The IC-751 is the most advanced transceiver available today. It's a competition grade ham receiver, a 100KHz to 30MHz continuous tuning general coverage receiver AND a full-featured all mode solid-state ham band transmitter. The IC-751 also covers the new WARC bands, MARS frequencies, and is AMTOR compatible.

Important Standard Features. Compare these important standard features in this "top of the line" base station:

- 100KHz - 30MHz Receiver
- 105dB dynamic range
- QSK — full break-in CW
- FM Mode Standard
- High-grade FL-44A 455KHz SSB filter
- 32 tunable Memories with lithium battery backup
- 100% Duty Cycle Transmitter
- Passband Tuning
- 12V DC operation
- Adjustable AGC
- Adjustable Noise Blanker
- RIT/XIT with separate readout
- IC-HM12 Microphone with Up/Down Scan
- Continuously adjustable transmit power

Options. IC-EX310 speech synthesizer, internal IC-PS35 power supply, external IC-PS35 or IC-PS30 system supply, IC-SM8 two-cable desk mic, IC-SM6 desk mic, RC-10 external controller, and a variety of filters.

FILTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>Filter</th>
<th>Model</th>
<th>Center Freq. [kHz]</th>
<th>6dB Width [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD FILTERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Ceramic</td>
<td>FL-85G</td>
<td>455</td>
<td>6.0</td>
</tr>
<tr>
<td>SSB (PRT) XTL</td>
<td>FL-30</td>
<td>901.5</td>
<td>2.3</td>
</tr>
<tr>
<td>FM Filter</td>
<td>FL-65A</td>
<td>901.5</td>
<td>15 (3-3dB)</td>
</tr>
<tr>
<td>SSB Narrow (Hyd.)</td>
<td>FL-44A</td>
<td>455</td>
<td>2.4</td>
</tr>
<tr>
<td>CW Narrow</td>
<td>FL-62A</td>
<td>455</td>
<td>0.500</td>
</tr>
<tr>
<td>CW Narrow</td>
<td>FL-59A</td>
<td>455</td>
<td>0.250</td>
</tr>
<tr>
<td>SSB Wide</td>
<td>FL-70</td>
<td>901.5</td>
<td>2.8</td>
</tr>
<tr>
<td>CW Narrow</td>
<td>FL-32</td>
<td>900.6</td>
<td>0.500</td>
</tr>
<tr>
<td>CW Narrow</td>
<td>FL-63</td>
<td>900.0</td>
<td>0.250</td>
</tr>
<tr>
<td>AM</td>
<td>FL-33</td>
<td>900.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Operating From 12V, the IC-751 is also available with an optional internal AC power supply, the IC-PS35... for the winning edge in field day competition.

The IC-751 provides superior performance for all amateur radio operators... from novice to extra class. See the IC-751 at your local ICOM dealer.
How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: ‘73). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will now hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That’s right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receiver discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH Is All You Need To Automatically Patch Your Base Station To Your Phone Line.

Use SMART PATCH for:
- Mobile (or remote base) to phone line via Simplex base. (see fig. 1)
- Mobile to Mobile via interconnected base stations for extended range. (see fig. 2)
- Telephone line to mobile (or remote base).

SMART PATCH uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES, 180 days of warranty protection. You simply can’t go wrong.
An FCC type accepted coupler is available for SMART PATCH.
TS-711A/TS-811A

Multi-function all-mode 2 m and 70 cm transceivers.

The TS-711A 2 m (142.149 MHz) and TS-811A 70 cm (430-450 MHz) all-mode transceivers are perfect base station units, designed to complement your present HF station. Both feature Kenwood's innovative D.C.S. circuitry. Built-in digital VFO's provide commercial-grade frequency stability through the use of a TCXO (Temperature Compensated Crystal Oscillator). The new fluorescent multi-function display shows frequency, RIT shift, VFO A/B, SPLIT, ALERT, repeater offset, digital code, call sign code, and memory channel. 40 multi-function memories store frequency, mode, repeater offset and tone. They have programmable scan, memory scan, and mode scan. The Auto-mode function automatically selects the correct mode for the frequency being used. When a mode key is depressed, an audible "beeper" announces mode identification in international Morse Code.

The TS-711A/TS-811A also feature all-mode squelch, noise blanker, speech processor (SSB, FM), IF shift, RF power control, alert, and a unique channel Quick-Step tuning that varies tuning characteristics from conventional VFO feel, to stepping action when CHQ switch is depressed.

Combine all these features with built-in AC power supply and a hefty 25 watts RF output power and you have your ideal base station.

Optional accessories:
- CD-10 Call sign Display
- TU-8 CTCSS Tone Unit • VS-1 Voice Synthesizer • MC-90A Deluxe Desk Mic • MC-80 Desk Mic • MC-85 Desk Mic
- SP-430 External Speakers
- MB-430 Mobile Mount
- PG-2J DC Cable

TS-670

TS-670 All-mode "Quad Bander"

The TS-670 "Quad Bander" is a unique all-mode transceiver that covers the 6 meter VHF band and the 10, 15 and 40 meter HF bands. FM operation may be added with the optional FM-430. Key features include dual digital VFO's, 80 memory channels, memory scan, and programmable band scan. Direct keyboard frequency selection allows you to enter a frequency to either VFO or to a memory channel using the 10-button key-pad on the front panel. The 2-color fluorescent tube display indicates frequency to the nearest 100 Hz (10 Hz modifiable) and includes LED indicators that signal the specific functions in use. The optional GC-10 general coverage receiver unit allows continuous tuning from 500 kHz to 30 MHz. The VS-1 voice synthesizer unit is another popular option available. All this plus IF shift, all-mode squelch, CW semi-break-in with side tone, narrow-wide filter selection, noise blanker, and R.F. attenuator make the TS-670 "Quad Bander" the next transceiver you should own!

Optional accessories:
- G-10 General Coverage Unit, 500 kHz to 30 MHz • VS-1 Voice Synthesizer • FM-430 FM Unit • YK-88C 500 Hz CW Filter • YK-88Q 270 Hz CW Filter • YK-88A 6 kHz AM Filter
- PS-430 DC Power Supply • KPS-7A DC Power Supply • MC-60A Deluxe Desk Mic • MC-80 Desk Mic • MC-85 Multi-Function Desk Mic • VOX-4 VOX Unit

More information on the TS-711A/TS-811A and TS-670 is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut St., Compton, CA 90220.

Specifications and prices are subject to change without notice or obligation.
contents

12 a home-brewed six-cavity duplexer
J.S. Gurske, K9EYY

29 safe, sensible silverplating
J.S. Gurske, K9EYY

33 the weekender: programmable
call sign identifier
Donald G. Varner, WB3CEH

38 VHF/UHF world: high power
amplifiers (part 2)
Joe Reisert, W1JR

51 defining the decibel
Michael Gruchalla

59 ham radio techniques
Bill Orr, W6SAI

67 mobile solid-state kilowatt
HF linear amplifier
Frank Kalmus, WA7SPR

82 the high-tech repeater: designing
and building an FM translator
Ken Wetzel, WA6CAY

126 the Guerri report:
superchips come of age
Ernie Guerri, W6MGI

128 advertisers index
and reader service
124 flea market

108 book review
120 ham mart

8 comments
101 new products
75 DX forecaster
6 presstop

5 reflections
YOU ALREADY OWN 75% OF A COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what's required to receive and send color video world-wide!

Add a ROBOT™ Video Transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your favorite mode is SSB or FM or AM—direct, via repeater or satellite—you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

Please send me the following Robot equipment. I understand that if I am dissatisfied for any reason, I can return the unit and receive a full refund.

- 1000C high resolution video transceiver $1995
- 400C standard resolution $795
- 400C upgrade kit $395
- More Information

Name: ___________________________ Call: ___________________________
Address: ___________________________ Zip: ___________________________

COD
Enclosed check or money order $________________________ Exp. Date: ___________________________

MC / VISA #_________________________
one million years of experience

If you saw a resume that showed one million years of experience, I’m sure you’d be impressed. One million, after all, is a very large number. But that, roughly, is the amount of experience that we Radio Amateurs have to draw on. In fact, if you add all our years of experience together, it’s probably two or three times that number.

More and more often it seems that we’re being told that Amateur Radio is dying, that our numbers are diminishing day by day. If you examine the figures — the inanimate statistics — it would, sadly, appear to be so.

The key word here is inanimate. Yes, the numbers are inanimate. But we are not. Just thinking of what hams have been able to accomplish, and continue to accomplish, over such a short period of time, is mind-boggling. Perhaps what we need to do is stand back and look at the future of Amateur Radio from a broader perspective.

Please understand that I’m not for one minute discounting the facts or the importance of the statements made by others who share our common interest in the preservation of our hobby. Call me a perennial optimist . . . it’s just that when I look at what hams are doing in this country and abroad, I find myself feeling that we do have the capability to bring about the needed changes — but only if we are convinced of the urgency of the situation.

Before putting pen to paper I scratched my head to come up with positive suggestions for actions that would reverse the “doomsday” trend suggested by the declining numbers. (“Surely editors must have greater insight into solving the problems of their own field,” I thought. “Given time,” I supposed, “I’ll contribute a suggestion or two that can be put into action.”) But then I thought about you, the half-million hams who have their own opinions about what’s happening, and about what can and should be done to strengthen and improve our hobby. What an unbelievable resource!

Maybe ham radio’s first contribution can be to act as a clearinghouse for information. It would be our pleasure — nay, our responsibility — to help in collecting, sorting, and sharing your written suggestions, ideas, and insights about how to encourage the growth and expansion of Amateur Radio.

Quick! While the thought is still fresh, jot it down on a blank QSL card, post card, or letter addressed to me at ham radio, Greenville, New Hampshire 03048. I promise that I’ll read each and every one.

Even the whisper of an idea can evolve into a plan and finally into action. “Sure,” you can say, “this is all very general, but what can I add?”

That’s simple. What are you interested in? What aspect of Amateur Radio do you want to preserve and see grow? What do you like about our hobby? Dislike? What would you like to see change? And how would you change it?

Ah, but who has the time? And what good will it do? These days, none of us has the time. We’re all so busy, busier than we’ve ever been. But my answer to this is simply, “Nothing ventured, nothing gained.” I’m willing to devote many hours to reading your responses — which may take no more than a minute or two to write.

Make me very popular at the Greenville Post Office. Send those suggestions in today, tomorrow. Keep them coming.

Rich Rosen, K2RR
Editor-in-Chief
BURBANK, ILLINOIS' ANTENNA ORDINANCE HAS BEEN EFFECTIVELY OVERTURNED under the terms of a Consent Decree entered in U.S. District Court for the Northern District of Illinois on November 30. Burbank's highly restrictive ordinance had put a one-year moratorium on new antennas, which it limited to 35 feet, required insurance plus a $50,000 bond and annual inspection fees, and authorized a fine for interference to home entertainment devices.

The Successful Two-Year Court Fight Was waged by attorney Jim O'Connell, W9WU, on behalf of NAYEKA and 58 other Burbank Amateur and CB operators. Under the terms of the settlement Burbank agreed to grandfather all existing antennas, promptly issue permits ($15 maximum fee) for new towers up to 65 feet (exclusive of any antenna), and permit roof mounting up to 12 feet above a building without permit. In addition Burbank is under court order to repeal both the offending antenna ordinance and any other city ordinances or codes in conflict with the terms of agreement. December 19 the Burbank City Council unanimously passed the new ordinance required by the agreement.

Estimated Costs Of This Important Battle Are Over $25,000 for the Amateur community alone, not including the tremendous investment in participants' time. The cost to Burbank taxpayers is not known. Though Burbank does represent an important victory for those Amateurs involved, the fact that it was by Consent Decree (which means in essence Burbank gave up rather than continuing to fight) somewhat diminishes its value as a precedent.

PRB-1: The ARRL's Attempt To Get FCC's "Official Sanction" for Amateur Radio against local restrictions, received strong support from several non-Amateur sources before the Comment period closed in late December. The American Red Cross and a number of communities and county emergency organizations have all joined in supporting the principals of PRB-1. However, it appears unlikely that the League petition will see any Commission response in the near future, quite possibly not until mid-1983.

20 KHZ CHANNELS ON 2 METERS' TOP HALF COMES TO THE MIDWEST, following overwhelming approval of the change by the Michigan Area Repeater Council at its December meeting. The timetable requires their frequency coordinator to come up with a comprehensive plan for changing existing repeaters' frequencies by next June. The actual changeover has been set to take place during May, 1986.

To Accomplish The Switch Will Require Moving All present "split" (15 kHz) systems plus half those in present 30 kHz slots. Unfortunately, 20 kHz channels provide only 99 slots in 2 MHz vs the 132 available in the present scheme. However, 15 kHz spacing has never been entirely satisfactory, while those areas that have already made the change to 20 kHz report they now have few if any problems with adjacent channel interference.

The Shift To 20 kHz Began In The Pacific Northwest, starting with British Columbia and Washington, then Oregon, Idaho, Montana, Utah, Arizona, and now Michigan. In addition, it appears to have been mandated for Mexican Amateurs by their government, and Texas, Louisiana, Kansas, Nebraska, and Oklahoma are all reported seriously considering the change.

The Impact Will Fall Most Directly On Major Population Centers in adjacent states as well as Canada, so some sort of response to Michigan's action is expected soon. A meeting has been called by ARRL Great Lakes Director WA4YI for January 19 in Ft. Wayne to discuss the situation; how well attended it will be remains to be seen, since it's being held the day before the Midwest's biggest winter hamfest in Arlington Heights, Illinois, 185 miles away.

2240 AMATEUR EXAMINATION ELEMENTS WERE ADMINISTERED IN NOVEMBER by volunteer examiners, with an overall pass rate of 48%. Top Regional VEC was DeVry, whose VE's gave 298 elements with a 53% pass rate. Runners-up were GLAARG (Los Angeles), with 225; ARRL 4th District, 212; Central Alabama, 193; and Metroplex, with 185. Nationally ARRL's groups gave a total of 564 elements, and W5YI's 135. DeVry also led in number of exam sessions during the month, with 16. Of the 51 VEC's in place, only 55% were active in November.

A Net Devoted to The Volunteer Exam Program Meets Every Sunday morning on 7280 kHz at 1700Z. Net Control is W9JUG. who heads the VEC program at DeVry, and though the net is principally for coordination of the ninth call area VE operations any Amateur who is interested in the volunteer exam program is invited to join in.

A NEW BAND PLAN FOR THE 13 CM BAND, WHICH RECENTLY LOST 80 MHz to telemetry by FCC action, is going to have to be devised by the ARRL's VUAC. The two segments that remain, 2300-2310 and 2390-2450 MHz, will have to be reallocated to accommodate such diverse users as moon-bounce, fast scan TV, and the Amateur Satellite Service (which has been authorized, though not exclusively, 2400-2450 MHz by WARC 79). Comments and suggestions should go to VUAC Chairman Dick Jansson, W4FAB, or to Mark Wilson, AI422, at the ARRL.

OSCAR 10 IS ON A REDUCED OPERATING SCHEDULE for at least the next few months, to reduce battery drain during a period of partial eclipse of its solar panels. Check the Tuesday night or Sunday AMSAT nets for current times and modes.

Amateur Satellite Orbital Predictions For 1985 Are Available again from Project OSCAR. Their 1985 orbital calendar covers all four Russian Mode A transponders, RS5, 6, 7, and 8, plus all necessary data to determine the apogee of each OSCAR 10 orbit. Minimum donation for Canada users $12 (or overseas), to Project OSCAR, Inc., Box 1136, Los Gatos, California 94022. Please include a self addressed mailing label, too.
RF-8014 DOWN CONVERTER
800MHz - 1.4GHz RF converter for SX-400
- Bands: MAIN [to cover 26-5200MHz with SX-400] + 800MHz - 1.2GHz
- 1.2GHz - 1.4GHz AUTO (Automatic control of RF-8014 with an external computer, etc.)
- Frequencies shown in SX-400 display 500MHz lower between 800MHz - 1.2GHz, 700MHz lower between 1.2GHz - 1.4GHz, 900MHz lower between 1.2GHz - 1.4GHz
- Individual Band Switches and LED Indicators
- Current Drain: 250mA approx.
- Accessories: 1 BNC/M adapter, 1 Cable with BNC terminals
- Dimensions: W 148 x H 35 x D 225mm

RF-5080 DOWN CONVERTER
500 - 800MHz RF converter for SX-400
- Bands: MAIN [to cover 26-500MHz with SX-400] + 500 - 600MHz + 600 - 700MHz + 700 - 800MHz
- AUTO (Automatic control of RF-5080 with an external computer, etc.)
- Frequencies shown in SX-400 display 300MHz lower between 500 - 600MHz, 400MHz lower between 600 - 700MHz, 500MHz lower between 700 - 800MHz
- Individual Band Switches and LED Indicators
- Current Drain: 250mA approx.
- Accessories: 1 BNC/M adapter, 1 Cable with BNC terminals
- Dimensions: W 148 x H 35 x D 225mm

RF-1030 UP CONVERTER
100KHz - 30MHz RF converter for SX-400
- Bands: 111-100KHz - 1MHz, 121-2MHz, 131-2.5MHz, 141-4MHz, 151-8MHz, 161-16MHz, 171-30MHz
- AUTO (Automatic control of RF-1030 with an external computer, etc.)
- Individual Band Switches and LED Indicators
- AM, USB, LSB, CW AUTO CW filter (optional) required for CW reception
- Current Drain: 1A approx.
- Accessories: 1 BNC/M adapter, 2 Cable with BNC terminals
- Dimensions: W 148 x H 35 x D 225mm

ACB-300 ANTENNA CONTROL BOX
Manual and Automatic antenna control system for SX-400 series RF converters
- Band Switches and LED Indicators
- 100MHz - 30MHz UP for reception of 14MHz above AUTO (Automatic control of antennas for RF-1030, RF-5080, RF-8014 and for MAIN scanner)
- Current Drain: 50mA approx.
- Accessories: 1 BNC/M adapter
- Dimensions: W 148 x H 35 x D 225mm

SX-400
26 - 520MHz General Coverage Scanner
- Wider coverage 1100KHz - 1.4GHz or above with RF converters (optional)
- Computer-controlled memory channel expansion (unlimited), High-speed reprogramming, Record of Frequencies and Time, and all functions remote controllable with RC-4000 interface (optional)
- 20 memory channels, Memory recall of any memory channel, Continuous normal and time search without interruptions by buttons
- Stop Mode Switch for scan or search of modulated signals
- Quick search of the most important frequencies with Priority
- Selective FM Narrow Wide Switch for FM-TV listening
- Variable Delay Control 10 - 4.3 Sec.
- Current Drain: 1A approx.
- Dimensions: W 300 x H 90 x D 233mm

RC-4000 DATA INTERFACE
Control of SX-400 series Scanners and RF Converters through Computer
- Direct system for NEC 8801A computer
- High-speed reprogramming of 20 channels
- Scan of unlimited channels stored in computer
- Record of frequencies and time of signals received
- Automatic control of Bands and Modes of RF Converters and ACB 300

P-1A REGULATED POWER SUPPLY UNIT
- 1A or AC 120V/220V, 240V, 100V available to DC 13.8V
- Dimensions: W 90 x H 60 x D 125mm

J.I.L. J.I.C. L.A. CORPORATION, A subsidiary of Japan Industries Co. Ltd. Tokyo JAPAN
17192 Edwards Rd, Canoga Park, CA 91304 USA. Tel (213) 990-6727 Telex 551588

More Details? CHECK — OFF Page 128
half-wave sloper

Dear HR:

The response to my ham note, “80-meter Half-wave Sloper Uses Reflector,” (October, 1984, page 48), has been excellent. One interesting note: ham radio arrived at our QTH the Friday before the Boxboro (Massachusetts) hamfest. We spent the weekend at the hamfest. Monday morning I called CQ DX 80 (grayline) and got Graham, ZL3MZ. Into the contact, Jim, KF4HK, broke in, asking for a report from the ZL. (He got 5-9.) He then informed me that he had put up two of my slopers over the weekend, worked a ZS the night before, and wanted to say “Hi.” A quick check — with others helping — showed a 3 s-unit (18-db) front-to-back between his two slopers.

Bruce A. Clark, KO1F
Belfast, Maine

J-pole or Zepp?

Dear HR:

The J-pole antenna described on page 43 of the July issue of ham radio (see “All-metal 2-meter J-pole Antenna,” by Michael Hood, KDIJB) is not the magical 5/8-wave radiator that the author describes. The radiating portion is only that which extends above the 19-inch 1/4-wave matching transformer. The radiating element is therefore 38 inches, which is a 1/2-wave end-fed “Zepp.”

Remember, the 1/4-wave transmission line inverts the high impedance to a low one. A short at one end insures a low impedance.

Slide the feedline away from the shorted end until a match is found.

The reason “convention dictates that the antenna point upward” is so it won’t interact with the feedline and distort the radiation pattern.

For more information, check your antenna handbook under the index title “Zepp or End Feed.”

Richard Ociepka, K1WWT
Augusta, Maine

The intent of my article was not to design a J-pole antenna, but rather to adapt a number of approaches to building a J-pole antenna for my own use. Along the way, I mentioned why I felt the J-pole antenna was a viable alternative to using a 1/4-wave radiator which had been the main 2-meter antenna at KDIJB to this point. I did not intend for anyone to assume this antenna was a magical 5/8-wave radiator.

K1WWT is indeed correct in that the J-pole is an end-fed antenna and could be compared to the Zepp, since it is also end-fed, but I wouldn’t go so far as to say the J-pole actually is an end-fed two-meter Zepp antenna. While it resembles the Zepp schematically, its appearance does not resemble the Zepp’s any more than a Vee, inverted Vee, driven element of a Yagi, or other form of 1/2-wave center-fed radiator resembles the basic dipole. These derive their names from their shapes.

If I offended K1WWT by not calling the J-pole an end-fed Zepp, my apologies — but I’m still going to call it a J-pole, because that’s what it looks like, which was why someone (not me) selected that name in the first place.

The Zepp is a 3/4-wave antenna in its true form operating against a counterpoise of 1/4-wavelength. The J-pole is tapped by the feedline at roughly the 5/8’s point on the radiator — hence my calling it a 5/8-wave antenna. (I’m not the only one calling it a 5/8-wave antenna, either.) We can argue this point forever, but I don’t think we’ll get any further than we are.

As far as “convention dictating the antenna be mounted upwards,” good engineering practice dictates that the feedline of any antenna be brought away from the antenna perpendicularly, or at right angles (your choice — same result) for at least 1/2-wavelength to keep coax/antenna interaction to a minimum. If that is indeed the case, then the installation off the side of the tower as I mentioned in the article is correct, and actually better than if you were to run the cable straight down and away from the antenna, as is most commonly done when a vertical antenna is mounted on top of a tower. I suppose there would be times when interaction would occur regardless of how the antenna was installed, but my experience to date has shown that no adverse effects have manifested themselves by pointing the radiator in the downward direction. It’s difficult to argue with success.

While not perfect by any stretch of the imagination, the J-pole as I built it works as I had intended it to work for my purposes. In addition, I felt that hams who put in a 40-hour week do not want to spend their free time with their noses in antenna engineering books trying to build the perfect antenna for their two-meter base stations. They want it quick, and they want it to work. I’d thought I’d covered all those bases.

Michael P. Hood, KDIJB
Grand Rapids, Michigan

Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM, Eastern time, before you begin construction. We’ll let you know of any changes or corrections that should be made to the article describing your project. (See “Publisher’s Log,” April, 1984, page 6, for details.)
300 WATT ANTENNA TUNER HAS SWR/WATTMETER, ANTENNA SWITCH, BALUN.
MATCHES VIRTUALLY EVERYTHING FROM 1.8 TO 30 MHz.

MFJ's fastest selling tuner packs in plenty of new features!
- New Styling! Brushed aluminum front. All metal cabinet.
- New SWR/Wattmeter! More accurate. Switch selectable 300/30 watt ranges. Read forward/reflected power.
- New Antenna Switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
- New airwound inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 watts RF power output. Matches everything from 1.8 to 30 MHz, dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced and coax lines. Built-in 4:1 balun for balanced lines. 1000V capacitor spacing. Black. 11x3x7 inches. Works with all solid state or tube rigs. Easy to use, anywhere.

$99.95 MFJ-941D

NEW FEATURES

POLICE/FIRE/WEATHER
2 M HANDHELD CONVERTER

Turn your synthesized scanning 2 meter handheld into a hot Police/ Fire/Weather band scanner! 144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on 160-164 MHz. Converter mounts between handheld and rubber ducky. Feedthrough allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. 2x4x1/2 in. MFJ-3133 $39.95

1 KW DUMMY LOAD

Tune up fast, extend life of finals, reduce QRM! Rated 1KW CW or 2KW PEP for 10 minutes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 30 MHz, 1.5 to 300 MHz. Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. 7x6x6 in.

24/12 HOUR CLOCK/ID TIMER

Switch to 24 hour UTC or 12 hour format! Battery backed maintains time during power outage. ID timer alerts every 9 minutes after reset. Red LED. 6 inch digits. Synchronizable with WWV. Alarm with snooze function. Minute set, hour set switches. Time set switch prevents mis-setting. Power out, alarm on indicators. Gray and black cabinet. 5x2x3 inches. 110 VAC, 60 Hz.

DUAL TUNABLE SSB/CW/RTTY FILTER

MFJ-7528 $99.95

Dual filters give unmatched performance! The primary filter lets you peak notch low pass or high pass with extra steep skirts. Auxiliary filter gives 70 dB notch. 40 Hz peak. Both filters tune from 300 to 3000 kHz. Available bandwidth from 40 Hz to 20 kHz. Constant output as bandwidth is varied. Linear frequency control. Switchable noise limiter for impulse noise. Stimulates stereo sound for CW. Lets ears and mind reject QRM. Outputs for 2 rigs. Plugs into phone jack. Tapped crystal switch. Off bypass filter 3-18 VDC or 110 VAC with optional adapter MFJ-1312 $9.95.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
- One year unconditional guarantee. Made in USA.
- Add $4.00 each shipping/handling. Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494, Mississippi State, MS 39762

$99.95 MFJ-941D

NEW FEATURES

POLICE/FIRE/WEATHER
2 M HANDHELD CONVERTER

Turn your synthesized scanning 2 meter handheld into a hot Police/ Fire/Weather band scanner! 144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on 160-164 MHz. Converter mounts between handheld and rubber ducky. Feedthrough allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. 2x4x1/2 in. MFJ-3133 $39.95

1 KW DUMMY LOAD

Tune up fast, extend life of finals, reduce QRM! Rated 1KW CW or 2KW PEP for 10 minutes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 30 MHz, 1.5 to 300 MHz. Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. 7x6x6 in.

24/12 HOUR CLOCK/ID TIMER

Switch to 24 hour UTC or 12 hour format! Battery backed maintains time during power outage. ID timer alerts every 9 minutes after reset. Red LED. 6 inch digits. Synchronizable with WWV. Alarm with snooze function. Minute set, hour set switches. Time set switch prevents mis-setting. Power out, alarm on indicators. Gray and black cabinet. 5x2x3 inches. 110 VAC, 60 Hz.

DUAL TUNABLE SSB/CW/RTTY FILTER

MFJ-7528 $99.95

Dual filters give unmatched performance! The primary filter lets you peak notch low pass or high pass with extra steep skirts. Auxiliary filter gives 70 dB notch. 40 Hz peak. Both filters tune from 300 to 3000 kHz. Available bandwidth from 40 Hz to 20 kHz. Constant output as bandwidth is varied. Linear frequency control. Switchable noise limiter for impulse noise. Stimulates stereo sound for CW. Lets ears and mind reject QRM. Outputs for 2 rigs. Plugs into phone jack. Tapped crystal switch. Off bypass filter 3-18 VDC or 110 VAC with optional adapter MFJ-1312 $9.95.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
- One year unconditional guarantee. Made in USA.
- Add $4.00 each shipping/handling. Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494, Mississippi State, MS 39762

$99.95 MFJ-941D
ICOM

- 6 STORE BUYING POWER ASSURES TOP VALUES.
- BIG, COMPLETE STOCKS. GET WHAT YOU WANT WHEN YOU WANT IT.
- MORE SAVINGS BY FREE DELIVERY.

HAND-HELDs
AND ACCESSORIES

H5-10 Headset
H5-10SB PTT Switchbox
H5-10SA VOX Unit

IC-ML1 12VDC 144MHz Booster
10W out 12 VDC (comes w/5 ft coax, BNC to expb PL-259)

IC-DC1 DC Regulator
12 VDC in/9 VDC out
(comes with DC cord — it will not get power from DC30)

IC-3A 220MHz
IC-2A 2-meter

IC-3A 440MHz

IC-02AT 2-meter
IC-0AAT 440MHz

PRICED FOR VALUE! CALL.

Many accessory items qualify for free UPS Surface delivery.

SALE!

IC-751

Today's most advanced transceiver! The receiver section is truly competition-grade providing general coverage, continuous tuning over the 100kHz to 30MHz range. The transmitter is full-featured, is all mode, solid-state. IC-751 also covers MARS and the new WARC frequencies. is AMTOR compatible.

CALL NOW FOR YOUR SALE PRICE

SIMPLEX-REPEATER-SATELLITE

IC-271H
2 METERS • 100 WATTS
• ALL-MODE

IC-471H
430-450MHz • 75 WATTS
• ALL-MODE

IC-27A*
SUPER-COMPACT
2 METER MOBILE

An important breakthrough in compact mobile equipment! Only 1½ x 5½" but full-featured including internal speaker, 25W of power, ten full-function tunable memories, memory and band scan, priority scan includes mic. with 15 button Touchtone.

FREE SHIPMENT, ALL OF THE ABOVE ITEMS, UPS (Surface).

IC-37A, 220MHz
IC-47A, 70CM

CALL FOR YOUR SPECIAL PRICE

SALE!

IC-R71 A

A superior-grade, general coverage 100kHz to 30MHz receiver with such innovative features as keyboard frequency entry and wireless remote control (opt.). Ideal for worldwide communications listening, has 32 programmable memory channels, dual VFO's and provides SSB/AM/RTTY/CW/FM (opt.) reception.

FREE SHIPMENT, ALL OF THE ABOVE ITEMS, UPS (Surface).

CALL FOR YOUR SPECIAL PRICE

IC-R71 A

ALL-MODE

IC-37A, 220MHz
IC-47A, 70CM

LOW PRICES, CALL!

Store addresses/Phone numbers are given on opposite page.
KENWOOD

TS-930S
PAY REGULAR PRICE OF $1599
RECEIVE FREE
YOUR CHOICE OF
TH-21AT and HMC-1
2 MTR HANDHELD MIKE HEADSET
REG $229.99 REG $39.95
OR
AT-930 and MC-60A
ANT. TUNER MIKE
REG $199.95 REG $79.95
PLUS FREE U.P.S.

ICOM

IC-R71A
GENERAL COVERAGE RECEIVER
CALL FOR SALE PRICE

IC-751
PAY REG. PRICE OF $1399
RECEIVE FREE
IC-2AT HANDHELD
$269.50 VALUE

TRISTAO SALE

MA-40 SALE $549
40' 2 SECT. TUBULAR TOWER
MA-550 SALE $899
55' 3 SECT. TUBULAR TOWER

KENWOOD

TW-4000A
PAY REGULAR PRICE OF $599.95
RECEIVE FREE
YOUR CHOICE OF
ANY 2 OF THE FOLLOWING
1) VS-1 VOICE SYNTHESIZER
$39.95 VALUE
2) TU-4-C SUB-AUDBILE
$39.95 VALUE
3) MA-4000 DUO-BAND
MOBILE ANTENNA. $44.95 VALUE

FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)
TOLL-FREE PHONE
INCLUDING ALASKA AND HAWAII

800-854-6046

SAN DIEGO, CA 92123
5375 Kearny Villa Road,
(619) 560-4900
Highway 163 and Clairmont Mesa Boulevard.

ANAEHEIM, CA 92801
2620 W. La Palma,
(714) 761-3033, (213) 860-2040.
Between Disneyland & Knott's Berry Farm.

BURLINGAME, CA 94010
969 Howard Ave.
(415) 342-5757.
5 miles south on 101 from San Francisco Airport.

OMACK, CA 94609
2811 Telegraph Ave.,
(415) 451-5757.
Highway 24 Downtown, Left 27th off-ramp.

PHOENIX, AZ 85015
1702 W. Camelback Road,
(602) 242-3515.
East of Highway 17.

2) FT-209RH
PAY REG. PRICE OF $349.95
RECEIVE FREE
FTS-6 ENCODER/DECODER
$49.95 VALUE

HOLY RADIO OUTLET

Prices, specifications, descriptions subject to change without notice. Calif. and Arizona residents please add sales tax.
After building a repeater, I soon realized that I'd need a duplexer in order to use the same antenna for the repeater, transmitter and receiver. After pondering the situation, I decided to build a six-cavity duplexer similar to the one described in the ARRL *FM Repeater Manual.* This duplexer, while not cheap, still costs much less to build than to buy; the total cost should range from about zero to $250.00, depending on how well your junk box is stocked.

The duplexer I built has a measured 95 dB of isolation and 1.5 dB insertion loss. Figure 1 shows the completed duplexer in operation on the K9EYY repeater. Figure 2 shows a completed cavity; fig. 2A, a cross-section view (less inductor and capacitor).

construction

The first step in construction is to cut the 4-inch (10-cm) copper pipes to a length of 22.5 inches (56.25 cm). If you are using the thin wall variety of copper pipe, handle it carefully to avoid distortion. Square both ends of all six pieces by using a lathe and a steady rest to support your work.

Available from Ham Radio's Bookstore, Greenville, New Hampshire 03048 (8.50 postpaid).

By J.S. Gurske, K9EYY, R.R. 2, Box 178A, Lodi, Wisconsin 53555
Next cut the 1-3/8 inch (3.44 cm) copper pipes to a length of 18 inches (45 cm). Once again you should square both ends of all six pieces. Cut the 1-inch (2.5-cm) O.D. brass tubing to 6-inch (15-cm) lengths. You will need six of these. Now machine 6 brass plugs from 1-inch (2.5-cm) brass rod stock as shown in fig. 3. The center hole in each brass plug is threaded with a 3/8 inch (0.938 cm) x 16 tpi tap.

The teflon insulating bushings are fabricated next. (Refer to fig. 4.) Use very sharp cutting tools in the lathe tool holder and rotate the teflon material slowly in the lathe. I used a speed of approximately 35 RPM (I used the back gearing on the lathe) and it cut very easily. You will need two of these bushings for each cavity, for a total of 12 teflon bushings. Be sure to drill a No. 50 hole in each bushing for a No. 16 wire.

Use the lathe to fabricate an aluminum plug (see fig. 5A) to be used when silver soldering the threaded rod, the brass plug, and the brass tube. Then fabricate another special aluminum plug to the dimensions shown in fig. 5B. This plug will be used to temporarily hold the finger stock inside the 1-3/8 inch (3.5-cm) copper tube while you silver solder the finger stock in place. This plug will prevent the “fingers” from getting too hot and losing their temper. The solder will not adhere to the aluminum.

Thread a nut onto a piece of 3/8 inch (0.938 cm) x 16 threaded rod. Run the nut past the point where you will cut the rod, then cut the rod to a length of 24 inches (60 cm). Then run the nut off the cut end of the threaded rod to chase or clean any threads which may have been damaged when you cut the rod to length. You will need six of these rods (one for each cavity).

Now look at fig. 6. Notice that a plastic pipe is slid over the threaded rod and fitted snugly inside the metal box. Check the inside measurement of the metal boxes.

table 1. Six-cavity duplexer parts list. This is a listing of all the parts you will need to obtain or fabricate to make a six-cavity duplexer. Some of these items are shown in the photograph above.

