ICOM's three ultra compact mobiles... the IC-27A 2-meter, the IC-37A 220MHz and the IC-47A 440MHz... are the smallest mobiles available.

Even in such a small package the 25 watt mobiles contain an internal speaker which makes them fully self-contained and easy to mount.

Size. The ICOM compacts measure only 5 1/2"W x 1 1/2"H x 7"D (IC-47A is 9" deep)... which allows them to be mounted in various "compact" locations. Yet the compacts have large operating knobs which are easy to use in the mobile environment.

More Features. Other IC-27A/37A/47A standard features include a mobile mount, IC-HM23 DTMF mic with up/down scan and memory scan, and internally adjustable transmit power. An optional IC-PS45 slim-line external power supply and IC-SP10 external speaker are also available.

32 PL Frequencies. The IC-27A/37A/47A come complete with 32 PL frequencies.

9 Memories. The compact mobiles have 9 memories which will store the receive frequency, transmit offset, offset direction and PL tone. All memories are backed up with a lithium battery.

Speech Synthesizer. To verbally announce the receive frequency, an optional UT-16 voice synthesizer is available.

Scanning. The ICOM compacts have four scanning systems... memory scan, band scan, program scan and priority scan. Priority may be a memory or a VFO channel... and the scanning speed is adjustable.

Stacking Mobile Mounts. The IC-27A/37A/47A can be stacked to provide a three band mobile station. Each band is full featured and will operate even when another band is in use.

The IC-27A/37A/47A provide superb performance in the mobile radio environment. See them at your local ICOM dealer.
TOO GOOD TO BE TRUE?

PAKRATT™ Model PK-64
shown with enhanced
HFM-64 option installed

★ MORSE ★ BAUDOT ★ ASCII ★ AMTOR ★ PACKET ★

FIRST FIVE MODE
DATA CONTROLLER

The Pakratt model PK-64 by AEA is the world’s first computer interface that offers Morse, Baudot, ASCII, AMTOR and Packet all in one box (hardware and software included) at a price many competitors charge for Packet alone (from $219.95 Amateur net). Do not let the low price fool you; coming from any other company but AEA it WOULD be too good to be true. The PK-64 works with virtually any voice transceiver. The Pakratt is the easiest of any to hook up and have operating in just a few minutes.

In Packet mode, the PK-64 offers virtually all the features of every other Packet controller on the market, plus many important features left out by others due to cost constraints. For example, we have included a hardware HDLC, true Data Carrier Detect (DCD), multiple connect with up to ten stations simultaneously and full implementation of version 2.0 of the AX.25 protocol.

Because the PK-64 was designed specifically for the Commodore 64 (or C-128 and SX-64) computer, we have been able to do many things not economically feasible with general RS-232 interface controllers. For example, the Pakratt includes true split screen operation with on-screen status indicators and an on-screen tuning indicator.

ENHANCED HFM-64 MODEM OPTION

The standard PK-64 will operate all modes with a phase-lock-loop (PLL) detector roughly equivalent to all popular packet modems in the marketplace (except we have included extra filtering). The enhanced HFM-64 modem option offers true independent dual channel filtering with A.M. detection (like the famous CP-100 Computer Patch™). The enhanced HFM-64 option also offers a hardware LED tuning indicator (like the CP-100) and a front panel variable threshold control for setting maximum sensitivity under various band conditions. We recommend the HFM-64 option for anyone keenly interested in weak-signal heavy-QRM HF operation. For anyone desiring to operate FM RTTY with the standard North American tone pair or CW receive, the HFM-64 is required. The HFM-64 is field installable with no soldering or test equipment required.

WORKS WITH THE POPULAR C-64 COMPUTER

AEA designed the PK-64 around the low-cost C-64 because of the special architecture features making it especially suited to Amateur Radio applications. The C-64 should not be viewed as a mainframe, but rather a very economical accessory to your data communications system. Many owners of expensive computers such as IBM, TANDY, APPLE, KAYPRO, ATARI, etc., are now buying the low cost C-64 and dedicating it to their operating position. They simply cannot find software for their machine that even approaches the power and user friendliness of the PK-64. Plus, think of the convenience of having only one controller and keyboard to go from one mode to another without having to redo cabling!

The PK-64 is so complete that all you need to do is wire up a microphone connector to the end of a cable (provided) and you are ready to go. There is no need to track down special terminal software, cabling or even a power supply. It all comes with the PK-64. So do not be the last on your block to own the most exciting new product in years. See the PK-64 at your favorite dealer or write for our specification sheet now.

Prices And Specifications Subject To Change Without Notice Or Obligation

Advanced Electronic Applications, Inc.
P.O. Box C-2160, Lynnwood, WA 98036-0918
(206) 775-7373 Telex 6972496 AEA INTL UW

AEA Brings you the Breakthrough!
Power-Full...70 Watts!

TM-2570A/2550A/2530A

Sophisticated FM transceivers

Kenwood sets the pace again! The all-new “25-Series” brings the industry’s first compact 70-watt 2-meter FM mobile transceiver.

- First 70-watt FM mobile (TM-2570A)
- First mobile transceiver with telephone number memory and auto-dialer (up to 15 telephone numbers)
- Direct keyboard entry of frequency
- Automatic repeater offset selection according to the ARRL 2-meter band plan—another Kenwood exclusive!
- Extended frequency coverage for MARS and CAP (142-149 MHz; 141-151 MHz modifiable)
- 23 channel memory for offset, frequency and sub-tone
- Big multi-color LCD and back-lit controls for excellent visibility
- Front panel programmable 38-tone CTCSS encoder includes 97.4 Hz (optional)
- 16-key DTMF pad, with audible monitor
- Center-stop tuning—another Kenwood exclusive!
- Frequency lock switch
- New 5-way adjustable mounting system
- Unique offset microphone connector—relieves stress on microphone cord
- Large heatsink with built-in cooling fan (TM-2570A)

Introducing...

Digital Channel Link

Compatible with Kenwood’s DCS (Digital Code Squelch), the DCL system enables your rig to automatically QSY to an open channel. Now you can automatically switch over to a simplex channel after repeater contact! Here’s how it works:

- The DCL system searches for an open channel, remembers it, returns to the original frequency and transmits control information to another DCL-equipped station that switches both radios to the open channel. Microprocessor control assures fast and reliable operation. The whole process happens in an instant!

Optional Accessories

- PS-50 DC power supply for TM-2570A
- PS-430 DC power supply for TM-2550A/2530A
- PS-50A/MC-80/PS-85 desk mics
- MC-48 extra DTMF mic., with UP/DWN switch
- MC-42S UP/DWN mic.
- MC-55 (8-pin) mobile mic., with time-out timer
- SP-40 compact mobile speaker
- SP-50 mobile speaker
- SW-200A/SW-200B SWR/power meters
- SW-100A/SW-100B compact SWR/power meters
- SWT-1 2m antenna tuner

Actual size front panel

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
contents

10 introducing satellite communications
 Joe Kasser, G3ZCZ

24 wide-range power meter
 Rudolf E. Six, KA80BL

31 grounded-grid amplifier parasitics
 Richard Measures, AG6K

38 universal oscillator circuit
 Robert H. Fransen, VE6RF

42 ham radio techniques
 Bill Orr, W6SAI

47 computer control of ICOM R-71, 271, 471 and 751 radios
 Richard Bisbey, NG6Q

59 AC line transient protection
 Jerry Hinshaw, N6JH

67 modifying the Trio-Kenwood TS-930S
 Roger J. Hoffman, WB8BXT

75 practically speaking: Keep it cool
 Joe Carr, K41PV

83 VHF/UHF world: 33 cm — our newest band
 Joe Reisert, W1JR

107 a new class of directive antennas
 R.P. Haviland, W4MB

125 the Guerri report
 Ernie Guerri, W6MG1

126 advertisers index

122 ham mart

104 ham notes

9 comments

112 new products

99 DX forecaster

118 flea market

45 short circuits

April 1986
dual roles

When is an “amateur” not an “amateur?” One possible definition is when he applies his knowledge and uses it in a technical trade such as Engineering or Science. At the recent RF Technology Expo 86 (January 30-February 1), thousands of similarly interested technical individuals got together for three days in Los Angeles to discuss the latest developments in the RF communications field. The technical exhibition, sponsored by *rf design*, featured technical forums in which 79 papers on HF through microwave subjects were presented and an exhibition by 133 manufacturers and their representatives who displayed their wares, from crystal oscillators through interactive computer-aided design applications and software.

Just a brief scan of the titles of some of the papers presented at the show reveals topics of considerable interest to Radio Amateurs. For example, Eyring Research Institute showed the proper way to evaluate HF antennas on a large scale. Believe me, their antenna “test bed,” instrumentation, and procedures had many in the audience on the edge of their chairs, taking in every word for possible use — on a more limited basis, perhaps — back at their own QTH. Actually, many of the engineers who remained after the end of this session in order to dig for more facts turned out to be Radio Amateurs who happened to be engineers as well. It was difficult to tell which aspect of their experience elicited more questions — the “amateur” or “commercial.”

Which brings me to my main point. The engineers and scientists at the show were, in many cases, Radio Amateurs who, over the years, had been able to combine their interest and avocation to the mutual benefit of both. That a connection exists was further indicated by several speakers who quite independently mentioned that they find both *rf design* and *ham radio* good sources of HF communications information.

“But wait a second,” you say, “what do our interests have in common with the topics discussed at the show? To answer that question, take a look at this abbreviated list of some of the topics covered:

- Choosing the right crystal and oscillator
- High efficiency power amplifiers
- IM, phase noise, and receiver dynamic range
- High-pass filter design
- Increasing the bandwidth of helical antennas
- How to make simple test equipment
- New low-power SSB circuits
- Designing combline and interdigital bandpass filters
- How to bias RF and microwave transistors
- Wideband modules using FETs
- Practical wideband RF power transformers, splitters, and combiners
- RF power amplifier design
- Understanding RF transistor data sheets
- 1-kW solid-state L-band amplifier (What about you 1296 fans?)
- Broadband HF antenna testing
- ACSSB and SSB communication receiver testing
- RF circuit design using interactive computer-aided graphics
- Wideband high dynamic range front-ends
- High-Q inductors using powdered iron cores

If you’re interested in reading any of the 79 papers, the complete set* has been bound into a 2-inch thick compendium that weighs in at approximately 4 pounds. (I should know, I carried mine around with me for the entire three days.) If you find some of these “engineering” topics of special interest, let me know . . . perhaps some of the authors would be interested in writing for *ham radio*.

I truly believe that as a result of intense interest and hard work on the part of many Radio Amateurs, great strides have been made in the most technically demanding fields of communications and will continue to be made by those individuals sharing this dual role.

Rich Rosen, K2RR
Editor-in-Chief

*For information, contact Cardiff Publishing, 6530 South Yosemite Street, Englewood, Colorado 80111 (303-694-1522).
The Smallest HT!

TH-21AT/31AT/41AT

Kenwood's advanced technology brings you a new standard in pocket/handheld transceivers!

- High or low power. Choose 1 watt high - enough to "hit" most local repeaters; or a battery-saving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and weighs 260 g (.57 lb) with PB-21.
- Expanded frequency coverage (TH-21AT/A). Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
 - TH-31AT/A: 220.000-224.995 MHz in 5 kHz steps.
 - TH-41AT/A: 440.000-449.995 MHz in 5 kHz steps.
- Easy-to-operate, functional design. Three digit thumbwheel frequency selection and handy top-mounted controls increase operating ease.
- Repeater offset switch. TH-21AT/A: ±600 kHz, simplex.
 - TH-31AT/A: ±1.6 MHz, reverse, simplex.
 - TH-41AT/A: ±5 MHz, simplex.
- Standard accessories: Rubber flex antenna, earphone, wall charger, 180 mAH NiCd battery pack, wrist strap.
- Quick change, locking battery case. The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.
- Rugged, high impact molded case. The high impact case is scuff resistant, to retain its attractive styling, even with hard use. See your authorized Kenwood dealer and take home a pocketful of performance today!

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAH battery
- PB-21H NiCd 500 mAH battery
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8/8T soft case
- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter
- BC-6 2-pack quick charger
- BC-2 wall charger for PB-21H
- RA-8A/9A/10A StubbyDuk antenna
- BH-3 belt hook

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
SIGNIFICANT IMPACT ON THE "ELECTRONIC COMMUNICATIONS PRIVACY ACT" appeared likely as a result of the January 30 House subcommittee meetings in Washington. Strongly supporting the bill were two spokesmen for the telephone system and a Tandy representative -- though Tandy's speaker was teamed with ARRL and the Association of North American Radio Clubs (ANARC) in the apparent belief Tandy would oppose the bill as scanner supporters. However, Tandy came out in favor of it from their position as a cellular telephone supplier.

ARRL Shifted From Its Previous Position That Exempting Amateur Radio satisfied League concerns; Perry Williams, W1UED, while approving the exemption, pointed out that Amateurs -- and others, as well -- have many legitimate reasons to listen across the radio spectrum and the bill would make many such activities illegal. Probably the most telling testimony came from ANARC's Terry Colgan, W0S6WC, who not only pointed out various fallacies in the bill when applied to radio communications but demonstrated how effective and inexpensive available encryption devices are. (An article on the hearing will appear soon in Ham Radio.)

THE COMIC BOOK PROMOTION FOR AMATEUR RADIO being funded by the Amateur Radio industry is moving along well, ARRL's Dave Sumner, K1ZZ, reported at a February 7 meeting during the Miami Tropical Hamboree. The group decided to proceed with a story line based on the popular "Archie and His Friends" strip, with final approval in the near future.

Lack of Well-Qualified Amateur Radio Instructors is a major problem in effective training and growth. Gordon Wolf, W0WDA, told the group he proposes a program, possibly through the ARRL, to promote instructor training. Dealer involvement in Amateur Radio promotion was also considered. The next industry group meeting is set for April 24 in Dayton.

MODULATED CH IS NOW PERMITTED ON 10 METERS, but only from 29.5-29.7 MHz. Acting on PR Docket 85-148 at its February 19 meeting, the FCC authorized F2A emission on the band's top portion in order to enable repeaters to identify using Morse code (effective date: April 23).

THE "PACIFIC AREA COORDINATION ASSOCIATION" is a newly formed regional VHF-UHF effort to promote wide-area coordination. Organizer WA6OFJ has sent invitations to coordinators west of the Continental Divide; send SASE to Box 23183, Pleasant Hill, CA 94523 for details.

Mississippi Will Retain 15-kHz Spacing On 2 Meters' top end. Southern California is now the only area of the country to use inverted 15-kHz splits on 2 meters, following a shift to "upright" splits by repeaters in western Colorado.

Northern California Could Shift To 20-kHz Spacing on 146-148 MHz and still accommodate all existing repeaters in its area, the Northern California Relay Council (NARC) reports. The plan will be considered at NARC's April 5 meeting in Sacramento.

NARC Has Also Proposed A 32-cm Band Plan that is essentially identical to the ARRL's interim plan developed by the VUAC. A push seems to be building within the VUAC to come up with a satisfactory final plan for the new 902-928 MHz band.

Repeater Coordination And Spectrum Management Will Be The Subjects of an on-going workshop during the Dayton Hamvention weekend. Location and other details of this crucial activity may not make the printed program, so check with Hamvention officials upon arrival.

REPLACEMENT OF THE GMRS WITH A NEW "CONSUMER RADIO SERVICE" was proposed by the FCC in a Notice of Inquiry adopted January 30. A total surprise to the GMRS's sophisticated and well-organized users, the proposal apparently stemmed from a synthesis of the GMRS's own proposal to expand its utility through new technologies and from the Commission's desire to establish a new short-range quality radio service for the general public. After previous efforts to find spectrum for such a service in the 900-MHz band fell flat, the FCC apparently decided that GMRS's two 200-kHz slots in the 460-MHz band was an acceptable alternative.

"Personal Directed Communications" Is The Apparent Direction of the FCC's thinking, employing "user transparent" sophisticated portable equipment designed to control users' actions automatically. They also ask whether "one-way" (paging) should be included, and for suggestions as to how much and what kind of automation should be included.

GMRS Licenses And Users Are Extremely Upset, and understandably so, with their well-established system of repeaters, mobiles, and portables -- very active in personal, business and public service communications -- threatened with extinction.

Comments On PR Docket 86-39 Are Due At The FCC May 30, and the Reply Comments June 30. User-Programmable Land Mobile Radios May Be Banned as a result of a Notice of Proposed Rule Making approved by the Commissioners at their January 30 meeting. In response to complaints of interference from radios reprogrammed to unauthorized frequencies, PR Docket 86-37 would prohibit the FCC from type accepting 90 radios operating above 25 MHz that have external frequency control. Though it's known at the FCC that many synthesized Amateur radios are reprogrammable to non-Amateur frequencies, Part 97 equipment wasn't included.

21 SCHOLARSHIPS FOR STUDENTS WITH GENERAL OR HIGHER LICENSES are available from the Foundation For Amateur Radio. Write FAR, 6903 Rhode Island Ave., College Park, MD 20740.
Reach Higher...

TR-50
1.2 GHz FM transceiver.

As the Amateur bands become more and more crowded, hams seek higher and higher frequencies to "get away from it all." Here's a chance to experience "something different": 1200 MHz!

- LCD frequency readout with S/RF/battery check bar meter
- Battery set and charger
- External power cable for base or mobile operation
- 1 watt output
- 5 memory channels
- Odd-split operation on memory channel 5
- Programmable scanning
- 16-key DTMF hand microphone
- 1/4-wave sleeve antenna on an 8-position adjustable mount
- Offset reverse switch
- RIT
- Repeater offset switch (~20 MHz)

Ultra-Compact

TM-201A
2-m FM transceiver.

The Kenwood TM-201A 2-meter transceiver is the smallest and lightest FM unit available!

- 25-watt output, with Hi/Lo power switch
- Dual digital VFOs
- 5 memories plus "COM" channel, with lithium battery back-up
- Memory scan/programmable band scan
- Priority alert scan
- Highly visible yellow LED frequency display
- High performance receive/transmit
- External high quality speaker supplied
- 16-key autopatch UP/DOWN microphone
- Repeater offset (+/−600 kHz and simplex) and reverse switch

Optional accessories:
- MC-55 (8-pin) Mobile microphone with time-out timer
- SWC-4 12 GHz directional coupler for SW-200A/200B and SW-2000 meters
- SC-10 soft case

MC-55 (8-pin) mobile microphone with time-out timer
- SP-40 compact mobile speaker
- SW-100 A/B SWR/power meter
- SW-200 A/B SWR/power meter
- SWT-1 2-m antenna tuner
- FC-10 frequency controller

More information on the TR-50 and TM-201A is available from authorized Kenwood dealers.

Optional accessories:
- VC-50 Power amplifier (10 watts)
- MB-3 Mobile mounting bracket
- PB-16 NiCd battery set
- TU-6 Sub-tone unit
- MC-55 (8-pin) Mobile microphone with time-out timer
- SWC-4 12 GHz directional coupler for SW-200A/200B and SW-2000 meters
- SC-10 soft case

Specifications and prices subject to change without notice or obligation.
Complete service manuals are available for all Trio-Kenwood transceivers and most accessories.

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
MFJ 24 HOUR LCD CLOCKS

These MFJ 24 hour clocks make your DXing, contesting, logging and KEEDing easier and more accurate. Read both UTC and local time at a glance with the MFJ-108, MFJ-107, $19.95, dual clock that displays 24 and 12 hour time simultaneously. Or choose the MFJ-107, $9.95, single clock for 24 hour UTC time.

Both are mounted in a brushed aluminum frame, feature huge easy-to-read 5/8 inch LCD numerals and a sloped face that makes reading across-the-shack easy and pleasant.

You can read hour, minute, second, month and day and operate them in an alternating time-date display mode. You can also synchronize them to WWV for split-second timing. Both are quartz controlled for excellent accuracy.

They are battery operated so you don’t have to reset them after a power failure, and battery operation makes them suitable for mobile and portable use. Long life in battery included. MFJ-108 is 4½ x 2 x 2 in. MFJ-107 is 2¼ x 1 x 2 in.

MFJ ANTENNA BRIDGE-MFJ-2048

Now you can quickly optimize your antenna for peak performance with this portable, totally self-contained antenna bridge that you can take to your antenna site—no other equipment is needed. You can determine if your antenna is too long or too short, measure its resonant frequency and antenna resistance to 500 ohms. It’s the easiest and most convenient way to determine antenna performance available today to anyone. There’s nothing else like it and only MFJ has it. Built-in resistance bridge, null meter and tunable oscillator-driver (1-30 MHz). Uses 9 V battery. 4 x 2 x 2 inches.

REMOTE ACTIVE ANTENA

The authoritative “World Radio TV Handbook” rates the MFJ-1024 as “a first-rate easy-to-operate active antenna... Quiet, with excellent dynamic range and good gain... Very low noise factor... Broad frequency coverage... the MFJ-1024 is an excellent choice in an active antenna.”

54 inch remote active antenna mounts outdoor away from electrical noise for maximum signal and minimum noise pickup. Often outperforms long-wirehundreds of feet long. Mount anywhere-apart from houses, buildings, balconies, apartments, ships. Use with any radio to receive strong clear signals from all over the world. 50 KHz to 30 MHz. High dynamic range eliminates intermodulation. Inside control unit has 20 dB attenuator, gain control, switch 2 receivers and auxiliary or active antenna. On/Off LED. 6 x 2 x 2.5. MFJ-1024 $129.95.

ROLLING INDUCTOR TUNER

MFJ-989 $329.95

Meet the “Versatile” 3 kilowatt compact roller inductor tuner that lets you run up to 3 kW PEP and match everything from 1.8 to 30 MHz. Designed to match the new smaller rigs, the MFJ-989 is the best inductor tuner produced by MFJ. Our roller inductor tuner features a 3-digit counter plus a spinner knob for precise inductance control for maximum SWR reduction. Just take a look at all these great features! Built-in 300 watt, 50 ohm dummy load, built-in 41-balun and a built-in lighted meter that reads SWR and forward and reflected power in 2 ranges (200 and 2000 watts). Accuracy ±10% full scale. Meter light requires 12 VDC. 6 position antenna switch. 10% x 4½ x 15 inches.

MFJ "DRY" DUMMY LOADS

MFJ-262 $64.95

MFJ’s “Dry” dummy loads are air-cooled—no messy oil. Just right for tests and fast tune up. Non-inductive 50 ohm resistor in aluminum housing for 320-250. Full load is 30 seconds. De-rating curve to 5 minutes. MFJ-260 (300 watt), SWR 1:1 to 30 MHz, 1:5. MFJ-262 (2 kW), SWR 1:1 to 30 MHz, 3x3x13 inches.

MFJ ELECTRONIC KEYER

MFJ-407 $69.95

MFJ-407 Deluxe Electronic Keyer sends staccato, 400 semi-auto or manual. Use squeeze, single lever or straight key. Plug/minus keying. 8 to 50 WPM. Speed, weight, tone, volume controls. On/Off. Semi-auto switches. Speaker. RF proof. 7 x 2 x 6 inches. Uses 9 V battery. 6-9 VDC or 110 VAC with AC adapter, MFJ-1305, $9.95.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE
800-647-1800
Call 601-323-5689 in Miss. and outside continental USA Telex 53-4990 MFJ STKV
propagation disks available

Dear HR:

Response to my VHF propagation articles (July, 1985 and January, 1986) has been surprising, with dozens of hams requesting my program on disk for the Commodore 64. Because of requests from owners of other computers, I now have a working version ready for the IBM-PC.

I will supply a disk with the complete program (VHF through L-Band) in an IBM-PC format for $8.00.

Lynn Gerig, WA9GFR
Route 1
Monroeville, Indiana 46773

Dear HR:

Joe Reisert’s column, “VHF/UHF World,” in the October, 1985, issue of "Ham Radio," is one of the best synopses on coaxial cable that I have read in Amateur Publications, and, for that matter, in industry publications in some time. My sincerest compliments and congratulations. It was obvious that W1JR made some extra efforts in trying to document and assemble the information.

Two comments that I should like to make with respect to his article are not a reflection of my current job description and/or position. Rather, they are a reflection of my past experience as a product engineer with specific responsibilities of developing and obtaining MIL-SPEC qualification on coaxial cables.

On page 89, Joe indicates avoiding water and moisture entry most commonly come about from inadequate sealing at the connector ends of the cable and/or cuts or pin holes caused by abrasion to the jacket. Yes, I see W1JR’s point — and I have heard the myth many, many times throughout my active days as an engineer and in my current position as well.

One other small picky comment is in the last part of his article on page 91. He indicates that CATV transmission line is typically specified up to 350 MHz. This typical specification has to do only with structural return loss, which is a test for periodicity, which causes frequency suck-out. His advice is quite proper, then, to test it at the frequency of interest before installing it, but specifications up to 350 MHz have nothing to do with power handling capabilities and/or attenuation characteristics.

Once again, as an active and involved Amateur Radio Operator for better than 25 years, a tip of my hat for a fine article.

Ronald L. Steir, W9ICZ
Marketing Director
Belden Electronic Wire and Cable
Richmond, Indiana 47375

Dear HR:

Thank you for the many articles such as “Understanding Telephones” (by Julian Macassey, N6ARE), which appeared in the September issue.

Please do not assume we should know it. Print it.

Owen Zweiger, KD7WL
McMinnville, Oregon

spreadsheets for EME

Dear HR:

I enjoyed KE6ZE’s informative article on EME (“EME-link Calculator Program,” February, page 70). By a very odd coincidence I used the same equation from the ARRL Handbook to illustrate the convenience of spreadsheet programs for difficult calculations in an article in the same month’s QST.

I hope that those readers who can compare David Engle’s program written in BASIC with my spreadsheet template will comment on the relative merits of the two approaches. It is, I think, important for hams to show leadership in matters of this sort which test techniques of immediate importance to technology.

My prejudice, of course, is that the spreadsheet is faster, allows for easier correction of errors, and has more versatility in printing results, than programs written in traditional programming languages.

I would be pleased to hear your readers’ opinions.

Dick Ward, KC8OH
East Detroit, Michigan

understanding telephones

Dear HR:

Thank you for the many articles such as “Understanding Telephones” (by Julian Macassey, N6ARE), which appeared in the September issue.

Please do not assume we should know it. Print it.

Owen Zweiger, KD7WL
McMinnville, Oregon

Dear HR:

I enjoyed KE6ZE’s informative article on EME (“EME-link Calculator Program,” February, page 70). By a very odd coincidence I used the same equation from the ARRL Handbook to illustrate the convenience of spreadsheet programs for difficult calculations in an article in the same month’s QST.

I hope that those readers who can compare David Engle’s program written in BASIC with my spreadsheet template will comment on the relative merits of the two approaches. It is, I think, important for hams to show leadership in matters of this sort which test techniques of immediate importance to technology.

My prejudice, of course, is that the spreadsheet is faster, allows for easier correction of errors, and has more versatility in printing results, than programs written in traditional programming languages.

I would be pleased to hear your readers’ opinions.

Dick Ward, KC8OH
East Detroit, Michigan

Dear HR:

Response to my VHF propagation articles (July, 1985 and January, 1986) has been surprising, with dozens of hams requesting my program on disk for the Commodore 64. Because of requests from owners of other computers, I now have a working version ready for the IBM-PC.

I will supply a disk with the complete program (VHF through L-Band) in an IBM-PC format for $8.00.

Lynn Gerig, WA9GFR
Route 1
Monroeville, Indiana 46773

Dear HR:

Joe Reisert’s column, “VHF/UHF World,” in the October, 1985, issue of "Ham Radio," is one of the best synopses on coaxial cable that I have read in Amateur Publications, and, for that matter, in industry publications in some time. My sincerest compliments and congratulations. It was obvious that W1JR made some extra efforts in trying to document and assemble the information.

Two comments that I should like to make with respect to his article are not a reflection of my current job description and/or position. Rather, they are a reflection of my past experience as a product engineer with specific responsibilities of developing and obtaining MIL-SPEC qualification on coaxial cables.

On page 89, Joe indicates avoiding water and moisture entry most commonly come about from inadequate sealing at the connector ends of the cable and/or cuts or pin holes caused by abrasion to the jacket. Yes, I see W1JR’s point — and I have heard the myth many, many times throughout my active days as an engineer and in my current position as well.

One other small picky comment is in the last part of his article on page 91. He indicates that CATV transmission line is typically specified up to 350 MHz. This typical specification has to do only with structural return loss, which is a test for periodicity, which causes frequency suck-out. His advice is quite proper, then, to test it at the frequency of interest before installing it, but specifications up to 350 MHz have nothing to do with power handling capabilities and/or attenuation characteristics.

Once again, as an active and involved Amateur Radio Operator for better than 25 years, a tip of my hat for a fine article.

Ronald L. Steir, W9ICZ
Marketing Director
Belden Electronic Wire and Cable
Richmond, Indiana 47375
Do you want to access a new Amateur band that's always open when it's supposed to be? A band that doesn't fade away without warning, that makes DX contacts sound like locals, and has no skip zones?

Listening to, or working through Amateur communications spacecraft isn't difficult, but most newcomers simply don't know how to go about it properly. Not sure of what they're doing, they usually achieve disappointing results; deciding that the amount of effort invested must be so much more than the results achieved, they give up and go back to their regular haunts, where they can usually at least find someone to talk to. This is a shame, because satellites have come of age and commercial equipment is as readily available for the satellite bands as for the regular HF or VHF bands. You can buy or roll your own, but in either case — just like on 20 meters or the other HF bands — you have to have some knowledge of what's going on if you're going to get the maximum enjoyment out of the equipment.

terminology

A communications satellite is basically a repeater in the sky. It receives signals transmitted up from the ground on one Amateur band and retransmits the same signals down to the earth on a second Amateur band. It's part of a communications link between two Amateur stations on the ground as shown in fig. 1; signals on their way up to the satellite are said to be **uplinked** by stations on the ground while the corresponding signals coming down from the satellite are being **downlinked**. As the satellite orbits the earth it passes over different locations; the point immediately beneath the satellite at any time is called the **subsatellite point**.

The area of the earth's surface that the satellite can "see" depends on its altitude; the higher it is, the more it can see. A commercial communications satellite in a high altitude over the equator can see about one third of the earth's surface. A satellite at a low altitude sees much less.

Any station that the spacecraft can see, can see the spacecraft. When a station can see the spacecraft, it is said to be **in range**. Thus any two stations in range of the satellite at the same time are said to have a window into the satellite and can communicate through it.

Most orbits are elliptical rather than circular. The highest point above the surface of the earth in the orbit is called the **apogee**; the lowest point of that same orbit is the **perigee**.

Even though the orbit of the satellite is fixed, the earth rotates beneath it. The time it takes for the satellite to travel once around its orbit from the place where the sub-satellite point crosses the equator to the next time the sub-satellite point crosses the equator going in the same direction is called the **period** of the orbit. When the sub-satellite point has returned to the equator, the point on earth that was previously below it will have moved away because of the rotation of the earth; consequently, a new location will be beneath it. The number of degrees of longitude that have passed by during this time is known as the **orbital increment** (see fig. 2). The first orbit of the day is known as the **reference orbit**.

Earth stations will see different parts of different orbits as shown in fig. 3. The azimuth, or horizontal bearing and elevation angle to the spacecraft, will change with the orbit. The spacecraft will appear to rise above the horizon when it enters the range of the ground station. The time at which the spacecraft rises above the horizon is called **Acquisition Of Signals**.

By Joe Kasser, G3ZCZ, P.O. Box 3419, Silver Spring, Maryland 20901
AOS. The position of the satellite in the sky as seen by the ground observer will change as it passes along its orbit, rising higher and passing across the sky, getting lower, and then finally setting on the horizon. The time at which it sets beneath the horizon of the ground station is known as Loss of Signals, or LOS.

The path traced by a satellite in the sky as seen by a particular ground station will vary according to the type of orbit. The path traced by a satellite in a circular orbit will usually approximate a section, or chord, of a circle. The path traced by a satellite in an elliptical orbit will depend on the apogee and perigee of the orbit and how close the observer is to the subsatellite point.

characteristics of satellite signals

In order to copy signals from satellites, we first need to know a little about the types of signals we’re trying to receive. At any particular time, an observer on the ground may see the satellite in any direction with respect to the horizon (azimuth) and at any altitude between the horizon and a point directly overhead (elevation). This means that signals from various satellites arrive at a receiving station from any angle in any direction.

Radio waves are generated in a polarized manner. Conventional Amateur station antennas may generate vertically or horizontally polarized signals, depending on the position of the antenna with respect to the
MAKE CIRCUIT BOARDS
THE NEW, EASY WAY

WITH TEC-200 FILM
JUST 3 EASY STEPS:
• Copy circuit on TEC-200 film using any plain paper copier
• Iron film on to copper clad board
• Peel off film and etch

Satisfaction Guaranteed
Convenient 8¼ x 11 size
5-Sheets for $3.95
10 sheets only $5.95
and $1.00 postage - 4 ea. add sales tax.
The MEADOWLAKE Corp.
Dept. B, P.O. Box 497
Northport, New York 11768

LEARN ALL ABOUT
TROUBLESHOOTING
MICROPROCESSOR-BASED
EQUIPMENT
AND
DIGITAL DEVICES

Attend this 4-day seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques. Fee: $745.00.

CURRENT SCHEDULE
• Chicago, IL — April 15-18
• Cincinnati, OH — April 21-24
• Greensboro, NC — April 29-May 2
• Milwaukee, WI — May 13-16
• Kansas City, MO — May 20-23
• Denver, CO — June 3-6

MICRO SYSTEMS INSTITUTE
Garnett, Kansas 66032
(913) 898-4995

ALL BAND TRAP
"SLOPER" ANTENNAS!

FULL COVERAGE! ALL BANDS: AUTOMATIC SELECTOR W/PROVEN WEATHERPROOF EXHAUST TRAPS... 10-GA COPPERWIRE WIRE
GROUND MOUNT SLOPERS... NO Radar needed! Ground to rad. or house water faucet. Connect top to trans., building, fence, etc. with 10-ga. copper. No expensive "SLOPER" DA Antenna Gain or MAINTENANCE! Wherever you live for $2000 Watts PEP input, max. Permanent or portable Lx mast, 10 minutes. SMALL, HEAT ALMOST INVISIBLE - No dais will know you have a Hi-Power transmitting, ideal for CONDO APARTMENTS. RESTRUCTED AREAS. Pre cut for 2-1 or less SWR over ALL bands. 10-KHz to 200 MHz. No adjustments needed! EVER COMPLETELY ASSEMBLED! With-hole RG-58U coax feedline and FL-250 connector. Built-in lightning arrester - ready to hookups FULL INSTRUCTIONS:
GP: 300-114.6, 29.8, 22.5, 18.0, 14.1, 10.1, 7.0, 6.0, 5.0, 4.4
NO: 10485 - 45-20-10-10 - Trap 20 ft. $49.95
NO: 10486 - 45-20-10-10 - Trap 20 ft. 10M $49.95
NO: 10487 - 45-20-10-10 - Trap 20 ft. 12M $47.95
NO: 1016 -- 160-80-40-20-10-5 - Trap 63 ft. $77.95
SEND FULL PRICE TO DEPARTMENT 9-C: USPS-Comm. $3.00 extra for postage etc. or order using VISA, MASTERCARD, AMERICAN EXPRESS. Dept. AP 1-2-3-4-5-D-5-5-5-5-5 weeks. We ship in 2-3 days Per Box 14 days: Guaranteed 1-year return money back 10% DEV.

WESTERN ELECTRONICS
Yukon, Nebraska 68947

TYPICAL SATELLITE ANGLES FOR ONE GROUND LOCATION ON ONE DAY

<table>
<thead>
<tr>
<th>OSCAR-9</th>
<th>OSCAR-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.T.C.</td>
<td>AZIMUTH</td>
</tr>
<tr>
<td>HHMM:SS</td>
<td>DEGREES</td>
</tr>
<tr>
<td>1330:00</td>
<td>102</td>
</tr>
<tr>
<td>1332:00</td>
<td>68</td>
</tr>
<tr>
<td>1334:00</td>
<td>95</td>
</tr>
<tr>
<td>1336:00</td>
<td>16</td>
</tr>
<tr>
<td>1501:00</td>
<td>194</td>
</tr>
<tr>
<td>1502:00</td>
<td>207</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OSCAR-10</th>
<th>RS-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.T.C.</td>
<td>AZIMUTH</td>
</tr>
<tr>
<td>HHMM:SS</td>
<td>DEGREES</td>
</tr>
<tr>
<td>1600:00</td>
<td>256</td>
</tr>
<tr>
<td>1700:00</td>
<td>248</td>
</tr>
<tr>
<td>1800:00</td>
<td>236</td>
</tr>
<tr>
<td>1900:00</td>
<td>235</td>
</tr>
<tr>
<td>2000:00</td>
<td>236</td>
</tr>
<tr>
<td>RS-5</td>
<td></td>
</tr>
<tr>
<td>1908:00</td>
<td></td>
</tr>
<tr>
<td>1910:00</td>
<td></td>
</tr>
<tr>
<td>1912:00</td>
<td></td>
</tr>
<tr>
<td>1914:00</td>
<td></td>
</tr>
<tr>
<td>1916:00</td>
<td></td>
</tr>
<tr>
<td>1918:00</td>
<td></td>
</tr>
<tr>
<td>1920:00</td>
<td></td>
</tr>
</tbody>
</table>

Space shuttle Challenger

U.T.C. | AZIMUTH | ELEVATION |
HHMM:SS| DEGREES | DEGREES |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0625:00</td>
<td>328</td>
<td>0</td>
</tr>
<tr>
<td>0626:00</td>
<td>330</td>
<td>5</td>
</tr>
<tr>
<td>0627:00</td>
<td>334</td>
<td>10</td>
</tr>
<tr>
<td>0628:00</td>
<td>343</td>
<td>20</td>
</tr>
<tr>
<td>0629:00</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>0630:00</td>
<td>77</td>
<td>43</td>
</tr>
<tr>
<td>0631:00</td>
<td>113</td>
<td>24</td>
</tr>
<tr>
<td>0632:00</td>
<td>124</td>
<td>13</td>
</tr>
</tbody>
</table>

Shown are azimuth and elevation angles from the ground station to the different spacecraft at different times of the day. It can be seen that in order to adequately copy signals from the spacecraft, the ground station must be able to receive signals coming from any azimuth or elevation. This figure only lists data for one of the daily passes for each satellite. As a rule they will be audible at other times of the day with signals coming from other directions.

fig. 3. Typical satellite azimuth and elevation angles for various passes as seen by a representative ground station.
The RC-850 Repeater Controller just got a whole lot smarter.

Our new Version 3 software makes the best repeater controller EVEN BETTER.

The autopatch now supports remote telephone lines linked by radio, so that you can extend your autopatch coverage to match your RF coverage. You can have autopatch even if you can’t get a phone line at your site. The 250 autodial numbers meet the needs of even the largest groups, with up to 35 digit storage for MCI and Sprint.

The easy-to-use Electronic Mailbox lets you include phone numbers, times, or frequencies as parts of messages. And it’s so smart, it’ll leave you a message if you miss a reverse patch, or if an alarm condition occurs.

Selective call and signalling capabilities range from two-tone sequential to numeric display paging, so you’ll always be available. And its voice response metering is enhanced to continuously store low and high readings – so you can find out how cold it gets, how high the reflected power reads . . . and when.

Of course, a controller so feature-packed gives you secure control. Individual user access codes, with user callsign readback, can control access to selected functions to completely prevent horseplay.

ACC’s amateur radio controllers are anything but “amateur”. They’re used by the U.S. Army, Navy, Forest Service, and other government and commercial users around the country. But, of course, you’ll also find them on the leading amateur radio repeaters in North America and abroad.

There’s never been a better time to upgrade your repeater system with an ACC controller, unmatched anywhere in quality, sophistication, and performance, with documentation and support to match.

Please call or write now for the rest of the story on all our repeater products, including controllers, digital voice storage units, and other Touch-Tone control products.

You’ll be GLAD you did.
Clouds move around and change shape.

Satellite itself may shield on-board antenna from one or more ground stations.

Clouds attenuate or (polarization) rotate signals.

fig. 4. Some factors affecting satellite communications.

The fixed stations, there was no further need to use horizontal polarization and verticals became the rule. Nowadays, any base station that wants to use FM has to use vertical polarization.

On the HF bands both types of antennas are used interchangeably and everyone manages to work everybody. This is because the polarization of the radio waves changes as the signals pass through the ionosphere. A process known as Faraday rotation rotates the polarization of the signals. The signal as received on the ground is not entirely vertically or horizontally polarized and as such may be copied at somewhat lower signal strength on any antenna. Perhaps the good performance of quad antennas is due to their having both vertical and horizontal elements. When conditions in the ionosphere are changing, the received signals may appear to fade — i.e., get weaker and stronger as the plane of polarization is rotated by the ionosphere.

Satellite orbits are outside the ionosphere, which means that signals from the spacecraft are affected by the ionosphere in a manner similar to that which affects conventional terrestrial signals: the polarization of their signals changes. Conventional contacts tend to use the same part of the ionosphere. The ionosphere is not a constant layer above the earth, of course, but is instead made up of patches, or clouds. Since the satellite is moving, its uplink and downlink signals will pass through different parts of the ionosphere at different times, and the effects of the ionosphere on the signals will differ as time passes, as shown in fig. 4.

Not only does the ionosphere refract radio waves and change their polarization, it may also attenuate signals or even absorb them. As the spacecraft travels along its orbit, it may be spinning or tumbling, or the satellite itself may shield the on-board antenna from the receiving station. Because of the limitations of its equipment, the transmitter on the space vehicle is transmitting at a relatively low power — less than 10 watts output. Consequently, signals from satellites may arrive at the ground from any direction in azimuth or elevation, with any polarization, and at any signal strength (usually very weak). All these may, and usually do, vary as a function of time.

an ideal satellite receiving antenna

The ideal antenna for copying satellite signals should be rotatable in azimuth and elevation in order to cope with all the possible directions from which signals may arrive. It must be immune to changes in polarization if it is to cope with horizontal, vertical, and in-between polarization caused by Faraday rotation in the ionosphere. It must also have a reasonable amount of gain in order to cope with the fading in the already weak signals generated at the satellite.

Vertical and horizontal polarization are two kinds of linear polarization. Radio signals can also be circularly polarized. A circularly polarized antenna will respond equally to horizontally or vertically polarized signals — that is, changes in the plane of polarization will not be detected. Circular polarization also comes in two kinds, left-hand and right-hand (clockwise and counter-clockwise). To compound the problem, lefthand circularly polarized signals are not well received on righthand circularly polarized antennas and vice-versa.

antennas in common use on 10 meters

Figure 5 lists the commonly used bands in the Amateur Satellite Service. The most commonly used downlink bands are 10 meters, 2 meters and 70 cm. The first band combination that most people try is the 10-meter downlink and the 2-meter uplink commonly known as Mode A. This is because they usually have 10-meter capability in their stations and can thus attempt to copy the satellite without adding too much equipment.
The BEST is still “made in U.S.A.”

