ICOM HF Transceiver

IC-745

High Performance
Maximum Flexibility

The IC-745 is a full featured, high performance HF base station transceiver with a 100dB dynamic range receiver. PLUS features usually found only in more expensive units.

Compare these exceptional Standard Features:
- 100KHz - 30MHz Receiver
- 100 Watt RF output / 100% Duty Cycle
- Passband Tuning AND IF Shift
- Adjustable Noise Blanker (width and level)
- Adjustable AGC
- Receiver Preamp
- 16 tunable Memories with lithium battery backup
- Wide selection of filters and filter combinations (opt.)
- Continuously adjustable transmit power
- 10Hz/50Hz/1KHz Tuning rates with 1MHz band steps
- IC-HMI2 Microphone with Up/Down Scan

Options. Internal IC-PS35 power supply, external IC-PS35 or IC-PS30 system supply, IC-SM8 two-cable desk mic, EX241 marker, EX242 FM module, EX243 electronic keyer, IC-SM6 desk mic, and a variety of filters.

Other Standard Features. Included as standard are many of the features most asked for by experienced ham radio operators: dual VFO's, RF speech compressor, tunable notch filter, program band scan, memory scan, all-mode squelch and VOX.

The IC-745 is the only transceiver today that has so much flexibility at a surprisingly low price...see it at your local ICOM dealer.
What To Look For In A Phone Patch

The best way to decide what patch is right for you is to first decide what a patch should do. A patch should:

- Give complete control to the mobile, allowing full break in operation.
- Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables (or flip switches) every time you wish to use your radio as a normal base station.
- Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
- You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles, ONE OF THEM MIGHT NEED HELP.
- The patch should have standard features at no extra cost. These should include programmable toll restrict (flip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.

ONLY SMART PATCH HAS ALL OF THE ABOVE.

Now Mobile Operators Can Enjoy An Affordable Personal Phone Patch...

- Without an expensive repeater.
- Using any FM transceiver as a base station.
- The secret is a SIMPLEX autopatch. The SMART PATCH.

SMART PATCH is Easy To Install

To install SMART PATCH, connect the multicolored computer style ribbon cable to your radio, receiver discriminator, PTT, and power. A modular phone cord is provided for connection to your phone system. Sound simple?... IT IS!

How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: "73"). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will now hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH Is All You Need To Automatically Patch Your Base Station To Your Phone Line.

Use SMART PATCH for:

- Mobile (or remote base) to phone line via Simplex base. (see fig 1.)
- Mobile to Mobile via inter-connected base stations for extended range. (see fig 2.)
- Telephone line to mobile (or remote base).
- "SMART PATCH uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES, 180 days of warranty protection. You simply can't go wrong. An FCC type accepted coupler is available for SMART PATCH.
Kenwood's advanced technology brings you a new standard in pocket/handheld transceivers!

- High or low power. Choose 1 watt high—enough to "hit" most local repeaters, or a battery-saving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and weighs 260 g (.57 lb) with PB-21.
- Expanded frequency coverage (TH-21AT/A). Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
 - TH-31AT/A: 220.000-224.995 MHz in 5 kHz steps.
 - TH-41AT/A: 440.000-449.995 MHz in 5 kHz steps.
- Easy-to-operate, functional design. Three digit thumbwheel frequency selection and handy top-mounted controls increase operating ease.
- Repeater offset switch.
 - TH-21AT/A: ±600 kHz, simplex.
 - TH-31AT/A: -1.6 MHz, reverse, simplex.
 - TH-41AT/A: ±5 MHz, simplex.
- Standard accessories: Rubber flex antenna, earphone, wall charger, 180 mA/H NiCd battery pack, wrist strap.
- Quick change, locking battery case. The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.
- Rugged, high impact molded case. The high impact case is scuff resistant, to retain its attractive styling, even with hard use.

See your authorized Kenwood dealer and take home a pocketful of performance today!

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mA/H battery
- PB-21H NiCd 500 mA/H battery
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C alkaline/manganese alkaline battery case
- SC-8/8T wall cases
- TU-6 programmable sub-tone unit
- AJ-3 threadloc to BNC female adapter
- BC-6 2-pack quick charger
- BC-2 wall charger for PB-21H
- RA-8A/9A/10A StubbyDuk antenna
- BH-3 bell hock

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
DECEMBER 1985
volume 18, number 12

T. H. Tenney, Jr., W1NLB
publisher

Rich Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KA1LBO
assistant editor

Joseph J. Schroeder, W9UUV
Alfred Wilson, W9NF
associate editors

Susan Shorrock
editorial production

editorial review board
Peter Bertini, K1ZJH
Forest Gehke, K2ET
Michael Goodwin, K9EJ
Bob Lewis, W2EBS
Mason Logan, K4MT
Ed Wetherhold, W3WNN

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher

Rally Dennis, KA1JWF
director of advertising sales

Dorothy Sargent, KA1ZK
advertising production manager

Susan Shorrock
circulation manager

Theresa Bourguet

circulation

cover art:
Hans Evers, FAXOX

Ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0498
Telephone: 603-878-1441

subscription rates
United States:
one year, $19.95; two years, $32.95; three years, $44.95
Canada and other countries via surface mail:
one year, $22.95; two years, $41.00; three years, $65.00
Europe, Japan, Africa via Air Forwarding Service:
one year, $29.00
All subscription orders payable in U.S. funds, via international
postal money order or check drawn on U.S. bank

international subscription agents: page 132

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106

Order publication number 3076

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Periodicals,
919 Walnut Street, Philadelphia, Pennsylvania 19107

Copyright 1985 by Communications Technology, Inc.
Title registered at U.S. Patent Office

Second-class postage paid
at Greenville, New Hampshire 03048-0498

and at additional mailing offices
ISSN 0168-5599

Send change of address to ham radio
Greenville, New Hampshire 03048-0498

contents

13 spread spectrum and digital communication techniques: a primer
Ted S. Rappaport, N9NB

30 a packet radio primer
David McLanahan, WA1FHB

41 automatic frequency and deviation tester for packet radio
John W. Langner, WB2OSZ

55 ham radio techniques
Bill Orr, W6SAI

63 AMTOR, AX.25, and HERMES: a performance analysis of three systems
Jerome T. Dijak, W9JD

79 practically speaking
Joe Carr, K4IPV

85 VHF/UHF world
Joe Reisert, W1JR

104 annual cumulative index
(1981-1985)

W6MGl's column, "The Guerri Report," will return
next month.

134 advertisers index and reader service
128 ham mart
121 new products
8 comments
6 prestop
98 DX forecaster
5 reflections
132 flea market
8 short circuit

December 1985
Incredible Flexibility!

TM211A/411A

The TM-211A 2 m and the TM-411A 70 cm transceivers combine ultra-compact size with an impressive array of features to give you maximum flexibility in mobile operations. The TM-211A and the TM-411A may be stacked for even more operating flexibility!

- **External speaker.** A high-quality external communications speaker is provided for the best sound quality.
- **5-channel memory with multiple scanning functions.** The transceiver can scan the memory channels or be programmed to scan all or a portion of the band.
- **25 watts high power.** 5 (adjustable to approx. 15 watts) low.

- **Priority Watch.** The “Priority Watch” mode lets you keep an eye on an important channel when monitoring other frequencies.
- **Extended frequency coverage on 2 m.** TM-211A covers 142-149 MHz—includes most MARS and CAP frequencies. TM-411A covers 436-450 MHz.

Optional accessories:
- CD-10 call sign display
- PS-430 DC power supply
- KPS-7A power supply
- MC-42S regular UP/DOWN hand microphone
- MC-55 (6-pin) mobile microphone with time-out timer
- MA-4000 dual band mobile antenna with duplexer
- SWT-11/2 2 m / 70 cm 100 W antenna tuners
- SW-100A/B SWR/power meters
- PG-3A noise filter
- MB-201 extra mobile mount
- SP-40 compact mobile speaker

CD-10 DCS call sign display

CD-10 maximizes your use of Kenwood's new signalling concept, Digital Code Squelch. DCS uses a data string to open squelch on a receiver that has been programmed to accept the transmitted code. The transmitting station's call is programmed in ASCII. The CD-10 displays the station's call sign, and stores it in memory. Twenty calls may be stored. The CD-10 may be used with any receiver to display calls heard.

More product information is available from authorized Kenwood dealers.
We are in the midst of another revolution, albeit a peaceful one. Packet Radio and other forms of digital communications have arrived. Previously staunch users of the various forms of AM and FM have found themselves drawn into the world of zeros and ones and are talking to each other with ever-increasing speeds, efficiencies, and applications. For example, on 220 MHz and higher, up to 5600 characters per second transmission link speeds are both theoretically and legally possible. Passing the same amount of data on CW would require a sending speed of approximately 60,000 wpm — almost a thousand times faster than Ted McElroy’s long-standing Morse code record.

Of course the proliferation of personal computers has had an important influence on this process, but I still attribute the rapid growth of this field to the inquisitive, intelligent, and practical mind of the Radio Amateur. For as soon as the first generation of Terminal Node Controllers (the interface between the terminal and the radio) became available, user groups formed and began developing applications ranging from direct message-passing to Packet Bulletin Board Systems (PBBSs).

Though most Packet activity occurs on VHF (in large measure on 145.010 MHz), this does not restrict transmissions to short distances. In fact, as of this date, a large section of each coast is interlinked by a series of digital repeaters, or as they’re better known, “digipeaters.”

The startling growth rate of this mode became quite obvious as we prepared David McLanahan’s article, “A Packet Radio Primer,” for publication. Space was allocated for the April 10 version of the East Coast packet map shown on page 33. By September 10, activity increased dramatically and the size of the map doubled. This represents an increase of approximately 100 percent in the number of digipeaters, PBBSs, and home stations used predominantly for digipeating.

It seems particularly appropriate to consider this subject this month. December is, after all, a time of hope and renewal. In the past we’ve seen exciting developments — such as SSB, FM, and computers — make their mark on Amateur Radio. Will digital communications be the next logical step in this evolutionary process?

Turn the pages of this month’s ham radio and see when and why the different forms of Packet Radio are appropriately used. And while you’re on the subject, see how and why some hams have been experimenting with spread spectrum transmissions, once the exclusive domain of the military.

To paraphrase a well known soft drink manufacturer’s slogan, “We’re the Packet generation.” Read on and see where you might fit in.

Rich Rosen, K2RR
Editor-in-Chief
THE AVERAGE U.S. AMATEUR IS JUST OVER 46 YEARS OLD, FCC's analysis of last April's Form 610s indicates. A detailed study of all that month's 9632 applications (all new licenses, renewals, and modifications) shows Novices to be the youngest, with an average age of 38.5. Techs average 45.1; Extras, 47.3; Generals, 50; Advanced, 51.8. By call areas, 9th district Novices were the youngest, at 35.6, and 0 district Advanced the oldest, at 55.

The U.S. Amateur Population Increased 6.6% During FCC's Fiscal 1985 (ending October 1), though the number of new Amateurs actually decreased by 7.6%. 17,373 newcomers joined Amateur ranks last year, while 14,709 dropouts left the year's end total 412,587. Largest percentage increase by license class was in Extras, up 2,344 to almost 39,000.

SOME MEANS SHOULD BE ESTABLISHED FOR "CERTIFYING" FREQUENCY COORDINATORS on a state or regional basis, as there's apparently no interest in establishing a "National Coordinator." FCC Safety and Special Services Chief Ray Kowalski suggested in his comments during the FM forum at the ARRL National Convention in Louisville. "Certified" coordinators would be those established and generally recognized for a given area; an eight-point plan is to be developed for determining appropriate qualifications and the method of formalizing such certification. Though the plan is to be published in the ARRL's Repeater Coordinators' Newsletter when completed, the League is specifically NOT participating in developing the plan.

Texas's Recoordination To 20 kHz Spacing On 2 Meters Has Been Completed, with the actual shift throughout the state expected to be complete by the end of November.

ARRL's Proposal To Permit Novices Phone Privileges probably won't be worked on at the FCC until early 1986, meaning that an NPRM won't be out until late spring at the earliest. So far there seems to be considerable division in the Amateur ranks on the issue, but the age figures in our lead item certainly indicate some change is needed.

Japanese Operators Have Invaded The Lower End Of 16 Meters, P29JS reports in a letter to the Southern California DX Bulletin. He's been hearing Japanese chatter all the way up to 29585 kHz, but without any indication of any "JA" callsigns.

METROPLEX HAS BEEN NAMED THE FOURTH NATIONAL VEC effective September 19, the FCC has announced. Metroplex, one of the very first regional VECs, is now actively seeking VEs in other call areas. Call Alex Magocsi, WB2MGB, at (201) 592-6243 for information.

IB Regional And Three National VECs Have Expressed Interest In Joining CARE (Council of Amateur Radio Examining), which is now well along the road toward becoming a viable organization and expects to be incorporated as a not-for-profit corporation under Illinois law before the end of the year. Jim Georgias, WY4UB, can provide further information.

AFTERSHOCKS FROM NEWS MEDIA EXPLOITATION OF AMATEUR FREQUENCIES during the Mexico City earthquake disaster are still going on, with both the FCC and some of the offending news organizations on the receiving end of complaints by concerned Amateurs. Even some media people have themselves admitted feeling that the situation went far beyond reason, though most did not want to be quoted on the issue. Preliminary discussions between the FCC and both the Radio and TV News Directors Association and the National Association of Broadcasters have reportedly taken place, with hope that acceptable guidelines for Amateur Radio/media cooperation can be set up before the next crisis occurs. The FCC had thought it had defined the limitations in its Report and Order on BC Docket 79-47, but a widely distributed industry interpretation of the FCC's action left many in the industry with the impression that Amateur Radio was for their use pretty much as desired.

The FCC Is Interested In Reports Of Specific Media Incursions during the Mexico City crisis; they must be first-person and specific enough to be related to a specific news organization. Send them to Raymond Kowalski, Chief, Safety and Special Services, FCC, 1919 M St., NE, Washington D.C. 20554; tapes of abuses would be particularly welcome.

The Issue Of "Non-Amateur" Use Of Amateur Frequencies is an on-going issue that can't be ignored; the recent petition by a low-power TV broadcaster to use frequencies on the 70-cm Amateur band for TV remotes, and the establishment of a "protection zone" along the Canadian border for 420-430 MHz commercial users, are cases in point.

STILL MORE "HAM IN SPACE" OPERATIONS FROM SPACE SHUTTLES are shaping up for next year. AMSAT member Dr. Ron Parise, WA4SIR, has been selected to fly on Mission 61E in March, while Dr. Owen Garrett, W5FL, is scheduled for mission 61K, now set for next September.

GEOSYNCHRONOUS AMATEUR SATELLITES ARE STARTING TO LOOK like real possibilities, according to AMSAT. Earlier, NASA had said it might provide Amateur Radio capability on one of its Advanced Communications Technology Satellites (ACTS), and now it appears an AMSAT transponder ("Phase 4") may find a spot on the same bird. In addition, ArianeSpace may also be able to provide a piggy-back launch opportunity for an Amateur transponder into geosynchronous orbit. AMSAT officials are now reviewing the possibilities, with particular interest in incorporating new approaches and capabilities in an Amateur proposal.
You may not be able
to solve the world's problems.
But at least you can listen.

The Panasonic Command Series: With double superheterodyne tuning, you'll hear the world loud and clear.

Now it's easy to listen in on the world's hot spots. With the Panasonic RF-B600 Command Series FM/LW/MW/SW receiver.

Its advanced microcomputer-controlled tuner lets you preset up to nine different frequencies. And reach them at the touch of a button. Or, press the appropriate buttons and tune in any desired frequency with direct-access digital tuning. It'll lock right in to every signal with a PLL quartz-synthesized tuner. Once tuned in, the Panasonic double superheterodyne system helps deliver a clean, consistent signal.

There's even built-in auto-tuning to let you scan the shortwave band automatically, as well as manually. All this means you can tune in Berlin, pick up Paris, or locate London in an instant. Without dialing all over the band.

Both the RF-B600 and the RF-B300 are packed with features and built to go anywhere. The Panasonic Command Series offers something for everyone. With equipment sophisticated enough to impress the most avid enthusiast, and automatic features that get you where you want to be. Fast.

There's a whole world out there that's waiting to be heard. Tune in to it with the Panasonic Command Series.

- Makes Upgrading of Morse Skills Easy and Fun
- Does Away With Drudgery
- Skilled Operators Enjoy the Realism
- Operate Anytime—Requires Only a Commodore C-64 (or C-128) and A TV Set
- Removes the “Mystery” of what to Say in On-the-Air Contacts
- Excellent Practice for Beginners and Old “Pro’s”
- Standard Format and Common Abbreviations Used for All Exchanges
- Send Morse with your keyboard
- Select Appropriate QRM and QRN Levels
- Select the Portion of the ‘Band’—Novice or Low End

Prices and Specifications Subject to Change Without Notice or Obligation

ADVANCED ELECTRONICS APPLICATIONS, INC.
P.O. Box C-2160, Lynnwood, WA 98036
TELEX: 6672444
AEA INTL UW
(206) 775-7727

Dear HR:

In response to KAØDOE’s letter in the September, 1985, issue of ham radio (Comments, page 15) I have only one comment. The total function of the Novice Amateur Radio license is to introduce the public to Amateur Radio Service by giving them simple privileges on a few selected portions of the Amateur Radio bands and a very simple but effective mode of transmission called CW or Radiotelegraphy. Then it’s up to the individual to make that commitment to upgrade to the higher grade license and more privileges.

Bill Eaton, WB1CXI
Channelview, Texas

something for nothing

Dear HR:

Unlike KAØDOE, I read July’s “Presstop” (page 6) with horror and disgust. The present-day attitude of rewarding hams for doing absolutely nothing will be the biggest reason for the ultimate death of the hobby.

Why are une earned extensions of band privileges the only thing that can help encourage these operators? Aren’t there myriad challenges available to try the patience and ingenuity of any class of Amateur today? Will more “entertaining” modes give us any “more to encourage us to seek out our full potential as operators?”

At the beginning of World War II, Amateur Radio operators provided a highly proficient cadre of electronics technicians and skilled instructors to the United States. Let me propose a calamity today. What functions could a group of Amateurs provide whose only claim to technical skill is the ability to box up their equipment and get it to the United Parcel Service?

I was granted a Class B license in 1947 and, one year later, passed the Class A examination. Can I now cry out that I have been a good and faithful ham for 38 years, so I deserve an Extra Class license? Hell, no! I must get my old brain in gear and hit the books and suffer my way back to 20 words per minute. That is one of the basic challenges of Amateur Radio. The frightening thing about “glorified CB operators” is not only the terrible operating practices that a lot of them demonstrate, but the “something for nothing” syndrome that fosters these practices.

If a soldier received the Purple Heart for falling off the back of a 6x6 when he was drunk, it would degrade the sacrifice of all the others who proudly wear that decoration. The time and effort spent to upgrade a license is vital to the spirit of Amateur Radio. With it comes the understanding of the privilege granted us to use certain parts of the radio spectrum. And with that understanding comes the resolve to operate legally and properly.

I raised my children to realize that they were due only what they were willing to expend their time and effort to gain. There is, and certainly should be, no free lunch. In like manner, I do not condone any une earned privileges for any Amateur Radio operator.

Joe Weite, KH6GDR
Makakilo, Hawaii

short circuit

75-meter transceiver

The PC board art shown in K1BQT’s article, “A Compact 75-meter Monoband Transceiver” (November, 1985, page 13) is incorrectly sized. For a complete, corrected set of board art suitable for reproduction, send a stamped, self-addressed No. 10 (business-sized) envelope to ham radio, Greenville, New Hampshire 03048.
MFJ's Best 300 Watt Tuner Now Gives You a Cross-Needle Meter That Reads SWR, Forward and Reflected Power — All at a Glance!

You get quality conveniences and a clutter-free shack at a super price. A new cross-needle SWR/Wattmeter gives you SWR, forward and reflected power — all at a single glance. SWR is automatically computed with no controls to set between 300 and 3000 watt scales! A 2 color lighted meter (needs 12 V). A handsome new black brushed aluminum cabinet matches all the new rigs. Its compact size (10 x 3 x 7 inches) takes only a little room.

You can run full transceiver power output — up to 300 watts RF output — and match coax, balanced lines or random wires from 1.8 thru 30 MHz. Use it to tune out SWR on dipoles, verticals, dipoles, verticals, whips, beams and guyed towers. A 300 watt 50 ohm dummy load gives you quick tune ups and a versatile six position antenna switch lets you select 2 coax lines (direct or thru tuner), random wire or balanced line and dummy load.

Order your convenience package now and enjoy.

MFJ-949C

$149.95

MFJ's best 300 watt tuner is now even better! The MFJ-949C all-in-one Deluxe Versa Tuner II gives you a tuner, cross-needle SWR/Wattmeter, dummy load, antenna switch and balun in a new compact cabinet.

SUPER KEYBOARD

MFJ-496

$169.95

Price slashed 50% to $169.95! Get a full feature Super Keyboard that sends CW/RTTY/ASCII for the price of a good memory keyer.

You get the convenience of a dedicated keyboard — no program to load — no interface to connect — just turn it on and it's ready to use.

This 5 mode Super Keyboard lets you send CW, Balodot, ASCII, use it as a memory keyer and for Morse Code practice. You get text buffer, programmable and automatic message memories, error detection, buffer preload, buffer hold. A 256 character keyboard buffer gives you perfect CW even if you "hunt and peck". A meter reads CW speed and buffer remaining. 4 message memories let you store up to 256 characters. 4 preprogrammed messages let you send CO CO DE, CO TEST DE, DE QRA. Has speed weight, tone and volume pots that remembers their settings even after power is turned off. Send 50 WPM Balodot and 100 baud ASCII.

You can use it as a deluxe full feature memory keyer that has automatic and programmable memories, lamping operation, dot-dash memories. Has random and pseudo random code generator. Automatic serial number, message repeating, tune switch, for RF, VHF or 12 VDC or 110 VAC with MFJ-1312, $9.95. 12 x 7 x 31/4 inches.

CROSS-NEEDLE SWR/WATT METER

MFJ-815

$59.95

MFJ's cross-needle SWR/Wattmeter gives you SWR, forward and reflected power — all at a single glance! SWR is automatically computed — no controls to adjust. Easy-to-use push buttons select three power ranges that give you QRP to full legal limit power readings. Reads 20/200/2000 W forward, 5/50/500 W reflected and 1.1 to 1.5 SWR on easy-to-read two color scale. Lighted meter. Needs 12 V +10% full scale accuracy, 61/2 x 31/4 x 41/4 inches.

2 KW COAX SWITCHES

MFJ-1702

$29.95

MFJ-1701

$19.95

Instantly select any antenna or rig by turning a knob. Organizes coax cables and eliminates plugging and unplugging. Unused terminals are grounded to protect your equipment for stray RF, static and lighting. 2 KW PEI, 1 KW CW. For 50 to 75 ohm. Negligible loss, SWR, and crossstalk gives high performance. SO-239s. Convenient desk or wall mounting. MFJ-1702, $19.95. 2 positions. Cast aluminum cavity construction gives excellent performance. Up to 500 MHz. SWR below 1.2 to 1.5. MFJ-1701, $29.95. 6 positions. White matte surface for recording antenna positions. 81/2 x 11 x 31/4 inches.

ANTENNA CURRENT PROBE

MFJ-206

$79.95

This new breakthrough MFJ Antenna Current Probe lets you monitor RF antenna currents — no connections needed! Determine current distribution, RF radiation pattern and polarization of antennas, transmission lines, ground leads, building wiring. MFJ-206 is ideal for test equipment. MFJ-205, $79.95. 12 x 7 x 31/4 inches.

DIGITAL SWR/WATTMETER

MFJ-818

$89.95

Fully automatic digital SWR/Wattmeter reads SWR 1:1 to 19.8 directly and instantaneously — no SWR knob to set. Huge 0.6 inch bright orange digits make across-the-room reading easy. 12 segment LED bar graph wattmeter gives instantaneous PEP readings up to 200 watt RF output. Good, bad, mismatched tri-color LEDs indicate SWR conditions. Small size (51/4 x 4 x 11/2 in.) and easy-to-read digital display makes it ideal for mobile use. MFJ-818, $89.95. 12 x 7 x 31/4 inches.

MOBILE ANTENNA MATCHER

MFJ-910

$19.95

Lower your SWR and get more power into your mobile whip for solid signals and more QSOs.

Your solid state rig puts out more power and generates less heat. For 10-meter whip. Easy plug-in installation. Complete instructions on how best to lower SWR. MFJ-910, $19.95. 12 x 7 x 31/4 inches.

TRIPLE OUTPUT LAB POWER SUPPLY

MFJ-4002

$149.95

Triple output lab quality power supply gives you plenty of voltage and current for all your analog and digital circuits. You get 3 completely isolated outputs: 2 variable 1.5-20 VDC at 0.5 amp and a fixed 5 VDC at 1 amp. Connect in series or parallel for higher voltage and current. Its short circuit protected, has excellent line (typically 0.01%) and load regulation (typically 0.1%). A 0.6 inch precision meters monitor voltage and current simultaneously. It's ruggedly built so you'll get many years of trouble free service. 12 x 3 x 6 inches. 110 VAC with safety ground.

To order or for your nearest dealer, call toll-free

800-647-1800

Call 601-323-5869 in Miss. and outside continental USA Telex 53-4590 MFJ STKV

More Details? CHECK — OFF Page 134

Order any product from MFJ and try it — no obligation. If not satisfied, return within 30 days for prompt refund (less shipping).

• One year unconditional guarantee — Made in USA
• Free $5.00 each shipping/handling — Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC

Box 494, Mississippi State, MS 33762

December 1985
THE VERY BEST DEAL ON EVERY COUNT!

THOUSANDS OF SATISFIED CUSTOMERS WORLDWIDE

HAM RADIO OUTLET

ALL MAJOR BRANDS IN STOCK

KENWOOD HAND-HELDS
TR-2600A Deserves its
well-earned reputation
as the leading HT
TH-21AT/41AT
COMPACT!
Only 2 4/"W, 4 1/2"H, 11/"D
Outstanding performers
in an ideal package size
CALL FOR PRICE

ICOM IC-27A
SUPER-COMPACT
2 METER MOBILE

FREE SHIPMENT
MOST ITEMS, U.P.S. SURFACE.

ICOM IC-27H HIGH POWER VERSION
AND IC-37A, 220MHz
IC-47A, 70CM
SAVE!

CALL FOR LOW, LOW PRICE

THE VERY BEST DEAL ON EVERY COUNT!

YAESU FT-757GX

FT-2700H
NEW!
2M/70CM
TRANSCEIVER

FT-209RH
CALL FOR GREAT PRICES

FT-726R

KENWOOD TS-940S
TOP-OF-THE-LINE HF TRANSCEIVER
PAY REGULAR PRICE $1790.95
CALL FOR YOUR LOW, LOW PRICE

W-51 $899
51' CRANK-UP 9 SQ'

ELH 23D 2 MTR
30 W

CALL FOR PRICE

SAVE!

TOP-OF-THE-LINE HF TRANSCEIVER
PAY REGULAR PRICE $1790.95
CALL FOR YOUR LOW, LOW PRICE

Free UPS Surface
ALL MAJOR BRANDS IN STOCK

ICOM IC-R71A
Superior Grade General Coverage Receiver
Regular $799
SALE! $629.95
$599.95

ICOM IC-37A
220 MHz's Best Buy!
Regular $449
SALE! $299.95
Limited Quantities This Price.

TOLL-FREE PHONE
Including Alaska and Hawaii

ICOM IC-735
The Latest In Icom's Long Line of HF Transceivers
Call For Low, Low Price

ICOM HAND-HELD
IC-02AT IC-2AT IC-3AT
IC-04AT IC-4AT
At Great Low
Low Prices

FREE SHIPMENT
Most items. U.P.S. surface.

6 STORE BUYING POWER!

800-854-6046
Toll Free Phone Including Alaska and Hawaii

PERSONALIZED SERVICE
Bob Ferriero, Mgr.
President
Jim Raftery, Mgr.
Sales/Service
George Williams, Salesperson
Don Watts, Salesperson
Bob, Ken, Phone
Mike, Steve, Sales
and other active owners to serve you.

ANAHEIM, CA 92801
2620 W. La Palma,
(714) 761-3013, (213) 860-2040,
Between Disneyland & Knott's Berry Farm

BURLINGAME, CA 94010
990 Howard Ave.,
(415) 342-5757.
5 miles south on 101 from San Fran. Airport.

OAKLAND, CA 94609
2811 Telegraph Ave.,
(415) 451-5757,
Highway 24 Downtown. Left 27th off-ramp.

PHOENIX, AZ 85015
1702 W. Camelback Road,
(602) 242-3515,
East of Highway 17.

SAN DIEGO, CA 92123
5375 Kearny Villa Road,
(619) 560-4900,
Highway 163 and Clairemont Mesa Blvd.

SAN JUAN, CA 91401
6265 Sepulveda Blvd.,
(818) 988-2212
San Diego Freeway at Victory Boulevard.
Kantronics out "SMARTS" the competition

Presenting three intelligent, versatile, compatible terminal units.

“SMART” means an internal microprocessor is used to improve performance and add versatility. The "Smart" Kantronics TU's can transmit and receive CW/RTTY/ASCII/AMTOR or Packet when combined with your computer and transceiver.

Any computer with a serial RS232 or TTL port can connect directly to a Kantronics TU. A simple terminal program, like one used with a telephone modem, is the only additional program required. Kantronics currently offers Pac-term and UTU Terminal Programs for IBM, Kaypro, Commodore 64, VIC 20, and TRS-80 Models III, IV, and IVP. Disk version $19.95. Cartridge $24.95.

UTU The Universal Terminal unit (UTU) is the original "Smart" amateur TU. CW, RTTY, ASCII, and AMTOR can all be worked with this single unit. Switched capacitance filters and LED display tuning make using the UTU easy for even the Novice. 12 Vdc 300mv power supply required. Suggested retail $199.95.

UTU-XT The UTU-XT is an enhanced version of the UTU. Programmable baud rates, tone frequencies, and tone shifts give special versatility. Automatic Gain Control and Threshold Correction circuits greatly enhance sensitivity and selectivity. A RTTY signal detect circuit mutes copy with no carrier, and the CW filter center frequency and bandwidth are programmable. Power supply is provided. Suggested retail $359.95.

Packet Communicator Kantronics joined the Packet Radio revolution with the Packet Communicator. The unit is an AX.25/Vancouver compatible TNC with features not found in other units, including Direct TTL connection for easy hookup to the VIC-20 and Commodore 64. With our onboard modem you can select either Bell 202 or 103 tones for VHF/UHF or HF work. Power supply is provided. Suggested retail $219.00.

For more information contact your local Kantronics dealer or write:
spread spectrum and digital communication techniques:
a primer

Ever since the inception of Amateur Radio, hams have kept abreast of the latest and most innovative methods of communication. From the advent of spark-gap radiotelegraphy, to the early FM transmitters, through the 2nd World War — when hams played an important part in concocting the first reliable pulse radar systems — to RTTY, SSTV, SSB, satellite communications, and packet radio, Amateurs have been ardent users of new and fascinating modulation methods.

In recent years there has been interest in a relatively new type of communication technique. While the foundation for this communication method was laid with the advent of ranging radar, it has only been in the past 10 to 15 years that it has received so much attention from both the military and the private sector. This technique, known as spread spectrum (SS) is unlike any communication method previously tried by Amateurs. However, judging by our track record, it would seem that it's only a matter of time before we familiarize ourselves with it.

The purpose of this article is to provide an overview of spread spectrum communications for those not familiar with it. While the topic is much too broad to be fully discussed here, the major concepts will be highlighted in a manner that can, I hope, be understood by those with little math background. As well as the concepts governing spread spectrum and digital communications, typical station hardware requirements will also be addressed.

why spread spectrum?

One might wonder how and why spread spectrum evolved, and how it could be applicable to the Amateur Radio bands. To address the first query, it is necessary to consider the problems associated with military communications during World War II. At the time, jamming and antijamming techniques were the order of the day. By 1945 every Allied Bomber plane was equipped with two jamming transmitters, while it is estimated that as many as 90 percent of all electrical engineers in Germany were involved in an antijamming program of gargantuan proportion.1

To combat the effects of jamming, spread spectrum was used to spread the signal out, thereby rendering narrow band jammers virtually ineffective. In addition, the fact that spread spectrum could be used with a low probability of intercept (LPI) made this an ideal method of communicating while appearing "radio silent" to conventional receivers.

Today the quest for a signal that cannot be jammed continues in military circles; commercial applications, such as banking and private mail systems, require security. As jamming and intercept capabilities become more sophisticated, methods of communicating become increasingly complex. Spread spectrum continues to evolve into a highly complicated mode of communication. Those fascinated with the history of radio would find the accounts of the development of spread spectrum to be very exciting reading. Several excellent accounts are listed in the references.1,2,3

The above-mentioned attributes hardly seem appropriate for Amateur Radio! The FCC rules prohibit any kind of coded or secure communications, and intentional jamming is a problem we would ideally never

By Ted S. Rappaport, N9NB, Box 283, Electrical Engineering, Purdue University, West Lafayette, Indiana 47907
have to deal with. There are several other benefits, however, that might be of use to us in the future as the Amateur Radio spectrum becomes saturated with users. In fact, a look at why mobile telephone companies are considering SS sheds some light on some of the possible rewards.

In metropolitan areas, where there are many mobile telephone users in a small area, cellular radio has been introduced to alleviate the congestion in the mobile telephone spectrum. In a cellular radio system, as the term suggests, the city is broken into "cells," with each cell having its own multichannel repeater capable of handling a limited number of users within the cell. As the user travels into an adjacent cell, the adjacent repeater takes over the communication. The cellular technique has been used to increase the maximum number of mobile telephone and commercial radio users from several hundred to several thousand in many cities across the country. Of special interest to the industry is the fact that compared to conventional narrow band modulation techniques, SS has the capability of supporting a larger number of users for a given cell size.

Other advantages that SS offers to both the military and the mobile communication industry include selective addressing capability, code division multiplexing, and interference and multi-path rejection. With SS, it is possible for a transmitter to selectively communicate to one or several receivers while remaining oblivious to other users. Also, several stations may use the same band of frequencies simultaneously without interfering with one another. Since SS signals have very wide bandwidths, conventional narrow band users may also use the same spectrum without adversely affecting the SS communication. Conversely, the average power of a SS signal in any narrow band region is small, so the narrow band modulation is not severely QRM’ed, either.

As will be demonstrated shortly, SS requires more complex hardware than does conventional narrow band equipment; as the spectrum stands today, its use in Amateur Radio is probably not currently warranted. However, with increased HF and VHF/UHF activity, it is conceivable that we may eventually need a drastically different approach to communications. Progress has recently been made by hams in such areas as coherent CW and packet communications. The inevitable thrust toward digital communications makes SS appear to be a likely modulation method in the future.

overview of spread spectrum

Figure 1 illustrates the bandwidth of an SSB speech signal compared to a typical spread spectrum signal. As its name implies, spread spectrum is a modulation method whereby the energy of the transmitted signal is spread out over a very wide bandwidth. This is quite unlike SSB or narrow band FM (NBFM), where the transmitter output has a bandwidth on the order of that of the modulating signal (the usable audio bandwidth for speech is about 3 kHz). However, wide band FM (WBFM) transmitters have bandwidths that are many times greater than that of the modulation. Clearly, though, WBFM is not spread spectrum! This is where the second important distinction between spread spectrum and conventional modulation methods must be made.

A spread spectrum communication system uses a
special generated wide band signal that is independent of the message modulation. At the transmitter end, the message modulation (a voice signal) may be multiplied by this independently generated signal, and the resulting mix then transmitted on a carrier. This is known as Direct Sequence Spread Spectrum (DS). Another type of SS, known as Frequency Hopping Spread Spectrum (FH), can be generated by using the independently generated signal to cause the carrier signal to frequency hop in a prescribed manner.

It is the independent signal that determines the amount of bandwidth spreading at the transmitter output. It also determines the immunity the SS signal has to narrow band interference. This independent signal is always digital, and is generated by digital logic devices (such as TTL). The term pseudo noise code (PN) is used to describe this independent signal since to an uninformed observer the PN code looks like a random jumble of 1s and 0s. Actually, though, the PN code is a periodic sequence that can be easily gener-

![Diagram](image-url)

fig. 2. Spread spectrum transmitter/receiver block diagrams: (A) direct sequence (DS) transmitter and receiver, (B) frequency hopping (FH) transmitter and receiver.
ated by a sequence of shift registers. In order to recover the original message, the receiver must be able to reconstruct the same PN code used by the transmitter. When the transmitter and receiving encoding signals are identical, and when they are synchronized in time, then the message is detected.

Figure 2 illustrates block diagrams of spread spectrum transmitter and receiver pairs for both the DS and FH case. A more detailed look at the generation of the PN code is considered subsequently. However, before delving into the details of SS, it is first necessary to become familiar with some basic concepts of digital communications.

digital communication concepts

Because the encoding signal is digital, spread spectrum can be considered to be a special form of digital communications. Unlike SSB, AM and FM, which are analog, continuous time communication methods, digital communication systems work on the principle of the sampling theorem.

The sampling theorem, developed by Nyquist in 1924, states that a continuous time signal may be represented by a sequence of discrete time snapshots, or samples, without any loss of information in the signal, provided that the samples are taken at a rate which is at least twice as great as the highest frequency component of the original continuous time signal. A basic relationship which relates the sampling frequency \(f_s \) to the time duration between successive samples \(T_s \) is

\[
 f_s = \frac{1}{T_s}
\]

(1)

Figure 3A shows the components of a typical sampling system. Figure 3B illustrates a typical speech signal that has been band limited to have a peak frequency component of 4 kHz. The action of the sampler is shown in fig. 3C. Figure 3D illustrates the output of a sampler that is taking samples at a rate of 8000 samples per second (twice the rate of the highest message component). Figure 3E shows the recreated message waveform after the samples are placed through a low-pass filter having a cutoff of 4 kHz.

In order to lay a foundation for the analysis and understanding of SS, it is instructive to look at the sampling theorem from a different point of view. In the early 1800's, Fourier, a famous mathematician, observed that most functions could be represented by a summation of sinusoids having different amplitudes and periods. In short, he laid the groundwork for the development of the celebrated Fourier transform. This transformation allows one to analyze a signal in the frequency domain rather than in the time domain.

Frequency domain analysis can directly give information pertaining to the bandwidth of a signal. Tables such as table 1 have been compiled which lists the Fourier transforms of many common signal shapes. By analyzing the sampling circuit of fig. 3A in the frequency domain, we can better explain how and why the sampling theorem holds.

From table 1, the Fourier transform of an impulse sampler is an impulse train in the frequency domain. Note that in the time domain (fig. 3C), the sampling action is effectively multiplying the input signal by a "1" at each sampling instant, and multiplying by "0" in the interval between samples. Just as time signals have Fourier transforms, so do time operations such as addition and multiplication. The Fourier transform of a time multiplication is known as frequency convolution. Convolution is a fundamental concept in control
Have you been trawling the bounding main for a new product? We have just netted it—the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $595.00. The TP-38 is packed like a can of sardines with features; as a matter of fact the only additional option is a DTMF module for $59.95. This module allows complete offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.

Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to faling, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.
The AEA Model CP-1 Computer Patch has earned a solid reputation for being the best overall interface value on the market today. We at AEA have now reaffirmed what our competitors already know; for the money, the CP-1 cannot be beat! That is why we have chosen to leave the popular CP-1 in our product line and to introduce new computer interface/terminal units with differing features and performance at different prices.

The new AEA model MP-1 Micropatch represents the best features and performance available for under $140.00. Featuring true dual-channel filtering of Mark and Space tones with an AM detector and Automatic Threshold Correction (ATC) circuit, the MP-1 is in a totally different performance class than competitive units that often have only a single channel filter or no filtering at all.

The MP-1 also offers a high performance CW capability. With respect to the CP-1, overall performance is nearly as good; but the CP-1 offers a few more advanced features such as variable shift tuning, RS-232 option, and a more advanced tuning indicator.

The new CP-100 Computer Patch offers all the following exciting features in addition to the CP-1 features:
- 170, 425, 850 Hz Calibrated Shifts for Transmit and Receive
- 75 to 1000 Hz Variable Receive Shift Range
- Normal and Reverse FSK Outputs
- Input AGC
- Direct Coupled Automatic Threshold Control
- Front Panel Squelch
- Discriminator Style Tuning Indicator
- Current Loop Option
- Built-in Monitor Speaker
- Baud Rate Switch
- Improved AM Detector

Brings you the Breakthrough!
and communication theory, and is used to express the output of a system or filter in terms of the input signal and the system impulse response, (i.e., the response of the system to a sudden input signal). For this discussion, it is necessary to know only that the convolution of a band-limited spectrum (fig. 4A) with a frequency pulse train (fig. 4B) yields the original message spectrum replicated at each of the pulse train harmonics. Hence, by frequency domain techniques, we find that the output of an ideal sampler is the original message spectrum replicated throughout the entire frequency domain and separated by integer multiples of the sampling frequency (fig. 4C). By low-pass filtering the sampler output, we can recreate the original message exactly (fig. 4D). By the same token, we could bandpass filter the output of the sampler and also recreate the message, although this is not usually done.

If the highest frequency of the input message exceeds one half of the sampling rate, then an undesirable effect known as *aliasing* occurs. As can be seen in fig. 4E, each adjacent message spectrum overlaps so that the LPF output is not the original message, but rather a distorted signal. With frequency domain analysis, it becomes clear why the sampling frequency must be at least twice that of the peak frequency component of the input.

Before moving on, it should be noted that this quick look at the sampling theorem assumes an “ideal” sampler — one for which the sample durations are infinitely small. In reality, the sample durations are small, but finite. Taking this into account yields similar, but slightly more complicated, results. Figure 5 illustrates the spectrum of the output of a typical “real world” sampler. As the sample widths become wider, there is less energy at the higher frequencies. This is why the sampler is followed by a low-pass filter rather than a band pass filter. Also neglected here are some amplitude scaling factors that are involved in transforming between the time domain and frequency domain.
These subtleties are required in exact problem solving, but are not important in gaining a good understanding of the sampling theorem. Those interested in the finer details of the sampling theorem and Fourier transform techniques might find the references helpful.11,12,13,14,15

data communication

Certain digital communication systems such as RTTY and packet radio, where the message text is originated by a keyboard rather than continuous-time speech, are known as data communication. In this case the sampling theorem does not apply, since there is no continuous time signal to sample. However, the data rate (the rate at which information can be sent) is a function of the number of bits used to represent each character, and is also a function of the time duration of each bit.

For example, the American Standard Code for Information Interchange (ASCII) prescribes that each keyboard character be represented by a unique 7-bit data word. The letter i, for example, is represented by the binary word 1101001. If each bit has a time duration of 1 millisecond, then any character may be sent down a channel in a time of 7 ms. If a start bit, a stop bit, and a parity bit are sent along with the data, then one character can be sent every 10 ms. The data rate for this set-up would be 1000 bits per second (bps), or 100 characters per second.* Data communications of this type are termed “asynchronous” since the receiver never knows when the sender will depress the keyboard. The start bit and stop bit are the necessary overhead to identify each of the keyboard entries. The parity bit is used to validate the received data. Figure 6 illustrates a complete asynchronous character word for the letter i.

There is a trade-off between bit rate and occupied bandwidth of a digital signal. A good rough estimate is that the required bandwidth of a digital signal is equal to the reciprocal of the bit duration. For the previous example, the required bandwidth would be

\[
BW = \frac{1}{t_{bit}} \times \frac{1}{0.001 s} = 1000 \text{ Hz}
\]

For a faster data rate, more bandwidth is required. In a band-limited channel, such as a commercial telephone line, there is an upper limit on the bit rate. This is why home computer modems seldom exceed a data rate of 1200 bps.16 While spread spectrum is well suited for either voice or data messages, the remainder of this article will consider only a voice message. Once the voice is “digitized,” it is sent through the channel in the same manner as data.

*In digital communications the bit rate is the same as the baud rate, so for this example the data rate is equivalently 1000 baud.

quantization

From the sampling theorem, we know that it is necessary to send only the voltage values of the samples rather than the continuous time signal. If the sample values could be represented in a digital fashion, then we could take advantage of schemes that have been developed expressly for digital communication. In short, digital communications systems are able to outperform analog methods because signal reception is based on distinguishing whether a “0” or a “1” was sent, rather than trying to recreate a random continuous time waveform directly. Schemes such as error correction coding and minimum probability of error receivers can be used to provide far superior performance when compared to analog communication techniques.

To represent the height of a sample value digitally, it is necessary to quantize the sample. For binary data (standard digital logic), the quantizing action truncates the actual sample value so that each sample is represented by a fixed number of bits (i.e., every sample is expressed by N bits) in the time between successive samples. Since it is conceivable that the samples can take on a continuum of values, there is some error introduced by the quantizer. However, if a limiter is used (to contain the voice signal voltage within the limits of the quantizer) and if there is a sufficient number of levels in the quantizer, then this error, known as quantization noise, is quite small.