<table>
<thead>
<tr>
<th>Item number (see photo)</th>
<th>Quantity needed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>4 x 22-1/2 inch (10 x 56.25 cm) copper tubes</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1-3/8 inch O.D. x 18 inch (3.5 x 45 cm) copper tubes</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1 inch O.D. x 6 inch (2.5 cm x 15.25 cm) brass tubing</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>pieces of finger stock to fit inside item 2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>tuning plunger bushing — 1 inch (2.5 cm) diameter brass rod</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>tuning rods 3/8 inch (0.95 cm) x 16 threaded rod 24 inches (60 cm) long</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>boxes to fit on top of cavities</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>top covers for 4 inch (10.5 cm) tubes made of 1/4 inch (0.6 cm) brass plate</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>bottom covers for 4 inch (10.5 cm) tubes made of 1/8 inch (0.3 cm) brass plate</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>teflon bushings 1/2 x 1/4 inch (1.35 x 0.6 cm)</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>nuts 3/8 inch (0.95 cm) x 16 for tuning rods (6 for locking and 12 for tuning)</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>coupling loops (made from No. 16 tinned wire)</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>inductors (made from No. 16 tinned wire)</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>copper straps 1/4 x 1 inch (0.6 x 2.6 cm) No. 0.020 copper</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>3/8 inch I.D. x height of mini boxes plastic pipe to keep mini box from compressing</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>“N” type chassis coax connectors to couple one cavity to another</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>7 inch (17.5 cm) tip to tip RG-192 double-shielded coax to couple the middle cavities to those on each end</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>9 inch (22.5 cm) RG-192 double-shielded coax to couple receive cavities to “T” connector</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>26 inch (65 cm) RG-192 double-shielded coax to couple transmit cavities to “T” connector</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>15 pF small variable capacitor (Johnson 189-5-5)</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>lengths of RG-192 to reach from transmitter to transmit cavities and receiver to receive cavities</td>
</tr>
</tbody>
</table>

February 1985
you will be using and cut six lengths of this 3/8-inch (0.938-cm) I.D. plastic pipe to fit snugly inside the box. This spacer is used to keep the box from changing its shape when you tighten the lock nut after you have adjusted the cavity.

See fig. 7A. Make six bottom covers for the six 4-inch (10-cm) tubes by cutting square pieces of 1/8-inch (0.313-cm) brass plate so that they measure 4-1/2 x 4-1/2 inches (11.25 x 11.25 cm). Chuck these pieces of brass in the lathe one at a time and cut a 4-inch (10-cm) slot 1/16 inch (0.175 cm) deep, so that the 4-inch (10-cm) tubing fits snugly into the 1/16 inch (0.175 cm) circle you cut into each 1/8 x 4-1/2 inch (0.313 x 11.25 cm) square piece of brass base. You should have approximately 1/4 inch (0.625 cm) between the circle and the outside edge of these pieces of brass.

Refer to figs. 7A and fig. 7B. Fabricate six top covers to fit on the 4-inch (10-cm) copper tubes, using 1/4-inch (0.625-cm) brass plate stock. Cut rough 5-inch (12.5-cm) circles from the brass plate stock with a hacksaw. Then insert the rough sawed blank into your lathe chuck. (A 4-jaw chuck might be easier to
use at this point.) Cut this blank to 4-1/2 inches (11.25 cm) in diameter and drill a 5/16 inch (0.78 cm) hole in the exact center of this cover plate. Thread this hole with a 3/8 inch (0.94 cm) 16 tap. Cut a circular slot 4 inches (10 cm) in diameter and 0.150 inch (0.375 cm) deep. The width of the slot should equal the thickness of the large 4 inch (10 cm) copper pipe, and the slot large enough so that the cover will fit snugly on the top end of the large copper pipe. Cut another round slot 1-3/8 inch (3.5 cm) in diameter and 1/8 inch (0.31 cm) deep to accommodate snugly the 1-3/8 inch (3.5 cm) O.D. copper pipe. Drill 2 holes 3/8 inch (0.94 cm) in diameter exactly 2-5/8 inches (6.56 cm) apart. The centers of these two holes should be exactly 1-5/16 inch (3.28 cm) from the center of the hole you drilled and threaded. These holes will accommodate the teflon bushings.

Refer to fig. 7B and notice the four small screws pointing inward toward the center of the cover. These are used to hold the brass covers on the top of the large copper pipes. Use a No. 43 drill and cutting oil to drill 4 holes as close to the bottom of the cover plate as you can. Tap these holes with a 4-40 tap. (Use a good grade of cutting oil or you will break the tap every time. The broken taps cannot be removed and the exposed edges must be ground off.) Fit 4-40 bolts in each of the tapped holes. If you grind a small point on the end of these bolts, they will hold the cover on the pipe more securely.

Refer again to fig. 6 and also to fig. 8. Try to select a cast mini-box rather than a box made by bending sheet aluminum. The cast box will be more rigid and will keep the cavity tuned. Each box will include:

- input and output coax connectors (chassis mount) located 7/8 inch (2.19 cm) up from the bottom of the box, 1-15/16 inch (3.28 cm) from the center of the box.
- a 7/16 inch (1.09 cm) hole through the top and bottom of the box.
- two 3/8 inch (0.940 cm) holes for mounting the teflon bushings; they must align with the holes in the top cover plate.
- two holes for fastening the box to the top plate of each cavity (6-32 bolts).
- a spacer installed between the top and bottom sides of the box to keep the box from distorting when tuning is completed and the lock nut is tightened. This spacer can be metal or plastic. The inside diameter should allow the 3/8 inch (0.94 cm) threaded rod to slide inside the spacer.

The boxes I used measured approximately 4-3/4 inches (11.88 cm) wide, 3-1/2 inches (8.75 cm) high and 2-1/4 inches (5.63 cm) deep and were obtained at a surplus outlet.

assembly

Figure 9 shows the main 4-inch (10-cm) diameter copper tube silver-soldered to the brass bottom plate. (Using low-temperature silver solder, we were able to attach the 4 inch (10 cm) tubes to their bases with the heat from only one acetylene torch in spite of the great conductivity of the 4 inch, 10 cm, copper tube.) Place the tube in the slot you machined in each square brass plate, apply flux, and silver solder the base plate to the 4 inch (10 cm) copper tube. Check for trueness before you lay the piece aside.

Next place the 1-3/8 × 18 inch (3.44 × 45 cm) copper tube into the slot previously cut in the round 1/4 inch (0.63 cm) brass top plate. Check for trueness
and silver solder in place. See fig. 10 which shows the tube silver-soldered to the brass top cover plate. It also shows how the finger stock fits inside the other end of this tube. The finger stock should be silver soldered to the inside of 1-3/8 inch (3.44 cm) tubing at the lower end. Figure 10 shows its location and how it must contact the 1-inch (2.5-cm) tube for adjustment purposes. When silver soldering the finger stock, do not overheat the fingers. The aluminum plug you made earlier will help prevent overheating. I used a propane torch and the low temperature silver solder mentioned above. Obviously, you will not have the 1 inch (2.5 cm) brass tubing inside the finger stock while silver soldering. Instead, use the aluminum plug to hold the finger stock securely inside the 1-3/8 inch (3.44 cm) copper tube while you are soldering. After

soldering, slide the 1-inch (2.5-cm) brass tube inside the finger stock. If the finger stock does not make firm contact with the 1-inch (2.5-cm) tube, remove the

fig. 6. Detail of plastic pipe spacer, threaded rod, locking nut, teflon bushings, coax fittings and how they fit in the box.

fig. 5A. The dimensions of the single aluminum plug used to fit into the open end of the 1-inch (2.5-cm) tube and supports the open end in the lathe center while the threaded rod, the brass plug detailed in fig. 3, and the brass tube are silver soldered.

fig. 7A. One of the six bottom covers showing the slot. The large copper pipe will fit in this slot and be silver soldered to the plate.

fig. 5B. The dimensions of another aluminum plug to be used when silver soldering the finger stock inside the six 1-3/8-inch (3.44-cm) copper tubes.

fig. 7B. A completed top cover. Note the center threaded hole, the two holes for the teflon bushings, the two slots for the copper tubes, the 6-32 threaded holes and the four 4-40 bolts in their holes.
More quality accessories for more DMMs than anyone else in the world.

Fluke has over thirty ways to expand the horizons of your DMM — even if your existing DMM is made by someone else.

Take our new, low-priced 80i-400 current clamp, for example. It's one of five different accessories offered by Fluke to let you take safer, more accurate current measurements in high energy circuits.

Or consider our universal temperature accessories. They convert your DMM into a thermometer for air, surface, and non-corrosive liquid temperature measurements.

Fluke also offers a variety of probes to measure high voltage and probes for high frequency ac measurements. Plus a complete selection of test leads, battery eliminators, carrying cases, and more.

It's the largest selection of DMM accessories available in the world.

So why spend a lot of money on new equipment, when all you may really need are new accessories.

To get the whole story, ask for a copy of our complete DMM accessories booklet. It's yours for free by contacting your local Fluke Distributor, or by calling toll-free 1-800-426-0361.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we’re a stickler for 1 day delivery with a full 1 year warranty.

- Output level flat to within 1.5db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

- Frequency accuracy, ±.1 Hz maximum - 40°C to +85°C
- Frequencies to 250 Hz available on special order.
- Continuous tone

$89.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547/California: (714) 998-3021

<table>
<thead>
<tr>
<th>TE-12PA</th>
<th>TEST-TONES:</th>
<th>TOUCH-TONES:</th>
<th>BURST TONES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>77.0 XE</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TE-12PB</th>
<th>TEST-TONES:</th>
<th>TOUCH-TONES:</th>
<th>BURST TONES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>77.0 XE</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>697</td>
<td>697</td>
<td>1600</td>
</tr>
</tbody>
</table>
1-inch (2.5-cm) tube and bend each finger inward so that it does make firm contact.

Examine fig. 11 for the following details. It is very important that the 1-inch (2.5-cm) brass tube be attached to the 24-inch (60-cm) length of 3/8 inch (0.938 cm) by 16 threaded rod as accurately as possible. In other words, when the 3/8 inch (0.938 cm) by 16 (adjustment) threaded rod is turned, the 1-inch (2.5-cm) brass tubing should not wobble in the finger stock inside the 1-3/8 inch (3.44 cm) copper tubing. An easy way to accomplish this is to put one end of the threaded rod in the lathe chuck and thread the other end into the brass plug you machined earlier. Slide the 1-inch (2.5-cm) brass tube onto this plug. Then put the small aluminum plug (see fig. 5A) in the open (other) end of the 1-inch (2.5-cm) brass tube. Support this end by having the live center (or dead center) ride in the countersunk hole drilled in the center of this plug. The other end of the brass tube is held “centered” by supporting it in the steady rest. Lubricate the steady rest jaws and rotate the entire assembly while silver soldering the threaded rod into the threaded brass plug, and the plug to the brass tubing. When the silver soldering is complete, continue to let the piece rotate until it has cooled. Figure 11 shows the threaded brass plug, the threaded rod, the aluminum plug, and the 1-inch (2.5-cm) brass tube as well as the steady rest as it was set up in my case.

After the assembly cools, thread the rod up through

fig. 8. One of the six chassis boxes. These boxes are held to the top cover plates with the two 6-32 bolts in the foreground. Also note the spacer inside the box, the "N" type coax chassis mounts and the teflon bushings.

fig. 9. One of the six main copper tubes silver soldered to the bottom cover plate.

fig. 10. The top plate silver soldered to one end of the 1-3/8 inch (3.44 cm) O.D. copper tube and the finger stock silver soldered to the other end (foreground). Note how the finger stock firmly contacts the inner tube.
fig. 11. This is how the threaded brass plug is silver soldered to the brass tube and threaded rod while turning in the lathe. Note how the aluminum plug described in fig. 5A is used to support the other end of the brass tube in the tail stock live center rest.

fig. 12. The dimensions and shape of the inductor, which spans the input and output coax chassis connectors inside three of the chassis boxes.

fig. 13. The inductor is connected in three of the cavities.

fig. 14. The dimensions of one of the two copper straps that attach to each 15 pF capacitor. Make six of these.

fig. 15. 15 pF capacitors are connected with two copper strips in each of three cavities.

the brass top covers. Make sure the finger stock firmly contacts the 1-inch (2.5-cm) brass tube. (See fig. 10.)

coupling energy to the duplexer

Three cavities use short lengths of No. 16 wire while the other three use a small capacitor. The three cavities that have inductors made of No. 16 wire connected from the input to the output coax chassis connectors will go to the receiver and be tuned to provide a notch at the transmitter frequency.

Refer to figs. 12 and 13. Bend a length of No. 16 tinned wire to the dimensions and shape shown in fig. 12. Temporarily connect all three inductors between the input and output coax chassis connectors. Do not solder these wires at this time because you will have to remove them for the first step in the tune-up procedure later.

The other three cavities will each have a small variable capacitor (15 pF) connected between them. These three can then be put in the transmitter line and the notch tuned to the receiver frequency. The capacitors are connected to the input and output coax connectors with copper strips measuring 1/4 x 1 inch
capacitors as shown in fig. 15 and fig. 18. Solder these three capacitors to the copper strips (see figs. 15 and 18), but do not solder to the input and output connectors yet.

The loops that couple the energy into each cavity are also made of No. 16 tinned wire. Their shape and dimensions are critical: use figs. 16, 17, 18, and 19 for the proper configuration and measurements. Connect these loops to each input and output connector and to the bottom side of the top plates. Do not solder the wires yet. Hold the copper strips in place and solder the wire coupling loops and simply tack solder the copper strips to the input and output connectors (fig. 18).

One end of these loops is tied to the underside of the top plates. I modified some small wire ends and tapped 4-40 holes. The 4-40 screws through the wire ends provide a mechanically secure and electrically good anchor to the underside of the top plates. (See fig. 16, 17, 18, and 19.) The coax chassis mounts are located 5-5/8 inches (6.56 cm) apart, or 1-5/16 inches, 3.28 cm, on each side of center) 7/8 inches (2.19 cm) up from the bottom of the mini-box.
building the wooden holder

After all six cavities have been built, mount them together in a holder and tune them to the desired frequencies. (Refer to figs. 20, 21, and 22 for construction of the wooden holder clamp assembly.)

The cavities should not be allowed to touch each other as this will tend to detune them. You can build a special holder to prevent them from contacting each other, by following these steps:

Cut a piece of plywood 1 1/2 inch (1.25 cm) or 3/4 inch (1.875 cm) 10-1/2 x 15-1/2 inches (26.25 x 38.75 cm). Cut 1/2 x 1/2 inch (1.25 x 1.25 cm) wood strips and screw and glue them to the plywood base so that six squares measuring 4-1/2 x 4-1/2 inches (11.25 x 11.25 cm) are formed. This is the base.

Cut a piece of 3/4 inch (1.875 cm) plywood to 10-1/2 x 15-1/2 inches (26.25 x 38.75 cm). Place six marks on one side of this plywood. The six marks should align with the exact center of the six square compartments in the base piece. Using these six marks as the centers of six circles, use a compass to draw 4-inch (10-cm) circles around each of these six points. (See fig. 21.)

Mark two straight lines through both groups of three circles. Saw along these lines. You will have three pieces of plywood, each with one-half of three 4-inch (10-cm) circles drawn on the pieces. Using a bandsaw, cut out the 4-inch (10-cm) circle halves. Then drill a hole through the ends of the three pieces of plywood to accommodate a 1/4-inch (0.625-cm) threaded rod. This becomes the upper support. (See fig. 21.)

Place a cavity in each base compartment and put at least two wood screws through the brass plate base and into the wood base. Place the upper support around the six cavities and tighten the nuts on the threaded rod.

alignment

We will align the cavities in two stages: stage one for rough tuning each of the six cavities, and stage two for fine tuning the cavities and connecting them all together.

Note that the 3/8-inch (0.94-cm) x 16 threaded rod is for PASSBAND tuning. The capacitor, in the case of the transmitting cavities, adjusts the NOTCH. (In the case of the receiving cavities, the inductor adjusts the notch.)

In these examples, 147.825 MHz will be used as the repeater transmit frequency and 147.225 MHz as
Production Expertise And Service Integrity
Form The Foundation For Your Long-Term Satisfaction

The fact that the Computer Patch Interface unit by Advanced Electronic Applications, Inc. is known as the best value on the market is no accident. The CP-1 was designed by Al Chandler, K6RFK (PHD-E.E.), an active RTTY user since 1963.

Given a cost per unit budget for the CP-1, Al designed as much performance as possible into the Computer Patch, including a unique new tuning indicator, referred to by one of our customers as the "Dead Eye Dick" tuning indicator. This indicator is ideal for RTTY and CW, in that it is both fast to tune and (within 10 Hz) as accurate as scope tuning. It also performs under poor signal to noise conditions in which other indicators provide no useful data.

Al's variable shift tuning was designed to move the space filter center frequency from 2225 Hz to 3125 Hz without changing the bandwidth by varying the Q of the filter. All this is accomplished using a precision ganged potentiometer to assure proper tracking of the multiple filter stages. We could have used a pot costing a tenth as much by simply using a two-pole filter design, but we feel the advantage of a sharper filter reduces the noise bandwidth significantly and allows the variable shift control to be used like passband tuning for extra elimination of adjacent channel interference.

Some manufacturers are concerned that amateurs might try calibrating their own equipment and, therefore, have used non-adjustable components, which results in sub-optimal performance. Although more costly, trimpots used in AEA equipment allow factory adjustment for performance to design specifications. Competently designed active filter circuits need not be adjusted after leaving the factory; however, for specialized use the owner can easily change filter parameters.

Mindful of the fact that many of our customers are new to RTTY, Al made the CP-1 tuning as forgiving as possible, while providing the most critical operator a piece of equipment in which he could be proud. Even old "pro's" are surprised at the poor signal conditions under which the CP-1 will still provide good copy.

You can now experience the BEST RTTY, CW, and AMTOR offered. Couple the CP-1 with our new AEASOFT software packages designed for the MARS, SWL, or amateur radio operator, and you will feel a pride reminiscent of what "made in U.S.A." brought in years gone by. Please do not hold the low price of the CP-1 against us. This is one case where you get much more than you pay for relative to any of the competitive units. For more information send for our FREE catalog. Better yet, see your favorite dealer.
Telecommunications & Electronics Specialists

CIA... where a career in COMMUNICATIONS speaks for itself

The environment in which you work can mean a lot to your professional success. It should be intellectually stimulating and vital, in an organization where you can assume as much responsibility as you need to challenge your talents. If this is the type of environment you seek, here is your opportunity to use your telecommunications, electrical power distribution systems, generators, and diesel engine maintenance from a trade school or college (or equivalent military background). Additional experience in heating, ventilation, and air conditioning systems, and machine shop practices and welding is preferred. Starting salaries range from $17,138 to $20,965, depending on qualifications.

COMPUTER SYSTEMS ANALYSTS/PROGRAMMERS

Positions are available at many levels for people with BS/MS degrees in Computer Science, preferably emphasizing operating systems and hardware. One to three years experience is desirable, but not necessary for new graduates (or equivalent). Higher level positions require 2-10 years experience in systems software design, development and maintenance, communications software, networking, protocols and/or message switching, and PDP-11, VAX or microprocessors desired. Starting salaries range from $17,138 to $36,152, depending on education and experience.

ELECTRONICS TECHNICIANS

You should have an AAS degree in electronic technology or equivalent military/commercial training and experience. Knowledge of RF theory/circuitry, solid state, and applications is also required. Starting salaries are $17,138 to $20,965, depending on skills and qualifications.

In addition to these requirements, you must be a U.S. citizen (both self and dependents); meet strict security and medical standards; be at least 18 years old; and be willing to work overseas.

Attention Military Personnel: Apply now if you are scheduled for separation within the next six months.

Your contributions in these positions will be rewarded with excellent career growth potential and substantial benefits. You also will be rewarded with the satisfaction that comes from providing unique and vital contributions to our nation's security.

For consideration for one of these positions, see our representatives at the:

25th ANNUAL TROPICAL HAMBOREE
February 2nd and 3rd
Flagler Dog Track
Miami, Florida

If you cannot attend, please send your resume to:

Recruitment Activity Officer
Department S (D04)
P.O. Box 1925
Washington, D.C. 20013
the repeater receive frequency. We will adjust the three transmit cavities to pass 146.825 MHz and notch the 147.225 MHz frequencies. The three receive cavities will be tuned to pass 147.225 MHz and notch 147.825 MHz.

stage one: rough tuning

Remove the inductors and capacitors from all cavities. Remove all interconnecting coax cables. (See fig. 23.) Connect an RF signal generator (amplitude-modulated for convenience) to one of the cavities (fig. 24).

If your signal generator output is 50 ohms, you will *not* need to use a 3-dB pad. If the output is not 50 ohms or if it is suspect, then connect a 3-dB pad between the signal generator and the cavity. See fig. 24 if you do not have a 3 dB pad.

fig. 24. If you do not have access to a 3-dB pad, you can use this device which will be suitable for tuning the cavities. Use RG-58 coax and coil up a 50 to 75 foot (15 to 22.5 meters) length into a neat coil. Put connectors on each end. Tape the coil neatly.

fig. 25. Schematic diagram of a 50 ohm detector suitable for use in this tuneup application. These components should be put in an RF-tight box or enclosure.

fig. 26. These are the connections for the initial tuning of the six cavities. If you don't have a 3-dB pad, see fig. 24.

fig. 27. These are the connections to use when setting the notches in the three transmit cavities by adjusting the 15-pF capacitors, and the inductor when adjusting the three receive cavities.
Next connect a 50-ohm detector between the other cavity terminal and an oscilloscope. If you do not have a 50-ohm detector, you can construct one as shown in Fig. 25.

For the three transmit cavities (the ones which will have the capacitors connected later), adjust the signal generator to within ±100 kHz of 147.825 MHz (Fig. 26). Then adjust the center threaded rod (passband) until the scope shows maximum energy transfer. You will need to reduce the level of the signal generator as well as the scope gain as tuning progresses.

Adjust all three cavities. From this point on, leave the threaded rods alone. Connect the variable capacitors across the input and output connectors of all three transmit cavities.

Connect the signal generator through a 3-dB pad to one of the transmit cavities — now roughly adjusted — then through another 3-dB pad to an FM transceiver which has an "S" meter as shown in Fig. 27. (If you do not have a 3-dB pad, refer to Fig. 24.) Adjust the signal generator (CW mode) to exactly 147.225 MHz and an S6 reading on the receiver, which is also tuned to 147.225 MHz. Adjust the capacitor (which you just connected in the cavity) for the lowest S-meter reading possible. You may have to increase the output of the signal generator to maintain a visible S-meter indication. When you have obtained the lowest S-meter reading — i.e., the deepest notch — go on to the next cavity.

After all three transmit cavities have been adjusted,
go back to the beginning of this section and perform the same steps for the three receive cavities. Note that you will now be dealing with the inductors you made from the No. 16 tinned wire instead of the capacitors. Adjust the No. 16 wire inductors to deepen the notch. Remember that the frequency to be passed is now 147.225 MHz and the notch frequency is 147.825 MHz.

The inductor dimensions given should be all right, but if the notch is not good enough, try using larger or smaller wire, or even a copper strap if necessary.

stage two: fine tuning

Connect cavities according to fig. 28. Tweek the center-threaded rods on the transmit cavities only for minimum signal at the receiver (maximum notch). These adjustments interact somewhat. Keep increasing the signal generator output as the S-meter reading decreases. Reconnect according to fig. 29. Tweek the center threaded rods on the RECEIVE cavities only for minimum signal (maximum notch). Repeat these steps several times. You may be amazed (as I was) to see the notch get deeper and deeper with each repetition of these steps. You will also notice that bringing objects into the near vicinity tends to detune the cavities slightly as you approach the −100 dB point.

Lock the threaded rods by tightening a 3/8 inch (0.94 cm) × 16 nut against the mini-box as you finish the last adjustment on each cavity.

acknowledgements

Naturally when one becomes involved in a project of this magnitude, friends often prove helpful. In this regard, I would especially like to thank Ted Gisske, K9IMM, and Chuck Forster, WA9ACI, for their technical help over many months, and Mel Seaman, WB9PKN, for helping with coax when my budget was really strained. I would also like to thank Jim Osborn and Sherm Fusch for their photographic efforts and advice. Joe Androfski, K9OMF, provided constant encouragement, and hands-on help over many hours during the construction and tune-up phases. I will try to answer readers’ questions; please enclose an SASE with any correspondence.

obtaining the parts

Because some of the materials needed are rather unusual, they may not be available at your local hardware store. Others will have to be machined.

The two most unusual items are the pieces of 4-inch (10-cm) diameter copper drain pipe and the brass plate. The copper pipe can often be found at a large plumbing wholesale supply house, often buried under some other pipe. Try looking under “Brass” in the business section of any large city telephone book; you may find the names of outlets for brass plate listed there. If the ones you call don’t stock it, ask for the names of other companies. I found my brass plate through just such a referral. I had to drive about 200 miles, but I got it from Howard Brass and Copper in Milwaukee. (Ask for “tag ends” — they’re cheaper.)

Finger stock can be constructed, but the commercial material is much better. I got mine (Stock No. 134B) from Tech-Etch Inc., 45 Aldrin Road, Plymouth, Massachusetts 02360.

The best choice of solder for this project is silver solder with a low melting point — i.e., 400 degrees (204 degrees centigrade). Ordinary silver solder, with its higher melting point, is more difficult to work with, and regular hard solder will cause problems if you should decide to solder your project later (see “Safe, Sensible Silverplating,” page 29). Silver plate will adhere to silver solder, but is likely to flake off of hard solder. My 1/16-inch (0.16-cm) diameter silver solder (manufactured by the J.W. Harris Co., Inc., 10930 Deerfield Road, Cincinnati, Ohio 45242) came from a local rock shop. Do purchase paste or liquid flux to use with your silver solder.

The 3/8-inch (0.94-cm) × 16 threaded steel rod can be obtained at almost any large hardware store.

The teflon can be found in some hardware stores or plastic stores. I got mine from a friend in the paper business. When large piles of paper stock are cut, a guillotine type of cutter is used. The blade comes to rest against a square piece of teflon. From time to time the teflon is rotated to expose a new unused surface. After the four sides have been used, the strip is replaced with a new one. The used strip has plenty of stock left to make the feed-through bushings.

The No. 16 tinned wire is a standard item available at hardware stores and ham swapfests. The small copper strap can be made from a piece of copper flashing. Get a scrap from a roofer or builder. All 12 "N" type chassis mounts and connectors were purchased at flea markets or swapfests. RG-192 coax can be found at dealers or hamfests, as can Tee connectors.

ham radio
WITH THIS MULTIPURPOSE UNIT COMPUTERS CAN BE USED WITH VIDEO SOURCES. BUILT-IN: A/B SWITCH. CHANNEL 3 OR 4 SELECTION SWITCH. 3-PIN ZPDT SWITCHES OPERATE ON 12 VDC.

SPRING LEVER TERMINALS

SOLDERING IRON STAND

POWER SUPPLY W/ PRE-AMP

METER 1-15 V.D.C.

SWITCHES 6 VOLT DC RELAY

RELAYS SOLID STATE RELAY

TRANSISTORS

EACH OPERATES INDEPENDENTLY.

SOLDER TYPE SUB-MINIATURE CONNECTORS USED FOR COMPUTER-HOOK UPS.

THESE RELAYS ARE NON-INTERLOCKING.

SWITCHES TERMINATE THE OUTPUT FROM THE RELAYS.

LINE CORDS

TERMINALS TWO COLOR FILTER PLATE.

LED Indicator

TOTAL MILLIAMPERE RATING FOR THE RELAYS.

DIFFUSED RED FOR $1.80.

SPEAKER 3/4" HIGH QUALITY $1.00 EACH.

LED HOLDERS TWO PIECE HOLDER FOR JUMBO LED.$2.00 FOR $1.70.

SPEAKERS 8 OHM 1/4" MOUNTING HOLE FOR JUMBO LED.

METAL OXIDE VARISTOR G&G # VRO2-2.

MINIATURE TOGGLE SWITCHES ALL ARE RATED 5 AMPS @ 125 VAC.

SLIDE I POTS 100K Linear tape

S/P.D.T. ON-OFF

S/P.D.T. ON-OFF

S/P.D.T. ON-OFF

S/P.D.T. ON-OFF

S/P.D.T. ON-OFF

FLASHER LED RED JUMBO SIZE $1.00 EACH.

CLEAR CULPTIE HOUSING MADE LED A FANCY STRIP OR CLEAR FOR $4.00 EACH.

3/4" SPEAKER 8 OHM 1/2" MOUNTING HOLE FOR JUMBO LED.

BUSHING 1 1/4".$1.00 EACH.

REVERBERATION UNIT $7.50 EACH.

ACCU-RAC COIL SPRING TYPE UNITS USE IN ELECTRONIC CIRCUITS TO PROVIDE SLIGHT DELAY IN BASS.

SOUND AND VIDEO MODULATOR FOR T.I. COMPUTER.

NEW YORK INSTRUMENTS KEYBOARD UNICORD.

WITH THIS UNIT COMPUTERS CAN BE USED WITH VIDEO SOURCES. BUILT-IN A/B SWITCH. CHANNEL 3 OR 4 SELECTION SWITCH OPERATES ON 12 VDC. HOOK-UP DIAGRAM.

EACH OPERATES INDEPENDENTLY.

48 SECONDS願 RATE CAPACITORS.

LEVEL PEAK PHOTO DETECTOR 3.5 V.D.C. HOLD OUT.

EDGE POWER SWITCH 3-PIN DIP RN.

SOLDERING RIBBON CABLE $0.00 EACH.

MULTI-SWITCHES 3 STATION NON-INTERLOCKING 3-SPDT SWITCHES, EACH OPERATES INDEPENDENTLY.

SOLDER TYPE SUB-MINIATURE CONNECTORS USED FOR COMPUTER-HOOK UPS.

DIODE L.E.D. 3,600 mfd. 40 VDC.

2,000 mfd. 200 VDC 13/4" DIA. 1/4" HIGH $2.00 EACH.

2,000 mfd. 200 VDC 15/32" DIA. - 3/32" HIGH $1.00 EACH.

1,000 mfd. 150 VDC 13/16" DIA. - 1/8" HIGH $5.00 EACH.

3,000 mfd. 300 VDC 3/8" DIA. - 1/8" HIGH $5.00 EACH.

SOLDER LUG TERMINAL SOLDER LUG TERMINAL $1.00 EACH.

SOLDER LUG TERMINAL SOLDER LUG TERMINAL $1.00 EACH.

SOLDER LUG TERMINAL $1.00 EACH.
Have you ever completed a ham radio project and wished to improve its appearance or performance with silverplating? When I finished the duplexer described in the previous article, I wanted to silverplate it. But my previous experiences with electroplating were not encouraging. I knew I'd have to work with silver cyanide, a highly poisonous solution that emits cyanide gas, which can cause illness and even death. I would also have to obtain an expensive silver rod to use as an anode.

To devise a safe, economical alternative, I turned to black-and-white photography, which employs vast amounts of silver in the manufacture of film and printing papers. Even though much of the silver freed in processing is more often discarded with the spent solutions than recycled, it can be reclaimed. I reasoned that if it were possible to recover the silver from spent solutions, namely fixer, or "hypo" — then it should also be possible to capture that silver on a copper tube.

getting started

The first step in silverplating with reclaimed silver is obtaining an ample supply of exhausted fixer. Sources include photography labs or stores, graphic arts firms that make blueprints or photographic enlargements and reductions, printers with graphic arts departments, and the photography departments of schools and colleges. Friends who process their own film and print their own black-and-white pictures are also good sources.

The best fixer (for your purposes) is that which has been well used; used fixer carries a greater amount of silver than fixer used only slightly. Consequently, your best source of spent fixer may be the least fastidious photographer.

Once you've acquired your solution, obtain a simple dry cell. (I used a 7-year old 6-volt lantern battery.) You'll also need a 10k potentiometer, a 100 mA movement meter, and a carbon rod. (My carbon rod, salvaged from a discarded No. 6 dry cell, measured about 0.75 inches — 20 mm — by about 5 inches — 137.5 mm.)

Wrap the carbon rod in an ordinary kitchen sponge. Secure the sponge with rubber bands. You are now ready to silverplate.

silverplating your project

1. Connect the battery, potentiometer, carbon rod, and meter as shown in fig. 1.
2. Carefully clean the items to be plated. You will probably want to use fine steel wool and trisodium phosphate. Both of these materials are available in the paint

By J.S. Gurske, K9EYY, RR2, Box 178A, Lodi, Wisconsin 53555
HF, VHF, UHF, SSB, FM, RTTY, PACKET, CW, ASCII & AMTOR

IC-37A 220 MHZ COMPACT MOBILE
25 Watts, 32 PL Frequencies Standard Built-in, 9 Memories with Offset and PL Storage, 10 KHz/5 KHz Dial Steps, Memory Scan, Band Scan, and Priority Scan. Dual VFO's and Standard HM-23 Touchtone.

IC-27A COMPACT MOBILE
A breakthrough in 2-meter mobile communications! Most compact on the market (5½"W x 1½"H x 7"D), contains internal speaker for easy mounting, 25 watts, 32 PL frequencies, scanning and touchtone microphone.

C & A ROBERTS INC.
18511 HAWTHORNE BOULEVARD
TORRANCE, CALIFORNIA 90504
(213) 370-7451 (Calif.) • (800) 421-2258

REMEMBER WE SHIP
(UPS Brown - Cont. U.S.A.)

STORE HOURS: 10:00 a.m. - 5:30 p.m. MONDAY THRU SATURDAY
section of large hardware stores or in a paint store. Once the item is clean, do not touch it with your fingers. The oils on your skin can contaminate the surface, ruining an otherwise effective cleaning job.

3. Connect the minus clip to the item to be plated and the plus clip to the sponge-wrapped carbon rod. (See fig. 2.)

4. Pour some fixer into a glass or plastic bowl. Do not use a metal container.

5. Dip the sponge-wrapped carbon rod into the bowl of used fixer and rub the sponge-covered rod along the surface of the item to be plated as shown in fig. 3. At the same time adjust the pot for a reading of from 50 to 100 mA. (50 mA is a good choice.) As you rub the sponge-covered rod along the surface of the item to be plated, you will see the silver begin to collect on the item you are plating.

6. With a little practice, you’ll soon be able to evaluate the uniformity and thickness of the silver plate. When you are satisfied, go on to the next piece to be plated.

7. Should you want to plate a large, long tube, simply put the sponge on a long stick and slide it inside the tube. (This is simpler and safer than filling the tube with cyanide solution and then inserting a long silver anode into the tube [fig. 4].)

At this point I want to caution you about “flash” plating, which can occur if you don’t actively guard against it. “Flash” plating occurs when metals that are

Fig. 2. Silver plating with photographic fixer. Note basic connections and how the fixer-soaked, sponge-covered carbon rod is rubbed along the surface of the item to be plated.

Fig. 3. Silver plating the tuning rod of a cavity.

