td>
<td>.5046</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>115</td>
<td>.34</td>
<td>.42</td>
<td>.775</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>145.9</td>
<td>.54</td>
<td>.34</td>
<td>1.2261</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>181.2</td>
<td>.85</td>
<td>.27</td>
<td>1.8912</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>220.4</td>
<td>1.29</td>
<td>.22</td>
<td>2.7979</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>275.6</td>
<td>2.06</td>
<td>.18</td>
<td>4.375</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>339.2</td>
<td>3.2</td>
<td>.14</td>
<td>6.6272</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>413.4</td>
<td>4.82</td>
<td>.12</td>
<td>9.8438</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>512.7</td>
<td>7.61</td>
<td>.09</td>
<td>15.1408</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>552.7</td>
<td>12.28</td>
<td>.07</td>
<td>24.5385</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>703.9</td>
<td>19.32</td>
<td>.06</td>
<td>37.782</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>899.7</td>
<td>29.9</td>
<td>.04</td>
<td>57.5654</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1221.2</td>
<td>45.07</td>
<td>.04</td>
<td>85.9605</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1526.5</td>
<td>71.3</td>
<td>.03</td>
<td>134.2196</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1964.8</td>
<td>119.96</td>
<td>.02</td>
<td>222.3612</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2480.6</td>
<td>193.11</td>
<td>.02</td>
<td>354.4344</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3053</td>
<td>290.49</td>
<td>.01</td>
<td>536.8785</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3891.1</td>
<td>465.59</td>
<td>.01</td>
<td>872.1819</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4724.9</td>
<td>728.86</td>
<td>.01</td>
<td>1285.9015</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>5436.9</td>
<td>1015.84</td>
<td>.01</td>
<td>1782.6491</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>7488.6</td>
<td>1307.25</td>
<td>.01</td>
<td>3330.1578</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>9020.4</td>
<td>2735.47</td>
<td>0</td>
<td>4696.7746</td>
<td></td>
</tr>
</tbody>
</table>

fig. 6. Table of inductor designs.
HF Antennas — The Easy Way

by John Haele, WB5IIR

This book has been published as a memorial to WB5IIR's work as an Amateur Radio teacher. Originally given as a series of speeches or papers, this tutorial is an excellent source book on antenna theory and applications. Examples of areas covered are: Fundamentals, antenna and feeding terminology, baluns, ground systems, lightning protection, The Basic Antenna, the dipole, the zepp, G5RV, Windom, Special Antennas, the sloper, DDR, Beverage, folded unipole, Beams, WBJK, Yagi, two element quad, and the 160 meter band story. John's writing is in an easy-to-understand conversational style and is full of examples and handy tips and hints. There are no drawings or illustrations but John's prose paints pictures for clear and complete understanding of the information being presented. ©1984 1st Edition.

Softbound $11.95

Please add $3.50 for shipping and handling.
glossary of terms

Winding factor is the ratio of the total area of copper wire in the center hole of a toroid to the window area of the toroid.

Window Area, CMIIL • 1E6 circular. The unit “Circular MIL” is the area of a circle 1 mil in diameter. The number of circular mils in a square inch is, therefore $\frac{4}{\pi} \times 10^6$, or 1,273,237. Since 1 mil is the thousandth part of an inch; there are 1,000,000 square mils in a square inch. Thus the area of a cross-section expressed in circular mils is always bigger than the true area expressed in square mils, because the unit area to which the “Circular Mil” has been given is smaller than the square mil.

Heavy Enamel is a magnet wire having an extra heavy film of enamel insulation (i.e., double coated). Its abrasion resistance is somewhat greater than regular enamel (i.e., single coated) magnet wire.

MLT — full winding. MLT is the mean length of a single turn of wire. This will vary considerably between a single layer of wire and a core full of wire. The values of MLT are listed on each core size data sheet (see fig. 4).

HDC (peak) Max. (core bias). DC current = peak current. If current is not direct continuous, then the peak (momentary) value is used to determine core operating conditions.

$$H = \frac{0.4\pi \times \text{turns} \times \text{peak magnetizing current} \times \text{mean magnetic path}}{L}$$

bias range Oersteds

<table>
<thead>
<tr>
<th>Bias range</th>
<th>Oersteds</th>
<th>recommended permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 6</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>6 to 22</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>22 to 35</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>22 to 35</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>22 to 35</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>35 to 70</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>40 to 140</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>70 to 150</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>150 to 300</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>above 330</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Call or write for complete Price List

COD add $2.00.

Shipping

- Cable — $3.00 per 100 ft.
- Connectors — and 10%, $3.00 minimum
- Orders under $20 Add $2 Handling

NEMAL ELECTRONICS

151 Commerce Pkwy., Buffalo, NY 14224
716-697-0740 8 to 4

NEMAL ELECTRONICS

Your Authorized Distributor For

BELDEN

INTRODUCTORY SALE!

<table>
<thead>
<tr>
<th>Belden No.</th>
<th>Nema No.</th>
<th>Description</th>
<th>100 ft.</th>
<th>Per 50 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>821-1</td>
<td>1102B</td>
<td>RG / U Foam 96%</td>
<td>$45.00</td>
<td>$90.00</td>
</tr>
<tr>
<td>821-7</td>
<td>110B</td>
<td>RG / U Poly 96%</td>
<td>$39.00</td>
<td>$78.00</td>
</tr>
<tr>
<td>821-1</td>
<td>500B</td>
<td>RG / U Poly 96%</td>
<td>$13.00</td>
<td>$6.50</td>
</tr>
<tr>
<td>821-7</td>
<td>1130B</td>
<td>RG / U Poly 96%</td>
<td>$53.00</td>
<td>$26.50</td>
</tr>
<tr>
<td>821-7</td>
<td>600B</td>
<td>RG / U Poly 96%</td>
<td>$15.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>821-1</td>
<td>1450B</td>
<td>RG / U Poly 96%</td>
<td>$12.00</td>
<td>$6.00</td>
</tr>
<tr>
<td>9913-1</td>
<td>1180</td>
<td>Low Loss 50 Ohm</td>
<td>$16.00</td>
<td>$8.00</td>
</tr>
</tbody>
</table>

OTHER QUALITY CABLES

<table>
<thead>
<tr>
<th>Belden No.</th>
<th>Nema No.</th>
<th>Description</th>
<th>100 ft.</th>
<th>Per 50 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>1110G</td>
<td>RG / X 95% Shield</td>
<td>$15.00</td>
<td>$7.50</td>
</tr>
<tr>
<td>1130</td>
<td>1130G</td>
<td>RG / U Mil Spec 96%</td>
<td>$34.00</td>
<td>$17.00</td>
</tr>
<tr>
<td>1140</td>
<td>1140G</td>
<td>RG / U Spec. Silver</td>
<td>$155.00</td>
<td>$77.50</td>
</tr>
<tr>
<td>1170</td>
<td>1170G</td>
<td>RG / U Teflon - Silver</td>
<td>$140.00</td>
<td>$70.00</td>
</tr>
<tr>
<td>1310</td>
<td>1310G</td>
<td>RG / U 5/8" 50 Ohm Dbl. Shld.</td>
<td>$80.00</td>
<td>$40.00</td>
</tr>
<tr>
<td>1470</td>
<td>1470G</td>
<td>RG / U Spec. Silver</td>
<td>$80.00</td>
<td>$40.00</td>
</tr>
</tbody>
</table>

FOR JEWELRY

<table>
<thead>
<tr>
<th>Belden No.</th>
<th>Nema No.</th>
<th>Description</th>
<th>100 ft.</th>
<th>Per 50 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8C1821</td>
<td>F1A5</td>
<td>RG / U 22 AWG 6-22 Ga.</td>
<td>$10.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>8C1825</td>
<td>1/2"</td>
<td>RG / U 22 AWG 6-22 Ga.</td>
<td>$34.00</td>
<td>$17.00</td>
</tr>
<tr>
<td>8C1821</td>
<td>F1A5</td>
<td>RG / U 22 AWG 6-22 Ga.</td>
<td>$10.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>8C1821</td>
<td>F1A5</td>
<td>RG / U 22 AWG 6-22 Ga.</td>
<td>$10.00</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

FLC8

<table>
<thead>
<tr>
<th>Description</th>
<th>Per 50 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.00</td>
<td>85</td>
</tr>
<tr>
<td>0.59</td>
<td>0.69</td>
</tr>
</tbody>
</table>

CONNECTIONS — MADE IN U.S.A.

Type N for Belden 9913	4.75
PL259 10 Standard Plug for RG6, 213	65
PL259AM Amphenol PL259	89
PL259TS PL259 Teflon/Silver	1.59
UG210 Type N for RG6, 213, 214	3.00
UG175 Adapter for RG59	22

Call or write for complete Price List

Shipping

- Cable — $3.00 per 100 ft.
- Connectors — and 10%, $3.00 minimum
- Orders under $20 Add $2 Handling

NEMAL ELECTRONICS

12240 N.E. 14th Ave., Dept. Q., Miami, FL 33161
Telephone (305) 893-3924
fig. 5. Input summary and wound inductor dimensions for a powdered iron core that is carrying maximum peak current.

fig. 7. Basic program compensates for core permeability.

The image contains a technical document with code listings, diagrams, and text. The code listings include FORTRAN or similar programming language, and the diagrams likely pertain to electrical engineering, particularly related to core permeability and inductor design. The text and code are regioned into natural language segments, indicating a structured approach to solving engineering problems through programming.

The text discusses the calculation of core permeability and the effects on wound inductors, highlighting the importance of accurate measurement and design. The diagrams likely illustrate winding configurations and their impact on core performance.

The document is part of an issue from June 1986 of a technical journal, and the text is related to ham radio applications, specifically concerning the design and use of iron cores in inductors for radio frequency components.
meteor scatter communications

It's been two years since my first article on improving meteor scatter communications appeared in this column. That article generated lots of interest and many readers have used the techniques described to improve their own meteor scatter QSO success rate. In that column, I described a method and a computer program designed to help pinpoint the peak of each of the major meteor showers. The predicted peak for upcoming meteor showers you see listed at the end of each monthly column is derived using this method.

Since that column was written, many new improvements in prediction have taken place: shower peaks can now be predicted with greater accuracy, and computer programs that help optimize scheduling are readily available. Because the summer months — along with a short peak from December through early January — are prime time for meteor scatter communications, it seems this would be a good time to present some additional tips on improving meteor scatter communications.

a quick review

Meteor scatter communications uses the ionized trails left by meteors as they enter the earth's ionosphere. There are two basic types of meteors, sporadic and shower. Sporadic meteors are random in nature. They peak daily at about 6 AM and are at their minimum at about 6 PM local time. Shower meteors, on the other hand, peak at specific times of the year and can begin at any time of the day, depending on the radiant (the place in the sky from which the meteors seem to emanate).

Amateurs in North America most often use the shower types, believed to be the remnants of old or extinct comets. These meteors generally provide more ionization and their time of arrival is more predictable than that of sporadic meteors. Shower meteors usually are in greater quantity than sporadic meteors; the typical shower lasts from 12 hours to several days (for at least 25 percent of the peak time). As a result, meteor showers are more reliable for completing a QSO than sporadic types.

"That's fine," you say. "I've looked at the meteor shower peak prediction method in reference 1 and even ran schedules during the peak hours listed at the end of 'VHF/UHF World' each month with only limited success. What am I doing wrong?"

Several questions must be answered. First and foremost, was the other station definitely on the air during the schedule? Was it on the right frequency and using the correct timing sequence? Was all your gear and the other station's gear operational — or did one of the stations have a transmitter or receiver sensitivity problem? Was the transmitted power and antenna gain sufficient at each end of the path? "Of course," you insist. Then read on!

One potential problem is the distance between stations. Generally, the optimum distance for meteor showers is between 700 and 1000 miles (1125-1610 km). Distances less than about 700 miles are a problem because your antenna must be elevated for maximum signal strength and the bursts are usually shorter.

Longer distances out to about 1400 miles (2250 km) are possible using meteor scatter. However, for best results use only the high-speed meteor showers, which have increased ionization higher in the E region. (More on this later.)

The most productive schedules are usually run during the hours or days when the meteors are above 25 percent of the peak of the shower; this is called the peak time of the shower. Running a day or so ahead or behind the peak may be less productive, especially if the shower is one of short duration.

The procedure for determining the shower peak time and date was described in detail in reference 1, so it won't be repeated here, though table 1 has been revised to show the latest ecliptic longitude at 0000 UTC. For those who don't care to work out the peaks or use the computer program listed in reference 1, the predictions of major showers are listed each month at the end of this column.

W9IP mentioned that the ecliptic longitude tables shown in reference 1 may not be accurate enough to be reused every four years as originally suggested. This is true because the tables may vary by up to several hours over a four-year period. So I've updated the daily ecliptic longitude in table 2 and made appropriate corrections.

If a "fudge factor" of about 0.12 (equivalent to about three hours in four years) is added to the values shown in the tables every four years hence, the tables can be used for many years with a high degree of accuracy. For example, the 1986 table can be reused for 1990 by simply adding 0.12 to each value. Hence January 3, 1990 has a...
Table 1.

<table>
<thead>
<tr>
<th>Shower name</th>
<th>E.L.*</th>
<th>Best dates</th>
<th>Duration**</th>
<th>Hourly rate†</th>
<th>Velocity (km/sec)</th>
<th>Local time rise/set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrantids</td>
<td>282.855</td>
<td>January 2-4</td>
<td>14 hrs</td>
<td>110</td>
<td>41.5</td>
<td>2300-1800</td>
</tr>
<tr>
<td>April Lyrids</td>
<td>31.8</td>
<td>April 20-24</td>
<td>2.3 days</td>
<td>15</td>
<td>47</td>
<td>2100-1100</td>
</tr>
<tr>
<td>Eta Aquarids</td>
<td>44.5</td>
<td>May 2-7</td>
<td>3 days</td>
<td>20</td>
<td>67</td>
<td>0300-1200</td>
</tr>
<tr>
<td>Arietids</td>
<td>76.5</td>
<td>June 1-15</td>
<td>8 days</td>
<td>60</td>
<td>37</td>
<td>0300-1530</td>
</tr>
<tr>
<td>June Lyrids</td>
<td>84.5</td>
<td>June 10-21</td>
<td>7 days</td>
<td>10</td>
<td>31</td>
<td>2100-1100</td>
</tr>
<tr>
<td>Delta Aquarids</td>
<td>126.0</td>
<td>July 26-30</td>
<td>7 days</td>
<td>35</td>
<td>42</td>
<td>2200-0600</td>
</tr>
<tr>
<td>Persids</td>
<td>139.3</td>
<td>August 10-14</td>
<td>4.6 days</td>
<td>65</td>
<td>60</td>
<td>(Note 1)</td>
</tr>
<tr>
<td>Orionids</td>
<td>207.4</td>
<td>October 10-23</td>
<td>2 days</td>
<td>30</td>
<td>67</td>
<td>2230-0930</td>
</tr>
<tr>
<td>Taurids</td>
<td>221.0</td>
<td>October 30</td>
<td>20 days</td>
<td>10</td>
<td>30</td>
<td>1900-0630</td>
</tr>
<tr>
<td>Leonids</td>
<td>234.7</td>
<td>November 10</td>
<td>4 days</td>
<td>20</td>
<td>71</td>
<td>2300-1230</td>
</tr>
<tr>
<td>Geminids</td>
<td>261.2</td>
<td>December 10-15</td>
<td>2.5 days</td>
<td>50</td>
<td>36</td>
<td>1800-1000</td>
</tr>
<tr>
<td>Ursids</td>
<td>270.5</td>
<td>December 20-24</td>
<td>2.2 days</td>
<td>15</td>
<td>33</td>
<td>(Note 2)</td>
</tr>
</tbody>
</table>

*Ecliptic longitude in 1950 coordinates.
**Duration is the amount of time that the meteors are above 25 percent of the peak of the shower.
†Estimated meteors per hour at maximum. Can vary greatly from year to year depending on shower.
Local time for northern mid-latitudes.