The quantizer is an important concept in digital communications. The resolution, or the accuracy in which a sample can be represented, is directly related to the N, the number of bits used to represent each sample. For N bits, there are \(2^N\) quantizer levels (sometimes called bins).

An example is useful to clarify how speech can be quantized and sent down a channel as a digital bit stream. Figure 7 demonstrates how the sample values are assigned data words in a three-bit quantizer (\(N = 3\)). As indicated in fig. 7, there is some error introduced because of the fact that each sample is represented by only a three-bit word. By using more bits, each sample can be more accurately represented. Surprisingly, though, even with only three bits of quantization, intelligible speech can be transmitted.17 Once assigned a quantization data word, the truncated sample is converted into 1s and 0s and sent down the channel. The output of the quantizer is known as pulse code modulation, since the message has been coded into a train of digital pulses. Since N bits must be sent in the time between adjacent samples, the bit duration of the quantized data is

\[
T_{bit} = \frac{T_s}{N}
\]
fig. 4. Digital sampling — frequency domain analysis: (A) spectrum of speech signal ($f_{\text{max}} = 4$ kHz), (B) spectrum of sampler action, (C) output of sampler, (D) output of recreated message spectrum, and (E) aliasing example, $f_s = 8$ kHz and $f_{\text{max}} = 5$ kHz.

fig. 5. Spectrum of output for non-ideal sampling.
where T_s is the time between adjacent samples. Since

$$T_s = \frac{1}{f_s} \quad (2B)$$

each quantizer bit duration is given by

$$T_{bit} = \frac{1}{Nf_s} \quad (2C)$$

Hence, the bandwidth is given by

$$BW = Nf_s \quad (2D)$$

A practical method of sampling and quantizing is to use a sample and hold circuit followed by an analog-to-digital (A/D) converter. The sample and hold is similar to the ideal sampler, except the sample height is held for the entire time duration between samples, and is updated at each new sampling instant. While the sample value is held at a constant level, it is converted into a digital signal by the A/D converter. The end result is identical to that of fig. 7.

To recreate the message, the digital bit stream is clocked into a digital-to-analog (D/A) converter. This undoes the effect of quantizing which the A/D had upon the original message samples. The D/A output is then low-pass filtered to transform the reconstructed samples into the original message.

spread spectrum systems

There are many types of spread spectrum systems. These include direct sequence (DS), frequency hopping (FH), time hopping (TH), chirp, and hybrid systems which combine several techniques at once. Only DS and FH are considered here, since these seem to be most easily implemented. Common to both of these types of SS systems is the need to generate and reconstruct a PN (pseudonoise) code.

To produce the DS spread spectrum signal, a PN code signal must be produced that has a bit rate (bandwidth) much greater than that of the quantized message. For FH spread spectrum, it is not so much the bit rate that matters as does the number of bits used in a complete cycle of the PN code.

The PN code can be generated by a feedback arrangement of flip-flop stages. A flip-flop is a digital device which can store a binary value (either a 0 or a 1). Flip-flops can be connected in series to form shift registers. As the term implies, shift registers store several binary digits and shift them to the left or right each time an external clock pulse is received.

The simplest PN codes (there are several types) are known as maximal linear codes, or m-sequences. These are produced by m-stage shift registers which use feedback to produce periodic codes that have N bits before recycling. For an m-stage shift register, there are N = 2m-1 bits in each period. **Figure 8** illustrates a three-stage shift register. All three flip-flops of the shift register are clocked to the right simultaneously, and each time a clock pulse appears, a new binary digit appears at the output. **Table 2** indicates the value held by each flip-flop for a given time inter-

fig. 6. ASCII 10-bit asynchronous data character for the letter i.

fig. 7. A three-bit word used to quantize sampled data.
Model PK1-L

- LOW 25 mA Current drain.
- Designed for portable or solar-powered stations.
- Miniature size—Lightweight
- Rugged all metal, shielded enclosure.
- On-board Lithium Battery RAM backup.
- On-board watchdog for reliability.
- Standard DB-25 Connectors.
- Output signal indicates "Connected" Status.
- Does not require squelched audio.
- Comes with 8K of RAM.
- Remote Command Mode for Unattended operation.
- Hardware command lockout for security.
- Commands compatible with our Model PK1.
- Retains all other features of the Model PK1.
- Extra I/O lines for special applications.

Power requirement:
9 to 15 Volts DC @ 25 mA typical

Dimensions:
4.6 X 5.90 X 1.0 inches

Total Weight:
12 ozs.

PKI-L—Wired and Tested
List— $239.95
Amateur net— $209.95

GLB MODEL TNC-2A KIT

Just when you thought TAPR TNC-2 Kits were a thing of the past, GLB — the first commercial producer of Packet Controllers — Joins the "TAPR Revolution" at last!

GLB is now the exclusive supplier of TNC-2 Kits.

Hardware
Software
Documentation
by TAPR

GLB Model TNC-2A Kit

COMPLETE KIT ONLY
$169.95
+ shipping

Contact GLB for information on our full line of Packet Controllers

151 Commerce Pkwy.,
Buffalo, NY 14224
716-675-6740 9 to 4
val. Figure 9 shows the digital signal that would be produced by a standard TTL circuit.

To avoid confusion between the PN code and the actual message bit stream, the term chip is used to describe each bit of a PN code. For a chip duration of t_1 seconds, the periodic PN sequence repeats itself every Nt_1 seconds. For the example shown in fig. 9, the same chip value would be seen every $7t_1$ seconds apart.

By changing shift register feedback paths, it is possible to generate many unique m-sequence codes, each having a period of N chips. The number of possible codes is important since it defines the maximum number of users that can be uniquely addressed, assuming that each user has the same length shift register. The exact number of unique codes is dependent upon the number of shift register stages and the possible feedback paths. In general, the longer the shift register, the more unique codes exist. However, as can be noted in table 3, when the shift registers consist of a prime number of stages, there is a maximum of codes for a minimum of hardware.

Modular Shift Register Generators (MSRGs) such as the MC8504 are available for easy PN code generation. The MC8504 is a 16-pin chip that features four stages of an expandable shift register. They may be cascaded, and additional flip-flops (such as a 7474) may be added to implement an arbitrarily long m-sequence. A nine-stage MSRG capable of producing 48 selectable 511 chip codes is shown in fig. 10.

Direct sequence (DS) spread spectrum. As shown in fig. 2A, the PN code is added with the digitized message (usually PCM) to produce a digital signal that can be readily modulated. If one of the adding signals is wide band, then the resulting adder output signal is also wide band. Since the PCM has a bandwidth on the order of the original message, it is necessary to use a PN code which has a bandwidth several orders of magnitude larger than the message bandwidth in order to obtain large bandwidth spreading. For this reason, the chip rate is typically run at speeds of several Megachips per second (Mcps).

The output of the binary adder is fed into a balanced modulator. This modulator produces a particular carrier phase for a logic “1” and a 180-degree shifted carrier for a logic “0.” Hot-carrier diodes are used in conjunction with wide band transformers to produce the final RF signal. Figure 11 illustrates a double-balanced mixer, which is the most commonly used type of balanced modulator. The balanced modulator input and output signals are shown in fig. 12. While the output waveform appears simple in the time domain, frequency domain analysis reveals that there is a wide band of frequency components centered around the nominal carrier frequency.

In a DS-SS receiver, just as with any RF receiver, it is first necessary to bring the modulation down to baseband. This is accomplished by mixing the received signal with a local oscillator that is adjusted to the transmitter’s frequency. Then, the coded signal must be matched with an internally generated PN code. This is accomplished by binary addition. If the internal PN code generator is not correlated with the incoming signal, the resulting adder output is called code noise. However, when the internal code is synchronized with the incoming signal, the output of the binary adder collapses to the original digital message bit stream. A manual tuning dial can be used to adjust the phase of the code generator until synchronization is obtained. Better yet, a microprocessor can be used to automatically adjust the receiver PN code phase. Once synchronized, the demodulation may be accomplished by using a D/A converter followed by a low pass filter.
Since the receiver uses an internal clock signal for code reconstruction, the low pass filter could be of the switched capacitor variety.

It is important to note several points of practical interest. Obviously, the receiver must tune to the sender's transmitting frequency in order to establish the possibility of communication. This suggests that calling frequencies would be advisable for the first Amateur attempts at DS-SS communication. Furthermore, a standard shift register length (or a few agreed upon lengths) seems mandatory, since the senders and receivers must be able to match each other’s PN code. A fixed chip duration is necessary, too, so that all stations would be ensured that they could synchronize with the other users.

Before leaving DS-SS, a word should be said about PN code length. In military applications, where security is an important consideration, it is not uncommon to find PN coding schemes which use shift register stages of length 40 or greater. If each chip duration is 1 microsecond, then one cycle of an \(m = 40 \) PN code is completed in a time of

\[
(2^{40} - 1) \text{ chips} \times \frac{10^{-6} \text{ sec}}{\text{chip}} = 1.1 \times 10^6 \text{ sec} = 12.7 \text{ days}
\]

Even if an interceptor listened in on this signal for several hours, it would appear to be a random jumble of binary digits. For long codes such as this, it takes a very long time to synchronize the receiver. On the other hand, if a shorter PN code is used (say, \(m = 13 \)), then the entire code sequence is repeated every 8.3 milliseconds! A code having such a short period can be synchronized quite quickly at the receiver end.

Frequency hopping (FH) spread spectrum. In a FH-SS system (fig. 2B) there is a narrow band transmission occurring at any given time instant. However, there is a wide range of frequencies from which the transmitter may select. The particular frequency selected for use at any given moment is determined jointly by the digitized message bit stream and the PN code generator.

The message bit stream is used as the least significant bit (LSB) of an M bit data word. The PN code generator supplies the other M-1 bits. The data word is then used to determine the additive offset required to generate the proper frequency. Frequency hopping takes place over \(N = 2^M \) frequencies separated by integer multiples of \(f_1 \), where \(f_1 \) is the gap between adjacent hop frequencies. The repetition rate of the frequency hopping sequence is determined by the number of stages in the PN code generator and by the speed of the chip clock. Since the generator supplies M-1 chips for each hop, the frequency hop sequence repeats every

\[
\frac{(2^m \text{ stages} - 1)}{(M-1)} \text{ hops}
\]
Table 4. Indirect frequency synthesizer ICs and their characteristics.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Number of frequencies</th>
<th>Reference frequency</th>
<th>Maximum divider input frequency</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hughes HCTR0347</td>
<td>45</td>
<td>50 Hz-500 kHz</td>
<td>10 MHz</td>
<td>8 bits parallel</td>
</tr>
<tr>
<td>Nitron 6410</td>
<td>100</td>
<td>4.00 MHz</td>
<td>1.6 MHz</td>
<td>8 bits parallel</td>
</tr>
<tr>
<td>Motorola 145104</td>
<td>256</td>
<td>10.24 MHz</td>
<td>4.0 MHz</td>
<td>8 bits parallel</td>
</tr>
<tr>
<td>National DS8906</td>
<td>16384</td>
<td>10.24 MHz</td>
<td>120 MHz</td>
<td>20 bits parallel</td>
</tr>
<tr>
<td>National MM55110</td>
<td>1024</td>
<td>10.24 MHz</td>
<td>3.0 MHz</td>
<td>10 bits parallel</td>
</tr>
<tr>
<td>Fairchild 11C84</td>
<td>128</td>
<td>10.24 MHz</td>
<td>20 MHz</td>
<td>7 bits parallel</td>
</tr>
<tr>
<td>AD-TECH FS-2574</td>
<td>1000</td>
<td>10.00 MHz</td>
<td>258 MHz</td>
<td>10 bits parallel</td>
</tr>
</tbody>
</table>

Figure 13 illustrates a typical FH transmission for the case of \(M = 3 \) and a nine-stage m-code generator using a 1-kHz chip clock.

Typical values for a suitable FH system might be \(f_1 = 500 \) kHz and \(M = 3 \) bits. For this example, the total RF bandwidth of the system would be

\[
2^3 \text{ frequencies } \times \frac{500 \text{ kHz separation}}{\text{frequency}} = 4.0 \text{ MHz}
\]

If the lowest frequency of the transmitter were 420 MHz, the highest frequency used by this system would be 424.0 MHz.

The frequency synthesizer is the key to an FH-SS system. Its operating characteristics (such as frequency range, switching speed, and hop duration) determine a system's capability. There are two major classes of synthesizers, the direct type and the indirect type. The direct frequency synthesizer uses filters and mixers and is seldom found in current Amateur gear. The indirect type uses phase-lock-loops (PLLs) to generate the desired frequency set. As a rule, indirect synthesizers are not as quick to switch frequencies, but are easier to implement.

Figure 14 shows a block diagram of an indirect frequency synthesizer. Those familiar with PLLs will immediately recognize the structure. The reference frequency, \(f_j \), is related to the output frequency, \(f_i \), by

\[
f_j = n_j \times f_i
\]

since the VCO and the feedback loop forces \(f_j/n_j \) to equal \(f_i \). As can be seen in Table 4, indirect frequency synthesizers, manufactured by several IC companies, can produce output frequencies above 100 MHz. To achieve greater frequencies, multiplier stages must be added.

The duration of a single frequency hop \((t_h) \) may be longer or shorter than the duration of a message bit. If the message bit duration is longer than \(t_h \), then the system is called a fast hop FH system since the hop rate is greater than the message bit rate. Otherwise, the system is termed slow hop FH. The advantage of a fast hop system is that if there is interference on one of the hop frequencies, the garbled message bit may still be present at the next hop frequency. For slow hop systems, error correction coding is needed since QRM on a given hop frequency could obliterate several message bits.

Reception of an FH-SS signal is achieved by synchronizing the receiver frequency with that of the transmitter's. Once synchronization occurs, the receiver output is identical to FSK, with the mark and space separated by \(f_1 \) Hz. The demodulator can consist of band pass filters which are compared to determine the value of the message bit. The actual message...
Introducing the T.I. Detective. The breakthrough you've been waiting for.

Phantom Engineering, the leader in T.I. technology, introduces the T.I. Detective™. An affordable field spectrum analyzer designed for precise T.I. analysis, filter tuning, and overall system tune-up.

The versatility of the T.I. Detective is unlike any other:
- Preliminary site surveys and field analysis of terrestrial interference.
- Fine tuning dish location.
- Proper filter selection.
- "Tweaking" dishes and aligning polar mounts.
- Tuning IF and RF notch filters.
- Diagnosis of receiver, downconverter, LNA and LNB problems.
- Checking cable loss and/or tilt in block systems.
- Pinpointing bad cable sections, splitters and amplifiers.
- Tuning receivers and programming actuators.
- Determining optimum placement of T.I. screens and fencing.

The T.I. Detective is compact in size and light weight with a rechargeable battery pack for complete portability. Easy to use and built durable with shockproof display and rugged construction to protect from bumps and shakes.

The T.I. Detective is a major breakthrough in test equipment for the TVRO industry. But the biggest breakthrough of all is the price. Under $500.

For more information about Phantom's complete line of filters and test equipment, contact your distributor or:

16840 Joleen Way E3
Morgan Hill, CA 95037
(408) 779-1616

"The Breakthrough Specialists"
Amateurs interested in experimentation.

ary authorizations are now being given to those frequencies above 420 MHz as of May, 1986. Temporarily the same manner as in the DS case. A computer shifts filter.

shorter PN code period ensures quicker acquisition of motion, frequency band allocation, and the number of... VHF/UHF transmitter through each hop. As cited in the DS case, a hop frequencies need to be developed, however.

28 future of spread spectrum

In less than six months from now, we'll have a new mode of communication unlike any other we've ever tried. With this new mode, our hobby may take a big step toward reaching state-of-the-art digital communication techniques. There's a lot of work to be done, though; defining protocols for Amateur SS will not be simple.

conclusion

The world of digital communications is a new, exciting technological field, and the future is being shaped daily by advances in this area. As Amateur operators, part of our charter is to increase the reservoir of electronics experts. While we don't have to be experts on digital communications, it's probably good for us to know the how's and why's of what is going on around us. Perhaps this article has shed some light on a subject that, as timely as it is, has not been widely discussed in the Amateur Radio literature.

For those interested in learning more about spread spectrum systems, the definitive reference is Spread Spectrum Systems, by Robert C. Dixon. Dixon's book was the first on the topic, and has recently been revised to include discussions about practical hardware considerations. Also good is a book just released: Modern Communications and Spread Spectrum by C.D. McGillem and G.R. Cooper. This book treats practically every type of modulation method and highlights some of the more important concepts of SS communication.

references

8. AMSAT Packet Conference, October 8-10, 1982.

ham radio
When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to...

...yours

...and ours.

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now it's "third wave" of innovation, thanks to its designed for the future architecture and new software releases. The 850 defines the industry standard in repeater control systems.

- Fully remotely programmable with Touch-Tone commands or computer terminal
- Front panel LCD display, or terminal based display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day of week Scheduler with 10 set-up states, 30 changeovers and events, over 100 scheduled items for hands off operation and automatic reminders
- Full or half duplex autopatch, autodial (200 numbers), emergency autodial, reverse autodial, antiscaler, toll restrict including telephone exchange tables, supports remote and multiple phone lines
- Informative remotely programmable ID's (17), tail messages (13), bulletin boards (5)
- 16 channel voice response analog metering, automatic storage of min/max values on each channel, values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable features
- Mailbox for user-to-user, and system-to-user messages
- Paging - two-tone, 5/6 tone, DTMF, CTCSS, HSC display, GSC digital display, user programmable and may be included in programmable messages (i.e. alarms)
- Logical to physical I/O mapping and internal "toolbox" for easy customizing of the controller to meet your needs and minimize external wiring
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for others when they aren't around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster™
ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with the family by handling third party traffic - its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

- Crossband linking - VHF/UHF to HF
- Telephone access to your home station
- BSR Home Control interface
- Electronic Mailbox
- ShackPatch™ intercom into the shack
- PersonalPatch™ simplex autopatch

If your repeater budget can't afford the 850, we offer the RC-85 Repeater Controller, which we like to call the "second best repeater controller in the world". It's a scaled down, simplified version of our '850, but overall, it offers more capability and higher quality than anyone elses control equipment at any price.

- Remotely programmable with Touch-Tone commands
- Over 175 word customized male speech synthesis vocabulary
- Selectable "Macro sets" for easy control operator selection
- Autopatch, autodial (200 numbers), emergency autodial, reverse patch
- Remotely programmable informative ID's (7), tail messages (3), bulletin board (2)
- Supports synthesized remote base transceiver, control receiver, alarm
- Selectable, informative courtesy tones
- Talking S-meter, Two-tone paging
- Easy hook up to any repeater

For those who like to "roll their own", we can get you off to a rolling start with our ITC-32 Intelligent Touch-Tone Control Board. Much more than just a decoder, it's a mini-control system of its own, with the basic repeater and remote base functions built-in. And it can be tailored by you with its Personality Options.

- 28 remotely controllable latched or pulsed logic outputs
- 4 alarm or remote sensor logic inputs
- Response messages to confirm command entry
- Repeater functions including COR, ID'er, timers, courtesy tone, etc.
- Remote base functions including control of synthesized transceiver

All our products are designed and manufactured with industrial grade reliability. Little things that many people don't notice, like machine contact IC sockets for all ICs, gold on gold signal connectors, high performance CMOS for minimum power drain, and transparent suppression, and the products are documented with high quality, easy to read manuals. Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

To order one of these advanced control products, call 408-749-8330 and speak with Tim or Catherine. Visa and Mastercard accepted. Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment. For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to:
Packet is the most exciting thing to hit ham radio since voice communication. It far overshadows SSB in importance, and I believe, have even more impact on Amateur Radio than the proliferation of repeaters in the early 1970s.

At its simplest, packet radio resembles radio teletype. But there are differences between the two. First, a packet message is not transmitted as it is being typed. Instead, the characters are stored in a buffer and then sent in a block at the transmission speed of the link — up to 5,600 characters per second (cps) at 220 MHz and higher frequencies, 1960 cps for 6 and 2 meters, 120 cps on 10 meters, and 30 cps for the low bands. Thus, even in a hot-and-heavy QSO, transmission duty cycle and channel utilization are low.

Second, each packet station “knows” its own call and recognizes the messages addressed to it. A number of QSOs can occur on one channel simultaneously, yet each station in the connected mode will have a screen clear of all messages other than its own contact.

Third, because of computerized error checking, you’ll see only perfect, noise-and-garble-free transmissions (note that I didn’t say “error-free”; I have a problem with my typing) unless you disable the error-checking function. And that’s just for starters!

Digital Repeaters

Packets can be repeatered. If you don’t value the friendship of your fellow repeater users, packets can be put through your local 34-94 machine, but the raucous buzz will drive the control operator, and anyone else monitoring, mad. The better method is to use a digital repeater or “digipeater.” This is a very simple device — just a regular packet station. The scheme is quite different from a voice repeater. The digipeater receives the packet signal, stores it in digital form and checks it for errors. If there are no errors, the digipeater retransmits it.

All operation is on one frequency — no duplexer is required, receiver desensitization by the accompanying transmitter cannot occur, and each packet is checked for errors at each digipeater. Unlike voice transmissions via repeaters, packet messages can be sent long distances on the VHF/UHF bands by naming a number of sequential digipeaters to form a path to the destination.

Although, at this moment, most packet activity takes place on 2 meters, there are a number of stations on both coasts operating “gateways,” low band packet stations designed for long haul message passing with collection and distribution at either end via VHF or UHF.

Packet Applications

The four main uses for packet radio at the moment appear to be the following:

- **Normal, rag-chew type QSOs.** This of course, includes the exchange of any type of traffic between two stations;
- **Direct message passing** (if the destination station is running, I can leave a message on it, without the help or intervention of the operator);
- **Packet Bulletin Board Systems (PBBSes)** similar to the telephone-accessed bulletin board/program exchanges used by computer hobbyists, and **packet mail boxes**, which are usually operated in conjunction with a PBBS. In these, a message can be left for a specific ham by call, for a group such as GLBers, or for everybody (in this case, the call entered as “ALL”). Stations operating mail boxes usually transmit the calls for which they hold traffic. Thus it is not necessary to “check into” the PBBS to know if you have mail.

Computer Bulletin Boards

It’s not necessary for your QSO to be with a real, live human. Back in the middle 1970s, several computer operators in the Chicago area set up Remote CP/M (RCP/M) computers with personal message services, bulletin boards, and facilities to exchange computer programs, accessible to anyone with a telephone modem and a teletype or other computer terminal.

These “tele-computing” facilities have proliferated, and it’s a poor town, indeed, that doesn’t have at least two or three telephone-accessed, computerized bulletin board program exchanges devoted to some com-

By David McLanahan, WA1FHB, Box 17, Marlow, New Hampshire 03456
computer-related or other special interest. (The problem with these marvelous facilities is that if you really get into them, your telephone bill approaches infinity asymptotically.)

This type of activity is a natural for packet radio, and packet bulletin board systems (PBBSs), usually running CP/M, are now springing up nearly everywhere. Many of these stations, based on surplus Xerox 820 computer boards, use software donated to the public domain by Hank Oredson, WBRLI, and distributed by ARRL and through the Newington, Connecticut, FIDO-Net bulletin board (203 665-1114). These bulletin boards offer the advantages of their telephone counterparts without running up your phone bill, and offer an additional convenience: most have a “beacon,” a short automated transmission announcing their presence at regular intervals.

These PBBS beacons often include all ham calls for whom the board presently holds messages. Thus, unlike the telephone-accessed boards, you need not “log on” to know if you have mail; just monitor the channel and watch the beacon. In this application, the old ham expression of “reading the mail” takes on a new significance.

for the future

There are two precursors of things to come. The first is the concept of a “local user.” This means that a ham tells area PBBS operators which PBBS he considers “home.” Messages left for him on other boards are then forwarded to his “home” board. This is now handled manually, but automatic forwarding is only a computer program away.

Second, it’s now necessary for a packeteer to determine the digipeater string and enter the calls manually. To assist with this, many PBBSs carry area system maps showing digipeater calls and station locations (an abbreviated map is shown in fig. 1). However, as I write, a number of hams are working on computer programs that monitor digipeater traffic, picking up routes and maintaining a dynamic area map in real time.

It doesn’t take a great leap of imagination to see where all this is leading: automatic path selection and dynamic call forwarding, both “transparent to the user”; all you do is type the call and the computer and packet board does the rest (with a name/call file for your friends, all you’d need to type would be the name). We’re rapidly approaching the point reached years ago by television’s Napoleon Solo, who, when stranded on a remote Pacific isle, simply whispered “Open channel D,” into his fountain pen. Our main unresolved technical challenge will be to place a workable (and comfortable) keyboard on the side of the pen.

There is one thorn in this rosy future: channel space. I’ve said that packet transmission is error-free, but I carefully avoided any reference to transmission times. At the moment, channels are relatively quiet, and over short paths things can happen quickly. For example, working through two 2-meter digipeaters handling little or no other traffic, packet delivery times run on the order of 4 to 5 seconds each. This is quite reasonable. But, add a few more QSOs, a longer path (several digipeaters), or someone using a PBBS (which shovels out long program or message packets as fast as it can), and things bog down quickly.

While we’re on the subject of transmission speeds, two additional notes are necessary. First, the speeds given at the beginning of the article are FCC-permitted maxima. While 300 Baud (30 cps), the legal maximum, is used on the low bands, on 2 meters the universally used speed is presently 1200 Baud (120 cps) rather than the allowed 19.6 kilo-Baud, purely because the 1200 will go through a normal voice channel while the higher data rates (which require greater bandwidths) will quickly run aground in the intermediate frequency amplifier and audio circuitry of a normal voice rig.

Second, 1200 Baud sounds like a nice, snappy exchange rate, particularly if you’re accustomed to a 300 Baud terminal. Sorry about that; the 1200 Baud is the character transmission rate. When it comes to actual message or data exchanges, the through-put (useful traffic passed) will be at a much lower effective speed, especially if noise or a busy channel forces repeats of transmissions. This is due to overhead within the packet (message header and such) and the necessity of getting acknowledgement for each packet.

Of course, packet activity has no way to go but up as more people get involved. Again, we have technical solutions that will (we hope) be here before the problems are — inexpensive “ham type” digipeaters up at UHF and microwave where transmission speeds can be increased dramatically. This doesn’t mean you’ll have to put a 1296 MHz rig in your car; local traffic can still be handled on 2 meters, but the heavy and long-distance communications can go on the microwave links.

equipment

You need only three pieces of equipment to operate on packet radio: a 2-meter transceiver (nothing special, that old rock-bound clunker in the basement will probably do, with some tuning); a Terminal Node Controller (TNC — the actual “packet board”); and a computer or computer terminal with which to communicate with the TNC.

Of course, there are always other ways. If you want to save time and reduce aggravation, there’s the Pack-
Our Very-Hard to Find Components List

Semi-conductors

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF-286</td>
<td>$12.00</td>
</tr>
<tr>
<td>MRF-240</td>
<td>$18.40</td>
</tr>
<tr>
<td>MRF-247</td>
<td>$34.80</td>
</tr>
<tr>
<td>MRF-309</td>
<td>$63.81</td>
</tr>
<tr>
<td>MRF-421</td>
<td>$37.00</td>
</tr>
<tr>
<td>MRF-427</td>
<td>$41.40</td>
</tr>
<tr>
<td>MRF-429</td>
<td>$46.00</td>
</tr>
<tr>
<td>MRF-454</td>
<td>$20.00</td>
</tr>
<tr>
<td>MRF-456</td>
<td>$37.00</td>
</tr>
<tr>
<td>MRF-648</td>
<td>$33.50</td>
</tr>
</tbody>
</table>

Kemet Chip Capacitors

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPO C1210</td>
<td>$50.00</td>
</tr>
<tr>
<td>NPO C1210C</td>
<td>$50.00</td>
</tr>
<tr>
<td>NPO C18113</td>
<td>$1,000</td>
</tr>
<tr>
<td>BXX C2225</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

We also carry a line of VHF, UHF amplifiers and ATV equipment. Call or write for our free catalog.

The Written Word Via Radio

Why spend money on phoneline rental and modems when you can install an AEA, PKT-1 PACKET RADIO CONTROLLER and send any alphanumeric information via [your existing] radio?

- Send any text, data, or program file, error free, to a remote screen, disk or printer.
- Data rates to 4800 Baud, dependent on FCC-allowed bandwidth.
- RS-232 connection to any terminal/computer configured as DTE.
- PTT, audio in and audio out are the only connections to any (FM, SSB, PSK, etc.) transceiver.
- 12 VDC operation allows portable/mobile operation.
- Extend range and/or avoid line-of-sight obstacles or multipath problems by using other packet stations as store-and-forward Digipeaters.
- Low cost: Typical total system costs are $500-$1000.

Connect your warehouse and office personal computers and send customer orders... Connect your Emergency Service or Search and Rescue base to field locations and send "equipment needed" lists... Send written dispatches to your fire, police, aid car, water department locations... Send avalanche sensor information automatically from remote highway sites... Control your irrigation equipment or your readerboards signs remotely... Receive security system messages from a break-and-enter site... Share bulletin board files at radio remote sites... Send patient info to the receiving hospital from the triage hospital... Communicate using battery power when phone lines are down.

Your imagination is the only limit. Call John Gates, circle reader service number or send coupon for fast response. Dealer inquiries invited.

Advanced Electronic Applications Inc.
Box C-2160
Lynnwood, WA 98036
(206) 775-7373

AEA, Inc., Box C-2160, Lynnwood, WA 98036
Send PKT-1 information to:

| Name | Address | City/State | Zip | Call me at |

fig. 1. At right is a graphic representation of Packet Radio links believed to exist on 144.010 MHz on the East coast of North America. The area covers part of Canada and extends to North Carolina. Another file, called SOUTMAP.NNN, covers the area from Virginia south to Florida.

Included in these maps are digipeaters, Packet Bulletin Board Stations (PBBS), and home stations usually left on for digipeating. Updated maps covering this and other areas are available from stations running WORLI-compatible software for PBBSs, mailboxes and/or gateways; these stations are indicated by the use of the "@" character preceding the call sign.

The primary routes used for mail forwarding in EASTNET are marked with asterisks (**), while other links are shown by either | \ or / as connecting characters. All "****" routes are presently on 145.010. In the Baltimore/Washington area .050 is heavily used for local traffic. Links on 145.050 MHz in Maryland, West Virginia, and Pennsylvania are connected on this map by dots. 220 MHz trunk links will parallel 145.010 in the future.

To improve readability of this linking you might want to use felt tipped pens to outline the various linking paths. Links marked with a question mark indicate a link of unknown reliability. If any links shown on this map prove to be unreliable or nonexistent, please drop me a note. Send the info to me, K1HTV @ W3IWI, via one of the many auto-forwarding PBBSs or via the U.S. mail (see Callbook for address).

Thanks to Rick Zwerko, K1HTV, one of 10 acting directors of the Mid-Atlantic Packet Radio Council (MAPRC). Formerly Vice-President for Operations, AMSAT, Rick also served as a member of the AMSAT Board of Directors and was past president of the Northeast VHF Association.

32 F December 1985
HF Gateways

<table>
<thead>
<tr>
<th>Location</th>
<th>Gateway Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York, NY</td>
<td>GQ3BYL</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td>GQ3BYU</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td>GQ3BYV</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td>GQ3BYW</td>
</tr>
</tbody>
</table>

Other Locations

- **Reading, PA**: W63FL
- **Hummelstown, PA**: W63FL
- **Malvern, PA**: W63FL
- **Boiling Springs, PA**: W63FL
- **Medford, NJ**: W63FL
- **Coventry, RI**: W63FL
- **Newtown, CT**: W63FL
- **Norwalk, CT**: W63FL
- **West Haven, CT**: W63FL
- **Winston-Salem, NC**: W63FL
- **Wilmington, DE**: W63FL
- **Waxhaw, NC**: W63FL
- **Wallace, NC**: W63FL

Additional Locations

- **etc.**
eterm, a portable unit ($995) that combines a TNC and a computer terminal in one sleek-looking designer case (see photo). If you go that route, you can disregard the rest of this article and be on the air half an hour after unpacking the box.

I claim no special expertise in the area of 2-meter transceivers. I'm using an Azden PCS4000 because I happen to have it, and it's working fine. The only caveat is that most 2-meter packet activity is below 146 MHz and some of the older narrow-band equipment needs a tweak to get down there.

I'm using a GLB PK-1 Terminal Node Controller. I chose it because it appears to be the least expensive one available ($165). At 4-1/2 x 9-1/2 inches (11.4 x 24 cm) it's also the smallest one I've seen. It also requires only a single-voltage power supply (+ 12 VDC at 170 mA) and it doesn't mind "mobile-type" voltage excursions; I've used it from 14-1/2 to 9 volts without a hiccup. And, like other TNCs on the market, the Z-80-based GLB features "dynamic programming"; the manufacturer frequently releases a new ROM offering enhanced and improved features.

Other TNCs are available from Vancouver Amateur Digital Communications Group, Tucson Amateur Packet Radio, Heath, AEA, Kantronics, Ashby, and Packeterm, to name a few (fig. 2). Richardson software converts a TRS-80 Model 1, 3, 4, or 4P into a computer/TNC*.

The last necessity, the terminal, offers the most opportunity for self-expression. It can be anything from a Model 15 Teletype to a microcomputer such as a Sinclair ZX-81 or a Commodore 64. The microcomputer route is the most popular. Of course the micro must have a serial port (or an adapter to provide one) as well as a modem program. (The Model 15 Teletype was preprogrammed at the factory.)

getting started

As with everything else, the most difficult part is getting started, especially if you don't have a packet Elmer around. You'll need either a reasonably local packet station that will give you a strong signal or two set-ups that you can work back-to-back. An independent monitor receiver is a big help.

There's nothing special about the monitor receiver. It can be any kind of tunable or fixed-frequency rig capable of receiving your area's packet channel(s). Be aware that some of the programmable (no-crystal) scanners won't tune lower than 146 MHz without special measures. For example, on my 16-channel Regency "Touch," Model ACT-T-16K, I must press, in order, MA, 9, CL, PR, then key in the frequency I want, and hit PR again.

*Synchronous Packet Radio Using the Software Approach — AX.25 by R. M. Richardson, W4UCH, available from Ham Radio's Bookstore, Greenville, NH 03048 ($21.95 plus $3.50 postage & handling)

This receiver is then set up on its own 1/4-wave whip near your packet station. Because a TNC requires a better signal to noise ratio than voice, if another station sounds reasonable on the quarter-wave whip, it will probably be fine for packet, assuming that you are using an outdoor gain antenna for the packet transceiver.

The monitor is used, first, to compare your station's deviation with others in the neighborhood, and, second, to keep track of when (and how) your station is transmitting. After your packet set-up is thoroughly established and proven, you may wish to return this radio to its prior service monitoring the local police, but till then it'll be invaluable in getting you started.

To begin with, you have to get your computer or terminal working with your TNC. This requires, first, an RS-232 interface from the computer or terminal to be connected with the RS-232 interface on the TNC, and, second, if you're using a computer, driver software (usually a "Modem" or "Terminal Emulator" program) to access the RS-232 port. Because the programming depends on the brand and type of computer used, I'll leave that part to you and your software dealer or local computer guru.

I can, however, provide some advice on using the RS-232.

the RS-232

First, the actual RS-232 specification doesn't define a physical connector, although a DB-25 is usually used. Second, RS-232 defines interfaces for modems and for terminals, but not for computers. Third, two
Please enter my gift subscriptions to HAM RADIO Magazine as follows:

FIRST SUBSCRIPTION $19.95
TWO OR MORE SUBSCRIPTIONS $16.95 EA. SAVE $3.00
(you can also renew your own subscription at this low rate)

<table>
<thead>
<tr>
<th>FIRST</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
<td>Zip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
<td>Zip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
<td>Zip</td>
</tr>
</tbody>
</table>

- □ Start or □ Renew my own HR subscription.
- □ Enclosed is a check or money order for $ for subscriptions. (use separate envelope)
- □ VISA □ MasterCard □ Bill me later
- Acct. #
- Expires
- My Name Call
- Address
- City State Zip

Prices U.S. only. Inquire about foreign rates
BUSINESS REPLY CARD

First Class Permit No. 1 Greenville, NH

Postage Will Be Paid By Addressee

ham radio

Greenville, NH 03048
'Tis best to give
as well as receive.
(especially before our January price increase!)

One Year/12 issues

$19.95
SAVE* OVER 10%

First Gift
OR

$16.95
SAVE* 25%

FOR TWO OR MORE SUBSCRIPTIONS OR EXTENSIONS INCLUDING YOUR OWN

*One-year subscriptions will be $22.95 after January 1, 1986.

A gift card will be sent if your order is received before December 13, 1985.

Giving Ham Radio is both fun and thoughtful.

And at the receiving end of a Ham Radio gift subscription, it's remembered all year long as a token of your friendship.

We have a super busy year planned for 1986, just take a look at a sampling of what your special Amateur friend(s) will see in their 12 big gift issues next year: The very latest in state-of-the-art projects and technical discussions, our Annual Antenna issue in May and our Receiver issue in November, computers, monthly columns by Orr, Stonehocker, Reisert, and Guerri plus much, much more.

There's no time like the present to give the gift of HAM RADIO Magazine to that 'hard to buy for' ham friend. While you're at it, why not treat yourself to another year of HR and save $3 off our regular rate and $6 off our new rate.
identical RS-232 interfaces (two modem interfaced or two terminal interfaces) won’t work together because both will be “listening” on another line. Therefore, before you actually hook things together, compare the instructions for your computer and your TNC.

Normally, the computer will talk (transmit data, data out, or TxD) on pin 2 of the DB-25 and the TNC will listen (receive data, data in, or RxD) on the same pin number. If your literature shows that your two devices work this way, use a pin-for-pin cable. If, on the other hand, both units are talking on the same line, you’ll have to swap pins 2 and 3 at just one end of the cable. (If you make the swap at both ends, you’re back where you started!) Along with that swap, go swaps on several of the control lines, although ground always remains on pins 1 and/or 7. Check your literature.

If you find that you do require some line swaps, but all you have is a pin-for-pin cable, check its connector type. There are three types of DB-25 connectors in common use commercially: insulation displacement connector (IDC), crimped onto ribbon cable; solder cup connector with wire leads soldered in as required; and crimp-type, where the pins are crimped onto the wires and then popped into the connector shell.

If you have only a ribbon cable, you’re stuck. With the solder cup connector, changing conductors around is relatively simple, assuming that you have both patience and a small soldering pencil. Changing the pins around on the crimp-type connector is even easier than resoldering if you can get the little plastic insertion and extraction tools. Both tools (which slip together for storage) are slotted lengthwise for slipping over the wire. The tool is then slid down the wire so that its point enters the back of the connector block around the connector pin. Gently pulling the wire slides the pin out of the block. Reinsertion is just the reverse. Place the tool on the wire up against the pin and use the tool to seat the pin in the block.

Although these tools are inexpensive, they may be difficult to find. Made of plastic, they will break in time. You might try purchasing several from an industrial distributor who stocks the connectors.

listening to the data

If you’re sure the wiring is under control but the interface still doesn’t work, check to make certain that both units are really transmitting data when they should. Look at the TxD line from the computer. (An oscilloscope is ideal for this but you can use the audio channel of your video monitor, if it has one, or another audio amplifier and speaker.

Remove the plug cover from the cable connector at either end. Make sure that the audio channel ground is connected to the computer system ground. With the volume of the audio channel set low (to avoid ear-shattering surprises) check the audio by touching the exposed audio connection with your finger while the rest of your body is ungrounded. You should get a loud AC hum. Then, using a small-gauge conductor wedged into the back of the DB-25, make contact between either pin 2 or pin 3 and the audio input.

Now try a command to the TNC. With the GLB PK-1, the first thing it wants to see is a carriage return <cr> to establish the baud rate, which should be 9600 Baud or slower. (The baud rate between TNC and “terminal” has nothing to do with the “on the air” data rate of 1200 Baud.) When the GLB receives its carriage return, it responds with a dozen-character sign-on. If serial data is present on the line you’ve chosen, you’ll get a raucous buzz (or a short burp) for a single character like the <cr>. Try this a couple of times. If the power doesn’t come on cleanly (i.e., bounce in the power switch) it can discombobulate.

fig. 2B. Packet terminal units from (A) AEA, (B) Heathkit, and (C) Kantronics.
the GLB’s initialization routine. Hit GLB reset and try `<cr>` again.

If you still don’t get the buzz, the most likely cause is that a required RS-232 control signal is not being handled properly. Of course, this requires a check of the RS-232 specifications as interpreted by the two particular devices that are giving you grief. For example, with the GLB PK-1, check to see that the computer or terminal is putting a high (>3VDC) on RTS (Ready To Send) (DB-25 pin 4 on the GLB), and that the computer doesn’t need more control signals than the high that the GLB puts on its CTS (Clear To Send) (DB-25 pin 5) line.

If either the computer or the TNC is not getting the control signal(s) it requires, you won’t hear data on either line from the end(s) with the problem. Check your control lines with a VOM.

Once the terminal-TNC interface is working, you are ready to hook the TNC to your transceiver, following the TNC manufacturer’s guidelines.

Now see if you can receive. Connect all the equipment up and turn it on, instructing your packet board to display everything without checking the packets for transmission errors (“Garbage mode” on the GLB, SG-E). Wait for activity on the channel (as indicated by your transceiver’s S-meter or the monitor radio) and see if it prints. (Very short transmissions may be connect requests or acknowledgements that will not yield a printable message.) If that works, try transmitting. Send anything and compare the sound of your transmitter through the monitor radio with the sound of another packet station. If your signal doesn’t sound raspy and disagreeable, your audio is set too low.

talking to yourself — by radio

If the audio sounds okay, try talking to yourself through the other station. Program your call as the destination as well as the originator, making sure that the SSID numbers (usually zero) are the same. Then type in the call of the other packet station or digipeater, again watching the SSID. Many digipeaters use an SSID of one, with zero used by the trustee’s home station. W1AW has several packet stations with SSIDs running up to 5! With the GLB your destination is set with SD and your digipeater(s) with SV (send via).

Now issue the command to connect (AC on the GLB). Your transmitter should come on for a short period (less than a second) followed almost instantly by a similar-length transmission by the other station. Your terminal should then “ring its bell” and display -Connected to <your call>. Now type a short message and hit your “dispatch” character (on the GLB this defaults to a line feed). The message should be duplicated almost immediately on your screen, then be followed in a second or two by another bell and an -Ack.

The -Ack means that the “receiving-you” has acknowledged the message back to the “sending-you.” If the -Ack is not received by the TNC, the message will be held in the TNC’s buffer and the transmission repeated. With the GLB, to disconnect, type Control-C. When disconnect is complete, the screen will show #1.

If all that worked, you’re ready for a real, live QSO or a longer path test. On multi-hop self-connects, you must provide the entire round trip in the digipeater string. (Like any other computer, the TNC is wonderfully fast but very stupid.) Thus to self-connect through W1AA-1, W2BB-0, and W3CC-1, for example, your string must read W1AA 1, W2BB 0, W3CC 1, W2BB 0, W1AA 1.

If all this works, you’re home free. If questions or problems arise, you can connect with another packeteer in your area and ask for help. You can also access your local PBB5s. Start with the one that’s on the shortest, quietest, most reliable path until you get the hang of it. (The wee, small hours of the morning are the best time for this experimenting.) All you have to do is connect with the PBB5 station, then be patient while it announces itself and gives you its prompt line ending with CP/M’s > . It will then be looking for a letter command followed by a carriage return (and on the GLB, a line feed to send the packet). For starters, try an “H” (for Help). It should reward you with a list of its commands and explanations. If you have a printer, turn it on so you’ll have a hard copy for future reference.

Of course, there’s a great deal more to packet radio than I’ve mentioned here, and the field is changing rapidly, but, as the Chinese say, “The longest journey begins with but a single step.” As with any Amateur Radio activity, the biggest and most important step is just getting on the air so you can contact fellow hams. I trust that you’ll enjoy the rest of this unending journey.

Ham radio

for further reading...

A special package of four back issues of *Ham Radio*, featuring the following Packet Radio articles, is available from Ham Radio’s Bookstore:

The special price for the four-issue package is $14.95; single issues are priced at $5.00 each (postpaid).

Ham Radio’s Bookstore • Greenville, NH 03448
PACKET RADIO . . .
 . . . THE FASTEST GROWING PART OF AMATEUR RADIO TODAY

is already providing high speed, error free, communications on many amateur bands for qso’s, data transmission, emergency traffic, dx’ing, traffic nets, mailboxes, endless experimentation, and soon... satellite operation.

networks continue to grow, as does the number of hams who enjoy this new and exciting mode. The increasingly popular PACKETERM IPT is contributing to phenomenal growth in amateur packet radio by providing a full function packet terminal in a compact, portable unit...