Fig. 4. Silver plating the inside of the main tubing of a cavity.
9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>6</td>
<td>53.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>6</td>
<td>72.05</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>2.4 kHz</td>
<td>12</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9D</td>
<td>AM</td>
<td>2.4 kHz</td>
<td>10</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>2.4 kHz</td>
<td>10</td>
<td>125.60</td>
</tr>
<tr>
<td>XF-9F</td>
<td>CW</td>
<td>2.4 kHz</td>
<td>10</td>
<td>125.60</td>
</tr>
<tr>
<td>XF-9G</td>
<td>CW</td>
<td>2.4 kHz</td>
<td>10</td>
<td>125.60</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>SSB</td>
<td>12 kHz</td>
<td>6</td>
<td>67.30</td>
</tr>
<tr>
<td>XF107-B</td>
<td>SSB</td>
<td>12 kHz</td>
<td>6</td>
<td>67.30</td>
</tr>
<tr>
<td>XF107-C</td>
<td>SSB</td>
<td>12 kHz</td>
<td>6</td>
<td>67.30</td>
</tr>
<tr>
<td>XF107-D</td>
<td>SSB</td>
<td>12 kHz</td>
<td>6</td>
<td>67.30</td>
</tr>
<tr>
<td>XF107-E</td>
<td>SSB</td>
<td>12 kHz</td>
<td>6</td>
<td>67.30</td>
</tr>
<tr>
<td>XM107-SC</td>
<td>FM</td>
<td>15 kHz</td>
<td>2</td>
<td>17.15</td>
</tr>
</tbody>
</table>

LOW NOISE RECEIVE CONVERTERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1691 MHz</td>
<td>GaAsFET</td>
<td>$49.95</td>
</tr>
<tr>
<td>1296 MHz</td>
<td>GaAsFET</td>
<td>$49.95</td>
</tr>
<tr>
<td>432 MHz</td>
<td>GaAsFET</td>
<td>$49.95</td>
</tr>
<tr>
<td>436 MHz</td>
<td>GaAsFET</td>
<td>$49.95</td>
</tr>
<tr>
<td>220 MHz</td>
<td>GaAsFET</td>
<td>$49.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>GaAsFET</td>
<td>$49.95</td>
</tr>
</tbody>
</table>

LINEAR TRANSVERTERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Output, 2m</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
<tr>
<td>432 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
<tr>
<td>220 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

LINEAR POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Output, 10m</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
<tr>
<td>432 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
<tr>
<td>220 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>3.8 W</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

ANTENNAS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>420-450 MHz</td>
<td>$39.95</td>
</tr>
<tr>
<td>144 MHz J-SLOTS</td>
<td>$39.95</td>
</tr>
<tr>
<td>8 over 8 Hor. pol</td>
<td>$39.95</td>
</tr>
<tr>
<td>8 by 8 Vert. pol</td>
<td>$39.95</td>
</tr>
<tr>
<td>Order Loop-Yagi connector extra.</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

fig. 5. Rejuvenating the depleted fixer: set the potentiometer for a meter reading of approximately 75 mA and wait for about 15 minutes.

If your fixer begins to weaken before you’ve completed the job, but you don’t have any more fixer on hand, try this method of rejuvenating the solution. Find an unwanted silver item such as an old vase or piece of discarded flatware. (I used an old silver coin which had been in a fire and was all bent out of shape.) Connect the unwanted silver item to be plated and reverse the battery connections. (The meter will read backward unless you reverse its lead. See fig. 5.) Place both the silver item and the carbon rod in the fixer solution. Then adjust the potentiometer for a 75 mA reading on the meter. The silver will turn black. After about 10 or 15 minutes, you can resume silverplating for a while longer but don’t forget to reverse the battery and mA meter leads. I don’t know how long or how many times you can go through this rejuvenation cycle. I did it about six times and it seemed to work fine.

I’m sure you’ll obtain good results if you follow these suggestions. My cavities looked 100 percent better after they were plated and I know they work better, too. So, go ahead and silverplate your next ham radio project.

ham radio
This programmable identifier — originally conceived by Don Henry, W3FE — can be used in a number of applications including home station or repeater ID and remote link identification. When Don suggested that a 64-bit shift register could be used to store a call sign, I proceeded to develop a circuit that would accomplish this task, be easy to program, and contain few IC’s.

construction

The circuit contains four CMOS IC chips (fig. 1). CMOS technology is well suited to this application because of its extremely low quiescent current requirements, thus making an on/off switch unnecessary. Because the circuit is powered all the time, backup power for the programmed data is unnecessary.

Circuit layout is not critical; whatever is convenient should work. I used a 4-1/2 inch (11.5 cm) by 4-1/2 inch (11.5 cm) piece of Vector Board with 0.1 inch (2.5 mm) hole spacing for holding the components. The resistors and capacitors associated with U4 (4093) should be kept as physically close to the IC as possible. I recommend sockets for holding the ICs. Wire wrapping works well; point-to-point wiring could also be used to make the connections. The power supply requirements are simple; a single 9 volt alkaline Duracell (or equivalent) battery will do.

programming

The programmable identifier has two modes of operation controlled by the DPDT switch. One mode is Recirculate or playback and the other is Program. The programming sequence is as follows:

- Set the DPDT mode switch to the Program position.
- Push the clock switch.
- After the 64th bit is programmed, set the mode switch to the Recirculate (or playback) position. Push the start ID switch and the programmed data will be played back.

Note: The first bit is always a 0. Insert 0 0 0 (3 bits) between characters.

<table>
<thead>
<tr>
<th>BIT</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIT</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>

- Set the programming data select switch to the "0" position.
- Push the programming clock switch once — Bit 1 is not programmed (note: Bit 1 must always be a "0").
- Set the programming data select switch to the appropriate "0" or "1" position.
- Push the programming clock switch once.
- Repeat previous two steps until all 64 bit positions are programmed.

After the 64th bit is programmed, set the mode switch to the Recirculate (or playback) position. Push the start ID switch and the programmed data will be played back.
Ham Radio

1985 World Radio TV Handbook

The 4th bit (LSB) represents the zero for the remaining bits up to and including the 6th bit. Set zeros for the remaining bits up to and including the 6th bit if your call does not require all 64 bits in the call stream. Keep count of the number of bits per character (3 bits) between each character to allow spacing between characters (Table 1) to get the correct data bit sequence.

To program your call, follow the programming data.
SAVE $10.00* with home delivery

*(One year newsstand cost $30.00)

Here’s my address label, enter my subscription.

☐ 1 Year 12 issues $19.95 ☐ Payment enclosed
☐ 2 Years 24 issues $32.95 ☐ Bill me later
☐ 3 Years 36 issues $44.95 U.S. prices only

Name ____________________________

Address ____________________________ State ______ Zip ______

City ____________________________

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $22.95 for one year by surface mail.
AZOTIC INDUSTRIES
2026 W. BELMONT
CHICAGO, IL 60618
312-975-1290

ELECTRONIC COMPONENTS & SUPPLIES
- RF CONNECTORS
- DIG CONNECTORS
- AUDIO CONNECTORS
- LINEARICS
- TRANSISTORS
- DIGITAL ICs
- TRANSFORMERS
- METERS
- COMPUTER CABLES
- DISKETTES

WRITE FOR FREE CATALOG
VISIT OUR RETAIL STORE
HRS. MON-FRI 10-5 SAT 10-2
PHONE ORDERS WELCOMED
312-975-1290

NEW, EASY-TO-USE DESIGN
GET TRANSI-TRAP™
LIGHTNING PROTECTION

Protect your valuable equipment from antenna voltage surges caused by nearby lightning, high wind and static build-up. Keep harmful AC energy off equipment by safety-shunting it to ground. Uses tested, field proven, and replaceable AC PLUG-IN gas filled ceramic cartridge.

Model LT: 200 watts at 500 $19.95
Model HT: 500 watts at 500 $24.95
Model R: 5 watts at 500 $29.95
Model R: 5 watts at 500 $32.95

See your local dealer or order direct. Please include $2 for shipping and handling. MC and VISA accepted.

ALPHA DELTA COMMUNICATIONS
P.O. Box 571, Centerville, Ohio 45459
(513) 435-4772

IT'S INCREDIBLE!
Master code or upgrade in a matter of days.

Code Quick is a unique breakthrough which simplifies learning Morse Code. Instead of a confusing maze of dots and dashes, each letter will magically begin to call out its own name! Stop torturing yourself! Your amazing kit containing 5 power-packed cassettes, visual breakthrough cards and original manual is only $39.95! Send check or money order today to WHEELER APPLIED RESEARCH LAB, P.O. Box 3261, City of Industry, CA 91744. Ask for Code Quick #103. California residents add 6% sales tax.

One User Comments:
"First new idea in code study and the darn thing works! So much fun you don't realize how much you're learning!"

M.S. Grenada, Miss

Hundreds of satisfied customers! You can't lose! Follow each simple step. You must succeed or return the kit for a total immediate refund!

CALL LONG DISTANCE ON YOUR HANDHELD

The Model 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate SSB or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, IC-2AT, Yaesu, Santec, and Ten-Tec. Only 300 mw input will deliver 5 watts out; 3 watts in will deliver 35 watts out. Maximum input drive level is 5 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 335 A
Kit $69.95
Wired & Tested $89.95

February 1985
high power amplifiers: part 2

In last month’s column, I discussed the design of high power VHF/UHF tube amplifiers with emphasis on the effects of the new FCC Amateur power regulations. This month’s column will continue in the same vein, but focus instead on the construction and practical application of VHF/UHF amplifier designs.

DC circuitry

In designing and building high power VHF/UHF power amplifiers, most Amateurs concentrate their efforts only on the RF portion of the design. This is unfortunate because power supply voltages and currents — as well as DC circuitry — are often just as important for successful amplifier RF performance.

Sometimes Amateurs will pay hundreds of dollars for a high power transmitting tube and then neglect to review the manufacturer’s specification sheet before firing up the new bottle in the amplifier. Instead, they’ll ask “Joe Blow” what voltages he uses on the same tube and follow his advice. Ironically, these Amateurs wouldn’t purchase used gear if the instruction manual weren’t part of the deal.

Suppliers of high power tubes — such as Amperex, Varian/EIMAC, General Electric, and RCA — all provide comprehensive data sheets with their products. Usually 4 to 12 pages long, these data sheets list mechanical dimensions and RF/DC characteristics. They also specify recommended bias and operating parameters so that the user can obtain the maximum performance and lifetime possible from the tube. Some manufacturers also offer, at a nominal price, abbreviated specification books listing many different tube types. The ARRL Handbook also includes tube tables.

Some of the more significant low-frequency or DC parameters for high power tubes are the maximum, minimum and recommended operating voltages and currents, warm-up time, and grid (and screen grid if a tetrode is used) supply impedance and plate dissipation.

filaments

Filament voltage in the newer tubes is, unlike the old receiving type tubes, far from standard. Because of the high power involved, the filament current required is often quite high. As a result, tubes may have a significantly shorter lifetime if the filament voltage is not kept within the manufacturer’s recommended ±5 percent values.

Let’s take a few examples. The popular 4CX250B has a filament rating of 6.0 ± 0.3 (±5 percent) volts at 2.6 amperes. Filament voltage must be measured at the tube socket pins with an accurate (within 1 to 2 percent) AC voltmeter with the tube inserted and drawing filament current! 6.3 volts AC is a common transformer (voltage) used on receiving tubes. Such transformers are often used on transmitting tubes (for example the 4CX250B), but they usually have some means of lowering the voltage. This is most commonly done with an adjustable wire-wound resistor placed in series with the primary of the filament transformer.

Now, let’s examine the higher power 8877, which requires a filament voltage of 5.0 ± 0.25 volts (±5 percent) at nominally 10 amperes. Since 5.0 volt transformers are quite common, they are usually used but rarely with any series resistor in the primary since it looks like one isn’t needed!

When a high power tube is first turned on, the filament resistance is always quite low. Initially, a high input current surge occurs; this can significantly shorten tube life. In the case of the 4CX250B, the resistor (which is typically used in the transformer primary) will serve to limit the turn-on current surge. However, in the case of the 8877, if no such primary resistor is used, the surge current will increase in a manner limited only by the resistance of the transformer secondary winding. Furthermore, no adjustments (in primary resistance) would be possible if the line voltage were already lower than nominal.

Therefore, when selecting a filament transformer it’s best to use one that is slightly higher in voltage than required so that an adjustable power resistor can be placed in series with the primary winding (fig. 1). Another alternative is to place a Variac™ on the primary side of the filament transformer and then increase the voltage slowly on each initial turn-on while monitoring the voltage directly at the tube socket. Many commercial trans-
mitters have a built-in filament voltage regulators to compensate for power line variations.

If you do not use a primary limiting resistor, be certain to always use a filament transformer with a current capability close to but not much higher than the filament current rating of the transmitting tube, selected to enhance current limiting. This may explain why some Amateurs when using filament transformers with higher current ratings than required, have experienced premature filament burnout of high-power transmitting tubes.

Each tube has a minimum warm-up time before any cathode current should be drawn. This can vary from as short as 30 seconds to as much as five minutes for the indirectly heated high-power transmitting tubes! Some manufacturers specify a lower stand-by filament voltage (for example, – 10 percent) that can be instantly brought up to specification during transmit times, thereby extending tube life. This can be easily accomplished with an inexpensive relay activated by the station send/receive control line. More information on such operation can be found on the manufacturer’s comprehensive data sheets, so consult them before you begin operation. Use of a time delay relay is also recommended in the high voltage supply.

Another VHF/UHF phenomenon, especially in grounded grid amplifiers or those where the cathode is hot, is RF on the filament of the tube. This can cause RF current to flow between the cathode and the filament, resulting in increased input drive requirements, additional filament heating, and possibly reduced tube life. To prevent this, the filaments should be bypassed to the cathode and connected to the filament transformer through a bifilar choke.

At VHF and especially UHF, a problem called transit time heating often occurs because of the finite time required for the electrons to move from the cathode through the grid to the plate, where some electrons may be repelled. This problem can usually be controlled by decreasing filament voltage at higher operating frequencies. Recommended filament voltages at various frequencies are provided on the manufacturer’s data sheets. Additional information on this subject is contained in reference 5.

grid bias

In the past, triodes were usually biased by grounding the cathode and applying a negative bias voltage to the grid. The new high-μ triodes are usually easier to bias. Often the grid is directly grounded and a large high-power zener diode, rated at the required bias voltage, is placed in series with the cathode circuit. However, many VHF/UHFers use only simple grid supplies often consisting of just a rectifier diode and filter capacitor on a reverse connected filament transformer. The problem with this approach is that if there is any grid current, the grid voltage will fluctuate directly as a function of the impedance of the bias supply.

Good design practice requires the grid supply to be regulated. In addition, the voltage should be adjustable and have a maximum DC output impedance between 1 and 2 kilohms! This can be done with either a shunt type transistor (or tube) regulator or a wirewound potentiometer directly across the output of a regulated grid supply, as shown in fig. 2. The main advantages of a low impedance grid bias supply are decreased grid drive and improved IMD.

screen supply

The majority of tetrode amplifier configurations require a screen voltage supply. Over the years I’ve seen dozens of complex schemes with separate regulated supplies, current protection relays, and surge voltage protectors. Most of these techniques are unnecessary. Screen grid burnout can occur if the screen voltage is not decreased rapidly when plate voltage is removed. Furthermore, negative screen current can occur in a properly operated tetrode amplifier. I believe that the most foolproof screen supply voltage circuit is a shunt regulator consisting of a dropping resistor and appropriate voltage regulators shunted to ground and supplied from the tube’s plate supply voltage. Furthermore, I highly recommend the use of VR (voltage regulator) tubes rather than power zeners. VR tubes are low in cost (especially at flea markets), easy to use, offer long life and don’t require heatsinking and insulated washers such as required by power zeners. VR tubes are less likely to be damaged by current surges from arcs caused by “barnacling” (more on this shortly).

The reverse screen grid current problem on tetrodes is often ignored by Amateurs. It is specifically noted on the manufacturer’s data sheets and can be easily handled by placing a properly selected resistor from the screen.
grid to ground. In most cases 20-25 kilohms (per tube) is optimum. Don’t forget to include this current when selecting the dropping resistor value in the regulator circuit just recommended. The final recommended circuit is shown in fig. 3. The circuit is simple and should be all that is required to properly supply voltage to the screen grid in a high power amplifier. In addition, if the series dropping resistor value is properly selected, the tube’s screen dissipation can be limited to the specified value.

plate supply voltage

Finally, we must supply the tube plate(s) from a high voltage supply. (This is always the user’s choice.) First a transformer must be selected. When running over 500 watts, I highly recommend use of 230 volt primaries since there will be improved regulation without blinking the house lights off and on!

The choice of the rectifier circuitry, either a full wave, full wave bridge, or full wave voltage doubler (all these are acceptable), is a personal choice based on the transformer chosen and its voltage ratings. A common practice is to use a set of high voltage solid-state rectifiers, often feeding just a bank of high voltage capacitors. One should carefully choose the amount of capacitance required before completing the design or use the alternative choke input filter.·

Regardless of the configuration chosen, there are several other considerations. The primary of the high-voltage transformer should be adequately fused. An adequate bleeder should be placed across the high voltage output to not only discharge the supply when turned off but also improve regulation. This is especially important with a choke input filter. Recently there has been a tendency to place a high power, high value resistor in the cathode of transmitting tubes when in the standby mode. I do not recommend this practice but instead prefer to entirely disconnect the high voltage from the final when not in the transmit mode. This not only prevents inadvertent shocks but also eliminates any noise or self oscillations that may be possibly generated by the final or feedback from the earlier stages. This is easily accomplished by using a vacuum relay in the high voltage output lines as shown in fig. 4. These relays are often available at flea markets or surplus stores at reasonable cost.

Sometimes there is an advantage to connecting the screen grid directly to ground to stabilize high power UHF amplifiers. This technique requires a slightly different power supply topology as shown in fig. 5. If this configuration is chosen, the screen supply must also be able to handle the full current required by the plate. However, the total voltage required from the plate high: voltage supply is reduced since it is in series with the screen supply.

Sometimes a small impurity becomes lodged between the grid or screen grid and plate of a high-power tube, causing a short circuit. This phenomenon is called “barnacling.” A limiting resistor should be placed in the high-voltage line so that the peak current does not exceed 50 to 100 amperes and destroy the tube. This is accomplished by placing a 25 to 50-ohm resistor in the plate voltage line. The power rating of the resistor is determined by the plate current of the tube in use. If a barnacling condition occurs, this series resistor will limit the plate current and possibly disintegrate, but the tube will survive and will usually return to normal operation after the initial surge. Remember, if a shunt regulator is used on the screen, put this limiting resistor on the supply side as shown in fig. 4. In this way, if the resistor blows open, the screen voltage will also be removed.

A high-voltage in-line fuse should also be used. Low-voltage glass or ceramic fuses are not recommended because they are slow acting, can explode, and can arc, possibly causing damage to meters! A short length of a small gauge wire (No. 40 preferred) can be used as a fast acting, low cost high voltage fuse.·

amplifier bypassing

It is sound engineering practice to use an extra pair of coaxial relays so that high power amplifiers may be bypassed when not in operation or when the final is warming up (fig. 6). The input relay can be a low power type but the output relay must be capable of handling the full output power of the transmitter.

Amplifier bypass relays should never be (hot) switched when RF power is present since this will severely limit relay contact lifetime not to mention generation of spurious pulse noise. Isolation of each bypass relay doesn’t have to be as high as with a typical T/R relay, with 30 dB per relay more than adequate. Furthermore, particularly in grounded grid amplifiers, RF should never be applied to the amplifier input unless the proper voltages are already applied.

plate dissipation

This parameter is often overlooked. The plate dissipation is approximately
the plate power input less the power output of the amplifier (other circuit losses being low). For example, if the plate input power is 2500 watts and the amplifier output is 1500 watts, the plate dissipation is approximately 1000 watts. The plate dissipation ratings of many of the more common tubes is shown in table 1 of reference 1. (The subject is further discussed in the “cooling” section of this article.)

cooling considerations

Amateurs are notorious for abusing high power transmitting tubes. One of the most misunderstood transmitting tube parameters is the plate dissipation rating. The manufacturer’s specification applies only if there is adequate cooling, by either air or water, to the tube.

Herein lies a problem. Each air-cooled tube has a different cooling specification, clearly spelled out on the manufacturer’s data sheet, based on the amount of air circulation (in cubic feet per minute) through the plate fins or around internal anode tubes as well as a specified back pressure (usually measured in inches of water). Therefore an exchange of tubes based primarily on a higher plate dissipation rating, may often require a greater air flow rate — for example, as in the case of swapping the 4CX250B and 8930 in the K2RIW 70-cm amplifier.

External anode tubes are best cooled using air system sockets so that air is circulated over the grid and cathode seals as well as through the plate fins. Since these tubes generally have a high resistance to air flow, especially when compared to internal anode tubes, chimneys are a must to force the air through, rather than around, the plate fins. A large blower, preferably one operating at 3600 RPM, is usually required to keep plate dissipation within the tube ratings and overcome the high back pressure developed by the tube. (Don’t forget to occasionally remove external anode tubes from service and clean out any accumulated dirt or dust that becomes lodged in the heat sink fins.)

Gary Madison, WA2NKL, has developed an approximate formula to compare the back pressure of different blowers as shown in eq. 1:

\[P_B = 8 \times 10^{-9} \cdot d_W^2 \cdot V_W^2 \]

(1)

where \(P_B \) is the blocked-off back pressure in inches of water
\(d_W \) is the wheel diameter in inches
\(V_W \) is the speed of the blower in revolutions per minute

For example, a 2-inch wheel diameter 3600 RPM blower will have a back pressure of approximately 0.415 inches of water while an 1800 RPM blower of
the same size would develop only 0.104 inches in water. This formula dramatically illustrates how a small increase in wheel diameter or speed will increase the back pressure.

A recent trend is to use water cooling on the plates of transmitting tubes, especially at UHF. For over 10 years I have been using such a technique on a 4CW800B type water-cooled tetrode. My 2-gallon water supply is housed in a small waste paper container; the pumping pressure is provided by a fish tank pump. Although distilled water is preferred, I find that water collected from a de-humidifier is adequate. Each summer I store the required 10-12 gallons needed for a year of operation. Replacement water-cooled plate radiators are now commercially available for the 2C39/7289 family of tubes.

This technique is very good, but not without its limitations. Often the tube's grid and cathode seals are overloaded. They also require cooling. In grounded grid configurations the grid, if attached directly to the chassis, may be sufficiently cooled by conduction, but the cathode is usually overlooked. Therefore, if the plate is water cooled, a reasonable amount of air should also be circulated through the cathode/grid compartment.

Often when the proper amount of air is used, there may be an objectionable blower noise in the shack. Some Amateurs have attempted to lower the noise by locating the blower elsewhere and directing the air through a hose. This method requires special attention, since the hose chosen will have resistance, which will decrease air flow. Therefore, if a blower is remotely located, its output may have to be raised accordingly.

There are two main problems of insufficient air flow. The first one is obvious: tube life is shortened. The other may also be obvious but is seldom mentioned: if plate dissipation is too high, the extra heat is often dissipated in the tank circuit, especially when metal tubing type plate lines are used. The net result is that the tank circuit tuning drifts especially during long transmissions such as on EME.

Always try to provide a good safety margin (2:1 is recommended) of cooling, whether with air or water. Also verify that there is sufficient pressure differential across the tube, especially for external anode tubes. Also, in the case of air or water supply failure, provide a blower or water flow cutoff switch in the power supply (more on this later). A convenient method of measuring flow and back pressure is described in reference 9.

construction techniques

Many good construction tips are buried in the various articles on high power finals and some of these references will be cited later in this article. Do read as many of the references as possible.

One of the most important design considerations centers on the circuit chosen. The next consideration is the choice of tube type. Choosing a larger tube than required may be wise because the actual plate dissipation will be a smaller percentage of the tube's ratings. However, all is for naught if the mechanical integrity of the amplifier is not given proper attention. All components and mechanical parts should be sturdy and properly secured to the chassis because any changes in temperature or duty cycle will cause detuning affects. Also, the components used in a high performance transmitting amplifier should be first quality. If not, there may be unnecessary down-time, as well as the possibility of destruction to the other components in the amplifier such as the tube! It is not a good practice to economize here.

In a high performance, high power amplifier, it is essential that all RF components be placed within shielded boxes (more on this later). It is also wise to locate all other components outside the RF enclosures. This is particularly true of the plate compartment. The only items that should be present in the output circuitry are the tube, tank circuit components, RF choke and the high voltage bypass capacitor. Likewise, the input compartment should not contain components such as meters or filament transformers.

The method employed to physically tune the plate circuit is very important for stable, trouble-free operation. No matter what you do there will always be some heat dissipated in the tank circuit. Therefore, it is wise to locate the tuning capacitor where thermal detuning effects are minimal.

A typical example of how to and how not to tune a final is shown in fig. 7. Note that in fig. 7A, any expansion or contraction of the tank due to heating or cooling causes the capacitance to increase or decrease and therefore detunes the tank circuit. However, if the tuning method of fig. 7B is used, the tank circuit will only move back and forth past the tuning capacitor and cause a much smaller change in amplifier tuning.

The tuning capacitors must be carefully designed. A disc soldered on the end of a brass screw is a very lossy tuning method which may cause erratic tuning. I prefer a push mechanism in which there are no moving metal-to-metal contacts. For instance, a beryllium copper flapper can make an excellent tuning capacitor by pushing against it with a non-metallic object such as a threaded teflon rod. W2GN has suggested the use of a metallic rod if an insulator such as a teflon button is placed at the contact point to the capacitor (see fig. 8).

Another item to note is that when a transmitting tube has a plate contact ring, the tank circuit should preferably be attached to it rather than to the out-
The most trouble free Dish Positioner on the market today.

Features:
- Economical
- Lock and Key
- 36 volt DC motor
- Precise positioning
- Analog Micro Systems
- 1 year limited warranty
- State-of-the-art circuitry
- LED to indicate dish movement
- Available in 18" or 24" ball actuators
- Modern, attractively styled control box
- Dial control always showing dish location
- Dial channels same as in program listings

Your wisest choice in automatic dish positioners. To learn more about the finest in low cost, high performance dish positioners, contact...

ELECTRO-COM
DIST. SALES
8459 North Main Street • Suite 112 • Dayton, Ohio 45415 • Phone (513) 454-0232
TIME FOR AN AEA BREAKTHROUGH

The high quality of AEA products is appreciated long after the price paid is forgotten.

<table>
<thead>
<tr>
<th>No Antenna</th>
<th>Tuning Aid $119.95</th>
<th>THE FANTASTIC DOCTOR DX™</th>
<th>CW Band Simulation That Is So Real You Won't Believe It!!</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Radio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No TV!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Most gain attainable for length of antenna—3 dBd (0 dBd for JR models).
- Best decoupling of any commercial VHF base station antenna available.
- More gain than many antennas claiming up to 7 dB gain—don't be fooled by misleading claims.
- Zero degree angle of radiation.
- Factory-tuned matching network.
- Greater bandwidth than any competitive product.
- DC grounded for static discharge protection.
- Documented cases of wind survival in 140 + mph hurricanes.
- Easier than any competitive antenna to assemble.

Most Not Included

ISO = 144 or 220—$59.95
ISO = 144 JR or 220 JR—$49.95
ISO = 440—$84.95

<table>
<thead>
<tr>
<th>HOT ROD™</th>
<th>½ Wave Telescope Antenna</th>
<th>$24.95*</th>
</tr>
</thead>
</table>

- Fewer telescopic sections than any ½ wave whips.
- Shorter and lighter than all ½ wave whips.
- Special matching network designed by Professor D.K. Reynolds (co-inventor of Isopole™ antenna) makes Hot Rod competitively priced.

PKT-1 Packet Controller $589.95

- First commercially available packet controller for Amateur Radio.
- Uses TAPR circuitry and firmware.
- Digital radio communications for computer to computer.
- Easy to use—five usual commands.

- Multiple conversations on simplex channel.
- EVERY PKT-1 is a digipeater.
- Send computer files error free.
- Operates from 9-15 VDC for portable or fixed operation.

ELECTRONIC KEYERS

BT-1 Basic Morse Trainer $109.95

- Trains code at 20 wpm.
- Random practice mode.
- Memory.

- $149.95

- $199.95

- $229.95

MM-2 MorseMatic™

- Teaches code at 20 wpm.
- Random practice mode.
- Variable monitor tone.

All AEA Keyers operate from 9-15 VDC (power supply not included) and offer many more advanced features than can be listed here. It is no accident that AEA keyers are regarded as the best in the world.

Unmatched Software For C-64 and VIC-20 Computers

MBA-TOR™—The most advanced software written for Morse-Baudot-ASCII-AMTOR including mail drop.
MARSTEXT™—A special Morse-Baudot-ASCII package written especially for MARS and other traffic operators.
SWLTEXT™—The most sophisticated software available for the shortwave listening enthusiast. Automatic data analysis: Morse, Baudot, ASCII, AMTOR, and SITOR.
AEA also offers Morse, Baudot, and ASCII software for the following computers: Apple II, II +, IIIe; IBM-PC.

VHF COMMUNICATIONS

915 N. Main St., Jamestown, New York 14701 (716) 664-6345
side of the plate cooling fins. The circulating RF currents in a typical Amateur high power transmitting amplifier can easily reach 10 to 50 amperes!

Finally, there is often a need to provide air inputs and exits. These can best be made using a waveguide beyond cutoff configuration. It is well known that if the diameter of a hole is small with respect to the frequency (much less than 1/4 wavelength) and the hole has depth (such as tubing), RF will be attenuated approximately 30-33 dB per unit length. For example, if a 1 inch (2.54 cm) diameter tube is 1 inch long, it will attenuate VHF signals approximately 30 to 33 dB. If the same tube is extended to 3 inches (7.62 cm), the attenuation will be approximately 90 to 99 dB, usually more than sufficient. This attenuation principle is applied to the air inlet by using either a long large diameter tube, or several smaller diameter shorter tubes placed in a circle for air inlets and exits. Recently a honeycomb type of material has become available and it is easier to use than bundling up tubing, a technique now in wide use.

tube selection

So far I have covered many of the different aspects of high power RF amplifier design but haven’t said too much about the actual tube selection. Table 1 in reference 1 shows some of the more popular tube types. Now that the FCC power regulations have been changed to apply to output power there are really many choices.

However, high power transmitting tubes should never be operated above their maximum frequency of operation unless the voltages and currents are reduced accordingly. Furthermore, the efficiency usually drops past the rated frequency and hence there may be severe over-dissipation not only in the plate but also in the control grid elements. Unfortunately, at VHF and UHF frequencies, control grid dissipation may increase but will not necessarily show up on the grid current meter as it does at HF. Failure to observe the tube’s ratings can severely decrease efficiency and the life of the tube!

As I mentioned before, the use of parallel tubes should be a last resort. Using tubes above their rated frequency is also not recommended. If you require only moderate output power (500 watts or less), there are lots of single-tube amplifier choices such as the 4CX250B, 4CX300A, 8930, 8874, or the new 3CX800A7.

There is an alternative to the parallel tube approach. If additional power is required, identical amplifiers can be summed using hybrid power splitters and combiners. However, this technique is tricky and is recommended only for the more experienced VHF/UHFrers.

The 4CX350A is not recommended above 135 cm (220 MHz) since it is primarily an HF tube and will exhibit low efficiency at 70 cm. Furthermore, its operating voltages must be lowered above 30 MHz. If you look carefully at the specification sheet you will see that the plate radiator is similar to the 4CX250B but the required air and back pressure have been increased to obtain the 350 watts of dissipation, a technique I mentioned earlier in this article.

For the full legal power limit, the new high-μ triodes such as the 8877 and 8938 are great but costly. Despite rumors to the contrary, the 8938 is not the 8877 with a different base! The 8938 cathode lead inductance has been lowered and the transit time loading has been improved, extending full power efficient operation up to approximately 500 MHz. The 8877 should not be used at full ratings above the 135 centimeter band.

The 4CX1000 series of tubes is often available on the surplus market at affordable prices. However, if stable operation on 2 meters or above is planned, the 4CX1000K is recommended since it has improved input-to-output isolation. The 7213/7214 and 7650/7651 tubes, also often found on the surplus market, will work well through about 1000 MHz, but, despite the data sheet, are not recommended for the 23-cm band since gain and efficiency will be so poor (33 percent if you are lucky!) that the useful output power will be low at maximum ratings. High power on 23 cm and up is still a problem, and no moderately priced single tube that can generate over 500 watts of output power is yet available to the Amateur service.

component selection

The type of RF coupling capacitors chosen is very important. The so-called TV doorknob types are not recommended because they cannot handle the typical RF current in a high-power VHF/UHF amplifier. The Centralab 850 or 857 series or the ITT 50 or 58 series transmitting doorknob type of capacitor (or equivalent) is strongly recommended even though they cost more (available from Radio Kit, Box 411H, Greenville, New Hampshire 03048).

HV feedthrough capacitors are also required. The Murata/Erie model...
249B/001-XUO-102M 1000 pF at 4000 volts, is relatively expensive but highly recommended since it will handle the typical high voltages required as well as act as an RF low-pass filter. Some designers have "rolled their own" bypasses by placing a slab of copper or brass against a chassis wall insulated by a thin (0.005-0.010 inch or 0.13-0.25 mm) dielectric insulator. High voltage connectors are a must especially for safety. The typical "BNC" or "N" types have identical breakdown voltages which are too low for most amplifiers and are not recommended for carrying high voltage. However, the "MHV" (high voltage BNC) connector is highly recommended. Because its end is insulated, making it difficult to touch the tip — a useful feature should a high voltage circuit be accidentally touched when energized. This feature has saved my life more than once!

Chassis and enclosures are becoming difficult to obtain. Byers Chassis-Kit (K31WK) has a large selection of chassis kits and will make up special enclosures to order.

When dielectric materials are used at VHF/UHF frequencies, careful selection is important for low loss. nylon or bakelite because they’re lossy materials. Some of the recommended materials are Kapton, Teflon is recommended. It has a large selection of chassis kits and will make up special enclosures to order.

When dielectric materials are used at VHF/UHF frequencies, careful selection is important for low loss. nylon or bakelite because they’re lossy materials. Some of the recommended materials are Kapton, Teflon is recommended. It has a large selection of chassis kits and will make up special enclosures to order.

safety considerations

Whenever you are working on a high-power amplifier, safety should be your first concern. Safety applies in both the DC and RF area. High voltage can kill. All amplifiers should be adequately shielded to prevent inadvertent contact with the high voltage supply lines as well as the RF circuitry. High voltage primary interlocks, bleeder resistors in the supply, and high voltage discharge mechanisms are a must. Use of a relay in series with the high volt-

February 1985

2000 A

1985
age (as previously recommended) is one additional way to lessen the chance of high voltage shocks, but even a relay’s contacts can stick — so don’t leave anything to chance. Meters, especially those connected directly in the high voltage line, are particularly dangerous. High voltage may be very close to the glass and a source of arcing. If a meter is placed in the high voltage line, it should be adequately insulated from ground and placed behind a protective panel. Bypass meters with back-to-back diodes as shown in figs. 3 and 4, to lessen the chance of meter destruction at high currents.

The loss of cooling air or water to the tube can also present a safety hazard. Besides endangering the tube, loss of cooling increases the chance of fire or explosion should the plate over-dissipate. An air or water flow high voltage cutoff switch is recommended in case of failure.

Finally, we must respect RF and microwave radiation. In recent years it has become increasingly obvious that Amateur transmitters, especially those operating at 500 watts and above, have sufficient RF power to be hazardous, especially to the eyes and brain. Power densities of 10 milliwatts/cm² were formerly the American National Standards Institute (ANSI) C95.1-1974 limit.11 This limit has now been superseded. The new ANSI C95-1-1982 limits are 1 milliwatt per square centimeter from 30-300 MHz, following the curve f(MHz)/300 milliwatts per square centimeter from 300-1500 MHz, and 5 milliwatt per square centimeter above 1500 MHz. This limit can be easily exceeded within 1 meter of a high power VHF/UHF transmitter with the plate compartment shield removed. Blackwell and White have described a simple probe to measure RF power density.12 A power amplifier should never be operated with the shielding removed, especially on 2 meters and above!

warranty considerations

Most manufacturers will not replace a defective tube, even under warranty, unless certain parameters have been monitored. These include, but are not limited to, filament voltage, hours of operation (as indicated on a built-in elapsed meter), circuitry and operating voltages. These requirements are usually spelled out on a warranty sheet in the original packing container. It’s well worth checking into these requirements before placing a tube in service.

recommended designs

Finally we come to the question of what are the most popular and recommended designs. The following table includes many recommended references or designs, listed by frequency band:

<table>
<thead>
<tr>
<th>band</th>
<th>see reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 meters</td>
<td>13.20</td>
</tr>
<tr>
<td>2 meters</td>
<td>19.35</td>
</tr>
<tr>
<td>135 cm</td>
<td>36.41</td>
</tr>
<tr>
<td>70 cm</td>
<td>10.42-48</td>
</tr>
<tr>
<td>33 cm</td>
<td>49</td>
</tr>
</tbody>
</table>

23 cm and up is still a difficult area; it will be covered in a forthcoming column, but reference 50 is recommended for a medium power (100-150 watts) 23 cm-amplifier.