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty - prompt U.S. service and assistance

RF AMPLIFIERS

<table>
<thead>
<tr>
<th>2 METERS-ALL MODE</th>
<th>220 MHz ALL MODE</th>
<th>WATT/SWR METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B23 2W in = 30W out (useable in: 100 mW-5W)</td>
<td>C106 10W in = 60W out (1W=15W, 2W=30W) RX preamp</td>
<td>• peak or average reading</td>
</tr>
<tr>
<td>B108 10W in = 80W out (1W=15W, 2W=30W) RX preamp</td>
<td>C1012 10W in = 120W out (2W=45W, 5W=90W) RX preamp</td>
<td>• direct SWR reading</td>
</tr>
<tr>
<td>B1016 10W in = 160W out (1W=35W, 2W=90W) RX preamp</td>
<td>C22 2W in = 20W out (useable in: 200mW-5W)</td>
<td>MP-1 (HF) 1.8-30 MHz</td>
</tr>
<tr>
<td>B3016 30W in = 160W out (useable in: 15-45W) RX preamp</td>
<td>RC-1 AMPLIFIER</td>
<td>MP-2 (VHF) 50-200 MHz</td>
</tr>
<tr>
<td>(10W = 100W)</td>
<td>REMOTE CONTROL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duplicates all switches, 18’ cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available at local dealers throughout the world.

16890 Church St., Morgan Hill, CA 95037. (408) 779-7363
1. ASSIGNMENTS

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 METERS</td>
<td>29.3 - 29.55 MHz</td>
</tr>
<tr>
<td>2 METERS</td>
<td>145.0 - 146.0 MHz</td>
</tr>
<tr>
<td>70 CM</td>
<td>435.0 - 438.0 MHz</td>
</tr>
</tbody>
</table>

2. SATELLITE TRANSPONDERS

<table>
<thead>
<tr>
<th>SPACECRAFT</th>
<th>MODE</th>
<th>UPLINK</th>
<th>DOWNLINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSAT - OSCAR 6 A</td>
<td>145.85 - 145.95 MHz</td>
<td>29.40 - 29.55 MHz</td>
<td></td>
</tr>
<tr>
<td>AMSAT - OSCAR 7 A</td>
<td>145.85 - 145.95 MHz</td>
<td>29.40 - 29.55 MHz</td>
<td></td>
</tr>
<tr>
<td>AMSAT - OSCAR 7 B</td>
<td>432.125 - 432.175 MHz</td>
<td>145.975 - 145.925 MHz</td>
<td></td>
</tr>
<tr>
<td>AMSAT - OSCAR 8 A</td>
<td>145.95 - 145.95 MHz</td>
<td>29.40 - 29.55 MHz</td>
<td></td>
</tr>
<tr>
<td>AMSAT - OSCAR 8 B</td>
<td>145.96 - 146.00 MHz</td>
<td>29.40 - 29.55 MHz</td>
<td></td>
</tr>
</tbody>
</table>

The data supplied on AMSAT - OSCARs 6 - 8 is for historic purposes as the spacecraft are no longer operational.

CURRENTLY ACTIVE

<table>
<thead>
<tr>
<th>SPACECRAFT</th>
<th>MODE</th>
<th>UPLINK</th>
<th>DOWNLINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSAT - OSCAR 10 B</td>
<td>435.05 - 435.15 MHz</td>
<td>145.95 - 146.05 MHz</td>
<td></td>
</tr>
<tr>
<td>AMSAT - OSCAR 10 L</td>
<td>1269.85 - 1269.95 MHz</td>
<td>436.95 - 436.15 MHz</td>
<td></td>
</tr>
<tr>
<td>RS - 5 A</td>
<td>145.91 - 145.95 MHz</td>
<td>29.41 - 29.45 MHz</td>
<td></td>
</tr>
<tr>
<td>RS - 7 A</td>
<td>145.96 - 146.00 MHz</td>
<td>29.46 - 29.50 MHz</td>
<td></td>
</tr>
</tbody>
</table>

FUTURE (PROPOSED) SPACECRAFT

For launch in early 1986

<table>
<thead>
<tr>
<th>SPACECRAFT</th>
<th>MODE</th>
<th>UPLINK</th>
<th>DOWNLINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS - 9/10 A</td>
<td>145.96 - 146.00 MHz</td>
<td>29.46 - 29.50 MHz</td>
<td></td>
</tr>
<tr>
<td>RS - 9/10 K</td>
<td>21.26 - 21.30 MHz</td>
<td>29.46 - 29.50 MHz</td>
<td></td>
</tr>
<tr>
<td>RS - 9/10 ?</td>
<td>21.26 - 21.30 MHz</td>
<td>145.96 - 146.00 MHz</td>
<td></td>
</tr>
</tbody>
</table>

The RS spacecraft have been ground tested and are due for launch in 1986.

<table>
<thead>
<tr>
<th>SPACECRAFT</th>
<th>MODE</th>
<th>UPLINK</th>
<th>DOWNLINK</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUJI - 1 A</td>
<td>145.85 - 145.95 MHz</td>
<td>29.40 - 29.55 MHz</td>
<td></td>
</tr>
<tr>
<td>FUJI - 1 M</td>
<td>1267.55 - 1267.75 MHz</td>
<td>436.00 - 436.80 MHz</td>
<td></td>
</tr>
</tbody>
</table>

The FUJII spacecraft is being built in Japan under the control of JAMSAT, a group of Japanese Radio Amateurs.

ARSENE

The ARSENE spacecraft built by a group of French Radio Amateurs is supposed to be launched in the demonstration flight of the Ariane 4 rocket in 1986. It will contain a Mode B transponder.

AMSAT - PHASE 3C

The AMSAT Phase 3C spacecraft is also scheduled for launch in mid 1986. It will contain a Mode B transponder as well as other transponders having either uplink or downlink capability on the higher frequency bands.

AMSAT has a policy of not obsoleting user equipment, so mode B will be around for a long time. As mode A is an excellent introductory mode, it can be expected on any further general purpose Phase 2 type spacecraft. The Russians also tend to favour hf so mode A and possibly mode K will also be around for a while.

fig. 5. Commonly used satellite communications bands.

Once you're hooked on receiving, the price of a transmitter usually becomes a justifiable expense. Although putting together a minimal receiving and transmitting station isn't difficult, steerable antennas for the 10-meter band are relatively large. Therefore relatively few Amateurs can steer their 10-meter antennas in both azimuth and elevation. Steerable antennas for 2-meters and 70 cm are much smaller and as a result, more manageable.

Antennas in common use on the 10-meter band include verticals and multielement beams optimized for working DX. As such, they have very good responses to signals arriving from low angles but are not at all suited for signals arriving at high angles. Vertical antennas respond to low-angle radiation from all directions, while beams respond to low-angle signals from the direction in
fig. 6. Typical antenna radiation patterns:
A. Vertical
B. Beam or Quad
C. Horizontal dipole
D. Turnstile.

The DJ2UT-Multiband-Systems offer:
- Maximum gain plus F/B ratio with low VSWR across each band
- 2 kW CW output power
- 10/15/20/(30) 40-meter bands with up to 7 band coverage incl. WARC bands with self-supporting "TWIN-BOOM" and boom-legths from 8 to 20 ft
- Air-core teflon dielectric coax-balun and stainless-steel hardware at no extra cost
- traditional Blackforest craftsmanship

The DJ2UT-MULTIBANDERS provide the superior full-size monoband-beam performance required during the present sunspot minimum.

For further information contact:

SOMMER

H.J. Theiler Corp.
P.O. Box 5369
Spartanburg, SC 29304
(803) 576-5566

or our distributor in Canada:
Dollard's Radio West
P.O. Box 58236
762 S.W. Marine Drive
Vancouver, B.C. V6P 6E3

Selected dealerships available.
See you in Dayton in April 1986
fig. 7. Typical VHF/UHF operator antenna characteristics. Hears well when satellite is high in sky. Talks well when satellite is low in sky.

fig. 8. Typical HF operator antenna characteristics. Hears well when satellite is low in sky. Talks well when it is high in sky.

fig. 9. Contact possibilities. Overlap of range circles: A) typical contact possibility; B) Range circles are tangents. Best DX minimum time; C) Large window, longer time.

which they happen to be pointed. Stations using these antennas have trouble hearing signals arriving from higher angles.

Conventional literature has touted the turnstile, or crossed dipole antenna, as the answer to the problems of satellite reception at 10 meters. It has circular polarization and a high-angle response pattern. It does very well when the satellite is located at elevations greater than about 30 degrees as seen by the observer, but has a poor response to signals arriving at low angles (close to the horizon). Typical radiation patterns for these antennas are shown in fig. 6.

Most Amateurs who have problems working Mode A fall into one of two categories. The first category includes the VHF/UHF operator who decides that satellites offer both a technical challenge and increased opportunity for some exciting DX. This operator usually has excellent linear (horizontal or vertical) polarized antennas for the 2-meter uplink bands but has nothing for 10 meters. Reading that a turnstile can be a simple, effective device for reception, he builds one and finds that, sure enough, he can hear something. It may be weak, but, by golly, those signals are coming from outer space!

Step back for a minute and analyze this situation as sketched in fig. 7. The uplink antennas on 2 meters can put a powerful signal into the satellite when it’s at low angles of elevation as seen by this operator. His downlink antenna, however, receives best when the satellite is at a high angle. In other words, when he can hear it, he can’t access it . . . and when he can access it, he can’t hear it — meaning, he cannot hear himself.

The second type of Amateur who decides to have a go at satellite operation is the HF operator, who usually has a good beam antenna for 10 meters. Reading that a turnstile antenna is a good choice for satellite operation, he builds one and uses it. Now analyze this situation as sketched in fig. 8. The uplink antenna on 2 meters puts a weak signal into the satellite when it is at low angles of elevation as seen by this operator. His downlink antenna, however, receives best when the satellite is at low angles. In other words, when he can hear it, he cannot access it . . . and when he can access it, he cannot hear it — meaning that he cannot hear himself. Although this is the inverse situation to that of the VHF/UHF operator it has the same characteristics: both are “alligator operators” — all mouth and no ears.

There is a third category: the apartment dweller who cannot put up HF antennas at all. This type of operator can usually install some kind of VHF/UHF array on a balcony and work Mode B quite well. But when he tries Mode A, he has problems because of the size of his 10-meter receiving antenna.

It’s no surprise, then, that the vast majority of Radio Amateurs who decide to become active in satellites have trouble working them at first.

matching uplink and downlink antennas

In order to get the most enjoyment out of satellite operation, it’s necessary to match the uplink and downlink antennas. Before doing this, however, it’s
necessary to consider other aspects of the satellite communications path.

The Earth-Satellite-Earth communications link is a line-of-sight path. Each ground station has a range circle for which a window allows communications into the satellite. In order to work any other station, the range circles of the two stations must overlap as shown in fig. 9. The duration of any contact is governed by the time that the spacecraft spends in that window. Thus, the higher the elevation of the satellite as seen by the ground station, the shorter its communications range along the surface of the Earth. The best DX contact between any two stations occurs when the sub-satellite point of the orbit of the spacecraft passes over the ground where their range circles just touch — that is, at a tangent to both range circles. They will, however, also have very little time to make that contact.

antenna characteristics

The usual three-element Quad or Yagi-type antenna puts out a good directional low-angle signal. Theturnstile antenna puts out a good omnidirectional high-angle signal. Vertical antennas put out good omnidirectional low-angle signals. The 3/8 and 5/8 wave antennas used on 2-meters have good omnidirectional low-angle radiation characteristics. Somewhat directional high-angle radiation may be obtained from sloping dipoles attached between the top of a mast and the ground in the manner of guy wires (but don’t ever use them as such), as shown in fig. 10. If you want to work the satellites successfully, you must match the characteristics of your uplink (transmitting) and downlink (receiving) antennas so that they have similar radiation patterns.

receiving signals

The satellite downlink is usually marginal because the spacecraft is using low power and is far away. Every ESE (earth-satellite-earth) contact practically qualifies the spacecraft for yet another 1000-mile-per-watt award for QRP communications.

Most modern receivers (and others not so modern) suffer from a loss of sensitivity at the top end of the 10-meter band so that using a preamplifier to increase the strength of the received signals is a good idea. Most Amateurs feel that to communicate with DX stations they need the biggest antenna they can put up and the maximum power they can put out. But there’s a fallacy at work in this kind of thinking; if the minimum amount of transmitted power to put an S-9 signal into a DX location is, for example, 100 watts, then for that transmitter to use 1000 watts would be a waste of power . . . or would it? For the moment, ignore the QRM factor in which the more power you use, the louder you are and the more likely you are to be heard over the rest of the pack. If the signal is made weaker or attenuated by the ionosphere for one reason or another, what happens? In our example, we are receiving signals from a transmitter having the calculated 100 watts. If a fade equal to 5 S-units takes place, the received signal will drop down to S-4. This isn’t too serious; S-4 signals can be copied, but what happens if the station is using the QRP and was S-4 to begin with? The same fade would take it down to S minus 1 or below the noise level, and no signals could be copied. The communications link should contain enough gain to minimize or avoid loss of reception due to extreme fading. In other words, some kind of margin should be built into the link.

the communications link

The communications link in a satellite contact can readily be split into two parts, the uplink and the downlink. Consider each of these in turn.

In the downlink, the transmitter output power is not under the control of the Radio Amateur, but is instead fixed by the satellite. The attenuation of the signals radiated by the satellite is a function of the distance between the spacecraft and the receiving station. The actual strength of the received signal at the ground station antenna will vary because of the attenuation due to fading and polarization changes in the ionosphere. Thus all the ground station operator can do is make sure that he has the best and most sensitive receiving capability that he can have. Ideally, the receiver should be such that the beacons on the downlink are receivable at good signal strength. In most
K.V.G. CRYSTAL PRODUCTS

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF-9D</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>72.05</td>
</tr>
<tr>
<td>XF-9F-01</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9H-02</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>XF-9I-10</td>
<td>SS</td>
<td>2.4 kHz</td>
<td>8</td>
<td>125.60</td>
</tr>
<tr>
<td>XF-9K</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9M</td>
<td>AM</td>
<td>4.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9N</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9P</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>54.10</td>
</tr>
<tr>
<td>XG-9NB</td>
<td>CW</td>
<td>250 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XG-9PC</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>8</td>
<td>17.15</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

Write for full details of crystals and filters. Export inquiries invited. Shipping $3.75

MICROWAVE MODULES EQUIPMENTS

- **RECEIVE CONVERTERS**
- **LINEAR TRANSVERTERS**

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMk 1691-1-27</td>
<td>$259.95</td>
</tr>
<tr>
<td>MMk 1296-144G</td>
<td>$239.95</td>
</tr>
<tr>
<td>MMc 391 ATV</td>
<td>$119.95</td>
</tr>
<tr>
<td>MMc 144-28 (HP)</td>
<td>$199.95</td>
</tr>
<tr>
<td>MMc 144-28 (R)</td>
<td>$189.95</td>
</tr>
<tr>
<td>MMc 144-28 (F)</td>
<td>$189.95</td>
</tr>
<tr>
<td>MMc 144-28 (H)</td>
<td>$189.95</td>
</tr>
</tbody>
</table>

LINEAR POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MML 700</td>
<td>$69.95</td>
</tr>
<tr>
<td>MML 1280-144L</td>
<td>$49.95</td>
</tr>
<tr>
<td>MML 1790-144L</td>
<td>$99.95</td>
</tr>
</tbody>
</table>

ANTENNAS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>70cm</td>
<td>$39.95</td>
</tr>
<tr>
<td>1296-LY</td>
<td>$129.95</td>
</tr>
<tr>
<td>1691-LY</td>
<td>$219.95</td>
</tr>
<tr>
<td>2199-LY</td>
<td>$219.95</td>
</tr>
<tr>
<td>2399-LY</td>
<td>$239.95</td>
</tr>
<tr>
<td>2799-LY</td>
<td>$279.95</td>
</tr>
</tbody>
</table>

Send 666 (6 stamps) for full details of all our VHF & UHF equipments and KVG crystal products. Shipping 706 Concord, Mass. (617) 263-2145

BASEBALL CAP

How about a nice BASEBALL style cap that has name and call on it. It gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion. Hats come in the following colors:

- **GOLD, BLUE, RED, KELLY GREEN**

Please send call and name (maximum 6 letters per line)

- **UFBC-81**

I.D. BADGES

No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges Available in the following color combinations:

- **BADGE/LETERING**: white/red, woodgrain/white, white/blue, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

- **UID** Engraved I.D. Badge

Ham Radio's Bookstore

Greenville, NH 03048

Please Enclose $2.00 to cover shipping and handling.

KVG CRYSTAL PRODUCTS

In the uplink, the receiving antenna and on-board receiver sensitivity are governed by the design of the satellite. The attenuation of the signals from the ground as received by the satellite is a function of the distance from the spacecraft to the transmitting station. The actual strength of the received signal from the ground station antenna will vary because of the attenuation due to fading and polarization changes in the ionosphere. The effects of the ionosphere on the uplink may differ from those on the downlink. In the past, AMSAT has performed the link calculations before the launch of the spacecraft and released a recommended value in radiated uplink power (EIRP) for Amateurs to use with the satellite. This number has usually been conservative, and most satellite users have no trouble working through the transponder with much less power. The common solution to this problem is to boost the transmitter power until a good return signal is heard. This is not the optimal solution, because stations that have problems hearing themselves will tend to use too much power, not because they can't get into the satellite, but because they cannot hear themselves getting into it. The ionosphere may also behave differently in different places at any time, so that although the sending station may be having trouble hearing his own downlink, other stations further away may be copying him with ease. There's no easy solution to this situation. The compromise is to attempt to make your own signal as received on the downlink equal in strength to that of the transponder beacon. This means that you adjust your transmitter power to keep your own signal as strong as the beacon on your receiver. You can do this either by reducing the transmitter power gain or by aiming the antenna away from the spacecraft.

Gain in the communications link can be obtained by using amplifiers or directional antennas. Directional antennas are at a disadvantage in that they must be moved to track the satellite during the pass, while omnidirectional ones do not. On the other hand, they're usually cheaper than amplifiers, particularly high power UHF transmitting types. Thus, to obtain a certain power output level on the uplink, the Amateur has the choice of a directional antenna and low power or an omnidirectional antenna and high power, or something in between. Similarly, on the downlink, if the directional antennas are used, a receiving preamplifier may not be an absolute necessity. In any event, for reasonable results, make sure that the characteristics of your uplink and downlink antennas are matched.

locating the satellite

The common adage, "If you can't hear them, you
can't work them" must be modified for satellite users to read, "If you can't locate them, you won't hear them... and if you can't hear them, you can't work them."

In order to work satellites, an Amateur must know not only where to aim his antenna in order to put a signal into it. A number of different techniques have been developed over the past few years: graphical "circular slide rules" were first used very successfully for Phase 2 low-orbit satellite systems. As the personal computer found its way into ham stations, computer programs were developed to locate the satellites and the graphical plotters could be used to augment computer-generated data.

Fortunately, the first OSCAR satellites used by large numbers of Amateurs (AMSAT's OSCAR 6, 7, and 8) and the early RADIO spacecraft were in circular orbits, which made locating them easy. All you had to do was pick a "reference orbit" as published in the Amateur Radio press and add the orbital increment to determine the position of the next equator crossing (start of the next orbit) and then add the period of the orbit to find the time of the following orbit.

When the first Phase 3 satellite (AMSAT's OSCAR 10) was put into service, it was placed into an elliptical orbit with a high apogee and a low perigee-definitely a non-circular orbit. AMSAT's Tom Clark, W3IWI, an astronomer by profession, wrote a program that utilized Keplerian elements for keeping track of the position of any satellite in the Amateur Satellite Service. This and many other programs have been widely disseminated and there should be at least one member of each radio club who knows how to get hold of them. (AMSAT can supply copies of such software through its Software Exchange.) Locating the satellite, therefore, should not be a problem.

Reference
1. Tom Clark, W3IWI. "Basic Orbits." Orbit, March/April, 1981.
The MSO complete packet radio system an alternative dedicated packet radio computer system with communications software, (Copylink) and a TAPR TNC-2 clone. Use your SANYO computer and software for an unattended RBBS, or use any of the thousands of public domain software programs available to the CP/M user. The system also comes with the complete micropro software package for word processing, (Wordstar) Spreadsheets (Calcstar) and a database, (Infostar) for your QSO's log, contest club member list or any other record keeping needs!! Also included is a spelling checker, (Spellstar), mailing label maker, (Mailmerge) and basic computer programming language.

At Micro Supply Organization we offer the lowest prices on Sanyo computers and software. With prices like these you can afford the convenience of owning and operating more than one computer. We also offer the User Support Hotline for questions concerning your computer or about software availability. Whether you need one or a dozen computers, Micro Supply Organization is the place to get them!

USER SUPPORT HOT LINE

805/393-2247

All systems carry full 90 day warranty.

CASH PRICE ONLY

Check in advance. Add 3% for VISA/MC. Shipping & handling charges will be added to each order.

For our catalog with complete details and prices, send $1.00 to:

Micro Supply Organization, Inc.
4969 Stockdale Hwy, #180
Bakersfield, CA 93309

MON. - FRI. 7am - 5pm PST • SAT. 9am - 5pm PST

SANYO

MBC 1160

Including this FREE software:

- Communication Program
- Wordstar • Spellstar
- Mailmerge • Calcstar
- Infostar • BASIC

8-Bit Integrated Computer with 640KB Formatted Mini Floppy Disk Capacity

- Z80A CPU with no wait mode and large 64KB RAM/4KB ROM memory capacity for fast execution.
- CP/M operating system with editor, assembler and all standard utilities.
- No-glare amber monitor display screen for easy viewing.
- 80-character x 25-line display. 256 characters in 8 × 12-dot matrix cells.
- Two internal double-sided, double-density, double-track 5¼" slim-type mini floppy disk drives with 640KB formatted capacity.
- Interfaces for one Centronics printer and one RS-232C port.
- Optional interface for hard disk drive and for external 8" floppy disk drive.

The Packet Radio Controller

An identical TAPR TNC-2 clone with identical software and hardware. Features the latest AX.25 version 2.0 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, 16K RAM simple operation plus more.

* Special Printer Pricing when purchased with above system. **Complete package only $799**
Complete MS-DOS/CPM Super Turbo

In keeping with industry trends MSO is bringing our customers high performance P.C. compatibles and accessories. MSO takes the P.C. compatible to maximum performance with its SUPER TURBO. The SUPER TURBO features the V20-8 chip which runs at three times the speed of the IBM-PC XT* and also runs CPM 8080 software.

The SUPER TURBO comes complete with the MS-DOS operating system, Read and Run CPM, full Instructional Documentation, Utility software, plus for our first 100 customers MSO is offering the Micopro Wordstar Professional Software package. This package includes: Wordstar, Mailmerge, Correctstar, Starindex, Datastar and a G.L. Accounting System. The SUPER TURBO is a complete turnkey system with everything necessary to plug in and operate.

USER SUPPORT HOT LINE

805/393-2247

All systems carry full 90 day warranty.

CASH PRICE ONLY

Check in advance. Add 3% for VISA/MC. Shipping & handling charges will be added to each order.

For our catalog with complete details and prices, send $1.00 to:

Micro Supply Organization, Inc.
4909 Stockdale Hwy. #180
Bakersfield, CA 93309

MOR. - FRI. 7am - 5pm PST • SAT. 9am - 5pm PST

*IBM is a registered trademark of the IBM Corporation.

Super Turbo Super Price:

$1299

The Super Turbo P.C. runs IBM software and CPM 8080 programs

- CPU - V20-8 8mHz Super Chip runs *IBM compatible software at 3 times the speed of the IBM-XT and CP/M 8080 software.
- 8087 Math Processor optional
- 256K RAM on mother board expandable to 640K
- ROM 8K Bios
- 6 empty slots for expansion
- 2 serial port one optional with expansion kit
- 1 parallel port
- 1 game port
- Clock calendar with software
- Hi-Res monographics video board
- Floppy controller
- Dual Floppy Drives 360K ea.
- 135 watt XT Power Supply
- 5150 style compatible keyboard
- Hi-Res TTL Green or Amber 12" monitor
- MS-DOS operating system and manual.
- Instructional Documentation and Utility Software
- Assembled and tested in U.S.A.
- Optional internal 20 meg sub system for Super Turbo add $549

Special printer pricing with purchase of above computer.
Some time ago I decided to build a small antenna range. One of the key items I knew I'd need was an RF power meter with good stability and wide range. Most commercial units I found were beyond repair or the limits of my budget, and the homebrewed units were either limited in range or used modulation to avoid a drift problem.

I had used an LM11 operational amplifier in designing an earlier project and a friend later introduced me to an even better one. Some of the new chips coming on the market offer unbelievable performance and are slowly making system designers out of us circuit designers. A chip here, a chip there, follow the spec sheet as to optimum feeding — and we have a piece of test equipment that rivals commercial units.

I combined some of these into an RF power meter that features a 30 dB (useful to 35 dB) range from -15 dBm to -45 dBm, remote control, and good temperature stability. Although the antenna range is still in the future, the power meter has been used on the bench for evaluating hybrid couplers, helical filters, cavity filters, IF amplifiers, and such. I plan to use the power meter on the 70 cm band. But it can also be used from the HF band up into the GHz range.

theory of operation

The heart of the unit is the Hewlett-Packard HSCH-3486 zero-bias Schottky diode used as the detector. This device offers high voltage sensitivity and doesn't need the biasing featured in other detection schemes. The response curve is logarithmic from -50 dBm to -20 dBm; above -20 dBm the diode becomes increasingly nonlinear in detection response. The lower end is limited by the amplifier used.

To avoid using a modulation method of detection, a chopper stabilized operational amplifier was used. (The schematic is shown in fig. 1). The Intersil ICL7650 features an extremely low input offset voltage of 1 μvolt over the wide temperature range. The chopper op-amp basically converts the input DC voltage to AC, amplifies it, and converts it back to DC. Amplifying the DC output from the detector 150 times with a chopper op-amp puts the signal at a level that simpler op-amps such as the LM11 can handle. The National Semiconductor LM11 is a precision DC amplifier that combines the best features of existing bipolar and FET op-amps. Offset voltage is 100 μvolts and drift is 1 μV/°C. Six ranges in 5 dB steps are accomplished by this circuit by changing the gain of the amplifier. Each range is controlled remotely by reed relays. Offset voltages in the amplifier are nulled with two pots, one for the high range and one for the lower three ranges. These three devices — a diode which converts RF power into a logarithmic output equal to a dB scale and a pair of operational amplifiers — amplify AC microvolt level signals to volt levels, while introducing little drift.

construction

Originally the unit was to be mounted directly at the antenna and was therefore constructed in a diecast box for good shielding. Power is supplied remotely from a separate box, which also contains the meter and scale change (fig. 2). A schematic of the power supply is included in (fig. 3). When purchasing a dB scale meter make sure that the -3dB point falls exactly at half scale. Some meters have been “fudged” to accommodate circuit nonlinearities.

The inside of the box is shown in fig. 4. Its detection circuitry, visible on the left side, is shown in an enlarged view in fig. 5. The parts are mounted on a small piece of 0.015 inch brass shim stock and held in place by the TNC connector. Note the chip capacitor on the left, supporting the 50-ohm resistor. A value of 100 pF is adequate down to 10 MHz; below 10 MHz this value should be increased. For work above 70 cm up to 4.2 GHz, a coaxial-mounted detector is recom-

By Rudolf E. Six, KA8OBL, 30725 Tennessee, Roseville, Michigan 48066
fig. 1. RF power meter schematic.

Table 1. RF power meter and power supply parts list

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 thru C8</td>
<td>1000 pF feedthru (Erie, Cambion)</td>
</tr>
<tr>
<td>C9, 10, 11, 12</td>
<td>1 pF 1000 VDC tantalum</td>
</tr>
<tr>
<td>C11-12</td>
<td>0.1 μF metalized film</td>
</tr>
<tr>
<td>C13</td>
<td>500 pF disc</td>
</tr>
<tr>
<td>C14</td>
<td>0.1 μF disc ceramic</td>
</tr>
<tr>
<td>C15, 16, 17</td>
<td>2.2 μF 25 VDC tantalum</td>
</tr>
<tr>
<td>C18, 20</td>
<td>100 μF 15 VDC electrolytic</td>
</tr>
<tr>
<td>C19</td>
<td>500 μF 15 VDC electrolytic</td>
</tr>
<tr>
<td>C22, 23</td>
<td>0.01 μF disc</td>
</tr>
<tr>
<td>C23</td>
<td>100 μF chip capacitor</td>
</tr>
<tr>
<td>CR1</td>
<td>7506-3446 Hewlet-Packard</td>
</tr>
<tr>
<td>CR2, 4, 9, 10, 11, 12</td>
<td>1N5814 or equivalent</td>
</tr>
<tr>
<td>CR5, 6, 7, 8</td>
<td>1N4003 or equivalent</td>
</tr>
<tr>
<td>K1</td>
<td>SP01 reed Magnecraft W172-DIPS (internal diode — CR2 not used)</td>
</tr>
<tr>
<td>R2, 3, 4, 5</td>
<td>250K reed FAC EAC 2610-ND</td>
</tr>
<tr>
<td>M1</td>
<td>1 mA DC meter with dB scale</td>
</tr>
<tr>
<td>Q1, 4</td>
<td>78LOS regulator</td>
</tr>
<tr>
<td>Q2</td>
<td>78LOS regulator</td>
</tr>
<tr>
<td>Q3</td>
<td>78L12 regulator</td>
</tr>
<tr>
<td>R1, 2</td>
<td>50 ohm 1/8 watt carbon film</td>
</tr>
</tbody>
</table>

All resistors: 1% metal film 1/4 watt

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3, 6, 14, 22</td>
<td>1K</td>
</tr>
<tr>
<td>R5, 7</td>
<td>100K</td>
</tr>
<tr>
<td>R10, 12</td>
<td>120K</td>
</tr>
<tr>
<td>R4</td>
<td>150K</td>
</tr>
<tr>
<td>R8, 19</td>
<td>470K</td>
</tr>
<tr>
<td>R11, 12</td>
<td>20K</td>
</tr>
<tr>
<td>R13</td>
<td>2.7K</td>
</tr>
<tr>
<td>R15</td>
<td>165 ohm</td>
</tr>
</tbody>
</table>

All resistors: 5% carbon film 1/4 watt

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R20</td>
<td>100 ohm</td>
</tr>
<tr>
<td>R21</td>
<td>1 megohm</td>
</tr>
<tr>
<td>R22, 24</td>
<td>10 ohm</td>
</tr>
<tr>
<td>R27</td>
<td>1.3K</td>
</tr>
<tr>
<td>R9</td>
<td>50K Panasonic CEG54 trim pot</td>
</tr>
<tr>
<td>R16</td>
<td>500 ohm Panasonic CEG52 trim pot</td>
</tr>
<tr>
<td>R17</td>
<td>200 ohm Panasonic CEG22 trim pot</td>
</tr>
<tr>
<td>R18</td>
<td>100 ohm Panasonic CEG12 trim pot</td>
</tr>
<tr>
<td>R25, 26</td>
<td>10K potentiometer</td>
</tr>
<tr>
<td>S1</td>
<td>DPST rotary switch</td>
</tr>
<tr>
<td>T1, 7, 12</td>
<td>6.3 VAC transformers</td>
</tr>
<tr>
<td>U1</td>
<td>ICL7668BICP Intersil</td>
</tr>
<tr>
<td>U2</td>
<td>LM1117 National</td>
</tr>
<tr>
<td>Box</td>
<td>CU-124 BUD</td>
</tr>
<tr>
<td>Chassis</td>
<td>9 1/2 x 5 x 2 chassis BUD Ac-403</td>
</tr>
</tbody>
</table>

fig. 2. RF detector and amplifier mounted in a shielded enclosure. Range selection, meter, and power supply are in a separate unit.

Mened. A suitable unit, Model CD-51, is available from Elcom Systems Inc., 4032 Clint Moore Road, Boca Raton, Florida 33431-2895. The printed circuit board is suspended in the box (fig. 6). Two hangers made from 0.015-inch (0.038 cm) brass shim stock are soldered to the ground foil of the printed circuit board and are held by the feedthrough capacitors. Metal and
TELEWAVE'S "PROBLEM SOLVERS"

Transmitter Combiners • Receiver Multicouplers • Monitor Equipment • Test Equipment • Ferrite Isolators and Terminations • High Q Cavities and Filters • Duplexers • Systems Engineering

Bandpass, Pass-Reject & Notch Cavity Filters

Transmitter Combining

Receiver Multicoupling

IM Suppression Panels

R.F. Power Monitoring

Duplexers & Preselectors

Telewave, Inc.
(415) 968-4400
1155 Terra Bella Ave., Mountain View, CA 94043

in Canada - contact Telewave Ltd., 11151 Horseshoe Way #4
Richmond, B.C. Canada V7A4S5 (604) 274-8300
carbon film resistors are used for accuracy and low noise. The PC board artwork and components layout are shown in figs. 7 and 8, respectively.

calibration

Calibration depends on the accuracy of the standard used. If you have no fixed attenuator, purchase the Model AT-51 5 dB TNC from Elcom ($14). Set the meter to the - 15 dB range, check and adjust for zero with no signal applied. The meter zero pot has little control on this scale and if the meter doesn’t read zero, there’s something wrong with the circuit. Adjust a signal generator for a +30 dBm output level and turn R16 for full scale or 0 dB on the meter. The frequency of the generator is not important — in this case, 150 MHz was simply convenient. If the signal generator has no dBm scale, turn R16 to midpoint and adjust the signal generator for 0 dB. Insert a 5 dB attenuator. The meter should read - 5 dB. Turn to the - 20 dB scale while momentarily disconnecting the signal generator, then check and adjust for zero. The meter zero pot should show more control. Reconnect the signal generator and adjust for 0 dB with R17. Insert 5 dB of attenuation and the meter should again read - 5 dB. Turn to the - 25 dB scale and repeat the above procedure. The meter zero pot will have quite a lot of control. Note that on the - 25 dB scale the needle shows some jitter or drift. This is circuit noise. This drift should be less than ±1/10 dB at full scale. Return to the - 15 dB scale, insert 5 dB of attenuation and increase output for a 0 dB reading. Turn to the - 10 dB scale, remove the signal generator and adjust for zero with the right side meter zero pot. Remove the attenuator and reconnect the signal generator. Adjust R9 for 0 dB. Insert attenuator; adjust signal generator
for 0 dB. Turn to the –5 dB scale and remove the attenuator. The meter should read 0 dB. Insert the attenuator again and adjust the signal generator for 0 dB. Turn to the 0 dB scale and remove the attenuator. Note that the meter doesn’t read 0 dB, but it should be within 1/4 dB of full scale. We are now start-

\textbf{ing to run into the nonlinear portion of the detector diode.}

\textbf{using the power meter}

Figure 9 shows a typical set-up in which the power meter is used. A 70 cm hybrid coupler is checked for isolation between port 1 and port 2. The ICOM-471A provides the signal with its output reduced by a 10dB-10 watt attenuator to less than 1 watt. Further attenuation is introduced by a step attenuator.

\textbf{ham radio}
AMATEUR TELEVISION

INTRODUCING OUR NEW SMALL ALL IN ONE BOX TC70-1
ATV TRANSCIEVER AT A SUPER LOW $299 DELIVERED PRICE.

TC70-1 FEATURES:
- 10 pin VHS color camera and RCA jack video inputs.
- Crystal locked 4.5 mHz sound subcarrier.
- PTL (Push To Look) T/R switching.
- Dual gate GaAsfet tuneable downconverter.
- Two frequency 1 watt pep xmt. 1 xtal incl.
- Xmit video monitor outputs to camera and jack.
- Small 7 x 7 x 2.5" for portable, mobile, or base.
- Draws only 500 ma (exc. camera) at 13.8 vdc.

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any tech class or higher amateur can get on ATV. If you already have a source of video and a TV, it costs about the same as getting on 2 meters.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 15 miles, 7 miles with the 440-6 for portable use such as parades, races, search and rescue, etc. You can add one of the two ATV engineered linear amps listed below for greater DX.

AT 70 cm, antenna height and gain is all important. Foliage can absorb much of the power. Also low loss rigid braided coax such as the Saxton 8285 must be used.
The TC70-1 has full bandwidth for color, sound, and computer graphics. You can now show the shack, computer programs, home video tapes and movies, repeat SSTV or even space shuttle video if you have a TVRO.

20 WATT SPECIAL $399
SAVE $9 on the TC70-1 & ELH 730G when purchased together

ACCESSORIES:

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirage D24N 50 watt amp</td>
<td>$189</td>
</tr>
<tr>
<td>KLM 440-27 14.5 dbd antenna</td>
<td>$89</td>
</tr>
<tr>
<td>KLM 440-6 8 dbd antenna</td>
<td>$38</td>
</tr>
<tr>
<td>Alinco ELH-730G 20 watt amp</td>
<td>$109</td>
</tr>
</tbody>
</table>

More Details? CHECK-OFF Page 126
PC/XT™ COMPATIBLE COMPUTER

ARE YOU LOOKING FOR AN IBM COMPATIBLE COMPUTER? DO YOU KNOW WHAT COMPATIBLE WILL MEET YOUR NEEDS NOW AND IN THE FUTURE? ARE YOU CONFUSED?

THE FIRST THING TO CLEAR UP IS THE QUESTION OF WHAT COMPATIBILITY REALLY IS. YOU PROBABLY THINK THAT ALL COMPATIBLES ARE THE SAME. WELL LET ME TELL YOU THAT THEY ARE NOT. SOME OF OUR COMPETITORS HAVE THEIR OWN DEFINITION OF COMPATIBILITY. SOME MACHINES ARE HARDWARE COMPATIBLE AND SOME ARE SOFTWARE COMPATIBLE. VERY FEW ARE BOTH, OUR UNIT WAS DESIGNED TO MEET IBM SPECIFICATIONS SUCH AS 8088 CPU 135W POWER SUPPLY, 8 EXPANSION SLOTS, 256K RAM, OPTIONAL 8087 CO-PROCESSOR 10 OR 20 MEGABYTE HARD DRIVE ENHANCED VIDEO FOR HIGH RESOLUTION GRAPHICS. STOP IN FOR A FREE TEST DRIVE AND BRING ANY SOFTWARE OR HARDWARE YOU MAY HAVE TO TEST OUR SYSTEM.

FEATURES

PROCESSORS Intel 8088 16 BIT 4.77MHZ PROCESSOR
OPTIONAL 8087 MATH CO-PROCESSOR

MEMORY 256K EXPANDABLE TO 640K

DISK STORAGE MAXIMUM 4 360K FLOPPY DRIVES

DISPLAY 640 X 200 BLACK & WHITE GRAPHICS
320 X 200 COLOR GRAPICS

KEYBOARD IBM STYLE 108 KEYS LED INDICATORS

OPERATING SYS IBM PC-DOS CP/M-B6 VENIX MS-DOS
COMPAQUE-DOS COLUMBIA-DOS ETC.

SOFTWARE RUNS FLIGHT SIMULATOR DBASE III
FRAMEWORK SYMPHONY LOTUS 123
IBM DIAGNOSTICS GW BASIC WORDSTAR

OPTIONAL 10 OR 20 MEGABYTE HARD DRIVE

AVAILABLE AT:
AZOTIC INDUSTRIES
2026 W BELMONT
CHICAGO ILL 60618
312-975-1288

$699.00

* 2 DS/DD FLOPPY DISKS
* 256K RAM :
* COLOR GRAPHICS CARD
* 8K BIOS 8 SLOT MB
* 135W POWER SUPPLY
* IBM STYLE CASE
* 108 KEY KEYBOARD
* 90 DAY WARRANTY
For several years, my kit-built amplifier with a pair of 3-500Zs had been spitting at me because of arcing at the plate tuning capacitor. I figured that either my line voltage was too high or that some flying insect was getting into the amplifier tuning capacitor and causing the arcing. This went on until the plate parasitic suppressor on the inboard tube started to smoke. (This would have been a clue for anybody who was paying attention . . . but I wasn’t). I replaced the plate parasitic-suppressor and got an instant replay: I smelled burning resistor again. I didn’t know what to do next, so I just lived with the stink of burning phenolic for a while. I operated the amplifier for some time, but the spitting continued. Something was wrong, but I was running out of ideas.

Nothing changed until I tried a new set of tubes and the amplifier made a noise like a shot from a 22 rifle. I pulled the plug and removed the case to inspect for damage. The problem wasn’t hard to find; the grid-to-ground choke on the inboard tube had exploded its wire. One of the 200 pF capacitors from grid to ground had also exploded.

probable cause

I asked around and it seemed that other hams had experienced the same problem. The consensus was that the tube had shorted from grid to filament, causing the choke and capacitor to explode. This was confirmed by the fact that many others with this problem had found the tube to be shorted from grid to filament during the investigation following the big bang. This seemed unlikely to me because you can place a short from grid to filament on a zero-bias triode without anything cataclysmic happening. Naturally, you can’t drive the cathode because the cathode is grounded, but there wouldn’t be any fireworks. The answer had to be some condition that would create a grid voltage of over 2000 volts (it would take that much to destroy the 200 pF mica capacitor from the grid to ground) and more than 3 amperes of grid current which would be necessary to explode the choke wire. It had to be caused by parasitic oscillation. Light loading causes high grid current and no loading causes potentially destructive grid current and voltage. A high impedance path by the plate tank inductor would account for the “light loading” condition to VHF energy.

casualty list

Parasitic oscillation can destroy the following amplifier parts: tubes, due to grid to cathode shorts; grid current meters and shunts; zener bias diodes in the cathode circuit; contacts on the plate circuit band-switch — usually on the 160 or 80 meter plate tuning capacitor padder contact; small chokes and capacitors in the grid to ground circuit; and, almost unbelievably, filament transformers, because of voltage breakdown. This voltage surge is the result of the positive high voltage temporarily going to near ground potential when the tube arcs internally as the grid wires explode. With the positive high voltage at ground potential, the negative lead rises to the supply voltage, which is usually around — 3000 volts in a typical amplifier. This dumps the stored energy of the HV filter capacitor into the only current path from negative HV to ground: the grid current meter and shunt resistor, which explode. This leaves an open circuit, and the negative HV arrives at the zener bias diode and the center tap of the filament transformer. Filament transformers are not usually designed to withstand high voltages, and the insulation may break down. This creates a current path inside the transformer, and

By Richard Measures, AG6K, 6455 LaCumbre Road, Somis, California 93066
the transformer will slowly melt unless the fuse opens. I personally know of two, a commercial pair of 3-500Z amplifiers that suffered from all of the above difficulties after the big bang.

A Previous Solution

Long before the 3-500Z was invented, the Collins Radio Company ran into a similar problem during the design of their 811A amplifier, the 30L-1. In order to prevent the amplifier from “taking off,” a degenerative parallel R-C circuit was connected from each tube’s grid-to-ground. The resistor destroyed the Q of the grid-to-ground resonant circuit. At some VHF frequency the grid structure inductance and plate to cathode capacitance resonated. This looks like a very high impedance, causing positive feedback at or near the frequency. This unavoidable situation will always develop at some frequency in any grounded-grid amplifier. But one would hope there will not be a resonant circuit in the plate compartment or in the input circuitry or associated wiring that would allow the oscillation to take place.

The Collins solution used a resistor that lowered the Q and small series capacitor that cancelled some of the built-in inductance in the grid structure, the tube base, and the socket, thereby increasing the grid resonant frequency above the natural resonant frequency of the grid if it had been directly grounded with a short copper strap. Other amplifier manufacturers copied the capacitor-to-ground trick, but they didn’t understand that the capacitor was part of a tuned circuit. Instead, they thought it was some sort of bypass. With the belief that “bigger is better,” especially when you’re bypassing, they used more than the 200 pF that Collins had wisely chosen. My troublesome amplifier used 600 pF total, with 200 pF from each of the three grid pins to ground. (See fig. 1 for a typical circuit.) I copied the Collins grid suppressor circuit. The amplifier did not oscillate. These results were published in a *ham radio* “ham note” in October, 1982.

Does It Work with Other Amplifiers?

