In this issue: high-stability receiver BFO • compact IF sweep generator • graphical selection of mixer frequencies • speed up your code • designing Yagis with the C-64 • inexpensive elevation indicator • automatic temperature control • wind your own transformers — inexpensively • plus W6SAI, W1JR, K0RYW, and the Guerri report
Ultra Compact
The new ICOM IC-735 is what you've been asking for...the most compact and advanced full-featured HF transceiver with general coverage receiver on the market. Measuring only 3.7 inches high by 9.5 inches wide by 9 inches deep, the IC-735 is well suited for mobile, marine or base station operation.

Superior Performance
It's a high performer on all the ham bands, and as a general coverage receiver, the IC-735 is exceptional. The IC-735 has a built-in receiver attenuator, preamp and noise blanker to enhance receiver performance. PLUS it has a 105dB dynamic range and a new low-noise phase locked loop for extremely quiet rock-solid reception.

More Standard Features
- Dollar-for-dollar the IC-735 includes more standard features...FM built-in, an HM-12 scanning mic, FM, CW, LSB, USB, AM transmit and receive, 12 tunable memories and lithium memory backup, program scan, memory scan, switchable AGC, automatic SSB selection by band, RF speech processor, 12V operation, continuously adjustable output power up to 100 watts, 100% duty cycle and a deep tunable notch.

Simplified Front Panel
The large LCD readout and conveniently located controls enable easy operation, even in the mobile environment. Controls which require rare adjustments are placed behind a hatch cover on the front panel of the radio. VOX controls, mic gain and other seldom used controls are kept out of sight, but are immediately accessible.

Options. A new line of accessories is available, including the AT-150 electronic, automatic antenna tuner and the switching PS-55 power supply. The IC-735 is also compatible with most of ICOM's existing line of HF accessories.

See the IC-735 at your authorized ICOM dealer. For superior performance and innovative features at the right price look at the ultra compact IC-735.

First in Communications

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234
All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
What To Look For In A Phone Patch

The best way to decide what patch is right for you is to first decide what a patch should do. A patch should:

- Give complete control to the mobile, allowing full break-in operation.
- Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables (or flip switches!) every time you wish to use your radio as a normal base station.
- Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
- You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.
- The patch should have standard features at no extra cost. These should include programmable toll restrict (dip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.

ONLY SMART PATCH HAS ALL OF THE ABOVE.

Now Mobile Operators Can Enjoy An Affordable Personal Phone Patch...

- Without an expensive repeater.
- Using any FM transceiver as a base station.
- The secret is a SIMPLEX autopatch, The SMART PATCH.

SMART PATCH Is Easy To Install

To install SMART PATCH, connect the multicolored computer style/ribbon cable to mic audio, receiver discriminator, PTT, and power. A modular phone cord is provided for connection to your phone system. Sound simple? IT IS!

Communications Electronics Specialties, Inc.
P.O. Box 2930, Winter Park, Florida 32790
Telephone: (305) 645-0474 Or call toll-free (800)327-9956

How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: "73"). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH Is All You Need To Automatically Patch Your Base Station To Your Phone Line.

Use SMART PATCH for:
- Mobile (or remote base) to phone line via Simplex base. (see fig 1.)
- Mobile to Mobile via interconnected base stations for extended range. (see fig. 2.)
- Telephone line to mobile (or remote base).

SMART PATCH uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES, 180 days of warranty protection. You simply can't go wrong.

An FCC type accepted coupler is available for SMART PATCH.
"Digital DX-terity!"

Digital DX-terity—that outstanding attribute built into every Kenwood TS-430S lets you QSY from band to band, frequency to frequency and mode to mode with the speed and ease that will help you earn that dominant DX position from the shack or from the mobile!

- Reliable, all solid state design. Solid state design permits input power of 250 watts PEP on SSB, 200 watts DC on CW, 120 watts on FM (optional), or 60 watts on AM. Final amplifier protection circuits and a cooling fan are built-in.
- Memory channels. Eight memory channels store frequency, mode and band data. Channel 8 may be programmed for split-frequency operation. A front panel switch allows each memory channel to operate as an independent VFO or as a fixed frequency. A lithium battery backs up stored information.
- Programmable, multi-function scan.
- Speech processor built-in.
- Dual digital VFOs.
- VOX circuit, plus semi break-in with sidetone.

Optional accessories:
- PS-430 compact AC power supply
- SP-430 external speaker
- MB-430 mobile mounting bracket
- AT-130 compact antenna tuner covers 80-10 meters, incl. WARC bands
- AT-250 automatic antenna tuner covers 160-10 meters, incl. WARC bands
- AT-230 base station antenna tuner
- FM-430 FM unit
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filters
- YK-88SN (1.8 kHz) narrow SSB filter
- YK-88A (6 kHz) AM filter
- MC-42S UP/DOWN hand mic.
- MC-60A deluxe desk mic., with UP/DOWN switch
- SW-2000 SWR/power meter
- SW-100A SWR/power/volt meter
- PC-1A phone patch
- HS-4, HS-5, HS-6, HS-7 headphones

Complete service manuals are available for all Trio-Kenwood transceivers and most accessories.
Specifications and prices are subject to change without notice or obligation.
JUNE 1985
volume 18, number 6

T. H. Tenney, Jr., W1NLB
publisher

Rich Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KA1LBO
assistant editor

Joseph J. Schroeder, W8JUV
affiliated Wilcoy, W8NR
associate editors

Susan Shorrock
editorial production

editorial review board
Peter Bertini, K1ZJH
Forrest Gehke, K2BT
Michael Gruchalla, F E.
Bob Lewis, W2EBS
Mason Logan, K4MT
El Wetherhold, W3NQN

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher

Rally Dennis, KA1JWF
director of advertising sales

Dorothy Sargent, KA1ZK
advertising production manager

Susan Shorrock
circulation manager

Therese Bourgault
circulation

cover:
Anne Fleming

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0508
Telephone: 603-878-1441

subscription rates
United States:
one year, $19.95; two years, $32.95; three years, $44.95
Canada and other countries (via surface mail):
one year, $22.95; two years, $41.00; three years, $66.00
Europe, Japan, Africa (via Air Forwarding Service):
one year, $28.50
All subscription orders payable in U.S. funds, via international
postal money order or check drawn on U.S. bank.

international subscription agents: page 118

Microfilm copies are available from
University Microfilms International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Periodicals,
919 Walnut Street, Philadelphia, Pennsylvania 19107
Copyright 1985 by Communications Technology, Inc.
Title registered at U.S. Patent Office
Second class postage paid
at Greenville, New Hampshire 03048-0508
and at additional mailing offices
ISSN 014-5989

Send change of address to ham radio
Greenville, New Hampshire 03048-0508

contents

18 voltage controlled oscillator
uses ceramic resonators
Al Helfrick, K2BLA

28 a high-stability BFO
for receiver applications
Peter Bertini, K1ZJH

35 a compact IF sweep generator
Hans Evers, PA0CX/DJ6SA

41 graphical selection
of mixer frequencies
G. Timothy Anderson, W2HVN

45 Morse code computer tutor
Lawrence G. Souder, N3SE

51 ham radio techniques
Bill Orr, W6SAI

59 designing Yagis
with the Commodore 64
Alan Hoffmaster, WA3EKL

67 the weekender:
an inexpensive elevation indicator
George Chaney, W5JTL

75 automatic temperature control
Douglas Rowlett, WB5IRI

83 VHF/UHF world
Joe Reisert, W1JR

96 wind your own transformers —
inexpensively
C. F. Hooper, W4GDW

125 the Guerr report
Ernie Guerin, W6MGI

126 advertisers index
and reader service

12 comments

102 DX forecaster

118 flea market

117 ham notes

117 new products

9 prestop

4 reflections

117 short circuits

112 ham mart

June 1985
our own miniseries

Anyone who watches TV has seen, I’m sure, at least one miniseries — be it The Thorn Birds, Wallenberg, or SPACE. Well, ham radio is pleased to bring you another. . . but with this one, happily, you won’t have to wait until the next evening to see the continuation. We call it “sources for everyone.”

Sources are popular items for Radio Amateurs. In fact, I defy you to show me a transmitter or transceiver that doesn’t have at least one. In this issue we examine three different kinds of sources, each useful in its own way and each simple enough to be built by the “average” ham (whoever he may be).

Our first source — described in Al Helfrick’s article, beginning on page 18 — answers the paradoxical question, What is rock-stable, yet varies in frequency? It’s a voltage-controlled oscillator that uses a ceramic resonator for the frequency determining element. To say it’s as stable as a crystal oscillator would be an exaggeration, but it does offer a significant improvement in stability over a conventional LC type device. Throw in the additional advantages of low microphonics, high Q, low cost in a small package, and you begin to get an idea of why both the author and I are interested in this device. Though it can be varied in frequency, its variation is limited by the series and parallel resonant frequencies of the resonator, which is about 7 percent. (Not bad considering the insignificant frequency pulling capability of a crystal oscillator.)

If we do need that high stability, Peter Bertini shows us how we can achieve it by using two crystal oscillators in a Colpitts configuration. The author, in designing BFO circuits, found an alternative to using expensive BFO crystals while still retaining the versatility of a variable BFO. In this application (a receiver BFO), very little frequency shift is needed, and it’s nicely achieved by varying the voltage on the varactor elements. The difference frequency of the two crystals becomes the exact center of the variable frequency range needed. Tie that concept in with normal good oscillator design practices and we’re left with a useful circuit that’s inexpensive and quite stable.

The conclusion of this miniseries came out of a need for a simple and practical sweep generator that can be swept across a broad frequency range, yet still exhibit good linearity and constant output. From the Netherlands comes an article by Hans Evers, who discovered an old circuit — described perhaps for the first time — in a 1949 issue of Wireless World. The circuit, known as the Butler oscillator, is varied in frequency through control of an out-of-phase RF current that excites a (secondary) coil coupled to the main inductive element, thereby producing an effective turns cancellation. This current, in turn, is controlled through the unbalancing of a differential amplifier. All in all, an interesting technique.

If you like this miniseries, let us know we’ll be glad to bring you others. What subjects would you like us to cover?

Rich Rosen, K2RR
Editor-in-Chief
MFJ'S MOST ADVANCED RTTY/ASCII/AMTOR/CW COMPUTER INTERFACE HAS FM, AM MODES, LED TUNING ARRAY, RS-232 INTERFACE, VARIABLE SHIFT TUNING, 170/850 Hz TRANSMIT, MARK-SPACE DETECTION.

Transmits on both 170 Hz and 850 Hz shift. Built-in RS-232 interface, no extra cost. Variable shift tuning lets you copy any shift between 100 and 1000 Hz and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII). Push button for 170 Hz shift. Sharp multi-pole mark and space filters give true mark-space detection. Ganged pots give space bandpass tuning with constant bandwidth. Factory adjusted trim pots for optimum filter performance. Multi-pole active filters are used for pre-filter, limit, mark, space and post detection filtering. Has automatic threshold correction. This advanced design gives good copy under QRM, weak signals and selective fading.

Has front panel sensitivity control. Normal/Reverse switch eliminates retuning while checking for inverted RTTY. Speaker jack +250 VDC loop output.

MFJ-1229 Engineering, performance, value and features sets MFJ's most advanced RTTY/ASCII/AMTOR/CW computer interface apart from others. FM (limiting) mode gives easy, trouble-free operation. Best for general use, off-screen copy, drifting signals, and moderate signal and QRM levels. AM (non-limiting) mode gives superior performance under weak signal conditions or when there are strong nearby stations. Crosshair mark-space LED tuning array simulates scope ellipse for easy, accurate tuning even under poor signal-to-noise conditions. Mark and space outputs for true scope tuning.

$179.95

MFJ MULTI-FUNCTION TUNING INDICATOR MFJ-1221 $79.95

Gently improve your RTTY copying capabilities. Add a Multi-Function Tuning Indicator that makes tuning quick, easy with pin-point accuracy. Add mark and space outputs for scope tuning. Add LEDs that indicate 170, 425, 850 Hz shifts. Great for copying RTTY outside ham bands. Add sharpened mark and space filters to improve copy under weak conditions. 170, 425, 850 Hz shifts. Add Normal/Reverse switch to check for inverted RTTY without retuning. Add output level control to adjust signal into your terminal unit. Add a limiter to even out signal variation for smoother copy. Unit plugs between your tuner and receiver. Mark is 2125 Hz, space is 2295. 2550 or 2975 Hz. Measure quickly and easily. Read frequency, set frequency, adjust signal into your terminal unit. A limiter, mark, space, and post detection filtering. Greatly improves transmitted SSB speech for maximum talk power. Everts out speech peaks and valleys due to voice, microphone and room characteristics. Makes speech hard to understand. Produces cleaner, more intelligible speech on receiving end. Improves mobile operation by reducing bassy peaks due to audio resonances. Plugs between mic and rig. 4 pin mic jack, shielded output cable. High, mid, low controls provide ±12 dB boost or cut at 490, 1170, 2800 Hz. Mic gain, on/off/bypass switch. "On" LED, 7x26 inches. 9 V battery, 6-V DC or 110 VAC with adapter, MFJ-1305, $9.95.

MICROPHONE EQUALIZER MFJ-550 $49.95

24/12 HOUR CLOCK/ID TIMER MFJ-105 $19.95

Switch to 24 hour UTC or 12 hour format! Battery backup. ID timer alerts every 9 minutes after reset. 8 in. LEDs. Synchronizable to WWW. Alarm, Snooze function. FM, AM on indicators. Gray/Black cabinet. 110 VAC, 60 Hz.

MFJ NEWS

MFJ ENTERPRISES, INC. Box 494, Mississippi State, MS 38772

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 601-323-5869 in Miss. and outside continental USA. Telex 53-4500 MFJ STKV

Huge 5/8 inch bold black LCD numerals make these two 24 Hour clocks a must for your shack. Choose from a dual clock that features separate UTC and local time display or a single clock that displays 24 Hour time. Mounted in a brushed aluminum frame, these clocks feature huge 5/8 inch LCD numerals and a sloped face for across the room viewing. Easy set month, day, hour, minute and second function. Clocks can be operated in an alternating time-date display mode. MFJ-108, 49x2x12 inches; MFJ-107, 24x1x2 inches. Battery included.

MFJ ELECTRONIC KEYER MFJ-407 $69.95

MFJ-407 Deluxe Electronic Keyer sends iambic, automatic, semi-auto or manual. Uses squeeze, single lever or straight key. Plus/minus keying. 8 to 50 WPM. Speed, weight, tone, volume controls. On/Off, Tune, Semi-auto switches. Speaker. RF proof. 7x26 inches. Uses 9 V battery. 6-V DC or 110 VAC with adapter, MFJ-1305, $9.95.

MFJ ANTENNA BRIDGE MFJ-204 $79.95

Trim your antenna for optimum performance quickly and easily. Read antenna resistance up to 500 ohms. Covers all ham bands below 30 MHz. Measures resonant frequency of antenna. Easy to use, connect antenna, set frequency, adjust bridge for meter null and read antenna resistance. Has frequency counter jack. Use as signal generator. Portable, self-contained, 4x2x2 in. 9 V battery or 110 VAC with adapter, MFJ-1312, $9.95.

MFJ PORTABLE ANTENNA MFJ's Portable Antenna lets you operate 40, 30, 20, 15, 10 meters from apartments, motels, campsites, vacation spots. Nearly any electrically clear location where space for a full size antenna is a problem. A telescoping whip (extends to 54 in.) mounted on self-standing 5/8x6x4x2% inch Phenolic case. Built-in antenna tuner, 50 feet RG-8 coax. Complete multi-band portable antenna system that you can use nearly anywhere. Up to 300 watts PEP.

MFJ-1621 $79.95

MFJ-108 $9.95

MFJ-107 $13.00

ORDER ANY PRODUCT FROM MFJ AND TRY IT—NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING). One year unconditional guarantee. Made in USA. Add $4.00 each shipping/handling. Call or write for free catalog, over 100 products.

June 1985
Here's what other hams have to say about the "dream rig."

"To put it concisely, the IC-751 easily meets all of its advertised claims with regard to technical specifications."

"The filters used on the IC-751 are about the sharpest one can imagine."

"It performed flawlessly over the entire period. Particularly if the IC-751 is used with an internal power supply, it has to be regarded as the most compact, full-featured transceiver available for either fixed station or portable operation."

John J. Schultz W4FA
CQ Magazine
September 1984

"...we seriously doubt anyone finding a unit superior to ICOM's new 751 HF 'dream rig.'"

Dave Ingram K4TWJ
Computer Trader Magazine
September 1984

"The general-coverage receiver is excellent."

Mark Wilson AA2Z
OST Magazine
January 1985

"The Notch measured 55dB, and is the best ICOM Notch yet."

"The stability of the 751 deserves mention. We measured 10Hz drift in the first hour."

Robert Pohorence N8RT
International Radio, Inc.
September 1983

Now with a ONE YEAR Warranty!
The IC-2A is also available and has the same features as the IC-2AT except DTMF.

If you want a 2-meter handheld with exceptional features, quality built to last and a wide variety of interchangeable accessories, take a look at the ICOM IC-02AT and IC-2AT handhelds.

Frequency Coverage. The IC-02AT covers 140.000 through 151.550 MHz and the IC-2AT, 141.500 through 149.994 MHz... both include frequencies for MARS operation.

IC-02AT Features. ICOM's top-of-the-line IC-02AT handheld has the following outstanding features:

- DTMF direct keyboard entry
- LCD readout
- 3 watts standard, 5 watts optional (with IC-BP7 battery pack)
- 10 memories which store duplex offset and PL tone (odd offset can be stored in last 4 memories)
- Frequency dial lock
- Three scanning systems: priority, memory and programmable band scan (selectable increments of 5, 10, 15, 20 or 25 KHz)

IC-2AT Features. The IC-2AT is ICOM's most popular handheld on the market. The IC-2AT features a DTMF pad, 1.5 watts output and thumbwheel frequency selection. The IC-2A is also available and has the same features as the IC-2AT except DTMF.

Accessories. A variety of slide-on battery packs are available for the IC-02AT and IC-2AT, including the new long-life 800 mAh IC-BP8 which can be used with both handhelds.

Other accessories include the HS-10 boom headset, HS-10SB PTT switchbox, HS-10SA VOX unit (for IC-02AT) and an assortment of battery pack chargers.

The IC-02AT and IC-2AT come standard with an IC-BP3 NiCd battery pack, flexible antenna, AC wall charger, belt clip, wrist strap and ear plug. See the IC-02AT and IC-2AT 2-meter handhelds at your local ICOM dealer.
When the FCC changed the rules, EIMAC was prepared for continuing HAM operations.

The FCC changed the allowable output power for linear amplifiers in amateur radio service. Hams can now run at 1500 watts PEP into an antenna. EIMAC was right there to meet requirements with its 3CX1200A7 tube.

Low-cost replacement for small spaces.
RF cabinets of many linear amplifiers currently use the EIMAC 3-500-Z tubes. The new 3CX1200A7 for design takes size into consideration and, by design, is recommended as a single, low-cost replacement for a pair of EIMAC 3-500-Z tubes for new amplifier designs.

General Specifications
The EIMAC 3CX1200A7 is a high-mu, compact, forced air cooled triode for zero-bias class AB2 amplifiers.
- 2.9" dia. x 6.0" long
- Plate dissipation: 1200 watts
- Glass chimney SK-436 available
- Standard EIMAC SK-410 socket available

More information is available on the new EIMAC 3CX1200A7 tube from Varian EIMAC, or any Electron Device Group worldwide sales organization.
AMATEUR RADIO WILL FLY WITH THE SPACE SHUTTLE IN JULY after all, NASA has announced. However, astronaut Tony England, WØORE, will be limited to 2-meter operation only, as the installation of additional Amateur antennas for other bands in the shuttle's payload bay turned out to be too costly as well as a logistically difficult task.

Slow-Scan TV Is The Big Addition On This Shuttle Flight; it's even quite likely that SSTV transmission time will exceed that for voice, with scenes from inside the spacecraft to be sent during orbits when WØORE is busy with other tasks and can't be on the air for voice contacts. Both FM voice and SSTV will be via 2-meter hand-held radios, using the same window-mount antenna used by W5LFL in his pioneering operation.

Little If Any "General" 2-Way Operation Is Planned for this flight. Instead, WØORE's contact emphasis will be with school and club groups, to provide the maximum Amateur involvement. The ARRL will act as liaison to schedule such contacts; contact them in Newington for details. Pre-flight publicity and media contact during the flight will also be handled by the ARRL, but primarily through the League's Washington office.

NASA Expects WØORE To Be On For Between 10 And 20 Passes, and is currently working out his scheduling. A principal limitation will be access to the shuttle's overhead window, which won't be available at all for Amateur antenna use until the middle of the fourth day of the flight. At preflight launch was still scheduled for mid-July.

The 24-MHz Band Will Become Available and 30 Meters "Official" June 22, the FCC decided April 25. The new 24890-24990 kHz slot is for General and higher, with phone above 24930; power will be 1500 W PEP. 30 meters remains CW/RTTY only, General and above limited to 200 W PEP. No action was taken on 420 MHz changes or the new 902 MHz band.

International Broadcast Stations May Use 7.1-7.3 MHz In Region 3 (Pacific) areas it administers, the FCC decided April 4. In its Report and Order on Mass Media Docket 84-706 the Commission did specify, however, that broadcast stations operating under the new ruling must beam transmissions away from Region 2. The effective date was May 16.

Expanded 40-Meter Phone Privileges For Caribbean Area Amateurs are proposed in a new FCC Notice of Proposed Rulemaking. In PR Docket 85-104 Amateurs in U.S.-licensed areas of the Caribbean would have their phone band extended down to 7075 kHz; in its proposal the FCC is looking for Amateur input on how the additional frequencies should be utilized.

Comments On PR Docket 85-104 Are Due At The FCC June 17; Reply Comments July 17.

Volunteer Examiner Coordinator Performance May Soon Be The Subject of Critical FCC Review, now that the program has been on line for a year. Criteria to be used in the review will probably include activity, pass rates, adherence to the rules, integrity, and quality of the paperwork provided to Gettysburg. Some VECs are not expected to fare very well.

A Visit To Gettysburg For VEC Representatives is also being considered, probably for sometime in August. Such a visit would provide the VECs and FCC licensing people an excellent opportunity to discuss each other's problems and review procedures.

DeVry Is Actively Seeking VEs Throughout The U.S., following its accreditation as a national VEC. Interested VEs should call Jim Georgius, W9JUG, at DeVry between 12 noon and 7 PM Chicago time, at (312) 929-8500, ext. 251.

"Automatic Remote Control" For Amateur Operations Above 29.7 MHz has been proposed by the FCC in PR Docket 85-105. Expanding on an ARRL petition that had sought automatic control for Amateurs using digital communications, the Commission is actually looking for Amateur input as to just how far the concept of automatic control should be extended.

Comments On PR Docket 85-105 Are Due At the FCC June 25, and Reply Comments July 25.

The Comment Period On FCC's "National Frequency Coordinator" proposal is being extended at the request of the ARRL. The new dates had not yet been set at presstime.

Amateur Radio's Space Program Will Be The Subject of The Teleconferencing Radio Net (TRN) June 14. Top AMSAT satellite specialists such as W3IWI, W6SP, W2LQH, W3KQ, K8OCL, and others will participate in the comprehensive program, which will almost surely include the latest news on WØORE's forthcoming Space Shuttle operation.

Over 200 Repeaters Across North America Now Provide TRN programs to their users; any repeater group wishing to join the TRN should write Timothy Lowenstein, W8ACE, TRN Net Manager, c/o Midway ARC, Box 1231, Kearney, Nebraska 68847-1231.

Dayton Hamvention's "Amateur Of The Year" Is W8ACE/4, John Willig, who's being recognized both for his role as "father" of the Hamvention back in 1951, and for his continuing efforts in maintaining the "Dayton Net," that meets three times weekly to keep former Daytonians in touch with each other. The Hamvention's Special Achievement Award went to Judy Frye, K8SP, for her leadership role setting up DARA's VEC program; the Technical Excellence Award was presented to Rich Whiting, W8OTN, for having developed the Teleconferencing Radio Net. Congratulations to all for well-deserved honors!
NEVER BEFORE HAS SO MUCH CONTROL... COST SO LITTLE!!

MODEL CS-16 $164 Amateur net
MODEL CS-1688 $189 Amateur net

Two independent user programmable three digit passwords permit hierarchy control.
The secondary (user) password can only access 8 of the 16 latched (on/off) functions.

However full 16 function control is available to control operators using the primary password. Additionally secondary password access can be enabled/disabled with a special primary password command.

Our new CS-1688 is the most powerful touch tone controller in the industry! DIP switch programmability allows you to choose any of these ten mode/function combinations...

OUTPUT FUNCTIONS

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LATCHED and</td>
<td>LATCHED and</td>
<td>8 LATCHED</td>
<td>8 LATCHED</td>
<td>8 MOMENTARY</td>
<td>8 MOMENTARY</td>
<td>1 OF 8 SELECT</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Call or write for information on these signaling products also:
Model CS-10 DIP relay board... packages 10 DIP relays.
Model CS-100... A 19" rack mount that houses a control card and two CS-10's. All inputs and outputs available on convenient barrier strips.

COMMON FEATURES

- Open collector (can drive relays directly) and logic outputs for each of the 16 functions
-SSI/202 central office quality XTAL controlled tone decoder
-Adjustable preamp accommodates 10MV-2 volt input
-Retransmission of control tones can be eliminated by use of either open collector or data strobe logic outputs
-Operates from 10-25 volts DC.
-Reverse polarity protected
-1/4" x 5/8" glass board with 44 pin gold plated edge connector
-Comes complete with manual and mating connector

Our new CS-1688 is the most powerful touch tone controller in the industry! DIP switch programmability allows you to choose any of these ten mode/function combinations...

Add $3.00 P&H. California residents add sales tax.

Call or write for information on these signaling products also:
Model CS-10 DIP relay board... packages 10 DIP relays.
Model CS-100... A 19" rack mount that houses a control card and two CS-10's. All inputs and outputs available on convenient barrier strips.

TYPICAL REPEATER CONTROL APPLICATIONS

HI:LO POWER - PL1COR - TIGHT/LOOSE SWITCH - REPEATER ON/OFF - AUTOPATCH ON/OFF - TOLL RESTRICT ON/OFF - RINGBACK ON/OFF - LONG/HIGH DURATION - ANTENNA 1/ANTENNA 2 - REMOTE BASE ON/OFF - F/F - AUX Link ON/OFF - TONE Muting ON/OFF - SPARE TRANSMITTER IN/OUT - ETC ETC.

SECTOR MODE APPLICATIONS

1 OF N FREQUENCIES - 1 OF N PHONE LINES - 1 OF N ANTENNAS - 1 OF N REPEATERS ETC.

COMMON FEATURES

- Open collector (can drive relays directly) and logic outputs for each of the 16 functions
- SSI/202 central office quality XTAL controlled tone decoder
- Adjustable preamp accommodates 10MV-2 volt input
- Retransmission of control tones can be eliminated by use of either open collector or data strobe logic outputs
- Operates from 10-25 volts DC.
- Reverse polarity protected
- 1/4" x 5/8" glass board with 44 pin gold plated edge connector
- Comes complete with manual and mating connector

Add $3.00 P&H. California residents add sales tax.

Call or write for information on these signaling products also:
Model CS-10 DIP relay board... packages 10 DIP relays.
Model CS-100... A 19" rack mount that houses a control card and two CS-10’s. All inputs and outputs available on convenient barrier strips.

TYPICAL REPEATER CONTROL APPLICATIONS

HI:LO POWER - PL1COR - TIGHT/LOOSE SWITCH - REPEATER ON/OFF - AUTOPATCH ON/OFF - TOLL RESTRICT ON/OFF - RINGBACK ON/OFF - LONG/HIGH DURATION - ANTENNA 1/ANTENNA 2 - REMOTE BASE ON/OFF - F/F - AUX Link ON/OFF - TONE Muting ON/OFF - SPARE TRANSMITTER IN/OUT - ETC ETC.

SECTOR MODE APPLICATIONS

1 OF N FREQUENCES - 1 OF N PHONE LINES - 1 OF N ANTENNAS - 1 OF N REPEATERS ETC.
Complete Satellite Systems

Install your own satellite dish and receiver and save up to 50%

Introducing the SpaceMate 6 foot perforated aluminum dish with a lifetime warranty.

Complete systems starting as low as $877.00

SATELLITE AT COST

(419) 522-2318
378 Plainview
Mansfield, Ohio 44907

More Details? CHECK — OFF Page 126
In days past, there was a “romance of the airwaves” — the excitement of doing what ordinary people could not do — and you could do it, if you knew enough and worked hard enough.

We need to find a new romance, a new excitement.

John Telford, W3TJ
Swampscott, Massachusetts

Here’s what I think is important right now — more important than technical development, if we have to choose: we must learn how to lobby. We hams must learn individual and group lobbying techniques. Lobbying is power, and groups have more power than individuals.

I’d like to see us stop all the concern for increasing numbers of hams and instead, try to improve the quality of operators we already have.

Vern A. Weiss, WA9VLK
Kankakee, Illinois

. . . I would like to see the spirit of Amateur Radio as it was in the 1930’s restored: service, experimentation, operating skill, courtesy, and good fellowship.

I. L. McNally, K6WX
Sun City, California

. . . There seems to be an age of curiosity — maybe between 10 and 15 — when a youngster is thirsty to drink up the experience of the adult world. At that age the young person is curious about the entire world. We, the adults, can “turn that kid on” to electronics, computers, cameras, art, or music — or they can turn on to drugs. It’s up to us. . . . My point is that we must make a solid effort to get into the elementary schools, into the summer camps, into the neighborhood community centers, to “turn on” the kids of America to the fun of our hobby.

This will, in turn, capture the talents of our youth and reignite the spirit that put a man on the moon!

Marvin Feldman, WG4Q
Annandale, Virginia

My main operating interest is CW. I perceive considerable anti-CW pressure these days . . . more publicity and development for very narrow band synchronous CW would help . . . also improvement in the political climate for this mode. . . .

To my mind, hand-sent Morse is more basic than BASIC.

Bruce Boyd, W3QA
Ellicott City, Maryland

Let’s stop recruiting non-technical people into our fraternity. . . . Let’s try to appeal to an average level of technical expertise — on upward.

Mike Kitsko, K6VGQ
Cerritos, California

A link is needed between HF, DX, 2 meters, CB, SSTV, etc. A geostationary satellite could do just that.

Greg Waits, WB6EPE
Anaheim, California

The number of licensed Amateur Radio operators may be declining statistically but I feel sure that there are many others out there just as enthusiastically involved as we are here. The new VEC program will reverse the (negative) trend. . . . Amateur Radio clubs all over the country can and will take advantage of the VEC program to promote and assist with the licensing of new Amateur Radio enthusiasts.

Let’s not be too concerned with declining numbers. It’s only temporary. We, the members of the World Amateur Radio Fraternity, will see to that.

Bob Ruedisueli, W4OWA
Vienna, Virginia

. . . You may want to consider that the new 10-year license (term) will skew the figures.

John D. Gallivan III, N4DGS
Fairfax, Virginia

. . . What’s wrong with Amateur Radio? Not a damn thing . . . it’s just different.

Michael Vuksich, W0VEV
Duluth, Minnesota
Dependable Duo!

TS-830S HF transceiver.

The “Pacesetter” has become a legend in DX and contest circles.

- Covers all 10 Amateur bands (50 kHz extended coverage).
- Wide receiver dynamic range.
- Built-in digital display, fluorescent tube, with analog dial.
- Narrow/wide filter selection on CW.
- Optional accessories:
 - VFO-230 external digital VFO with five memories, digital display.
 - VFO-240 external analog VFO.
 - AT-230 antenna tuner/SWR/power meter.

- Built-in RF speech processor.
- SSB monitor circuit.
- Built-in RF display.
- Built-in IF shift (passband tuning).
- Narrow IF with RF negative feedback. Runs 220 W PEP (SSB/180 W DC (CW) input on all bands.
- Built-in RF speech processor.
- SSB monitor circuit.

TS-530SP HF transceiver.

This “Cents-ational” HF transceiver is recognized worldwide for superior and dependable performance.

- 160-10 meters, LSB, USB, CW, all Amateur frequencies, including new 10, 18, and 24 MHz bands.
- Receives WWV on 10 MHz.
- Built-in digital display (six digits, fluorescent tubes), with analog dial.
- Narrow/wide filter selector switch for CW and/or SSB.
- Built-in speech processor, for increased talk power.
- IF shift tunes out interfering signals.
- Wide receiver dynamic range, with greater immunity to overload.
- Two 6146B's in final, allows 220 W PEP/180 W DC input on all bands.
- Advanced single-conversion PLL, for better stability, improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- RIT XIT front panel control allows independent fine-tuning of receive or transmit frequencies.
- Optional accessories:
 - SP-230 external speaker.
 - VFO-240 remote analog VFO.
 - VFO-230 remote digital VFO.
 - AT-230 antenna tuner/SWR/power meter.
 - MC-50 desk microphone.
 - KB-1 deluxe VFO knob.
 - YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter.
 - YK-88SN (8 kHz) narrow SSB filter.

More information on the TS-830S and TS-530SP is available from authorized Kenwood dealers.

Kenwood

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

Complete service manuals are available for all Trio Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
YOUR VERY BEST SOURCE
FOR ANY AND ALL AMATEUR RADIO ITEMS

- 6 STORE BUYING POWER ASSURES TOP VALUE
- BIG, COMPLETE STOCKS. GET WHAT YOU WANT WHEN YOU WANT IT.
- MORE SAVINGS BY FREE DELIVERY MOST ITEMS

KENWOOD

TS-930S
PAY NEW REDUCED PRICE OF $1599 $1449
RECEIVE FREE
AT-930 and MC-60A ANT. TUNER MICROPHONE
Reg. $199.95 Reg. $79.95
PLUS FREE UPS

ICOM

IC-37A
YOUR BEST 220MHz EQUIPMENT BUY!
REGULAR $449
SALE! $299.95
SPECIAL BUY... LIMITED QUANTITIES

FT-757GX
FT-209RH

EKENSU

TW-4000A
PAY REGULAR PRICE OF $599.95
RECEIVE FREE
ALL THE FOLLOWING
1) VS-1 VOICE SYNTHESIZER $39.95 VALUE
2) TU4-C SUB-AUDIBLE $39.95 VALUE
3) MA-4000 DUO-BAND MOBILE ANT $44.95 VALUE
PLUS FREE UPS

BiRD

MODEL 43
THE LONG TIME STANDARD FOR ACCURACY

SLOTS
MOST ITEMS IN STOCK

FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)

Store addresses/Phone numbers are given on opposite page.

Tell 'em you saw it in HAM RADIO!
SUPERIOR GRADE
GENERAL IC-37A COVERAGE RECEIVER
220 MHz's BEST BUY!
REGULAR $799
SALE! $629.95
PLUS FREE UPS

A BRAND NEW HF TRANSCEIVER
WITH ALL THE FEATURES THAT MAKE IT A TRULY OUTSTANDING BUY!
REGULAR $1399
SALE! CALL FOR SPECIAL PRICE

AT GREAT LOW SUMMER PRICES
IC-02AT
IC-04AT
IC-2AT
IC-4AT
IC-3AT
CALL NOW!

NEW!
IC-3200A DUAL BANDER COVERS BOTH 2 METERS and 70CM
FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)
TOLL-FREE PHONE INCLUDING ALASKA AND HAWAII
800-854-6046
CALL FOR PRICE AND INFORMATION

HAM RADIO OUTLET

June 1985
Packet radio is a new mode of Amateur communication which is growing more popular every day. It provides armchair, error-free copy for local, national, and world-wide communication. It is also useable with the new generation of amateur satellites.

Networks are growing across the country and in the DX regions through the use of store-and-forward "digipeater" capability built into packet controllers. Enjoy QSOs, called "connects", with other Amateurs across the street or across the country; send messages; swap computer files; access information of general interest; and much more....

WHY PACKET??

* simultaneous use of a single frequency by multiple stations...without interference.
* Enjoy rag-chewing or round-tables.
* access to computer bulletin boards to read messages, and leave them!
* high speed operation...1200 baud
* error free transmission of long messages or computer files.
* experiment with the newest and fastest growing mode in Amateur Radio.
* send messages through SATELLITE to virtually anywhere in the world.
* enjoy a whole new world of contest operation, or ...

...breath new life into that dusty old 2 meter rig!

ALL YOU NEED FOR PACKET OPERATION IS...
A PACKETERM IPT AND YOUR RIG!

The Packeterm IPT is both a terminal and a full function packet node controller

* free your computer from packet duty, or get in on the fun without one.
* try portable operation with optional 13.8 volt adaptor and battery operated printer.

For more information about packet radio and the new PACKETERM IPT, or to place your order, contact us at:

PACKETERM
PO BOX 835
AMHERST, NH 03031
(603)-673-6630

introductory prices:
PACKETERM IPT $995
printer $349
dc adapter $125
voltage controlled oscillator uses ceramic resonators

Try these old favorites in tuned circuits

Since the earliest days of radio and electronics the LC tuned oscillator was the circuit of choice whenever a wide tuning range was needed. When stability was paramount, the crystal oscillator reigned supreme.

Over the years the frequency controlling element has changed; oscillators controlled by cavities, surface acoustic wave (SAW) devices, YIG (Yttrium Indium Garnet) and other garnets, and a host of other specialized devices have been developed. Very often a system design would benefit from an oscillator that had the tuning range of an LC oscillator and the stability of a crystal oscillator.

The phase-locked synthesizer is a system in which the accuracy and stability of a quartz crystal is transferred to a wide frequency range oscillator, permitting a large number of accurate and stable frequencies to be generated. Even in this application, the flaws of an oscillator cannot be totally eliminated. If the oscillator suffers from phase noise, microphonics, or other spurious outputs, some vestiges of these problems will remain.

The voltage controlled oscillator can be constructed from any type of oscillator, but is typically an LC oscillator with a varactor diode as part or all of the tuning capacitance. This gives the broadest tuning range but seldom exceeds a ratio of 2:1. At the other end of the spectrum (minimum tuning range), a crystal oscillator with varactor tuning provides excellent stability, very low phase noise, and freedom from microphonics, but has very limited tuning range. A rule of thumb for a variable crystal oscillator is a frequency variation of no more than 0.1 percent total. If the frequency were limited to 20 MHz (this is approximately the limit for fundamental mode crystals), the total variation would be 20 kHz. For higher frequencies, overtone crystals must be used and the ability to pull the frequency of an overtone crystal is considerably less than that of a fundamental mode crystal.

ceramic oscillator provides compromise

Somewhere between the crystal oscillator (which can hardly be moved at all in frequency) and the LC oscillator (which has a broad variation in frequency but suffers from phase noise and microphonics) is the ceramic resonator oscillator. The ceramic resonator is not a new device; for many years ceramic resonators have been the heart of the ceramic filter, which is primarily used for wideband FM IF systems found in entertainment radio and television receivers. The ceramic resonator as a single tuned circuit is finding applications in tuning circuits, replacing more expen-

By Albert D. Helfrick, K2BLA, R.D. 1, Box 87, Boonton, New Jersey 07005
The Q of the equivalent circuit is on the order of 600.

Fig. 2. Mechanically-tuned Pierce oscillator.

Although the ceramic resonator is similar to a quartz crystal, there are several important differences. The equivalent circuit of the ceramic resonator shown in fig. 1 is identical to the quartz crystal except that the parameter values are somewhat different. The series resistance is on the order of 6 ohms for a 4-MHz resonator, which compares to a quartz crystal's 15 ohms. This lower value at first appears to indicate a higher Q than with the quartz crystal if it weren't for the value of the equivalent inductance, which is typically 140 microhenries. In a quartz resonator at a frequency of 4 MHz, the equivalent inductance could easily be on the order of 1 henry, which is some 7000 times higher. This results in the quartz crystal having a Q of as high as 500,000. In the ceramic resonator a series capacitance of 11 pF provides the series resonant frequency while a 76-pF shunt capacitance, plus any circuit capacitance provides the parallel resonant frequency. The Q of the equivalent circuit is on the order of 600.