This list should cover most of the tubes and circuits presently in widespread use. The selection of amplifier and tube is left to the individual.

The AM-6155, a moderately priced ($150) surplus linear amplifier, has recently become available from Fair Radio Sales.51,52,53 It comes complete with a self-contained power supply and uses a single 8930 tetrode. Properly modified, this amplifier can operate on either 2 meters, 135, or 70 centimeters. With 10 watts of drive, 400 to 600 watts of output have been reported.

summary

Properly operated tubes used in a good circuit with appropriate attention given to component selection will have a long lifetime and provide many hours of satisfactory operation.

I highly recommend that you obtain a copy of reference 5 for your library. This reference is very complete and will provide amplification on many of the items discussed in this article. Let me know if I have left out any major points. They can be covered in a subsequent column.

acknowledgements

This month’s column would not have been possible without the efforts of many other individuals. In particular I want to thank Lewis Collins, W1GXT, and Gary Madison, WA2NKL, who helped a great deal by reviewing this month’s manuscript and providing many valuable suggestions.

I would also like to thank Bob Sutherland, W6PO, for all the valuable information and guidance he has provided over the last 15 years. Finally, I want to also thank Ray Rinaudo, W6ZO; Bill Orr, W6SAI; Fred Merry, W2GN; and all the other VHFeers who have, over the years, helped me and others to understand how to properly design and build a high power VHF or UHF amplifier.

references

2. “EIMAC Power Grid Tubes Quick Reference Catalog No. 294,” Varian EIMAC, 301 Industrial Way, San Carlos, California 94070. $5.00 postpaid.
Sinclair: Leaders and innovators in antennas, filters, combiners, multicouplers, duplexers and isolators from 25 MHz to 1 GHz. To take advantage of Sinclair Expertise call toll free: 1-800-228-2763

Sinclair Radio Laboratories Inc.
675 Ensminger Rd., Tonawanda, N.Y. 14150
(716) 874-3682

J.I.L. SX-400

• A professionally created scanner for the serious listener
• Wide frequency coverage 26 to 520 MHz (with optional converters 100 kHz to 1400 MHz)
• Continuous coverage. You'll hear everything.
• Birdie-Free, no internal 'signals' to interfere with scanning
• 20 Channel memory, AM-FM Mode memory, Priority memory
• Carrier Operated Relay (COR) permits automatic start/stop of a recorder
• Four low-noise front end converters for optimum performance
• 12 Volt DC operation (120 Volt AC power supply optional)
• Check J.I.L.'s ad in this issue for further details

Sale Price $549.95 List $739.90
P-1A Power Supply $34.95
Other options call

Electronic Equipment Bank
516 Mill Street
Vienna, Virginia 22180
800-368-3270
(703) 938-3350

T.V.I. problems?

Barker & Williamson

Low pass T.V.I. filters from Barker & Williamson

- Add $2 shipping and handling

ALL OUR PRODUCTS MADE IN USA

Barker & Williamson
Quality Communication Products Since 1932
At your Distributors Write or call:
10 Canal Street, Bristol PA 19007
(215) 786-5581
When the FCC changed the rules, EIMAC was prepared for continuing HAM operations.

The FCC changed the allowable output power for linear amplifiers in amateur radio service. Hams can now run at 1500 watts PEP into an antenna. EIMAC was right there to meet requirements with its 3CX1200A7 tube.

Low-cost replacement for small spaces.
RF cabinets of many linear amplifiers currently use the EIMAC 3-500-Z tubes. The new 3CX1200A7 for design takes size into consideration and, by design, is recommended as a single, low-cost replacement for a pair of EIMAC 3-500-Z tubes for new amplifier designs.

General Specifications
The EIMAC 3CX1200A7 is a high-
mu, compact, forced air cooled triode for zero-bias class AB2 amplifiers.
- 2.9" dia. x 6.0" long
- Plate dissipation: 1200 watts
- Glass chimney SK-436 available
- Standard EIMAC SK-410 socket available

More information is available on the new EIMAC 3CX1200A7 tube from Varian EIMAC, or any Electron Device Group worldwide sales organization.

Varian EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
Telephone: 801-972-5000

Varian AG
Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: 042-23 25 75
defining the decibel

Why bother? Because in electronics — as in any science — definitions do make a difference.

The unit of the decibel, or dB, is used quite widely in electronics to express everything from amplifier gains to bandwidth ratios (is that 10 log or 20 log for bandwidths?). Often the question, “Is that dB-voltage or dB-power?” is heard. The answer to that question is an unequivocal “yes.” The short article that follows reiterates the apparently long-forgotten history of the decibel and discusses both its proper application and a few of its common misapplications as well.

The decibel is, roughly, the smallest change in acoustic power that the ear can detect. It’s one tenth of a bel, a unit named for Alexander Graham Bell, whose original research revealed the logarithmic amplitude response of the human ear; not surprisingly, the concept of the bel was originally used in the field of telephony. But the unit was found to be too large for practical application, and the decibel was soon found to be more convenient.

In the original acoustic terms, the decibel was defined as 10 log to the base of 10 of the ratio of two acoustic intensities (powers). (A similar but much less frequently used unit is the Neper — from Napier — which is given as 1 log to the base e of a voltage ratio. Yes, the multiplier is 1, not 10.) In modern electronics, however, the decibel is defined as 10 log of a power ratio in which the two powers ratioed are measured at a particular point in a system — at the output of an amplifier, for example. This is the only definition. Other descriptions of the decibel, such as 20 log of a voltage ratio, are derivations of this definition, often with some critical information omitted.

The decibel is really just a type of mathematical shorthand. It is more convenient, for example, to express the power gain of an amplifier as 80 dB than as 100,000,000 watts/watt. One variation to this basic definition has been a generalization to allow the two powers ratioed to be at different points in a system that have equal impedances — for example, the power gain of an amplifier in a constant 50-ohm system expressed in dB as 10 log of the ratio of the output power to the input power. Such a generalization, however, is still consistent with the original definition. Consider a 50-ohm amplifier in a 50-ohm system. Its input and output impedances must both be 50 ohms to be consistent with the 50-ohm system. Therefore, the source driving the amplifier will deliver the same power to a 50-ohm termination as it delivers to the amplifier input. Let us choose the 50-ohm input to a power meter as the point of measurement of the original definition above. First apply the source directly to the power meter input and record the source power. Then, remove the source from the measurement node (power meter input), apply it to the amplifier input, and apply the amplifier output to the power meter. Measure the new power at the point of measurement. The amplifier gain in dB is then 10 log of the ratio of the second measurement, the output power, to the first measurement, the power applied to the input. This measurement technique is a direct application of the definition of the decibel.

Alternately, we could, by some means, measure the input and output powers of the amplifier with it attached to the source and 50-ohm load (computed from measured input and output potentials perhaps) and compute the gain in a similar manner as above. There is a subtle difference between this second measurement technique and the first. In the first, a single point of measurement, the input to the power meter, was used to measure the two powers for the ratio; in the second, two different points in the system were observed — the input and output ports of the amplifier.

By Michael Gruchalla, EG&G, 2450 Alamo Avenue S.E., Albuquerque, New Mexico 87106
Since the system was defined to be a 50-ohm system throughout, both techniques will yield the same results. However, if the impedances in the system are not the same throughout, the results will not be the same. (This will be demonstrated later.) So, the ratio of two powers, P_2 and P_1, in a constant impedance system expressed in dB, is given by eq. 1, where the term "D" is simply a general notation and the form "dB" is used to show the units of the result.

$$D = 10 \log \left(\frac{P_2}{P_1} \right) [\text{dB}] \quad (1)$$

In many cases the power, P_1, is chosen as some convenient reference power such as one milliwatt. The value of D is then given in dB referred to a milliwatt, abbreviated dBm. This is still consistent with the basic definition of the dB since D is then a representation of the actual power at a point in a system compared to the chosen reference power at that same point.

Now, we will expand eq. 1. However, since this is not a lesson in arithmetic, the impedances will be defined as being real with no imaginary part, which will simplify the math considerably. Each of the powers in eq. 1 may be expressed in terms of the potentials and corresponding impedances, or resistances for the case of impedances with only a real component, at the power measurement points. Expanding eq. 1:

$$D = 10 \log \left(\frac{(E_2^2/R_2)}{(E_1^2/R_1)} \right) \quad (2)$$

$$= 10 \log \left(\frac{E_2^2}{E_1^2} \right) - 10 \log \left(\frac{R_2}{R_1} \right) \quad (3)$$

$$= 20 \log \left(\frac{E_2}{E_1} \right) - 10 \log \left(\frac{R_2}{R_1} \right) [\text{dB}] \quad (4)$$

This is an interesting result. We can now see where the $20 \log$ of a voltage ratio expression originated in the widely used dB expressions. But what about the second term in eq. 4? Well, in the case of a constant impedance system, the two resistances are the same value, resulting in a second term of $10 \log(1)$, which is of course zero. As a result, D is correctly expressed in dB as $20 \log$ of the ratio of two voltage measurements, which is the expression so familiar to many of us. So we’ll make a note of it here:

FOR CONSTANT IMPEDANCE ONLY!!!

$$D = 20 \log \left(\frac{E_2}{E_1} \right) [\text{dB}] \quad (5)$$

This would be a good point to digress a moment and examine the question, “Is it dB-voltage or dB-power?” Consider a 50-ohm amplifier in a constant 50-ohm system. If we applied an input signal of one microwatt (-30 dBm right?) to this amplifier and measured an output power of one milliwatt (0 dBm?), what would be the gain of that device in dB? Letting that power ratio be represented by “G” and applying the basic definition of the dB given in eq. 1:

$$G = 10 \log \left(\frac{P_o}{P_{in}} \right) [\text{dB}]$$

$$G = 10 \log \left(\frac{1 \text{ milliwatt}/1 \text{ microwatt}}{\text{dBm}} \right) \quad (6)$$

$$= 10 \log (1000) = 30 \text{ dB}$$

We could have easily found this result by subtracting the -30 dBm input level from the 0 dBm output. However, since this is not a lesson in arithmetic, the impedances will be defined as being real with no imaginary part, which will simplify the math considerably. Each of the powers in eq. 1 may be expressed in terms of the potentials and corresponding impedances, or resistances for the case of impedances with only a real component, at the power measurement points. Expanding eq. 1:

$$G = 20 \log \left(\frac{E_2}{E_1} \right) - 10 \log \left(\frac{R_2}{R_1} \right) [\text{dB}] \quad (7)$$

Now we will try it from a voltage point of view. First we must compute what input and output voltages we would measure with the corresponding powers given.

We all know that the power dissipated in a resistor with a potential E applied across it is given by:

$$P_R = E^2/R \ [\text{watts}]$$

Solving for E in terms of P and R:

$$E = (P \cdot R)^{1/2} \ [\text{Volts, RMS}]$$

For the one microwatt input (remember, we said we had a 50-ohm system):

$$E (1\mu W) = (1 \cdot 10^{-6} \text{ watts} \cdot 50 \text{ ohms})^{1/2} = 7.07 \text{ millivolts RMS}$$

And for the one milliwatt output:

$$E (1mW) = (1 \cdot 10^{-3} \text{ watts} \cdot 50 \text{ millivolts})^{1/2} = 223.6 \text{ millivolts RMS}$$

Now, applying eq. 4:

$$G = 20 \log \left(\frac{E_2}{E_1} \right) - 10 \log \left(\frac{R_2}{R_1} \right) [\text{dB}]$$

$$G = 20 \log \left(\frac{223.6 \text{ mV}/7.07 \text{ mV}}{10 \text{ volts}/10 \text{ volts}} \right) = 20 \log (31.63) = 0 = 30 \text{ dB}$$

Look carefully at the two results in eqs. 6 and 7. If you were told that the gain of this 50-ohm amplifier was 30 dB, would you have to ask “dB-voltage or dB-power?” (I hope not.) As shown in this example, computing the gain by either 10 log of the power ratio or $20 \log$ of the voltage ratio yields exactly the same result in a constant impedance system. So you can see that the all-too-often-asked question has little meaning when the concept of the decibel is properly used.

We will now see how the concept came to be misapplied. Look back at eq. 4. This is an exact expression of the decibel and, as explained, reduces to eq.
5 in systems of constant impedance. In the early applications of the decibel, power measurements were made in waveguide and coaxial RF systems using various instruments for direct power measurement. The use of these instruments required the signal of interest to be applied directly to the measurement instrument input as is required by the definition of the decibel. Therefore, ratios of measured powers expressed in dB were consistent with the original definition. Then something terrible happened: the performance of electronic instruments improved dramatically. RF voltmeters could now be used to measure actual RMS potentials in systems, rather than only power. Oscilloscopes could provide direct viewing of the voltage waveforms from which RMS values could be computed. And worse yet, these instruments were of such a nature that these potential measurements could be made quite accurately in systems of almost any impedance without the need to break the circuit for direct application of the measured signal to the measuring instrument. In fact, the impedance did not even have to be known to accurately measure potentials, although circuit loading did have to be considered. Well, many of the first applications of these instruments were still in the area of constant impedance systems and it was well known that eq. 5 applied, and why. As several generations of engineers and technicians used these new and ever-improving instruments, the use of eq. 5 became second nature and its origin (and limitations) slowly became lost and forgotten. Then another terrible thing happened . . . the operational amplifier appeared. These were marvelous devices with staggeringly high voltage gains — perhaps as high as 1,000,000 or even higher! Using such large terms in everyday communication presented a bit of an inconvenience. Then someone, remembering eq. 5 (at least most of it), said “Wow, we can express this gain in dB as 20 log of the voltage gain.” What was omitted was that eq. 5 applies only in constant impedance systems. Operational amplifiers typically exhibit very high input and very low output impedances. So was yet another misapplication of the decibel born.

To demonstrate the problem associated with this misapplication of the concept, we will examine a few examples. Consider an operational amplifier configured for a voltage gain of unity. Let the amplifier have a 1 Megohm input resistance and a very low output resistance (much smaller than 50 ohms). Also, consider a source with a 50-ohm impedance. Finally, let the load be 50 ohms. If we apply an input signal and measure the input and output voltages we will naturally find them to be the same since the amplifier is configured for a gain of one. Using eq. 5 and rather ignoring the impedance requirement, we would find the amplifier gain to be 0 dB. Now let’s compute the gain in dB as 10 log of the output to input power ratio. The input power is simply the input RMS voltage squared, divided by the input resistance. The output power is given as the output RMS voltage squared divided by the load resistance. However, since the voltage gain is unity, the input and output voltages are equal. Let that voltage be E. Computing the gain from the power ratio:

\[G = 10 \log \left(\frac{E^2}{R_1} / \frac{E^2}{R_{in}} \right) \]

\[= 10 \log \left(\frac{R_{in}}{R_1} \right) \]

\[= 10 \log \left(\frac{1 \cdot 10^5 \text{ ohms}}{50 \text{ ohms}} \right) \]

\[= 10 \log (2 \cdot 10^4) = 43 \text{ dB} \]

Well, that presents a bit of a problem. Is the actual gain 0 dB or 43 dB? Let’s try still a different measurement by trying to apply the single-point measurement approach of the original definition. Let the 50-ohm load be the input resistance of a 50-ohm power meter. Applying the source to the power meter input, a power, \(P \), is observed. Now, move the power meter to the amplifier output and apply the source to the amplifier input. Since the source is not loaded by the amplifier input (1 megohm >> 50 ohms), the voltage at the amplifier input is twice that measured when the source was terminated with the 50 ohms of the power meter. (This can easily be shown with some simple circuit analysis, but since that’s not our purpose here, you’ll have to either accept it as true, or prove it for yourself.) The amplifier output voltage is also twice the loaded value of the source, since the amplifier voltage gain is unity and the low output resistance of the amplifier prevents loading by the power meter. Power varies as the square of voltage, so the doubling of the voltage at the power meter input results in an increase in power by a factor of 4. The power reading of the power meter will then be 4P. Applying eq. 1:

\[G = 10 \log \left(\frac{P_o}{P_{in}} \right) \]

\[= 10 \log (4P/P) = 6 \text{ dB} \]

This gives us still another choice as to what the gain in dB is for an operational amplifier configured for unity gain. It is either 0 dB, 43 dB, or 6 dB, depending how one makes the measurement.

Now, let’s modify the unity gain amplifier circuit configuration slightly by the addition of an input transformer. Let that input transformer match the 1 megohm amplifier input resistance to the 50-ohm source resistance, a turns ratio of 1:141 (remember, transformer impedances vary as the square of the turns ratios). The transformer/amplifier combination now satisfies the constant impedance requirement of the definition of the decibel — the input and output resistance is 50 ohms in a 50-ohm system. The 50-ohm in-
The use of the decibel to express the voltage gain of an amplifier in a system of non-constant impedances is by far the most common misapplication of the decibel that you’re likely to encounter. Yet there’s another interesting misapplication that’s also quite creative; this is found in the area of noise analysis. The noise power available in a system is directly a function of the system noise bandwidth. Without going into detail, the available noise power, \(P_n \), in a noise bandwidth, \(BW_n \), and absolute temperature, \(T_O \), is given by eq. 8.

\[
P_n = k \cdot T_O \cdot BW_n \text{ (watts)}
\]

\[
k = \text{Boltzmann’s constant} = 1.38 \cdot 10^{-23} \text{ Joules/degrees Kelvin}
\]

Now suppose we have two different noise bandwidths and want to know how much noisier, in dB, the larger is than the smaller. Consider an amplifier system of power gain \(G \) with a variable passband filter and a suitable power meter tied to the amplifier output. With the bandpass filter set for a narrow bandpass, \(BW_{n1} \), let the power reading be \(P_{n1} \). Then let the filter be adjusted to a wider bandpass, \(BW_{n2} \), with a corresponding power reading of \(P_{n2} \). The relative increase in power with the increased bandwidth expressed in dB is then given as 10 log \((P_{n2}/P_{n1}) \), and this expression is an exact application of the definition of the dB. Let this quantity be defined as \(D \). The two powers may...
be expressed in the form of eq. 8 above. Then, expanding the expression for \(D\):

\[
D = 10 \log \left(\frac{P_{n2}}{P_{ni}} \right)
\]

\[
= 10 \log \left(k \cdot T_0 \cdot BW_{n2}^{-1} \cdot G / k \cdot T_0 \cdot BW_{n1}^{-1} \cdot G \right)
\]

\[
= 10 \log \left(BW_{n2}^{-1} / BW_{n1}^{-1} \right) \text{ (dB)}
\]

Well, there you have it — the ratio of two bandwidths expressed in dB is given as 10 log of the bandwidth ratios. Just what does it mean? That's right, nothing . . . unless, of course, you know that you're really talking about ratios of noise powers and not simply bandwidths. Feel free to consider some of the possibilities for this misapplication — but please don't take them seriously. Why, one could use eq. 9 (without considering its origin) to express the peaking properties of a bandpass filter in dB as 10 log of the output bandwidth to input bandwidth! Of course in this case we'd most likely want to invert the ratio (i.e., 10 log of the input to output bandwidths) so that we would always have positive values to work with. We could even express quality factor, \(Q\), in dB if we are a little creative. Quality factor of various systems is often expressed as the ratio of the center frequency to the bandwidth. Well, the center frequency could be considered as a bandwidth with the lower frequency of 0 Hz. Then \(Q\) would be nothing more than a ratio of two bandwidths and misusing eq. 9, we could express \(Q\) in dB (again, we would wish to invert the ratio to have positive dB values of \(Q\) since negative values might be confusing).

If these suggestions seem quite outrageous, perhaps it's because they haven't been seen before. These are actually as correct as expressing the open loop voltage gain of an operational amplifier in dB, but we've come to know that expression because of its widespread use, and so as a result, it doesn't look particularly strange. But this doesn't make it inevitably correct. There is some obvious confusion because in the absence of uncertainty, the voltage/power question would need never be asked. If you stick to using the concept of the decibel only where it applies, you'll have no problem. In cases where you must work from someone else's error, you'll just have to try to figure out what was meant. This does not mean that we would specify the gain of the unity gain amplifier in the example above as 43 dB. That voltage gain is 1 volt/volt or simply a voltage gain of 1. The power gain of that configuration is 20,000. That is where we arrived at the 43 dB figure; but as pointed out, the concept of the decibel does not apply because the system is not of constant impedance. The power gain would simply be stated as 20,000 watts/watt, 20 watts/milliwatt, or simply a power gain of 20,000.

As the examples above have shown, misapplication of the concept of the decibel has led to considerable confusion as to what is actually implied by the expression of a quantity in dB. Hopefully this article has served to clarify your understanding of the concept, and you can now correctly apply the concept. Furthermore, when you see quantities expressed in dB, you'll be able to tell whether or not they're proper expressions. In cases where they're not, you should have a better understanding of the concept to aid you in trying to comprehend the original intention. In any event, if you keep the definition of the decibel clearly in mind and always apply it properly, then your expressions, at least should always be correct and should be understood by anyone who shares your understanding of the decibel. When you're asked, "Is that dB-voltage or dB-power?", you'll not only be able to show why that question has little meaning, but also silently revel in your mastery of the concept. Always return to the basic definition of a notation or concept and apply it accordingly. Also, look those basic definitions up in the literature. Don't simply take some expert's opinion as being correct. Perhaps you should apply that advice to the information in this article!

references

ham radio

FULL BREAK-IN WITH ANY AMPLIFIER

IF YOU OWN A QSK TRANSCEIVER

Don't be limited to low power operation with your expensive full break-in transceiver. You can run high power QSK CW and high power AMTOR.

The DEO QSK 1500 is designed using the latest in solid state switching technology and will give you full break-in operation with any of the currently available commercial amplifiers, homebrew too! Pin diodes provide ultra high speed, noiseless switching. All you need to do is connect two RF cables and two control cables, turn it on and you are ready to go, up to 1500 watts at 1.5-1 VSWR. Fully automatic bandswitching, 1.8 - 30 MHz and mode selection, either CW or SSB, no cables to change. The QSK 1500 eliminates amplifier damage due to "hot switching" and gives you full receiver performance with an insertion loss less than .7 dB, typically .2 dB.

For More Info Send QSL

$299.00

Please add $6 for shipping and handling (US only Foreign TO Grovetown) Call your order in today.

Design Electronics Ohio

(614) 836-3929

4925 S. Hamilton Rd. Grovetown, OHIO 43125

February 1985
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MARK 4CR

The only repeaters and controllers with REAL SPEECH!

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.
ICOM's three ultra compact mobiles—the IC-27A 2-meter, the IC-37A 220MHz and the IC-47A 440MHz—are the smallest mobiles available.

Even in such a small package the 25 watt mobiles contain an internal speaker which makes them fully self-contained and easy to mount.

Size. The ICOM compacts measure only 5½"W x 1½"H x 7"D (IC-37A is 9" deep)... which allows them to be mounted in various "compact" locations. Yet the compacts have large operating knobs which are easy to use in the mobile environment.

More Features. Other IC-27A/37A/47A standard features include a mobile mount, IC-HM23 DTMF mic with up/down scan and memory scan, and internally adjustable transmit power. An optional IC-PS45 slim-line external power supply and IC-SP10 external speaker are also available.

32 PL Frequencies. The IC-27A/37A/47A come complete with 32 PL frequencies.

9 Memories. The compact mobiles have 9 memories which will store the receive frequency, transmit offset, offset direction and PL tone. All memories are backed up with a lithium battery.

Speech Synthesizer. To verbally announce the receive frequency, an optional UT-16 voice synthesizer is available.

Scanning. The ICOM compacts have four scanning systems...memory scan, band scan, program scan and priority scan. Priority may be a memory or a VFO channel...and the scanning speed is adjustable.

Stacking Mobile Mounts. The IC-27A/37A/47A can be stacked to provide a three band mobile station. Each band is full featured and will operate even when another band is in use.

The IC-27A/37A/47A provide superb performance in the mobile radio environment. See them at your local ICOM dealer.

The World's Most Compact Mobiles

ICOM 144, 220 and 440MHz
YOU GET MORE "BANG FOR YOUR BUCK" AT TNT RADIO SALES!

- Kenwood
- Icom
- Bencher
- AEA
- Kantronics
- Mirage
- KLM
- Telex Hygain
- Nye Viking
- Larsen
- MFJ
- Astron
- Alpha/Delta
- Bearcat
- Welz
- Azden
- Santec
- KDK
- Ameritron

SALES AND SERVICE AT PRICES YOU CAN AFFORD!
CALL OUR WATS LINE FOR LOW LOW PRICES!

VISA/MASTER CARD FREE SHIPPING ON MOST RIGS FOR CASH!
S.A.S.E. FOR OUR "BENCH-TESTED" USED EQUIPMENT LISTING
MONDAY - SATURDAY 9 AM to 6 PM CENTRAL TIME

4124 West Broadway, Robbinsdale, MN 55422 (Mpls./St. Paul)

Your Ham Tube Headquarters!
TUBES BOUGHT, SOLD AND TRADED
SAVE $$$—HIGH $$$ FOR YOUR TUBES

Call Toll Free 800-221-0860

 Tubes $85.00 7360 10.00
 3-400Z
 3-500Z 85.00 7735A 27.50
 4-400A 80.00 8122 110.00
 4CX250B 50.00 8156 12.50
 572B 55.00 8643 82.50
 811A 12.00 8644 26.50
 813 30.00 8873 175.00
 6146B 6.50 8874 195.00
 6360 4.25 8877 500.00
 6683B 6.75 8908 12.50

MAJOR BRANDS ON RECEIVER TUBES
75% off list

Semiconductors
MRF 245/SD1416 $30.00 S01088 19.95
MRF 454 14.95 2N3055 250.00
MRF 455 10.95 2N6084 12.50

RF Connectors
PL259 10/$4.95 M358 2.50 ea.
PL258 10/$8.95 M359 1.75 ea.
UG 175/176 10/1.60 Type "N" Twist on
UG255/u 2.50 ea. (RGB/u) 4.75 ea.
UG273/u 2.25 ea. Minimum Order $25.00
Allow $3.00 min. for UPS charges

Call CeCo
COMMUNICATIONS, Inc.
2115 Avenue X
Brooklyn, NY 11235
Phone (212) 646-6300

CeCo COMMUNICATIONS, Inc. SERVING THE INDUSTRY SINCE 1922

ORLANDO HAMCATION and COMPUTER SHOW
MARCH 8, 9, 10, '85
AIR-CONDITIONED ORLANDO EXPO-CENTRE
500 WEST LIVINGSTON
NEAR I-4 & HIGHWAY 50
REGISTRATION $5 advance, $7 at door
under 14 free
SAT. FCC EXAMS, SAT. LADIES' PROGRAM, HOURLY AWARDS
For swap tables, commercial booths, advance registration, or information,
please send self addressed stamped envelope to:
HAMCATION CHAIRMAN
P.O. BOX 15142 • ORLANDO, FLORIDA • 32858

February 1985
the G5RV explained

While it may be premature to speculate, Spring can’t be far away. Now’s the time to think about that new antenna you’re going to put up as soon as milder weather rolls around.

Some Amateurs in the United States have been bemused, even confused, by the short, cryptic description of an antenna used by many European Amateurs. Described as simply a “G5RV,” the antenna must work, judging from some of the powerful signals that come “across the pond” from stations using this sky-wire.

The antenna design is named after its designer, Louis Varney, G5RV, an old-timer — (licensed as 2ARU in 1928, and as G5RV in 1929) — still very active on the bands. Louis has used the antenna from many of his overseas DX locations over the past few decades. It enjoys worldwide popularity because it’s a good, inexpensive multiband antenna that works very well.

The grandfather of the G5RV was an “all-band” antenna first described in Amateur literature by Arthur Collins, WOCXX, then President of Collins Radio Company. Sold as a kit in 1933, it never attained widespread popularity because it was both expensive and difficult to install.

The Collins antenna consisted of a 3/2-wavelength long 20-meter, center-fed wire with an impedance transformer that provided a satisfactory match to the open-wire line and tuned tank circuit rigs of the pre-war period. The transformer was a linear affair made of copper tubing that was difficult to suspend from the center of the antenna. Art’s transformer was quickly forgotten, but the idea of the inexpensive, effective 3/2-wave antenna remained (fig. 1). As shown in fig. 2, it has an interesting field pattern and a radiation resistance value of about 95 ohms at the center feedpoint. Its power gain over a dipole is about 1 dB.

Antenna dimensions for the higher frequency bands are shown in table 1. The antenna can be easily matched to 50-ohm coaxial line by means of a quarter-wave section of 75-ohm coaxial line. Sufficient line isolation can be obtained by wrapping a portion of the 75-ohm line into a simple four-turn RF choke coil directly beneath the antenna feedpoint.

This simple antenna is recommended as a general coverage, single-band antenna for the Amateur bands between 10 and 30 MHz.

a practical G5RV multiband antenna

Louis Varney, G5RV, devised a 1/2-wave matching section that functions as a 1:1 transformer for a 14-MHz 3/2-wave dipole, enabling the coaxial line to “see” a close match on this band (fig. 3). On other high frequency Amateur bands, the transformer section acts as a portion of the antenna, folded back upon itself, to provide a reasonable value of feedpoint impedance on all bands between 3.5 and 29.7 MHz. Even though the antenna termination may be reactive, a good antenna tuning unit will match the system to a 50-ohm transmitter. This scheme will satisfy the rather stringent load conditions required by many of the solid-state transceivers employing a “fail-safe” ALC circuit that senses the SWR on the transmission line and reduces amplifier input to protect the output transistors of the transceiver from damage.

It is tempting to substitute a balun for the antenna tuner to make a “no adjustment,” multiband antenna. This is an unsatisfactory solution. Ferrite-core baluns are not effective with reactive loads or loads presenting a high value of SWR, and cannot compensate for the reactive load presented by the G5RV antenna on most Amateur bands. The tuners listed in references 2 and 3, however, will do the job properly.

the linear transformer for the G5RV

The heart of the G5RV antenna is
the 14-MHz 1/2-wave transformer placed at the feedpoint of the antenna. Line impedance is not important. Ideally, an open-wire line is best, but is difficult to build and spacers are hard to come by. A good substitute is TV-type "ladder line" that will function with power levels up to 250 watts or so. On occasion, transmitting-type ladder line that will work very well can be found.

Alternatively, 300-ohm line having "windows" punched in the dielectric can be used, but this material is not difficult to obtain. While 300-ohm TV ribbon line will work, the transformer section can be detuned by rain or snow, making antenna tuning erratic in wet weather.

Regardless of construction, the transformer section should drop down vertically beneath the antenna for 20 feet (6 meters) or so before it is brought away at an angle. This will keep undesired coupling between line and antenna at a minimum.

The G5RV can be installed as an inverted-V antenna and still perform successfully.

the 160-meter compact dipole

Have you heard the DX coming through on the 160-meter band? Would you like to work some of it? A great idea, but a lot of would-be "top band" DXers pause when they consider that a 1/2-wave dipole antenna is about 246 feet (75 meters) long when cut for the midpoint of the band. And while a vertical antenna would be appropriate, it requires a good ground connection and a system of buried radials.

An effective alternative is a short, coil-loaded dipole antenna. By reducing the dipole to half size, about 130 feet (40 meters), the antenna becomes more feasible for the ham who lives on a medium-sized lot. A loaded antenna can be just about any length, however, if a compromise between length, efficiency and bandwidth can be accepted. Bandwidth and efficiency drop sharply when the loaded dipole is much less than 1/4-wavelength long.

The bandwidth of a full-size 160-meter dipole mounted close to the ground (40 to 60 feet — or 12 to 18 meters — high) is quite narrow — only about 150 kHz between the 2:1 SWR points on the passband. Shortening the dipole and loading it to resonance sharpens the passband. The antenna design shown in fig. 4 has a passband of about 50 kHz between the 2:1 SWR points. That's the penalty you pay to get a compact antenna on 160 MHz.

table 1. Dimensions of flat-top and coaxial transformer for 3/2-wavelength, center-fed antenna.

<table>
<thead>
<tr>
<th>Band (MHz)</th>
<th>f (MHz)</th>
<th>Feet (meters)</th>
<th>Meters (meters)</th>
<th>Feet (meters)</th>
<th>Meters (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10.12</td>
<td>143.40</td>
<td>43.70</td>
<td>16.04</td>
<td>4.89</td>
</tr>
<tr>
<td>20</td>
<td>14.15</td>
<td>102.60</td>
<td>31.30</td>
<td>11.46</td>
<td>3.49</td>
</tr>
<tr>
<td>17</td>
<td>18.11</td>
<td>80.14</td>
<td>24.43</td>
<td>8.97</td>
<td>2.73</td>
</tr>
<tr>
<td>15</td>
<td>21.22</td>
<td>68.40</td>
<td>20.85</td>
<td>7.66</td>
<td>2.33</td>
</tr>
<tr>
<td>12</td>
<td>24.94</td>
<td>58.20</td>
<td>17.74</td>
<td>6.51</td>
<td>1.98</td>
</tr>
<tr>
<td>10</td>
<td>28.60</td>
<td>50.75</td>
<td>15.47</td>
<td>5.68</td>
<td>1.73</td>
</tr>
</tbody>
</table>

L = \frac{1451.4}{f (MHz)}
Table 2. Coverage of the entire 160-meter band requires changing dimensions and component values.

<table>
<thead>
<tr>
<th>Design frequency (MHz)</th>
<th>Overall length (S) feet (m)</th>
<th>Center-to-coil (D) feet (m)</th>
<th>Loading coil (L1) µH</th>
<th>Turns</th>
<th>Matching coil (L2) µH</th>
<th>Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>130.0 (39.6)</td>
<td>32.5 (9.9)</td>
<td>91.9</td>
<td>38.9</td>
<td>3.9</td>
<td>11.6</td>
</tr>
<tr>
<td>1.85</td>
<td>126.5 (38.6)</td>
<td>31.6 (9.6)</td>
<td>89.2</td>
<td>38.0</td>
<td>3.8</td>
<td>11.3</td>
</tr>
<tr>
<td>1.90</td>
<td>123.2 (37.6)</td>
<td>30.8 (9.3)</td>
<td>86.5</td>
<td>37.2</td>
<td>3.7</td>
<td>11.1</td>
</tr>
<tr>
<td>1.95</td>
<td>120.0 (36.6)</td>
<td>30.0 (9.1)</td>
<td>84.0</td>
<td>36.4</td>
<td>3.6</td>
<td>11.0</td>
</tr>
<tr>
<td>2.00</td>
<td>117.0 (35.6)</td>
<td>29.3 (8.9)</td>
<td>81.6</td>
<td>35.7</td>
<td>3.5</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Notes:
Dimensions rounded to nearest tenth, metric dimensions in ()
Coil L1, diameter = 3 inches (7.6 cm) use No. 14 wire, close-spaced
Coil L1, length = approximately 2.5 inches (6.3 cm)
Coil L2 diameter = 1 inch (2.54 cm), use No. 18 wire, close-spaced
Operating bandwidth = 50 kHz between 2:1 SWR points
Adjust tip sections for antenna resonance
Adjust coil L2 for best match at resonant frequency

Fig. 4. The 160-meter compact dipole (see table 2).

Fig. 5. Loading coil can be made up of PVC-type plastic pipe and end caps. Hookeys permit connection to the antenna wire.