ALL YOU NEED FOR PACKET OPERATION IS A PACKETERM IPT AND YOUR RIG!

Designed for true portability, the IPT is equally at home in your ham shack or (with its optional carrying case) trekking in the country for battery powered hilltopping!
A single cable connects to your transceiver....that's all there is to it!
Use it with your base station, mobile, or with your HT on that hilltop!!

FEATURES:
* 9 inch portable terminal and full function tnc combined
* 66 commands available - the most widely used, field proven programming.
* Built-in LSI modem; 300 or 1200 baud, 200 or 1 kHz audio shift
* stores setup parameters with power off - uses lithium battery
* custom “beacon” text -- your call, qth, etc. in permanent memory
* 74 key, full travel keyboard with 14 function keys for commands, calls, etc.
* printer port - RS232C serial
* optional printer, carrying case, and dc adaptor (13.8 VDC)

Packeterm
Box 835, Amherst, NH 03031
(603)-673-6630

PRICES: IPT COMPLETE $995
 PRINTER $349
 DC ADAPTOR $125
 TNC (BOARD ONLY) $275
automatic frequency and deviation tester for packet radio

Measure your packet signals from the comfort of your home

Recent observations of packet radio signals revealed some startling facts. Several stations intending to be on 145.01 MHz were found as much as 3 or 4 kHz off frequency. Deviation levels also varied quite a bit.

Off-frequency operation and overdeviation cause distortion of the audio signal. Too little deviation results in a poor signal to noise ratio. In all these cases, the result is the same: a modem is less likely to demodulate the signal properly. Packets are retransmitted an excessive number of times and the channel gets clogged up.

The New England Packet Radio Association tried to improve the situation by having a calibration session at one of the regular meetings. A frequency counter, deviation meter, and qualified engineers were present to make sure everybody’s equipment was properly adjusted. There was plenty of advance publicity, but no more than a few people bothered to bring their equipment.

Several months later a new beacon appeared on the air, transmitting “WB2OSZ> BEACON: frequency/deviation tester available.” During the first few days of operation, many stations connected and received the following message:

“Welcome to the WB2OSZ automatic frequency/deviation tester. Instructions:
1. Send several non-blank lines.
2. Wait for reply after each.
3. Ignore any occasional erratic values.
4. Disconnect when done.
Recommended deviation is no more than 3 kHz. Anyone who disagrees with the results is invited to supply a reference more accurate than my 2AT. John”

Each time a packet was sent to the automated station, a reply was sent back in the form, “Your frequency is about 1.8 kHz too high. Deviation is about 2.6 kHz.”

Circuit description

The voltage from the detector of an FM receiver is proportional to the frequency of the incoming radio signal. Extracting the DC component of this will provide a measure of the carrier frequency. The peak amplitude of the AC component is proportional to the deviation. Figure 1 shows a block diagram of a system designed to extract these parameters.

The first step is to obtain a DC-coupled signal from the demodulator of your FM receiver. The entire signal flow from receiver to computer is shown in fig. 2A and the individual circuits detailed in the figs. 2B through 2E. Figure 2B contains a circuit used with an old VHF Engineering transceiver; it should work with anything else using an LM 3065, an MC 1358, or a CA 3065 quadrature detector. (This part will have to be customized for your particular rig.) It produces a zero volt output for a carrier on the desired frequency and changes by a half volt for each kHz change.

The next step is to extract DC and AC components of the signal with low- and high-pass filters (fig. 2C). U2 and associated components form a low-pass filter. Their output is proportional to the amount the incoming signal is off frequency. For example, –1.5 volts means the signal is 3 kHz too low.

The AC component, of course, is the audio. It is extracted by a high-pass filter composed of C3 and R12. This is fed through a full wave rectifier, peak detector, and another low-pass filter. R14 limits the peak current out of U4. (Without it, nasty spikes appeared on the power supply output). R18 boosts the gain slightly above unity to compensate for a small loss in the high-pass filter and peak detector. The result

By John W. Langner, WB2OSZ, 115 Stedman Street, Chelmsford, Massachusetts 01824

December 1985 41
fig. 1. Block diagram of system to determine frequency and deviation of received signal.

fig. 2A. Radio interface.

table 1. Integrated circuit pin designations for the supply lines.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ground</td>
<td>555</td>
<td>741</td>
<td>ADC 0804</td>
<td>1458</td>
<td>74121</td>
<td>AY-S-1013</td>
</tr>
<tr>
<td>+5 volts</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>–12 volts</td>
<td>8</td>
<td>20</td>
<td>20</td>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+12 volts</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

is a voltage proportional to the peak deviation, again 0.5 volt/kHz.

To build a useful piece of test equipment, connect these voltages to a pair of meters. You can also integrate your system with a computer to open up many possibilities for automated operation. If you have a computer with joy stick input, you already have a pair of analog-to-digital converters and don’t have to build the rest of the circuit. For those with computers not intended for playing games, additional external circuitry is required.

The analog voltages must be converted to digital signals the computer can understand. This is accomplished by the ADC0804 A/D converters in fig. 2D, which convert a voltage in the range of 0 to 5 volts into a corresponding number in the range of 0 to 255 in less than 20 microseconds. U7 and U8 determine when to start the conversion. CR3 through CR6 protect the inputs of U5 and U6 from voltages that could
damage them. CR3 through CR6 should not conduct during normal operation.

A purist may wish to connect a precision 2.5 volt reference to the VRFS pins. In its absence, internal voltage dividers use one half of the 5-volt supply. When should the A/D converters be commanded to start the conversion? You wouldn't want to do it when an audio carrier is first detected because the low-pass filters wouldn't have had time to settle down. And you can't do it after the computer has received the packet contents from the TNC (terminal node controller) because the audio signal is long gone. I decided

fig. 2B. Parameter extractor.

fig. 2C. A/D converter.
CONTINUOUS COVERAGE
FOLDED DIPOLE ANTENNA

MODEL AC 3.5 - 30
(formerly Model 370-15)

- Fully Assembled
- 52 OHM
- Only 90 feet long
- SWR less than 2:1 from 3.5 thru 30 MHz. Average SWR 1.4:1
- Will handle 1 KW power (2 KW PEP)
- Can be installed as flat top, sloper, or inverted "V"
- Used the world over in government & commercial communication installations
- Ideal for all operations - amateur, commercial, MARS - any frequency from 3.5 - 30 MHz

PRICE $159.50
PLUS $5.00 Shipping and Handling

ALL OUR PRODUCTS MADE IN USA
BARKER & WILLIAMSON
Quality Communication Products Since 1932
At your Distributors. Write or call.
10 Canal Street. Bristol PA 19007
(215) 788-5581

1986 CALLBOOKS

The "Flying Horse"
has a great new look!

It's the biggest change in Callbook history!
Now there are 3 new Callbooks for 1986.

The North American Callbook lists the amateurs in all countries in North America plus those in Hawaii and the U.S. possessions.

The International Callbook lists the calls, names, and address information for licensed amateurs in all countries outside North America. Coverage includes Europe, Asia, Africa, South America, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The Callbook Supplement is a whole new idea in Callbook updates. Published June 1, 1986, this Supplement will include all the activity for both the North American and International Callbooks for the preceding 6 months.

Publication date for the 1986 Callbooks is December 1, 1985. See your dealer or order now directly from the publisher.

- North American Callbook incl. shipping within USA $25.00 incl. shipping to foreign countries 27.60
- International Callbook incl. shipping within USA $24.00 incl. shipping to foreign countries 26.60
- Callbook Supplement, published June 1st incl. shipping within USA $13.00 incl. shipping to foreign countries 14.00

SPECIAL OFFER
- Both N.A. & International Callbooks incl. shipping within USA $45.00 incl. shipping to foreign countries 53.50

* * * * * * * * *
Illinois residents please add 6 1/2% sales tax.
All payments must be in U.S. funds.

RADIO AMATEUR CALLBOOK INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA
Tel: (312) 234-6600

RELIABILITY & ACCURACY.

Precision Quartz Crystals 70 KHz to 200 MHz. International is a major supplier to the commercial, industrial, and amateur crystal market.
fig. 2D. Parallel to serial converter.
Sound and Video Modulator for TI Computer

- **DECEMBER + SPECIALS**
- All 1/4 WATT RESISTORS
 - 1000 pcs of one value
 - **$7.50**
- All 1/2 WATT RESISTORS
 - 1000 pcs of one value
 - **$10.00**
- 1 AMP 50 VOLT DIODES (NPN and PNP)
 - 1000 for **$4.50**
- D STYLE CONNECTORS
 - DE100: 10 for **$1.00**
 - DE200: 10 for **$1.50**
- SOLDER TAIL I.C. CONNECTORS
 - 24 PIN
 - 100 for **$2.50**
 - 200 for **$4.50**

TI SWITCHING POWER SUPPLY
Compact, well regulated switching power supply designed to power TI computer equipment.

- **INPUT**: 14 - 25 vac @ 1 amp
- **OUTPUT**: 12 vac @ 250 ma
- 15 vac @ 200 ma

MINIATURE TOGGLE SWITCHES
All are rated 5 amps @ 125 vac

- **S.P.D.T.** (on-off-on)
 - 5 amps non-threaded
 - **$1.25** each
 - 50 for **$50.00**
 - 100 for **$90.00**

D.C. CONVERTER
7 Conductor Ribbon Cable
Designed to provide a steady 5 volt output for 40 to 50 ma from the regulator supply of 3.5 to 25 volts.

SLIDE LIGHT COOLING FAN

- **SPECIAL PRICE**: $12.50 each

DECADE DECO
- Cat. No. 1080
- **$5.00 each**

RELAYS
10 AMP SOLID STATE
CONTROL: 3 - 32 vdc
- 1800 ma
- **$9.50 each**
1300 ma
- **$8.00 each**
- **$10.00 for 10 each**

COMPUTER GRID CAPACITORS
- 2000 mf, 200 vdc
 - 1 mA x 5
 - **$2.00 each**
 - **$20.00 for 10 each**
- 3800 mf, 200 vdc
 - 1.5 ma x 5
 - **$3.50 each**

MAX PHONE DIALER
- **$10.50 each**

TI. COMPUTER MODELS
- Q012115
 - Dual plus and minus 15 vdc open frame power supply
 - Can be used as 24 vdc 5 amp.
 - INOUT: 115 vac or 230 vac.
 - Factory complete computer grade supply.
 - 7” x 4” x 2.4”
- **$12.50 each**

SOLID STATE BUZZER
- SIR #5MB-05L
 - TTL compatible
 - **$0.80 each**
 - 10 for **$8.00**
- +12 VDC AND 24VDC POWER SUPPLY

1/2 SPEAKER
3 1/2” voice coil
- Full range
 - 8 or 4 ohm
 - **$3.50 each**
- **$5.00 each**

SPECIAL PRICE
- DUAL I.E.D. DISPLAYS
 - **$13.00** each
 - 500 hr. life
 - Full range

SPRING LEVER TERMINALS
Two copper terminals with 1 1/4” leads plus 1/4” terminals
- **$0.50 each**
- **$5.00 each**

180 “V” IMPEDANCE
- Full range
 - 8 ohm
 - **$2.00 each**
 - **$10.00 each**

LEAD HOLDERS
Two lead holders for jumper LED
- **$1.00 each**

CLEAR CLIP type LED HOLDER
Marked LED as a funny indicator
- **$1.00 each**

MINI-PUSH BUTTON
3 POS. momentary normally open push button.
- Red button.
- **$1.25 each**
- 10 for **$10.00**

KEY ASSEMBLY
5 KEY ASSEMBLY
- 5 single pole normally open switches.
- Measures 3/4” x 1/8”
- **$2.25 each**

METAL OXIDE VARISTOR
Popular CE: 130, 400VA varistor
- **$3.25 each**

TOLL FREE ORDERS ONLY
- FREE ORDER FORM ON REQUEST
- TOLL FREE ORDERS ONLY
- **MONEY ORDER**
- **$3.00 SHIPPING**
- FOREIGN ORDERS
 - INCLUDING SHIPPING
 - CALIF. RES. ADD 6.5%
to sample the analog signals after the audio carrier had been present for approximately 200 milliseconds. This provides sufficient time for the analog components to settle down but is before the end of the shortest packet. A carrier detect signal is available at pin 5 of the parallel connector on the back of a TAPR TNC.* AEA and Heathkit units, similar to TAPR's, are probably the same.

The computer I'm using doesn't have any parallel input, but does have a spare serial (RS-232) port. The remainder of the circuit converts the parallel data into serial form for communication with the computer as shown in fig. 2E.

When the computer wants to obtain the most recent measurements, it sends a character to the circuit. The UART (U9) converts the serial character to parallel form and causes U10 to generate a pulse. The least significant bit of the character comes out of pin 12 and selects one of the A/D converters. The pulse from U10 causes the UART to begin conversion of the data from parallel to serial form.

The connections shown for P1 assume a computer port expecting a terminal. If using a modem port, use a DB-25S connector instead and swap the connections to pin 2 and 3.

U11 determines the speed for communications. R32 is adjusted for a frequency 16 times the desired baud rate, for instance 19200 Hz for 1200 baud. The com-

<table>
<thead>
<tr>
<th>item</th>
<th>description</th>
<th>quantity</th>
<th>approximate cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,C5</td>
<td>0.15 .5 mylar (could)</td>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td>C2,C6</td>
<td>0.22 .5 mylar</td>
<td>2</td>
<td>0.33</td>
</tr>
<tr>
<td>C3,C10,C14</td>
<td>0.1.5 disc ceramic</td>
<td>3</td>
<td>0.15</td>
</tr>
<tr>
<td>C4</td>
<td>2 .5 electrolytic (could)</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>use two 1 /f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7,C8</td>
<td>220 pf mica</td>
<td>2</td>
<td>0.42</td>
</tr>
<tr>
<td>C9</td>
<td>1 .5 electrolytic</td>
<td>2</td>
<td>0.17</td>
</tr>
<tr>
<td>C10,C12</td>
<td>100 pf mica (could)</td>
<td>2</td>
<td>0.35</td>
</tr>
<tr>
<td>C13</td>
<td>0.0056 mylar + 0.0022</td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>CR1-CR7</td>
<td>1N4148 or similar</td>
<td>7</td>
<td>0.10</td>
</tr>
<tr>
<td>P1</td>
<td>DB-25P connector</td>
<td></td>
<td>2.39</td>
</tr>
<tr>
<td>Q1,Q3</td>
<td>2N3904 or similar NPN</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>Q2</td>
<td>2N4403 or similar PNP</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>R1,R2,R22,R24,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R25,R27,R34,R35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>10 kilohm</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>R11,R13</td>
<td>57 kilohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>5.6 kilohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>12 ohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R15</td>
<td>6.2 kilohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R18</td>
<td>6 Megohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R20,R21</td>
<td>2.7 kilohms, closely matched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R23,R31,R38,R39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R28</td>
<td>200 kilohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R29,R30</td>
<td>15 kilohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R32</td>
<td>2 kilohms, 15 trim pot</td>
<td></td>
<td>1.19</td>
</tr>
<tr>
<td>R33</td>
<td>3.6 kilohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R37</td>
<td>4.7 kilohms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1,U3</td>
<td>1458, dual op amp</td>
<td>2</td>
<td>0.59</td>
</tr>
<tr>
<td>U2,U4,U12</td>
<td>741, op amp</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>U5,U6</td>
<td>ADC 0804, analog to digital converter</td>
<td>2</td>
<td>3.49</td>
</tr>
<tr>
<td>U7,U11</td>
<td>555, timer</td>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>U8,U10</td>
<td>741121, monostable multivibrator</td>
<td>2</td>
<td>0.39</td>
</tr>
<tr>
<td>U9</td>
<td>AY-5-1013A, UART</td>
<td></td>
<td>3.95</td>
</tr>
</tbody>
</table>

Approximate total $28.00

p not in the catalog; possible substitutions are indicated.

fig. 3. Point-to-point wired circuits.

Completed point-to-point wired circuits are shown in fig. 3. Pin designations for the six integrated circuit supply lines are provided in table 1.

Software description

In the automatic answer mode, the station "advertises" the service available by beaconing and waiting.
norm_str("Welcome to the WB2OSZ automatic frequency/ deviation tester.");
norm_str(" ");
norm_str("Instructions:");
norm_str(" 1. Send several non-blank lines.");
norm_str(" 2. Wait for reply after each.");
norm_str(" 3. Ignore any occasional erratic values.");
norm_str(" 4. Disconnect when done.");
norm_str(" ");

Instructions:

1. Send several non-blank lines.

2. Wait for reply after each.

3. Ignore any occasional erratic values.

4. Disconnect when done.

Recommended deviation is no more than 3 kHz.

Anyone who disagrees with the results is invited to supply a reference more accurate than my 2AT.

for someone to connect. The user of the system is greeted with an explanation and a log file is opened (a program fragment is shown in fig. 4). For each record received, the A/D converters are sampled. The numbers are scaled to appropriate units, formatted into a message and sent back (a program fragment is shown in fig. 5). The user, date, time, and measurements are saved in a file for later analysis.

The method is certainly not foolproof. There is a chance that another packet's characteristics were sampled in the time that it took for the line of text to be

strcat(s_compact, s_freq);
strcat(s_compact, "- ");
strcat(s_compact, s_dev);
strcat(s_compact, "\n");

fprintf (Fp_cal_log, "%s\n", s_compact);

/* Construct more self-explanatory form for */
/* explanatory form for */
/* report to user. */
/* Instead of signed number */
/* for offset, give absolute */
/* value and "too low" or */
/* "too high." */

if (n_freq < 0) {
 strcpy(too, "low");
 for_mat(-n_freq, s_freq);
} else
 strcpy(too, "high");

/* See if direct connection. */
/* If one or more digipeaters used, put call of closest */
/* one in the message. */

if (Digi_nearest[0] == NUL)
 strcpy(who, "Your");
else
 strcpy(who, Digi_nearest);
 strcat(who, ":\n";

sprintf(message, "%s frequency is about %s kHz too %s. Deviation is about %s kHz.\n", who, s_freq, too, s_dev);

fprintf(Fp_cal_log, "%s\n", message);

*/

fig. 5. Segment of a routine executed when a record is received from the station being tested.

function key (F_TNC_COMMAND);
hang around (1); function key (F_CONNECT);
normal key (CR);
hang around (1); function_key (F_CONVERS);

*/

function key (F_TNC_COMMAND);
hang around (1);
function key (F_CONNECT);
normal key (CR);
hang around (1);
function_key (F_CONVERS);

*/

another routine, that */
/* determines types of */
/* messages from TNC, stashes */
/* away the connection path. */
/* The closest digipeater, if */
/* any, is put in */
/* Digi_nearest and used in */
KENWOOD SPECIAL
NEW
TS-940S
with automatic tuner
$1765.00

HOT ROD ANTENNA

Achieve 1 or 2 db gain over ANY 1/4 wave two meter telescopic antenna. The AEA model HR-1 Hot Rod antenna was designed by Dr. D.K. Reynolds (designer of the IsoPole) to deliver maximum performance for any hand-held transceiver with a BNC fitting.

The factory-tuned HR-1 is 20% shorter, lighter and places far less stress on your hand-held connector and case. It will easily handle over 25 watts of power, making it an excellent emergency base or mobile antenna. In the collapsed position, the Hot Rod antenna will perform like a helical quarter wave.

The Hot Rod antennas can be expected to make the same improvement to hand-held communications that the IsoPole brand antennas have made to base station operations. Why pay more when the best costs less?

Prices and Specifications subject to change without notice or obligation.

ADVANCED ELECTRONIC APPLICATIONS, INC.
P.O. Box C-2160,
Lynnwood, WA 98036
(206) 775-7373
Telex: 152571 AEA INTL

KENWOOD & ICOM

Also displaying the popular accessories needed to complete a HAM STATION.

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • HAM-KEY
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1/2 miles from Rte. 495 (Exit 31) toward Groton, Mass.
transferred from the TNC to the computer. This is why instructions say to ignore any occasional erratic values.

One puzzled ham connected and got all kinds of random frequency reports, even though he hadn’t sent anything. It turns out that a playful Amateur continually attempted to connect to my station while tuning his frequency back and forth. The solution was to recognize and ignore the “*** Connect request ...” message from the TNC.

There’s also a manual mode that allows the system operator to perform measurements on another station by digipeating back to himself via the other station or just watching everything go by. The reporting and logging of measurements are naturally different, but the calculations are the same.

You don’t need a high-powered computer for this application — something like a VIC-20 and a little BASIC program will be fine. It is important to get the line of text from the TNC quickly (at least 1200 baud) and sample the A/D converters before another packet comes along. After the data has been collected, there’s plenty of time to do the calculations and prepare a response.

calibration

Proper adjustment is important to avoid giving incorrect reports. The procedure is simple. All you need is an accurate RF signal generator and voltmeter. I used the popular ICOM model 2AT synthesized RF signal generator as my source.

First set the signal generator (and receiver of course) to your local packet radio frequency. 145.01 MHz seems to be the most popular frequency in most parts of the country. Adjust R6 for zero volts at pin 7 of U1. Set the signal generator frequency 5 kHz higher and adjust R3 for 2.5 volts at the same place. Finally, set the frequency 10 kHz lower (i.e., 5 lower than original) and observe the voltage. It should be close to -2.5 volts.

If the negative voltage is much different than -2.5, you have a linearity problem as I did. In this case, alter the setting of R3 until you set a DIFFERENCE of 5 volts between + and -5 kHz input. At least this will give a fairly accurate deviation for signals on frequency.

improvements

The output from my receiver is not very linear. For instance, a station 2 kHz too high might be given a report that it’s 2.5 kHz too high, while a station 2 kHz too low might be told he’s 1.5 kHz off frequency. (Note: a person on frequency is told he is on frequency. The problem is non-linearity, not an offset of 0.5 kHz.) Possible solutions are compensation in software, repair of the radio — or purchase of a new radio.

The modems commonly used for packet require the two tones to be fairly close in amplitude. Hank, W0RLI, suggested measuring the amplitudes of the...
tunes separately. This would require two band-pass filters (for 1200 and 2200 Hz) instead of the high-pass filter made up of C3 and R12. An additional peak detector, low-pass filter, and A/D converter would also be required. The deviation measurement would be based on the larger value. The difference in amplitude could be reported something like, "Amplitude of 2200 Hz tone is 89 percent of other tone."

Conclusion

Asking people to drag their equipment to a meeting for adjustment was not successful; the automated approach has produced much better results. During the first few days of operation about 20 stations tried out the system. (This might not sound like many but I’m running only 1-1/4 watts in a valley.) During later measurements, most stations that were substantially off had made correcting adjustments.

For readers who wish to become better informed about packet radio, a list of organizations with newsletters oriented toward digital communications via Amateur Radio is shown in Table 2.

Acknowledgements

Thanks to Gary, WA1GRC, for the idea and for nagging us at every NEPRA meeting until someone actually designed and built the unit.

Bibliography

Packet + RTTY=
Pakratt™ PK-64.

If you’ve read about packet, or are already into it, you know how exciting it is. With the hot new Pakratt PK-64 we’ve just brought a new dimension to packet. The Pakratt PK-64 is a complete, fully assembled and tested packet radio controller which, together with a Commodore 64 or 128 computer, can convert your shack into a packet operations center. And we’ve included a new version of our advanced MBO-TOR™ software to make it the first packet controller with AMTOR, Baudot, ASCII and Morse. But an even more exciting part of the Pakratt controller is its great price.

Incredibly Simple To Set Up
Just plug the Pakratt controller into the C-64’s game cartridge slot, add a mic connector for connecting to your particular transceiver, and you’re set. If you’re anxious to try it out, our new “quickstart” manual section can get you on the air in under ½ hour.

Simply Powerful
The versatile Pakratt controller shows messages and connect status simultaneously on your Commodore with a unique split-screen display. And it lets you specific operating parameters for quick set-up for emergency services, clubs, and multiple frequency use. And the Pakratt controller’s standard, TAPR style modem gives you 300 and 1200 baud operation with great HF/VHF performance.

We can’t possibly list all of the important features of Pakratt here. But the absolutely best part of the Pakratt PK-64 is that it’s at your dealer now. So stop reading, run down to your local dealer, and check Pakratt out. Because the real challenge will be to find one after the other hams see it.

Pakratt PK-64. Packet Power from AEA. At amateur radio dealers everywhere.

PK-64 shown with HF modem option.
Computer not included.

send letter perfect text from the text editor software while monitoring incoming messages. The 20K byte QSO buffer stores more than 20 video screens of text! Disk commands let you save

AEA

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036-0918
(206) 775-7373
Telex: 6972496 AEA INTL UW
Many methods have been offered for learning Morse Code, some good and some not so good. This is a good one.

- Have you plateaued at 10-13 WPM? MASTER the code in 40% less time.
- The method based on the scientific principles of Skill Acquisition and Perceptual Learning

Adopted by the U.S. MILITARY as the new training standard

Four cassettes teach the entire alphabet in 25 trials at 20 WPM!

Includes numbers, punctuation, special characters, and an all new intro tape.

Send __________ set(s) @ $19.95 each

Name __________________________

Call ________________________________ Class ________________

Address ___

City __________ State __________ Zip __________

Mail to: TSG, PO Box 3897, Carbondale, IL 62902

Order Yours Today! Limited quantities.
low frequency DX

No more about Ye DX bands
Do Wilde Men push and pulle,
Or talk about TA's, UJ's,
Or toss about Ye Bulle.
Ye Sunspot Cycle hath gummed Ye Game,
Ye bands are dry as Snuffe.
And many Hardy Souls, no doubt,
Will find it hard to do Without,
Excepting Thee and Me, Old Friend,
Who Never Worked Ye Stuffe.

This touching ode to DX, written by By Goodman, W1DX, in the late 1940s, certainly applies to DX today, as far as I'm concerned.

But while HF DXers may be moaning and groaning over the medicore conditions, low frequency DXers are having a fine time. Eighty and 160 meters are jumping these days!

A note from Bob Eldridge, VE7BS, tells of some of the DX worked in the Pacific Northwest:

The Australian CW signals can be anywhere, usually below 1825 kHz. The VK SSB rag-chewing groups on daily are most often about 1832 kHz and 1825 kHz, with a few around 1815 kHz. They are most consistent this time of year (early summer) when they can be worked virtually every morning (their evening). I hear them from about half an hour before sunrise to about half an hour after. At about the time they come up in strength here they are dropping out at W0ZV (Colorado), and he drops out to me at about the same time. He also hears them before and after his sunrise, so the VK opening to North America on 160 meters is quite long.

But although the Spring equinox is the most reliable time for Pacific contacts, I notice looking back through the log that I had good DX contacts in January and February and some DX in every month of the year. This week (week of July 24th) everyone is on the lookout for T31AT (Kiribati) and A35PP (Tonga).

VE7BS uses an inverted-V antenna with the apex at 105 feet and the ends about 60 feet (fig. 1). This is his “comparison antenna” for the others that he has experimented with from time to time. Bob says it is broadside to Australia and Europe, but works reasonably well in all directions. Three parallel wires are used in each leg and the coax feedline is wound into an RF choke just below the feedpoint of the antenna.

Another 160-meter antenna that VE7BS has used with success is the so-called “Lazy-U,” shown in fig. 2. The vertical portion can be from 50 to 100 feet long, with the horizontal portions bringing the system to resonance without contributing much horizontally polarized radiation. The VE7BS “Lazy-U” worked better than the inverted-V in some directions and this was the antenna he used to land 5N8ARY (Nigeria).

An interesting adaptation of this vertical antenna that some 160-meter DXers use is the so-called “G8ON” antenna, named after the Amateur who popularized it on the band (fig. 3). The antenna is a half-wavelength long, with the high current portion in the vertical plane. The wire is end-fed from the top end.

In closing, Bob has some interesting remarks about radial systems, as applied to 160-meter antennas. He advised the 160-meter operator not to worry too much about extensive radial systems. He says:

I managed WAC on 160 meters with a vertical without any radials and K7VIC has one of the most potent signals on the band using a vertical top-loaded monopole without radials, so I wouldn’t get depressed if I had no room for radials. For transmitting, I see nothing wrong with a 45-foot tower, top-loaded with a Yagi, working against a few properly disposed 8-foot ground rods near the base and a cluster of short radials or chicken wire mesh under the tower. As far as I can see, the main disadvantage of a relatively short, loaded vertical is the narrow bandwidth achieved without retuning.

For those west coast DXers interested in 160 meters, Bob recommends (and I concur) the 160 meter West Coast Bulletin, published by Dennis Peterson, N7CKD, 4248 A Street SE, Space 609, Auburn, Washington 98002. An SASE might bring you details from N7CKD.
the effects of trees and vegetation on your signal

From time to time I’ve received inquiries from Amateurs asking what effect upon their signals a nearby tree, or group of trees, might have. Since I didn’t know, I could only reply with an evasive, ambiguous answer. My good friend Marv, W6FR, who was “bugged” by a tall tree into which his 20-meter beam fired on the European path, was convinced that during the months the tree was in bloom with heavy foliage, his signal suffered. When pressed for specifics, however, he admitted under pressure that his often-stated conclusion was a hunch. The upshot of this was that his local DX competitors felt they had a psychological edge on Marv during the spring months when the tree was in its full glory.

The June/July issue of Broadcasters ID (published by Information Dissemination, 2501 Hilldale Boulevard, Arlington, Texas 76016) has some interesting information on this subject. In an article by E.J. Pryor, Jr., of Broadcast Technologies, Inc., the subject of foliage and vegetation is discussed, with respect to AM and FM broadcasting. The article says, in part:

Almost any engineer at an AM directional station could tell you that his array shifts each year due to the many factors which are related to seasons.

In most cases, some of the changes can be traced to ground conductivity which varies due to the moisture, water table variance, and the temperature factor in the area. Foliage growth has a direct effect on the radiation performance of your transmitting antenna....

The vegetation surrounding your transmitter plant absorbs and reradiates some of the energy radiated by your antenna. At AM frequencies, the vertical field can be reduced significantly by high grass and green trees near the antenna farm. At FM frequencies, this signal loss can be approximately 2.5 dB. Above 1000 MHz, the losses due to ground scatter, signal absorption, Fresnel zone losses and terrain can drastically change with the green season. Losses can be as much as 10 dB, or more.

You can control the foliage on your property where your transmitter and tower are located. Regardless of your frequency, the area around your transmitter plant should be mowed regularly and kept free of trees. Trees have the greatest effect on your signal.... Tall grass, especially when green or freshly wet, can detune a directional array, upset drive point impedance, mutual coupling factors and significantly degrade the station's performance.

While these remarks are aimed at
vertical AM broadcast antennas and FM arrays, the ideas could apply to Amateur antennas. Most Amateur HF antennas are horizontally polarized, and my personal opinion (apologies to W6FR) is that nearby trees and foliage have relatively little effect on antenna performance in the HF region. In the case of vertical antennas, however, Mr. Pryor’s remarks may be interpreted to mean that foliage and tall grass can affect the operation of the vertical antenna in the HF/VHF spectrum as well as in the broadcast band.

I would appreciate hearing from readers who may have experience in this area to find out what effect, if any, nearby trees and bushes have on the operation of both horizontally and vertically polarized Amateur antennas in the HF and VHF regions.

the W0SVM “shorty-forty” dipole

A good idea and a catchy name! Jack, W0SVM, has spent considerable time and effort designing a compact, practical dipole antenna for city dwellers who don’t have the space to put up a full-size 40-meter antenna and for various reasons don’t want to use a vertical antenna.

Jack wanted to build a simple, rugged antenna that would not have loading coils flopping around out in the elements. He felt that a center loading coil could do the job, if the coil was made properly. After several months of experimentation, he came up with the antenna shown in fig. 4. Briefly, it’s a center-loaded dipole about half the size of the full dipole. The feedline is tapped on the loading coil in such a manner as to provide a good match to a 50-ohm line. The line is cut to an electrical half or full-wavelength and can be run directly to the transmitter or to a transmatch for maximum frequency flexibility. When used with a simple transmatch, the antenna has a 500-kHz passband between the 1.5:1 SWR points.

The resonant frequency of the antenna is determined by the wire sections. The difference in tip lengths between 7.0 and 7.3 MHz is 10 inches. It’s best, therefore, to cut the antenna to that portion of the band in which most of the operating is to be done. Without the transmatch, bandwidth of the antenna is about 150 kHz between the 1.5:1 SWR points.

The shield of the coax line is tapped to the center point of the coil and the center conductor is tapped off-center. Using the 18-foot, 6-inch (5.638 meters) flat-top dimensions, the coil is tapped 11 turns off-center for operation at the low end of the band and at nine turns off-center for operation at the high end of the band.

Exact antenna resonance and the minimum value of SWR can be achieved at any point in the band by changing the tip length of the wires and the feedpoint on the coil. If operation is mainly confined to the high frequency end of the band, the wire sections can be reduced in length to 17 feet 8 inches (5.384 meters). All in all, the design is quite flexible and the resonant frequency and impedance match can be varied at will to suit any spot in the band, and also to match a 75-ohm transmission line, if desired.

The antenna can be erected in the conventional fashion or made into an inverted-V, with the end tips close to ground level. For best results, the center of the antenna should be from 30 to 50 feet (9 to 15 meters) in the air, and relatively clear of nearby objects.

While W0SVM doesn’t mention it, I’ve found it helpful in some cases to wind the feedline into a choke coil directly below the antenna feedpoint. This reduces the RF field on the outside of the coax line and can reduce TVI in some instances. Of course, if the feedline is run parallel to the antenna after the choke is installed, all bets are off because the antenna will be coupled to the feedline by mere proximity. It’s best to bring the feedline down vertically below the center of the antenna to ground level, or to the level of the station, if it’s located on a higher floor. Running the feedline parallel to the antenna element(s) is bad practice, regardless of the type of antenna used.

do you have an unusual antenna?

Do you have an unusual antenna installation that would be of interest to readers? If so, I’d like to see it. Just send a clear pencil sketch of the antenna, including dimensions and the electrical characteristics, such as the SWR or operating bandwidth. A good black-and-white photograph is always appreciated, if the antenna can be photographed! (It’s very difficult to take a decent picture of a wire antenna — although I have a friend who got...
Introducing the BUTTERFLY™
Beam from Butternut!

The HF4B Compact, 2-element Beam for 20-15-12-10 meters

Compact Size
The HF4B's 12½-foot elements and 6-foot boom are ideal for home-station use and for weekend retreats, condos, apartments, and other places where oversized beams are prohibited. Its light weight (17 pounds) means it can be turned with a tv rotator, yet it is robustly constructed in the best tradition of our world-famous Butternut verticals.

Performance
The HF4B BUTTERFLY™ has not sacrificed performance for compactness. Its unique design with fanned elements and L-C circuits avoids use of power-robbing traps yet provided high-efficiency operating on all bands. The BUTTERFLY™ outperforms anything in its class.

The HF4B offers an SWR of 1.5:1 or less at resonance. Its 2:1 bandwidth is 200 kHz on 20 meters, 450 kHz on 15, 1.7 MHz on 10, and across the entire 12 meter band. And it will handle the legal power limits both CW & SSB. Gain is at least 3 dB on 20, 4.5 dB on 15 and 5 dB on 10 & 12 meters. Front-to-back is up to 18 dB on 10, 12 and 20m, and up to 15 dB on 15m.

See your authorized Butternut dealer

BUTTERNUT ELECTRONICS CO.
405 East Market Street
Lockhart, Texas 78644

Gus Browning, W4BPD’s DX’ERS MAGAZINE

For over 17 years, Gus’s DX’ERS MAGAZINE has brought thousands of DX’ERS worldwide, timely, pertinent information on when and where to find those elusive DX stations.

Gus’s personable, chatty writing style and his years of DX operating experience makes the DX’ERS MAGAZINE a unique publication. One year $14.00 USA, Canada & Mexico.

Gus also prints high quality QSLs and other related items. Write today for a free sample of his QSLs and DX’ERS MAGAZINE.

Gus Browning, W4BPD • PO Drawer 405 • Cordova, SC 29039

good pictures of a wire antenna by taking the picture at night, using a camera with a flash attachment.)

Antennas featured in this column will win their owners an autographed copy of my Beam Antenna Handbook.* For those who don’t have an inspirational antenna to talk about, the handbook is available from Ham Radio’s Bookstore.

MXHNY

In closing this December column, I wish my readers a Merry Christmas and a Happy New Year. And may DX be good to you in 1986!

*Available from Ham Radio Bookstore, Greenville, New Hampshire 03048, $9.95 plus $3.50 shipping and handling.

ham radio

SATELLITE TV

buy from a HAM and SAVE

ZTE Communications
Pocatello, Idaho

Complete SYSTEM PACKAGES are available at reduced prices. Call for quotes before you buy.

Here are a few sample prices

- RECEIVERS — we pay UPS Shipping
 - CHAPARRAL SIERRA 85° polaramp, arm — $1350
 - Luxor 9570/9534 02, 85° LNB, arm — $968
 - Drake 424S with Down converter — $950
 - Drake 424S with Down converter — $941
 - Uniden UST 2000 with down converter — $1235
 - Uniden UST 7000 with BDC and 18 inch arm — $1008

- ANTENNAS — 2000 with Black down converter — $413

- JANIEL BG-2000 — $313

- ZTE selo, Chaparral, Drake, Luxor, M/A Com, SBS, Panasonic, Houston tracker, Uniden, Taki, Hynex, Cal amp, MTI, Penel, Sat-Tec, and others!

- ZTE Communications is owned and operated by John Wilson, W4KIU. I am the only employee. I work out of my house, which means lower prices for you!

- Availability and prices are subject to change. Call John after 5 PM mountain time. Telephone 1-208-237-1327 after 5 pm, no collect calls — 185

GROTH-Type

COUNTS & DISPLAYS YOUR TURNS

- 99.99 Turns
- One Hole
- Panel Mount
- Handy Logging Area
- Spinner Handle Available

Case: 2 x 4"; shaft ¾" x 3/8"

Model TC2: Skirt 2-1/8"
Knob 1-1/8"

Model TC3: Skirt 3"
Knob 2-3/8"

TC2 $12.50
TC3 $13.50

Add $1.50 prices include UPS or Parcel Post in USA

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143

DX'ERS MAGAZINE

For over 17 years, Gus’s DX’ERS MAGAZINE has brought thousands of DX’ERS worldwide, timely, pertinent information on when and where to find those elusive DX stations.

Gus’s personable, chatty writing style and his years of DX operating experience makes the DX’ERS MAGAZINE a unique publication. One year $14.00 USA, Canada & Mexico.

Gus also prints high quality QSLs and other related items. Write today for a free sample of his QSLs and DX’ERS MAGAZINE.

Gus Browning, W4BPD • PO Drawer 405 • Cordova, SC 29039

138
PERFORMANCE
THAT IS OUT OF THIS WORLD...

$389.00
MODEL 2000 20MHz
DUAL TRACE

$549.00
MODEL 3500 35MHz
DUAL TRACE DELAYED SWEEP

...AT A DOWN TO EARTH PRICE

At last! Truly affordable test equipment with no compromise in design, and features you would expect to find only on oscilloscopes costing hundreds of dollars more! JDR Instruments presents two, new, high-performance models backed by a two year warranty and technical support which is only a phone call away. Perfect for the technician or advanced hobbyist, both models feature Dual Trace capability and a variety of operating and triggering modes, including CH-B Subtract and X-Y operation.

MODEL 2000 has a 20 MHz bandwidth and 20 calibrated sweeps ranging from .2s to .2μs. A convenient built-in component tester provides additional diagnostic power.

MODEL 3500 features a 35 MHz bandwidth and exceptional 1mV/DIV sensitivity. Delayed sweep and variable holdoff allow stable viewing of complex waveforms.

ORDER TOLL FREE
800-538-5000
800-662-6279 (CA)

JDR INSTRUMENTS
1224 South Bascom Avenue
San Jose, California 95128 (408) 995-5430

COPYRIGHT 1985 JDR INSTRUMENTS. EARTH PHOTO COURTESY OF NASA.
THE JDR INSTRUMENTS LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS IS A TRADEMARK OF JDR MICRODEVICES.
When DISASTER Strikes
YOU May be the Animals' Only Hope

The World Society for the Protection of Animals (WSPA), a nonprofit organization with offices around the globe, takes action to help animals in crisis, responding in times of fire, flood, earthquake, volcanic eruption, oil spills, and civil unrest.

To assure the quickest response to these disasters, WSPA needs the help of ham radio operators in the United States and abroad who can relay critical information to and from international trouble spots.

WSPA is the only organization officially recognized by the United Nations as a consultant on animal disaster issues. We urgently need you and your radio. To register as an animal-emergency operator, simply fill out the coupon and mail it to WSPA, Western Hemisphere Regional Office, 29 Perkins St., POB 190, Boston, MA 02130. We'll be depending on you when animals are in jeopardy.
Call Now For Super CHRISTMAS STOCKING STUFFERS TOLL FREE 1-800-328-0250
NOW **Sinad** CAN BE MEASURED WITH YOUR VOM

- Quickly tune Receivers, Cavities, Preamps, etc.
- Works with your VOM or AC VTVM that has 2.5V full scale sensitivity or better.
- Fast accurate measurements.
- Sinad measurement displayed on meter in “dB” scale.
- Self contained, pocket size, go anywhere instrument.
- Powered by standard 9V battery or optional AC adaptor.

SINADAPTOR SAI-01

$79.95

Please add $3.50 UPS shipping & handling.

NY res. add 7% sales tax

J.S. Technology, Inc.
39 Main Street
Scottsville, NY 14546
(716) 889-3048

R.F. Porta-Tenna

VHF/UHF Telescopic 1/4 & 5/8 Wavelength Antennas for Hand-Held Transceivers & Test Equipment

<table>
<thead>
<tr>
<th>1/4 WAVELENGTH</th>
<th>5/8 WAVELENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>Freq. MHz</td>
</tr>
<tr>
<td>196-200</td>
<td>144-148</td>
</tr>
<tr>
<td>196-204</td>
<td>"</td>
</tr>
<tr>
<td>196-214</td>
<td>"</td>
</tr>
<tr>
<td>196-224</td>
<td>144-UP</td>
</tr>
<tr>
<td>196-814</td>
<td>220-225</td>
</tr>
</tbody>
</table>

Please send large SASE for info.

CADDELL COIL CORP.
35 Main Street
Poulteny, VT 05764
802-287-4055

BALUNS
Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3-30 MHz operation. (See ARRL Handbook pages 199 or 6.30 for construction details.)

- 100 Watt (6.1, 9.1, or 1:1 impedance — Select one) $9.50
- Universal Transmatch 1 KW (6:1 impedance) $13.50
- Universal Transmatch 2 KW (6:1 impedance) $16.00
- Universal Transmatch 1 KW (6:1, 9:1 or 1:1 — select one) $15.00
- Universal Transmatch 2 KW (6:1, 9:1 or 1:1 — select one) $17.50

Please send large SASE for info.

SIDEBAND SQUELCH

AR-200 XL MEDIUM DUTY ANTENNA ROTOR
Select a Heading - Antenna Turns and Stops Automatically

$99.95

CMC COMMUNICATIONS
5479 Jepson Rd., Palm Bay, FL 32914 (305) 885-3295

RF PRODUCTS
P.O. Box 33, Rockledge, FL 32955, U.S.A.
(305) 631-0775
AMTOR, AX.25, and HERMES: a performance analysis of three systems

AMTOR and the AX.25 packet protocol are currently being heralded as the state-of-the-art in Amateur digital communications. This article reports the results of an objective performance analysis of these two systems, and compares each to HERMES, a third, newly proposed system. Four performance measures are described and applied to each system.

applications

In order to choose reasonable conditions under which to evaluate the performance of competing communications systems, it is first necessary to look at the ways Amateurs actually use digital communications.

If you listen to normal RTTY traffic on the HF bands, you’ll find that most Amateurs are engaged in casual conversation. These QSOs are almost exclusively conducted at a 45 baud (60 WPM Baudot) channel rate, with throughput usually limited by the speed at which the respective operators can type. While some of us can type fast enough to keep a 45 baud system running fairly continuously, most cannot.

Other users — though fewer in number — are involved in RTTY traffic nets, using computers or RTTY equipment to relay third-party message traffic. Although surprisingly little RTTY traffic handling actually occurs (compared to the amount handled by CW or SSB) at this time, the availability of improved digital communications schemes may help to encourage the growth of this type of activity.

Some users employ computer data transfer for traffic handling. It is primarily this application for which the AX.25 “packet” systems are designed. And on VHF, packet radio activity is growing rapidly. AX.25 has the capability of supporting conversation just like RTTY, as well as direct computer-to-computer data file transfer.

I believe we should push for a single digital communications scheme that can adequately support all types of users at both HF and VHF, including satellite links. Such a system is not currently in use, nor has one yet been proposed.