Note 1. Never sets. Minimum at 1730.
Note 2. Never sets. Minimum at 2030.

corrected ecliptic longitude of 282.43; 1994, a corrected value of 282.55. For maximum precision, the computer program shown in reference 1 is recommended, since it contains an algorithm for continuously updating the daily ecliptic longitude with minimal error, regardless of dates.

However, the primary factor in increasing the probability of a successful QSO is determining the optimum time of the day for the desired path direction during or near (±12 hours) the predicted peak of a meteor shower. W4LTU provided guidelines in his tables in references 2 and 3, but they were only guidelines and no specifics on distances or probabilities were included.

Why is this consideration so important? Meteors enter the ionosphere in a specific geometry, depending on where they're encountered by the earth in its orbit around the sun. If the meteors are entering on the opposite side of the earth from your QTH, the chance of a completed meteor scatter QSO is slim.

If the geometry of the meteor shower is favorable, there will be a time when the meteors enter the ionosphere in the optimum direction at the best entry angle, yielding specular (i.e., mirror-like) reflection to radio signals on a specific path as explained by Bain.²³

Villard, et. al., described this geometry in detail in reference 4. Meeks and James further defined the ideal geometry for specular reflection on forward scatter, suggesting that the ideal geometry occurs when the meteors cross at right angles to the great circle path between the transmitter and receiver and enter the ionosphere at an elevation angle of 45 degrees.⁴ Meeks and James then derived a complicated set of formulas for determining the decrease in performance from the ideal case. They called this term "effectivity."

This can be best visualized as a mirror reflecting the wave to the proper point. Whenever the trail is properly oriented (consider the reflection region to be the mirror), the incident wave will be reflected directly back to the desired destination. Furthermore, the angle the incident wave makes with a perpendicular to the mirror will be the same as the angle the reflected wave makes with the perpendicular. As the mirror is moved from this ideal orientation, only a portion of the incident wave will be projected onto the correct region of the mirror for reflection back to the desired location.

Thus as the reflection mirror is tipped away from the ideal orientation, the amount of reflected signal in the desired direction falls off. By calculating the amount the reflecting surface is tipped away from the ideal orientation, it's possible to evaluate the "effectiveness" of the reflection process.

Damboldt simplified the equations for effectivity.⁶ With the help of Chip Brown, KR1P, I have simplified these equations even further to yield a percentage of probability from the ideal case as follows:

Effectivity = 200× [Sin H×Cos H×Sin(p-a)]. Where Effectivity is a percentage from 0-100 percent, H is the
The image contains a page with various advertisements and announcements. Here is a structured breakdown of the content:

Specials and Sales
- **ICOM IC-745**: $799.00 with hand mike.
- **Kenwood TS-440S**: On display, call for price.

Popular PA 19
- **Wideband Preamp**
 - Over 8,000 sold since 1976
 - 0.5 - 200 MHz bandwidth
 - 19 dB gain
 - 50 Ω input/output
 - Increase sensitivity of receivers or counters
 - Built, tested & ready-to-go
 - **ONLY $9.95 PPD**

New Pocket Sized
- **500 MHz Freq. Counter**
 - Compact design
 - Measures frequency from 1 MHz to 500 MHz to within 1 kHz
 - Built-in telescoping antenna
 - Uses 1 standard 9 volt battery
 - All units pre-tested and calibrated to 0.01%
 - Professional and dependable performance at a low cost
 - **ONLY $49.95 PPD**

Propagation Publishing
- **Propagation Publishing**
 - Your source for amateur radio books, tapes and computer programs.
 - Now over 150 books, tapes and computer programs to keep you up to date in the ham world, and to help upgrade for that next ticket.

- **"DX Power: Effective Techniques for Radio Amateurs"**
 - Here it is at last! You knew it had to be written, and now we have it. A complete survival manual for every radio amateur interested in the competitive world of DXing. Chip Tilton breaks tradition to reveal what really goes on in the DX world.
 - Postpaid in USA $12.00

- **Please send check or money order. Illinois residents please add 6% sales tax.**

- **We are looking for authors!**

Open Six Days a Week
- Telephone: 617/486-3400, 3040
- 675 Great Rd., (Rte. 119) Littleton, MA 01460
- 1½ miles from Rte. 495 (Exit 31) toward Groton, Mass.
elevation angle of the meteor entry path, \(p\) is the azimuth of the great circle path, and \(a\) is the azimuth of the meteor path.

For example, if the great circle path from the transmitting to the receiving station is 225 degrees, the meteor path is 135 degrees, and the meteor enters the ionosphere at an elevation angle of 45 degrees, the effectiveness is 100 percent. However, if the meteor enters on an azimuth path of 180 degrees at a 30-degree elevation angle, the effectiveness is only about 62 percent. Generally speaking, efficiencies of greater than 50 percent are desired. If the efficiency drops below 25 percent, the path is very poor and probably not worth your precious time.

finding the best time for a path

As mentioned above, one of the most important considerations in setting up a schedule is choosing the optimum time for the desired path direction. Some of this information is included in the table prepared by W4LTU. However, it is incomplete and doesn’t list all the optimum times or all path directions, or cover different distances.

A computer program that calculates the most “effective” time for a meteor scatter path between your station and the station scheduled during any of the well-known annual meteor showers has been written. Even if you don’t have a computer, read on; there will be useful information for you!

The program first determines the location (above the great circle path) in the E region where the scattering from the meteor trail will occur, provided that the meteor trail passes through this region in the correct direction. Either of W4LTU’s QST articles illustrate this meteor trail geometry for a given beam heading. The heading to the other station can be easily found using the equations for determining the great circle bearing direction.

The program works out all the astronomical calculations necessary for the meteor shower selected. Armed with these three known quantities (the location of the reflection point, the great circle path, and the direction of the path of the meteors as they enter the E region), the program will evaluate the “effectiveness” (or the orientation of the ionized trails in providing a properly positioned layer or surface on which the specular reflections can occur).

The orientation of the ionized meteor trails in this particular location in the E region varies as the earth rotates; the program will indicate the optimum or most “effective” time of the day for the use of the path. Because some showers are from radiant of high declination while others are from lower declination, it follows that some showers are better suited for particular great circle paths.

The program also calculates the beam offset angle from the great circle bearing path as a function of time for those who need to compensate for this effect.

The astronomical calculations begin with the equations found in the annual American Ephemeris and Nautical Almanac. These equations are used to determine the day of the year when the earth passes through the shower and the “right ascension” of the shower at the start of that day. This information is then used to determine the direction of the meteor showers, since they’ll be passing through the E region scattering location or volume. Moreover, because of the earth’s rotation and its orbit about the sun, this location in the E region will continuously sweep.

<table>
<thead>
<tr>
<th>Date</th>
<th>1986</th>
<th>1987</th>
<th>1988</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 3</td>
<td>282.31</td>
<td>282.13</td>
<td>281.91</td>
<td>282.68</td>
</tr>
<tr>
<td>Jan 4</td>
<td>283.33</td>
<td>283.15</td>
<td>282.93</td>
<td>283.70</td>
</tr>
<tr>
<td>Jan 5</td>
<td>284.35</td>
<td>284.17</td>
<td>283.95</td>
<td>284.72</td>
</tr>
<tr>
<td>Apr 21</td>
<td>30.61</td>
<td>30.43</td>
<td>31.20</td>
<td>30.97</td>
</tr>
<tr>
<td>Apr 22</td>
<td>31.58</td>
<td>31.41</td>
<td>32.18</td>
<td>31.94</td>
</tr>
<tr>
<td>Apr 23</td>
<td>32.56</td>
<td>32.38</td>
<td>33.15</td>
<td>32.92</td>
</tr>
<tr>
<td>May 4</td>
<td>43.25</td>
<td>43.08</td>
<td>43.84</td>
<td>43.61</td>
</tr>
<tr>
<td>May 5</td>
<td>44.22</td>
<td>44.04</td>
<td>44.81</td>
<td>44.58</td>
</tr>
<tr>
<td>May 6</td>
<td>45.19</td>
<td>45.01</td>
<td>45.78</td>
<td>45.54</td>
</tr>
<tr>
<td>Jun 5</td>
<td>74.06</td>
<td>73.88</td>
<td>74.65</td>
<td>74.41</td>
</tr>
<tr>
<td>Jun 6</td>
<td>75.02</td>
<td>74.84</td>
<td>75.60</td>
<td>75.37</td>
</tr>
<tr>
<td>Jun 7</td>
<td>75.98</td>
<td>75.80</td>
<td>76.56</td>
<td>76.32</td>
</tr>
<tr>
<td>Jun 8</td>
<td>82.67</td>
<td>82.50</td>
<td>83.25</td>
<td>83.02</td>
</tr>
<tr>
<td>Jun 15</td>
<td>83.62</td>
<td>83.45</td>
<td>84.20</td>
<td>83.97</td>
</tr>
<tr>
<td>Jun 16</td>
<td>84.58</td>
<td>84.41</td>
<td>85.16</td>
<td>84.93</td>
</tr>
<tr>
<td>Jul 27</td>
<td>123.69</td>
<td>123.52</td>
<td>124.27</td>
<td>124.04</td>
</tr>
<tr>
<td>Jul 28</td>
<td>124.65</td>
<td>124.47</td>
<td>125.23</td>
<td>125.00</td>
</tr>
<tr>
<td>Jul 29</td>
<td>125.60</td>
<td>125.43</td>
<td>126.18</td>
<td>125.96</td>
</tr>
<tr>
<td>Aug 11</td>
<td>138.05</td>
<td>137.88</td>
<td>138.63</td>
<td>138.40</td>
</tr>
<tr>
<td>Aug 12</td>
<td>139.01</td>
<td>138.84</td>
<td>139.59</td>
<td>139.36</td>
</tr>
<tr>
<td>Aug 13</td>
<td>139.97</td>
<td>139.80</td>
<td>140.55</td>
<td>140.32</td>
</tr>
<tr>
<td>Oct 20</td>
<td>206.31</td>
<td>206.13</td>
<td>206.90</td>
<td>206.67</td>
</tr>
<tr>
<td>Oct 21</td>
<td>207.30</td>
<td>207.12</td>
<td>207.90</td>
<td>207.67</td>
</tr>
<tr>
<td>Nov 2</td>
<td>219.28</td>
<td>219.09</td>
<td>219.88</td>
<td>219.64</td>
</tr>
<tr>
<td>Nov 3</td>
<td>220.28</td>
<td>220.09</td>
<td>220.88</td>
<td>220.67</td>
</tr>
<tr>
<td>Nov 4</td>
<td>221.28</td>
<td>221.09</td>
<td>221.88</td>
<td>221.67</td>
</tr>
<tr>
<td>Nov 5</td>
<td>233.34</td>
<td>233.15</td>
<td>233.94</td>
<td>233.70</td>
</tr>
<tr>
<td>Nov 7</td>
<td>234.32</td>
<td>234.16</td>
<td>234.95</td>
<td>234.71</td>
</tr>
<tr>
<td>Nov 18</td>
<td>235.35</td>
<td>235.17</td>
<td>235.96</td>
<td>235.72</td>
</tr>
<tr>
<td>Dec 12</td>
<td>259.66</td>
<td>259.48</td>
<td>260.27</td>
<td>260.03</td>
</tr>
<tr>
<td>Dec 13</td>
<td>260.68</td>
<td>260.50</td>
<td>261.29</td>
<td>261.05</td>
</tr>
<tr>
<td>Dec 14</td>
<td>261.70</td>
<td>261.51</td>
<td>262.31</td>
<td>262.06</td>
</tr>
<tr>
<td>Dec 21</td>
<td>268.62</td>
<td>268.44</td>
<td>269.43</td>
<td>269.19</td>
</tr>
<tr>
<td>Dec 22</td>
<td>269.64</td>
<td>269.46</td>
<td>270.45</td>
<td>270.21</td>
</tr>
<tr>
<td>Dec 23</td>
<td>270.85</td>
<td>270.67</td>
<td>271.47</td>
<td>271.23</td>
</tr>
</tbody>
</table>
throughout the swarm of meteors in an ever-changing direction. The ideal direction of the trails as they pass through the E region will be such that specular reflections will take place over the desired path.

For some paths and some showers, these ideal direction situations may be reached. Though it sometimes lasts for only an hour, this near-ideal situation can persist for many hours in other combinations of paths and showers. For some showers this occurs only once a day; for others, it occurs twice during the same day.

The computer program recalculates all of these geometric changes of the path in the E region with respect to the desired propagation path at every 15-minute interval throughout the day. At each 15-minute interval the “effectiveness” of the path geometry is also evaluated.

The final output of the program is a tabulation and plot of the path’s “effectiveness” at each 15-minute interval. Thus the “effectiveness” plot indicates the time of day when astronomical orientation of the meteor trails is most favorable for providing specular reflection along the desired path. The actual value of the plot is a measure of how near specular the reflections will be for the time of the calculation.

Computer programs

A copy of this program is being offered for IBM or IBM-compatible PCs at a nominal fee to cover cost of reproduction and mailing.* A floppy disk copy of the program is also available.

Credit for writing this program goes to Chip Brown, KR1P, who spent many hours customizing and debugging it so that the results would be as accurate as possible.

A typical printout of the program is shown in fig. 1. This shows a southwesterly path of approximately 900 miles (1450 km) during the Perseids meteor shower from a latitude of 40 degrees north and a longitude of 76 degrees west (the corner of VUCC grid squares FM19, FM29, FN10 and FN20), approximately in the middle of the Eastern Standard Time (EST) zone. This path can be duplicated or correlated later if you obtain the program.

* A copy of the meteor shower effectivity program written in BASIC for IBM or IBM-compatible PCs is available for $2.00 from Gary Field, WA1GRC, 2 Pluff Avenue, Reading, Massachusetts 01824. A floppy disk with the same program is available for $15.00, which includes cost of the disk and mailing.
ham radio
Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

101 113 125 137 149 161 173 185 197 209 221 233 245 257 269 281 293 305 317 329 341
102 114 126 138 150 162 174 186 198 210 222 234 246 258 270 282 294 306 318 330 342
103 115 127 139 151 163 175 187 199 211 223 235 247 259 271 283 295 307 319 331 343
104 116 128 140 152 164 176 188 200 212 224 236 248 260 272 284 296 308 320 322 344
105 117 129 141 153 165 177 189 201 213 225 237 249 261 273 285 297 309 321 333 345
106 118 130 142 154 166 178 190 202 214 226 238 250 262 274 286 298 310 322 334 346
107 119 131 143 155 167 179 191 203 215 227 239 251 263 275 287 299 311 323 335 347
108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 324 336 348
109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349
110 122 134 146 158 170 182 194 206 218 230 242 254 266 278 290 302 314 326 338 350
111 123 135 147 159 171 183 195 207 219 231 243 255 267 279 291 303 315 327 339
112 124 136 148 160 172 184 196 208 220 232 244 256 268 280 292 304 316 328 340

Limit 15 inquiries per request.