Since that time I’ve learned more about the subject: whether or not an amplifier can oscillate depends on the gain of the particular tubes you have in your amplifier. New tubes may have more gain than old tubes. So the parasitic cure I used successfully in my amplifier did not always work in someone else’s amplifier. After some trial and error, I found that using three separate parallel R-C suppressors, one from each grid pin to ground, worked better in more cases than the simple circuit I described in my original article. The best values seemed to be about 50 to 70 pF for the capacitors and from 75 to 100 ohms for the resistors. This circuit worked in over 90 percent of the amplifiers.

At this point I didn’t know what to do about the few remaining amplifiers that still had a tendency to take off. Fortunately, the metal-film, non-inductive resistors most people were using for the grid-to-ground resistors were acting like fast-acting fuses in the grid current path, so that no one lost any tubes. The last piece of the puzzle was furnished by a ham in Samoa who had read the original article. He owned a conduction-cooled amplifier (SB-230) that used an expensive high-μ triode. He experienced a meltdown with the typical fireworks associated with a parasitic oscillation. The tube was ruined and the 1000 pF grid-to-ground bypass capacitor was shorted. He had installed new parts, but was worried it would happen again, since the amplifier was still spitting occasionally. I could see from the schematic that the Collins grid parasitic suppressor circuit was not going to be a possibility since there was no way to remove the existing grid bypass circuit. Any parasitic suppression would have to be done elsewhere. With a triode, this wouldn’t leave you with many choices. The cathode seemed like a good bet, since EIMAC says that it takes only 27 watts to drive an 8873 to full output, so we could afford to make the tube harder to drive. This might also keep the tube from flat-topping when driven with the average 100-watt radio. A non-inductive resistor in the cathode would cause degeneration or negative feedback. This trick is often used in the emitters of bipolar transistors to prevent regeneration or instability. The trade-off is that the device is going to be slightly harder to drive. Only the drive requirement, not the power output, will be affected. I looked at the

fig. 1. Grid and cathode modifications reduce tendency to oscillate at VHF.

\[
R1 = 75 \text{ to } 100 \text{-ohm, 1 or 2-watt, non-inductive.} \\
R2 = 3 \text{ 10-ohm, 2 watt, non-inductive, paralleled. For two tubes in parallel, use 3 10-ohm resistors. For one tube, use 3 20-ohm, 1-watt resistors.} \\
C1 = 47 \text{ to } 75 \text{ pF, 500V disc ceramic.}
\]
EIMAC data sheet and noticed that the peak cathode current for an 8873 was about 1.8 amperes. Some quick calculations indicated that 11 ohms might be a good place to start. The power rating for the resistor is not easy to figure since the waveform is neither DC nor a simple sine-wave, but instead a pulse with a sine-wave shape and a duration of about 200 degrees. The peak power is 1.8 x 1.8 x 11 = 35.64 watts. The average power will be less than this for teletype operation and much less than that for SSB voice service because of the low duty-cycle.

As a simple rule, divide the peak power by 2 for teletype duty and by 3 or 4 for SSB. Dividing by 2 is recommended for the speech processor fans who like their audio to sound like creatures in a grade-B science fiction movie. Another consideration in selecting the wattage value is the fact that the average 2-watt metal-film resistor will dissipate 4 watts for at least 60 seconds with no ill effects.

Unfortunately, 2 watts is the largest size metal-film or metal-oxide-film resistor commonly available. More dissipation can be achieved by paralleling as many 2 watt units as needed. The 11-ohm resistor was installed at the socket of the 8873, in series from the cathode lead(s) to the wire that delivered the input RF drive. During peak drive conditions, 19.8 volts of RF negative feedback will be developed (1.8 amps x 11 ohms). 100 volts of peak RF output was available to drive the cathode. Losing 20 volts still left more than enough drive to give full output. The circuit worked. The man in Samoa was happy. No more unwelcome surprises when using the amplifier!

The same fix was tried on the 3-500Z amplifiers that had proved so difficult to tame. The same resistor bank can be used with an 8877 — in the cathode lead, of course. The cathode resistor stopped the tendency of these unruly amplifiers to oscillate. In amplifiers with a pair of 3-500Zs the peak cathode current is close to 3 amperes. This means that you can get more negative feedback voltage with fewer ohms in the cathode circuit. It was found that approximately 3 ohms of resistance would do the job. Three 10-ohm, 2-watt metal-film resistors in parallel with some space between them will work fine. These resistors were installed between the RF drive coupling capacitor — usually a 0.01 μF 1000 volt unit — and the place on the filament lead (cathode in a 3-500Z) where the coupling capacitor was originally soldered.

When 3.33 ohms are inserted into the cathode lead, the driving impedance of the cathode will be increased. This will affect the input SWR of the amplifier. This effect is greater on the higher frequency bands because the input capacity of the tubes becomes a large part of the output capacity of the tuned Pi network, and this capacity is connected through a 3.33-ohm resistor. If you don’t want to adjust the tuned inputs for the 21 and 28 MHz bands, you can use a plate parasitic suppressor, made from a 47-Ohm, 2-watt resistor and four turns of Number 16 wire wound on the resistor, in place of the RF negative feedback resistor. The parasitic suppressor will not improve the linearity of the amplifier, like the RF negative feedback resistor, but it will reduce the VHF gain of the circuit and improve stability.

The 4-1000A is a stable, grounded-grid amplifier tube with plate voltages up to about 3500 volts. Above 4000 volts, the gain of the tube increases, and parasitic oscillation is possible. The quality of the amplifier tube and the frequencies of the VHF resonances are determining factors in sustaining a parasitic oscillation. A 4-1000A amplifier that proved to be unstable above 4000 plate volts was stabilized in a manner similar to the method used on the stubborn 3-500Z amplifiers. The copper, grid-grounding straps were removed. Each of the three grid pins was connected to ground through a 75-ohm resistor in parallel with a 56 pF capacitor. The screen and control grid pins were left connected to the copper plate that was previously used to bond the grids pins together. A 3.33-ohm, 6-watt resistor made from three 10-ohm, 2-watt, metal film resistors in parallel, was connected in series with the 0.01 μF capacitor that couples the drive from the tuned input circuit to the cathode (filament). After modification, the amplifier showed no sign of instability with a plate voltage in excess of 9000 volts. At this plate voltage the amplifier exhibited 15.5 dB gain. This was done to test the stability of the amplifier. Everyday use at this plate voltage is probably not going to result in normal tube life. Plate voltages this high can also produce soft X-rays, which may cause injury to the operator as well.

grid-driven amplifiers

Another use for RF negative-feedback cathode resistors is in grid-driven amplifiers, so often plagued with high-intermodulation-distortion products, or splatter. For example, a friend who owned an NCL-2000 was concerned about the interference he was causing. The root of the problem was with the 8122 tubes themselves, since the best you can expect is about – 30 dB of distortion products. This is roughly 10 times worse than what you can expect from the 3-500Z. The 4CX250 series tubes have approximately the same distortion specs as the 8122. To make matters even worse, the NCL-2000 design allowed grid current to flow freely during modulation. This causes the tube’s plate current curve to take a nasty jag at low values of plate voltage. My friend was able to make the amplifier acceptably clean by installing three 2-watt, 51-ohm, metal-oxide-film resistors per tube, with one resistor in series with each of the three cathode connections per socket. He also changed the tap...
on the 50-ohm grid-swamping resistor to avoid driving the control grid into conduction. This depends on how much driver power you have. The result was appreciated by all concerned.

There are other external-anode triodes besides the 8873, 8874, and 8875s that are capable of taking off at VHF or even UHF frequencies. I have recently talked to two people who experienced instability problems with the 8877. For some reason, the problem seems to occur only when these tubes are used in HF amplifier circuits. Perhaps this is because of the extra lead-lengths required in a HF amplifier design and by the fact that these tubes have excellent gain up into the UHF region. One of the 8877 amplifiers was a DTR-2000. The owner had discovered one of these no-longer-made amplifiers in an unopened box in a dealer’s warehouse. He bought it for not much more than the price of a new tube. He was delighted with his “find” until the “big bang” occurred during his first day’s use.

With a 3-500Z parasitic, the grid may weld to the cathode. I’ve occasionally seen grid wires blown loose and rattling around inside the bottom of the glass envelope. Such a tube may continue to work. The 8877 in the DTR-2000 also had a wire from the grid blown loose, but from only one end. The free end of the wire had shorted to the plate of the tube.

Another problem with the DTR-2000 is that 5.9 volts is applied to the filament, which, according to EIMAC, should never have more than 5.25 volts. This situation will appreciably shorten the life of the 8877’s oxide-coated cathode. Some owners have corrected the problem by installing a 0.1 ohm, 10 watt resistor in series with the filament.

The important thing to keep in mind is that the average amplifier tube, with average gain at VHF, probably will not oscillate in a typical HF amplifier design. The problem shows up when you happen to get a parasitic tube — with lots of VHF amplifying ability — in a HF amplifier circuit.

the why of it

If you wanted to build an oscillator, you would need at least one tuned circuit, an amplifier, and a feedback path. If you had two tuned circuits, one for the input and one for the output, your chances of building a successful oscillator would be even better. Keeping these facts in mind, I started sniffing around the input and output circuitry of my amplifier with a dip-meter. The bandswitch was set to 40 meters — the same band in which the big bang was heard. The drive coupling capacitor at the cathode of the 3-500Zs, which connects to a short length of 50-ohm coax, showed a good dip at 110 MHz. The lead from the plate of the tubes to the plate tuning capacitor showed a good dip at 105 MHz despite the presence of the parasitic suppressor. The plate circuit dip could be moved to 110 MHz by slightly adjusting the plate tuning capacitor. The grid showed a dip near 90 MHz. We have two tuned circuits. We have a feedback path through the “grounded” grid. The 3-500Zs are rated at 110 MHz. It should be capable of sustaining oscillation. It does.

These resonances are nobody’s fault. They are caused by the laws of physics and they cannot be eliminated by any practical amplifier design. The way to control the problem is to use non-inductive resistors in the input and output circuits to destroy the Q of the VHF resonances. Most people are accustomed to using a resistor in the plate lead to control parasitics, but the idea of using such a device in the cathode lead is sadly missing in most HF amplifier designs. This is sad because the cathode lead is an ideal place to accomplish the job, since a resistance in the cathode lead will cause desirable negative feedback — which the plate circuit cannot do. If I had to pick just one place to put a parasitic suppressor, the cathode would be a good choice.

If you’re thinking that your amplifier is immune to the problem, you may be right — for the particular set of tubes that are in service The next time you’re doing your annual spring cleaning inside the amplifier, check the plate lead for resonances with a dip-meter; you’re going to get a nasty surprise. The drive coupling capacitor will also show a resonance whose frequency is mainly dependent on the length of coax that connects to the input bandswitch. The schematic does not show any VHF tuned circuits, but they’re always there. Remember this when you plug in that hot new set of tubes. Two-watt resistors are cheaper than new tubes.

If you own an amplifier that sometimes snaps or spits, this isn’t something to ignore unless you enjoy fixing broken linear amplifiers. The amplifier is trying to tell you something — if you’re paying attention, you can save yourself some expensive grief.

neutralizing grounded-grid amplifiers

Why can’t a grounded-grid amplifier be neutralized, like a Class AB, grid-driven amplifier? In EIMAC’s book Care and Feeding of Power Grid Tubes, it’s stated that grounded-grid amplifiers don’t normally need to be neutralized. This is not a very comforting statement, considering that there appears to be no way to neutralize a single-ended, grounded-grid amplifier, even if you want to. Gonset tried to neutralize a four-tube 811A amplifier with notoriously poor results. If you own one of these, the Collins circuit will cure the problem.

references

SAVE $7.05* with home delivery

Subscribe to Ham Radio

*One year newsstand cost $30.00

Payment enclosed

Here's my address:

Name

City, State, Zip

Payment enclosed

Bill me later

U.S. prices only

Foreign rates: Europe, Japan and Africa, $77.00

for one year, air forwarding service. All other

countries, $87.00 for one year by surface mail.

Please allow 4-6 weeks for delivery of first issues.
universal oscillator circuit

Test crystals over a 200:1 frequency range

For more years than I care to remember, I've been collecting crystal oscillator circuits with the hope that one day I'd stumble across the ultimate oscillator circuit. The ultimate circuit would allow me to test the oscillating frequency of all types of crystals from 100 kHz to 20 MHz. No tuning or parts changes would be needed; I'd just swap the crystal and watch the activity on some kind of meter. I'd also be able to measure the frequency as accurately as possible.

Over the years I've yet to see a circuit with this capability that could be duplicated without too much trouble and, most of all, some kind of explanation of why things were done as they were including all relevant technical details, complete with accurate parts information so you'd know what can and what cannot be substituted. Being in radio repair myself, I felt it would be very nice to have something to count on; not finding anything really suitable, I finally had to come up with some ideas myself. The circuit shown in fig. 1, which I call the OmniTek oscillator, shows the results. It may not be the ultimate oscillator circuit, but so far I've not seen one more versatile or better suited for my needs.

Circuit description

Figure 1 shows the oscillator, Q1, and its associated parts: Q2 (the buffer) and Q3 (the emitter follower with dual output, one for the indicating meter and the other for a counter or other uses). I've seen variations of it before, but not with the 200:1 range this one has. The secret seems to be in the 10 mH choke (scramble-wound miniature coil on a ferrite core) on the drain of Q1. Having tried all kinds of combinations, including other types and makes of L1, I found that only the specified choke worked well and consistently every time.

Various versions of this oscillator — including a handheld test unit with meter and also one that replaced a master multiple crystal oscillator that used a tube (in that well known 6BH6 circuit) — were built. The Activator button is for low activity or 3rd overtone crystals that may need an additional jolt to start. Most of the time, however, it isn’t necessary and could certainly be omitted. If you don’t want to, or cannot, calibrate the oscillator for a 32 pF load by plugging in a known crystal calibrated for 32 pF, omit capacitors C1 and C4. Just be sure that the values of C2 and C3 are correct because their ratio, 51 to 56 pF, is very important for the correct operation of the oscillator. They’re also the correct values for a very close approximation of a 32 pF load. Use 5 percent silver micas or NPO ceramics here. As a matter of fact, all capacitors in the vicinity of Q1 — that is, C2, C3, C4, C5, C7 and C13 — should be either silver micas or NPO ceramics. (I prefer the ceramics because they’re so much smaller.) The trimmer, C1, if used, is often an N450 or N750, though the temperature coefficient really doesn’t matter much. All other capacitors may be standard, and will not affect the operation of the oscillator at all. All resistors should be at least 1/4 watt, except the pot, which should be 1/2 watt. The meter can be just about anything you can find, but full scale deflection sensitivity should not be much over 200 μA; if it is, you won’t get a good (i.e., more than half-scale) indication on the meter on the higher frequencies. The diode across the meter is used to limit the maximum voltage on the meter (to about 300 mV) because on crystals below 10 MHz the output may be high enough to damage the more sensitive meter movements.

By Robert H. Fransen, VE6RF, 227 Cottonwood Avenue, Sherwood Park, Alberta, Canada T8A 1Y3
counter output is tied to the wiper of the pot but could also be connected directly to the emitter of Q3, if desired.

To check the battery (with the terminals mounted downward in the case of the portable version), I drilled a small hole through the bottom below the + terminal. By sticking a probe through the hole (don’t short the probe to the case) you can test the battery voltage without taking the box apart.

application

Although the unit is intended for checking crystals, it can also be used as a rough-and-ready signal generator or spotting calibrator. If you use it for spotting and you want plenty of harmonics, connect two diodes (1N4148) in parallel back-to-back across R2 (see insert in fig. 1). The only effect on the oscillator characteristics will be an increase in the harmonic output.

If you have a circuit board with soldered-on crystals, checking the crystals can be very difficult because taking them off the board often destroys them. A much easier way is to cut the traces to the crystal and put two No. 18 sewing machine needles (mounting shaft ground off) in the oscillator socket holes. Press them against the traces of the board; the oscillator will indicate the crystal quality.

If you don’t intend to use the circuit for this purpose, C13 can be omitted. It’s there only to keep DC off the crystal socket. Omitting C13 allows you to test the battery voltage on the socket connected to the drain of Q1 so no holes have to be drilled. Never try to insert a crystal without holding the box in your hand; if you do, static will damage Q1. A good indication of damage to Q1 (gate leakage) is if the unit oscillates only on the higher frequencies. Although the PWR button can also be a switch, whenever you

fig. 1. 100 kHz to 20 MHz crystal oscillator (32 pF load).

Crystal oscillator parts list.

- C1 2.5–11 pF
- C2 51 pF
- C3 56 pF
- C4 3 pF
- C5 560 pF
- C6 100 pF
- C7 270 pF
- C8 100 pF
- C9, C10, C11, C12 0.01 µF
- C13 1500 pF
- R1 2.2 M ohms
- R2 2.2 k ohms
- R3 1 M ohms
- R4 4.7 k ohms
- R5 500 ohms
- R6 150 ohms
- Q1 MPF 102
- Q2 MPF 102
- Q3 2N2222

All diodes: IN270

L1 is Hammond Number 1530 C102

10 k ohm resistance is 1000 ohms (50 m A, maximum).

Meter is 140 µA at 140 microvolts F.S.

Minimum current at 100 kHz is about 8 mA. Maximum current at 20 MHz is between 14 and 22 mA, depending on the gain of Q1. Frequency shift over a supply voltage range from 5 to 10 VDC is less than 0.5 PPM. Battery is 9 VDC type, Number 1604. Some waveform distortion takes place below about 3 MHz. The ACTivate button is used to test and start 3rd overtone crystals that may need more feedback to start. The 5th, 7th, and 9th overtone crystals will probably not oscillate in this untuned circuit. Basic circuit (with C1 and C4 left out) is for a 32 pF load. Meter can be up to 200 µA full scale, though 50 to 100 µA are preferred. Minimum and maximum currents are for the whole circuit.

R2 with 1N4148 diodes for increased harmonic generation.

April 1986
check the battery make sure there's no crystal installed so the circuit uses maximum current.

Construction and wiring are not critical. Just try to keep the leads near Q1 as short as possible and install Q1 in a manner that will allow it to be replaced easily, because it's easily destroyed.

If you want to keep things simple and not use C1 or C4 or the ACT button, install C2 (51pF) and C3 (56pF) and check your frequency. If it's too high, a gimmick wire capacitor across C2 will bring the frequency down. If the frequency is too low, replace C2 with a 47pF capacitor and try the gimmick capacitor again on C2 — that is, if you have a good calibrated crystal. If you don't, install the caps and forget about calibration. Also keep in mind that 3rd overtone crystals don't oscillate at precisely 1/3 of their frequency because they're series-calibrated. It's understood, of course, that the indication on the meter is strictly relative. But after a bit of use, and a knob on the pot with a calibrated skirt, you'll get the hang of it pretty quickly and know what to expect.

Other variations of this circuit are possible. Since supply voltage and load variation don't, for all practical purposes, affect the frequency (keep your hands away from the crystal), further experimenting may be in order, perhaps with other 10mH chokes.
The ST-8000 HF MODEM is a high-performance, fully adjustable modulator/demodulator for use in high-frequency radio data systems. The HF Modem features fully adjustable frequencies and baud rates, memories, diversity, regeneration, print squelch, CRT tuning indicator, and multiple AM or FM detectors. The bandwidths of the input filter, Mark filter, Space filters, and post-detection filters are tracked with the selected data rate (10 to 1200 baud) to assure optimum signal recovery for all signals. Front panel parameters may be controlled from an external ASCII terminal or computer. A full complement of I/O interface options allows use of the ST-8000 with virtually any terminal and radio system. Install the HAL DS3100ASR CRT terminal and ST-8000 HF Modem in your communications system and enjoy the benefits of a data system designed for radio operators.

- Tuneable from 500 to 4000 Hz in 1 Hz steps
- Set 10 to 1200 Baud in 1 baud increments
- Four input band-pass filters
- 32 matched Mark and Space filter bandwidths
- Mark and Space 7-pole linear phase LP filters
- Filter BW and selection computed and set by microprocessor front panel controls
- RTTY shifts from 40 to 3500 Hz
- Eight programmable non-volatile memories
- Split or transceive RX/TX tone selection
- FM or AGC-controlled AM signal processing
- -65 to +20 dBm dynamic range (AM or FM)
- Exclusive HAL Digital Multi-Path Correction (DMPC™)
- M/S, Mark Only (MO) or Space Only (SO) detector modes using Adaptive Threshold Detector (ATD™)
- Adjustable Print Squelch and non-diversity Amplitude Squelch
- Exclusive HAL Infinite Resolution Diversity Control (IRDCTM)
- Digital signal regeneration
- ASCII/Baudot code and speed conversion
- Quick Brown Fox and RYRY . . . test message generator
- Programmable Selective-call (SEL-CAL) printer control
- Transmitter PTT KOS control
- Antispace
- RS232C, MIL-188C, or TTL Terminal I/O
- LP1200 Option for polar or neutral loop
- 8, 600, or 10k ohm input impedance
- 8 or 600 ohm output with adjustable level
- AFSK or FSK transmitter outputs
- Remote terminal or computer control of all demodulator parameters
- Exclusive HAL Spectra-Tune™ and X-Y Mark/Space CRT tuning indicators with automatic trace on/off control
- 100-130/200-250 VAC, 44-440 Hz power
- 5.5" high rack mounting cabinet (14" deep)
- Shielded and filtered for radio system use

TM Infinite Resolution Diversity Control (IRD), Spectra-Tune, Digital Multi-path Correction (DMPC), and Adaptive Threshold Detector (ATD) are trademarks of HAL Communications, patents pending.

Write or call for complete ST-8000 specifications. We think you will agree that it opens new frontiers in radio data communications. Contact the Government & Commercial Products Division for price and delivery information.

HAL Communications Corp.
Government & Commercial Products Division
1201 W. Kenyon Road
P.O. Box 365
Urbana, IL 61801-0365
(217) 367-7373 TWX: 910-245-0784

More Details? CHECK-OFF Page 126
surface-wave OTH radar — more QRM?

The Wireless Institute of Australia is reportedly developing an experimental over-the-horizon (OTH) radar that operates only over the sea. The radar transmits a vertically-polarized radio wave close to the sea surface, inducing electrical currents in the water. This causes the radio wave to adhere to the sea surface and therefore travel around the curvature of the earth. There is a possibility that the reflected energy will couple with the sea surface for the return journey.¹

When I read this, it rang a bell; somewhere I’d heard that experiments have been run in the Caribbean in which long-distance VHF communication was established between ships by placing vertical Yagi antennas very close to the waterline. When the antennas were raised more than a few feet above the sea, the signals dropped in strength. The guess was that the layer of ocean moisture directly above the surface of the water provided the conduit for the radio wave.

That’s all I know about the Australian report and the Caribbean experiment. If any reader knows more about the ocean-wave experiments, I’d certainly like to hear about it. How about a test between California and Hawaii?

the “underwater antenna”

Jokes and tall stories about underground transmitting antennas and antennas immersed in water have appeared in Amateur literature for decades. I’ve also heard that an antenna immersed in water will not only work, but because of the dielectric constant of the liquid, be markedly smaller in size, for a given radio wave-length, than antennas not immersed in water. Sounds like a great idea — a 160-meter antenna in the back yard swimming pool!

In 1978 a British patent (GB2,001,804) was filed by the Plessey Company for an “underwater antenna” (fig. 1). The idea proposed in this patent is a variation of the principle of dielectric loading. According to an article in Radio Communication, the patent application reads, in part, as follows:

It has been proposed to submerge an antenna consisting, for example, of a metallic rod in water, but this has been found to suffer from the practical disadvantage that through contamination and absorption of carbon dioxide into the water, degradation results and the antenna efficiency rapidly deteriorates.

It is therefore proposed to use an antenna structure surrounded by water or similar acceptable liquid by including a sealed container shaped so that the element is completely surrounded by the liquid. This can take the form of a sealed glass or plastic container filled with water (some anti-freeze can be added for low temperature conditions). The process of filling and sealing the container is preferably carried out under chemically-clean conditions.²

The patent claimed that an antenna rod length of 15 cm (about 6 inches) used at 100 MHz gave an increase in signal strength of over 200 percent compared with a rod of the same length in free air.

Discussing this antenna, Pat Hawker, G3VA, says, “The idea of surrounding an element with water reminds me of a problem known to exist with some wideband television receiving arrays: a significant fall-off in performance on the higher frequency channels when it rains and water collects on the elements. Clearly what is happening is that the resonant frequency of the array is being lowered by the rain — further proof of the effects of dielectric loading. . . . But one foresees an unhappy operator reporting: ‘Sorry OM, signals are fading, my antenna has sprung a leak.’”

great circle maps

Not easy to find, these days. I wanted a large Great Circle Map centered on San Francisco. But where to get it? I did a little footwork and found out that these maps can be obtained from the Office of Distribution Services of the Defense Mapping Agency (Hydrographic Center). The mailing address is: DMA-ODS, attention DCCP, Washington, DC 20315. Great Circle maps cost $5.50 each and may be ordered by stock number from the catalog. To order the catalog, send $2.25 to the address above and request catalog No. CAT-P2V10 which, according to the obliging individual who answered my call, is a “goldmine of information.”

more on the 160-meter end-fed antenna

In my last column I mentioned my long, 160-meter end-fed antenna, series tuned with a capacitor and matched to 50 ohms with a shunt coil. I’ve had it on the air for some weeks now and find it to be the best antenna that I’ve been able to put up on this particular piece of property, considering the zoning restrictions. Best DX to date has been Japan and Siberia, zone 19.

For those who have less space, the quarter-wave Marconi is still a good
antenna. It can be easily matched to a 50-ohm feed system by the technique shown in fig. 2. The antenna is cut to your favorite operating frequency in the band by the formula: length = 234/f (MHz). For 1825 kHz, the antenna is about 128 feet, 3 inches (39.09 meters) long. If the antenna is entirely vertical (an unlikely assumption), the feedpoint resistance (R) at resonance will be about 36 ohms. As more and more of the antenna lies in the horizontal plane, the feedpoint resistance decreases. In my tests, with most of the antenna wire running horizontally about 40 feet above ground, the feedpoint resistance ran close to 15 ohms.

You see that a simple L-network (A) can be used, made up of a series-connected coil and a shunt capacitor. The coil is quite small, but the capacitor value is rather large. The coil can be a small B & W "Miniductor" about 2 inches (5.08 cm) in diameter, with a tapping clip for adjustment. Only 2.5 mH is required to do the job under all circumstances (see chart). Note that maximum inductance is required when the feedpoint resistance is one-half the value of the input resistance of the network.

The tapped coil presents no problem, but obtaining the shunt capacitor can be vexing. Most end-fed 160-meter Marconi antennas fall into a feedpoint resistance range of 10 to 25 ohms. This calls for a shunt capacitor value of approximately 3500 to 1500 pF. The total capacitance can be made up of several "postage stamp" silver mica capacitors placed in parallel with a large variable capacitor. In my case, I have a 900 pF variable capacitor picked up at a flea market and a rotary switch that adds fixed capacitance at 500 pF per switch position.

This combination allows excellent antenna matching to be obtained all across the 160-meter band. I use an SWR meter to determine antenna match (the meter being placed between the network and the short coax line to the transmitter). A practice run, tuning up every 25 kHz across the band, provides logging points for the coil and capacitor settings so that no time is lost when I want to QSY from 1810 kHz to work a UAO calling CQ on 1915 kHz.

The chart also shows why it's sometimes difficult to get a good match to a low frequency mobile antenna. The matching coil becomes quite small for...
low values of feedpoint resistance and the shunt capacitor becomes quite large!

match for the HF mobile antenna

The 80- or 160-meter mobile antenna presents a matching and loading problem. It's generally agreed that center loading provides the greatest operating efficiency for such an antenna, and many Amateurs have had success with an 8-foot (2.43 meter) antenna loaded in this fashion. Unfortunately, the feedpoint impedance of such a loaded antenna on the 80 and 160-meter bands, runs in the region of 20 ohms, of which only about 0.5 ohms is radiation resistance, the balance being made up of loading coil losses.

The B-network shown in fig. 2 is often used for mobile whip antennas. All that's required is a small shunt inductance in the range of 1.5 to 2.5 \(\mu \)H for 160-meter operation. The series capacitance can be the actual antenna adjusted to provide a capacitive reactance at the base, that is, one that's slightly shorter than its resonant length.

Adjusting the antenna is quite simple. With the base matching inductor removed, a two-turn coil is connected between the base of the antenna and the grounding point on the vehicle directly below the antenna. A dip oscillator is used to set the antenna on frequency. Loading coil turns are adjusted to provide indication of antenna resonance. The base coil is now inserted in place of the dip oscillator loop and an SWR meter is placed in the coax line to the transceiver. Reduced power is applied to the antenna at the resonant frequency and the antenna is readjusted to resonance by pruning the loading coil. Lastly, the base inductor is adjusted for lowest SWR at the antenna resonant frequency.

The adjustments are slightly interactive and the presence of the experimenter in the immediate field of the antenna will tend to detune it a bit. The process sounds tricky, but it really isn't . . . it just takes a bit of patience and common sense.

fig. 3. Antenna has reactive feedpoint impedance if not resonant at required frequency. (A) Capacitive reactance if shorter and (B) inductive reactance if longer.

fig. 4. Yagi driven elements shorter (A) and longer (B) than resonance can be matched to coax line with appropriate type shunt reactance.

the simplified L-network

The two matching networks shown in fig. 2 can be redrawn as shown in fig. 3 in which the series component is represented by an off-resonant antenna. Figure 3A illustrates the case in which the antenna is shorter than the resonant length. Figure 3B shows the case in which the antenna is longer than resonant length. The circuit shown in fig. 3A is used in some Yagi beam antennas, where the inductor takes the form of a coil, or hairpin, placed across the feedpoint in shunt with the driven element. In this case, the driven element is shortened slightly to provide a capacitive reactance at the feedpoint.

By using the reactance of the antenna element as one arm of the L-network, either by lengthening or shortening the element past the resonant point, an effective and inexpensive matching system that requires only one additional shunt element — either a capacitor or an inductor — can be made.

Use of this matching scheme with a balanced Yagi element is illustrated in fig. 4. In fig. 4A the driven element is made slightly shorter than resonance and an inductor is placed across the feedpoint. The inductor may take the form of a balancing device so that impedance transformation and transformation to a coaxial line is accomplished with the same device. Most high frequency commercial matching devices take this form because it's easier to make a waterproof inductor that will withstand high power than a suitable capacitor. (Matching systems of this general type are discussed in detail in the new edition of the Beam Antenna Handbook.)*

the EME directory

A reprint of the WA1JXN 144-MHz EME (Moonbounce) directory is now available. Listing EME operators worldwide, including their addresses and the equipment they use, this 16-page com-

*Available from Ham Radio’s Bookstore: $9.95 plus $3.50 shipping and handling.
pendium is available at no cost (except postage). Send five first-class stamps (or 5 IRCs) — no envelope, please — I'll supply a large one. Address your request to me at EIMAC, 301 Industrial Way, San Carlos, California 94070.

references

ham radio

short circuits

reflector antennas

Eqn. 1 in W1JR's February column ("Reflector Antennas, Part I," page 54) should be corrected to read as follows:

\[G = 10 \log (0.55 \cdot 4\pi A/\lambda^2) \]

= 10 log \((6.9\pi A/\lambda^2) \)

calibrated S-meter

The value of the Pin 12 resistor shown in fig. 3 of W7SX's article, "A Calibrated S-Meter" (January, page 23) is 2000 ohms.

upside-down battery

In fig. 8 of 89ATA's February article, "Two-Tone Signal Generator," the battery was inadvertently shown upside-down.
SPRING SPECIALS
POWERFUL PACKET.

New rigs and old favorites, plus the best essential accessories for the amateur.

3621 FANNIN ST
HOUSTON, TX 77004-3913

CALL FOR ORDERS
1-713-520-7300 OR
1-713-520-0550

ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT
Kenwood
Kenwood 15940S, conteste’s delight 479.95
Icom RT-7000 25-2000 MHz 795.00
Alpha (LTO) 25.00
Icom CI-200 469.95
Sanitec ST-20T Hand Talkie 289.00
Regency UC-102 VHF 2 Channel Hand Talkie 150.00
Icom IC-755 749.00
Ten-Tec 2510 (Easy OSCAR) 489.00

QUANTITY DISCOUNTS
Save 206.00

Want a good discount? Get three of your friends and order Madison’s special four lot prices. For example: ICOM IC-27A 1270.00
Call for four lots on other rigs

ACCESSORIES
BMW VSTAR ANTENNA TUNER 89.95
Heli C/H C/4 HCS 89.95
Hel Be Mi10 Boom Mike head 53.95
CIS Private Patch III 469.95
FLUKE 77 auto ranging digital multimeter 125.00
Bird 43 Wattmeter 94.95
Bird Elements, HS90 0, A-E/FB 48.00
In Stock
Dawna CNE202, 20-200 2000W 109.95
Dawna CNE600 140-450 2000W 129.00
Sylabex 35/35, 35 amp 12VDC, 25 amp copper, overvoltage protected 149.00
Airline EL 230D Excellent buy 79.95
Nye M55-A (for the big boys) 529.00
Shure 444D 54.95

KEYS
Bench & Vibroplex Less 10%
Bench is now improved. Screws & springs, all stainless steel and extra hand polishing
Vibroplex Carrying Case 20.00 w/purchase
MFJ Super keyboard # 496 169.00
Nye FSK 001 Keyer 58.00

TUBES
Collins & Drake Replacement tubes stock
GE 6146B 11.95
Emic 3-500Z 109.95
GE Industrial Tubes Call
GE 1287A 6.00
GE 6K36 11.95
Cotron 690 69.00

BOOKS
We stock SAMS, TAB, ARRL, RSGB, Ameco Radio
Publications. Call
Some of the best buys are the RSGB books.
CALRAD 65-297 SWR, Relative Power Meter 37.95
CALRAD 150 MHz, KW +

PACKET POWER
AIA, KX1 Acorns RTTY, ASCII, AMTOR also 199.00
AIA PK-80 TAPI II 199.00
NEW Kontinent Packet II 199.00
Icom 271A Great packet radio 199.00

SERVICES
Alignment, any late model rig 50.00
Flat fee Collins rebuild 50.00

ANTENNAS
Ipsolife 44.95
A4 269.00
402C 279.95
424B 84.00
215MB New, 15 EL 2 beam 79.95
AOP-1, Complete Oscar Antenna 149.95
Blumens 80 & 80 vertical 125.00
HF2V, 80 & 40 vertical 119.00
HF4B 199.00
Hustler G7-144 119.00
Ham Radio Receiver, TX. CD45.2 149.95
KLM HF World Class Series Antennas 129.00
Alpha Delta Twin Stapes 49.00
Cox Seal 2.00 roll
BWP Doppler 1/2 roll
1/4 wave 110.00
Hy Gain THDXS 489.00
Explorer 14 349.00
Discover 1 element 43M 169.00
2 element 43M 389.00
3 element only 249.00
V2S (2 meter) 59.00
HGSF5S 52 ft. crankdown tower Prepaid freight when you order other Hy Gain items with tower.
KLM KT-34A 339.00
40M-2 299.00

OTHER ANTENNAS
Larsen K-L duplexer 195.00
Adjustable 50' 3G on Glass Antenna 136.00
Antico 2M, 5/8, Mag. Mount, Comp 25.00
Avanti APRHS-50G 40.00
Philly Shain Call

SURPLUS
Collins parts 175/3535WM2/75/44KWS 1 Specify part
No. 25 Pin Solid tantal chip sockets 25 each
Signal Batteries Exact Replacement Yaesu 208/207 25 each
150MF/340V DC 1.5
1.5 Amp400V full wave bridge rectifier 1.59
2.5A1000VPM Fxpo diode 20 each or 99.00/100
0015/10KV 1.5
3N231 4 inch fentro rod 1.95
356FP cap 1.95
Sanyo AA Nickel cells rechargeable 2.50 ea
2-4.5, 6.8 pin mic plugs 3.00
Drake—Collins wire plug 2.00
Close out lots & accessories. All the time Call
We may have what you're looking for.

BELDEN
9913 Low loss, solid center, fdbk shield 43.00
8214 RFG Foam 99.00
8327 RG8 37.00
8267 RG213 52.00
8000 14 Gauge stranded copper, 100 ft. 127.00
8448 10 conductor cable 31.00
9415 Heavy duty 2-16 Ga 6-18 Ga 68.00
9058 RG6 19.00
8403 Mc Cable, 3 cond & shield 69.00
100 feet 8214 wires installed 19.00
Belden 175/340VDC 11.00
International Wire RG214, non-mil good cable 70.00
International Wire RG138 exact replacement for Belden 9913 95.00

AMPHENOL
8115P PL259 Silverplate 1.25
UG176 reducer RG215 30.00
631JD Double Female UHF 2.00
82-61 N Male 5.00
82-97 Female Bulkhead 6.00
82-63 Female Male N 4.00
82-98 N m8 9.00
New 82-202-1006 N Male fits 9913 5.00

TOWER ACCESSORIES
1/4" E.H. Cable, Rohin US, 1000 ft. 250.00
3/8" E.H. Cable 219.00
1/4" Pallet Cable, D100 #7 x 7 strand, import 15.99
1/4" Pallet Cable, 1700 #7 x 7 strand, import 12.99
1/8" x 6 E.8" Turntable 7.95
3/16" Wire Rope Clips 4.00
1/4" Cables clips 5.00
1/4" Thimbles 4.50
Porcelain 5000 GUY Insulator (3,16) 1.99
Porcelain 5000 guy insulators (1,3,4) 3.39

COMPUTER STUFF
Karlincom UUTK 319.00
Fits any computer (even yours) 19.00
Software available 99.00
Monroe University (Great C.W program for C-64) 39.00

USED EQUIPMENT
All equipment, used, clean, with 90 day warranty and 30 day trial. Six monthly trade against new equipment. Sale price refunded if not satisfied.

POLICIES
Minimum order $10.00. Mastercard, VISA, or C.O.D. All items FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call any time to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty. K5SU is January’s Winner.

CLOSE OUT CORNER
AFA KT-3 $99
Butternut Mark 30 $25
Collins 350B-2, KMA-2A mobile mount $99
Karlincom MicroTTL $50
Kenwood TS 5 $13
Microlog AFT $99
Tech Pro com 350 $59, Pro com 300 $29

DON’S CORNER
80 meter CW is for me again, with my new ORION rotatable dipole with remote tuner model CD680. It also covers 75 meters for you phone fanatics. It’s priced at $349 and is UPS shipable. The antenna is 48 feet long and weighs 25 lbs. The major advantage of this antenna is the ends of the ground and you get lower noise reception

FEBRUARY WINNERS
N9PEH N4KDF

122

MADISON ELECTRONICS SUPPLY
3621 FANNIN ST
HOUSTON, TEXAS 77004
1-713-520-7300 O6 1-713-520-0550

April 1986
computer control
of ICOM R-71, 271, 471, and 751 radios

Extend performance and versatility by combining analog and digital techniques

Does the idea of using a computer to control your radios conjure up images of driving elaborate remote bases with touchtone commands from a handheld? It needn’t. There are less exotic uses of computer control that can really make things easier around the shack.

What else can you do with computer control? Suppose you want to monitor a net, a beacon, or a bulletin, but can’t be near the radio. No problem — get a computer. It can turn on the radio at a prescribed time (say 18 minutes past the hour), tune it (perhaps to WWV), turn on a tape recorder (to record a minute’s worth of propagation bulletin), and then turn everything off. You can listen to the tape at your convenience.

Working satellites such as OSCAR-10 is another area in which a computer can generally simplify operation. If you’ve ever listened to an Amateur satellite, you’ve found the passband filled with “aaahhh” or machine-gun strings of dits. Why?

To use a satellite, you must transmit on one band and receive on another; few Amateurs are adept at operating two radios simultaneously. To complicate matters, the radios are on opposite sidebands . . . to tune, you turn one knob clockwise and the other counter-clockwise — a trick easily learned by 5-year-olds, but not by adults. Doppler shift also has to be accounted for. As a result, Amateurs spend half their time trying to find their signal in the satellite’s passband. The solution? Get a computer. Tune the receiver and let the computer read its frequency and tune the transmitter. A piece of cake!

Interested in these and other applications of computer-controlled radios? Computer control of ICOM’s latest series of radios can be an interesting project, and requires only some simple hardware. Read on.

computer-controllable radios

ICOM has been manufacturing computer-controllable radios for many years, beginning with the 701/211/245 series and continuing with the R-70/720/251/255/260/451 series. Control of the earlier radios was generally limited to changing frequency and mode. ICOM’s latest series of radios, the R-71, 751, 271, and 471, allow additional radio functions to be controlled by the computer, including the 32 memories. The newly announced 1271 will almost certainly be controllable in the same way. Like earlier ICOM radios, the interface uses a parallel handshake, with all radios daisy-chained on a common bus. Unlike earlier radios, the computer interface isn’t included with the radio, but must be purchased separately. The interface is the EX-309 Microprocessor Interface Connector, which sells for $37 and consists of a small board, approximately 2 inches by 2 1/4 inches (5.08 by 5.72 cm), containing two octal latch ICs, a voltage regulator, and a 24-pin female IEEE-488 (Centronix-type) connector. (Previous ICOM radios used pins on the 24-pin Molex accessory connector for computer interface signals.)

required interface board

The EX-309 interface allows external 8-bit data to be gated onto and off of the radio CPU’s internal 8-bit data bus. Signals available on the external connector are an 8-bit bidirectional data bus, a service request (SRQ) line, read (RP) and write (WP) request lines, a data valid (DAV) line, and squelch and send lines that parallel signals on the Molex connector (see fig. 1). Ground and 13.8 volts (100 mA maximum) are also available on the connector. You’ll need 14 TTL lines on your computer: eight bidirectional, four output, and two input. If you don’t already have these lines, you can add them using a parallel interface adapter chip (e.g., a 6522, 6820, 6821, or 8255) or build them out of TTL latches.

The EX-309 is easy to install once you realize that

By Richard Bisbey II, NG6Q, Suite 1001, 4676 Admiralty Way, Marina del Rey, California 90292-6695

April 1986
you can get the connector through its mounting hole if you insert it "end first." (You’ll have to remove either the metal plate or the rubber dust cap covering the mounting hole first, of course.) The board mounts on the rear left bottom of the 271/471 and on the rear right side of the 751. There are RF chokes on the EX-309 board. However, you may want to insert ferrite beads in the lines to minimize external signals entering the radio and being re-radiated between the connector and the board. If you go to the trouble of desoldering the connector, you might consider replacing it with a DB-25, which takes the same space, is cheaper, and is more readily available. You don’t have to worry about maintaining compatibility with other accessories, since the only ICOM accessory that uses the EX-309 is the CT-10 RTTY TU, which is not currently being imported into the United States by ICOM America. If you stick with the original connector, you can get its ribbon connector male mate for $7.95 from Jameco, 1355 Shoreway Road, Belmont, California. Be sure to specify the spring type, although the screw type will work satisfactorily.

The EX-309 has three connections inside the radio: data bus (P4), control bus (P5), and send/squelch (J3). For the 271/471, P4 goes to Logic Board J3, P5 to Logic Board J1. For the 751, P4 goes to Logic Board J15, P5 to Logic Board J10. If you are installing the EX-309 in a 471, be sure to correct your schematic by adding the 13.8-volt line to Pin 9 on P5. The third connection, from J3 to the send/squelch lines, is made to Front Panel P12 on the 271/471, to the AF VR board on the 751. This connection is not listed in the instruction sheet that comes with the EX-309. If you have more than one radio on the external bus, you probably won’t want to make this third connection. If you were to make the third connection, the squelch and send lines for all the radios on the bus would be connected in parallel, and you couldn’t remotely key individual radios or tell which radios were or were not squelched. Also, the squelch line on the 751 is 8 volts and requires a 5.1 volt zener diode to ground at the connector to make it TTL-compatible.