Simplifying the Design

The chart shown in Table 2 reveals a number of interesting points. Overall antenna length varies from 130 feet (39.6 meters) at the low end of the band to 117 feet (35.6 meters) at the top end. That's a difference of 13 feet (4 meters). The length of the center-to-coil distance also changes appreciably (from 32.5 feet to 29.3 feet). The loading coil (L1) inductances change only slightly, as the number of turns changes only from 38.9 to 35.7. And the matching coil at the center of the antenna changes hardly at all.

It seems to me that things could be simplified by using the center-band design (1.90 MHz) and then varying the resonant frequency of the whole antenna by merely changing the length of the tip sections. Leave all the other dimensions alone. Fold-back tip sections can be wrapped around the antenna wire and then unwrapped and left to hang down when operation is desired over a lower frequency range.

Adjusting the Antenna

Accepting the 1.90 MHz dimensions as par, then, what's to be done? The antenna is built, erected in place, and lowered so that a dip-meter can be coupled to the matching coil, L2. The end sections of the antenna are trimmed equally until resonance is established at 1.90 MHz, or at any other point you decide is your "pet" operating frequency. (The feedline is removed for this test.)

Once antenna resonance is determined, matching coil L2 is adjusted, a quarter-turn at a time, for the lowest SWR indication on the feedline at the frequency of antenna resonance. The antenna must be in the final operating position when this is done.

Building the Antenna

The loading and matching coils can be easily made up using PVC tubing, as shown in Fig. 5. If the coils are given a good coat of acrylic spray, they'll be weatherproof. Some detuning may be noticed in damp or wet weather, or if snow clings to the coils.

An alternative for Amateurs living in mild climates is to make the coils of prefabricated coil stock. The latest Barker & Williamson catalog lists show
both "Airdux" and "Miniductor" coils.* I understand the "Airdux" coils can be specially ordered with LEXAN® insulation, which is impervious to ultra-violet rays. This means that the coil support strips will not disintegrate after being exposed to sunlight over a period of time.

the easy way out

If you don't want to build the compact 160-meter dipole yourself, you can purchase either the loading coils (Model LC-1) or the complete antenna (Model AES-160) from Barker & Williamson. Keep in mind, however, that this antenna is shorter than the one described earlier in this article, and while it works just as well, it may have a smaller passband because of its shorter 96-foot length. Take your choice.

heavy-duty equipment

Do you need mica transmitting-type capacitors? One possible source is Milton Levy, W5OJT, Apartment 303, 350 North Resler Drive, El Paso, Texas 79912. Milt has a large collection of capacitors and vintage radio tubes for sale at modest prices. (By the way, have you priced receiving tubes lately? The new Newark Electronics catalog lists a 6SJ7 at $29.46 and a 6SN7 at $16.82.)

lightning protection

Many VHF/UHF repeater antennas are mounted to the side of a metal tower and grounded to it. Even so, the antenna and equipment can be damaged by the electric field of a nearby lightning stroke. A simple and effective way to protect the side-mounted antenna is shown in fig. 6. A "lightning rod" is mounted to the tower just above the repeater antenna. The horizontal metal rod, a few inches longer than the spacing between the antenna and tower, is placed 6 inches or more above the tip of the antenna. The lightning rod will not affect antenna performance, but it will help to protect the antenna and the equipment attached to it during a nearby storm.

reprint available

I have a limited number of reprints of the article "A High Power 2-Meter Amplifier Using the New 3CX800A7" from the April, 1984, issue of QST. Address your request to me, c/o EIMAC, 301 Industrial Way, San Carlos, California 94070. (Include two first-class stamps or two IRCs.) Thanks to the American Radio Relay League for permission to reprint.

references

SCOPE MEMORY

Turn your oscilloscope into a digital storage scope. Store analog & digital signals in a single sweep. An economical way to increase your capabilities of:

- Trouble shooting
- Electronic development
- Wave form & pulse analysis
- Analysis of low frequency signals.

Sibex, Inc.

2340 State Road 580, Suite 241
Clearwater, FL 33755
(813) 797-9569

DRAKE R-4/T-4X OWNERS AVOID OBSOLESCENCE

PLUG-IN SOLID STATE TUBES!

Get state-of-the-art performance. Most types available.

INSTALL KITS TO UPGRADE PERFORMANCE!

- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier

TUBES $23 PPD

KITS $25 PPD

OVERSEAS AIR S7

SARTORI ASSOCIATES, W5DA

BOX 832085
RICHARDSON, TX 75083
214-494-3093

MULTI-BAND TRAP ANTENNAS

Completely assembled & ready to use. Commercial quality, built to last. Light weight, sealed, weatherproof traps. Automatic band switching. Low loss and isolators. Handles up to 3000 watts PEP. For all transmitters, receivers & transceivers. Tuner usually never required. Deluxe center insulator with built in lightning arrester. Accepts PL-259 coax connector. May be used as inverted "V". Excellent for all class amateurs. Instructions included. 10 day money back guarantee.

- Band 40-20, 15, 10 meters (55) 2 traps $42.55 SPP
- Band 80-40, 20, 15, 10 meters (105) 2 traps $52.95 SPP

SHIPPED POSTPAID READY TO USE!

90 ft. RG-58U, .52 ohm coax cable, with PL-259 connector on each end. Add $12.00 to above price.

We accept VISA/MC-Give Card # Exp. Date. Signature.

SP/RO DISTRIBUTORS

Room 103, P.O. Box 1538
Hendersonville, NC 28793

GUS BROWNING, W4BPD’s DX’ERS MAGAZINE

For over 17 years, Gus’s DX’ERS MAGAZINE has brought thousands of DX’ERS worldwide, timely, pertinent information on when and where to find those elusive DX stations.

Gus’s personable, chatty writing style and his years of DX operating experience makes the DX’ERS MAGAZINE a unique publication. One year $14.00 USA, Canada & Mexico.

Gus also prints high quality QSLs and other related items. Write today for a free sample of his QSLs and DX’ERS MAGAZINE.

Gus Browning, W4BPD • PO Drawer 405 • Cordova, SC 29039
Antenna/Tower Sale!

ROHN
- Self Supporting Towers
- On Sale
- **FREIGHT PREPAID**
 - All Steel Construction—Rugged
 - Hot dip galvanized after fabrication
 - Complete with base and rotor plate.
 - Totally self-supporting—no guys needed.

<table>
<thead>
<tr>
<th>Model</th>
<th>Height</th>
<th>Load</th>
<th>Ant. Load</th>
<th>Weight</th>
<th>Delivered Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>H84X</td>
<td>40 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$319</td>
<td></td>
</tr>
<tr>
<td>H94X</td>
<td>48 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$399</td>
<td></td>
</tr>
<tr>
<td>H95X</td>
<td>56 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$489</td>
<td></td>
</tr>
<tr>
<td>H96X</td>
<td>64 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$569</td>
<td></td>
</tr>
<tr>
<td>H97X</td>
<td>72 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$659</td>
<td></td>
</tr>
</tbody>
</table>

CUSHCRAFT
- **MULTIBAND**
 - MODEL 4009
 - Full Design
 - 20 dB Gain
 - Complete with Base and Rotor Plate
 - Total Delivered Price Anywhere In Continental 48 States Antenna Load Based on 70 MPH Wind

<table>
<thead>
<tr>
<th>Model</th>
<th>Height</th>
<th>Load</th>
<th>Ant. Load</th>
<th>Weight</th>
<th>Delivered Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A249</td>
<td>40 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$319</td>
<td></td>
</tr>
<tr>
<td>A44</td>
<td>48 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$399</td>
<td></td>
</tr>
<tr>
<td>A58X</td>
<td>56 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$489</td>
<td></td>
</tr>
<tr>
<td>A64X</td>
<td>64 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$569</td>
<td></td>
</tr>
<tr>
<td>A72X</td>
<td>72 ft</td>
<td>10 sq ft</td>
<td>164</td>
<td>$659</td>
<td></td>
</tr>
</tbody>
</table>

VHF/UMF ANTE NNA
<table>
<thead>
<tr>
<th>Model</th>
<th>Height</th>
<th>Load</th>
<th>Ant. Load</th>
<th>Weight</th>
<th>Delivered Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A505</td>
<td>5 ft</td>
<td>79</td>
<td>6'179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A214</td>
<td>6 ft</td>
<td>79</td>
<td>6'179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220B</td>
<td>7 ft</td>
<td>95</td>
<td>6'429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A214T07</td>
<td>7 ft</td>
<td>79</td>
<td>6'179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A414TMB</td>
<td>9 ft</td>
<td>79</td>
<td>6'179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A449</td>
<td>10 ft</td>
<td>79</td>
<td>6'179</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALPHA DELTA COMMUNICATIONS
- **Trans-Trap** Surge Protectors—In Stock Now!
 - 2000W UHF Type $16
 - Model HT2000W UHF Type $19
 - Model LT1000V UHF Type $30
 - Model HT5000 VHF Type $40
 - Model R7000 Deluxe $20

HARDLINE/HILUX
- **Lowest Price for VHF/UHF**
- 1/4 Alum w/poly Jacket $79/ft
- 1/2 LDPE 50' Andrew Heliax $1/lf.
- 1/2 LDPE 50' Andrew Heliax $1/lf.
 - select connectors below

AMPHENOL CONNECTORS
- Silver PL259 $1.25
- UG300 Female $2.95
- UG215 Male $2.95

ANTENNA WIRE & ACCESSORIES
- 450 Ohm 50' Line $8/lf.
- 18 Ga. Copper coiled steel wire 1/2 mile long $20/lf.
- Van Gorden 1' Balun $11
- Van Gorden Center Insulator $10

HUSTLER
- 60V 80-100 V with 100 ohm $22/each
- 60V 40-100 V with 100 ohm $10/each
- 60-124 2:1:rar $39
- 124-164 2:1:rar $39
- Mobile Antennas with 15 ft 100 ohm $79
- Mobile Antennas with 40 ft 100 ohm $179
- 200 W 100 ohm $125/each
- 300W 100 ohm $175/each

MOSLEY
- Pro77 7 ft Triband $48
- CL77 8 ft Triband $129
- TA77 9 ft Triband $189
- TA33 3-1/2 ft Triband $49

SOUTHERN RADIO TRIPLODS
- 17-3 ft Tripod $33
- 17-10 ft Tripod $33
- 17-15 ft Tripod $33

GALVANIZED STEEL MASTS
- Heavy Duty Steel Masts 2 to 30 ft -Galvanized Finish
- Length 5' 10' 15' 20' 25' 30' 35' 40'
- 5' mast $15 $25 $50 $75 $100 $125 $150 $175
- 10' mast $40 $75 $125 $175 $225 $275 $325 $375
- 15' mast $75 $125 $175 $225 $275 $325 $375 $425
- 20' mast $125 $225 $275 $325 $375 $425 $475 $525
- 25' mast $175 $275 $325 $375 $425 $475 $525 $575
- 30' mast $225 $325 $375 $425 $475 $525 $575 $625

TEXAS TOWERS
- Div. of Texas RF Distributors Inc.
- 1108 Summit Ave., Suite 4 • Plano, Texas 75074
- 972/890-4200

** ситуа́ция**

BUTTNER ELECTRONICS CO.
- Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
- Automatic Band Switching (50/10 meters).
- **Automatic Band Switching** (50/10 meters) with optional model TBR-160 HD.
- **N Stock** for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
- **New Model** HF6V $129.00.
- **New Model** HF600 $199.00 (High Power 160 meter Base Resonator) $49.00.
- **Model** RMK-11 (roof mount kit with multiband radial kit $39.99. Slot DR-2 (Stud Tuned Radial Kit) $29.00.
- Delivery Anywhere In The Continental U.S. At NO Additional Cost. (Free Shipping On Butternut Accessories Also When Purchased With Antenna.)
COMMUNICATIONS EQUIPMENT SALE!

ICOM IC-751A LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

ICOM IC-745 LIST PRICE $999
CALL FOR SPECIAL SALE PRICE!

KENWOOD TS-930S LIST PRICE $799
CALL FOR SPECIAL SALE PRICE!

TS-430S LIST PRICE $999.95
CALL FOR SPECIAL SALE PRICE!

TW-4000A With FREE VSI Voice
Synthesizer and MA-4000
Dual-Band Antenna
Only $599.95 Save $85

FT-757GX LIST PRICE $829
CALL FOR SPECIAL SALE PRICE!

FT-726R LIST PRICE $829
CALL FOR SPECIAL SALE PRICE!

IC-27A, IC-27H, IC-37A, IC-47A
All Now Available
Call For Special Sale Prices!
Save $$$!

IC-271A/H 2 mtrs
IC-471A 70 cm
Perfect Oscar Equipment
Call For Special Prices!

IC-02AT New 2m HT
Call For Your Special Price

TM-211A/411A
25 Watt FM Mobile
Call For Your Special Price

TR-2600
NEW!
High Tech
Compact 2 mtr HT
Now For Your Very
Special Price

List $999 SALE $749.95!

ICR-100 List $249 SALE $229.95
ICR-200 List $299 SALE $289.95

CWR6850 RTTY/CW TERMINAL

ASTRON POWER SUPPLIES
Heavy Duty - High Quality - Rugged - Reliable
- Input Voltage: 105-125 Vac, 11.5 VDC or 30V
- Fully Electronically Regulated - 1% Maximum Ripple
- Current Limiting & Crowbar Protection Circuits
- M Series With Meter - N Series Without Meter

Kantronics

AMPLIFIER SALE!
B1016 $249

CP-1 COMPUTER PATCH
List $239.95 SALE $189.95!

225V AC-DC
$219 CP-1 64 $219
MP-20 $129 MP-64 $129
VIC-20 MIA Text $79 C-64 MIA Text $79
All AEA Keys, Antennas & Accessories
In Stock!

MFJ 1224 COMPUTER INTERFACE $89.95

202B Noise Bridge $59.95
250 2KW Oil Load $35.95
422 Keyer/Paddle $89.95
901 300W Tuner $59.95
94IC 300W Tuner $295.95
969 Deluxe 2KW $299.95

MODEL RS-50A

CORSAIR List $1169
SALE PRICE $999!

NEW 3KW Amplifier
Model 425 Titan
List $2495
CALL FOR SPECIAL PRICE

TEN-TEC
New 2M HT
Full Featured!
List $319
Sale $279.95!
4229 2KW Tuner Kit $189.95!

HAL
SALE!
NEW RTTY/CW COMPUTER INTERFACES

ST142 2m H.T. $349
ST222 220 MHz H.T. $279
ST440 440 MHz H.T. $299

KDK FM2033
List $339.95 Sale $299.95

TOKYO HY-Power AMPLIFIERS

Hand Made in the USA

Apple Amotor
Apple Hamest... $139 VIC-20 Hamest... $49
VIC-20 Amotor Soft... $80 Hamster VIC-20... $99
Model 64 Hamster Model-64... $99
Amotor Soft... $80 Atari Hamest... $49
Apple Hamest... $29 TRS-80C Hamster... $99

Telephone
(214) 422-7306

TXAS TOWERS
Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 • Plano, Texas 75074
Monday-Friday 9 AM - 5 PM Saturday 9 AM - 1 PM

February 1985

More Details? CHECK OFF Page 128
THE STANDARD OF EXCELLENCE

The world of CW, RTTY, and new DUAL AMTOR* is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000E.

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY) and new ARQ/FEc (AMTOR).

Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), JIS (RTTY), ARQ/FEc (AMTOR).

Characters: Alphabetic, Figures, Symbols, Special Characters, Kana.

Built-in-Monitor: * high resolution, delay folded persistence monitor provides sharp clear image with no jitter or eye strain even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability as fast as 300 Baud. Three-step shifts select either 100Hz, 425Hz or 850 Hz shift with manual fine time reference of space channel for odd shifts. HIGH (Mark Frequency 2125Hz)/LOW (Mark Frequency 1725Hz) tone pair: Mark only or Space only, or keying capability for selective fading. ARQ/FEc features incorporated.

Crystal Controlled AFSK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.

Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement with function keys. Automatic insertion of LTR/FIG-code makes operation a breeze.

Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 4 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular messages can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters.

Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead Buffer Memory: A 160-character buffer memory is displayed on the lower part of the screen. The characters move to the left erasing one by one as soon as they are transmitted. Messages can be written during the receiving state for transmission with battery back-up memory or SEND function.

污染防治 System: Each function (mode, channel number, speed, etc.) is displayed on the screen.

Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy.

White Range of Transmitting and Receiving: Morse Code transmitting speed can be set from the keyboard at any rate between 5-100 WPM (every word per minute). AUTOTrack on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modern and between 12-600 Baud when using TTL level. The variable speed feature makes the unit ideal for amateur, business and commercial use.

Pre-edit Memory: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.

"RU-B" Function: You can correct mistakes while writing messages in the buffer memory. Mistakes can be erased while the information is still in the buffer memory.

Automatic CR/LF: While transmitting, CR/LF automatically sent every 64, 72 or 80 characters.

"WORD MODE" operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.

LINE MODE" operation: Characters can be transmitted by line groupings from the buffer memory.

"WORD-WRAP-AROUND" operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.

"ECHO" Function: With a keyboard instruction, receive data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses tape.

Curtain Control Function: Full cursor control (up/down, left/right) is available from the keyboard. Test Message Function: "R", "Y", and "Q" messages can be repeated with this function.

MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space tone can be used to copy RTTY.

Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3-1:6.

Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hand key and displays the characters on the screen. CW keying output circuit works according to the key operation.

CW Random Generator: Output of CW random signal can be used as CW reading practice. Barograph LED Meter for Tuning: Tuning of CW and RTTY is very easy with the barograph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning.

Built-in AC/DC: Power supply is switchable as required: 100-120 VAC, 220-240 VAC/50-60Hz + 13.8VDC.

Color: Light grey with dark grey trim matches most current transceivers.

Dimensions: 363(W) x 124(H) x 351(D) mm: Terminal Unit.

Warranty: One Year Limited Specification subject to change.

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED
AMATEUR-WHOLESALE ELECTRONICS
9817 S.W. 129th Terrace, Miami, Florida 33176
Telephone (305) 233-3631
Telex: 80-3365

MANUFACTURER:
TONO CORPORATION
98 Motooja Machi, Masashiki-Shi, 371, Japan

"Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modes to fully support the amateur Amtor codes and all of the CCIR recommendations 475-2 for commercial requirements.
Build a compact, powerful, portable unit for under $300

mobile solid-state kilowatt HF linear amplifier

Not too long ago my mobile kilowatt linear amplifier barely fit inside the trunk of my car and raised havoc with the electrical system each time a heavy load was applied. Because the efficiency of the old tube-type linears was low, the current drawn from the battery was high. Sometimes it even caused the car to stall. But progress in transistor technology has brought the mobile HF linear within reach of most Amateurs. If you're handy with a drill, a screwdriver, and a soldering iron, you're an ideal candidate for this project. No special skills are required beyond the desire to own a high-power mobile linear and the willingness to do some assembly work.

The efficiency of the amplifier is as high as 70 percent, depending on the condition of your battery and the accuracy of your antenna match. With a DC input of 830 watts, output power on 75 meters is as high as 580 watts. The total cost for the entire circuit — assuming a good supply of junk box parts is available — should be under $300. If you can get the transistors for free, the amplifier shouldn't cost you more than $150.

amplifier circuit description

The linear amplifier consists of four amplifier modules capable of PEP power output levels in excess of 150 watts each (see fig. 1). Each module uses a pair of 75 watt RF transistors in a push-pull configuration for maximum efficiency and lowest possible distortion (see fig. 2). Both input and output impedances of each transistor module are preset at 200 ohms, which makes combining relatively easy. The input and output divider/combiner provides an ideal match with very low loss from the modules to the input/output connectors (see fig. 3).

A drive requirement of 50 watts was selected to allow the amplifier to be used with the standard exciters at reduced output. The actual gain of the amplifier depends on the frequency used and the transistors selected for the project. I had good results with the TRW PT9784 type. The transistors are slightly forward biased for good linear performance and maximum efficiency. No fancy biasing circuits are needed; just a few inexpensive resistors and a diode are sufficient. I found that temperature stability was not

By Frank Kalmus, WA7SPR, 7016 NE 138th Street, Kirkland, Washington 98034

table 1. Test data on amplifiers matched for low end of HF band (2-7 MHz)

<table>
<thead>
<tr>
<th>band (meters)</th>
<th>input drive (watts)</th>
<th>VSWR in</th>
<th>CW power out (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>35</td>
<td>1.2:1</td>
<td>500</td>
</tr>
<tr>
<td>75</td>
<td>30</td>
<td>1.2:1</td>
<td>500</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
<td>1.5:1</td>
<td>450</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>2.0:1</td>
<td>450</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>2.5:1</td>
<td>350</td>
</tr>
</tbody>
</table>
a problem even when the unit was operated on CW for long periods of time. The two relays that form the T/R
switching are keyed by the PTT line, which is wired for 12 volts input from the transceiver in transmit mode. If your exciter doesn’t provide you with 12 VDC when keying the microphone, you can rewire the PTT relay circuit so it will key when a ground is provided from the exciter.

The T/R switch provides automatic switching between the receiver and the amplifier during transmit and receive modes as well as during exciter “barefoot” operation (see fig. 4). When the circuit breaker is switched off, the amplifier is bypassed. With the DC power breaker in the ON position, the linear is switched on every time you key the microphone; you are then transmitting at a kilowatt without having to worry about high voltages or battery drain.

fig. 1. Mobile kilowatt block diagram.

fig. 2A. Schematic of basic building block: the 150-watt amplifier.

fig. 2B. Parts list for 150-watt RF amplifier (four required).

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>bead, shield</td>
<td>3</td>
</tr>
<tr>
<td>C1, C2</td>
<td>capacitor, SM 750 pF</td>
<td>2</td>
</tr>
<tr>
<td>C3</td>
<td>capacitor, 0.01 µF, 50 V</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>capacitor, 47 µF, 35 V</td>
<td>1</td>
</tr>
<tr>
<td>C5</td>
<td>capacitor, 220 µF, 35 V</td>
<td>1</td>
</tr>
<tr>
<td>C6</td>
<td>capacitor, 0.01 µF, 1 kV</td>
<td>1</td>
</tr>
<tr>
<td>CR1</td>
<td>diode, MN300</td>
<td>1</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>transistor, RF, 75 watts</td>
<td>2</td>
</tr>
<tr>
<td>TRW PT9784 or Motorola MRF454 and MRF412, MRF458</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R1-R4</td>
<td>resistor, 10 ohm, 1/2 watt</td>
<td>4</td>
</tr>
<tr>
<td>R5</td>
<td>resistor, 50 ohm, 5 watts</td>
<td>1</td>
</tr>
<tr>
<td>PC board</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>transformer, input</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>transformer, output</td>
<td>1</td>
</tr>
</tbody>
</table>
The input attenuator consists of a resistive power divider that incorporates high frequency compensation to achieve bandpass response flatness. The resistors used are of the "non-inductive" type and are rated at 25 watts.

A 60-ampere panel meter monitors the DC current drain from the battery. (This was achieved using a 40-amp meter. The dial reading is multiplied by 1.5.) On CW it is possible to read as high as 60 amperes. Though difficult to read on the meter, PEP currents on SSB are as high as 75 amperes. The average SSB power consumption is less than 200 watts, or about 15-18 amperes DC. The average automobile battery and electrical system should not have any problem powering this amplifier. It is,
All components are clearly visible in bottom view of kilowatt linear amplifier.

However, suggested that you use at least No. 8 wire for the DC power cable.

filtering cooling and testing

RF filtering is necessary to meet FCC requirements of minimum 40 dB harmonic rejection (see fig. 5). A seven-pole elliptical filter is used in the 75-meter unit. Typical harmonic performance was better than 50 dB down from the main carrier.

Cooling was found to be no problem on SSB. Average voice conditions will not cause dangerous overheating if the amplifier is mounted in a well-ventilated area. But just in case, a temperature sensor switch inserted in the T/R relay circuit will shut the amplifier down if the temperature exceeds a preset level of approximately 150 degrees F, thus preventing serious damage to the equipment.

After all the assembly and wiring are done, some preliminary testing is required before applying power to the amplifier (see fig. 6 for overall assembly parts layout). Using an ohmmeter, connect the black lead to ground and the red lead to the 12-volt line to make sure there are no shorts. Connect the red lead to each collector of all eight transistors to check for short circuits. Measure approximately 2.5 ohms to ground at each base and 12.5 ohms to ground at each collector. Measure continuity from the center pin of the input to the center pin of the output connector. However, neither one of the RF connector center pins should read short to ground.

Because this mobile amplifier was designed for
fig. 7A. Filter printed circuit board.

fig. 7B. T/R switching printed circuit board.

fig. 7C. 150-watt amplifier printed circuit board.
Free Antenna Accessories Catalog

Coaxial Antenna Relays
Remote select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

W2AU and W2DU Baluns
Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8-200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Send For Yours Today
Don’t delay, Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line. Dealer inquiries also welcome.

Ham Radio

Fig. 6B. Parts list for overall assembly.

Single band operation, a single low-pass filter was installed. If you want to use yours on more than one band, you can build the filters described in the parts list and use them externally. If you decide to do so, be careful not to operate the amplifier on the “wrong” band for the filter used; doing so can cause permanent damage to the amplifier. It will also be necessary to delete the built-in filter unless you install the 15-20 meter filter internally and use the two other filters externally. The built-in filter will automatically pass both other bands if left in permanently.

Conclusion
Although a complete and detailed parts list, including schematics and PC board layouts (see fig. 7A, B, C), has been provided, this article is intended for use by the licensed Radio Amateur only. Additional information can be provided by the author at the reader’s request by mail only, provided that request is accompanied by a copy of a valid Amateur Radio license and a SASE. No other inquiries will be answered.

This amplifier was designed to be used on 160/80/75/40 and 20 MHz. Any attempt to extend the frequency range will most likely result in the destruction of the RF power transistors.

Parts for this project are available from the author at $495.00 for all parts included in the parts list, or $339.00 for all listed parts except transistors. Only one filter (for 15/20 meters) is included in these packages. Contact Frank Kalmus, WA7SPR, 7016 NE 138th Street, Kirkland, Washington 98034, for information.
FEBRUARY SPECIAL

KDK 2033 $249.95

CALL FOR SPECIAL SALE PRICES

- AEA
- ALLIANCE
- ANIXTER MARK
- ASTRON
- AVANTI
- AZDEN
- B & W
- BEARCAT
- BENCHER
- BUTTERNUT
- CENTURION
- CES
- COMM SPEC
- CUSHCRAFT
- DAIWA
- HUSTLER
- HYGAIN
- ICOM
- KANTRONICS
- KENWOOD
- KLM
- LARSEN
- MFJ
- MICROLOG
- MIRAGE
- SANTEC
- VANGORDON
- WELZ
- YAESU

CALL TOLL FREE 1-800-821-7323

2900 N.W. VIVION RD.
KANSAS CITY, MISSOURI 64150
816-741-8118

Versatile Lab Power Supply

MODEL 3002A

- 0-30 VDC at 0-2A
- Excellent Regulation
- Ripple & Noise -> 500 uV RMS
- Built-in Short-Circuit and Overload Protection

Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with "automatic crossover." This lab-grade unit can also be used as a current regulated power source.

Options: 10-Turn Voltage and Current Controls, $25.00 ea.
(can be ordered individually).

Also available...TRIPLE MIGHTY-MITE LAB POWER SUPPLY: Three Fully Regulated DC Outputs; two 0-25V/0.5A and one fixed 5V/3A, Variable Tracking & Independent Modes, Dual Panel Meters. Other models to 60 VDC, to 12A.

TERMS: Check, Money Order or COD. COD's $2.00 extra. Add $3.50 for shipping & insurance in 48 states. Please contact our Sales Department for other shipping rates. Illinois residents add 7% sales tax.

Free Literature On Request

ELECTRO INDUSTRIES

4201 W. IRVING PARK BLVD., CHICAGO, IL 60641
312/736-0999

POCKET SIZE FAST CHARGER

Fast charge your hand held radio battery packs to full capacity in as little as 45 minutes. Example: Fully charge I-COM BP-3 in 30 to 45 minutes.

VERSATILE - Works on 115V. A.C. or 12V. to 24V. D.C. and turns itself off automatically when battery reaches full capacity. Use at home or in auto, airplane, boat, R.V. or anywhere there is house current or 12V. to 24V. D.C. available.

FEATURES -

1. New Hybrid thick film integrated circuit developed for this charger contains all measuring and control circuitry in a single chip. Laser trimmed precision resistors.
2. Small size - can be carried in your pocket.
3. High impact molded plastic case.
4. Reverse polarity protection built in.
5. Internally fused.
6. Full 1 year warranty.
7. Completely solid state circuit measures charge constantly and turns off automatically when cells reach full capacity.
8. Charges at optimum rate without any perceptible heating of cells.

Price $65.00

19780 Temescal Canyon
Corona, Calif. 91719
(714) 734-6179

Mail orders to: P.O. Box 2679
Corona, Calif. 91718
CONTENTS

INTRODUCTION
1. AMATEUR RADIO
2. ELECTRICAL FUNDAMENTALS
3. RADIO DESIGN TECHNIQUE
 AND LANGUAGE
4. SOLID STATE FUNDAMENTALS
5. VACUUM TUBE PRINCIPLES

RADIO PRINCIPLES
6. POWER SUPPLIES
7. AUDIO AND VIDEO
8. DIGITAL BASICS
9. MODULATION AND DEMODULATION
10. RADIO FREQUENCY OSCILLATORS
 AND SYNTHESIZERS
11. RADIO TRANSMITTING PRINCIPLES
12. RADIO RECEIVING PRINCIPLES
13. RADIO TRANSCEIVERS
14. REPEATERS
15. RF POWER AMPLIFIERS
16. TRANSMISSION LINES
17. ANTENNA FUNDAMENTALS

MODULATION METHODS
18. VOICE COMMUNICATION
19. DIGITAL COMMUNICATIONS
20. IMAGE COMMUNICATIONS
21. SPECIAL MODULATION TECHNIQUES

TRANSMISSION
22. RADIO FREQUENCIES AND PROPAGATION
23. SPACE COMMUNICATIONS

CONSTRUCTION AND MAINTENANCE
24. CONSTRUCTION TECHNIQUES
25. TEST EQUIPMENT AND MEASUREMENTS
26. TROUBLESHOOTING AND REPAIR
27. POWER SUPPLY PROJECTS
28. AUDIO AND VIDEO EQUIPMENT
29. DIGITAL EQUIPMENT
30. HF RADIO EQUIPMENT
31. VHF RADIO EQUIPMENT
32. UHF RADIO EQUIPMENT
33. ANTENNA PROJECTS
34. STATION ACCESSORIES
35. COMPONENT DATA

ON THE AIR
36. HOW TO BECOME A RADIO AMATEUR
37. ASSEMBLING A STATION
38. OPERATING A STATION
39. MONITORING AND DIRECTION FINDING
40. INTERFERENCE

ETCHING PATTERNS

1024 PAGES!
more on ionosphere matching

A method of tailoring an antenna system for maximum signal at a DX location was presented in last month's column. A short computer program for determining the angle of the maximum signal lobes from horizontal antennas, for specific antenna heights above ground, was included.

Correlating this take-off angle with distance requires a few calculations, however. For an approximation, first divide the distance between the transmitting and receiving location (determined from a map with mileage markers or a globe) into equal interval hops. Then, using this hop distance, refer to fig. 1 to find the required departure (or take-off) angle.

But how can you determine which of the several ionospheric heights provided in fig. 1 should be used? Simply refer to table 1, which indicates representative mid-latitude heights appropriate for use at various times of the day. Using fig. 1 and table 1 for the computer program modifications shown in fig. 2, you have sufficient information to determine the antenna height that will enhance your DX performance.

To use table 1, add the increment (cumulatively) for each month between the months listed or subtract the increment after June. For example, the height of the ionosphere in March at noon local time is: 235 + (33+2) = 301 km. For those who have a computer, the MINIMUF 3.5 program can be used to obtain several useful operating parameters, including take-off angle (departure angle) for the path of interest. Modify the program by inserting the new lines indicated in fig. 2.

This modification provides an hourly indication of MUF with great circle distance in kilometers, azimuthal bearings to station and take-off angle in degrees for the path.

last-minute forecast

The second week of the month is expected to favor DX on the high bands, with 10 to 30 meter performance correlating with the beginning of a more energetic flux and sunspot period for the year. Transequatorial propagation, enhanced by any geomagnetic field disturbances toward the end of the week, should provide the best openings of the month.

Listen to WWV at 18 minutes after the hour for high values of the A and K indices. The last week will probably be best for low-band operation although there is a probability that the geomagnetic field will also be disturbed then. Work the stations while you can before the static builds over the coming months.

No significant meteor showers are scheduled to appear in February. A full moon will occur on the 5th, with its perigee on the 8th.

band-by-band summary

Ten meters will be open (local time) to the southeast for a short period before noon, to the south at noon, and to the southwest in the afternoon. The openings will be longer and more frequent when the solar flux is at its 27-day cycle maximum.

Fifteen and twenty meters, almost always open to some part of the world, will be the main daytime DX bands. Twenty should stay open on long southern paths into the night, while 15 will drop out in the late afternoon. Operate 15 first and move down to 20 meters. DX is 5000 to 7000 miles (8000 to 11,200 km) on these bands and one-long-hop transequatorial propagation is also possible even more often than on 10 meters. In addition transequa-

<table>
<thead>
<tr>
<th>local time:</th>
<th>midnight</th>
<th>6 A.M.</th>
<th>noon</th>
<th>6 P.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>height (km):</td>
<td>all 283</td>
<td>265-290</td>
<td>235-400</td>
<td>225-310</td>
</tr>
<tr>
<td>increment:</td>
<td>5</td>
<td>33</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>month:</td>
<td>January</td>
<td>January</td>
<td>Equinox</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- June</td>
<td>- June</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

fig. 1. Transmission curves showing vertical angles.
New From Butternut®

HF2V

DX The 80 & 40 Meter Bands

The HF2V is the perfect complement for the Ham who already has a beam antenna for 10-15-20 meters. Add 80 and 40 meters (160 meters with an optional resonator kit) with a trim-looking vertical that can be mounted almost anywhere.

With the decline in sunspot activity, the HF2V’s low angle of radiation will get you DX on the low bands - even when 10-15-20 meters are “dead.”

Power rating: legal limit VSWR: 2:1 or less

40 Meters: Full CW & Phone band

80 Meters: 90 kHz

Add-on resonator kits available for 160-30-20 meters.

Write for our FREE CATALOG.

BUTTERNUT ELECTRONICS
405 East Market Street
Lockhart, Texas 78644
(512) 398-9019
<table>
<thead>
<tr>
<th>FEBRUARY</th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA FAR EAST</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>EUROPE</td>
<td>20</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>OCEANIA AUSTRALIA</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>JAPAN</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

The italicized numbers signify the hours to try during the transition and early morning hours, while the standard type provides the 24-Hr. "normal" hours.

Look at next higher hand for possible openings.

February 1985
H2 = -176 + (1490/M2)

REM CALC T.D. ANGLE
Q5 = ATN(H2/Q4)
Q6 = Q5 * H1

PRINT "GREAT CIRCLE DISTANCE, XMTR TO RCVR =", Q1
PRINT "GREAT CIRCLE BEARING =", F, "OR", F1
PRINT "TAKE OFF ANGLE =", Q6

Q1 = G1 * RL1 * 111.12
J1 = 0
IF Q1 < 4000 GO TO 1080
J1 = 1
Q2 = Q1 + 1
FOR J1 = 1 TO 6
Q2 = Q2 * 4000
IF Q2 < 4000 GO TO 1080
NEXT J1
Q3 = Q1 / (J1 + 1)
Q4 = Q3 / 2
K6 = 1.59 * G1
F3 = 100
REM CALCULATE BEARING, XMTR TO RCVR, F
E = (SIN(L2) - (SIN(L1) * COS(G1)))/(COS(L1) * SIN(G1))
F = ACS(E) * R1
F1 = 360 - F
F2 = G2 / M9
IF F2 > F3 THEN 1779
F3 = F2
G3 = G2
M2 = G3 / F3
IF M2 > 2.2 GO TO 1790
M2 = 2.2

fig. 2. Modified MINIMUF 3.5 program listing.