Advantage of the ceramic resonator over the LC oscillator

There are two inherent advantages in using a ceramic resonator rather than a conventional LC tuned circuit. First, it is nearly impossible to build inductors in the 140 µH region that are small in size and exhibit Qs of 600. Typically a 140-µH inductor has a Q of one-tenth that of a ceramic resonator. Secondly, a 140-µH inductor, in order to be of reasonable size, would use a tightly coupled ferrite core. The core would be attached to a shielded can and fitted with an adjuster. This would translate mechanical movement of the core into changes in the inductance and distributed capacitance. An oscillator constructed with this type inductance would tend to be microphonic.

There are broad variations in the parameters of ceramic resonators, especially when resonators of different frequencies are compared. However, ceramic resonator Qs will generally range from 500 to 5000, values not achieved using conventional LC tuned circuits.

The significant disadvantage of the ceramic resonator as an oscillator tuned circuit is the ability of the resonator to be varied in frequency. Ceramic resonators are typically operated in parallel resonance, which is characterized by the resonant frequency of the equivalent inductance resonating with the two equivalent capacitances, \(C_0 \) and \(C_I \). The 76 pF capacitance shown in fig. 1 is internal to the resonator and cannot be altered in any way. Consider a situation in which a varactor is placed across the resonator to vary the frequency. The highest possible resonant frequency \(f_p \) when operating the resonator as a parallel resonant circuit occurs when there is no external capacitance. This produces a resonant frequency of:

\[
f_p = \frac{1}{2\pi \sqrt{L_1 C_0 C_I / (C_0 + C_I)}}
\]

There is a practical limit to how much external capacitance can be placed across the resonator, but for the purpose of gaining insight into how far the resonator can be theoretically pulled, assume the external capacitance can be as high as infinity. With infinite external capacitance, the parallel resonant frequency approaches the series resonant frequency \(f_s \) which is:

\[
f_s = \frac{1}{2\pi \sqrt{L_1 C_I}}
\]

determining range of operation

If the ratio of the highest frequency to the lowest frequency were taken, the result would be:
Using the typical values shown in fig. 1, the maximum frequency range (and consequently change from nominal frequency) is about 7 percent total for a 4-MHz resonator. Compared to the quartz crystal, this is a very large variation but rather insignificant to the octave or more variation available from an LC oscillator.

The previous discussion determined the maximum theoretical variation. However, it is not possible to apply an external capacitance from zero to infinity. The lower value of capacitance is limited by the circuit capacitance and the residual capacitance of the varactor. This discussion examines varactor tuned oscillators, but there is residual capacitance in mechanical capacitors as well. In addition, there are practical limits to the upper bound of the external capacitance and from empirical data this can be safely taken to be three times the equivalent shunt capacitance of the resonator. When a large amount of external capacitance is used, the dissipation factor of the external capacitor becomes a critical parameter in the amount of energy that can be transferred into the ceramic resonator. As a design example, assume the minimum external capacitance is 30 pF and three times the internal 76 pF or 228 pF is the maximum capacitance that is allowed. This would result from a varactor diode variation of about 200 pF. If the residual circuit capacitance is 10 pF exclusive of the varactor capacitance, the varactor diode capacitance must vary from 20 pF to 218 pF. This requires a tuning ratio of 10, which is attainable from a hyper-abrupt junction diode. The typical frequency variation would be about 3 percent or approximately 120 kHz at 4 MHz.

Comparing actual circuits

To test the theory and to assess the ability of the ceramic resonator to serve as the frequency controlling element of an oscillator, several conventional capacitor-tuned oscillators were constructed. One example is shown in fig. 2. The ganged variable capacitor tunes both the gate and drain of the FET oscillator and thus maintains a constant feedback ratio. This oscillator produced a tuning range of 190 kHz from 10.7 MHz, the specified resonant frequency of the oscillator, to 10.89 MHz. This simple circuit, also illustrated a design limitation of the ceramic resonator – frequency drift with temperature.

Ceramic resonators are frequency-stabilized over temperature by using special -4400 ppm/degree C ceramic capacitors as the feedback elements. Although the temperature characteristic of the mechanical capacitor was not known, it did not correct the frequency drift and the results are shown in fig. 3. In spite of its frequency dependence on temperature, the oscillator had some important characteristics. The oscillator had a low level of phase noise and was relatively immune from microphonics. It is these two characteristics that make the oscillator attractive as a VCO for a phase locked loop frequency synthesizer where the temperature dependence can be eliminated.
A second mechanically-tuned oscillator was constructed and is shown in fig. 4. One of the problems associated with an oscillator using a ceramic resonator and, to a certain extent, a crystal resonator, is that when a large amount of external capacitance is added the amount of feedback is reduced and oscillation can become unsteady (stops oscillating). The oscillator shown in fig. 4 represents an attempt to alleviate this problem. A dual 500-pF capacitor was used as the tuning element across a 10.7-MHz resonator. The gain of the FET amplifier was varied by increasing the capacitance from the source to ground using half of the dual capacitor. As the capacitance across the resonator is increased, the gain of the amplifier also increases and the oscillations are stable over the entire 500 pF range of the capacitor. The tuning range of this oscillator was 325 kHz at 10.7 MHz.

A varactor-tuned Colpitts oscillator as shown in fig. 5 was constructed to evaluate the ability of the ceramic resonator to serve as a VCO. A 4-MHz resonator was tested, and the results agreed substantially with theory. Using a pair of hyper-abrupt varactor diodes, it was possible to obtain nearly a 100 kHz frequency shift, which agrees with the theoretical calculation of 120 kHz. With a large variation in capacitance an unsteady oscillatory condition was evident. This is because the feedback capacitors were much smaller than the maximum capacitance of the varactors. It is mandatory that the fixed capacitances across the ceramic resonator be kept to an absolute minimum.

In the development of an oscillator that provides a maximum frequency shift using a ceramic resonator as the tuned circuit, consider the circuit shown in fig. 6. The equivalent circuit of a ceramic resonator is shown in series with an AC voltage source and an external capacitance which represents the varactor. Since the impedance of the voltage source is zero, the external varactor capacitance is essentially in parallel with the internal capacitance, C0. The voltage at point A is exactly out of phase with the voltage at point B at the parallel resonant frequency of the inductor, L1, and C0 + C2 in series with C1. Only one resonant circuit is shown in fig. 6. The usual series resonant circuit of L1 and C1 is not a factor here. If there were a resistance between point A to ground, in parallel with C3, there would be a second point at which the phase of the voltage at A would be the same as the voltage at point B, and that would occur at the series resonant frequency determined by L1, and C1.

Figure 7 shows the equivalent circuit of the ceramic resonator oscillator.
OPEN SIX DAYS A WEEK

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1/4 miles from Rte. 495 (Exit 31) toward Groton, Mass.

KENWOOD & ICOM
 Authorized Dealers For

Also displaying the popular accessories needed to complete a HAM STATION . . .

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • HAM-KEY
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • VIBRopleX • WELZ • ETC.

MICROWAVE TV ANTENNA SYSTEMS
Freq. 2.1 to 2.7 GHz • 34 db Gain +

COMPLETE SYSTEMS:
(as Pictured)
Commercial 40" Rod Style $99.95
Parabolic 20" Dish Style $79.95
COMPONENTS
Down Converters
(either style) $34.95
Power Supplies $24.95
(12V to 16V, DC+)
Data Info (Plans) $9.95
CAll OR WRITE FOR KITS. PARTS. OR MORE INFORMATION

PHILLIPS-TECH Electronics
P.O. Box 30772
Phoenix, AZ 85067
(602) 947-7700

Special Quantity Pricing
Dealers Wanted

AMATEUR TELEVISION
NEW 70 CM ATV TRANSCEIVER
ALL YOU NEED IN ONE BOX

$299 delivered
TC70-1

- FULL COLOR, SOUND, & LIVE ACTION just like broadcast TV. Get on this exciting amateur video mode at our affordable ready to go price.

- WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? The TC70-1 downconverter outputs to any TV on ch 3 for receiving. Connect a good 70 cm antenna and low loss coax. Plug in any composite video source you want to transmit: Camera, VCR, computer, etc. Plug in any low Z dynamic mic or use color camera mic for Standard 4.5 mHz TV sound. Connect to 13.8 vdc for base, mobile, or portable. See chapt. 20 1985 ARRL Handbook. That's it!

- WHAT CAN YOU DO WITH THE TC70-1 ATV TRANSCIEVER? Show the shack, projects, computer program listings, home video tapes, repeat Space Shuttle audio and video if you have a TVRO, repeat SSTV or RTTY, Weather Radar, do public service events such as parades, marathons, races, CAP searches and rescues... the list goes on. DX depends on antennas and terrain, typically 1 to 40 miles. We have video compensated RF linear amps for 20 ($119) or 50 ($169) watts pep for greater DX.

- FEATURES:Small 7x7x2.5". Push to Look (PTL) T/R switching. Gasketed downconverter tunes whole 420-450 mHz band. Two switch selected video & audio inputs: RCA phone jacks and 10 pin color camera jack. Xmit video monitor output. Over 1 watt pep RF output on one or two (add $15) selected crystal controlled frequencies. 434.25, 434.0, or 426.25 mHz.

CALL OR WRITE FOR OUR CATALOG for more info or who is on in your area. We stock antennas, modules, and everything you need on ATV.

TERMS: Visa, MC, or cash only UPS CODs by phone or mail. Checks must clear bank before shipment. Price includes UPS surface shipping in cont. USA, others add 3%. Transmitting equipment sold only to licensed Tech class or higher amateurs, verifiable in 1985 call book or copy of new license.

(618) 447-4565 M-F 8am-6pm PST
P.C. ELECTRONICS
Tom W6ORG Maryann WB6YSS
2522 Paxson Lane
Arcadia CA 91006
resonator except that the AC voltage source has been replaced with the output of an inverting amplifier and point A from the equivalent circuit of Fig. 6 has been connected to the input of the inverting amplifier. To satisfy the Barkhausen criteria for sustained oscillations, the total phase shift around the loop should be 0 degrees, which will occur at the parallel resonant frequency of Fig. 6. In addition, the total loop gain should be zero dB, which can be satisfied by the buildup of self bias, which automatically reduces the circuit gain, as in the case of any classical oscillator. For C2 to have the greatest effect on the oscillator frequency, the input capacitance of the amplifier must be as small as possible and the output impedance of the amplifier as low as possible.

The oscillator shown in Fig. 8 satisfies the criteria for a low output impedance and small input capacitance. The FET input amplifier has fixed bias with source feedback. This provides a very high input impedance with very low capacitance. The FET amplifier drives an emitter follower which, in spite of the fact that it has a low output impedance, feeds a transformer with a 3:1 turns ratio for a nine-fold impedance reduction. The result is an impedance at the ceramic resonator of a few ohms maximum.

The varactor-tuned ceramic resonator oscillator has a significant frequency-temperature coefficient, as would be expected in light of the results of Fig. 3, and is shown in Fig. 9. The tuning range of the VCO is approximately 232 kHz, with a temperature coefficient of 350 Hz per degree centigrade. When using this circuit as a VCO, the entire 232 kHz range cannot be used because some of the tuning range must be sacrificed for the temperature dependence. If the required tuning range were 200 kHz, leaving 32 kHz for temperature variation, the resulting temperature variation would be more than 90 degrees C, which is sufficient for any Amateur application.

It may appear that a temperature compensating ceramic capacitor could be used for the reduction of
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

Band Kit Wired
10M,6M, 2M,220 $680 $880
280 $780 $980

FEATURES:
• SENSITIVITY SECOND TO NONE; 0.15 uV (VHF), 0.2 uV (UHF) TYP.
• SELECTIVITY THAT CAN'T BE BEAT! BOTH POLE XTL FILTER & CERAMIC FILTER FOR > 100 dB AT ± 12KHz. HELICAL RESONATOR FRONT ENDS TO FIGHT DESENSE & INTERMOD.
• OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, ALC TO COMPENSATE FOR OFF-FREQUENCY TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
• CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

RECEIVING CONVERTERS
Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF ≈ 3 dB or less.

<table>
<thead>
<tr>
<th>Antenna Input Range</th>
<th>Receiver Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-32</td>
<td>144-148</td>
</tr>
<tr>
<td>50-52</td>
<td>28-30</td>
</tr>
<tr>
<td>50-54</td>
<td>144-148</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
<tr>
<td>144-146</td>
<td>27-27</td>
</tr>
<tr>
<td>144-148</td>
<td>50-54</td>
</tr>
<tr>
<td>144-148</td>
<td>28-30</td>
</tr>
<tr>
<td>144-148</td>
<td>50-54</td>
</tr>
<tr>
<td>222-224</td>
<td>144-148</td>
</tr>
<tr>
<td>222-224</td>
<td>50-54</td>
</tr>
<tr>
<td>222-224</td>
<td>28-30</td>
</tr>
</tbody>
</table>

UHF MODELS
Kit with Case $49
Less Case $39
Wired $69

UHF MODELS
Kit with Case $59
Less Case $49
Wired $75

LOW-NOISE PREAMPS
Hamtronics Brings the Price Barrier!

Model Tunes Range Price
LNG-28 26-30 MHz $49
LNG-50 46-56 MHz $49
LNG-144 137-150 MHz $49
LNG-150 150-172 MHz $49
LNG-220 210-230 MHz $49
LNG-432 400-470 MHz $49
LNG-800 800-960 MHz $49

FEATURES:
• Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
• High Gain: 18 to 28 dB, Depending on Freq.
• Wide Dynamic Range for Overload Resistance
• Latest Dual-gate GaAs FET, Very Stable

TRANSMIT CONVERTERS
For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi-mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

<table>
<thead>
<tr>
<th>Exciter Input Range</th>
<th>Antenna Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-30</td>
<td>144-146</td>
</tr>
<tr>
<td>28-30</td>
<td>145-148</td>
</tr>
<tr>
<td>28-30</td>
<td>50-54</td>
</tr>
<tr>
<td>27-27</td>
<td>144-144</td>
</tr>
<tr>
<td>28-30</td>
<td>290-220</td>
</tr>
<tr>
<td>50-54</td>
<td>225-224</td>
</tr>
<tr>
<td>144-146</td>
<td>50-52</td>
</tr>
<tr>
<td>144-146</td>
<td>144-146</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
</tbody>
</table>

For UHF, Model Xv2 Kit $79
Wired $149

SPECIFY BAND

<table>
<thead>
<tr>
<th>Exciter Input Range</th>
<th>Antenna Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-30</td>
<td>432-434</td>
</tr>
<tr>
<td>28-30</td>
<td>432-434</td>
</tr>
<tr>
<td>50-54</td>
<td>432-436</td>
</tr>
<tr>
<td>61-25</td>
<td>432-250</td>
</tr>
<tr>
<td>144-148</td>
<td>432-436</td>
</tr>
</tbody>
</table>

VHF & UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $78.

CALL OR WRITE FOR FREE CATALOG
(Send $2.00 or 4 IRCs for overseas mailing)

ORDER BY PHONE OR MAIL
ADD $3 S & H PER ORDER
(Electronic answering service evenings & weekends)

USE VISA, MASTERCARD, CHECK, OR UPS COD.

hamtronics, inc.
65-E MOUL ROAD • HILTON NY 14446
Phone: 716-392-9430

HIGH QUALITY XMTR & RCVR MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

• R144/220 FM RCVRs for 2M or 220 MHz. 0.15uV sens., 8 pole xtal filter & ceramic filter in i-f, helical resonator front end for exceptional selectivity, >100 dB at ±12kHz, best available today. Flutter-proof squelch. ALC tracks drifting xtl. Xtl oven avail. Kit only $138.

• R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $138.

• R76 FM RCVR for 10M, 6M, or 220. As above, but w/o ALC or hel. res. Kits only $118. Also avail w/pole filter, only $96/kit.

• R110 VHF AM RECEIVER kit for VHF aircraft or ham bands or Space Shuttle. Only $98.

• T51 VHF FM EXCITER for 10M, 6M, 2M, or 220 MHz. 2 Watts continuous, up to 3 W intermittent. $86/kit.

• T51 UHF FM EXCITER 2 to 3 Watts. Kit only $78.

• VHF & UHF LINEAR AMPLIFIERS. For either FM or SSB. Power levels from 10 to 45 Watts to go with excitors & xmg converters. Several models. Kits from $78.

NOW—FCC TYPE-ACCEPTED TRANSMITTERS & RECEIVERS AVAILABLE FOR HIGH-BAND & UHF. CALL FOR DETAILS.

ACCESSORIES

MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter. Automatically keys transmitter and provides handshakes. 1200/2500 Hz tones. Kit only $45.

DE-202 FSK DATA DEMODULATOR. Use with any FM receiver to detect packet radio or other digital data in “202” modem format. Provides audio conditioning and handshakes. Kit only $38.

COR-2 KIT With audio mixer, local speaker amplifier, talk & time-out timers. Only $38.

COR-3 KIT as above, but with “courtesy beep”. Only $58.

CWID KITS 158 bits, easily field programable, clean audio. Kit only $68.

A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 5 x 2 inches. Designed especially for repeaters. $20.

DTMF DECODER/CONTROLLER KITS. Control 2 separate onoff functions with touchtones®, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $90

SIMPLEX AUTOPATCH. Use with your FM transceiver. System includes DTMF & Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.
temperature dependence. This is done for single-frequency oscillators, but the use of a shunt capacitance for temperature compensation will reduce the amount of frequency variation possible. In an oscillator with a large tuning range, temperature compensation must be achieved with a phased locked loop or other external means of frequency stabilization.

To what advantage is the ceramic resonator oscillator when it has a significant frequency-temperature coefficient and has a tuning range of only a few percent? First the phase noise of the ceramic resonator oscillator is excellent, as shown by the spectrum analyzer photograph in fig. 10. It would be nearly impossible to create a spectrum this clean with a conventional LC tuned oscillator. In addition, the freedom from microphonics is excellent. As a test, the fourth harmonic of the 10 MHz VCO shown in fig. 8 was received with a VHF/FM monitor receiver. This receiver is designed to function with 5-kHz peak frequency deviation, and because the fourth harmonic is being tuned a 1.25-kHz peak deviation will produce the full audio output in the receiver. The oscillator was tapped with a pencil and absolutely no audio was heard from the receiver. This is certainly not a scientific test, but to gain some insight into how this compares to a conventional LC oscillator, the printed circuit board in the monitor receiver was tapped and produced a loud clang in the receiver. In fact, if the volume of the monitor receiver were advanced to nearly full scale, a steady howl would emanate from the speaker because of acoustic feedback from the speaker to the local oscillator. Although the test was not scientific, it is clear that the ceramic resonator oscillator is quite free from microphonics.

applications

There are many applications for a narrow band low-noise oscillator. An obvious choice is to provide a VCO for a narrow range synthesizer such as a single Amateur-band frequency source. The new 10 MHz band is an obvious choice, since the VCO shown in this article is directly applicable. Another application is shown in fig. 11. Here the ceramic resonator oscillator is used in a frequency synthesizer with 100 Hz resolution. The 10-MHz range of the ceramic resonator is translated to the Amateur band by heterodyning it with a 40-54.6 MHz phase locked frequency synthesizer. Because of the rather high (100...
State of the art by K.V.G.

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF - 9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF - 9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>72.05</td>
</tr>
<tr>
<td>XF - 9B-01</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF - 9B-02</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>125.65</td>
</tr>
<tr>
<td>XF - 9B-10</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>9</td>
<td>77.40</td>
</tr>
<tr>
<td>XF - 9C</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF - 9G</td>
<td>FM</td>
<td>1200 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF - 9M</td>
<td>CW</td>
<td>500 kHz</td>
<td>4</td>
<td>54.10</td>
</tr>
<tr>
<td>XF - 9N</td>
<td>CW</td>
<td>500 kHz</td>
<td>4</td>
<td>54.10</td>
</tr>
<tr>
<td>XF - 9P</td>
<td>CW</td>
<td>250 kHz</td>
<td>8</td>
<td>131.20</td>
</tr>
<tr>
<td><XF - 10</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>17.15</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF - 107 A</td>
<td>NBFM</td>
<td>12 kHz</td>
<td>8</td>
<td>87.30</td>
</tr>
<tr>
<td>XF - 107 B</td>
<td>NBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>87.30</td>
</tr>
<tr>
<td>XF - 107 C</td>
<td>WBFM</td>
<td>30 kHz</td>
<td>8</td>
<td>87.30</td>
</tr>
<tr>
<td>XF - 107 D</td>
<td>WBFM</td>
<td>36 kHz</td>
<td>8</td>
<td>87.30</td>
</tr>
<tr>
<td>XF - 107 E</td>
<td>WBFM</td>
<td>40 kHz</td>
<td>8</td>
<td>87.30</td>
</tr>
<tr>
<td>XM - 107 G04</td>
<td>FM</td>
<td>14 kHz</td>
<td>4</td>
<td>30.15</td>
</tr>
</tbody>
</table>

LOW NOISE RECEIVE CONVERTERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1691 MHz</td>
<td>MM4191-137</td>
<td>$249.95</td>
</tr>
<tr>
<td>1596 MHz</td>
<td>MM1496-144G</td>
<td>149.95</td>
</tr>
<tr>
<td>430 MHz</td>
<td>MM1432-28K</td>
<td>74.95</td>
</tr>
<tr>
<td>439 MHz</td>
<td>MM1439-14</td>
<td>84.95</td>
</tr>
<tr>
<td>320 MHz</td>
<td>MM1432-28K</td>
<td>69.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>MM1442-28K</td>
<td>95.15</td>
</tr>
</tbody>
</table>

Options: Low NF (0.2 dB max., 0.1 dB max.), other bands & IF's available

LINEAR TRANSVERTERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>MM1476-144G</td>
<td>$299.95</td>
</tr>
<tr>
<td>432 MHz</td>
<td>MM1432-28K</td>
<td>59.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>MM1442-28K</td>
<td>59.95</td>
</tr>
</tbody>
</table>

LOW POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>MM1476-144G</td>
<td>$299.95</td>
</tr>
<tr>
<td>432 MHz</td>
<td>MM1432-28K</td>
<td>59.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>MM1442-28K</td>
<td>59.95</td>
</tr>
</tbody>
</table>

All models include VDX T/R switching. "L" models 1 or 3W drive, others 10 W drive.

Shipping: FOB Concord, Mass.

ANTENNAS

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>420-450 MHz</td>
<td>MM1476-144G</td>
<td>$299.95</td>
</tr>
<tr>
<td>420-450 MHz</td>
<td>MM1432-28K</td>
<td>59.95</td>
</tr>
<tr>
<td>420-450 MHz</td>
<td>MM1442-28K</td>
<td>59.95</td>
</tr>
</tbody>
</table>

LINEAR POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144-189 MHz</td>
<td>MM1476-144G</td>
<td>$299.95</td>
</tr>
<tr>
<td>144-189 MHz</td>
<td>MM1432-28K</td>
<td>59.95</td>
</tr>
<tr>
<td>144-189 MHz</td>
<td>MM1442-28K</td>
<td>59.95</td>
</tr>
</tbody>
</table>

Man models include VDX T/R switching. "L" models 1 or 3W drive, others 10 W drive.

Shipping: FOB Concord, Mass.

SPECTRUM INTERNATIONAL, INC. Post Office Box 1084 Concord, MA 01742, U.S.A.

(617) 263-2145

(617) 263-2145

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296-1350 MHz</td>
<td>MM1476-144G</td>
<td>$299.95</td>
</tr>
<tr>
<td>1296-1350 MHz</td>
<td>MM1432-28K</td>
<td>59.95</td>
</tr>
<tr>
<td>1296-1350 MHz</td>
<td>MM1442-28K</td>
<td>59.95</td>
</tr>
</tbody>
</table>

A second application is shown in fig. 12. This example shows a 10-meter FM transmitter using a ceramic resonator. The basic 15-MHz frequency of the ceramic resonator oscillator is doubled to 29.5-29.7 MHz and synthesized using a 2.5 kHz reference. As in any FM transmitter where the phase locked loop is modulated directly, the loop bandwidth is restricted to a frequency below the audio frequency range, which opens up possibilities for microphonics and phase noise. This is demonstrated in most synthesized FM VHF equipment by the fact that despite putting in epoxy or other compound, the VCOs are often microphonic and noisy.

The ceramic resonator oscillator has proved to be an interesting device for several applications and it is suspected that other applications will appear. No attempt was made to temperature-compensate the basic oscillator circuit. It is possible that a thermistor or other temperature sensing device could be used in conjunction with the varactor tuning voltage to reduce the temperature dependence of the ceramic resonator to an acceptable amount. In addition to its use in an oscillator circuit, the ceramic resonator has important applications in any circuit in which a conventional LC tuned circuit would be used.
For the Best

HF, VHF, UHF, SSB, FM, RTTY, PACKET, CW, ASCII & AMTOR

IC-37A 220 MHZ COMPACT MOBILE
25 Watts, 32 PL Frequencies Standard Built-in, 9 Memories with Offset and PL Storage, 10 KHz/5 KHz Dial Steps, Memory Scan, Band Scan, and Priority Scan, Dual VFO's and Standard HM-23 Touchtone.

IC-27A COMPACT MOBILE
A breakthrough in 2-meter mobile communications! Most compact on the market (5½"W x 1½"H x 7"D), contains internal speaker for easy mounting. 25 watts, 32 PL frequencies, scanning and touchtone microphone.

4' LIGHTWEIGHT FLEXIBLE ANTENNA ADAPTOR CABLE

IC-02AT HANDHELD
The IC-02AT 2-meter LCD readout handheld features 10 memories, 32 PL tones, scanning, keyboard, frequency entry, dial lock, 3W standard, 5W optional, DTMF.

Bencher PADDLE
This is the paddle that provides the perfect interface between the CW operator and his rig. Smooth, instantly responsive and fully adjustable to suit your own touch. From the gold plated solid silver contacts to the heavy leaded steel base, it truly is the ultimate.

THE R3 NO RADIAL VERTICAL FOR 10-15-20 METERS

C & A ROBERTS INC.
18511 HAWTHORNE BOULEVARD
TORRANCE, CALIFORNIA 90504
(213) 370-7451 (Calif.) (800) 421-2258

STORE HOURS: 10:00 a.m. - 5:30 p.m. MONDAY THRU SATURDAY

More Details? CHECK-OFF Page 126

June 1985
a high-stability BFO for receiver applications

Two VCXOs work together to provide high performance

The lower frequency IF (under 500 kHz) remains popular for many receiver applications, generally as the last IF of a single or multi-conversion scheme.

A typical Amateur application will usually require two or three discrete BFO frequencies — one for each sideband and one for CW. Good mechanical filters, either imports or surplus models made by Collins-Rockwell, are readily available. Unfortunately, while good filters are available, their companion BFO crystals are seldom offered; custom-made BFO crystals for under 500 kHz can be obtained, but only at a premium price.

Many hams have avoided the high cost of crystals by designing variable BFOs to take their place. While this is a reasonable alternative, there are disadvantages. If, for example, the filters will do double duty in the transmitter portion of a transceiver, BFO crystals would have to be used in order to ensure predictable filter performance. Most filter manufacturers specify the filter 20-dB attenuation points as the recommended BFO frequencies for SSB operation. Shifts in the BFO frequency could cause loss of carrier suppression or an undesired audio bandpass. A synthesized BFO circuit for 9-MHz IFs was described in ham radio several years ago, but it did not have provisions for variable tuning.¹ For certain receiver applications — especially for radioteletype (RTTY) or serious CW work — a variable BFO is a desirable feature. But we are still at the mercy of the long and short-term drift characteristics of a free-running LC oscillator. In light of the considerable investment a homebrewer makes for a set of decent filters, it would be false economy to compromise an otherwise good receiver by using a second-rate BFO design.

alternative approach — two 15-MHz oscillators

I’ve been building a general coverage receiver for about five years — it’s one of those low-priority projects that just sits on the back burner and is worked on only during periods of extreme ambition. During my last brainstorming session I tackled its BFO circuits. My particular application required a variable frequency source between 5.593-5.597 MHz (for passband tuning) and the ability to preset for sideband generation in a planned companion exciter that would make use of the receiver’s BFO, VFO, and HFO signals.

In designing the BFO circuits, I found an alternative to using expensive BFO crystals that would retain the versatility of a variable BFO. While my circuit uses two oscillators in the 15-MHz range, the particular frequencies are not of primary importance. (It would be wise, however, to avoid frequencies that fall on other receiver IFs or in the main tuning ranges.) Plated crystals in the 10 to 22-MHz range (fundamental frequency) will work the best; surplus crystals using pressure-plate mounts are not recommended.

What is important is that the frequency difference of the two crystals is in the exact center of the variable-frequency range we desire. I ordered two CS-1 grade crystals from International Crystal Manufacturing Co.,* and they seemed to be quite willing to match the error of the two crystals during production. This BFO system is readily adaptable to other popular IF filters in the 5, 8, or 9-MHz ranges by simply inserting the proper crystals into the circuit.

Both crystals are used in identical Colpitts circuits (fig. 1), except in that the frequencies are varactor controllable to a small degree. The total BFO shift is at least 4 kHz using the fundamental mode. This shift can be increased to about 6 kHz by installing 1.0 µH inductors (molded chokes) in series with the crystals. A circuit for overtone crystals in the 40-50 MHz range is shown, (fig. 2). The maximum frequency excursion is considerably lower — typically 1.5 kHz. Series inductance can be used to increase the tuning range of

By Peter J. Bertini, K1ZJH, 20 Patsun Road, Somers, Connecticut 07061
the overtone mode slightly, but the inductors should not be greater than 0.5 μH. It is likely that most BFO requirements can be met with approximately a 1.5-kHz tuning range.

With both varicap control inputs tied to 1/2 Vcc the BFO output should be at the exact difference frequency. If a small error exists it can be trimmed out by careful adjustment of the 45-pF trimmers in the Colpitts feedback network. Initially both trimmers should be set at midpoint, and any required trimming accomplished by adjusting both trimmers equally in opposite directions. NPO capacitors should be used in the oscillators. The oscillators should be powered from a 9 to 10 volt regulated source. Either a zener or three-terminal regulator will serve here.

SSB requires few kHz frequency change

Some common VCXOs (Variable Crystal Oscillators) use both variable capacitive and inductive elements to achieve a wider pulling range. Typically these circuits become somewhat unstable at the tuning extremes. In this BFO design, we require only a few kHz tuning range to meet most SSB BFO requirements. In my circuit two oscillators are pulled in opposing directions, effectively doubling the range normally expected from a single oscillator. Producing the two varactor tuning voltages could be accomplished using a dual-ganged potentiometer, but I chose the more elegant approach of using an IC voltage inverter to drive one of the oscillator varicap diodes. This permits the use of a single-stage variable potentiometer to control both oscillators. At first glance, the circuitry used

*International Crystal Manufacturing Co., 10 North Lee, Oklahoma City, Oklahoma 73102.
to accomplish this may appear to be more involved than necessary. This will be explained in greater detail further into this article (see fig. 3).

The mixer is a 40673 dual-gate MOSFET. An emitter-follower buffer stage provides about +7 dBm (5 mW) when driving a 50-ohm load; or about 6 volts P-P driving a high-Z termination. The low-pass filter shown is optimum for outputs in the 5-6 MHz range. These values can be scaled for other IF ranges. Suitable filters can be found in tables appearing in handbooks or electronic data books.

good performance at low cost

Although not shown in the schematics, it would be simple to switch trimpots into the circuit in place of the tuning potentiometer to permit generation of fixed discrete BFO frequencies. Thus, one could switch automatically to a preset BFO frequency during transmit and have either preset or manual control of the BFO during receive. The real beauty of this circuit is in the long and short-term stability it ensures. Because of aging or temperature cycling, crystal or component variations should result in a nearly identical positive or negative frequency shift in both oscillators, but the desired difference-frequency will be closely maintained. Control voltages should be taken from a regulated low-noise source for best results. The noise-floor of this BFO will be better than most free-running designs, contributing to better post-filter IF noise performance.

The cost of this circuit compares favorably with the cost of individual low-frequency crystals. While the unit shown was built for 5.595 MHz, the basic scheme is useful for other HF and MF frequencies. The circuit is also useful for a variable frequency source in other

fig. 2. Optional overtone oscillator circuit for use in the BFO. Crystals again are ICM CS-1 (No. 471360) 3rd overtone cuts in the 40 to 50-MHz range. Using this overtone circuit, the maximum BFO tuning range will be limited to about 2 kHz.

fig. 3. Control tuning voltages are provided by this circuit. The settings for R1 and R2 are discussed in the text. Shielded leads should be used to carry the voltage-oscillator signals to prevent incidental FM modulation from external AC field.
applications requiring good stability over a small frequency range, such as LOs for IF-variable passband or bandwidth tuners, or perhaps as a fine frequency-shifter in some PLL designs.

initial adjustments

The varicap diodes do not exhibit a linear change in capacitance for a given change in voltage over the entire available VCXO tuning range. Some empirical "cut-and-try" adjustments will be needed to obtain the desired results. The greatest change in varicap capacity occurs in the first few volts of tuning bias voltages; this is also the area of greatest non-linearity. Higher tuning voltages will result in smaller tuning ranges, while the tuning linearity will improve. Trimpot R1 sets the DC gain of the op amps (to control the maximum shift of the varicap tuning voltage). The op-amps should be powered from a well-regulated 15 to 24 volt supply. Maximum tuning range will be obtained with the higher voltage.

Trimpot R2 sets the DC offset of the two op amps used to drive the varicaps (to set the DC voltage at which the tuning voltage will start and end). The LM324 op amps were used because of their ability to reach near the power supply bus voltages (Vcc and ground) extending the tuning voltage range to those limits.

Trimpot R1 is adjusted to set the desired voltage swing for the varicap tuning produced by the full rotation of the tuning potentiometer. Trimpot R2 is used to set the bias point of the varicaps (the voltage midpoint between the tuning-voltage extremes). Regardless of the setting of R2, the center-tuning voltage for the two varicaps will be the same. For example, assume R1 was set for a 2-volt range, and R2 was set for a center-tuning voltage of 4 volts. The result would be that the noninverted varicap would swing from 3 to 5 volts, while the inverting varicap tuning voltage conversely would swing from 5 down to 3 volts, for a full rotation of the tuning potentiometer. If R2 were set for 7 volts tuning-center, the varicap tuning voltages would be from 6 to 8 volts and 8 to 6 volts, respectively. At first this may appear to be trivial, but remember that the tuning curves for the varicaps is not a linear function. This circuit ensures that any non-linearity of tuning — on either side of center — will be the same, or symmetrical to each other. Thus, the related panel markings would be symmetrical and more pleasing to the eye, and the "tuning-feel" more natural.

reference

EPROMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708 1KX8 450 n.s.</td>
<td>2.20</td>
<td>$0.49</td>
<td></td>
</tr>
<tr>
<td>2758 1KX9 540 n.s.</td>
<td>2.00</td>
<td>$0.35</td>
<td></td>
</tr>
<tr>
<td>22KX28 450 n.s.</td>
<td>3.20</td>
<td>$0.89</td>
<td></td>
</tr>
<tr>
<td>2716-1 2KX8 350 n.s.</td>
<td>4.95</td>
<td>$1.29</td>
<td></td>
</tr>
<tr>
<td>2732 4KX4 450 n.s.</td>
<td>4.00</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>2732A 5.00</td>
<td>4.75</td>
<td>$1.25</td>
<td></td>
</tr>
<tr>
<td>2732A-35</td>
<td>5.00</td>
<td>$1.25</td>
<td></td>
</tr>
<tr>
<td>2732A-60</td>
<td>6.00</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>2742-45</td>
<td>5.50</td>
<td>$1.45</td>
<td></td>
</tr>
<tr>
<td>2742-60</td>
<td>6.00</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>27128-10</td>
<td>10.00</td>
<td>$2.50</td>
<td></td>
</tr>
<tr>
<td>27128-12</td>
<td>12.00</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>27128-15</td>
<td>15.00</td>
<td>$3.75</td>
<td></td>
</tr>
</tbody>
</table>

ROMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-2KX8 200 n.s.</td>
<td>8/20.00</td>
<td>$1.49</td>
<td></td>
</tr>
<tr>
<td>2011-1 256KX4 500 n.s.</td>
<td>7.5</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>2010-1 350 n.s.</td>
<td>6.00</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>2010L-1 4 LPM 500 n.s.</td>
<td>.95</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>2111-1 256KX4 500 n.s.</td>
<td>2.00</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>2114-1 1KX300 450 n.s.</td>
<td>8/10.00</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>2125A-1 1KX11 70 n.s.</td>
<td>2.20</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>2142-3 1KX300 1.5</td>
<td>1.50</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>2144-4KX 3.95</td>
<td>4.00</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>4166P-4KX 250 n.s.</td>
<td>8/6.00</td>
<td>$4.50</td>
<td></td>
</tr>
</tbody>
</table>

F.D. CONTROLLERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1771 Single Density</td>
<td>12.95</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>1773 Double Density</td>
<td>20.00</td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>1793 Special</td>
<td>12.50</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>1797</td>
<td>15.00</td>
<td>$4.00</td>
<td></td>
</tr>
<tr>
<td>2797</td>
<td>20.00</td>
<td>$6.00</td>
<td></td>
</tr>
</tbody>
</table>

4K STATIC RAMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK41404-A-4 250 N.S 18 Pin Ceramic Computer Mfg. Surplus PRIME. Fully Static. Easy to Use. Has Same Pin Out as TMS2444A, but slightly different timing. With Specs. (Mostek)</td>
<td>8 for $5.00</td>
<td>$32 for 15.95 VERY LOW POWER!</td>
<td></td>
</tr>
</tbody>
</table>

EPROM SPECIAL

We bought a large quantity of 2708s from a computer manufacturer who redesigned their boards. We removed them from sockets, erased and verified them, and now we offer the savings to you. Complete satisfaction guaranteed.

2708 $1.49 or 10/$12.00

STATIC RAM

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8202-1</td>
<td>10.00</td>
<td>$2.50</td>
<td></td>
</tr>
<tr>
<td>8225-2</td>
<td>25.95</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>8226-4</td>
<td>25.00</td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>8228-4</td>
<td>32.50</td>
<td>$8.00</td>
<td></td>
</tr>
<tr>
<td>8259-6</td>
<td>7.50</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>8284-2</td>
<td>5.00</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>8287-2</td>
<td>5.75</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>8288-2</td>
<td>5.75</td>
<td>$1.50</td>
<td></td>
</tr>
</tbody>
</table>

CRYSSTALS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z80 2.5 MHZ CPU</td>
<td>80</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td>Z80DMA-DMA</td>
<td>3.50</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>Z80DMA/IO</td>
<td>3.50</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>Z80A-4MHZ CPU</td>
<td>1.99</td>
<td>$0.65</td>
<td></td>
</tr>
<tr>
<td>Z80A-DTC</td>
<td>1.99</td>
<td>$0.65</td>
<td></td>
</tr>
<tr>
<td>Z80A-DART</td>
<td>1.99</td>
<td>$0.65</td>
<td></td>
</tr>
<tr>
<td>Z80A-CTC</td>
<td>1.99</td>
<td>$0.65</td>
<td></td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td>1.99</td>
<td>$0.65</td>
<td></td>
</tr>
<tr>
<td>Z80A-PI0</td>
<td>1.99</td>
<td>$0.65</td>
<td></td>
</tr>
</tbody>
</table>

4K STATIC RAMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK41404-A-4 250 N.S 18 Pin Ceramic Computer Mfg. Surplus PRIME. Fully Static. Easy to Use. Has Same Pin Out as TMS2444A, but slightly different timing. With Specs. (Mostek)</td>
<td>8 for $5.00</td>
<td>$32 for 15.95 VERY LOW POWER!</td>
<td></td>
</tr>
</tbody>
</table>

UART

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1602B (COM 2017)</td>
<td>1.75</td>
<td>$0.50</td>
<td></td>
</tr>
<tr>
<td>TR1602D (COM 1663)</td>
<td>1.50</td>
<td>$0.50</td>
<td></td>
</tr>
<tr>
<td>TR1603D pin out</td>
<td>2.95</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>INS 8250B</td>
<td>9.95</td>
<td>$3.00</td>
<td></td>
</tr>
</tbody>
</table>

SPECIALS

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9216</td>
<td>4.95</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>TMS99532</td>
<td>19.95</td>
<td>$7.00</td>
<td></td>
</tr>
<tr>
<td>BR1941T</td>
<td>5.95</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>LF355</td>
<td>6.60</td>
<td>$2.25</td>
<td></td>
</tr>
<tr>
<td>LF356</td>
<td>6.00</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>TL494</td>
<td>2.50</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>DS835</td>
<td>5.00</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>MC1044AP</td>
<td>5.00</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>NE552</td>
<td>1.00</td>
<td>$0.50</td>
<td></td>
</tr>
<tr>
<td>MC1250</td>
<td>1.00</td>
<td>$0.50</td>
<td></td>
</tr>
<tr>
<td>LM339</td>
<td>1.00</td>
<td>$0.50</td>
<td></td>
</tr>
</tbody>
</table>

TERMS

(Unless specified elsewhere) Add $1.50 postage, payable by money order or check only. Orders over $50.00 add $5.50 for insurance. No COD. Texas Res. add 6-1/2%. Tax. 90 Day Money Back Guarantee on all items. All items subject to prior sale. Prices subject to change without notice. Foreign orders - US funds only. We cannot ship to Mexico. Credit cards other than mastercard and visa. Add $5.00 shipping and handling.