Once installed, the interface is easy to use. The protocol to use in communicating with the radio is as follows:

1. Drop SRQ to 0V (to get the radio’s attention).
2. Use procedure A or B (see below) to send or receive a byte.
3. If not finished, go back to step 2.
4. Raise SRQ to 5V (to tell the radio you are finished).

To send a byte to the radio, follow Procedure A, as follows:

1. Set 8 bits of data on the data bus.
2. Raise WP to 5V (to tell the radio you are writing data to it).
3. Wait for the radio to drop DAV to OV (to ACK receiving the data).
4. Drop WP back to OV (to ACK the ACK).
5. Wait for the radio to raise DAV to 5V.

To receive a byte from the radio, follow Procedure B, as follows:

1. Raise RP to 5V (to tell the radio you are reading data from it).
2. Wait for the radio to drop DAV to OV (to ACK sending the data).
3. Get 8 bits of data from the data bus.
4. Drop RP back to 0V (to ACK receiving the data).
5. Wait for the radio to raise DAV to 5V.

Only one command can be issued to the radio each time the SRQ line is lowered. Also, there is a mini-
THE STANDARD OF EXCELLENCE
Definitely Superior!
AZDEN PCS-5000
COMMERCIAL-GRADE

UNPRECEDEDENT WIDE FREQUENCY RANGE: Covers 140.000-
153.000 MHz in steps that can be set to any multiple of 5 kHz up to
50 kHz.
CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range
facilitates use of CAP and ALL MARS FREQUENCIES including
NAVY MARS. COMPARE!
TINY SIZE: Only 2 inches high, 5 1/2 inches wide and 7 1/4 inches
depth.
MICROCOMPUTER CONTROL: Gives you the most advanced
operating features available.
UP TO 11 NONSTANDARD SPLITS: COMPARE this with other
units.
20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains
frequency, offset information, PL tone frequency.
DUAL MEMORY SCAN: Scan memory banks separately or to-
gether. ALL memory channels are tunable independently.
COMPARE!
MEMORY SCAN LOCKOUT: Allows you to skip over channels
you don’t want to scan.
TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits
are quickly reset. Scan ranges separately or together with inde-
dependently selective steps in each range. COMPARE!
BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied
channel. Delay scan provides automatic auto-resume.
DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT):
Always stops on frequency desired when scanning.
PRIORITY MEMORY AND ALERT: Unit constantly monitors one
memory channel for signals, alerting you when channel is
occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored
for up to 3 years even if power is removed.
FREQUENCY REVERSE: Allows you to listen to repeater input
frequency.
ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are
easily seen in the dark, and actuation is positively verified audible.
CRISP, BACKLIT LCD DISPLAY: Easily read no matter what
the lighting conditions.
DIGITAL S/RF METER: Shows incoming signal strength and rela-
tive transmitter power.
MULTI-FUNCTION INDICATOR: Shows a variety of operating
parameters on the display.
FULL 16-KEY TOUCHTONE PAD: Keyboard functions as auto-
patch when transmitting.
MICROPHONE CONTROLS: Up/down frequency control and
priority channel recall.
PL TONE GENERATOR BUILT IN: Instantly program any of the
standard PL frequencies into the microcomputer. COMPARE!
TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibil-
ity and audio fidelity. COMPARE!
HIGH/LOW POWER: Select 25 watts or 5 watts output — fully
adjustable.
SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for
20-db quieting. Commercial-grade design assures optimum dy-
namic range and noise suppression. COMPARE!
DIRECT FREQUENCY ENTRY: Streamlines channel selection and
programming.
OTHER FEATURES: Rugged dynamic microphone, built-in spea-
er, mobile mounting bracket, remote speaker jack, and all cords,
plugs, fuses and hardware are included.

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3531 Telex 80-3356

MANUFACTURER:
JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku, Mitaka, Tokyo, 181 Japan
Telex: 781-2822452
Orders & Quotes Toll Free: 800-336-4799
(In Virginia: 804-634-9101)
Information & Service: 804-634-9103
Service Department: 804-634-9473
3626 Jefferson Davis Highway, Woodbridge, Virginia 22191
Store hours: Mon. - Fri. 10 am - 8 pm
Sat. 10 am - 6 pm
Close Fri. at 5:30 pm
Sun. 10 am - 5:00 pm
Closed Mon.
(Closed holidayuba days for delivery)

Visit Our New New England Store
37 South Main Street, New Hampshire 03070
New Hampshire Orders: "I"
Information & Service: 603-938-9101
New England Dealers: 800-809-3710
(Store hours: Monday - Friday)
Handy Logging Area
Call for quotes

Antennas
HF VHF, SWL, scanner, marine, & commercial for mobile or base.
Cushcraft Mini-Products
BBW
Van Gorden
KLM
AE
Butternut
Moxley
Hustler
Telez Hy-Gain
Larsen

Towers
Unarco-Tohn, Hy-Gain, Tri-Ex
Ask for special quotes on package deals including catar, guys, connectors, turnbuckles, etc.

Accessories
Kenpro Alliance
BBW
Telex Hy-Gain
Dawoo
Bellcom
Amphenol
Astron
B & K Precision
Welt

Amplifiers
Vocom
Davos
Ameritron
Amp Supply
TE Systems
Tokyo Hy-Power

Computer Stuff
Packet Radio
Hardware and Software for RTTY/Morse
Hall
Kantronics
AEA
Microlog
MFG
Ham Data Amateur Software

BELDEN 9913/9914 CABLE
“N” Connectors $3.50 Crimp or Solder Type

Fox International, Inc.
717 W. Union Hills Dr., #3-190
Phoenix, AZ 85027
(602) 582-4124

“we specialize in custom connectors”
mum time the SRQ line must remain high before it can again be lowered as well as a minimum time between lowering WP and raising SRQ when sending data to the radio. This limits the rate at which commands can be issued. Generally, the radios can accept up to about 50 commands per second. Thus, the minimum dwell time for frequency-hopping, spread-spectrum uses would be 20 msec (subject to the settling time of the radio's PLL). Finally, if a radio fails to acknowledge an RP or WP within one second, it is either not connected or not powered on, or is simply otherwise occupied (e.g., scanning).

commands and their operands

Each 8-bit byte on the data bus is actually two 4-bit nibbles. The four most significant bits of each byte encode the command (or operation code). They are:

- 1x—Band Data (read only).
- 2x—Frequency Data (read/write).
- 3x—Mode Data (read/write).
- 4x—Offset Data (read/write).
- 5x—Set Memory/VFO (write only).
- 6x—Memory Read/Write (write only).

The four least significant bits of each byte encode address and data operands. The first hex digit is the radio's address. It is always written to the radio. Valid addresses are:

- x1—HF — R-71 or 751
- x2—50 MHz
- x3—144 MHz — 271
- x4—220 MHz
- x5—440 MHz — 471
- x6—1200 MHz — 1271

(Tou bad ICOM didn't leave x6 for 902 through 928 MHz and move 1200 MHz to x7.) Data operands follow the address, and, depending on the command, may be either written to or read from the radio. Each data operand consists of a string of hex digits delimited by "D" and "E." The radio will ignore all write data between the address operand and the first delimiter, "D."

specific command information

The following is a description of each command along with its operands. The actual hex bytes exchanged with the radio are shown, with the command in the high nibble and the operand values in the low nibble.

Command 1 — band data. This command allows the computer to read the frequency range of a radio. The frequency range is returned as:

1D 1m 1m 1m 1m 1m 1E 1D 1n 1n 1n 1n 1n 1E

where mmmmmm and nnnnnn are the upper and lower frequency limits in tens of kHz. To request the frequency range of a 471, send the hex byte 15 (command 1, address 5), and then read back the following sixteen bytes:

1D 10 14 14 19 19 19 1E 1D 10 14 13 10 10 1E

i.e., 0 4 4 9.9 9 to 0 4 3 0.0 0 MHz.

Command 2 — frequency data. This command allows the computer to read or write the radio's frequency. The frequency is a nine-digit number; the most significant digit is GHz, the least significant is tens of Hz. Attempts to set a radio to a frequency outside its band limits are ignored. To set a 271 to 145.67893 MHz, send:

23 2D 20 21 24 25 26 27 28 29 23 2E

i.e., 0 1 4 5. 6 7 8 9 3 MHz.

The radio will set unsent digits to zero, so the sequence: 21 2D 20 20 21 2E would set a 751 or R-71 to WWV at 10 MHz. To read a radio's frequency, send hex 2# (where # is the radio's address) and read back eleven bytes (2D, nine digits with 2 in the leftmost nibble, and 2E).

Command 3—mode data. This command allows the computer to read or write the radio's operating mode. Operand values are:

0 — LSB
1 — USB
2 — AM
3 — CW
4 — RTTY
5 — FM
6 — CW-Narrow
7 — RTTY-Narrow
8 — LSB
9 — USB
A — AM
B — CW-Narrow
C — RTTY-Narrow
D — FM

Not all modes are possible on all radios. For example, the 271 and 471 lack RTTY capability. Thus, 4, 7, and C wouldn't make sense for those radios, and, in fact, would leave the radio in an indeterminate mode. The sequence 31 3D 3C 3E would set a 751 to RTTY-Narrow, while the sequence 35 3D 31 3E would set a 471 to USB. To read mode data, send hex 3# (where # is the radio's address) and read three bytes (3D, one byte of mode with 3 in the leftmost nibble, and 3E).

Command 4 — offset data. This command allows the computer to read or write the DUPLEX offset. It is similar to the OW button on the 271/471. The operand is a five-digit number, the offset in kHz. The sequence:

43 4D 40 40 46 40 40 4E

i.e., 0.0 6 0 0 kHz.

would set the offset of a 271 to 600 kHz (we didn't really need the last two zeros), while the sequence:
45 4D 40 45 4E would set the offset of a 471 to 5 MHz. You can also read back an offset.

The Offset command is of dubious value. First, there’s no way to specify the offset direction or turn DUPLEX on or off. DUPLEX operation can be controlled only by front panel buttons. Also, while DUPLEX values can be stored and retrieved on the 751, DUPLEX operation is not a supported feature! The DUPLEX button on the front panel of the 751 is really SPLIT — i.e., you transmit using one VFO and receive using the other.

Command 5 — set Memory/VFO. This command allows the computer to switch between a VFO and the 32 memories. It is write-only. Memory/VFO is denoted by two hex digits. The values are:

<table>
<thead>
<tr>
<th>Command</th>
<th>Memory/VFO</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>VFO</td>
<td>11</td>
</tr>
<tr>
<td>01</td>
<td>VFO</td>
<td>12</td>
</tr>
<tr>
<td>02</td>
<td>VFO</td>
<td>13</td>
</tr>
<tr>
<td>03</td>
<td>VFO</td>
<td>14</td>
</tr>
<tr>
<td>04</td>
<td>VFO</td>
<td>15</td>
</tr>
<tr>
<td>05</td>
<td>VFO</td>
<td>16</td>
</tr>
<tr>
<td>06</td>
<td>VFO</td>
<td>17</td>
</tr>
<tr>
<td>07</td>
<td>VFO</td>
<td>18</td>
</tr>
<tr>
<td>08</td>
<td>VFO</td>
<td>19</td>
</tr>
<tr>
<td>09</td>
<td>VFO</td>
<td>20</td>
</tr>
<tr>
<td>0A</td>
<td>VFO</td>
<td>21</td>
</tr>
<tr>
<td>0B</td>
<td>VFO</td>
<td>22</td>
</tr>
<tr>
<td>0C</td>
<td>VFO</td>
<td>23</td>
</tr>
<tr>
<td>0D</td>
<td>VFO</td>
<td>24</td>
</tr>
<tr>
<td>0E</td>
<td>VFO</td>
<td>25</td>
</tr>
<tr>
<td>0F</td>
<td>VFO</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>VFO</td>
<td>27</td>
</tr>
</tbody>
</table>

The sequence: 51 5D 51 53 5E would set a 751 to memory 19, while the sequence: 53 5D 50 50 5E would set a 271 to the current VFO. Note that this command gives you no way to switch between VFOs. You’re stuck with whatever VFO you started with. Also, the command is write-only, so you can’t read the current VFO/Memory — your program will have to remember it. Finally, this command is an example of the radio not really using “E” as a delimiter. If it did, 0E and 1E would not be valid operands.

Command 6 — Memory read/write. This command allows the computer to transfer information between the VFO and memory. The command is write-only and is functionally identical to the WRITE and M>VFO buttons on the front panel. The operand is a single digit:

1 — VFO to Memory
2 — Memory to VFO

The sequence: 63 6D 61 6E stores the information in the current memory on a 271.

a sample basic program

Figure 2 is a simple BASIC program to control a 271 and 471 for use with OSCAR 10. The program reads the 2-meter downlink receive frequency, then calculates and sets the 70-cm uplink transmit frequency. In this simple example, doppler can be accounted for by using the RIT on the 271. A more elaborate program would include automatic doppler correction computed from Keplerian orbital elements.

Since most personal computers use BASIC, the example is written in “generic BASIC.” It is, however, virtually guaranteed not to run on your “Acceleratron-J4Q” computer without some massaging, particularly with respect to I/O port assignments. It should be fairly simple, however, to translate it verbatim to your favorite microprocessor. The example uses a memory-mapped 6522 VIA chip to exchange information with the radio. I/O addresses and constants are defined in lines 10 through 110; control lines are initialized in lines 200 and 210. Lines 300 through 400 read the downlink frequency, line 450 calculates the uplink frequency, and lines 500 through 610 set the new uplink frequency. The subroutines at lines 2000 through 2070 and 3000 through 3070 correspond to *Procedures A* and *B*, respectively.
extending ICOM computer control

ICOM provides a very powerful, but incomplete command set for controlling the radios. Unfortunately, the radios lack direct commands to:

- Control the DUPLEX direction or turn DUPLEX on/off.
- Switch between VFOs or read the current VFO/Memory number.
- Turn SPLIT on/off (for repeaters or HF split operations).
- Control PL frequency or turn PL on/off.
- Control filters (other than CW/RTTY-Narrow).
- Switch between HAM and GEN mode on the 751.
- Control RIT/XIT.
- Control volume, squelch, tone, RF gain, power, or noise blanker.

First, the good news: combinations of the six standard commands can be used to achieve many of the above functions. In what follows, I’ll discuss several interesting functions that can be performed. Many others are possible.

Now, the bad news: what I’m about to describe is not for the meek or timid. We’re talking major brain surgery — i.e., changing the contents of your radio’s RAM. There are downside risks. Even thinking about changing the contents of this memory probably voids your radio’s warranty in 87 different ways. Furthermore, what I’m about to describe may not even work on your radio. There’s no guarantee that the memory map — i.e., the addresses and values — for my radios is the same as the memory map for yours. Nor is there any guarantee that the memory map will stay the same in future ICOM products (or even later models of the same product). Also, a slip of the scalpel, so to speak, can leave your radio lobotimized, and in need of a brain transplant (or at least a fresh memory, available from ICOM for $25). Proceed at your own risk!

Before venturing further, we must delve a bit deeper into the computer architecture of the radios. From a computer standpoint, the radios look like your garden-variety, vanilla-flavored microcomputer. They have CPU, a memory, display, and an 8 x 10 keyboard. The R-71, 751, 271, and 471 — and most likely the 1271 — use the same computer architecture. In fact, they all use the same CPU chip and ROM program. The program supports all the features of all the radios. The “personality” of each radio is determined by a small 2 x 2-inch (5.08 x 5.08 cm), removable board containing a CMOS RAM. This RAM contains the radio’s bands and band limits, the current VFO and memory channel, and the number of memories available, as well as the frequency, mode, band, duplex offset, duplex direction, and PL frequency for each VFO and memory. Changes to the contents of this RAM can result in drastic behavioral changes in the radio. All sorts of wonderful, unintended functions can be performed, such as switching between HAM/GEN modes and extending the frequency coverage.

The R-71, 751, 271, and 471 each have 32 memories for saving user information. The RAM to be changed is mapped into frequency and mode information for memories 33 to 255. These locations are inaccessible to the casual user operating the radio from the front panel controls. However, the memories are accessible via the computer interface.

switching bands

Each radio can cover one or more bands. The bands are expressed as upper/lower frequency bounds as in the Band Data command. The 751 has ten bands:

<table>
<thead>
<tr>
<th>Band</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30.0</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>4.1</td>
<td>3.45</td>
</tr>
<tr>
<td>3</td>
<td>7.5</td>
<td>6.95</td>
</tr>
<tr>
<td>4</td>
<td>10.5</td>
<td>9.95</td>
</tr>
<tr>
<td>5</td>
<td>14.5</td>
<td>13.95</td>
</tr>
<tr>
<td>6</td>
<td>18.5</td>
<td>17.95</td>
</tr>
<tr>
<td>7</td>
<td>21.5</td>
<td>20.95</td>
</tr>
<tr>
<td>8</td>
<td>25.1</td>
<td>24.45</td>
</tr>
<tr>
<td>9</td>
<td>30.0</td>
<td>27.95</td>
</tr>
</tbody>
</table>

On the 751, band 0 is the General Coverage mode, while bands 1 through 9 are Ham mode. The 271 has two bands:

<table>
<thead>
<tr>
<th>Band</th>
<th>Upper Limit</th>
<th>Lower Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150.0</td>
<td>140.0</td>
</tr>
<tr>
<td>1</td>
<td>148.2</td>
<td>143.8</td>
</tr>
</tbody>
</table>

The CPU stores a single-digit band index, along with the frequency for each memory and VFO. The hundreds-of-kHz frequency digit at memory channel 38 is also the band of channel 38. To switch bands, first issue a Set Memory/VFO command with hex 26 as the operand. Next issue a Frequency Data command to write a frequency with the appropriate band index in the hundreds-of-kHz digit followed by a Memory Write command. The frequency that you use must be within the band limits of the radio. Also, be very careful in selecting the band index, as an invalid band will result in an upper/lower frequency pair of 0.00 through 0.00 Hz, not a very useful pair! Finally, issue a Set Memory/VFO command with 00 as the operand to return the radio to the current VFO followed by a Memory Read command. The bands of Memory channels 1 through 32 can also be changed through memory manipulation, but, in general, it’s easier to change the band of a VFO and then store the VFO in a memory than it is to change the band of a memory directly.

greater frequency coverage

The frequency coverage of several of the radios can be extended beyond the band limits. For example, many 751s can be tuned below 100 kHz and above
WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

STV®
THE HOME SATELLITE TELEVISION MAGAZINE®

A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV® you will receive a FREE LCD Calendar/Clock.

- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED...

OnSat

The best in satellite programming! Featuring: ★ All Scheduled Channels ★ Weekly Updated Listings ★ Magazine Format ★ Complete Movie Listing ★ All Sports Specials ★ Prime Time Highlights ★ Specials Listing and ★ Programming Updates!

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa® and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV®/OnSat®
P.O. Box 2384—Dept. HR • Shelby, NC 28151-2384
SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020

30.0 MHz. The additional frequency coverage appears to be both model- and radio-dependent. It is sometimes even mode-dependent.

All frequencies entered via the dial, the keypad, or the computer interface are checked to ensure that they are within the band limits. Frequencies outside the band limits are rejected. However, there are several ways to evade this check. The simplest is to find a frequency in memories 33 through 255 and transfer it to the current VFO. The radio does not check on memory/VFO transfers. Frequencies both above and below the band limits can be obtained. Frequencies above the band limits can also be generated by using the hex digits "A," "B," "C," and "F" in certain digit positions in the Frequency Data command. Use of these digits generates a carry in the next higher digit.

In general, whenever you are outside the radio’s band limits, you may tune only towards the band limits. For example, if you are above the band limits, you may tune only lower in frequency. If below, you may tune only higher in frequency. Attempts to tune in the opposite direction will place you at the opposite band limit.

Conclusion

ICOM has incorporated computer control into its radios, and its current product line continues that innovative trend. With minimal hardware, any microcomputer can be used to control the radios. The standard command set is simple, easy to use, and sufficient for most applications. Many functions not provided for by the standard command set can be realized by combinations of commands. Although it’s not discussed here, it’s also a simple task to intercept the radio’s keyboard matrix and simulate button pushes with a computer. There’s no question that computer-controlled radios can take the drudgery out of, and put the fun back into, Amateur Radio operation.

NEW BOOKS

AMATEUR RADIO SOFTWARE
by John Morris, GIMANB

Brand new from RSGB, this computer source book is chock full of computer programs, hints, tips and handy ideas for computer owners and users. Nearly 100 programs include contest logging routines, EME, construction, Morse training, and Packet Radio to name just a few. Morris’ approach to writing this book was twofold. One was to give the computer user programs that had been debugged and were ready to hop in and run. The second was as a source book for programming ideas and expansion. Many programs are written in BASIC so at least a fundamental knowledge of simple programming will be helpful to get maximum use from this book. $14.95 328 pages 1st edition.

ARRL COMPUTER NETWORKING CONFERENCES 1-4

This collection of Packet Radio papers should be in every Packet enthusiast’s library. Written during the formative years of Packet development, these papers (too numerous to mention them all) cover: theory, practical applications, protocols, software and hardware subjects. You also get a complete up-to-date collection of all published "Gateway", the ARRL Packet Radio newsletter. As big as the ARRL HANDBOOK, this new book is sure to be the ARRL’s next best seller! $14.95 over 1000 pages.

ARRL CNC Softbound $17.95

Please enclose $3.50 shipping and handling.

Visa

HAM RADIO'S BOOKSTORE
Greenville, NH 03048
Kantronics UTU-XT

NOW — for ANY computer, the intelligent terminal unit that can change its spots.

Can you imagine a terminal unit (TU) that has user programmable parameters? Would you like to be able to vary the MARK and SPACE tones you use by computer control, save these parameters for next time, and be able to change the center frequency and bandwidth of the CW detector? All this can be done with the Universal Terminal Unit-XT by Kantronics.

Imagine a CW/RTTY/ASCII/AMTOR machine that operates with a TNC-like command structure, including 54 commands. The UTU-XT does just that with a 6303 microcomputer, 2K of RAM, NOVRAM, and 128K of EPROM embedded inside.

UTU-XT is also compatible to any computer with an RS232 or TTL (C-64) serial port — the circuit is built in. This allows you the flexibility to change computers at any time.

UTU-XT operates CW from 6-99 WPM, RTTY from 45 to 300 baud. ASCII from 110 to 300 baud, and AMTOR modes A, B, and L. Selective RTTY and SELFEC are included.

Suggested retail $359.95

The SOTRON

Just a few comments from satisfied customers:

"...I have used your 80/40 and while stationed in Guantanamo Bay Cuba and it worked great..."

"On January 13 I joined the WW1C contest. I had tried to enter the contest in the past but had had no success. I used the UTU-XT for the first time and was amazed at how well it worked. I ran three transmitters and four receivers and had a great time. I worked over stations and Puerto Rico that I had never worked before and had a great haul on 8000 miles haul from Aurora, Colorado."

"...I just got my 80/40 out of the air and it has surpassed my wildest expectations. My first evening QSO was with K6RUC in Columbus, South America and was on a 8000 mile haul and that is it. My RTTY reports were great. Congratulations on developing the Sotron. I am spreading the good word about the Sotron to all my friends. I think it is a super compact antenna whose signal really comes through..."

"...About two months ago I bought an Sotron 80 and just recently got it out of the shack. Now I have a 18-foot mast and I am really intrigued by it and had a lot of fun trying to convince other stations that it is on..."

"...I had California on Wednesday when it was hanging by a thread of the shack and works even on a pole..."

"(Photo: Sotron 160)"

High Performance Preselector-Preamplifier

The solution to most interference, intermod, and desense problems in AMATEUR and COMMERCIAL systems.

- 40 to 1000 Mhz - tuned to your frequency
- 5 large helical resonators
- Low noise - High overload resistance
- 8 dB gain - ultimate rejection> 80 dB
- 10 to 15 volts DC operation
- Size - 1.6 x 2.5 x 4.75" exc. connectors
- FANTASTIC REJECTION!

Automatic Identifiers

- For transceivers and repeaters - AMATEUR and COMMERCIAL
- Automatic operation - adjustable speed and amplitude
- Small size - easy installation - 7 is 15 watts DC
- 8 selectable, reprogrammable messages - each up to 2 min. long
- Wired, tested, and programmed with your messages(s)
- Model ID 1 - $49.95 Model ID 2 - w/ 2 to 10 minute timer - $69.95

We offer a complete line of transmitter and receiver strips and synthesizers for amateur and commercial use. Request our free catalog.

GLB ELECTRONICS INC.

Dept H, 151 Commerce Pkwy, Buffalo, NY 14224

716-675-6740 9 to 4
DRAKE
MOSELEY

AMECO
ENCOMM
NTE

AMERICAN
HUSTLER
PALOMAR

ANTEK
ICON
RADIAL CALLBOOK

ARRL
JANEL
ROBOT

ASTRON
KANTRONICS
ROHN

ARRL
KMR
TEN-TEC

ARR
LASEREN
TRIO-KENWOOD

B & W
MFI
UNADILLA/RETCO

BUTTERNUT
MINI-PRODUCTS
YASSU

CUSHCRAFT
MIRAGE

DIWAA

Write today for our latest
Bulletin/Used Equipment List.

NEMAL ELECTRONICS
Your Authorized
Distributor For

Belden

INTRODUCTORY SALE!

Belden
Per
No.
No.
Description
100 ft.
ft.
8214
1102B
RG8/U Foam 96%
$45.00
.50
8237
11008B
RG9/U Poly 96%
39.00
.44
8241
15098
RG59/U Poly 96%
13.00
.15
8267
1130B
RG213/U Poly 96%
53.00
.59
9269
16008B
RG62A/U Poly 96%
15.00
.17
8216
14508
RG174/U Poly 96%
12.00
.14
9913
1180
Low Loss 50 Ohm
46.00
.58

OTHER QUALITY CABLES

Nemal
Per
No.
Description
100 ft.
1110
RG8X 95% Shield (mini 8)
15.00
.17
1130
RG213/U Mil Spec 96% Shield
34.00
.36
1140
RG214/U Mil Spec - Silver
155.00
1.65
1705
RG142B/U Teflon - Silver
140.00
1.50
1310
RG217/U 5/8" 50 Ohm Dbl. Shld.
80.00
.85
1470
RG223/U Mil Spec - Silver
80.00
.85

ROTOR CABLE — 8 COND.
8C1822
2-18 Ga. 8-22 Ga.
19.00
.21
8C1620
2-16 Ga. 8-20 Ga. Heavy Duty
34.00
.36

HARDLINE — 1/2" SWP
FXA12
Smooth Alum. w/black jacket
79.00
.89

FCL12
Corrug’d Copper (EO, Helix LDF)
159.00
1.69

CONNECTORS — MADE IN U.S.A.
NE720
Type N for Belden 9913
4.75

PL259
Standard Plug for RGB, 213
.65

PL259AM
Amphenol PL259
.89

PL259T
PL259 Teflon/Silver
1.59

UG21D
Type N for RGB, 213, 214
3.09

UG175
Adapter for RG58
.22

Call or write for complete Price List
Shipping: Cable — $3.00 per 100 ft.
COD add $1.00

Connectors — and 10%. $3.00 minimum
Orders under $20 Add $1. Handling

Nemal’s new 32-page Cable & Connector Selection Guide now available at no charge with orders of $50 or more or at a cost of $4.00 individually.

NEMAL ELECTRONICS
12240 N.E. 14th Ave., Dept. Q, Miami, FL 33161

Telephone (305) 823-9292

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

SOFBA

SOF-B 9.95

SIMPLE LOW-COST WIRE ANTENNAS

SOF-BW

SOF-B 7.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad at DX’ers delight. Everything from the single element to a multielement monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982 3rd edition.

SOF-BQ

SOF-B 6.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yaq-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. ©1978 1st edition.

SOF-AH

SOF-B 7.95

Please enclose $3.50 for shipping and handling.

NEMAL ELECTRONICS
12240 N.E. 14th Ave., Dept. Q, Miami, FL 33161

Tell 'em you saw it in HAM RADIO!
NOW — AX.25 VERSION 2 for ANY computer, the Packet Communicator II

Can you imagine a TNC that has a built-in HF modem and tuning aid, AX.25 version 2 protocol, multiple connects, and both TTL/RS-232 levels at the computer port? Well, it’s here! Introducing the Kantronics Packet Communicator II, KPC-2 for short.

KPC-2 is the only TNC you will need, even if you change computers. KPC-2 interfaces with ANY computer that has a serial RS-232 or TTL (C-64/VIC-20) port. The generic command structure, similar to KPC-1 but enhanced, fits any computer, even the PC compatibles.

In addition, KPC-2 features totally new hardware and software — KPC-2 is not a clone. And, of course, KPC-2 is enclosed in the now industry standard Kantronics extruded aluminum case. For more information contact Kantronics or a Kantronics dealer.

Want more information on Packet? Contact us about our new PACKET VIDEO, great for a club program or instruction. $22.50, VHS or BETA format.

ARRL HANDBOOK FOR THE RADIO AMATEUR

Great gift idea for a ham friend or for yourself!
The new 1986 ARRL HANDBOOK is chockfull of projects, ideas, hints and kinks, theory and thousands of other handy things for your ham shack. New items include: switching power supplies, data and telemetry transmission, a section on conjugate matching by Walt Maxwell, data interface and Packet Radio, and remote control aircraft to name just a few examples. New projects include: 30 amp power supply, ATV monitoring instruments, digital frequency synthesizer, 1500 watt output 160 meter amplifier, state-of-the-art preamps for all Amateur VHF/UHF frequencies and much, much more. A grand total of 244 new pages! This is the reference book to have. Order yours today! Over 1100 pages.

Limited Antenna Space? B & W Offers Six Solutions!

Barker & Williamson offers six new multiband trapped dipoles made to fit in less space than conventional antennas. You may not have room for that dream antenna farm, but no longer need limit your operating to one or two bands. These new antennas provide low SWR on every band making a great companion for today's solid state rigs.

- **Direct feed with 50 OHM Coax**
- **1 KW CW, 2 KW P.E.P., SSB**
- SO-239 Termination

Model	**Bands**	**Length**	**Price**
AS-100 | 160, 80, 40, 20 METERS | 137 Ft | $129.00
AS-200 | 40, 20, 10 METERS | 78 Ft | $99.00
AS-300 | 80, 40, 15 METERS | 64 Ft | $99.00
AS-400 | 40, 20, 15, 10 METERS | 40 Ft | $129.00
AS-2000 | 20, 15, 10 METERS | 23 Ft | $99.00

ADDS 52.00 SHIP & HANDLING

ALL OUR PRODUCTS MADE IN USA

Barker & Williamson

Quality Communication Products Since 1932

At your Distributors: Write or Call
10 Canal Street, Bristol, PA 19007
(215) 768-5581
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers' repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TEST-TONES</th>
<th>TOUCH-TONES</th>
<th>BURST-TONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>1000</td>
<td>770</td>
<td>1650</td>
</tr>
<tr>
<td>1500</td>
<td>852</td>
<td>1700</td>
</tr>
<tr>
<td>2175</td>
<td>941</td>
<td>1750</td>
</tr>
<tr>
<td>2805</td>
<td>1148</td>
<td>1800</td>
</tr>
</tbody>
</table>
Prevent spikes from destroying your equipment

AC line transient protection

It all started when I destroyed my VCR with a lawnmower. Perhaps I should explain in greater detail. One summer day as I was trimming the weeds in my front lawn, my electric lawnmower blew a motor field rectifier and began to draw considerable current from the AC line. This situation was quickly, but not instantly, corrected by the house circuit breaker, which tripped and broke the circuit, as it's intended to do. Then, however, the electric fields in the motor collapsed, producing a large back EMF on the now-open circuit AC cord. Unfortunately, this cord connected the mower to the same circuit on which my VCR was patiently awaiting the start of a "Sky King" rerun.

The VCR, like a lot of new equipment — including most new Amateur rigs and the computer on which I write — doesn’t like to see high voltage spikes coupled into its relatively fragile CMOS logic integrated circuitry. On a computer, line spikes or transients can cause data drop-outs, so-called “soft” errors in the RAM memory, or other grief. In my VCR, the unusually large transient simply fried some component on the microprocessor board. Fortunately, the VCR was still under warranty.

I decided that some transient protection would be necessary. A quick check of the catalogs showed that many manufacturers make line cord sets with transient suppression to reduce the chances of just this sort of occurrence. But these outlet boxes cost at least $30.00, so I decided to try to build some lower-cost version of these outlet boxes, using the same type of line transient protection devices. I could then distribute these protective boxes about my house to protect any electronic equipment that would be sensitive to high voltage transient peaks on the AC mains.

In this project, I've taken a low-cost approach to transient protection that uses commonly available metal oxide varistors. The method could easily be adapted to many of the commercially-available outlet boxes or AC junction strips found in most hardware stores. The total cost of each protected outlet box is about $5.00.

metal oxide varistors

A metal oxide varistor (MOV) is a voltage-dependent semiconductor device that acts much like a pair of back-to-back zener diodes. The MOV is placed across the AC input of the device to be protected. Under normal conditions, the MOV has a high input impedance so it draws a minimal amount of power. However, if the voltage across the AC line increases to a point above the turn-on voltage of the MOV, it suddenly switches to a low-impedance state. This low impedance is in shunt with the line, so the AC voltage is limited. Once the transient passes — i.e., the AC line voltage returns to normal — the MOV recovers and returns to its high-impedance, stand-by state.

Most of the voltage increases that appear on the AC mains are of momentary duration and are caused by switching large loads, especially inductive loads, on or off, or by lightning strikes (at a distance, not directly on the equipment). This means that even though the transient may be many hundreds or even thousands of volts, since it does not last long (a "typical" transient might last a few tens of microseconds) there is little total energy in the spike, and the energy can be safely dissipated in the MOV.

A typical MOV intended for use on a 120 volt AC line has the specifications shown in table 1. It can take up to 4500 Amperes in a spike with a total energy of 35 Joules, which means that if it is clamping the line at the specified maximum of 225 volts, the transient may last only about 30 microseconds. This explains how a small device, no bigger than a rather large disk capacitor, can tolerate 4500 amperes — it does so only for a few microseconds, and not too often, at that. However, by clamping the line to 225 volts, the MOV can do a great service to us in protecting the seemingly delicate, certainly complex equipment we now find commonplace in our homes, computer rooms and ham shacks.

By Jerry Hinshaw, N6JH, 4558 Margery Drive, Fremont, California 94538

April 1986
The manufacturers' data sheets provide detailed design information that permits us to calculate the type of MOV needed for any expected transient. However, I found such data to be of little practical use because I can’t predict what type of transient one might expect on the AC lines in my typical tract home. Therefore, I merely selected a MOV that had a large current capacity and the lowest available varistor voltage because these factors seemed likely to offer the maximum protection. Furthermore, there was only one type available at the local Radio Shack, which pretty well directed my choice. In general, though, it’s best to select a MOV with the lowest turn-on voltage that will still permit normal operation of the equipment you choose to protect. This choice means that a maximum range of clamping is available and that the minimum excess spike is coupled into the equipment. More detailed information is available from the manufacturers.

There are two modes of voltage transient which the suppressor should be able to shunt. In the first, a transient may cause the voltage across the AC lines to rise above the nominal value with respect to a ground reference. This can be called a differential mode transient because there’s a difference between the reference point and each of the two lines.

Figure 1A shows this common mode voltage transient schematically, with two hypothetical voltmeters placed across the AC lines. These meters are hypothetical in that they are presumed to have instantaneous response and are depicted at the exact moment a transient has caused the voltage across the hot and neutral lines to soar far beyond the nominal value. However, the neutral-to-ground voltage is not significantly disturbed.

The second type of transient is shown in fig. 1B. Note that the potential across the hot and neutral lines can be normal, or nearly so, while their potential to ground can be very great. This type of “elevation” can be as damaging to electronic circuitry as the differential type of transient. In order to protect equipment from these two distinct modes of transient behavior, we need to have two sets of suppressors. One suppressor must be placed across the AC line and a second set should be placed from each side of the line to ground fig. 2B. Clearly, if there is no ground line present, as in fig. 2A, only one MOV suppressor is needed for protection, as long as no other path to a safety ground exists.

Table 1. Specifications of a typical MOV designed for 120 VAC use, the General Electric V13OLA10A.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varistor voltage, minimum</td>
<td>185 volts</td>
</tr>
<tr>
<td>Varistor voltage, nominal</td>
<td>200 volts</td>
</tr>
<tr>
<td>Varistor voltage, maximum</td>
<td>225 volts</td>
</tr>
<tr>
<td>Peak current, maximum</td>
<td>4500 amperes</td>
</tr>
<tr>
<td>Energy</td>
<td>35 joules</td>
</tr>
</tbody>
</table>

Fig. 1. An illustration of the two modes of voltage transient which are encountered on a typical 3 wire circuit. (A), the case when the potential between hot and neutral is abnormally high due to a transient. (B), an alternate transient mode where the power-carrying lines are elevated above the safety ground.

Construction

Now that the MOV has been selected, it must be safely installed across the AC input of the equipment to be protected. One good way to do this is to install it inside the equipment itself. Another way is to somehow place the MOV across the input line between the equipment and the AC outlet. I chose to do the latter because I found a source of low-cost AC outlet boxes that suited my needs.

The AC box I chose is a plastic unit originally designed to expand a US standard two-plug outlet into a six-outlet box. It is easily installed by removing the usual switchplate and plugging the new unit into the wall. A single screw secures the outlet box into the threaded insert that originally held the outlet cover.
plate. This type of accessory box seems widely available and has the advantage of providing extra outlets, which are often useful. Furthermore, it has enough room inside to mount several MOVs easily. You can separate the box into two independently protected circuits, if you desire.

The outlet box I chose was designed to convert two standard three-wire outlets into six three-wire outlets. Made of plastic, it contains two sets of contacts, each set consisting of three conductors, one each for the ground, neutral and hot sides of the AC line. The interior construction of the box is shown in fig. 3. The box protrudes perhaps 1.5 inches out from the wall when it's installed, so there's space inside for installing the MOVs.

The figure also shows one MOV installed across the two main conductors of one set of three outlets. No protection against common mode transients has been installed, so there's no MOV installed between the ground pin and either of the other two pins. This is because in my house, although some of the outlets do have ground pins, there are, in fact, no ground connections actually present inside the wall. The original outlets in this house are two-wire outlets, which is typical of most houses built before the 1960s, when local electrical codes gradually began to require the use of three-wire, grounded outlets. Thus, there's only one MOV installed in this box. This MOV is placed across the hot and neutral lines as shown. The metal conductors easily take regular tin-lead soldering, so that it is simple to permanently solder the leads of the MOV across the circuit. Note that one of the leads of the MOV must cross over the other lead's AC connection. At this point it is imperative that you install good insulation. I used two pieces of heat-shrink tubing, one inside the other. Remember, this circuit is not powered by a low-voltage supply like a typical digital breadboard - think "safety" throughout the project!
Once the MOV circuitry is installed, replace the back cover of the box. This particular unit is installed after the cover plate of the old outlet has been removed. A long screw secures the box to the wall. The completed unit, ready to install on a wall outlet, is shown in fig. 4. It protrudes a bit from the wall, but where there were two unprotected outlets before, there are now six transient-protected outlets available. The total construction time, if you want to call such a simple procedure by so elaborate a term, is well under an hour.

Now my VCR, my ham shack, and my computer each have their own transient protection box. The lawn mower has yet to blow another motor rectifier, but I have fair confidence that, should it happen again, the delicate electronics components will be better off than before, when they faced high voltage transients completely unprotected. The cost of a few of these suppressor outlet boxes seems like cheap insurance to me.

ham radio
The "Flying Horse" has a great new look!

It's the biggest change in Callbook history! Now there are 3 new Callbooks for 1986.

The North American Callbook lists the amateurs in all countries in North America plus those in Hawaii and the U.S. possessions.

The International Callbook lists the calls, names, and address information for licensed amateurs in all countries outside North America. Coverage includes Europe, Asia, Africa, South America, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The Callbook Supplement is a whole new idea in Callbook updates. Published June 1, 1986, this Supplement will include all the activity for both the North American and International Callbooks for the preceding 6 months.

Publication date for the 1986 Callbooks is December 1, 1985. See your dealer or order now directly from the publisher.

- North American Callbook
 - incl. shipping within USA: $25.00
 - incl. shipping to foreign countries: 27.60
- International Callbook
 - incl. shipping within USA: $24.00
 - incl. shipping to foreign countries: 26.60
- Callbook Supplement, published June 1st
 - incl. shipping within USA: $13.00
 - incl. shipping to foreign countries: 14.00

SPECIAL OFFER
- Both N.A. & International Callbooks
 - incl. shipping within USA: $45.00
 - incl. shipping to foreign countries: 53.50

Illinois residents please add 6\% sales tax.
All payments must be in U.S. funds.

A very special electronics and computer guide that brings you the exciting world of amateur radio kitbuilding and much more.

The Heathkit Catalog is filled with high-quality HAM radio products that you'll enjoy. Plus you'll get the unique challenge and satisfaction of kitbuilding. So send NOW for your FREE Heathkit Catalog.

Yes! I want to see what kitbuilding can do for me.

Send to: Heath Company, Dept. 122-402
Benton Harbor, Michigan 49022

Name ____________________________
Address __________________________
City __________________ State ________

Heath Company
RADIO AMATEUR callbook INC.
Dept. 2447 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA
Tel: (312) 234-6600

April 1986 63
Handles 10 sq. ft. at 50 mph
Pleases neighbors with tubular streamlined look

MA-40
40 TUBULAR H.D. MAST
$745 SALE! $549

MA-550
55 TUBULAR H.D. MAST
$1245 SALE! $899
- Handles 10 sq. ft. at 50 mph
- Pleases neighbors with tubular streamlined look

TX-455
55' FREESTANDING CRANK-UP
- Handles 18 sq. ft. at 50 mph
- No guyng required
- Extra-strength Construction
- Can add raising and motor drive accessories

IN STOCK FOR QUICK DELIVERY
OTHER MODELS AT GREAT PRICES

W-51 TOWER SALE
91" CRANK-UP 9 SQ. FT.
WINLOADING
$899
9 Left at this Price

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046

Free Shipment when item is UPS surface

Tell 'em you saw it in HAM RADIO!
SALE! CALL FOR PRICE

ICOM IC-R71A
Superior Grade General Coverage Receiver

ICOM IC-3200A
DUAL BANDER
Covers Both 2 Meters & 70 cm

ICOM IC-1271A
1.2 GHz Transceiver: The First Full-featured 1240-1300 MHz Transceiver
AT GREAT LOW, LOW PRICES

ICOM IC-37A
IC-27H (45W, 2M, FM)
IC-37A (25W, 220MHz, FM)
IC-47A (25W, 70cm, FM)

CALL FOR LOW, LOW PRICE

ICOM IC-2KL
LINEAR AMPLIFIER
- Auto Band Switching
- Broadbanded
- HF 500 Watt Linear
AT GREAT LOW, LOW PRICES

ICOM IC-R7000
25 MHz-1300 MHz
NOW TAKING ORDERS FOR FIRST SHIPMENT

All Major Brands in Stock Now!

CALL TOLL FREE (800) 854-6046
Toll free including Alaska & Hawaii. Phone Hrs: 9:30 a.m. to 5:30 p.m. Pacific Time. California and Arizona customers call or visit nearest store. California and Arizona residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
Real-voice message system
For any repeater or base

Now you can communicate vital information even when the station you are calling is not on the air — with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you - any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your callsign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.

Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging.

SEE US IN DAYTON
Booths 106, 107, 108

- Create messages just by talking. Message Master's 'real-voice' technique saves YOUR VOICE in digital memory to deliver messages in your own voice, language and dialect.
- Mailbox-style operation gives individual message delivery service to 100 system users.
- Easily added to any repeater or base station for remote operation with only four connections.
- Special features include callsign identifications, tail messages, and bulletin messages.
- Digital message storage provides instant playback of stored messages.
- Modular memory meets your exact needs from 2 to 8 minutes of total message storage.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical price.
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.
Six jumpers plus
60 minutes equals:
• eight additional memories
• 10-Hz readout
• scanning
• full transmit coverage

modifying the Trio-Kenwood
TS-930S

Kenwood’s TS-930S transceiver includes a number of unadvertised capabilities. This article describes four of them that can be enabled by making just four simple modifications. These modifications require no additional parts except for one solder lug and about 3 feet (0.9 meter) of No. 18 (or smaller) insulated wire. They can be completed within an hour after removing the 930’s covers.

I’ll describe the modifications first, then explain how to install them.

four simple mods

• **Mod 1: eight additional memories.** Adding one jumper results in each VFO (A and B) having 8 memories, creating a total of 16.
• **Mod 2: 10 Hz readout.** Ever notice the unused seven-segment LED on the left end of the frequency display? One jumper makes it usable by shifting the frequency display one digit to the left, resulting in 10 Hz resolution of the displayed frequency.
• **Mod 3: Scanning.** Add one jumper and the 930 will scan through the 8 frequencies stored in either of the VFO A or B memories.
• **Mod 4: Full coverage on transmit.** Add three jumpers and the 930 is ready to transmit on WARC, MARS, and the remainder of the nonamateur frequencies in the 1.5—30 MHz range.

getting ready

As with all modification articles, please read this article several times before you heat up the soldering iron.

Doing so may well save you headaches later when you apply power to the set.

After disconnecting everything from your 930, remove the top and bottom covers (16 screws) and place the rig top side up, facing you, on a cushioned surface. Each of the modifications requires access to the digital-unit board, which is hidden under the speaker and VOX control assembly, which can be removed by removing the four screws that hold it to the main chassis of the 930. Lift the assembly upward slightly and disconnect the small 2-conductor plug (with the red and white wires) from the digital-unit board. Disconnect the speaker leads (remember their polarity) and the other two connectors that plug into the small board directly beneath the VOX controls. Set the assembly aside.

Two of the mods require access to the back of the front panel. This is easily accomplished thanks to the cabinet’s sensible design. On each side of the 930 you’ll find the front panel mounting brackets. There are two flathead screws and one roundhead screw in each bracket. Refer to fig. 1 for their locations. Move the 930 toward the front of your work table so that a few inches of the rig hangs over the edge. The panel will tilt forward after (1) removal of the two flathead screws from each bracket and (2) careful loosening — not removal — of the roundhead screws. The panel may tilt on its own, so keep one hand on it while you

By Roger J. Hoffman, WB9BXT, 5719 La Vista Drive, Alexandria, Virginia 22310
ASTRON POWER SUPPLIES

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mv peak to peak (full load & low line)

RM-A Series

Model	Continuous Duty (AMPS)	ICS* (AMPS)	Size (IN) HxWxD	Shipping Wt (lbs)
RM-35A | 25 | 35 | 5 ⁴/₅ x 19 x 12 ⁷/₈ | 38
RM-50A | 37 | 50 | 5 ⁴/₅ x 19 x 12 ⁷/₈ | 50

RS-A SERIES

Model	Continuous Duty (Amps)	ICS* (Amps)	Size (IN) H x W x D	Shipping Wt (lbs)
RS-4A | 3 | 4 | 3 ⁴/₅ x 6 ⁷/₈ x 9 | 5
RS-7A | 5 | 7 | 3 ⁴/₅ x 6 ⁷/₈ x 9 | 9
RS-7B | 5 | 7 | 4 - ⁷/₈ x 10 ⁷/₈ | 10
RS-10A | 7.5 | 10 | 4 ⁷/₈ x 10 ⁷/₈ | 11
RS-12A | 9 | 12 | 4 ⁷/₈ x 8 ⁷/₈ | 13
RS-20A | 16 | 20 | 5 ⁴/₅ x 10 ⁷/₈ | 18
RS-35A | 25 | 35 | 5 x 11 x 11 | 27
RS-50A | 37 | 50 | 6 x 13 ⁴/₈ x 11 | 46

RS-M SERIES

Model	Continuous Duty (Amps)	ICS* (Amps)	Size (IN) H x W x D	Shipping Wt (lbs)
RS-12M | 9 | 12 | 4 ⁴/₅ x 8 x 9 | 13
RS-20M | 16 | 20 | 5 x 9 x 10 ⁷/₈ | 18
RS-35M | 25 | 35 | 5 ⁴/₅ x 11 x 11 | 27
RS-50M | 37 | 50 | 6 x 13 ⁴/₈ x 11 | 46

VS-M SERIES

Model	Continuous Duty (Amps)	ICS* (Amps)	Size (IN) H x W x D	Shipping Wt (lbs)
VS-20M | 16 | 20 | 5 x 9 x 10 ⁷/₈ | 20
VS-35M | 25 | 35 | 5 ⁴/₅ x 11 x 11 | 29
VS-50M | 37 | 50 | 6 x 13 ⁴/₈ x 11 | 46

RS-S SERIES

Model	Continuous Duty (Amps)	ICS* (Amps)	Size (IN) H x W x D	Shipping Wt (lbs)
RS-7S | 5 | 7 | 4 ⁴/₅ x 7 ⁷/₈ x 10 ⁷/₈ | 10
RS-10S | 7.5 | 10 | 4 ⁷/₈ x 7 ⁷/₈ x 10 ⁷/₈ | 12
RS-10L (For LTR) | 7.5 | 10 | 4 ⁴/₅ x 9 | 13
RS-12S | 9 | 12 | 4 ⁷/₈ x 8 ⁷/₈ | 13
RS-20S | 16 | 20 | 5 x 9 x 10 ⁷/₈ | 18

References:
- Model RS-50A
- Model RS-50M
- Model AS-5OM
loosen the roundhead screws. Tilt the panel down about 60 degrees and retighten the roundheads. This will help to maintain the tilt of the panel and will prevent straining the multitude of wires connected to it.

mod installations

Mod 1 (8 additional memories) requires a jumper from pin 5, plug 7 on the digital-unit board to ground through a switch. The function switch (VFO A, VFO B, etc.) has an empty contact to ground when it is placed in the VFO B position. *Figure 2* shows the location of the switch contact on the back of the switch's circuit board. Check continuity to ground through this contact to verify that you have the right one. Remember to place the switch in the VFO B position for this check. Solder one end of the jumper to this contact. The other end of the jumper needs to be bent into a small hairpin loop and fitted into the empty hole for pin 5, plug 7. (See *fig. 3* for the location of plug 7.) My 930 is seldom moved, so I don't worry about the jumper possibly pulling out of the hole. You'll need to experiment a bit with the size and shape of the hairpin to achieve a snug fit.

When finished, power up the 930 and program a few frequencies into the VFO A memories as you normally would. Then select VFO B and program a few more frequencies. Recall the memories, switching between VFO A and B. You'll notice that you now have the capability of 16 memories. If not, go back and check your jumper.

Mod 2 (10-Hz readout) requires installation of a jumper from pin 1, plug 8 on the digital-unit board to ground. (See *fig. 3* for the location of plug 8.) I used the hairpin trick again to connect the plug end of the jumper. A solder lug is connected to the other end, which can then be connected to any convenient screw in the chassis. I used one of the speaker/VOX assembly hold-down screws. Test the mod by powering up the rig.

Mod 3 (scanning) requires a jumper from pin 3, plug 8 on the digital-unit board to ground through a switch. Use the hairpin method to connect the jumper to the plug. The other end of the jumper connects to the panel light DIM switch, which has an extra contact to ground when it's in the DIM position. (Figure 4A shows the location of this contact, with Figure 4B showing this in greater detail. Again, check continuity to ground with the switch in the DIM position to verify that you have the correct contact. When you've finished this modification, power up again, load up the memories, select VFO A and depress the DIM switch. Notice that the scanning starts with memory channel 1, scans to 8, and repeats, stopping on each channel for about 2 seconds. To scan VFO B memory channels, you must first initiate scanning in VFO A and then select VFO B. Scanning will not initiate in VFO B. In addition, only 8 channels can be scanned (that is, either VFO A or VFO B).

Mod 4 (full coverage transmit) requires three jumpers on the digital-unit board. The first one provides transmit coverage for the WARC bands. The other two provide the remaining coverage. If the WARC jumper is not installed, the 930 will still trans-
mit over the entire 1.5 to 30-MHz range with the exception of the 0.5-MHz segments, that contain the WARC bands. If you want only the WARC coverage, install only the first jumper, which goes from pin 12, U23 to ground. (Note: on two of the three 930s I’ve modified, the WARC jumper had already been installed at the factory). The second jumper goes from pin 9, U11 to pin 12, U21. The third jumper goes from pin 9, U12 to pin 12, U22. A close inspection of fig. 5 will show that each of the connections to the above ICs can be made on unused solder pads on the digital-unit board. I melted a small amount of solder on each of the pads before installing the jumpers. The grounded end of the WARC jumper can be attached to the same solder lug that was used for the 10-Hz mod. You’ll find that the optional tuner (AT-930) covers the WARC bands, but not the general-coverage bands.

final steps
Reinstall the speaker/VOX assembly, remembering to reconnect the four cable assemblies that were disconnected earlier. Reattach the front panel, taking care not to pinch any wires. Replace the covers, and enjoy!

conclusion
What’s my assessment of the mods? Well, I hardly ever used the eight memories that came with the 930, so I really didn’t need eight more, although I do use some of them now for scanning. I use the scanning feature to locate the family net at 14.177 MHz (±) by programming from 14.175.5 to 14.179.0 in 50-Hz steps and scanning through them while attending to other tasks in the station. I also use it for checking band openings by programming frequencies in different bands. One caution: the 930 will scan as long as the DIM switch is depressed. This includes the transmit mode, so be sure to disable the scanning before transmitting! The 10-Hz resolution isn’t needed except to program scanning frequencies, so it’s really just a novelty. The full transmit coverage is necessary if you want to use the 930 on some of the MARS frequencies, as I do.

Thanks go to DL3AM and KW9G (ex-WA9GMK), who assisted in installing these modifications. Thanks also to Trio-Kenwood for its courteous approval of my request to reproduce portions of the 930 Technical Service manual for this article. Copies are available from TRIO-KENWOOD, 1111 West Walnut Street, Compton, California 90220.

ham radio
"DX-cellence!"

TS-940S

The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100% duty cycle transmitter. Super efficient cooling system using special air ducting works with the internal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour.
- High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel."
- Graphic display of operating features. Exclusive multi-function LCD sub-display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status.
- Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- QRM-fighting features. Remove "rotten QRM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (QSK) CW.
- 40 memory channels. Mode and frequency may be stored in 4 groups of 10 channels each.
- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz.
- 1 yr. limited warranty. Another Kenwood First!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner * SP-940 external speaker with audio filtering * YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter * VS-1 voice synthesizer * SO-1 temperature compensated crystal oscillator * MC-42S UP/DOWN hand mic. * MC-60A, MC-80, MC-85 deluxe base station mics. * PC-1A phone patch * TL-922A linear amplifier * SM-220 station monitor * BS-8 pan display * SW-200A and SW-2000 SWR and power meters.

More TS-940S information is available from authorized Kenwood dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

NOW AVAILABLE WITH PACKET RADIO

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

SPECIAL SALE $649
With Packet Radio — $749/$795

• AUTOMATIC SEND/RECEIVE—ANY SPEED, ANY SHIFT — BUILT IN COMPUTER GRADE 5” MONITOR • EXTERNAL MONITOR JACK • TIME CLOCK ON SCREEN • TIMED TRANSMISSION AND RECEIVING • SELCAL • CRYSTAL CONTROLLED AFSK MODULATOR • PHOTOCOUPLER CW, FSK KEYER • ASCII KEY ARRANGEMENT • 15 CHANNEL BATTERY BACK-UP MEMORY • 1,200 CHARACTER DISPLAY MEMORY • SPLIT SCREEN TYPE-AHEAD BUFFER • FUNCTION SCREEN DISPLAY • PARALLEL PRINTER INTERFACE • SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL, 100 BAUD ARQ/FECH AMTOR • ATC • RUB-OUT FUNCTION • AUTOMATIC CR/LF • WORD MODE • LINE MODE • WORD WRAP AROUND • ECHO • TEXT CURSOR CONTROL • USOS • DIDDLE • TEST MESSAGES (RY AND QB) • MARK AND BREAK (SPACE AND BREAK) SYSTEM • VARIABLE CW WEIGHTS • AUDIO MONITOR CIRCUIT BUILT IN • CW PRACTICE FUNCTION • CW RANDOM GENERATOR • BAR-GRAF LED METER FOR TUNING • OSCILLOSCOPE OUTPUTS • BUILT IN 100-120 VAC 50/60Hz AND 13.8VDC POWER SUPPLIES • AND MUCH, MUCH MORE • SIZE: 14W x 14D x 5H • 1 YEAR LIMITED WARRANTY

-777 THE MOST ADVANCED COMPUTER INTERFACE EVER DESIGNED FOR COMMERCIAL AND AMATEUR USE.

RTTY, BIT INVERSION (RTTY), ASCII, AMTOR (MODE A [ARQ], MODE B [FEC AND SEL-DEC], MODE L), CW, ANY SPEED, ANY SHIFT (ASCII AND BAUDOT)*

SPECIAL SALE $249

• AUTO DECODING: Automatically decodes signal and displays mode, speed and polarity on the CRT — COMPARE!
• 28 BAR-LED’S and LED’S plus a Bar-Graph Tuning Indicator indicate function, mode, and status — COMPARE!
• The awesome power of the -777 is limited only by the imagination of the user and the terminal program of the computer.
• Use with any computer that has RS232 or TTL I/O, IBM, Apple, Commodore, TRS80, etc.

Everything Built In - Including Software — Nothing Else To Buy!

• SPEEDS: CW 5-100 WPM (AUTOTRACK), 12-200 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL AND RS232 OR TTL LEVEL DATA CONNECTION • 100-2400 BAUD (ASCII) OR 45.5-200 BAUD (BAUDOT) • SELCAL • MEMORY: 15 CHANNELS +780 CHARACTER INPUT BUFFER • AUTO PTT • CW ID • DIDDLE • USOS • ECHO • AUTO CR/LF • ATC • RUB-OUT • CW PRACTICE GENERATOR • VARIABLE CW WEIGHTS • TEST MESSAGE (RY AND QB) • FULL CRT FUNCTION DISPLAY • MARK, AND BREAK (SPACE, AND BREAK) SYSTEM • XTAL AFSK • AUDIO MONITOR • OSCILLOSCOPE OUTPUTS • AND MUCH, MUCH MORE • POWER SUPPLY REQUIREMENTS: 13.8 V, 100MA • SIZE: 9W x 10D x 2H • 1 YEAR LIMITED WARRANTY

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 80-3356

MANUFACTURER:
TONO CORPORATION
98 Motosojia Machi, Maebashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS
**Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.

Specifications Subject to Change.

Tell 'em you saw it in HAM RADIO!
ATTENTION
Electronic Enthusiasts...

Digital Multimeter
#72-057 $29.95

Joystick for Atari and Commodore
Comfortable pistol grip type. We also have joysticks for Apple, IBM and others.
#83-785 $19.95

Pyle Woofer
Superior quality Pyle drivers are available from us at fantastic prices. Build your own speaker system and save. 10", 16 ounce magnet, 75 watts.
#55-100 $59.95

12 Inch Monitor
This green screen monitor is compatible with NCR and IBM PCs. Will not accept composite video.
#83-770 $19.95

Breadboard Module
Superior quality acetal plastic. Holds form and resists heat up to 90°C. 630 tie points, 200 dist.
#72-337 $9.95

Heatsinks
We carry heat sinks for TO-3, TO-9, TO-220, transistors. Perfect for kit building.
As low as 20¢

Solenoids
Perfect for robotics applications. Round or square mounting. 12VDC, Powerful
#28-890 $18.00

Kits
We carry unique electronic kits for the advanced and beginner.

FREE Electronic Devices Catalog filled with: resistors, capacitors, transistors speakers, transformers, switches, tubes, ICs, test equipment, kits, fuses, connectors, wire and more. For further information about these products and other exciting values, get a copy of our new 64 page catalog.

CALL TOLL FREE
1-800-551-1522

MCM ELECTRONICS
A DIVISION OF PREMIER INDUSTRIAL

MICROCOMPUTER REPEATER CONTROL

$129

Introducing the MICRO REPEATER CONTROLLER RPT-2A, a new concept in LOW COST, EASY TO INTERFACE microcomputer repeater control. Replace old logic boards with a state of the art microcomputer that adds NEW FEATURES, HIGH RELIABILITY, LOW POWER, SMALL SIZE, and FULL DOCUMENTATION to your system. Direct interface design with real repeaters. Detailed in surface information included. Original MICRO REPEATER CONTROL article featured in QST Dec. 1985.

- Two 8P/10 Multicasts
- Time Del Timer
- Pre-Emphasis Warning MSG
- Post Emphasis CW MSG
- Counting Bump
- Auxiliary Inputs

RPT-2A Kit Only $129 plus $3.00 shipping

PROCESSOR CONCEPTS
P.O. BOX 29208
MINNEAPOLIS, MN 55432
(612) 780-0472 7pm-10pm evenings

THE CHAMP

BIRD MODEL 4304
NO ELEMENTS
25-1000 MHZ
RF SAMPLING PORT

WEBSTER COMMUNICATIONS INC.
115 BELLARMINE
ROCHESTER, MN 55903
319-375-0420

CALL TOLL FREE
800-521-2333
800-482-3610

WEBSTER ELECTRONICS
Where you'll find EVERYTHING FOR THE ELECTRONICS ENTHUSIAST

WONDERING WHEN THE NEW DICK SMITH ELECTRONICS CATALOG WAS COMING OUT?

OUR NEW '86 CATALOG IS SCHEDULED FOR APRIL RELEASE. IT'S BIGGER & BRILLIANT WITH HUNDREDS OF EXCITING NEW PRODUCTS & PAGES OF USEFUL DATA. HURRY TO RESERVE YOUR COPY NOW!

Please reserve my copy of the 1986 Dick Smith Catalog. I enclose $1 to cover shipping.

Name
Address
City
Zip

DICK SMITH ELECTRONICS INC.
P.O. BOX 2246 ROCHESTER, NY 14602
EVERYTHING FOR THE ELECTRONICS ENTHUSIAST

April 1986
INTER-EAR-COMMUNICATION-SYSTEM

A space age system that allows you to send and receive your message through your ear and leave your hands free.

- Replace your HT's awkward speaker-microphone with an n-ea-r-microphone.
- Discrete HT communications leaves you with both hands free.
- Allows voice communications in noisy environments.
- Our n-ea-r-talk interfaces with almost all HT's which have external speaker microphone output jacks.
- Custom hybrid circuit.
- Low power consumption. Transmits at 5mA and less than 10uA when receiving.
- One year warranty.

Dealer inquiries are invited.

$99.95 includes IECS-200 control unit, Ear transducer, 9V battery, 6-pin output connector and Instruction sheet. (Add 6% sales tax for California residents.)

Custom made interface cable for TEMPO 15 • all ICOM HTs are available at $19.95

FOR ALL PREPAID ORDERS, SHIPPING AND HANDLING CHARGE WILL BE PAID BY N-EA-R-TALK.

4301 COMMUNICATIONS

Falcon Communications, Well Known for MOSFET Repeater Power Amplifiers, Also Makes A Hard Working Line of Bipolar Power Amplifiers For Mobile Use. Our 2 Meter Mobile Amplifiers include:

Model 5121 2 Watts in = 150 out
1 Watt in = 90 out. List $285

Model 5122 10 Watts in = 150 out
2 Watts in = 50 out. List $275

Model 5123 30 Watts in = 150 out
10 Watts in = 90 out. List $235

Model 6126 2 Watts in = 30 out
2 Watts in = 30 out. List $170

Model 4109 plug in receive pre-amp
12 db gain
2 db noise figure List $36

A FEW FEATURES:
1) Made in the USA
2) All mode (FM, SSB, CW)
3) Optional plug-in receive preamp
4) Automatic COR or remote keying
5) Built in thermal protection
6) Full 1 Year warranty

See US AT DAYTON

FOR ALL PREPAID ORDERS,
Custom made interface cable for TEMPO 15 • all ICOM HTs are available at $19.95

FOR ALL PREPAID ORDERS, SHIPPING AND HANDLING CHARGE WILL BE PAID BY N-EA-R-TALK.
Keep it cool... and you’ll keep it long

“Keep cool” — good advice for people on a hot day, and good advice for electronic equipment anytime. Heat is the number-one assassin of electronic equipment.

Many device ratings are based on maintaining certain operating temperatures. One manufacturer of a “hobbyist grade” audio power transistor, for example, offers (and advertises prominently) a transistor with a seemingly tremendous collector power dissipation. But there’s a catch: the power is available only at room temperature (77-86 degrees F, or 25-30 degrees C). At temperatures above 30 degrees Celsius, the transistor must be derated substantially. No matter where the transistor is used, if it’s inside a cabinet or box the temperature will almost certainly exceed 30 degrees C!

Similarly, RF power transistors in transmitters die as often from overheating as from that elusive gremlin, VSWR, but the problem is less well recognized. I know one ham who lost the power transistors in his trunk-mounted 100-watt 2-meter power amplifier several times before he realized that the heat was the culprit! During the summer months, the trunk of a car will sizzle even though the air-conditioned passenger cabin cools off within a few minutes. Moving the amplifier to behind the dashboard cured the problem.

Reliability experts measure equipment performance in terms of “Mean Time Between Failure” (MTBF), which is usually expressed in hours. For example, an MTBF of 1000 hours implies that, for a large number of samples of the equipment, an average of one soul-destroying failure per thousand hours of operation will occur. One source claims that a 10-degree C rise in operating temperature will cut the MTBF almost in half.

Just how important is cooling in electronic equipment? Let’s consider some examples. About ten years ago I worked in a university hospital, repairing patient-monitoring equipment. The EKG oscilloscopes at the nurses’ central station were a reliability nightmare. About once a week, usually at 3 AM, the staff would call me to come repair one of the four ‘scopes. Yet the same model ‘scopes operated reliably at the patients’ bedsides. The problem was overheating of the central station ‘scopes, which were mounted inside a completely closed desk/console. After ten 1-inch ventilation holes were cut and a pair of 100-CFM “whisper fans” were installed, central station ‘scopes became as reliable as the bed-side ‘scopes.

A second example is a story of tragedy prevented. My first personal computer was a Digital Group, Inc., Z80-based machine with 26K (2102 chips) of static memory. In those days, my kilobuck bought (in kit form) a motherboard, three 8K memory boards, a CPU board, a 64-line TV/cassette interface board (with some static memory chips on-board), and several input/output boards. All of those boards contained lots of TTL devices, and they generated a large amount of heat. The builder had to supply the cabinet, a ±12 VDC, 1-ampere dual-polarity power supply, and a +5 volt DC, 10-ampere regulated power supply. Since I operated the computer next to a ham rig, EMI both to and from the computer was an issue, so I had to use a well-shielded aluminum cabinet—and shielding isn’t always compatible with heat dissipation.

At first all those cards and the two DC power supplies were buttoned up inside the almost unvented aluminum cabinet. Needless to say, the temperature of the cabinet rose to egg-frying levels, and the HEP S-7000 power transistor used as the series-pass element in the voltage regulator operated hot enough to take off skin when touched. I knew that computer would be a reliability headache if the heat were not removed, so I installed a pair of 40-50 CFM fans: a 3.5-inch (8.89 cm) model blowing across the S-7000 heatsink and a 4.5 inch (11.43 cm) model cooling the printed circuit board compartment. Because of the EMI
problem, the ventilation and blower opening were covered with perforated aluminum sheet metal.

No one with any electronics experience — however slight — can deny that heat is the primary killer of electronic devices. Projects or equipment that pass or deliver large amounts of either current or power must be kept cool for proper operation. The methods given in this article are simple and should be sufficient for most reader’s applications. While reliability engineers and thermodynamicists may flinch at the lack of mathematical elegance, the methods are nonetheless effective.

There’s only one simple rule: where there’s excessive heat, remove it. What do I mean by “excessive?” If the equipment feels too hot to touch, or has a history of unexplained failures and/or repairs, then it’s probably running too hot. An engineer will have specifications to meet and calculations to make, but these are beyond the scope of this article. The empirical "skin of the thumb" rule, however, suffices for our needs.

Three basic tactics can be used either singly or in combination to dissipate heat:

- radiate more heat,
- improve natural ventilation, or
- add or increase forced-air cooling.

For most readers, water cooling isn’t relevant even though some commercial broadcast transmitters use circulating water for cooling. In fact, I once worked in a 10 kW AM broadcast station that used the waste heat from the transmitter’s water radiator to heat the transmitter building!

protection against transistors and IC regulators

On small projects where it’s not practical (or possible) to use forced-air cooling, you’ll have to provide heatsinking for the semiconductors. In fact, even most forced-air cooled projects will need these metal radiators. Figure 1A shows the metal TO-5 transistor package. Most of these transistors are mounted on printed circuit boards and are low-signal (and low-heat) devices. But certain TO-5 transistors operate at moderate power levels (in audio drivers, for example). A "top-hat" finned heatsink (fig. 1B) is mounted on the TO-5 package to radiate heat. There are also other "spring clip" versions of this same kind of heatsink.

Figure 2A shows two forms of plastic power device package. You’ll find these packages in power transistors (e.g., 2N5429), thyristors, and three-terminal IC voltage regulators. In the

"skin of the thumb" rule, however, suffices for our needs.

Three basic tactics can be used either singly or in combination to dissipate heat:

- radiate more heat,
- improve natural ventilation, or
- add or increase forced-air cooling.

For most readers, water cooling isn’t relevant even though some commercial broadcast transmitters use circulating water for cooling. In fact, I once worked in a 10 kW AM broadcast station that used the waste heat from the transmitter’s water radiator to heat the transmitter building!

protection against transistors and IC regulators

On small projects where it’s not practical (or possible) to use forced-air cooling, you’ll have to provide heatsinking for the semiconductors. In fact, even most forced-air cooled projects will need these metal radiators. Figure 1A shows the metal TO-5 transistor package. Most of these transistors are mounted on printed circuit boards and are low-signal (and low-heat) devices. But certain TO-5 transistors operate at moderate power levels (in audio drivers, for example). A "top-hat" finned heatsink (fig. 1B) is mounted on the TO-5 package to radiate heat. There are also other "spring clip" versions of this same kind of heatsink.

Figure 2A shows two forms of plastic power device package. You’ll find these packages in power transistors (e.g., 2N5429), thyristors, and three-terminal IC voltage regulators. In the

problem, the ventilation and blower opening were covered with perforated aluminum sheet metal.

No one with any electronics experience — however slight — can deny that heat is the primary killer of electronic devices. Projects or equipment that pass or deliver large amounts of either current or power must be kept cool for proper operation. The methods given in this article are simple and should be sufficient for most reader’s applications. While reliability engineers and thermodynamicists may flinch at the lack of mathematical elegance, the methods are nonetheless effective.

There’s only one simple rule: where there’s excessive heat, remove it. What do I mean by “excessive?” If the equipment feels too hot to touch, or has a history of unexplained failures and/or repairs, then it’s probably running too hot. An engineer will have specifications to meet and calculations to make, but these are beyond the scope of this article. The empirical "skin of the thumb" rule, however, suffices for our needs.

Three basic tactics can be used either singly or in combination to dissipate heat:

- radiate more heat,
- improve natural ventilation, or
- add or increase forced-air cooling.

For most readers, water cooling isn’t relevant even though some commercial broadcast transmitters use circulating water for cooling. In fact, I once worked in a 10 kW AM broadcast station that used the waste heat from the transmitter’s water radiator to heat the transmitter building!

protection against transistors and IC regulators

On small projects where it’s not practical (or possible) to use forced-air cooling, you’ll have to provide heatsinking for the semiconductors. In fact, even most forced-air cooled projects will need these metal radiators. Figure 1A shows the metal TO-5 transistor package. Most of these transistors are mounted on printed circuit boards and are low-signal (and low-heat) devices. But certain TO-5 transistors operate at moderate power levels (in audio drivers, for example). A "top-hat" finned heatsink (fig. 1B) is mounted on the TO-5 package to radiate heat. There are also other "spring clip" versions of this same kind of heatsink.

Figure 2A shows two forms of plastic power device package. You’ll find these packages in power transistors (e.g., 2N5429), thyristors, and three-terminal IC voltage regulators. In the
case of regulators, the devices are often rated at 750mA in free air and 1000mA when heatsinked. Either vertical or horizontal finned sheet metal heatsinks (fig 2B) are used to provide heat dissipation. Be sure to use a thin layer of silicone heat transfer grease between the metal tab surface on the transistor (or regulator) and the heatsink. Also be sure to tighten the mounting screw properly in order to facilitate heat transfer to the heatsink.

Sheetmetal heatsinks are used for TO-3 transistors and three-terminal regulators that are mounted on printed circuit boards. The bent sheetmetal heatsinks are good for up to about 10 watts of power, or voltage regulators up to 1.5 amperes. For the 3-ampere, 5-ampere, and 10-ampere voltage regulators that also use a TO-3 package, it would be better to use a larger finned heatsink.

Often the metal chassis itself is used for heatsinking. In these cases the transistors are bolted either directly to the metal chassis or mounted with mica insulators. In both cases, silicone heat transfer grease is used between the semiconductor device and the chassis. This method is especially successful when the chassis is large or unusually thick.

Some printed circuit boards use large areas of unetched copper foil and/or large metal ridges or blocks to provide better heatsinking. This method is used especially where there are not single particular devices that can be individually heatsinked (e.g., a TO-220 transistor), but rather when there are a large number of heat-producing devices (such as TTL ICs).

There are many different forms of large, finned heatsinks used for TO-3 (and other) transistors, high current voltage regulators, high current diodes, and SCRs; fig. 3A shows a side view of one of these heatsinks. In this case, the TO-3 transistor (or other device) is mounted on the flat central surface of the heatsink with screws. In most situations, it’s wise to use a thin smear of silicone heat transfer grease between the device and the heatsink. This grease is especially necessary when a mica insulator is placed between the semiconductor device and the heatsink. Again, it’s essential to make sure that the mounting screws are cinched down tight enough to allow maximum heat transfer (but not enough to distort the device package). The big concern in selecting a heatsink is the amount of surface area, measured in square inches or square centimeters.

When forced air is used to cool a heatsink — always a good idea when the power and/or current is high — then the orientation of the heatsink with respect to the airflow is sometimes important. Figure 3B shows right and wrong ways to force air over the finned surfaces. Keep in mind, however, that the orientation is not always critical, especially when air from the “wrong” direction is suffi-
cient or blows over the entire surface. The designations “right” or “wrong” are merely general considerations for some critical applications.

other components

Not only power transistors generate heat. Rectifier diodes and power resistors should be mounted with their bodies 0.125 to 0.250 inches (0.317 to 0.635 cm) off the printed circuit board (see fig. 4). This procedure allows the heat to dissipate into the air instead of into the PCB material. I’ve seen many phenolic and some fiberglass printed wiring boards badly damaged from the effects of a 10-watt power resistor mounted flush to the surface. Some “bargain basement” rectifier diodes can meet their rated forward current only when the rectifier is mounted 0.50-inch (1.27 cm) off the board and has its axial leads cut to 0.75-inches (1.9 cm) or longer. Those diodes are overrated and should be used only in lower current applications or shunned entirely.

Layout is important when power components are mounted on the PCB. Try to avoid clustering power components in one small area of the board, especially when using cheap phenolic board material. Avoid placing heat-sensitive parts near power components. For example, 10-watt resistors should not be mounted adjacent to polystyrene capacitors or small transistors.

Besides reducing the operating life or limiting the power output of circuits, overheating can also decrease performance in other ways. Certain circuits — oscillators, for example — are inherently sensitive to heat. There was once a popular three-band kit-form HF transceiver that suffered immense VFO drift because the JFET VFO was located right next to the RF/IF strip tubes. Although that was such a bad design error that nothing would really “fix” the situation, a lot of Amateurs were able to improve the frequency stability markedly with some thermal insulating material placed between the RF/IF PCB and the aluminum VFO housing.

large multi-board projects

When I first felt the temperature of my Digital Group, Inc., cabinet I took steps to get rid of the heat, and reliability was improved. Rarely does the homebrew builder have the flexibility that I had with my Vector Electronics S-100 cabinet. In most cases, the builder must make do with only a single fan and must be clever to make best use of it. Figure 5A shows a typical large-scale multi-board project —
NEW! EASY, FUN KIT!

New 2 kW tuner kit from TEN-TEC ends constant retuning, guarantees best match, and saves $80! Model 4229 Only $219

Here's the best antenna tuner in amateur radio!

The best quality components, best design, and the best value.
- Reversible "L" circuit guarantees best possible match and widest bandwidth—you may need to tune only once to cover the higher bands and only two or three times on lower bands.
- Finest quality parts—ceramic insulators—ceramic inductor form—heavy duty ceramic switch with silver contacts—silver plated roller inductor—
- Built-in SWR bridge shows ratios from 1:1 to 5:1
- Built-in 2 kW dual-range watt meter shows power levels from 10 to 2000 watts
- Handles 2 kW PEP, 1 kW CW
- Frequency range 1.8—30 MHz continuous coverage
- Built-in bypass switch
- Built-in balun—matches variety of antennas, balanced or unbalanced, to 50 ohm unbalanced outputs
- Built-in bypass switch
- 4-position antenna selector
- Coax connectors plus post terminals
- Lighted linear dial scale for easy tuning
- Black finished aluminum cabinet with stainless steel ball (5½", h x 12¾" W x 13¼" d)
- Also available assembled as Model 229 in slightly different styling at $299.

See your TEN-TEC dealer or write for details:

TEN-TEC, INC.
Highway 411 East, Sevierville, TN 37862.

CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts of RF power on 2M SSB, FM, or CW. It is biased Class AB for linear operation. The current drain is 8-9 amps at 13.6 Vdc. It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit $109.95
Wired & Tested $129.95
Most RF power amplifier tubes used in Amateur Radio equipment must be cooled with forced air in order to realize their full ratings (some are absolutely dependent on cooling). Figure 7 shows two methods for providing the needed cooling air. In fig. 7A we see a situation in which a blower is mounted so that the air flow is directly over the glass envelope. The fan may be mounted either outside the RF compartment (as shown) or inside, as in the Heath SB-221.

The other method, shown in fig. 7B, assumes the use of “air system” tube sockets. A blower or fan supplies air to the bottom side of the socket and the air is directed upwards through holes in the socket and around the glass envelope. A “chimney” aids in keeping the airflow against the glass. Some air system sockets have plumbing connections for the air hose, while others depend upon pressurization of the lower compartment. In either case, this socket is better because the pin seals with the glass are kept cooler.

The plate cap pin seal should also be kept cool, if possible. Toward this end, some builders use a finned “heat dissipating” plate cap to make electrical connection to the anode.

temperature measurement

In some cases we'll want to provide either continuous or temporary monitoring of the actual operating temperatures. Although there are elegant methods using thermocouple junctions, we can use a simple, low-cost PN junction temperature sensor. National Semiconductor and others manufacture such devices. Figure 8 shows the simplest circuit for the National Semiconductor LM-335 diode device. The LM-335 will measure temperature over the range –10 to +100 degrees F (–23 to +38 degrees C). In the circuit shown, the output across the diode will be 10 millivolts per degree Kelvin. Degrees Kelvin are the same as degrees Celsius, except that they’re referenced to absolute zero instead of the freezing point of water (note: 0 degrees C = 273 degrees K).

If you merely want to measure the temperature, then install the LM-335 “diode” on the PCB and solder-tack the wires to it. The temperature can then be measured with an ordinary voltmeter. Otherwise, mount it permanently on the PCB. Another application is to use the voltage from the LM-335 to turn on a fan or an alarm when the temperature reaches a certain critical limit. A high-power commercial transmitter uses one of these devices on each PCB and inside each subassembly compartment and then monitors all of them with a multichannel A/D converter connected to a small “single-board computer/ controller.” A shut-down program can turn off the transmitter in an orderly manner — or warn the operator — when the temperature gets too high.

conclusion

Heat is the great destroyer of electronic components. If a piece of equipment runs too hot, then the result will be unreliable operation, frequent breakdowns, and all the headaches that accompany low reliability. The simple methods shown in this article will enable you to build and/or modify equipment to gain the longest and most reliable use possible.

TRANSVERTERS UNLIMITED

PA23/200

1296 MHz, 200 + W. 2 tube PA $275

T144/28

144 MHz TRANSVERTER, 25W $189

T220/28

220 MHz TRANSVERTER, 15W $229

WATER COOLING JACKETS

for 2C39, 7289 etc. $10

ALL PRICES IN U.S. SHIPPING INCLUDED

ham radio
THE MOST AFFORDABLE
REPEATER
ALSO HAS THE MOST IMPRESSIVE
PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M,6M</td>
<td>$880</td>
<td>$680</td>
</tr>
<tr>
<td>2M,220</td>
<td>$880</td>
<td>$780</td>
</tr>
<tr>
<td>440</td>
<td>$980</td>
<td>$780</td>
</tr>
</tbody>
</table>

FEATURES:
- SENSITIVITY SECOND TO NONE: 0.15 uV (VHF), 0.2 uV (UHF) TYP.
- SELECTIVITY THAT CAN'T BE BEAT: 8 POLE XTL FILTER & CERAMIC FILTER FOR > 100 dB AT > 12kHz. HELICAL RESONATOR FRONT ENDS TO FIGHT DESENSE & INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNING TRANSMITTER, UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

RECEIVING CONVERTERS
Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF ~ 2dB or less.

<table>
<thead>
<tr>
<th>Antenna Input Range</th>
<th>Receiver Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-30</td>
<td>144-148</td>
</tr>
<tr>
<td>50-52</td>
<td>28-30</td>
</tr>
<tr>
<td>52-64</td>
<td>144-148</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
<tr>
<td>144-147</td>
<td>27-274</td>
</tr>
<tr>
<td>146-28</td>
<td>146-28</td>
</tr>
<tr>
<td>146-28</td>
<td>28-30</td>
</tr>
<tr>
<td>220-222</td>
<td>220-222</td>
</tr>
<tr>
<td>222-226</td>
<td>144-148</td>
</tr>
<tr>
<td>222-226</td>
<td>28-30</td>
</tr>
</tbody>
</table>

VHF MODELS
- Kit with Case $49
- Less Case $39
- Wired $69

UHF MODELS
- Kit with Case $59
- Less Case $49
- Wired $75

SCANNER CONVERTERS Copy 800 MHz band on any scanner. Wired only $59.

TRANSMIT CONVERTERS
For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

<table>
<thead>
<tr>
<th>Exciter Input Range</th>
<th>Antenna Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-30</td>
<td>144-146</td>
</tr>
<tr>
<td>28-30</td>
<td>145-146</td>
</tr>
<tr>
<td>27-274</td>
<td>144-146</td>
</tr>
<tr>
<td>28-30</td>
<td>220-222</td>
</tr>
<tr>
<td>220-222</td>
<td>144-146</td>
</tr>
<tr>
<td>222-226</td>
<td>144-148</td>
</tr>
<tr>
<td>144-146</td>
<td>38-36</td>
</tr>
</tbody>
</table>

For UHF, Model XV4
- Model $99
- Wired $169

VHF & UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $78.

LOW-NOISE PREAMPS
Hamtronics Breaks the Price Barrier!
* No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7dB VHF, 0.8dB UHF
- High Gain: 13 to 20 DB. Depending on freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Very Stable

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TUNES RANGE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA-28</td>
<td>26-30 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNA-50</td>
<td>46-56 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNA-144</td>
<td>137-150 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNA-160</td>
<td>150-172 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNA-220</td>
<td>210-230 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNA-432</td>
<td>400-470 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNA-800</td>
<td>800-960 MHz</td>
<td>$49</td>
</tr>
</tbody>
</table>

NEW
GaAsFET Preamps with features similar to LNA, except designed for LOW COST and SMALL SIZE: only 5/8" W x 5/8" L x 3/4" H. Easily mounts inside many models.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TUNES RANGE</th>
<th>KIT</th>
<th>WIRER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA-144</td>
<td>120-150 MHz</td>
<td>$19</td>
<td>$34</td>
</tr>
<tr>
<td>LNA-160</td>
<td>150-200 MHz</td>
<td>$19</td>
<td>$34</td>
</tr>
<tr>
<td>LNA-220</td>
<td>200-270 MHz</td>
<td>$19</td>
<td>$34</td>
</tr>
<tr>
<td>LNA-432</td>
<td>400-500 MHz</td>
<td>$19</td>
<td>$34</td>
</tr>
</tbody>
</table>

IN-LINE PREAMPS
GaAsFET Preamps with features like LNA. Automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W. Tower Mtg. Bdwr incl.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TUNES RANGE</th>
<th>KIT</th>
<th>WIRER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNS-144</td>
<td>120-150 MHz</td>
<td>$68</td>
<td>$98</td>
</tr>
<tr>
<td>LNS-160</td>
<td>150-180 MHz</td>
<td>$68</td>
<td>$98</td>
</tr>
<tr>
<td>LNS-220</td>
<td>200-240 MHz</td>
<td>$68</td>
<td>$98</td>
</tr>
<tr>
<td>LNS-432</td>
<td>400-500 MHz</td>
<td>$68</td>
<td>$98</td>
</tr>
</tbody>
</table>

ACCESSORIES
- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATOR
- COR-2 KIT with audio mixer, local speaker amplifier, tail & time-out timers.
- COR-3 KIT with "courtesy" beep.
- DTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
- CWD KITS

Send $1 for Complete Catalog
(Send $2.00 or IRC's for overseas mailing)
Order by phone or mail • Add $3 S & H per order
(Electronic answering service evenings & weekends)
Use VISA, MASTER CARD, Check, or UPS COD.
33 cm — our newest band

*CQ, CQ, CQ, this is KM2XMS calling CQ 33 centimeters . . .

Silence . . . except for white noise. No one in my area had gear, although a few of us had FCC Experimental Licenses with those funny call signs. But now that’s all changed, because on September 28, 1985, the FCC released our newest band, 33 cm, 902-928 MHz. Unfortunately for me, an initial band opening QSO was cancelled as hurricane Gloria flattened our area that very day. Power wasn’t restored for five days, so no opening day QSO’s were possible. (Yes, I have a generator on order, but so do 5000 other people in my area.)

Now that it’s ours, the new 33-cm band holds lots of promise for Amateurs. It’s a generous chunk of spectrum — 26 MHz — nestled between the prime real estate of the communications companies and adjacent to the UHF television band. This means that there should be more equipment (components especially) available, than for the 23-cm band (1240-1300 MHz), where high power linear tubes are scarce.

Amateur Service on the 33-cm band is secondary to industrial, scientific, and medical (ISM), but this probably won’t cause too many Amateurs any grief. However, restrictions will apply to Amateurs in Colorado, Wyoming, the United States possessions in Region 3 and those hams located near the White Sands Missile Range. The rest of us should enjoy a clean spectrum free of spurious generators and radars.