Toroidal propagation will favor evening hours during periods of high solar flux and disturbed geomagnetic field conditions.

Thirty and forty meters are both day and night bands. Intermediate distances (1000 to 1500 miles or 1500 to 2200 km) in any direction represents daytime DX. Nighttime DX on these bands may be expected to offer greater distance paths than on 80 meters and, like 80, follow the darkness path across the sky. Reduced midday signal strengths and distances may occur on days of high solar flux values or periods of anomalous absorption, with 30-meter openings disappearing in the pre-dawn hours on the morning after a high solar flux value has occurred.

Eighty and one-sixty meters will exhibit short-skip propagation during the daytime hours and lengthen for DX at dusk. These bands follow darkness, opening to the east just before your sunset, swinging more to the south near midnight, and ending up in the Pacific areas during the hour or so before dawn. Except for daytime short-skip signal strengths, high solar flux values hardly affect these bands. On some days, however, the condition known as anomalous absorption will diminish day and night signal strengths. The 160-meter band opens later and ends earlier.

Reference

Ham radio
a good deal
more
for a good deal
less
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M, 2M, 220</td>
<td>$680</td>
<td>$880</td>
</tr>
<tr>
<td>440</td>
<td>$780</td>
<td>$980</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remote base.

FEATURES:
- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ± 12KHz, HELICAL RESONATOR FRONT ENDS, SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- **R144/R220 FM RCVRS** for 2M or 220 MHz. 0.15 uV sens.; 8 pole xtal filter & ceramic filter in f, helical resonator front end for exceptional selectivity, more than 100 dB at ±12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xmt. Xtal oven avail. Kit only $138.
- **R451 FM RCVR** Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $138.
- **R76 FM RCVR** for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $118.
- **R110 VHFAM RECEIVER** kit for VHF aircraft band or ham bands. Only $98.
- **R110-259 SPACE SHUTTLE RECEIVER**, kit only $98.

TRANSMITTERS

- **T51 VHF FM EXCITER** for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous, up to 2½ W intermittent. $68/kit.
- **T451 UHF FM EXCITER** 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $78.
- **VHF & UHF LINEAR AMPLIFIERS.** Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $78.
- **A16 RF TIGHT BOX** Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.

ACCESSORIES

- **HELICAL RESONATOR FILTERS** available separately on pcb w/connectors.
 - HRF-144 for 143-150 MHz $38
 - HRF-220 for 213-233 MHz $38
 - HRF-432 for 420-450 MHz $48
- **COR-2 KIT** With audio mixer, local speaker amplifier, tail & time-out timers. Only $38.
- **COR-3 KIT** as above, but with "courtesy beep". Only $68.
- **CWID KITS** 15-6 bits, field programmable, clean audio, rugged TL logic. Kit only $68.
- **DTMF DECODER/CONTROLLER KITS.** Control 2 separate on/off functions with touchtones, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $90.
- **AUTOPATCH KITS.** Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $90. Requires DTMF Module.
- **NEW - SIMPLEX AUTOPATCH** Use with any transceiver. System includes DTMF & Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.

Tell 'em you saw it in HAM RADIO!
NEW LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

* No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 28 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted

MODEL	**TUNES RANGE**	**PRICE**
NW-26 | 26-30 MHz | $49
NW-50 | 46-56 MHz | $49
NW-144 | 147-150 MHz | $49
NW-220 | 210-250 MHz | $49
NW-432 | 400-470 MHz | $49
NW-460 | 30-46 MHz | $64
NW-160 | 150-172 MHz | $64

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tunable over narrow range. Specify exact freq band needed. Gain 16-20 dB, NF = 2 dB or less. VHF units available 27 to 300 MHz; UHF units available 300 to 650 MHz.

- P30K, VHF Kit less case $18
- P30W, VHF Wired/Tested $33
- F432K, UHF Kit less case $21
- F432W, UHF Wired/Tested $56

HELICAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Gain = approx 12 dB.

MODELS	**TUNING RANGE**	**PRICE**
HRA-144 | 143-150 MHz | $49
HRA-220 | 213-233 MHz | $49
HRA-432 | 420-450 MHz | $59
HRA (1) | 150-174 MHz | $69
HRA (1) | 450-470 MHz | $79

RECEIVING CONVERTERS

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

SPECIFICATIONS

- **Exciter Input Range:**
 - For VHF: 28-30
 - Model XV2: 28-30
 - Kit 779: 27-34
 - Wired $149 (Specify band): 50-54
- **Antenna Output:**
 - 144-146
 - 50-52
 - 220-222
 - 144-246
 - 28-39

TRANSMIT CONVERTERS

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

FM-5 PC Board Kit - ONLY $178
- complete with controls, heatsink, etc.
- 10 Watts, 5 Channels, for 2M or 220 MHz.

SCANER CONVERTERS, Copy 73-76, 135-144, 240-270, 400-420, or 800-894 MHz bands on any scanner. Wired/tested Only $88.

LOOK AT THESE ATTRACTIVE CURVES!

Typical Selectivity Curves of Receivers and Helical Resonators.

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:

1. Largest selection of vhf and uhf kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery; most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs. and have for years. Can give quality features for much lower cost.

Call or Write for FREE CATALOG
- (Send $1.00 or 4 IRCs for overseas mailing)
- Order by phone or mail • Add $3 S & H per order (Electronic answering service evenings & weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.

Hamtronics, inc.
65-E MOUL RD. • HILTON NY 14468
Phone: 716-392-9430
Hamtronics * is a registered trademark

February 1985
the high-tech repeater: designing and building an FM translator

Modular construction simplifies assembly, operation, and maintenance

In “Linear Translators,” (Ham radio, September, 1983, page 14) James Eagleson, WB6JNN, described narrowband techniques useful in the design of improved FM repeaters. This article extends that discussion to include the design of lossless feedback amplifiers with low SWR and low noise figure; theory, design and performance of the valid signal detector; techniques for identifying a translator; and site selection and sensitivity/transmit power considerations for putting up a co-channel repeater. — Editor.

The 146.34/94 repeater designed and built by the Sierra Amateur Radio Club in Ridgecrest, California, is not actually a repeater, but rather an FM translator.

In a generic sense, translators are repeaters, in that both perform similar functions. Both translators and repeaters receive signals on one frequency and retransmit them, with increased power, on a second frequency.

There are important differences, however. A repeater is a transmitter with its audio input connected to the audio output of a receiver. A translator, on the other hand, heterodynes the received signal to the intermediate frequency (IF), amplifies it, and then heterodynes it to the transmit frequency. In a translator, the signal never exists as audio.

The primary advantage of true repeaters is that they can be built from surplus or otherwise easily obtainable parts. Translators — often representing the “state-of-the-art” — must be custom-designed and custom-built from parts that are likely to be more costly and perhaps difficult to find. But because translators offer improved performance and excellent signal quality, we opted to design a translator rather than a repeater and accept both the increased challenge and expense.

Design and construction of the translator was a shared effort. Although John Piri, WD6CSV, and I were responsible for overall system design and construction, Chuck Swedblom, WA6EXV, took charge of design and construction of the identifier. Ron Skatvold, WB6VXI, designed and built the transmit power amplifier. George Kreager, KB6HC, was responsible for construction of the transmit and receive filters, and Elvy Hopkins, ND6Q, designed and supervised construction of the antennas, feedlines, and masts.

Many others assisted with general planning, frequency choice, site selection, and innumerable additional details. The project, from initial conception to installation and operation, took approximately 10 months.

translator design: overview

The translator was designed and constructed as seven modules, as shown in the block diagram of fig. 1. These modules include the down-converter, the IF section, the up-converter, the power amplifier, the control module, the valid signal detector, and the identifier. The down-converter receives the signals

By Ken Wetzel, WA6CAY, 9621 Erskine Drive, Huntington Beach, California 92646
passed by the input filter and heterodynes them to the 21.4 MHz IF. The IF section filters and amplifies these signals. A total of 10 poles of crystal filtering are included so that the only signals retransmitted are those originating in the translator's input passband. The IF section provides the major amount of amplification, with over 100 dB of gain. The up-converter heterodynes the IF signal to the transmit frequency. In addition, it has a crystal oscillator for inserting a substitute carrier during identification if there is none at the input. The power amplifier amplifies the 10-mW signal from the up-converter to the 10-watt level. The identifier controls the timing of the translator control and generates the identifier tones. The timers for identifying the translator, timing out the transmitter, and setting the code rate are included in the identifier. The identifier depends upon input from the valid signal detector. The valid signal detector samples the 21.4 MHz IF to measure the signal-to-noise ratio of the signal in the IF passband. When the signal-to-noise ratio is above a preset level, the transmitter is turned on and the identifier starts timing. The control module controls both the transmitter and the carrier insertion oscillator.

The sensitivity of the translator is very good — about −125 dBm (0.12 microvolt) at the receive filter. Limited transmit power and directional antennas control the coverage area of the translator.

operation

The site selection study was carefully performed, taking into consideration the club's desire to have a semi-local repeater, the lay of the land, the distribution of population centers, and the location of existing repeaters. Briefly, the area consists of a very large valley surrounded on all sides by mountains rising to peaks 5000 to 8000 feet high, with population centers small and sparsely located. To serve the community and the major highway nearby, and to keep the repeater truly local, the site selection committee recommended that the translator be located not on a mountain top, but 200 feet above the floor of the southern end of the Indian Wells Valley, using north-facing directional antennas. The site selection study showed that a balanced repeater — neither an alligator nor an elephant — with a transmit power of approximately 10 watts would cover the desired area.

The site selected allows the translator to serve Amateurs using handheld transceivers in the Ridgecrest area and those using proper mobile equipment transmitting 2 watts or more on the nearby highway for more than 50 miles. The only co-channel interference occurs with base stations operating in the overlap zone with a repeater to the north. No tone squelch is necessary because there are only one or two Amateurs in the overlap zone, and they generally use directional antennas.

The translator was designed to provide high-quality signal reproduction indistinguishable from simplex. (Indeed, if the user's transmitter is slightly off frequency, the translator output is off frequency a like amount.) On-the-air experience confirms that this goal was met; when the output is compared with the input, no discernible difference can be heard. In fact, to the first-time user, the identifier is the only clue that there is a repeater on the channel.

To keep the design simple the translator has a very short squelch tail, and no carrier tail at all. We were surprised to discover how many transient Amateurs were confused by the lack of the usual carrier tail. As an experiment we tried using the translator with a carrier tail. After a trial period of two months the club membership voted to remove the carrier tail; operation without it is so clean that the presence of the tail was actually a nuisance to local operators.

The translator provides reliable coverage for 50 miles...
NEW LOW, LOW PRICES!

100% NATIONAL FINANCING AVAILABLE THROUGH NAMPA SATELLITE
FOR MORE INFORMATION CALL 208-466-6727

EACH OF THE FOLLOWING SYSTEMS CONSIST OF: Receiver, 100° LNA, LNB, or LNC, Wilson MD-9 Dish, 100 Ft. Cable Pack, LNA Cover, Polarmatic I Feedhorn, NSS Dish Drive, All Connectors & Instructions.

<table>
<thead>
<tr>
<th>System Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson YM1000 System</td>
<td>$1433</td>
</tr>
<tr>
<td>Wilson YM400 System</td>
<td>$1242</td>
</tr>
<tr>
<td>Drake ESR 240 System</td>
<td>$1542</td>
</tr>
<tr>
<td>Drake ESR 324 System</td>
<td>$1392</td>
</tr>
<tr>
<td>Luxor Mark II System</td>
<td>$1908</td>
</tr>
<tr>
<td>Maspro SRS System</td>
<td>$1692</td>
</tr>
<tr>
<td>Dexcel 1300-01 System</td>
<td>$1543</td>
</tr>
<tr>
<td>Dexcel 1200-01 System</td>
<td>$1293</td>
</tr>
<tr>
<td>Dexcel 900-01 System</td>
<td>$1178</td>
</tr>
<tr>
<td>Uniden UST 1000 Sys.</td>
<td>$1322</td>
</tr>
<tr>
<td>Uniden UST 3000 Sys.</td>
<td>$1472</td>
</tr>
<tr>
<td>Boman SR1500 System</td>
<td>$1233</td>
</tr>
<tr>
<td>STS MBS-SR System</td>
<td>$1512</td>
</tr>
<tr>
<td>M/A Com H1 System</td>
<td>$2082</td>
</tr>
<tr>
<td>M/A Com T1 System</td>
<td>$1982</td>
</tr>
<tr>
<td>Toki TR 110S System</td>
<td>$1333</td>
</tr>
<tr>
<td>Toki TR 220 System</td>
<td>$1462</td>
</tr>
<tr>
<td>Boman SR2500 System</td>
<td>$2233</td>
</tr>
<tr>
<td>Fansat 3500 System</td>
<td>$1440</td>
</tr>
</tbody>
</table>

OPTIONS with system

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM 9' Dish</td>
<td>$60</td>
</tr>
<tr>
<td>PM 10' Dish</td>
<td>$140</td>
</tr>
<tr>
<td>Prodelin 10' Dish</td>
<td>$400</td>
</tr>
<tr>
<td>Ranger 11' Mesh Dish</td>
<td>$300</td>
</tr>
<tr>
<td>Magnum 12' Dish</td>
<td>$400</td>
</tr>
<tr>
<td>85° LNA</td>
<td>$80</td>
</tr>
<tr>
<td>NSS Memory Tracker</td>
<td>$100</td>
</tr>
<tr>
<td>MTI 2100</td>
<td>$225</td>
</tr>
<tr>
<td>MTI 4100</td>
<td>$345</td>
</tr>
<tr>
<td>Houston Tracker IV</td>
<td>$325</td>
</tr>
<tr>
<td>Houston Tracker IV +</td>
<td>$425</td>
</tr>
</tbody>
</table>
to the north. Because everything (except the backup power batteries) is solid-state and designed for reliability, we have enjoyed excellent results. Periodic maintenance to service the nickel cadmium emergency power batteries and retune the crystal oscillators is scheduled once every two years. Only one failure, caused by the failure of a 2N2925 transistor in the control module, has occurred in seven years of service.

down-converter design

The down-converter, shown in fig. 2, consists of a crystal-controlled local oscillator, an RF preamplifier, an RF mixer, and the first stage of the IF amplifier with a 4-pole pair crystal filter. The IF chosen was 21.4 MHz because this was the highest frequency for which high-performance crystal filters were readily available. This module was designed for weak-signal sensitivity in the presence of strong interfering signals. Because the transmitter and receiver operate simultaneously, the potential for intermodulation distortion is ever-present; consequently, intermodulation performance was given high priority. Failure to avoid intermodulation distortion causes repeaters to respond to signals at frequencies other than the designed input frequency. We also wanted to design the translator for superior intermodulation performance in order to reduce the problems of keeping cavities tuned "just right."

For first-rate intermodulation performance it is essential to limit the gain before narrowband (crystal) filtering. For this reason, the preamp gain was limited to little more than 10 dB. In addition, a crystal filter was included as close as possible to the downconverter mixer as well as at the end of the IF chain. Lossless feedback was employed with the RF preamp to achieve low SWR and low noise figure simultaneously. The interstage bandpass filter has 1 dB of insertion loss. The interstage filter includes a notch at the image frequency and another notch at the most prominent spurious response frequency.

The RF mixer was also built from scratch. With a 100-mW LO the conversion loss was less than 5 dB, and the third-order intermod intercept point was +23 dBm. The image-termination filter following the mixer represents a 50-ohm match at 21.4 MHz and an open circuit at 146 MHz. It also includes a short circuit at the RF + LO frequency, which gives better intermodulation distortion than a 50-ohm match at that frequency.\footnote{for instance, see K. Mitchell, "Intermodulation Performance of a Direct Conversion Receiver," Proc. 1984 ARRL Southeastern Division Convention, Feb. 1984.}

The crystal filter input impedance outside of its passband is significantly higher than the midband value. Reflecting a high impedance to an amplifier seriously reduces the third-order intercept performance of the amplifier. It is, therefore, desirable to transform to a low impedance the above-nominal impedance reflected to the amplifier for signals outside the crystal filter passband. The impedance inverting property of a properly designed Pi network is desirable for this purpose. Certain L networks will also provide the same above-nominal impedance transformation, but the Pi network has the advantage of easy tunability with both variable capacitors returning to ground. For these reasons, all crystal filter impedance matching networks were of this design.

When the down-converter was designed it did not include the lossless feedback amplifier and 5-dB attenuator. We found that the RF preamplifier and mixer could handle a weak signal in the presence of multiple high-level inputs. But the output impedance of the mixer would change from a 50-ohm match with input levels above -10 dBm (-20 dBm at the input to the RF preamplifier), thus seriously degrading the passband flatness of the crystal filter in the presence of a strong off-frequency signal — in particular, the repeater output. An interstage amplifier with low noise figure, low intermodulation distortion, and a constant output impedance was needed. To keep distortion down, a low-gain amplifier was needed, but that implies feedback to limit gain. To achieve low gain, low noise, and low distortion, a lossless feedback amplifier was the answer.\footnote{Unfortunately, such amplifiers pass the impedance seen at the input to the output with little isolation. The 5-dB attenuator (fig. 2) was included so that the crystal filter is presented with a constant impedance with all RF input levels. The amplifier was designed with 6-dB gain, a low value in the interest of improved intermod performance. The transis-}

![fig. 2. Down-converter block diagram. The down-converter is designed for wide dynamic range.](image-url)
Noise figure and gain calculations showed that the noise figure of the first stage following the crystal filter was important. The best noise figure attainable with conventional amplifiers was approximately 5 or 6 dB, which was insufficient. The problem was that the crystal filter must have an impedance match to have a flat passband response. However, having a match with a conventional amplifier guarantees a poor noise figure. Again the solution was a lossless feedback amplifier for the IF amplifier following the crystal filter. By favorably biasing the amplifier for improved noise figure, a 2-dB noise figure was attained. A conventional amplifier was cascaded with the lossless feedback amplifier for a net gain of 30 dB in the down-converter.

The local oscillator (LO) for the down-converter (and the up-converter) uses double-tuned interstage filtering to keep all spurious outputs in the LO output below 60 dBc. The local oscillator puts out 100 mW of LO power to the mixer.

Figure 3 is the schematic of the RF preamplifier. The 2N3906 was included to control the collector current through the 2N5109 independently of temperature. The 146-MHz preamp has 11 dB of gain. It achieves a 3-dB noise figure with an input SWR of approximately 2:1. The SWR of the preamp must be low so that the response of the RF input filter, which precedes the preamp, will not be distorted. Low SWR and low noise figure were achieved with lossless feedback. The lossless feedback was obtained with inductive reactance in the emitter of the RF transistor, which in turn determined the SWR. An SWR of nearly 1:1 is possible, but at the expense of the noise figure. The value of inductance chosen was a compromise between low noise and low SWR.

Figure 4 is the schematic of the RF mixer. It was designed to convert an RF signal to the IF. To keep the intermodulation distortion down, 100 mW of LO power was applied to the mixer. The 390-ohm resistor develops a back bias voltage from the LO current flowing through the diodes. This bias voltage increases the reverse voltage for the off state of the diodes, which allows a greater peak-to-peak RF input level for the same distortion level. A single balanced mixer, it requires a diplexer to separate the RF from the IF, which share a common port. Generally a diplexer is composed of high-pass and low-pass filter sections sharing the common port. However, it was considerably easier to design and tune a diplexer made from series-tuned filter sections. This is acceptable in a frequency converter for use in a repeater, where RF bandwidth is not a consideration.

IF module

The IF (21.4 MHz) was chosen to take advantage of readily available high-quality crystal filters. Although no problem has been observed, a higher frequency...
would have made image rejection and spurious response suppression more effective. The IF section block diagram is shown in fig. 5. More than 100 dB of IF gain was used, resulting in 20 dB of excess gain before limiting. The excess gain was desired to ensure that the limiter was hard limited under all conditions. It was not possible to put that much gain in one box without the risk of oscillations from feedback. To prevent that from happening, the gain stages were distributed among three separate enclosures. The use of double-shielded interconnecting coax cables also minimized coupling.

Figure 6 is the schematic of the lossless feedback IF amplifier used on each side of the crystal filter. The two amplifiers differ only in the turns ratios of the transformers and the bias currents of the transistors. To keep the circuit physically small, the transformer cores were 0.100-inch diameter ferrite toroids with a permeability of 125. Considerable care must be used in the layout of this amplifier so that stray reactances do not degrade performance. This amplifier design is useful to about 50 MHz.

The translator includes a limiter in the IF to maintain constant power level to the up-converter mixer. A 2-pole-pair crystal filter precedes the limiter to prevent off-frequency IF amplifier noise from suppressing a weak signal in the limiter. The effectiveness of a limiter is degraded if limiting is not symmetrical; that is, if limiting of the positive and negative swings of the IF waveform are not equal. To achieve symmetrical limiting, a push-pull limiter was employed. By ensuring that the limiter is limited even on noise, there is no variation in translator performance with signal strength, supply voltage, or ambient temperature.

We decided not to include SSB signal-handling capability for this repeater. The only changes necessary for passing SSB would be to use AGC instead of limiting, and to use a linear transmit amplifier. A limiter was chosen to provide constant signal amplitude to the up-converter with minimum circuit complexity. If AGC were to be used instead, the amplitude components of a weak signal would have required a linear power amplifier to keep intermodulation products from splattering across adjacent channels.

up-converter

Figure 7 is the block diagram of the up-converter. A 4-pole crystal filter was included just before the IF signal was up-converted to the transmit frequency. This guarantees that the only signals transmitted are within the transmit channel bandwidth. The up-converter heterodynes the 21.4 MHz signal to 146.94 MHz.

Because there are no audio circuits in the translator, the repeater cannot be identified in the usual manner of inserting audio tones into the modulator. In this translator the identification modulation is accomplished by frequency modulating the crystal-controlled local oscillator in the up-converter with the identifier tones. This conveniently adds the identifier tones to the user’s signal. If no carrier is present during the identification time, a substitute carrier is inserted from a crystal oscillator.

The up-converter mixer is identical to the mixer in the down-converter. It is very important to have a low distortion mixer in the up-converter so that spurious outputs are below the FCC limits. The IF amplitude was adjusted, with the limiter bias current, until the spurs were sufficiently below the FCC limits. This resulted in approximately 1-mW output from the mixer. Several stages of 146-MHz amplification were required to raise the 1 mW to the final 10-watt level. Most of that gain was provided by the power amplifier module. The power amplifier was designed as class C for high efficiency.

When there is no input to the repeater, the output from the crystal filter in the up-converter is full-power noise. If the control module calls for the translator to
be identified when there is no input signal, the carrier insertion oscillator is turned on. Summing the full-power noise and the carrier insertion oscillator signal would result in equal carrier power and noise power, which would give a 3-dB signal-to-noise ratio for the identifier. A PIN diode was used to block the noise coming out of the IF when the carrier insertion oscillator is on. This diode attenuates the IF noise sufficiently to yield about a 30-dB signal-to-noise ratio when the carrier is inserted locally.

Figure 8 shows the up-converter crystal filter matching network. A small amount of the IF signal is sampled at the output of the crystal filter for use by the valid signal detector circuit. Sampling with a low-impedance tap minimized the effects of the high SWR of the PIN diode when it conducts.

valid signal detector

The valid signal detector samples the 21.4-MHz IF signal to measure the signal-to-noise ratio in the IF passband. The signal-to-noise ratio is measured by evaluating the amplitude variations in the IF signal. The IF signal consists of frequency modulated (FM) signals superimposed on amplitude modulated (AM) signals. The FM signals are the desired signals and the AM signals are undesired, usually noise. It can be easily appreciated that a clean FM signal will have no AM components in it, and that noise is composed of AM and FM components. What is not so evident is the strong AM components of noise after the signal is hard limited and bandpass filtered. A hard limiter converts any signal, even one with significant amplitude variations such as noise, into a constant power, wideband signal with no amplitude variations. After bandpass filtering to the original frequency and bandwidth, the signal will have constant power, but not necessarily constant amplitude. A noise-free FM signal will be a constant amplitude (and constant power) frequency-modulated sine wave, but noise will be band limited noise with fluctuating amplitude with the same

fig. 7. Up-converter block diagram. A high-level mixer is necessary to keep spurs low. The PIN diode blocks noise out of the IF if no carrier is present.

fig. 8. Piezo Tech 4 pole-pair crystal filter and matching networks. Found in up-converter. The 560 pF capacitor is omitted in the down-converter version. Careful tuning resulted in better than ±0.1 dB passband flatness.
INCREIBLE CODE!!
Learn the International Morse Code
by the patented
"WORD METHOD"

INcredible Books
NO Cards
Visual Aids
Gimmicks

Just listen and learn! the "WORD METHOD" is based on the latest scientific and psychological techniques. You can zoom past 13 WPM in less than HALF THE USUAL TIME!!!

The kit contains two cassette tapes, over TWO HOURS of unique instruction by internationally famed educator Russ Farnsworth. Complete satisfaction guaranteed.

Available at local Electronic Dealers, or send check or money order for $18.50 plus $1.50 for postage and handling to:

Epsilon Records
P.O. Box 71581
New Orleans, LA 70172
35

RECEIVER GUARD 2000
Total Protection Against RF Burn Out of Solid State Front Ends

Installs easily between the antenna and receiver input. When RF voltage to the receiver line exceeds 1 volt, the unit activates by shunting the over voltage to ground and increasing the resistance in the receiver line. If over voltage exceeds design parameters, an internal fuse lamp opens (easy to replace). Perfect for contest stations, field day operations, areas saturated with broadcast services and those who use separate transmit and receive antennas. Less than .3 dB insertion loss between 1.8 and 30 MHz.

Master Card or Visa Accepted
Call 716-874-5848 or Write:
636 Sheridan Drive, Tonawanda, New York 14150 (716) 874-5848

Vector Radio Co., P.O. Box 1166, Cardiff, CA 92007

IF YOU COMBINE 1.3 - 1296 and 249.95 WHAT DO YOU GET?
A COMBINATION THAT YOU CAN'T BEAT.

 slug of 10 kHz to 1.3 GHz
- 4 & 8 Digit LED Display
- Automatic decimal point
- 5/8 x 5/8 x 2" metal case
- Built in pre-scaler
- 1 year warranty
- Internal impedance: 50 ohm/20 ft to 100 MHz - 50 ohm above 100 MHz
- 15 day - no hassle return guarantee

CALL 716-874-5648 OR WRITE:
636 Sheridan Drive, Tonawanda, New York 14150 (716) 874-5848

VECTOR
VT-3B and VT-4B
MOBILE
HOME

NEW REMOTE CONTROLLED ANTENNA TUNERS

NEW COMPACT DESIGN WITH 10-segment LED tuning indicator

- VT-4B Installs Directly at the Antenna Feedpoint Where You Can Really “Tune” the Antenna.
- Designed for Half Wave Dipoles, Inverted V’s, and Quarter Wave Verticals Using 50 Ohm Coax Feedlines.
- Operates with Single Band or Multiband Antennas, Trap Type or Parallel Element Types.
- Works All Bands From 10 Through 160 Meters.
- Full Band Coverage With Maximum Efficiency and Very Low VSWR, Typically Less Than 1.2 to 1.
- Finger Tip Control from the Ham Shack for Exact Resonance and Impedance Match.
- For Mobile Operators the Vector VT-3B Installs in the Trunk and Tunes Standard Type Mobile Antennas for Full Band Coverage, (All of 75M phone band), With Typical VSWR Less Than 1.2 to 1.

EITHER MODEL
$169.00

VT-3B
WRITE FOR INFORMATION.

VT-4B

ITALY
[

IF YOU COMBINE 1.3 - 1296 and 249.95 WHAT DO YOU GET?
A COMBINATION THAT YOU CAN'T BEAT.

 slug of 10 kHz to 1.3 GHz
- 4 & 8 Digit LED Display
- Automatic decimal point
- 5/8 x 5/8 x 2" metal case
- Built in pre-scaler
- 1 year warranty
- Internal impedance: 50 ohm/20 ft to 100 MHz - 50 ohm above 100 MHz
- 15 day - no hassle return guarantee

CALL 716-874-5648 OR WRITE:
636 Sheridan Drive, Tonawanda, New York 14150 (716) 874-5848

VECTOR
VT-3B and VT-4B
MOBILE
HOME

NEW REMOTE CONTROLLED ANTENNA TUNERS

NEW COMPACT DESIGN WITH 10-segment LED tuning indicator

- VT-4B Installs Directly at the Antenna Feedpoint Where You Can Really “Tune” the Antenna.
- Designed for Half Wave Dipoles, Inverted V’s, and Quarter Wave Verticals Using 50 Ohm Coax Feedlines.
- Operates with Single Band or Multiband Antennas, Trap Type or Parallel Element Types.
- Works All Bands From 10 Through 160 Meters.
- Full Band Coverage With Maximum Efficiency and Very Low VSWR, Typically Less Than 1.2 to 1.
- Finger Tip Control from the Ham Shack for Exact Resonance and Impedance Match.
- For Mobile Operators the Vector VT-3B Installs in the Trunk and Tunes Standard Type Mobile Antennas for Full Band Coverage, (All of 75M phone band), With Typical VSWR Less Than 1.2 to 1.

EITHER MODEL
$169.00

VT-3B
WRITE FOR INFORMATION.

VT-4B

ITALY
[

IF YOU COMBINE 1.3 - 1296 and 249.95 WHAT DO YOU GET?
A COMBINATION THAT YOU CAN'T BEAT.

 slug of 10 kHz to 1.3 GHz
- 4 & 8 Digit LED Display
- Automatic decimal point
- 5/8 x 5/8 x 2" metal case
- Built in pre-scaler
- 1 year warranty
- Internal impedance: 50 ohm/20 ft to 100 MHz - 50 ohm above 100 MHz
- 15 day - no hassle return guarantee

CALL 716-874-5648 OR WRITE:
636 Sheridan Drive, Tonawanda, New York 14150 (716) 874-5848

VECTOR
VT-3B and VT-4B
MOBILE
HOME

NEW REMOTE CONTROLLED ANTENNA TUNERS

NEW COMPACT DESIGN WITH 10-segment LED tuning indicator

- VT-4B Installs Directly at the Antenna Feedpoint Where You Can Really “Tune” the Antenna.
- Designed for Half Wave Dipoles, Inverted V’s, and Quarter Wave Verticals Using 50 Ohm Coax Feedlines.
- Operates with Single Band or Multiband Antennas, Trap Type or Parallel Element Types.
- Works All Bands From 10 Through 160 Meters.
- Full Band Coverage With Maximum Efficiency and Very Low VSWR, Typically Less Than 1.2 to 1.
- Finger Tip Control from the Ham Shack for Exact Resonance and Impedance Match.
- For Mobile Operators the Vector VT-3B Installs in the Trunk and Tunes Standard Type Mobile Antennas for Full Band Coverage, (All of 75M phone band), With Typical VSWR Less Than 1.2 to 1.

EITHER MODEL
$169.00

VT-3B
WRITE FOR INFORMATION.

VT-4B

ITALY
["
Figure 9 is the valid signal detector block diagram. The IF signal is sampled after the post-limiter crystal filter. The valid signal detector amplifies the IF signal and provides envelope detection. The envelope detector furnishes a voltage proportional to the instantaneous IF signal amplitude. As a result of the limiter, the IF power applied to the detector is constant. If no carrier is present, full power noise is applied to the detector, which produces a fluctuating DC voltage. In this case, the frequency components of the detector output extend from DC to 15 kHz, the IF bandwidth. When a strong carrier is introduced, the limiter suppresses the noise so that the output of the detector becomes a noise-free DC voltage. It can be seen therefore, that the high-frequency components of the detector output correspond to the sidebands of a carrier, either AM sidebands or noise. In theory, and in practice, any incidental AM on an FM signal is limited to roughly 3-kHz bandwidth. Therefore, the signal-to-noise ratio of a received signal can be determined by measuring the amplitude of the 10- to 15-kHz components of the envelope-detected signal.

The components resulting from the noise level are extracted by high-pass filtering of the detected signal. The detector following the high-pass filter then provides a DC voltage level inversely related to the signal-to-noise ratio. Actually, the DC level is equal to a constant minus the received signal strength, but for practical purposes it provides a very good approximation to signal-to-noise ratio. The threshold for the comparator in the valid signal detector has significant amount of hysteresis. Hysteresis was included so that any signal that brings up the repeater is workable, but a fading signal will not be cut off until the bitter end.

The valid signal detector has provided outstanding service. It is so effective that even weak signals reliably bring up the translator, but noisy, uncopyable signals are virtually never heard. The only problem that occurs is with signals with severe multipath distortion. Multipath distortion can create a poor signal-to-noise ratio during modulation, even though the signal has acceptable signal-to-noise ratio when not modulated. This occurs when destructive interference causes notches in the signal amplitude at several frequencies in the modulation bandwidth. The result is a drop in the signal strength during modulation, and the reduced strength of the modulated signal does not have sufficient signal-to-noise ratio to keep the translator on. When this happens, the person transmitting brings up the translator whenever he or she pauses, but gets cut off as soon as he or she speaks. Such signals are unintelligible anyway; it just sounds like the valid signal detector is unnecessarily cutting off a copyable signal.

input/output filters, antennas

The RF input and output filters were constructed from a design put forth by Tilton. The filters provide a 50 dB notch at the rejection frequency with a 1 dB insertion loss. This is identical to the performance predicted in the reference, even though silver plating was not applied as in the original filters. To enhance the output-to-input isolation for the repeater, separate transmit and receive antennas, spaced about 70 feet apart, were used. The antennas are surplus commercial five-element Yagi antennas. To retune to the Amateur band, we set up a ground effect antenna range and found we could achieve the same gain as the original five-element antennas with only four elements, using the original boom. The side lobes with four elements were slightly stronger than with five elements, but still met our requirements.

squelch/carrier tail considerations

A few comments on the operational characteristics of this repeater are included here for the benefit of any who might seek to advance FM translator design. When the translator was designed we understood that pure noise out of the IF would cause intermodulation products in the class C power amplifier. For that reason the valid signal detector squelch response time was made short — around 50 ms. When someone listens to a weak signal on a frequency up to 1 MHz away while there is a conversation going on over the translator, the noise burst at the end of each transmission through the translator blanks out the weak sta-
tion for the duration of the squelch tail. It turns out that this phenomenon is not particularly noticeable: it has not been noticed, even in locale in which almost all 2-meter activity is weak-signal work.

It appears that the main annoyance is the translator’s emission of a full-bandwidth (15 kHz) noise burst at the end of each transmission. The typical squelch circuit in the user’s receiver responds to this noise burst in the same way it would if there were no carrier on channel and squelches the receiver audio. That is then followed by a clean carrier tail that unsquelches the radio. After the carrier tail times out, the user’s radio again squelches. The result at the user’s receiver is two squelch bursts for one end-of-transmission. (This phenomenon does not occur with a conventional repeater because its audio stages limit the bandwidth of the noise burst so that the typical squelch circuit will not respond.) Solving this problem with translators is not easy; it will occur with class C and linear power amplifiers alike. One temporary solution is to make an inordinately long carrier tail so that the second burst is likely to be taken up by another user; any suggestions from readers for providing a clean carrier tail would be appreciated.

conclusion

This article has outlined the objectives and results of a project for the design and construction of a translator/repeater. Designed and constructed entirely "from scratch," the repeater has met all performance goals and has operated with minimal service for 7 years. Any comments or suggestions from readers will be appreciated. If you wish to receive a response, send an SASE to the author at the address at the beginning of this article.

acknowledgement

I would like to thank Bill Maraffio, N6PR, for reviewing this article manuscript form and for making many helpful suggestions.

references
SATELLITE TELEVISION RECEIVER SEMIKIT

with dual conversion downconverter

FEATURES:
- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polarator controls
- LED channel & tuning indicators

Install six factory assembled circuit boards to complete.