Tell 'em you saw it in HAM RADIO!
Big Computer Manufacturer Does It Again!!!

DISK DRIVE BONANZA — DOUBLE SIDED 5 1/4'' DOUBLE DENSITY FACTORY NEW DISK DRIVES

MANUFACTURED IN JAPAN BY CANON.
THESE ARE PROBABLY THE MOST BEAUTIFUL 5¼'' DISK DRIVES WE HAVE EVER SEEN ON THE SURPLUS MARKET!!

BRAND NEW: UNUSED! $49.95 EA. 2 FOR $85.00

ADD $1.50 EACH FOR POSTAGE

SPECS: DOUBLE SIDED — 40 TRACK
SINGLE OR DOUBLE DENSITY
TWO THIRDS HEIGHT (SPACE SAVER!!)
INDUSTRY STANDARD PIN OUT
DIRECT DRIVE — NO BELT TO BREAK!
FAST ACCESS — 6MS
LATEST HEAD & DRIVE TECHNOLOGY

The same poor purchasing agent who nearly got lynched for over buying so many D.C. switchers has gotten carried away again. The Big Boss found another hiding place crammed with a truckload of the brand new precision manufactured 5¼'' disk drives. Fortunately for us, the Big Boss remembered us from the switchers deal and he gave us an opportunity to make the "Second Best" surplus buy of the decade. Even though we bought a huge quantity, please order early to avoid disappointment. Please do not confuse these sleek, 2/3 height, high quality Japanese disk drives with the flimsy domestic units sold by others.

SERIAL ASCII KEYBOARD

$14.95 Each

Maxi Switch 67 Key (includes 10 function keys)
QWERTY serial keyboard. Number KYBD2185010 keyboard which uses a CMOS 8048 single chip microprocessor for super low power consumption. Very high quality with an exceptionally smooth feel. Originally designed for use in a portable computer. Simple serial interface — complete documentation included — Size: 12'' x 5 1/2''

These won't last long at this price!!!!

ATARI HEX KEYBOARD (REPEAT OF SELLOUT)

$7.95

3 for $20.00

(ADD $1.00 each shipping cost)

TERMS: (Unless specified elsewhere) Add $1.50 postage, we pay balance. Orders over $50.00 add $5.00 for insurance. No C.O.D. Texas Res. add 6-1/2%. Tax. 90 Day Money Back Guarantee on all items. All items subject to prior sale. Prices subject to change without notice. Foreign order - US funds only. We cannot ship to Mexico. Countries other than Canada, add $3.50 shipping and handling.

More Details? CHECK — OFF Page 126
TIME FOR AN AEA BREAKTHROUGH

The high quality of AEA products is appreciated long after the price paid is forgotten.

THE FANTASTIC DOCTOR DX™ CW Band Simulation That Is So Real You Won’t Believe It!

- Will improve the operating skills of any CW operator!
- More fun than any Morse Code trainer ever devised!
- Use with a C-64 TV set and key (or keyer).
- Experience the thrill of a "DXpedition" to anywhere in the world.
- Operate anytime you want, ideal for travelers.
- Impressive award certificates available for verified performance.
- On-going contests: 8-hour sprint and 24-hour marathon.

- **CP-1** $239.95*
 - Computer Patch™ Interface
 - Better performance than any competitive product
 - Dual channel filtering with auto threshold correction
 - Variable shift
 - 117 VAC power supply included

- **DOCTOR QSO™** $79.95*
 - Morse Code Trainer
 - Makes Morse Training Fun, Fun, Fun!!!
 - Plug-in Cartridge For C-64
 - Full-feature keyer (no memory)

- **PKT-1 Packet Controller** $589.95*
 - Easy to use—five usual commands
 - Multiple conversations on simplex channel.
 - EVERY PKT-1 is a digipeater.
 - Send computer files error free.
 - Operates from 9-15 VDC for portable or fixed operation.

- **HTF ROD™** 1/4 Wave Telescope Antenna $24.95*
 - Fewer telescopic sections than any 1/4 wave whip.
 - Shorter and lighter than all 1/4 wave whips.
 - Special matching network designed by Professor D.K. Reynolds (co-inventor of Iso-pole™ antenna) makes Hot Rod competitive.

ISOPOLE ANTENNA™

- Mast Not Included
- **ISO** = 144 or 220—$59.95*
 - ISO = 144 JR or 220 JR—$49.95*
 - ISO = 440—$84.95*

ELECTRONIC KEYERS

- **BT-1 Basic Morse Trainer** $109.95*
 - Teaches code at 20 wpm.
 - Random practice mode.
 - Variable monitor tone.

- **KT-2 Keyer/Trainer** $149.95*
 - Proficiency Trainer.
 - 01-99 WPM.
 - Full-feature keyer (no memory).

- **CK-2 Contest Keyer** $199.95*
 - 10 soft-partitioned™ memories.
 - Automatic serial number.
 - Stepped variable speed.
 - Two speed memories.

- **MM-2 MorseMatic™** $229.95*
 - Memory keyer.
 - Auto serial number.
 - Proficiency trainer.

Unmatched Software For C-64 And VIC-20 Computers

<table>
<thead>
<tr>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA TOR™</td>
</tr>
<tr>
<td>MARSTEXT™</td>
</tr>
<tr>
<td>SWLTEXT™</td>
</tr>
</tbody>
</table>

AEA also offers Morse, Baudot, and ASCII software for the following computers: Apple II, II+*, Ile; IBM-PC |

MIDWEST AMATEUR RADIO SUPPLY

3456 Fremont Avenue, North
Minneapolis, MN 55412

Store Hours: Mon.-Fri. 9-6, Saturday 9-3
For service call: (612) 521-4662
For orders call: 1-800-328-6365

A Retail Prices—Call For Your Special Discount!

Brings you the Breakthrough!
a compact
IF sweep generator

A stable frequency source with excellent linearity and constant output level

In a sweep generator for the lower IF and HF bands, tuning diodes, or "varicaps" generally don't produce sufficient frequency swing with acceptable linearity. On the other hand, other methods of frequency sweeping—for example, frequency conversion, reactance circuits, and mechanical tuning—may cause the cost and complexity of a home-brew project to increase to the point of being both unaffordable and impractical.

That is why, after coming across an old and half-forgotten oscillator circuit, I was pleasantly surprised to find that a large frequency sweep with good linearity isn't that difficult to build, as this simple little test instrument shows.

To keep the sweep generator as practical and uncomplicated as possible, I decided to use only one frequency band (100 to 200 kHz), using the harmonics of the basic signal for higher frequencies. This approach offers the advantage of using only one coil, without any switching circuit. It also permits the use of a simplified power output stage, which requires only an ordinary low-power transistor.

The principle of using harmonics works out very well. Because the frequency of a measured filter is generally known, confusion about the correct frequency is unlikely. In addition, the waveform of the output signal cannot alter the response of the filter under investigation. Interference from other than the wanted harmonic is not possible either, because the next harmonic is always at least 100 kHz away.

By making the sweep generator deliver pulses rather than sine waves, another advantage comes to light: it's easy to keep the output level of the different harmonics constant, regardless of frequency variations, by simply maintaining the waveform (duty cycle) of the pulse signal.

The little frequency sweeper has already demonstrated its value—not only by aligning IF strips in my equipment, but also by inspiring me to carry out several interesting experiments with crystal filters that would otherwise be very difficult to do.

how it works

The principle of the variable oscillator is based on a vacuum tube circuit originally described by K.C. Johnson in the April/May, 1949 issue of Wireless World. Although it has been revived in solid-state form since that time, the circuit never really caught on for reasons perhaps best expressed by Johnson himself: "It would appear," he said, "that most people do not believe that it could ever work."

The circuit is basically that of a Butler oscillator (fig. 1A) tuned to a frequency determined by L1 and C1. In the sweep oscillator, L1 is made electrically variable by what is known as "turns cancellation." This is achieved by coupling the coil to another coil, L2, which passes an RF current of opposite phase.

The magnitude of this out-of-phase current depends upon the imbalance of a differential amplifier (fig. 1B). For example, when applying more negative voltage to its base, the gain of Q1 is reduced and Q2 is conse-

By Hans Evers, PA0CX/DJ0SA, Am Stockberg 15, D-5165, Hürtgenwald, West Germany
quently increased, thus increasing the RF current through the coupling coil, L2.

As the direction of this RF current opposes the current through L1, the inductance of the frequency-determining L1 is effectively reduced, with the result that the oscillator frequency rises.

The more turns on L2, and the tighter the coupling between L2 and L1, the more frequency deviation can be accomplished. Therefore, the principle has nothing to do with the magnetic properties of the coil as such, and the obtainable frequency variation is greater with powdered iron or ferrite toroids than with ordinary air-wound coils, only because the core material permits the "cancellation" coil to assert a stronger influence on the tuning element.

After some experimenting it soon becomes clear that this is a remarkable circuit. Not only can frequency variations be made unusually large; the frequency linearity is also quite spectacular, as fig. 2 shows. The total range of the oscillator covers frequencies up to a ratio as great as 1:5, including a range of 1:2 with excellent linearity.

Those who would like to experiment a little further with this "smart" circuit, may find it interesting to know that though the closely coupled coils are bound to introduce some stray capacitance, this does not prevent the circuit from working at much higher frequencies. Note that the RF voltages developed on the coils are of the same order: at the right-hand side they are connected to the same emitter follower. Indeed, the principle turns out to be useful for oscillators covering even the highest HF bands.

oscillator

The differential amplifier allows the tuning to be controlled from two independent sources. The base of Q1 is controlled by potentiometer R2 CENTER FREQ, while the base of Q2 receives its control voltage from the time-base generator (fig. 3). This provides a simple solution for making the sweep width symmetrical around the center frequency, regardless of amplitude. As the frequency/voltage sensitivity remains constant over the entire CENTER FREQ range, the output of the saw-tooth generator can be calibrated as Δ FREQ, which remains valid for all settings of CENTER FREQ.

A high-quality potentiometer is recommended for R2. In fact, it is a type with very thin and closely wound resistance wire; however, a good-quality, large-size carbon potentiometer would also do the job.

It is the oscillator's stability that determines the highest usable harmonic of the sweep generator. In practice this may be more than 10 MHz, providing that the following precaution is taken: the frequency stability can be improved considerably by joining Q1 and Q2 with "super-glue" and then wrapping the pair in
fig. 3. Schematic diagram of the compact IF sweep generator.
thin copper wire, and finally soldering the total into one solid metal blob. This assures that the two transistors will remain at virtually the same temperature, while their common, relatively heavy thermal mass prevents fast frequency drift.

In applications in which the sweep generator is used for sweeping filters at frequencies lower than 100 kHz, the basic range of the oscillator may be dropped to 50 to 100 kHz at the expense of a slight deterioration in frequency linearity. Double-throw switch S1 shorts one of the tuning capacitors and also shorts a resistor in series with the CENTER FREQ potentiometer. This enables the oscillator to work on half frequencies within the linear portion of the control range.

The calibration of both CENTER FREQ and \(\Delta \) FREQ could be done very accurately by listening to the harmonics of the oscillator with a communication receiver.

time base

The sawtooth generator circuit enables sweep rates from twice a second, for slowly sweeping sharp-edged responses from crystal filters without the risk of ringing effects, to 20 Hz, permitting a flicker-free oscilloscope display.

To keep the frequency deviations symmetrical around the center frequency, R5 may need some correction. Also the values given for R7 and R8 are approximate, as these resistors determine the \(\Delta \) FREQ calibration.

When using a harmonic of the basic oscillator signal, not only does the frequency increase, but the indicated \(\Delta \) FREQ value must also be equally multiplied. At higher frequencies the sweep width may consequently become too large and therefore impractical. Thus a provision was necessary for dividing the sweep width by a factor 10 in the form of R8. Normally this extra series resistor remains shorted by S2.

wave-shaping circuit

This circuit produces the harmonics of the oscillator signal. As a general rule, the widest harmonic spectrum may be created by generating the shortest pulses. However, the shorter the pulses, the less power each harmonic contains. After some experimenting (to compensate for my insufficient experience with Fourier-analysis techniques) I decided to aim for an output pulse with a duty cycle of about 30 percent. This is not too difficult to obtain and results in an overlapping spectrum of output signals, the levels of which remain — at least up to 2 MHz — within a 10-dB range (fig. 4). Only above 2 MHz does the effective output tend to drop beyond this range.

The signal strength of each individual harmonic is a different matter. It should remain constant during
the sweeping process. To make this possible, not only the amplitude but also the duty cycle of the rectangular waveform must remain constant, regardless of frequency.

A satisfactory sine wave can be obtained from the oscillator section by trimming R4 and C3. At the same time, a constant amplitude is maintained over the full frequency range. Q4 conducts mainly on the tops of this sine wave. These tops are then amplified and clipped, which results in a rectangular waveform (fig. 5). The surface of these pulses (amplitude X time) stays constant, regardless of frequency. This assures a constant output level of each harmonic.

The pulse characteristic of the output signal permits the use of an ordinary low-power transistor for the output stage. Functioning as an electrical switch, rather than an analog amplifier, the transistor must handle neither appreciable voltage nor current at any common moment in time. This explains how a perfectly cool little 200 mW transistor is capable of delivering the total output power (basic signal plus all harmonics together) of almost 1 watt.

The output impedance of the final stage depends on the setting of the OUTPUT LEVEL potentiometer. At maximum setting, the output impedance is equal to half the value of the potentiometer; that is, 250 ohms. Still, the sweep generator can be safely loaded with 50 ohms impedance without upsetting anything. Only an amplitude over 50 ohms will drop to one-fifth; that is, about 5 volts.

power supply

The power supply (both +12 volts and -12 volts at about 65 mA) may be very simple (fig. 6), using 78L12 voltage regulators. The hum level must be low, because any ripple on Q1 and Q2 control voltages causes frequency modulation. Although the toroidal coil L1/L2 is relatively insensitive to stray fields, it may nevertheless pick up hum from a nearby transformer,

causing a rippling oscilloscope display. It is for this reason that the power supply has not been incorporated into the sweep generator itself, but is instead connected at the end of a 3-wire lead.

The RF detector for this sweep generator is a simple diode detector. Two examples using this detector are shown in fig. 7. However, the value of the measurement can be enhanced considerably by using a logarithmic detector instead. This permits an amplitude display on a decibel scale, over several decades, if necessary. (A simple version of such a logarithmic detector will be the subject of a forthcoming article in ham radio.)

fig. 7. Top: Response of IF amplifier with 9 MHz crystal filter in HF transceiver. Sweep rate 4 Hz. Bottom: poorly matched mechanical bandfilter in 455 kHz IF amplifier (Collins F455-J-31). Sweep rate 4 Hz.

ham radio
graphical selection of mixer frequencies

See, at a glance, any spurious that might cause problems

Selecting the proper mixer frequencies can be a real problem. Often a lengthy trial-and-error procedure yields unsatisfactory results because of too many spurious signals in the passband. The graphical technique described here will deliver more accurate results in less time and with less difficulty. Some plotting is required, and a simple calculator will help with the math.

background

When two frequencies, \(f_1 \) and \(f_2 \), are combined in a mixer, the nonlinear action of the mixer produces a series of products that have the form:

\[
P = M f_1 + N f_2
\]

where \(M \) and \(N \) are positive or negative integers, and \(P \) is the frequency of the combination. In ordinary mixer use, a bandpass or low-pass filter removes all but the desired product \(P \), called the desired output frequency, or \(f_0 \). Generally, the larger \(M \) and \(N \) are, the smaller the amplitude of \(P \). Then, too, the farther a particular \(P \) is from \(f_0 \), the less interference it will cause. One way to measure the frequency separation is to use the percentage separation, \(S \), given by:

\[
S = 100 \frac{P - f_0}{f_0}
\]

Now, if \(f_1 \) is always chosen as the smaller of \(f_1 \) and \(f_2 \), then the ratio \(f_1/f_2 \) can be given by:

\[
f_1/f_2 = \frac{-S + 100(N - 1)}{S - 100(M - 1)}
\]

where \(f_0 = f_2 + f_1 \)

or \(f_1/f_2 = \frac{S + 100(1 - N)}{S + 100(1 + M)} \)

where \(f_0 = f_2 - f_1 \)

Equations 3 and 4 are used to plot the spurious components, or spurs; eq. 3 is used for sum spur charts, and eq. 4 is used for difference spur charts. The case for \(N = M \) appears as a vertical line on the sum chart at \(S = 100(N - 1) \), and the case for \(N = -M \) appears as a vertical line on the difference chart, also at \(S = 100(N - 1) \).

conversion of fixed frequencies

Figure 1 shows a graph with several spur plots for \(f_1 = 3 \) MHz and \(f_2 = 18 \) MHz. Which ones need to be plotted? Well, that depends on how stringent your requirements are. Once you determine how low the spurs must be, you need plot only the spurs which

By G. Timothy Anderson, W2HVN, 902 Ashburn Street, Herndon, Virginia 22070
might exceed that level. Some manufacturers provide tables of spur levels for different values of M and N.* Table 1 shows some typical values.

To use a spur chart such as shown in fig. 1, you must somehow represent the bandwidth of the system. In fig. 1, this is done by plotting a dashed line representing an output frequency range for a given \(f_1 \) and \(f_2 \). The end points are denoted by \(S_L \) and \(S_R \).

\[
S_L = 100 \frac{f_{OL} - f_0}{f_0} \tag{5}
\]

and

\[
S_R = 100 \frac{f_{OR} - f_0}{f_0} \tag{6}
\]

Conversion of Bands of Frequencies

Now that I’ve discussed a specific case with fixed frequencies, let’s consider the general case – converting one band of frequencies to another band of frequencies where \(f_1, f_2, \) and \(f_0 \) have different bandwidths. Suppose you want to convert 300 MHz ± 10 MHz to 200 MHz ± 15 MHz by mixing with 100 MHz ± 5 MHz. You have \(f_{1L} = 95 \text{ MHz}, \ f_{1H} = 105 \text{ MHz}, \ f_{2L} = 290 \text{ MHz}, \ f_{2H} = 310 \text{ MHz}, \ f_{OL} = 185 \text{ MHz}, \) and \(f_{OH} = 215 \text{ MHz}. \) First you’ll outline the region you want to be free of spurs. (In general, this takes the shape of a hexagon with slightly curved sides. Since the curvature is slight, you can assume straight lines to ease the computations and still retain good accuracy.) This is done by using eqs. 5 and 6 to calculate the corner points. Different combinations of the high and low extremes of \(f_1 \) and \(f_2 \) are used to find each particular \(f_0 \). Here’s how to do it (remember \(- f_0 = f_2 - f_1 \) here).

Calculate: \(S_L \) using \(f_{1L} \) and \(f_{2H} \)
\(S_L \) using \(f_{1H} \) and \(f_{2H} \)
\(S_L \) using \(f_{1H} \) and \(f_{2L} \)
\(S_R \) using \(f_{1L} \) and \(f_{2L} \)
\(S_R \) using \(f_{1L} \) and \(f_{2H} \)

These calculations produce the numbers shown in table 2, and the six points 1 through 6 in fig. 2; the dashed lines define the desired spur-free area. For this combination of frequencies, two spurs cross the hexagon. Either of two things can be done to resolve this. You can change the frequencies or try a high-level mixer with reduced drive, which will result in fewer spurs.

*Mini-circuits, P.O. Box 166, Brooklyn, New York 11235, and Watkins-Johnson Company, 3333 Hillview Avenue, Palo Alto, California 94306, for example, furnish tables of this kind.
fig. 3. Spur chart with f_1 having zero bandwidth - $f_0 = f_2 + f_1$.

appendix

Equation 2 can be rewritten to give:

$$ P = \frac{f_0 S}{100} + f_0 $$

For the case when $f_0 = f_2 + f_1$, inserting eq. 1 in eq. 7 yields

$$ f_1 = \frac{P - Mf_0}{N} $$

Equation 8 can be used in the expression for f_1/f_2 to eliminate f_2:

$$ f_1/f_2 = \frac{f_0 - f_1}{f_0} = \frac{Nf_0 - P}{P - Mf_0} $$

Now, if eq. 7 is inserted into eq. 9:

$$ f_1/f_2 = \frac{Nf_0 - f_0S/100 + f_0}{S - 100(M - 1)} $$

If $f_0 = f_2 - f_1$, a similar procedure gives:

$$ f_2 = \frac{P + Mf_0}{N + M} $$

$$ f_1/f_2 = \frac{P - Nf_0}{S + 100(M + 1)} $$

refence

Unsurpassed quality at an unbelievable price, the Ramsey oscilloscope compares to others costing hundreds more. Features include a component testing circuit for resistor, capacitor, digital circuit and diode testing; TV video sync. filter; wide bandwidth; high sensitivity; a 3-foot panel trace rotator, 15% overshoot, and solid trigger. *USA - add $10.00 per unit for postage, overseas orders add 15% of total order for insured surface mail.

NEW RAMSEY 1200 VOM MULTITESTER
Check transistors, diodes and LEDs with the professional quality meter. Other features include: digital scale; 20k ohm metering system; 3½” illuminated scale; polarity switch; 10 measuring ranges; safety probes; high impact plastic case. *test leads and battery included* $24.95

NEW RAMSEY D-3100 DIGITAL MULTIMETER
Reliable, accurate digital measurement at an amazingly low cost. In-line color coded push buttons, speeds range selection; plus plastic test leads; necessary input jacks; meter protection on all ranges; 3½ digit LCD display with auto-zero, auto-zero and low BATT indicator. *test leads and battery included* $49.95

CT-90 9 DIGIT 600 MHZ COUNTER
A 9-digit counter that will outperform units costing hundreds more. 9 digit indicator; 24KQ @ 10 MHz, typical sensitivity; 4 digit display; 1 ppm accuracy; display hold; dual inputs with prescaler. *test leads and battery included* $169.95

CT-50 8 DIGIT 600 MHZ COUNTER
A versatile lab bench counter with optional remote frequency input. Which turns the CT-50 into a digital readout for any recovering scaler. 8 digit display; 1 ppm accuracy; 15% overshoot; sensitivity; 8 digit display; 1 ppm accuracy. *test leads and battery included* $169.95

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna—BNC plug $8.95
High impedance probe, light loading 16.95
Low pass probe, audio use 16.95
Direct probe, general purpose use 13.95
Tilt ball, for CT-70, 90, 120 3.95

THE FIRST NAME IN ELECTRONIC TEST GEAR

TERMS: satisfaction guaranteed; examin for 10 days. If not pleased, return in original form for refund. Add 1% for shipping charges, a maximum of $10.00; overseas add 15% for surface mail; COD and $2.50 (COD in USA only) *orders under $10.00 add 1% sales tax; 30 day parts warranty on all kits, 1 year parts & labor warranty on all test sets.

RAMSEY ELECTRONICS, INC.
2575 Baird Rd., Penfield, N.Y. 14626
Morse code computer tutor

Let your VIC-20 help you upgrade

For many Amateurs, it isn't theory or rules and regs that make upgrading difficult — it's the code. Jumping from a plateau of 10 words per minute or 18 words per minute seems impossible.

Satisfying these code requirements is even more difficult if you don't get enough practice. If CW isn't your favorite mode of operation, you're not likely to push yourself to practice on the air. Practice with code tapes can be productive — until you start memorizing them. And WIAW's code practice, while useful, may not always match your schedule or be strong enough to copy.

With this program (fig. 1), you can turn your VIC-20 personal computer into your own personal Morse code computer tutor. This tutor will give you all the practice you ask for at any time, at any speed, and always at Q5 conditions.

what the program does

The computer tutor sends groups of 20 random Morse code characters at any user-selectable speed starting at 4 words per minute. You type in the characters as they are sent. After the twentieth character the tutor identifies the random characters it has sent, and then lists your responses and your score. A particular advantage of this system of practice is that it forces you to copy Morse code with a keyboard; without a keyboard, few people can transcribe code at speeds greater than 25 WPM.

how the program works

After printing a sign-on message the program inputs the user-selected speed in line 5. Lines 6 through 9 initialize certain variables such as character counter, correct response counter, and character strings. Lines 20 through 91 are subroutines that store all the dot/dash patterns and their printable equivalents.

The selection of the random character and its conversion into Morse code begins at line 100. Here the program generates a random number between 1 and 36 inclusive. Lines 110 through 120 use the random number to select one of 36 characters — the letters

```
1 REM MORME CODE COMPUTER-TUTOR
2 BY LAWRENCE G. SOUDER, N3SE
3 PRINT "I WILL SEND A GROUP OF TWENTY CHARACTERS.
4 FOR SCORE HIT RETURN.
5 PRINT "HOW MANY WORDS PER MINUTE DO YOU WANT?"
6 INPUT V
7 S = 27-V
8 Z = 0
9 K% = "": T$ = ""
10 GOTO 100
20 C% = ".-Au
21 RETURN
22 C% = "-B"
23 RETURN
24 C% = "-C"
25 RETURN
26 C% = "-D"
27 RETURN
28 C% = "-E"
29 RETURN
30 C% = "-F"
31 RETURN
32 C% = "-G"
33 RETURN
34 C% = "-H"
35 RETURN
36 C% = "-I"
37 RETURN
38 C% = "-J"
39 RETURN
40 C% = "-K"
41 RETURN
42 C% = "-L"
43 RETURN
44 C% = "-M"
45 RETURN
46 C% = "-N"
47 RETURN
48 C% = "-O"
49 RETURN
50 C% = "-P"
51 RETURN
52 C% = "-Q"
53 RETURN
54 C% = "-R"
55 RETURN
56 C% = "-S"
57 RETURN
58 C% = "-T"
59 RETURN
60 C% = "-U"
61 RETURN
62 C% = "-V"
63 RETURN
64 C% = "-W"
65 RETURN
66 C% = "-X"
67 RETURN
68 C% = "-Y"
69 RETURN
70 C% = "-Z"
71 RETURN
72 C% = "---1"
73 RETURN
74 C% = "---2"
75 RETURN
76 C% = "---3"
```

fig. 1. N3SE program for Morse code training and practice on the VIC-20.

By Lawrence G. Souder, N3SE, 4539 Manayunk Avenue, Philadelphia, Pennsylvania 19128
A through Z and the numerals 0 through 9. For example, from the random number 7 these lines will select the character "G," which is held in line 32.

Before the dot/dash patterns are sent in Morse code, line 130 separates the printable character from its Morse elements and saves it to be printed later. For example, it separates the letter "G" from the string "- - G". Lines 131 through 265 take each dot and dash and call up a subroutine to output a tone of the proper duration. This subroutine is in lines 400 through 470.

The heart-shaped graphic character in lines 2 and 525 is used to clear the screen in the VIC-20.

Two FOR-NEXT loops produce the delays for the dots and dashes and for the spaces between dots, dashes, and characters. During these delay loops the program inputs any response from the user. After 20 characters have been sent, lines 500 through 550 compare the random characters sent with the responses typed in and print out both strings of characters along with the user's score. Then lines 560 through 586 ask the user whether more practice is desired at the same speed, at a different speed, or not at all.

modifying and adapting the program

You might improve the program by adding some of the other characters such as punctuation. Do this by adding character string statements after line 91. Then extend the range of the random number generator by the same amount. For example, if you want to add a comma, add these lines after 91: 93 C = " .-.-.- "; 94 Return. Then change the random number generator in line 100 to: 100 R = INT(RND(1)+37) + 1 to make its range 1 through 37 inclusive.

Now there's no excuse to put off upgrading. With this computer tutor you can get as much code practice as you need at any time — and improve your typing skills, too.
SAVE $10.00* with home delivery

*(One year newsstand cost $30.00)
Here's my address label, enter my subscription:

☐ 1 Year 12 issues $19.95 ☐ Payment enclosed
☐ 2 Years 24 issues $32.95 ☐ Bill me later
☐ 3 Years 36 issues $44.95 U. S. prices only

Name ____________________________
Address __________________________
City ____________________________ State ______ Zip ______

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.
Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $22.95 for one year by surface mail.
Luxor 9550

A high performance 4 GHz, 70 MHz input receiver featuring programmable video and audio, hand held remote, four different audio systems, switchable audio bandwidths, built-in RF modulator, two speed scanning modes and built-in stereo processor.

Mark2™

Offers independent channel selection for multiple TV sets from a single antenna, with a selection of up to 24 individual channels from a single satellite. The Mark 2 also features individually programmed audio, automatic fine tuning control, fine tuning storage, special function switches and built-in stereo processor.

SKANTIC

Offers versatility and quality performance including fine tuning and video, automatic audio and video digital memory, automatic polarization and four programmable audio modes.

The Northeast’s Leading Distributor

Sales and Marketing Assistance
Factory Authorized Service
Professional Training Seminars
Co-op Advertising Support
Automated UPS Shipping

Satellite Video Services, Inc.
RR #1, Box 85-S
Catskill, NY 12414
518-678-9581
800-528-DISH - National
800-831-DISH - NY Only

Satellite Video Services NH, Inc.
RF D #2, Harriman Hill Rd.
Raymond, NH 03077
603-895-3182
800-448-0012 - National

Satellite Video Services PA, Inc.
317 E. Pleasant Valley Blvd.
Altoona, PA 16602
814-942-5003
800-242-3860 - PA Only

Satellite Video Services WNY, Inc.
East Avenue Extension
Hornell NY 14843
607-324-3435
800-641-0018 - NY Only

Uniden M/A Com Intersat Gensat Houston Tracker Winegard Conifer Laux Orbitron Kent Surveyor

More Details? CHECK—OFF Page 126
YOU GET MORE "BANG FOR YOUR BUCK" AT TNT RADIO SALES!

- Kenwood
- Icom
- Bencher
- AEA
- Kantronics
- Mirage
- KLM
- Telex Hygain
- Nye Viking
- Larsen
- MFJ
- Astron
- Alpha/Delta
- Bearcat
- Regency
- Welz
- Azden
- Santec
- KDK
- Ameritron

SALES AND SERVICE AT PRICES YOU CAN AFFORD!
CALL OUR WATS LINE FOR LOW LOW PRICES!

SPECIAL OF THE MONTH: LARSEN MAG MOUNT 2M % PKG—$36.95

Your Ham Tube Headquarters!

TUBES BOUGHT, SOLD AND TRADED

SAVE $$$—HIGH $$$ FOR YOUR TUBES

Call Toll Free 800-221-0860

<table>
<thead>
<tr>
<th>Tubes</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-400</td>
<td>$85.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>$85.00</td>
</tr>
<tr>
<td>4-400A</td>
<td>$85.00</td>
</tr>
<tr>
<td>4CX250B</td>
<td>$110.00</td>
</tr>
<tr>
<td>572B</td>
<td>$82.50</td>
</tr>
<tr>
<td>815A</td>
<td>$27.50</td>
</tr>
<tr>
<td>819</td>
<td>$150.00</td>
</tr>
<tr>
<td>815G</td>
<td>$195.00</td>
</tr>
<tr>
<td>6360</td>
<td>$50.00</td>
</tr>
<tr>
<td>6883B</td>
<td>$195.00</td>
</tr>
</tbody>
</table>

MAJOR BRANDS ON RECEIVER TUBES

75% off list

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF 245/SD1416</td>
</tr>
<tr>
<td>MRF 454</td>
</tr>
<tr>
<td>MRF 455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL259</td>
</tr>
<tr>
<td>PL258</td>
</tr>
<tr>
<td>MG175/176</td>
</tr>
<tr>
<td>UG255/UG273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Order April 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Order 25.00</td>
</tr>
</tbody>
</table>

CeCo COMMUNICATIONS, Inc.

2115 Avenue X
Brooklyn, NY 11235

Call CeCo For Your CCTV Security And Color Production Requirements

CeCo COMMUNICATIONS, Inc.

2115 Avenue X
Brooklyn, NY 11235

Call CeCo For Your CCTV Security And Color Production Requirements
As this issue went to press, U.S. Amateurs received FCC approval to operate on the new 12-meter band (24.89-24.99 MHz) as of June 22. Unfortunately, we're approaching a sunspot minimum and the band will be relatively worthless for long-distance skip communication. But all is not lost — good contacts can be had by sporadic-E skip, and once in a while an unusual burst of activity from the sun will open the band for DX for a few hours. In any event, it's a good idea to get on the band and enjoy this new chunk of spectrum as soon as operation is authorized.

I've monitored the band for years and have heard plenty of DX when conditions were good. Over 40 countries are licensed for operation on the 12-meter band. See how many of them you can hear and work! Even at the low point of the sunspot cycle, the north-south path isn't bad, and you should be able to work some South American Amateurs when the band opens up.

antennas for 12 meters

Amateurs who have an "all-band" antenna with a tuner at the operating position can get on the band immediately. Others will have to improvise. One quick way to get on the air is to string up a dipole or inverted-V to your tower and feed it with a separate coax line as shown in fig. 1. The higher you can erect it, the better it will work. If you have time to build a beam for the band, fig. 3 provides dimensions for a quad antenna and fig. 4 provides Yagi information.

the G8PO "JAWS" antenna

G8PO has discussed an interesting variation of the quad loop that has provided superior results on 7 MHz (fig. 5). Mast height is less than that required for the conventional loop as the bottom portion is bent out of the vertical plane. The antenna is fed at one corner by a gamma match system to provide a good match to a coax line. Antenna polarization is vertical.

The lower portion of the loop has three conductors in parallel, running nearly horizontal to the ground. Tests indicated improvement in performance over the England-New Zealand test path and some front-to-back signal discrimination became apparent.

Checks against a conventional loop over the same path showed that the regular loop was consistently weaker during many contacts. The forward gain of the JAWS antenna was estimated to be 3 dB or better, and the front-to-back ratio was about 6 dB.
The gamma match is made of wire, with the gamma section measuring about 6.5 feet (1.98 meters) long and spaced away from the loop wire about 4 inches (10 cm). The gamma capacitor is 200 pF.

the multiband antenna

Independent experimenters have discovered that altering the shape of a driven element can change the harmonic resonance without appreciably altering the fundamental resonant frequency of the antenna. This is a good technique to use for a two-band antenna. A typical linear element of uniform diameter, unfortunately, does not exhibit resonance on the exact harmonic frequencies because of end effects. A 7-MHz dipole, for example, is not resonant in the 21-MHz band. However, by changing the shape of the element, the third harmonic resonant frequency can be lowered without changing the fundamental frequency to any great extent. The principle is illustrated in fig. 6. The vertical antenna element A exhibits a quarter-wave resonance at 3.6 MHz. By formula, the antenna is 65 feet (19.81 meters) high. The third harmonic resonance, by formula, falls at 11.6 MHz. The actual third harmonic of 3.6 MHz, however, is 10.8 MHz. Thus there is a difference of 800 kHz between the actual third harmonic of the fundamental frequency and the third harmonic resonance of the vertical.

If the vertical resonance at the third harmonic region could be "pulled" down to 10.1 MHz, then the antenna could operate in the 30-meter ham band (10.1 to 10.15 MHz). Can this be done without disturbing the resonance in the 80-meter band?

Figure 6B shows the technique to accomplish this. The antenna element is made "fatter" near the area of maximum third harmonic voltage. This provides additional capacitance to ground at this frequency. On the fundamental frequency, the voltage is much lower at this point in the antenna element and the capacitive effect to ground is much less. In this manner the third harmonic resonance frequency is lowered without too much effect on the fundamental frequency.

Figure 7 shows an antenna developed by K6KBE for two-band operation. A three-legged tower having a very thin upper portion and a tapered lower section, this antenna shows resonance on both the 80 and 160-meter bands (fig. 8).

The gamma match is made of wire, with the gamma section measuring about 6.5 feet (1.98 meters) long and spaced away from the loop wire about 4 inches (10 cm). The gamma capacitor is 200 pF.

the multiband antenna

Independent experimenters have discovered that altering the shape of a driven element can change the harmonic resonance without appreciably altering the fundamental resonant frequency of the antenna. This is a good technique to use for a two-band antenna. A typical linear element of uniform diameter, unfortunately, does not exhibit resonance on the exact harmonic frequencies because of end effects. A 7-MHz dipole, for example, is not resonant in the 21-MHz band. However, by changing the shape of the element, the third harmonic resonant frequency can be lowered without changing the fundamental frequency to any great extent. The principle is illustrated in fig. 6. The vertical antenna element A exhibits a quarter-wave resonance at 3.6 MHz. By formula, the antenna is 65 feet (19.81 meters) high. The third harmonic resonance, by formula, falls at 11.6 MHz. The actual third harmonic of 3.6 MHz, however, is 10.8 MHz. Thus there is a difference of 800 kHz between the actual third harmonic of the fundamental frequency and the third harmonic resonance of the vertical.

If the vertical resonance at the third harmonic region could be "pulled" down to 10.1 MHz, then the antenna could operate in the 30-meter ham band (10.1 to 10.15 MHz). Can this be done without disturbing the resonance in the 80-meter band?

Figure 6B shows the technique to accomplish this. The antenna element is made "fatter" near the area of maximum third harmonic voltage. This provides additional capacitance to ground at this frequency. On the fundamental frequency, the voltage is much lower at this point in the antenna element and the capacitive effect to ground is much less. In this manner the third harmonic resonance frequency is lowered without too much effect on the fundamental frequency.

Figure 7 shows an antenna developed by K6KBE for two-band operation. A three-legged tower having a very thin upper portion and a tapered lower section, this antenna shows resonance on both the 80 and 160-meter bands (fig. 8).
fig. 7. Details of 160/80-meter vertical antenna at K6KBE. Three-legged tower is 88 feet (26.82 meters) high with 44 foot (13.41 meter) whip on top.

fig. 8. The self-supporting 160/80-meter vertical antenna at K6KBE.

eter at the butt, tapering to 0.5 inch (1.27 cm) at the tip. The whip is actually 2 feet (61 cm) longer than this, with the extra length forming the joint to the main tower, which is 88 feet (26.82 meters) high.

The bottom 42 feet (12.8 meters) on the tower is made of aluminum tubing 4 inches (10.16 cm) in diameter, with a 0.093 inch wall thickness. The top portion (to the 88 foot (26.8 meters) level) is made of 3-inch (7.62 cm) diameter tubing having a 0.063 inch wall. The cross-guys are made of 0.25 inch (1.27 cm) aircraft cable. Turnbuckles permit the assembly to be tightened by the assembler until a very rigid structure is achieved.

Anyone who has heard K6KBE’s signal on 80 or 160 meters knows this antenna works!

speaking of radials . . .

I just got a note from WA6BAN telling me more about his experiments with his 40-meter vertical ground plane antenna. He put it up with three radials, setting the base of the antenna a few feet above ground level. After he achieved resonance, he measured the feedpoint resistance with a General Radio RF Bridge. The result was about 58.3 ohms. He added a few more radials and the feedpoint resistance dropped to 53 ohms. Three more radials brought the resistance down to 51 ohms. Finally, he added more radials until he had eleven, and the feedpoint resistance dropped to 45 ohms.