In order to get the ball rolling on 33 cm, I’ve updated the material I presented at the Eighth Annual Eastern VHF/UHF Conference in Nashua, New Hampshire, on May 17, 1983. This month’s column will illustrate these entry-level circuits and techniques and should provide the necessary impetus to generate activity on the 33-cm band until more Amateur designs and commercial gear are forthcoming.

overview of the band

Our newest Amateur UHF band, large compared with the lower VHF and HF bands, permits the greatest variety of authorized transmission modes. Hence, there’s considerable interest in how the band will be subdivided among the various interest groups.

The ARRL VUAC (VHF/UHF Advisory Committee), in conjunction with the VRAC (VHF Repeater Advisory Committee) has set up the interim band plan shown in table 1. Note that the narrow-bandwidth, weak-signal segment (the frequencies to which this column is usually dedicated) is the lower 2 MHz of the band. Of prime interest is the weak signal calling frequency, 903.1 MHz, around which most of the communications on CW and SSB will probably prevail.

Radio propagation on this band will be very similar to that experienced on the 70- (420-450) and 23-cm bands. Foliage attenuation will be more of a problem on 33 cm than on 70 cm, but scatter propagation should be better. This band should be perfect for EME, since small (i.e. 12-15 feet or 3.5-4.5 meter) diameter parabolic dishes should be sufficient to produce reasonable echos with 500 watts of transmitted power at the antenna feed. Additional information on propagation can be found in references 2 and 3.

antennas and transmission lines

This band is in a transitional antenna region. While Yagi types of antennas should work, they will require close tolerances (0.04 inch or 1 mm) if the desired performance is to be attained.

Table 1. Abbreviated ARRL 33-cm Interim VUAC Bandplan. See Ref. 1 for more detail.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>902-904 MHz</td>
<td>Narrow-bandwidth weak-signal communications with 903.0-903.05 MHz exclusively for EME and 903.1 MHz as the weak signal calling frequency.</td>
</tr>
<tr>
<td>904-906 MHz</td>
<td>Digital communications.</td>
</tr>
<tr>
<td>906-907 MHz</td>
<td>Narrow-bandwidth FM simplex with 906.5 MHz as National simplex frequency.</td>
</tr>
<tr>
<td>907-910 MHz</td>
<td>FM repeater inputs.</td>
</tr>
<tr>
<td>910-916 MHz</td>
<td>ATV.</td>
</tr>
<tr>
<td>916-918 MHz</td>
<td>Digital communications.</td>
</tr>
<tr>
<td>918-919 MHz</td>
<td>Narrow-bandwidth FM control links and remote bases.</td>
</tr>
<tr>
<td>919-922 MHz</td>
<td>FM repeater outputs.</td>
</tr>
<tr>
<td>922-928 MHz</td>
<td>Wide-bandwidth experimental, simplex, ATV, spread spectrum.</td>
</tr>
</tbody>
</table>
The most probable antennas will be the parabolic dish and the loop Yagi. Details on parabolic dish design and construction can be found in references 4 and 5. Several loop Yagi designs are described in reference 6.

The loop Yagi designs described in reference 6 can be scaled to the 33-cm band, but they will be either too long or too short, based on commonly available boom material. Therefore, I designed a 12-foot (3.65 meter), 33-element loop Yagi for 903 MHz using standard material stock. Its construction is shown in fig. 1.

This loop Yagi design should be duplicated exactly as shown if the gain of 19-19.5 dBi is to be attained. If any changes in the boom diameter, loop thickness or width are desired, the loops must be lengthened or shortened accordingly. This procedure, described in detail in reference 6, should be followed very closely.

Transmission lines must be carefully chosen. RG-8 and RG-213/U types should be used sparingly since they have a loss of about 8 dB per 100 feet (30.5 meters). Belden 9913, hardline and Heliax™ are recommended. A thorough discussion of transmission line selection and nominal losses are covered in reference 7.

up/down converters and transverters

Receive and transmit up/down converters are often used on the VHF/UHF bands. More recently, transverters have been gaining popularity; the advantages and disadvantages were discussed in references 8 and 9, so they won't be repeated here.

Suffice it to say that transmit upconverters/transverters are preferred to multipliers since they will allow CW and SSB to be used at will. Furthermore, I recommend the modular approach to design, especially since this band is new and components and circuits can be easily upgraded as the available devices are selected and designed into improved circuits.

mixers

When designing a linear up/down
fig. 2. A recommended mixer circuit for a receive type down-converter. Conversion loss is approximately 9 dB overall. LO level should be between 5 and 15 milliwatts. If a 28 MHz IF is not used, the diplexer must be modified as described in text. See text for other recommended dBm's.

fig. 3. A recommended mixer circuit for a transmit type up-converter. Overall conversion loss is approximately 9 dB. LO level should be between 5 and 15 milliwatts. IF input level should not exceed 1 milliwatt. See text for other recommended dBm's.

converter, the first requirement is to choose a mixer. For many of the reasons mentioned in references 8 and 9, I recommend the doubly-balanced mixer (DBM) and, more specifically, the commercial packaged units. Many are available, but they must be carefully chosen since most of the commonly available types are restricted to 500 MHz and down.

The Minicircuits Labs SBL-1X (at $5.95), the SBL-1Z (at $6.95), the TFM-2 (at $11.95) — all prices are given for quantities of 10 to 49 — or the Anzac Electronics MD 110 (at
$19.00 each) are recommended. DBMs from other suppliers are likewise usable as long as they're specified to work up to at least 1 GHz.

A recommended receive-type down-converter DBM circuit is shown in fig. 2. I prefer 28 MHz for an IF. The diplexer shown on this circuit is for 28 MHz, per reference 9. Other IF's can be used, but the diplexer shown will have to be scaled to the new IF frequency or be eliminated. A recommended IF post amplifier is described in reference 10.

Figure 3 shows a recommended low-level DBM circuit for a transmit up-converter. The operation of this circuit is described in reference 8. This circuit will easily handle any desired IF up to 150 MHz. The IF input level must not exceed 1 milliwatt.

filters

Figure 4 shows a simple input filter that can be used ahead of a receive down-converter, especially if the input stage is untuned. It is not exotic, but will eliminate such out-of-band signals as TV, FM, etc. This filter is easier to build than a coaxial cavity, and its unique topology has a symmetrical response. A simple two-section bandpass filter is shown in fig. 5. It should be used in the receive down-converter just ahead of the mixer to eliminate any out-of-band signals from reaching the mixer. This filter should also be used after the transmit mixer to prevent amplification of local oscillator, image and spurious signals generated by the mixer from being amplified in the transmitter.

These filters are simple, but neither is real state-of-the-art. Interdigital types of filters with three sections are recommended for improved filtering per reference 11, but are beyond the scope of this month's column.

low-level receiver preamplifiers.

The MRF 901 bipolar transistor is a readily available (Radio Shack), low-cost device (under $2.00) that is simple and straightforward to use. A
recommended circuit patterned after a previous design is shown in fig. 6. It uses series feedback and simple matching to achieve a moderate 2.5-3 dB noise figure. It also has some built-in selectivity and reasonably high output power (over 5 milliwatts at 1 dB compression).

A single preamplifier stage such as this one will normally be sufficient to yield an overall 3-4 dB noise figure in a typical converter as just described. Two such preamplifiers can be used in cascade if a lower noise figure is desired.

If a very low noise figure (less than 1 dB) is required, the 902 MHz GaAs FET preamplifier in reference 13 can be used. However, this particular design has little if any input selectivity to reject transient or lower frequency emitters. Therefore, if this circuit is used, I recommend adding a 25-100 pF, low-loss ceramic chip-type capacitor in series between the input connector and the first circuit elements.

Other GaAs FET circuit recommendations are described in reference 14. Reducing the size of the input inductor and capacitors in the circuit in this reference should yield a very acceptable noise figure with "built-in" front-end selectivity, thus killing two-birds with one stone.

local oscillators and multipliers

So far I have not mentioned a suitable local oscillator. The 33-cm band is unique in that it can be easily served with a simple crystal oscillator operating in the 100 MHz region and followed by three doublers. This is a recommended approach.

Figure 7 shows a recommended oscillator circuit similar to the one described in reference 9. If a crystal cut for 109.3625 MHz is used, the IF for 903.0 MHz will be 28.1 MHz, a favorite IF of mine. This circuit has been widely used. A low-pass filter has been added to the output to decrease oscillator harmonics. I recommend placing this oscillator in its own shielded box, away from heat and extraneous RF signals.

Figure 8 shows a recommended multiplier circuit that consists of three doublers. It has a clean output and is relatively easy to align. The RF output level is sufficient to directly drive the DBM circuits. This circuitry is similar to that described in reference 9 and has been extended to the 33-cm band. It should also be placed in its entirety in a shielded box.

If a transverter is used, the multiplier output power is sufficiently high so that it can be divided into two equal outputs. A Wilkinson-type power splitter is recommended since it has negligible loss (over the inherent 3 dB power split) and provides high isolation (20 dB typical) between the two outputs. Hence there will be very little, if any, interaction between the receiver and transmitter. The Wilkinson-type power splitter I use is shown in fig. 9. Both transmission lines are 75 ohms and are electrically a quarter-wavelength long at the local oscillator output frequency.

transmitter circuits

Finally we come to the transmitter. The output of the DBM shown in fig. 3 will be about 16-17 dB below a milliwatt with one milliwatt of IF drive, the maximum recommended level for a clean transmitting oscillator. The DBM should be followed by either the filter shown in fig. 5 or an equivalent as described.

This low-level output after the filter can be easily boosted up to a moderate power level with two amplifier stages, similar to the receive preamplifier shown in fig. 6. All that’s required is to change the 200-ohm resistor in the constant current source to 100 ohms and remove the protection diode, CR1. Gain will then be about 13 dB per stage and the 1 dB output compression point will increase to about 10 milliwatts.

Alternatively, Toshiba and NEC now make low-cost (5-10), 902-905 MHz low-level linear hybrid modules. The Toshiba module part number is S-AU15; the NEC model part number is MC-5809. Both units require about 8 volts DC. Gain is just over 20 dB and the 1 dB output compression point is
fig. 8. A recommended multiplier circuit suitable for a 33 cm local oscillator. Each stage is a doubler with the final output frequency in the 800-900 MHz region. The oscillator in figure 7 is recommended as the driver. Output power is approximately 10-20 milliwatts with an input of 5-10 milliwatts.
I'm sure Amateur designs using these tubes will be published shortly.

For even higher power, I'm aware of only one published Amateur design.16 UHF TV transmitting tubes should be readily available, especially as "pull-outs." The RCA 7650 and 7213 immediately comes to mind. Cavity-type amplifiers using these or other suitable tubes are recommended.15,16 I'm sure that many designs will be forthcoming as interest picks up in this new band.

over 100 milliwatts. A typical circuit using these modules is shown in fig. 10.

For higher linear power, CATV-UHF type bipolar transistors can be used. A recommended circuit, patterned after the circuits described in reference 8, is shown in fig. 11. Gain is typically 13 dB per stage with a 1 dB compression point of 300 milliwatts. One or two stages can be used, depending on the desired gain and output power. This power level is more than adequate for local (i.e. up to 25 miles or 40 km) QSO's.

For even higher solid-state linear output power, transistors similar to the NEC NE0801 (11 watts) are recommended.2 I'm sure there are many other devices available from suppliers such as Acrian, Motorola, TRW, and Thompson-CSF's Solid State Microwave Division. Time and space does not allow for a detailed description of such circuitry at this time.

For "quick and dirty" gain, Class "C" can be used. The same suppliers just mentioned can supply suitable class "C" bipolar transistors to at least 25-50 watts.

Furthermore, if only class "C" operation is desired, both NEC and Toshiba make 7-12 watt output hybrid modules for the 33-cm band, which is, incidentally, a citizens' band in Japan. The NEC part number is MC-5843 and the Toshiba part number is S-AU11.

A suitable circuit using these modules is shown in fig. 12. These hybrid modules provide a power gain of approximately 30 dB and can be driven to full output with 100-200 milliwatts of drive. They require a nominal supply of 12.5 volts at 2-3 Amperes of current and are great for portable operation.

high power

High-power amplifier designs are probably already available, but we have to seek them out. For moderate power (25-200 watts), the ubiquitous 2C39/7829 in a cavity is recommended.14,15 I'm sure that many designs will be forthcoming as interest picks up in this new band.

summary

This month's column was mainly focused on getting started on the new 33-cm band. Easy-to-build and duplicate circuitry was discussed. Although the power level available from this is low, it should be more than adequate for DX from 50 to 250 miles (80 to 400 km) for band "warmer-upper's" and further if extended propagation conditions are present.
Introducing the BUTTERFLY™
Beam from Butternut!

Compact Size
The HF4B’s 12½-foot elements and 6-foot boom are ideal for home-station use and for weekend retreats, condos, apartments and other places where oversized beams are prohibited. Its light weight (17 pounds) means it can be turned with a tv rotator, yet it is robustly constructed in the best tradition of our world-famous Butternut verticals.

Performance
The HF4B BUTTERFLY™ has not sacrificed performance for compactness. Its unique design with fanned elements and L-C circuits avoids use of power-robining traps yet provided high-efficiency operating on all bands. The BUTTERFLY™ outperforms anything in its class.

The HF4B offers an SWR of 1.5:1 or less at resonance. Its 2.1 bandwidth is 200 kHz on 20 meters, 450 kHz on 15, 1.7 MHz on 10, and across the entire 12 meter band. And it will handle the legal power limits both CW & SSB. Gain is at least 3 dB on 20, 4.5 dB on 15 and 5 dB on 10 & 12 meters. Front-to-back is up to 18 dB on 10, 12 and 20m, and up to 15 dB on 15m.

See your authorized Butternut dealer

BUTTERNUT ELECTRONICS CO.
405 East Market Street
Lockhart, Texas 78644

Please send all reader inquiries direct

"HAM HOTLINE"
THE PROVEN MONEymAKER
The "Ham Hotline" is a complete mailing list of novice amateur radio operators and current hams who have renewed, upgraded or modified their FCC licenses. These ham enthusiasts have proven to be excellent prospects for radio equipment, accessories and publications.

The Hotline is UPDATED EVERY TWO WEEKS with an average of 8,000 names and addresses each month. And, because we know the Hotline is the most up-to-date amateur radio listing available, we'll guarantee 98% deliverability to your most likely buyers. Call DCC Data Service today and begin your subscription to the "Ham Hotline"... the proven moneymaker.

DCC Data Service
1990 M Street, N.W. Suite 610
Washington, D.C. 20036
Toll-free 1-800-431-2577
In DC & AK 202-452-1419

The HF4B Compact, 2-element Beam for 20-15-12-10 meters
fig. 11. A recommended medium-power linear transmit amplifier. Gain is approximately 13 dB and maximum output power at 1 dB compression is approximately 300 milliwatts.

The designs just discussed are more than adequate for transmitter drivers and basic receive converters. Improved designs and higher power transmitter designs should be forthcoming and can be easily substituted or added on to the circuitry shown, especially if the modular approach is used.

Let's welcome our "newest" UHF band. It was only a few years ago that power levels above 10 watts were uncommon on 23 cm, and we all know that great DX was worked there under good conditions. I'm sure the same DX is more probable on 33 cm. See you on 903.1 MHz!

references

important VHF/UHF events:
April 14: ARRL 144-MHz Sprint Contest
April 19/20: REF IARU EME Contest
April 21: Predicted peak of Lyrids meteor shower at 1504 UTC
April 22: ARRL 220-MHz Sprint Contest
April 25: EME perigee
April 26-27: Dayton Hamvention
April 30: ARRL 432-MHz Sprint Contest
May 4: Predicted peak of the Eta Aquarids meteor shower at 1900 UTC
May 8: ARRL 1296-MHz Sprint Contest
May 10/11: So. Calif. 6 Meter Club QSO Party (contact N6FSIL)
May 16/18: 12th Annual Eastern VHF/UHF Conference, Nashua, NH (contact W1EJ)
May 17: ARRL 50-MHz Sprint Contest
May 24: EME perigee
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

NAME ____________________________ CALL ____________________________
ADDRESS ____________________________
CITY ____________________________ STATE ______ ZIP ______

Please use before May 31, 1986

April 1986
ATTN: Reader Service Dept.
Measure Up With Coaxial Dynamics
Model 85A Termination Wattmeter

A direct-reading instrument for servicing 50 ohm communication systems and maintaining them at peak operation. The Model 85A features:
- Dry load no coolant required.
- Replaceable connectors, interchangeable without affecting instrument calibration.
- Four power ranges easily switchable — 0-315/50 and 150 watts full scale.
- Frequency Range: 20 to 512 MHz.
- Accuracy: ± 5% OFS.
- Temperature Compensated

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in your world-wide sales network.

COAXIAL DYNAMICS, INC.

Service and Dependability... A Part of Every Product

NOW!
Better than Ever
Improved Graphics

For more than 4 years, QEX, THE ARRL Experimenters’ Exchange has filled the gap between the experimenter's personal notebook and the content requirements of mass-circulation periodicals. QEX with its new look and expanded content should be even more appealing to those interested in expanding the technical frontiers of amateur radio. You are invited to watch the results of the metamorphosis of QEX when it goes from a newsletter to a mini-technical journal effective with the March issue! Use the order form to sign up to receive QEX each month.

QEX ORDER FORM
ARRL - 225 MAIN STREET NEWINGTON, CT 06111 USA
☐ Renewal ☐ New Subscription
For 12 Issues of QEX in the U.S.
☐ ARRL Member $8.00 ☐ Non-Member $12.00
In Canada, Mexico, and U.S. by First Class Mail
☐ ARRL Member $11.00 ☐ Non-Member $17.00
Elsewhere by Airmail
☐ ARRL Member $21.00 ☐ Non-Member $27.00
Remittance must be in U.S. funds and checks must be drawn on a bank in the U.S. Price subject to change without notice. Or charge me:
☐ VISA ☐ Mastercard ☐ Am. Express
Signature ____________________________
Acct. No. __________________________
Good from __________ Expires ________
Name _____________________________
Address ___________________________
City __________________________ State ___ Zip __________

RF TRANSISTORS
FRESH STOCK - NOT SURPLUS TESTED — FULLY GUARANTEED

<table>
<thead>
<tr>
<th>P/N</th>
<th>Rating</th>
<th>Match Pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF405</td>
<td>20W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF412/A</td>
<td>80W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF421</td>
<td>100W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF312/C</td>
<td>110W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF422</td>
<td>150W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF429/A</td>
<td>25W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF429/B</td>
<td>150W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF432</td>
<td>12.5W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF435</td>
<td>150W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF449/A</td>
<td>30W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF450/A</td>
<td>50W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF453/A</td>
<td>60W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF455/A</td>
<td>80W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF457</td>
<td>12.5W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF458</td>
<td>80W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF459</td>
<td>100W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF460</td>
<td>60W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF461</td>
<td>40W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF462</td>
<td>30W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF477</td>
<td>15W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF479</td>
<td>30W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF485</td>
<td>15W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF492</td>
<td>90W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF497</td>
<td>75W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF498</td>
<td>110W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF499</td>
<td>75W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF500</td>
<td>110W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF505</td>
<td>50W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF507</td>
<td>70W</td>
<td>1.5</td>
</tr>
<tr>
<td>MRF511</td>
<td>50W</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Selected High Gain Matched Quadats Available

VHF/UHF TRANSISTORS

<table>
<thead>
<tr>
<th>VHF</th>
<th>MASTERCALL NUMBER</th>
<th>QTY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>25W</td>
<td>407.512</td>
<td>1W</td>
<td>$12.50</td>
</tr>
<tr>
<td>50W</td>
<td>407.512</td>
<td>2W</td>
<td>$25.00</td>
</tr>
<tr>
<td>75W</td>
<td>407.512</td>
<td>4W</td>
<td>$37.50</td>
</tr>
<tr>
<td>100W</td>
<td>407.512</td>
<td>8W</td>
<td>$50.00</td>
</tr>
<tr>
<td>150W</td>
<td>407.512</td>
<td>16W</td>
<td>$62.50</td>
</tr>
<tr>
<td>200W</td>
<td>407.512</td>
<td>32W</td>
<td>$75.00</td>
</tr>
<tr>
<td>300W</td>
<td>407.512</td>
<td>64W</td>
<td>$97.50</td>
</tr>
<tr>
<td>500W</td>
<td>407.512</td>
<td>128W</td>
<td>$150.00</td>
</tr>
</tbody>
</table>

TMOS FET

<table>
<thead>
<tr>
<th>VHF</th>
<th>MASTERCALL NUMBER</th>
<th>QTY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5W</td>
<td>407.512</td>
<td>1W</td>
<td>$25.00</td>
</tr>
<tr>
<td>10W</td>
<td>407.512</td>
<td>2W</td>
<td>$37.50</td>
</tr>
<tr>
<td>20W</td>
<td>407.512</td>
<td>4W</td>
<td>$75.00</td>
</tr>
<tr>
<td>40W</td>
<td>407.512</td>
<td>8W</td>
<td>$150.00</td>
</tr>
<tr>
<td>60W</td>
<td>407.512</td>
<td>16W</td>
<td>$225.00</td>
</tr>
<tr>
<td>80W</td>
<td>407.512</td>
<td>32W</td>
<td>$300.00</td>
</tr>
<tr>
<td>100W</td>
<td>407.512</td>
<td>64W</td>
<td>$450.00</td>
</tr>
</tbody>
</table>

Selected, matched finals for Kenwood, Yaesu, Icom, Atlas, etc. Technical assistance and cross-reference information on CD. PT, RF, SRF, SD P/Ns.

QUANTITY DISCOUNTS AVAILABLE
WE SHIP SAME DAY C.O.D./VISA/MC
INFORMATION AND CALIF. ORDERS: (818) 744-0728
OUTSIDE CALIF. ORDER DESK: 800-654-1927

RF PARTS
1320-16 Grande Ave., San Marcos
California 92069 (619) 744-0728

April 1986
The RF Notes in the image contains a section titled "RF Notes — IBM-PC" written by John Simmons, W5DMS. Here's the natural text representation of that section:

"Here's an easy way to get answers for often asked electronics questions. Volumes contain programs written by RF consulting engineers that answer a number of very important questions often asked by the novice and color versions available. Written in Basic A and full memory system.

Volume I
Contains: BTVP conversions, to convert voltage, current or frequency power levels to dB, BTVP conversions, converts voltages or power levels to dB in and power voltage or power. VSWR calculations, calculates VSWR and return loss, both reflected and incident powers are known, filter design, 14 different filter configurations including schematics (6 low pass, 4 high pass, 2 band pass and 2 band elimination circuits, Basic Microstrip and strip line design. Resonant Circuits, design parallel and series resonant circuits, pi and the inductive and impedance divider circuits.

Volume II
This program covers: Antennas, pads, calculates constants for 11 different pad configurations (all with circuit diagrams), Inductors, inductance in a single layer of wire, single layer coils, both close and wide space wound and Toroidal coil design that gives automatic selection of wire size and toroidal form. Capacitors, calculates self resonant frequencies, determines optimum bypass values and decoupling applications, Impedance Matching Networks including, L, p, t and series L configurations.

Volume III
BRAND NEW
Contains: 4 programs that cover, low pass, high pass, band pass, and band reject filters (circuit diagrams) and circuit constants for Butterworth filters through the 7th order. Programs include graphical response curves and all output and on schematic diagrams, circuit schemes and related output and associated circuit constants are determined on the basis of user inputs including source and load resistance.

Volume IV
BRAND NEW
E-RF-3 (Monochrome) IBM-PC $84.95
E-RF-3 (Color) $84.95

RF-CAD ELECTRONICS DESIGN PROGRAM
Version 3.51
By Joe Reiser, W1JDR and Gary Field, WA1ERG
For IBM PC and compatible computers
This software package has been written by electronics engineers and contains nearly 40 tested and proven programs that will help the radio engineer design many common types of radio circuits. Emphasis has been placed upon ease of use. Wherever possible, menus of choices with examples are displayed. Should the user be computer literate, the program is not very complex. It can be used to solve all your specific requirements. (full documentation is also included) Programs include: Filters, LC, active LP, HPBP, Inductor design, toroidal, scanned, straight wire. Matching Networks, Crystal calculators, Microstrip, Transmission lines, Antennas, Yag-Uda, helix, disk, horn, element scaling, and attenuators. Also included are Radio Path calculations, FM modulation analysis, Microwave propagation, and Satellite tracking.

SOFTBOUND $39.95

PACKET RADIO THRU SOFTWARE
AX.25 Protocol
You can get on Packet Radio with two ways. One is with a sophisticated "black box." The other is by making your computer act like a "black box." By programming it in a high level language, such as PASCAL, GENIE, or a machine language for the Radio Shack TRS-80 Models 1, 3, and 4 computer (Model 4 works with Model 3 disk while in Mode 3-210). This book has twelve chapters, plus seven appendices that take you by step through the process of setting your computer to first connect the TRS-80. Then, you chain it up to network, and then to decode the information. © 1983. 3rd edition.

RE-MI Model 1 Disk $29.95
RE-MI Model 2 Disk $29.95
No Documentation included
RE-MI Model 3 Disk & 4 Disk $29.95
RE-80 special book and disk
(Specific disk, Mod. 1 or Mod. II) $49.95

CODEPAC. COM for IBM-PC
Here is a really different code practice program for your IBM-PC or compatible computer. It produces machine perfect code from 5 to 50 WPM using any ASCII file from your workstation. LOTUS, whatever you have already. Perfect for Daily VT, VE, or WAC contest.

E-RC-8 IBM or compatible $19.95

BOOKS
MICRO COOKBOOK Vol. 1 and 2
By Don Lancaster
Learning to use a PC can be a real challenge. However, Don Lancaster has tried to filter out all the gobbledegook and make it easy as can be. Volume 1 features down-to-earth coverage of fundamentals, numbers systems, hardware and software logic, main and secondary applications. Volume 2 covers computer software, addressing system architecture, machine code programming, I/O and hardware suggestions to common problems.

Volume 1 $15.95
Volume 2 $15.95

Save $4.95

Buy both Special $29.95

CMOS COOKBOOK by Don Lancaster
CMOS is today's state-of-the-art of low cost, widely available and uses an absolute minimum of power. It is also fun to work with and very easy to use. The CMOS COOKBOOK is written to help you use CMOS and is check-off of practical circuits and does not chew on high power op-amps. TV typewriter, digital instruments, music synthesizers, video and games and more. Release 1.1st edition, 414 pages.

Softbound $13.95

IC OP AMP COOKBOOK by Walter Jung
This second edition is broadly updated in terms of device coverage. It includes the latest in state-of-the-art developments such as FET and JK flipflop in both single and multiple formats. This cookbook is edited into three basic parts. Part I introduces the IC op amp and discusses general operation. Part II covers practical circuit applications. Part III is an appendix consisting of manufacturer's data sheets and other pertinent information. You'll find a wealth of information, as well as over 200 practical circuit applications. © 1980, 2nd edition, 480 pages.

Softbound $15.95

TTL COOKBOOK by Don Lancaster
Despite the advent of CMOS, there is still design work being done with TTL circuitry. This book gives you a broad overview of exactly what TTL is, how it works and is full of design ideas and practical circuits. Areas that receive attention include: flip-flops, logic gates, counters, counting techniques, noise genera- tors and much more. You also get a complete discussion of practical TTL applications including digital counters, event counters, stopwatch and voltmeter to name just a few. "1974. 1st edition, 334 pages.

Softbound $12.95

SPECIAL SALE — SAVE $5 EACH

Have a name, but need the Call Sign?
Traveling — and want to meet local hams?

No WIFs directories of over 462,000 U.S.
Radio Amateurs. 8x11, easy to read format.
NAME INDEX—$25.00

GEOPHIC INDEX—$25.00

NAME INDEX—$25.00

GEOGRAPHICAL INDEX—$25.00

BOTH SPECIAL—$35.95
UNDERSTANDING SERIES™

UNDERSTANDING MICROPROCESSORS
By Don L. Cannon and Gerald Luecke
How microprocessors work and what they can do is something that you need to know. This text starts with an overview of the world of digital electronics and covers the basic concepts of microprocessor systems, how digital ICs provide systems functions, fundamentals of microprocessors, system application with SAM (simplified architecture microprocessors) programming basics and 8 and 16 bit microprocessor applications. Written in an easy-to-read style with plenty of "hands on" projects. © 1984 2nd edition 288 pages.

TI-MP Softbound $14.95

UNDERSTANDING DIGITAL ELECTRONICS
By Gene McWhorter
This book talks you into all you need to know about the basics of digital electronics. You start with a look at how digital electronics work and progress through AND, OR, NOT, NAND and NOR. You then learn decision making, logic and memory fundamentals. Digital mass storage is explained with information on static, dynamic, RAM and ROM systems. There is much more to this book than can be explained in this short description. You'll have to get one to see how complete it is. © 1984 2nd edition 192 pages.

TI-UD Softbound $14.95

UNDERSTANDING DATA COMMUNICATIONS
includes Pocket Information
By G. Friend, J.L. Fike, H.C. Baker and J.C. Bellamy
This book covers the basic concepts of data transmission and reception, asynchronous and synchronous protocols, error control and networking data communications systems. Data terminals are fully discussed as are message and transmission terminals, modems and interfaces, fiber optics and satellite communications systems. Packet Networks and standards are covered with information on X.25 switching architecture. You also get the recommended X.25 series standards. A wealth of information. © 1981 1st edition 272 pages.

TI-UDC Softbound $14.95

BASEBALL CAP
How about an attractive BASEBALL style cap that has name and call on it. It's a puffy air when worn at Hamfests and it is a great help for friends who have never seen you before. A breeze for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion Rick comes in the following colors:

GOLD, BLUE, RED, KELLY GREEN
Please send call and name (maximum 6 letters per line).

UFDC-81 $6.00

I.D. BADGES
No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get togethers, and you have a wide choice of colors. Your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, red/yellow, white/green, white/metallic gold/black, metallic silver/black.

I.D. Badge engraved $2.50

CONFIDENTIAL FREQUENCY LIST
NEW 6th Revised Edition
now includes RTTY stations
by D. P. Ferrell
SWL's around the world know that this is the best reference book to have around. This brand new edition is jam-packed with all the latest frequencies, callsigns and other important information. Inside you'll find listings for aeronautical, military, embassies, VOLMET, INTERPOL, weather and RTTY stations. Included is a thorough discussion on how to listen to RTTY stations, explanations of the abbreviations used by workers in the fields behind international jamming and much, much more. Every radio enthusiast should have a copy in their shack.

GL CF Softbound $15.95

ARRL COMPUTER NETWORKING CONFERENCES 1-4
The HANDBOOK for Packet Users!!
This collection of Packet Radio papers should be in every Packet enthusiast's shack! Written during the formative years of Packet development, these papers (too numerous to mention all) cover: theory, practical applications, software and hardware subjects. You also get a complete up-to-date collection of all published "Gateway" and ARRL Packet newsletter articles. As big as the ARRL HANDBOOK, this new book is sure to be the ARRL's next best seller! © 1985 over 1000 pages.

ARCH CF Softbound $17.95

SOFTWARE FOR AMATEUR RADIO
by Joe Kasser, G3CZC
Packed with practical computer applications and tested and debugged programs that can be adapted simply and easily to almost any microcomputer. You get BASIC programming concepts as well as how to interface your computer to your radio. Programs include digital communications RTTY, Packet, computer aided design and circuit analysis as well as data base programs, for record-keeping logging, and awards. Easy-to-understand explanation of Baudot and ASCII codes and guidance on hardware dependent software. ©1984 1st printing 254 pages.

IT-1560 Softbound $15.95

THE COMPLETE DX'ER
by Bob Locher, W9MNI
DXing can be as simple as tuning the radio on and searching across a band, or it can be hours spent studying propagation reports, sumptom figures and the DX newslet- ters looking for the latest in information. This first part of the book is designed to teach the reader DXing fundamentals. Part two is for the "over 200 countries worked" operator and has plenty of handy tips, aids and ideas. Part three is full of more esoteric hints for the "over 300 countries worked" operator. This book tells all and should be read before anyone starts their quest for DXCC. Even if you don't care about DXCC, Bob's easy-to-read style of writing is most enjoyable reading. ©1984, 1st edition.

ID-DX Softbound $10.95

ANTENNA COMPRENDIUM
edited by ARRL Stuff
This book has more than 20 antenna articles that have never been published before. It covers antennas including designs for vertical antennas, antennas for your station. Includes as well as dielectric and multi-element directional antennas. Paul Lee is an engineer and avid ham and an Amateur Radio's resident expert on the vertical antennas. ©1984, 2nd edition.

AR-AC Softbound $9.95

THE AMATEUR RADIO VERTICAL HANDBOOK
by Cpl. Paul H. Lee, USN (Ret.), NSP
This is the only book dedicated to the vertical antenna and is of particular interest to all using or looking to use the vertical design. Based upon the author's years of work with different vertical antenna designs, you'll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for single and dual wave antennas as well as broadband and multi-element directional antennas. Paul Lee is an engineer and avid ham and an Amateur Radio's resident expert on the vertical antennas. ©1984, 2nd edition.

CQ-VH Softbound $9.95

DX POWER: EFFECTIVE TECHNIQUES FOR RADIO AMATEURS
by Chip Tilton, KB9GJ
Co-published by ARRL and TAB Books
If you're a new DX'er, how do you learn all the "ropes" of successful operation? Either you have a special time or you go Chip's new book. This fact filled guide to DXing is filled with all the tricks that will put you on the coveted DXCC Honor Roll. It's also an inside's view to all the funny, frustrating and tricky maneuvers used by DXers around the world. Each band is covered as well as a discussion of equipment, antennas and antennas for your station. Also includes info on QSLing, ARRL awards and other helpful information. ©1986 1st edition, 244 pages.

IT-1740 Softbound $3.95

ORDER FORM

Name
Address

City State Zip

® Check or Money Order Enclosed
® VISA @ MasterCard

Card # Expires

Catalog #
Title

QTY
Price

Total

Subtotal
$3.95

Shipping
$3.95

TOTAL
$7.90

S A V E T I M E, U S E Y O U R C H A R G E C A R D
AND ORDER BY PHONE
(603) 878-1441 8:00-4:00

April 1986

ham radio magazine
GREENVILLE, NH 03048

BOOKSTORE
(603) 878-1441
THE FIRST NAME IN ELECTRONIC TEST GEAR

35 MHz DUAL TRACE OSCILLOGRAPH

A heavy duty and accurate scope for service as well as production use. Features include: 6 digit frequency readout; bandwidth: 35 MHz; oscilloscope sensitivity extremely bright display delayed triggering sweep hold off AUTOTRIgger; sweep modes 1x 5x multiscop 0.1x 1x XY or XZ operation HF/LF noise reduction.

3500 Dual Trace Oscilloscope $4999.95 includes 2 high quality probes.

ALL OSCILLOSCOPES INCLUDE 2 PROBES

15 MHz DUAL TRACE PORTABLE OSCILLOGRAPH

Ideal for field/bench applications, this scope can display up to 15 MHz signals. Internal battery pack allows up to 2 hour operation on a single charge. Features include: built-in battery charger; 5x horizontal magnification; 5x brightness CRT; front panel trace rotate; internal rechargeable battery pack.

2500 Portable Oscilloscope $4499.95 includes 2 high quality probes.

MINI-100 FREQUENCY COUNTER

Features and capabilities of counters outweighing twice as much: compact; high sensitivity; low current drain; very accurate; zero drift; fast, accurate measurements; temperature zeroing capability; high brightness CRT; front panel trace rotate; internal rechargeable battery pack.

$999.95 BATTERY CHARGED BATTERIES AND AC ADAPTER INCLUDED.

FM MINI MIKE

A super high performance FM wireless mike kit for the home or office. The mike includes a stable high frequency receiver which produces high quality audio. Ideal for home or office use. Kit includes case, mike, on/off switch, antenna, batteries, connectors. This is the latest model available.

$19.95 FM-83 Kit

15W WIRELESS MIKE KIT

Transmits up to 1500' on any FM broadcast station, uses any type of FM mike. Runs on 3 or 4 v Mickey Cat-2 or any other battery powered receiver. This is the latest model available.

$24.95 FM-6 Kit

LINEAR Mufen Kit

A highly advanced linear mufen kit for use in or out. The kit includes a reliable, stable, high frequency receiver which produces high quality audio. Ideal for home or office use. Kit includes case, mike, on/off switch, antenna, batteries, connectors. This is the latest model available.

$19.95 FM-83 Kit

NEW RAMSEY 1200 VOM MULTITESTER

Check transistors, diodes and LEDs with this professional quality meter. Other features include: decade scale; 20kV metering system; 3%-4%-5% irreplaceable scale; polarity switch; 10 measuring ranges; safety probe; high impact plastic case.

$19.95 test leads and battery included.

NEW RAMSEY D-4108 COMPACT DIGITAL MULTIMETER

Compact sized reliability and accuracy. This LCD digital multi-meter easily fits in your pocket. You can take it anywhere. It features full overload protection and has digital LCD readout; recessed input jacks; safety probe; lock: check function; 2000 hours battery life.

$2295 test leads and battery included.

RENEW RUTHERFORD 1986

April 1986

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antennas, SNC plug, high impedance probes, light loading...18.95

High impedance probes, light loading...16.95

Low pass probe, audio probe...16.95

Direct probe, general purpose probe...13.95

Tilt ball, for CT-70, 90, 125...3.95

PHONE ORDERS CALL 716-586-3950

TELEX 466735 RAMSEY CI

RAMSEY ELECTRONICS, INC.
2575 Baird Rd.
Penfield, N.Y. 14626

98
1985 review

Six months have passed since our last review of propagation conditions; now that data for 1985 is complete, it's time for a review of the year as a whole.

The sunspot numbers (SSN) during the first four months of 1985 were just under 20, increasing through July to 36 and diminishing during the final months of the year to 13. This represented a decrease, over the year, of 7 SSNs, or approximately 0.5 SSN per month. If this trend continues, we could expect a low of about 6 SSNs by late fall of 1986. Although new 11-year cycle SSN sunspots were tentatively identified from polarization differences on September 11, no opposite polarity spots at high latitudes have yet been seen. The cycle 21 SSN minimum may occur in September, 1986.

An equivalent pattern emerged in review of the 10 cm solar flux data. Monthly solar flux numbers in early 1985 matched those of late 1984 at 74 ± 2 units. A mid-year bulge of up to 80 occurred instead of the minimum number expected; a minimum of 69.5 occurred in September. The year closed with a 75 again. Note that the minimum monthly average in October, 1984, was 73.5; in 1985, it was 69.5, which represents a decrease of four units. A continued reduction to 67 units in a late summer month of 1986 will be necessary for the solar flux minimum to be reached.

The lowest daily solar flux value in the 11-year cycle so far, 66, occurred on August 17 and from October 6 through the 9th. The highest value during 1985 was 101, on July 9. (The daily flux number will probably reach 63 or 64 by next fall.) The 27-day solar flux variation of daily numbers, whose increase raise the monthly average, was 20 units or more in January, in the period between April and July (with May the highest solar flux, at 80.3), and in the month of October; a variation of about 10 units occurred in February, March, August, November, and December. September was quite "flat," devoid of any 27-day solar cycle activity, and therefore provided the minimum monthly average of the year. Four days of a solar flux of 66 were the year's minimum recorded just before solar activity began to increase again in mid-October.

The geomagnetic A figure monthly average was, as usual, highest in April, the most disturbed month, and May, the quietest. Note the May inverse relationship to solar flux, a surprisingly frequent occurrence. Of the disturbed periods, April 20 to May 2 stands out as the highest and longest. The other months had two or three milder periods of disturbance separated by a few days of quiet conditions. That's the difference between the geomagnetic conditions in the winter minimum months and those of the equinox maximum and summer months: the number of big events decreases and the number of quiet days (at a lower A level) increases. As SSN minimum approaches this summer, the periods of solar 27-day activity should get further apart and be lower in intensity. The periods of geomagnetic disturbance should also decrease in number and intensity. The sun simply takes a rest — Hi!

You may recall from my December, 1985, column on maximum usable frequencies (MUF) that an increase of one unit in solar flux results in an increase in MUF of 1 percent. The base line to start from for mid-latitude MUFs is MUF = 2.5 (0.036 SSN + 5.28). The decrease in MUF from a geomagnetic disturbance is percentage MUF = 0.375A + 3.75. Listen to WWV at 18 minutes after the hour for the data.

last-minute forecast

The first two weeks of April are expected to have low solar flux levels. Because the amplitude variation isn’t more than a few units during this part of the 11-year sunspot cycle, the lower frequency bands are expected to provide the best DX activity. The geomagnetic field should still be a problem this close to equinox, so look for disturbances around the 4th to the 8th, from the 18th to the 22nd, and again on the 28th of the month. Signal level variations will be greatest during these periods and conditions won’t be really stable in between, either, since equinoctial periods don’t produce many quiet days. The best days for the higher frequency band DX are more likely to occur from the end of the second week through the third. Expect some enhanced equatorial openings during the disturbances of the 21st.

The perigee of the moon's orbit (for moonbounce DX) is on the 25th, with the moon showing full phase on the 1st. There will be a short meteor shower, the Lyrid, on April 20-22, with a rate of five per hour — hardly much help for meteor-scatter DX. But a bigger shower, the Aquarid, starts before the end of April, peaks on May 5, and ends in mid-May. Its rate is 10 to 30 per hour.

band-by-band summary

Ten, twelve, fifteen, and twenty meters will be open from morning until early evening almost every day, and to most areas of the world. The openings on the higher of these bands will be shorter to the southern hemisphere and will occur closer to local noon. Transsequatorial propagation on these bands will more likely occur toward evening during conditions of highest...
Order Toll Free Use your Credit Card!