Two of the three classes of users described above are dealing exclusively with plain language text, using the Baudot alphabet (or the AMTOR variation of the Baudot alphabet). Computer hobbyists are using ASCII, sending it in an eight-bit format so that arbitrary computer data (as well as text) can be transmitted within that scheme as well. Whatever digital scheme we agree to accept as standard, it should support both types of alphabet.

Those using digital communications for casual conversations are probably not too worried about a few errors now and then in the received text, but would like to see the channel processing their data fast enough (100 bps is probably sufficient). On the other hand, the other two user classes have no tolerance for any hits, and are willing to sacrifice some channel throughput to attain the required reliability. It would be best to have a system that could be conveniently optimized by the operator for each of these different applications.

comparing systems

The following four criteria are useful in comparing the various systems available:

• Throughput under ideal channel conditions. An “ideal” channel introduces no errors, thereby allow-
ing the communications system to run at its highest possible rate. (This is expressed in characters per second (cps).)

- **Robustness.** This is the probability, expressed as a percentage, that the system will falsely accept random noise or badly corrupted characters as valid. Any system must reject (or correct) all corrupted data received under these conditions with high reliability — i.e., have a very low probability of falsely accepting corrupted data characters as valid. (The mathematics used to compute this probability for each of these two systems evaluated is presented in the appendix.)

- **Bit Error Rate (BER) required to stop progress (expressed as a percentage).** It is assumed that random bit errors are occurring at a certain rate. How high must this error rate be to prevent the system from occasionally transferring data successfully? Under these circumstances, the throughput of the communications system is sharply reduced since there are many repeats. But we want the system to make some progress — occasionally, data should be correctly transferred and acknowledged by the receiving end. Other things being equal, it is desirable for a system to be able to tolerate as high a random BER as possible before forward progress is stopped.

- **Minimum Required Error Free Seconds (MREFS)** to maintain progress in forward data transfer. Here a channel generating "burst" errors is assumed. The channel makes no errors for a certain length of time, and then becomes unusable for a certain length of time (an error burst). An interesting parameter of a communications system is how short the "good" period of the channel may be while still allowing successful and correct data transfer to occur occasionally. Other things being equal, a system should have a low MREFS requirement.

To make reasonable comparisons, we will assume that each of the packet protocol systems is being operated with the same type of channel, arbitrarily a 100 bps synchronous channel such as that specified for AMTOR, with a 20 millisecond allowance for radio turn-around from transmit to receive and vice-versa. For consistency, it is assumed that a 5-bit symbol alphabet (Baudot) is being used when specifying throughput performance, even though any of the systems can transfer Baudot, ASCII (7-bit), or arbitrary computer data (8-bit) by employing appropriate alphabet conversion subroutines.

Figure 1 illustrates AMTOR in operation. In the ARQ mode, AMTOR sends three 7-bit characters and then pauses for an acknowledgement signal (one 7-bit character) from the receiving station before proceeding with the next three-character group. If no acknowledgement character is received, the last three-character group is repeated.

Figure 1. AMTOR ARQ mode.

Time relationships are quite specific. AMTOR spends 210 milliseconds sending each group, and 240 milliseconds waiting for the acknowledgement before sending the next group.

Like Baudot, AMTOR uses a 32-character alphabet, but uses 7-bit symbols instead of the Baudot's 5-bit symbols. Each AMTOR symbol is composed of three 0 bits and four 1's, allowing it to detect errors in its received data (sometimes). To do this, AMTOR uses a simple parity check. Each received character must have four 1 bits and three 0 bits; if it doesn't, an error is flagged, and the entire group is discarded and must be repeated.

If the channel makes one bit error per character (or any odd number of bit errors per character) this simple parity check successfully detects the error. But if the channel reverses two (or any even number) of the character's bits, its 4/3 parity ratio will be preserved even though it has now been transformed into a different character of the alphabet. Under these conditions, the AMTOR code will fail to detect the error.

With the channel producing few errors, it is likely that no more than 1 bit error per character will be experienced. When the channel is very poor, however, and is making many bit errors, one has about an equal chance of experiencing an odd or even number of errors. Consequently, there is a 50 percent chance of an incorrect character unintentionally satisfying the parity check.

Figure 2. AX.25 packet format (no repeater ID bytes).
packet system design

Good references for a detailed description of the AX.25 or "packet protocol" are available. AX.25 is an adaptation of the 15-year-old data communications protocol pioneered by the Defense Advanced Research Projects Agency in the 1960s for error-free communications within telephone computer networks. This protocol assumes a telephone channel, or a channel of similar quality (in terms of signal-to-noise ratio, bandwidth, and lack of interference) in its design.

Figure 2 shows the current AX.25 packet makeup: 16 bytes or more of synchronizing and header information at the beginning of each packet, followed by up to 256 bytes of information, with the packet finished out with three final bytes for error checking and flagging the end of the frame. If the packet has been processed by one or more repeaters, seven additional address bytes are added to the packet to identify each repeater, up to a maximum of 9. For purposes of this discussion, use of a simplex channel only, with its requirement for only 19 overhead bytes in an AX.25 frame, is assumed.

Although AX.25 includes a significant amount of overhead in each packet, it is a very good system in light of the environment for which it was originally designed. It is not, however, ideal for use on a channel that doesn't look much like a telephone channel — a narrowband HF channel with fading, noise, and a high error rate, for instance.

Because this system was designed for transmitting computer data, it contains a robust error detecting scheme that provides a good probability of detecting a garbled block regardless of the source or severity of the errors.

Figure 3 shows the flow of activity on a packet channel. Since just one block at a time is sent, and each block must be acknowledged by the receiving station before the next block is sent, a certain amount of channel time is inevitably spent waiting. For our analysis, delays similar to those used with AMTOR are assumed.

The packet protocol is somewhat adaptive. Depending upon channel conditions, the operators can adjust the length of each packet by controlling the number of data characters sent (up to 256) in each block. Thus, when conditions are good and the channel is rarely making errors, a full-size block may be used, with a correspondingly small proportion of the channel time wasted in packet addressing overhead and waiting for acknowledgements. On the other hand, when the channel is very bad, the character count can be greatly reduced to shorten the packets, thus improving the chance of their being received error-free. Very short packets are quite inefficient, however, because of the addressing bytes that must always be included.

For our purposes, then, we will examine the packet systems running with both maximum length packets (even though, in practice, hams rarely use more than about 80 data characters per packet) and extremely short packets (only 16 data characters) as well.

HERMES system design summary

HERMES was designed to be superior to both AMTOR and AX.25 in the Amateur narrowband HF environment. The latest version of a system described in reference 4, HERMES has been used experimentally for the past several years.

The key to HERMES is the use of a Reed-Solomon forward error-correcting code. The chosen code uses a 5-bit symbol alphabet and 31 symbols per block; a typical frame is diagrammed in fig. 4. The coder and decoder are adaptive — i.e. the ratio of data symbols to check symbols in each block is controllable by the operators to allow optimization to channel conditions. The check symbols add redundancy to the data in a special way that allows the system to mathematically correct some symbols in each frame that have been altered or destroyed by the channel. (Reference 4 also provides additional details on how forward error correcting systems work.)

This feature allows HERMES to perform efficiently when channel conditions are favorable, as well as...
when the channel conditions are poor (in this case data transfer efficiency is traded off in favor of gaining additional error correcting capability).

HERMES uses a protocol that assumes a single link (i.e., a pair of stations in contact), but is also designed to accommodate net type operations. Unlike AX.25, it is not configured to allow several simultaneous and independent QSOs on a single channel, thus greatly reducing the number of overhead bytes that must be transmitted in each block.

The system is designed to handle Baudot characters, and conversions of 7-bit ASCII characters and arbitrary 8-bit bytes directly, so that all types of data can be handled with the same efficiency.

The operator can choose any of 48 different configurations that have been implemented; these support 16 different modes in each of the Baudot, ASCII, and byte communications modes. Data transfer efficiency of the system ranges from 93.5 down to 32.3 percent, depending on the degree of error correcting capability chosen. The probabilities of falsely accepting corrupted data as valid vary from 2.6 to 0.0000009 percent; error correcting capabilities vary from 0 (error detection only) to 11 symbol errors per block (35 percent correction capability).

The system can function in an ARQ mode or in a broadcast mode in which no acknowledgements are sent. In the ARQ mode, HERMES sends from nine to 27 data blocks per transmission (depending upon system configuration), after which the link is turned around, and the receiving station sends one “acknowledge” frame to identify all the blocks that were received correctly or were correctable. This pattern is illustrated in fig. 5. Since the ratio of data frames to acknowledge frames is quite high, there are relatively few link turn arounds and little wasted link time spent waiting for radios to switch. In the broadcast mode, HERMES sends the data frames using the same code configurations, but does not wait for acknowledgements.

AMTOR (ARQ) analysis

AMTOR sends three characters (requiring 210 milliseconds), then pauses for 240 milliseconds to allow the acknowledge signal to be received. Therefore 3 characters require 450 milliseconds to send under ideal conditions, resulting in a 6.67 cps throughput.

Under conditions of no signal (random noise input only), AMTOR will recognize a “block” only if it sees three valid characters. Since there are 34 legal characters out of the 128 possible 7-bit characters, the probability of any single character looking valid, with random input, is 34/128 = 0.266. The probability that three such characters in a row are received with only noise input is the third power of this number, or about 1.9 percent.

Under very noisy signal conditions, in which we assume that many bit errors are being experienced, and we assume that a valid signal is being received in addition to the noise, we have a 50 percent chance of experiencing an even number of bit reversals in the received characters. If the odds of receiving an incorrect, but valid-looking, character are 50 percent, then the probability of receiving three of these is the third power of 0.50, or 12.5 percent. This second case is really more relevant to our discussion, and it is this number that we’ll use for our robustness figure for AMTOR.

Just one bit error during each 450 millisecond is enough to stop data transfer progress with this system. This bit error would either corrupt the data transmission or the acknowledge signal, and the corruption of either is sufficient to force a repeat. Once we continually force repeats, the forward transfer of data has stopped. One bit in 450 milliseconds at a 100-bps data rate corresponds to a 2.22 percent BER.

To get data through once in a while, AMTOR needs to occasionally obtain a 450 millisecond window of error-free transmission by the channel. Therefore, for this system, MREFS = 0.45.

maximal frame packet analysis

A maximal length frame (256 data bytes) is used to configure the packet system for performance under ideal conditions. Without the repeater addressing bytes, the standard AX.25 packet requires 19 bytes of overhead for addressing and error checking, so the complete frame is 275 bytes long.

The AX.25 acknowledge frame would consist of just the 19 overhead bytes. With 22.0 seconds required to send the 275 byte information packet at 100 bps and 1.52 seconds required to send the acknowledge packet (plus two 20 millisecond intervals assumed for radio switching), the system requires 23.56 seconds to transfer one frame under ideal conditions. This corresponds to 10.86 cps for 8-bit characters, or 17.36 cps for equivalent 5-bit characters (409 5-bit characters can be loaded into the 256 byte data frame).

By the nature of the 16-bit CRC (Cyclic Redundancy Check) code used for error detection in the AX.25 format, the probability of a corrupted block being falsely accepted as valid is 1.53E-5 (0.00153 percent), regardless of whether we are talking about random noise or a noisy signal input to the system. The CRC is a much more sophisticated algorithm than the simple parity check used in AMTOR, and is much more robust in the presence of massive channel errors.

Since AX.25 is only an error detection scheme, one bit error occurring during every 23.56 seconds would destroy the correctness of either the data frame or the ACK frame, and in either case the data frame would need to be repeated. Therefore, a random BER of
Everything from Superman III to Super Bowl XX.

Everything you always wanted to see on television but were afraid you'd never get.

Over one hundred channels of spectacular entertainment. Of crystal clear reception.
Throughout the house. 24 hours a day.

With no monthly fees. No cable TV.

Come see the entire line of Uniden Satellite Television Systems. It's legal.
It's affordable. And it's a whole new world of television. Right in your own backyard.

Uniden Satellite Television Systems

© Uniden Corporation of America 1985

2410 Ridge Road West
Rochester, New York 14626
716-225-6130
1-800-824-5014
Sales

17 Industrial Street
Rochester, New York 14614
716-454-3630
1-800-824-5014
Service

NATIONAL: 1-800-732-TVRO

More Details? CHECK-OFF Page 134

December 1985
For a Total UHF System, Choose ICOM

ICOM offers a variety of UHF gear to meet your operating requirements... the IC-471H base station transceiver, IC-47A compact mobile, IC-04AT or IC-4AT handheld transceivers, and the RP-3010 crystal controlled repeater.

The IC-471H all mode 430-450MHz base station transceiver provides 10 to 75 watts of adjustable power. With 32 full-function memories, 32 PL tones, memory scan, mode scan and programmable band scan, the IC-471H provides maximum UHF base station performance. The IC-471A 25 watt version is also available.

The IC-47A 25 watt 440-449.995MHz ultra-compact FM mobile provides superb performance in the mobile environment. Measuring only 5 3/8" wide by 1 1/8" high by 9" deep, the IC-47A also features nine full-function memories, 32 built-in PL tones and a complete scanning system. Each unit comes standard with an HM-23 mic with up/down scan and a mobile mounting bracket.

Optional AG-35 Mast Mounted GaAsFET Preamplifier for IC-471H

The IC-04AT top-of-the-line UHF handheld features DTMF direct keyboard entry, LCD readout, 32 PL tones, 3 watts standard (5 watts optional) and 10 memories which store duplex offset and PL tone.

The IC-4AT handheld features 440-449.995MHz coverage, a DTMF pad, 1.5 watts output and thumbwheel frequency selection.

The IC-04AT and IC-4AT come standard with an IC-BP3 NiCd battery pack, flexible antenna, AC wall charger, belt clip, wrist strap and ear plug. PLUS a wide variety of slide-on battery packs and accessories are available.

The RP-3010 crystal controlled UHF repeater covers 430-450MHz and includes CTCSS, 3 digit DTMF decoder and CW ID'er.

See ICOM’s full line of UHF gear at your local ICOM dealer.

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98005 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 47F1104
ICOM's three ultra-compact mobiles...the IC-27A 2-meter, the IC-37A 220MHz and the IC-47A 440MHz...are the smallest mobiles available.

Even in such a small package the 25 watt mobiles contain an internal speaker which makes them fully self-contained and easy to mount.

Size. The ICOM compacts measure only 5¼"W x 1½"H x 7"D [IC-47A is 9" deep]...which allows them to be mounted in various "compact" locations. Yet the compacts have large operating knobs which are easy to use in the mobile environment.

More Features. Other IC-27A/37A/47A standard features include a mobile mount, IC-HM23 DTMF mic with up/down scan and memory scan, and internally adjustable transmit power. An optional IC-PS45 slim-line external power supply and IC-SPI0 external speaker are also available.

32 PL Frequencies. The IC-27A/37A/47A come complete with 32 PL frequencies.

9 Memories. The compact mobiles have 9 memories which will store the receive frequency, transmit offset, offset direction and PL tone. All memories are backed up with a lithium battery.

Speech Synthesizer. To verbally announce the receive frequency, an optional UT-16 voice synthesizer is available.

Scanning. The ICOM compacts have four scanning systems...memory scan, band scan, program scan and priority scan. Priority may be a memory or a VFO channel...and the scanning speed is adjustable.

Stacking Mobile Mounts. The IC-27A/37A/47A can be stacked to provide a three band mobile station. Each band is full featured and will operate even when another band is in use.

The IC-27A/37A/47A provide superb performance in the mobile radio environment. See them at your local ICOM dealer.

First in Communications
Message Master

Real-voice message system
For any repeater or base

Now you can communicate vital information even when the station you are calling is not on the air — with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you - any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your call sign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.

Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging.

- Create messages just by talking. Message Master's 'real-voice' technique saves YOUR VOICE in digital memory to deliver messages in your own voice, language and dialect.
- Mailbox-style operation gives individual message delivery service to 100 system users.
- Easily added to any repeater or base station for remote operation with only four connections.
- Special features include callsign identifications, tail messages, and bulletin messages.
- Digital message storage provides instant playback of stored messages.
- Modular memory meets your exact needs from 2 to 6 minutes of total message storage.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical price.
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.

KENDECOM INC.
MICRO CONTROL SPECIALTIES
23 Elm Park
Groveland, MA 01834
(617) 372-3442
1/2356 or 0.042 percent would stop all progress for AX.25 in this configuration.

By the same token, to get data through once in a while, the channel must occasionally be good for at least 23.56 seconds at a time. So MREFS = 23.56.

minimal frame packet analysis

When channel conditions are very poor, we would want to operate the packet system with a very short frame — let's say just 16 data bytes, in addition to the 19 overhead bytes always required.

With this frame length, we need only 2.8 seconds to send the data frame, and a total of 4.36 seconds to complete a data transfer, including the ACK frame. This corresponds to 3.67 cps for 8-bit data and 5.87 cps for 5-bit characters.

The probability of a corrupted block being falsely accepted as valid is the same as with the maximal frame configuration, 0.0015 percent since this characteristic depends only upon the number of check bits used and the error detection algorithm.

The BER required to stop the system is now 1 bit in 4.36 seconds, or 0.23 percent. MREFS for this configuration is 4.36.

HERMES analysis

Case 1. For the first HERMES configuration we assume a good quality channel and choose a mode appropriate for maximum data throughput and adequate error probability for conversational use. We use a configuration with 29 data symbols and just 2 check symbols per block and operate the decoder in an error-detecting mode only.

For the throughput calculation, we assume the transmission of 27 data frames containing 27 information characters each, followed by 1 acknowledge frame from the receiving station. After allowing for two 20 millisecond switching intervals for the radios, the total time required for the exchange is 43.44 seconds. Since 729 characters are transferred, throughput is 16.78 cps (5-bit characters).

With two 5-bit check symbols and an error detecting mode only, the probability of falsely accepting a bad block is 0.098 percent, regardless of whether we are talking about random noise or a noisy signal being fed into the system.

To stop forward data transfer, we must have 1 or more bad bits in each frame sent by the sending station, which corresponds to one bit error out of 155, or a 0.65 percent BER. We can make some progress as long as at least one frame can get through once in a while, which requires 1.55 seconds, so MREFS = 1.55.

Case 2. For our second example we choose a HERMES configuration with 17 data symbols and 14 check symbols in each frame, with the decoder running in a six-error correcting mode (6 symbols out of each 31 symbol frame can be corrected).

In this configuration, the system will send up to 15 data frames before waiting for an acknowledge frame from the receiving station. This works out to 24.84 seconds to transmit the 15 frames and receive the acknowledgement. 225 characters would be transmitted during this time, for a throughput under ideal conditions of 9.06 cps.

In this mode, the decoder's probability of falsely accepting a bad block as valid is 0.000059 percent.

Since six symbol errors can be made in each frame with the decoder still being able to correct the block, this corresponds to one symbol in every five being in error. In order to stop forward progress, then, we must have one character in every 4 be in error. This corresponds to a random bit error rate of 1 in 20, or 5 percent.

On a bursty channel, we must be able to receive at least 25 symbols of a block without error in order to be able to correct it completely. This corresponds to MREFS = 1.25 seconds.

Case 3. For this example we assume a very poor channel, and are willing to sacrifice additional throughput to enhance the forward error-correcting power of the code. Here we use a configuration with 11 data symbols and 20 check symbols per block, and we allow the decoder to correct up to 10 errors per frame.

In this configuration, HERMES will send 9 data frames at a time before waiting for an acknowledgement, and spend 15.54 seconds doing it. In these 15.54 seconds, 81 characters will be transferred, for a throughput of 5.21 cps.

In this configuration, the probability of the decoder falsely accepting an invalid block is 0.00000029 percent.

Since the decoder can correct 10 symbols out of a 31 symbol frame, a channel making random bit errors can destroy every third symbol, and the decoder will still be able to fully correct the frame. Therefore, to stop the system, the channel must corrupt one symbol out of every two, for a random bit-error rate of 10 percent.
On a bursty channel, we need to get 21 symbols out of every frame transmitted without error, so MREFS = 1.05.

performance summary

Table 1 summarizes the performance figures we have developed for each of the competing schemes. Once again, the ideal system would have a high throughput, a very low robustness percentage, a very low BER required to stop, and a very low MREFS.

AMTOR can absorb up to a 2.22 percent random channel BER before being stopped, and needs only 0.45 seconds to make progress, which is good, but the fact that it has a 12.5 percent chance of falsely accepting invalid data as valid is disqualifying. We can, and should, do much better than that.

The two AX.25 packet configurations evaluated, which fully bracket the usual operating configurations, represent the extremes of performance available with the AX.25 protocol. First, we see that packet’s probability of falsely accepting invalid data is fairly low, which is good. 0.0015 percent is low enough for most purposes, and might need augmentation only when very large files are transferred at high data rates at UHF and beyond. (This figure equates to the acceptance of one bad frame in about 67,000.)

The maximal packet configuration produces a good throughput figure of 17.36 cps, but at the expense of allowing only a 0.042 percent random BER before being stopped and requiring 23.56 seconds to get a packet through. As we said before, if you have a good enough channel, this will work nicely. Good channels are pretty easy to get at VHF, but HF is another story.

The minimal packet configuration allows the channel BER to increase by a factor of 5, up to 0.23 percent and reduces the minimum required error-free seconds to 4.36, which is more realistic for an HF channel. The throughput, however, has now dropped to 5.87 cps.

HERMES configuration 1 was chosen to obtain the highest possible throughput while maintaining a robustness adequate for conversational communications. It achieves a 16.78 cps throughput, which is very nearly as good as the AX.25 protocol under the best of conditions, and it does this while allowing a 0.65 percent BER before being stopped (this is 15 times more tolerant than the maximal length packet scheme), and an MREFS figure of just 1.05 seconds (1/15th the minimum required time for maximal length packet). Robustness in this configuration, 0.098 percent, is not as good as the AX.25 figure, but is more than adequate for the intended application, casual conversation.

Comparing the performance of HERMES case 1 to the minimal length packet case, we see that the packet scheme runs at about one-third the throughput and is still about three times less tolerant in both BER and MREFS.

HERMES configuration 2 was chosen for use on a moderately degraded channel, and in an application where high accuracy was required. Its 9.06 cps throughput falls midway between the extremes of the AX.25 configurations and its robustness is several orders of magnitude better than AX.25. Interestingly enough, it does this while being even more tolerant of channel errors, now allowing a 5 percent random BER before being stopped, and requiring 1.25 error-free seconds to transfer data. Comparing these figures to those for the minimal length packet scheme, HERMES is providing 54 percent more throughput while allowing a 27 times greater random BER in the channel, and requiring “good channel” bursts only one-third as long as AX.25. All these factors translate to superior performance by HERMES.

Even though the performance of AMTOR is disqualifying, due to its poor robustness, it is interesting to note that in this case, HERMES provides 36 percent more throughput. And while AMTOR does excel in the MREFS department, requiring only 0.45 seconds compared to 1.25 for HERMES, HERMES will allow more than twice as high a random BER before being stopped (5 percent versus 2.2 percent, overall), therefore, HERMES wins the comparison here, too.

Chosen for use on a very bad channel, HERMES case 3 allows a throughput of 5.21 cps, slightly worse than the minimal length packet case. But it has a phenomenally low probability of falsely accepting invalid data (0.0000029 percent), and can withstand a
The Problem Solvers

IM Suppression Panels

R.F. Power Monitoring

Receiver Multicoupling

Duplexers & Preselectors

Bandpass, Pass-Reject and Notch Cavity Filters

Transmitter Combining
150 - 900 MHz

COMPLETE SYSTEM ENGINEERING ASSISTANCE

TELEWAVE, INC.
1155 TERRA BELLA, MOUNTAIN VIEW, CA 94043
(415) 968-4400 • TWX 910-379-5055

More Details? CHECK-OFF Page 134
Conclusion

Although AMTOR has excellent burst error performance, its probability of falsely accepting invalid data under poor conditions (at 12.5 percent) makes it a non-competitor when systems like AX.25 and HERMES are considered.

Under good channel conditions the AX.25 packet scheme does very nicely, with good throughput and adequate robustness, but it bogs down rather rapidly once channel conditions start to degrade, since it has no capability for forward error correction.

HERMES combines, in one adaptive system, the capability to achieve very nearly the same throughput as AX.25 under ideal conditions, as well as very nearly the burst error performance of AMTOR. It allows convenient optimization and is able to tolerate a much higher rate of random channel errors than is either AMTOR or AX.25 due to HERMES's use of powerful Reed-Solomon forward error correcting codes. It represents the next step in flexible and robust digital communications.

Appendix

The probability of falsely accepting a corrupted data block (an "Undetected Bad Block") will be denoted as \(P_{\text{UBB}} \). It can be computed as follows for an error-correcting or error-detecting algebraic block code (such as the CRC or Reed-Solomon codes.)

For an error-correcting code:

\[
P_{\text{UBB}} = \frac{(A-1)^E}{AC}
\]

where:
- \(A \) = \(2^m \) (the code alphabet size)
- \(m \) = the number of bits per codeword symbol
- \(m = 8 \) for AX.25 CRC, \(m = 5 \) for HERMES
- \(A-1 \) = \(2^m - 1 \)
- \(E \) = the number of errors being corrected by the decoder
- \(C \) = the number of check symbols in each codeword

\[
(A-1)/E = \text{the combinatorial factor for (A-1) things taken E at a time}
\]

For an error-detecting code:

\[
P_{\text{UBB}} = \frac{1}{AC}
\]

where: \(A \) and \(C \) are defined as above for error-correcting codes.

References

ROHN brings the top to you with its patented design. For the ultimate "on the ground" service and antenna installation, a ROHN "Fold-Over" Tower is your best buy. Your safety comes first with "Fold-Over." For complete details write:

ROHN
"FOLD-OVER" TOWERS
P.O. BOX 2000, PEORIA, IL 61555 U.S.A.
TWX 910.652.0646 FAX 309.697.5612
AN AMERICAN OWNED COMPANY

"TUNE IN" THE WORLD OF SPECIALIZED COMMUNICATIONS!

Thousands of "Ham Radio" operators across the country are enjoying "Specialized Communications" modes. Whether it's FSTV, SSTV, FAX, OSCAR, EME, RTTY, PACKET or COMPUTERS, today's Radio Amateur is a highly skilled Communications Specialist!

Providing full, in-depth coverage of these modes is our business and we've been doing it for over 19 years! And now we're expanding!

SPEC-COM™
Amateur Radio Specialized Communication Journal
P.O. Box H
Lowden, Iowa 52255
(319) 944-7669 (Membership Services)

The professional meter for amateur radio.
The standard of the electronics industry is setting a new standard for amateur radio use as well.
The Fluke 77 multimeter is ideal for testing and repairing any amateur radio gear. It's inexpensive, easy to use, and filled with professional features. Plus a full line of accessories let you measure high frequency, high voltage and current, and temperature. Made in the U.S.A. and backed by a 3-year warranty, the new Fluke 77 is the world's first handheld meter to combine analog and digital displays.

For a free brochure or the distributor nearest you, call toll-free 1-800-227-3800, ext. 229. Or write John Fluke Mfg. Co., Inc., P.O. Box C9090, Everett, WA 98206. Distributor programs available.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
Falcon Communications, Well Known For MOSFET Repeater Power Amplifiers, Also Makes A Hard Working Line Of Bipolar Power Amplifiers For Mobile/Base Use. Our 2 Meter Amplifiers Include:

Model 5121 2 Watts in = 150 out 1 Watt in = 90 out List $285
Model 5122 10 Watts in = 150 out 2 Watts in = 50 out List $275
Model 5123 30 Watts in = 150 out 10 Watts in = 90 out List $235

A FEW FEATURES:
1) Made in the USA
2) All mode (FM, SSB, CW)
3) Optional plug-in receive preamp
4) Automatic COR or remote keying
5) Built in thermal protection
6) Full 1 Year warranty

For Information On Our Complete Line See Your Local Dealer Or Call Factory Direct

P.O. Box 8979 • Newport Beach, CA 92658
(714) 760-3622

Alpha Delta Model DX-A
160-80-40 METER
QUARTER WAVE TWIN SLOPER ANTENNA

The Model DX-A combines the tremendous firepower of the quarter wave sloper with the wide bandwidth of a half wave dipole. Simple to install, quick to tune. Proven longhaul DX performance.

- Installs like an inverted-V dipole. One leg for 80 meters (67') and the other leg for 160/40 meters (55'). Fed with a single 90 ohm coax. 50-239 connector provided on mounting bracket.
- Configuration provides wide bandwidth on all three bands. Typically 70 kHz on 160 meters. 200 kHz on 80 meters and full band on 40 meters. Much wider than most other loaded slopers, dipoles or verticals. Tuner usually not required.
- Model DX-A also operates on 30-17-12 meters. VSWR of less than 2.5:1. Easily matched with a tuner.
- High-power operation. Rated at 1800 watts P.E.P. output. No traps to break down. A single "I0-RES" isolator-resonator is used in the 160/40 meter leg.
- Current lobe up high for maximum radiation and excellent DX performance. Can be installed from 25 to 40'-high.
- The Model DX-A Antenna is fully assembled, uses all stainless steel hardware, a UV-protected "I0-RES" coil. #12 copper wire and is rated for severe environments. Specially coated wire disappears from your neighbors' view.

$49.95 Available from your local Alpha Delta Dealer or add $4.00 shipping and handling (USA only).

Electronic Repair Center
Servicing
Amateur Commercial Radio

The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS
Servicing "Hams" for 30 years, no rig too old or new for us.
Imagine yourself relaxing in your favorite easy chair. You have done your research, compared all the features of the new handhelds and now you have made the purchase for which you have been waiting so long. It feels good to relax knowing the decisions were made after considerable research through the magazines and data sheets for all the available models.

Comparing the ST-20T, it was obvious that the Santec simply works better ... and the price was nice also. Which feature was it that really made you decide on the Santec ST-20T? Was it the two seven-digit number autodialer? Perhaps it was the ability to use all 10 memories with a different frequency, tone, and offset. Or could it have been the ease with which the ST-20T was programmed from the keyboard? Perhaps it was the honest values in construction and quality for your hard earned dollars? It could have been all of these things and more because the SANTEC ST-20T is the handheld truly worth holding.

- TWO SEVEN-DIGIT AUTO DIAL MEMORIES • ONE HAND, ONE FINGER
- SIMPLIFIED KEYBOARD ENTRY OF INFORMATION • 142-150.965 OPERATION
- FOR M.A.R.S. AND OR C.A.P. • TEN MEMORY CHANNELS FOR 10 DIFFERENT
- REPEATER OPERATIONS PLUS 'SCANLOCK' FOR LOCKOUT OF ANY ONE
- CHANNEL OR MULTIPLE CHANNELS WITHOUT REPROGRAMMING •
- SANTEC'S MULTIPLE MODES OF SCANNING • 3.5—5 WATTS OUTPUT •
- DIRECT 12 V.D.C. OPERATION • SUB-AUDIBLE TONE COMPUTER
- CONTROLLED • MICROPROCESSOR CONTROLLED ENCODE/DECODE
- OPTION AVAILABLE • TIME OF DAY QUARTZ CLOCK • ANALOG METER
- MOUNTED FOR BEST D.F. ING • AUTOMATIC ENTRY OF STANDARD OFFSET
- FOR BAND WITH EACH NEW ENTRY • ANY CTCSS TONE IN ANY MEMORY
- CHANNEL • SLIDE ON/OFF BATTERY PACK COMPATIBILITY
- • SANTEC/ENCOMM, INC.'S TWO YEAR EXTENDED
- SERVICE PERIOD AT NO EXTRA COST •
The **TITAN** final amplifier may be your final amplifier

Model 425 TITAN
Linear Power Amplifier

We have been accused of "over designing" the TITAN. And certainly, by cutting corners, it could be built at lower cost. But we think, in the long run, it will be an investment in reliability, flexibility, and the pure enjoyment of a permanent addition to your station — long after the price is forgotten.

Every component is chosen to work well below its rating. The power transformer is our own, using a "Hypersil" tape wound core, generously designed for excellent regulation. Capacitors and inductors are also made in-house for close quality control.

The TITAN uses two 3CX800 tubes that will loaf along at 1,500 watts output. And, as they require lower plate voltage than older tubes, insulation breakdown is less likely.

We think we have included present and future needs. Things such as full break-in and operation on 160 meters and all authorized bands. A separate power supply makes station layout easy for most convenient operation. And if you use AMTOR, SSTV or RTTY, there is no problem with continuous operation.

The TITAN could easily be your final **FINAL AMPLIFIER**.

See your dealer or write

Crowley Mfg. Co. 95 Federal St. Lynn MA 01905

CASE HISTORY!
For 2AT/3AT/4AT w/standard batt.
from delta zulu

$24.95
free U.S. shipping
made in U.S.A.
90 day limited warranty

See through keypad window and instant access to all switches front, top, back plus unique zippered battery door. Fits with or w/o ICOM clip. Looks, feels and fits great. Black or burgundy tailored vinyl. Call (617) 599-3090.

"HAM HOTLINE"
THE PROVEN MONEYMAKER
The "Ham Hotline" is a complete mailing list of novice amateur radio operators and current hams who have renewed, upgraded or modified their FCC licenses. These ham enthusiasts have proven to be excellent prospects for radio equipment, accessories and publications.

The Hotline is **UPDATED EVERY TWO WEEKS** with an average of 8,000 names and addresses each month. And, because we know the Hotline is the most up-to-date amateur radio listing available, we'll guarantee 98% deliverability.

Target your sales efforts to your most likely buyers. Call DCC Data Service today and begin your subscription to the "Ham Hotline" — the proven moneymaker.

DCC Data Service
1990 M Street, N.W. Suite 610
Washington, D.C. 20036
Toll-free 1-800-431-2577
In DC & AK 202-452-1419

COMPACT 75 M SSB TRANSCEIVER

Complete Kit $199.95
plus $3.00 shipping and handling

RECEIVER:
Frequency 3.8 - 6.0 MHz
Sensitivity 0.5 w for 10 dB S/N
Selectivity -6 dB @ 2.4 kHz
AGC Range +60 dB in +3 dB out
Audio Output 350 mV into 8 ohms

TRANSMITTER:
Frequency 3.8 - 6.0 MHz
Output 30 watts into 50 ohms
IMD -30 dB
Harmonics 2°, 4°, 3°, 5°, 55 dB
SWR Immunity 30 to all phase angles
AIC Amplified, fast response rate (quasi-processing)

POWER REQUIREMENTS:
Voltage 26 Vdc regulated
Current 2A transmit, 65 mA receive

SPS DIST.
Complete Line of Satellite Receiving Systems
SPS
San Pierre, IN
(219) 828-7255 — 828-3091
tracking the hideous intermittent — part 2: thermal intermittents

In Part 1 of this two-part series we dealt with the problem of troubleshooting mechanical intermittents. In Part 2 we’ll discuss thermal intermittents and their solution.

Both heat and cold can affect a piece of electronic equipment for the worse; in its most blatant form, the set refuses to operate properly under either hot or cold conditions. During the winter Amateur mobile equipment is subjected to the local overnight temperature, which may be as low as 40 degrees below zero in some areas. During the summer, on the other hand, mobile equipment will be subjected to temperatures considerably above local air temperatures. In 1963, when a major automobile electronics company began experiencing reliability problems with its new solid-state models, it asked employees to leave their cars unlocked so that the engineers could measure the cabin temperatures. After four hours in 90-degree sunlight, the interior temperatures were found to be 140 degrees at the front seat and up to 180 degrees behind the dashboard!

These extremes of temperature can result in some peculiar intermittents. One familiar form is the set that won’t work when you get into the car, but will work ten minutes after the heater or air conditioner has altered the cabin temperature.

Equipment used at the home or base station doesn’t suffer the extremes of ambient temperature, but nonetheless may experience temperature-related intermittents. Typically, a set will either fail to work at all until it heats up, or will work nicely until it reaches a certain temperature and then fail. Even when an intermittent isn’t specifically related to temperature, its frequently true that changes in temperature will aggravate the situation, thereby allowing you to find it more easily.

when the problem is heat

First, let’s talk about how to heat up a set. Use a high-wattage lamp, sun lamp or hair dryer for general area heating to determine that the fault is temperature sensitive, rather than mechanical in origin. In a piece of equipment containing general power devices (or vacuum tubes), we can often heat up the circuits just by placing a box, towel, or blanket over the unit. This method is particularly useful for thermal faults that occur only in the cabinet. The thermal fault will continue for a few minutes after the box, towel, or blanket is removed, allowing time for troubleshooting.

Although area heating will give you the time needed to troubleshoot a fault, it won’t help you find a specific thermally sensitive component. For this chore we must use local area heating. Several methods are available. A small high-intensity lamp, for example, will allow heating of a small area on a PCB. A soldering iron or gun will concentrate heat on an even smaller area almost to the exact component. (Be careful, — the hot tip of the soldering tool can damage some components, especially polyethylene capacitors.)

Another method used for heating individual components is shown in fig. 1. In this approach, the heat source is a 6 or 12-volt incandescent lamp. A No. 47 or No. 1891, for example. A small cylinder made of some material such as insulated sleeving ("spa-
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M</td>
<td>$680</td>
<td>$880</td>
</tr>
<tr>
<td>2M, 220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>$780</td>
<td>$980</td>
</tr>
</tbody>
</table>

FEATURES:
- **SENSITIVITY SECOND TO NONE:** 0.15 uV (VHF), 0.2 uV (UHF) TYPE.
- **SELECTIVITY THAT CAN’T BE BEAT!** Both 6 Pole Xtal Filter & Ceramic Filter for > 100 dB at ± 12 kHz, Helical Resonator front end for exceptional selectivity, > 100 dB at ±12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xtrans.
- **OTHER GREAT RECEIVER FEATURES:** FLUTTER-PROOF SQUELCH, AFC to compensate for off freq. transmitters, separate local speaker amplifier & control.
- **CLEAN, EASY TUNE TRANSMITTER, UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).**

RECEIVING CONVERTERS
Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less.

<table>
<thead>
<tr>
<th>Antenna Input Range</th>
<th>Receiver Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-32</td>
<td>144-146</td>
</tr>
<tr>
<td>30-50</td>
<td>144-146</td>
</tr>
<tr>
<td>50-54</td>
<td>144-146</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
<tr>
<td>28-30</td>
<td>144-146</td>
</tr>
<tr>
<td>30-50</td>
<td>144-146</td>
</tr>
<tr>
<td>50-54</td>
<td>144-146</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
<tr>
<td>28-30</td>
<td>144-146</td>
</tr>
<tr>
<td>30-50</td>
<td>144-146</td>
</tr>
<tr>
<td>50-54</td>
<td>144-146</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
</tbody>
</table>

LOW-NOISE PREAMPS
Hamtronics Breaks the Price Barrier!

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 28 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Very Stable

<table>
<thead>
<tr>
<th>Model</th>
<th>TUNES RANGE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNC-28</td>
<td>26-30 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNC-50</td>
<td>46-56 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNC-144</td>
<td>137-150 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNC-160</td>
<td>150-172 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNC-220</td>
<td>210-230 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNC-432</td>
<td>400-470 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>LNC-800</td>
<td>800-960 MHz</td>
<td>$49</td>
</tr>
</tbody>
</table>

ACCESSORIES
- **MO-202 FSK DATA MODULATOR.** Run up to 1200 baud digital or packet radio signals through any FM transmitter. Automatically keys transmitter and provides handshakes. 1200/2400 Hz tones. Kit only $45.
- **DE-202 FSK DATA DEMODULATOR.** Use with any FM receiver to detect packet radio or other digital data in “202” modern format. Provides audio conditioning and handshakes. Kit only $38.
- **ON-220**
- **COR-2 KIT** With audio mixer, local speaker amplifier, talk & time-out timers. Only $38.
- **COR-3 KIT** as above, but with “courtesy beep”. Only $56.
- **CWID KITS** 158 bits, easily field programmable, clean audio. Kit only $60.
- **A16 RF TIGHT BOX** Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.
- **DTMF DECODER/CONTROLLER KITS.** Control 2 separate on/off functions with touchtones®, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $90.
- **AUTOPATCH KITS.** Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $90. Requires DTMF Module.
- **SIMPLEX AUTOPATCH.** Use with your FM transceiver. System includes DTMF & Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.

TRANSMIT CONVERTERS
For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

<table>
<thead>
<tr>
<th>Exciter Input Range</th>
<th>Antenna Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-30</td>
<td>144-146</td>
</tr>
<tr>
<td>30-50</td>
<td>144-146</td>
</tr>
<tr>
<td>50-54</td>
<td>144-146</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
<tr>
<td>28-30</td>
<td>144-146</td>
</tr>
<tr>
<td>30-50</td>
<td>144-146</td>
</tr>
<tr>
<td>50-54</td>
<td>144-146</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
</tbody>
</table>

HELICAL RESONATOR PREAMPS
Low-noise preamps with helical resonators reduce intermod and cross-band interference in critical applications. 12 dB gain.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tuning Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRA-144</td>
<td>143-150 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>HRA-220</td>
<td>213-233 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>HRA-432</td>
<td>420-450 MHz</td>
<td>$59</td>
</tr>
<tr>
<td>HRA()</td>
<td>150-174 MHz</td>
<td>$54</td>
</tr>
<tr>
<td>HRA()</td>
<td>450-470 MHz</td>
<td>$64</td>
</tr>
</tbody>
</table>

- **SEND $1.00 for 40 page CATALOG**
 (Send $2.00 or 4 IRC’s for overseas mailing)
- **Order by phone or mail** Add $3 S & H per order
 (Electronic answering service evenings & weekends)
- **Use VISA, MASTERCARD, Check, or UPS COD.**

Hamtronics Inc.

56-E MOUL ROAD • HILTON NY 14468

Phone: 716-392-9430 Hamtronics Inc. is a registered trademark
ghetti”) is designed to fit over components such as transistors and some integrated circuits. The heat source is placed in the open end, thereby concentrating the heat only on the component under suspicion. The tale will be told in about 30 seconds.

The indication that the component being tested is bad will be obvious. There will be a sudden change of operation, or a sudden increase in the noise produced by the circuit — the change is only rarely subtle.

![fig. 2. Freeze spray will cool off components.](image)

when the problem is cold

“Cold” can mean anything from room temperature to arctic temperatures. When equipment fails to operate in this range, area cooling is in order.

Area cooling is more difficult, in some cases, than area heating. Try putting small devices (up to, say, the size of a mobile transceiver) in the refrigerator for about an hour. I still fondly recall the looks on the faces of shocked boat radio customers when I placed their “won’t work on cold days” VHF-FM transceivers in the shop refrigerator. (Many of those rigs are merely overpriced variants of 2-meter FM ham rigs, by the way). In most cases, 30 to 60 minutes in the refrigerator yields 5 to 10 minutes of troubleshooting time.

Local cooling is necessary for isolating components. Use a can of freon “freeze spray” as shown in fig. 2. (Electronic supply stores sell this product under several different brand names. The stores most likely to carry freeze spray are those whose clientele includes radio/TV/audio repair shops.) Be careful not to spray too wide an area. Freeze spray is expensive and general area cooling won’t help you find the bad components anyway. Use the spray only on individual components or small groups of components.

You can verify identification of the bad component by reheating it with soldering iron or the gizmo shown in fig. 1.

If the problem repeatedly appears and disappears on heating/cooling cycles, then you’ve found the source of the problem. Even if the problem isn’t consistently repeatable, however, we can “work the odds” and replace the component “on speculation.”

Our final method for fixing intermittents is another shotgun approach. In this case, however, we replace components on a “scattergun” basis. (I can hear the howls from here! I admit it’s not very elegant, and provides no balm at all to save the ego of the technical genius. After all, any dumb grunt can unsolder a half dozen components and replace them But let’s consider some facts of life.)

I once worked in a hospital electronics laboratory that repaired clinical equipment. The emphasis was on low-cost, rapid repairs. One famous brand-name patient monitor used vintage circuitry. The ECG preamplifier and the DC power supply regulator used literally dozens of 2N3393, 2N3906, and 2N3904 plastic small-signal transistors. These transistors were typically connected six to eight at a time in circuits with multiple feedback and signal paths, all direct coupled. (Troubleshooting in circuits like this is a dog.) At that time, those transistors cost us $25 per hundred in bulk-packed bags. It takes 15 minutes to replace eight small transistors that cost $2 total. A total of 30 minutes put the equipment back on line.

The situation is only a little different for you. The biggest difference is that you buy transistors in overpriced blister packs rather than lots of a hundred; that’s the price paid for buying onesie-twosies. Nevertheless, when the troubleshooting problem seems intrac-table, shotgunning components is a practical alternative!

You can be almost as efficient by removing components one at a time and testing each one as you go. If you find the faulty components, then it’s a reasonable bet that the job is done. Unfortunately, the nature of intermittents — and Murphy’s law — means that this form of troubleshooting frequently fails.

have a question for Joe Carr?