His conclusion was that when the ground plane antenna is mounted close to the surface of the ground, you need “a lot more” than eleven radials to approximate a feedpoint impedance of 36 ohms. W2FMI, in his classic QST series on ground plane antennas,2 came to the conclusion that sixty radials were required when they were laid on the surface of the ground.3 When elevated radials are installed a few feet above the ground, it is possible that fewer will do the job. The correct number seems to be between eleven and sixty! (Anybody out there have a closer “fix” on this?)

broadcast filter for 160 or 80 meters

If you live in a residential or urban area, you can experience severe crosstalk and overload problems from local broadcast stations if you attempt to operate on 160 or 80 meters. (A friend of mine, located a few miles away from a local broadcast station, measured over 4 volts of RF pickup on his 80-meter vertical antenna. It completely locked up his receiver.)

Designed by K6KBE, the filter shown in fig. 9 is an adaptation of the...
New From Butternut®

HF2V

DX The 80 & 40 Meter Bands

The HF2V is the perfect complement for the Ham who already has a beam antenna for 10-15-20 meters. Add 80 and 40 meters (160 meters with an optional resonator kit) with a trim-looking vertical that can be mounted almost anywhere.

With the decline in sunspot activity, the HF2V's low angle of radiation will get you DX on the low bands - even when 10-15-20 meters are "dead."

Power rating: legal limit

VSWR: 2:1 or less

40 Meters: Full CW & Phone band
80 Meters: 90 kHz

Add-on resonator kits available for 160-30-20 meters.

Write for our FREE CATALOG.

BUTTERNUT ELECTRONICS
405 East Market Street
Lockhart, Texas 78644
(512) 396-9019

absorption filter originally used where suppression of harmonic energy is desired. In its original configuration, there are two complementary filters consisting of a high pass section terminated in a resistor and a low pass section to pass the desired signal. In this case, the reverse idea is used so that all energy below cutoff is routed to a dummy load while all energy above is allowed to pass.

The cutoff frequency for the 160-meter filter is 1.65 MHz; for the 80-meter filter, it’s 3 MHz.

references
1. This material is extracted from "The G8PO JAWS Antenna," by Cdr. J.E. Ironmonger, G8PO. Radio Communication, November, 1984, pages 954-957. (Don't ask me what JAWS stands for - I can't figure it out either!)
3. For more information on ground radials and verticals in general see the K2RT series of articles on phased arrays, ham radio, May, June, July, October, December, 1983 and May, 1984 - Ed.

ham radio
Kantronics Packet Communicator™

Kantronics wants you to join one of the fastest growing segments of Amateur Radio today... Packet Radio. With the Kantronics Packet Communicator we've made getting on Packet as easy as getting on RTTY.

The Kantronics Packet Communicator is a fully assembled and programmed terminal node controller ready for operation. Simply connect the Packet Communicator to the Serial TTL or RS232 port of your computer, and the microphone and external speaker jacks of your transceiver. The power supply, cables, and most connectors are included.

Because the Kantronics Packet Communicator uses internal microprocessors for protocol and signal processing, the operator simply follows procedures and commands outlined in the operator's manual. Any communications or terminal program, like those used with telephone modems, can be used to set up the computer to communicate with the Packet Communicator. Special Packet Terminal (PacTerm™) programs for many popular personal computers will be available soon from Kantronics.

Error free data communication via computer makes Packet Radio technology exciting, and the Kantronics Packet Communicator lets you get in on the action.

For more information contact your local Kantronics dealer, or write Kantronics.

Kantronics
1202 E. 23rd Street. (913) 842-7745
Lawrence, Kansas 66046

Suggested Retail $389.95
Inter-Ear-Communication-System

A space age system that allows you to send and receive your message through your ear and leave your hands free.

- Replace your HT’s awkward speaker-microphone with an ear-microphone.
- Discrete HT communications leaves you with both hands free.
- Allows voice communications in noisy environments.
- Our ear-talk interfaces with almost all HT’s, which have external speaker microphone output jacks.
- Custom hybrid circuit.
- Low power consumption. Transmits at 5mA and less than 10uA when receiving.
- One year warranty.

Dealer inquiries are invited.

IECS-200

$99.95 includes IECS-200 control unit, Ear transducer, 9V battery, 6-pin output connector and Instruction sheet. (Add 6% sales tax for California residents.)

Custom made interface cable for TEMPO S-15 and all ICOM HTs are available at $19.95

FOR ALL PREPAID ORDERS, SHIPPING AND HANDLING CHARGE WILL BE PAID BY N-EAR-TALK.
Please add $3.50 for ShiDDina PACKET RADIO THRU SOFTWARE

Regular SALE

IC-751 9-band Xcvr. 1-30 MHz Rcvr. $1399.00 Call
IC-745 9-band Xcvr. 1-30 MHz Rcvr. $999.00 Call

IC-271 100w 2m FM/SSB/CW Xcvr. $899.00 Call
IC-271A 25w FM/SSB/CW Xcvr. $699.00 Call
IC-471A 10w 430-450 SSB/CW FM Xcvr. $799.00 Call

Regular SALE

TS-930S/AT $1799.00 Call
TS-930A $1599.00 Call

FT-880 $1659.00 Call
FT-60G $899.00 Call

FREE PB-26 with the purchase of a TR-260OA FREE PB-21 with the purchase of a TH-21AT

AMATEUR • TWO WAY • MARINE
CELLULAR MOBILE PHONE • SCANNER
Free U.P.S. Cash Order (Most Item, Most Place)
Shoppers, call us last, save $$
SE HABLA ESPANOL

PROGRAM NOW AVAILABLE!

AX.25 Protocol By Bob Richardson, W4UCH
You can get on Packet Radio two ways. One is with a sophisticated "black box". The other is by making your computer act like a "black box" by programming it in a high level machine language code. W4UCH has written a machine language program for the Radio Shack TRS-80 Models 1, 3, and 4 computers. This book has twelve chapters plus seven appendices that take you step by step through the process of setting your computer to first convert the digital information into a usable format and then to decode the information. 1984 3rd edition

FT-7266 $799.00 Call
FT-209 RH Call
FT-709 RH Call
FT-203 RH Call
FT-103R Call
FT-703R Call

RE-AX Softbound $21.95

PROGRAM NOW AVAILABLE IN DISK FORM

RE-M1 Model 1 Disk $29.00
RE-M11 Model 3/4 Disk $29.00
RE-BD SPECIAL BOOK AND DISK $49.95

SAVE $2

(ham radio magazine)

GREENVILLE, NH 03048

BOOKSTORE

(603) 878-1441

ANTI-STATIC DUST COVERS

for New & Old Model Amateur Radios, Computers, Disk Drives, also Custom Made. Over 1 Million in use. Send for Brochure.

Radio Covers Available:

Alpha Hallicrafters ICOM
Bearcat Kenwood Panasonic
Collins Heath Robot
Dentron Kent Swan
Drake Ten-Tec YAESU

BIRCH HILL SALES, P.O. Box 129, Milford, NH 03055 Tel. (603) 673-8907
ONLY ONE ANTENNA ROTATION SYSTEM IS TRULY COMPLETE AND SIMPLE TO INSTALL: THE DR10

The DR10 System offers a compact, single control unit with dual scale indicator; single, eight-wire control cable interconnect; and will easily handle a 50 pound balanced antenna array and up to 8 sq. feet of wind load.

One Rotor,
One Controller,
One Installation

The DR10 Dual Axis Antenna Rotor System
A New Concept in Drive Systems

Dynetic Systems

not included

CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts of RF power on 2M SSB, FM, or CW. It is biased Class AB for linear operation. The current drain is 8-9 amps at 13.6 Vdc. It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier INJOUT switch. The maximum power input is 15 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit $109.95
Wired & Tested $129.95

CALL COMMUNICATIONS INC.
2648 North Aragon Ave • Dayton, Ohio 45420 • (513) 296-1411

VOICE OPERATED SQUELCH

- Fits inside most HF-SSB transceivers.
- Requires human voice to activate.
- Ignores static, noise and heterodynes.
- Connects to audio leads and 9/12 VDC.
- Fully assembled and tested $99.95.
- Complete comprehensive manual.
- Used worldwide in commercial and military transceivers.

COMMUNICATIONS
5479 Jetport, Tampa, FL 33614 • (813) 865-3996

35 Main Street
Poulney, VT 05764
802-287-4055

BALUNS

Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3.30 MHz operation. (See ARRL Handbook pages 19-9 or 6-20 for construction details.)

- 100 Watt (1:1, 1:1, 1:1, or 1:1 impedance select one) $ 8.50
- Universal Transmatch 1 KW (4:1 Impedance) 12.50
- Universal Transmatch 2 KW (4:1 Impedance) 15.00
- Universal Transmatch 1 KW (6:1, 9:1 or 1:1 select one) 14.00
- Universal Transmatch 2 KW (6:1, 9:1 or 1:1 select one) 16.50

Please send all reader inquiries directly.
In 1980, *Ham Radio* published a series of articles by W2PV on Yagi design. As an avid DXer and a member of Potomac Valley Radio Club, I'd crossed paths with W2PV under contest conditions many times. He always had a fantastic signal, and after reading his series I realized why. W2PV was using superior antennas, all positioned at the correct height above ground.

Through computer research, W2PV showed that merely stating the mechanical length of an element of a Yagi beam does not actually reflect its true resonant frequency, especially when tapered elements are involved. He has also showed that tuning the reflector 5 percent below and the director 5 percent above the band center makes a poor beam. Commercial antenna specifications usually indicate maximum gain, maximum front-to-back ratio, and an SWR curve. But what they don’t tell you is that the maximum gain and maximum front-to-back ratio do not occur at the same frequency, nor do they occur in the band center. They also don’t tell you that as you tune away from these frequencies, the gain and maximum front-to-back ratio can fall off rapidly, indicating that although you may have 8 dB of gain at some frequency, you may only have 3 dB of gain near the band edges, depending on the tuning of the parasitic elements.

W2PV demonstrated that gain is primarily dependent on boom length and not on the number of elements on the boom, especially in the 1/4 to 3/4 boom length range. In addition, a naturally high front-to-back ratio occurs on a 1/4 wavelength boom and odd multiples thereof. He carefully designed his Yagis so that they would maintain a high gain and high front-to-back ratio over a 4 percent bandwidth, which will cover all of 15 and 20, most of 40, and a good portion of 10 meters. In order to do this the parasitic elements must be tuned closer to the driven element reducing the SWR bandwidth. This is a small price to pay for maintaining almost maximum gain over the whole band. For example, the reflector of his three-element mono-bander is tuned 1.7 percent below the central design frequency and the director is tuned 4.2 percent above. He also proved that the resonant frequency of a tapered element could be very accurately determined.

About a year ago I wrote a program in BASIC using the formulas and data in the W2PV articles. With it you can turn your commercial antennas or scrap aluminum tubing into W2PV super beams. The program (fig. 1) is in simple BASIC with no peek or poke statements, and runs on the Commodore 64 computer.

program description

Lines 100-450 are a brief history of the program and instructions to the user. The type of beam you are designing is entered in lines 460-500. The actual lengths and diameters of each element are entered on lines 550-620, while the subroutine lines 5000-5040 prints the inputs to the screen. Lines 2000-2040 place data into the A array and if the average diameter calculated on line 670 is 0.875 the date in A array is dumped into R array. If the average diameter is not 0.875, then new data is calculated in lines 2100-2200 and placed into B array. Then B array is dumped into R array via lines 2210-2220. The element half-length that you are trying for per the central design frequency you entered earlier

By Alan Hoffmaster, WA3EKL, 929 Andrews Road, Glen Burnie, Maryland 21061
WE HAVE QUALITY PARTS. DISCOUNT PRICES AND FAST SHIPPING!

TRANSFORMERS
120 volt primaries
5.6 VOLTS @ 750 MA $3.00
8 VOLTS @ 150 MA $1.25
12 VDC @ 250 MA $0.75
18 V @ 450 MA $3.90
18 VOLTS @ 1 AMP $4.50
24 VAC @ 250 MA $4.25
24 VCT @ 1 AMP $4.95

WALL TRANSFORMER
ALL ARE 115 VAC PLUG IN
4 VDC @ 20 MA $2.00
6 VAC @ 500 MA $3.50
6 VDC @ 750 MA $4.50
9 VDC @ 500 MA $5.00
9 VAC @ 1 AMP $2.50
12 VDC @ 205 MA $2.25
17 VAC @ 500 MA $4.50
24 VAC @ 250 MA $3.00

SPRING LEVER TERMINALS
TWO COLOR CODED TERMINALS ON A STURDY 2.2 x 3.2 BAKELITE PLATE
20 GAUGE SPEAKER ORNACLES OR SUPPLIERS OR POWER SUPPLIES
$1.00 EACH 10 FOR $9.00

TI SWITCHING POWER SUPPLY
Ti # 10534124 2
COMPACT, WELL-REGULATED SWITCHING POWER SUPPLY DESIGNED FOR POWER-TASTY INSTRUMENTS COMPUTER EQUIPMENT INPUT: 8.0-15 VDC 20 MA OUTPUT: 12VDC @ 350MA 2.5VDC @ 1.5MA 5VDC @ 2.0MA SIZE 4 1/4 " x 4 1/4 " x 2 1/4 " 50 CENTS EACH

FREE! SEND FOR FREE!
13.8 VOLT POWER SUPPLY
FREE!
FREEDOM TO BUILD & POWER SUPPLIES, ALL FOUR MOUNT, ALL ARE 100% SOLID STATE, WITH FUSE PROTECTION, L.E.D. P.O.P. INDICATOR
2 AMP CONSTANT, 2 AMP SURGE, UL LISTED $18.00 EACH

DC CONVERTER
SPECIAL
45" POWERED 220V TO 24V OUTPUT
12VDC @ 350MA 2.5VDC @ 1.5MA 5VDC @ 2.0MA
$1.00 EACH 10 FOR $9.00

KEY ASSEMBLY
5 KEY
contains 5 single-pole normally open switches MEASURES 3 1/4" x 2 1/2"
$1.00 EACH 10 FOR $9.00

MINIATURE 6V RELAY
SUPER SMALL SPDT RELAY GOLD CONTACTS RATED 1 AMP C.C. 500 MA C.D.
HIGHLY SENSITIVE, TTL DIRECT DRIVE POSSIBLE OPERATES FROM 3 TO 5 VDC
COIL RES. 220 OHMS $2.00 EACH 10 FOR $19.00

MINIATURE 13 VDC RELAY
CONTACT SP.D.T. + 12VDC ENERGIZED COIL TO OPEN CONTACT MEASURES 3 1/4" x 2 1/2"
SPECIAL PRICE $1.00 EACH

RELEYS
SOLID STATE RELAY
HEINEMANN ELECTRIC (105A 105B 185 285 AMP CONTROL 3 32VDC
(coil) 100W. 15VDC MEASURES 3 1/4 x 1 3/16 x 1 3/4" $5.00 EACH 10 FOR $45.00

COMPUTER GRADE CAPACITORS
2,000 mfd. 20VDC 3 1/4" x 3 1/4" x 1 3/4"
SPECIAL PRICE $2.00 EACH
3,000 mfd. 40VDC 3 1/4" x 3 1/4" x 1 3/4"
SPECIAL PRICE $1.00 EACH
12,000 mfd. 40VDC 3 1/4" x 3 1/4" x 1 3/4"
SPECIAL PRICE $1.00 EACH

MINIATURE TOGGLE SWITCHES ALL ARE RATED 8 AMP S.P.D.T.
CONTACTS SOLDER TERMINALS TOOLS & MACHINES $2.50 EACH 10 FOR $25.00

MINIATURE TOGGLE SWITCHES ALL ARE RATED 6 AMP S.P.O.D.T.
SOLDER TERMINALS TOOLS & MACHINES $2.50 EACH 10 FOR $25.00

SOLID STATE BUZZER
STAR #5B65 6VDC, 1000 OHMS T.I. COMPATIBLE $2.50 EACH 10 FOR $22.00

ACCELERATION ONTO 1985
ACCELERATION ONTO
is calculated in lines 2260-2280. Lines 770-970 calculate the resonant half-length of the element you have created by the lengths and diameters you entered earlier. Lines 972-974 and 6090-10070 print a hard copy if you answer "Y" to the hard copy prompt.

You'll see printed on the screen the type of Yagi you have selected, the resonant half length each element should be (the "normalized" length) the mechanical length/diameter of each segment, and the actual electrical half-length of the element you've created. The program will now allow you to change individual segment lengths until your element's electrical half length equals the normalized half-length. You then add a small correction to the outermost segment (due to boom diameter and boom to element clamping system) to get the final element half-length. W2PV broke the center of the driven element and used a balanced feed. I have used the gamma match successfully.

results

Three monoband Yagis have been constructed
using the program. When mounted on towers, not one resonated more than 4 kHz from the central design frequency. But the only way to really test an antenna is in actual combat — i.e., under contest conditions: the CQWW phone contest yielded 1.68 million points in 1983 and 2.43 million points in 1984. From 1983 to 1984, nothing changed except the antennas; all primary Yagis were homebrewed, using this program, and the secondary antennas were commercial beams redimensioned from the program.

W2PV hoped that others would build his superior beams and report the results. I've built them and am pleased to report that their performance is far better than any commercial antenna I've ever used from my QTH.

acknowledgement

Because this was my first attempt at programming, my sincere thanks are due to my XYL, N3DPB, who gave a few pointers on programming, and to WA3HQX, who converted my original program to the Commodore format. The program has been converted into Apple, Atari, IBM PC, and Radio Shack Color formats. Copies of these listings are available from me for one dollar (copying cost) plus a business-size SASE with 39 cents postage.

reference

TO: OH - FINLAND-ROVANIEMI DXCC
BEARING: 26 DATE: 6-20 TIME: EST
RANGE: 4605 FLUX: 120 PLLOT: MUF
30 26
22
18
14
10
6
T 07 09 17 15 17 19 21 03 05 07
L 00 02 04 06 08 10 12 14 16 18 20 22 24

MUFPLONT is being used by amateurs from HONG KONG to BAGHDAD, SOUTH AFRICA to ALASKA, by sailors, commercial companies and people who know the need of propagation forecasting at its best. MUFPLONT gives you HPF, MUF, FOT, with LUF plus distance and bearing (and time) to any target. You can select over 400 listed targets by DX or ARRL prefix, lat/long, or state. The database will let you enter target data by what ever you want to call it and you can change it anytime. MUFPLONT will keep track of the stations you have worked for WAS, DXCC or for any other award. MUFPLONT gives you a video graph (and/or table) and printer display of band conditions. (A special DX function lets you see world conditions. You select the number of and locations you want). Band coverage for the C-64 is 6 to 30 MHz video and less then 1 to more then 30 MHz printer. The APPLE is 2 to 34 MHz. You enter your QTH lat/long only once but you can change it anytime.

(1) denotes for the (C-64) only.

C-64 MUFPLONT V2 disk only $32.95
APPLE MUFPLONT disk only $37.95
North American orders add $2.00 for S/H all others $5.00.
VISA, M C, personal checks accepted
APPLE is the trade mark of APPLE Computer Co.
C-64 is a trade mark of Commodore Co.
MUFPLONT is a trade mark of BASE (2) SYSTEMS.

BASE (2) SYSTEMS
2534 Nebraska St.
Saginaw, MI 48601
Tel.517-777-5613
Dalbani Corporation offers the finest in audio, video, computer and home electronics, for the professional retailer or home specialist.
To obtain a copy of our 88 page full-line 1985 catalog please call:

1-800-DALBANI
DISTRIBUTORS FOR SALES AND SERVICE

PACIFIC
DIGITAL SATELLITE CORP
Pasadena, CA (213) 681-6222

HOOSIER ELECTRONICS
Sacramento, CA (916) 372-4676

KITTELVISION
Santa Rosa, CA (707) 585-3214

NORTHWEST SATELLITE ANTENNA, INC
Spokane, WA (509) 534-6972
Kent, WA (206) 251-0585
Eugene, OR (503) 343-7334

RECREATIONAL SPORTS WEST
Merced, CA (209) 383-2700

MOUNTAIN
DH SATELLITE
Buckeye, AZ (602) 366-7131

KAULTRONICS INC
Denver, CO (303) 533-3422
Las Vegas, NV (702) 362-5816

NORTHWEST SATELLITE ANTENNA, INC
Billing, MT (406) 248-4131

RECREATIONAL SPORTS
Idaho Falls, ID (208) 523-5721

WESTEK
Phoenix, AZ (602) 582-5955

CENTRAL
DH SATELLITE
Prairie Du Chien, WI (608) 326-8406

WAUSAU, WI (715) 834-4454

DIGITAL SATELLITE
Little Rock, AR (501) 565-8443

HOOSIER ELECTRONICS
Terre Haute, IN (812) 238-1456

KANSAS CITY SATELLITE
Kansas City, MO (816) 463-6605

KAULTRONICS INC
Richland Center, WI (608) 647-8902

STARCOM
Arlington, TX (817) 640-1121

Big Springs, TX (817) 800-551-1426

(TX) 800-592-1476/3476

Service (915) 253-1012

San Antonio, TX (210) 650-3291

Oklahoma City, OK (405) 782-9517

Jefferson City, MO (501) 800-211-7232

(MO) 800-892-6906

WARREN SUPPLY
Sioux Falls, SD 800-492-7736

SOUTH
DH SATELLITE
Tifton, GA (912) 382-3587

FIRST SATELLITE CORP
Winter Park, FL (303) 647-9400

Kaultronics INC
Merriam, GA (404) 855-6682

NATIONAL MICRODYNOmICS
Chattanooga, TN (615) 892-3901

QUARLES ELECTRONICS
Greenwood, SC (803) 805-845-6952

(S) 800-925-9700

Kingstree, SC (803) 382-9802

Ashland, KY 800-228-5761

Alona, GA (912) 632-4723

Charlotte, NC (704) 374-0153

SOUTHEAST SATELLITE DIST INC
St Augustine, FL (904) 264-1915

Albany, NY (518) 800-354-3474

Lakeland, FL 800-348-3500

ATLANTIC
DH SATELLITE
Mt Pleasant, PA (412) 547-6160

SATELLITE SALES INC
Cleveland, OH (216) 321-1245

(NAT) 800-521-1188

Columbus, OH (614) 533-6136

(NAT) 800-534-5527

Coldwater, MI 800-547-1475

(NAT) 800-434-4835

SATELLITE VIDEO SERVICES
Cataxkill, NY (518) 875-9911

Raymond, NH (603) 892-3182

Altoona, PA (814) 942-5003

IMPORTER TO CANADA
EVOLUTION TECHNOLOGY INC
Burlington, Ontario, Canada
(416) 335-4422

IMPORTER TO MEXICO
KLAIN S.A. (VIDEO SAT)
Monterey, Mexico (93) 78 90 15 or
78 97 50

INTRODUCING A NEW GENERATION OF ELECTRONIC EXCELLENCE

Now several television sets throughout your home can have independent channel selection at the same time from a single antenna. Neighbors can share one antenna and enjoy the channel of their choice from a single satellite. Advanced block conversion and high performance technology bring you quality picture stability. Temperature-sensitive components are in the receiver, inside the house. A built-in stereo processor for both TV audio and stereo sound-only eliminates the necessity for an external add-on stereo processor. The entire system is easy to install. It's great! Simultaneous multi-channel TV viewing is here.

FCC Approved
LUXOR GIVES YOU MUCH MORE
The Luxor Mark 2 gives you more automatic features than systems costing much more! Individual remote control; Programmable memory; Four audio systems including stereo and Dolby noise reduction; Narrow/ Wide band audio. A built-in modulator means easy connection to any TV set. See for yourself why Luxor is one of America's top selling brands. Luxor.

THE LUXOR 9534-2 ACTUATOR CONTROL
Add a Luxor Actuator Control Unit and the entire system, antenna and receiver, can be controlled with a hand-held IR Remote Commander.

Luxor®
(North America) Corp
Bellevue, WA
A leader in radio and television technology since 1923.
The world of CW, RTTY, and new DUAL AMTOR* is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000E.

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY) and new ARQ/FEC (AMTOR).

Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), JIS (RTTY), ARQ/FEC (AMTOR).

Character: Alphabet, Figures, Symbols, Special Characters, Kana.

Built-in-Monitor: 5" high resolution, delayed persistence green monitor - provides sharp clear image even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shift select either 170Hz, 425Hz or 850Hz shift with manual fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125Hz)/LOW (Mark Frequency 1275Hz) tone pair select. Mark only or Space only copy capability for selective fading. ARQ/FEQ features incorporated.

Crystal Controlled AF/AM Modulator: A transceiver without FSK function can be operated in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.

Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement with function keys. Automatic insertion of characters can be repeated with this function.

Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular characters can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead Buffer Memory: A 160-character buffer memory is displayed on the lower part of the screen. The characters move to the left starting one by one as soon as they are transmitted. Messages can be written during the receiving buffer for transmission with battery back-up memory or SEND function.

Function Display System: Each function (mode, channel number, speed, etc.) is displayed on the screen.

Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy.

Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from the keyboard at any rate between 5-100 WPM (every word per minute). AUTOTRACK on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modem and between 12-600 Baud when using TTL level. The variable speed feature makes the unit ideal for amateur, business and commercial use.

Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.

"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspellings can also be erased while the information is still in the buffer memory.

Automatic CR/LF: While transmitting, CR/LF automatically sent every 64, 72 or 80 characters.

WORD MODE Operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.

LINE MODE Operation: Characters can be transmitted by line groupings from the buffer memory.

WORD-WRAP-AROUND Operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.

"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape.

Cursor Control Function: Full cursor control (up/down, left/right) is available from the keyboard. Test Message Function: "RTY", and "QRT" test messages can be repeated with this function.

MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space can be used to control RTTY.

Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3-1:6.

Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hard key and displays the characters on the screen. CW keying output circuit works according to the key operation.

CW Random Generator: Output of CW random signal can be used as CW reading practice. Barigraph LED Meter for Tuning: Tuning of CW and RTTY is very easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning.

Built-in AC/DC: Power supply is switchable as required; 100-120 VAC; 220-240 VAC/50/60Hz + 13:5VDC. Color: Light grey with dark grey trim - matches most current transceivers.

Dimensions: 363(W) x 121(H) x 351(D) mm: Terminal Unit.

Warranty: One Year Limited Specifications Subject to Change.

Everything built in — nothing else to buy!
construction of the indicator shown in photos A and B.

The digital multimeter is used to read 0 to 0.9 volt, corresponding to 0 to 90 degrees in elevation. R2, a precision potentiometer, is used as a voltage divider, with the indicating voltage read off the moving arm of the potentiometer. It is mounted on a piece of heavy-duty circuit board, of any convenient size with three-wire cable, preferably shielded, running from the antenna to the indicating unit in the ham shack. A suitable bracket for mounting it to your antenna may be soldered to the PC board.

Assuming your potentiometer is in the 5 to 10 kilohm range, required current will be less than 1 mA. Ordinary zinc-carbon cells are quite satisfactory for this purpose; in fact, they will probably die of old age if switch S1 is used. Voltage regulation is not necessary. R1, used to drop the voltage to approximately 3.6 volts, is connected to terminal 3 of the precision potentiometer for calibration purposes as the batteries gradually discharge (see fig. 1).

collection

Because most precision potentiometers don’t have threaded bushings around the shaft output, it will probably be necessary to use a good adhesive (Super-Glue,® contact cement or epoxy) or a clamp to mount the potentiometer to the PC board. A 6-inch (15 cm) length of 3/8-inch (0.95 cm) square key-stock is recommended for the pendulum shaft. A 1/4-inch (0.64 cm) hole (assuming the potentiometer shaft is 1/4 inch) is drilled through the key stock, about 1/2 inch (1.3 cm) from the top end. Immediately above this, and at a right angle to the 1/4-inch (0.64 cm) hole, drill a hole to accommodate a No: 8 machine screw. Then cut a hacksaw slit from the top end of the key stock into the 1/4-inch (0.64 cm) hole so as to provide a clamp around the potentiometer shaft when the No. 8 machine screw is inserted and tightened with a nut.

The pendulum weight may be made of any convenient material that will provide sufficient weight without too much bulk. I used a 3/4-inch plumbing-type copper T-fitting filled with lead (see fig. 2). Its estimated weight is about 10 ounces (283 grams).

As shown in photo A the potentiometer is enclosed for weather protection. The enclosure is made of very thin (about 0.010 inch) (0.25 mm) double-sided PC board, soldered in place. The opening is so oriented that protection is provided when the antenna is elevated. Similar protection on the shaft-pendulum side of the PC board is advisable, although I chose not to take this step. I did put some silicone grease in this opening, however, and even after one year had no problems, despite the occurrence of a severe storm with baseball-size hail. An automotive trailer light con-

If you have a high input impedance (≥1 Megohm) multimeter — preferably digital — and a single-turn, precision, linear taper potentiometer, then you have everything you need to make an inexpensive, accurate elevation indicator for OSCAR EME applications.

After discarding my store-bought elevation rotator in favor of a heavy-duty home-brew model, it became necessary to provide some means to determine where the antenna was pointing without having to “eye-ball” the moon and the antenna. This resulted in the con-

By George Chaney, W5JTL, 218 Katherine Drive, Vicksburg, Mississippi 39180

Simple method of converting elevation angle to a voltage. Note weather-resistant housing.

Elevation drive: reversible gear motor turns leadscrew of 3/4-inch all-thread.

June 1985
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.

- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

ORBIT Magazine Subscription: Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
The read-out portion, shown in the bottom part of fig. 1 was built in a small box, fabricated from circuit board, large enough to hold the batteries, switches and resistor R1. Although I used four D cells, I think smaller batteries, such as size AA, should be satisfactory. Since it is only occasionally necessary to monitor elevation visually, I would suggest that S1 be a normally open momentary pushbutton switch to be depressed only when readout is desired. S2 is a single pole, double throw switch. It is normally left in the "Read" position and is connected to the lead going to the variable arm of R2. Suitable pin plugs are provided for the new leads at the + DVM and - DVM points.

calibration

All the precision potentiometers that I'm familiar with permit continuous rotation, do not have mechanical stops, and offer almost 360 degrees (of rotation) of usable variable resistance. The potentiometer should be oriented on the PC board (or the pendulum adjusted) so that the arm terminal of the potentiometer, reads "0" voltage when the bottom edge of the PC board is horizontal and increases progressively to a reading of 0.900 volt when the bottom edge is vertical. A carpenter's level, with the bubble carefully centered during adjustments, with the circuit board holding the potentiometer and the pendulum in a vice, or otherwise strongly secured, will provide sufficient accuracy.

The slightest upward movement of the antenna should result in a voltage indication of 0.001. After the zero point has been established, things can be permanently secured. Using the carpenter's level, move the assembly so that the bottom edge of the circuit board is vertical. With S2 in the "Read" position, adjust R1 to give a reading of 0.900 volt, which corresponds to an elevation of 90.0 degrees. The unit is now calibrated and will indicate changes of 0.1 degree, to an accuracy of 0.5 degree. When the potentiometer pendulum assembly is mounted on the antenna, it is necessary only to level the bottom edge in the zero position, with the antenna horizontal, in order to maintain calibration. After the 90.0-degree position has been established and initially calibrated, put S2 in "Calibrate" position and note the indicated voltage. It is advisable to record this for later reference. You are now assured that you will be in calibration when R1 is adjusted to give this reading, while in the "Calibrate" position. For maximum accuracy, the tower must be perfectly vertical, and the vertical rotational axis perfectly horizontal.
The author makes no claim of originality in this type of elevation readout, although I have seen nothing as simple as this one. Most others use three-turn potentiometers with 10.8 volts, with readouts taken from some midrange, such as 1.000 to 1.900 volts, and some means of removing the first digit. The readout described here is simple, inexpensive, and accurate. Invariably, with my EME array adjusted according to a computer-predicted position, I can sight down the boom of one of the antennas and know its direction will be “rifle scope” accurate.

Caution: I assume, but do not know, that all DMMs have a high input resistance, so as not to unduly load the portion of R2 between the arm and ground. If your DVM does not have a high resistance input, do not use it.

Ham Radio
The Problem Solver...

The RF Wattmeter Model 81000-A from Coaxial Dynamics, Inc., does more than provide accurate RF measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assures optimum equipment performance.

The 81000-A Wattkit features this easy-to-read RF Wattmeter (pictured here), with its optional carrying case and an array of elements and accessories. Coaxial Dynamics elements can be purchased separately for use in other manufacturer's Wattmeters. For more information on the 81000-A Wattmeter or any of the complete line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway, Cleveland, OH 44135 • (216) 267-2223

Outside Ohio, WATS: (800) Coaxial, Tele: 990-330

TOUCHTONE® DECODER KIT

- MODEL TTK -

$22.95

4 DIGIT SEQUENCE DECODER

- Completely wired & tested
- User programable
- LED status indicator
- Open collector output
- Control relays, mute audio
- Control link on/off
- Custom IC assures high reliability & small size
- Has unique most bits runs on 12 VDC (30ma)
- Over 1500 different codes
- Make excellent private call on busy repeaters
- Use it to turn on audio or sound an alarm
- Momentary and latching outputs
- MasterCard and Visa accepted, or send check/M.O. to

ENGAGINEERING CONSULTING
583 CANDLEWOOD ST., BREA, CA 92621
TEL: 714-671-2009

ENGAGINEERING CONSULTING
583 CANDLEWOOD ST., BREA, CA 92621
TEL: 714-671-2009

NOW INCLUDES ANSWERS TO FCC/VEC EXAM QUESTIONS

ARRL LICENSE MANUAL

Here's the latest up-to-date licensing guide from the ARRL. Plenty of theory and detailed explanations take most of the pain out of studying to upgrade your license.

1984 8th edition 216 pages

AR-LG

Softbound $4.00

Please add $2 shipping & handling

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

NEW!

THE RADIO AMATEUR'S LICENSE MANUAL

1984 8th edition 216 pages

AR-LG

Softbound $4.00

Please add $2 shipping & handling

NEW!

ICOM IC-02AT USER'S "AUDIO BLASTER " MODULE

New Available for IC-RAI

Model AB-1

$19.95

Price includes postage and handling, USA CA res add 6%

ENGINEERING CONSULTING
583 CANDLEWOOD ST., BREA, CA 92621
TEL: 714-671-2009

June 1985
AS an added bonus, the 1985 U.S. Callbook also lists the amateurs in Canada and Mexico! You get the complete and accurate U.S. listings (prepared by our own editorial staff), all the usual up-to-date Callbook charts and tables, PLUS Canada and Mexico. Now that's The best just got better!

Of course, Canadian and Mexican amateurs are also listed in the 1985 Foreign Callbook.

Order your copies now!

- U.S. Callbook: $21.95
- Foreign Callbook: $20.95
- Order both books at the same time for $45.00 including shipping within the USA.

Keep your 1985 Callbooks up to date. The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $15.00 per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 6% sales tax. Offer valid after November 1, 1985.

RADIO AMATEUR CALLBOOK INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA
Tel: (312) 234-6600

Tell 'em you saw it in HAM RADIO!
The only repeaters and controllers with REAL SPEECH!

Create messages just by talking. Speak any phrases or words in any language or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

Free Antenna Accessories Catalog

Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

W2AU and W2DU Baluns
Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8-200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Send For Yours Today
Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line. Dealer inquiries also welcome.

YOU WANT IT? DAN'S GOT IT!

ALL OF THESE GOODIES AND MANY MORE AT A SUPER SAVINGS!
CALL TODAY
1 (800) 241-2027
BRITT'S 2-WAY RADIO
Sales & Service
2508 Atlanta Street
Smyrna, GA. 30080
(404) 432-8006
2 meter amateur antenna . . .
. . . the Mosley Diplomat 2

Special customizing features
Available for the Business & Marine Bands.
Other special frequencies available.

Omni-directional vertically polarized high-performance 2 meter antenna with low angle of radiation for maximum coverage. The newest addition to the Mosley 2 meter line of Quality antennas! Ideal for area 2 meter QSO's and repeater to mobile communications. Simplicity of design makes for ease in assembly. Vertical element made of high tensile strength, high grade aluminum. High impact polystyrene base. All parts 100% rust-proof. Antenna lightweight. Power rated 1 KW FM/CW, 2 KW P.E.P. SSB input to the final. Mounting fits up to 11/16" OD mast. Another Quality addition to the Mosley 2 meter family of antennas.

SPECIFICATIONS AND PERFORMANCE DATA
GAIN: 3.4 db, compared to 1/4 wave ground plane
VSWR: 1.5/1 or better
IMPEDANCE: 52 ohms
MATCHING: 'Induct-O-Match'
GROUND RADIALS: 4
WIND LOAD (80 MPH ETA STD), VERTICAL: 6.12 lbs.
ASSEMBLED WEIGHT (approx.): 1 lb. 12 oz.
HEIGHT (approx.): 4 ft.

Alpha Delta’s new DX-A Twin Sloper Antenna combines the tremendous power of the quarter wave sloper with the wide bandwidth of a half wave dipole. Easy to install, simple to tune.

- 160 and 80 m leg approx. 80° long. 40 meter leg 20° long. Installs just like an inverted V. Fed with single 50Ω feedline.
- Current lobe up high for maximum radiation. Can be installed between 25 and 40 feet.
- Broad band performance. Although bandwidth is determined by your installation, tests have shown 85 kHz on 160 m, 200 kHz on 80 m, and full coverage of 40 m. Tuner usually not required.
- No lossy traps. A single "ISO-RES," isolator/ resonator coil is used to tune 80 and 160 meters.
- Rated at 1.5 KW output.
- Quality hardware and UV protected coil. Stainless steel ensures excellent all weather performance.

$4995 ready to install
Available from your local Alpha Delta Dealer or add $3.00 shipping and handling (USA only)

Gunnplexers
& accessories
10 & 24 GHz

A. Microwave Associates 10 GHz Gunnplexer. Two of these transceivers can form the heart of a 10 GHz communication system for voice, mcw, video or data transmission, not to mention mountain top DXing! MA87141-1 (pair of 10 mW transceivers) $251.95. Higher power units (up to 200 mW) available. B. Microwave Associates 24 GHz Gunnplexer. Similar characteristics to 10 GHz unit. MA87920-4 (pair of 20 mW transceivers) $729.20. C. This support module is designed for use with the MA87141 and MA87920 and provides all of the circuity for a full duplex audio transceive system. The board contains a low-noise, 30-MHz fm receiver, modulator for voice and mcw operation, Gunn diode regulator and varactor supply. Motor outputs are provided for monitoring received signal levels, discriminator output and varactor tuning voltage. RXM30VD assembled and tested $119.95. D. Complete, ready to use communication system for voice or mcw operation. Ideal for repeater linking. A power supply capable of delivering 13 volts dc at 250 mA for a 10 mW version, microphone, and headphone and/or loudspeaker are the only additional items needed for operation. The Gunnplexer can be removed for remote mounting to a tower or 2 or 4 foot parabolic antenna. TR243A (24 GHz, 10 mW) $399.95. Higher power units available. TR245A (24 GHz, 20 mW) $639.95. Also available: horn, 2 and 4 foot parabolic antennas, Gunn, varactor and detector diodes, search and lock systems, oscillator, modules, waveguide, flanges, etc. Call or write for additional information. Let ARR take you higher with quality 10 and 24 GHz equipment!
automatic temperature control

Prevent premature equipment failures by sensing and acting on heat changes

A few months back I acquired a solid-state VHF amplifier capable of running 200 watts output with only 3.5 watts of drive from my handheld. Because I do most of my VHF operating at home, I decided to put the amplifier in the garage with the rest of the ham shack. This facilitated connections to the power supply and antenna, and since the garage is connected to the kitchen of our house, a 25-foot "umbilical cord" of RG8-X coax allows me to wander about the kitchen and living room while continuing to QSO on 2 meters with 200 watts out.

The only problem with this arrangement is that a 200-watt amplifier draws a great deal of current and gets very hot, especially during the summer in our garage. A large muffin fan mounted at the back of the amplifier cooled it to a reasonable level, but I still had to go out to the garage to turn the fan on every time I wanted to use the amplifier. Although this procedure worked fine, it was an annoying task.