NAME ___________________________ CALL ___________________________
ADDRESS ___________________________
CITY ___________________________ STATE __________ ZIP ___________

Please use before July 31, 1986 June 1986
Because no real meteor shower enhancement is indicated from 0015-0930 UTC, this wouldn’t be a good time to run this path direction. However, note that the path effectivity exceeds 50 percent (the typical minimum criteria as stated earlier) from about 1115 UTC (0615 EST) until after 1930 UTC (1430 EST). A long-duration smooth peak that reaches maximum at about 1515 UTC (1015 EST) is evident.

Figure 1 is also valid by simply scaling the time for schedules where one of the stations is near the 40th parallel but at a different longitude. A station located near a longitude of 91 west can use this path directly by just adding one hour to the times shown. Since the geometry moves westerly at a rate of 15 degrees per hour, a station near a longitude of 106 west can add two hours.

Beam offset is also shown on the printout for those who want to optimize this geometry. W4LTU has explained this principle in references 2 and 3. Normally this isn’t important unless you’re on the bands above 2 meters or if the gain of your antenna is high (narrow beamwidth). However, every little bit of help is worthwhile, especially on the higher bands.

using the effectivity graphs

Judging from the many letters and questions received, there seems to be a lot of interest in finding the optimum time for a particular path during a meteor shower. The program described will do this for anyone with the appropriate computer. But some Amateurs interested in meteor scatter don’t have computers; others are interested only in certain paths. Still others are interested only in some of the typical optimum paths for the major showers.

Tabulating all path possibilities like the one shown in fig. 1 would be a monumental task. Consequently, I’ve decided to provide optimum path data for three of the major meteor showers. Since much of the Amateur communications activity during meteor showers in North America has at least one of the stations near the 40th parallel, this is the data I tabulated. Other stations even several hundred miles north or south will often experience similar effectivity. Although it may be shifted an hour one way or the other, there probably won’t be a great deal of change if you’re running near the peak effectivity points. If you don’t have the computer capability, maybe the other station or a friend with the appropriate computer can run a listing for your specific shower and path.

Fig. 2. These graphs show the predicted effectivity for the Quadrantids meteor shower. All times shown are local. Original data was taken from latitude 40 degrees north and longitude 76 degrees west but can be used at other locations as explained in the text. Paths shown are as follows: A) north, B) northeast, C) east, D) southeast, E) south, F) southeast, G) west, H) northwest.
COM-SHACK SIMPLEX AUTO-PATCH & REMOTE H.F. BASE

MODEL CS-64

$229.95

Includes Software
[Program Disk], Hardware Interface & Instruction Manual

This is NI6R Auto-patch On!

CQ DX, CQ DX
20 Meters

This is NI6R Remote Base Auto-patch On

CQ DX, CQ DX
20 Meters

Simplex autopatch and H.F. remote base with clear voice messages. Control your Yaesu FT-757 or ICOM-IC735 with your VHF/UHF portable or mobile. Switch between the H.F. remote and the autopatch with DTMF tones. Voice ISD all control functions & H.F. frequency are voice announced with your programmable access codes. Autopatch works on any telephone line—tone or dial pulses. Call waiting compatibility—after beep answer second incoming call while on the patch! Automatic redial last number [in dial pulse mode]. Ring detect & automatic voice alert of incoming telephone call. Inactivity timer turns off system [user programmable]. Store 3 H.F. memory frequencies + shift VFO's & change bands. Fast scan & slow scan + dial up any frequency, both DTMF tones all from your handheld VHF/UHF portable or mobile. Use the autopatch or the remote base both for the price of one! User defined timing window, access codes, call sign. Simple to install hardware interface cables, connectors supplied. Hook mic input, PTT, speaker output & FM squelch connection 3 pin H.F. data cable and you are in control! You supply—1 Commodore 64 or 128 & 1 disk drive + base station. No additional power supply required. With human voice synthesized by Covox.*

TOUCHTONE* DECODER KIT

MODEL TTK

$22.95

SSI 201 DTMF Receiver • Receive all 16 DTMF digits • No additional filtering • Output BCD or hex format • Low power [29 ma @ 12v] • Kit includes 358 Hz crystal, 22 pin IC socket, resistor, capacitors, data sheet and schematics

4-DIGIT SEQUENCE DECODER

WIRED & TESTED MODEL TSD

$59.95

- Completely wired & tested
- User programmable • LED status indicator
- Open collector output • Control relays, mute audio • Control link on/off • Custom IC insures high reliability & small size
- Fits inside most rigs: runs on 12 VDC [35 ma]
- All 16 digits allow more than 50,000 combinations
- Makes excellent private call on busy repeaters!
- Use it to turn on audio or sound an alarm
- Momentary and latching outputs

*Mastercard and Visa accepted
Prices include postage & handling. USA California addresses add 6%

REMOTE-A-PAD

Model RAP-1

$149.95

REMOTE-A-PAD

Audio tones from any source, are converted to solid state switches which control any 16 digit keypad of a radio or other device. Some examples you can control include the Pro-Search* Rotator [rotate beam remotely]. Remote controls: ICOM IC-701 or ICOM IC-211 when using the RM-2 controller; Kenwood 7950, IC751, Azden PCS 4000, handhelds such as Yaesu FT-208, FT-706, ICOM IC-02AT; and many more. Two [four-digit] programmable access codes are used to operate relays or other on/off functions. LED decoder status indicators and momentary plus steady state decoder outputs are provided. All CMOS low power drain [30ma]. S.S.I. 201 Decoder • Hook eight wires [4 rows and 4 columns] in parallel with the existing keypad of the radio you wish to control remotely. Connect audio from any source to 12 volts DC and you are in control! The dual 4 digit decoders will turn your links on and off using your programmable access code.

REPEATER OWNERS/HAM CLUBS

The CS-64 will function in the simplex or duplex mode.

ICOM IC-02AT USER'S "AUDIO BLASTER" MODULE

MODEL AB-1

$19.95

- Module installs inside the radio in 10 minutes
- Boost audio to nearly one watt!
- Low power drain [4ma]
- Complete step-by-step instructions included
- Corrects the LOW audio problem! Drive external speakers to full volume, even signals with low deviation!

ENGINEERING CONSULTING

583 CANDLEWOOD ST., BREX, CA 92621, [714] 671-2009

Name

Address

City State Zip

MC/VISA No. Exp.

Total

QTY.

Model No.

Total

CS-64

TTK

TSD

DAP-1

AB-1

RAP-1

Tax (CA)

Total
The data shown on figs. 2, 3, and 4 is for a nominal path length of 900 miles (1450 km). The times listed are local standard time. All the data was run from a latitude of 40 degrees north and a longitude of 76 degrees west, right in the middle of the Eastern time zone of the United States.

Because it's normalized to local time (even though the computer program uses UTC) the data in figs. 2, 3, and 4 is directly usable in all time zones. In addition, eight different directions have been shown so that you can pick the optimum time based on the direction desired.

With these graphs, you'll be able to easily discern any path differences by comparing one with another. For instance, examine the graphs for the Perseids shower (fig. 3). You'll see that the east and west paths are fair at two different times per day while the southeast and southwest paths are good only once a day. You'll also notice that the east and west as well as the southeast and southwest paths are identical except for a time shift! However, the latter paths are better when open than the former paths. Other information can be gleaned by examining the graphs for the other paths and showers.

monitoring a shower

Several suggestions about monitoring showers were made in reference 1. Lower frequencies can be monitored. Some Amateurs have suggested 75 MHz because the FAA has thousands of landing beacons on this frequency. Others prefer the FM band, 88-108 MHz.

If you use a lower frequency for monitoring, the lower directivity of your receiving antenna and the presence of bursts don't necessarily indicate that 2 meters or higher frequencies are optimum. Random meteors that will easily ionize up to 108 MHz are often present regardless of the time of day or year. Therefore, I still feel that it's better to use the video carriers on TV channels 12 or 13 as explained in reference 1. These frequencies are good indicators since they also show that the path is open up to at least 200 MHz, simplifying determination of the optimum path.

Furthermore, the speed of a meteor shower and the size of its particles are good indicators of the distance you can communicate. More specifically, because of the earth’s velocity of rotation, meteors enter the ionosphere at approximately 15-70 km/second. The entering speed of the particles during a meteor shower is fairly well known and is tabulated in table 1.

Meteors typically ionize a fairly narrow region of the ionosphere between 50 and 75 miles above the earth.
fig. 3. These graphs shown are the predicted effectiveness for the Perseids meteor shower. All times shown are local. Original data was taken from latitude 40 degrees north and longitude 76 degrees west but can be used at other locations as explained in the text. Paths shown are as follows: A) north, B) northeast, C) east, D) southeast, E) south, F) southeast, G) west, H) northwest.
CANOPIES

All weather protection for outdoor shows
SLANT, PEAK OR FLAT ROOFS
FREE STANDING - FAST SET-UP
NO TOOLS REQUIRED
SNAPS TOGETHER
WHITE OR BLUE TARPs
FITS IN THE TRUNK OF A CAR
JOINTS & PARTS
PACKAGE COMPLETE
READY TO USE
MONEY BACK GUARANTEE

Elaine Martin

Free brochure on request
DEPT. H
P. O. BOX 261
HIGHWOOD, ILLINOIS 60040
(312) 433-0106

Get ★★★CONNECTED to Packet Radio

by Jim Grubbs. K9EI

The Packet Radio Handbook
Over 150 pages of information exclusively on packet radio

17 Chapters including:
- Choosing a TNC
- Packet protocol for the beginner
- Packet Accessories
- How to make your first packet contact
- Packet Bulletin Board Operations

$12.95 plus $2.50 for first class shipping and handling in U.S. and Canada.

Also available The Commodore Ham's Companion $15.95
(see January '86 QST page 47 or February '86 CQ page 68) and Command Post $9.95.
fig. 4. These graphs show the predicted effectiveness for the Geminids meteor shower. All times shown are local. Original data was taken from latitude 40 degrees north and longitude 76 degrees west but can be used at other locations as explained in the text. Paths shown are as follows: A) north, B) northeast, C) east, D) southeast, E) south, F) southeast, G) west, H) northwest.
Generally speaking, the higher-speed showers ionize at the upper height and the lower-speed showers at the lower height. Also, those meteors with larger particles tend to ionize in the lower regions. What this means is that the lower the ionization takes place in the ionosphere, the shorter the DX path.

The Geminids meteors, for example, have relatively large particles; they're also a relatively slow shower. Consequently, 1100 miles (1770 km) is about the maximum reliable distance.

The Perseids, Orionids, Eta Aquarids, and Leonids, on the other hand, are fast showers and therefore yield the longest communications distances — up to about 1400 miles (2250 km).

I've been trying to integrate this information for some time. Gritting my teeth, I prepared the graph shown in fig. 5. While it may not be technically accurate, especially at the upper end, it will at least show a trend based on my meteor shower speed and propagation observations.

From fig. 5 it should be obvious that the Perseids, Eta Aquarids, Orionids, and Leonids are preferred for 135- and 70-cm operation. However, remember that lots of meteors are also desirable. Table 1 shows that among these four showers, only the Perseids has a high hourly rate, a necessary ingredient for completing a QSO. Don't fret. The Leonids are due to peak again in the late 1990s — so be ready!

meteor scatter records

In last July's column, I listed North American meteor scatter records in table 4. None exceeded 1470 miles (2365 km). Since then, several stations have sent me reports of being heard further than this distance, but it appears that no QSOs have been successfully completed. All of these contacts were during the Perseids meteor shower.

Ironically the 2-meter meteor scatter record has just been shattered by a great distance and during the Geminids meteor shower! Congratulations to K5UR in Cabot, Arkansas, and KP4EKG near San Juan, Puerto Rico, who on December 13, 1985 completed a meteor scatter QSO during a schedule from 0400-0530 UTC. The length of this path was an incredible 1960 miles (3153 km)!

How can this long distance path exist? Since it took several bursts to complete the QSO and signals were moderate at best, the only plausible explanation is that they used double-hop meteors. This is probable since the quantity of the meteors in the Geminids shower is high and therefore would support such a theory. Does anyone have a better explanation?

summary and conclusion

To improve your chances of successful meteor scatter communications, it's most important to use the optimum time for the desired path based on the geometry of the meteor shower. You can use the graphs and other information generated by the "effectivity"-predicting computer program to determine these optimum times.

Operating during the peak encounter of the shower with the earth is important, but it will be useless if the meteors are on the other side of the earth, if the path of the shower was perturbed by an encounter with one of the other planets in the shower orbit, or if you're not properly oriented to increase the path "effectivity."

Packet radio is now a reality; 1986 should be the year in which many 2-meter QSOs will be completed using this relatively new mode. Europeans have been using a type of packet radio for many years in the form of high speed CW, sometimes exceeding 100 words per minute with great success — even in the absence of showers and at almost any hour of the day. At this high speed the bursts may be short, but if they're tape-recorded and played back at lower speed, a lot of information can be extracted from even a very short burst.

acknowledgments

This month's column would not have been possible without the help of Chip Brown, KR1P, who provided the meteor scatter effectivity program discussed. I'd also like to thank Gary...
Field, WA1GRC, who has volunteered to distribute this program, and Mike Owen, W9IP, who pointed me towards new references that yielded improved meteor shower data.

important VHF/UHF events:
June 6: Predicted peak of the daytime Arietids meteor shower at 0100 UTC
June 7-8: ARLV HSO QSO Party
June 15: Predicted peak of the June Lyrids meteor shower at 2100 UTC
June 21: EME perigee
July 2: Mean EME perigee
July 2: Mean EME perigee
July 19: EME perigee
July 29: Predicted peak of the Delta Aquarids meteor shower at 0845 UTC.

references

ham radio

SPRING SUNSPOT SALE!
SAVE $700

COMPUTERIZED DX EDGE
Generate your own Greynine display.
Xantek has adapted their best selling DX EDGE to the computer world and it comes at a very reasonable price. This computerized operating aid brings into your ham shack the ability to know and predict when and where DX is going to appear. When you are using the program, the computer will automatically update the information as the sun progresses across the face of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 CO zones. Disk and documentation included. This is something you’ve Got to have! © 1985.

FXN-C64 (For Commodore C-64) REG 34.95

Now JUST $27.95

Please add $3.50 for postage and handling

ham radio BOOKSTORE
GREENVILLE, NH 03048

STATE OF THE ART

THE AMERICAN RADIO RELAY LEAGUE
226 MAIN ST.
NEWINGTON, CT 06111
NEW RAMSEY 1200 VOLTMULTITESTER

Compact sized reliability and accuracy. This LCD digital multimeter easily fits in your pocket, you can take it everywhere. It features full overload protection, 3 1/2 digit LCD readout, recessed input jacks, safety probes, diode check function and 2000 hours battery life reduction.