Send your question to Joe Carr, ham radio, Greenville, New Hampshire 03048. While not every letter can be answered personally, he will try to answer as many as possible in this column.
— Ed.
26th Annual
TROPICAL HAMBOREE
FEBRUARY 8-9, 1986
EDWARDS BUILDING, ARNOLD BUILDING AND COLISEUM
DADE COUNTY YOUTH FAIR GROUNDS
TAMAMI PARK, MIAMI, FLORIDA

- FREE PARKING 15,000 VEHICLES
- 1000 INDOOR SWAP TABLES W/POWER
- AMATEUR RADIO & ARRL PROGRAMS
- LICENSE EXAMS
- QCWA HOSPITALITY CORNER
- CONSUMER ELECTRONIC DISPLAYS
- SATELLITE DISH GARDEN
- HAMBOREE DEALER SPECIALS
- 300 RV SPACES WITH FULL HOOKUPS
- 200 COMMERCIAL EXHIBIT BOOTHS
- DX FORUM & DINNER
- PACKET RADIO DEMONSTRATION
- RCA FL. SECTION LUNCHEON
- COMPUTERS AND SOFTWARE
- 2 DAYS OF PROGRAMS FOR NON-HAMS
- TRAFFIC HANDLERS BREAKFAST

Registration: $5.00 Advance . . . $6.00 Door (Valid Both Days)
Swap Tables, 2 Days: $16.00 Each, Includes Power, Plus Registration Ticket
RV Parking: $10.00 Per Day, Includes Water, Power, & Sanitary Hook-ups
Hotel Reservation Cards for Special Rates Available - Dec. 1st
(Advance Price Deadline on Registration Tickets, January 20th)

MAKE CHECKS PAYABLE TO: DADE RADIO CLUB, INC., P.O. BOX 350045, MIAMI, FL 33135

Exhibit Booth Information: Evelyn D. Gauzens, W4WYR, Chairman
2780 N.W. 3 Street, Miami, FL 33125

Telephone: 305-642-4139

Now You Can Receive
The Weak Signals With The

ALL NEW AMECO PREAMPLIFIER

Model PT-2 is a continuous tuning 6-160 meter Pre-Amp and master power station control. It is specifically designed for use with a transceiver. The PT-2 contains new sophisticated control circuitry that permits it to be added to virtually any transceiver with no modification. No serious ham can be without one. Other features include: * Improves sensitivity and signal-to-noise ratio. * Boosts signal up to 26 db. * For AM or SSB. * Bypasses itself automatically when the transceiver is transmitting. * FET amplifier gives superior cross modulation protection. * Advanced solidstate circuitry. * Simple to install. * Provides master power control for station equipment.

Model PT-2 .. 117 V. 60 Hz. .. $94.95
Model PT-2E 220-240 V., 50-60 Hz. $99.95

AMECO EQUIPMENT CO.
220 East Jericho Turnpike, Mineola, New York 11501
516-741-5030

This publication is available in microform from University Microfilms International.

Please send information about these titles:

Name __________________________
Company/Institution ________
Address _________________________
City _____________________________
State __________ Zip __________
Phone __________________________

Call toll-free 800-521-3844 in Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to: University Microfilms International, 300 North Zeeb Road; Ann Arbor, MI 48106.
THE STANDARD OF EXCELLENCE
Definitely Superior!

AZDEN PCS-5000
COMMERCIAL — GRADE

UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140.000—
151.000 MHz in steps that can be set to any multiple of 5 kHz up to
50 kHz.
CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range
facilitates use of CAP and ALL MARS FREQUENCIES including
NAVY MARS. COMPARE!
TINY SIZE: Only 2 inches high, 5½ inches wide and 7¼ inches
deep!
MICROCOMPUTER CONTROL: Gives you the most advanced-
operating features available.
UP TO 11 NONSTANDARD SPLITS: COMPARE this with other
units!
20 CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains
frequency, offset information, PL tone frequency.
DUAL MEMORY SCAN: Scan memory banks separately or to-
gether. ALL memory channels are tunable independently.
COMPARE!
MEMORY SCAN LOCKOUT: Allows you to skip over channels
you don't want to scan.
TWO RANGES OF PROGRAMMABLE BAND SCANNING: limit-
ate quickly reset. Scan ranges separately or together with inde-
pendently selectable steps in each range. COMPARE!
BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied
channel. Delay scan provides automatic auto resume.
DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT):
Always sets on frequency desired when scanning.
PRIORITY MEMORY AND ALERT: Unit constantly monitors one
memory channel for signals, alerting you when channel is
occupied.
LITHIUM BATTERY BACKUP: Memory information can be stored
for up to 5 years even if power is removed.
FREQUENCY REVERSE: Allows you to listen to repeater input
frequency.
ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are
easily seen in the dark, and actuation is positively verified audibly.
CRISP, BACKLIT LCD DISPLAY: Easily read no matter what the
lighting conditions.
DIGITAL S/RF METER: Shows incoming signal strength and rela-
tive transmitter power.
MULTI-FUNCTION INDICATOR: Shows a variety of operating
parameters on the display.
FULL 16-KEY TOUCHTONE PAD: Keyboard functions as auto-
patch when transmitting.
MICROPHONE CONTROLS: Up/down frequency control and
priority channel recall.
PL TONE GENERATOR BUILT IN: Instantly program any of the
standard PL frequencies into the microcomputer. COMPARE!
TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibil-
ity and audio fidelity. COMPARE!
HIGH/LOW POWER: Select 25 watts or 3 watts output — fully
adjustable.
SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for
20-dB quieting. Commercial-grade design assures optimum dy-
namic range and noise suppression. COMPARE!
DIRECT FREQUENCY ENTRY: Streamlines channel selection and
programming.
OTHER FEATURES: Rugged dynamic microphone, built-in speaker,
mobile mounting bracket, remote speaker jack, and all cords,
plugs, fuses and hardware are included.

EXCLUSIVE DISTRIBUTOR DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 80-3356

MANUFACTURER
JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku, Mitaka, Tokyo. 181 Japan

Telex: 781-2822452
I MICROCOMPUTER ELECTRONICS CORPORATION NOW OFFERS THE M.E.C. 71α COMPUTER CONTROL INTERFACE THAT WILL CONTROL AND EXPAND THE CAPABILITY OF THE ICOM R71α.

MAIN MENU: Control center for entire system. Showing 24HR, UTC time, radio freq., & mode; memory CH, freq., mode plus ID functions for your selection.

32 CH RADIO MEMORY: Showing freq. in 10 Hz, mode, filter w/n. Load/change any memory, mode, filter direct from keyboard and print command.

32 PAGE MEMORY: Showing page 1 of 47 pages each having 15 memories. Freq., mode, UTC time and room for your notes. Auto log feature allows instant logging of receiver freq., mode, time.

AUXILIARY MEMORY: Showing entire function. UTC time and freq, plus ID mode. UTC time and freq, plus ID mode.

- Easy to use. No computer knowledge needed, automatic program loading. No disk or tape required (except for aux. memory storage).
- Menu driven to aid user at each step.
- No radio modification necessary (ICOM EX309 - not supplied - required).
- AUTO LOG Allows logging of radio freq., mode and time by press of a key.
- UNLIMITED STORAGE via computer disk or tape (store 705 CH per disk side). Let your imagination run wild.
- Software update. As new software is developed MEC will make it available to owner subscribers.

HATS: come who never met to spot names and calls. How about an attractive BASEBALL CAP. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

I.D. BADGES

No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

- UID Engraved I.D. Badge $2.50

Please Enclose $2.00 to cover shipping and handling.

GET ALL THE DETAILS. WRITE OR CALL EEB TODAY

SAVE

SAVE

1983-84

ARRL

AMATEUR RADIO

CALL DIRECTORY

WAS $15.75

NOW $4.95

SAVE $10.80

Please add $3.50 to cover shipping and handling

Ham Radio's Bookstore

GREENVILLE, NH 03048
Old Wives’ tales and trivia

It’s hard to believe that two years have passed since my first column appeared in Ham Radio.

Before I accepted K2RR’s invitation, I spent much time trying to determine what kind of information would be required and how it should be organized. I knew that the material would have to be interesting, informative, easily understood, technically correct, and presented in proper sequence.

The selection of general topics was easier. After all, I knew that antennas, receivers, transmitters, propagation, and test equipment were invariably favorite subjects of conversation whenever Amateurs got together. So I narrowed these general topics down to a list of specific technical subjects I thought most VHFIUHFers would find useful and then tried to arrange them — in building block fashion — in such a manner that all the basics would eventually fall into place. This may explain why I didn’t jump into highly technical subjects — such as microwaves — right away.

Finally, I drew on my vast file of letters, both those answered and those I hadn’t had time to answer. These clearly identified both the subjects of greatest interest and those subjects that Amateurs find most confusing. This immediately flagged specific items within the more general list of topics that needed special attention. Some letter writers, of course, asked for articles about microwaves. They had to wait, since microwaves wouldn’t be easy to discuss without a base to draw on.

Finally, the list of actual column topics and their tentative scheduling was complete. You’ve seen the result; in future columns, I’ll try to cover new subjects, expand on subjects already covered, and explore further up into the microwave spectrum.

In the meantime, if you’re following this series and can spare a few minutes, I need a favor: please drop me a note telling me what you liked and disliked about this column so far. Be frank. If I did a botch job on any subject, left you hanging on some item or left out a major point, let me know so I can try to correct the situation in a future column. I’ll draw heavily on the letters for future topics.

Of course, as I’ve stated before, I can’t possibly cover everything, nor can I answer all letters received. Just like you, I have only 24 hours in a day and a family that needs at least some of my time. After all, this is supposed to be a hobby!

So let’s take a break from the usual format and see how sharp you are. This will be your final exam on the first 23 installments and associated references listed therein. With the help of some of my VHFIUHF friends and lots of letters to draw from, I’ve put together some trivia, some facts, some fallacies, and a few old wives tales. I hope they’ll be fun to discuss and at the same time provide informative answers.

antennas

Let’s start with everyone’s favorite subject — antennas — and see what kind of old wives tales, etc., we hear. Keep score, and no open books!

1. “If your antenna stayed up last winter it wasn’t big enough.” This is an original quote from one of the greatest VHFIUHFers ever, Sam Harris, ex W1FZJ, W1BU, KP4DJN, etc.

2. “Always put your antenna as high as possible to get the best DX.” This statement is obviously not true. Maybe you live in Southern California. Or maybe you had a mild winter. Even better yet, maybe you built a big antenna but engineered the mechanics properly. It’s nearly impossible to anticipate everything. How can any antenna survive a hurricane with winds exceeding 100 mph (161 kmph)? And how can you prevent your neighbor’s tree from falling on and snapping your guy wires?

Tom, K8MMM, put it quite humorously in a recent letter: “If an outlandishly super-huge spectacle of an antenna doesn’t stay up through anything nature has to afford for a particular area, it was too big, amateurishly conceived, and when down, due to all of the above — its owner is one of the least-heard-from and weakest things on the face of the earth!”

All things being equal, you can design a good antenna system with adequate gain if you follow the rules given in references 1, 2, and 3. Reference 4 discusses mechanical considerations and tubing strengths. Do build your antennas large enough, but not too large, and do so only with adequate mechanical strength!

3. “If your antenna stayed up last winter it wasn’t big enough.” This statement is obviously not true. Maybe you live in Southern California. Or maybe you had a mild winter. Even better yet, maybe you built a big antenna but engineered the mechanics properly. It’s nearly impossible to anticipate everything. How can any antenna survive a hurricane with winds exceeding 100 mph (161 kmph)? And how can you prevent your neighbor’s tree from falling on and snapping your guy wires?

Tom, K8MMM, put it quite humorously in a recent letter: “If an outlandishly super-huge spectacle of an antenna doesn’t stay up through anything nature has to afford for a particular area, it was too big, amateurishly conceived, and when down, due to all of the above — its owner is one of the least-heard-from and weakest things on the face of the earth!”

All things being equal, you can design a good antenna system with adequate gain if you follow the rules given in references 1, 2, and 3. Reference 4 discusses mechanical considerations and tubing strengths. Do build your antennas large enough, but not too large, and do so only with adequate mechanical strength!

2. “Always put your antenna as high as possible to get the best DX.” This statement is basically true. However, there is a law of diminishing returns. First, if you’re fortunate enough to be situated on a hilltop and have no obstructions, there’s little to be gained by going up over 3 to 5 wavelengths. There’s a problem if your
takeoff angle gets too low, especially when using F2, aurora, and sporadic-E propagation. At five wavelengths' height the takeoff angle will be about 3 degrees. Both EI2W and VE1ASJ found that often the optimum F2 signals come in with the antenna tilted upward several degrees! Ten wavelengths high is a real waste of time. If you do put up a large antenna on a high tower, it just may be large enough to meet the requirements spelled out by K8MMM.

Furthermore, especially on the UHF and microwave bands, the feedline loss can be horrendous. Depending on frequency, going up an additional 50 feet (15 meters) may increase the effective gain by 1 dB while incurring another 2 dB feedline loss, an overall net loss of 2 dB in station performance. For VHF/ UHFers I offer the following rule: go high enough to clear local obstructions and STAY THERE. This is probably high enough!

3. “Collinears are preferred over Yagis because they have broader bandwidth and larger capture area.” This is truly a fallacy. While the bandwidth of a collinear antenna may be greater than a Yagi’s, the matching method is often the limiting factor. Also, what good is bandwidth when most VHF/UHFers never stray more than 50-100 kHz from the calling frequencies?

As for capture area, this is a frequently misunderstood concept that was discussed in depth in reference 3. Capture area is directly related to gain regardless of the physical configuration of the antenna. Note that the capture area of a Yagi is usually much greater than its width and height, while with a parabolic dish it’s the reverse, typically only 55 to 60 percent of the area of the dish.

As discussed in reference 1, the choice of a collinear is primarily one of cost versus physical area. The collinear is usually a low-cost antenna, but takes up lots of area. The Yagi, while more critical to design, has less physical area and allows multiple antennas even on different bands on the same mast. The bandwidth doesn’t usually enter into the final decision at all.

4. “Always stack Yagis two-thirds of the boomlength apart.” Under certain conditions, typically with intermediate (2 to 3 wavelengths) Yagis, this may be true. However, for the vast majority of designs in use, and particularly the long Yagis, this would be a gross error.

This two-thirds boomlength rule was a common misconception when the effects of capture area were poorly understood. Stacking antennas too closely results in low gain, while stacking too far apart (especially with Yagis), gives high sidelobes and a beamwidth so narrow as to make aiming the antenna properly very difficult. Check the beamwidth. For VHF/ UHFers I offer the following rule: go high enough to clear local obstructions and STAY THERE. This is probably high enough!

5. “The best Yagi designs are the ones produced by NBS.” The NBS Yagis were a great stride forward. For once we had a cookbook with measured results. However, only six of the original NBS designs were provided in NBS Technical Note 688. That represents only a small percentage of Yagi designs available to date.

The noteworthy item about the NBS Yagi antennas is that if they are properly duplicated, they will work to specification. However, if one of the six designs doesn’t fill your requirements, or if you need a longer boomlength, there are no other NBS designs available.

Today there are literally an infinite number of other designs that will fit any length of boom desired. Furthermore, using computer optimization techniques, up to 0.5 dB gain improvement is possible using existing Yagi designs such as the NBS 4.2 wavelength design. We’ve just begun to open up a whole new area for improved Yagi antennas.

6. “T matches should be used on high performance Yagi antennas since Gamma matches don’t work very well.” This fallacy has been around for some time. It was fueled when all the new high-performance Yagi antennas, using balanced feeds and T matches, started springing up in the late 1970s. The Gamma match is capable of good performance. But it tends to inject a small imbalance into the design, which can cause a slight pattern skewing. The latter effect can be obviated by unbalancing the length of the driven element.

Establishing a good ground for the Gamma return path is difficult. Hence, at UHF frequencies, the transmission line often gets hot and the VSWR and radiation pattern of the antenna changes as the feedline is moved to different positions. Furthermore, the size of the gamma rod can get out of proportion at the higher frequencies.

Therefore, a good T match with a built-in balun is hard to beat, especially when antennas are to be stacked. It takes more hardware, however, than a Gamma match and can be lossy if the balun design is not properly handled.

7. “Every time the size of an antenna array is doubled, the gain increases by 3 dB.” This is true only in theory. Most antennas don’t have a perfectly rectangular capture area or a clean pattern free of sidelobes. As a result, antennas usually have to be stacked more closely than desired, with a resulting loss of gain.

Stacking harness loss — which can approach 0.5 dB! — cannot be ignored. This is why the backplane feed system is recommended at the higher frequencies and where long transmission lines are used.

Failure to provide sufficient mechanical strength not only in the individual antenna to be stacked but in the stacking frame can also cause gain to be lower than expected. Therefore, an array of long Yagis with a few feedlines is recommended over an array of smaller Yagis with more feedlines. Plan on a 2.5 dB increase for each doubling of the array size.

8. “Sidelobes rob power and lower antenna gain.” This is not necessarily true. The relationship of gain to sidelobe ratios was discussed in reference
2. It was shown in reference 3 that if the sidelobes are down 15 to 18 dB in the antenna to be stacked, the grating lobes in the final array should be down 13 dB for optimum gain. However, if the antennas to be stacked have side-lobes 13 or less dB down before stacking, they can’t be optimally stacked. Each case must be studied separately, using references 2 and 3.

9. “A good antenna requires a balun.” Not true. As stated above, a Gamma match can be effective. A well designed balun can do a great job of eliminating any radiation from a transmission line. But an improperly designed balun, or one that uses a lossy transmission line, can actually lower the gain of the antenna. Proceed with caution and keep all balun losses as low as possible.

10. “Front-to-side and front-to-back ratios are important antenna design parameters.” This statement is only partially true. The lobes at 90 degrees off boresight on a properly designed and built Yagi antenna are virtually at infinity in the E plane. A good front-to-back ratio may seem desirable for eliminating an interfering signal off the back of an antenna, but ratios exceeding 20 dB are not going to measurably improve gain or noise temperature. Furthermore, the angle subtended by the rear lobe is typically narrow so it is of dubious value. In a contest, it may be to your advantage to have some rear lobe radiation so you don’t miss a new station or multiplier off the back of your antenna.

11. “The more elements in a Yagi antenna, the higher the gain.” This is definitely false. Note that the NBS 4.2 wavelength Yagi has 15 elements, or two fewer elements than the 3.2 wavelength design. Yet it has more gain. What’s more important in a Yagi antenna design is where the elements are placed with respect to each other (proper inter-element spacing) and the respective lengths of each director. There is a minimum number of elements to optimize the gain for each boom length. However, while extra elements may not be required, they can frequently be used to improve pattern and bandwidth of the design.

12. “Stacking improves gain and performance.” Properly executed, the gain of an array is improved if it’s properly stacked. Unfortunately, the operational performance may be degraded. For instance, if the beamwidth is too narrow in the horizontal plane, the array may not be optimum for meteor scatter operation, where the signals frequently arrive off the path. Also, auroral propagation may be degraded by vertical stacking. The proper stacking, be it vertical or horizontal, is a function of the type of propagation desired.

operating

1. “The best place to operate is right on the calling frequencies since that’s where the action is.” Unfortunately, there’s plenty of truth to this statement, especially when good propagation conditions are occurring, such as during meteor shower and sporadic-E openings. This has been a real problem ever since the concept of VHF/UHF “calling frequencies” was instituted in the U.S.A. in 1978. It’s really sad, since it usually deprives all but the largest stations from sharing in the DX. If the calling frequency concept is properly used, stations will call CQ or an appropriate station and immediately QSY to a different frequency so that others can then use the calling frequency. Always remember to QSY at least 10 kHz away from the calling frequency. QSYing only 5 kHz away very often causes QRM to other stations listening on the calling frequency, especially if adjacent stations are strong or if there is any splatter.

2. “146.52 MHz is a good frequency for VHF contest operation since there are so many stations that operate there.” This frequency has been controversial for some time. In the early days of FM operation, most rigs were crystal-controlled and 146.52 MHz was often the only simplex crystal provided when the rigs were purchased. Hence it became a common meeting frequency for those who use simplex channelized FM. But as time went by, this frequency became very congested. What’s more, it became a calling frequency for FM’ers as well as a frequency for passing emergency traffic. So it became a real sore point when contesting invaded 146.52 FM.

For the present, it’s rather a moot question since contests — at least those run by ARRL — are no longer permitted on this frequency. Suffice it to say that this frequency should be used only as a calling frequency and for passing emergency traffic. Once contact is established, a quick QSY to one of the adjacent FM channels is suggested.

3. “Scheduling stations during a contest, especially those stations out of your area, helps to improve your score.” This is probably not true unless you’re a big contest station and desperately need every possible multiplier. Schedules do attempt to bring together people who normally may have difficulty casually running into each other. But schedules frequently take up valuable contest time. If too much time is used on schedules, there’s a possibility that you may miss contacts by not working random stations that stay around for only a short time. Scoring must be carefully evaluated to see where your strengths and weaknesses lie.

4. “Everyone should develop his or her own style of operating procedures.” This is an individual preference. It’s always interesting when someone develops a new procedure that increases or improves communications. Such cases that quickly come to mind are meteor scatter and EME QSO procedures. But Amateurs who try to invent new procedures should be prepared to have lots of failures unless others know what they’re up to! Confusion may follow when new routines or procedures are adapted. Signals on VHF/UHF are often weak, and any changes in operating procedures from
Merry Christmas from Dan, Sandi, Laura, Rick, Mark, Steve, Russ and the “Q”}
those normally used could cause confusion and incomplete QSOs.

propagation

1. “Operation on EME requires an investment of thousands of dollars.” This is no longer true, especially if you’re resourceful and are willing to build much, or even all, of your own gear. The most costly items associated with EME operation are usually the antenna system and the power amplifier. There are now more than enough antenna designs available to enable you to “roll your own” EME antenna for any band where EME operation is presently conducted. Their performance can equal or exceed that of any commercially available antenna.

 Likewise, there are plenty of designs available for power amplifiers. There’s no need to run expensive tubes unless you want to go to the legal limit. Many active EME’ers (including yours truly) have never run over 750 watts of output power and have been quite successful. You can also purchase or trade amplifiers.

 Full legal power can definitely increase success ratios. Power helps when conditions are poor or if one of the EME stations is only marginal. (For further information, see references 16 and 17. The bibliographies at the end of these references provide more than enough information to help you keep costs down.) The best advice I can give on keeping costs low is to try tested and proven designs. Avoid inventing new designs that may be more costly — especially if they’re not successful!

2. “The Perseids meteor shower always peaks on the morning of August 11.” This is a myth. There are times every few years when this meteor shower does peak on this date and time. But you have to remember that the showers occur at the same time each year unless they’re deflected by a planetary encounter. Since our year is 365.25 days long (that’s why we have a leap year every four years), the shower, in Earth time, will occur approximately 6 hours later each year!

 Even though the shower may peak at a specific time, that may not be the best time for a schedule, since the radiant* of the shower may not be in the proper location for communication in the direction desired. For example, it won’t be very productive to operate when the radiant of the shower is on the other side of the earth, even if it is during the peak of the shower! (See references 13 and 18 for further information on this and other questions about meteor scatter communications.) At the end of each month’s VHF/UHF World column I list the latest updated information on the predicted peak of the major showers; please note that this information does not include the location of the radiant.

3. “Circular polarization is the only way you can operate on OSCAR.” This has been proven false many times by those who regularly operate the satellites. It’s true that circular polarization can yield up to 3 dB improvement on transmitting and receiving the satellites.

 However, due to the geometry involved, the “sense” of circular polarization may actually reverse. As a result, you’d be significantly weaker on circular polarization during these times than if you used linear polarization if the sense reverses.

 The bottom line is that you can use linear polarization on OSCAR with the possibility of a greater fading rate. Circular polarized antenna systems are recommended, but only if they provide the capability for switching sense from clockwise to counterclockwise as required.

4. “Good openings always occur with a high barometer.” This is particularly true for tropospheric propagation, but is not true for aurora, F2, sporadic E, etc. In North America, the best tropo openings seem to occur during the spring near the Gulf of Mexico, during the summer on the California-to-Hawaii path, and during the summer and fall in the more northern latitudes.

 Furthermore, the best tropo openings usually occur when a slow-moving high pressure (30.3 inches or 1025 millibars) area is present and mixed with warm moisture from the south. (For further information, see references 6 and 19.)

5. “The VHF/UHF bands are always open. It’s just a case of no activity.” This is a definite fallacy. I frequently hear this statement right after a VHF contest when the propagation conditions were good and there were lots of mountain-top stations. The dates of the ARRL June and September VHF QSO parties were purposely chosen to coincide with periods that have proven, over the years, to offer a high probability of extended openings. The August UHF and the spring Sprint contests are usually popular even though extended openings are few because of poorer propagation conditions at that time of year.

 High locations do give some DX extension by virtue of the fact that they see a more distant horizon than a low-altitude station. Most mountain-toppers have shorter feedline and fewer obstructions to limit propagation. Although there are admittedly more mountain-top operations during the contests, there are fortunate persons who own mountain-top QTH’s and are on the air year ‘round. They can testify to the inaccuracy of the falsehood above.

 Many good openings go undetected or are caught by only a few avid or lucky operators. Openings are missed mainly because of low, uncoordinated activity. We all know the frustration of calling a CQ with a highly directive antenna, only to find out later that a DX station was heard in our area, but that he had his antenna pointed in a different direction at the time of our CQ.

 The best way to catch openings is to watch weather maps, be vigilant during the most likely seasons for openings, monitor the calling frequencies, take advantage of propagation beacons, and adhere to nightly schedules as well as uniform activity nights and hours.*

 *Radiant = the point in the sky from which meteors appear to emanate.
6. “It takes a hurricane to get a good tropo opening.” I have long observed that the good openings at higher latitudes often occur when hurricanes occur south of the path (references 6 and 9). But there are exceptions — for example, the Gulf of Mexico opening in the spring, and openings in the fall in the more northern latitudes.

What's required for an opening is explained in item 4 above. Yet the coincidence of longer DX openings occurring when hurricanes are present cannot be denied. Hurricanes cause low pressure areas to develop. These low-pressure areas affect high pressure areas, causing them to build up and move slowly — this slow movement, combined with the warm moisture drawn from the low pressure area, results in extended openings.6

receivers

1. “You need a GaAs FET preamp to work DX on the VHF/UHF bands.” This is definitely false. How do you explain all the DX before solid-state devices were available in the 1960s? There are plenty of good JFETs, MOSFETs, and bipolar transistors that yield low noise figures (1 to 2 dB), which is more than sufficient for non-EME modes where local noises are frequently the limiting factor in communications.

There's no denying that GaAs FETs are becoming very popular.20 In many cases, they’ve improved receiver sensitivity. But the fallacy that they’re the only devices that work well has probably been irrevocably spread since antenna-mounted preamplifiers are now quite popular and most use GaAs FETs.

2. “A low noise figure receiver will always outperform one with a high noise figure.” You can’t deny that receiver sensitivity is a great factor in communications. After all, “If you can’t hear them, you can’t work them.” But noise figure is only one part of the equation. High dynamic range is also extremely important, especially if other strong stations are present. Low-noise preamplifiers often have poor dynamic range.20 High gain ahead of a mixer, especially a poor one, can cause blocking and IMD as well as other annoying phenomena.21

Many modern receivers, and in particular the synthesized HF transceivers, have very poor phase noise and are easily overloaded.22 Therefore, in order to hear the weak ones, attention must be paid to the dynamic range as well as the noise figure of the receiver.

3. “28 MHz is a good IF for a VHF/UHF converter.” Generally speaking, this is true. Attention must be paid to dynamic range, as just discussed. However, when you go up into the UHF frequencies, image rejection becomes a real problem.23 It’s not a trivial problem to filter out an image only 56 MHz away from a 1296 MHz converter without incurring some undesirable filter loss.24 Image rejection or image recovery mixers are recommended.23 For simplicity, 2-meter (144-144.5 MHz) IFs are an acceptable alternative and are becoming very popular.

4. “A 1 MHz crystal calibrator makes an accurate VHF/UHF frequency calibrator.” This is definitely false. Crystals below 3 MHz (because of their “cut”) are usually much less stable than those between 3 and 10 MHz.25 Furthermore, 3 and 4 MHz markers are very convenient because they can place loud, easy-to-find calibration points in most receivers on 144 MHz and above.

The calibrator discussed in reference 25 is highly recommended and should be an essential part of every well-equipped VHF/UHF station regardless of the equipment used. Your success rate drops dramatically when you don’t know your frequency within at least 1 kHz, especially on EME and meteor scatter communications.13,16,17

5. “You need a Hewlett Packard 8970A noise figure meter to accurately tweak a preamplifier to its lowest possible noise figure.” This is definitely false. There were plenty of optimized low-noise preamplifiers long before the HP 8970A arrived on the scene a few years ago. The older AIL models 74 and 75 as well as the HP 340 series gave good results.

The principal reason for the popularity of the HP 8970A is that it’s quick and easy to use, measures both noise figure and gain simultaneously, and has a digital readout with 0.01 dB precision. It’s been shown, however, even by the manufacturer, that the results are probably only accurate to ±0.5 dB. It’s also been shown more recently that preamplifiers with poor input VSWR (such as most GaAs FETs) can cause large measurement errors (up to 0.5 dB) if you don’t use a noise tube with at least 10 dB of extra internal attenuation (such as the newer HP 346A type).20

Don’t be fooled by digital readouts and extravagant claims. What’s really important is whether your preamplifier is optimized to the minimum noise figure it can deliver (this can be done with either the older or newer instruments) and how it stacks up with other designs (comparison at noise figure measurement parties).

6. “A 1N21 or back biased transistor makes a good noise figure generator.” This is usually untrue. Many of the older 1N21 type of noise generators had terrible VSWR that caused the preamplifier under alignment to be optimized to the noise generator impedance rather than to 50 ohms. This can also be true with transistors. Always use at least 10 dB of attenuation, preferably an attenuator “pad” with low (1.2:1 maximum) VSWR, between your noise generator and the device-under-test. (See item 5 above.)

7. “A Dow-Key relay won’t have sufficient isolation at VHF/UHF frequencies.” This can be misleading unless the specific type of relay is stated. Some of the Dow-Key relays have an extra isolation feature. Other manufacturers also have isolation problems.

It has been pointed out that for safety’s sake, the power entering a low-noise preamplifier should not exceed 10 milliwatts and 100 milliwatts at worst case.18 It was also shown in
REGULATED POWER SUPPLIES
Magnetically Regulated Available from 5V to over 1000V with current range from 50 to over 100A. Designed to supply large peak current demands.
Electronically Regulated Voltage range is 0 to 50V with a current range of up to 20A. Ideal for critical laboratory or service applications requiring tight regulation with low hum and noise.
HF Linear Amplifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Power</th>
<th>Special Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-2XL</td>
<td>160-150 MHz</td>
<td>25W</td>
<td>Solid state amp</td>
<td>$599.00</td>
</tr>
<tr>
<td>IC-305</td>
<td>3/10W</td>
<td>500W</td>
<td>External power supply</td>
<td>$699.00</td>
</tr>
<tr>
<td>IC-214</td>
<td>100W</td>
<td>250W</td>
<td>External power supply</td>
<td>$799.00</td>
</tr>
</tbody>
</table>

Deluxe Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Power</th>
<th>Special Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-702</td>
<td>2500 MHz</td>
<td>500W</td>
<td>10W power supply</td>
<td>$799.00</td>
</tr>
<tr>
<td>IC-703</td>
<td>3000 MHz</td>
<td>750W</td>
<td>External power supply</td>
<td>$799.00</td>
</tr>
</tbody>
</table>

Standard Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Power</th>
<th>Special Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-701</td>
<td>2500 MHz</td>
<td>500W</td>
<td>External power supply</td>
<td>$799.00</td>
</tr>
<tr>
<td>IC-703</td>
<td>3000 MHz</td>
<td>750W</td>
<td>External power supply</td>
<td>$799.00</td>
</tr>
</tbody>
</table>

For a Limited Time!

With the purchase of an IC-271A/H or IC-471A/H get the matching Preamplifier for only $100 Extra.

Accessories

- **IC-751** 5-band VHF/1.30 MHz, 1399.00
- **IC-20A** 500 Hz CW filter, 149.00
- **IC-305** 2500 MHz, 500W, 699.00
- **IC-306** 3000 MHz, 750W, 699.00

Other Accessories

- **IC-20A** 150W external power supply, 149.00
- **IC-20B** 500 Hz CW filter, 149.00
- **IC-305** 2500 MHz, 500W, 699.00
- **IC-306** 3000 MHz, 750W, 699.00

HOURS: Mon. thru Fri. 9-5:30; Sat. 9-3

Milwaukee WATS line: 1-800-558-0411 answered evenings, weekends, and after 8:00 pm Monday through Thursday.

Please use WATS lines for ordering. Use regular lines for other information and service department.
reference 16 that for optimum results and safety, a two-relay system is recommended. The second relay should return the preamplifier to 50 ohms during transmit to prevent amplifier oscillation and possible destruction during transmission periods.

It was further pointed out in references 16 and 26 that the length of transmission line between the two relays is important if the increased isolation is to be obtained. Suffice it to say that much more attention should be paid to the relay types used and at least 50 dB of transmit-to-receive isolation is highly recommended, especially when high power is used.

8. “I built it just like the article and it didn’t work.” Oh, how often authors hear this statement! For this very reason I’ve often spent hours carefully writing and then rewriting my column to make sure that everything is perfectly clear. Proof copies are carefully scrutinized several times through the various stages of production. However, bugs do occasionally creep in!

Suffice it to say that all circuits should be duplicated exactly as shown (providing that an error hasn’t crept into the schematic!) unless you have enough test equipment and experience to outwit the author. I must admit that I will sometimes not publish new designs for fear that they may be too complicated or will be likely to cause a rash of angry letters. If you alter an author’s circuit, however slightly, or substitute a different part than specified, don’t blame the author or ask him for help if you experience a problem!

transmission lines

1. “Open-wire transmission line has less loss than coax.” This is probably true if the VSWR on the open wire line is low, or if there’s no contamination or moisture on the insulators. However, open wire lines must be relatively straight and be kept away from other lines and antennas. As a result, coaxial cable, even though it may have slightly higher loss, may be more desirable, especially when multiple antennas and feedlines are present on the same mast. (For further information on this subject, see references 4 and 5.)

2. “Always cut phasing lines in multiples of one-half wavelength.” This theory was debunked in reference 4, where it was pointed out that for proper power distribution, odd numbers of quarter-wavelength feedlines are preferred. (Refer to reference 4 and its references for further information on this subject.)

3. “The way to improve EME antennas is to replace all coax with open wire lines.” This subject was discussed in detail in references 4 and 5. For many of the reasons mentioned above, coaxial cable, properly chosen and used, may be preferable to open wire line.

4. “You need a Bird wattmeter to accurately measure transmitter output power and VSWR.” This is also not true. There are other suppliers of good accurate power/VSWR meters. Most power meters have their own limitations. For instance, the accuracy of the power indicated is usually only ±5 percent of full scale. This means that a 5-watt error is possible on the 100-watt scale. This can really affect the power measurement at a 25-watt power level on the same scale!

VSWR measurement accuracy is affected by the directivity or ability of the instrument to be able to distinguish between a true and a poor VSWR. Typically 20 to 30 dB is the limit, meaning that VSWR readings below 1.2:1 may be inaccurate.

Accurate readings of VSWR can be accomplished at low levels using the techniques and inexpensive coupler or VSWR bridge described in reference 27. If you build a hybrid coupler similar to the one in reference 27, you can build your own power meter and calibrate it against a borrowed meter. Unless you’re measuring power near the legal limit or are trying to measure the efficiency of a high-power amplifier, an expensive power/VSWR meter is not required. But once you use one, you’ll be hard pressed to do without it.

5. “A 1.5:1 VSWR is good enough.” This is true. But where is the VSWR measured, and how accurate is the VSWR meter? Reference 5 pointed out that the length and loss of the transmission line between the antenna under test is extremely important on VHF and higher frequencies. For instance, a line loss of 7 dB (not uncommon on some of the higher bands where long runs are needed) transforms an open or short circuit (infinite VSWR!) at the far end into 1.5:1 VSWR at the near end.

It can’t be stressed enough that for optimum performance on the VHF and the higher bands, the quality of the VSWR meter as well as the feedline loss must be accounted for when testing for VSWR!

6. “RG-58 can be used on 432 MHz.” True — but the results may be disastrous! This type of line normally has a loss of over 10 dB per 100 feet (30.5 meters) and can handle only about 75 watts safely at 432 MHz. So RG-58 coax cable should be used only sparingly in places where the line loss is not critical.

7. “PL259s are OK at 432 MHz.” True. But this is so only if the PL259 is properly integrated with the coaxial cable. It must be stressed that the PL259 is not watertight, doesn’t have a guaranteed VSWR, and probably can’t handle much power on the UHF frequencies. Therefore, it should be avoided if at all possible.

8. “Heliax” and hardline transmission lines are too expensive for Amateurs.” This is a common misconception. The cost of generating high power at VHF/UHF frequencies and high transmission line losses are usually the limiting factors in successful communications. Placing preamplifiers at the top of a tower helps the receive path, but transmitters (especially the high power tube type) are not readily mounted at the top of a mast.

Good quality feedline such as Heliax and hardline, with their low insertion
We Give You VHF Without VHC:
(* - Very High Cost)

Presenting Microwave Modules, the low-cost way to full-fledged multi-mode operation on 50 MHz, 144 MHz, and 432 MHz.

Expand your HF transceiver's capabilities for less than the cost of a VHF multi-mode radio.

All models feature:
* 25 Watt HF output
* Low Noise GaAsFET front-end
* Transmit ALC circuit
* RF limited V08 TR switching
* All-mode operation — SSB, CW, FM, AM
* Easy hack-up to your present HF transceiver

AVAILABLE FROM:
THE "PX" SHACK
VHF/UHF EQUIPMENT
Ivars Lauzums KCI2PX
52 Stoneway Drive
Burlington, N.J. 08502
(201) 874-6012

CMC COMMUNICATIONS, INC.
5479 Jetport Industrial Blvd. • Tampa, FL 33614
Phone: 813-885-3996

DOCKING BOOSTER
Converts Your HT to a Powerful Mobile Unit
30 or 50 watts output
16 DB GaAs FET pre-amp
Fits on most car doors
Mic hang-up clip
Icom, Yaesu, Kenwood
2 Meters & 70 cm

$149.95

CMC COMMUNICATIONS, INC.
5479 Jetport Industrial Blvd. • Tampa, FL 33614
Phone: 813-885-3996

DOCKING BOOSTER
Converts Your HT to a Powerful Mobile Unit
30 or 50 watts output
16 DB GaAs FET pre-amp
Fits on most car doors
Mic hang-up clip
Icom, Yaesu, Kenwood
2 Meters & 70 cm

$149.95

CMC COMMUNICATIONS, INC.
5479 Jetport Industrial Blvd. • Tampa, FL 33614
Phone: 813-885-3996

The monthly magazine with a natural blending of two popular hobbies — Ham Radio and Computers
* Articles on Ham Radio & Most Personal Computers
* Hardware & Software Reviews
* Various Computer Languages
* Construction Articles
* Much Much More

"...received my moneys worth with just one issue..."
— J. Trenbick

"...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination..."
— Fred Blechman, K6UGT
loss, will not only deliver the most "bang for the buck," but will also frequently outlast lower cost transmission lines by a 2 to 5:1 ratio. If remote relays are used, they can do double or even better duty by servicing multiple antennas. As a result, the high initial cost is quickly amortized over the years and the performance is top notch to boot. Couple this with the favorable prices often found at flea markets and you have a super bargain!

9. "The G-line is a nickname for the chorus line at a burlesque house." I ask this question to see if you’re still awake. “G-line” was mentioned in my October, 1985, VHF/UHF World Column. It’s basically a single wire transmission line similar to a toy “string telephone.” It has many exciting possibilities for low loss and inexpensive installations. See the October article for further information.

transmitters

1. “VHF/UHF amplifiers typically have 20 dB of gain.” This theory, which has been around for some time now, invariably causes grief when someone discovers that you can’t run 1500 watts of output with a 10-watt driver. Typically speaking, the gain of most VHF amplifiers is 15 to 20 dB and 10 to 16 dB at UHF. This is only if the amplifier is operated in linear service. Class C has lower gain and is not recommended for reasons mentioned in reference 14.

The more modern grounded grid triodes frequently have 3 dB lower gain than this although they are usually more stable than the older neutralized designs. When you buy or build an amplifier, check the specifications beforehand and see what the drive requirements will be. You may need an additional driver to get the output power expected from your amplifier.

2. "You can run a single 4CX250B at 500 to 600 watts output.” True, but your tube won’t last very long! Amateurs seem to have a thing about running devices past manufacturers’ ratings! They frequently provide insufficient cooling to boot. Better read references 14 and 15 and drop your power, too. Both you and the tube will be friends for a longer time!

3. "You can’t operate 2-meter EME without an 8877 amplifier." If there ever was a misconception, this is it. Hundreds of Amateurs operate EME without running the legal limit or using a high power tube like the 8877.

Other tubes that will deliver the same power14,16 are available. Tubes can also be run in parallel. You can operate EME with as low as 500 watts of output power if you’re patient, have sufficient antenna gain, and “have your act together.”16,17

4. "Speech processing extends your SSB transmitting range and prevents you from splatterting." This statement is true as long as you use the speech processing properly and don’t overdrive your transmitter. All too often, Amateurs not only run their amplifiers in a highly non-linear fashion but also run improperly adjusted speech processors. If you run speech processing, the duty cycle on the power amplifier will increase. If you don’t increase cooling to the final stage, you could experience premature failure.

5. “If your maximum output power level is 100 watts you should occasionally see that power level register on SSB peaks on your output power meter.” Boy, here’s another big lie. Ever since reasonably priced power meters became available, they’ve been used to do the wrong things. For starters, most power meters have a highly damped meter movement. As a result, they respond slowly. The truth of the matter is that under normal circumstances, the power meter should be indicating no more than about 25 to 30 percent of the actual power level of the amplifier in a key-down position.28 It’s for this very reason that solid-state amplifier/drivers have gotten such a bad reputation.

6. "You can run a pair of 4CX250B’s at 1 kW output on SSB." This is true. However, you won’t have many friends. The 4CX250B is rated on SSB operation at 500 watts input for 300 watts PEP output per tube with an IMD of only 25 dB.14 IMD of 30 dB is considered Amateur standard. So don’t argue with fellow Amateurs when they say you’re splattering and you are only running 600 watts PEP output from a pair of 4CX250Bs!

7. "IMD isn’t a real problem on the VHF/UHF bands since there are so few stations and they’re all geographically separated.” Amateurs on VHF/UHF used to say that they didn’t have to worry about dirty signals on VHF/UHF since there were so few people and so much spectrum available. But that’s all changing now, with many stations coming on and often operating in close proximity to the calling frequencies. Line of sight, higher gain antennas, and sensitive receivers that often lack high dynamic range are compounding the problem.21,22 Better start watching your signal quality as closely as you do on the DC bands.

summary

This month’s column, sort of a mixed bag, was intended to put to rest several of the most popular old wives’ tales. Most of the statements made were addressed in the past 23 columns and the other references cited. I hope you’ll be sufficiently interested in the subjects discussed to research the referenced material independently. At the same time, I hope you’ve enjoyed this departure from my usual format and will continue to follow this column as faithfully as you have. Don’t forget to drop me a line with any suggestions or advice.

acknowledgements

I’d like to thank all the unnamed Amateurs who brought the statements for this month’s column to mind. Unfortunately, I can’t name you all, but some of you would rather not be identified anyhow! I do want to extend special thanks to Lewis Collins, W1GXT, and Gary Madison, WA2NKL, for helping me assemble many of the statements used as the basis for this month’s column.
HYGAIN TOWERS
HG37SS ... C
HG52SS ... C
HG54HD ... L
HG70HD ... L

CUSHCRAFT
A3 ... 205.00
A4 ... 275.00
A5 ... 325.00
A6 ... 255.00
A7 ... 350.00
A8 ... 325.00
A9 ... 420.00
AV5 ... 96.00
AV6 ... 89.00
AV7 ... 75.00
AV8 ... 75.00
AV9 ... 35.00
A144-11 .. 46.00
A144-20T ... 69.00
A215BW ... 424B ... 75.00
A525 ... 137.00

KLM
KT34A ... 329.00
KT34AX .. 475.00
432-2OLBX .. 64.00
432-30LBX ... 90.00
435-18C ... 109.00
435-40C ... 149.00
2M-12LB .. 70.00
2M-14C ... 85.00
2M-16LBX .. 89.00
2M-22C ... 115.00

HYGAIN
TH3JR ... 50.00
TH4 ... 75.00
EX14 ... 110.00
14AVQ ... 42.00
18AVT ... 110.00
V2 ... 25.00
V3 ... 25.00
V4 ... 25.00

HUSTLER
25% OFF ALL MOBILE
6BTV ... 125.00

AEE
4A4R ... 110.00
4A5 ... 110.00

BUTTERNUT
HF6V ... 29.95
HF2V ... 29.95
RG213U ... $26/foot

ROTATORS
CD45 ... 139.00
HAM IV ... 228.00
T2X ... 275.00
AVANTI 2M .. 29.95
HI-Q BALUN 9.95

KENPRO
KR400 ... 119.00
KR500 ... 149.00
KR600 ... 199.00
KR5400 .. 249.00

102 NW BUSINESS PARK LANE
KANSAS CITY, MISSOURI 64150
816-741-8116
CALL TOLL FREE: 1-800-821-7323

Antenna Sale

Have a name — but need the Call Sign?
Traveling — and want to meet local Hams?