One day some DX suddenly appeared on 146.52. Without thinking, I grabbed my handle talkie and proceeded to make a 1200-mile contact on direct! Fantastic!

Yes, it was . . . until the transistors in the amplifier unsoldered themselves. Fortunately, the transistors themselves weren't ruined — I don't know why — and I was able to repair the damage. But I obviously needed a better method of controlling the temperature of the amplifier without having to remember to turn on the fan and without having to waste electricity by leaving the fan running all the time.

The thermostatically controlled AC outlet box described herein solved the problem. It features an adjustable thermostat built around a Motorola MC3423 overvoltage protection IC, a remote temperature sensor, and visual indicators of the state of the thermostat and the presence of AC voltage at the outlet. A flip of the front panel switch allows the thermostat to detect a falling temperature rather than a rising one, thus enabling the box to be used to turn on a heater or crystal oven during the winter months.

theory of operation

Figure 1 is a schematic of the thermostatically controlled outlet box. The heart of the circuit is U1, an MC3423. This IC was originally designed to function as an overvoltage protection device for DC power supplies. Normally, R6 and R7 would be two resistors placed across the output of the power supply. If the power supply voltage exceeds a critical amount (determined by the values of R6 and R7), pin 8 of the MC3423 goes high (approximately 2 volts < VCC). Normally, pin 8 would be connected to the gate of an SCR that had been bridged across the terminals of the supply. Voltage on the gate would cause the SCR to conduct, shorting the power supply and blowing a fuse or tripping a circuit breaker.

However, this very versatile IC can function as a thermostat by using an NTC (negative temperature coefficient) thermistor for R7. Using a potentiometer for R6 allows the thermostat circuit to be adjusted. When the power supply's voltage is constant, the resistance of R7 changes with temperature and "fools" the MC3423 into sensing an overvoltage condition, sending voltage to pin 8. As R7 warms up, its resistance falls. A greater value for R6 means a lower temperature will trigger U1 on, while lowering the value of R6 raises the temperature at which U1 triggers.

Substituting a PTC (positive temperature coefficient) thermistor for R7 — that is, a thermistor whose resistance decreases as its temperature decreases — would allow one to sense falling temperatures instead of rising ones. However, PTC thermistors are difficult

By Douglas Rowlett, WB5IRI, 2603 North Brompton, Pearland, Texas 77584

June 1985
to find in my area, and they are more expensive than NTC thermistors. S2 provides a simple way around this problem. Flipping S2, a DPDT slide switch, reverses the order in which R6 and R7 are connected to the power supply. As R7's temperature falls its resistance increases, thus allowing U1 to trigger when the temperature of R7 falls to a point determined by R6.

When U1 triggers it sends voltage to the base of Q1, a 2N2222, which conducts and allows voltage to be applied to C4 and the base of Q2, another 2N2222. C4 charges and Q2 conducts, thus keying relay K1, which applies 115 VAC to the dual outlet. Anything plugged into the outlet, such as a fan or heater, then turns on. U1 also turns on CR2, an amber LED, through pin 6, giving a visual indication that the triggering temperature has been reached. When the temperature changes to the point at which R7 can no longer hold U1 in its triggered state, U1 removes voltage from pin 8 and turns off CR2. C4, however, continues to energize K1 for approximately 1 minute, which prevents constant cycling of the relay and the devices connected to the dual outlet. Changing the value of C4 results in a fairly linear change in relay hold-in time for K1. For example, doubling the listed value of C4 gives a hold-in time of approximately 2 minutes,
while halving the value of C4 gives a hold-in time of approximately 30 seconds. A small red neon indicator across the contacts of K1, provides a visual indication that the outlet is "live," even when C4 indicates that U1 is not in its triggered state.

Transformer T1 and CR4, C1, CR1 and C2 provide a regulated operating voltage for the thermostat. A regulated voltage is not really necessary for this circuit, and CR1 and C2 could be omitted with little performance degradation. However, since U1 is really a voltage-sensing device rather than a temperature-sensing device, a regulated voltage across R6 and R7 insures that changing line voltages will not affect the temperature at which U1 triggers.

Capacitor C3 prevents line transients from triggering U1 by setting the IC's internal delay time. Increasing the value of C3 increases the time during which an "overvoltage" condition can exist before U1 triggers. If this thermostat is to be operated in an environment where transients can be picked up by the internal or external wiring, such as near a transmitter, the value of C3 may have to be increased to prevent false triggering of U1. Since the duration of transients will vary from location to location, you will have to determine the best value for C3 yourself. I have had to go as high as 0.5 μF in some locations, such as near a 2-kW homebrew amplifier.

Relay K1 has contacts rated at 125 VAC, 10 amperes maximum. Thus, F1 is a 10-ampere fuse intended primarily to protect K1 from damage if the load at the dual outlet becomes excessive. Of course, any relay can be used at K1, but using a relay with a lower coil impedance than 160 ohms may necessitate using a heftier transistor at Q2. Any relay you use, however, must be able to be energized by the voltage across T1. A relay whose contacts can handle more current may be necessary, in addition to a heftier switch at S1, if the thermostat is to be used to control some devices, such as space heaters, that draw large amounts of current when first turned on. The value of F1 would also have to be increased in such an instance. In the interests of safety, however, do not, under any circumstances, omit F1, and be certain that it is placed on the "hot" side of the AC line, not on the "neutral" side.

construction

Construction of the thermostat and outlet box is fairly straightforward, and layout is entirely noncritical. All the components, including T1 and K1, will fit on one small circuit board, with the exception of R7. This is covered with heat-shrink tubing and attached to the end of a piece of RG-174U miniature coax for remote sensing. R6, CR1, CR2, J1, S1, S2, and the AC outlet are mounted on the front panel. Figure 2 is a photograph of the completed outlet box with the cover removed.

I suggest using sockets for CR4 and U1 to make replacement, if ever needed, easier. In addition, you should use at least No. 12 wire from the AC line to K1 and from K1 to the dual outlet.

operation

Using the thermostat box is easy. Just plug it into a 115 VAC outlet and supply power through S1 (see fig. 3). The green LED should come on, and the amber LED and red neon indicator may come on at this time. If they do, adjust R6 until the amber LED goes out; a minute later J1, the red neon indicator, should go out as C4 discharges and K1 opens. Once again, remember that whenever J1 is on, 115 VAC is present at the dual outlet, and J1 provides a visual warning of the presence of potentially lethal voltage.

Now set S2 to the condition you wish to monitor — that is, either rising or falling temperature. Place R7 at a convenient point where it will be exposed to the temperature you wish to control. For example, the sensor can be placed between the fins of an amplifier's
heatsink. Plug a fan into the outlet on the front panel, and adjust R6 until CR2 and I1 come on when the amplifier becomes hot enough to need cooling. As the fan blows cool air across the amplifier's heatsink, R7 will cool off and CR2 will go out. The fan, however, will continue to run for one minute.

That's all there is to it. As the amplifier heats up, the thermostat will turn on the fan to cool things down. When the amplifier is not in use, the fan will remain off.

other uses

This device can be used anywhere around the shack or the house where you wish to sense a rising or falling temperature. For example, it can function as a freezer alarm by plugging a 115 VAC alarm bell into the outlet and adjusting the thermostat to trigger whenever the temperature rises above 32 degrees F. It can be used to turn on a crystal oven when the temperature inside an oscillator falls below 80 degrees F (27°C). It can even be used to turn on a floor fan or space heater whenever the temperature in your shack rises or falls to uncomfortable levels. Anywhere you need to monitor a rising or falling temperature and turn on some device at a critical point, this thermostat will come in handy.

BEAM ANTENNA HANDBOOK
by Bill Orr, W6SAI and Stu Cowan, W2LX

Bill Orr and Stu Cowan have completely revised and updated the Beam Antenna Handbook to include the very latest information on state-of-the-art antenna design. Accurate, computer generated beam dimensions for the 40, 30, 20, 17, 15, 12, 10 and 6 meter bands and VHF bands are included eliminating the need for time consuming math calculations. Also covered are: Beam height and optimum apex of radiation, how element types and hardware effect performance, effect of nearby objects on radiation patterns, feedlines, baluns and matching systems and much more. Ham Radio VHF columnist, W1JR, and noted European VHF'er DL6WO's VHF antenna designs are covered extensively as well as NBS VHF long Yagis. 268 clearly written pages - 204 easy-to-understand illustrations make this the book to buy for beam construction. ©1985. 1st edition.

Please enclose $3.50 for shipping and handling.

Softbound $9.95

ham radio
More Hardware Features And Performance Than Any Other Morse, Baudot, ASCII, AMTOR, SITOR, or H.F. Packet Terminal Unit Anywhere At Any Price!

We recognize that there are few amateurs who can appreciate or afford the outstanding value of the ATU-1000, but those who can are in for some very pleasurable operating. The ATU-1000 is a commercial/military unit with all the performance and flexibility that is attainable from today's technology. Just check out the features below.

- 32 poles, active filtering
- Morse/Baudot/ASCII/AMTOR/SITOR/H.F. Packet
- Set receive filters to one Hz accuracy
- Set receive MARK & SPACE filters independently from 1000 to 3000 Hz
- All shifts, 170 Hz fixed or 0 to 2000 Hz adjustable
- Set AFSK output tones independently from 1000 to 3000 Hz to one Hz
- 5mV to 5V AGC
- Front-panel squelch control
- Built-in 4 digit counter
- CW filter adjustable 700 to 2500 Hz
- D.C. coupled automatic threshold correction
- Twin full-wave detectors
- Built-in TTL/RS-232/and loop keyer I/O
- Discriminator-type tuning indicator
- FSK, AFSK, and scope outputs
- 13 VDC operation, 110 VAC adaptor supplied
- TTL I/O logic inversion for use with virtually any software
- Optional 19 inch rack mount kit

Ask your favorite dealer for a demonstration of the world's finest RTTY/CW advanced terminal unit/computer interface—the AEA model ATU-1000. If you cannot see your dealer, send for our latest specification sheet.

Prices & Specifications Subject To Change Without Notice Or Obligation.

AEA Brings you the Breakthrough!

VHF COMMUNICATIONS
915 North Main Street
Jamestown, New York 14701 (716)664-6345
Great with New Solid State Transceivers

Trap-Mobile MA-3 by Mosley
Mobile Antenna

FEATURE: Trap is completely weatherproof . . . sealed against dirt, rain and snow!

FEATURE: Exclusive MOSLEY trap design assures stable operation. Inductive and capacitive values cannot change!

- Stainless steel whip sections (290,000 psi) permit antenna to lay forward over deslgn constant. Proof . . . sealed SWITCHING . . or other mechanical devices.
- An overall length of 7'8". . . . NO BAND-CHANGE!
- A three band Trap Mobile ANTENNA for 1.800325-4016
- Base Coil Low, 40-80 with shipping weight, 6 lbs.

FEATURE: Base coil—Material is charcoal activated polyethylene. Unaffected by weather or road shock!

Here is a three band Mobi\'s Whip which operates on 10, 15 and 20 meters with . . . NO BAND-SWITCHING . . or other mechanical devices. An overall length of 7'8". . . . NO BAND-CHANGE!

- Stainless steel whip sections (290,000 psi) permit antenna to lay forward over deslgn constant. Proof . . . sealed SWITCHING . . or other mechanical devices.
- An overall length of 7'8". . . . NO BAND-CHANGE!

LEARN ALL ABOUT MICROPROCESSOR-BASED EQUIPMENT AND DIGITAL DEVICES

Attend this highly acclaimed seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques.

1) UPS shipment same day as received.
2) No minimum quantity required.
3) The finest quality, fully warranted.
4) 10% discount applied.
5) Sizes from #4-1-1/2" dia., and lengths from 1/8"-7".

WRITE or CALL:

Exmet, Inc.
2170 E. Aurora Rd.
P.O. Box 117
Twinburg, Ohio 44087
(216) 425-8455

Tiny Microcouplers

TRAP-MOBILE

MA-3 by Mosley

SOLID STATE TRANSEIVERS

3621 Fannin St.
Houston, TX, 77004
Call for Quotes
1-800-234-3057

Old Texas Number:
1-713-685-0268

New Texas Number:
1-713-520-7300

(Starts June 1)

EQUIPMENT

KENWOOD 10-11 SPECIAL 69.95

KENWOOD We have all the KENWOOD line in stock, including the NEW TR-711A 2 mtr all-mode Transceiver. 11-2600MHz, 12-2411 mins, HT-74MHz 70 cm models, 715 MHz, 12-71 MHz, 121 MHz, 715 MHz, 241 MHz, 71 MHz, and the 10-11. CALL

KENWOOD TS-430S and TS-930S CALL

KENWOOD TS-520S and TS-830S CALL

ICOM 60A 299.95

VAES FT-2030 CALL

MIGRAGE AMP 111.95

DENON, G1Q1000 K6P PEP tuner 174.95

WN NYE MBV-J J6K tuner / switch 480.95

ICOM 77A 649.95

CES 54010 SMART PATCH 209.95

ACCESSORIES

FLUX-77 auto digital multimeter 114.95

BENCHER less 10%

VIBRoplex les 10%

HEL SOUND les 10%

DAIWA NEW METERS 69.95

GORDON West code tapes (great) 79.95

H. MOUND Kever gagdes les 10%

ALPHA DELTA MACC 5 surge protector 71.95

AMPHENOL

8011 connector 4.00

PL 209 831 SP 12.50

LJG-17A reducer 6.99/659 3.00

4400 N mo to 50-399 6.00

2900 BNC mo to 50-399 4.00

R76 N mo 3.00

83-10 RCA to 50-399 7.00

82-75 510mm coax 3.00

Other AMPHENOL products STOCK

RELIANCE CABLE STOCK

ANTENNAS

BAKER & WILLIAMSON Antennas les 10%

BUTTERNUT HF 2V 125.00

BUTTERNUT HF 4V 125.00

BUTTERNUT accessories stock

AIA SORBOL 144 39.95

HYCANE

MOSEY TA-33M 249.00

MOSEY TA-33J 469.00

MOSEY TA-33JF 189.00

We stock MOSEY CALL

LASER

CDE 45-2 Rotator 99.95

CUSHCRAFT A-47-11 40.95

A47-4 29.95

215/48 1/2" 7/8" mag mount 79.95

AOR-1 complete OSCAR Antenna 149.95

we have a large CUSHCRAFT inventory

HUSTLER CALL

ANTENCO 2mt 5/8" mag mount 22.95

KLM KT36A 329.95

JCTX 2 meter vertical 39.95

433-40X 165.00

433-20X 66.95

433-16X 99.95

433-2 2 to 40 mh 294.95

2M-138A 70.95

2M-225 119.95

2M-5 375.95

KLM is always in stock. Large selection of HF, VHF & CRAFT & WORLD CLASS CALL

GUY CABLE regular & E.H.S. CALL

ROMM TOWER 642-48 lamp with guy bracket, rotor shelf, or 4x4 bracket & M203H mast 990.00

Genuine ROMM ACCESSORIES CALL

SUPPLIES

CDE SPOT RELAY 10 amp NEW 5.00

2 400000 PIV epoxy choc 12.95

RTTY

We stock AEA, MAL, KANTRONICS & MUI

Call with your requirements.

POLICIES

MastERCARD / VISA COD

All prices FOB Houston. TX except as noted. Prices subject to change without notice subject to prior sale subject to prior sale subject to prior sale subject to prior sale.

Why fight rusted nuts, bolts, and set screws? Use Stainless Steel, Bronze, and Monel fasteners from Exmet.

Exmet offers:
1) No minimum billing.
2) No minimum quantity (1 to 1000).
3) The finest quality, fully warranted.
4) UPS shipment same day as received.
5) Sizes from #4-1-1/2" dia., and lengths from 1/8"-7".

WRITE or CALL:

Exmet, Inc.
2170 E. Aurora Rd.
P.O. Box 117
Twinburg, Ohio 44087
(216) 425-8455

Learn All About Troubleshooting Microprocessor-Based Equipment and Digital Devices

Attend this highly acclaimed seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques. $95.00.

1985 SUMMER

• San Diego, CA - June 25-28
• San Francisco, CA - July 9-12

*References provided upon request.

Mircro Systems Institute

Garnett, Kansas 66032
(913) 898-3265

Omegs Concepts, Inc.

P.O. Box 615 Troy, OH 45373

"STATION MANAGER" Advanced Professional Software For The Radio Amateur

Terence L. Jones (KB80A)

Author

Omega Concepts, Inc.

P.O. Box 615 Troy, OH 45373

Advanced Professional Software For The Radio Amateur

Terence L. Jones (KB80A)

Author

Omega Concepts, Inc.

P.O. Box 615 Troy, OH 45373

Advanced Professional Software For The Radio Amateur

Terence L. Jones (KB80A)

Author

Omega Concepts, Inc.

P.O. Box 615 Troy, OH 45373
ham radio

Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

NAME __________________________ CALL __________________________

ADDRESS __________________________

CITY __________________________ STATE ________ ZIP ________

Please use before July 31, 1985

June 1985
protecting equipment

Spring is typically the season in which most VHF/UHFers dust off their gear and get ready for all those good tropospheric and sporadic-E openings. It's also the time of year when static electricity and lightning tend to increase. Between the increased operating activity and the forces of nature, equipment failures can and do happen! Whether the result of carelessness or the ravages of nature, damage to expensive equipment can be frustrating. But with proper know-how and a little bit of effort, failures can be anticipated and prevented.

Many types of failures can affect Amateur equipment. — in-band RF, out-of-band RF, low frequency and supply transients, the forces of nature, damage in physical handling, and component overstressing are just a few.

in-band RF

Probably the prime source of failure in Amateur VHF/UHF equipment, in-band RF most often affects receivers. Simply put, the receiver input stage is subjected to RF on the frequency of interest at a level that exceeds the breakdown of the first active device. With the proliferation of solid-stage receivers over the last decade — especially on 70 cm and above, where high transmitter power (1000-1500 watts output) is required, — this phenomenon is now quite common. The primary reasons for this type of failure are inadequate T/R (transmit/receiver) relay isolation and improperly timed relay sequencing.

relay isolation

Most Amateurs use T/R relays that are either the bladed or the lever arm type. The bladed type (fig. 1A) is the most common and is similar to the everyday low-frequency relay except in that a moving arm is built into a coaxial airline structure. The contacts are capacitance junctions and the spacing between the moving contact and the input or output connector contact determine the isolation between the transmitter and receiver. There are many tradeoffs with this type of relay because the spacing and the size of the contacts determine the isolation, VSWR, and power handling capability of the relay.

If the capacitance across the relay junction is known, the isolation can be calculated using the following formula:

\[\text{isolation} = 10 \log_{10} \left[1 + \frac{X_c}{2Z_0} \right] \]

(1)

where isolation is in dB, \(X_c \) is the capacitive reactance of the junction, and \(Z_0 \) is the transmission line impedance, typically 50 ohms. For example, a typical relay junction has a 0.1 pF capacitance. Therefore, at 500 MHz the capacitive reactance is 3180 ohms and the isolation will be approximately 30 dB. (For those who do not want to work out the mathematics, fig. 2 shows isolation versus capacitance values.) Note that the isolation across a purely capacitance junction decreases approximately 6 dB every time the frequency is doubled. Consequently, a relay with 40 dB of isolation at 2 meters will have only approximately 30.5 dB of isolation at 70 cm — quite a decrease!

Some relay designers add a set of grounding contacts across the open circuited contacts (fig. 1B). This can significantly increase the isolation. However, this places a short circuit across the attached device, typically a low-noise preamplifier. This may cause transients when switching or oscillations while in the transmit mode.

The lever arm relay configuration (fig. 1C) is more complex and hence more costly, but has higher isolation because this construction increases the spacings between the input and open circuited port of the relay. However, it is likely to have a lower power handling capability than the bladed type.

The relays most often used by Amateurs (and often found at flea markets) include the Amphenol 300, Dow-Key DK-60, M/A-Com 7524, and the Transco "Y." Typical isolation versus frequency is shown in fig. 3 for some of the types mentioned. A typical solid-state receiver will withstand 10 milliwatts or +10 dBm (dB above a milliwatt) at its input without damage. Therefore, at an RF power level of 1500 watts (+62 dBm), a relay with at least 52 dB of isolation should be used.

The Transco type-Y relays I've pur-
chased at flea markets have shown high insertion loss on one or both of the paths. This is easily checked with an ohmmeter. When the contacts are energized, the resistance should be less than 1 ohm. Try cycling the relay several times to check for intermit-tencies, a common occurrence.

If the resistance is high, unscrew the appropriate connectors with a narrow-width open end wrench if the relay has set screws on the connectors, remove them first. Then burnish the contact point on the end of the connectors. Next, reach inside the center compartment and burnish the complementary contacts. (Better yet, remove all three connectors, carefully noting the position from which each was taken.) Clean all internal contacts and connectors and as a final measure use solvent or flux remover on all contacts to eliminate any film. Then rotate the connectors 120 degrees so that a different connector is placed in each position; this will increase the likelihood that each connector contact will be at a new and clean point. Retest the contact resistance. If you have a good RF test setup, measure the insertion loss. It should be less than 0.2 dB through 450 MHz. Isolation is seldom a problem.

All the relays just metioned are available with type “N” connectors, the preferred connector type for 2 meters and higher frequencies. However, this connector type is power-limited to approximately 500 watts at 500 MHz and commensurately lower at higher frequencies. I know that many Amateurs are exceeding this power level on “N” connectors; if you’re one of them, keep your VSWR low and never try to “hot switch” RF power.

relay configurations

Some of the relays mentioned will not provide the isolation necessary to protect receivers, especially on the higher frequency bands. Therefore, a second relay is often cascaded with the T/R relay (see fig. 4A) to further increase receiver protection.¹

Because this second relay is switching low power, it doesn’t have to be a high power type. Often relays with BNC connectors are used at the lower frequencies and SMA connectors at UHF. Furthermore, this relay doesn’t have to have high isolation since the primary T/R relay is capable of providing most of the needed attenuation.

If two relays with similar isolation are connected back-to-back with the shortest possible connection, the combined isolation is only 6 dB greater than the single relay isolation.¹ If the same two relays are placed an electrical quarter wavelength apart at the operating frequency, the isolation will

fig. 1. Common types of coaxial relay switches: (A) bladed, (B) bladed with additional shorting contacts, and (C) lever arm.

fig. 2. Isolation versus frequency when a capacitor is connected in series with a 50-ohm transmission line per eq. 1. Other capacitance values can be interpolated.
be approximately 6 dB greater than the combined relay isolation. For example, if two relays each with 30 dB of isolation are connected in cascade, the theoretical maximum isolation will be 66 dB.

Never use one-half wavelength spacing between T/R relays since the attenuation can theoretically go to 0 dB (fig. 5). For practical and theoretical considerations, one-tenth wavelength spacing is all that is recommended because it will keep losses at a minimum and decrease isolation by about only 6 dB from the maximum possible!

Figure 5, an updated version of the one shown in reference 1, will yield typical isolation values at a glance for a 30-dB isolation relay (the example discussed at the beginning of this article).

\[\text{isolation} = 10 \log_{10} 0.25 \left[4 + (2X_N \cos \theta - X_N^2 \sin \theta) \right] \]

where isolation is in dB, \(X_N \) is per eq. 3 (below), and \(\theta \) is the electrical spacing of the relay contacts in degrees.

\[X_N = \frac{Z_0}{2\pi fC} \]

where \(f \) is the frequency of operation in Hz, \(C \) is the open-circuited capacitance of the relay contacts in farads, and \(Z \) is the transmission line impedance in ohms.

remote preamplifiers

Remotely located or antenna-mounted preamps are becoming very popular, especially on 2 meters and up, on OSCAR 10, and on EME. The dual relay scheme illustrated in fig. 4A is highly recommended in these applications. Note that the preamplifier is terminated with a 50-ohm load when in the transmit mode, not a short or open circuit as discussed earlier in this article and in reference 1.

Finally, all T/R relays should have adequate time to switch before any transmitter power is applied. This is easy to accomplish if a high-voltage preamplifier is used.
Hand-held Transceivers
Deluxe models Regular SALE
IC-2AT for 2m... 349.00 289.00
IC-2AT for 440 MHz 375.00 319.00
Standard models Regular SALE
IC-2A for 2m... 279.50 189.00
IC-2AT with TEP... 269.00 199.00
IC-3AT 220 MHz, TEP 299.50 239.00
IC-4AT 440 MHz, TEP 299.50 239.00

Options - continued
Regular SALE
CF-1 Cooling fan for PS-15... 45.00
EX-310 Voice synth for 751, R-71A... 39.50
SP-3 External base station speaker... 49.50
Speaker/Phone gap - specify radio... 139.00 129.00
BC-10A Memory bank-up... 8.50
EX-2 Relay box with marker... 34.00
ATA-100 100W automatic tune... 349.00 314.50
ATA-500 500W automatic tune... 499.00 439.00
AB-1 5/12V mobile antenna w/tuner... 289.00 255.00
PS-30 Systems p/w r/s, 8-pin plug... 259.95 234.50
OFC Optional cord, specify 2 or 4 pin... 5.00
GC-4 World clock... (Closeout) 99.50 79.00

For a Limited time!
With the purchase of IC-271A/H or
IC-471A/H get the matching Preamp only $1.00 extra.

For Hand-held Transceivers

Common accessories for 271/H and 471/H
PS-35 Internal power supply... 160.00 144.00
EX-241 Marker unit... 39.00
EX-242 FM unit... 59.95
EX-243 Electronic keyer unit... 59.00
FL-45 500 Hz rf filter... 47.50
FL-54 270 Hz rf filter... 47.50
FL-52A 500 Hz Cw filter (1st) 95.50 89.50
FL-53A 250 Hz Cw filter (2nd) 95.50 89.50
SM-48B 250 Cw filter (2nd) 159.00 144.00
HM-10 Scanning mobile magnetic... 39.00
SM-6 Desk microphone... 39.00
HM-12 Extra hand microphone... 19.50
MB-5 Mobile mount... 19.50

For Shortwave Receivers

Regular SALE
IC-751 9-band xcvr/1-30 MHz xcvr 1399.00 1199
PS-55 Internal power supply... 160.00 144.00
FL-32 500 Hz Cw filter... 59.50 59.00
FL-32C 250 Hz Cw filter (2nd) 95.50 89.50
FL-33D 500 Hz Cw filter (2nd) 95.50 89.50
FL-33E AM filter... 31.50
FL-70 2.8 kHz wide SSb filter... 46.50
HM-366 High stability reference xtal 56.00
RC-10 External frequency controller 35.00

Options... 270/370/745/751
PS-15 20A external power supply... 149.00 134.00
EX-144 Adapter for CF-1/PS-15... 6.50

NEW Product

ICOM

For More Info Call Us or Write

Order Toll Free - Use your Credit Card!

HOURS • Mon. thru Fri. 9-5:30; Sat. 9-3
Milwaukee WATS line: 1-800-558-0411
answered evenings until 8:00 pm Monday thru Thursday
Please use WATS lines for Ordering
use Regular lines for other Info and Service dept.

Order Toll Free: 1-800-558-0411
in Wisconsin (outside Milwaukee Metro Area)
1-800-242-5195

AMATEUR ELECTRONIC SUPPLY INC.

WICKLIFFE, Ohio 44092
22040 Euclid Avenue, Wickliffe, Ohio 44092
Phone (216) 585-7288
Ohio WATS 1-800-362-0290
Outside Ohio 1-800-321-3594

ORLANDO, Fla. 32803
621 Commonwealth Ave.
Phone (305) 894-3238
Fla. WATS 1-800-432-9424
Outside Florida 1-800-327-1917

CLEARWATER, Fla. 33757
ICOM, Inc.
1702 W. Poinciana Dr.
Phone (813) 461-4267
Outside Tampa 1-800-631-5181

LAS VEGAS, Nev. 89106
10721 N. Rancho Dr.
Phone (702) 647-3114
No In-State WATS
Outside Nevada 1-800-634-6227

CHICAGO, Illinois 60630
AMERICAN ELECTRONIC SUPPLY, INC.
4545 N. Milwaukee Avenue
Phone (312) 631-5181
Outside Chicago 1-800-621-5802

AES BRANCH STORES

ASSOCIATE STORES

June 1985
relay is used in the transmitter as discussed in February’s column. I've often seen complex circuitry that relies on R/C time constants and such. Timing capacitors, especially of the electrolytic type, are often unreliable and may decrease in capacitance as they age.

Figure 4B is a simple semi-foolproof way to add some time delay sequencing with the addition of only one low-cost DC relay. In this scheme, the extra relay will have to first close, which will add about 10 milliseconds delay before power is applied to the high voltage relay. When the T/R switch is opened, the high voltage relay loses power immediately and turns off.

One last caution is in order. Many modern transceivers, HF and VHF/UHF alike, can inadvertently transmit a short burst or pulse of RF either when they're first turned on or when they're switching modes. Depending on the station configuration, this could spell disaster to an inline preamplifier that is not properly protected.

input limiters

Relays are fine, but you may want some extra built-in protection. A simple low-power limiter was described in reference 4. A low-cost hot carrier diode is placed across the base to emitter junction of the bipolar transistor as shown in fig. 6A. This type of limiter will protect only up to about 1 watt. Hot carrier diodes used as limiters should have a low junction capacitance and a low forward resistance. For example, the M/A Com MA4882 or NEC ND4981-7E are recommended. The Hewlett Packard 5082-2810 and its equivalents are not recommended since the laboratory tests I conducted showed that they have a high resistance at increased current.

Often I see back-to-back diodes indiscriminately placed across the input of a receiver. Out-of-band signals — for example, FM, TV, and broadcast — can often induce enough voltage at a receiver input to drive these diodes into conduction and cause spurious signals to appear. Point contact diodes are the most susceptible, followed by hot-carrier and then silicon types. Therefore, if you use limiter/protection diodes at a receiver input, they should be located after a band-pass filter as shown in fig. 6B. Remember, hot carrier diodes can handle only up to about 1 watt of incident power.

Finally, commercial designers frequently use PIN diode limiters, especially above 500 MHz (see fig. 6C). These unique diodes turn on quickly, then drop to a very low resistance and reflect the incident RF. Most PIN diodes are able to handle much more power than hot carrier diodes. Most microwave diode suppliers manufacture these devices, but discussion of a recommended device and circuitry will have to wait for a future column.
out-of-band protection

The input protection schemes just mentioned are not always sufficient. Other RF problems can inadvertently occur from out-of-band signals. For instance, some years ago I advocated the use of an "idiot" diode in preamplifiers to prevent application of improperly polarized power supplies. Eventually I placed idiot diodes into all my preamplifiers.

No preamplifier failure has ever occurred from improper supply polarity. However, soon after installing the idiot diodes, I began experiencing random burnout, especially on my J-FET preamplifiers, which are usually quite rugged. I tried all types of input filtering, without success. This random problem continued for over a year. Finally I realized that the burnout occurrences increased during the winter, a time of low electrical storm activity and the time of year when I spend many hours DX-ing on the low end of 80 meters.

With the help of a digital voltmeter, a second operator, and careful measurements, I found that the 80-meter RF was coupling to my 12-volt power supply leads going into my preamplifiers. The idiot diode was rectifying the RF and adding it to the 12 volts from the supply! In one case, the actual DC at the drain of a 2-meter preamplifier was 26 volts with the 80-meter kW in operation. The reason this probably did not affect my bipolar preamplifiers was that they also had zener diode biasing, which limited the voltage across the device.

The solution is simple. Place a 0.1 μF ceramic disc capacitor — remember, this is low frequency — on the DC line where it enters each preamplifier. (Larger capacitance values are not recommended because they may not act as a good RF bypass.) Any RF trying to enter the power line to the preamplifier is now bypassed and no longer seen by the idiot diode. The only failure I've experienced since that time was in a preamplifier that I forgot to bypass!

High-pass or bandpass filters are always recommended ahead of a receiver because they prevent RF, especially at HF, from entering the input of the preamplifier. When selecting a filter, a capacitor input type is recommended per reference 8. Filters that use a shunt inductor at the input (such as a loop on a cavity filter) are not recommended because they usually have insufficient attenuation at lower frequencies.

low frequency and supply transients

Several types of failure modes are induced at low frequencies, especially in power supplies. One type is spikes or transients on the AC mains. Laboratory tests show that 500 to 1000 volt transients are always occurring, especially when motors or inductive devices are turned on and off. A shunt capacitor across the AC line helps, but is usually insufficient protection.

Zener diodes are often too slow to turn on and usually have limited power handling capacity. Modern protection devices such as the MOV (metal oxide-varistor) were specifically designed to operate at high frequencies and clamp incoming spikes similar to the action of a back-to-back zener diode. Such devices are inexpensive (less than $1.75) and readily available for 130 and 230-volt AC power. General Electric Part No. V130LA10A or V250LA20A are suggested units for 130 and 250 volts AC, respectively. Radio Shack stocks similar MOVs. I highly recommend that you place one of these devices across the primary of all power supply transformers after the fuse as shown in fig. 7A.

General Semiconductor Industries, Inc. makes several products under the names TransZorb™ and ThyZorb™. These devices, available from 5 to 700 volts, are particularly noted for their speed and power handling capability. They can also be used across AC lines and wherever fast-acting zener diodes are desirable.

For many years I've been preaching that you should always use a dedicated power supply for all receiver circuits. Using a preamplifier power supply for relays is not recommended. When relays are deenergized, inductive spikes are produced — and these can easily destroy a preamplifier if it's connected to the same supply. Even if you use a separate relay supply, it's best to place a 1N4004 or equivalent diode reversely polarized across all DC relay coils, T/R relays included (unless they're AC types) as shown in fig. 7B.

The manner in which solid-state devices are biased can also be a failure mechanism. The use of three terminal voltage regulators with protection diodes is highly recommended. I strongly suggest the addition of a limiting resistor, however small (20 to 100 ohms is suggested), in series with each solid-state device to lower dissipation in case of runaway biasing. As another precaution, place a zener diode a few volts above the power supply voltage after the resistor. It will also serve as an idiot diode since most zeners have less than 1.0 volt drop when biased opposite to convention. These schemes are shown in fig. 7C.

AC line filters

Brute-force line filters are also recommended, especially to prevent damage from large surges typical of lightning strikes. A 50 to 100 μH inductor should be placed in series with the AC line where it comes into the ham shack and followed by an MOV or TransZorb™ of the appropriate rating as shown in fig. 7D. Note that the inductor must have an air core. Ferrite cores or rods will saturate and become ineffective if a large surge voltage should be induced onto the AC lines by a lightning strike.

the forces of nature

So far we've been talking mainly about protection against common man-made causes of burnout. But natural forces, in the form of static electricity or lightning, can be extremely destructive. Although statisticians assure me that even in the worst lightning-prone areas such as central
Florida, lightning strikes the same place only once every 10 years, *don’t trust your luck.* My station has been hit more than once; the worst strike occurred in the Santa Clara Valley in California, a normally low probability area.

Because lightning protection has often been discussed in Amateur publications, I will highlight only those problems that most affect VHF/UHFers. Experts tell me that when lightning strikes within 1000 feet (300-meters) of your equipment, damage will result. Even a 1-mile (1.6 km) separation from a lightning strike can result in damage caused by line voltage surges. Many simple techniques can be used to lessen or prevent lightning destruction to Amateur equipment; while some have been amply discussed in the literature, others have not, and I want to share them with you.

proper grounding is important

First, all antenna feeds should have a built-in ground return. This can often be incorporated as part of the feed system: for example, a “T” match or the balun connected to a metal boom or mast. The voltage breakdown of air at sea level with low humidity and room temperature between two flat surfaces is approximately 70 to 75 kilovolts per inch (28 to 30 kV/cm). A needle point, on the other hand, will break down at about 26 to 30 kV per inch (10-12 kV/cm). Therefore, a “Blitzbug™” type of lightning arrester installed in each transmission line will add an additional safety factor. Since this type of device has a point spacing of about 0.02 inch (0.05 mm), it should fire at 500 to 700 volts and handle reasonable follow-on current. The most common type of Blitzbug™ available is fitted with UHF connectors, but usable, with low VSWR, to about 450 MHz.

SVPs (surge voltage protectors) are becoming very popular. Basically they consist of a pair of electrodes properly spaced and hermetically sealed in a rare gas field. Breakdown voltages of 70 volts and up with low shunt capacitance (0.5 to 2 pF) are now available. Several manufacturers offer them for insertion in transmission lines. Remember that SVPs, while fairly quick to turn on, will not prevent damage from the large or sustained current typical of a direct hit as effectively as the Blitzbug™.

For best lightning protection it may be best to install both types of devices in cascade in your feedlines and spaced about one-tenth wavelength apart such as discussed in the relay section of this column. In all cases, each of these devices should have a separate low-impedance ground return (see below).

towers

Towers should never be higher than necessary. The highest object in a given local area, after all, is especially vulnerable to lightning strikes. Each time the height of a tower is doubled, the chance of its experiencing a direct hit increases by a factor of 4!

In the “good old days” lightning rods were installed on the rooftops of homes and tall buildings. I always thought they were meant to provide a discharge path, but some of my old-
NEW LOW, LOW PRICES!

NATIONAL FINANCING AVAILABLE THROUGH NAMPA SATELLITE
FOR MORE INFORMATION CALL 208-466-6727

ALL SYSTEMS FREIGHT PRE-PAID FROM NAMPA, IDAHO OR HOUSTON, TEXAS

EACH OF THE FOLLOWING SYSTEMS CONSIST OF: Receiver, 100° LNA, LNB, or LNC, Wilson MD-9 Dish, 100 Ft. Cable Pack, LNA Cover, Polarrmatic I Feedhorn, NSS Dish Drive, All Connectors and Instructions

<table>
<thead>
<tr>
<th>System</th>
<th>Price</th>
<th>Down Payment</th>
<th>Monthly Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson YM1000 System</td>
<td>$1648</td>
<td>10% Down Payment $164.80</td>
<td>36 payments of $54.00/mo.</td>
</tr>
<tr>
<td>Wilson YM400 System</td>
<td>$1442</td>
<td>10% Down Payment $144.20</td>
<td>36 payments of $46.00/mo.</td>
</tr>
<tr>
<td>Little Wil LW5</td>
<td>$1099</td>
<td>10% Down Payment $109.90</td>
<td>36 payments of $36.00/mo.</td>
</tr>
<tr>
<td>Little Wil RV5</td>
<td>$1399</td>
<td>10% Down Payment $139.90</td>
<td>36 payments of $45.00/mo.</td>
</tr>
<tr>
<td>Drake 240 A + APS24</td>
<td>$1995</td>
<td>10% Down Payment $199.50</td>
<td>36 payments of $65.00/mo.</td>
</tr>
<tr>
<td>Luxor Mark 2 System BLOCK DC</td>
<td>$2512</td>
<td>10% Down Payment $251.20</td>
<td>36 payments of $75.00/mo.</td>
</tr>
<tr>
<td>Dexcel 1300-01 System</td>
<td>$1988</td>
<td>10% Down Payment $198.80</td>
<td>36 payments of $63.00/mo.</td>
</tr>
<tr>
<td>Dexcel 1200-01 System</td>
<td>$1633</td>
<td>10% Down Payment $163.30</td>
<td>36 payments of $54.00/mo.</td>
</tr>
<tr>
<td>Uniden UST 3000 System</td>
<td>$1772</td>
<td>10% Down Payment $177.20</td>
<td>36 payments of $57.00/mo.</td>
</tr>
<tr>
<td>Uniden UST 1000 System</td>
<td>$1571</td>
<td>10% Down Payment $157.10</td>
<td>36 payments of $52.00/mo.</td>
</tr>
<tr>
<td>Sigma Mark 2A</td>
<td>$1438</td>
<td>10% Down Payment $143.80</td>
<td>36 payments of $46.00/mo.</td>
</tr>
<tr>
<td>Sigma Mark 3 BLOCK DC</td>
<td>$1662</td>
<td>10% Down Payment $166.20</td>
<td>36 payments of $54.00/mo.</td>
</tr>
<tr>
<td>Sigma Mark 5 BLOCK DC</td>
<td>$2049</td>
<td>10% Down Payment $204.90</td>
<td>36 payments of $66.00/mo.</td>
</tr>
<tr>
<td>M/A Com HI BLOCK DC</td>
<td>$2282</td>
<td>10% Down Payment $228.20</td>
<td>36 payments of $74.00/mo.</td>
</tr>
<tr>
<td>M/A Com TI BLOCK DC</td>
<td>$2182</td>
<td>10% Down Payment $218.20</td>
<td>36 payments of $71.00/mo.</td>
</tr>
<tr>
<td>STS MBS-SR-AA</td>
<td>$2349</td>
<td>10% Down Payment $234.90</td>
<td>36 payments of $76.00/mo.</td>
</tr>
</tbody>
</table>

OPTIONS WITH SYSTEM

- PM 9' Dish .. $60
- UM 10' Mesh Dish .. $180
- Prodelin 10' Dish .. $400
- Continental Mesh Dish 10' $400
- 85° LNA .. $80
- NSS Memory Tracker ... $100
- MTI 2100 .. $225
- MTI 4100 .. $345
- Houston Tracker IV ... $325
- Houston Tracker IV + ... $425
timer friends tell me that they may in fact work in the opposite way, emitting electrons and thereby repelling or at least decreasing the probability of a direct strike! In this regard, the same experts tell me that a blunt or ball-shaped object would be a better way to ground a strike. I don't know which is correct. Maybe someone reading this column can enlighten us.