Was $399.95 NOW ONLY $369.95

NEW RAMSEY D-4100 COMPACT DIGITAL MULTIMETER

 cầm tốt triggering

$1 995

4 lead tests and battery included

MINI-100 FREQUENCY COUNTER

Features and capabilities of counters costing twice as much. Compact, high sensitivity, low current draw, very accurate, leading zero blanking. F-scale, 1 kHz to 50 MHz range, 3 digit display. Available in 60 kHz to 50 MHz display. $999.95 includes 6 high quality probes

CT-70 7 DIGIT 525 MHZ COUNTER

6 digit display with 6 further place for MHz, counter displays 7 digit output. $1 199.95

CT-90 9 DIGIT 600 MHZ COUNTER

6 digit display with 6 further place for MHz, counter displays 9 digit output. $1 499.95

CT-125 9 DIGIT 1.2 GHZ COUNTER

6 digit display with 6 further place for MHz, counter displays 12 digit output. $1 699.95

PS-2 AUDIO MULTIPLIER

The PS2 is handy for high resolution audio measurements, multiplies 100 dB down to 10 ohms to 100 dB output of 20 mV. It can be used for testing headphone and speaker sensitivity. $499.95

PS-108 1.5 GHz PRESCALER

Extends the range of your present counter to 1.5 GHz, the PS108 can be driven by 1000 mV signals. $799.95

ACCESSORIES FOR RAMSEY COUNTERS

HOME OFFICE CALL

716-586-3950

TELEX 468673 RAMSEY CI

ACCESSORIES FOR RAMSEY COUNTERS

PHONE ORDERS

RAMSEY ELECTRONICS, INC.

5575 Baird Rd.
Penfield, N.Y. 14626

103

THE FIRST NAME IN ELECTRONIC TEST GEAR

$30.00 OFF

Save $30 on the RAMSEY 20MHZ Dual Trace Oscilloscope

Unusually high quality at an unbeatable price, the Ramsey Oscilloscope compares to others costing hundreds more. Features include: component test circuit for resistor, capacitor, 20Kohm metering system, 30 MHz, high sensitivity, 6 internal ranges, front panel trace rotator, 2 and 0 high sensivity x-y mode, regulated power supply, built-in calibrated rock-solid triggering. Was $399.95 NOW ONLY $369.95

NEW RAMSEY D-4100 COMPACT DIGITAL MULTIMETER

$c 1 995

lead tests and battery included

NEW 15 MHZ DUAL TRACE PORTABLE OSCilloscope

Ideal for field/bench applications, this scope can display up to 15 MHz signals. Internal battery pack allows up to 3 hours operation on a single charge. Features include: built-in battery charger, 5x horizontal magnification, 9 brightness control, front panel trace rotator, internal rechargeable battery pack. 2000 Portable Oscilloscope $449.95

ALL OSCILLOSCOPES INCLUDE 2 PROBES

VISA

TERMS

The PS2 is handy for high resolution audio measurements, multiplies 100 dB down to 10 ohms to 100 dB output of 20 mV. It can be used for testing headphone and speaker sensitivity. $499.95

PS-2 AUDIO MULTIPLIER

Extends the range of your present counter to 1.5 GHz, the PS108 can be driven by 1000 mV signals. $799.95

PS-108 1.5 GHz PRESCALER

HOME OFFICE CALL

716-586-3950

TELEX 468673 RAMSEY CI

ACCESSORIES FOR RAMSEY COUNTERS

PHONE ORDERS

RAMSEY ELECTRONICS, INC.

5575 Baird Rd.
Penfield, N.Y. 14626

103
Experiment with RF circuits using this fast, simple technique

a universal analog breadboard

Even at its best, breadboarding is always a problem, particularly when a little circuit complexity is involved. Digital breadboarding has been made easier by the availability of various commercial breadboards that nicely accommodate the digital DIP packages; analog breadboarding, however, remains an art of arranging, in seemingly random fashion, a multitude of varied components on some substrate material.

Although digital breadboards can be used for analog breadboarding, the component leads just don't seem to fit properly and the interelectrode capacitance is much too high for analog circuits operating much above 1 MHz or so. Other materials such as perf-board work well for anyone who's organized enough to fully lay out the assembly carefully before starting, but if you're going to go to all that trouble, you might as well lay out a PC board. Also, if the circuit being breadboarded is RF in nature, a ground-plane substrate is necessary; this requires tedious cutting and peeling off the ground plane to fabricate a functional breadboard.

The primary value of the breadboard lies in its ease of preparation and use; if a great amount of planning is required for just building the breadboard, much of the advantage of its use is lost.

Analog breadboarding systems have to be versatile enough to accommodate the wide variety of analog component types, yet provide for very simple fabrication of the circuit. Stray capacitance and inductance must be made very low; good ground plane construction is a must. Changes, additions, and deletions must be simple to make.

choosing a breadboard type

Having tried a variety of breadboards — from commercial spring-boards to nails driven into a piece of plywood — I thought a slightly different approach might be in order. One of my principal requirements was that the breadboard be adequate for simple RF designs. Generally, complex RF circuits such as complete receivers or high-gain amplifiers require more elaborate construction than a simple breadboard will allow because of the difficulty in controlling unwanted coupling. However, crystal oscillators, single-stage RF amplifiers, and modulators, for example, should be appropriate applications for this breadboard technique.

The artwork for a good basic design, a 1/16 inch (0.16 cm) thick PC board with a ground plane on the bottom side and dot and trace pattern on the top side, is shown in fig. 1. The traces allow two power supplies and ground to be conveniently bussed around the breadboard. Running power to all the various points where it's needed always seems to present a problem in any breadboard, particularly when you're making a lot of changes as you try out different circuit configurations. The power busses provide a convenient means of accessing the power supplies without having to daisy-chain the power conductors.

Grounding in analog designs is particularly important. Daisy-chaining ground can lead to some very unusual performance (for example, when your amplifier works better as an oscillator than an amplifier). The ground bus provides a good ground for all but the most demanding circuit designs. Power and ground are brought onto the breadboard at the three terminals at the edge of the board. This keeps the power leads out of the circuit area, preventing disturbances that could be caused by the leads lying in the circuitry. It also helps prevent power leads from deciding to detach and fall on the most critical (or expensive) components, generally with spectacular results.

A set of pads for installing power supply bypass capacitors has been provided at the lower left and right-hand corners of the trace pattern. Since long leads are often used to supply power to an experimental circuit, good bypassing of the supplies on the breadboard is very important. The bypass capacitors are often rather large and inconvenient to have in the middle of the breadboard circuit. Placing them at the lower edges of the work space gets them out of the way.

By Michael Gruchalla, 4816 Palo Duro N.E., Albuquerque, New Mexico 87110

June 1986 85
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

- Newsletter Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.
- Satellite Tracking Software Available for most popular PCs.
- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks
- Construction of Future Satellites For Your Enjoyment!
- AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
fig. 1. Breadboard artwork.
SPRING SPECIALS

POWERFUL PACKET.

New rigs and old favorites, plus the best essential accessories for the amateur.

3621 FANNIN ST
HOUSTON, TX 77004-3913

CALL FOR ORDERS
1-713-520-7300 OR
1-713-520-9550

ALL ITEMS ARE GUARANTEED OR SALES PRICE

EQUIPMENT
Kenwood • Call for prices on all Kenwood
Kenwood TS-440 • Call for trade
Icom IC7000 25-2000 MHz 840.00
Icom IC5500 489.00
Sanitec ST-2001 Hands Talkie 289.00
Icom IC9700 799.00
Ten-Tec 2510 (Easy OSCAR) 489.00

ACCESSORIES
B&W VIEWSTAR ANTENNA TUNER 89.95
Heil HC3/HC4/HC5 Stock
Heil BM110 Boom Mic headset 59.95
CSI Private Patch III 469.50
FLIKE 77 auto ranging digital multimeter 125.00
Band 43 Wattmeter
Bend Elements • In Stock
Call
Dawes CN8R, 20-200, 2000W 105.95
Stabylor 20SR 25 amp 120V, 16 amp cond
l带领e protected 99.00
Alcoa E1T 2400 Excellent buy 79.00
Nye RMA-A (for the big boys) 529.00
Shure 444D 54.95
Wah 7470 Soldering Station 49.00
Kenwood IF-10A, B, C Stock
Kenwood IF-232C Level translator 49.00
Miller CS14T, low pass filter 43.50

"NEW"
ALPHA DELTA 4
HEAVY DUTY COAX SWITCH
with ground pos. & lighting protection 69.00
Collins KWM-255 line xtal 10.00 each

751A List 1499.00 Your Cost 1299.00

KEYS
Bench & Vitroplex • Less 10%
Bench is now improved. Screws & springs, all stainless steel and hard anodized polishing
Trade in your old key for new Vitroplex/Benchets 955.00
Nye ESK 001 Keyer 58.00

TUBES
Collins & Drake Replacement tubes stock
GE 6146C 58.00
Emco 5002 90.95
GE Industrial Tubes GE 1299T7A 7.00
GE 6J36C 12.95
Certron 572B 69.00
GE 4950 14.95

CALRAd 65-267 SWR, Relative Power Meter 32.95
3.150MHz, CW +

BOOKS
We stock SAMS, TAB, ARRL, RSGB, Ameco Radio
Rubs • Call
Some of the best buys are the RSGB books.

ANTENNAS
Isopole 44.95
A-4 269.00
2RCD 529.95
2428 84.00
215WB New, 15 El, 2 beam 79.95
AOP-1 Complete Oscar Antenna 159.95
Butternut HF80 10-10 vertical 125.00
HF2V, 80 & 40 vertical 119.00
HF8B 149.00
Hustler G-74 119.50
Hustler GBTV 139.00
Ham-Gentex F7X, CD45-2 Call
KLM HF World Class Series Antennas Call
Delta Alpha Twin Spor 49.00
Coax Seal 2.00
BMW Dipoles • Less 10%
Hy-Gain H7D/KS 449.00
Explorer 14 349.00
Discover 1 element, 40M 169.00
2 element 40M 369.00
Element only 249.00
CD 45-2 (Great Tribander Rotor 169.00
V2S (Omni) 59.00
HGS/2SS/52 ft. coax/taper tower 119.95
Prepaid freight when you order other Hy-Gain items with tower
KLM KT 34A 339.00
40M-2 299.00

OTHER ANTENNAS
Larsen Kulduck 17.00
Larsen 4400 1-1/2 wave Kulduck 25.00
Avantek AP151 3G on Glass Antenna 59.00
Antek 2M/5/8 Mag, Mount, Comp 25.00
Antek-AKRS on glass 59.00
Orion 2M 1/2 wave hand Antenna 19.00
Van Gordon SL A-160 80-40 Spor 34.00
Value AB 5 Mobile 79.95
Stoner DA 100 1 Active Rx Antenna 190.00

SURPLUS
24 Pin Solidolat dip pockets 25 each
150MF/400v DC 1.95
1 5 Amp 400v full wave bridge rectifier 1.95
2 5A1000v 1 Eyepo diode 29 each or 19.00/100
0015/10K or 001/20K 1.95 each
3N201 95 each, terrete rod 1.95
36SF cap 1.95
Sanyo AWA, AAC Nickads wtabs 2.00
2, 4, 5, 6, 8 pin mic plugs 3.00
1/16, • 1/32 carbon resistors 05 each
Metals 0-3000 VDC 2"² Square 0-1 Amp DC 9.95
Drake - Collins mike plug 2.00
Miniature toggle, SA/125VAC 1.50 each
Close out on rigs & accessories. All the time - Call
We may have what you're looking for.

BELDEN
9913 low loss, rolled center, braided shield 51/cft
R-24 RFG Foam 45/cft
R-237 RG8 39/cft
R-267 RG213 55/cft
R-3000 14 Ga stranded copper ant wire 13/cft
844B 8 conductor rotor cable 33/cft
9405 Heavy duty 2-16 Ga 6 18 Ga 56/cft
9058 RG8 25/cft
9269 HG-62/AU 16/cft
8403 Mc Cable, 3 conductor & shield 45/cft
100 feet 2204 wires installed 54.00
8669 7/16" threaded copper bolt 1.00/ft
International Wire RG314, non mil, good cable 70/cft
International Wire 9866 exact replacement for Belden 9913
International 16 Ga stranded antenna wire 36/cft

AMPHENOL
83135 PL-259 Silverplate 1.25
UG176 reducer RG59 5.00
3B3U Double Female UHF 2.00
2611 N Male 3.00
2897 N Female Bulkhead 3.00
2863 Inline Female N 4.00
3258 N Female 9.90
3121 BNC RG159 1.50
3121 BNC RG58 1.50
34205 N Male RG58 3.00
34206 N Female RG58 male 9.00
3129 BNC Female PC259 3.00

PACKET ACCESSORIES
1/4" E H.S. Guy cable, Rohn US, 100 ft 250.00
3/16" E H.S. Guy cable, Rohn US, 100 ft 210.00
1/4" Guy Cable, 6100 ft, 7 strand import 18.50
3/16" Guy Cable, 3700 #7 x 7 strand, import 12.00
3/8 x 6 EJU Turnbuckle 7.95
3/16" Wire Rope Clips 40.00
1/4" wire clips 50.00
1/4" Thimbles 45.00
Porcelain 5020 Guy Insulator (1/16) 1.95
Porcelain 5020 Guy Insulators (1/16) 3.39

COMPUTER STUFF
Kantronics UTU-X1 319.00
Fit any computer (even yours)
Morse University (Great computer program for C-64) 39.00

PACKET POWER
AEA PK-64, does RTTY, ASCII AMTOR also 199.00
AEA PK-80 1 APRM II 199.00
NEW Kantronics Packet II 199.00
Icom IC21A Great packet radio Call

SERVICES
Adjustment, any late modeling 59.00
Tilt feed Collins rebuild Call

USED EQUIPMENT
All equipment, used, clean, with 90 day warranty and 30 day trial. Six months full trade in against new equipment. Sale price refunded if not satisfied.

POLICIES
Minimum order $10.00. Mastercard, Visa, or C.O.D. All prices FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call any time to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty.

STOCK ITEMS CALL

MADISON
Electronics Supply

3621 FANNIN
HOUSTON, TEXAS 77004
1-713-520-7300 QH 1-713-520-0550
Fig. 2A. Artwork for twice side for the larger breadboard.
The actual circuit nodes are simply PC dots arranged in rows and columns, allowing circuit components to be soldered directly to them without the need for holes to accommodate the component leads. The particular dot used has a very large center hole compared to normal PC dots of its size; this minimizes the capacitance of the dot to the ground plane and provides a dot large enough to solder to. The capacitance of each of the pads to the ground plane is about 0.5 pF, which is generally low enough to be usable up to 1 GHz.

Circuit ground can be provided in two ways. The ground bus is adequate for DC and low-frequency applications. High-frequency circuits generally require very tight grounding of various points, and in these cases the ground bus cannot be used very effectively because of the inductance of the wire that must be tied from the node to be grounded to the ground bus. Good grounding can be obtained by drilling through the board in the center of the pad that must be grounded, running a piece of bus wire through the hole, and then soldering it to both the ground plane and the pad. This grounding technique will provide good performance in circuits operating at frequencies as high as L-band (1.0 GHz).

breadboard construction

A few pointers will help you build a more professional-looking breadboard. Figure 1 shows artwork for one version of the breadboard, a small unit that's quite convenient for single-stage amplifiers, oscillators, and other small projects. Figure 2 shows artwork for a larger version with the same basic design but with different features. Art for both the trace and ground plane sides are shown. If you don't have the capability for making double-sided PC boards, you can omit the ground plane art, leaving a full ground plane on the bottom side. You can then use a drill bit (about 1/4 inch) to cut away the ground from the few penetrations where needed -- at the power terminals, for example. Use the bit by hand and cut just deep enough to remove the cladding. Though doing this requires some care, it's really quite simple.