SEMIKIT $400.00
Completed downconverter add 100.00
Completed receiver and downconverter add 150.00

JAMES WALTER SATELLITE RECEIVER
2697 Nickel, San Pablo, CA 94806  136 Tel. 415-724-0587

HOBBY KITS®
EXPERIMENT — LEARN ELECTRONICS
BUILD AND DESIGN YOUR OWN AM, FM, CW,
OR SSB RECEIVERS, TRANSMITTERS AND ETC.
WITH OUR MINI-LINEAR CIRCUIT KITS

All kits come complete with etched and drilled circuit boards
and all parts needed to function as described.

AFA-1 AUDIO AMP... CA 252B 10 DB Gain... Optional AGC (455 kHz) $4.95
AFA-1 AUDIO PREAMP... in 3 Output Levels... $3.95
BMD-1 BAL. MIX... LM 439A Mix... 455 kHz Tilted Output $9.95
DET-1 AM DET... AN 39006 Detector, AGC Output $3.95
DET-2 FM DET... LM 4060 FM Detector (455 kHz Tilted) $7.95
DET-3 SSB DET... LM 439A SSB Detector (455 kHz Tilted) $3.95
DET-4 DETECTOR CW/SSB with a dialing filter HF transistors $4.95
IFA-1 IF AMP... CA 102B 10 DB Gain... Optional AGC (455 kHz) $6.95
FLS-9 SSB FILTER... 6.25 kHz Tilted Output $9.95
IFA-2 IF AMP... CA 102B 10 DB Gain... AGC $6.95
MBA-1 FREQ. MULT... 2 MHz Spectrum $5.95
OSC-1 CRYSTAL OSC... 90 to 20 MHz $3.95
OSC-2 CRYSTAL OSC... 20 to 100 MHz Tilted $4.95
PSV-1 POWER SUPPLY... 750 mA, Pulsed $7.95
PLL-2 TONE DETECTOR... MMX-11P Pulsed $5.95
RF/MIX-1 RF-AMP/MIXER... CA 252B = Tuned IF Amp/Mixer 1 to 100 MHz $7.95
RF/MIX-2 RF-AMP/MIXER... CA 252B = Tuned IF Amp/Mixer 1 to 100 MHz $7.95
VCO-1 VARIABLE HI STAB OSC... Varicap tuned 450 to 690 kHz output $7.95
VCO-2 VARIABLE HI STAB OSC... Varicap tuned 3 to 70 MHz output $7.95

Add $2.00 for Shipping & Handling. Send for FREE Brochure.
SEND $2.00 for full manual with circuit diagrams and
typical receiver and transmitter hookups.
MANY OTHER MODULES AVAILABLE.

MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA 33011

COMPUTER TRADER MAGAZINE

The monthly magazine with a natural blending of two popular hobbies — Ham Radio and Computers
- Articles on Ham Radio & Most Personal Computers
- Hardware & Software Reviews
- Various Computer Languages
- Construction Articles
- Much Much More...

- FREE Classified Ads for subscribers, non-subscribers – 10+ a word/number (used equipment only)

- Excellent display ad rates

Join the CTM® readership family by subscribing NOW, during our Baker's Dozen Special.
USA $12.00 for 13 issues
Mexico, Canada $25.00
Foreign $35.00 (land) - $55.00 (air) (U.S. funds only)
Permanent (U.S. Subscription) $100.00
Sample Copy $2.50

CTM
Circulation Manager
1704 Sam Drive
Birmingham, Alabama 35235
Phone (205) 854-0271

Name ____________________________
Call Sign ________________________
Address __________________________
City ____________________ State __________________
Zip __________________ Phone __________________
Date __________________ Signature __________________
ham radio
Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

| 101 | 113 | 125 | 137 | 149 | 161 | 173 | 185 | 197 | 209 | 221 | 233 | 245 | 257 | 269 | 281 | 293 | 305 | 317 | 329 | 341 |
|-----|
| 102 | 114 | 126 | 138 | 150 | 162 | 174 | 186 | 198 | 210 | 222 | 234 | 246 | 258 | 270 | 282 | 294 | 306 | 318 | 330 | 342 |
| 103 | 115 | 127 | 139 | 151 | 163 | 175 | 187 | 199 | 211 | 223 | 235 | 247 | 259 | 271 | 283 | 295 | 307 | 319 | 331 | 343 |
| 104 | 116 | 128 | 140 | 152 | 164 | 176 | 188 | 200 | 212 | 224 | 236 | 248 | 260 | 272 | 284 | 296 | 308 | 320 | 332 | 344 |
| 106 | 117 | 129 | 141 | 153 | 165 | 177 | 189 | 201 | 213 | 225 | 237 | 249 | 261 | 273 | 285 | 297 | 309 | 321 | 333 | 345 |
| 106 | 118 | 130 | 142 | 154 | 166 | 178 | 190 | 202 | 214 | 226 | 238 | 250 | 262 | 274 | 286 | 298 | 310 | 322 | 334 | 346 |
| 107 | 119 | 131 | 143 | 155 | 167 | 179 | 191 | 203 | 215 | 227 | 239 | 251 | 263 | 275 | 287 | 299 | 311 | 323 | 335 | 347 |
| 108 | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 | 252 | 264 | 276 | 288 | 300 | 312 | 324 | 336 | 348 |
| 109 | 121 | 133 | 145 | 157 | 169 | 181 | 193 | 205 | 217 | 229 | 241 | 253 | 265 | 277 | 289 | 301 | 313 | 325 | 337 | 349 |
| 110 | 122 | 134 | 146 | 158 | 170 | 182 | 194 | 206 | 218 | 230 | 242 | 254 | 266 | 278 | 290 | 302 | 314 | 326 | 338 | 350 |
| 111 | 123 | 135 | 147 | 159 | 171 | 183 | 195 | 207 | 219 | 231 | 243 | 255 | 267 | 279 | 291 | 303 | 315 | 327 | 339 |
| 112 | 124 | 136 | 148 | 160 | 172 | 184 | 196 | 208 | 220 | 232 | 244 | 256 | 268 | 280 | 292 | 304 | 316 | 328 | 340 |

Limit 15 inquiries per request.

NAME ____________________________ CALL ____________________________

ADDRESS ____________________________

CITY ____________________________ STATE __________ ZIP ______

Please use before March 31, 1985

February 1985
ham radio

READER SERVICE CENTER
P.O. BOX 2558
WOBURN, MA 01888

ATTN: Reader Service Dept.
Hand-held Transceivers

Deluxe models

IC-2AT for 2m

Regular SALE

IC-10A for 400 MHz

Standard models

IC-2A for 2m

IC-1AT with TIP

IC-3AT 220 MHz, TIP

IC-4AT 440 MHz, TIP

Accessories for both models

PB-2 425 MHz/1.2V Nicad pack - US$35.95
PB-3 Extra Std. 250 ma/h 8V Nicad pack
PB-4 Alkaline battery case
PB-5 425 MHz/0.9V Nicad pack - US$25.95
CA-2 Telescopmg 2m antenna
CA-5 w/ wave telescoping 2m antenna
FA-2 Extra 2m flexible handle antenna
CP-1 Cq lighter plug/omni antenna
DC-1 operation pack for standard models

VHF/UHF base multi-modes

IC-251 2m FM/SSB/CW transceiver $749.00

*S50 Factory Rebate until gone!

IC-551D 80 Watt fm transceiver $599.00

EX-10 FM Option $125.00

BC-1A Memory back-up

SM-2 Electret desktop microphone

IC-271H 100 watt fm/SSB/CW $999.00

PS-35 Internal power supply

AG-15 Mast mounted Antenna

SM-5 8 pin electret desktop microphone

IC-271A 25w fm/SSB/CW $799.00

PS-25 Internal power supply

AG-20/EX-338 2m preamplifier

IC-471A 25w-400w SSB/CW $999.00

AG-1 Mast mounted 150ft preamp

SM-5 Desktop microphone

CF-1 Cooling fan for PS-15

EX-144 PS-15/CF-1 fan adaptor

SM-6 Desk microphone

CS-2 ComSpec encoder/decoder

UT-15 Encoder/decoder interface

UT-15S UT-15S/TS-32 installed

VHF/UHF mobile multi-modes

IC-290H 25w 2m FM/SSB/CW transceiver $549.00

IC-490A 10w 430-440MHz SSB/CW $599.00

VHF/UHF 1.2 GHz FM

IC-22U 10w 2m FM monochromatic $299.00

EX-191S $349.00

IC-27A Compact 25w FM TIP $399.00

IC-27H Compact 45w FM TIP

IC-37A Compact 250w FM TIP $499.00

UT-16/EX-388 voice synthesizer

IC-120 1w 1.2GHz FM transceiver $499.00

ML-12 10w amplifier

IC-505 S 4/1 6 port SSB/CW/SW $499.00

PB-10 Internal Nicad battery pack

PB-15 AC charger

EX-24 FM unit

LC-10 Leather carry case

SP-4 Remote speaker
19" HI-RESOLUTION COLOR X-Y DISPLAY

Thru a special purchase we got hold of 50 brand new 19" color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19" color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus! Requires 25 V - 0 - 25 V input for amps, available separately. Some specifications for you technical people: signal inputs "X" horizontal 16 V P-P +6 V, "Y" vertical 12 V P-P +6 V, "Z" beam drive, 4 V max brightness, 1.0 volt black level. Writing rates "X" amp is 0.5 inch/usec, "Y" amp is 0.0375 inch/usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use.

Supplied with schematic. $199.00 ea. Shpg. Wt. 45 Lbs. MOT-19C.

Supplied with schematic. Quantity pricing available. Shpg. Wt. 45 Lbs. MOT-19C. $199.00 ea, $375.00/2.

TRANSFORMER FOR ABOVE Shpg. Wt. 15 Lbs. $12.00

CAD CAM KEYBOARD

We only have a very limited quantity of these high reliability, beautifully layed out 8 bit, serial output keyboards. These were made by Keytronics for use in a Cad-Cam system. The board is made up of 3 sections. The typewriter format section has 2 control keys plus full upper and lower case alpha-numerics. The 42 key switch pad, when used with appropriate logic, allows extensive, precise manipulations of displayed data such as close up, moving information, sketching, etc. The third section consists of 27 keys which include a numeric scratch pad, 4 way cursor control plus some command keys. On board are 3 LSI's including an Intersil IM6402, IN8048, and NS2716 UV PROM which contains the programs for manipulating data, plus other circuitry and an alert beeper. The keyboard requires +5 V and -12 V. Each one will come with schematics. New and unused. Shpg. Wt. 4 Lbs. KYBD No. 6 $45.00. Less than 100 on hand — Order Now!

PHONE ORDERS for FASTEST SERVICE! call (617) 595-2275 and Charge It!

Surplus Computer and Electronic Materials

February 1985
DUAL FLOPPY DISC DRIVES

BRAND NEW, single sided, dual floppy disc drives made for Digital Equipment Corp. (DEC). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, 5½” mini-floppy disc drives. Brand new in the case with their own regulated, switching power supply, cooling fan & on/off switch. Each unit also comes with a line cord & documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, & the Color Computer, and other Shugart compatible interfaces. Naturally, you supply the cables and disc controller card to suit your particular system. The RX-180 AB runs off of 115/230 VAC 50/60 Hz. w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy!!

High speed KSR Printer Terminal

World famous, high speed G. E. Terminet 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 BPS, 80 columns on pin feed paper, and less weight & size than an ASR 35 teletype with far less racket. They are virtually electronically foolproof as every pc board is Pico fuse protected. Should your machine not work, just check the on board fuses where the problem lies. Schematics are provided to help diagnose the problem. A blockbuster of a buy!!

IBM 745 SELECTRIC BASED TYPEWRITER PRINTERS

These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the Selectric mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard 115 VAC, 5 VDC at 100 ma, and 24 VDC at 4 amps. All are new in factory boxes, but may require adjustments.

We provide literature and schematics with 1 ribbon and cleaning tools. With the addition of our Centronics to Selectric I/O adapter, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE 1000 A $375.00, 745 manual $30.00

Shpg wt approx. 80 Lbs, shipped truck, collect.

CENTRONICS TO SELECTRIC INTERFACE

This interface will adapt a Redactron Selectric I/O typewriter mechanism to be used as a parallel ASCII compatible printer. The parallel input port provides compatibility to Centronics standards for both “busy” and “acknowledge” protocols. The interface requires only +5 VDC at 350 ma. This interface is fully built, less power supply, is guaranteed operational, and comes with data. Shpg wt. 15 lbs DE 201 A, $245.00

FANTASTIC MASS STORAGE DISC DRIVE DEAL

1 MEG. quad disc drives, plus cases and power supplies for same.

Listed below are the disc drives. Please call for more info. on the other components.

1/2 Height 1 Megabyte Disc Drives

Here we go with another blockbuster buy on disc drives which should make the competition’s head spin. We are offering brand new, Mitsubishi no. 4853, ½ height, 1 megabyte, mini-floppy disc drives. These drives are beautiful. They are fully 34 pin, Shugart compatible. All are double sided, double density, 80 track, side units. Each runs on +5 volts, 0.5 amps & +12 volts, 7 amps. Just the drives to use with your IBM, Sanyo or other computer. Each order will come with schematics and pinout data.

Shpg wt. 4 lb. SPL-85C-35 $175.00 each 2/$325.00

Use with your:
• IBM
• Radio Shack
• Heath
• Xerox
• Sanyo

Surplus Electronic Material Send for our free 72 page catalogue jam packed with goodies.

Phone Orders accepted on MC, VISA, or AMEX
No COD’s.
Tel. 1-617-595-2275

More Details? CHECK OFF Page 128

February 1985
JUST SLIGHTLY AHEAD! WITH THE QUALITY YOU HAVE ALWAYS LOOKED FOR!

4 MEMORYS - 3 WAY AUTO SCAN.
DUAL VFO, IF SHIFT, CW-W. 400 Hz.
CW-N 200 Hz. ALL 9 BANDS PLUS.
MARS. BUILT IN AC/DC POWER. SSB.
CW OR RTTY. I.F. TUNE 3-STEP.
TUNING SPEED. 200 WATT PEP.
MICROPHONE IMPEDANCE 600-50K.
OHM HAND MIC. INCLUDED.

$849.50

40.15 AND 6 METERS ARE YOUR BASE
STATION OR MOBILE WITH AC/DC.
BUILT IN POWER SUPPLY CW-N 200
HZ OR USB. 2 S0239 ANTENNA CON-
NECTORS, HAND MIC. BUILT IN TVI.
FILTER LITTLE TO NO TV INTER-
ERENCE. 20 WATT PEP. MARS ON
40 AND 6 METERS.

$445.50

A GREAT QRP RIG WITH THE BIG RIG
SIGNAL. 2 WATTS OR 10 WATTS OUT.
BUILT IN CW SIDE TONE, DIGITAL.
DISPLAY, HAND MIC. TOP MOUNTED
SPEAKER MOBILE BRACKET. RIT OR
FINE TUNE TXSRX. 4KHz. 21 TO
21 450 MHz SIGNAL TO NOISE MORE
THAN 10dB DOWN.

$249.50

90 DAY WARRANTY ON ALL TRANSCEIVERS - DIRECT FROM NCG OR YOUR DEALER
WE HAVE 1 2 GHz BASE/REPEATER & MOBILE ANTENNAS

NOTE: PRICES AND SPECIFICATIONS SUBJECT
10 CHANGE WITHOUT NOTICE OR OBLIGATION

ENGINEERING CONSULTING INTRODUCES
'TOUCHTONE' DTMF TO RS-232-C
300 BAUD INTERFACE

TOUCHTONE™
DECODER KIT

Complete DTMF Receiver (EI-201)
Receive all 16 standard DTMF digits.
No front end filters needed.
Output either hex or BCD format.
CMOS type power (25mA @ 12 VDC)
Excellent speech immunity
Includes UNM unprinted 20-pin IC socket, resistor
and capacitors, data sheet, schematic.
Digit Valid detection. "DV" goes high after a valid
tone pair is sensed.
Make your own "SHELLCALL", repeater decoder, etc.
Quantity discounts available
$22.95

INCLUDED
Includes shipping USA

MODEL DAP-1
$89.95

Wired and Tested

MODEL DAP-1

"Decode-A-Pad" Kit

"Touchtone" noise canceller.

Engineer your computer, connect DTMF to your computer.

INTERFACES.

Send check or money order for:
ENGINEERING CONSULTING
583 CANDLEWOOD ST. BREA, CA 92621
(714) 571-5009

NOW INCLUDES ANSWERS TO FCC/VEC EXAM QUESTIONS
ARRL LICENSE MANUAL

Here's the latest up-to-date licensing guide from the ARRL. Plenty of theory and
detailed explanations take most of the pain out of studying to upgrade your
license.

1984 80th edition 216 pages

Softbound $4.00

Please add $1.00 shipping & handling

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

Tell 'em you saw it in HAM RADIO!
Unrivalled quality at an unbeatable price, the Ramsey oscilloscope competes to others costing hundreds more. Features include a component testing circuit for resistance, capacitor, digital circuit and diode testing; TV video sync filter, wide bandwidth & high sensitivity; external graticule, front panel trace rotator + 2 axis + high sensitivity + y mode + regulated power supply + built-in calibrator + rack solid triggering. "USA - add $10.00 per unit for postage, overseas orders add 15% of total order for insured surface mail."

NEW RAMSEY D-1100 VOM MULTITESTER

Compact and reliable. designed to service a wide variety of equipment. Features include: meter back scale: 150 Ohm grounding system; 3/4" molded scale; polarized switch: 29 measuring ranges: safety probes: scrape plastic case.

![Image of D-1100 VOM Multitester](image-url)

NEW RAMSEY D-1200 VOM MULTITESTER

Check transistors, diodes and LEDs with this professional quality meter. Other features include: signal scale: 250 volt metering system: 3" molded scale: polarized switch: 29 measuring ranges: safety probes: scrape plastic case.

![Image of D-1200 VOM Multitester](image-url)

NEW RAMSEY D-3100 DIGITAL MULTIMETER

Reliable. accurate digital multimeters at an amazingly low cost. High-color coded push buttons, speeds range selection: abs plastic: stator: recessed input jacks: overload protection: on all ranges: 3 1/2 digit LCD display: auto zero, auto scale, auto power, lowBAT indicator.

![Image of D-3100 Digital Multimeter](image-url)

CT-70 7 DIGIT 525 MHZ COUNTER

Lab quality at a breakthrough price. Features: 3 frequency ranges each with preamp: dual selectable gate times: gate activity indicator: 50MHz: 150 MHz: typical sensitivity: wide frequency range: 1 ppm accuracy.

![Image of CT-70 Counter](image-url)

CT-50 9 DIGIT 600 MHz COUNTER

The most versatile for less than $300. Features: 3 selectable gate times: 8 digit display: 1 ppm accuracy: 16 digit display: dual inputs with preamps.

![Image of CT-50 Counter](image-url)

CT-125 9 DIGIT 1.2 GHz COUNTER

A 9 digit counter that will outperform units costing hundreds more. 8 digit display: 1 ppm accuracy: dual inputs with preamps.

![Image of CT-125 Counter](image-url)

CT-50 8 DIGIT 600 MHz COUNTER

A versatile lab bench counter with optional frequency adapter which turns the CT-50 into a digital readout for most any receiver: 25 MHz: typical sensitivity: 8 digit display: 1 ppm accuracy.

![Image of CT-50 Counter](image-url)

PS-2 AUDIO MULTIPLIER

The PS-2 is handy for high resolution audio resolution measurements, measuring LP in the frequency range of 10 to 100 MHz: 20 dB gain: BNC connectors: great for testing RF, ideal receiver/TV preamps.

![Image of PS-2 Audio Multiplier](image-url)

PS-1B 600 MHz PRESCALER

Extends the range of your present counter to 600 MHz: 2 scale preamps: divide by 10 or 0.1 GHz resolution: built-in signal preamplifier.

![Image of PS-1B Preselector](image-url)

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna - BNC plug: $8.95
High impedance probe, light loading: 16.95
Low pass probe, audio use: 16.95
Direct probe, general use: 13.95
Tilt ball, for CT-70, 90, 125: 4.95

TERMS

- 30 days return privilege on original form for refund, add 3% for shipping and insurance to a maximum of $10.00.
- Overseas add 15% for surface mail.

PHONE ORDERS CALL

716-586-3950
TELEX 466735 RAMSEY CI

RAMSEY ELECTRONICS, INC.
2575 Baird Rd.
Penfield, N.Y. 14626

February 1985
WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

STV SATELLITE TELEVISION MAGAZINE

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, & industry insights.

- $24.95 per yr. (12 monthly issues)
- $ 2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subscription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

OnSat

-the best in satellite TV programming.

★ Weekly Updated Listings
★ All Scheduled Channels
★ Complete Movie Listing
★ All Sports Specials
★ Prime Time Highlights

- $39.00 per yr. (52 weekly issues)
- $ 1.00 for Sample Copy

Visa® MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV™/OnSat™
P. O. Box 2384 - Dept. PS
Shelby, NC 28151-2384
Subscription calls only
Toll Free 1-800-438-2020
hi-res color SSTV converter

A new high-resolution color SSTV converter has been added to Robot's line of Amateur Radio products. Designated the Model 1200C, it is capable of transmitting color video images said to rival broadcast television in picture quality. The Model 1200C has three selectable 8-bit memory planes that combine to form 262,214 color combinations in a 256 × 240 line full screen display.

Eight different black and white and color transmission formats are available with automatic selection on receive. Up to six separate pictures may be stored in memory. The unit accepts color or black and white composite video from standard TV cameras and has RGB, composite or RF modulated video input.

One distinctive feature of the Model 1200C is the 8-bit parallel I/O ports for computer interface. This allows total access to each individual pixel by a host computer for image processing, transformation, storage and recall, and graphics. This port also allows the connection to a printer for black and white or color hard copy production, or for black and white composite video from standard TV cameras and has RGB, composite or RF modulated video output.

remote coax switch

A remote coax switch for convenient switching of up to four antennas is now available from Heath. It mounts easily on a tower or mast and consists of a remote RF switching unit and an indoor control unit. The two units are connected by a single coaxial cable which handles both RF and control signals. The remote unit is connected to a single clamp. The control unit contains the power supply and provides switching signals to the remote unit. The HD-1481 switch handles 2000 watts PEP with a VSWR of 1.15:1 or less below 30 MHz.

For complete details and/or to receive a free copy of the latest Heathkit catalog, contact Heath Company, Benton Harbor, Michigan 49022.

bandpass duplexer

Sinclair Radio Laboratories' new P-4440E combines the low loss of a Res-Lok aperture-coupled filter on transmit with the high selectivity of a combiner filter on receive, making it an appropriate choice for single antenna operation of trunking or cellular base stations. The Res-Lok four cavity bandpass section has typically 0.5-dB insertion loss and provides nearly 50 dB of noise suppression, which, when added to the typically 35-40 dB noise suppression provided by most cavity ferrite transmitter combiners, provides nearly 90 dB noise suppression overall. The six-pole comb-line filter on the receive side provides over 85-dB carrier suppression, a figure which is more than adequate for most system applications. In addition, both the transmit and receive bandpass windows are a full 15 MHz wide, a fact which allows spacing of this component on a multi-site basis without the need to have facilities for retuning.

For further information, contact Sinclair Radio Laboratories Inc., 675 Ensminger Road, Tonawanda, New York 14150.

“Decode-A-Pad”

The Engineering Consulting touch-tone to RS-232 C interface for home computers allows reception of all 16 DTMF touchtones as fast as they can be transmitted. The computer does all the work at 300 baud; each digit is displayed as it is transmitted. With the Decode-A-Pad, you can receive coded strings, decode any number of digits, and program as many multi-digit codes as you want — all in BASIC. Sample programs to get you started are included in the price.

Now you can use your handheld radio to control your computer, which can then be used to control your remote base or turn on and off relays, for example.
The Model DAP1 is priced at $89.95, which includes domestic shipping.

For details, contact Engineering Consulting, 583 Candlewood Street, Brea, California 92621.
Circle #107 on Reader Service Card.

vented actuator boot

The new OIK-PRO Boot from Paullin Industries offers improved actuator protection against condensation with new top and bottom “flow-thru” vents to relieve moisture. These boots, custom-designed for satellite actuators, are made of neoprene rubber with self-releasing folds for longer life and improved ice removal. The extra-long life is the result of a heat-curing process that provides the highest infrared, ozone, and ultraviolet test ratings.

The OIK-PRO Actuator Boot has been redesigned to fit 1-1/8 x 2-1/4 inch actuators without adapters. Two ties are provided to seal the boot tightly, protecting the actuator equipment against moisture, dust, ice and rain.

For more information, contact Paullin Industries, 1446 State Route 60, Ashland, Ohio 44805.

Circle #1307 on Reader Service Card.

new Hamtronics® catalog

The 1985 mail order catalog from Hamtronics features 40 pages of items of interest to the VHF/UHF/OSCAR enthusiast. Both new products — including a simplex autopatch kit, a repeater COR with courtesy beep, GaAs FET receiver preamps, active antennas for scanners, and repeater PA kits — and the firm’s already popular lines of FM and AM receivers and 800 MHz scanner converters are described.

For a free copy, contact Hamtronics, Inc., 65 F Moul Road, Hilton, New York 14468-9535.

(For overseas mailing, please send $2 or 4 IRCs.)
Circle #1154 on Reader Service Card.

Larsen’s FB2-450

Larsen’s new FB2-450 antenna features an exclusive Kurlod™ teflon-coated finish for corrosion resistance and improved performance. The lightweight, fixed base antenna is said to offer a reliable, economical alternative to larger base station antennas for a variety of base station applications.

The 5/8 over 1/2 wave collinear whip with four integral ground plane radials delivers 4.5 dB
AT LAST A MINIATURE BASE STATION AT A MINIATURE PRICE...

The MX-15 is a 15-meter band SSB/CW hand-held transceiver. It measures only 11/2" (D) x 2 1/4" (H) and offers 300mW for SSB and CW operation. A single-conversion receiver employing a MOS/FET front-end offers clear and sensitive reception. As a base or portable station, the MX-15 offers an unlimited challenge in QRP operation. Additional accessories are available to extend your operation.

The MX-15 comes with full 90 day warranty and is available from factory direct or HENRY RADIO (800) 421-6631

$129.95

ACCESSORIES SUPPLIED
- Standard Frequency crystal of your choice
- 6 pc. AAA Batteries
- DC Cable
- Instruction sheet

ACCESSORIES AVAILABLE
- MX Channel crystal... (Standard Frequency) $7.00
- MS-1 External Speaker-Microphone $23.50
- Noise Blanker Kit $6.50
- NB-1 Side Tone Kit $11.50
- SP-15 Telescoping antenna $19.50
- 2M2 DC-DC Converter set $17.50
- PR-1 Mobile Rack Kit $23.50
- VX-15 External VXO (one crystal supplied) $53.50
- PL-15 10W Linear amplifier $89.50

Photo shown MX-15, VX-15, PL-15, SP-15, MS-1 and PR-1

ACE communications, inc.

VOICE OPERATED SQUELCH

- Fits inside most HF-SSB transceivers.
- Requires human voice to activate.
- Ignores static, noise and heterodynes.
- On/off switch only—no adjustments!
- Connects to audio leads and 9/12 VDC.
- Fully assembled and tested $99.95.
- Complete with comprehensive manual.
- Used worldwide in commercial and military transceivers.

COMMUNICATIONS, 5479 Jetport, Tampa, FL 33614 • (813) 885-3996

February 1985
short circuits
text program

In K8UR's "Microstrip Impedance Program," (December, 1984, pages 84-86) corrections should be made to lines 230 and 280 of fig 1. Line 230, ER [- .0724 should read ER 1 -.0724. In line 280,] - .5) should read 1 -.5. Line 80 in the HP67 program listing (fig. 2B) should read:

\[\text{hyx} \quad 35 \quad 63 \]

trap antenna

In W4MB's article "design your own trap antenna" (October, 1984, page 37) the formula for \(Z_n \) should be corrected to read as follows:

\[Z_n = 60 \log_e \frac{\lambda_n}{D_n} - 1 \]

Also, do not confuse LN with (L(N). They are different. LN = natural logarithm to the base e.

This publication is available in microform from University Microfilms International.

a synthesized voice output. The speech synthesizer is designed for mobile use, as it eliminates the need for the driver to watch the display.

The system operates by continuously summing the outputs of four antennas, simulating the motion of a single rotating antenna. As the simulated antenna moves toward the RF source, an increase in the apparent signal frequency occurs, and as the antenna moves away from the source, this frequency decreases. This up-down (Doppler) frequency shift is detected by the FM receiver and is present as a 300 Hz tone on the audio output. The phase of the tone is measured and used to compute the bearing without affecting the normal operation of the receiver.

For more information contact Doppler Systems, 5540 E. Charter Oak, Scottsdale, Arizona 85254.

Circle #305 on Reader Service Card.

RTTY/CW computer interface

A new RTTY/CW deluxe computer interface, featuring variable tuning for all shifts and built-in RS-232 compatibility FM-AM modes of operation, is available from MFJ Enterprises, Inc.

The MFJ-1229 features a 16-LED crosshair mark and space tuning array that simulates a scope ellipse for easy, accurate tuning even under poor signal-to-noise conditions. It also operates in both FM and AM modes, using FM for general use, off-shift copy, drifting signals and moderate signal and QRM levels, and AM for weak-signal conditions or when there are strong stations nearby. The MFJ-1229 transmits on both 170 and 850 Hz with variable shift tuning as well as push-button 170 Hz for added convenience and versatility.

The 1229 can be used with most home computers and with a large variety of software. Additional features include AFSK and FSK keying, front panel sensitivity control, a normal/reverse switch that eliminates returning while checking for inverted RTTY, mark and space outputs for true scope tuning, and a Kantronics-compatible socket.

All inputs are buffered and can be inverted using an internal DIP switch. External trim pots are...
Great Circle slide

Xantec has announced the availability of a Great Circle Slide for its DX EDGE®. Used with the DX EDGE, this slide lets stations determine beam headings (great circle bearings) to any location in the world with enough accuracy for almost any purpose. It also shows the beam heading to use for pointing an antenna along the Gray Line.

Slides are available for latitudes of 60, 50, 40, 30, 20, and 0 degrees (all north or south), and 0 degrees (the equator). (Order the slide for the latitude nearest your station.) Each slide shows 16 true great circles spaced at intervals of 22.1/2 degrees. Both the short path and long path are shown. The same size beam headings (great circle bearings) to any latitude nearest your station. Features of the autopatch include multiple user “up codes,” busyness and ringing phone indications (on or off). Also included are answer or interrupt busy phone “up codes,” automatic ID’er, remote enable/disable capabilities, and voice delay switching of the phone conversation for those with slow response transceivers.

For those whose telephone service no longer requires dialing a “1” before the area code, a prefix/area code table per “up code” can be added. All phone numbers used are logged onto a cassette tape by “up codes,” date, and time to comply with FCC requirements and to allow multiple user toll charge distribution when cross-referenced with your phone bill.

The program, written in BASIC, requires approximately 3K of memory. Extensive prefix or area code tables may require memory expansion for the VIC-20.

The “do-it-yourself” package consists of circuit diagrams, circuit descriptions, parts lists, program listing, program narrative, and a cassette tape with a starter program ready to load. The price is $20.00.

For more information, contact KIE Enterprises, P.O. Box 72, Running Springs, California 92382.

Circle #301 on Reader Service Card.

interface development system

The ‘eZ SYSTEM’ is a low cost, simple and practical hardware development system that provides quick access to a personal computer’s bus expansion slot for rapid circuit development. The system features three major components: the ‘eZ BOARD,’ a solderless prototyping board that connects to the expansion slot of the micro-computer through an integral 18-inch flat cable, allowing the user to work freely without interfering with their system unit; the ‘eZ CARD,’ a prototyping board that features a fully buffered address, data and control bus, and the ‘eZ BOOK,’ a helpful technical guide to the computer system and contains several practical, useful circuits for projects such as an A/D conversion, parallel port, and joystick interface.

The eZ System is available for the IBM-PC and XT, for Apple, and Commodore computers, or other computers having the same bus arrangement.

For further information, contact Sabadia Export Corporation, P.O. Box 1132, Yorba Linda, California 92886.

Circle #302 on Reader Service Card.

do-it-yourself autopatch

KIE Enterprises has developed a simple telephone autopatch system called “LETUS-PATCH” for the VIC-20 or Commodore-64 computers. The system (not including the cost of the computer or the transceiver) can be built for less than $50.00.

Features of the autopatch include multiple user “up codes,” individual long-distance privilege designation, general admission “up codes,” busy phone and ringing phone indication (on or off). Also included are answer or interrupt busy phone “up codes,” automatic ID’er, remote enable/disable capabilities, and voice delay switching of the phone conversation for those with slow response transceivers.

For those whose telephone service no longer requires dialing a “1” before the area code, a prefix/area code table per “up code” can be added. All phone numbers used are logged onto a cassette tape by “up codes,” date, and time to comply with FCC requirements and to allow multiple user toll charge distribution when cross-referenced with your phone bill.

The program, written in BASIC, requires approximately 3K of memory. Extensive prefix or area code tables may require memory expansion for the VIC-20.

The “do-it-yourself” package consists of circuit diagrams, circuit descriptions, parts lists, program listing, program narrative, and a cassette tape with a starter program ready to load. The price is $20.00.

For more information, contact KIE Enterprises, P.O. Box 72, Running Springs, California 92382.

Circle #301 on Reader Service Card.

actuator cable

Nemal Electronics International has introduced a new line of direct burial actuator cable for satellite earth station and communications applications. Each type provides the proper cabling for both motor power and sensor/control in a single polyethylene jacket suitable for direct

TUBES and IC's

LOWEST PRICES

call Toll Free (800) 221-5802

In-depth Inventory - Industrial & Receiving Tubes

Here are just a few examples:

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-400Z</td>
<td>$85.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>$85.00</td>
</tr>
<tr>
<td>4X2X50B</td>
<td>$60.00</td>
</tr>
<tr>
<td>572B</td>
<td>$35.00</td>
</tr>
<tr>
<td>811A</td>
<td>$30.00</td>
</tr>
<tr>
<td>813</td>
<td>$45.00</td>
</tr>
<tr>
<td>6146B</td>
<td>$7.75</td>
</tr>
<tr>
<td>6360</td>
<td>$7.15</td>
</tr>
<tr>
<td>683B</td>
<td>$12.50</td>
</tr>
<tr>
<td>7360</td>
<td>$12.50</td>
</tr>
<tr>
<td>8122</td>
<td>$12.50</td>
</tr>
<tr>
<td>MRF454/A 19.95</td>
<td>$895.00</td>
</tr>
</tbody>
</table>

Major Manufacturers Factory Boxed and Full Line of Sylvania ECG Replacement Semiconductors

TS830/930 FILTERS

We have received many unsolicited reports praising the performance of both the TS830S and the TS930S after installation of Fox Tango filters. In addition, these filters have received favorable Product Reviews in QST (9/83 and 4/83), were the subject of a major article: Maniple ORM in your TS830S in 73 Magazine (6/83), and many reports in other national publications. One of the major advantages of our 2.1 kHz SSB matched pair is that they improve VHF operation that the need for (and expense of) CW filters is eliminated for all but the most dedicated CW operators. For the latter, our 400 Hz CWmatched pair is the finest available.

Get the best from Fox Tango.

PRICE BREAK!

COMPLETE MATCHED PAIR FILTER KITS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT9300.1</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.2</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.4</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.6</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.8</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.10</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.12</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.14</td>
<td>$150.00</td>
</tr>
<tr>
<td>FT9300.16</td>
<td>$150.00</td>
</tr>
</tbody>
</table>

Shipping: Surface $3 (CD AD) $1. An $5 Overseas $15 Add 5% Sales Tax

IMMEDIATE SHIPMENT — One Year Warranty

Go FOX TANGO — To Be Sure!