Regardless of the outcome of this question, all towers and antennas should be well grounded for lightning protection. A single ground rod is not sufficient. Two ground rods may be even less effective than expected because when they're positioned close together electrically, they couple to each other. Therefore, I recommend at least two ground rods spaced 10 to 15 feet (3 to 5 meters) apart, close to the base of a tower but at least 2 feet (60 cm) from any concrete used in the installation.

All ground rods should be at least 5 to 8 feet (1.5 to 2.5 meters) long, with a minimum diameter of 5/8 inch (16 mm). Always use high quality, well plated grounding rods (available from most electrical supply houses). Small low-cost ground rods often rust and become poor grounds after the first or second rain storm!

Grounding rods should be connected to the tower with a heavy (No. 6 AWG or larger) solid copper wire. This wire should be kept as straight as possible so that it forms a low impedance path for lightning (as just discussed). Keep all bends to a minimum. Also keep ground return wires away from other wires or cables to minimize any coupling effects.

A strong bonding connection should be made where the grounding wire connects to the tower and the rod. The inductance of the wire and its ability to handle the peak current of a direct lightning strike are very important. [I had a single aluminum 1/8 inch (3 mm) diameter ground wire that exploded open when hit by lightning. You should have seen the damage in the shack as the strike found other discharge paths!]

Lightning usually travels in a straight line. Therefore, whenever possible, bring all transmission lines away from your tower at right angles and in a reverse direction as shown in fig. 8A. This will cause any lightning to go directly to ground rather than down the transmission line, since the bend will act as a high impedance. In addition, you can loosely coil up to 3 to 5 turns of your feedline in a 4 to 8 inch (10 to 20 cm) diameter, depending upon the minimum bending radius, to act as an RF choke (see fig. 8B).

Remember that a direct hit can cause an extremely large current (20 to 100,000 amperes!) to flow. Enclosing all transmission lines within an iron water pipe or tube (such as EMT) that is just a bit larger than the diameter of the line will considerably diminish the induced current. This is because of the limiting of the magnetic field by the steel (ferromagnetic material) tubing as shown in fig. 8C. The preferred method is to use 20 feet (6 meters) of tubing for each line, but even a single 5-foot (1.5 meter) tube will help. If several shorter tubes are used, they need not be grounded or connected together. For economy's sake, several transmission lines can be placed inside a single tube. If this method is used and the tower is well grounded, the lightning will take the lowest impedance path — directly to the ground rods instead of through the ham shack!

When connecting transmission lines to a piece of gear, especially when rack mounted, bring the cables vertically from the floor level. Connect a suitable outside ground (such as the one just suggested for towers) to each shield at the floor level and at the base of the cabinet. This prevents the lightning from climbing vertically into the equipment.

lightning, static and RF

While a direct hit is hard to prevent and even more difficult to divert entirely, these suggestions will at least limit damage and perhaps prevent it entirely. Other measures can also help.

One of the best methods to protect equipment is to use a bandpass filter...
WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

STV SATELLITE TELEVISION MAGAZINE

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, & industry insights.

- $24.95 per yr. (12 monthly issues)
- $ 2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subscription orders only).
Keep first issue with our compliments.

If you already have a dish, then you need

OnSat

—the best in satellite TV programming.

- Weekly Updated Listings
- All Scheduled Channels
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights

- $39.00 per yr. (52 weekly issues)
- $ 1.00 for Sample Copy

Visa® MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV™/OnSat™
P.O. Box 2384 - Dept. PS
Shelby, NC 28151-2384
Subscription calls only
Toll Free 1-800-438-2020

$14.95 Add $2.00 shipping & handling BOARD ONLY $6.95

QRP TRANSCEIVER SET — $34.95

VHF CONVERTER SET — $24.95

Add $2.00 For Shipping & Handling — Send For FREE Brochure
SEND $2.00 FOR FULL MANUAL WITH CIRCUIT DIAGRAMS
MANY OTHER MODULES AVAILABLE
MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA. 33011
(305) 884-8686

CB-10 FM SPECIAL

- Hy Gain 40-Channel Board
- 40-Channel Switch
- Volume & Squelch Control
- FM Detector Module
- Full Instructions Included

$14.95 Add $2.00 shipping & handling BOARD ONLY $6.95

J.I.L. SX-400

Uninterrupted Frequency Coverage
100 kHz to 1400 MHz
with Optional Converters

- A professionally created scanner for the serious listener
- Wide frequency coverage 26 to 520 MHz (with optional converters 100 kHz to 1400 MHz)
- Continuous coverage. You'll hear everything.
- Birdie-Free, no internal 'signals' to interfere with scanning
- 20 Channel memory, AM-FM Mode memory, Priority memory
- Carrier Operated Relay (COR) permits automatic start/stop of a recorder
- Four low-noise front end converters for optimum performance
- 12 Volt DC operation (120 Volt AC power supply optional)
- Check JIL's ad in this issue for further details

Sale Price $549.95 List $739.90
P-1A Power Supply $34.95
Other options call

Electronic Equipment Bank
516 Mill Street
Vienna, Virginia 22180
800-368-3270
(703) 938-3305

92 June 1985
(as described above). This is suggested because lightning is primarily a low-frequency phenomenon — i.e., below 30 MHz. A high-pass or band-pass filter (see fig. 9A with a high attenuation at lower frequencies will significantly decrease the energy entering a receiver. Unfortunately, this may not always be possible for those operating on the HF bands!

Likewise, keep all coupling capacitors at a minimum. A capacitance reactance of 2 to 5 ohms at the frequency of operation should be used. This would suggest the use of no more than 200 pF at 70 cm. When low noise transistors first became available for 70 cm operation, many preamplifiers were accidentally destroyed when connected to automatic noise figure meters that used a gas tube noise generator. This failure was caused by large coupling capacitors that responded to the low frequency transient emitted by the firing of the gas tube. When low value capacitors were used, the problems diminished considerably. Fortunately, modern automatic noise figure generators use solid-state diodes that don’t have this problem.

The placing of a 5 to 10 kilohm resistor across your receiver inputs as shown in fig. 9B will also help, especially in elimination of static. It’s standard practice in the CATV industry to place 510,000-ohm resistors in shunt with drop cables (the ones that go to your home), presumably to bleed off any charge buildup.

Another technique is the use of a shorted quarter-wave stub. A coaxial “T” connector is placed in the transmission line and the stub is connected and grounded as shown in fig. 9C. This stub is a high impedance at the frequency of use. Therefore it has low loss, but is a DC short for any static or lightning.

physical handling

We may do all of the foregoing without paying attention to some of the basics such as using extreme care in handling and connecting equipment. All power supplies should be measured for proper voltages and should preferably be in operation when they are connected to the equipment. Some HF transceivers have external power supplies that put out high peak voltages when first turned on. Manufacturers recommend that the power supply should be turned on before the transceiver; this procedure should be reversed when ceasing operation. It is also recommended that whenever you connect a power supply, the ground return should be connected first. If not, the return current may flow through any coax cables back to the power supply and induce a spike or spark into the amplifiers. Transmission lines sometimes store a charge. Therefore, always discharge both sides of any incoming transmission lines to chassis ground before connecting them to the input of a receiver.

components

Component abuse or overstressing is one of the biggest problems faced by Radio Amateurs. Many of the failures I hear about are not induced by lightning or by RF, but rather by the user who is trying to milk the last bit of performance from a device. Solid state devices, especially those of the low-noise type, should never be operated at voltages, currents, or power dissipation levels beyond the manufacturer’s specifications! The importance of using protective diodes and zener diodes as well as current limiting resistors, as discussed above, cannot be overstressed. Likewise, all resistors should be sufficiently derated in power.

Capacitors, especially on a receiver input, should have adequate breakdown voltages. I’ve noticed that the CATV industry uses 1000 volts or higher breakdown voltages on all their capacitors on the input and output circuits. Surely they know something about lightning — they have thousands of miles of transmission lines all over the world!

summary

In this month’s column, I have described many of the types of failure mechanisms that can plague an active VHF/UHF Amateur. They range from carelessness and unwise short-cuts to events beyond our control. This column is not meant to alarm you; in fact, the opposite is true. If you understand the limitations of your equipment and the outside stresses and forces that can be placed upon them, you can take adequate protective measures using some or all of the techniques mentioned in this column. Taking short-cuts on grounding, filtering, and switching is “penny-wise and pound foolish.”

One final remark: some of the protection devices described may be destroyed if you’re unfortunate enough to suffer a failure or lightning strike.
NEMAL ELECTRONICS INTL., INC.
SEE US AT DAYTON BOOTH #104
your one stop coax supplier!

SATELLITE CONTROL CABLE
5 TYPES AVAILABLE!
NEW!!! Lowest Loss

DESIGNED FOR SATELLITE
ANTENNAS PROVIDING THE
REQUIREMENTS FOR MOST
SATELLITE EQUIPMENT
ALONG WITH DIRECT
BROADCAST BANDS

COAXIAL CABLE SALES
POLYETHYLENE DIELECTRIC
RG-59U 96% shield Mil Spec
(29.0 $/100) or 3'st/$
RG-7U 96% shield Mil Spec
25'/$
RG-58U double shield (RG-8X shield) 10'/$
RG58U mil spec 96% shield
$15.00/100' or 1'/$
RG-214F min. 95% shield 10'/$
RG-714F non-corrosive 96% shield mil spec
30'/$
RG-714F double shield wire
$1.95/100' RG-714F linked copper wire
$0.95/100'
LOW LOSS FOAM DIELECTRIC
RG-8X (Mini B) 96% shield
$15.00/100' or 1'/$
RG-8U 96% shield
$10.00/100' or 1'/$
RG-9U (1/2 in.) min 95% shield 10'/$
RG-9U shield mil spec 30'/$
RG-9U 96% shield
$0.95/100'
RG-9U 96% shield
$1.95/100'
HEAVY DUTY ROLLER CABLE
2-18 ga 6-20 ga
Ringer cable 2-18 ga 6-20 ga Poly stranded
$1.75/100'

CONNECTIONS MADE IN USA
Amphenol PL-25
$0.50/100' or 100'/$
Leaded PL-25 and SO-239
$0.25/100' or 100'/$
Pl-25 and SO-239
$0.25/100' or 100'/$
BNC Male for PL-259 $1.95
BNC Female for SO-239 $2.50
Amphenol RG-8
$0.50/100' or 100'/$

5% sales tax on all sales of $10.00 or more
CABLE TIES add $0.25 per 100
Roach Add $1.00 per 100

SHIPPING
Cable + $6.00 per 100 ft.
Connections + $3.00 each order
20G under $20 add $2 additional plus shipping.
Charger card + $5.00 minimum.
Orders under $20 add $2 additional plus shipping.
Charger card + orders over $30 only.
COD add $2.00. Florida Residents add 5%.

FACTORY AUTHORIZED DISTRIBUTOR
AMPHENOL, CABLE WAVE, COLUMBIA, KINGS
BLONDE TUBING, TONGUE, TYPON, B&K

- COAXIAL CABLE
- MULTICORE CABLE
- CONNECTORS-ADAPTERS
- HARDLINE
- CABLE TIES

12240 N.E. 14th Ave.
No. Miami, FL 33161
Telephone: (305) 893-3924

IN STOCK
OVER 500 ITEMS
COMPLETE LINES

However, the cost of replacing these devices is usually far less than the cost of replacing the equipment they protect. Remember, it's virtually impossible to protect yourself from a direct lightning hit but it is possible to minimize the destruction.

acknowledgements

I'd like to thank Leroy May, W5HN, a great old-time VHF/UHFeer, who, by his letter to me several years ago, encouraged me to write on this subject.

references

important VHF/UHF events:

June 1: EME Perige
June 5: Predicted peak of the Arietids meteor shower (1930 UTC)
June 8-9: ARRL VHF QSO Party
June 15: Predicted peak of the June Lyrids meteor shower (0400 UTC)
June 21: Mean date for the two month annual peak of sporadic E propagation
June 29: EME Perige
June 29-30: SMIRK 6-meter Contest
July 20: ± two weeks, look for 2-meter sporadic E openings
July 20-21: CO VHF WPX Contest
July 25: EME Perige
July 27-29: Central States VHF Conference, Tulsa, Oklahoma (Contact W0RRY/S)
July 28: Predicted peak of Delta Aquarids meteor shower (0300 UTC)

ham radio
TOWERS
by ALUMA

HIGHEST QUALITY ALUMINUM
• TELESCOPING (CRANK-UP)
• GUARD (STACK-UP)
• TILT-OVER MODELS
Easy to install. Low Prices. Crank-ups to 100 ft.

EXCELLENT FOR AMATEUR COMMUNICATIONS

ALUMA TOWER CO.
BOX 28063P
VERO BEACH, FLA. 32960-2806
(305) 567-3423 TELEX 90-3405

This publication is available in microform from University Microfilms International.

☐ Please send information about these titles:

Name
Company/Institution
Address
City
State Zip
Phone

Call toll-free 800-521-3944 in Michigan, Alaska and Hawaii call collect 313-751-4700. Or mail inquiry to: University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

Call Us LAST!

We just might beat those other “unbeatable” deals
Talk with everyone else. Then call us.
We carry all the top names in amateur equipment.

Hours: Tuesday-Saturday, 10 am-6 pm.
Closed Mondays.

800/845-6183
803/366-7157 Inside SC

THE NEW!

GISMO
1039 Latham Drive
Rock Hill, SC 29730

June 1985 95
wind your own transformers — inexpensively

Novel approach produces high quality, low-cost replacements

I’ve seen many excellent articles on rewinding transformers in the home workshop. Valuable information for calculating the number of turns per volt relating to core size, insulation, varnish dipping, and space available was included, but in each of these articles it always seemed that in order to complete the project, it was necessary to somehow hold the coil in one hand and the wire in the other and just wind away. Many authors noted, of course, that the methods were really not suited to coils with a large number of turns of small wire, but were ideal for the larger sizes of wire, such as might be found powering the lower voltage transistor circuits popular in recent years.

This article describes a home-brew coil winding machine that will wind wire uniformly and neatly. It can be built from readily available, inexpensive parts. Most of the parts can be found right at home; the rest are available at reasonable prices. The only equipment necessary is a small drill press, a table saw, and the usual hand tools found around the ham shack. A 3 to 4 inch-circle cutter attachment for the drill press will save a lot of time.

background

Several years ago, when I experimented briefly with Amateur Television, I acquired a 12-year-old television camera with a bad power transformer. At first I thought it would be a simple matter to order a replacement transformer, but my enthusiasm faded when the manufacturer told me they’d stopped stocking parts years ago. My interest diminished even more when I learned that a professionally rebuilt replacement that would fit in the available space and meet the electrical requirements would cost $200.00.

My conscience wouldn’t allow me to junk a perfectly good TV camera, and there was no way I’d spend more for a transformer than I’d invested in the whole camera. For years I’d toyed with the idea of a home-brewed coil winder; it seemed its time had finally come.

how it works

Small transformers are wound on a fairly complicated piece of machinery that rotates the form, or

By C.F. Hooper, W4GDW, 1457 Young Avenue, Clearwater, Florida 33516

Overall view of the coil winder set up to wind No. 30 enameled wire on a form approximately 0.8 inch (20 mm) x 0.43 inch (11 mm) x 2 inches (51 mm) long. About half of the winding length has been filled and the clothespin is clamped on the screw thread that causes the main shaft to traverse from left to right; the winding progresses from right to left. The mini-box at upper left is an SCR motor controller, and the two wood blocks at left are for later addition of a turns counter as explained in the text.
mandrel, on which the wire is being wound. While the form makes one revolution, the feed guide moves the same distance as the diameter of the wire (plus perhaps a fraction of that distance for clearance). Such a winding lathe has a large selection of gears available so that the lead screw is turned at just the right rate to accomplish this motion. A transformer winding machine costs thousands of dollars — and the average ham obviously doesn’t wind coils often enough to justify that expense.

It would be fairly easy for an Amateur to assemble a device that would merely rotate the coil form, but the mechanism necessary to move the wire guide at precisely the proper rate — unless you already have a lathe with many gears — gets much too complicated for a homebrew project.

In searching for ways to solve the problem inexpensively, it occurred to me that the shaft on which the coil form was mounted could do the lengthwise moving, while the wire feed point remained stationary.

As I began to think about having lead screws made for each size of wire and the many other details, I realized I could use the wire itself for the lead screw! Normally you’d have a little bit of the size wire you were going to wind left over. So why not form the lead screw threads right on the shaft by simply winding on a single layer of wire for each direction of feed, securing it in place if necessary? It’s fairly easy to close wind on a round rod, even with small wire; besides, you do it only once for each size of wire you’re going to wind.

The shaft is made to move lengthwise while rotating by mounting a pair of pads of resilient material on strips of metal fastened to the bearing posts, close to the shaft but not touching, on either side. When feeding is desired, a clothespin is used to clip over the pads to bring them in contact with the “threads.” There are two sets of these pads, one for each direction of feed, so when ready to reverse wire feed, you simply stop the rotation and move the clothespin to the other pair of pressure pads, insert and wrap the paper insulation layer over the layer just wound (securing it temporarily with masking tape if needed), and then restart winding with feed in the other direction. I designed my winder around 0.25-inch (6.35 mm) steel rod, and to accommodate an actual winding length of 1.8 inch (46 mm), which means that a 2-inch (51 mm) long winding form can be handled with a little space at each end. I wanted to have a winding shaft for each wire size to be used to save for use again with that particular size. This means, of course, that when you’ve finished winding one wire size, you remove the drive pulley and the winding form, mount them on another rod made up for the next wire size, and re-install the unit into the bearings. The “bearings” are simply wood posts with a slot sawed into the top in which the winding shaft lies, leaving it free to slide lengthwise as well as to rotate.

The shaft is powered by an old sewing machine motor (complete with pulley, if possible) made to be variable in speed by the inclusion of an SCR speed controller built from a diagram in the General Electric Company SCR manual. Similar circuits can be found in the handbooks: a plain old Variac — or even the foot control from the sewing motor — would do.

construction

Main shaft. The main winding shaft is made from 0.25-inch (6.35 mm) steel rod, with a flat filed on one end for the drive pulley set screw, three small holes for securing the “thread” winding, and a tapped hole for attaching the coil form and mandrel. (When buying the rod, be sure to select the straightest and smoothest you can find; its dimensions are shown in fig. 1.) It seems wise to postpone placing the winding on the shaft until the winder is complete enough to be used.
so that the motor can rotate the shaft for you. For the finer sizes — perhaps No. 30 and smaller — the wire can be cemented to the shaft to avoid an accident during winding. After cleaning with alcohol, I used a very thin coat of epoxy cement (not the “quick setting” type) applied to the winding space before winding on the wire. After winding, I carefully removed the excess from the outside of the winding with a cotton ball and denatured alcohol. The outside surface of the wire should be clean enough so that the follower pads can “feel” the individual turns.

Bearing and thread follower support. Dimensions for this part are shown in fig. 2. The bearings were constructed from a piece of ordinary 3/4-inch (1.90 cm) thick board. Note that the slots that form the bearings are slightly larger than needed to accept the main shaft rod; this is to permit lining the slot with several thicknesses of nylon fabric as needed to act as a low friction bearing. The shaft should not bind or be loose and wobbly, but should turn freely as well as slide lengthwise freely.

Screw thread follower. This part is made from ordinary 1/2-inch (13 mm) wide steel banding, such as used for strapping crates. If steel strapping isn’t available, pieces can be cut from a tin can. Four pieces are mounted on the bearing posts so that they contact the wire “screw thread” when the clothespin is clipped over them. These are detailed in fig. 3, and the photo of the entire winder shows them clearly. The pads cemented to the pieces are important; they should be made from a resilient material that will “sink into” the grooves between the “screw thread” wires when pressed against them. I used automobile gasket material — the kind used for mounting water pumps and such. The note “bend as needed” in fig. 3 means that after installing, a bit of judicious bending is in order so that no contact is made until the clothespin is clamped on. When it is, it should contact as many turns of the “thread” as possible.

Drive pulley. I fabricated this part by cutting two discs from 5/8 inch (15.9 mm) particle board using the circle cutter in the drill press, truing them up by mounting them on a 0.25-inch bolt in the drill press, as if it were a lathe. I turned the cutting bit in the circle cutter so the disc being cut had straight sides, not the hole. (In the absence of a circle cutter, a saber saw would probably do the job if, after cutting, you then mount the discs in the drill press and straighten up their sides with a sanding block — they should run as true as possible. I slipped the two pieces on a rod (for alignment), spaced for the width of the drive pulley, and, using epoxy, then cemented the thin aluminum around them to form a drum, using several rubber bands to hold them until the epoxy set. Then the flanges were cemented onto the ends of the pulley. (Incidentally, if a circle cutter is used in the drill press, clamp the work piece down securely and be sure to follow all the safety rules.)

Both the drum surface and the end flanges were cut from discarded aluminum offset printing plates. Although only between 0.010 inch (0.25 mm) and 0.012 inch (0.30 mm) thick, this metal works nicely. It should be available inexpensively from print shops or news-
FOR SET SCREW
DRILL 0.187 (4.7 mm) DIA.
AND TAP 1/4 - 20

0.25" (6.35 mm)

0.25" (6.35 mm)

2.5 x 11.5 inch (6.35 x 29.2 cm) of 0.010 to 0.012 inch (0.25 to 0.3 mm) thick aluminum sheet (used printing plate). Position end disks on 0.25 inch (6.3 mm) rod for alignment. Wrap around end disks, cemented with epoxy (including overlap). Secure with sufficient rubber bands until set. Align carefully so aluminum sheet does not overhang disks.

End disks (2 needed): Make from particle board or plywood, 0.6 to 0.75 inch (15 to 19 mm) thick. Diameter: 3.5 inch (89 mm) with 0.25 inch (6.35 mm) hole in center.

2 holes all the way through, 0.125 inch (3.2 mm) diameter. Insert 2.5 inch (6.35 mm) long x 0.125 inch (3.2 mm) OD brass tubing and cement (for later addition of a turns counter). Drill these after assembly is complete.

2 flanges needed, 3.87-inch (98 mm) diameter with 0.25 inch (6.35 mm) hole in center. Make from aluminum sheet or thin, stiff cardboard. Cement to end disks.

Select stiff, straight wires at least 5.5 inches (14 cm) long and small enough to slide freely in the brass tubing lined holes through the drive pulley (old bike spokes).

Position counter so that ends of counter drive wires are about 0.125 inch (3.2 mm) from nearest side of bearing block.

Build up counter shaft with tape. Place wires on opposite side and tape wires in place so their centers are 0.5 inch (12.7 mm) apart.

Make counter support block so that center of counter shaft is at same height as center of winding shaft and aligned with it. Block should be removable to enable changing rod.

Base and layout. I used a piece of 1/2 inch (12.7 mm) plywood, thickened to 1 inch (25.4 mm) around the edges, measuring approximately 26 x 10 inches (66 x 25 cm), as a base for the entire coil winder. Any convenient layout is satisfactory. I mounted the shaft bearing against an additional piece of wood the same length, using small nails and glue, providing a "lip" that could be mounted from the top side. Otherwise, mounting with wood screws up from the bottom side of the base into the bottom edge of the bearing should do the job. The drive belt won’t be specified, but many are available that will work. The motor should be positioned so that the belt is just tight enough to run without slipping. Too tight a belt will cause obvious problems. A sewing machine shop would be the best place to look for a suitable drive belt; other sources might include jewelers or other craftsmen who could supply the belting used to run smaller lathes. This type of belting comes in a continuous length. A suitable piece is cut and the ends are joined together by heating.

The direction of rotation should be considered. In
Dual 8" F. D. D. Case by SMS w/ POWER ONE Power Supply & Cooling Fans

We were very fortunate to find these beautifully designed & constructed rack mount disc drive cases in the surplus field. These cases were made for Scientific Micro Systems for their FT Series of equipment. They are manufactured from heavy guage steel w/ a cast metal designer bezel. They were designed to house 2.8" floppy or hard drives. We offer you the case with the following components & features: hinged cover with restraining cable for simplified servicing of the interior components, 2 muffin fans for assured cool operation, studs for mounting the controller card listed below, and a heavy duty Power One power supply (their model no. CP 281A). The outputs of the power supply are as follows: +5 vdc 11 amps, +24 vdc 3.5 amps, +12 vdc .25 amps, -12 vdc .25 amps, & -5 vdc .25 amps. The input to the power supply is 115/230 vac 50/60 Hz. and is both filtered and fused. This assembly must have originally sold for well over $300.00 each! Only 25 on hand, so order early or be left out on this super bargain! Shpg. wt. 38 lb. SPL-479-35 $135.00 each.

Scientific Micro Systems IBM 3740 Compatible 8" FDD Controller Card

The SMS FD 0502 8" floppy disc drive controller is a complete preprogrammed controller for single or double density recording on either single or dual headed disc drives. It performs control functions required to transfer data between 1 to 4 drives and a host system, performs all formatting functions required to read and write data and utilizes both IBM single and double density standards to achieve up to 630 Kilobytes of storage per disk surface. Some key features are: programmable sector size, 128, 256, 512, or 1024 bytes, jumper selectable drive type, block transfer mode, sector buffer, overlapped head seek, on board General Purpose Host Interface with asynchronous 19 TTL signal lines for eight bit host system and input of only 5 vdc 6 amps. This board provides a direct interface to the following drives: Shugart 800-2/850, Pertec 511, Memorex 550/552, MFE 751B, Qume Data Trak and similiar drives. These boards were removed from the above cabinets which were in service prior to our receipt of them. The manufacturers price on these IBM compatible boards is currently $900.00 each. These boards all appear to be in excellent condition. If more information is needed, please call us. Shpg. wt. 3 lb. SPL 480 $150.00.

SEAGATE TECHNOLOGY ST 506 5½" HARD DRIVES

The Seagate Technology ST 506 hard disc drive utilizes proven Winchester technology for reliable storage of up to 5 megabytes of formatted data. Some features of this very popular drive are: 5 megabit/second data transfer rate, simple floppy like interface, high speed band actuator & stepper head positioning, requires only +5 & +12 vdc, and same physical size and mounting parameters as a mini floppy drive. This Shugart compatible drive is the same as used on many home personal computers. Each drive is checked out prior to shipment. Comes with data. Only a few on hand, so order early.

Shpg. wt. 8 lb. ST-506 $225.00.

5½" HARD DRIVE CONTROLLER CARD

Finally, affordable, intelligent disc drive controllers are available at low, low surplus prices. The OMTI 20C controller boards we offer are unused, late style, surplus from a now defunct system house. OMTI is a division of Scientific Micro Systems. These boards will handle up to (2) 5½" inch Winchester type hard drives that utilize a standard 34 pin SASI interface. Perfect for using with the above Seagate ST 506 drive, or other hard drives from 5 megabytes of storage on up. The controllers have buffered seek mode, overlapped seeks, auto seek & verify, extensive fault detection, auto head & cylinder switching, full sector buffering, 256/512 bytes/sector, 32 or 18 sectors/track (jumper selectable), programmable disc parameters and much more. The board runs on +5 vdc & +12 vdc. We supply users manual & pinout data. Guaranteed O.K.

Shpg. wt. 3 lb. OMTI 20 C $150.00 each 2/$275.00. Qty. pricing available.

5 VDC 25 AMP SWITCHING POWER SUPPLY

We just got in a small lot of ruggedly built, lightweight (4 lb.), compact (11" x 5" x 1½"), fully enclosed (cover removed for pic.), regulated, switching, power supplies made by RO Industries. Input of 115/230 vac is attached thru convenient, clearly marked screw terminals. The hefty 5 vdc 25 amp output is via heavy duty, brass lugs with a Red LED status indicator. All appear to be unused and in excellent condition. Shpg. wt. 6 lb. PS-8 $50.00.

Free 72 page catalogue available or send $1.00 for 1st class service to P. O. Box 62 E. Lynn, Ma. 01904.

Phone (617) 595-2275 to place your order by phone. MC, VISA or American Express charge cards accepted.
my opinion the top of the shaft should be moving away from you when you stand in front of the winder; this facilitates inserting insulation papers and observing the wire as it winds on.

Wire tension and feeding. In keeping with the idea of building something for practically nothing, the winding wire is fed onto the coil over a block of wood (see lower right in photo of completed unit) between two pieces of felt clamped in place by a short strip of metal held in position by small wooden screws. Glue one piece of felt to the piece of metal and one to the top of the wood block, and adjust wire tension by tightening or loosening the screws. Tension should be maintained as uniformly as possible all during the winding of a coil; too much tends to "crunch up" the layers already wound underneath, and too little leaves the wire already wound free to move around or slip out of position. A much more elaborate wire tensioning system would be preferred, but this method will hold the wire in position accurately enough for now. Feeding the wire off the end of the supply spool helps to avoid any additional drag.

Winding mandrel or form. I made this of wood cut to match the core size of the transformer, and with a hole diameter in one end to fit on the winding shaft, and in the other to accept a No. 10 screw (push in), and with saw cuts so that when the screw is removed, the mandrel shrinks a little to allow coil removal. To be safe, I included some paper shims — when the coil is finished, it's too late to discover that it won’t go over the core! (See fig. 6 for details.)

General. Once this winder is in operation, it will become apparent that the lateral position of the shaft is rather delicate, so be careful to see that nothing gets in its way while winding. Once a set-up was made, I tested it by having the shaft run back and forth several times under power and with the follower pads clamped on just to make sure everything was in order before actually starting the winding. This also helps

the follower pads to match the shape of the wire screw thread.

A thin coat of lubricant such as petroleum jelly on the screw thread winding is suggested.

One more precaution should be mentioned. Since not all enameled wire of a given copper size has the same thickness of enamel on it, the best course to follow is to use wire from the same spool for both the screw thread winding and the coil, if not, make sure the wire for the thread is *not smaller* in overall diameter than that used for the wire to be wound.

I was able to wind over 2300 turns of No. 42 enameled wire on a coil without any problems, and found that it could be run at over 200 RPM as long as the speed was brought up gradually. (In case you’re wondering, I was able to rewind the power transformer for the TV camera — and it’s still working!)

This design could easily be adapted to provide for greater winding lengths than the 1.8 inch (46 mm) I have provided for. Just remember to increase the space between the bearing posts and the overall length of the shaft rod to allow for the extra lateral movement needed.

references

SATELLITE TELEVISION RECEIVER SEMIKIT

with dual conversion downconverter

FEATURES:
- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polarator controls
- LED channel & tuning indicators

Install six factory assembled circuit boards to complete.

SEMIKIT $300.00
Completed downconverter add $100.00
Completed receiver and downconverter add $150.00

JAMES WALTER SATELLITE RECEIVER
2697 Nickel, San Pablo, CA 94806 Tel 415-724-0587

June 1985 PP 101
sporadic-E propagation

During the summer months, the sun, almost directly overhead, produces more ions in the lower ionosphere than it does in winter. These ions support short-skip propagation — even multiple short-skips. The geomagnetic field clusters and forces these overly abundant ions into cloud-like patches known as sporadic-E (E_s). These patches, which form in a thin-dense layer about 60 miles (100 km) above the earth, give rise to strong, mirror-like signal reflections over short-skip distances of 600 to 1200 miles (1000 to 2000 km).

Because E_s is related to the summer sun, the best locations for working these E_s openings are in the Northern Hemisphere from June through September and in the Southern Hemisphere during its summer, December through March. In each hemisphere the best E_s is found on either side of the geomagnetic equator; it's especially good where the geomagnetic equator is farthest from the geographic equator, giving greater distance and force for formation. These special areas are South-east Asia in the Northern Hemisphere and South America in the Southern Hemisphere, with the former the better of the two. This is because the sun's maximum level of ion production occurs in the D and E layers (37 to 62 miles, or 60 to 100 km) above the earth at 23 degrees latitude, directly under the sun. As the ionization travels (in movement known as diffusion or drift) from this maximum to less dense areas, E_s is bunched by field-strength variations. When ions move, they can move only parallel to the geomagnetic field lines, not perpendicular to them. (See cross-section views of the earth's magnetic field lines in fig. 1, particularly those lines connecting the northern and southern hemispheres.) Figure 2 shows the movement of E_s patches across the United States. The E_s patches are the variation (bunching) of ions caused by changes in the geomagnetic field strength modulating and forcing the ions in their north-south movement. In these two special areas of maximum separation between equators, the modulating force and the distance over which to bunch are greatest, so more E_s patches are formed.

last-minute forecast

DX conditions for the higher frequency bands, 10 through 30 meters, are expected to be very good during the first and last weeks of the month when the solar flux could be high. (Verify this daily by checking WWV at 18 minutes after each hour.) During the middle weeks of the month, the lower frequency bands should engage interest for some short skip daytime and DX at night. Geomagnetic disturbances are expected on June 6th and 16th. The moon will be full on the 3rd, and closest approach (perigee) will

fig. 1. The earth's magnetic dipole field, depicted relative to the size of the earth, shows that ions can move only north or south along field lines, not east or west across them. Consider, for example, the movement of E_s patches across the U.S. as shown in figure 2.
<table>
<thead>
<tr>
<th>Time</th>
<th>Asia</th>
<th>Far East</th>
<th>Europe</th>
<th>S. Africa</th>
<th>S. America</th>
<th>Antarctica</th>
<th>New Zealand</th>
<th>Oceania</th>
<th>Australia</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0600</td>
<td>20</td>
</tr>
<tr>
<td>0700</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0800</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

*The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during "normal" hours.

"Look at next higher band for possible openings."
JUST SLIGHTLY AHEAD!

- 4 MEMORIES - 3 WAY AUTO SCAN.
- DUAL VFO, IF SHIFT, CW-W, 400 Hz.
- CW-N 200 Hz. ALL 9 BANDS PLUS
- MARS. BUILT IN AC/DC POWER. SSB.
- CW OR RTTY. I.F. TUNE 3-STEP
- TUNING SPEED, 200 WATT PEP.
- MICROPHONE IMPEDANCE 600-50K
- OHM HAND MIC. INCLUDED.

WITH THE QUALITY YOU HAVE ALWAYS LOOKED FOR!

- 40, 15 AND 6 METERS ARE YOUR BASE
- STATION OR MOBILE WITH AC/DC
- BUILT IN POWER SUPPLY CW-N 200
- Hz OR USB. 2.50293 ANTENNA CON-
- NECTORS, HAND MIC. BUILT IN TVI
- FILTER LITTLE TO NO TV INTER-
- FERENCE. 20 WATT PEP. MARS ON
- 40 AND 6 METERS.

A GREAT QRP RIG WITH THE BIG RIG
SIGNAL, 2 WATTS OR 10 WATTS OUT,
BUILT IN CW SIDE TONE, DIGITAL
DISPLAY. HAND MIC. TOP MOUNTED
SPEAKER. MOBILE BRACKET, RIT OR
FINE TUNE TX/RX 4400 KHZ, 21 TO
21 450 MHZ SIGNAL TO NOISE MORE
THAN 100 dB DOWN.

SPECIAL

90 DAY WARRANTY ON ALL TRANSCEIVERS - DIRECT FROM NCG OR YOUR DEALER
WE HAVE 1 2 GHz BASE/REPEATER & MOBILE ANTENNAS

NOTE: PRICES AND SPECIFICATIONS SUBJECT TO
CHANGE WITHOUT NOTICE OR OBLIGATION

SPECIAL

CALLBOOKS NOW INCLUDE A FREE MAP
VALUE $2.50 each

NORTH AMERICAN CALLBOOK
Includes free map of North America.
The New North American Callbook now contains Canadian
and Mexican as well as all US Radio Amateurs. Fully up-
dated with all the latest callsigns and addresses. Edited to
ensure accuracy. Includes handy station aids. ©1984.
□CB-US85
softbound $25
($21.95 + $3.05 s & h)

FOREIGN CALLBOOK
Includes free World Wide Prefix map.
The only source of DX calls and addresses available. Fully
updated and has helpful QSL information. ©1984.
□CB-F85
Softbound $24
($20.95 + $3.05 s & h)

Order Both and SAVE even more — Regular Price $45
HAM RADIO SPECIAL $39.95 POSTPAID

SAVE $5

ham radio magazine BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441

104 June 1985
Clouds producing sporadic-E propagation generally travel from southeast to northwest at approximately 180 miles (280 km) per hour, moving in a relatively straight line.

Occur on the 1st and 29th. Summer solstice is on the 21st at 1044 UTC. The Aquarid meteor shower starts about the 18th, peaks about the 28th, and lasts until about August 7. The maximum radio-echo rate will be 34 per hour.

Band-by-band summary

Six meters will provide occasional openings to South Africa and South America around noontime by short-skip E_s.

Ten meters will provide long-skip conditions in the afternoon during the peak times of the 27-day solar cycle. Otherwise, look to sporadic-E short-skip and multihop openings around local noon for DX on these bands. (Transequatorial evening openings do not usually occur in the summertime.)

Fifteen and twenty meters, almost always open to some part of the world, will be the main daytime DX bands. Twenty meters will stay open on long southern paths into the night, though 15 will drop out in the late afternoon. Operate on 15 first, then move down to 20 meters later. DX is 5000 to 7000 miles (8000 to 11,200 km) on these bands. There may be some long one-hop transequatorial propagation.

Thirty and forty meters are both daytime and nighttime bands. Intermediate distance operation (1000 to 1500 miles, 1600 to 2400 km), in any direction is considered daytime DX. Night-time DX on these two bands may be expected to occur over greater distances than on 80 meters and, like 80, will follow the darkness path across the sky. Signal strength and distances covered are reduced on days of high solar flux values. In addition, no 30-meter openings will take place during the pre-dawn hours on the morning after these high radio flux values.

Eighty and one-sixty meters will exhibit short-skip conditions during daylight hours and lengthen for DX near dark. Eighty meters will open to the east just before your sunset swing more to the south as midnight approaches, and end up in the Pacific areas during the hour or so before dawn. (One-sixty opens later and ends earlier.)