The breadboard should be fabricated from high-quality PC board material. Epoxy-glass materials with 2-ounce copper are about the best. The pads will lift off very easily if an inexpensive material such as a phenolic base is used; eventually, after much use, the pads will tend to lift off even the best materials, but if you start with quality material, the pads shouldn't begin to separate until it's about time to retire the breadboard anyway. If possible, the board should be tin-lead plated to minimize oxidation of the conductors with time. After all, old breadboards may lie around in the junk box for years before being resurrected for a quick weekend project, and they're certainly expected to be as useful at that time as they were when they were new.

![fig. 2B. Artwork for the ground side of the breadboard.](image-url)
If you have the breadboard fabricated commercially, don’t have any holes drilled; this will reduce the cost and provide a good general-purpose board.

Before using the breadboard, tend to a few details to assure professional results. The three power terminals should be mounted at the indicated pads (+, G, and -). Drill a suitable hole through the center of the pads and swage in the terminals. Solder the two power terminals at the pad and ground terminal at both the pad and ground. If you can’t find terminals, you can use a loop of heavy bus wire; about 18 gauge works well. Solder the bus wire to the ground pad and ground plane. Make about a 1/4-inch (0.64 cm) loop in the wire and solder the end back to the ground pad. At the two power pads, solder the bus wire to the pad and loop it around to the corresponding conductor, making about a 1/4-inch loop, and then solder it to the trace. This will help prevent the power pads from pulling off because of the stress exerted by the external power leads. Next, drill holes in the bypass capacitor mounting pads and mount the two bypass capacitors. (A good choice of value is a 47 µF, 35 V tantalum.) Be sure to observe the capacitor polarity when mounting. Even if you don’t intend to use both supplies, at least drill the holes — you may eventually need an additional power supply, bias supply, or something similar, and having the holes there will prevent shorts that could be caused by metal chips trapped in a completed circuit. The two ground conductors aren’t committed to be used as ground. They can be used for any type of bus, but at least one should be used as a ground. The lower is generally the most practical one. Drill holes in all the pads in the chosen ground bus, place bus wire in each hole, and solder to both the ground plane and the pad. Solder the ground plane first. (If you were to solder the pad side first, the piece of wire would probably fall out, since more heat is needed at the ground plane.)

Now, since several solder connections have been made to the ground plane, the board won’t sit nicely on your work bench and the wire pieces are likely to scratch your work surface — not a desirable result if your work surface happens to be the dining room.
fig. 4. RF amplifier example

Adding four small rubber feet to the corners of the board eliminates this problem and gives the breadboard a pleasing appearance and better stability. Either self-adhesive feet or standard screw-mounted feet can be used. Small pads are included at the corners of the breadboard as markers for drilling foot mounting holes. Even standoff spacers can be used with rubber feet to provide space under the board if needed. For example, you could mount the bypass capacitor and power entry terminals under the board to provide more working space on the top side. You could even stack several breadboards together with spacers to form a multicircuit system.

Several extra pads and a bus are included on the artwork. Sufficient space is allowed around the edges of the board to allow for mounting of potentiometers, variable capacitors, connectors, and similar items.

There’s nothing magic about the breadboard design, but I find this one quite useful for many analog circuits. Figure 3, for example, shows a crystal oscillator operating on TV channel 4 in a television interface application. Figure 4 shows an amplifier that has a bandwidth of 100 Hz to 1.2 GHz and 15 dB gain; this amplifier was assembled to demonstrate that the breadboard can be used to L-band. From these figures, it can be seen that although these are only breadboards, they make an attractive finished design. Carefully completed and nicely packaged, a relatively handsome finished product can result.

Don’t be afraid to experiment with the basic design to find the best configuration for you. The variety is limitless and the configurations shown here are just two possibilities. Remember, for analog breadboards the most important features are low stray capacitance and inductance and good grounding and bypassing of the supplies at the board. Other features such as pad arrangement and size, number of nodes, bus structure, and space for peripheral elements are very much a matter of the specific requirements of the circuit and your personal preference. The basic design presented here should prove to be a good basis for other configurations as well.
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

BAND KIT WIRED
6M, 2M, 220 $630 $880
440 $730 $980
(Also available for commercial bands)

FEATURES:
• SENSITIVITY SECOND TO NONE: 0.15 uV (VHF), 0.2 uV (UHF) TYP.
• SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE XTAL FILTER & CERAMIC FILTER FOR > 100 dB at ± 12kHz. HELICAL RESONATOR FRONT ENDS TO FIGHT DESENSE & INTERMOD.
• OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
• CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50 W WITH OPTIONAL PA).

RECEIVING CONVERTERS
Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less.

<table>
<thead>
<tr>
<th>Antenna Input</th>
<th>Receiver Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-35</td>
<td>144-148</td>
</tr>
<tr>
<td>50-52</td>
<td>28-30</td>
</tr>
<tr>
<td>50-54</td>
<td>144-148</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
<tr>
<td>145-147</td>
<td>29-30</td>
</tr>
<tr>
<td>144-144-14</td>
<td>29-30</td>
</tr>
<tr>
<td>148-146-14</td>
<td>29-30</td>
</tr>
<tr>
<td>148-145-14</td>
<td>29-30</td>
</tr>
<tr>
<td>220-222</td>
<td>28-30</td>
</tr>
<tr>
<td>220-224</td>
<td>144-148</td>
</tr>
<tr>
<td>222-226</td>
<td>28-30</td>
</tr>
<tr>
<td>225-250</td>
<td>50-54</td>
</tr>
<tr>
<td>225-253</td>
<td>50-54</td>
</tr>
<tr>
<td>900-903</td>
<td>422-448</td>
</tr>
</tbody>
</table>

UHF MODELS
Kit with Case $49
Less Case $39
Wired $69

SCANNER CONVERTERS Copy 606 MHz band on any scanner. Wired tested only $86.

LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

* No Need to Pay $80 to $125 for a GaasFET Preamp.

FEATURES:
• Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
• High Gain: 13 to 20 dB, depending on freq.
• Wide Dynamic Range for Overload Resistance
• Latest dual-gate GaasFET, Very Stable

MODEL TUNES RANGE PRICE
LNG-28 26-30 MHz $49
LNG-50 46-56 MHz $49
LNG-144 137-150 MHz $49
LNG-160 150-172 MHz $49
LNG-220 210-230 MHz $49
LNG-432 400-470 MHz $49
LNG-800 800-960 MHz $49

MINIATURE PREAMPS

GaAsFET Preamps with features similar to LNG, except designed for low cost and small size: only 58" x 58" x 34H. Easiest mount inside many radios.

MODEL TUNES RANGE KIT WIRED
LNG-28 26-30 MHz $59 $79
LNG-50 46-56 MHz $59 $79
LNG-144 137-150 MHz $59 $79
LNG-160 150-172 MHz $59 $79
LNG-220 210-230 MHz $59 $79
LNG-432 400-500 MHz $59 $79

IN-LINE PREAMPS

New GaasFET Preamp with features like LNG. Automatically switches off line during transmit. Use with base or mobile transceivers up to 25W. Tower mount incl.

MODEL TUNES RANGE KIT WIRED
LNS-144 120-175 MHz $59 $79
LNS-220 200-240 MHz $59 $79
LNS-432 400-500 MHz $59 $79

ACCESSORIES

• MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
• DE-202 FSK DATA DEMODULATOR
• COR-2 Kit: With audio mixer, local speaker amplifier, tail & time-out timers.
• COR-3 Kit with "courtesy" beep.
• DTMF DECODER CONTROLLER KITS
• AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
• CWID KITS
• SIMPLEX AUTOPATCH

• Send $1 for Complete Catalog
(Send $2.00 or 4 IRC's for overseas mailing)
• Order by phone or mail • Add $3 S & H per order
(Electronic answering service evenings & weekends)
• Use VISA, MASTERCARD, Check, or UPS COD.
SPECIALIZED COMMUNICATIONS FOR TODAY’S RADIO AMATEUR!

If you are ACTIVE in FSTV, SSTV, FAX, OSCAR, RTTY, EME, LASERS or COMPUTERS, you need “THE SPEC-COM JOURNAL”!

Published 10 Times Per Year
By WBOQCD

CALL TOLL-FREE 1-800-628-2828 ext. 541

...and place your subscription order today! Our Membership Services HOTLINE is good for all 50 U.S. States including Hawaii & Alaska and ALL OF CANADA! U.S. subscriptions $20 per year. Foreign slightly higher. Back issues are also available for $2.00 each prepaid.

THE SPEC-COM JOURNAL
P.O. BOX H, LOWDEN, IOWA 52255

Credit Card Orders (5% added) Iowa Residents Add 4% State Sales Tax

BRAND NEW JUST RELEASED

The Radio Amateur’s MICROWAVE COMMUNICATIONS Handbook
by Dave Ingram, K4TWJ

Explore the world of Microwave communication!

One of Amateur Radio’s last frontiers is the microwave region. This book is the first available to give this ever expanding area of Amateur communications unique treatment. Areas covered include: communicators equipment for 1.2, 2.3 and 10 GHz, networking and data packeting concepts with special attention to 24 GHz systems, design parameters, rf and environmental considerations and system design suggestions for future growth and modification, projects and much more. You also get information on TVRO and MDS systems with suggestions and ideas on how to build your own. © 1986 184 pages 1st Edition.

D-1594 Softbound $12.95

Please add $3.50 for shipping and handling

Ham Radio’s Bookstore
Greenville, NH 03048

ATV

This converter covers all the 420 - 455 MHz ATV frequencies. This converter uses a crystal reference to lock onto the the 455.25 MHz standard over a second channel at 425.25 or 435.25 MHz. This converter also supports a manual tuning mode for non-standard frequencies. The IF output can be ordered for channel 2 or 3. This ATV module is small and only requiring 12VDC. A small 12V power supply is supplied with this assembled and tested converter. This converter uses a DIA FET RF amp with a highly selective bandpass filter that will cut out static, TV, and other strong out-of-band IF.

Typical applications: @ 500 MHz = 50 dB, @ 220 MHz = 45 dB, and @ 144 MHz = 70 dB or greater. This passband is 420-455 MHz.

Voltage regulation is very stable under varying DC input. Conversion gain is approximately 20 dB with input and output range protection. Input is via type “N” connector. Output is via a type “F” connector. Size is 5.125” x 3.25” x 1.5”

$95.50

QUANTITY PRICING AVAILABLE FOR GROUP PURCHASES.

TECHNICAL DEVELOPMENT SYSTEMS
3680 CHARLES STREET
FORT WORTH, TEXAS 76118
(817) 284-4290

TERMS: money order, certified check, UPS cash COD. Allow 2 weeks for personal or company checks to clear. Add $4.50 for shipping & handling. Texas add 5% state sales tax.

33 cm. • 23 cm. • 13 cm.

LOOP YAGIS AND AMPLIFIERS FROM
DOWN EAST MICROWAVE

• TP8000/8000 / EME
• R-1200 / OSCAR MODE L & MODE S
• R-902 / 1450 MHz
• P-2304 / 2400 MHz

7440LY 45 el loop Yagi 1296 MHz 20 + dB $85
2440LY 45 el loop Yagi 1296 MHz 20 + dB $85
2450LY 45 el loop Yagi 2304 MHz 20 + dB $75
3333LY 33 el loop Yagi 902 MHz 18.5 dB $85

Above antennas are assembled and tested.

All aluminum and stainless steel construction. Kits also available.

Add $5 ($11 worth of Rockers) per antenna for UPS shipping.

2 A 4 way power dividers, complete arrays available.

2316 PA Linear Amp 1w in 18w out 1296 MHz 13.5 V $230
2316 PA Linear Amp 10w in 38w out 1296 MHz 13.5 V $280

Include $5 for UPS Blue - 48 states

Write about higher Power. 2304 linears, GaAs FET preamps

Free catalog

DOWN EAST MICROWAVE
Bill Door, W0EQ
Box 1655A, RFD 1, Burnham, ME 04322
(207) 948-3741

PRC®

SERVICE CENTER
for

ICOM, KENWOOD
and

YAESU

Fully equipped repair shop. Amateur, Marine and Land Mobile repairs.

FCC NABER Lic
Mon-Fri 10:00-4:00 pm
(206) 776-8993

PACIFIC RIM COMMUNICATIONS
Bob KG7D
2333 58th Ave, West
Mountlake Terrace, WA 98043

& C.O.D.S. Welcome
selecting and using the right multimeter

Sooner or later almost everyone with more than a minimal interest in electronics begins to look at the various multimeters now on the market. These instruments are more than an aid in troubleshooting — they can be your right arm! A multimeter is a combination instrument that offers the benefits of several meters in one: a DC voltmeter, DC milliammeter, AC voltmeter, and an ohmmeter (plus other functions on certain premium-priced instruments). This month we’re going to talk about the various instruments on the market, and what you should look for when selecting a particular one. Next month we’ll examine some typical applications and problems.

Types of multimeters

Over the years several different forms of meters have been developed. There’s also more than one way to classify meters. For example, we could classify them by their active elements: none, vacuum tubes, FETs, and so forth.

We could also classify them according to the display mechanism: analog or digital? Analog meters use a regular pointer-type meter movement based on either the D’Arsonval or Taut-Band designs (there are others, but they’re found only rarely, if ever, in multimeters). Their scales are printed on the panel behind the movable pointer. The digital meter, on the other hand, uses digital techniques to make the measurement and displays the result on digital numerical readouts (either LED or LCD).

world’s oldest multimeter

Figure 1 shows a modern example of perhaps the oldest form of multimeter: the Volt-Ohm-Milliammeter, or “VOM.” Based on an analog meter movement, this meter has switch-selectable ranges for DC volts, AC volts, DC milliamperes and resistance (ohms). Classical VOMs don’t contain any active devices and don’t require any power at all except for a single battery for measuring resistance.

Sensitivity is a determining factor in the purchase of such an instrument. The “sensitivity figure,” a measure of the voltmeter’s input impedance, tells us how much load the meter places on the circuit being tested. In the case of fig. 1, the sensitivity is 20,000 ohms/volt. If we multiply the full-scale voltage on any given range by the sensitivity, we find the input impedance. For example, when the 50-volt scale is selected, the input impedance is (50 V x 20,000 ohms/V), or 1,000,000 ohms.

The disadvantage of the VOM is that it sometimes loads circuits too much for practical use. In vacuum tube circuits, the meter works fine most of the time; in solid-state circuits, however, there are often problems. For example, when measuring the base voltage of an NPN common-emitter transistor amplifier (if operated from a single positive power supply), we expect to find a base-to-emitter voltage of 0.2 to 0.3 for germanium and 0.6 to 0.7 for silicon transistors. So, using the 1.5 volt DC scale, we find that the meter input impedance is (1.5 V x 20,000 ohms/V), or 30,000 ohms. Unfortunately, this resistance is on the same order of magnitude as bias resistances in transistor circuits, so the application of the meter probes changes the bias conditions — and renders the measurement invalid.