Hand-held Transceivers

<table>
<thead>
<tr>
<th>Regular SALE</th>
<th>Regular SALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-2ATF for 2m...</td>
<td>IC-2ATF for 440 MHz...</td>
</tr>
<tr>
<td>$295.00 189$</td>
<td>$379.00 315$</td>
</tr>
</tbody>
</table>

Standard models

<table>
<thead>
<tr>
<th>Regular SALE</th>
<th>Regular SALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-2A for 2m...</td>
<td>IC-2AT with TIP...</td>
</tr>
<tr>
<td>$265.00 199$</td>
<td>$269.00 199$</td>
</tr>
<tr>
<td>IC-3AT 220 MHz, TIP...</td>
<td>IC-4AT 440 MHz, TIP...</td>
</tr>
<tr>
<td>$299.50 239$</td>
<td>$299.50 239$</td>
</tr>
</tbody>
</table>

Accessories for Deluxe models

<table>
<thead>
<tr>
<th>Regular SALE</th>
<th>Regular SALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP-7 425MHz/13.2V Nich-re Pack...</td>
<td>USE BC-5...</td>
</tr>
<tr>
<td>$67.50</td>
<td>$67.50</td>
</tr>
<tr>
<td>BP-8 800MHz/8.4V Nich-re Pack...</td>
<td>USE BC-35...</td>
</tr>
<tr>
<td>$62.50</td>
<td>$62.50</td>
</tr>
<tr>
<td>BC-35 Drop in desk charger for all batteries...</td>
<td>$69.00</td>
</tr>
<tr>
<td></td>
<td>$69.00</td>
</tr>
<tr>
<td>BC-66 Position change for all packs...</td>
<td>$37.50</td>
</tr>
<tr>
<td></td>
<td>$37.50</td>
</tr>
<tr>
<td>IC-16U Wall charger for BP-7/9/3...</td>
<td>$10.00</td>
</tr>
<tr>
<td></td>
<td>$10.00</td>
</tr>
<tr>
<td>IC-17 Vinyl case...</td>
<td>$17.95</td>
</tr>
<tr>
<td></td>
<td>$17.95</td>
</tr>
<tr>
<td>IC-14 Vinyl case for DUX using BP-7/9...</td>
<td>$39.95</td>
</tr>
<tr>
<td></td>
<td>$39.95</td>
</tr>
<tr>
<td>IC-2AT Leather case for DUX models with BP-7/9...</td>
<td>$39.95</td>
</tr>
<tr>
<td></td>
<td>$39.95</td>
</tr>
<tr>
<td>Accessories for both models...</td>
<td>$29.95</td>
</tr>
<tr>
<td></td>
<td>$29.95</td>
</tr>
<tr>
<td>BP-2 425MHz/7V Nich-re Pack...</td>
<td>USE BC-35...</td>
</tr>
<tr>
<td>$35.90</td>
<td>$35.90</td>
</tr>
<tr>
<td>BP-4 Exted. Stm. 250m/8.4V Nich-re Pack...</td>
<td>$29.50</td>
</tr>
<tr>
<td></td>
<td>$29.50</td>
</tr>
<tr>
<td>BP-4 Alkaline bateriy case...</td>
<td>$12.50</td>
</tr>
<tr>
<td></td>
<td>$12.50</td>
</tr>
<tr>
<td>BP-425MHz/10.8V Nich-re Pack...</td>
<td>USE BC-35...</td>
</tr>
<tr>
<td>$49.50</td>
<td>$49.50</td>
</tr>
<tr>
<td>BP-62 Telescoping 2m antenna...</td>
<td>$10.00</td>
</tr>
<tr>
<td></td>
<td>$10.00</td>
</tr>
<tr>
<td>CA-5 5/8 wave telescoping 2m antenna...</td>
<td>$18.95</td>
</tr>
<tr>
<td></td>
<td>$18.95</td>
</tr>
<tr>
<td>FA-2 Extra 2m flexible antenna...</td>
<td>$10.00</td>
</tr>
<tr>
<td></td>
<td>$10.00</td>
</tr>
<tr>
<td>FL-1 100 MHz/10W power out...</td>
<td>$5.90</td>
</tr>
<tr>
<td></td>
<td>$5.90</td>
</tr>
<tr>
<td>DC-10 DC operation pack for standard models...</td>
<td>$17.50</td>
</tr>
<tr>
<td></td>
<td>$17.50</td>
</tr>
<tr>
<td>IC-2AT Leather case for standard models...</td>
<td>$34.95</td>
</tr>
<tr>
<td></td>
<td>$34.95</td>
</tr>
<tr>
<td>RB-1 110V/220V power connector...</td>
<td>$30.00</td>
</tr>
<tr>
<td></td>
<td>$30.00</td>
</tr>
<tr>
<td>HH-5S Handheld shoulder strap...</td>
<td>$14.95</td>
</tr>
<tr>
<td></td>
<td>$14.95</td>
</tr>
<tr>
<td>HM-3 Speaker microphone...</td>
<td>$34.50</td>
</tr>
<tr>
<td></td>
<td>$34.50</td>
</tr>
<tr>
<td>HS-100 Boom microphone/headset...</td>
<td>$19.50</td>
</tr>
<tr>
<td></td>
<td>$19.50</td>
</tr>
<tr>
<td>HS-105A Vex unit for HS-10 & Deluxe only...</td>
<td>$19.50</td>
</tr>
<tr>
<td></td>
<td>$19.50</td>
</tr>
<tr>
<td>HS-105B PTT unit for HS-10...</td>
<td>$19.50</td>
</tr>
<tr>
<td></td>
<td>$19.50</td>
</tr>
<tr>
<td>ML-1 2.5 or 10W output...</td>
<td>$79.95</td>
</tr>
<tr>
<td></td>
<td>$79.95</td>
</tr>
<tr>
<td>SS-32M 220/110v. 24-volt transformer...</td>
<td>$32.95</td>
</tr>
<tr>
<td></td>
<td>$32.95</td>
</tr>
<tr>
<td>Receivers...</td>
<td>Regular SALE</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>R-7000 25-2000 MHz, 117V AC...</td>
<td>$899.00 789$</td>
</tr>
<tr>
<td></td>
<td>$899.00 789$</td>
</tr>
<tr>
<td>RC-12 Infrared remote controller...</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>$59.95</td>
</tr>
<tr>
<td>RC-11 Infrared remote controller...</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>$59.95</td>
</tr>
<tr>
<td>FL-32 5000 Hz Ch filter...</td>
<td>$59.50</td>
</tr>
<tr>
<td></td>
<td>$59.50</td>
</tr>
<tr>
<td>FL-63 2500 Hz Ch filter (1st If)...</td>
<td>$48.50</td>
</tr>
<tr>
<td></td>
<td>$48.50</td>
</tr>
<tr>
<td>FL-44A SSB filter (2nd If)...</td>
<td>$150.00 144$</td>
</tr>
<tr>
<td></td>
<td>$150.00 144$</td>
</tr>
<tr>
<td>EX-257 FM unit...</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>TBA</td>
</tr>
<tr>
<td>EX-197 Power supply...</td>
<td>$39.95</td>
</tr>
<tr>
<td></td>
<td>$39.95</td>
</tr>
<tr>
<td>CR-64 High stability oscillator...</td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td>TBA</td>
</tr>
<tr>
<td>SP-3 External speaker...</td>
<td>$49.50</td>
</tr>
<tr>
<td></td>
<td>$49.50</td>
</tr>
<tr>
<td>CH-10 (EX-299) 12V DC option...</td>
<td>$9.95</td>
</tr>
<tr>
<td></td>
<td>$9.95</td>
</tr>
<tr>
<td>MB-12 Mobile mount...</td>
<td>$19.50</td>
</tr>
<tr>
<td></td>
<td>$19.50</td>
</tr>
</tbody>
</table>

Order Toll Free: 1-800-558-0411

AMATEUR ELECTRONIC SUPPLY Inc.

4828 W. Fond du Lac Ave; Milwaukee, WI 53216 - Phone (414) 442-4200

AESS BRAND STORES

WICKLIFFE, Ohio 44092
Phone (216) 385-7378
Ohio WATS 1-800-362-2920

ORLANDO, Fla. 32803
621 Commonwealth Ave.
Phone (305) 894-3238
Fla. WATS 1-800 432-9424

CLEARWATER, Fla. 33757
1989 Drew Street
Phone (813) 461-4627
No In-State WATS

LAS VEGAS, Nev. 89106
1072 N. Rancho Drive
Phone (702) 647-3114
No In-State WATS

CHICAGO, Illonois 60630
ERICKSON COMMUNICATIONS
5496 N. Milwaukee Avenue
Phone (312) 631-5810

ASSOCIATE STORE

CHICAGO, Illinois 60630
ERICKSON COMMUNICATIONS
5496 N. Milwaukee Avenue
Phone (312) 631-5810

Order Toll Free Use your Credit Card!

MasterCard

VISA

HOURS: Mon., thru Fri. 9:5-6 Sat. 9-3

Milwaukee WATS line: 1-800-558-0411 answered evenings until 8:00 pm Monday thru Thursday.

Please use WATS lines for Orders. Use regular lines for other Info and Service Dept.

All Prices in this list are subject to change without notice.
	ASIA	OCEANA	AUSTRALIA	NEW ZEALAND	ANTARCTICA	CARIBBEAN	S. AMERICA	EUROPE	S. AFRICA	ASIA	OCEANA	AUSTRALIA	NEW ZEALAND	ANTARCTICA	CARIBBEAN	S. AMERICA	EUROPE	S. AFRICA	ASIA	OCEANA	AUSTRALIA	NEW ZEALAND	ANTARCTICA	CARIBBEAN	S. AMERICA	EUROPE	S. AFRICA									
--------	------	--------	-----------	-------------	-------------	-----------	------------	--------	-----------	------	--------	-----------	-------------	-------------	-----------	------------	--------	-----------	------	--------	-----------	-------------	-------------	-----------	------------	--------	-----------									
JAPAN	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000									
APRIL	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000									

The table above is a chart for finding the best bands to use for HF phone traffic. It lists the time periods for different areas around the world. The standard hours for phone traffic are indicated in bold, and the time periods for special or emergency traffic are shown in italics. The chart is useful for planning phone traffic activities during different times of the day and across various time zones.
For the best buys in town call: 212-925-7000
Los Precios Mas Bajos en
Nueva York.

For over 17 years, Gus’s DX’ERS MAGAZINE has brought thousands of DX’ERS worldwide, timely, pertinent information on when and where to find those elusive DX stations.

Gus’s personable, chatty writing style and his years of DX operating experience makes the DX’ERS MAGAZINE a unique publication. One year $14.00 USA, Canada & Mexico.

Gus also prints high quality QSLs and other related items. 400-510-1044 in Michigan, Alaska and Hawaii call collect. 212-751-4700 Or mail inquiry to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
Technical Forums
Personal Computer, Packet Radio, ARRL, AMSAT, Antennas, RTTY, SSTV/ATV
FCC, Electrical Safety and many, many others.

New Products
See, touch and feel the latest in high-tech equipment.

Giant Flea Market
Starting at noon Friday, all day Saturday and Sunday. All spaces are SOLD OUT.

License Exams
Novice through Extra, by reservation only. Send a completed form 610, a copy of
your present license and a check or money order for $4.25 payable to ARRL/VEC.
Indicate the desired time. Send to: License Exam, Attn. Tom Holmes, 8830 Windbluff

Alternate Activities
HAMVENTION is for everyone. We have planned activities for the YL or your
non-ham family members.

Special Awards
Nominations are requested for "Radio Amateur of the Year," "Special Achievement"
and "Technical Achievement" Awards. Contact: Awards Chairman, Box 44, Dayton,
OH 45401. Deadline: April 1.

CW Awards
See how fast you can copy the International Morse Code (World record is 72.5
WPM). All participants receive an award indicating their maximum speed.

Admission
Registration: $8.00 in advance, $10.00 at the door.
Banquet (Roy Neal, K6DEU, Speaker): $14 in advance, $16.00 at the door,
if available.
Ladies Luncheon: $6.75.
Last Day for advance tickets: April 5 (Canada), April 12 (U.S.).

Parking
Free parking is available at Hara Arena. In addition, there will be free shuttle bus
service from all major motels and designated parking lots. Parking and road infor-
mation is available on DARA's 146.341.94 repeater.

Other Information
Special air fares are available on Piedmont and USAir. A free slide show about
the HAMVENTION is available for club meetings. Wheelchairs and handicap park-
ing are available. For more information . . . Write: Box 44, Dayton, OH 45401 or
call (513) 433-7720.

This is the year for you to attend the internationally famous Dayton HAMVENTION. Come with your friends to hear enlighten-
ing forums, see the latest equipment, and visit a flea market that has everything! No matter what you are looking for, you
can find it in Dayton!
have been aware that the single stage most often responsible for transmitter noise is the phase modulator. For this reason, most commercial repeater systems now use direct FM techniques — i.e., varactors — rather than phase modulators. Another approach involves the use of a two- or four-pole monolithic filter after the last multiplier stage, or frequency synthesizer, preceding the power stages. The filters, normally used to increase the IMD performance of the VHF receivers, are capable of handling only about 5 mW of power.

One advantage of using a crystal filter lies in reducing transmitter noise at all frequencies on either side of the transmitter carrier; in the same application, a notch filter would only protect the receiver channel. Crystal filters are expensive ($100-$200), and considering their power restraints, 50-ohm termination impedances and insertion losses might prohibit their use in most existing transmitter designs.

Repeater operators seeking a new solid-state exciter should look for one using low-noise direct FM. Avoid phase modulation. If a homebrew transmitter design is being contemplated, consider including both direct FM and a four-pole monolithic filter to further reduce the transmitter’s noise products. The improvements are dramatic and well worth the effort.

references

Peter Bertini, K1ZJH

ALPHA DELTA Antenna and AC Line Protectors — the inside story

Who Needs Them
Lightning is the most common cause of component damage. However, we occasionally run into those who say "I’ve never been hit by lightning" or "I live on the West Coast and we don’t have much lightning." Don’t be fooled. There are demons lurking everywhere from your AC line to antenna that can damage your gear. Before exposing those, let’s look at data about thunderstorms.

On average, the number of annual days with thunderstorms per area are approximately: West Coast, 5; Southwest, 20 to 40; Texas, 40 to 70; Midwest, 40 to 50; East Coast, 30 to 50; South, 50 to 70, and Florida, up to 100. Really, no matter where you live, you should be aware and protected from the potential for lightning-induced damage.

Now, what about what you can’t see that does damage equipment? Dry desert winds in the Southwest and West Coast, wind driven snow and summer cloud buildup are all generators of enormous amounts of static electricity. Static-induced voltages from any one of these conditions can build up levels of 3 kV or more. If you’ve ever had the occasion to watch the static discharge jumping from the end of a long wire hanging near a chassis, you’ll know what we mean.

What’s worse, this type of damage is not always catastrophic. Semiconductors can suffer junction damage and will degrade over a period of weeks or months, causing subtle system problems and a gradual loss of sensitivity.

In the case of AC line protection, semiconductors are known to be damaged by transients caused by AC motors starting and switches, surges from power company "brown-outs" and poor regulation and even the effects of fluorescent lighting. If you have had the chance to see a graphic printout from an AC wall socket analyzer, you wouldn’t plug anything in again that was unprotected.

So who needs Alpha Delta? Everyone. Regardless of season or geographic location.
Effective protector has a system. Sources are several thousand times greater than direct hits, an line - at an
lightning protector. Soles provide some hits can generate currents of over 100,000 amperes. These
master switch control 79.95. ACTT manufacturer claims their device will protect you from a direct lightning
strike (as much as a mile away) or static buildup. No manufacturer has selected MACC Master AC Control
Consoles to protect their own systems from AC line transient related damage. This was done after extensive testing
of all devices presently available.

Why Are There Several Different Models
We offer a choice of models to provide the most effective cost/power/frequency/connector combination.

STEP #1: Select your power range. The 200-watt models are the most sensitive to transient pulses and are the best choice for
receivers and transceivers. The 2 kW models are designed for overall station protection and for linear amplifiers.

STEP #2: Select your frequency range. The UHF “T” connector model (LT) offers low insertion loss protection through 30 MHz.
The lowest-loss devices are the R-T and HV (typically 0.1 dB at 500 MHz) with UHF-type connectors. The R-T and HV models
utilizing type “N” or “BNC” connectors offer even less loss through 1000 MHz! They are perfect for cellular radio and STL
operation in the 800 and 900 MHz ranges.

Models available are:
Model LT: UHF “T” type, 200 W, through 30 MHz........19.95
Model R-T: UHF connectors, 200 W, through 500 MHz.....29.95
Model HV: UHF connectors, 2 kW, through 500 MHz.....32.95
Model R-T/N: N connectors, 200 W, through 1000 MHz......36.95
Model HV/N: N connectors, 2 kW, through 1000 MHz.......39.95

(BNC connectors also available)

The surge protected MACC model is: Model MACC - 8 outlets, and
master switch control 79.95. ACTT - wall socket direct plug-in with 2 outlets 29.95.

Alpha Delta Transi-Trap ceramic gas tube protectors do provide effective protection because they were designed and tested
to be used with the most sensitive semiconductors. They do this because they fire fast enough, (less than 100 nanoseconds), and
at a low enough level to effectively by-pass the typical range of induced currents and voltages. Standard air-gap devices cannot
reach this performance level due to variations in atmospheric conditions that will effect conduction of the static charge to ground.

In addition, Transi-Trap™ protectors are the only devices in the industry employing a combination of “fail-safe” isolated
ground design and a field replaceable ARC-PLUG™ cartridge. Isolated ground prevents the ARC discharge from flowing to the
equipment chassis via the coax shield. “Fail-safe” means the ARC-PLUG cartridge is designed to fail “shorted” instead of
“open” in the event of a heavy discharge in excess of its rating. In this event, the equipment is still protected until the cartridge
is replaced. Replacement is indicated by a “dead” receiver and high VSWR during tune-up.

Competitive air-gap devices suffer electrode disintegration and fail “open.” You will lose your protection and you don’t even know
it! One competitive gas tube device is designed to melt its solder connections and fail “open” in the event of heavy current flow.
The protection is gone, the element is non-replaceable and you still don’t know it!

Transi-Trap™ protectors have been thoroughly tested by independent government and military test labs, and have been
ordered for use around the world in a number of government and military programs. An Avionics user recently reported that since
installing Transi-Trap™ devices, there has been no loss of communications due to induced transients. A leading designer of quality
HF and VHF antennas, Butternut Electronics, suggests the use of Transi-Trap protectors in their literature.

A major computer manufacturer has selected MACC Master AC Control Consoles to protect their own systems from AC line
transient related damage. This was done after extensive testing of all devices presently available.

Do They Really Work
First, let’s settle one issue. Most storm damage comes from either voltage induced into the antenna from a near-hit lightning
strike (as much as a mile away) or static buildup. No manufacturer claims their device will protect you from a direct lightning
hit. That’s because there is no standard by which to describe one. Some hits can generate currents of over 100,000 amperes. These
might even destroy a house! Others are in the range of hundreds of amperes and may be satisfactorily by-passed to ground through a
lightning protector.

Since the chances for damage from induced (non-direct hit) sources are several thousand times greater than direct hits, an
effective protector has a definite place in a communications system.
TERMS:
Prices Do Not Include Shipping.
Price and Availability Subject to Change Without Notice

WARRANTY SERVICE CENTER FOR:
ICOM, YAESU, TEN-TEC

REQUEST SERVICE CENTER FOR:

12 Tunable Memories
General Coverage
100% Duty Cycle

HURRY

WELZ
Lots of Welz
Meters in Stock
Call for Special Pricing and Details

FT270R

YAESSU
10 Memories
45 Watts

With FTS-8
ORDER NOW

ICOM
IC751

SPECIAL PRICING ON ICOM IC751
LIMITED OFFER • ORDER TODAY

YAESSU FT209RH
5 watts
Free FTS-6
10 Memories
CALL FOR YOUR SPECIAL PRICE

MULTI BAND TRAP ANTENNAS

TRAP DIPLOES:

Model	Band	Length	Price
FT-209RH | 140 MHz | 100 MHz | $31.00

TRAP VERTICALS: *SLOPERS*

Model	Band	Length	Price

FT-209RH | 140 MHz | 100 MHz | $31.00

SINGLE BAND DIPLOES (Kit form):

Model	Band	Length	Price

PL-259 connector on each end

Deluxe Center Connector

No jumper wires needed
No soldering
Built-in Lightning Arrestor
Weatherproof
Low Element Amplitude
Commercial Quality

CE-1
$4.95

Deluxe Center Connector

No jumper wires needed
No soldering
Built-in Lightning Arrestor

PL-259 connector on each end

Weatherproof
Low Element Amplitude
Commercial Quality

DELUXE CENTER CONNECTOR

DE LUXE ANTENNA TRAPS: Completely sealed & weatherproof: Gold brass terminals, Handles Full Power - NO jumpers - NO Soldering. Instructions included. For 4-band Dipole Ant.

40/20/15/10 MHz $36.00/pr

5-band Dipole Ant.

40/20/15/10/6 MHz $38.00/pr

ORDER DIRECT FROM FACTORY. All orders shipped UPS Postpaid. VISA & MC, give card # & Exp. date. Signature.

WRITE FOR FREE BOOK CATALOG

Ham Radio's Bookstore
Greenville, NH 03048
a new class of directive antennas

Improve Yagi performance with curved 1.5\(\lambda\) elements

In the May, 1983 issue of *Transactions on Antennas and Propagation*, Chang and Cheng introduced a new class of antennas that appear to offer much promise for VHF use. Based on concepts developed earlier by F. M. Landstorfer, these antennas feature curved elements, each longer than a wavelength and shaped to compensate for the reversals in phase that occur each half wavelength along an element.

With the 1.5 wavelength elements in the classic reflector-driven-director configuration used in the original experiments Landstorfer claimed gains of 11.5 dBi. The same gain in a conventional Yagi using straight half-wave elements would require about nine elements and a much longer boom. While the new design requires greater width, the combination of gain, short boom length, and mounting simplicity form the attractive features of the design.

principle of operation

The general concept and plan of these antennas is shown in fig. 1. The center part of the elements resembles a V radiator. The phase center of the V radiation lies along the center axis, and some distance from the apex of the V. A wave radiated from this section will arrive at the other element parts after a time delay that corresponds to a phase rotation. As a result, even though the outer sections are out of phase with respect to the center section, the delayed wave will be at least partly in phase with the waves radiated by the outer sections. This addition of wave components accounts for the increase in gain over a conventional straight-element Yagi.

The design problem presented by these antennas is to determine the shaping of the elements for maximum gain. This subject was addressed by Chang and Cheng in their article. They approximate the current distributions on the array elements by the method of moments, dividing each element into 22 sections and analytically determining the shaping for maximum gain. The computations are extensive, involving a 63 by 63 complex matrix manipulation (a solution requires

fig. 1. General principle of operation using a shaped element. The center of radiation of the outer half-wave sections is in front of the radiation center for the center section, giving both a spacing and a phase difference, as in the ZL-Special. The outer sections may be separately excited, as shown, or joined to the center part. This illustration assumes that the middle half-wave section is center-fed.

By R. P. Haviland, W4MB, 1035 Green Acres Circle, No., Daytona Beach, Florida 32019
10 REM HIGH GAIN YAGI "HGAINYAGI", IN COMMODORE SIMONS BASIC
20 REM R. P. HAVILAND, 6 JUNE 1984
30 REM REFER TO TRANS IEEE AP-31, MAY 1963
40 PRINT "CCLR>
50 \ DIM A(3), B(3), C(3), D(3), Z(3)
60 DIM Y(20, 4)
70 A(1) = .38; A(2) = .395; A(3) = .364
80 B(1) = 20. 77; B(2) = 53. 014; B(3) = 204. 532
90 C(1) = - .152; C(2) = 0; C(3) = .151
100 D(1) = .645; D(2) = .59; D(3) = .55
110 INPUT "PRINTOUT, Y OR N ": T$
120 PRINT "PRESS SPACE TO END SCREEN DISPLAY"
130 PRINT "ENTER FREQUENCY, MHZ ";
140 INPUT F:
150 LAMDA = 984/F
160 PRINT F: \ PRINT "ELEMENT LENGTH = ": 1. 5*LAMDA: " FEET"
170 FOR N = 1 TO 20: FOR M = 3 TO 1 STEP -1
180 X = (N-1)/20
190 IF X > D(M) THEN Y(N, M) = 0: GOTO 220
200 Y(N, M) = A(M) * (1-1/(1+B(M)*X*X)) + C(M)
210 Y(N, 4) = X
220 NEXT M: NEXT N
230 PRINT "Y VS X COORDINATES, INCHES"
240 PRINT "X": \ TAB(10); "DIR": \ TAB(20); "ANT": \ TAB(30); "REF"
250 FOR N = 1 TO 20
260 X = INT (1200*LAMDA*Y(N, 4))/100
270 FOR M = 1 TO 3
280 Z(M) = INT (1200*LAMDA*Y(N, M))/100
290 NEXT M
300 PRINT X: \ TAB(10); Z(1): \ TAB(20); Z(2): \ TAB(30); Z(3)
310 NEXT N
320 WAIT 197, 32
330 IF T$ = "Y" THEN HRDCPY
340 HIRES 0, 1
350 FOR M = 1 TO 3: FOR N = 2 TO 16
360 T = N-1
370 IF Y(N, M) = 0 GOTO 400
380 LINE 160-200*Y(T, 4), 200*Y(T, M) + 40, 160-200*Y(N, 4), 200*Y(N, M) + 40, 1
390 LINE 160+200*Y(T, 4), 200*Y(T, M) + 40, 160+200*Y(N, 4), 200*Y(N, M) + 40, 1
400 NEXT N: NEXT M
410 IF T$ = "Y" THEN COPY
420 WAIT 197, 32: NRM

fig. 2. Computer program provides dimensions of a three-element version of the shaped element array. While the program is written in Simons' BASIC for the Commodore 64, translation for other computers should not be difficult.

approximately 40 minutes of DEC-10 computer time.
The problem is far beyond the capability of home computers.

program listing aids 3-element design
Fortunately, Chang and Cheng have summarized their results in such a form that makes it possible to duplicate their optimized design for a three-element Yagi array. For convenience, the results have been arranged as a computer program, fig. 2, written in Simon's BASIC for the Commodore 64. The program is written for easy translation to other versions of BASIC; only the graphic generation section may require a complete rewrite.
Increase your Code Speed the FUN Way
with
Station Manager/CodeTutor
Randomly generates words eliminating the problem of tape memorization.
Select your own speed and tone
5-50 wpm 400-1300 Hz
Designed for the IBM® PC®, XT®,
enhanced PC jr®. Menu driven,
prompts for easy use; full color displays:
$15.95 + $3.00 shipping
Ohio residents include sales tax
OMEGA CONCEPTS
Professional software for the Radio Amateur™
P.O. Box 615 T.L. Jones (K8BDA)
Troy, OH 45373 Author
IBM is a registered trademark of International Business Machine Corp.
The program first determines whether hard copy is needed, then requests its only input, the design frequency. Element length and diameter are then outputted, followed by a table of X, Y values that define the center-line position of each element. The feedpoint, or center of the radiator is taken as the coordinate origin. Figure 3A shows the screen presentation (the ending 0's indicate that the end of the element has been passed). Pressing the space bar produces a plot of the lines defining the element centers, as shown in fig 3B. Pressing the space bar again either initiates a hard copy or terminates the program.

The general resemblance of this type of antenna to a conventional Yagi is apparent in the figures. The element shaping causes a taper towards the forward direction, even though the elements are the same length. And the deep V of the director gives an effective wide spacing for the director.

high gain is achieved

The performance of this optimized design is very good. According to Chang and Cheng, gain calculates to be 11.8 dBi. Beamwidth is 32 degrees in the element plane, and 62 degrees at right angles to it. Front-to-back ratio is just less than 15 dB in both planes. Feed impedance of the 3/2 wavelength radiator is calculated to be $14 + j33$ ohms.

"It should be noted that the design values are optimum only for the element diameter given. This was arbitrarily set at 0.01 wavelength by Chang and Cheng. Performance should not be greatly affected by a reasonable change in element diameter. Because of the complexity of the required calculations, and the many hours of mainframe computer time necessary to perform them, it is unlikely that there will be much further analysis of the type. Further work will have to be experimental. None has been attempted by the author, but it would seem that additional gain could be secured by placing additional directors of similar shapes in front of the present single director, using appropriate spacings. It would also seem that any of the common matching methods would be usable. Stacking spacing rules of high-gain Yagi type would appear necessary.

conclusion

Those who do not have a computer available, or who wish to avoid the tedium of typing in the program, can use these results by simple frequency scaling. All table dimensions should be multiplied by the ratio, $147/new$ frequency, since the table was calculated for 147 MHz. Element diameter and length vary in the same way.

references

ham radio

April 1986
There are two ways you can operate an amateur dual band UHF/VHF radio: you can go through the extra expense and bother of using two antennas… or, you can install the new Larsen 2/70—the single antenna that brings you both bands.

The Larsen 2/70 blends a half-wave element for 2-meter (144-148MHz) amateur band and collinear elements for 70cm (440-450MHz) amateur band. One antenna serves both bands, and is available with three different mounts for any mobile needs.

The self-resonant design of the Larsen 2/70 allows mast applications for vessels and base stations outfitted with standard Larsen BSA-K hardware. With or without a ground plane, the Larsen 2/70 gives you the highest performance attainable, whether you are using a dual band radio or two separate radios.

If your radio does not have a built-in band splitter, we can even provide that.

Performance…savings… convenience… and a no-nonsense warranty—four great reasons for banding together with the Larsen 2/70. See your favorite amateur dealer or write for a free catalog today.
watch the phase lock LED. It will flicker and then other “DATA.”

if the station is sending at 60 WPM, the OSO should appear on the screen. If your receiver has an IF shift control, adjust it so the signal is centered in the passband.

switching from RTTY to CW

The RTTY and CW programs are on the same tape. So to switch to CW, you only have to load in the other program, and start tuning. On CW both tuning LEDs flicker with the signal. The MFJ-1224 uses the 2125-Hz RTTY filter in the CW mode. Because 2125 Hz is down the slope of the pass band of most modern-day receivers, IF shift control is almost a necessity for receiving weak CW signals.

transmit

The instructions for using the MFJ-1224 on CW or RTTY transmit are quite complete. Audio Shift is used on RTTY; either Grid Block or Direct Keying can be used for CW.

software

MFJ has software available for both the VIC-20 and the C-64. But they also provide a listing showing the DIP switch positions for most of the other popular RTTY software packages as well. An RS-232 interface (MFJ-1223) is available.

Purchasers of this unit need some experience in RTTY to use it to its full potential, but it is a relatively low-cost way of trying out this mode before leaping in with both feet. The unit is well built; I accidentally dropped mine on the basement floor!

for information contact MFJ Enterprises, Box 494, Mississippi State, Mississippi 39762.

circle 302 on reader service card.

— VE3ZL

digital channel link (DCL), a revolutionary new signalling concept compatible with Kenwood’s Digital Code Squelch (DCS) system, is available as an option. DCL enables the 25-series radio to automatically switch to an open channel. Practically speaking, this feature will allow you to automatically QSY to an open simplex channel after making initial contact via repeater.

supplied accessories include a hand-held microphone with up/down frequency controls, DC cable with fuse, mounting bracket, and microphone hanger. Optional accessories include the PS-50 heavy power duty supply for the TM-2500A, PS-430 DC supply for the TM-2500A and TM-2530A, TU-7 dual-tone CTCSS encoder, VS-1 voice synthesizer, MU-1 DCL modem unit, SP-50 deluxe mobile speaker, SP-40 compact mobile speaker, CD-10 call sign display, SWT-1 compact antenna tuner, and a wide variety of other station accessories.

for further information, contact Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

in-line GaAsFET preamp

Hamtronics, Inc. has announced a new low-cost preamplifier designed to be operated in the antenna line of VHF or UHF transceivers. The new model LNS (low noise switching) preamp is patterned after the popular LNT series, which was the first of the affordable GaAsFET preamps on the market. The heart of the unit is a stable, dual-gate GaAsFET amplifier combined with two special low-loss UHF relays, which use gold-plated contacts for long life. A microstrip PC board combines with these special relays for low VSWR on the transmit throughput.

The preamp is switched out of the signal path automatically whenever a transmit signal is

new products

new 2 meter transceivers from Kenwood

Tri-Kenwood Communications has announced the all-new TM-2570A—the first compact 70-watt, 2-meter FM mobile transceiver—and the TM-2550A and TM-2530A 2-meter FM transceivers. The 25-Series includes many new features never before seen in 2-meter FM equipment. All three models have a built-in telephone number memory and automatic dialer. Up to 15 seven-digit telephone numbers may be stored.

All front panel controls, including the 16-key DTMFpad, are back-lighted for nighttime visibility. Twenty-three memory channels store frequency, offset subtone, and telephone number. The CTCSS encoder is programmable from the front panel when the optional TU-7 subtone unit is installed. All standard EIA tones are included, plus the Motorola 97.4 Hz tone, for a total of 38 separate CTCSS tones.

Frequencies are entered into either the VFO or memory with direct keyboard entry. The 25-Series includes frequency coverage for MARS and CAP operation and is modifiable to cover 141-151 MHz. Programmable scanning with priority alert and center stop tuning are standard features.

Digital Channel Link (DCL), a revolutionary new signalling concept compatible with Kenwood’s Digital Code Squelch (DCS) system, is available as an option. DCL enables the 25-Series radio to automatically switch to an open channel. Practically speaking, this feature will allow you to automatically QSY to an open simplex channel after making initial contact via repeater.

supplied accessories include a hand-held microphone with up/down frequency controls, DC cable with fuse, mounting bracket, and microphone hanger. Optional accessories include the PS-50 heavy power duty supply for the TM-2570A, PS-430 DC supply for the TM-2500A and TM-2530A, TU-7 dual-tone CTCSS encoder, VS-1 voice synthesizer, MU-1 DCL modem unit, SP-50 deluxe mobile speaker, SP-40 compact mobile speaker, CD-10 call sign display, SWT-1 compact antenna tuner, and a wide variety of other station accessories.

for further information, contact Tri-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

in-line GaAsFET preamp

Hamtronics, Inc. has announced a new low-cost preamplifier designed to be operated in the antenna line of VHF or UHF transceivers. The new model LNS (low noise switching) preamp is patterned after the popular LNT series, which was the first of the affordable GaAsFET preamps on the market. The heart of the unit is a stable, dual-gate GaAsFET amplifier combined with two special low-loss UHF relays, which use gold-plated contacts for long life. A microstrip PC board combines with these special relays for low VSWR on the transmit throughput.

The preamp is switched out of the signal path automatically whenever a transmit signal is

new products

new 2 meter transceivers from Kenwood

Tri-Kenwood Communications has announced the all-new TM-2570A—the first compact 70-watt, 2-meter FM mobile transceiver—and the TM-2550A and TM-2530A 2-meter FM transceivers. The 25-Series includes many new features never before seen in 2-meter FM equipment. All three models have a built-in telephone number memory and automatic dialer. Up to 15 seven-digit telephone numbers may be stored.

All front panel controls, including the 16-key DTMF pad, are back-lighted for nighttime visibility. Twenty-three memory channels store frequency, offset subtone, and telephone number. The CTCSS encoder is programmable from the front panel when the optional TU-7 subtone unit is installed. All standard EIA tones are included, plus the Motorola 97.4 Hz tone, for a total of 38 separate CTCSS tones.

Frequencies are entered into either the VFO or memory with direct keyboard entry. The 25-Series includes frequency coverage for MARS and CAP operation and is modifiable to cover 141-151 MHz. Programmable scanning with priority alert and center stop tuning are standard features.

Digital Channel Link (DCL), a revolutionary new signalling concept compatible with Kenwood’s Digital Code Squelch (DCS) system, is available as an option. DCL enables the 25-Series radio to automatically switch to an open channel. Practically speaking, this feature will allow you to automatically QSY to an open simplex channel after making initial contact via repeater.

supplied accessories include a hand-held microphone with up/down frequency controls, DC cable with fuse, mounting bracket, and microphone hanger. Optional accessories include the PS-50 heavy power duty supply for the TM-2570A, PS-430 DC supply for the TM-2500A and TM-2530A, TU-7 dual-tone CTCSS encoder, VS-1 voice synthesizer, MU-1 DCL modem unit, SP-50 Deluxe mobile speaker, SP-40 compact mobile speaker, CD-10 call sign display, SWT-1 compact antenna tuner, and a wide variety of other station accessories.

for further information, contact Tri-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

in-line GaAsFET preamp

Hamtronics, Inc. has announced a new low-cost preamplifier designed to be operated in the antenna line of VHF or UHF transceivers. The new model LNS (low noise switching) preamp is patterned after the popular LNT series, which was the first of the affordable GaAsFET preamps on the market. The heart of the unit is a stable, dual-gate GaAsFET amplifier combined with two special low-loss UHF relays, which use gold-plated contacts for long life. A microstrip PC board combines with these special relays for low VSWR on the transmit throughput.

The preamp is switched out of the signal path automatically whenever a transmit signal is
new packet video helps get you started

Would you like to learn more about packet radio? Are you having a hard time getting started up in packet? Well, help is on the way, thanks to Kantronics’ first instructional video, Basic Packet.

In the course of answering service calls and talking to Amateurs around the country, Kantronics—manufacturers of the new KPC Packet Communicator, an AX.25 Version 2.0 TNC—found that many operators were having difficulty getting started on packet. The difficulties were not with the equipment, but rather with understanding the basic operating procedures of packet radio itself.

Conducted by Phil Anderson, W8XJ, the video covers basic subjects such as initial installation and hook-up, VHF and HF operation, digipeat, parameter perming, and some command demonstrations. The tape begins in the classroom, then takes you into the shack for the on-the-air demonstrations.

The tape is available to individuals and clubs in both VHS and Beta formats. Suggested retail is $22.50 plus $2.50 shipping and handling. Clubs only can receive a $10 refund if the tape is present. It may also be remotely bypassed manually as desired. The LNS is designed for base or mobile operation, and mounting brackets are provided to allow tower mounting. The LNS can be used with any transceiver up to 25 Watts; and if a separate PA is used, the LNS can be used between the transceiver and the PA. The preamp works with any mode: FM, SSB, CW, ATV, etc. A delay in the RF sensing circuit prevents relay chatter on SSB or CW.

Typical gain of the preamp is 18 dB and typical noise figure is 0.8 dB. Transmit signal attenuation is only 1/2 dB. An LED indicates when the preamp is active. The unit is housed in an attractive aluminum case only 3-7/32" x 2-7/32" x 1-1/2" TH.

The LNS Transceiver Preamp is available in the following models:

- **model**
- **tuning range**
- **LNS-144** 120-150 MHz
- **LNS-160** 150-180 MHz
- **LNS-220** 200-240 MHz
- **LNS-432** 400-500 MHz

3 dB bandwidth
- ± 5 MHz
- ± 10 MHz
- ± 12 MHz
- ± 15 MHz

The price of the LNS Transceiver Preamp is only $68 in kit form and $98 wired and tested. A complete 40-page catalog describing this and other Hamtronics products is available from Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14446-9535. (Add $1.00 for first-class mailing; for overseas mailing, please send $2.)
DESIGN EVOLUTION IN RF P.A.'s
Now with GaAs FET Preamp

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay).
- Receive preamp option, featuring GaAs FETs (lowest noise figure, better IMD).
- Thermal shutdown protection incorporated.
- Remote control capability built-in.
- Rugged components and construction provide for superior product quality and performance.
- All models include a complete operating/service manual and carry a factory warranty on all components.
- Designed to ICAS ratings, meets FCC part 97 regulations.
- Approximate size is 2.8 x 5.6 x 10.5" and weight is 5 lbs.

Specifications/price subject to change.

SPECIALIZED COMMUNICATIONS FOR TODAY'S RADIO AMATEUR!

If you are ACTIVE in FSTV, SSTV, FAX, OSCAR, RTTY, EME, LASERS or COMPUTERS, you need "THE SPEC-COM JOURNAL™"
Published 10 Times Per Year By WBBQCD

CALL TOLL-FREE 1-800-628-2828 ext. 541

...and place your subscription order today! Our Membership Services HOTLINE is good for all 50 U.S. States including Hawaii & Alaska and ALL OF CANADA! U.S. subscriptions $20 per year. Foreign slightly higher. Back issues are also available for $2.00 each prepaid.

THE SPEC-COM JOURNAL P.O. BOX H, LOWDEN, IOWA 52255

VISA
Yaesu in-line SWR meters
Yaesu Electronics Corporation has released two new in-line SWR and Power Meters. The YS-60 measures both average and peak power output, reflected power, and VSWR in the range from 1.6 to 60 MHz. The YS-600 performs the same measurements covering 140 to 525 MHz range. Three functions provide monitoring of either forward or reflected average transmitter output power for CW, AM, FM, and FSK modes, and VSWR for testing the performance of antennas. The efficient linear circuit design assures accurate measurements with minimum insertion loss over the entire specified frequency range, even at low power levels.

For further information, contact Yaesu Electronics Corporation, 17210 Edwards Road, Cerritos, California 90701.

Circle #03 on Reader Service Card.

87 STAR for Mac, IBM
Circuit Busters' popular RF and microwave analysis and optimization program, STAR, is now available for the Apple Macintosh and the IBM PC/XT/AT/AT Jr with floating point coprocessor. The Macintosh version works with either the 128 or 512K machine and the ImageWizard

returned within 45 days. Payments can be made by check or credit card (no COD).

For information, contact Kantronics, 1202 East 23rd Street, Lawrence, Kansas 66046.

Circle #01 on Reader Service Card.

CES RepeaterMaker™
Communications Electronics Specialists, Inc. (CES), has announced the availability of the new CES RepeaterMaker, which allows two mobile radios to be used in a repeater configuration. Features include adjustable hangtime, adjustable time-out timer (TOT). "Roger" or courtesy beep, remote repeat inhibit input and front panel switch, auxiliary PTT relay, inputs for half and full duplex autopatch, connections for CTCSS decoder, LEDs for power, COR, and PTT, all in a compact, attractive case. The CES RepeaterMaker is ideal for use in establishing a primary repeater installation or a back-up repeater utilizing conventional two-way mobile radios.

For more information, contact CES, Inc., 803C S. Orlando Avenue, Winter Park, Florida 32789.

Circle #04 on Reader Service Card.
Don't buy from Hamtronics . . .

Unless you want the best possible equipment at the lowest possible price! ! !

The "wheeler-dealer" is back and he's beating everyone else's "deals."

We all know there's no such thing as a free lunch . . .
so How Can We Do This?

- We don't run a lot of ads featuring sale items
- We don't spend a lot of money on full page ads
- We don't have sales on just the fastest selling products
- We don't short cut you on service. We are a factory warranty repair facility for everything we sell!
- We don't mail out free catalogs
- We don't have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimmicks.

Hamtronics puts the savings into your pocket.

Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer. We're celebrating our 35th year in the Ham business at the same location.

ICOM DAY JANUARY 25, 1986

HAMTRONICS, INC.
A DIVISION OF TREVOSE ELECTRONICS
4033 BROWNSVILLE RD., TREVOSE, PA 19047
(215) 357-1400

SPECIAL SALE — SAVE $5 EACH

Have a name — but need the Call Sign?
Traveling — and want to meet local Hams?

NAME INDEX
By Name and Call - 563 pages

GEOPGRAPHICAL INDEX
By State, City, Street No. and Call - 653 pages

No frills directories of over 462,000 U.S. Radio Amateurs. 8½x11 , easy to read format.

NAME INDEX—$25.00 $19.95

GEOGRAPHICAL INDEX—$25.00 $19.95

BUY BOTH SPECIAL $35.95

Add $3.50 shipping to all orders

printer. 87STAR for the IBM PC/ST/AT requires the 8087 or 80287 coprocessor, but runs six to seven times faster than the earlier version. 87STAR includes the older version for users who don't have the coprocessor yet installed.

STAR is still available for the Apple II +, IIC and IIE, the Commodore 64, and the Kaypro 2/2X/4/10 CP/M 2.2. 87STAR is priced at $195.00; all other versions are priced under $100.00.

For information, contact Circuit Busters, Inc., 1750 Mountain Glen, Stone Mountain, Georgia 80087

Circle #305 on Reader Service Card.

tone decoder controller module

The new TD-2 DTMF decoder/controller from Hamtronics introduces many new and advanced features. The heart of the TD-2 is a new central-office grade, 16-digit, crystal-controlled DTMF decoder chip with built-in filters to prevent falseing on noise or voice signals. Reliable operation is maintained for any audio input level from 100 mV to 2V p-p. Low power consumption is made possible by use of CMOS circuitry throughout. Power consumption is only 15mA, and the module operates on 10 to 15VDC, with an on-board regulator.

The TD-2 provides five latching on-off functions and up to 12 momentary outputs. This means, for example, that you can control a repeater and autopatch, three other latching functions such as sub-audible tone activation, and several momentary functions. Latching outputs can drive solid-state circuits directly, sinking up to 50mA, or they can drive small relays to switch power loads. The 12 momentary outputs provide a standard 5V logic output.
Codes are easily changed with jumpers; there are no program plugs to replace or eproms to burn. For each function, you have the choice of using a high-security four-digit password or a convenient single-digit command. The TD-2 can be used with any tone source, including radio receivers and telephone lines (with autopatch board). When used with an autopatch, the TD-2 has a built-in “0” and “1” toll call restrictor at no extra charge. A data strobe output, used with the autopatch module, prevents retransmission of confidential control tones.