References

TUBES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39/7289</td>
<td>$34.00</td>
<td>1182/4600A</td>
<td>$500.00</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>2E26</td>
<td>7.95</td>
<td>4600A</td>
<td>500.00</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>310.00</td>
<td>7854</td>
<td>130.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>102.00</td>
<td>4657</td>
<td>84.00</td>
<td>ML7855KAL</td>
<td>125.00</td>
</tr>
<tr>
<td>3-1000Z/8164</td>
<td>400.00</td>
<td>4662</td>
<td>100.00</td>
<td>7984</td>
<td>14.95</td>
</tr>
<tr>
<td>3B26/566A</td>
<td>9.50</td>
<td>4665</td>
<td>500.00</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CX4007/8961</td>
<td>255.00</td>
<td>4687</td>
<td>P.O.R.</td>
<td>8106</td>
<td>5.00</td>
</tr>
<tr>
<td>3CX1000A/1823</td>
<td>526.00</td>
<td>5675</td>
<td>42.00</td>
<td>8117A</td>
<td>22.00</td>
</tr>
<tr>
<td>3CX3000F1/6239</td>
<td>567.00</td>
<td>5721</td>
<td>250.00</td>
<td>8121</td>
<td>110.00</td>
</tr>
<tr>
<td>3CW3000H7</td>
<td>1700.00</td>
<td>5768</td>
<td>125.00</td>
<td>8122</td>
<td>110.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>473.00</td>
<td>5819</td>
<td>119.00</td>
<td>8134</td>
<td>470.00</td>
</tr>
<tr>
<td>3X3000F1</td>
<td>567.00</td>
<td>5836</td>
<td>232.50</td>
<td>8156</td>
<td>12.00</td>
</tr>
<tr>
<td>4-65A/8165</td>
<td>69.00</td>
<td>5837</td>
<td>140.00</td>
<td>8233</td>
<td>60.00</td>
</tr>
<tr>
<td>4-125A/4021</td>
<td>79.00</td>
<td>5861</td>
<td>185.00</td>
<td>8295/PL172</td>
<td>500.00</td>
</tr>
<tr>
<td>4-250A/5022</td>
<td>98.00</td>
<td>5867A</td>
<td>270.00</td>
<td>8458</td>
<td>35.00</td>
</tr>
<tr>
<td>4-400A/8438</td>
<td>98.00</td>
<td>5866/A1X902</td>
<td>42.00</td>
<td>8462</td>
<td>130.00</td>
</tr>
<tr>
<td>4-400B/7527</td>
<td>110.00</td>
<td>5876A</td>
<td>8.00</td>
<td>850A</td>
<td>95.00</td>
</tr>
<tr>
<td>4-400C/6775</td>
<td>110.00</td>
<td>5881/6L6</td>
<td>60.00</td>
<td>8533W</td>
<td>136.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>444.00</td>
<td>5893</td>
<td>180.00</td>
<td>8560A</td>
<td>75.00</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>54.00</td>
<td>5894/A</td>
<td>54.00</td>
<td>8560AS</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250FG/8621</td>
<td>75.00</td>
<td>5894B/8737</td>
<td>54.00</td>
<td>8608</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX250K/8245</td>
<td>125.00</td>
<td>5946</td>
<td>395.00</td>
<td>8609</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>90.00</td>
<td>6063/A29909</td>
<td>95.00</td>
<td>8624</td>
<td>70.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>170.00</td>
<td>6146/6146A</td>
<td>8.50</td>
<td>8637</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>110.00</td>
<td>6146B/9298</td>
<td>10.50</td>
<td>8643</td>
<td>166.00</td>
</tr>
<tr>
<td>4CX350F/8322</td>
<td>115.00</td>
<td>6146E/7212</td>
<td>17.95</td>
<td>8647</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX350FJ/8904</td>
<td>140.00</td>
<td>6156</td>
<td>110.00</td>
<td>8683</td>
<td>130.00</td>
</tr>
<tr>
<td>4CX600J/8809</td>
<td>835.00</td>
<td>6159</td>
<td>13.85</td>
<td>8877</td>
<td>465.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>242.50*</td>
<td>6159B</td>
<td>23.50</td>
<td>8908</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1000A/816B</td>
<td>485.00*</td>
<td>6161</td>
<td>325.00</td>
<td>8950</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1500B/8660</td>
<td>555.00</td>
<td>6280</td>
<td>42.50</td>
<td>8930</td>
<td>137.00</td>
</tr>
<tr>
<td>4CX5000A/8170</td>
<td>1100.00</td>
<td>6291</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX10000D/8171</td>
<td>1255.00</td>
<td>6293</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX1500A/9261</td>
<td>1500.00</td>
<td>6326</td>
<td>P.O.R.</td>
<td>6C47/EL34</td>
<td>5.38</td>
</tr>
<tr>
<td>4CW800F</td>
<td>710.00</td>
<td>6360A/A</td>
<td>5.75</td>
<td>6CL5</td>
<td>3.50</td>
</tr>
<tr>
<td>4DB2</td>
<td>240.00</td>
<td>6399</td>
<td>540.00</td>
<td>6DJ5</td>
<td>2.50</td>
</tr>
<tr>
<td>4E27A/5-1259</td>
<td>240.00</td>
<td>6550A</td>
<td>10.00</td>
<td>6DJQ</td>
<td>6.58</td>
</tr>
<tr>
<td>4PR60A</td>
<td>200.00</td>
<td>6883B/8032A/8552</td>
<td>10.00</td>
<td>6GF5</td>
<td>5.85</td>
</tr>
<tr>
<td>4PR60B</td>
<td>345.00</td>
<td>6897</td>
<td>160.00</td>
<td>6HJ5A</td>
<td>6.20</td>
</tr>
<tr>
<td>4PR65A/8187</td>
<td>175.00</td>
<td>6907</td>
<td>79.00</td>
<td>6K6</td>
<td>6.00</td>
</tr>
<tr>
<td>4PR1000A/8189</td>
<td>590.00</td>
<td>6922/6DJ8</td>
<td>5.00</td>
<td>6KB5</td>
<td>6.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>22.00</td>
<td>6K5F</td>
<td>8.73</td>
</tr>
<tr>
<td>4X150D/7609</td>
<td>95.00</td>
<td>7094</td>
<td>250.00</td>
<td>6J6GA</td>
<td>6.28</td>
</tr>
<tr>
<td>4X250B</td>
<td>45.00</td>
<td>7117</td>
<td>38.50</td>
<td>6J8B</td>
<td>6.00</td>
</tr>
<tr>
<td>4X250C</td>
<td>45.00</td>
<td>7203</td>
<td>P.O.R.</td>
<td>6J8C</td>
<td>6.00</td>
</tr>
<tr>
<td>4X500A</td>
<td>412.00</td>
<td>7211</td>
<td>100.00</td>
<td>6J6C</td>
<td>7.25</td>
</tr>
<tr>
<td>5CX1500A</td>
<td>660.00</td>
<td>7213</td>
<td>300.00*</td>
<td>6K6N</td>
<td>5.05</td>
</tr>
<tr>
<td>KT88</td>
<td>27.50</td>
<td>7214</td>
<td>300.00*</td>
<td>6KD6</td>
<td>8.25</td>
</tr>
<tr>
<td>416B</td>
<td>45.00</td>
<td>7271</td>
<td>135.00</td>
<td>6LF6</td>
<td>7.00</td>
</tr>
<tr>
<td>416C</td>
<td>62.50</td>
<td>7289/2C39</td>
<td>34.00</td>
<td>6LQ6 G.E.</td>
<td>7.00</td>
</tr>
<tr>
<td>572B/160L</td>
<td>49.95</td>
<td>7325</td>
<td>P.O.R.</td>
<td>6LQ6/6MJ6 Sylvania</td>
<td>9.00</td>
</tr>
<tr>
<td>592/3-200A3</td>
<td>211.00</td>
<td>7360</td>
<td>13.50</td>
<td>6M5E</td>
<td>8.90</td>
</tr>
<tr>
<td>807</td>
<td>8.50</td>
<td>7377</td>
<td>85.00</td>
<td>12A7</td>
<td>3.50</td>
</tr>
<tr>
<td>811A</td>
<td>15.00</td>
<td>7408</td>
<td>2.50</td>
<td>12AX7</td>
<td>3.00</td>
</tr>
<tr>
<td>812A</td>
<td>29.00</td>
<td>7609</td>
<td>95.00</td>
<td>12BY7</td>
<td>5.00</td>
</tr>
<tr>
<td>813</td>
<td>50.00</td>
<td>7735</td>
<td>36.00</td>
<td>12JB6A</td>
<td>6.50</td>
</tr>
</tbody>
</table>

NOTE: * = USED TUBE
NOTE: P.O.R. = PRICE ON REQUEST

"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM."

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

For information call: 602-265-0731

MHZ electronics
3802 North 27th Ave., Phoenix, AZ 85017
PRICES SUBJECT TO CHANGE WITHOUT NOTICE

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."
"FILTERS"

COLLINS Mechanical Filter #526-9724-010 MODEL 455Z32F

455KHz at 3.2kHz wide. May be other models but equivalent. May be used or new. $15.99

ATLAS Crystal Filters

5.595-2.7/8/L5B, 5.595-2.7/L5B
8 pole 2.7kHz wide Upper sideband. Impedance 800ohms 15pf In/800ohms 0pf out. 19.99
5.595-2.7/8/L1, 5.595-2.7/USB
8 pole 2.7kHz wide Upper sideband. Impedance 800ohms 15pf In/800ohms 0pf out. 19.99
5.595-500/4, 5.595-500/CW
4 pole 500 cycles wide CW. Impedance 800ohms 15pf In/800ohms 0pf out. 19.99
9.0/L5B/CW
6 pole 2.7kHz wide at 6dB. Impedance 680ohms 7pf In/300ohms 8pf out. CW-1599Hz 19.99

KOKUSAI ELECTRIC CO. Mechanical Filter MF-455-ZL/ZU-21H

455KHz at Center Frequency of 455.5KC. Carrier Frequency of 455KHz 2.36KC Bandwidth.
Upper sideband. (ZU) 19.99
Lower sideband. (ZL) 19.99

CRYSTAL FILTERS

N1XKO FX-07800C 7.8MHz $10.00
T5W FP-103-2 10.6935MHz 10.00
SOK SCH-113A 11.275MHz 10.00
TAMA TF-311250 CF-3179.3MHz 19.99
TYCO/CD 001019880 10.7MHz 2pole 15KHz bandwidth 5.00
MOTOROLA 4884863B01 11.7MHz 2pole 15KHz bandwidth 5.00
PTI 5350C 12MHz 2pole 15KHz bandwidth 5.00
PTI 5426C 21.4MHz 2pole 15KHz bandwidth 5.00
PTI 1479 10.7MHz 8pole bandwidth 7.5KHz at 3dB, 5KHz at 6dB 20.00
COMTECH A10300 45MHz 2pole 15KHz bandwidth 6.00
FMC EFK-15700 20.6MHz 36KHz wide 10.00
FILTECH 2131 CF-7.825MHz 10.00

CERAMIC FILTERS

AVX 4F449 12.6KHz Bandpass Filter 3dB bandwidth 1.6MHz from 11.8-13.4MHz 10.00
CLEVITE TO-01A 455KHz+2KHz bandwidth 4-7kHz at 3dB 5.00
TFT-1236A 455KHz+1KHz bandwidth 6dB min 12KHz, 60KHz max 36KHz 10.00
MURATA BFD455B 455KHz 2.50
BFD455L 455KHz 1.50
CFW455E 455KHz+5.5KHz at 3dB, +8KHz at 6dB, +16KHz at 50dB 6.65
CFW455D 455KHz+3KHz at 3dB, +10KHz at 6dB, +20KHz at 50dB 6.65
CFW455C 455KHz+3KHz at 3dB, +8KHz at 6dB, +16KHz at 50dB 6.00
CFW455D 455KHz+2KHz bandwidth ±15KHz at 6dB, ±30KHz at 40dB 2.90
CFW455G 455KHz+2KHz bandwidth ±12.5KHz at 6dB, ±24KHz at 40dB 2.90
CFW455H 455KHz+1KHz bandwidth ±4.5KHz at 6dB, ±10KHz at 40dB 2.90
CFW455H 455KHz+1KHz bandwidth ±3KHz at 6dB, ±9KHz at 40dB 2.90
CFW455D 455KHz+1KHz bandwidth ±2KHz at 6dB, ±6KHz at 40dB 2.90
CFW455G 455KHz+3KHz at 6dB, ±9KHz at 40dB 2.90
SFD455D 455KHz 2.50
SFD455D 455KHz+2KHz, 3dB bandwidth 4.5KHz ±1KHz 5.00
SFE10.7MA 10.7MHz 280KHz+50KHz at 3dB, 650KHz at 20dB 2.50
SFE10.7MS 10.7MHz 230KHz+50KHz at 3dB, 570KHz at 20dB 2.50
SPG10.7MA 10.7MHz 500KHz 10.00

TOKIN CFW455G/TFU455K 455KHz+2KHz 2.90
NIPPON IF-B4/CPW455I 455KHz+1KHz 2.90
IF-B5/CPW455H 455KHz+1KHz 2.90
IF-B8 455KHz 2.90
IF-C18 455KHz 10.00

SPECTRA PHYSICS INC. Model 088 HeNe LASER TUBES

Power Output 1.6mW. Beam Dia. .75MM Beam Dia. 2.71MM 8KV Starting Voltage DC
68K OHM WATT BALLAST 1000VDC ±100VDC At 3.7MA $59.99

ROTRON MUFFIN FANS Model MARK4/MU4A1

115 VAC 14Watts 50/60CPS ImpeDance Protected F 88CFM at 50CPS $7.99

MHZ electronics

3802 North 27th Ave., Phoenix, AZ 85017

Toll Free Number
800-528-0180
(For orders only)

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.*

More Details? CHECK — OFF Page 126

June 1985
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1561</td>
<td>25.00</td>
<td>2N5920</td>
<td>70.00</td>
</tr>
<tr>
<td>2N1562</td>
<td>25.00</td>
<td>2N5921</td>
<td>80.00</td>
</tr>
<tr>
<td>2N1692</td>
<td>25.00</td>
<td>2N5922</td>
<td>10.00</td>
</tr>
<tr>
<td>2N2557</td>
<td>1.55</td>
<td>2N5931</td>
<td>25.00</td>
</tr>
<tr>
<td>2N2557JAM</td>
<td>4.10</td>
<td>2N8041</td>
<td>23.00</td>
</tr>
<tr>
<td>2N2557JANTX</td>
<td>4.50</td>
<td>2N8942</td>
<td>40.00</td>
</tr>
<tr>
<td>2N2876</td>
<td>11.50</td>
<td>2N9435</td>
<td>10.00</td>
</tr>
<tr>
<td>2N2947</td>
<td>18.35</td>
<td>2N9665</td>
<td>50.00</td>
</tr>
<tr>
<td>2N2948</td>
<td>13.00</td>
<td>2N9686</td>
<td>12.00</td>
</tr>
<tr>
<td>2N2949</td>
<td>15.50</td>
<td>2N9947</td>
<td>9.20</td>
</tr>
<tr>
<td>2N3118</td>
<td>5.00</td>
<td>2N6800</td>
<td>6.00</td>
</tr>
<tr>
<td>2N3119</td>
<td>4.00</td>
<td>2N6801</td>
<td>7.00</td>
</tr>
<tr>
<td>2N3134</td>
<td>1.15</td>
<td>2N6803</td>
<td>5.00</td>
</tr>
<tr>
<td>2N3287</td>
<td>4.90</td>
<td>2N6808</td>
<td>9.50</td>
</tr>
<tr>
<td>2N3288</td>
<td>4.40</td>
<td>2N6809</td>
<td>11.00</td>
</tr>
<tr>
<td>2N3309</td>
<td>4.85</td>
<td>2N6895</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3375</td>
<td>17.10</td>
<td>2N6906</td>
<td>16.10</td>
</tr>
<tr>
<td>2N3678</td>
<td>2.13</td>
<td>2N6909</td>
<td>20.70</td>
</tr>
<tr>
<td>2N3553</td>
<td>1.55</td>
<td>2N6910</td>
<td>21.00</td>
</tr>
<tr>
<td>2N3553JAN</td>
<td>2.90</td>
<td>2N6915</td>
<td>27.50</td>
</tr>
<tr>
<td>2N3632</td>
<td>15.50</td>
<td>2N6926</td>
<td>40.24</td>
</tr>
<tr>
<td>2N3733</td>
<td>11.00</td>
<td>2N6936</td>
<td>142.00</td>
</tr>
<tr>
<td>2N3818</td>
<td>5.00</td>
<td>2N6767</td>
<td>30.30</td>
</tr>
<tr>
<td>2N3866</td>
<td>1.30</td>
<td>2N6797</td>
<td>1.50</td>
</tr>
<tr>
<td>2N3889JAN</td>
<td>2.20</td>
<td>2N6834</td>
<td>30.30</td>
</tr>
<tr>
<td>2N3866JANTX</td>
<td>3.80</td>
<td>2N6839</td>
<td>18.00</td>
</tr>
<tr>
<td>2N3866JANTXV</td>
<td>4.70</td>
<td>2N6856</td>
<td>16.06</td>
</tr>
<tr>
<td>2N3924</td>
<td>3.35</td>
<td>2N6867</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3926</td>
<td>16.10</td>
<td>2N6600</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3927</td>
<td>17.25</td>
<td>2N6649</td>
<td>18.00</td>
</tr>
<tr>
<td>2N3948</td>
<td>1.75</td>
<td>2N6680</td>
<td>80.00</td>
</tr>
<tr>
<td>2N3950</td>
<td>25.00</td>
<td>2N6136</td>
<td>15.00</td>
</tr>
<tr>
<td>2N3959</td>
<td>3.85</td>
<td>61-80703T4</td>
<td>65.00</td>
</tr>
<tr>
<td>2N4001</td>
<td>11.00</td>
<td>35C05</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4002</td>
<td>2.00</td>
<td>102-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4004</td>
<td>14.00</td>
<td>103-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4007</td>
<td>1.80</td>
<td>103-2</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4060</td>
<td>4.53</td>
<td>104P1</td>
<td>10.00</td>
</tr>
<tr>
<td>2N4127</td>
<td>21.00</td>
<td>163P1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4146</td>
<td>2.25</td>
<td>181-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4167</td>
<td>2.23</td>
<td>210-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4288</td>
<td>1.85</td>
<td>269-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4400</td>
<td>11.80</td>
<td>281-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4927</td>
<td>3.90</td>
<td>282-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N4957</td>
<td>3.45</td>
<td>61-80702T4</td>
<td>25.00</td>
</tr>
<tr>
<td>2N4959</td>
<td>2.30</td>
<td>564-1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5016</td>
<td>18.40</td>
<td>698-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5026</td>
<td>18.40</td>
<td>700</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5030</td>
<td>18.40</td>
<td>701</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5050</td>
<td>13.80</td>
<td>702-3</td>
<td>11.00</td>
</tr>
<tr>
<td>2N5108</td>
<td>3.45</td>
<td>711</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5160</td>
<td>1.70</td>
<td>733-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5208</td>
<td>3.45</td>
<td>750-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5227</td>
<td>21.62</td>
<td>4321</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5219</td>
<td>1.04</td>
<td>3638P1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5216</td>
<td>56.00</td>
<td>3992</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5470</td>
<td>75.00</td>
<td>614P1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5583</td>
<td>3.45</td>
<td>4243P1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>9.77</td>
<td>430P1</td>
<td>18.35</td>
</tr>
<tr>
<td>2N5590</td>
<td>10.92</td>
<td>438P1</td>
<td>27.50</td>
</tr>
<tr>
<td>2N5900</td>
<td>13.80</td>
<td>791-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5596</td>
<td>9.90</td>
<td>793-2</td>
<td>10.50</td>
</tr>
<tr>
<td>2N5636</td>
<td>12.00</td>
<td>728-1</td>
<td>37.30</td>
</tr>
<tr>
<td>2N5637</td>
<td>15.50</td>
<td>736-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N5620</td>
<td>12.42</td>
<td>779</td>
<td>10.50</td>
</tr>
<tr>
<td>2N5623</td>
<td>14.03</td>
<td>795</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5643</td>
<td>25.50</td>
<td>795-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5662</td>
<td>13.80</td>
<td>796-1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5666</td>
<td>20.70</td>
<td>797-1</td>
<td>36.00</td>
</tr>
<tr>
<td>2N5651</td>
<td>11.05</td>
<td>40001GCA</td>
<td>2.50</td>
</tr>
<tr>
<td>2N5691</td>
<td>18.00</td>
<td>60279 RCA</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5764</td>
<td>27.00</td>
<td>60280 RCA</td>
<td>4.62</td>
</tr>
<tr>
<td>2N5836</td>
<td>3.45</td>
<td>60282 RCA</td>
<td>2.50</td>
</tr>
<tr>
<td>2N5842</td>
<td>8.45</td>
<td>60282 CA</td>
<td>24.00</td>
</tr>
<tr>
<td>2N5847</td>
<td>19.00</td>
<td>60290 RCA</td>
<td>2.80</td>
</tr>
<tr>
<td>2N5849</td>
<td>20.00</td>
<td>60292 RCA</td>
<td>13.05</td>
</tr>
<tr>
<td>2N5913</td>
<td>3.25</td>
<td>60294 RCA</td>
<td>2.50</td>
</tr>
<tr>
<td>2N5916</td>
<td>36.10</td>
<td>60295 RCA</td>
<td>21.00</td>
</tr>
</tbody>
</table>

Toll Free Number 800-528-0180 (For orders only)

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

Prices subject to change without notice.

MHZ electronics

3802 North 27th Ave., Phoenix, AZ 85017

Tell 'em saw it in HAM RADIO!

June 1986

108
<table>
<thead>
<tr>
<th>RF TRANSISTORS (CONTINUED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1107</td>
</tr>
<tr>
<td>M131</td>
</tr>
<tr>
<td>M132</td>
</tr>
<tr>
<td>M133</td>
</tr>
<tr>
<td>M916</td>
</tr>
<tr>
<td>M959</td>
</tr>
<tr>
<td>M958</td>
</tr>
<tr>
<td>M957</td>
</tr>
<tr>
<td>M956</td>
</tr>
<tr>
<td>M954</td>
</tr>
<tr>
<td>M953</td>
</tr>
<tr>
<td>M948</td>
</tr>
<tr>
<td>M950</td>
</tr>
<tr>
<td>M955</td>
</tr>
<tr>
<td>M947</td>
</tr>
<tr>
<td>M946</td>
</tr>
<tr>
<td>M945</td>
</tr>
<tr>
<td>M943</td>
</tr>
<tr>
<td>M942</td>
</tr>
<tr>
<td>M941</td>
</tr>
<tr>
<td>M940</td>
</tr>
<tr>
<td>M939</td>
</tr>
<tr>
<td>M938</td>
</tr>
<tr>
<td>M937</td>
</tr>
<tr>
<td>M936</td>
</tr>
<tr>
<td>M935</td>
</tr>
<tr>
<td>M934</td>
</tr>
<tr>
<td>M933</td>
</tr>
<tr>
<td>M932</td>
</tr>
<tr>
<td>M931</td>
</tr>
<tr>
<td>M930</td>
</tr>
<tr>
<td>M929</td>
</tr>
<tr>
<td>M928</td>
</tr>
<tr>
<td>M927</td>
</tr>
<tr>
<td>M926</td>
</tr>
<tr>
<td>M925</td>
</tr>
<tr>
<td>M924</td>
</tr>
<tr>
<td>M923</td>
</tr>
<tr>
<td>M922</td>
</tr>
<tr>
<td>M921</td>
</tr>
<tr>
<td>M920</td>
</tr>
<tr>
<td>M919</td>
</tr>
<tr>
<td>M918</td>
</tr>
<tr>
<td>M917</td>
</tr>
<tr>
<td>M916</td>
</tr>
<tr>
<td>M915</td>
</tr>
<tr>
<td>M914</td>
</tr>
<tr>
<td>M913</td>
</tr>
<tr>
<td>M912</td>
</tr>
<tr>
<td>M911</td>
</tr>
<tr>
<td>M910</td>
</tr>
<tr>
<td>M909</td>
</tr>
<tr>
<td>M908</td>
</tr>
<tr>
<td>M907</td>
</tr>
<tr>
<td>M906</td>
</tr>
<tr>
<td>M905</td>
</tr>
<tr>
<td>M904</td>
</tr>
<tr>
<td>M903</td>
</tr>
<tr>
<td>M902</td>
</tr>
<tr>
<td>M901</td>
</tr>
<tr>
<td>M900</td>
</tr>
<tr>
<td>M800</td>
</tr>
<tr>
<td>M700</td>
</tr>
<tr>
<td>M600</td>
</tr>
<tr>
<td>M500</td>
</tr>
<tr>
<td>M400</td>
</tr>
<tr>
<td>M300</td>
</tr>
<tr>
<td>M200</td>
</tr>
<tr>
<td>M100</td>
</tr>
<tr>
<td>M10</td>
</tr>
<tr>
<td>M8</td>
</tr>
<tr>
<td>M6</td>
</tr>
<tr>
<td>M5</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1107</td>
</tr>
<tr>
<td>M131</td>
</tr>
<tr>
<td>M132</td>
</tr>
<tr>
<td>M133</td>
</tr>
<tr>
<td>M916</td>
</tr>
<tr>
<td>M959</td>
</tr>
<tr>
<td>M958</td>
</tr>
<tr>
<td>M957</td>
</tr>
<tr>
<td>M956</td>
</tr>
<tr>
<td>M954</td>
</tr>
<tr>
<td>M953</td>
</tr>
<tr>
<td>M948</td>
</tr>
<tr>
<td>M950</td>
</tr>
<tr>
<td>M955</td>
</tr>
<tr>
<td>M947</td>
</tr>
<tr>
<td>M946</td>
</tr>
<tr>
<td>M945</td>
</tr>
<tr>
<td>M943</td>
</tr>
<tr>
<td>M942</td>
</tr>
<tr>
<td>M941</td>
</tr>
<tr>
<td>M940</td>
</tr>
<tr>
<td>M939</td>
</tr>
<tr>
<td>M938</td>
</tr>
<tr>
<td>M937</td>
</tr>
<tr>
<td>M936</td>
</tr>
<tr>
<td>M935</td>
</tr>
<tr>
<td>M934</td>
</tr>
<tr>
<td>M933</td>
</tr>
<tr>
<td>M932</td>
</tr>
<tr>
<td>M931</td>
</tr>
<tr>
<td>M930</td>
</tr>
<tr>
<td>M929</td>
</tr>
<tr>
<td>M928</td>
</tr>
<tr>
<td>M927</td>
</tr>
<tr>
<td>M926</td>
</tr>
<tr>
<td>M925</td>
</tr>
<tr>
<td>M924</td>
</tr>
<tr>
<td>M923</td>
</tr>
<tr>
<td>M922</td>
</tr>
<tr>
<td>M921</td>
</tr>
<tr>
<td>M920</td>
</tr>
<tr>
<td>M919</td>
</tr>
<tr>
<td>M918</td>
</tr>
<tr>
<td>M917</td>
</tr>
<tr>
<td>M916</td>
</tr>
<tr>
<td>M915</td>
</tr>
<tr>
<td>M914</td>
</tr>
<tr>
<td>M913</td>
</tr>
<tr>
<td>M912</td>
</tr>
<tr>
<td>M911</td>
</tr>
<tr>
<td>M910</td>
</tr>
<tr>
<td>M909</td>
</tr>
<tr>
<td>M908</td>
</tr>
<tr>
<td>M907</td>
</tr>
<tr>
<td>M906</td>
</tr>
<tr>
<td>M905</td>
</tr>
<tr>
<td>M904</td>
</tr>
<tr>
<td>M903</td>
</tr>
<tr>
<td>M902</td>
</tr>
<tr>
<td>M901</td>
</tr>
<tr>
<td>M900</td>
</tr>
<tr>
<td>M800</td>
</tr>
<tr>
<td>M700</td>
</tr>
<tr>
<td>M600</td>
</tr>
<tr>
<td>M500</td>
</tr>
<tr>
<td>M400</td>
</tr>
<tr>
<td>M300</td>
</tr>
<tr>
<td>M200</td>
</tr>
<tr>
<td>M100</td>
</tr>
<tr>
<td>M10</td>
</tr>
<tr>
<td>M8</td>
</tr>
<tr>
<td>M6</td>
</tr>
<tr>
<td>M5</td>
</tr>
<tr>
<td>M4</td>
</tr>
<tr>
<td>M3</td>
</tr>
<tr>
<td>M2</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M909</td>
</tr>
</tbody>
</table>

Toll Free Number
800-528-0180
(For orders only)

“**Toll Free Number**
800-528-0180
(For orders only)

*For information call: 602-265-0731

MH z electronics
3802 North 27th Ave., Phoenix, AZ 85017

Prices Subject to Change Without Notice

More Details? CHECK—OFF Page 126

June 1986 109

[Image 0x0 to 562x770]
E.F. JOHNSON ROLLER INDUCTORS

MODEL 229-0201-01
100H at 3 AMPS MAX. $36.99

MODEL 229-0202-01
100H at 5 AMPS MAX. $44.99

UNIVERSAL CHARGER $19.99

NI-CAD BATTERY CHARGERS

MALLORY CHARGER $23.99

EVEREADY CHARGER $9.99

UNELCO,SEMCO,ARCO METAL CLAD MICA CAPACITORS

<table>
<thead>
<tr>
<th>Standard Size</th>
<th>Micro Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>5</td>
</tr>
<tr>
<td>4.7</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6.8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8.2</td>
<td>10</td>
</tr>
<tr>
<td>9.1</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

NOTE ALL VALUES LISTED IN PICO FARAD

PRICE INFORMATION

1 to 10 $.90ea. 11 to 51 $.80ea. 52 to 102 $.70ea. 103 and up call

Toll Free Number 800-528-0180 (For orders only) For information call: 602-265-0731

MH z electronics
3802 North 27th Ave., Phoenix, AZ 85017

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Tell 'em you saw it in HAM RADIO!
Ham Radio’s guide to help you find your local

California

C & A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best —
Since 1962.

FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
24 Hour: 800-421-2258
The place for great dependable
names in Ham Radio.

JUN’S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping
at prices you can afford.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware’s Friendliest Ham Store.

DELWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu,
Kenwood, Santec, KDK, and more.
One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast’s only full service
 Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable
names in Ham Radio.

Hawaii

HONOLULU ELECTRONICS
819 KEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 51
years. Complete lines of Amateur equip-
ment, accessories and parts.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu. Wed & Fri;
9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
808 NORTH MAIN STREET
EVANSTVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic,
Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.

Massachusetts

James Millen Components by
ANTENNAS ETC.
16 HANSON ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, binding posts, capacitors, con-
densers, chokes, coils, ceramics, H.V.
connectors, plate caps, hardware
knobs, dials, scopes and grid dippers.
Inquire SASE or visit.

Tel-com, Inc.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite,
Computer applications.
Call Paul WD8AHO

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. Rancho Drive
Las Vegas, NV 89106
702-647-3114
Dale Porray “Squeak,” AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

JUN’S ELECTRONICS
460 E. Plumb Lane — 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom — Yaesu Dealer

New York

ADIRONDACK ELECTRONICS, INC.
1991 CENTRAL AVENUE
ALBANY, NY 12205
518-456-0203
Amateur Radio for the Northeast since
1943.

VHF COMMUNICATIONS
915 North MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all
of your Amateur needs. Featuring
ICOM “The World System.” Western New
York’s finest Amateur dealer.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH (CLEVELAND AREA)
44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS,
DIV. OF TREVERSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVERSE, PA 19047
215-658-5400
Same Location for 30 Years.

LaRUE ELECTRONICS
1121 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
16 S. MOUNTAIN BLVD., RTE. 309
MOUNTAIN TOP, PA 18707
717-474-9399
Lunar, Microwave Modules, ARCSO, Astron, KLM, Tenna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Denton, Mirage, Amphenol, Belden.

Wisconsin

MADISON ELECTRONICS SUPPLY
1508 MCKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30
Sat 9-3

Custom Mailing Lists on Labels!

Amateur Radio Operator NAMES
Custom mailing lists compiled to your specifications
- Geographic by ZIP and/or State
- By License Issue or Expiration Date
- Self stick 1x3 labels
Total List 453,000
Price: $25 Thousand
Buckmaster Publishing 184
Whitewater, WI 53190
(715) 831-9777

Texas

MADISON ELECTRONICS SUPPLY
1508 MCKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30
Sat 9-3

Custom Mailing Lists on Labels!

Amateur Radio Operator NAMES
Custom mailing lists compiled to your specifications
- Geographic by ZIP and/or State
- By License Issue or Expiration Date
- Self stick 1x3 labels
Total List 453,000
Price: $25 Thousand
Buckmaster Publishing 184
Whitewater, WI 53190
(715) 831-9777
IS YOUR HAM SHACK COMPUTERIZED?

The modern home computer, with some priced as low as $180, is certainly one of the most exciting and challenging new items to be offered in the Radio Amateur market in many years. These machines are such a logical extension of our Amateur activities, that it seems a wonder that it has taken some of us as long as it has to get involved.

Thousands of hams are using these new machines to do everything from handling their logging and QSLing and as CW, RTTY and ASCII terminals to down many of their electronic circuit calculations. Others are now able to do their own propagation forecasting with S-f and greyline programs. It's really quite amazing. We have just begun to see all the things that are yet to come in the months and years ahead.

Whether you are merely contemplating the purchase of your first computer or you are an experienced user, Ham Radio's booklets wants to help you in this important new area. We have selected a number of the more interesting programs which have been written for Amateur use, along with some excellent books to help you learn more.

Sincerely,

Skip Tenney, WINLB

HAM DATA PROGRAMS FOR THE COMMODORE C-64

by NN4U

Ham Data Antenna Design

Forget longhand calculations when you have this program! This self-prompting program covers dipoles, Yagis, long wires, rhombics, quads, loops, verticals and other antennas. You simply enter the frequency you are designing an antenna for, the antenna you want to make and the program will give you all the initial design specifications you need. The results can be stored on disk for permanent retention.

□ HD-AD $9.95

Ham Data Contest Log

This disk contains four different contest programs; ARRL Sweepstakes, Field Day, Universal WW Contest log, plus a dupe checking routine. Each program is designed for real time use. It automatically enters date, time, band and serial number for each contact. A 24-hour clock is displayed at the top of the VDT screen. When the contest is over, the program will print your results listing all duped and scored contacts in serial sequence with all the necessary exchange information as well as completed score at the bottom of the page.

□ HD-CL $24.95

Ham Data Propagation Chart

This program will be an invaluable addition to any Ham Shack. The Propagation Chart allows you to determine the maximum usable frequency (MUF) and the optimum frequency (FOT) between your QTH and any spot on the globe. You can get either a screen display, a printed tabular list over several days, or a printed graph of MUF and FOT. You also get automatic beam headings and distance to the DX station. Really makes DXing a snap. Covers 160-10 meters and the VHF/UF bands.

□ HD-PC $21.95

CIRCUIT BUSTERS

STAR 1.0 DESIGN PROGRAM

STAR, S-parameter Two Part Analysis Routine, is a professional engineering program designed to help analyze electronic circuits. It is particularly helpful in frequency domain analysis of RF and microwave circuits. To use STAR, you input circuit information by component; inductors, resistors, capacitors, transformers, transmission lines, two port data and several two port manipulations. STAR will then give you S-parameter data for each requested frequency in tabular or plot form. You can also use STAR to optimize component values for maximum circuit performance. This program is definitely not for electronic beginners. Engineers and serious hams, however, will find STAR to be an invaluable design tool.

□ RR-IBM program for IBM $99
□ RR-C-64 program for Commodore C-64 $99
□ RR-AP program for Apple II $89
□ RR-KP program for KayPro $89

C-64 + DX Edge = Fun

Generate your own Greyleine display.

Xantek has adapted their best selling DX Edge to the computer world and it comes at a very reasonable price. Just $34.95 brings into your ham shack the ability to know and predict when and where DX is going to appear. The DX Edge shows you the sun's path across the earth. When you are using the program, the computer will automatically update the information as the sun progresses across the face of the earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 QO zones. Disk and documentation are just $34.95. This is something you've got to have! ©1985.

□ XN-C64 $34.95
CIRCUIT DESIGN PROGRAMS FOR THE APPLE II
by Howard Berlin, W3HB
Use your Apple to help design electronic circuits. This book is a series of engineering programs written in Applesoft that give you various "what happens if..." and "what's needed when" as they apply to a number of engineering questions. By using the computer you can change various parameters and see how the circuit will perform without going through extensive manual calculations. © 1982, 132 pages.
□ 21853 Softbound $15.95

APPLE II PROGRAMMER'S GUIDE
by David Heigelman
This book zeros in on how to program the popular Apple II home computer in both BASIC and assembly language. Check full of helpful facts, applications, ideas, suggestions and technical information in one simple easy-to-use reference manual. You also get a number of short application and demonstration programs in basic and assembly language. © 1984, 416 pages.
□ 22299 Softbound $19.95

APPLE PROGRAMMER'S HANDBOOK
by Paul Irwin
Get the most of your Apple computer by learning assembly language programming. Assembly language programs run much faster than basic programs and can be designed for maximum effectiveness with minimum compromise. Plenty of stock routines are included, organized by topic and detailed memory map. The 408-page book will answer just about all your questions on assembly language programming. © 1984, 480 pages.
□ 22175 Softbound $22.95

Z-80 MICROPROCESSOR PROGRAMMING AND INTERFACING
by Nichols and Rony
This is the easy way for novices and experts to learn how to write and design programs for the popular Z-80 microprocessor. Book 1 focuses on fundamentals and use of the Z-80 while Book 2 explores special interest topics in great depth. © 1979.
□ 21669 Book 1 Softbound $12.95
□ 21610 Book 2 Softbound $16.95
□ Buy BOTH Special $24.95 SAVE $4.95

MICRO COOKBOOK Vol. 1 and 2
by Don Lancaster
Learning to use a PC can be a real challenge. However, Don Lancaster has tried to filter out all the gobbledygook and make it as easy as can be. Volume 1 features down-to-earth coverage of fundamentals, number systems, hardware and software logic, mainline codes and standards, electronic memory and memory devices and other applications. Volume 2 covers address space, addressing, system architecture, machine code programming, 10 and helpful suggestions to common problems.
□ 21828 Volume 1 © 1982 $15.95
□ 21829 Volume 2 © 1983 $15.95
□ Buy BOTH Special $26.95 SAVE $4.95

ORDER FORM

Name ___________________________ Address ___________________________
City ___________________________ State __________ Zip __________
□ Check or Money Order Enclosed
□ VISA □ MasterCard
Card # ___________ Expires ___________
Catalog # Title GTY. Price Total

Subtotal $________ Shipping $________ TOTAL $__________
"TUNE IN" THE WORLD OF SPECIALIZED COMMUNICATIONS!

Thousands of "Ham Radio" operators across the country are enjoying "Specialized Communications" modes. Whether it's FSTV, SSTV, FAX, OSCAR, EME, RTTY, PACKET or COMPUTERS, today's Radio Amateur is a highly skilled Communications Specialist!

Providing full, in-depth coverage of these modes is our business and we've been doing it now for over 19 years! And now we're expanding!

Now published "monthly" 10 times per year, SPEC-COM™ readers are kept up-to-date in a world of fast moving modern technology.

Why not give us a try? Back issue samples are available for just $2.00 ppd. (Master Article Indexes add $1.00).

Special Six Month Trial Subscription $10.00. U.S./Canada/Mexico Annual Subscription $20.00. (Foreign Subscriptions slightly higher).

SPEC-COM™
Amateur Radio Specialized Communication Journal
P.O. Box H
Lowden, Iowa 52255
(319) 944-7669 (Membership Services)

COMING

THE ARR L ANTENNA COMPENDI U M

This new League publication will consist of over 20 antenna articles never published before. Availability will be in late May — just in time for your warm-weather antenna work! Watch QST for details.

Other books on antennas available from ARR L:

Antenna Anthology The best hf antenna articles taken from QST. Copyright 1978. 148 pages. $4.00 U.S., $4.50 elsewhere.

THE AMERICAN RADIO RELAY LEAGUE 225 MAIN ST NEWINGTON, CT 06111

WARNING
SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc. are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Paid for By the Following:
ROHN
P.O. Box 2000
Peoria, IL 61656
PLL phase modulator

I devised this circuit to help students understand the difference between frequency and phase modulation. It is also useful for studying the effects of phase-shift behavior in a closed-loop circuit.

Most phase modulators contain a certain amount of amplitude modulation, but this one does not. Its basic circuit, shown in fig. 1, uses a 565 PLL chip as a modulator, which is limited to a maximum frequency of about 500 kHz.