The advantage of the VOM is that it is truly a minimum-hassle instrument to keep, store, and use. It’s also very portable. These factors make the VOM popular with people who work for long periods in remote areas without easy access to fresh batteries.

Finally, people who work around high-power RF amplifiers might want to keep one of these instruments in their tool kits even if they normally use a modern digital instrument. The classical VOM, without any active devices to be misbiased by strong RF fields, will work in the presence of transmitters, where other, more expensive instruments might fail.
FET multimeters

Figure 2 shows another form of multimeter, the field effect transistor (FET) multimeter (FETVM or FETMM). This type is representative of a larger class of electronic voltmeters, and is a member of the class that includes vacuum tube voltmeters (VTVMs) and transistor voltmeters (TVMs). These devices are sometimes referred to collectively as electronic voltmeters, or EVMs. The names for these instruments are derived from the input circuit device: vacuum tube, transistor, or field effect transistor.

The purpose of the input amplifier device is to increase the input impedance, thereby reducing circuit loading. For example, a typical specification for the VTVM was an input-Z of 10 megohms, with an additional 1 megohm in the probe, for a total of 11 megohms. There is usually also 50 pF of capacitance shunting the input resistance. Modern FETVM and other EVM types sometimes sport input impedances even higher than 11 megohms — I can recall seeing 100 megohms advertised.

Like the VOM, the FETVM is a multirange meter that uses a front panel switch to select range, although in this case the functions (DC volts, AC volts, ohms, etc.) are selected by pushbutton switches. Unlike the VOM, the FETVM (and all EVMs) require DC power supplies for their active devices. In most cases, the DC power supply is a battery, although some 115 VAC line operated models are available.

Unlike the classical VOM, EVM instruments are somewhat sensitive to RF fields, so many of them will not work well around high power transmitters and other RF generators such as electrosurgery machines, diathermy, or inductive heating devices, for example.

Both the FETVM and VOM have an AC volts scale. Even where there’s a low range scale for the AC mode, the AC voltmeter in these instruments is not a substitute for the AC voltmeter called for in the measurement, alignment, and troubleshooting of audio circuits and devices. The AC scales in these multimeter instruments are generally accurate only at power line frequencies. Beyond an upper limit of 400 Hz or so, the accuracy of these instruments falls off rapidly as frequency increases.

Examples of some representative digital multimeters are shown in figs. 3 and 4. These instruments use an internal analog-to-digital converter to convert the input voltage to seven-segment digital display output. Like the EVM and VOM, the digital multimeter (DMM) offers DC volts, AC volts, milliamperes, and ohms ranges.

What’s a “half-digit?”

You’ll see DMMs advertised as “2-1/2 digit,” “3-1/2 digit,” or “4-1/2 digit.” Care to guess what a “half-digit” is? Because the most significant digit (the one all the way to the left) can be just 0 or 1, it’s billed as a half-digit. Consider, for example, the 3-1/2 digit instruments. The basic range of these instruments is 0 to 999 units, with 100 percent overrange, for a total of 0 to 999 units. The number of digits is a rough measure of precision, although a load of digits doesn’t necessarily guarantee a quality meter. Generally, most Amateur and hobby applications require no more than 3-1/2 digits. There are cases in which 2-1/2 digits isn’t enough, yet the 4-1/2...
digit instrument may be more expensive than warranted by the application. Emotionally, I prefer to have as many digits as possible, but when it comes to laying out my bucks I prefer to pay due regard to the realities of measurement making — and economics. Dollar for dollar, quality for quality, there is an optimum instrument for each application.

But don't more digits mean more accuracy? And isn't it true that DMMs are in fact inherently more accurate than VOM and other EVM instruments? No! In both cases, the statement is false. The accuracy of the meter depends less on the number of digits in the display than on the quality of the internal workings of the instrument. For example, the accuracy of the internal A/D converter and its voltage reference have considerable effect on accuracy. In general, ethical manufacturers don’t display more digits than they can support, but the size of the display cannot be taken at face value as an indicator of meter quality.

Now, regarding the really big heresy: “Whaddya mean my Digital Frammitzenfritzer DMM isn’t necessarily more accurate than your crummy old VOM?” Please, before you boil me in oil, let me assure you that I am digitally oriented. I sit here writing this article on an Apple IIe personal computer while my IBM-PC sits on the other side of the room, chattering out Chapter 8 of my next TAB book. While it’s true that DMMs have the potential for greater initial and long-term accuracy than VOMs, it depends on the implementation, the quality of internal circuits and other factors. There’s also the fact that noisy signals tend to be heavily integrated (i.e. low-pass filtered) by the damping inertia of the analog meter pointer, but these same signals will fool many digital meters.

In regard to accuracy and resolution, I recommend buying from a reputable manufacturer and reading the spec sheet BEFORE you plunk down the money. Also, be wary of over-spec’ing the instrument. When you’re in the market for a troubleshooting instru-
ment, don’t let that gleam in your eye as you view the high-priced super-accurate laboratory models reach down as far as your wallet. Instruments such as those shown in fig. 4 are very much in evidence in any electronic parts store you visit. Various low-priced models that not only make the classical measurements of the VOM, but do certain other things as well, are available. For example, I recently bought a handheld DMM that measures capacitance. The capacitance measurement scales run from 2000 pF full-scale (with 1 pF resolution) to 2000 μF full-scale. In addition, that model is ruggedized enough to withstand my clumsy work habits . . . no small attribute for any practical instrument!

Other features to look for on DMMs are the “Diode” or “High Power” mode and a continuity tester with an aural indicator. The Diode mode is used to test PN junction diodes and bipolar transistors (NPN and PNP). The normal ohmmeter mode in DMMs uses a very low voltage, too low to forward-bias PN junctions. The Diode mode (usually indicated by a diode symbol on the function switch) is a resistance mode, but with a source voltage that’s high enough to forward-bias PN junctions. The DMM can be used to measure resistances in-circuit while in the low-power mode, and then test the semiconductors out of circuit in the Diode mode.

The aural continuity tester is basically a resistance scale that goes “beep” when the meter sees a low resistance across the probes. Why is this feature important? Try ringing out a multi-conductor cable while managing the probes in your fingers. Or worse yet, try ringing out an intercom cable while standing on a ladder — or a transmission line while you’re hanging off a tower. However clever you may be, you simply can’t watch the meter scale and manage the probes — or your own safety — at the same time. The “beep” of the meter tells you when the connection is made, and its absence warns you of an open circuit.

which one to buy?

“OK, Carr, so you’re a Certified Bright Guy (CBG) writing for a hot-shot national ham radio magazine — what kind of multimeter did you buy?” Believe me, I wish it were that easy! What you should buy depends on what kind of work you do, and to some extent, on what you can afford. Fortunately, the cost of a good quality troubleshooting-grade DMM instrument is way down from what it was a couple of years ago. Almost everyone can afford to buy one of those instruments.

Let me describe what I own and what type of work I use them for. The work consists of troubleshooting electronic equipment occasionally and developing small projects for Amateur Radio and electronic hobbyist magazine articles.

Because I have a ham radio set with a 2 kW linear amplifier, it’s possible that the meter will have to work in high RF environments. As a result, I own a classical VOM that’s almost older than I am. The old VOM has a 25 kV probe as an accessory, although I loaned it out and can’t remember who borrowed it. I also own a handheld Beckman DM-25 that measures capacitance in addition to the other “normal” parameters. This last feature turns out to be of immeasurable value in developing projects for publication.

If I were doing any extensive audio work, then I’d probably also buy an AC voltmeter of audio grade. I suspect that most electronic workbench-oriented readers will opt for a small collection of meters that nearly matches my own

ham radio

<figure>
<figure>
<figure>
They're All New for 1986!

Significant changes for 1986 mandate that all hams get both the North American and International Callbooks. DX'ers and Contester's note — Having both books is the only way you'll have all Foreign Amateur listings.

North American Callbook
The old US Callbook has been expanded and now contains the listings of all hams in North America plus Hawaii and US Possessions. This improved operating aid has all the latest calls and OTH information available at press time and will be an invaluable reference guide. With calls from Panama to Greenland, every ham should have a copy of this new book in their shack.

INTERNATIONAL CALLBOOK
The Foreign Callbook is no more! In its place, the new International Callbook includes all Amateurs outside of the North American continent. All the latest callsigns and OTH's are listed to help ensure you get that prized OSL card. Universally recognized as the source of information. Order your's today.

Available Now

Order Both and Save. Reg. Price $42.90 SPECIAL PRICE SAVE $2.95 $39.95

Please enclose $3.50 to cover postage and handling.
Don't buy from Hamtronics...

Unless you want the best possible equipment at the lowest possible price! ! !

The "wheeler-dealer" is back and he's beating everyone else's "deals."
We all know there's no such thing as a free lunch ... so How Can We Do This?

- We don't run alot of ads featuring sale items
- We don't spend alot of money on full page ads
- We don't have sales on just the fastest selling products
- We don't short cut you on service. We are a factory warranty repair facility for everything we sell!
- We don't mail out free catalogs
- We don't have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimicks.

Hamtronics puts the savings into your pocket.

Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer. We’re celebrating our 35th year in the Ham business at the same location.

Hamtronics, Inc.
A DIVISION OF TREVOSLE ELECTRONICS
4033 BROWNSVILLE RD., TREVOSLE, PA 19047
(215) 357-1400
sporadic E DX

In last month’s column we discussed the characteristics (in terms of location and propagation) of Sporadic E, or E_s. This month, let’s take a look at how Sporadic E (E_s) propagation can be used for DX operation.

Because E_s propagation normally provides short-skip conditions — i.e., 1000 miles (1600 km) maximum hop length, with typically one or two hops at best, the range of communications is limited in this mode. The take-off angle must be low (5 to 10 degrees) in order to obtain the maximum distance per hop. Signal attenuation increases with more hops because of D-region absorption and lossy ground reflections. On the higher frequency bands where horizontal beam (Yagi) antennas are used, this means towers exceeding 60 feet — or even better, more than 100 feet. At the lower frequencies (below 10 MHz) vertical antennas on unobstructed, treeless sites, situated over moist earth and equipped with sufficiently large ground systems are needed to obtain 5- to 10-degree take-off angles. These are the antenna systems DXers dream about and a few build.

To obtain the highest probability of “reflecting” from an E_s “cloud,” a fairly wide beamwidth should be used. Because the beamwidth of Yagis (50 to 60 degrees) is greater than the beamwidth of rhombics (20 to 30 degrees), Yagis are preferred for “hitting the clouds.” E_s clouds usually measure about 6 by 60 miles (10 by 100 km) in length and about 1 mile (1.6 km) in thickness. They are oriented along the geomagnetic field line direction — i.e., roughly north-south over the United States. Their thin, dense configuration results in mirror-like reflections rather than the hundreds of kilometer thickness refractions that are characteristic of the F-region of the ionosphere. Signal strengths are, on the average, 25 dB higher due to the reflective as compared to refractive mode.

Another rule of thumb for E_s operation is to use the lowest frequency that still doesn’t have excessive absorption. (For example, during daytime, don’t use 10 meters if 20 is usable.) The probability of a good E_s opening occurring is greater with the lower frequency band.

There are trade-offs involved, however, in choosing either the lower or higher bands. You may, for example, want to select a lower band where E_s openings, though more probable, are limited by a higher take-off angle, more hops, and more loss. Or you might choose to go to a higher band for that occasional E_s opening, taking advantage of smaller take-off angles, fewer hops, and diminished losses (since the antenna is proportionately higher, with respect to wavelength, than the lower band version). Of course, if you’re a 6-meter DXer, there’s no choice — you’ll have to wait for the E_s opening.

Early indications of E_s openings on the higher-frequency bands can be obtained by monitoring beacons on 6 and 10 meters and on CB channel 19. You can also monitor locally unused TV channels 2 through 5 for 6-meter openings. You may want to try W3ASK’s system described in the June, 1985 “DX Forecaster.” The lower frequency bands don’t need beacon monitoring because E_s openings (sunrise and sunset hours) are available most of the time.

last-minute forecast

DX conditions are expected to be best for the higher frequency bands (10 to 30 meters, which are daytime bands) from the 12th through the 21st of the month, providing long and short skip openings. Look for short skip conditions the remainder of the month. The lower frequency bands (30 to 40 meters) should be best the first and the last weeks of the month, including daytime signals when the solar flux is below 70 units. The 80- and 160-meter bands will provide only fair DX conditions because of atmospheric noise build-up, except for some E_s short skip openings toward the end of the month.

The Aquarid meteor shower starts around the 18th, peaks about the 28th, and lasts until approximately August 7th. The maximum radio-echo rate will be approximately 34 per hour. The full moon is on June 29th, lunar perigee on the 21st, and summer solstice on the 21st at 1630 UT.

band-by-band summary

Six meters will provide occasional openings to South Africa and South America around local noontime via the E_s short-skip propagated mode.

Ten and fifteen meters will have many short-skip openings, and long skip during high solar flux to most southern areas of the world during daylight hours. Some enhanced trans-equatorial openings associated with disturbed ionospheric-geomagnetic conditions may occur in the evening hours this month.

Twenty, thirty, and forty meters will be useful for DX operation from most areas of the world during the daytime and into the evening almost every day, either long-skip to 2500 miles (4000 km) per hop or short-skip E_s to 1000 miles (1600 km) per hop. Since the period of daylight is now at its peak, high maximum usable frequencies will be practical for many hours of distance operation.

Thirty, forty, eighty and one-sixty meters will provide opportunity for nighttime DX operation. However, there will be many nights later this month when only 30 and 40 meters will be usable because of high thunderstorm QRN on 80 and 160. Nevertheless high signal levels, the result of short-skip E_s conditions, may help to overcome the static toward the end of the month.
| | 0000 | 0100 | 0200 | 0300 | 0400 | 0500 | 0600 | 0700 | 0800 | 0900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 2400 |
|----------------|
| **JUNE** |
| **ASIA** |
| **FAR EAST** | |
| **EUROPE** | |
| **S. AFRICA** | |
| **S. AMERICA** | |
| **ANTARCTICA** | |
| **NEW ZEALAND**| |
| **OCEANIA** | |
| **AUSTRALIA** | |
| **JAPAN** |

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

*Look at next higher band for possible openings.
500 MHz Pocket Counter

Here's a neat little product every ham will want to have: a 500-MHz counter from Digitrex that fits into a shirt pocket, measures just 1 x 3.5 x 2.7 inches, and weighs less than 8 ounces with the 9-volt battery installed. The LED readout display measures 0.14 inch; the unit draws less than 100 mA. Battery life is estimated to be several weeks in normal use. The unit uses six ICs, five transistors, three diodes, and a 2.56 MHz internal crystal oscillator.

The counter has a sensitivity of less than 50 millivolts, 1-500 MHz, 1.5 volts RMS maximum and the resolution is four digits (switchable to six) down to 1 kHz. A seven-digit modification that gives resolution down to 10 Hz is available. The counter has a short-term accuracy of 1 ppm when calibrated against a known signal using an internal trimmer capacitor. Over the long term, its accuracy is 1 kHz at 500 MHz over a temperature range of 10-40 degrees C.