THE FIRST NAME IN ELECTRONIC TEST GEAR

NEW

20 MHZ DUAL TRACE OSCILLOSCOPE
Unbeatable quality at an unbelievable price. Offers cost-saving features such as a high resolution CRT, built-in sweep, 100 MHz bandwidth, high sensitivity, x-y mode, & a 100 MHz input sensitivity. *USA -- add $100 per unit for package, overseas orders add 15% of total order. Insured surface mail.

45 MHZ DUAL SWEEP OSCILLOSCOPE
The Ramsey D-3100 is a dual sweep dual trace oscilloscope that includes a slower sweep rate for the highest resolution. Features include a high resolution CRT, 100 MHz bandwidth, high sensitivity, x-y mode, & a 100 MHz input sensitivity. *USA -- add $100 per unit for package, Overseas orders add 15% of total order. Insured surface mail.

RAMSEY D-3100 DIGITAL MULTIMETER
Radium / Accurate digital measurements at an astonishingly low cost. Features include: 6 digit display, voltage measurement, temperature measurement, resistance measurement, & an auto polarity indicator. *USA -- add $100 per unit for package, Overseas orders add 15% of total order. Insured surface mail.

CT-70 7 DIGIT 525 MHZ COUNTER
Lab quality at a breakthrough price. Features include: & selectable filters, & selectable table. *USA -- add $100 per unit for package, Overseas orders add 15% of total order. Insured surface mail.

CT-90 9 DIGIT 600 MHZ COUNTER
The most versatile for less than $500. Features include: & selectable filters, & selectable table. *USA -- add $100 per unit for package, Overseas orders add 15% of total order. Insured surface mail.

PR-2 COUNTER PREAMP
The PR-2 is ideal for measuring small signals from 10 MHz. & 3 digit display. BNC connector. Great for testing RF & ideal receiver. *USA -- add $100 per unit for package, Overseas orders add 15% of total order. Insured surface mail.

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna-BNC plug $8.95
High impedance probe, light loading 16.95
Low pass probe, audio use 16.95
Direct probe, general purpose use 13.95
Tilt ball, for CT-70, 90, 125 3.95

PHONE ORDERS CALL 716-586-3950
TELEX 466735 RAMSEY CI

TERMS: * satisfaction guaranteed * examine for 10 days. Return in original form for refund. * add 9% for shipping & insurance to a maximum of $10.00 * oversize & 15% for surface mail * $200 add $50.00 (in USA only) * orders under $10.00 add $1.50 * NY residents add 8% sales tax * 90 day parts warranty on all kits * 1 year parts & labor warranty on all units.

RAMSEY ELECTRONICS, INC.
2570 Baird Rd.
Penfield, N.Y. 14626

More Details? CHECK – OFF Page 134
MUF Forecasting

Recent studies of variations in maximum usable frequency (MUF) and its controlling factor, foF2 (the maximum ion density of the ionosphere), show how to do MUF forecasting (a day or two ahead) during the next year of DXing. In previous columns, methods for obtaining a mid-latitude noon-time foF2 or MUF baseline (average) value using the average solar flux value for the same month were provided.

The daily percentage change in MUF can be obtained by using a factor related to the daily change in solar flux or geomagnetic A index. The factor given in 1984 was percentage change in MUF equals 30 per cent of the solar flux change (1 per cent for every 3 flux units). This was when the solar flux numbers were in the 150s, with large daily excursions of 10 to 20 units and a 2 to 3-day delay for the ionosphere’s foF2 to catch up. This approach to forecasting really works!

Now that we’re near minimum sunspot number, does the same factor still apply? No. Since the ionosphere is a geophysical system in equilibrium (i.e., balanced), expect compensating conditions to occur even though MUFs are lower. The large and fast variations no longer occur but are slower-changing — 10 to 20 units in value over a period of several days.

One study shows that the ionosphere is now more sensitive to solar flux changes. The new factor has each flux unit equal to 1.2 the percentage foF2 change. In addition, the 2 to 3-day delay is no longer experienced because solar flux variations occur slowly enough for the ionosphere to “keep in step.”

The study also indicated that the influence of geomagnetic field variations on the ionosphere is greater now than when solar flux levels were higher. For example, at higher fluxes, an A of 16 to 30 decreased the foF2 by approximately 4 to 7 per cent and an A of over 100 resulted in a 15 per cent decrease from the median value of the month. At the current flux level, an A of 11 to 70 causes an 8 to 25 per cent decrease in foF2. There appears to be quite a difference. However, the foF2 median value at the higher value of flux was 9 MHz; currently it is 5.5 MHz. Take 15 per cent of 9 MHz and 25 per cent of 5.5 MHz. Notice that these values are very close to 1.25 MHz — the actual foF2 reduction — in either case.

The ionosphere has a way of equalizing effects between sunspot extremes. These foF2, solar flux, and A index relationships were further confirmed by a study conducted at the Institute of Telecommunication Sciences (ITS) in Boulder, Colorado. The study examined the distribution of MUF values about the median (value) for the month over a 6-hour period during each day during the various seasons and over three sunspot number ranges. They found little difference (only 2 per cent) between mid-latitude MUF variation and sunspot levels.

In summary, the current solar flux increases, though small, cause the mid-latitude MUF to increase (1 per cent for each flux unit). During disturbed geomagnetic field conditions, the reduction in mid-latitude MUF (which occurs a few hours after the onset of a storm) can be found from this relationship: percentage change in MUF = 0.375A + 3.75. Values of solar flux and geomagnetic field indices are broadcast by WWV at 18 minutes after the hour. These new factors should help you more accurately forecast DX conditions during the next few years of low sunspot numbers.

last minute forecast

The higher HF bands (10 through 30 meters) are expected to be best during the first and second weeks of December as well as part of the last week of the month. A solar flux peak on December 5 and another on January 1 are expected to occur, enhancing DX conditions. Lower solar flux values will mean lower MUFs during the third and fourth weeks of December. However, lower flux means greater daytime signal strengths on the lower HF bands since there'll be less absorption during these times. Lower absorption normally occurs during the winter months as well as during the 27-day solar cycle minimums. The geomagnetic field will probably be disturbed during the third week of the month. These disturbances result in a reduced MUF on east-west and northern paths and an enhanced MUF on transequatorial paths.

The Geminids meteor shower, which will peak on December 13-14, will provide the richest and most reliable display of the year, with rates of 60 to 70 per hour. Because optical observations may be difficult or impossible during periods of poor weather in December, actual numbers must be determined by radio reception. A smaller version of the shower will be observed on December 22.

Lunar perigee and a full moon will occur on December 11 and 27, respectively. Winter solstice occurs on the 21st at 2208 UT.
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during "normal" hours.

Look at next higher band for possible openings.

<table>
<thead>
<tr>
<th>DECEMBER</th>
<th>ASIA</th>
<th>FAR EAST</th>
<th>EUROPE</th>
<th>S. AFRICA</th>
<th>S. AMERICA</th>
<th>ANTARCTICA</th>
<th>NEW ZEALAND</th>
<th>OCEANIA</th>
<th>AUSTRALIA</th>
<th>JAPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECEMBER</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>00</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80+</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during "normal" hours.

Look at next higher band for possible openings.
HARDLINE
Two styles, two sizes for all installation needs
• Aluminum Outer Conductor with Polyethylene Jacket
 1/2 inch loss 48 dB/100 ft 30 MHz
 7/8 inch loss 28 dB/100 ft 30 MHz
• Corrugated Copper Outer Conductor with Polyethylene Jacket
 1/2 inch loss 38 dB/100 ft 30 MHz
 7/8 inch loss 13 dB/100 ft 30 MHz

HARDLINE CONNECTORS
1/2 inch aluminum UHF MT $19.00 Type N $22.00
7/8 inch aluminum UHF MT $49.00 Type N $49.00
1/2 inch copper UHF MT $22.00 Type N $22.00
7/8 inch copper UHF MT $49.00 Type N $49.00

COAXIAL CABLE SALE
POLYETHYLENE DIELECTRIC
RG-58/U 50 ohm mini spec $1.49
RG-58/U 75 ohm mini spec $1.59
RG-58/U 100 ohm mini spec $1.69
RG-58AU mini spec 50 ohm $1.49
RG-58AU mini spec 75 ohm $1.59
RG-58AU mini spec 100 ohm $1.69

LOW LOSS FOAM DIELECTIC
RG-11/U 50 ohm $4.69
RG-11/U 75 ohm $4.79
RG-11/U 100 ohm $4.89

CONNECTORS MADE IN USA
Amphenol PL-259 $0.39
BNC Male for PL-259 $0.99
BNC Male for UG-219 $0.99
BNC Male for Amphenol $1.25
BNC Male for other $1.59

COAXIAL CABLE
5 TYPES AVAILABLE!
TYPE 1
55¢ FT
TYPE 2
75¢ FT
TYPE 3
95¢ FT
TYPE 4
79¢ FT
TYPE 5
89¢ FT

SATELLITE CONTROL CABLE
5 TYPES AVAILABLE!
NEW!! LOWEST COST
TYPE 1
55¢ FT
TYPE 2
75¢ FT
TYPE 3
95¢ FT
TYPE 4
79¢ FT
TYPE 5
89¢ FT

SPECIAL USE CABLE
12 gauge conductors, tinned copper, drain wire. A true drain wire polyethylene jacket.

BAND-EDGE
$16.95
GRAYLINE AND LONG PATH PREDICTOR
Great Circle Overlays
20°, 30°, 40° Latitude (NSS)
$5 each
$3 when purchased with slide rule DX Edge

Ham Radio’s Bookstore
Greeneville, NH 00304

references
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

NAME ____________________________ CALL ____________________________
ADDRESS ____________________________ CITY ____________________________ STATE ____________________________ ZIP ____________________________

Please use before January 31, 1986

December 1985
ASTRON POWER SUPPLIES

- HEAVY DUTY
- HIGH QUALITY
- RUGGED
- RELIABLE

RS and VS SERIES

SPECIAL FEATURES

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS

- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mV peak to peak (full load & low line)

RS/A SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>50</td>
</tr>
<tr>
<td>RM-35M</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50M</td>
<td>37</td>
<td>50</td>
<td>5 1/4 x 19 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 3/4 x 6 1/2 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 3/4 x 6 1/2 x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 3/4 x 6 1/2 x 9</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 3/4 x 7 1/2 x 10</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 3/4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS/M SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>9</td>
<td>4 3/4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>15</td>
<td>5 x 9 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>20</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
</tbody>
</table>

RS-S SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 1/2 x 10 1/2</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 1/2 x 10 1/2</td>
<td>12</td>
</tr>
<tr>
<td>RS-11L(For LTR)</td>
<td>7.5</td>
<td>10</td>
<td>4 3/4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 3/4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/2</td>
<td>18</td>
</tr>
</tbody>
</table>

*Separate Volt and Amp Meters

*Output Voltage adjustable from 2-15 volts

*Current limit adjustable from 1.5 amps to Full Load

antennas and transmission lines

general

Antenna geometry for optimum performance
N4II

Antenna insulators, PTFE VHF
WSJTL

Antenna parameters, equations for determining KGBB
K3SRO

Antenna support (HN)
WSXW

Applied Yagi antenna design part 2: 220 MHz and the Greenblum design data
WB3BGU

Balloon chop suey
W4KV

Best way to get an antenna into a tree (HN)
WAVLX

Bulkhead connector (HN)
K9CBZ

Short Circuit
p. 74, Aug 85

Dipole antenna length reference chart (HN)
WSXW

Direction-finding tool, the fox box
K2ZJH

Ground rod resistance
K4MT

Comments
p. 8, Sep 84

Ground systems, installing effective
KRTL

Comments
p. 67, Sep 83

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Leyden's magic jar: the derivation of the Hertzian and Marconi antennas
KREA

Light-bulb dummy loads (HN)
W9FH

Neglected antenna for 40 and 80 meters
W9WL

Comments, W9WL
p. 4, May 82

Rain static resolved (Tech. forum)
W1YFX

Static mystery (Tech. forum)
W9BIFU

The Zepp (letter)
W2RHO

Vertical antenna, folded umbrella, top-loaded
VE2CV

Vertical-vee, converting (letter)
KASKTV

VHF/UHF world
W1JR

Wire plow, build a simple
W7IV

Yagis, stacking is a science
KIFO

p. 18, May 85

high-frequency antennas

Active antenna, 0.5-30 MHz
K1ZJH

Comments, Hansen, R.C
p. 10, Jul 85

Aligning Yagi beam elements (HN)
W8JON

Applied Yagi antenna design, part 6: the model and a special teaching tool
WSXW

Bobtail curtain and inverted ground plane: part 1
W8BCX

Short circuit
p. 82, Feb 83

Comments, W4ATBO
p. 12, Jul 83

Short circuit
p. 92, Nov 83

Bobtail curtain and inverted ground plane: part 2
W8BCX

Short circuit
p. 28, Mar 83

Comments, W4ATBO
p. 12, Jul 83

Butterfly beam
W4IXU

Capacitively loaded dipole, high-performance
WSXW

Debunking myths (letter)
W8IPWA

Delta loop, the reduced-size, full-performance, corner-fed
GTJKB

Dipole antenna over sloping ground
N4II

Dipole antenna, trimming the (HN)
WSNPD

End-fed BJK, switchable vertical array
W1JF

Four-vertical collinear element 30-meter array
W9DXS

Grounded monopole with elevated feed
VE2CV

Half-delta loop
VE2CV

Half square antenna, the
N8AN

Short circuit
p. 79, Oct 82

Half-wave vertical
VE2CV

Comments
p. 36, Sep 81

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Comments, K4KVV
p. 12, May 84

Comments, W8DIOUD
p. 6, Sep 84

Comments, ADIG
p. 8, Dec 84

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Ham radio techniques, fifty years ago
WSWAI

Ham radio techniques, 160 redux
WSWAI

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Ham radio techniques
WSWAI

Wireless antenna (HN)
W8GOK

Inverted "L", limited space (HN)
WB4RF

JR varioline antenna, control your take-off angle
W1JF

Junk-box portable antenna
WSWAI

Integrated K/T/CW quad
K7CW

Log-Yagis simplified
WSWAI

Making verticals quieter (Tech forum)
W4ATBO

Matching dipoles (letter)
W8BCX

Mobile high-frequency antenna, refinements to
W8N

Mobile vertical, 2-meter
K9CBZ

Mobile Bobtail (HN)
W8BMP

Multiband BJK, an end-fed
G3SBA

Phased arrays, feeding: an alternate method
K8B

Short circuit
p. 58, May 85

Short circuit
p. 74, Jul 85

Phased vertical arrays, pattern calculations for
W8BGHR

Quad owner switches
N6NB, W6AQ

Comments, W8BQD
p. 8, Dec 82

Rhombics, controlled vertical radiation, part 1: designing for high performance
N4UH

Rhombics, controlled vertical radiation, part 2: antenna erection and performance
N4UH

SEED antenna: a short, efficient end-fed dipole
WA2KAZ

Comments
p. 103, Sep 84

Short antennas, efficiency of
W1QW4

Short vertical antennas for low bands: part 1
W7DHI

Short vertical antennas for low bands: part 2
W7DHI

Six-element wide-beam for 10 (ham radio techniques)
WSWAI

Slagtered tuned dipoles increase bandwidth
K4MT

Comments, W9EO
p. 22, May 83

Suspended long Yagi (ham radio techniques)
WSWAI

Comments
p. 34, Nov 81

Tapped vertical, calculating the input impedance of
K3QOF

Short circuit
p. 78, Oct 85

Terminated veef beam, sloping
Ross, Robert

The K2GNC Giza beam
K2GNC

Top-loaded vertical, a high-efficiency
WRUS

Transmission line antenna, 160-meter
N9NB

Trap antenna, design your own
W1MB

Trapped antenna, trapping the mysteries of
N6GO

Comments, K9CBZ
p. 8, Feb 82

Triniald Yagi beam (ham radio techniques)
WSWAI

Comments
p. 68, Jan 81

Two delta loops fed in phase
W8BXR

Comments, W6OAQ
p. 60, Aug 81

Vertical phased arrays: part 1
K2BT

Comments, W6OAQ
p. 10, Mar 84

Vertical phased arrays: part 2
K2BT

Comments, W6OAQ
p. 25, Jun 83

Vertical phased arrays: part 3
K2BT

Comments
p. 70, Oct 83

K2BT

Comments
p. 10, Mar 84
vhf antennas

Antenna match, quick and simple
Anderson, Leonard H.
Short circuit
Fan, H. H.

Antenna matching, easy
WB4GCS
Antenna tuner (HN)
WB6OM
Antenna tuners (ham radio techniques)
WB5SAI
Balun design, another
WB6PHI
Categorically coupled hybrids
WA2EWT
Efficient Matching (Tech. forum)
VE7BS
Gamma matching, basic
WB2BNV
Ham radio techniques
WB5SAI
Comments, KA4KJY
WB2VBM
Comments, WA2DRU
WB5SAI

Helical antenna matching (Tech. forum)
K6BBL
HF hybrid descriptions
WS3RS
High-frequency mobile antenna matcher, simple
WB5BIC
Hybrid room
WB2EWT
Impedance matching (Tech. forum)
WB2XTO
Comment, K6CQ
WB2XTO
L-matching network, appreciating the
WA2EVT
Lowpass antenna matching unit, inductance-tuned
WB5BIC
Low swr, how important?
WB2VBM
Comments K1KSY, W1GV4
WB5SAI
Matching dipole antennas
WB5OLP
Comments, W5RX
WB5SAI
Matching sections
KL7RT
Matching 432-MHz helical antenna (Tech. forum)
WB3WNU
Phased arrays, feeding: an alternative method
KB2I
Short circuit
WB6GFZ
Swr meter, how accurate? (HN)
WB9TQG
Swr meter for the high-frequency bands
WB6AFT
Tandem pi networks
WB6MUR
Testing baluns
K4KJ

kW/cm^2 (log)

July 1981

August 1983

March 1984

February 1982

January 1983

March 1984

February 1982

August 1983

January 1983

March 1984

March 1984

November 1983

March 1984

July 1981

March 1984

March 1984

January 1983

March 1984

March 1984

March 1984

December 1983

March 1984

March 1984
Every preamplifier is precision aligned on ARR's Hewlett Packard HP6970A/AHP94A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are rf switched (for use with transceivers) and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7-1/2% sales tax. Orders for non-USA countries are limited. Order your ARR RX only or Inline preamplifier today and start hearing like never before!

Box 1242 • Burlington, CT 06013 • 203 582-9409
commercial equipment

Argonaut S09 conversion for 30 meters (HN) A44L p. 49, Oct 84
Atlas 210 transceiver, sidetone (HN) ZL2RP p. 57, Mar 82
Short circuit p. 79, Oct 82
Atlas 350 AGC circuit, modifications (HN) KI5R p. 42, May 82
CDE tailwinder rotor, pulse-position control WB4EWT p. 30, Jan 81
Collins KW-7200/2A, owners' reports WB1CHQ p. 22, Mar 81
Collins S-line, owners' reports WB1CHQ p. 12, Apr 81
Collins 755-3 alignment (HN) N1FB p. 79, Jan 81
Collins 516F-2 low-voltage and bias modification (HN) W8SAD p. 31, Apr 81
DenTron 160XV transverter, stabilizing the (weekender) WB2JOLL p. 46, Jun 81
Drake TR-4C receiver audio improvements (HN) W1AIO p. 79, Jan 81
Drake TR-7 transceiver, Woodpecker noise blanker for (HN) K1KXY p. 67, Feb 81
FT-101E, 10-meter preamp for K1NYK p. 26, Jul 81
Ham radio techniques W3RJS p. 63, May 84
Ham radio techniques, fifty years ago WBAM p. 58, Jun 84
Heath Model 10-4500 oscilloscope, modifications W6M3K p. 60, Aug 82
Heath H4B-improved keying for (HN) K1TRG p. 78, Apr 81
Heath SB-400/SB-401, simple speech amplifier for (HN) W8OUO p. 83, Sep 83
Heath's new all-band transceiver, the SS-9000 W7LJV p. 12, Nov 82
ICOM IC-2A(T), odd splits N7AAD p. 65, Jul 82
ICOM 701 owners' report WB1CHQ p. 56, Oct 81
IC-2AT, carrying case for (HN) W8AOX p. 82, Aug 83
Kenwood TR-7400A, scanner for (the Kenstar) 74 WB7QYB p. 50, Jan 81
Kenwood TS-520-S transceiver, counter for W5KPO p. 60, Sep 80
KLM antenna rotor, computer control for (HN) W8MOM p. 66, Feb 81
KM2M, RIT for the (HN) K1HUF p. 109, Jul 84
Owners' survey, TR7 WB1CHQ p. 66, Nov 81
Owners' survey 2-meter handhelds K12LM p. 35, Jul 82
Practically speaking: now that the warranty has expired K6KBR Comments, W5QUM p. 67, Sep 85
R-1000 mod (HN) W6XMA p. 60, Aug 82
S-line, QSK noise (HN) N1FB p. 66, Mar 82
SB-303 receiver, noise reduction (HN) Suzuki p. 70, Jun 82
Sony ICF-2001, eight-channel memory scanner for W3CSH p. 54, Aug 82
Ten-Tec Corsair modification (HN) N2BEK p. 62, Apr 84
Triton IV, 30-meter operation (HN) A44L p. 68, Jun 83
TR-2500/2600 2-channel programming (HN) K1MLO p. 128, Oct 85
TS-403S IF filter mod (HN) K8B6C p. 125, May 84
TS-900S headset audio, increased undistorted W6FPR p. 128, Oct 85
35002 tube failure (HN) AG6K p. 78, Oct 82
5C1X500A power pentode (HN) K9X1 p. 77, Oct 82

computer-aided design

Bandpass filter design, interdigital, computer-aided
N6UH, Monemadzadeh p. 12, Jan 85
Short circuit p. 117, Jun 85
Y2A, designing with the Commodore 64 WAEKEL p. 59, Jun 85

construction techniques

Air-wound coils, constructing WB7KEE p. 37, Aug 84
Antenna carriage and track pole mount K8KS p. 46, Aug 83
Antenna hinge N4LI AN/UPS-6 cavities, converting surplus W6MSI p. 12, Mar 81
Audio filter building blocks K8CVC p. 74, Jul 83
Build a better box Gruchalla, Michael p. 92, Nov 83
Battery charger, NiCad, constant current, a K2MWU p. 67, Aug 83
Cheat dots (HN) W6XMS p. 45, Aug 84
Cooling semiconductors part 1: designing and using heatsinks Martin, Vaughn D. p. 33, Jul 84
Cooling semiconductors part 2: blowers and fans Martin, Vaughn D. p. 52, Aug 84
Custom resistors, nomogram design WASEKA p. 68, Jun 83
Dummy load, DC (weekender) W4MLE p. 77, Sep 82
Elevation indicator, inexpensive (weekender) W5ULT p. 67, Jun 85
Fan, speed control (HN) K4KJ p. 77, Sep 82
G.O.E.S. reception: a simple approach W4AID p. 46, Jan 84
Heatsink cooling fan (HN) W6XK Comments, W5GH Comments, DJ4BZ p. 12, May 84
High-frequency dummy load (HN) W5KWE p. 64, Jun 84
IC-2AT, carrying case for WB6XMS p. 62, Aug 83
Inductance equation, a different approach (HN) K4CU p. 116, Dec 84
Junk-box ingenuity: how to buy, use, and recycle surplus electronic parts W4AEHS p. 32, Aug 84
Metal cleaning with dip-type cleaners (HN) W5KSX p. 8, Jun 82
Microstrip impedance program K8UR p. 84, Dec 84
Passive audio filter design, part 1: development and analysis W4AID p. 17, Sep 85
Polymer film transforms mechanical energy to electrical W4AKPZ p. 55, Dec 84
Power FETS: trend for VHF amplifiers Peters, Daniel and W7PQD p. 12, Jan 84
Printed circuit layout and drilling template W4AIDL p. 73, Jul 82
Quick fix for soldering irons (HN) W2MCP Reflection power limiter (Weekender) K4KJ p. 62, Apr 84
Screw threads, making (HN) W5PGG p. 64, Mar 82
Silk screen techniques, make your own board using W3COM p. 83, Nov 84
Silverplating, safe, sensible KVEYY p. 29, Feb 85
Solar power for your ham station N9NHN p. 14, Dec 84
Superhet colset, design with a microcomputer Streifenburg, F.A.S. p. 113, Nov 84
Turns per inch from wire size (HN) K8UR p. 97, Dec 83

digital techniques

AMTOR, AX.25, and HERMES: a performance analysis of three systems WB7GD p. 63, Dec 85
Applied Yagi antenna design part 1: a 2-meter class revisited WB3BGG p. 14, May 84
Applied Yagi antenna design part B: the model and a special teaching tool WB3BGG p. 89, Oct 84
Audio filter design, computer-aided K1TRG p. 15, Oct 85
Commodore 64, $100 printer (HN) W2CLU p. 86, Aug 85
Digital clock, build a fail-safe K1MCO p. 54, Oct 85
Digital-circuit problems, avoiding built-in, part one W1BG p. 43, Sep 81
Comments VE2QO p. 6, Dec 81
Digital-circuit problems, avoiding built-in, part two W1BG p. 50, Oct 81
Comments VE2QO p. 6, Dec 81
Digital frequency readout using the Commodore 64 W3XNL p. 83, Nov 85
Digital HF radio: a sampling of techniques KA2WEU, DJ2LR p. 19, Apr 85
Digital techniques: shocking truths about semiconductors Anderson, Leonard H. p. 36, Oct 82
DTMF controller for repeaters WB4FXD p. 47, Sep 85
HP-IL serial loop Martin, Vaughn D. p. 101, Apr 84
Making waves W8HOM p. 44, Mar 82
Packet radio: part 1 K7VD, KV7B p. 14, Jul 83
Packet radio: part 2 K7VD, KV7B, WAT7GDX p. 18, Aug 83
Packet radio and area networking WB3ZLO p. 38, Dec 84
Packet radio, automatic frequency and deviation WB2DJS p. 41, Dec 85
Packet radio primer WA1FH8 p. 30, Dec 85
Packet radio: the software approach W4KUH p. 63, Sep 84
PL tone generator, a programmable WB8VYS p. 51, Apr 84
Short circuit WA1RHNY p. 125, May 84
RTTY reader, interrupt-driven KN4L p. 72, Sep 84
Run RTTY on your Timex NUAV p. 110, Apr 85
Run RTTY on your VIC-20 W3TRS p. 120, Apr 85
Satellite tracker, digitally-controlled KASAEL p. 102, Sep 85
Smith Chart impedance matching on your Commodore 64 WA4SFSP p. 120, Oct 84
Software piracy (letter) Frodike, Dyn. p. 8, Sep 84
Spread spectrum and digital communication techniques: a primer N9NB p. 13, Dec 85
Synthesizers, VHF and UHF, design of digital components 4GACL p. 26, Jul 82
The Guarant report — computer technology W3MGI p. 54, Nov 84
Short circuit W8SSM p. 8, Dec 84
The Guarant report: signal processing W8SSM p. 156, Dec 84
VICO-20 printer (HN) W2QLI p. 86, Sep 84

December 1985 107
microprocessors, computers and calculators

An RS-232 to TTL interface

WDA4KI p. 70, Nov 82

Ham radio techniques

WBSAI p. 90, Aug 85
Ham radio techniques: I have seen the future and it works

WBSAI p. 91, Sep 85
Ham radio techniques

WBSAI p. 75, Oct 85
Ham radio techniques

WBSAI p. 67, Nov 85
Harmonic product detector for QRP transceivers

WSFG p. 44, Jun 83
Hyperbolic navigation (letter)

Burhans, Ralph W. p. 8, Feb 81
Impedance matching: a brief review

WBSAI p. 49, Jun 84
Instant balun (letter)

WMBDQW p. 6, Aug 81
KWM 360 external control circuit (HN)

WA2RUD p. 96, Dec 83
Linear amplifier, 3CX800A7

K9RA p. 17, Aug 84
Low cost linear design and construction

W4MB p. 12, Dec 82
Low-pass filter, integrated circuit

WB2TKG p. 59, Jan 85
Multiplexing, the how and why of

K9EN p. 60, Sep 81
Mysterious spur on 160 (Tech. forum)

N3BEK p. 73, May 83
Kensington, KKW, N3BEJ

K9RA p. 95, Nov 83
Neutralizing 572B final at 1500 watts output (HN)

W2YW p. 63, Jun 84
Noise cancelation circuit (weekender)

K1RGO p. 75, Mar 84
Operation upgrade: part 1

WBSNB p. 12, Sep 81
Operation upgrade: part 2

W2BNB p. 28, Oct 81
Peaked topwatts: a look at the ultrashorter filter

W7ZDJ p. 96, Jun 84
Phase modulator, PLL (HN)

VE3FMH p. 117, Jun 85
Photovoltic cells: a prospet report

WDBAIO (letter)

VE3AOK p. 52, Dec 83
Comments, K6KVX, Sample Martin, WDBAIO, WBAAPT

W4MB p. 10, Feb 84
Polyurethane film transforms mechanical energy to electrical energy

WA4KFFZ p. 55, Dec 84
Power FETs trend for VHF amplifiers

Peters, Daniel, and W7PLA p. 12, Jan 84
Practically speaking: repairing food damage

K4PV p. 95, Oct 85
Practically speaking: interments, pt. 1

K4PV p. 75, Nov 85
Practically speaking: interments, pt. 2

K4PV p. 79, Dec 85
Prerecorded messages help the hearing impaired (HN)

W2ZGJ p. 87, Sep 84
Relay, inexpensive automatic send/receive

WPBBY p. 40, May 82
Resonant circuits

W4MB p. 12, Apr 84
Receiver, power distributor, the

W3BYM p. 46, Dec 81
RF cures: avoiding side effects

W3B7YQG, Comments W7SYB, W7BTOG, VE2OQ p. 52, Sep 81
RFI, solving the problems of

W2YW p. 6, Dec 81
Russian Woodpecker, the: a continuing nuisance

K5RL p. 37, Nov 84
Solar power for your ham station

N4HN p. 14, Dec 84
Short circuit

N4HN p. 145, Mar 85
Sorting and inventory of standard resistor values, computer program for

WASWV p. 66, Jun 81
Super beep circuit for repeaters

KPA4GJ p. 48, Jul 81
The Guerr report — computer technology

W6GMI p. 54, Nov 84
Short circuit

W6GMI p. 8, Dec 84
The Guerr report

W6GMI p. 124, Jan 85
The Guerr report

W6GMI p. 158, Mar 85
The Guerr report: a busy signal from space

W6GMI p. 157, Apr 85
The Guerr report — predicting equipment failure

W6GMI p. 165, May 85

Calculator or computer — which to buy?

W4MB p. 96, Nov 82
Computer rf (letter)

KASJH p. 8, Jun 81
Data retrieval program using the APPLE II computer

WIJUR p. 75, Oct 81
Frequency counters, CMOS timing circuit for (HN)

W2RE, David H. p. 72, Jul 82
Ham gear controller: part 1

N2CA p. 12, Oct 82
Ham gear controller: part 2

N2CA p. 25, Nov 82
Microcomputer-based contest keyer

W4CWC p. 36, Jan 81
Microprocessor repeater controller

K9SF p. 58, Apr 83
anisoline switching precautions (HN)

WSPGS p. 69, Jul 81
AIC circuits, improving amplifier part 1

W2AJN p. 40, Aug 84
AIC circuits, improving amplifier part 2

W2AJN p. 38, Sep 84
Amplifier for 220 MHz, stripline kiloroot

W2GQ p. 12, Apr 82
Antilog-to-digital display converter for the visually handicapped

W17BY p. 44, Jan 81
Audio to microwave amplifier, build your own

Gruchalla, Michael p. 12, Mar 84
Bicycle-powered station

W1BG p. 25, Dec 84
Branch-line hybrid: part 1

W2AZWT p. 107, Apr 84
Branch-line hybrid: part 2

W2AZWT p. 93, May 84
Computer for the blind (HN)

Polyimide capacitors (letter)

W2BKMKU p. 6, Jun 81
Electromagnetic interference and the digital era

K9PJR p. 114, Sep 84
EMIRFI shielding: new techniques part 1

Martin, Vaughn D. p. 72, Jan 84
EMIRFI shielding: new techniques part 2

Martin, Vaughn D. p. 84, Feb 84
Filters (letter)

W6OM p. 8, Feb 83
Comments, W3NWQ p. 8, Apr 83
Filters, bridged

W6OM p. 51, Oct 82
Filter design, graphic

W6RWF p. 37, Apr 84
Short circuit

p. 13, Jul 84
Ham radio techniques: radio-frequency interference

W6SAI p. 34, Dec 81
Ham radio techniques

W6SAI p. 63, May 84
Ham radio techniques, fifty years ago

W6SAI p. 58, Jun 84
Ham radio techniques

W6SAI p. 75, Jan 85
Ham radio techniques

W6SAI p. 59, Feb 85
Ham radio techniques

W6SAI p. 83, Mar 85
Ham radio techniques: electron-hole theory exposed as fraud

W6SAI p. 67, Apr 85
Ham radio techniques

W6SAI p. 66, May 85
Ham radio techniques

W6SAI p. 51, Jun 85
Ham radio techniques

W6SAI p. 59, Jul 85
GREAT GEAR, AWESOME ANTENNAS, POWERFUL PACKET.

New rigs and old favorites, plus the best essential accessories for the amateur.

3621 FANNIN ST
HOUSTON, TX 77004-3913
CALL FOR ORDERS
1-713-520-7300 OR
1-713-520-0550
ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT
Kenwood
Call for prices on all Kenwood
Hi-Fi HC3 HC4 Stock
Kenwood 159140S, contesters delight
ICOm IC7000 25-2000MHz
Alphal ETO List - 19%
Icom 271A Stock
Icom IC200 489.95
Santec ST20T Handi Talkie 299.00
Regency LIC102 VHF 2 Channel Handi Talkie 150.00
Icom IC755 749.00

ACCESSORIES
B&W Vermonter Antenna Tuner 69.00
Hi-Fi HC3 HC4 Stock
Hi-Fi BM10 Boom Mike Headset 53.95
CSI Private Patch III 469.95
FLUKE 77 auto-ranging digital multimeter 125.00
Bird 43 Wattmeter Call
Bird Elements H59.00 A-E-48.00 In Stock
Daewo CN206 20-200 2000W 109.95
Daewo CN200 140-450 2000W 129.00

KEYS
Bencin & Vibraplex Less 10%
Bencin is now improved Screws & springs, all stainless steel
Extra hand polishing +
Vibration Carrying Case $20.00 w/purchase
MFJ Super keyblap #496 169.00

TUBES
Collins Drake Replacement Tubes stock
GE 6140B 11.95
Emac 3-500Z 109.95
GE Industrial Tubes Call
GE 12BY7A 6.00
GE 6J6SIC 11.95

BOOKS
We stock SAMS, TAB, ARRRL, RSGB, Arneco Radio Price Call
Some of the best buys are the RSGB books.
CALRAD 65-287 SWR, Relative Power Meter 32.95
3-150MHz KW +

PACKET POWER
AA 4964k, does RTTY ASCII AMTOR also 199.00
AA PK93 soon
KANTRONICS PACKET 199.00
Icom 271A Great packet radio Call

SERVICES
Alignment, any late model rig 50.00
Flat fee Collins rebuild Call

QUANTITY DISCOUNTS
Want a good discount? Get three of your friends and order Madison’s special four lot prices. For example:
ICOm IC3200 Call for four lot prices on other rigs.

ANTENNAS
ARX28B V55 2MCV-5 ISOPOLE 44.95
54.95
402CC 279.95
New Cushcraft LAC-31-lightning 79.95
Arrester 215SB New, 15EL, 2MBeam 79.95
AOP-1 Complete Osa Phantom 149.95
Butterfly HF6V-80-10 Vertical 125.00
HF2V-80-40 Vertical 125.00
HF4B 189.95
Hustler G7-144 119.95
Hand Rotator TXC, CD45-2 49.95
Call KLM HF World Class Series Antennas

OTHER ANTENNAS
Larsen Kuldick 17.00
Avanti AP151.3G on Glass Antenna 33.00
Anteco 2M 58, Mag. Mount Comp. 25.00
Avanti APR450 5G on glass 30.00
Phillip Stran

SURPLUS
Collins parts 755/323/KWM2/754/K4W-1 Specify Part No
Model 33/35 Telescope
Local Pickup Only
24 Pin Solidstate dip sockets 25.00
Signal Batteries Exact Replacement Yuasa 208-207 25.00
Solid State 866A Replacements 15.00
Scramlin Demon Radar Detector 29.95
150MHz-400V DC 19.95
1.5 Amp 400V full wave bridge rectifier 19.50
2 SA1000PE Epoxy diode 29.00
Each or
5015-10KV 19.95
3501 20 inch ferrite rod 19.95
36SFP cap 19.95
Sanyo AAA, AA Nicads w/tabs 2.50 each
2.4, 5, 6, 8 pin mic plugs 4.00
Close out on rgs & accessories. All the time Call
We may have what you’re looking for.

BELDEN
9913 low loss, solid center, foil/braid shield 45.00
8214 RG6F coax 43.00
8237 RG8 37.00
8267 RG213 52.00
8000 14Ga stranded copper ant wire 13.00
4488 conductor rotor cable 31.00
4905 Heavy duty 2-16 Ga 6-18 Ga 52.00
9268 RG8x 19.00
6403 Coax Cable, Conductor & shield 80.00
100 Feet 8214 w/ends installed 45.00
8669 7/16 tinned copper braid 11.00

International Wire RG214, non-mill, good cable 70.00

AMPHENOL
8313P-PL 259 Silver plated 1.25
UG176 reducer RG8X 30
831J Double Female UHF 2.00
82-61 N Male 3.00
82-97 N Female Bulkhead 3.00
82-63 Female N/U 4.00
82-98 N elbow 9.00
New 82-202 1006 N Male fits 9913 5.00
1/4" E H S Guy cable, Rhino US 1000 ft 250.00
3/16" E H 5 cable 210.00
1/4" Guy Cable: 6100 #7 x 7 strand, import 15.00
3/16" Guy Cable: 3700 #7 x 7 strand, import 12.00
3/8" E J & M Tumbuckle 7.95
3/16" Wire Rope Clips 40.00
1/4" Wire clips 50.00
Porcelain 5000 Guy Insulator (3/16) 1.69
Porcelain Guy Insulator (1/4) 2.99

COMPUTER STUFF
Kantronics UTX-KT 319.00
Fits any computer (even yours!) Software Available
Morse University (Great CW program for C-64) 39.00
AEA New VHF 1200 Coating

USED EQUIPMENT
All equipment, used, clean, with 90 day warranty and 30 day trial. Six months full trade against new equipment. Sales price refunded if it satisfied.

POLICIES
Minimum order $10.00 Mastercharge, VISA, or O.D.D. All prices FOB Houston, except as noted. Prices subject to change without notice. Items subject to prior sale. Call anytime to check the status of your order. Texas residents add sales tax. Dats all, folks.

DON’S CORNER
First of all: The winner of our first Proofreading Contest is Bob Rehmann, KX3K. Bob will be receiving our CALRAD SWR meter, prepaid and free. If you didn’t win, look at this ad. This is an ongoing contest. Send us a card. First card with most correct errors noted wins.

If you’re a collector of old equipment, call us on your money, and we’ll tell you if the prices you’re paying is fair. Best new electronic notation: a supposed old-time ham who came into the store with this parts list. At the top of his list was a peck-a-ferret capacitor. We told him we didn’t sell small animals—even surplus ones. Also—we’ve been having some problems with the new address and get mail addressed to Phantom Avenue. It’s F-A-N-N-I-N.

Have a great Christmas from everyone at Madison. Hope Santa brings you a real nice transceiver—and buys it from us.