Resistor R1 and capacitor C1 establish the approximate operating modulation frequency where \(f \approx \frac{1.2}{4R1C1} \). The reference or input frequency should be adjusted until lock is obtained as described below. If desired, the input signal can be provided by a crystal-controlled oscillator (this is one of the chief advantages of phase modulation).

Lock can be determined by observing the input frequency on one channel of a dual-trace scope and the VCO frequency on the other channel. Pin 9 of the 565 should be used to observe the VCO frequency because a triangular waveform is available at this point. Pins 4 and 5 provide the normal square-wave outputs of the chip, but the fast rise and fall times make it hard to see what is happening to the waveforms at this level.

Once lock is achieved, the input frequency should be adjusted until the reference oscillator frequency and the VCO frequency are in phase. Alternatively, the value of R1 and C1 can be adjusted to shift the phase of the VCO signal.

The next step is to apply the modulating frequency to the error voltage input pin. A very low frequency should be used at first. Observe the display on an oscilloscope, making sure the scope is triggered on the reference signal. If the circuit is working correctly, the reference signal should be steady and the VCO signal should shift slowly back and forth in phase. The VCO is now being phase modulated.

Try experimenting with different amplitudes of the modulating frequency. The amount of modulation should vary with the amplitude of the modulating frequency. If the modulation amplitude is too high, the VCO may lose lock.

The amount of modulation is somewhat limited in this circuit. If more modulation is needed, additional modulators may be added in cascade. The output of the first modulator must be taken from pin 4 or 5 and reduced in level to about 200 mW before being fed to the second modulator.

Another characteristic of phase modulators may also be observed. As the modulation frequency is increased, the amount of modulation also increases. (This is another advantage of a phase modulator over an FM modulator.) Pre-emphasis is built right into the circuit and does not have to be added externally.

I have found this circuit easy to build and helpful to students. It can be converted to FM by removing the reference oscillator.

I would be interested in hearing from other ham radio readers about applications using other chips at higher frequencies.

Bibliography

Graham W. Stratford, VE3FHM

MINIMUF modification

The software code modification of the MINIMUF 3 propagation program provided in fig. 2 of the February, 1985 “DX Forecaster” (page 7) contains an error. Line 1774, which reads IF F2 > F3 THEN 1779 should read IF F2 > F3 THEN 1780.

filter design

The program shown in N6JH’s “Computer-aided Interdigital Bandpass Filter Design” (January, 1985, page 12) will correctly execute all examples given in the text and are applicable to any Chebyshev filter design. However, if a Butterworth design is desired (OdB entered as the desired ripple in the passband), the program will plot the attenuation graph incorrectly, although it will compute the mechanical details correctly. Changing line 970 from GOTO 1040 to GOTO 1020 will correct this problem.
118 June 1985

Coming Events

ACTIVITIES

Places to go...

PENNSYLVANIA: Harrisburg Annual Firecracker Hamfest, Thursday, July 4. Sponsored by the Harrisburg RAC, Bressler Fire Co. picnic grounds, Exit 1 of I-283. Nearby motels and restaurants. Plenty of parking. Shaded pavilion with tables. Free ticketing. Admission $2.00, $1.00 for kids 12 and under. For more information write Dave, K3M5G, 131 Livington St., Swatara, PA 17113 or (717) 939-4957.

OHIO: The 21st annual Wood County Ham-A-Rama, Sunday, July 14. Wood County Fairgrounds, Bowling Green. Gates open at 8 AM. Free admission and parking. Trunk sales. Food available. Advance table rentals $5.00 to dealers only. Saturday setup until 8 PM. K8THF talk on in 147.75 repeater and 52.5. Free call signs SASE to WD4JCD, Wood County ARC, c/o Craig Henderson, N9JBG, 7368 Scotch Ridge Rd., Pymble, OH 43350.

MICHIGAN: The "85" U.P. Hamfest, July 27 and 28, St. Francis de Sales School, 1009 PA Avenue, Market Street, Kingstown. Cross the river from Wilkes-Barre. Set up at 6 AM to 5 PM. Banquet 6:30 PM Sunday 8 AM to 2 PM. Registration $3.00. Free admittance. **CONTACT:** FAX 412-872-5123. For more information: Debbie Barton, W9DBT, 509 Range Line, Manistique, MI 49664 (906) 431-5684 after 3 PM.

PENNSYLVANIA: The MURGAS ARC (K9YLY) will sponsor the annual Wilkes-Barre Hamfest, Sunday, July 7, rain or shine. Address: 1213 Kempton Avenue, Scranton. Advance ticket sales $5.00 per day. Complete check in on 146.52/52 simplex. For more details contact W9SPN, 56676, K8T1H.

BRITISH COLUMBIA: The 33rd annual Pacific Northwest DX Convention, sponsored by the British Columbia DX Club, Saturday and Sunday, July 27 and 28. Richmond Inn, Richmond, BC, Canada. For further information write complete check in on 146.011.61 and 52 simplex. For more information: Hamfest Committee, PO Box 1046, Wilkes-Barre, PA 18703 or (717) 398-5863.

INDIANA: State ARRL Convention and Indianapolis Hamfest, Saturday and Sunday, July 13 and 14. Marion County Fairgrounds, 174 and 146. Flea market, commercial vendors, free camper facilities and hookup available on grounds and Motels nearby. Gates open at 6 AM. Tech forums. ARRL convention and banquet. Food service on grounds. Gate ticket $5.00 gets free parking and more. For further information: Indianapolis Hamfest, PO Box 11776, Indianapolis, IN 46201.

1985 BLOSSOMLAND BLAST, Sunday, October 6, 1985. Write "BLAST." PO Box 175, St. Joseph, MI 49085.

MAINE: The YL International Sideband System's annual convention, June 27-30, Sugarloaf/USA, Kingfield. Accommodations are available for reasonable rates. RV parking. Besides the regular meetings, DX forum, etc. there are planned tours of Rangeley Lake area and Sugarloaf/USA. For complete details and registration packet send business SASE to: Julie Jones, W2HRY, 939-4957. For more information, please write: John Jones, W2HRY, 939-4957.

NEW YORK: The 60th Aeromail Radio Club's Hamfest, Saturday, July 13. Arlington Senior High School, Poughkeepsie/Lagrange. Note date change. Doors open 6 AM. Tickets $2.00. XVI, and children free. Tailgating space $3.00 (1 free admission). Table $4.00 (1 free table and admission). Auction 2 PM. Talk in on 146.37/47 and 54.52. For information: John Jones, W2HRY, 939-4957. For more information, please write: John Jones, W2HRY, 939-4957.

OHIO: The Lancaster and Fairfield County Amateur Radio Club's annual Hamfest, Saturday, July 14. Fairfield County Fairgrounds, State Road 2, West of LaPorte, 8 AM to 2 PM. Donation $3.00 at the gate. Paved parking. Indoor tables by reservation only/box at LaPorte, IN 46350.

WISCONSIN: The Aug Claire Amateur Radio Club will hold its annual Hamfest. Saturday, July 13. 4 H Buildings, Eau Claire. 8 AM to 4 PM. Free tables and set and eyeball for early arrivals. Saturday 6 AM to 5 PM. Banquet 6:30 PM. Sunday 8 AM to 2 PM. Registration $3.00. Free admittance. **CONTACT:** For more information or dealers write: W9BVB, 20222, T23377, T23333.

OCTOBER 1985

INDIANA: The combined LaPorte-Michigan City Amateur Radio Clubs will sponsor Hamfest, Saturday, July 14, at the LaPorte County Fairgrounds, State Road 2, West of LaPorte, 8 AM to 2 PM. Donation $3.00 at the gate. Paved parking. Indoor tables by reservation only/box at LaPorte, IN 46350.

OCTOBER 1985

INDIANA: State ARRL Convention and Indianapolis Hamfest, Saturday and Sunday, July 13 and 14. Marion County Fairgrounds, 174 and 146. Flea market, commercial vendors, free camper facilities and hookup available on grounds and Motels nearby. Gates open at 6 AM. Tech forums. ARRL convention and banquet. Food service on grounds. Gate ticket $5.00 gets free parking and more. For further information: Indianapolis Hamfest, PO Box 11776, Indianapolis, IN 46201.

OCTOBER 1985

BLOSSOMLAND BLAST, Sunday, October 6, 1985. Write "BLAST." PO Box 175, St. Joseph, MI 49085.

MAINE: The YL International Sideband System's annual convention, June 27-30, Sugarloaf/USA, Kingfield. Accommodations are available for reasonable rates. RV parking. Besides the regular meetings, DX forum, etc. there are planned tours of Rangeley Lake area and Sugarloaf/USA. For complete details and registration packet send business SASE to: Julie Jones, W2HRY, 939-4957. For more information, please write: John Jones, W2HRY, 939-4957.

NEW YORK: The 60th Aeromail Radio Club's Hamfest, Saturday, July 13. Arlington Senior High School, Poughkeepsie/Lagrange. Note date change. Doors open 6 AM. Tickets $2.00. XVI, and children free. Tailgating space $3.00 (1 free admission). Table $4.00 (1 free table and admission). Auction 2 PM. Talk in on 146.37/47 and 54.52. For information: John Jones, W2HRY, 939-4957. For more information, please write: John Jones, W2HRY, 939-4957.

OHIO: The Lancaster and Fairfield County Amateur Radio Club's annual Hamfest, Saturday, July 14. Fairfield County Fairgrounds, State Road 2, West of LaPorte, 8 AM to 2 PM. Donation $3.00 at the gate. Paved parking. Indoor tables by reservation only/box at LaPorte, IN 46350.

WISCONSIN: The Aug Claire Amateur Radio Club will hold its annual Hamfest. Saturday, July 13. 4 H Buildings, Eau Claire. 8 AM to 4 PM. Free tables and set and eyeball for early arrivals. Saturday 6 AM to 5 PM. Banquet 6:30 PM. Sunday 8 AM to 2 PM. Registration $3.00. Free admittance. **CONTACT:** For more information or dealers write: W9BVB, 20222, T23377, T23333.

OCTOBER 1985

INDIANA: The combined LaPorte-Michigan City Amateur Radio Clubs will sponsor Hamfest, Saturday, July 14, at the LaPorte County Fairgrounds, State Road 2, West of LaPorte, 8 AM to 2 PM. Donation $3.00 at the gate. Paved parking. Indoor tables by reservation only/box at LaPorte, IN 46350.

WISCONSIN: The Aug Claire Amateur Radio Club will hold its annual Hamfest. Saturday, July 13. 4 H Buildings, Eau Claire. 8 AM to 4 PM. Free tables and set and eyeball for early arrivals. Saturday 6 AM to 5 PM. Banquet 6:30 PM. Sunday 8 AM to 2 PM. Registration $3.00. Free admittance. **CONTACT:** For more information or dealers write: W9BVB, 20222, T23377, T23333.

OCTOBER 1985

INDIANA: State ARRL Convention and Indianapolis Hamfest, Saturday and Sunday, July 13 and 14. Marion County Fairgrounds, 174 and 146. Flea market, commercial vendors, free camper facilities and hookup available on grounds and Motels nearby. Gates open at 6 AM. Tech forums. ARRL convention and banquet. Food service on grounds. Gate ticket $5.00 gets free parking and more. For further information: Indianapolis Hamfest, PO Box 11776, Indianapolis, IN 46201.
Virginia: The Old Virginia Hams ARC announces its 11th annual Hamfest, June 20, Prince William County Fairgrounds, off Rt 234 1/2 mile south of Manassas. Gates open 8 AM, Tailgate setup 7 AM. Admission $4, under 12 free. Tailgate table spaces available. QSL program CW proficiency awards. For information: Art Whitmire, W1CRO, c/o Old Virginia Hams ARC, PO Box 1255, Manassas, VA 22110. Tel (703) 802-2002.

Massachusetts: The ARRl Heavy Hitters Hamfest, June 20 and 21, Topsfield Fairgrounds, US Route 1, Topsfield Inside/door/outdoor flea market, food concessions, commercial exhibits, ARRl forum, AMSAT show, CW and QSL contests, film and video, live music, radio and musical coffeehouse (BYO instruments) Activities for non-hams: License exams, send completed Form 610, photocopy of current license for $4 payable to ARRl/VEC, Topsfield Exams, PO Box 71, Hanover, MA 02339. By June 20. Enclose SASE. Sorry no Novice exams. Free Saturday morning seminars. Additional spaces $50. Tickets $3.00 Advance tickets $3.00 $4.00/door. Non-ham spouses and children free Send check and SASE to Heavy Hitters Hamfest, PO Box 411, Walpole, MA 02081. For more information contact Russ Cormack, WA1TTV, 21st Thorndike Street, Arlington, MA 02174. To proceed open Wiilham repeaters. Hamfests and the Jimmy Fund Talk in on 146.8 and 147.285.

The Central Oklahoma Color Owners, a 278 member Radio Shack Color Computer users group, meets the second Saturday of each month at 9 AM at 10th Street and Hudson Street in Oklahoma City. "COCONET", an open forum bulletin board system which can be reached at (405) 376-1949 24 hours a day, 7 days a week The system contains COCD and FLEX operating system programs for downloading with no user connect fees

Illinois: The Egyptian Radio Club’s annual Hamfest, Sunday, June 9, 8 AM to 3 PM at ERC clubhouse and grounds. Free flea market space, approx 10’ available on first come, first served basis. Additional spaces $50. Tickets $1.00 advance, $2.00/door or $35. Talk in on 146.076 or 146.52 simplex. For information SASE to Egyptian Radio Club, PO Box 562, Granite City, IL 62040.

CO Contest: VHFers please note! The first annual CO World Wide VHF WPT Contest is July 20-22, 0z thru 1296 MHz. For details, log sheets, etc., write to SCORE, PO Box 1161, Denville, NJ 07834 or to CO Magazine. We need your entry to make this a success.

OPERATING OPPORTUNITIES

Things to do...

Colorado Six Meter Iterational Net Contest 00302 July 4 from 0300Z to 0500Z, 14 meter affiliated club, open to all operators in Colorado. For information, contact the Colorado Six Meter Net Coordinator, W6MTT, PO Box 6602, Denver, CO 80206 within 30 days of contest.

The Cape Fear Amateur Radio Society, of Fayetteville, NC will operate W4/1ZP from 8-8 PM E0ST around 7:325 MHz on the evening of June 15 from the 17th annual National Hollerin’ Contest in Spivey’s Corner, NC. Certificate available upon receipt of your QSL, along with $1.00 to help cover printing and postage. Send to Hollerin’, W4/1ZP, PO Box 332, Dunn, NC 28334. Allow 4 weeks for delivery.

The Tusco Amateur Radio Club, W8ZX, will operate from Fort Laurens Ohio State Memorial in conjunction with the Bridge of the American Revolution’s reenactment of 18th century military encampment 4002 June 29 through 2002 June 30. Special commemorative confirmation will be issued Semi-lega! SASE (3 IRCs for DX) and QSJ into William K. MacNealy, W8BKM, RF4 1 DR, Bolivar, OH 44612.

West Coast 160 Bulletin Summer SSQ Contest. SSQ July 13 to July 14. Time 0000 GMT 7/13/85 to 2300 GMT 7/14/85. Single operator only. Exchange RST, QTH Class, subscribers, non subscribers log your date, time, IRTH, QTH Log send to R. Koskoboomski, 5 Watson Drive, Plymouth, MI 49501 prior to June 31, 1985.

High Plains ARC will operate K7PT at Historic Fort Laramie from 0002Z July 4 until 0000Z July 5th. Phone: 3-850, 7-250.
The new GT-2218 HOTSHOT dialer is a unique one-number telephone dialer that quickly dials any telephone number up to 31 digits. It permits the use of alternate long distance service without the use of lengthy 13-digit phone and billing numbers and also allows an emergency number to be dialed by simply picking up the phone. The HOTSHOT features an easy-to-program memory that doesn’t require battery backup since it is manually programmed.

Two new courses have also been added to the educational product line up: the EC-2001 Computer Fundamentals Course and the EE-1003 Analog Circuit Design Course.

For a free copy of the new Heathkit catalog, contact Heath Company, 1020 Islington Avenue, Dept.

Circle #302 on Reader Service Card.

computer interface communications terminal

Amateur-Wholesale Electronics has announced its new θ-777 computer-interface terminal, featuring RTTY, bit inversion, AMTOR modes ARQ, FEC and SEL-FEC, ASCII and CW, any speed, any shift (ASCII and BAUDOT).

The θ-777 is a self-contained unit, with software, that allows reception and transmission with any computer or terminal that has RS232 or TTL 1/0. The θ-777 automatically decodes signals and displays mode, speed, and polarity on the CRT. Operation is simplified by the use of 28 Bar-LEDs and LEDs including a bar-graph tuning indicator that allows precise centering of received signals.

In BAUDOT and ASCII modes, communication speed can be set from 12 to 200 baud using the modem, or 12 to 600 baud using TTL level. RS232 or TTL level data connection is 100-2400 baud (ASCII) or 45.5-200 baud (BAUDOT). Morse speed can be varied from 5 to 100 WPM in 1-WPM increments and is fully autotrack on receive.

The θ-777, which measures 2 1/2 x 2 x 8 1/2 inches, operates from a power supply of 11 to 14 volts DC.

For more information, contact Amateur Wholesale Electronics, Inc., 8817 S.W. 129 Terrace, Miami, Florida 33176.

Circle #303 on Reader Service Card.

digital FSK data modules

With packet radio and other forms of digital data communications becoming so popular, Hamtronics, Inc. has announced two new modules to its line of VHF and UHF FM transmitters, receivers, and accessories. The new modules provide for data interface with radio equipment using the popular “202” modem format (1200/2200 Hz tones) at data rates up to 1200 baud on ordinary NBFM channels. In addition to modulating and demodulating the data pulses, these modules provide transmitter keying and full handshake facilities.

The MO-202 FSK Data Modulator is a PC board module measuring only 1 7/8 x 4 inches. It automatically keys the transmitter in response to a “request to send” input from the computer, and it provides a “clear to send” handshake 25 milliseconds later, after the transmitter and receiver have had time to respond. Relative levels of the 1200 and 2200 Hz space and mark tones are equalized to compensate for the EIA emphasis in the transmitter for maximum signal range. The MO-202 is only $45 in kit form, and is easy to assemble and interface with Hamtronics® and other FM transmitters or transceivers.

The DE-202 FSK Data Demodulator is a PC board module measuring only 1 1/2 x 4 inches. It can be used with any FM receiver or transceiver to detect FSK transmissions and automatically provide a “receiver carrier detect” handshake to the computer when mark or space tones are present. A special frequency compensation circuit levels the two tones coming from the receiver to allow for maximum weak signal response. The DE-202 kit is only $38.

For further information, contact Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14468-9535.

Circle #116 on Reader Service Card.

frequency list

Dennis Peterson, N7CKD, Publisher of West Coast 160 DX Bulletin has just released the 1985 edition of the World Top Band Frequency Allocations Listing. This comprehensive list includes both CW and SSB frequency allocations for 240 of the 315 current DXCC countries, listed in the DXCC format. The list can also be used as a 160-meter DXCC check sheet. U.S. price is $5.50 (via first-class mail) and $7.50 overseas (airmail).

For more information, contact Dennis Peterson, N7CKD, 4248 A Street, Space 609, Auburn, Washington 98002.

Circle #304 on Reader Service Card.

station manager

Station Manager/Advanced is a software system that utilizes micro computer technology to fulfill the information processing needs of an Amateur Radio station. Centered around the traditional station log, Station Manager/Advanced enables the Radio Amateur to handle the routine requirements of keeping accurate station activity records with maximum efficiency as well as instantly extracting information from the station’s logs that would not be readily available using conventional manual methods. It also provides the user with the capability to easily manage several concurrent logs and a comprehensive
new handhelds

Two new radios are available from SANTEC: the ST-200ET (2 meters) and the ST-400ET (70 cm). Both are easy to use, thumbwheel frequency switched units designed to be compatible with accessories for handhelds you may already own. Both are backed by a comprehensive two-year extended service plan from ENCOMM.

The ST-200ET is priced at $199.95 and the ST-400ET at $249.95.

For more information, contact ENCOMM, 2000 Avenue G, Suite 800, Plano, Texas 75074.

Circle #306 on Reader Service Card.

bench-style DMM

North American SOAR Corp. has announced its Model 5430-4 digit multi-function bench-style DMM. Microprocessor controlled using SOAR Corporation's Custom LSI Chip Set, the 5430 is a 25,000-count DMM that enables users to obtain greater resolution than possible with ordinary 20,000 count units presently available.

Priced at $499, Model 5430 offers features previously unavailable in any other 4 1/2-digit DMM. It can measure DC voltage ±0.03 percent, true RMS AC voltage and current to 80 kHz, DC current and resistance from 0.01 ohms through 25 megohms. The 5430 is a dual-input frequency counter with resolution to 0.001 Hz.

Special features include: diode test, continuity beeper, data hold, peak hold with a DC acquisition time of 5 milliseconds and AC of 250 milliseconds; relative test, 3 1/2 digit select for fast survey measurements, and a comparator circuit for making Go, NO-Go tests, with comparator data output via rear panel connector. All functions and ranges are touch-key selectable.

For further information, contact North American SOAR Corp., 1126 Cornell Avenue, Cherry Hill, New Jersey 08002.

Circle #307 on Reader Service Card.

solar panels

The ENCON Corporation has announced the release of three new photovoltaic panels: the SX-38, SX-42, and the SX-146 dual voltage-semicrystalline PV modules.

The solar cells are manufactured from semicrystalline silicon, a material developed by Solarex specifically for use in photovoltaic devices. Cells made from this material are highly efficient, stable, attractive, and inherently resistant to the "hot-spot" damage that can affect single-crystal cell under reverse-bias conditions.

Cell strings are laminated between sheets of ethylene vinyl acetate (EVA), Tedlar, and a sheet of 1/8 inch tempered low-iron glass. This glass is self-cleaning in most climates, retains its excellent transmissivity indefinitely, and is extremely resistant to mechanical stress, including impact of hail up to 3/4 inch in diameter at terminal velocity. Furthermore, its temperature coefficient of expansion is well matched to the
cells; this matching and the stress-relieved electrical cell connections ensures excellent service even in climates with severe daily temperature ranges.

The module is framed with corrosion-resistant extruded aluminum sections with an architectural grade anodized finish. This strong, attractive framing and laminating is moisture resistant and accepts compatible mounting hardware.

The typical peaks power outputs for the new SX series modules are as follows:

- SX-38 40 watts, 16.2 VDC at 2.5 amperes
- SX-42 43 watts, 16.5 VDC at 2.6 amperes
- SX-146 47 watts, 18 VDC at 2.6 amperes

Panels can be wired for 6 VDC with a doubling of current output.

ENCON photovoltaic systems can be used for large or small Amateur Radio projects, repeater stations, computer back-up supplies, TVRO, cellular radio, as well as residential and commercial applications.

For more information, contact Paul Denapoli, WD8AH0, at ENCON Photovoltaics, 27800 Schoolcraft, Livonia, Michigan 48150.

Circle #302 on Reader Service Card.

block downconversion accessories

LUXOR North America Corp. has introduced four new block downconversion accessories for use with its Mark 2 Block Satellite Receiver. The four DC-passing accessories include a V/H vertical/horizontal switch, power divider, line amplifier, and 10-dB signal attenuator.

Early STV systems used downconverters, mounted at the antenna, that sent to the receiver only a single channel from the satellite at which the antenna was aimed. LUXOR’S new “block” system permits all channels (transponder signals) on a selected satellite to be cabled into the home at once. This allows simultaneous use of multiple block receivers tuned to different channels. Thus, using a shared antenna, an unlimited number of Mark 2 Block Receivers supporting TV sets in four different locations can be individually tuned to any channel available on a given satellite.

To split the incoming satellite signal between up to four receivers, each port of LUXOR’S Model 9758 4-way DC-Passing Power Divider passes direct current from the receiver to the LNB at the antenna, allowing full flexibility in switching receivers on and off. By cascading several Model 9758 splitters, an unlimited number of receivers can be hooked up to the same antenna.
The Model 9759 DC-Passing Line Amplifier amplifies the signal 20 dB to increase antenna-to-receiver cable length or the number of receivers served by one satellite antenna. Adding one amplifier allows approximately 200 more feet of RG6 cable.

The Model 9760 DC-Passing 10-dB Signal Attenuator is designed to reduce signal level for a short run in a system that required higher signal levels elsewhere. LUXOR'S new block downconversion systems can be used in homes with multiple viewers who have differing tastes in programming, in multiple-family dwellings, and in SMATV (Satellite Master Antenna Television) applications.

For more information, contact LUXOR North America Corp., 7815 108th Avenue, N.E., Suite 539, Bellevue, Washington 98040. Circle 310 on Reader Service Card.

"G.I." mechanics tool bag

The legendary "G.I." Mechanics Tool Bags are now available from Jensen Tools in a more durable fabric (Cordura® nylon) but with the same expandability and appeal as the old canvas "G.I." mechanics tool bag. The bags retain the traditional green color, over-sized metal zippers, and duck models. The bags retain the traditional duty web straps of the originals. Two large trial strength snaps. Eight interior pouches in the handy compartments each, and close with industrial strength snaps. Eight interior pouches in the main compartment serve to organize and protect small tools and parts.

For more information and a free catalog of hard-to-find tools, tool kits and cases, contact Jensen Tools Inc., 7815 S. 46th Street, Phoenix, Arizona 85040. Circle 311 on Reader Service Card.

Kenwood TR-50 transceiver

The Kenwood TR-50 is a battery pack mobile/ portable 1200 MHz FM transceiver that covers from 1260 to 1300 MHz with a 1-watt output transmitter. It features repeater offset with reverse switch, five memory channels, program-
AZOTIC INDUSTRIES
2026 W. BELMONT
CHICAGO, IL 60618
312-975-1290

ELECTRONIC COMPONENTS & SUPPLIES
- RF CONNECTORS
- UG CONNECTORS
- AUDIO CONNECTORS
- LINEAR ICs
- DIGITAL ICs
- TRANSFORMERS
- METERS
- COMPUTER CABLES
- DISKETTES
- IDC CONNECTORS
- D-SUBMINIATURE
- TEST EQUIP
- TRANSISTORS
- DIODES
- TRIM CAPS
- RELAYS
- SWITCHES
- TOOLS

WRITE FOR FREE CATALOG
VISIT OUR RETAIL STORE
HRS. MON-FRI 10-5 SAT 10-2
PHONE ORDERS WELCOMED
312-975-1290

MICROWAVE EQUIPMENT

RMSG Manual Tuned SIGNAL GENERATOR
2.0 to 2.5 MHz • +12 VDC
1 3.7 - 4.2 GHz $50.00
3 2.1 - 2.5 GHz $60.00
5 2.3 - 2.5 GHz $60.00
RMVO Voltage Tuned Oscillator
1 to 10 MHz • +12 VDC Bias
-1 till -12 VDC Tuning • On PC Board
1 1.8 - 2.6 GHz $25.00
Also Detectors, Line Stretchers, Variable Attenuators; 2.3 GHz Test Antennas, Mixers, LNA's and Converters.

ROENSC MICROWAVE
R.R. 1, Box 156B,
BROOKFIELD, MISSOURI 64428

The computerized DX EDGE gives all the DX advantages of the original plastic version, and additional flexibility as well. The DX EDGE finds unusual long range propagation paths by showing all the locations in the world where the sun is rising and setting at any time of year and time of day. (Excellent DX conditions often occur at these times.)

Easy to use, the DX EDGE works for all bands from 1.8 to 30 MHz. DX EDGE for the Commodore 64™ personal computer. With the new version, users of the Commodore 64™ will be able to see on-screen display of optimum QSO and reception possibilities, the Gray Line, sunrise and sunset times, and areas of the world in daylight and darkness. The display is a graphic presentation showing a detailed world map, not just a set of numbers.

Xantek has announced the availability of the DX EDGE™ for the Commodore 64™ personal computer. With the new version, users of the Commodore 64™ will be able to see on-screen display of optimum QSO and reception possibilities, the Gray Line, sunrise and sunset times, and areas of the world in daylight and darkness. The display is a graphic presentation showing a detailed world map, not just a set of numbers.
predicting equipment failures

As electronic equipment becomes more complex, so too do the ways in which it can fail. This increased complexity requires greater circuit and component density; as more and more components have been squeezed into smaller spaces, the number of circuit interconnects, and hence the number of potential failure points, have also increased — by a factor of a thousand or more in just the past few years. Although we are finding ways to dramatically reduce component size and the amount of power required to perform discrete functions, the fact remains that every capacitor or resistor still has two connections, and each transistor, three . . . and so on.

Because of the small mass of modern components, shock and vibration failures are no longer the problem they once were. High circuit density now makes heat a major culprit in circuit failure. Although a modern component may have dimensions of only a few thousandths of an inch, and may dissipate only a few milliwatts, these characteristics may result in a component dissipation of several watts per square inch. Unless provision for removing the heat is made, component or device failure will occur.

An additional source of potential failure is the chemical and metallurgical processes used during fabrication. Assembling electronic circuits no longer consists of simply soldering together some tin, lead, and copper; a modern integrated circuit may require the amicable association of dozens of materials in a way that provides the opportunity for hundreds of different chemical interactions. The opportunity for one or more of these materials to contaminate nearby components is an important consideration in modern circuit failure analysis.

Because of the complexity of modern circuits, the possibility exists for thousands of combinations of potential failure mechanisms to occur in a single piece of equipment. Computers are now used to explore all of the possible relationships that could exist, and the ways in which they could promote failure. These techniques [known as diagnostic flow routines — Ed.] have become very sophisticated, and are deemed absolutely essential in military and space systems where no opportunity for repair may exist, and the consequences of failure can range from the merely disappointing and expensive to the catastrophic. The traditional method of expressing the likelihood of failure is called "mean time between failure" (MTBF); high-quality electronic equipment averages an MTBF of about 5000 hours.

These improvements in studying failure mechanisms and taking action to anticipate and prevent failure mean we can take a new transceiver out of the box, plug it in, and expect to use it for years without trouble.

new batteries promise more power, longer life

For most of us, carbon or alkaline batteries are the power source for portable equipment. "Exotic" means we spent some money and bought Nickel-Cadmium cells. However, in the world of battery developers there's some very snazzy stuff going on.

Before we examine some of the details, and their implications for Amateur Radio, let's recall some of the rules regarding the availability of energy. In general, the amount of energy we can get out of any process is a function of how active the molecules, or atoms, of the energy source can be made. Since molecular activity translates to temperature, there is a general relationship between temperature and energy release. All of the processes with which we are familiar span the range from absolute zero — where nothing happens — to fusion reactions at a few hundred million degrees C, where everything tends to come apart.

These principles apply very much to the world of chemical batteries, and in the last 15 years or so, they have inspired some dramatic developments. Three important applications that have supported these developments have included electric vehicles, space systems, and military equipment. Each
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly send you all the pertinent information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly send you all the pertinent information.

Listed below are the page number and reader service number for each company advertising in this issue.

- Ace Communications
- Advanced Receiver Research
- AEA
- All Electronics
- Alpha Delta Communications
- Alumina Tower Co
- Amateur Electronic Supply
- Amateur-Wholesale Electronics
- American Radio Relay League
- Azotic Industries
- Barke & Williamson
- Barry Electronics
- Base 2 Systems
- Bauman Sales
- B.G. Micro
- BHCo
- Birich Hill Sales
- Brit's 2-Way Radio
- Buckmaster Publishing
- Butternut Electronics
- C & A Roberts
- Caddell Corp
- CeCo
- CES
- CMC Communications
- Coxial Dynamics, Inc.
- Communications Concepts, Inc.
- Communications Specialists
- Computer Trader Magazine
- Connect Systems
- Dalbari Corp
- Danielson Electronics
- Dynetic Systems
- EGE
- Electronic Equipment Bank
- Engineering Consulting
- Ex-Met
- Fox Tango Corp
- G.I.S.M.O.
- GLB Electronics
- Gus Browning's DX'ers Magazine
- Ham Radio's Bookstore
- Ham Radio Outlet
- * The Ham Station
- Hamtronic
- ICOM America, Inc.
- ICOM America, Inc.
- ICOM America, Inc.
- Indianapolis Hamfest
- Trio Electronics
- Juen's Electronics
- Kantronics
- Trio Kenwood Communications
- LUXOR (North American)
- M.E. Enterprises
- Mite Electronics
- Madison Electronic Supply
- Martin Engineering
- Merimac Satellite
- John J. Meshna, Jr., Co., Inc.
- Micro Control Specialties
- Micro Systems

PRODUCT REVIEW/NEW PRODUCT

- Amateur-Wholesale Electronics
- Encore, Inc.
- Encore Photovoltaics
- Hampton
- Heath Company
- ICOM America, Inc.
- Jensen Tools, Inc.
- * Trio Kenwood Communications
- North American Soar Corp.
- Omega Concepts, Inc.
- Dennis Peterson, NT/CKD
- Xantek, Inc.

*Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before July 31, 1986.

of these applications requires large amounts of power (hundreds of kilowatts) to be delivered over sustained periods of time — i.e., several days. This means that their associated battery systems must either be very big or have high energy densities. Since big batteries are not very compatible with portable systems, high energy densities are required.

Some of the battery techniques that can provide these higher energy densities include nickel-zinc, zinc-bromine, sodium-sulphur, and lithium-metal sulphide. Nickel-zinc batteries fundamentally operate at room temperature and have been fabricated in forms similar to automobile batteries for electric vehicle applications. They typically have energy densities of four to five times that of comparable lead-acid devices. At the high end of the temperature scale, lithium-metal sulphide batteries operate at several hundred degrees centigrade, and can provide energy densities ten times that of the best lead-acid batteries. Although each of these battery types is commercially available for use in appropriate high-priced applications, all have proved too expensive for the operation of electric vehicles.

The most sophisticated developments in battery technology are devices using circulating fluids which depend on the chemical reaction of lithium thionyl chloride. Utilizing this technology, batteries that can deliver megawatts of power for several days have been developed. (As you might expect, you don’t want to be around if you short one of these!)

On a more practical scale, the next few years could bring us rechargeable lithium cells that would enable handheld transceivers to operate satisfactorily for several months on a single charge. Bench-top transceivers with internal batteries capable of operating for several days, or weeks, are on the horizon. This would not only be a convenience for those who operate portable stations, but would also provide an important new impetus to the very function which justifies Amateur Radio — emergency operation.

126 June 1986

PICK A COMPUTER INTERFACE TO MATCH YOUR NEEDS

COMPUTER PATCH™ MODEL CP-1

The AEA Model CP-1 Computer Patch has earned a solid reputation for being the best overall interface value on the market today. We at AEA have now reaffirmed what our competitors already know; for the money, the CP-1 cannot be beat! That is why we have chosen to leave the popular CP-1 in our product line and to introduce new computer interface/terminal units with differing features and performance at different prices.

MICROPATCH™ MODEL MP-1

The new AEA model MP-1 Micropatch represents the best features and performance available for under $140.00. Featuring true dual-channel filtering of Mark and Space tones with an AM detector and Automatic Threshold Correction (ATC) circuit, the MP-1 is in a totally different performance class than competitive units that often have only a single channel filter or no filtering at all.

The MP-1 also offers a high performance CW capability. With respect to the CP-1, overall performance is nearly as good; but the CP-1 offers a few more advanced features such as variable shift tuning, RS-232 option, and a more advanced tuning indicator.

COMPUTER PATCH MODEL CP-100

The new CP-100 Computer Patch offers all the following exciting features in addition to the CP-1 features:

- 170, 425, 850 Hz Calibrated Shifts for Transmit and Receive
- 75 to 1000 Hz Variable Receive Shift Range
- Normal and Reverse FSK Outputs
- Input AGC
- Direct Coupled Automatic Threshold Control
- Front Panel Squelch
- Discriminator Style Tuning Indicator
- Current Loop Option
- Built-in Monitor Speaker
- Baud Rate Switch
- Improved AM Detector

Advanced Electronic Applications, Inc.
P.O. BOX C-2160 • LYNNWOOD, WA 98036
(206) 775-7373 • TELEX: 152571 AEA INTL
The SS-32HB is a new hybrid sub-audible encoder plucked from Communications Specialists’ Hothouse. It has grown through a cross of the time tested SS-32, the subminiature SS-32M and space age micro circuitry. This programmable 32 tone encoder measures a scant .5 x 1.0 x .15 inches; no small wonder it allows the addition of continuous tone control to a bunch of hand held transceivers that lack space.

Why not snip your problems in the bud, with our fast, one day delivery and attractive one year warranty.

$29.95 each
Yaesu has serious listeners for the serious listener.

Yaesu’s serious about giving you better ways to tune in the world around you.

And whether it’s for local action or worldwide DX, you’ll find our VHF/UHF and HF receivers are the superior match for all your listening needs.

The FRG-9600. A premium VHF/UHF scanning communications receiver. The 9600 is no typical scanner. And it’s easy to see why.

You won’t miss any local action with continuous coverage from 60 to 905 MHz.

You have more operating modes to listen in on: upper or lower sideband, CW, AM wide or narrow, and FM wide or narrow.

You can even watch television programs by plugging in a video monitor into the optional video output.

Scan in steps of 5, 10, 12½, 25 and 100 KHz. Store any frequency and related operating mode into any of the 99 memories. Scan the memories. Or in between them. Or simply “dial up” any frequency with the frequency entry pad.

Plus there’s much more, including a 24-hour clock, multiplexed output, LCD readout, signal strength graph, and an AC power adapter.

The FRG-8800 HF communications receiver. A better way to listen to the world. If you want a complete communications package, the FRG-8800 is just right for you.

You get continuous worldwide coverage from 150 KHz to 30 MHz.

And local coverage from 118 to 1.74 MHz with an optional VHF converter.

Listen in on any mode: upper and lower sideband, CW, AM wide or narrow, and FM.

Store frequencies and operating modes into any of the twelve channels for instant recall.

Scan the airwaves with a number of programmable scanning functions.

Listen in. When you want more from your VHF/UHF or HF receivers, just look to Yaesu. We take your listening seriously.

Yaesu Electronics Corporation
6851 Walthall Way Paramount, CA 90723
(213) 633-4007
Yaesu Cincinnati Service Center
9070 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.
FRG-9600 SSB coverage: 60 to 460 MHz.
Up Front and Center!

TR-7950/7930

The exceptional front-end selectivity and sensitivity, coupled with Kenwood's excellent audio section, gives you lots to hear! Compact design makes this transceiver at home in the shack or on the go!

- Large, easy-to-read backlit LCD readout.
 Indicates receive/transmit frequency, frequency offset, sub-tone selection, memory status. An LED readout indicates S & RF units, REVERSE, CENTER TUNING, PRIORITY, and ON AIR.
- Programmable scanning, with center-stop tuning.
 Microprocessor technology allows you to scan the entire 2 meter band, or just a small portion of it. Scanning stops on the center frequency during band scan — a Kenwood exclusive!
- 21 Multi-function memory channels.
 The TR-7950/7930 "remembers" frequency offset, and optional subtone channels. Memories 1-15 are for simplex and "normal" repeater operation. Memory pairs 16/17 and 18/19 are for "odd-ball" splits. Memories "A" and "B" store upper and lower band scan limits. The radio "beeps" when memory channel 1 is selected.
- Extended frequency coverage.
 Covers 142.000-148.995 MHz in 5-kHz steps. Repeater offsets are automatically selected in accordance with the ARRL 2 meter band plan. The front panel "OS" key may be used to allow manual changes in offset.
- Multi-function keyboard.
 The 16-key DTMF pad can also be used for direct frequency entry, sub-tone selection, memory address and scan programming. The keyboard is illuminated for night time use.

TR-7950 optional accessories:
- TU-79 three frequency tone unit
- PS-430 power supply
- KPS-12 fixed-station power supply for the TR-7950
- KPS-7A fixed-station power supply for the TR-7930
- SP-40 mobile speaker
- SP-50 mobile speaker
- MC-55 mobile microphone
- MC-46 16-key autopatch
- UP/DOWN microphone
- SWT-12 12 m, 100 W antenna tuner
- SW-100A/B power meters
- PG-3A noise filter

More TR-7950/7930 information is available from authorized Kenwood dealers.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220