To use the unit, you first install a 9-volt transistor battery, extend the internal 19-inch antenna, select the MHz range, and depress the counter's on/off button, which also functions as a press-to-read control. All you do is read the frequency — it's really as simple as that!

Not having a lab-grade frequency generator with which to compare readings limits the scope of this review to using the VFOs (and internal frequency calibrators) of several different transmitters as frequency standards. All readings were found to be within manufacturer's specifications.

This is really a "neat" product and at the price, it's one good value for your dollar. While you can't expect lab-grade measurements, you'll be pleased with the unit's accuracy.

The price is $49.95 plus $2 shipping and handling. For more information, contact: Digitrex, 1005 Bloomer, Rochester, Michigan 48063.

— N1ACH

new heathkit catalog

A wide variety of electronic products in kit form and assembled versions are showcased in the new Heathkit Catalog from Heath Company of Benton Harbor, Michigan. A new 2-meter handheld/mobile system featuring greater ease of operation and greater flexibility is offered, as an off-the-shelf, user-installed satellite system featuring the General Satellite Dish and the Norsat Satellite Receiver.

The Heathkit Catalog includes a variety of new products and modifications, including the new Pocket Counter with a sensitivity of less than 50 millivolts, and a resolution down to 10 Hz. It also includes a triple output power supply with MFJ Enterprises, Inc., which offers two variable 1.5 to 20 VDC outputs at 0.5 amp and one fixed 5 VDC output at 1 amp. The power supply is designed for heavy duty commercial use to give years of trouble-free service.

There's plenty of voltage and current for both analog and digital circuits. It's ideal for education, circuit design, product development, testing and repair, and quality control and production. Separate transformers are used for completely isolated outputs. This allows the outputs to be connected in series or parallel for higher voltage or current. It's short circuit protected, has excellent line regulation (typically 0.1 percent V) and low regulation (typically 0.1 percent) and has very low ripple.

Two lighted 3-inch precision meters are provided for monitoring voltage and current simultaneously. Rugged 5-way binding posts are used for all outputs. A separate binding post is used for chassis ground.

The MFJ-4002 is made in America and is built with heavy gauge aluminum to take lots of abuse. It measures 12 x 36 x 6 inches, uses 110 VAC with a 3-wire safety power cord and fast acting pop-out fuse. For details, contact MFJ Enterprises, Inc., P.O. Box 921, Starkville, Mississippi 39759.

Circle #301 on Reader Service Card.

cable connectors

Nemal Electronics International has introduced a new line of connectors designed to fit the Belden 9913- and 8214-type cables. The new connectors are available from stock in both type N (part #NE720) and BNC (part #NE860) series and will accommodate the 9-1/2 to 11 gauge center conductors in these and other similar cables.

Both series of connectors meet the electrical and mechanical requirements of MIL-C-39012 and incorporate silver plated contacts and teflon insulation. Each connector is fully compatible with all other standard connectors in its series.

For information, contact Nemal Electronics International, 12240 NE 14th Avenue, North Miami, Florida 33161.

Circle #303 on Reader Service Card.

new VOM

Mercer Electronics, a division of Simpson Electric Company, has introduced a new VOM; Model 9120 has 25 ranges including dB, 20,000 ohms/volt DC sensitivity (5,000 ohms/volt AC) and a frequency response up to 100 kHz on 3, 12, and 60 volt AC ranges. It will measure up to 12 Amperes DC, has a 3-volt AC range, and provides excellent resolution. DC accuracy is ± 3 percent fs. Conveniences feature include a front panel polarity reversal switch, single-knob range/function switch with an "off" position, an output jack for DC isolation, and a large, easy-to-read, 3.5-inch mirrored, color-coded scale.

Also included is a high-energy fusing system along with standard fusing and diode detector protection. The unit measures 4 x 6 x 1-3/4 inches and weighs 13 ounces. It comes complete with batteries, test leads and an operator's manual.

For details, contact Mercer Electronics, 859 Dundee Avenue, Elgin, Illinois 60120.

Circle #304 on Reader Service Card.
California

C & A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best — Since 1962.

FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades

Colorado

COLORADO COMM CENTER
4262 LOWELL BLVD.
DENVER, CO 80211
(303) 433-3355
(800) 227-7373
Stocking all major lines

HABLA ESPANOL

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR &ADVANCED COMMUNICATIONS
3206 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-329-7728
800-441-7008

Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33755
813-461-4267
Clearwater Branch
West Coast's only full service Ham Radio Store
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLAND, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302
ICOM, Yaesu, Kenwood, KDK, Bird...
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 53 years.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
Preston, ID 83263
(208) 852-0830
M-9; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.
SASE for New & Used Equipment List.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England You Can Rely On.

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite, Computer applications.
Call Paul WDBAHO

Minnesota

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, Icom, Kenwood

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Outside Nevi: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

New Jersey

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4389
Gene K2KJI
Maryann K2RVH

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM “The World System.” Western New York’s finest Amateur dealer.

North Carolina

F & M ELECTRONICS
3520 Rockingham Road
Greenboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty — Sales & Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLIFFE, OH 44092 (Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSHE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSHE, PA 19047
215-357-1400
Same Location for over 30 Years

LARUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AUW2VS, Tokyo Hy-Power Labs, WELZ, Daaw, Sony, Saxton, Vibroplex, Weller.

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4826 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

RF TRANSISTORS

FRESH STOCK - NOT SUPERLUS
TESTED — FULLY GUARANTEED

<table>
<thead>
<tr>
<th>P/N</th>
<th>Rating</th>
<th>Each</th>
<th>Match Pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF212</td>
<td>10W</td>
<td>136-174</td>
<td>$18.00</td>
</tr>
<tr>
<td>MRF221</td>
<td>15W</td>
<td>136-174</td>
<td>$20.00</td>
</tr>
<tr>
<td>MRF222</td>
<td>25W</td>
<td>136-174</td>
<td>$25.00</td>
</tr>
<tr>
<td>MRF224</td>
<td>40W</td>
<td>136-174</td>
<td>$30.00</td>
</tr>
<tr>
<td>MRF231</td>
<td>65W</td>
<td>136-174</td>
<td>$35.00</td>
</tr>
<tr>
<td>MRF233</td>
<td>25W</td>
<td>136-174</td>
<td>$30.00</td>
</tr>
<tr>
<td>MRF237</td>
<td>4W</td>
<td>136-174</td>
<td>$3.00</td>
</tr>
<tr>
<td>MRF238</td>
<td>30W</td>
<td>136-174</td>
<td>$4.00</td>
</tr>
<tr>
<td>MRF239</td>
<td>50W</td>
<td>136-174</td>
<td>$5.00</td>
</tr>
<tr>
<td>MRF240</td>
<td>40W</td>
<td>136-174</td>
<td>$25.00</td>
</tr>
<tr>
<td>MRF249</td>
<td>40W</td>
<td>136-174</td>
<td>$10.00</td>
</tr>
<tr>
<td>MRF250</td>
<td>50W</td>
<td>136-174</td>
<td>$15.00</td>
</tr>
<tr>
<td>MRF251</td>
<td>65W</td>
<td>136-174</td>
<td>$17.50</td>
</tr>
<tr>
<td>MRF260</td>
<td>80W</td>
<td>136-174</td>
<td>$20.00</td>
</tr>
<tr>
<td>MRF261</td>
<td>10W</td>
<td>136-174</td>
<td>$22.50</td>
</tr>
<tr>
<td>MRF262</td>
<td>15W</td>
<td>136-174</td>
<td>$23.00</td>
</tr>
<tr>
<td>MRF264</td>
<td>30W</td>
<td>136-174</td>
<td>$24.00</td>
</tr>
<tr>
<td>MRF607</td>
<td>1.5W</td>
<td>136-174</td>
<td>$26.00</td>
</tr>
<tr>
<td>MRF641</td>
<td>15W</td>
<td>407-512</td>
<td>$25.00</td>
</tr>
<tr>
<td>MRF642</td>
<td>25W</td>
<td>407-512</td>
<td>$27.50</td>
</tr>
<tr>
<td>MRF644</td>
<td>40W</td>
<td>407-512</td>
<td>$30.00</td>
</tr>
<tr>
<td>MRF646</td>
<td>60W</td>
<td>407-512</td>
<td>$35.00</td>
</tr>
<tr>
<td>2N2222</td>
<td>30W</td>
<td>136-174</td>
<td>$35.00</td>
</tr>
<tr>
<td>2N4427</td>
<td>1W</td>
<td>136-174</td>
<td>$38.00</td>
</tr>
<tr>
<td>2N5591</td>
<td>25W</td>
<td>136-174</td>
<td>$40.00</td>
</tr>
<tr>
<td>2N5592</td>
<td>40W</td>
<td>136-174</td>
<td>$45.00</td>
</tr>
<tr>
<td>2N5594</td>
<td>4W</td>
<td>407-512</td>
<td>$45.00</td>
</tr>
<tr>
<td>2N5596</td>
<td>10W</td>
<td>407-512</td>
<td>$50.00</td>
</tr>
<tr>
<td>2N6080</td>
<td>6W</td>
<td>136-174</td>
<td>$6.50</td>
</tr>
<tr>
<td>2N6081</td>
<td>15W</td>
<td>136-174</td>
<td>$9.50</td>
</tr>
<tr>
<td>2N6082</td>
<td>25W</td>
<td>136-174</td>
<td>$12.00</td>
</tr>
<tr>
<td>2N6083</td>
<td>40W</td>
<td>136-174</td>
<td>$19.00</td>
</tr>
<tr>
<td>2N6084</td>
<td>10W</td>
<td>136-174</td>
<td>$19.00</td>
</tr>
</tbody>
</table>

SAY YOU SAW IT IN HAM RADIO

June 1986

107
new communications satellites will use laser links

A new concept in communications satellites is in the development stages in European laboratories. The large data capacity of optical communications links will be exploited by incorporating a carbon dioxide laser into a geosynchronous satellite. The CO₂ laser operates in the far infrared region, at a wavelength of about 11 microns (27,000,000 MHz).

In spite of substantial technical hurdles, its benefits are thought to justify the effort. Advantages include simultaneous bi-directional data capacity of more than 1 gigabit/sec., with an accuracy of about 10 bits (an error rate of 1 part in 10⁹) at an altitude of about 37,000 km. The transmissions would have high resistance to interference and jamming because the frequencies are removed from present high-density traffic, and the laser beam is very narrow — less than 1 km wide at geosynchronous altitude.

The choice of the CO₂ laser is based on the fact that highly sensitive detectors already exist, the technology for the needed power levels is well advanced, and relatively conventional optics can be used. The system would consume about 250 watts in order to produce a little more than 1 watt of modulated power. Transmitter bandwidth will be about 5 GHz, permitting higher data rates as technology and traffic demand mature. Two technical areas will need considerable attention in order to achieve successful operation. The optical receivers need to be cooled to about 173 degrees C (100 degrees K) for optimum sensitivity, and the pointing and tracking system must be able to keep the very narrow beam centered on the respective receivers. Present technology is marginal in each of these areas.

Components for the planned satellite will begin to be assembled as a laboratory breadboard as early as 1987. The first flight tests are planned for 1990-91, and an operational satellite is contemplated for 1994-95.

emergency transmitter gives directions when lost

The Federal Aviation Administration requires that all aircraft carry an emergency locator transmitter (ELT) that can help pinpoint the aircraft's location in the event of a crash. The device is a small battery-powered unit that transmits on 121.5 and 243.0 MHz. A newly-developed unit takes full advantage of today's IC's to greatly enhance the data sent by the beacon.

As the aircraft flies, a circuit in the locator continuously enters the current position of the plane from the aircraft's LORAN-C navigation system. In the event of a crash, the locator broadcasts a synthesized speech message beginning with the word "mayday" and stating the aircraft's registration number, its longitude/latitude, the elapsed time since impact (very important in harsh environments), and other key information — all in plain English. This improvement will simplify search and rescue operations and expand the number and type of observers who can participate in radiolocation searches — Amateurs, SWLs, scanner buffs, and so on.

chip inductors join new component ranks

Since the beginning of the era of solid-state circuits, component manufacturers have been quick to keep pace with designers' needs. Components of all types have shrunk in size and taken on the shapes appropriate to the application. Inductors have resisted most attempts at going "monolithic" and have caused a lot of otherwise elegant designs to be much larger and less reliable than the designer might have wished.

We still haven't found any magic way to solve the problem, but there has been significant progress in magnetic materials combined with creative new packaging techniques. Given incentive by the move to surface-mounted components, leadless "chip" inductors are making their debut. Using ceramic or ferrite cores, these ultra-miniature inductors can be made with very small gauge wire because of the low power levels associated with modern IC circuits. Eliminating leads also reduces stray capacitance and parasitic inductance, thereby making the component a little closer to ideal.

Chip inductors have evolved in a few "standard" packages, which makes the layout job easier for the circuit designer. Inductance values cover the full range from about 3 nH to 1 mH, and include both fixed and variable type. Because these inductors mount directly on the circuit substrate, great care must be taken in the choice of temperature coefficients. If the inductor is not matched to the substrate, expansion and contraction can cause severe lead stress, and in the worst cases can actually lift the inductor from the substrate. Shielding poses serious problems on all but small inductance values. At present, shielding simply takes up real estate — which of course defeats the purpose of using the chip inductors. Notwithstanding the difficulties, before long you can expect to be staring at a totally unfamiliar-looking component on a circuit board — a "chip" inductor.

ham radio
NEW BOOKS

AMATEUR RADIO SOFTWARE by John Morris, GM4ANB
Brand new from RSB, this computer source book is chock full of computer programs, hints, tips and handy ideas for computer owners and users. Nearly 100 programs include contest logging routines, EME, construction, Morse training, and Packet Radio to name just a few. Morris' approach to writing this book was twofold. One was to give the computer user programs that had been de-bugged and were ready to type in and run. The second was as a source book for programming ideas and expansion. Most programs are written in BASIC, so at least a fundamental knowledge of simple programming will be helpful to get maximum use from this book. 1985 328 pages 1st edition.

This collection of Packet Radio papers should be in every Packet enthusiast stack! Written during the formative years of Packet development, these papers (too numerous to mention them all) cover: theory, practical applications, protocols, software and hardware subjects. You also get a complete up-to-date collection of all published "Gateway", the ARRL Packet Radio newsletter. As big as the ARRL HANDBOOK, this new book is sure to be the ARRL's next best seller! 1985 over 1000 pages.