73 & Good DX

DON

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TEXAS 77004
1-713 520-7300 OR 1-713-520-0550

153
novice reading

Morse code computer tutor
N3SE p. 45, Jun 85
New bands privileges for Novice operators (letter)
KADOE p. 15, Sep 82
Novice playground (letter)
WASMUP p. 6, Jan 82
Novice privileges (letter)
WB9PV p. 9, Oct 85
Novice roundup (letter)
KA9AYZ p. 8, Jun 81
Operation upgrade: part 1
W6BNB p. 12, Sep 81
Operation upgrade: part 2
W6BNB p. 28, Oct 81
Practically speaking
K4PV p. 79, Dec 85
Used equipment for new hams (letter)
KUYW p. 15, Sep 85

operating

Amateur radio, 1923 (ham radio techniques)
W5SAI p. 41, Jun 81
Amateur radio, 1941 (ham radio techniques)
W5SAI p. 30, Aug 81
Battlefield, the (letter)
WB6WL p. 8, Jun 83
Best bets regards regards (letter)
WB8QO p. 8, Aug 82
Comments, NA4GS p. 8, Apr 82
Comments, NA8FD p. 8, Mar 82
Comments, H6AOG p. 8, Sep 82
Blind ham (letter)
GB9J p. 8, Sep 82
Burglar alarm RFI (letter)
WB2YVY p. 8, Mar 82
Card from Frenchy (letter)
WB2PFV p. 8, Apr 82
Carrier-operated CW reception limiter
W5BNW p. 113, Sep 85
CATVI (letter)
WB44MA p. 10, Aug 83
County awards (letter)
KB6SB p. 8, Jul 81
CW anyone?
W7IWU p. 44, Mar 81
CW nets (letter)
N4EVS p. 8, Jun 82
CW zero-beat indicator for transceivers (weekender)
W5KGV p. 88, Mar 83
DX and QRP (letter)
W5CQ p. 8, Oct 82
DXer's diary
W6PNI p. 18, Mar 81
DXer's diary
W6PNI p. 26, Apr 81
DXer's diary
W6PNI p. 22, Jun 81
DX Forecaster
K8RYS p. 76, Nov 81
DX Forecaster
K9RYS p. 76, Nov 81
DX Forecaster
K9RYS p. 78, Dec 81
DX Forecaster
K9RYS p. 78, Dec 81
Direct short circuit
W6SL p. 12, Jun 82
Short circuit
W5SAI p. 79, Oct 82
Ham radio techniques
W5SAI p. 53, Jan 82
Ham radio techniques
W5SAI p. 60, Feb 82
Ham radio techniques
W5SAI p. 26, Mar 82
Ham radio techniques
W5SAI p. 26, Apr 82
Ham radio techniques: the crystal ball (Tech forum)
W5SAI p. 68, May 82
Ham radio techniques
W5SAI p. 76, Jun 82
Ham radio techniques
W5SAI p. 42, Jul 82
Ham radio techniques
W5SAI p. 42, Aug 82
Ham radio techniques
W5SAI p. 40, Sep 82
Ham radio techniques
W5SAI p. 20, Oct 82
Ham radio techniques
W5SAI p. 46, Nov 82
Ham radio techniques
W5SAI p. 58, Dec 82
Ham radio techniques
W5SAI p. 66, Jan 83
Ham radio techniques
W5SAI p. 65, Nov 83
Ham radio techniques
W5SAI p. 58, Sep 84
Hamvention slide show (letter)
NBADA p. 8, Jan 83
Homebrew linears: treat or trap? (HN)
VK4LR p. 77, Nov 82
IC-255A switching circuit (HN)
W5BIV p. 70, Jan 83
Comments, WA4M2Z p. 8, Jun 83
Intruder watch (letter)
ZL6WZLGBD p. 6, Aug 81
Is it stolen?
W5AP p. 84, Dec 82
Lifetime SAR (letter)
WBPFPZ p. 62, Jan 82
Listening in on 10 hm
WBPFX p. 73, May 83
Mysterious spur on 160 (Tech. forum)
N3BEK p. 30, Jan 82
No code license (letters)
WB4SKP, W9ZMR, W2LX, W2JTP, W1BL, K4JW p. 36, Mar 82
No code license (letter)
W5SN p. 10, Aug 83
On-air tune-up (letter)
K3E0 p. 36, Mar 82
Operating etiquette (letter)
W9MKV p. 12, Jul 84
Operating upgrade part: 3
W6BNB p. 30, Jan 82
Operating upgrade part: 4
W6BNB p. 32, Feb 82
Operating upgrade part: 5
W6BNB p. 56, Mar 82
Operating upgrade part: 6
W6BNB p. 56, Apr 82
Operating upgrade part: 7
W6BNB p. 54, Jun 82
Operating upgrade part: 8
W6BNB p. 56, Jul 82
Operating upgrade part: 9
W6BNB p. 58, Sep 82
Operating upgrade part: 10
W6BNB p. 60, Oct 82
Operating upgrade part: 11
W6BNB p. 58, Nov 82
Other guy (letter)
K2AGX p. 8, May 82
Pacemakers and RFI (Tech. forum)
K4CN p. 98, Jun 83
Comments, K1RGO p. 76, Oct 83
Comments, K4CN p. 77, Oct 83
Pacemakers and RFI: safety first (Tech. forum)
K3E3AS, K3FOW p. 76, Oct 83
Propagation of radio waves
W5SAI p. 26, Aug 82
Protecting amateur radio (letter)
K2JY p. 8, Jul 81
QRP (letter)
W5DQJ p. 8, Nov 82
Repeater etiquette (letter)
W5GUF p. 8, Oct 83
RST (letter)
W5BNW p. 6, Feb 81
Serious -- not hobby (letter)
W5VSR p. 8, Aug 85
Ten-meter band (ham radio techniques)
W5SAI p. 38, Apr 81
Ten-meter beacon (Tech forum)
W1AIOB p. 46, Apr 83
Ten-meter beacons (letter)
K4UYE p. 13, Sep 83
Comments, K4UYE p. 11, Jan 84
Ten-second call swaps (letter)
W9HUE p. 6, Aug 81
TOM remembered (letter)
W1ESN p. 11, Jan 84
Transceiver tuning (letter)
NETO p. 8, Jun 82
Tune-up method, low duty-cycle for transmitters (HN)
K4KI p. 82, Aug 83
Comments, W5XW p. 11, Dec 83
Comments, K4KI p. 11, Jan 84
Volunteer examiners: keep standards high (letter)
K6WX p. 12, May 84
Wearing cans (letter)
W3BFWRV p. 8, Jul 81
Who pays the jammer (letter)
W3MEO p. 8, Oct 82
Working W5LFL from space
KIGUE p. 81, Sep 83
2 meters outlawed (letter)
AA2C p. 8, Aug 82
160-meter band (ham radio techniques)
W5SAI p. 46, May 81

oscillators

Audio oscillator to pulse generator conversion (HN)
W4QCO p. 50, Oct 84
Crystal oscillator, low-frequency (HN)
W8XM p. 66, Mar 82
Short circuit
W2QY p. 79, Oct 82
CW BFO crystal for the 755-3 (HN)
N1FB p. 80, Feb 82
Frequency synthesis by
XO harmonic selection
W3MT p. 12, Feb 84
High-stability BFO for receiver applications
K1ZJH p. 28, Jun 85
Local oscillators, high stability for microwave receivers and other applications
W83JZO p. 29, Nov 85
Oscillator, voltage controlled, uses ceramic resonators
K2BLA p. 16, Jun 85
Short circuit
W8KUK p. 27, Aug 85
Phantom-coil VCO
W3MT p. 66, Jan 82
Comments, W3MT p. 8, Jul 82
RF tone generator: a programmable
W8VISZ p. 51, Apr 84
Short circuit
W9GJ p. 125, May 64
RF synthesizers for hf communications, part I
WASOA p. 12, Aug 83
Short circuit
WASOA p. 125, May 84
RF synthesizers for hf communications, part II
WASOA p. 49, Sep 83
Short circuit
WASOA p. 125, May 84
RF synthesizers for hf communications, part III
WASOA p. 17, Oct 83
Short circuit
WASOA p. 125, May 84
VCO, 1800-2600 MHz
W9TV p. 21, Jul 85
VFO's tuned by cylinder and disc
W8YBF p. 58, Feb 83
Wideband VCO design
W4AGMG p. 49, Jul 84
10 GHz oscillator, ultra stable
K1UR p. 57, Jun 83

power supplies

AC converter, DC to 400-Hz (HN)
WB2YVV p. 58, Mar 83
Electric shock, NiCad, constant current, a pulsed
K2MWU p. 67, Aug 85
Diesel generator repair (Tech. forum)
W4GRC p. 46, Apr 83
Drake R-4C receiver improved power supply
W3PU p. 28, Feb 82
Dual voltage power supply
W4DSKH p. 32, Mar 83
Comments, WB2UAQ p. 12, Jul 83
Short circuit
K2MWU p. 80, Jul 85
Dual voltage surge-protection for high-voltage power supplies (weekender)
K1UR p. 42, Aug 81
Electrolytic capacitors (letter)
W8BMKU p. 6, Jun 81
Fast memory (Ni-Cd discussion)
KBOV p. 62, Jan 83
Low-voltage power supplies, designing

- W4MLE p. 46, Mar 85
- Short circuit p. 121, May 85
- Power supply, amplifier W2ACF p. 32, Sep 83
- Power supply for the big amplifier W2FYJ p. 64, Jun 82
- Power supply, six-output
 - Martin, Vaughan O p. 12, Oct 84
- Power supply, switching high-voltage W5FG p. 48, Apr 84
- Protection for your solid-state devices W1OOP p. 52, Mar 81
- Regulator problem solved (HN) W5XMI p. 97, Dec 83
- Safe power for your low-noise GaAs FET amplifier W61HUV p. 18, Nov 82
- Squid-gauge motors make field-day power supplies (HN) KB3DZ p. 74, Aug 81
- Temperature control, automatic WB3RI p. 75, Jun 85

The Guerrin report: RF power supplies achieve high efficiency W6MGI p. 157, Sep 85

Transformers, wind your own — inexpensively W4NL p. 96, Jun 85

Trans-global power supply (HN) W9CCG p. 76, Nov 82

Two-way power for the IC2AT 2-meter handheld W83JUF p. 57, Feb 82

Comments WB4MNW, WB5JUF p. 8, Jul 82

Vacuum tube substitution W2YE p. 58, Oct 83

DX	K0RYW	p. 74, May 83
DX	K0RYW	p. 65, Jun 83
DX	K0RYW	p. 82, Jul 83
DX	K0RYW	p. 66, Aug 83
DX	K0RYW	p. 84, Sep 83
DX	K0RYW	p. 87, Oct 83
DX	K0RYW	p. 90, Nov 83
DX	K0RYW	p. 92, Dec 83
DX	K0RYW	p. 83, Jan 84
DX	K0RYW	p. 79, Feb 84
DX	K0RYW	p. 93, Mar 84
DX	K0RYW	p. 93, Apr 84
DX	K0RYW	p. 119, May 84
DX	K0RYW	p. 109, Jun 84
DX	K0RYW	p. 103, Jul 84
DX	K0RYW	p. 63, Aug 84
DX	K0RYW	p. 79, Sep 84
DX	K0RYW	p. 100, Oct 84
DX	K0RYW	p. 92, Nov 84
DX	K0RYW	p. 63, Dec 84
DX	K0RYW	p. 94, Jan 85
DX	K0RYW	p. 75, Feb 85
DX	K0RYW	p. 117, Jun 85
DX	K0RYW	p. 120, Mar 85
DX	K0RYW	p. 84, Apr 85
DX	K0RYW	p. 79, May 85
DX	K0RYW	p. 102, Jun 85
DX	K0RYW	p. 100, Jul 85
DX	K0RYW	p. 100, Aug 85
DX	K0RYW	p. 122, Sep 85
DX	K0RYW	p. 105, Oct 85
DX	K0RYW	p. 92, Nov 85
DX	K0RYW	p. 81, Aug 85
DX	K0RYW	p. 77, Aug 85
DX	K0RYW	p. 38, Jan 85
DX	K0RYW	p. 12, Jan 83
DX	K0RYW	p. 10, Mar 85
DX	K0RYW	p. 26, Jun 82
DX	K0RYW	p. 37, Nov 84
DX	K0RYW	p. 75, Mar 85
DX	K0RYW	p. 50, Apr 85
DX	K0RYW	p. 74, Aug 82
DX	K0RYW	p. 56, Feb 83
DX	K0RYW	p. 84, Mar 83
DX	K0RYW	p. 94, Apr 83

receivers and converters

general

Active mixers, performance capability: part 1 DJ2LR p. 30, Mar 82
Active mixers, performance capability: part 2 DJ2LR p. 38, Apr 82
Automatic repeater/receiver sensitivity (HN) VE7ABK p. 81, Jan 83
Bragg-cell receiver W53J2O p. 42, Feb 83
Cascaded stages, IMD and intercept points of W63MG p. 28, Nov 84
CB to 10-meter converters, scanner W24MY, K2GGA p. 98, Nov 85
Communications receiver K2BTL p. 12, Jul 82
Compact 75-meter monoband transceiver W1BQT p. 13, Nov 85
Crystal lattice filters, systematic design of N7WD p. 40, Feb 82
CW filter, high performance W3QGN p. 18, Apr 81
Comments W3QNQ p. 6, Nov 81
Digital frequency readout using the Commodore 64 W3NIN p. 83, Nov 85
External product detector improves receiver performance W6G8S p. 107, Nov 85

High-stability BFO for receiver applications K1ZJN p. 28, Jun 85

LF converter, fixed-tuned K1RGO p. 19, Jan 83

Low-noise preamplifiers with good impedance match W1OOP p. 36, Nov 85

Measuring receiver dynamic range: an addendum (HN) W6BC7W p. 86, Apr 81

Mixers, frequencies, graphical selection (HN) K6MJ p. 41, Jun 86

Noise discriminator, a pulsewidth W6RNW p. 23, Nov 84

Panoramic adaptor/spectrum analyzer design notes W4NGX/N1 p. 25, Feb 83

Comments, K2CBY p. 12, Sep 83

Short circuit p. 70, Oct 83

Preamp at work, Quiet! NETX p. 14, Nov 84

Receiver dynamic range W3JZO p. 77, Dec 82

Receiver input temperature (letter) W4M7TD p. 13, Apr 85

Receiver, 10 through 80-meter homebrew N1BFF p. 40, Nov 85

Remote-site receivers and repeater operation K9IED p. 36, Jan 83

Rotary dial and encoder for digital tuning N3CA p. 30, Dec 82

Spectrum analyzer, a handheld optical WA4WDL p. 23, Apr 84

TS-995S headset audio, increased undistorted (HN) W6FR p. 126, Oct 85

VHF/UHF world — high dynamic range receivers W1DJO p. 97, Nov 84

Short circuit p. 103, Jan 85

high-frequency receivers

Blanking the Woodpecker: part 1 VE3AQN p. 20, Jan 82

Blanking the Woodpecker, part 2: a practical circuit VK1DN p. 18, Feb 82

Comments, NP4B p. 8, Jul 82

Blanking the Woodpecker, part 3: an audio blander VK1DN p. 22, Mar 82

CS to 10 fm transceiver conversion VE3ET, VE3AQN p. 16, Feb 83

Communications receivers for the year 2000, part 1 DJ2LR p. 12, Nov 81

Communications receivers for the year 2000, part 2 DJ2LR p. 36, Dec 81

Compact SSB receiver K1BQT p. 10, Nov 83

Comments K4ABP p. 10, Mar 84

Designing a modern receiver W83J2O p. 23, Nov 83

December 1985
Don't buy from Hamtronics . . .

Unless you want the best possible equipment at the lowest possible price! ! !

The “wheeler-dealer” is back and he’s beating everyone else’s “deals.”

We all know there’s no such thing as a free lunch . . .

so How Can We Do This?

• We don’t run alot of ads featuring sale items
• We don’t spend alot of money on full page ads
• We don’t have sales on just the fastest selling products
• We don’t short cut you on service. We are a factory warranty repair facility for everything we sell!
• We don’t mail out free catalogs
• We don’t have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimmicks.

Hamtronics puts the savings into your pocket.

Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer.

We’re celebrating our 35th year in the Ham business at the same location.

Hamtronics, Inc.

A DIVISION OF TREVOSE ELECTRONICS

4033 BROWNSVILLE RD., TREVOSE, PA 19047

(215) 357-1400

TWO NEW ONES FROM ARCOSoft

Quick-N-Easy Electronics Projects

by Bob Green

Here’s a neat book to help while away a rainy afternoon. Contains 40 quick and easy to build projects using commonly found electronic components. Learn-by-doing format is a boon to beginners while advanced builders will enjoy the range of projects included. Projects include: CPO, high VSWR alarm, three battery charger, body hug and sun spotter to name just a few. Also includes list of mail order and local parts supplier suggestions. 1st edition © 1985 96 pages.

AS-QN

Softbound $7.95

Easy-to-Build Electronics Projects

by Bob Green

40 more electronics projects to work on! Complete plans and schematics and easy to locate parts means that you can usually complete these projects in an evening. Projects include: Ad silencer, Mugger bugger, radio-tester, fuse telltale plus 36 more. More practice for the beginner and more fun for the advanced builder. 1st edition © 1985 96 pages

AS-ET

Softbound $7.95

Please enclose $3.50 to cover shipping and handling
Digital HF radio: a sampling of techniques
K2AWEUDJ2LR p. 19, Apr 85
Short circuit high-frequency receiver performance
G4OBU p. 33, Feb 84
Improved stability and dial calibration for the Heathkit HW-8 (HN)
W3VHK p. 103, Nov 83
Inexpensive CW filter (HN)
K1ZJH p. 50, Jan 82
Radio interference to shortwave receivers (HN)
W6XK p. 68, Jul 81
Receiver sweep alignment system
W2BBIH p. 124, Nov 84
Shortwave converter, portable
PY2PEC p. 84, Apr 81
Shortwave receiver, portable
PY2PEC p. 64, Apr 81
Simple shortwave broadcast receiver (weekender)
W6XK p. 83, Nov 83
Superhet colsette, design with a microcomputer
Sterrenburg, F., A.S. p. 113, Nov 84
SW receiver, a double conversion portable
PY2PEC p. 48, Nov 84
Transceivers, quasi-bilateral IF for
K1ZJH p. 75, Dec 84
Two-band receiver, extending the modular
W3AFTS p. 57, Nov 84
Two-band receiver, modular
W3AFTS p. 53, Jul 83
Comments on W3AFTS p. 8, Sep 84
Understanding performance data of high-frequency receivers
K2FM p. 30, Nov 81
Comments on K2FM p. 8, Aug 82
Up-conversion receiver for the high-frequency bands: part 2
W2VJN p. 54, Nov 81
Up-conversion receiver for the high-frequency bands: part 2
W2VJN p. 20, Dec 81
15-meter sideband transceiver
W4ZMF p. 12, Mar 83
Short circuit
W3XK p. 80, Jul 83
80-meter receiver for the experimenter
W6XK p. 24, Feb 81
Comments on W6XK p. 6, Jun 81

vhf receivers and converters
Communications receivers for the year 2000: part 1
DJ2JR p. 12, Nov 81
Communications receivers for the year 2000: part 2
DJ2JR p. 36, Dec 81
Interesting preamplifier for 144 MHz (HN)
W2AFTP p. 50, Nov 81
K9LA 2-meter synthesizer, extending the range of (HN)
K9LA p. 52, Dec 81
Optical fm receiver
Poon and Pieper p. 53, Nov 83
Short circuit
W8QJL p. 85, Aug 84
Comments on W8QJL p. 13, Jun 84
VHF/UHF world: VHF/UHF receivers
W1JR p. 42, Mar 84

SSB transmitters, FSK adapter for
W3AFTS p. 12, Jul 81
Comments on W3AFTS p. 8, Mar 82
Comments on W3AFTS p. 6, Oct 82
Timex/Sinclair newsletter (letter)
A1BD p. 12, Jul 84
TR5-80 color computer for RTTY
W1OER p. 62, Jun 83
VIC-20 printer (HN)
W2WH p. 88, Sep 84
Short circuit
W3XK p. 145, Mar 85

satellites
Demodulator, telemetry, PSK, for OSCAR 10
G3EUV p. 50, Apr 85
Elevation indicator, inexpensive (weekender)
W6UTC p. 67, Jun 85
First HT-to-HT QSO via OSCAR 10
W2LLQ p. 33, Sep 84
Geostationary satellite bearings with the TI-5859 programmable calculator (HN)
W6VBC p. 87, Apr 81
Geostationary satellite bearings, locating
W2QOH p. 66, Oct 81
Comments on W2QOH p. 8, Jan 82
Comments on W2TI p. 8, Feb 82
Short circuit
W2QOH p. 89, Jan 82
G.O.E.S. reception: a simple approach
W4WDL p. 46, Jan 84
Graphic azimuth and elevation calculator
W4WDL p. 25, Jan 85
Locate orbitals satellites
W6WNN p. 72, Sep 83
Moon-tracking by computer
K2WXW p. 38, Mar 84
Satellite tracker, digitally-controlled
K4OBL p. 102, Sep 85
Signals from space, receiving
K5UR p. 67, Nov 84
Tracking satellites in elliptical orbits
W6VJR p. 46, Mar 81
Work OSCAR 10 with your HT
W2LQJ p. 29, Sep 84

semiconductors
Amplifiers, biasing Class-A bipolar transistor
K7QH p. 32, Aug 82
Cooling semiconductors part 1: designing and using heatinks
K7QH p. 33, Jul 84
Cooling semiconductors part 2: blowers and fans
K7QH p. 52, Aug 84
GaAs FET performance and preamplifier application
K8UR p. 36, Mar 83
Comments on K8UR p. 12, Jul 83
Solid-state replacements (Tech forum)
K4QJ p. 46, Apr 83
Transistor biasing, back to basics
W6CQ p. 91, Dec 84

single sideband
Adjusting SSB amplifiers
W3AFTS p. 33, Sep 85
Better sounding SSB
AG6K p. 58, Feb 84
Comments on W2QOH p. 13, Jun 84
Development of Amateur SSB: a brief history
K4HJ p. 12, Sep 84
Comments on K4HJ p. 6, Dec 84
Early single sideband transmitter (ham radio techniques)
W6SAI p. 30, Dec 81
Ham radio techniques
W6SAI p. 106, Oct 84
Linear amplifier, modular, for the high-frequency
K6BP p. 12, Jan 81
Comments on K6BP p. 5, Mar 81
Linear amplifier, HF solid-state kilowatt, mobile
W69W p. 67, Feb 85
Weaver modulation, 2-meter transmitter
W3CWW p. 12, Jul 85

software
T158/TS25 (HN)
K3GFX p. 65, Mar 82
television
CRT character enhancer
W2CIG p. 86, Aug 82
Medium-scan television
W9NTAX p. 54, Dec 81
SSTV, applying microcomputers to
G3ZCZ p. 20, Jun 82

transmitters and power amplifiers

general
Adjusting SSB amplifiers
AG6K p. 33, Sep 85
Amplifier for facsimile transission, and
SM6JF p. 12, Dec 81
Lowpass filters, elliptic, for transistor amplifiers
W6QCN p. 20, Jan 81
MC-686 improved carrier suppression (HN)
K1ZJH p. 78, Apr 85
Short circuit
W6QCN p. 74, Jul 85
RF switching, high power with pin diodes
K5IBZ p. 82, Jan 85
Single-conversion transceivers, digital frequency display for
W6QCN p. 28, Mar 81
VMOS on 1750 meters
K1RGO p. 71, Oct 83
6-meter amplifier
W2GQ p. 72, Apr 83
Short circuit
W6QCN p. 97, Aug 83
40-meter transmitter-receiver
W6QCN p. 43, Dec 82
5CX1500 screen protection (HN)
VE3AIA p. 58, Mar 83

high-frequency transmitters

ALL circuits, an analysis of
K4W p. 19, Aug 81
Amplifier, 3CX1200A7 10 to 80 meter
K4W p. 75, Aug 85
CB to 10 fm transceiver converter
VE3FIT, VE3AQN p. 16, Feb 83
Compact 75-meter monoband transceiver
K1QZ p. 13, Nov 85
Improved stability and dial calibration for the Heathkit HW-8 (HN)
W3WV p. 103, Nov 83
Linear amplifier, HF, solid-state kilowatt, mobile
W7SPR p. 67, Feb 85
Linear amplifier, modular, for the high-frequency
K6BP p. 12, Jan 81
Amateur Bands
K6BP p. 6, Mar 81
Lowpass filters, elliptic, for transistor amplifiers
W6QCN p. 20, Jan 81
Remote control ht operation
K5QY p. 33, Apr 83
SSR circuit
W6QCN p. 97, Aug 83
Vacuum tube amplifier, design for
K6BP p. 29, Aug 85
15-meter sideband transceiver
W4ZWF p. 12, Mar 83
Short circuit
W6QCN p. 80, Jul 83

vhf and uhf transmitters

troubleshooting

GLA-1000 amplifier, stop blowing finals
G4CFY, G3ROG p. 59, Aug 85
TVI problem, solving a difficult (HN)
W2YWW p. 152, Sep 85
WE ARE LOOKING FOR AUTHORS!
The new ones about one, send an order.
Please send check or

KENWOOD TR2800A H.T. - CALL US!

YAESU FT-726R - CALL US!

DO YOU OWN AN ICOM VHF XLCR?
DO YOU WANT TO IMPROVE THE RECEIVER - THROUGH MUTEK FRONT END BOARD YOU’LL BE GLAD YOU DID!

CUE DEE THE SWISHED BOOMER
USED BY MANY TOP 10 CONTESTERS

PAJORABLE
1269-28 IW TRANSVERTER
1269-144 3W LP CONV
1269 2M DUAL TUBE AMP CAVITY
2 PORT POWER DIVIDERS (2-220-42) 50

PARABOLIC
1269 28 IW TRANSVERTER
1269-144-3W LP CONV
1269 2M DUAL TUBE AMP CAVITY
2 PORT POWER DIVIDERS (2-220-42) 50

OTHER GREAT, HIGH PERFORMANCE ANTENNAS BY TONNA (CALL FOR SPEC. SHEET!)

TERRESTRIAL APPLICATIONS REGULARLY

5 EL 6 METER YAGI
21 EL 70CM YAGI
21 EL OPM MODEL IN STOCK
21 EL 129CM YAGI
23 EL 129CM YAGI
17 EL 2MTR SUPER YAGI
55 EL 129CM SUPER YAGI
9 x 19 el OSCAR 2M & 70cm ON A COMMONBOOM GREAT

ON THE BEST DEAL IN TOWN CALL THE BEST NUMBER AROUND 1-800-HAM-7373

CUSHCRAFT AOP-1 OSCAR PAK-133 RINGO RANGER II (2-220-440) 33.51

CUSHCRAFT 2M-3000WX - CALL US!

YAESU FT-726R CALL US!

FOR THE BEST DEAL IN TOWN CALL THE BEST NUMBER AROUND 1-800-HAM-7373

CUSHCRAFT AOP-1 OSCAR PAK-133 RINGO RANGER II (2-220-440) 33.51

YAESU FT-726R CALL US!

ONE SOURCE FOR AMATEUR RADIO BOOKS, TAPES AND COMPUTER PROGRAMS.

PROPROPAGATION PUBLISHING

OVER 125 BOOKS, TAPES AND COMPUTER PROGRAMS TO KEEP YOU UP TO DATE IN THE HAM WORLD, OR TO HELP YOU UPGRADE FOR THAT NEW TICLET.

SEND YOUR NAME AND ADDRESS FOR A FREE COPY OF THE NEW PROPAGATION PUBLISHING CATALOG.

SPECIAL!
"FLYING HORSE" 1986 CALIBROOKSB

THE NEW ONES WITH THE BIGGEST CHANGE IN CALIBROOKSB HISTORY! NOW ALL OF NORTH AMERICA, WITH US POSSESSIONS, IN ONE BOOK.

NORTH AMERICAN CALIBROOKSB
POSTAGE IN USA $21.95

INTERNATIONAL CALIBROOKSB
POSTAGE IN USA $20.95

PLEASE SEND CHECK OR MONEY ORDER.

RESIDENTS OF ILLINOIS ADD 6% SALES TAX.

WE ARE LOOKING FOR AUTHORS!

WANT AUTHORS WITH NEW IDEAS FOR BOOKS IN THE AMATEUR RADIO FIELD. IF YOU HAVE A BOOK IN WORK OR JUST THINKING ABOUT ONE, SEND AN OUTLINE AND SAMPLE CHAPTER TO US FOR REVIEW. WE CAN GIVE YOU THE BOOK THE NATIONAL EXPOSURE NEEDED TO MAKE IT A SUCCESS.

PROPROPAGATION PUBLISHING
PO BOX 5255, MORTON, ILLINOIS 61550
vhf and microwave

general

ATV power amplifier, fast-scan
WBB2CP

"Audio to microwave" amplifier, build your own
Gruenthal, Michael

Bandpass filter design, interdigital, computer-aided
NBUH, Monzenzadeh

Short circuit
p. 117, Jun 85

Battery-voltage monitor for HTs (weekender)
K2MWU

Diplexer mods (HN)
K3PFE

Dual wattmeter, 50-500 MHz (weekender)
WB4EHS

Duplexer, six cavity, home-brewed
K3EYV

Earth-month-earth (ham radio techniques)
WSSAI

Efficient matching (Tech. forum)
VE7BS

Elevation indicator, inexpensive (weekender)
WJ7TL

Get on 6 meters — the inexpensive way
KB1YQ

Q O E. R. reception: a simple approach
WA4WDL

Handheld transceiver mount (a 2-way ashtray for your car) (weekender)
KB2XM

Helical antenna matching (Tech. forum)
Belliveau, Joe

Instant balun (letter)

KB5CM

K9LHA 2-meter synthesizer, extending the range of (HN)
K9LHA

Local oscillators, high stability for microwave receivers and other applications
WB3JZO

Measuring noise figure
K2BLA

Micros and VHF Beacons
Transmit messages automatically
K3EJ

Microstrip impedance program
K8UR

Micro-wave network for multimode communications
K4TWJ

Moon coordinates, determining basic
W2WD

Moon-tracking by computer
KB8X

More about moonbounce (ham radio techniques)
WSSAI

Multipurpose uhf oscillator, simplifying the
WA5HYV

Power dividers, extended-expanded
W5JFL

Power FETs: trend for VHF amplifiers
Peters, Daniel, WB6POA

Power supply, amplifier
WAG2FP

Preamp at work, Quiet!
N7TX

Radio telecope antenna requirement (Tech. forum)
Lanederle, Tom

RF transmission cable, microwave applications
K3HW

Repeater security
WAG3RF

Silverplating, safe, sensible
K9EYV

Super beeep circuit for repeaters
K4PQAQ

Synthesized time identifier for your repeater
WAG2LIA

The Guern report: signal processing
W6MGI

Time decoder, the ultimate
W9DEJA, WB9HGOZ

Comment, WB9DEJA
p. 8, Feb 83

Touchstone auto-dieler, portable
K2MWU

Comments, K2MWU
p. 8, Feb 83

Trade off power for antenna gain at VHF
WAG6GR, Henzel
p. 32, Jul 85

UHF antenna tower, low-cost
KAG2FY

UHF amplifiers, carrier-operated relay
WB3JOC, K8BZK

UHF meter scatter communications
ATI

UHF signal generation, harmonic mixer (weekender)
K1ZJH

Short circuit
p. 121, May 85

VHF/UFH world: the VHF/UFH challenge
WJ1R

VHF/UFH world: improving meter scatter communications
WJ1R

VHF/UFH world: the VHF/UFH primer, an introduction to propagation
WJ1R

VHF/UFH world: the VHF/UFH Primer, an introduction to filters
WJ1R

VHF/UFH world
WJ1R

VHF/UFH world — low-noise GaAs FET technology
WJ1R

VHF/UFH world: high power amplifiers: pt. 1
WJ1R

VHF/UFH world: high power amplifiers: pt. 2
WJ1R

VHF/UFH world: keeping VHF/UFHers up-to-date
WJ1R

VHF/UFH world: protecting equipment
WJ1R

VHF/UFH world: propagation update
WJ1R

VHF/UFH world: designing and building loop Yagis
WJ1R

VHF/UFH world — transmission lines
WJ1R

VHF/UFH world
W6MQI

VHF/UFH world
p. 85, Dec 85

Weather radar, 10-GHz
K4TWJ

Wireless 220-MHz to 2-meter converter (weekender)
W3RP

X-band calibrator
WAE6JO

X-band mixer, low noise (Tech. forum)
NSAX

10-GHz oscillator, ultra stable
WJ1R

40-meter transmitter-receiver
W6XM

p. 43, Dec 82

Weathering the elements at 10.4 GHz
WB6YK

2-meter beam, portable
KBSQJ

p. 113, Oct 85

vhf and microwave

receivers and converters

Add fm to your receiver (weekender)
K2MKU

GaAs FET performance and preamplifier application
K8UR

Comments, KDBW
p. 12, Jul 85

Kenscan 74
WB7QV

Short circuit
p. 89, Jan 82

Local oscillators, high stability for microwave receivers and other applications
WB3DZ
p. 29, Nov 85

Modification of K2LHA 2-meter synthesizer for 144-148 MHz coverage (HN)
K9LHA

Preamplifier design, UHF, computer-aided
KBBO

Synthesizer, genesis of a VE3FIT
p. 38, Mar 81

TR-25002600 2-channel programming (HN)
KB9A

VHF/UHF world: VHF/UHF receivers
WJ1R

VHF/UFH world — low-noise GaAs FET technology
WJ1R

VHF/UFH world
p. 95, Nov 84

Yaesu's latest VHF/UHF receiver, and general coverage
WJ1R
p. 67, Oct 85

2-meter synthesizer, frequency modulator for K9LHA
p. 68, Apr 81

2-meter transverter
WB5WPH
p. 24, Jan 82

2-meter weather converter (weekender)
WAJ3EC
p. 87, Dec 83

10-60 MHz preamp, low-noise, low-cost WAG2FP
p. 55, May 85

2304-MHz preamplifier, low-noise WAG2FP
p. 12, Feb 83

vhf and microwave

antennas

Antenna insulators, PTFE VHF
WA4HUV

Cylindrical feedhorns, second-generation
WA4HUV

Direction-finding tool, the fox box
K1ZJH

Freqoun-plane plates for 10.4 GHz
WB2YVK

Comments, K990, WB6YVK
p. 8, Nov 82

Inexpensive five-eighth wave groundplane (HN)
W7CDB
p. 84, Mar 81

Matching 432 MHz helical antennas (Tech. forum)
WAG2WU

p. 44, Mar 83

Re-entrant cavity antenna for the vhf bands
WA4FXE

Using a 5-meter quarter-wave whip on 450 MHz (HN)
K1ZJH

VHF/UFH world: VHF/UHF antennas and antenna systems
WJ1R

VHF/UFH world: stacking antennas, part 1
WJ1R

VHF/UFH world: stacking antennas, part 2
WJ1R

VHF/UFH world
WJ1R

p. 85, Dec 85

Weathering the elements at 10.4 GHz
WB6YK

2-meter beam, portable
KBSQJ

p. 113, Oct 85

vhf and microwave

transmitters

Amplifier, 2 meter, 40 watt
WB4GCS

Amplifier, 432-MHz, 1500-watt
W2GN

ANUPX-6 cavities, converting surplus
W6BTL

Modification of K9LHA 2-meter synthesizer for 144-148 MHz coverage (HN)
K9LHA

p. 93, May 81

Solid-state power for 1296 MHz
N3UH

Synthesizer, genesis of a VE3FIT
p. 38, Mar 81

Temperature control, automatic
WBS5RI
p. 75, Jun 85

TR-25002600 2-channel programming (HN)
K9LHA
p. 128, Oct 85

VCO, 1800-2600 MHz
WB7TV

VHF/UHF world: medium power amplifiers
WJ1R

VHF/UHF world: VHF/UHF exciters
WJ1R

Short circuit
WJ1R
p. 60, Oct 84

Weaver modulation, 2-meter transnmitter
N1CDX
p. 12, Jul 85

2-meter synthesizer, frequency modulator for K9LHA
p. 68, Apr 81

6-meter amplifier
W2GN
p. 72, Apr 83

Short circuit
W2GN
p. 97, Aug 83
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

- ORBIT Magazine Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.
- Satellite Tracking Software Available for most popular PCs.
- QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks
- Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
COMPUTER TERMINAL BUILDING BLOCK $50.00
This is a great beginning for a computer terminal. It is a brand new, Panasonic, 9” TTL input monitor complete with its own self-contained, switching power supply, and a removable (four screws) triple output power supply. The whole assembly runs on 115/230 V, 50/60 Hz. Now for some specifics: 9” green phosphor, TTL input monitor, attached regulated 12 VDC, 1.5 A power supply used exclusively to run the monitor and an attached triple output switching power supply with outputs of 5 VDC @ 3.5 A, +12 VDC @ 500 mA, and -12 VDC @ 500 mA. The assembly has mounting feet and should be a snap to make a case for. Comes with hook up data.

New, factory boxed. We are offering this to you 4 ways:
- **COMPLETE SET-UP AS SHOWN**, including monitor, low voltage supply and triple output supply. **SPL-116-38**, 14 Lbs. $50.00, 5/$225.00
- **TRIPLE OUTPUT SUPPLY ONLY. ** **SPL-117-38**, 3 Lbs. $15.00
- **9” MONITOR ONLY**, (you supply low voltage input) **SPL-114-38**, 10 Lbs. $25.00
- **9” MONITOR W/LOW VOLTAGE SUPPLY ONLY, SPL-115-38**, 12 Lbs. $40.00

We are now selling guaranteed working, starlight scopes which allow sight in almost total darkness. They are so named because they incorporate a light amplification tube which uses the available star or moon light to allow you to see—without being seen. The scope has a spectral response of 4,500 to 8,000 angstroms, resolution of 50 lines/mm, viewing area of 25mm, standard 50mm F1.4 lens, optional telephoto 135mm F2.8 lens, cross hair reticle and optional carrying case. A great tool for security and naturalist applications. Runs on 9 VDC transistor radio battery. Due to the nature of this device and people only having a one time use for it, we cannot accept returns for refund, credit or exchange on this item. To our knowledge, this is the least expensive starlight scope on the market. Includes 90 day warranty.

STARLIGHT SCOPE **SPL-130A-39** $1,200.00
Optional Telephoto Lens, 135mm F2.8 **SPL-131A-39** $85.00
Optional Fitted Carrying Case **SPL-132A-39** $65.00

ATTENTION:
SECURITY PERSONNEL
NATURALISTS
HOBBYISTS
NEW SEE-IN-THE-DARK EQUIPMENT!

5 1/4” HARD DRIVE CONTROLLER CARD
Finally, affordable, intelligent disc drive controllers are available at low, low surplus prices. The OMTI 20C controller boards we offer are unused, late style, surplus from a now defunct system house. OMTI is a division of Scientific Micro Systems. These boards will handle up to (2) 5 1/4 inch Winchester type hard drives that utilize a standard 34 pin SASI interface. Perfect for using with the above Seagate ST 506 drive, or other hard drives from 5 megabytes of storage on up.

The controllers have buffered slow seek modes, overlapped seeks, auto seek & verify, extensive fault detection, auto head & cylinder switching, full sector buffering, 256/512 bytes/sec, 33 or 18 sectors/track (jumper selectable), programmable disc parameters and much more. The board runs on +5 VDC & +12 VDC. We supply users manual & pinout data. Guaranteed O. K.

Shpg. wt. 3 lb. OMTI 20 C $150.00 each 2/$275.00 Qty. pricing available.

HIGH POWER SURVEILLANCE IR SCOPE
This Infra-Red scope was designed specifically for long range surveillance use. The built-in, totally invisible, 50 watt halogen lamp IR source is coupled with a premium grade type 6032 image converter tube, 265 mm F1.2 lens, and 16 power military spec., color corrected eyepiece make this an ideal unit for viewing of clandestine activities or animals. The scope is capable of detection at more than 300 feet, recognition at 300 feet and positive facial identification at 150 feet. It runs on 12 VDC which makes it ideal for mobile use. It comes with a removable hand grip which allows for tripod mounting, 2 power cords for cigarette lighter or battery terminals, instructions and a 90 day warranty. Listed below are accessories which make this a very versatile instrument. The scope and accessories are new and guaranteed functional. Net wt. 5-1/4 Lbs. **IR Scope part no. ELD** **Shpg. Wt. 7 Lbs.** $735.00 ea.

ACCESSORIES:
- **12 VDC GEL BATTERY** for above. **Shpg. Wt. 6 Lbs.** $35.00
- **BICOCULAR EYEPiece** which can be used in place of the standard eyepiece. This allows the scene being produced by the IR viewer to be seen by the operator up to 4 ft. away. **2 Lbs.** $89.95

MALE “T” 11.6 CAMERA ADAPTER for SLR cameras **Shpg. Wt. 1 Lb.** $129.00

MALE “C” to FEMALE “T” ADAPTER for CCTV, requires use of above male “T” 11.6 adapter. ** **Shpg. Wt. 1 Lb. $29.95
MAJOR BRANDS ON RECEIVER TUBES
75% off list

Semiconductors
MRF 245/SD1416 $30.00
MRF 454 14.95
MRF 455 10.95

RF Connectors
PL259 10/14.95
PL258 10/8.95
UG 175/176 10/1.60
UG255/u 2.50 ea.
UG273/u 2.25 ea.

Install six factory assembled circuit boards to complete.

SEMIKIT $300.00
Completed downconverter add 100.00
Completed receiver and downconverter add 150.00

SATELLITE TELEVISION RECEIVER SEMIKIT

with dual conversion downconverter

FEATURES:
- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polarator controls
- LED channel & tuning indicators

Install six factory assembled circuit boards to complete.

SEMIKIT $300.00
Completed downconverter add 100.00
Completed receiver and downconverter add 150.00

JAMES WALTER SATELLITE RECEIVER
2697 Nickel, San Pablo, CA 94806 Tel. 415-724-0587

STV
THE HOME SATELLITE TELEVISION MAGAZINE™
A monthly of 100-plus pages—has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV®, you will receive a FREE LCD Calendar/Clock.
- Only $19.95 per year (12 monthly issues)
- $1.00 for sample copy

IF YOU HAVE A SATELLITE SYSTEM, THEN YOU REALLY NEED...

OnSat

The best in satellite programming! Featuring:
- All Scheduled Channels
- Weekly Updated Listings
- Magazine Format
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights
- Specials Listing and Programming Updates!
- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

Visa®and MasterCard® accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:
STV®/OnSat®
P.O. Box 2384—Dept. HR Shelby, NC 28151-2384
SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020
REVIEW

Alpha Delta’s multi-band twin sloper antenna

Slopers have enjoyed considerable popularity over the past few years. Recently a number of different manufacturers have been producing several models of multi-band slopers that are fairly convenient to install and apply and give a pretty good accounting of themselves on the air.

The newest sloper is the DX-A from Alpha Delta, designed to cover 180, 80, and 40 meters. Alpha Delta is well known for its MACC power supply switch and transient protector and its Transi-trap antenna lightning protector. Don Tyrell, W8AD, president of Alpha Delta, was looking for a way to improve his low band signals and came upon the March, 1981, QST article by Doug DeMaw, W1FB, “More Thoughts on The Confounded Sloper.” Don researched the sloper further and decided that the design could give him the kind of performance he was looking for.

Because he wanted a multi-band antenna, he had to make a few modifications. The first was to modify the basic design to configure it more like an inverted dipole rather than a single wire antenna (as described in the QST article and produced by other manufacturers.) This was done to broaden the bandwidth and improve the radiation efficiency of the antenna. As first designed, the antenna had one element that covered 180 and 80, while the other tuned 40 meters. However, after a number of these units were produced and out in the field, Don found that the antenna’s performance could be improved if the 160-meter resonator was placed on the end of the 40-meter wire (see fig. 1).

Since I had the original DX-A antenna, I had to make a number of minor modifications before this review could begin.

Alpha Delta uses an aluminum tower bracket drilled to fit a Rohn tower bolt and has a 50.238, female UHF connector to simplify attaching the antenna feed line. The two antennas are fed from this common point and extend away from the tower just as a dipole would. If there’s any question of a good ground connection, such as with a crank-up or older and possibly corroded tower, it will be necessary to run a grounding wire to ensure proper operation.

Alpha Delta recommends that the DX-A be placed between 25 and 40 feet up—30 is suggested as optimum. The elements should be run as closely to 180 degrees apart as possible. (The test antenna was installed at 32 feet on a 56 foot wire.

fig. 1. Performance was improved by placing 160-meter resonator at the end of 40-meter wire.
Inter-Ear-Communication-System

A space age system that allows you to send and receive your message through your ear and leave your hands free.

- Replace your HT’s awkward speaker-microphone with an ear-microphone.
- Discrete HT communications leaves you with both hands free.
- Allows voice communications in noisy environments.
- Our ear-talk interfaces with almost all HT’s, which have external speaker microphone output jacks.
- Custom hybrid circuit.
- Low power consumption. Transmits at 5mA and less than 10uA when receiving.
- One year warranty.

Dealer inquiries are invited.

$99.95 includes IECS-200 control unit, Ear transducer, 9V battery, 6-pin output connector and Instruction sheet. (Add 6% sales tax for California residents.)

Custom made interface cable for TEMPO S-15 and all ICOM HTs are available at $19.95

FOR ALL PREPAID ORDERS, SHIPPING AND HANDLING CHARGE WILL BE PAID BY N-EAR-TALK.

ACE communications, inc.
22511 Aspin Street ♦ Lake Forest ♦ Calif. 92630-6321
(714) 581-4900 Telex 29-7385 ACE UR Fax (714) 768-4410

WARNING

SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10’ or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers’ catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

Paid for
By the Following:

ROHN®
P.O. Box 2000
Peoria, IL 61656
AN AMERICAN OWNED COMPANY

packet goes portable

GLB Electronics, Inc., has introduced the first packet radio controller designed for portable and solar powered stations.
Invitation to Authors

Ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).

MICROWAVE EQUIPMENT

RMLA - 2.3

Single Stage, Low Noise Gas Fst Amplifier

$90.00

Optimum Transistor Noise Figure less than 5 db. Associated Gain Greater Than 15db at 2.3 GHz. Source/Load must be 50Ω and Non-Reactve SMA Connectors. Requires ±5VDC Power with ±5VDC Power Supply and Sequencing is not supplied. Zener Protection Enclosed on "2" x"2" PC Board.

Write for Price/Delivery for any frequency from 1 to 6 GHz. Also VCO's, Mixers, Generators, Detectors, Attenuators, Filters, Mixers, and Converters.

Price includes Shipping and Insurance when paid by check or money order. Charge or C.O.D. orders. F.O.B., Brookfield, MO.

ROENSCH MICROWAVE

R.R. 1, Box 1568
BROOKFIELD, MISSOURI 64628

December 1985
MULTI BAND TRAP ANTENNAS

TRAP DIPOLES:
Table 1: Model Name Bands (MHz) Trap Length (ft) Price ($)
E-0.0 10/15/20/40 7 55 60.90
E-0.1 10/15/20/40 8 70 105.00
E-0.2 10/15/20/40 6 65 120.00
E-0.3 10/15/20/40 6 65 120.00
E-0.4 10/15/20/40 6 65 120.00

TRAP VERTICALS: "SLOPERS"
Table 2: Type Bands (MHz) Length (ft) Price ($)
V-0.0 10/15/20/40 5 10 42.90
V-0.1 10/15/20/40 6 12 42.90
V-0.2 10/15/20/40 8 15 42.90
V-0.3 10/15/20/40 10 17 42.90

NEW PRODUCTS

Unique in terms of small size and low current drain, the PK1L is designed for portable use and remote digipeater operation. At a current drain of only 25 mA, the PK1L can even be operated on a 9 volt transistor radio battery. PK1L also has self-contained "watchdog" and power-down sensing circuits with a lithium battery backup for memory. When power is disconnected all parameters and modes that have been set up are retained and become available again when power is restored. For remote digipeater operation in the event of malfunction due to nearby lightning strikes, etc. the watchdog automatically resets the CPU, ensuring continuing operation for anything short of physical damage to the unit. The PK1L also provides a "connected" signal, plus two spare inputs and outputs that can be programmed for custom applications. A "remote command lockout" input can be used to prevent unauthorized stations from sending control commands.

The PK1L is housed in a rugged, all-metal, shielded enclosure measuring only 4.6 x 5.9 x 1.0 inches. The PK1L is entirely self-contained with an onboard CPU, 8K of memory, preprogrammed 32K ROM, RS-232 interface and packet MODEM weighing only 12 ounces. Both connectors are DR-25s, chosen for ready availability. Pinouts were chosen to preclude damage due to improper insertion. One connector is for transceiver and power supply and the other for a computer, a computer terminal, or a teletype machine, either ASCII or Baudot. The CPU is a CMOS 280A microprocessor operating at 3.58 MHz.