The TD-2 is suitable for remote control of repeaters, autopatches, and subaudible tone decoders; for selective calling, industrial control, telemetry, computer interface, and other applications. LEDs indicate latch circuits automatically reset to default values on power up. The size of the double-sided PC board is only 3 x 5 inches, so it fits in easily with other equipment.

The TD-2 sells for $110 in kit form and $160 wired and tested. Full documentation is provided with helpful application data.

A complete 40-page catalog of Hamtronics products is available for $1.00 from Hamtronics, Inc., 65-F Moul Road; Hilton, New York 14468-9635. (For overseas mailing, please send $2.00)

new signalling concept

A revolutionary new selective calling/selective linking system has been developed by Kenwood for Amateur Radio use. Called Digital Channel Link, or DCL for short, it has many features including automatic connection, frequency recall, vacant channel location, and selective calling of individual transceivers or groups of transceivers.

Here’s how it works: the DCL system searches for an open channel, remembers it, returns to the original frequency and transmits control information to the DCL-equipped station that switches both transceivers to the open channel.

In addition to this selective linking feature, DCL can also be used for selective calling, similar to Kenwood’s DCS system: a five-digit code group is sent which opens squelch on a DCS transceiver with the matching code. Additionally, a six-character burst of ASCII is sent. Station call signs are normally programmed into this ASCII portion. The CD-10 Call Sign Display unit, which can be used with any receiver, may be used to display the transmitted DCS or DCL ASCII call sign. The CD-10 can store up to twenty incoming call signs for monitoring and logging purposes.

The digital Channel Link system should add more convenience to repeater operations. Using DCL, it becomes a simple matter to QSY to an open simplex channel after making initial contact via repeater.

For details, contact Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

Advanced Receiver Research

Box 1242 • Burlington, CT 06013 • 203 582-9409
RATES: Noncommercial ads 10¢ per word; commercial ads 60¢ per word payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS: Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in available issue.

DEADLINE: 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

SCHEMATICs: Radio receivers 150¢/80¢. Send brand name, SN, QSL, SASE. Scarcamilla, PO Box 1, Woostockct, R.I. 02896-0001.

FREQUENCY SPECTRUM CHART made specifically for Amateur, shortwave listeners, and scanner enthusiasts. 16" x 20" FULL COLOR poster suitable for framing. Only $4.50 plus $1.00 s&h. Colorful poster with full objectivity. Use for curtains or wall display. 40,000 watts to 250 kilocycle range. Free SASE for complete chart.

BINARY CODE CHARTS: 114¢ each, 25¢ per additional. 2000 characters per page. Free SASE for complete chart.

RUBBER STAMPS: 3 lines $4.50 PPD. Send check or MO to J. L. H. Agriculture, P. O. Box 21, Fairfax, Virginia 22037.

EUROPE: Belfort, WpfZV, 4627 North Barrington Avenue, Milwaukee, WI 53211.

SPEAKERS FOR SALE: Spectrum model SCR-1000 2 meter, 1 1/2 years old, formerly factory reconditioned and upgraded. Jim Decker, W5KAV, PO Box 194, Mount Pleasant, MI 48081.

OUTLET: July 1986 issue wanted. Prof. G. Felszer, Trazenbergasse 5, 1130 Vienna, Austria.

CIRCUIT BOARDS: Guaranteed lowest quotes. Single and double-sided boards, Prototypes and production quantities. Mail specifications for quotes. Hobbist: print your own circuit boards. Kits of all sizes, low prices. Base kit $3000 for two 3" x 4" boards (included) or SASE for catalog to T.O.R.C.C. Electronics, Box 47184, Chicago, IL 60617 (312) 342-9717.

2 METER AMPLIFIK: 8877 legal kit $935. 3800AQ4700 KIT $323. Also Ht power supplies, CX2900 relays, parts and EMF measurement equipment. Send for catalog.

CABLE TV CONVERTERS & EQUIPMENT: Plans and parts. Build or buy. SASE for information. C & D Electronics, PO Box 1402, Dept. HR, Hope, AR 71801.

RIW-19 432 MHz beam by K3PWP. SASE for information.

COMING EVENTS

Activities — "Places to go..."

CALIFORNIA: Flea Market/Boneyard Sale. Footlight College, Los Altos First Presbyterian Church, Sundays of every month, 7 AM to 11 AM. Send $1.00 for catalog. Handy QSL (check or MO to) 2591 9th Avenue, San Francisco, CA 94110.

GEORGIA: The 7th annual Lake Hartwell Hamfest, sponsored by the Lake Hartwell Amateur Radio Clubs. May 17 and 18, Lake Hartwell Camp Group, Hwy 92, Hartwell. Festival is an exciting gathering of fun and entertainment. Sponsored by the Medina 2 Meter Group. 8 AM to 2 PM. Building 48. Send $1.00 for catalog. 147.603 MHz for further information. Mail SASE for catalog.

ILLINOIS: The Starved Rock Radio Hamfest, June 1, Princeton. Same place as last year. SASE please for complete registration materials, map, etc. SASE, BMKKS, RTF 1 Box 171, Oglesby, IL 61345 (815) 767-4614.

OHIO: The Medina County Hamfest, May 11, Medina County Community Center Building, 735 Lafayette Rd., Medina. Sponsored by the Medina County Ham Radio Club. May 17 and 18, Lake Hartwell Camp Group. Send $2.00 for catalog. 147.603 MHz. For tickets, please send SASE to: PO Box 482, Medina, Ohio 44256. (216) 725-4492 or (216) 769-3033.

ILLINOIS: The Missouri Amateur Radio Club Hamfest, April 20, Collins Convention Center, Mattsson, Contact MARK, PO Box 79, Sullivan, IL 61961.

CALIFORNIA: FCC exams. Novice Extra. Sunnyside VEC ARC (408) 255-9000 24 hour. 73, Gordon, W6MVL, WEC.

OHIO: The all new 17th Annual **A*S**H — New Location, new entertainment, new food. — will be held on Friday night of the Hamvention, April 25, 1986. The new location is in the Conference Center at the HARA Arena and Exhibition Center, the same location as the Hamvention starting at 7 PM. There is no admission charge, and free continuous entertainment. Food and beverages available at top award-winning food and many others. Stay right at HARA when the Hamvention closes on Fri- day. Take advantage of great deals on equipment and news of fun and entertainment. Sponsored by the Miami Valley FM Association. PO Box 263, Dayton, Ohio 45401.

OKLAHOMA: The Great Plains ARC’s 5th annual Northwest Oklahoma Volunteer, Swap & Swapfest, April 14, 1986, 9 AM to 5 PM. Oklahoma State University, Stillwater, Oklahoma. SASE for complete information. EME facilities available.

COLORADO: The Auerre Retieer Association will hold its annual Amateur Radio Club Swapfest, April 27, National Guard Armory, 66 S. Potomac, Aurora, 8 AM to 3 PM. Festival, cable, radio, Amateur Repeater Association., PO Box 31043, Aurora, CO 80040 or call John (303) 344-1915.

INDIANA: The third annual Columbus Amateur Radio Club Swapfest, Saturday, April 5, 9 AM to 5 PM, 4th Fairgrounds, SR1070 3rd Street. Send $1.00 for complete list of reservations. Chuck Roberts, 2950 S Lake Drive, Columbus, IN 47203.
OPERATING EVENTS

"Things to do . . ."

ARMED FORCES DAY: in recognition of the 37th anniversary of this event, Amateur Radio Station WA0DQR, located North of downtown Kansas City, K6CQF, will be licensed Radio Amateurs graduating from high school and entering an accredited college or university as Freshman for the first time in 1986. Judging is based on school grades, citizenship, ham radio achievements and financial need. For application blanks write: Phil Latta, WA4TSJ, 259 Weatherstone Parkway, Mercer, GA 30259.

THE FOUNDATION FOR AMATEUR RADIO, INC., a non-profit organization with headquarters in Washington, DC, plans to award 21 scholarships for academic year 1986-87. Licensed Radio Amateurs may apply for these awards if they plan to pursue a full-time course of studies at an accredited university, college or technical school. For application information and application form send letter prior to May 31, 1986 to FAIR Scholarships, 6903 Rhode Island Avenue, College Park, MD 20740.

Derby and District Amateur Radio, incorporating Derby Wireles- sons Club 1911, will be celebrating its 75th anniversary during 1986. The Club plans at least one event per month throughout the year each from a different location with the City of Derby. For more information contact the Secretary of the Club.

1986 marks the 50th anniversary of the Greater Cincinnati Ama- teur Radio Association. A number of special events are planned. Watch for announcements hereafter.

NEW JERSEY: TCRA Hamfest Tri-County Radio Association, Sunday, April 4, 9 AM to 4 PM, Feast Hall, 32 Valley Road, Sterling, NJ 07836. Admission $1.00. Refreshments and parking.

SAME: TCRA Hamfest Tri-County Radio Association, Sunday, May 2, 9 AM to 4 PM, Kingdom Hall, Flatbush Avenue, Brooklyn, NY 11210. Admission $1.00. Refreshments and parking.

OHIO: The Portage Amateur Radio Club's Hamfair, Saturday May 18, Randolph Fairgrounds, Ravenna. Gates open 6 AM for dealers. 7:30 for public. A special item to note: RARE ARRL, DX and packet computer forums. Tickets $3.00 advance, $5.00 at the gate. More information can be had at 440-286-6800. For ticket sales and SASE to PARC, c/o Joanne Solok, KJ5OJ, 9601 Government Station, Olmstead, OH 44138. For more information call (216)274-8240.

ARKANSAS: The Northwest Arkansas ARC will hold its 8th annual Hamfest, Saturday, May 3, Rogers Youth Center, 319 W. Olive Street, Rogers, AR 8 AM to 4 PM. Exhibitors and flea market tables $2.00 per space. Indoor tables $7.00. For information: Roy Milliren, W6ZDE, 405 N. 4th Street, Baton Rouge, LA 70801.

CALIFORNIA: The Fresno Amateur Radio Club will hold its 44th annual Hamfest and Auction, April 12, Putnam County Fairgrounds, north of downtown Fort Wayne, IN 9 AM to 4 PM. For information: Roy Milliren, W6ZDE, 405 N. 4th Street, Baton Rouge, LA 70801.

INDIANA: The Putnam County Amateur Radio Club's 4th annual Hamfest and Auction, April 12, Putnam County Fairgrounds, north of downtown Fort Wayne, IN 9 AM to 4 PM. For information: Roy Milliren, W6ZDE, 405 N. 4th Street, Baton Rouge, LA 70801.

MISSOURI: The PHD Amateur Radio Assn.'s annual State ARRL Convention, April 11-13, old Kansas City Airport, north of downtown KC 9 AM to 4 PM. DXCC list and the 40 CQ zones Disk and ARRL Report available at no cost. For information:call(816)451-2842. Admission $2.00, tickets available at the door.

WISCONSIN: The Oshkosh Radio Club's 8th annual Cedarburg Swapmeet, Saturday, May 2, 8 AM to 1 PM, Circle B Recreation Center, highway R, PO Box 881, Cedarburg, WI 53012. Free admission. For information: call (414)234-2719.

NEW YORK: Manhattan's Quarterly Computer Show and Elec- tronic Fiber, Thursday, May 1, 6 PM to 9 PM, Liberty Auditorium, Park Avenue and East 66th Street. And, again on April 26, 7 PM to 10 PM. For information: call (212)918-2792. Also, for information: call (212)968-9081.

NEW JERSEY: TCRA Hamfest Tri-County Radio Association presents the 14th annual RARS Hamfest, Sunday, May 12, 9 AM to 4 PM, St. Anthony's Church Community Hall, 400 7th Avenue, Fitchburg, MA 01420. Admission $2.00. Free parking. For more information: Debbie Hahn, K1BAY, 7 Mountain Avenue, Fitchburg, MA 01420.

MASSACtSSETTS: THe MIT UHF Repeater Association and the MIT Radio Society offer monthly Ham Exams. All classes Novice to Extra. Wednesday, April 23, 1986, 7 PM, MIT Room J-134, 77Mass Ave, Cambridge, MA. Reservations requested. For information: call(617)258-6200 or 253-6616 or George Rogers at 225-6616. Exam fee $4.00. Bring copy of operator's license, 2 forms of picture id and completed form 610 available from FCC in Boston. 223 6609.

SATELLITE SUPERIORS, INC.

INSTALL YOUR OWN SATELLITE SYSTEM & SSSAVE BIG $!

DRAKE, CHAPARRAL, DRR, HOU~TON TRACKER, PANASONIC, STS, TDKI, NIDEN, RAY DX, LAUX, PARACLINE, ECHO, WINEGARD, PRECISION SPACEMATE.

COMPLETE SYSTEMS OR COMPONENTS.

CALL FOR PRICE LIST, OR QUOTES.

1-800-468-3478 IN MISSOURI

1-314-836-0364

SPRING SUNSPOT SALE! $700

Computerized DX Edge

Computerize your own Greynile display. Xantek has adapted their best selling DX Edge to computerize the display and it comes at a very reasonable price. This computerized operating aid brings into your ham shack the ability to know and predict when and where DX is going to appear. When you are using the program, the computer will automatically update the information as the sun progresses across the face of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 CO zones. Disk and documentation included. This is something you've got to have! ©1986.

Now JUST $27.95

Please add $3.50 for postage and handling.
Join AMSAT...Today

* Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

- Newsletter Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.
- Satellite Tracking Software Available for most popular PCs.
- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks
- Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
THEY'RE ALL NEW FOR 1986!

Significant changes for 1986 mandate that all hams get both the North American and International Callbooks. DX’ers and Contestor’s note — Having both books is the only way you’ll have all Foreign Amateur listings.

NORTH AMERICAN CALLBOOK
The old US Callbook has been expanded and now contains the listings of all hams in North America plus Hawaii and US Possessions. This improved operating aid has all the latest calls and OTH information available at press time and will be an invaluable reference guide. With calls *from Panama to Greenland every ham should have a copy of this new book in their shack.

INTERNATIONAL CALLBOOK
The Foreign Callbook is no more! In its place, the new International Callbook includes all Amateurs outside of the North American continent. All the latest callsigns and OTH’s are listed to help ensure you get that prized QSL card. Universally recognized as the source of information. Order yours today. ©1985.

Order Both and SAVE. Special price $39.95
Reg. Price $42.90

Please enclose $3.50 to cover postage and handling.

HAZER YOUR ROHN 25 G Tower
Never climb your tower again with this elevator system.
Antenna and rotator mount on HAZER, complete system trams tower in vertical up-right position.
Safety lock system on HAZER operates while raising-lowering & normal position. Never can fall.
Weight transferred directly to tower. Winch cable used only for raising & lowering. Easy to install and use.
Will support most antenna arrays.
High quality materials & workmanship.
Safety — speed — convenience — smooth travel.
Complete kit includes winch, 100 ft. of cable, hardware and instructions.

HAZER 2 Heavy duty aluminum 13 sq. ft. load 2000.00 pds.
HAZER 3 Standard aluminum 18 sq. ft. load 2100.00 pds.
HAZER 4 Heavy duty aluminum 26 sq. ft. load 2750.00 pds.
Ball bearing bearing 18.35 for any of above 42.50 pds.

As an alternative, purchase a Martin M-130 or M-18 aluminum tower engineered specifically for the HAZER system; or a truly self-supporting steel tower.

GLEN MARTIN ENGINEERING INC. 189
P.O. Box 253 816-882-2734
Boonville, Mo. 65233

Ham Radio Magazine
GREENVILLE, NH 03048

SAY YOU SAW IT IN

SAY YOU SAW IT IN

The Electronic Orphanage
4773 Amberly Street, Suite 174
Nashua, NH 03063 08202
Phone: (603) 882-8748 - FAX: (603) 882-9212 8 N/1

Our orphans include:
Weller TC202 or Unger #200 soldering stations, refurbished, 30 day guarantee $25.00
Lisa 2 systems, include 812K memory, keyboard, mouse, 2 serial ports, 1 parallel port. New $1200, Demo $1100, Used $1000.
MAC XL (same accessories as Lisa 2 plus 10 Mb hard disk). New $2500, Demo $2200, Used $400.

Accessories for above systems:
812K memory cards $350 NEW
5 Mb PROFILE disk $450 USED
10 Mb PROFILE disk $999 USED, $1200 NEW
Parallel interface $150 NEW
Lisa 777 V3.1530 NEW
FACIT plotters - serial port, parallel port, HPG, 90 day factory warranty, slightly used.
Model 4550 - "A" size only - $350.00
Model 4551 - "A" or "B" size - $450.00
FACIT Letter quality daisy wheel printers, serial interface. DIABLO emulation, 40 CPS, 90 day warranty, slightly used, model 4565, $590
Model 4511 - 80 column size - $350
Model 4512 - 132 column size - $450

Call our bulletin board for details and other small quantity specials.
We accept Mastercard and Visa, CODs welcome. Personal checks delay your order 30 days. Of until you receive a message from us leaving the code number we put on the back of your check.

April 1986

More Details? CHECK — OFF Page 126
Ham Radio’s guide to help you find your local

California

C & A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best — Since 1962.

FONTANA ELECTRONICS
8626 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
617-486-3225
The Largest Electronics Dealer in San Bernardino County.

JUN’S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best — Since 1962.

Colorado

COLORADO COMM CENTER
4262 LOWELL BLVD.
DENVER, CO 80211
(303) 433-3355
(800) 227-7373
Stocking all major lines
Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS
50 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3206 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware’s Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more.
One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1908 DREW STREET
CLEARWATER, FL 33755
813-461-4267
Clearwater Branch
West Coast’s only full service Amateur Radio Store.
Hours M-F 9:30-30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-694-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:30-30, Sat. 9-3

Georgia

DOC’S COMMUNICATIONS
702 CHICKAMAGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302
ICOM, Yaesu, Kenwood, KDK, Bird...
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 53 years.

Illinois

ERICSSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon. Tu, Wed & Fri:
9:30-3:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
P.O. BOX 4405
EVANSVILLE, IN 47710
812-422-0231
1-800-523-7731
Discount prices on Ten-Tec, Icom, Hy-Gain, MFJ, Yaesu, Kantronics, Santec and others.

Massachusetts

James Millen Components by
ANTENNAS ETC.
16 HANSOM ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, binding posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers.
Inquire SASE or visit.

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite, Computer applications.
Call Paul WD6AHO

Minnesota

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLSIST.
PAUL)

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323
Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Jersey

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4339
Gene K2KJI
Maryann K2RVH

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all
of your Amateur needs. Featuring ICOM
"The World System." Western New
York's finest Amateur dealer.

North Carolina

F & M ELECTRONICS
3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty — Sales & Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH 44092(Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9:30, Sat. 9:3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic
parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-966-4267
Featuring Kenwood, Yaesu, Icom,
and other fine gear. Factory author-
ized sales and service. Shortwave
specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS, INC.
DIV. OF TREVOS ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOS, PA 19047
215-357-1400
Same Location for over 30 Years

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4826 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9:30 Sat 9:3

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

Electronic Repair Center

Serving Amateur Commercial Radio
The most complete repair facility on
the East Coast.
Large parts inventory and factory
authorized warranty service for
Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig
too old or new for us.

IF YOU'RE STILL USING AN
OLD STYLE ROTOR
CONTROL MAYBE YOU
SHOULD CONSIDER THIS...

BUY THE ANTENNA
CONTROLLER OF THE FUTURE
TODAY!

A PRO-SEARCH™

DIGITAL

ANTENNA CONTROL
FULLY COMPUTERIZED

SMALL
IN SIZE
3⅛ "H x 5⅛ "W x 6"D

10 MEMORIES
FOR STORING
YOUR FAVORITE HEADINGS

ONE YEAR FULL WARRANTY

PRO-SEARCH Is Adaptable To Many
Systems. Simple To Install.

No Modifications Are Necessary.

Presently we're having our Spring
Special. A PSE-1, used with the CDE
Series. Now only $299.95 plus shipping.
Regular retail price $419.91. Offer good
until June 15th, 1986. Order Early. We
expect a back order problem due to
demand and availability of parts.
Also ask about our Spring Rotor, Antenna
and Unit Special.

CALL NOW 1-800-325-4016

Controllers also available for other rotors.
Prices and specifications subject to change
without notice or obligation.

Hamtronics, Inc.

4033 Brownsville Road
Trevose, Pa. 19047
215-357-1400

Reach the World

Pro Search Electronics Co.
1344 Bauer Boulevard St. Louis, MO 63132
1-314-994-7872
1-800-325-4016
Uncle Ben says...

"I give you much more than just the lowest price...

When you get that exciting new piece of equipment from me, you know you are going to be completely happy... I see to it, personally! I also give you earliest delivery, greatest trade-in allowances, my friendly assistance in every possible way.

Just ask any of the many thousands of hams all over the world who have been enjoying my friendly good service for over a half a century.

73, Uncle Ben, W2SOH

• CALL ME...
 (516) 293-7995

HARRISON

HAS THEM ALL!
KENWOOD

Kenwood TM-2570A
Kenwood TS-940S
Kenwood TS-430S
Kenwood TR-2600, TR-3600
Kenwood TH21AT, 31AT, 41AT

• WRITE ME...
 For my prompt, personal reply.

• SEE ME...
 At one of the world's largest Ham Supply Centers!

Kenwood TS-711A (2m)
TS-811A (70 cm)

"HAM HEADQUARTERS, USA" 2263 Route 110 (at Smith St.)
E. Farmingdale, NY 11735
1-(516) 293-7995

"Uncle Ben" Snyder, W2SOH
the head man of

HARRISON
"HAM HEADQUARTERS,
USA...Since 1925!"
analog vs. digital — the difference blurs

It wasn't too long ago that the line between analog and digital operators (devices that perform functions in their respective domains) was easily distinguished. We accept the idea that analog functions have an “unlimited” number of steps and that digital functions are easily distinguished by the fact that the function takes place in discrete steps. But what do we really mean by “unlimited” or “discrete?” Well, it turns out that for most analog functions, the “limit” is set by the resolution of the relevant human sense — touch, smell, hearing, etc. But in reality we find that the presumption of a continuous gradient of sensory perception has its limits. The average eye can distinguish between 55 and 75 levels of gray. This means that 6-bit digitizers (64 shades) are all that is necessary to present an image that has appears to have continuous tones. This is well within the capabilities of today's digital techniques, and literally thousands of shades and colors are possible for even the most demanding visual applications such as computer-aided design and engineering.

The same is true for the acoustic domain. Much professional recording is now done with equipment that converts the analog signal to a purely digital form. Because the digital signal has better “resolution” than the human ear, it's a simple matter to process the signal for noise reduction, echo, timbre, and other characteristics that would be nearly impossible to correct in analog form. The result is the splendid performance of compact disks and chips, combined with some enhancements to the original replenishment scheme, have made the desired results possible at costs that are quite affordable for business applications.

microscope can “see” atoms

Researchers at IBM Laboratories in Switzerland are refining a recently developed technique that permits a scanning microscope to display the individual atoms of a surface structure. The device operates by scanning a very small probe a few atomic diameters above the surface. An electric field proportional to the distance between the probe and the surface is measured and converted to a visual “image” of the surface. Since the field is proportional to the square of the distance, surface characteristics are easily distinguished from background or “noise.” The technique can be used in conjunction with other microscopy methods to serve as a magnifier or zoom device. Typical operation requires a few minutes to scan the surface under examination and produce a three-dimensional image of the atomic structure. Because most surfaces are not uniform for a distance of more than a few dozen atoms, the actual area scanned is quite small. This is not a real limitation, however, since the purpose of the device is extreme magnification of very specific features. The device will have special benefit for those who are working at the limits of semiconductor fabrication technology and are seeking to develop the smallest possible features or achieve the highest levels of integration.

ham radio
Pac-Comm Introduces the
TNC-200

Official TAPR TNC-2 design
- Top quality components throughout
- Standard AX.25 Version 2 protocol
- Full duplex hardware HDLC
- High performance
- Five terminal data rates to 9600 baud
- Modem adaptable for HF packet
- 16K battery backed-up RAM
- 32K EPROM, software clock
- Latest multiconnect software
- Five labeled LED status indicators
- Level 3 networking compatibility
- Choose CMOS version for low power
(100mA typical) or NMOS for lower cost

Assembled and tested
CMOS - $199.95
NMOS - $199.95

Full kit with cabinet
CMOS - $169.95
NMOS - $154.95

Full kit without cabinet
CMOS - $144.95
NMOS - $129.95

Hand-to-find parts kit
CMOS - $84.95
NMOS - $79.95

Bare PC board +assy manual
$ 39.95

Reference manual (100 + pg)
$ 9.95

Cabinet with end plates
$ 29.95

Macintosh Owners: MACPACKET, TNC200 gives pull-down menus, split screens, file transfers, automatic routing and more! MACPACKET/TCN200 $69.95

Free UPS shipping in continental USA
SEE US IN BOOTH 357 AT THE DAYTON HAMVENTION
Discount 10% for orders of five or more TNC-200s to the same address.

ORDER TOLL FREE (24 hours)
800-835-2246 ext. 115
(Kansas 800-362-2421 ext. 115)

Information 813-689-3523

*Please contact this advertiser directly.

ADVERTISER’S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>124 Ace Communications, Inc.</td>
<td>174</td>
</tr>
<tr>
<td>167 Advanced Computer Controls, Inc.</td>
<td>171</td>
</tr>
<tr>
<td>185 Advanced Receiver Research</td>
<td>177</td>
</tr>
<tr>
<td>162 AEI</td>
<td>11</td>
</tr>
<tr>
<td>158 All Electronics Corp.</td>
<td>104</td>
</tr>
<tr>
<td>169 Alpha Delta Communications, Inc.</td>
<td>105</td>
</tr>
<tr>
<td>* Amateur Electronics Supply</td>
<td>100</td>
</tr>
<tr>
<td>108 Amateur Wholesale Electronics</td>
<td>49</td>
</tr>
<tr>
<td>144 Amateur Wholesale Electronics</td>
<td>72</td>
</tr>
<tr>
<td>187 AMSAT</td>
<td>120</td>
</tr>
<tr>
<td>* Antique Electronic Supply</td>
<td>109</td>
</tr>
<tr>
<td>185 ARRL</td>
<td>96</td>
</tr>
<tr>
<td>143 Ashton Corp.</td>
<td>68</td>
</tr>
<tr>
<td>116 Azote Industries</td>
<td>30</td>
</tr>
<tr>
<td>* Barker & Williamson</td>
<td>57</td>
</tr>
<tr>
<td>* Barry Electronics</td>
<td>102</td>
</tr>
<tr>
<td>127 B.H. Bauman Sales</td>
<td>50</td>
</tr>
<tr>
<td>131 Bill Co.</td>
<td>35</td>
</tr>
<tr>
<td>147 Backman Publishing</td>
<td>111</td>
</tr>
<tr>
<td>133 Burghardt Amateur Center</td>
<td>56</td>
</tr>
<tr>
<td>* Burrell Instruments</td>
<td>91</td>
</tr>
<tr>
<td>* C.O.M.B.</td>
<td>45</td>
</tr>
<tr>
<td>164 Coastal Developments, Inc.</td>
<td>95</td>
</tr>
<tr>
<td>190 Colorado Comm Center</td>
<td>127</td>
</tr>
<tr>
<td>153 Communications Concepts, Inc.</td>
<td>79</td>
</tr>
<tr>
<td>128 Communications Specialists, Inc.</td>
<td>56</td>
</tr>
<tr>
<td>199 Connect Systems, Inc.</td>
<td>56</td>
</tr>
<tr>
<td>172 Crescent Radio</td>
<td>21</td>
</tr>
<tr>
<td>190 CTM</td>
<td>120</td>
</tr>
<tr>
<td>* Dayton Helpdesk</td>
<td>103</td>
</tr>
<tr>
<td>161 DCC Data Service, Inc.</td>
<td>91</td>
</tr>
<tr>
<td>190 Dick M. Smith Electronics</td>
<td>73</td>
</tr>
<tr>
<td>136 Digipeers</td>
<td>127</td>
</tr>
<tr>
<td>126 Down East Microwave</td>
<td>50</td>
</tr>
<tr>
<td>168 DX News Magazine, G.B. Browning, W4BPD</td>
<td>102</td>
</tr>
<tr>
<td>179 EEB</td>
<td>99</td>
</tr>
<tr>
<td>124 EOE, Inc.</td>
<td>50</td>
</tr>
<tr>
<td>191 The Electronic Shop</td>
<td>121</td>
</tr>
<tr>
<td>* Engineering Concepts, Inc.</td>
<td>116</td>
</tr>
<tr>
<td>150 Ex</td>
<td>74</td>
</tr>
<tr>
<td>* Falcon Communications</td>
<td>74</td>
</tr>
<tr>
<td>123 Fax International, Inc.</td>
<td>50</td>
</tr>
<tr>
<td>* Fax Global Corp.</td>
<td>115</td>
</tr>
<tr>
<td>111 GLB Electronics</td>
<td>21</td>
</tr>
<tr>
<td>119 GLB Electronics</td>
<td>40</td>
</tr>
<tr>
<td>130 GLB Electronics</td>
<td>55</td>
</tr>
<tr>
<td>139 GLB Electronics</td>
<td>62</td>
</tr>
<tr>
<td>121 Ham Radio</td>
<td>74</td>
</tr>
<tr>
<td>126 Ham Radio</td>
<td>56</td>
</tr>
<tr>
<td>141 Ham Radio Outlet</td>
<td>64</td>
</tr>
<tr>
<td>* Ham Radio’s Bookstore</td>
<td>64</td>
</tr>
<tr>
<td>* Ham Radio’s Bookstore</td>
<td>65</td>
</tr>
<tr>
<td>* The Ham Station</td>
<td>106</td>
</tr>
<tr>
<td>110 Hamline, NY</td>
<td>92</td>
</tr>
<tr>
<td>123 Hamline, PA</td>
<td>123</td>
</tr>
<tr>
<td>184 Hamline, PA</td>
<td>116</td>
</tr>
<tr>
<td>193 Harrison Radio</td>
<td>124</td>
</tr>
<tr>
<td>130 Hush Company</td>
<td>62</td>
</tr>
<tr>
<td>101 ICOM America, Inc.</td>
<td>62</td>
</tr>
<tr>
<td>197 J.S. Technology, Inc.</td>
<td>127</td>
</tr>
<tr>
<td>156 Jans Electronics</td>
<td>80</td>
</tr>
<tr>
<td>130 Kantronics</td>
<td>55</td>
</tr>
<tr>
<td>135 Kantronics</td>
<td>55</td>
</tr>
<tr>
<td>124 Kenedon/MCS</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READER SERVICE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Trio-Kenwood Communications</td>
<td>72</td>
</tr>
<tr>
<td>127 Larse Antennas</td>
<td>111</td>
</tr>
<tr>
<td>122 Madison Electronics Supply</td>
<td>46</td>
</tr>
<tr>
<td>175 Elaine Martin, Inc.</td>
<td>109</td>
</tr>
<tr>
<td>189 Glenn Martin Engineering</td>
<td>121</td>
</tr>
<tr>
<td>146 MCM</td>
<td>73</td>
</tr>
<tr>
<td>104 Meadowlake Corp.</td>
<td>12</td>
</tr>
<tr>
<td>103 MFI Enterprises</td>
<td>8</td>
</tr>
<tr>
<td>113 Micro Supply Organization</td>
<td>22</td>
</tr>
<tr>
<td>114 Micro Supply Organization</td>
<td>23</td>
</tr>
<tr>
<td>105 Micro Systems Institute</td>
<td>12</td>
</tr>
<tr>
<td>160 Mills Eye Publications</td>
<td>91</td>
</tr>
<tr>
<td>136 Mirror Publications</td>
<td>15</td>
</tr>
<tr>
<td>154 Missouri Radio</td>
<td>79</td>
</tr>
<tr>
<td>180 Mosley Electronics</td>
<td>114</td>
</tr>
<tr>
<td>164 NHQ Distributing Corp</td>
<td>37</td>
</tr>
<tr>
<td>134 Newt Electronics</td>
<td>56</td>
</tr>
<tr>
<td>140 Nuts & Volts</td>
<td>62</td>
</tr>
<tr>
<td>173 Omega Concepts</td>
<td>109</td>
</tr>
<tr>
<td>215 P.C. Electronics</td>
<td>29</td>
</tr>
<tr>
<td>194 PacComm Packet Radio Systems, Inc.</td>
<td>126</td>
</tr>
<tr>
<td>127 Pacific Rim Communications</td>
<td>111</td>
</tr>
<tr>
<td>152 Pro Search</td>
<td>123</td>
</tr>
<tr>
<td>106 Processor Concepts</td>
<td>73</td>
</tr>
<tr>
<td>190 BLP</td>
<td>121</td>
</tr>
<tr>
<td>171 GSKY Publishing</td>
<td>106</td>
</tr>
<tr>
<td>172 RFI Electronics</td>
<td>109</td>
</tr>
<tr>
<td>137 Radio Amateur Supply</td>
<td>63</td>
</tr>
<tr>
<td>163 Ramsey Electronics, Inc.</td>
<td>98</td>
</tr>
<tr>
<td>166 RF Parts Westcoast Eng.</td>
<td>96</td>
</tr>
<tr>
<td>155 Roensch Microwave</td>
<td>80</td>
</tr>
<tr>
<td>152 Sartori Associates</td>
<td>74</td>
</tr>
<tr>
<td>219 Satellite Super Savers</td>
<td>119</td>
</tr>
<tr>
<td>* Satcom, Inc.</td>
<td>16</td>
</tr>
<tr>
<td>109 Sonics</td>
<td>17</td>
</tr>
<tr>
<td>182 Spec-Com</td>
<td>114</td>
</tr>
<tr>
<td>110 Spectrum International, Inc.</td>
<td>20</td>
</tr>
<tr>
<td>170 Spa Products Distributing</td>
<td>106</td>
</tr>
<tr>
<td>129 STV/OnSat Magazine</td>
<td>54</td>
</tr>
<tr>
<td>196 Subtronics</td>
<td>127</td>
</tr>
<tr>
<td>176 Synthonic Technologies, Inc.</td>
<td>111</td>
</tr>
<tr>
<td>181 TE Systems, Inc.</td>
<td>114</td>
</tr>
<tr>
<td>191 TredMart</td>
<td>115</td>
</tr>
<tr>
<td>120 Texcom</td>
<td>40</td>
</tr>
<tr>
<td>115 Telewave, Inc.</td>
<td>26</td>
</tr>
<tr>
<td>* Ten Tec</td>
<td>79</td>
</tr>
<tr>
<td>157 Transmitters Unlimited</td>
<td>81</td>
</tr>
<tr>
<td>* University Microfilm, Inc.</td>
<td>112</td>
</tr>
<tr>
<td>159 Vanguard Labs</td>
<td>91</td>
</tr>
<tr>
<td>162 VHF Communications</td>
<td>91</td>
</tr>
<tr>
<td>218 WBBN Antennas</td>
<td>111</td>
</tr>
<tr>
<td>148 Westar Communications</td>
<td>73</td>
</tr>
<tr>
<td>146 Western Electronics</td>
<td>12</td>
</tr>
<tr>
<td>200 Yield Electronics Corp.</td>
<td>119</td>
</tr>
</tbody>
</table>

* Please contact this advertiser directly.

Product Review/NEW PRODUCT

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>304 CES, Inc.</td>
<td>113</td>
</tr>
<tr>
<td>395 Circuit Design, Inc.</td>
<td>115</td>
</tr>
<tr>
<td>* Hamline, NY</td>
<td>112, 116</td>
</tr>
<tr>
<td>301 Kantronics</td>
<td>115</td>
</tr>
<tr>
<td>* Trio-Kenwood Communications</td>
<td>112, 117</td>
</tr>
<tr>
<td>302 MIJ Enterprises</td>
<td>112</td>
</tr>
<tr>
<td>303 Yasse Electronics Corp.</td>
<td>115</td>
</tr>
</tbody>
</table>

* Please use before May 31, 1986.
40m Phased Array — the Easy Way!

OPTI-PHASOR™ by BaileyTech
- Change direction instantly
- High P/B, adjustable phasing
- Low SWR over entire 40m band
Just 2 dipoles gives 4 db gain
$119.95

SAY YOU SAW IT IN HAM RADIO
THINGS TO LOOK FOR (AND LOOK OUT FOR) IN A PHONE PATCH

- One year warranty.
- A patch should work with any radio, AM, FM, ACSB, relay switched or synthesized.
- Patch performance should not be dependent on the T/R speed of your radio.
- Your patch should sound just like your home phone.
- There should not be any sampling noises to distract you and rob important syllables. The best phone patches do not use the cheap sampling method. (Did you know that the competition uses VOX rather than sampling in their $1000 commercial model?)
- A patch should disconnect automatically if the number dialed is busy.
- A patch should be flexible. You should be able to use it simplex, repeater aided simplex, or semi-duplex.
- A patch should allow you to manually connect any mobile or HT on your local repeater to the phone system for a fully automatic conversation. Someone may need to report an emergency!
- A patch should not become erratic when the mobile is noisy.
- You should be able to use a power amplifier on your base to extend range.
- You should be able to connect a patch to the MIC and EXT. speaker jack of your radio for a quick and effortless interface.
- You should be able to connect a patch to three points inside your radio (VOL high side, PTT, MIC) so that the patch does not interfere with the use of the radio and the VOL and S-Q settings do not affect the patch.
- A patch should have MOV lightning protectors.
- Your patch should be made in the USA where consultation and factory service are immediately available. (Beware of an inferior offshore copy of our former PRIVATE PATCH II.)

ONLY PRIVATE PATCH III GIVES YOU ALL OF THE ABOVE

PRIVATE PATCH III
SIMPLEX SEMI-DUPLEX INTERCONNECT

The telephone is the most powerful mode of communications... PRIVATE PATCH III gives you full use of your home telephone from your mobile and HT radios!

With only three simple connections to your base station radio, PRIVATE PATCH III will give you more communications power per dollar than you ever imagined possible.

Suddenly the utility of your radio is drastically increased. There are new sounds... dial tones, ring tones, CW ID and the sound of voices you never expected to hear on your mobile or HT radio! What a convenience!

PRIVATE PATCH III frees you from memberships, cliques and other hassles common to many repeater autopatches. You can call who you want, when you want and for as long as you want. You can even receive your incoming calls!

To Learn more about PRIVATE PATCH III and the advantages of the VOX concept, call or write for our four page brochure today!

PARTIAL LIST OF FEATURES:
- OPERATES SIMPLEX, THROUGH REPEATERS, OR DUPLEX ON REPEATERS
- VOX BASED
- TOLL RESTRICT (Digit counting and programmable first digit lockout)
- SECRET CODE DISABLES TOLL RESTRICT FOR ONE TOLL CALL—Automatic re-arm
- AUTOMATIC BUSY SIGNAL DISCONNECT
- CONTROL INTERRUPT TIMER (Maintains positive mobile control)
- CW ID When you connect again a disconnect. Free ID chip.
- SELECTABLE TONE OR PULSE DIALING
- MOV LIGHTNING PROTECTORS
- THREE DIGIT ACCESS CODE (e.g. 111)
- RINGOUT (Reverse patch) Ringout inhibit if channel bus
- RESETTABLE THREE MINUTE TIMER
- SPARE RELAY POSITION
- 115VAC SUPPLY

Options:
- FCC approved coupler
- 12 VDC or 230 VAC power

VOX... the right choice!

VOX based phone patches offer many performance and operational advantages over the sampling method. These include operation through repeaters, compatibility with an radio, no lost words or syllables, greater range, smooth audio free of continual noise bursts etc., etc.

Most amateurs are not aware that the competition's top of the line patch is VOX based. (You know... the $1000 model they enthusiastically call "our favorite commercial simplex patch on page 3 of their SP brochure.)

PRIVATE PATCH III offers about the same capability, performance and features as the top model but is priced closer to their bottom of the line (SP) model!

So why settle for SP when top of the line cost little more?

AMATEUR ELECTRONIC SUPPLY
Milwaukee WI, Wicked St., Orlando FL, Clearwater FL, Las Vegas NV
BARRY ELECTRONICS CORP.
New York, NY
COLES COMMUNICATIONS
San Antonio TX
EGE, INC.
Woodbridge, VA
ERIKSON COMMUNICATIONS
Chicago IL
HAM RADIO OUTLET
Anaheim CA, Buford CA, Oakland CA, Phoenix AZ, San Diego CA, Van Nuys CA
HENRY RADIO
Los Angeles CA
INTERNATIONAL RADIO SYSTEMS
Miami, FL
JUNS ELECTRONICS
Culver City CA

DEALERS
AMERICAN ELECTRONIC SUPPLY
Houston, TX
MIAMI RADIO CENTER CORP.
Miami FL
MIKES ELECTRONICS
FL, Lauderhill, Miami FL
N & G DISTRIBUTING CORP.
Miami FL
PACE ENGINEERING
Tucson AZ
THE HAM STATION
Evanston IL
TEXAS TOWERS
Piano, TX
TNT RADIO SALES
Robinsonville, MI
WESTCOM
San Marcos, CA
CANADA:
DOLLARD ELECTRONICS
Vancouver, BC
SKYWAVE RADIO SYSTEMS
L, Burnaby, B.C.

(213) 373-6803
23731 Madison St., Torrance, CA 90505
Yaesu’s big gun. The FT-980.

DX and contest operation is no place for a lightweight.
That's why the FT-980 combines the latest in HF technology to give you the muscle to get you through.
To begin with, its front panel gives you unsurpassed operating flexibility.
Store your favorite frequencies and operating mode independently in each of the 12 memory channels.
Review the contents of any memory location without disturbing the QSO in progress with the checking function.
Quickly go from one programmed channel to another or meet your buddy "five up" by simply touching a button.

And you'll be hard-pressed to find a cleaner transmitter. In fact, our conservatively designed final amplifier loafs at just a fraction of its rated output. And cuts distortion to new lows.
Then consider the receiver:
A triple-conversion design with separate front ends for ham and general coverage reception. That way, ham-band operation is not compromised.
Also, cascaded IF filtering assures outstanding rejection of unwanted signals close to your operating frequency.
Even imperfect antennas are no problem for the FT-980. There's essentially no turn-down with an SWR of 2:1 and just 25% turn-down at 3:1.

Finally, if all this isn't enough, hook up the FT-980 to your personal computer for 21 advanced functions including mode, frequency and band shift. An assortment of interfaces and software are available.
So when you really want to flex your muscles, go with Yaesu's FT-980. The serious radio for the serious operator.

prices and specifications subject to change without notice.
Compact high performance HF transceiver
with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"—that special feeling you get every time you turn the power on!

- Covers All Amateur bands
 General coverage receiver tunes from 150 kHz - 30 MHz. Easily modified for HF MARS operation.
- Direct keyboard entry of frequency
- All modes built-in
 USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code.
- Built-in automatic antenna tuner (optional)
 Covers 80-10 meters.
- VS-1 voice synthesizer (optional)

Superior receiver dynamic range
Kenwood DynaMix* high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.

100% duty cycle transmitter
Super efficient cooling permits continuous key-down for periods exceeding one hour. RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The heavy duty PS-50 power supply is needed for continuous duty.)

- 100 memory channels
 Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.
 TU-8 CTCSS unit (optional)
 Subtone is memorized when TU-8 is installed.

Superb interference reduction
IF shift, tuneable notch filter, noise blanker, all-mode squelch, and optional filters fight QRM in today's crowded bands.

MC-42S UP/DOWN mic. included
Computer interface port

- 5 IF filter functions
- Dual SSB IF filtering
 A built-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.

Full or semi break-in CW; AMTOR compatible.

Kenwood takes you from HF to OSCAR!

Complete service manuals are available for all Trio Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.