HAM RADIO'S BOOKSTORE Greenville, NH 03048
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bond-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>167</td>
<td>91</td>
</tr>
<tr>
<td>167</td>
<td>13</td>
</tr>
<tr>
<td>122</td>
<td>37</td>
</tr>
<tr>
<td>144</td>
<td>60</td>
</tr>
<tr>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>131</td>
<td>49</td>
</tr>
<tr>
<td>165</td>
<td>86</td>
</tr>
<tr>
<td>112</td>
<td>26</td>
</tr>
<tr>
<td>162</td>
<td>83</td>
</tr>
<tr>
<td>148</td>
<td>63</td>
</tr>
<tr>
<td>129</td>
<td>48</td>
</tr>
<tr>
<td>117</td>
<td>35</td>
</tr>
<tr>
<td>138</td>
<td>50</td>
</tr>
<tr>
<td>110</td>
<td>26</td>
</tr>
<tr>
<td>128</td>
<td>41</td>
</tr>
<tr>
<td>126</td>
<td>66</td>
</tr>
<tr>
<td>123</td>
<td>42</td>
</tr>
<tr>
<td>133</td>
<td>37</td>
</tr>
<tr>
<td>152</td>
<td>66</td>
</tr>
<tr>
<td>124</td>
<td>38</td>
</tr>
<tr>
<td>136</td>
<td>47</td>
</tr>
<tr>
<td>109</td>
<td>23</td>
</tr>
<tr>
<td>126</td>
<td>38</td>
</tr>
<tr>
<td>143</td>
<td>57</td>
</tr>
<tr>
<td>122</td>
<td>169</td>
</tr>
<tr>
<td>152</td>
<td>66</td>
</tr>
<tr>
<td>124</td>
<td>38</td>
</tr>
<tr>
<td>136</td>
<td>47</td>
</tr>
<tr>
<td>109</td>
<td>23</td>
</tr>
<tr>
<td>126</td>
<td>38</td>
</tr>
<tr>
<td>143</td>
<td>57</td>
</tr>
<tr>
<td>122</td>
<td>169</td>
</tr>
<tr>
<td>152</td>
<td>66</td>
</tr>
<tr>
<td>124</td>
<td>38</td>
</tr>
<tr>
<td>136</td>
<td>47</td>
</tr>
<tr>
<td>109</td>
<td>23</td>
</tr>
<tr>
<td>126</td>
<td>38</td>
</tr>
<tr>
<td>143</td>
<td>57</td>
</tr>
<tr>
<td>122</td>
<td>177</td>
</tr>
<tr>
<td>152</td>
<td>66</td>
</tr>
<tr>
<td>124</td>
<td>38</td>
</tr>
<tr>
<td>136</td>
<td>93</td>
</tr>
<tr>
<td>178</td>
<td>128</td>
</tr>
<tr>
<td>164</td>
<td>26</td>
</tr>
<tr>
<td>151</td>
<td>65</td>
</tr>
<tr>
<td>165</td>
<td>1</td>
</tr>
<tr>
<td>184</td>
<td>111</td>
</tr>
<tr>
<td>166</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>79</td>
</tr>
<tr>
<td>167</td>
<td>63</td>
</tr>
<tr>
<td>106</td>
<td>8</td>
</tr>
<tr>
<td>157</td>
<td>79</td>
</tr>
<tr>
<td>142</td>
<td>55</td>
</tr>
<tr>
<td>168</td>
<td>91</td>
</tr>
<tr>
<td>115</td>
<td>29</td>
</tr>
<tr>
<td>153</td>
<td>29</td>
</tr>
<tr>
<td>169</td>
<td>82</td>
</tr>
<tr>
<td>108</td>
<td>20</td>
</tr>
<tr>
<td>145</td>
<td>62</td>
</tr>
<tr>
<td>172</td>
<td>94</td>
</tr>
<tr>
<td>113</td>
<td>26</td>
</tr>
<tr>
<td>125</td>
<td>38</td>
</tr>
<tr>
<td>158</td>
<td>79</td>
</tr>
<tr>
<td>159</td>
<td>70</td>
</tr>
<tr>
<td>118</td>
<td>35</td>
</tr>
<tr>
<td>180</td>
<td>100</td>
</tr>
<tr>
<td>275</td>
<td>79</td>
</tr>
<tr>
<td>185</td>
<td>110</td>
</tr>
<tr>
<td>164</td>
<td>86</td>
</tr>
<tr>
<td>163</td>
<td>84</td>
</tr>
<tr>
<td>182</td>
<td>107</td>
</tr>
<tr>
<td>175</td>
<td>96</td>
</tr>
<tr>
<td>161</td>
<td>83</td>
</tr>
<tr>
<td>144</td>
<td>47</td>
</tr>
<tr>
<td>114</td>
<td>28</td>
</tr>
<tr>
<td>183</td>
<td>102</td>
</tr>
<tr>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>178</td>
<td>100</td>
</tr>
<tr>
<td>119</td>
<td>100</td>
</tr>
<tr>
<td>181</td>
<td>96</td>
</tr>
<tr>
<td>154</td>
<td>100</td>
</tr>
<tr>
<td>116</td>
<td>30</td>
</tr>
<tr>
<td>133</td>
<td>42</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>177</td>
<td>96</td>
</tr>
<tr>
<td>137</td>
<td>47</td>
</tr>
<tr>
<td>135</td>
<td>47</td>
</tr>
<tr>
<td>183</td>
<td>63</td>
</tr>
<tr>
<td>134</td>
<td>63</td>
</tr>
<tr>
<td>170</td>
<td>96</td>
</tr>
<tr>
<td>154</td>
<td>70</td>
</tr>
<tr>
<td>136</td>
<td>30</td>
</tr>
<tr>
<td>133</td>
<td>42</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>177</td>
<td>96</td>
</tr>
<tr>
<td>137</td>
<td>47</td>
</tr>
<tr>
<td>135</td>
<td>47</td>
</tr>
<tr>
<td>183</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRODUCT REVIEW/NEW PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Digiplex</td>
</tr>
<tr>
<td>302 Heath Company</td>
</tr>
<tr>
<td>304 Mercer Electronics</td>
</tr>
<tr>
<td>301 MFJ Enterprises</td>
</tr>
<tr>
<td>303 Natural Electronics</td>
</tr>
</tbody>
</table>

* Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before July 31, 1986.
leal-voice message system
or any repeater or base

low you can communicate vital information even when
he station you are calling is not on the air — with
essage Master. Message Master is a solid state voice
ording system which can record messages just by
ening to you speak, store messages in memory, and
erve messages on demand. If you can't be there to
erve your messages let Message Master deliver them
or you - any messages in any language and in your own
ice!

essage Master connects easily to any radio system for
ote access: repeaters, base stations, even transceive-
s. It can even be connected to an autopatch device to
xchange messages between your radio system and the
tophone network.

essage Master is a multi-user system with mailbox
yle personalized message service for a hundred users.
ith 8 minutes of message storage it can store
ndreds of messages simultaneously making it ideal
r large, active repeater groups.

ould you like your callsign identifications,
il messages, and bulletin messages sent in
al-voice? Message Master can send them
do. Record several identification messages
nd it will even send a different ID each time.
most like magic. Message Master knows
hen to send identifications and tail mes-
sages so it needs no special control signals
m your base or repeater.

all or write for further information before
aking another wasted call.

ommercial users: Ask for a brochure on
essage Master Electronic Dispatcher
th group and all call messaging.

• Create messages just by talking. Message Master’s
real-voice’ technique saves YOUR VOICE in digital
emory to deliver messages in your own voice, lan-
guage and dialect.

• Mailbox-style operation gives individual message
delivery service to 100 system users.

• Easily added to any repeater or base station for re-
one operation with only four connections.

• Special features include callsign identifications, tail
essages, and bulletin messages.

• Digital message storage provides instant playback of
ored messages.

• Modular memory meets your exact needs from 2 to 8
minutes of total message storage.

Serving all your repeater needs

— Mark 4 Repeaters and Repeater Controllers are THE PER-
FORMANCE LEADERS with real voice, more autodial numbers,
more synthesized voice and more features.

— Mark 3 Repeaters offer the winning combination of high per-
formance and high value.

— LR-1 Repeaters boast superb RF circuitry at an economical
price.

— MR-4 Receivers with 7 helical resonators are the only receivers
choose in harsh RF environments.

— PA-100 Amplifiers with rugged TMOS power FETs give you a
continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which oper-
ates on true signal-to-noise ratio to extend your coverage by linking to
remote receivers.
THINGS TO LOOK FOR (AND LOOK OUT FOR) IN A PHONE PATCH

- One year warranty.
- A patch should work with any radio. AM, FM, ACSB, relay switched or synthesized.
- Patch performance should not be dependent on the T/R speed of your radio.
- Your patch should sound just like your home phone.
- There should not be any sampling noises to distract you and rob important syllables. The best phone patches do not use the cheap sampling method. (Did you know that the competition uses VOX rather than sampling in their $1000 commercial model?)
- A patch should disconnect automatically if the number dialed is busy.
- A patch should be flexible. You should be able to use it simplex, repeater aided simplex, or semi-duplex.
- A patch should allow you to manually connect any mobile or HT on your local repeater to the phone system for a fully automatic conversation. Someone may need to report an emergency!
- A patch should not become erratic when the mobile is noisy.
- You should be able to use a power amplifier on your base to extend range.
- You should be able to connect a patch to the MIC and EXT. speaker jack of your radio for a quick and effortless interface.
- You should be able to connect a patch to three points inside your radio (VOL high side, PTT, MIC) so that the patch does not interfere with the use of the radio and the VOL and SQ settings do not affect the patch.
- A patch should have MOV lightning protectors.
- Your patch should be made in the USA where consultation and factory service are immediately available. (Beware of an inferior offshore copy of our former PRIVATE PATCH II.)

ONLY
PRIVATE PATCH III
GIVES YOU ALL OF THE ABOVE

PRIVATE PATCH III
SIMPLEX SEMI-DUPLEX INTERCONNECT

The telephone is the most powerful mode of communications... PRIVATE PATCH III gives you full use of your home telephone from your mobile and HT radios!

With only three simple connections to your base station radio, PRIVATE PATCH III will give you more communications power per dollar than you ever imagined possible.

Suddenly the utility of your radio is drastically increased. There are new sounds... dial tones, ring tones, CW ID and the sound of voices you never expected to hear on your mobile or HT radio! What a convenience!

PRIVATE PATCH III frees you from memberships, cliques and other hassles common to many repeater autopatches. You can call who you want, when you want and for as long as you want. You can even receive your incoming calls!

VOX... the right choice!
VOX based phone patches offer many performance and operational advantages over the sampling method. These include operation through repeaters, compatibility with an AM, no lost words or syllables, greater range smooth audio free of continual noise bursts etc.

Most amateurs are not aware that the competition's top of the line patch is VOX based. (You know... the $1000 model they enthusiastically call "our favorite commercial simplex patch on page 3 of their SP brochure.)

PRIVATE PATCH III offers about the same capability, performance and features as the top model but is priced closer to the bottom of the line (SP) model!

So why settle for SP when top of the line cost little more?

To Learn more about PRIVATE PATCH III and the advantages of the VOX concept, call or write for our four page brochure today!

PARTIAL LIST OF FEATURES
- OPERATES SIMPLEX, THROUGH REPEATERS, OR DUPLEX ON REPEATERS
- VOX BASED
- TOL RESTRICT (Digit counting and programmable first digit lockout)
- SECRET CODE DISABLES TOL RESTRICT FOR ONE TOLL CALL
- AUTOMATIC BUSY SIGNAL DISCONNECT
- CONTROL INTERRUPT TIMER (Maintains positive mobile control)
- CW ID When you connect again disconnect. Free ID chip.
- SELECTABLE TONE OR PULSE DIALING
- MOV LIGHTNING PROTECTORS
- THREE DIGIT ACCESS CODE (e.g. *91) RINGOUT (Reverse patch) Ringout inhibit if channel busy.
- RESETTABLE THREE MINUTE TIMER
- SPARE RELAY POSITION
- 115 VAC SUPPLY

Options:
FCC approved coupler
12 VDC or 230 VAC power

DEALERS

AMATEUR ELECTRONIC SUPPLY
Milwaukee WI, Wickhams Oh.
Orlando FL, Dearwater FL,
Las Vegas NV
BARRY ELECTRONICS CORP.
New York, NY
COLES COMMUNICATIONS
San Antonio TX
EURE, INC.
Woolridge, VA
ERICKSON COMMUNICATIONS
Chicago IL
HAM RADIO OUTLET
Anahim CA, Burlington MA,
Oakland CA, Phoenix AZ,
San Diego CA, Van Nuys CA
HENRY RADIO
Los Angeles CA
INTERNATIONAL RADIO
SYSTEMS
Miami, FL
JUNS ELECTRONICS
Culver City, CA

MADISON ELECTRONICS SUP.
Houston, TX
MIAMI RADIO CENTER CORP.
Miami FL
MIKES ELECTRONICS
Fl. Lauderdale, Miami FL
M & F DISTRIBUTING CORP.
Miami FL
PACE ENGINEERING
Tucson AZ
THE HAM STATION
Evanston IN
TEXAS TOWERS
Piano, TX
TNT RADIO SALES
Robbinsdale, MN
WESTCOM
San Marcos, CA

CANADA
DOLLARD ELECTRONICS
Vancouver, BC
SKYWAVE RADIO SYSTEMS, LTD
Burnaby, BC

(213) 373-6803
23731 Madison St., Torrance, CA 9050
Why buy a low-power thumbwheel HT when Yaesu's high-power hand-holds are available for virtually the same price?

Ours give you 2.5 watts RF output right off the shelf. Or 3.7 watts with the optional FNB-4 battery pack.

Ours come with a high/low power switch, a relative signal strength/PO meter with nightlight. And built-in VOX capability. (Optional headset required.)

Plus ours offer options like a DTMF keypad. And a plug-in sub-audible tone board with both encode and decode capability.

And thanks to our unique robotic assembly of surface mount components, it's all enclosed in a lightweight and compact case, measuring just 2.6 x 1.4 x 6.1 inches.

Choose from three models: the FT-203R for 2 meters, the FT-703R for 440 MHz, and the FT-103R for 220 MHz.

As standard equipment you get a rechargeable battery. AC wall charger, rubber duck, earphone, belt clip and soft case.

Plus a wealth of optional accessories. Including a fast charger, VOX headset with boom mic. Mobile radio hanger, Speaker/microphone, DC car adapter. And much more.

So don't settle for low power in a thumbwheel HT.

Go with Yaesu. The best way to get more power for your dollar.

Yaesu USA
1220 Edwards Road, Camtico, CA 90701
(213) 404-2400

Yaesu Cincinnati Service Center
9000 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.
220: Kenwood Style!

TM-3530A
The first comprehensive 220 MHz FM transceiver

- Big multi-color LCD and back-lit controls for excellent visibility
- Optional front panel programmable 38-tone CTCSS encoder includes 97.4 Hz

TH-31AT/31A
Kenwood's advanced technology brings you a new standard in pocket/handheld transceivers!

- 1 watt high, 150 mW low
- Super compact and lightweight (about 8 oz. with PB-21H)
- Frequency range 220-224.995 MHz in 5 kHz steps
- Repeater offset: 1.6 MHz, reverse, simplex
- Supplied accessories: rubber flex antenna, earphone, wall charger, 180 mAh NiCd battery and wrist strap
- Quick change, locking battery case
- Rugged, high-impact case

- 16-key DTMF pad, with audible monitor
- Center-stop tuning — another Kenwood exclusive!
- New 5-way adjustable mounting system
- High performance GaAs FET front end receiver
- HI/LOW power switch (adjustable LOW power)

TH-31AT/31A optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAH battery
- PB-21H NiCd 500 mAH battery
- DC-21DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8/8T soft cases with belt hook
- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter
- BC-6 2-pack quick charger
- BC-2 wall charger for PB-21H
- RA-9A StubbyDuk antenna
- BH-3 belt hook

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.