For further information, contact GLB Electronics, Inc., 151 Commerce Parkway, Buffalo, New York 14224.

Circle F03 on Reader Service Card.

ICOM IC-R7000 receiver

A new continuous-coverage receiver from ICOM monitors all Amateur Radio frequencies, from 25 MHz through 2000 MHz in FM, AM, and SSB modes. Specifications guarantee from 25 to 1300 MHz. The unit also covers aircraft, marine, government, emergency services and television bands.

Ninty-nine memory channels are featured. Frequencies are accessed by either keyboard or tuning knob. Scanning speed is adjustable. Five tuning speeds (10.1 kHz, 1.0 kHz, 5 kHz, 10 kHz, 12.5 kHz, and 25 kHz) are available. The fluorescent display includes a dimmer switch for comfortable viewing.

The compact unit measures 3.3/8 x 11 1/4 x 10 7/8 inches and is priced at $889. Infrared remote controller and voice synthesizer are optional.

For details, contact ICOM America, Inc. 2380 Avenue N.E., Bellevue, Washington 98009-9029.

Circle F04 on Reader Service Card.

AZDEN 2-meter transceiver

Amateur-Wholesale Electronics has announced the new AZDEN PCS-5000 2-meter microcomputer FM transceiver.

The PCS-5000 has an unprecedented frequency range of 140.000-152.995 MHz, allowing the unit to be used for CAP and all MARS frequencies. Its small size — only 2 inches high by 5-1/2 inches wide by 7-1/4 inches deep — allows the radio to be placed almost anywhere.

The microcomputer facilitates features not previously available, including up to 11 nonstandard splits, 20 channels of memory in which offset and PL information can be stored, dual memory scan, scan lockout in memory mode, two ranges of programmable band scanning, with selectable scan increments, busy scan and delay scan in both the memory and band-scan modes, discriminator scan centering (AZDEN exclusive patent), priority memory with alert tone, state-of-the-art lithium battery for memory back-up, repeater reverse, acquisition tone, programmable PL generator, and direct frequency entry.

The crisp, easy-to-view backlit liquid crystal display shows operating functions as well as frequency and S/RD bar-graph meter. The keyboard is backlit for easy viewing even in total darkness.

Other features of the PCS-5000 include high/lowlower power (25 watts and 5 watts, fully adjustable), a superior receiver with unprecedented sensitivity and dynamic range, true frequency modulation, 16-key touchtone pad, a rugged multi-function dynamic microphone, a built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs and fuses.

For further information, contact Amateur-Wholesale Electronics, Inc., 8817 S.W. 129 Terrace, Miami, Florida 33176.

Circle F05 on Reader Service Card.

new Heathkit catalog

More than 400 kit and assembled electronic products — including a new personal LORAN navigational computer suitable for boating or backpacking — are showcased in the latest Heathkit catalog.

Many new products are featured: for example, Heath's instrument line has been expanded to include the ID-4801 EPROM Programmer.
used to program, duplicate, verify, and simulate single-power supply 2500 and 2700-series EPROMS. A new version of the H/Z-100 Desktop Computer is also available, featuring 8MHz operation and equipped with a minimum of 256K bytes of RAM.

Of special interest to readers is an FCC-registered phone patch that employs a new design and special speech transmission circuits that allow the patch to be directly connected to the phone line, thereby eliminating conventional hybrid transformers used on four-wire to two-wire conversions.

For a free copy of Heathkit’s new catalog, contact Heath Company, Dept. 150-585, Benton Harbor, Michigan 49022.

Circle F06 on Reader Service Card.

PK-64 packet system

The PK-64 form AEA is the first Packet System with both hardware and software optimized for the Commodore-64 computer.

On the hardware side, the PK-64 includes Western Digital 1935 HDLC chip for full-duplex operation. The modem is based on the Exar 2206 and 2211 chip set including a 6-pole post detection filter for improved HF and VHF performance. The PK-64 is designed for small size and light weight, for convenient use. AEA designed the PK-64 to operate from 12 volts DC for maximum flexibility in powering the unit. An AC Adapter is available for those wishing to use a 115 volt AC power source. The PK-64 will work with virtually any voice transceiver.

The hardware is only half the story. No Packet Radio Controller is complete without appropriate communications software. Existing terminal emulation programs used with present Packet Controllers were not designed with Packet Radio Communication in mind and are not optimum. The PK-64 includes its own MBA-TOR™ style communications software which has been optimized for Packet Radio.

The PK-64 software allows Split Screen operation for more efficient Packet Radio communications. This is a valuable feature since it allows receiving and displaying packets while the operator is typing a message or response to be transmitted. There is a built-in word processor style text editor that allows disk or cassette files to be created, edited, or deleted. Commodore 64 text and executable files may be transferred error-free with the PK-64. Ten command and message buffers are available for traffic, bulletins, or often used connect paths, etc. A software clock is included which automatically logs the connect and disconnect times and dates. PK-64 commands are the same style as the TAPR family of commands.

The price is less than $220.

For more information, contact Advanced Electronic Applications, Inc., PO Box C-2160, Lynnwood, Washington 98036.

Circle F02 on Reader Service Card.

2-position coax switch

The new MFJ-1702 two-position coax switch features one pole, two output positions, and low insertion loss — less than 0.2 dB. Its maximum frequency range os 500 MHz, and it has less than 20 milliohms contact resistance SO-239 connectors.

The MFJ-1702 is designed for high-performance at a reasonable price. It has a VSWR of 1:1.2 and gets better than 60 dB isolation at 300 MHz and better than 50 dB at 450 MHz. The power rating is 2.5 kw PEP, 1 kw CW. The power rating is 2.5 kw PEP, 1 kw CW.

Hams will find that they can rely on this durable two-position coax switch because MFJ includes a one-year unconditional guarantee and an additional 30-day money-back guarantee if the product is purchased directly from MFJ Enterprises.

For more information, contact MFJ Enterprises, P. O. Box 494, Mississippi State, Mississippi 39762.

Circle F07 on Reader Service Card.

plug-in encoder-decoder

Communications Specialists has introduced another new direct plug-in encoder-decoder for three popular radios. Based on the proven TS-32 programmable encoder-decoder, the TS-32JRC plugs directly into the J.R.C. JHM-45590, Sonar FM-2112/FM-2114, and Repco RSM. No modifications to the radio are necessary.

The TS-32JRC allows individual selection of all 32 standard EIA CTCSS tones on any of the radios’ channels. The send and receive tones may be the same or different on each of the 16 channels. The TS-32JRC is available for immediate delivery from factory stock and sells for $62.95. A catalog is available on request.

For further details, contact Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92665-4296.

Circle F08 on Reader Service Card.
APPLE S25 alrare by Pore.

FLY*RM

APPLE POWER

BBlO TMSRaDILMCWP04PINLI XR 4tY 4116 21111 2E4 TMS TIM TMSOs)(WL

ISSUES P.O. BOX 1101 ZI

CREV

P.O. BOX 1101

HAL-TRONIX, INC.

PHONE (313) 285-1782

 điện

I4

DNRY

3300

3300

D...,

WJUG,

Call or write Jim Georgius,

Director

DeVRY ARS VEC Program

DeVRY Institute of Technology

3300 North Campbell

Chicago, Ill 60618

(312) 929-8500

VE Groups! Individual VEs! DeVRY Wants You!

Work with the VEC that was — and still is — one of the first (and best) in the VEC Program.

Upgrading? An SASE will bring you DeVRY exam dates and locations by return mail.

Call or write Jim Georgius, WJUG, Director

DeVRY ARS VEC Program

DeVRY Institute of Technology

3300 North Campbell

Chicago, Ill 60618

(312) 929-8500

DO YOU KNOW WHERE TO FIND REAL BARGAINS on NEW and USED ELECTRONIC Equipment?

You’ll Find Them in the Nation’s No. 1 Electronic Shopper Magazine

NUTS & VOLTS

Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:

• NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS • LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

□ One Year - 3rd Class Mail $10.00
□ One Year - 1st Class Mail $15.00
□ One Year - Canada & Mexico (in U.S. Funds) 18.00
□ Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!

SEND:

□ CHECK □ MONEY ORDER
□ VISA □ MASTERCARD

TO: NUTS & VOLTS MAGAZINE P.O. BOX 1111-H PLACENTIA, CALIFORNIA 92670 (714) 632-7721

Name

Address

City

State

Zip

Card No.

Exp. Date

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!

Dealer Inquiries Invited
Uncle Ben says...

"I give you much more than just the lowest price...

When you get that exciting new piece of equipment from me, you know you are going to be completely happy... I see to it, personally! I also give you earliest delivery, greatest trade-in allowances, my friendly assistance in every possible way.

Just ask any of the many thousands of hams all over the world who have been enjoying my friendly good service for over a half a century. 73, Uncle Ben, W2SOH

• CALL ME...
 (516) 293-7995

HARRISON
HAS THEM ALL!
KENWOOD

Kenwood TR-7950/7930
Kenwood TS-940S
Kenwood TS-430S

• WRITE ME...
 For my prompt, personal reply.

• SEE ME...
 At one of the world’s largest Ham Supply Centers!

 Kenwood TH21AT, 31AT, 41AT
 Kenwood TS-711A (2m)
 TS-811A (70 cm)
 Kenwood TR-2600, TR-3600
California

C & A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90409
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best —
Since 1962.

FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7110
714-822-7725
The Largest Electronics Dealer in San
Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping
at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware’s Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu,
Kenwood, Santec, KDK, and more.
One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33755
813-461-4267
Clearwater Branch
West Coast’s only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLAND, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-5181
ICOM, Yaesu, Kenwood, KDK, Bird...
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 53
years.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed & Fri;
9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSTON, IL 60710
812-422-0231
Discount prices on Ten-Tec, Cubic,
Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.

Massachusetts

James Millen Components by
ANTENNAS ETC.
16 HANSOM ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, binding posts, capacitors, con-
densers, chokes, coils, ceramics, H.V.
connectors, plate caps, hardware
knobs, dials, scopes and grid dippers.
Inquire SASE or visit.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Jersey

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
201-239-4393
Gene K2KJI
Maryann K2RVH
Distributor of: KLM, Mirage, ICOM, Larsen,
CRYSTAL FILTER SALE
Top-quality 8-pole CW/SSB/AM FOX TANGO Filters
For most Models from:
KENWOOD - YAESU - HEATHKIT
Also DRAKE R-4C/C, Line, COLLINS 75-S3/B/C, and ICOM (FL44A Twin)

25% OFF LIST!!
Check your IF to find List Prices for the Following Ranges:
IF Range: 3 to 11 MHz
For all Yaesu, Kenwood, Heath... $60
IF Range: 446 to 4600 kHz — List prices as follows:
Yaesu... $175, Kenwood... $110, Icom... $100
Collins 75-S3/B/C (250 kHz BW only)... $125
DRAKE R-4C —
GUF-1 I/IF 2 kHz (BW) for SSB/CW... $85
GUF-2 1 I/IF 400 BW with PC Board for CW... $100
2nd IF — Special 125 kHz for Contesters... $75
All other bandwidths... $65
DRAKE FR-7, 850, 400, 1.8, 2.1 kHz... $60

MATCHED-PAIR CW and SSB FILTERS
FOR TOP PERFORMANCE
7500X90X9040 —
CW 400 Hz or SSB 2 kHz Each Band... $170
CW 400 Hz and SSB 2 kHz (Both Bands)... $300
(Many but not all filters on order)
If CW is not needed)
FT-900 (SSB 2 kHz Pair)... $150

FILTER CASCADING KITS
FOR SUPER SELECTIVITY
For FT-101 of T54000
(includes board and 2 filters)... $75

FILTER BANDWIDTHS AVAILABLE
(CW in Hz, Others in kHz)
CW: 125, 250, 500, 1000 — SSB: 1.8, 2.1, 2.4 — AM: 60
(Not every bandwidth for every model; we send closest)
Since 1978, Fox Tango filters have been the best!
Fox Tango stocks filters for both used and current ops
Use FT's to fill optional CW/AM spots, or replace units
Unlimited time guarantee on original filter purchasers
All filters fitted to specify discrete-crystal construction
Most filters are designed for easy drop-in installation
Complete instructions and full parts furnished for others
Limited supply of the most popular types — Order NOW!
Sale ends December 31, 1985. Price rises likely in 86!

SPECIAL FILTERS
Send specifications for quotation on custom-built models for special projects.
Attractive prices and samples for OEM or volume purchasers. Dollar-value decline and trade restrictions probably make this the last chance to buy top-quality Japanese-made filters at reduced prices.

ORDERING INSTRUCTIONS
Specify: Make of Set, Model Number, Bandwidth, IF
DEDUCT: 25% from above List Prices (reg. $60 — Sale $45)
SHIPPING: $3 US, $5 Air (US & Canada), $10 Elsewhere
ORDER: Mail or phone. VISA/MC Accepted. FAX and 5% tax

GO FOX TANGO — TO BE SURE!
FOX TANGO CORP.
P.O. Box 15944
W. Palm Beach, FL 33416
Telephone: (305) 683-9587

SWLS - HAMS
CALL TODAY FOR ALL YOUR SWL & HAM NEEDS
*RECEIVERS *ANTENNAS
*TRANSCIEVERS *RTTY
*PUBLICATIONS *SWL
YAESU·KENWOOD·ICOM
HARDIN ELECTRONICS
5635 EAST ROSEDALE
FORT WORTH, TEXAS 76112
1-800-433-3203
IN TEXAS 817-429-9761
ARRL Q&A LICENSE MANUALS
ALL LICENSE CLASSES NOW AVAILABLE!

ARRL Q&A License Manuals are key to the latest FCC Exam syllabi in use by the Volunteer Examiners. These books are written in an easy-to-read conversational style that enhances understanding without scaring the student away. All technical subject areas are explained in clear terminology and with plenty of illustrations, diagrams and schematics. Rules are also fully covered. Each book has the official ARRL multiple choice question Pool with answers and a key to the FCC Exam syllabus for reference to other study publications. These are the study guides to have. All books ©1985 1st editions.

- JAR-TG General Softbound $5.00
- JAR-AG Advanced Softbound $5.00
- JAR-EG Extra Softbound $5.00

HR CODE TAPES
Formerly Kantronics Tapes

These code tapes have been designed by experts to help you learn code. Several different methods are available for all classes of license. Transcripts enclosed for checking copy.

- Graduate Tapes, (slowly increasing in speed) $4.95/800
- JT-5G General 7-15 WPM $6.95
- JT-5G General 7-15 WPM $6.95
- JT-5G Extra 13-23 WPM $8.95
- QSO Station Tapes
 - KT-5S01 7.5, 10, 13 & 15 WPM 1 hour $5.95
 - KT-5S02 7.5, 10, 13 & 15 WPM 1 hour $5.95
 - KT-5S03 13 WPM 1 hour $3.95

ANTENNA COMPENDIUM edited by ARRL Staff

This book has more than 20 antenna articles that have never been published before. Subjects covered include: Quad, Yagi, Phased Arrays, Log Periodics, Subsurface Antennas, “The Old Spaceco Antenna”, as well as discussions on Smith Charts, antenna design, the GSRR multiband antenna and antenna polarization. Great summer reading full of ideas for Fall ’85 antenna projects. ©1985, 1st Edition.

- AR-AC Softbound $9.95

AMECO STUDY GUIDES

Designed for VEC Exams

AMECO Study Guides are taken from the FCC Amateur Exam syllabus, PR-1025 and have answers keyed to ARRL’s recently released study material. These study guides are compatible with ARRL and all other VEC Exams. While nothing can guarantee that you will pass, AMECO Study Guides will make sure that you are fully prepared and ready to go when you sit down for the exam. Written in clear, concise, easy-to-read format, each question fully explained. Novice and General books cross referenced to AMECO’s 1-102 and 1 for a more thorough examination.

- 27-01 Novice Class Softbound $2.95
- 12-01 General Class Softbound $4.95
- 28-01 Advanced Class Softbound $4.95
- 17-01 Extra Class Softbound $4.95

THE AMATEUR RADIO VERTICAL HANDBOOK

by Cpt. Paul H. Lee, USN (Ret.), NE8L

This is the only book dedicated to the vertical antenna and will be of interest to all those using or looking to use the vertical design. Based upon the author’s years of work with a number of different vertical antenna designs, you'll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for simple 1/4 and 5/8-wave antennas as well as broadband and multi-element directional antennas. Paul Lee is an engineer and avid ham and is Amateur Radio’s resident expert on the vertical antenna. ©1984, 2nd edition.

- LC-VAN Softbound $9.95

COMPUTER WIMP

by John Bean

“166 things I wish I had known before I bought my first computer.” Based upon ten years of sometimes frustrating experience, this light-hearted, test is designed to help you learn about computers and to make intelligent decisions about your purchase. Author Bean first examines common pitfalls associated with computer. He then examines, warranties, how to deal rationally with malfactions, how to buy by mail, how to talk “technobabble” or computerese, how to avoid computer phobia, games, software piracy and much more. 1st Edition 285 pages ©1983

- TIP-CW Softbound $9.95

CONTEST LOG

by Duane T. Overback, N6MR, and Jim Steffen, KCSA

Here's the best source book of computer programs for the Radio Amateur. Besides covering computer basics, this book gives you programs that will help you log, determine sunspot counts, track the EME path across the sky, use Greline propagation and set up record systems for WAS, DXCC and VUCC, or any other award. You can either buy the book alone or you can buy the book with the programs already on disk. Take full advantage of your computer with this well written source book. ©1984, 1st edition, 327 pages.

- Program Listing Data Base Mgmt., Logs, Awards Data Base, Gridlocator
- Data File, Beamheadings, DX Display, Sunrise Chart
- Greline, DX Checker
- Contest and Duplex
- Sweepstakes Logger, Field Day Logger, Sweepstakes Logger, Log Print
- Antenna Programs
- Antenna Scanner, Beamforming Evaluator, Vertical Pattern Plotter

EME

EME System Calculator, Sky Locator, Moontracker

- NA-5587 Softbound $17.95

- NA-5587 book with program disk $29.95

- Program disk alone $19.95

Programs available for Apple II (DOS 3.3), IBM PC-DOS, TRS80 Model I and Model II, and Commodore C-64. Please mark your order with the program disk you want.

COMMUNICATIONS SATELLITES

by Larry Van Horn

Here's the most exhaustive text ever written about communications satellites! Easy-to-read text along with plenty of pictures and illustrations make this new book a veritable gold mine of information. Nine chapters include: OSCAR, weather, domestic and international communications satellites, DBS, space shuttle, USSR, U.S. military and space surveillance systems and the Soviet space program. Also included are four appendices on satellite frequency cross references, satellite complement, current geostationary satellites and Must reading for all satellite users. ©1985 1st edition 216 pages.

- GE-CS Softbound $12.95

THE COMPLETE DX’ER

by Bob Locher, W0NKI

DXing can be as simple as turning the radio on and searching across a band, or it can be hours spent studying propagation reports, sunspot figures and the DX newsletters looking for tidbits of information. The first part of the book is designed to teach the reader DX’ing fundamentals. Part two is for the “over 200 countries worked” operator and has plenty of handy tips, aids and ideas. Part three is full of more esoteric hints for the “over 300 countries worked” operator. This book tells all and should be required reading for anyone starting their quest for DXCC. Even if you don't care about DXCC, Bob's easy-to-read style of writing is most enjoyable. ©1984, 1st edition.

- HD-DX Softbound $10.95

UNDERSTANDING DATA COMMUNICATIONS

(Includes Packet Information)

by G. Friend, J.L. Fike, H.C. Baker and J.C. Bellamy

Covers basic concepts of data transmission and reception, asynchronous and synchronous protocols, error control and networking data communications systems. Data terminals are fully discussed as are message transmission terminals, modern and interfaces, fiber optics and satellite communications systems. Packet Networks and standards are also covered in an information on 4.25 switching architecture. ©1984 1st edition 272 pages.

- TI-UDC Softbound $14.95

PROGRAMS FOR THE RADIO AMATEUR

by Wayne Overbeck, N6MR, and Jim Steffen, KCSA

Here’s the best source book of computer programs for the Radio Amateur. Besides covering computer basics, this book gives you programs that will help you log, determine sunspot counts, track the EME path across the sky, use Greline propagation and set up record systems for WAS, DXCC and VUCC, or any other award. You can either buy the book alone or you can buy the book with the programs already on disk. Take full advantage of your computer with this well written source book. ©1984, 1st edition, 327 pages.

- Program Listing Data Base Mgmt., Logs, Awards Data Base, Gridlocator
- Data File, Beamheadings, DX Display, Sunrise Chart
- Greline, DX Checker
- Contest and Duplex
- Sweepstakes Logger, Field Day Logger, Sweepstakes Logger, Log Print
- Antenna Programs
- Antenna Scanner, Beamforming Evaluator, Vertical Pattern Plotter

EME

EME System Calculator, Sky Locator, Moontracker

- NA-5587 Softbound $17.95

- NA-5587 book with program disk $29.95

- Program disk alone $19.95

Programs available for Apple II (DOS 3.3), IBM PC-DOS, TRS80 Model I and Model II, and Commodore C-64. Please mark your order with the program disk you want.

Ham Radio has many other books in stock not shown here.

Call or write today for your free catalog or to place an order. (603) 878-1441 8-EST

Please enclose $3.50 with your order to cover postage and handling.

Ham Radio's Bookstore
SOFTWARE

RTTY MAILBOX MSO
For Vic 20 and 6-64 Computers

Turns your Commodore home computer into a powerful, easy-to-use message handling system. Messages can be stored, read or deleted by either incoming RTTY signals or by using the computer's keyboard. Each message is listed in a directory and indexed by date, time and time of message initiation. The Basic/Assembly language software combines high speed with user friendly features and fully controls your receiver and transmitter. Rules for use are easy to learn and fully automatic identification, an optional special message and automatic transmission of date and time during MSO use. You can also use this program to operate direct RTTY (6, 10, 16, 20 and 80 MHz) and time data. The program is priced at $39.95.

VC-CP Use with AEA CP-1 interface & equi. $79.95
VC-MF Use with MFJ interface & equi. $79.95
VC-KT Use with Kentronics interface & equi. $89.95

RF NOTES by John Simmons, WGM1

Here's an easy way to get answers for often asked electronic questions. RF NOTES contains programs written by RF consulting engineers that answer: DB conversion, to convert voltage, current or power levels to db, dbm conversion, converts voltages in power level to dbm and dbm to voltage or power, VSWR calculations; calculates VSWR and return loss when both reflected and incident powers are known. Fill in the blanks, 14 different filter configurations including schematics & diagrams, 2 band pass and 2 band elimination circuits; Basic Microstrip and basic strip line design; coaxial circuits, design parallel and series resonant circuits, PI, capacitive impedance divider and inductive divider. This disk is invaluable for all Radio Amateurs. Graphical cards required.

E-RE [IBM PC only] Monochrome Monitor $59.95
E-RFC [IBM PC only] Color Monitor $59.95

CONTENDER II LOGGING DATABASE
(Commodore C-64)

This Commodore C-64 program will meet just about every logging need you can imagine. It can be used as a contest log, general log or dup checker and can be used for all band WAW, WAZ or DXCC. The program holds up to 200 exchanges and can be edited and updated simply and easily. Each entry contains callsign, signal reports, full or partially entered time and date, band and mode as well as name and OTH. Contender will also print QSL's, mail labels and contest dupe sheets. The Contender USA-CA-3 (three disk) is a Worked All County data base that saves time and hassle and a tremendous amount of paperwork.

- CT-C Basic Contender (C-64) 1 disk $34.95
- CT-CUSA Contender Plus USA-CA (C-64) 3 disks $49.95

PACKET RADIO THRU SOFTWARE
AX.25 Protocol

You can get on Packet Radio two ways. One is with a sophisticated "black box." The other is by making your computer act like a "black box" by programming it in a high level language (MS-DOS). This program has written a machine language program for the Radio Shack TRS-80 Models 1, 3 and 4 computer (Model 4 works with Model 3 disk while in Model 3 mode). This book has twelve chapters plus seven appendices that take you step by step through the process of setting your computer to first converg the digital information into a usable format and then to remove the information. © 1984, 3rd edition.

- RE-AX Softbound $27.95
- RE-MI Model 1 Disk $29.00
- RE-MI Model 3 & 4 Disk $29.00
- RE-BO special book and disk
 (Specify disk, Mod. I or Mod. III) $49.95

COMPUTERIZED DX EDGE
Generate your own Greyline display.

Xante has adapted their best selling DX Edge to the computer world and it comes at a very reasonable price. This computerized operating aid brings into your shack the ability to know and predict when and where DX is going to appear. When you are using the program, the computer automatically updates the information as the sun progresses across the face of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 band zones. Disk and documentation are just $34.95. This is something you've got to have! © 1985.

- AX-ENCS (for Commodore C-64) $34.95

AEA MORSE UNIVERSITY
Contains - C-64 code training cartridge software package (no disk or cassette necessary)
- ARL's Tune In The World With Ham Radio
Great NEW way to study for your Novice License!
- DX Edge
This brand new package contains all one needs to learn the code and theory for the Novice class Radio Amateur exam. Basic code is taught using a character teaching Routine. Practice can be either with individual letters or in groups of up to nine characters. Proficiency is developed through practice sessions that can be progressively speeded up during the session, either random characters or five letter groups, Farnsworth (high speed characters, slow spacing) or slow speed sending. AEA has incorporated a video game to make the code learning process even more fun. You can also enter text from the keyboard for "customized" practice sessions or as an example of how code should sound. An analysis route is included so that the computer can check one's progress in learning the code. ARL's Tune In The World will give you all the answers you need to learn the Novice theory and regulations. Great state-of-the-art teaching device. Sure to be a hit this fall. Get one now. It's a great holiday season gift!

- AEA-MU (for C-64) $39.95

HOLIDAY SPECIAL

STOCKING STUFFERS AND OTHER GIFT IDEAS

BEAM ANTENNA HANDBOOK
by WISSAI and W2LX

Completely revised and updated the Beam Antenna Handbook includes the very latest state-of-the-art antenna design. Computer generated beam dimensions for the 40, 30, 20, 17, 15, 12, 10 and 6 bands are included eliminating the need for time consuming math calculations. Also covered are: Beam height and optimum pole height, How elements are steered and how to install an automatic system, effect of nearby objects on radiation patterns, feedlines, baluns and matching systems, and much more. Ham Radio VHF column WRJ and noted European VlF or DL5W's VHF antenna designs are covered extensively as well as NBS VHF long Yage. 384 clearly written pages - 204 easy-to-understand illustrations, make this book a must for beam construction. © 1985, 1st edition.

- RPA-BA Softbound $9.95

ARRL OPERATING MANUAL
Brand New 2nd edition. Just released and fully revised! This book tells you all about how to operate your station. Message handling, emergency traffic, tips for successful contesting and DXing are fully covered as well as many new sections on digital communications and satellite operation. The reference section has been greatly expanded to include many new entries. © 1985 2nd Edition.

- AR-OM Softbound $5.00

GREENVILLE, NH 03048
NEW VLF 2 kHz-500 kHz products by KIRGO, L 1018 VLF con-
verter, L-201 VLF broadband preamplifier, L-400 VLF active
antenna and more. FM Engineering Co., 17 Jeffry Road, East Haven, CT 06512.

TR-7 USERS: NB 7 noise blanker (new) $195.00, p+p. HS 75
headset (padded) new $114.00, p+p. SL-300, SL 500 CW filter
$55.00 ea. p+p. KCU-1 kit, Tony Musurta 271-2B WNB.

IMRA, International Mission Radio Association helps mission-
aries. Equipment loaned. Weekday 11. 24.00 MHz. 2 PM
Eastern. Eight hundred Andrews in 40 countries. Brother Frey,
1111 Manor Road, Larchmont, New York 10528.

ELECTRON TUBES: Receiving, transmitting, microwave... all
types available. Mass stock. Next day delivery, most items.
Daily Electronics, PO Box 5629, Compton, CA 90224 (213) 714-1255.

CUSTOM MADE embroidered patches. Any size, shape, colors.
Five patch orders and above price reductions. Patches in produc-
tion. Ham Specialties, Inc., Dept. 301, 9020 N. Chicago, il.
60618.

C7X REPAIRS, 415 548-9210

RTTY-EXCLUSIVELY for the Amateurs Teleprinter. One year
110.00. Beginners RTTY Handbook 18.00. PO Box 402, Caryville,
CA 92007.

TRS-80 Model IIIIV owners. HF antenna design program cal-
lculated dimensions for dipole, Yagi, and quad antennas. $14.95
(cassette) $22.00 sht dh to Cythern. Dept. H 4791 Broadcast,
Suite 2F. New York, NY 10034.

OLD RADIO transcription discs wanted. Any size, speed.
W7TMT BOX 242, West Valley City, UT 84081.

RUBBER STAMPS: 3 lines $4.50 FPD. Send check to MO of
G.L. Pierce, 5221 Birkdale Way, San Diego, CA 92117. SASE
brings information.

NEW PACKET PROGRAM radio for IBM’s. A telecom
program for interfacing your PC with your packet controller. Sig-
nificant for GLB’s 5 page scrolling screen with cursor control.
Two types Binary File Transfers, 350-9000bps, Keyboard
NON COPY PROTECTED $49.95 + $3.00 shipping and han-
dling. Ham & Associates, Suite 138, 244 E. Tudor Rd.,
Anchorage, AK 99507, (907) 248-2133. Write for more info.

PRINTED CIRCUIT BOARD

and kits for GST articles. Call or write for information, ADA Engineering, 1570 Orchard Drive,
Buena Park, CA 90620. (714) 521-4160.

RECONDITIONED TEST EQUIPMENT $1.25 for catalog.
Walter, 2697 nickel, San Pablo. CA 94806.

BUILD a Computer-Aided Designed 60B gain ached vertical
monopole. 3 meter antenna for less than $150.00 using hard-
ware, no more parts. Send $15.00 for detailed plans and part
lists, WO4QIC, John De Armond, PO Box 3857, Cleveland,
OH 44114.

FREE CUSTOM BUMPER STICKER when you buy those at
$2.50 each. (Different messages okay). Call name, favorite fre-
cy, rig, car, anything. 13 characters, 2 line max. Order now
for Christmas. Alan Koffman, 9345506, Columbus, in. 47221.
(812) 342-6740.

WANTED ANY CONDITION

WWV/WWVH receivers made by
Specific Products, kinematic or parts, manuals, etc, GE Balder,
P0 BOX 3164A, Cupertino, CA 95014.

ANYONE interested in starting a rag chew net on 6 meter
FM simplex. $2.600 in San Diego County. San Diego County
Amateur Radio Club, W0719Q, 208 Canoas Drive,
Oceanside, CA 92056.

COMING EVENTS Activities — “Places to go...”

ILLINOIS: The annual Midwinter Swapfest, Saturday, Jan-
uary 11, at the Waukesha County Expo Center Forum at 8 AM.
Admission $2.00. Swapfest held noon-4pm. Contact the WVCW,
Box 1070, Milwaukee, WI 53201. Please SASE.

WISCONSIN: The annual Midwinter Swapfest, Saturday, Jan-
uary 11, at the Waubusky County Expo Center Forum at 8 AM.
Admission $2.00. Swapfest held noon-4pm. Contact the WCW,
Box 1070, Milwaukee, WI 53201. Please SASE.

OPERATING EVENTS “Things to do...”

21at Annual Telephone Pioneer QSO Party The John D.
Burleigh Chapter invites all Telephone Pioneer Amateur Radio
Operators in the U.S. and Canada to participate in contacting as
many members as possible in as many different chapters. All
members are invited to participate. 1900 UTC Saturday, Decem-
ber 7 to 0900 UTC, Sunday, December 8. Exchange contact number
and chapter number. IFTA Club or Chapter name. Return log sheets via IFA Coordinator. Send logs no later than
Blvd., Telephone Pioneers of America, 6200 East Broad
Street, Columbus, OH 43213.

THE CONCORD BRASSBOUNDERS will operate W10C to
commemorate Christia McCauliffe’s “First Teacher in Space”
flight, 1000 UTC Saturday to 1300 UTC Sunday during the first weekend
following the launch of the space shuttle with Christia aboard.
Anticipated launch day January 27. For 8-1/2 x 11 certificate
please SASE to W10C, PO Box 224, Concord, NH 03301.

Farmington, Maine: The members of the Sandy River ARC
will operate the Chester N. Woodward memorial station to honor
the inventor of the Earmuff. 17002 December 20 to 2300Z
December 22, 10 kHz up from lower edges of General bands
160-10 meters. QSL and large SASE TO KATINC via Calbook.

AZORES RADIO AMATEURS call prefix with change from CT2
to CU effective on December 1, 1985.

CHARGE YOUR CLASSIFIED ADS

to your MC or VISA
write or call
HAM RADIO MAGAZINE
Greenville, NH 03048
(603) 878-1441

EVEN COMMODORE HAM NEEDS A COMPANION!

the author of Commodore Ports, Micro-Wave Radio and
Gateway to the World, Gear Publishing announces
THE COMMODORE HAM’S COMPANION

INCLUDES:

• Over 50 articles for Commodore amateur radio soft-
ware and hardware

• A bibliography of over 40 magazine articles and
reviews about using Commodore machines in the
ham shack

• How to use your Commodore computer to join the
packed radio revolution

• Where to find specialized programs for such things
as slow scan television satellite tracking and more

• How to read and understand the speed at which
without learning machine language programming

by the Commodore mixchines are the easiest to

14 chapters / 160 page paperback
Price: $13.95 + $3.50 shipping and handling

HAM RADIO’S BOOKSTORE
Greenville, NH 03048
HF ANTENNAS — The Easy Way
by John Haerle, WB5IIR

This book has been published as a memorial to WB5IIR's work as an Amateur Radio teacher. Originally given as a series of speeches or papers, this tutorial is an excellent source book on antenna theory and applications. Examples of areas covered are: Fundamentals, antenna and feedline terminology, baluns, ground systems, lightning protection, The Basic Antenna, the dipole, the zepp, G5RV, Windom, Special Antennas, the sloper, DDRR, Beverage, folded unipole, Beams, W5JK, Yagi, two element quad, and the 160 meter band story. John's writing is in an easy-to-understand conversational style and is full of examples and handy tips and hints. There are no drawings or illustrations but John's prose paints pictures for clear and complete understanding of the information being presented. © 1984 1st Edition.

Softbound $11.95

Please add $3.50 for shipping and handling.
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive in the near future.

If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>134</td>
</tr>
<tr>
<td>100</td>
<td>121</td>
</tr>
<tr>
<td>104</td>
<td>138</td>
</tr>
<tr>
<td>107</td>
<td>124</td>
</tr>
<tr>
<td>105</td>
<td>141</td>
</tr>
<tr>
<td>111</td>
<td>134</td>
</tr>
<tr>
<td>112</td>
<td>146</td>
</tr>
<tr>
<td>106</td>
<td>151</td>
</tr>
<tr>
<td>130</td>
<td>158</td>
</tr>
<tr>
<td>132</td>
<td>163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>134</td>
</tr>
<tr>
<td>148</td>
<td>129</td>
</tr>
<tr>
<td>150</td>
<td>123</td>
</tr>
<tr>
<td>151</td>
<td>125</td>
</tr>
<tr>
<td>154</td>
<td>126</td>
</tr>
<tr>
<td>155</td>
<td>127</td>
</tr>
<tr>
<td>156</td>
<td>128</td>
</tr>
<tr>
<td>157</td>
<td>129</td>
</tr>
<tr>
<td>158</td>
<td>130</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

For more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive in the near future.

If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>105</td>
</tr>
<tr>
<td>135</td>
<td>106</td>
</tr>
<tr>
<td>136</td>
<td>107</td>
</tr>
<tr>
<td>137</td>
<td>108</td>
</tr>
<tr>
<td>138</td>
<td>109</td>
</tr>
<tr>
<td>139</td>
<td>110</td>
</tr>
<tr>
<td>140</td>
<td>111</td>
</tr>
<tr>
<td>141</td>
<td>112</td>
</tr>
<tr>
<td>142</td>
<td>113</td>
</tr>
<tr>
<td>143</td>
<td>114</td>
</tr>
<tr>
<td>144</td>
<td>115</td>
</tr>
<tr>
<td>145</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>117</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

Limit 15 inquiries per request.

[Footer: AEA INTEI UW]
The ARRL 1986 Handbook for the Radio Amateur takes over where the 1985 Edition left off. Each of the 40 chapters has had some revision, and there are more than 500 new or revised figures. The new edition will contain 1,184 pages — way up from last year’s count of 1,024. Many key chapters with “hot” topics among today’s radio amateurs have been completely revised and rewritten. In fact the new material represents 532 text pages.

An understanding of digital electronics is a must these days since such circuitry has so many practical applications in station control, frequency synthesis, telemetry, word processing and other information-handling systems. The Digital Basics chapter will help you to understand what is going on in everything from simple keyers to sophisticated microcomputers. Packet-radio enthusiasts will find the most up-to-date information available in the Digital Communications chapter. There are new sections on data interfacing and modems, 50 new and revised figures, plus an expanded bibliography and glossary.

The Special Modulation Techniques chapter has the latest on spread-spectrum. On the fun side, we've added a new section on remote control of model aircraft and vehicles.

On the practical side, you will find many of the 27 new projects described in October QST. There are new power amplifiers for 1.8, 50, 144 and 1296 MHz, plus preamplifiers and transverters for the VHF/UHF enthusiast. The new digital PEP Wattmeter - SWR Calculator will be one of the most popular projects.

We’ve only scratched the surface in describing what is the standard manual of RF communication. Over 5.7 million copies of The Handbook have been published in 63 editions since 1926. The new edition is must reading for today’s radio amateur!

The 1986 Handbook is available now. Paperbound prices are $18.00 in the U.S., $19.00 in Canada and elsewhere. Cloth prices are $27.00 in the U.S. and $29.00 elsewhere. Prices in U.S. funds. Foreign remittance should be in the form of an international money order or a check drawn on a bank account in the U.S.
THINGS TO LOOK FOR (AND LOOK OUT FOR) IN A PHONE PATCH

- One year warranty.
- A patch should work with any radio. AM, FM, ACSB, relay switched or synthesized.
- Patch performance should not be dependent on the T/R speed of your radio.
- Your patch should sound just like your home phone.
- There should not be any sampling noises to distract you and rob important syllables. The best phone patches do not use the cheap sampling method. (Did you know that the competition uses VOX rather than sampling in their $1000 commercial model?)
- A patch should disconnect automatically if the number dialed is busy.
- A patch should be flexible. You should be able to use it simplex, repeater aided simplex, or semi-duplex.
- A patch should allow you to manually connect any mobile or HT on your local repeater to the phone system for a fully automatic conversation. Someone may need to report an emergency!
- A patch should not become erratic when the mobile is noisy.
- You should be able to use a power amplifier on your base to extend range.
- You should be able to connect a patch to the MIC and EXT speaker jack of your radio for a quick and effortless interface.
- You should be able to connect a patch to three points inside your radio (VOL high side, PTT, MIC) so that the patch does not interfere with the use of the radio and the VOL and SQ settings do not affect the patch.
- A patch should have MOV lightning protectors.
- Your patch should be made in the USA where consultation and factory service are immediately available. (Beware of an inferior offshore copy of our former PRIVATE PATCH II.)

ONLY
PRIVATE PATCH III GIVES YOU ALL OF THE ABOVE

NEW
PRIVATE PATCH III SIMPLEX SEMI-DUPLEX INTERCONNECT

With an amazingly low price, the all new PRIVATE PATCH III is the most powerful personal phone patch system available. You can use it simplex, repeater aided simplex (from your base) or semi-duplex (at the repeater). That's right, you will never have to buy another patch! PRIVATE PATCH III does it all! There are many new and important features which were formerly only available in our top commercial models.

With a flick of the new connect switch you can patch your friends on the repeater into the phone system. One of them may need to report an emergency! No hassles with busy signals! If you call a number that is busy, just put your MIC down and relax. PRIVATE PATCH III will disconnect automatically.

The new CW ID keeps you completely informed as to patch status. ID occurs when you access and again when you disconnect. ID is also sent after toll call attempts, all automatic disconnects, manual disconnect and when timeout is imminent. And of course your CW ID chip is free.

PRIVATE PATCH III does not interfere with the normal use of your base radio. A new audio pre-amp permits audio take off before the VOL control. As a result, the VOL and squelch settings do not affect patch operation. Of course you can also connect PRIVATE PATCH III to the MIC and EXT speaker jacks as before.

A new digit counting system makes the toll restrict positive even in areas where you do not have to dial "I" first. A secret five digit code disables the toll restrict for one toll call. Re-arm is automatic.

Additional new features: MOV lightning protection — Three digit access code (eg. 93) — Spare relay position on board — Plus former features: 3/6 minute timeout timer — Digital fast VOX (pat. pend.) — 115 VAC supply — Modular Jack and cord plus much more!

Why settle for a starter set? PRIVATE PATCH III provides you with commercial quality uninterrupted (cellular like) mobile telephone communications 24 hours a day. Send for our four page brochure today for complete details.

Options:
FCC approved coupler
12 VDC or 230 VAC power

DEALERS

AMATEUR ELECTRONIC SUPPLY
Milwaukee Wi, Wickefield Oh, Orlando Fl, Clearwater Fl, Las Vegas NV
BARRY ELECTRONICS CORP.
New York, NY
COLES COMMUNICATIONS
San Antonio TX
EGE, INC.
Woodbridge, VA
ERICKSON COMMUNICATIONS
Chicago IL
HAM RADIO OUTLET
Anchorage CA, Burlington CA, Oakland CA, Phoenix AZ, San Diego CA, Van Nuys CA
HENRY RADIO
Los Angeles CA
INTERNATIONAL RADIO SYSTEMS
Miami, FL
JUNS ELECTRONICS
Guilford CA
MADISON ELECTRONICS SUPPLY
Houston, TX
MIAMI RADIO CENTER CORP.
Miami FL
MIKES ELECTRONICS
Fl. Lauderdale, Miami FL
N & G DISTRIBUTING CORP.
Miami FL
PACE ENGINEERING
Tucson AZ
THE HAM STATION
Evansville IN
TEXAS TOWERS
Paso, TX
TNT RADIO SALES
Robinsdale, MN
WESTCOM
San Marcos, CA
CANADA:
DOLLARD ELECTRONICS
Vancouver, BC

(213) 373-6803

CSIC CONNECT SYSTEMS INCORPORATED
23731 Madison St., Torrance, CA 90505
Why buy a low-power thumbwheel HT when Yaesu's high-power handhelds are available for virtually the same price?

Ours give you 2.5 watts RF output right off the shelf. Or 3.7 watts with the optional FNB-4 battery pack.

Ours come with a hi/low power switch. A relative signal strength/PO meter with nightlight. And built-in VOX capability (Optional headset required.)

Plus ours offer options like a DTMF keypad. And a plug-in subaudible tone board with both encode and decode capability.

And thanks to our unique robotic assembly of surface mount components, it's all enclosed in a lightweight and compact case, measuring just 2.6 x 1.4 x 6.1 inches.

Choose from three models: the FT-203R for 2 meters, the FT-703R for 440 MHz, and the FT-103R for 220 MHz.

As standard equipment you get a rechargeable battery, AC wall charger, rubber duck, earphone, belt clip and soft case.

So don't settle for low power in a thumbwheel HT.

Go with Yaesu. The best way to get more power for your dollar.

Yaesu Electronics Corporation
6851 Walthall Way, Paramount, CA 90723
(213) 633-4007

Yaesu Cincinnati Service Center
9070 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.
Kenwood sets the pace again!
The all-new "25-Series" brings the industry's first compact 70-watt 2-meter FM mobile transceiver. There is even an auto dialer which stores 15 telephone numbers! There are three power versions to choose from: The TM-2570A 70-watt model, the TM-2550A for 45-watts, and the 25-watt TM-2530A.

- First 70-watt FM mobile (TM-2570A)
- First mobile transceiver with telephone number memory and auto-dialer (up to 15 telephone numbers)
- Direct keyboard entry of frequency
- Automatic repeater offset selection according to the ARRL 2-meter band plan — a Kenwood exclusive!
- Extended frequency coverage for MARS and CAP (142-149 MHz; 141-151 MHz modifiable)
- 23 channel memory for offset, frequency and sub-tone
- Big multi-color LCD and back-lit controls for excellent visibility

Optional Accessories
- PS-50 DC power supply for TM-2570A
- MC-60A/MC-80/MC-85 desk mics.
- MC-48 extra DTMF mic. with UP/DWN switch
- MC-42S UP/DWN mic.
- MC-55 (8-pin) mobile mic. with time-out timer
- SP-40 compact mobile speaker
- SP-50 mobile speaker
- SW-200A/SW-200B SWR/power meters
- SW-100A/SW-100B compact SWR/power meters
- SWT-1 2m antenna tuner

Actual size front panel