We accept VISA/MAXTERCARD

89

FOX TANGO CORPORATION

Box 15944 H, W. Palm Beach, FL 33416

(305) 883-9587

February 1985
1. It's BRAND NEW

2. It's BIGGER. Over 1024 pages.

3. It's EXPANDED. Covers everything from basic electronics to esoteric radio gear.

4. It's chockfull of NEW PROJECTS.

5. It's the MOST COMPLETE reference text available.

6. Get your copy TODAY.

$15.00 (plus $3.50 shipping)

ORDER YOURS TODAY

reverse burst accessory

Communications Specialists has introduced the RB-1 reverse burst accessory. The RB-1 eliminates the long squelch tail heard with some reed type and other sub-tone decoders. Used in conjunction with decoders that offer squelch tail elimination, the RB-1 will delay the transmitter turn-off time and reverse the phase of the encoded tone, immediately stopping the decoder and eliminating the squelch tail. The RB-1 is available from stock and sells for $14.95.
8-pole crystal filters

International Radio Inc. has announced its line of 8-pole crystal filters designed to improve the selectivity in Kenwood and ICOM products. Designed with low insertion loss and ripple, the filters offer excellent selectivity and shape factor. Filters are available for both SSB and CW operation, and depending on the radio, can be either 1st or 2nd IF or cascaded.

For more information, contact International Radio Inc., 1832 S.E. Village Green Drive, Port St. Lucie, Florida 33542.

Circle #109 on Reader Service Card.

VHF FM monitor receiver

Ace Communications, Inc. has introduced a new VHF FM monitor receiver, model AR-33. The AR-33 is a featherweight microprocessor controlled VHF FM portable receiver covering the 140 to 170 MHz band in 5 kHz steps. Frequencies are selected by a thumbwheel switch and slide switch for 5 kHz increments. The receiver employs CMOS microprocessor technology to offer a variety of features at an economical price.

Circle #164 on Reader Service Card.
8 POLE CRYSTAL FILTERS FOR KENWOOD, ICOM, AND YAESU RADIOS

KENWOOD
2 1 kHz SSB for TS-930 or TS-830 matched set $149.99
400 Hz CW for TS-930 or TS-830 matched set $149.99
1 2 kHz SSB and F cascaded kit (8 extra poles) for the TS-930, TS-120 and TS-130 $79.00
1 2 kHz B pole vial filter for the R-1000 $129.00
1 1 kHz B pole vial filter for the R-2000 $139.00
400 Hz CW (8 pole) vial filter for the R-2000 $99.00
TS-930 NEW FM KIT True fm, xmt & rcv. 30 watts rx better than 2 uv sensitivity. Mixed and tested $139.00

ICOM
2 1 kHz SSB and 400 Hz CW 8 pole vial filter for the R-730, 740, 745, R70 and R71 radios $99.00

YAESU
2 1 kHz SSB 8 pole vial filter for the FT-980 Filter for FT-107 available soon $99.00

ICOM. Kenwood newsletter 1 year $9.00 US $12 first class mail $13 elsewhere. SASE for details.

When ordering please specify radio and crystal filter ordered. Please add $5 for shipping and handling USA, $5 Air mail. COD add $1.75. $10 overseas. FL residents add 5% sales tax

INTERNATIONAL RADIO, INC.
1532 SE Village Green Dr.
Port St. Lucie, FL 33452
(305) 335-5545

FCC LOWERS REQUIREMENTS — GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our short-cuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams also section covering Radar Endorsement. A small investment for a high-paying career in electronics.

$19.95 ppd.
Satisfaction Guaranteed

SPI-RO DISTRIBUTING
P.O. Box 1538
Hendersonville, N. C. 28793
We now accept MC and VISA
Olive card #, exp. date, and signature

NEW products

voice operated squelch

CMC Communications offers a Voice Operated Squelch on a small circuit board for mounting inside most SSB transceivers and receivers. The VOS requires that different and select components of the voice spectrum to be present at the same time to operate. It ignores heterodynes and noise, regardless of level, yet it is extremely sensitive to weak signals when the human voice is present. All adjustments are made at the factory and a remote on/off switch is provided. Simple connections are made to the AF Gain Control and 9 or 12 VDC.

For further information, contact CMC Communications, Inc., 5479 Jetport Industrial Blvd., Tampa, Florida 33614.

Circle #125 on Reader Service Card.

dipole handbook

The Dandy Dipole from Microwave Filter is a new 24-page handbook for constructing over 180 variations of the oldest, most reliable, and simplest Amateur Radio antenna known. It shows where and how to place it, how to quickly design a multiband dipole — using traps — without guessing at the wire lengths.

The Dandy Dipole from Microwave Filter is a

A Handbook for the Construction, Tuning, and Operation of the Oldest, Most Economical and Reliable Amateur Radio Antenna
By Daniel Bostick, WAZZYR, and Donald Shatraw, Microwave Filter Company technical consultants.
The cost is $3.95 plus $.01 for shipping. For more information, contact Microwave Filter Company, Inc., 6743 Kinne Street, East Syracuse, New York 13057.

Circle #148 on Reader Service Card.

The Hidden Signals on Satellite TV by Tom Harrington, W8OMV, and Bob Cooper, VP5D

Owners of TVRO systems may be unaware of the multitude of signals carried by geostationary satellites. Besides the video services, these signals include audio and teletype news services, high speed data systems, teletext, and stock services, to name just a few.

Access to these signals is actually very easy. It can be accomplished simply by tuning the audio subcarrier control on many of the TVRO tuners currently being sold. With the addition of an FM stereo tuner, high quality stereo services can also be received and enjoyed by TVRO owners.

This book starts off with an introductory chapter that gives the reader a brief history of satellite communications, describes multiplexed audio and data signals, and lists the various types of transmissions. A spectrum overview from 0-30,000 MHz and a description of where the "hidden signals" are also provided.

Chapter Two delves into the technical "nitty gritty" of audio subcarriers, how they get there and how they can be found. In addition to a technical description, a review of several different pieces of commercial gear currently available to decode this subcarrier information is provided. A program listing by service and satellite is also included. Charts, graphs, and oscilloscope photographs are all provided to help you set your station.

Chapter Three discusses telephone (SSB/FDM) systems, their use, and your responsibilities in receiving these services. There are currently two types of voice and data signal channels on satellites these days. The most common uses SSB run through a frequency division multiplexer. This spectrum-efficient system allows many different signals to be combined together into a single signal for transmission to a satellite.
The second method of access is via SCPC (single channel per carrier). SPSC is not as spectrum effective as the FDM systems, but is less expensive to install. The equipment required is much less complex and needs relatively low power. Information is given on how to hook up SSBE receivers to TVRO receivers to decode this interesting information.

Chapter Four is a rather complete and inclusive section on SCPC satellite systems. Equipment in use is fully covered and examples are given of some of these services using SCPC transmissions. Frequency allocations are listed by satellite, service, band, and bandwidth. Pre-emphasis to help the listener tune in these signals.

Chapters Five and Six cover satellite networks and basic teletext, providing plenty of history as well as technical details. Chapter Seven deals with a number of other teletext operations, and Chapter Eight discusses miscellaneous services that can be found on satellites. Chapter Eight also has a complete detailed section on the Hughes C-band domestic satellite facilities.

The information contained in this book is not intended to encourage the misuse of satellite services. Rather it has been prepared by the authors as a primer on what is available there. FCC rules and regulations do not prohibit SWL'ing. They do prohibit selling or deriving a commercial benefit from what is received. The ultimate responsibility lies with the user.

In some areas, technical descriptions in this book are not exactly what the engineer may want. However, the average TVRO owner, TV technician, or beginning TVRO dealer will find this book to be a good reference manual to have on the shelf.

The book "Tune the Satellite TV Signals" is published by Universal Electronics, 4555 Grove Road, Suite 34, Columbus Ohio 43232. Copies are available from Ham Radio’s Bookstore, Greenville, NH 03048, $14.95 plus $3.50 shipping and handling.

N1ACH
YOU WANT IT? DAN'S GOT IT!

YAESU KENWOOD

FT-209 TM-211

ALL OF THESE GOODIES AND MANY MORE AT A SUPER SAVINGS!

CALL TODAY
1 (800) 241-2027
BRITT'S 2-WAY RADIO
Sales & Service
2508 Atlanta Street
SMYRNA, GA. 30080
(404) 432-8006

DO YOU KNOW WHERE TO FIND REAL BARGAINS on NEW and USED ELECTRONIC Equipment?

You’ll Find Them in the Nation’s No. 1 Electronic Shopper Magazine

NUTS & VOLTS

Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:
NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS • LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

□ One Year - 3rd Class Mail ... $10.00
□ One Year - 1st Class Mail .. $15.00
□ One Year - Canada & Mexico (in U.S. Funds) $18.00
□ Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!
SEND: □ CHECK □ MONEY ORDER □ VISA □ MASTERCARD

TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name: ____________________________
Address: ____________________________
City: ____________________________ State: __________ Zip: ______
Card No. ____________________________ Exp. Date: __________

IF YOU’RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited
TAKE A VACATION WITH A PURPOSE THIS YEAR

Join students from around the world at OAK HILL ACADEMY AMATEUR RADIO SESSION
Instructors CERTIFIED VE's
Over 25 years of successful teaching experience means upgrading is as easy as 1-2-3.

Your vacation is spent in the beautiful Blue Ridge Mountains of Virginia with expert instructors in friendly surroundings and with excellent accommodations.

Oak Hill also has a ham lab set up for all to use.

Courses offered are:
Novice to General
General or Tech to Advanced
Advanced to Extra

Learn — don’t just memorize the answers to the exam questions.

C. L. PETERS, K4DNJ, Director
Oak Hill Academy Amateur Radio Session
Box 43
Mouth of Wilson, VA 24363

Name
Address
City/State/Zip

NOW'S THE TIME TO GET YOUR 1985 Radio Amateur Callbooks

NORTH AMERICAN CALLBOOK
The new North American Callbook now contains Canadian and Mexican as well as all US Radio Amateurs, Fully updated with all the latest call signs and addresses. Edited to ensure accuracy. Includes handy station aids.

FOREIGN CALLBOOK
The only source of DX calls and addresses available. Fully updated and has helpful QSL information.

Order Both and SAVE even more
Regular Price $42.90
HAM RADIO SPECIAL $39.95

Please add $3.50 Shipping & Handling

More Details? CHECK OFF Page 128
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an unclowned, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

ORBIT Magazine Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION.

Seating will be limited for the Grand Banquet and Entertainment on Saturday evening so please make reservations early. Noted humorist Jean P Sheperd, K2ORS, will return for his third appearance as Banquet Speaker. His presentation promises to be outstanding in an all new banquet program format.

If you have registered within the last 3 years you will receive a brochure in January. If not, write Box 44, Dayton, OH 45401.

Nominations are requested for Radio Amateur of the Year, Special Achievement and Technical Excellence Awards. Nomination forms are available from Award Chairman, Box 44, Dayton, Ohio 45401 and must be returned by April 1, 1985.

For special motel rates and reservations write to Hamvention Housing, Box 1288, Dayton, OH 45402.

NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.

FCC EXAMS
All elements to be administered. Advanced registration only. DEADLINE TO REGISTER: March 27, 1985.
- $4.00 check or money order made payable to ARRL/VEC
- Completed 610 form with copy of license
- Indicate preferred sitting time: Sat. 9 a.m., Sat. 1 p.m., Sun. 9 a.m.
Mail registration to: FCC Exams, 203 Bellewood St. Dayton, OH 45406

ADMISSION
$8 in advance, $10 at door.
(Valid for all 3 days)
BANQUET
$14 in advance, $16 at door.
FLEA MARKET SPACE
$17 in advance.
(Valid for all 3 days)
Checks for advance registration to Dayton HAMVENTION
Box 2205, Dayton, Ohio 45401

Bring your family and enjoy a great weekend in Dayton.

Sponsored by
The Dayton Amateur Radio Association, Inc.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39/2289</td>
<td>$34.00</td>
<td>2E26</td>
<td>7.95</td>
<td>4600A</td>
<td>$650.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>624</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>102.00</td>
<td>4657</td>
<td>675</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>3-1000Z/8164</td>
<td>400.00</td>
<td>4662</td>
<td>662</td>
<td>7854</td>
<td>130.00</td>
</tr>
<tr>
<td>3B28/666A</td>
<td>9.50</td>
<td>4665</td>
<td>665</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CX400U7/8961</td>
<td>255.00</td>
<td>4687</td>
<td>687</td>
<td>ML7855AKL</td>
<td>125.00</td>
</tr>
<tr>
<td>3CX1000A7/8283</td>
<td>526.00</td>
<td>5675</td>
<td>765</td>
<td>7984</td>
<td>14.95</td>
</tr>
<tr>
<td>3CX3000F1/8239</td>
<td>567.00</td>
<td>5676</td>
<td>767</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CW3000N7</td>
<td>1700.00</td>
<td>5819</td>
<td>819</td>
<td>8233</td>
<td>60.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>470.00</td>
<td>5836</td>
<td>836</td>
<td>8366</td>
<td>35.00</td>
</tr>
<tr>
<td>3X3000F1</td>
<td>567.00</td>
<td>5837</td>
<td>837</td>
<td>8560A</td>
<td>100.00</td>
</tr>
<tr>
<td>4-65A/8165</td>
<td>69.00</td>
<td>5861</td>
<td>861</td>
<td>8684</td>
<td>83.00</td>
</tr>
<tr>
<td>4-125A/4021</td>
<td>79.00</td>
<td>5867A</td>
<td>867A</td>
<td>8721</td>
<td>100.00</td>
</tr>
<tr>
<td>4-250A/5022</td>
<td>98.00</td>
<td>5868/AX9902</td>
<td>8682</td>
<td>8722</td>
<td>168.00</td>
</tr>
<tr>
<td>4-400A/6438</td>
<td>98.00</td>
<td>5876/A</td>
<td>876</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4-400B/7527</td>
<td>110.00</td>
<td>5881/6L6</td>
<td>881</td>
<td>8843</td>
<td>130.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>444.00</td>
<td>5893</td>
<td>893</td>
<td>8843</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>54.00</td>
<td>5894/A</td>
<td>894</td>
<td>8843</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX250G/8621</td>
<td>75.00</td>
<td>5895B/8737</td>
<td>895B</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX250K/8245</td>
<td>125.00</td>
<td>5946</td>
<td>946</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>90.00</td>
<td>6003/A29909</td>
<td>6003</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>170.00</td>
<td>6146/6164A</td>
<td>6146</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>110.00</td>
<td>6146B/8298</td>
<td>6146B</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350F/8322</td>
<td>115.00</td>
<td>6146W/7212</td>
<td>6146W</td>
<td>8843</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350F/J/8904</td>
<td>140.00</td>
<td>6156</td>
<td>615</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX600J/8909</td>
<td>850.00</td>
<td>6159</td>
<td>615</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX100A/8168</td>
<td>242.50*</td>
<td>6159B</td>
<td>615</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX100A/8168</td>
<td>485.00</td>
<td>6161</td>
<td>616</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX150B/8660</td>
<td>555.00</td>
<td>6280</td>
<td>628</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX500A/8170</td>
<td>1100.00</td>
<td>6291</td>
<td>629</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX1000D/8171</td>
<td>1255.00</td>
<td>6293</td>
<td>629</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX1500A/8281</td>
<td>1500.00</td>
<td>6326</td>
<td>632</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4GW800F</td>
<td>710.00</td>
<td>6360/A</td>
<td>636</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4D32</td>
<td>240.00</td>
<td>6399</td>
<td>639</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4E27A/5-125B</td>
<td>240.00</td>
<td>6550A</td>
<td>655</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4PR60A</td>
<td>200.00</td>
<td>60838/8032A/8552</td>
<td>60838/8032A/8552</td>
<td>58.50</td>
<td></td>
</tr>
<tr>
<td>4PR60B</td>
<td>345.00</td>
<td>6351</td>
<td>635</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4PR65A/8187</td>
<td>175.00</td>
<td>6697</td>
<td>669</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4PR60B/5C18</td>
<td>590.00</td>
<td>6922/6DJ8</td>
<td>6922</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4X1500A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>693</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4X150D/7609</td>
<td>95.00</td>
<td>7094</td>
<td>709</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4X250B</td>
<td>45.00</td>
<td>7117</td>
<td>711</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4X250F</td>
<td>45.00</td>
<td>7203</td>
<td>720</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>4X500A</td>
<td>412.00</td>
<td>7211</td>
<td>721</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>5CX1500A</td>
<td>660.00</td>
<td>7213</td>
<td>721</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>KT88</td>
<td>27.50</td>
<td>7214</td>
<td>721</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>416B</td>
<td>45.00</td>
<td>7271</td>
<td>727</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>416C</td>
<td>62.50</td>
<td>7289/2C39</td>
<td>728</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>572B/T160L</td>
<td>49.95</td>
<td>7325</td>
<td>732</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>592/3-200A3</td>
<td>211.00</td>
<td>7360</td>
<td>736</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>807</td>
<td>8.50</td>
<td>7377</td>
<td>737</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>811A</td>
<td>15.00</td>
<td>7406</td>
<td>740</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>812A</td>
<td>20.00</td>
<td>7609</td>
<td>760</td>
<td>8883</td>
<td>95.00</td>
</tr>
<tr>
<td>813</td>
<td>50.00</td>
<td>7735</td>
<td>773</td>
<td>8883</td>
<td>95.00</td>
</tr>
</tbody>
</table>

NOTE: * = USED TUBE

NOTE: P.O.R. = PRICE ON REQUEST

"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

For information call: (602) 242-3037

MH*Z electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
“FILTERS”

COLLINS Mechanical Filter #526-9724-010 MODEL F455Z32F

455KHz at 3.2KHz wide. May be other models but equivalent. May be used or new. $15.99

ATLAS Crystal Filters

5.595-2.7/8/L6B, 5.595-2.7/L6G
8 pole 2.7KHz wide Upper sideband. Impedence 800ohms 15pf In/800ohms 0pf out. 19.99

5.595-2.7/8/U, 5.595-2.7/USB
8 pole 2.7KHz wide Upper sideband. Impedence 800ohms 15pf In/800ohms 0pf out. 19.99

5.595-.500/4, 5.595-.500/4/CW
4 pole 500 cycles wide CW. Impedance 800ohms 15pf In/800ohms 0pf out. 19.99

9.0USB/CW
6 pole 2.7KHz wide at 6dB. Impedance 680ohms 7pf In/300ohms 8pf out. CW-1599Hz 19.99

KOKUSAI ELECTRIC CO, Mechanical Filter #MF-455-ZL/ZU-21H

455KHz at Center Frequency of 453.5KC. Carrier Frequency of 455KHz 2.36KC Bandwidth, Upper sideband. (2U) 19.99

Lower sideband. (2L) 19.99

CRISTAL FILTERS

NIKKO FX-07800C 7.8MHz $10.00

TEM FED-103-2 10.6935MHz 10.00

SDK SCH-113A 11.2735MHz 10.00

DAF TT-31H250 CF 3179.3KHz 19.99

TYCO/CD 001019880 10.7MHz 2pole 15KC bandwidth 5.00

MOTOROLA 4884883B01 11.7MHz 2pole 15KC bandwidth 5.00

PTI 5700C 12MHz 2pole 15KC bandwidth 5.00

PTI 5701C 21.4MHz 2pole 15KC bandwidth 5.00

PTI 1479 10.7MHz 8pole bandwidth 7.5KHz at 3dB, 5KHz at 6dB 20.00

OMTECH A0300 45MHz 2pole 15KC bandwidth 6.00

FCC ERKF-15700 20.6MHz 36KHz wide 10.00

FILTER TECHNOLOGY 2131 CF 7.825MHz 10.00

CEMIK FILTERS

AXEL 4P49 12.6KC Bandpass Filter 3dB bandwidth 1.6KHz from 11.8-13.4KHz 10.00

CLEVITE TO-01A 455KHz=2MHz bandwidth 4-7% at 3dB 5.00

MRATA RF45555 455KHz 10.00

SBF455L 455KHz 3.50

CF455E 455KHz +5.5KHz at 3dB, +8KHz at 6dB, +16KHz at 50dB 6.65

CF455D 455KHz +7KHz at 3dB, +10KHz at 6dB, +20KHz at 50dB 6.65

CFR455E 455KHz +5.5KHz at 3dB, +8KHz at 6dB, +16KHz at 60dB 8.00

GFR455B 455KHz +2KHz bandwidth +15KHz at 6dB, +30KHz at 40dB 2.90

GFR455B 455KHz +2KHz bandwidth +12.5KHz at 6dB, +24KHz at 40dB 2.90

CF455G 455KHz +1KHz bandwidth +4.5KHz at 6dB, +10KHz at 40dB 2.90

CFU455H 455KHz +1KHz bandwidth +3KHz at 6dB, +9KHz at 40dB 2.90

CP455I 455KHz +1KHz bandwidth +2KHz at 6dB, +6KHz at 40dB 2.90

CP455D 455KHz +10KHz at 6dB, +20KHz at 40dB 2.90

CP455H 455KHz +3KHz at 6dB, +9KHz at 40dB 2.90

SB455D 455KHz 2.50

SF455D 455KHz +2KHz , 3dB bandwidth 4.5KHz +1KHz 5.00

SF455D 10.7MHz 280KHz=50KHz at 3dB, 650KHz at 20dB 2.50

SF455D 10.7MHz 230KHz=50KHz at 3dB, 570KHz at 20dB 2.50

SF455D 10.7MHz 2.50

NIPPON LF-B4/CFU455I 455KHz +1KHz 2.90

LF-B6/CFU455H 455KHz +1KHz 2.90

LF-B8 455KHz 2.90

LF-CL8 455KHz 10.00

TOKIN CF455A/8BFU455K 455KHz +2KHz 5.00

MATSUSHIRA EFC-L455K 7.00

SPECTRA PHYSICS INC. Model 088 HeNe LASER TUBES

POWER OUTPUT 1.6MW.
68K OHM IN/OUT BALLAST 1000VDC +1000VDC
Beam Dir. 2.7MR 5KV STARTING VOLTAGE DC $59.99

ROTRON MUFFIN FANS Model MARK4/MU2A1

115 VAC 140Watts 50/60CPS IMPEDENCE PROTECTED-F 88CFM at 50CPS $7.99

Toll Free Number
800-528-0180
(For orders only)

For information call: (602) 242-3037

MHZ electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

More Details? CHECK—OFF Page 128

February 1985 115
<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1561</td>
<td>$125.00</td>
<td>2N5920</td>
<td>$90.00</td>
</tr>
<tr>
<td>2N1562</td>
<td>25.00</td>
<td>2N5921</td>
<td>10.00</td>
</tr>
<tr>
<td>2N1692</td>
<td>25.00</td>
<td>2N5922</td>
<td>25.00</td>
</tr>
<tr>
<td>2N2857</td>
<td>1.55</td>
<td>2N5923</td>
<td>23.00</td>
</tr>
<tr>
<td>2N2857JANTX</td>
<td>4.10</td>
<td>2N5941</td>
<td>40.50</td>
</tr>
<tr>
<td>2N2827</td>
<td>1.50</td>
<td>2N5942</td>
<td>0.35</td>
</tr>
<tr>
<td>2N2876</td>
<td>13.50</td>
<td>2N5944</td>
<td>12.00</td>
</tr>
<tr>
<td>2N2947</td>
<td>18.35</td>
<td>2N5945</td>
<td>12.00</td>
</tr>
<tr>
<td>2N2948</td>
<td>13.00</td>
<td>2N5946</td>
<td>9.20</td>
</tr>
<tr>
<td>2N2949</td>
<td>15.50</td>
<td>2N6080</td>
<td>6.00</td>
</tr>
<tr>
<td>2N3119</td>
<td>4.00</td>
<td>2N6081</td>
<td>21.85</td>
</tr>
<tr>
<td>2N3134</td>
<td>1.15</td>
<td>2N6083</td>
<td>9.10</td>
</tr>
<tr>
<td>2N3287</td>
<td>4.90</td>
<td>2N6084</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3318</td>
<td>4.40</td>
<td>2N6094</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3309</td>
<td>4.85</td>
<td>2N6095</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3375</td>
<td>17.10</td>
<td>2N6096</td>
<td>16.10</td>
</tr>
<tr>
<td>2N3478</td>
<td>2.13</td>
<td>2N6097</td>
<td>20.70</td>
</tr>
<tr>
<td>2N3553</td>
<td>1.55</td>
<td>2N6105</td>
<td>21.00</td>
</tr>
<tr>
<td>2N3553JANTX</td>
<td>2.90</td>
<td>2N6106</td>
<td>21.00</td>
</tr>
<tr>
<td>2N3553J</td>
<td>11.50</td>
<td>2N6106</td>
<td>21.00</td>
</tr>
<tr>
<td>2N3691</td>
<td>5.00</td>
<td>2N6166</td>
<td>42.20</td>
</tr>
<tr>
<td>2N3688</td>
<td>1.30</td>
<td>2N6167</td>
<td>142.00</td>
</tr>
<tr>
<td>2N3866</td>
<td>2.20</td>
<td>2N6368</td>
<td>30.00</td>
</tr>
<tr>
<td>2N3866JANTX</td>
<td>3.80</td>
<td>2N6369</td>
<td>55.31</td>
</tr>
<tr>
<td>2N3866JANTXV</td>
<td>5.30</td>
<td>2N6458</td>
<td>18.00</td>
</tr>
<tr>
<td>2N3924</td>
<td>3.35</td>
<td>2N6603</td>
<td>10.06</td>
</tr>
<tr>
<td>2N3926</td>
<td>16.10</td>
<td>2N6604</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3927</td>
<td>17.25</td>
<td>2N6679</td>
<td>45.00</td>
</tr>
<tr>
<td>2N3948</td>
<td>1.75</td>
<td>2N6698</td>
<td>80.00</td>
</tr>
<tr>
<td>2N3950</td>
<td>25.00</td>
<td>2N6921</td>
<td>65.00</td>
</tr>
<tr>
<td>2N3959</td>
<td>3.85</td>
<td>2N6922</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4012</td>
<td>11.00</td>
<td>2N6923</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4037</td>
<td>2.00</td>
<td>2N7021</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4041</td>
<td>14.00</td>
<td>2N7121</td>
<td>10.00</td>
</tr>
<tr>
<td>2N4042</td>
<td>4.33</td>
<td>2N7131</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4127</td>
<td>21.00</td>
<td>2N7211</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4166</td>
<td>2.25</td>
<td>2N7311</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4247</td>
<td>1.25</td>
<td>2N7411</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4428</td>
<td>1.85</td>
<td>2N7511</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4430</td>
<td>11.80</td>
<td>2N7611</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4927</td>
<td>3.90</td>
<td>2N7711</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4957</td>
<td>3.45</td>
<td>2N7811</td>
<td>7.50</td>
</tr>
<tr>
<td>2N4959</td>
<td>2.30</td>
<td>2N7911</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5016</td>
<td>15.00</td>
<td>2N8011</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5026</td>
<td>18.40</td>
<td>2N8111</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5070</td>
<td>13.80</td>
<td>2N8211</td>
<td>11.00</td>
</tr>
<tr>
<td>2N5090</td>
<td>3.45</td>
<td>2N8311</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.70</td>
<td>2N8411</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5160</td>
<td>3.45</td>
<td>2N8511</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5177</td>
<td>12.62</td>
<td>2N8611</td>
<td>12.00</td>
</tr>
<tr>
<td>2N5179</td>
<td>1.04</td>
<td>2N8711</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5216</td>
<td>56.00</td>
<td>2N8811</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5370</td>
<td>75.00</td>
<td>2N8911</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5383</td>
<td>3.45</td>
<td>2N9011</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5389</td>
<td>9.77</td>
<td>2N9111</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5590</td>
<td>10.92</td>
<td>2N9211</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5591</td>
<td>11.80</td>
<td>2N9311</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5596</td>
<td>99.00</td>
<td>2N9411</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5626</td>
<td>12.00</td>
<td>2N9511</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5637</td>
<td>18.00</td>
<td>2N9611</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5641</td>
<td>12.42</td>
<td>2N9711</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5643</td>
<td>14.03</td>
<td>2N9811</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5645</td>
<td>25.50</td>
<td>2N9911</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5661</td>
<td>13.80</td>
<td>2N9912</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5664</td>
<td>20.70</td>
<td>2N9913</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5681</td>
<td>11.05</td>
<td>2N9914</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5691</td>
<td>18.00</td>
<td>2N9915</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5746</td>
<td>27.00</td>
<td>2N9916</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5836</td>
<td>3.65</td>
<td>2N9921</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5842</td>
<td>8.45</td>
<td>2N9922</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5847</td>
<td>4.90</td>
<td>2N9923</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5849</td>
<td>20.00</td>
<td>2N9924</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5913</td>
<td>3.25</td>
<td>2N9925</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5916</td>
<td>36.00</td>
<td>2N9926</td>
<td>25.00</td>
</tr>
</tbody>
</table>

RF TRANSISTORS

For orders only: 800-528-0180

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."
RF TRANSISTORS (CONTINUED)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1107</td>
<td>$16.75</td>
<td></td>
</tr>
<tr>
<td>M1131</td>
<td>5.15</td>
<td></td>
</tr>
<tr>
<td>M1132</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>M1134</td>
<td>13.40</td>
<td></td>
</tr>
<tr>
<td>M1136</td>
<td>29.10</td>
<td></td>
</tr>
<tr>
<td>M9579</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>M9580</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>M9587</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>M9588</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>M9622</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>M9623</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>M9624</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>M9625</td>
<td>15.95</td>
<td></td>
</tr>
<tr>
<td>M9626</td>
<td>27.90</td>
<td></td>
</tr>
<tr>
<td>M9671</td>
<td>27.90</td>
<td></td>
</tr>
<tr>
<td>M9555</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>M9581</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>M9827</td>
<td>11.00</td>
<td></td>
</tr>
<tr>
<td>M9688</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>M9850</td>
<td>13.50</td>
<td></td>
</tr>
<tr>
<td>M9851</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>M9860</td>
<td>8.25</td>
<td></td>
</tr>
<tr>
<td>M9887</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>M9898</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>M9965</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>M1500</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>M1550</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>M1552</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>M1607</td>
<td>8.45</td>
<td></td>
</tr>
<tr>
<td>M1616</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>M1810</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>M1815</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>M1841</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>M2608</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>M3735A</td>
<td>17.10</td>
<td></td>
</tr>
<tr>
<td>M4429</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>M5000</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>M5006</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>M5011</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>MSC201</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>M2A022-1.5</td>
<td>42.50</td>
<td></td>
</tr>
<tr>
<td>MRF134</td>
<td>10.50</td>
<td></td>
</tr>
<tr>
<td>MRF136</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>MRF171</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>MRF209</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>MRF212</td>
<td>16.10</td>
<td></td>
</tr>
<tr>
<td>MRF221</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>MRF223</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>MRF224</td>
<td>13.50</td>
<td></td>
</tr>
<tr>
<td>MRF227</td>
<td>3.45</td>
<td></td>
</tr>
<tr>
<td>MRF230</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>MRF231</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>MRF232</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>MRF233</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>MRF238</td>
<td>13.80</td>
<td></td>
</tr>
<tr>
<td>MRF239</td>
<td>17.25</td>
<td></td>
</tr>
<tr>
<td>MRF245</td>
<td>35.63</td>
<td></td>
</tr>
<tr>
<td>MRF247</td>
<td>31.00</td>
<td></td>
</tr>
<tr>
<td>MRF305</td>
<td>36.00</td>
<td></td>
</tr>
<tr>
<td>MRF306</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>MRF310</td>
<td>11.15</td>
<td></td>
</tr>
<tr>
<td>MRF316</td>
<td>29.21</td>
<td></td>
</tr>
<tr>
<td>MRF317</td>
<td>58.43</td>
<td></td>
</tr>
<tr>
<td>MRF318</td>
<td>18.90</td>
<td></td>
</tr>
<tr>
<td>MRF320</td>
<td>20.12</td>
<td></td>
</tr>
<tr>
<td>MRF321</td>
<td>25.00</td>
<td></td>
</tr>
<tr>
<td>MRF322</td>
<td>38.00</td>
<td></td>
</tr>
<tr>
<td>MRF327</td>
<td>17.10</td>
<td></td>
</tr>
<tr>
<td>MRF328</td>
<td>63.00</td>
<td></td>
</tr>
<tr>
<td>MRF343</td>
<td>12.07</td>
<td></td>
</tr>
<tr>
<td>MRF449/A</td>
<td>12.65</td>
<td></td>
</tr>
<tr>
<td>MRF549/A</td>
<td>14.08</td>
<td></td>
</tr>
<tr>
<td>MRF552/A</td>
<td>17.00</td>
<td></td>
</tr>
<tr>
<td>MRF553/A</td>
<td>18.40</td>
<td></td>
</tr>
<tr>
<td>MRF554/A</td>
<td>20.12</td>
<td></td>
</tr>
<tr>
<td>MRF555/A</td>
<td>16.00</td>
<td></td>
</tr>
</tbody>
</table>

Toll Free Number
800-528-0180
(For orders only)

MHZ electronics

Prices Subject to Change Without Notice

For information call: (602) 242-3037

February 1985

More Details? CHECK—OFF Page 128

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.
E.F. JOHNSON ROLLER INDUCTORS

MODEL 229-0201-01
10UH at 3AMPS MAX. $36.99

MODEL 229-0202-01
18UH at 5AMPS MAX. $44.99

NI-CAD BATTERY CHARGERS

UNIVERSAL CHARGER $19.99

MALLORY CHARGER $23.99

EVEREADY CHARGER $9.99

UNELCO, SEMCO, ARCO METAL CLAD MICA CAPACITORS

Standard Size

<table>
<thead>
<tr>
<th>Size</th>
<th>3.9</th>
<th>4.7</th>
<th>5</th>
<th>5.1</th>
<th>6.8</th>
<th>7</th>
<th>8.2</th>
<th>9.1</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>27.5</td>
<td>28</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Value</td>
<td>33</td>
<td>34</td>
<td>36</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>43</td>
<td>44</td>
<td>47</td>
<td>50</td>
<td>51</td>
<td>56</td>
</tr>
</tbody>
</table>

Micro Size

<table>
<thead>
<tr>
<th>Size</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

NOTE: ALL VALUES LISTED IN PICO FARAD

PRICE INFORMATION
1 to 10 $.90ea.
11 to 51 $.80ea.
52 to 102 $.70ea.
103 and up call

GOULD NI-CAD BATTERIES

AA size 1.25v at 500mahr new a $1.99
D size 1.25v at 4 AMPHR new h 7.49

GENERAL ELECTRIC NI-CAD BATTERIES

AA size 1.25v at 500mahr new a 2.99
AA size 1.25v at 1000mahr new 1.99
AA size 3.75v at 100mahr new a 2.99
AA size pack of 10 12.5v at 450mahr used a 5.99
Sub C Pack of 10 12.5v at 2.5Amphr new c 9.99

UNION CARBIDE NI-CAD BATTERIES

193817 3.75v at 225mahr new a 2.99

GLOBE GEL-CELL BATTERIES

2v at 8AMP HR GC280 new g 5.99
12v at 20AMP HR GC12200 new g 49.99
12v at 23AMP HR GC12330 new g 54.99

EAGLE Picher GEL-CELL BATTERIES

12v at 1.5AMP HR CF12V1.5 new d 11.99

GATES SEALED RECHARGEABLE LEAD ACID BATTERIES AND PACKS

2v at 2.5AMP HR D Cell new b 5.99
8v at 5AMP HR 4 X Cell used f 14.99
12v at 2.5AMP HR 6 D Cells new £ 24.99
18v at 2.5AMP HR 9 D Cells new £ 29.99

GENERAL ELECTRIC SEALED RECHARGEABLE LEAD ACID BATTERIES AND PACKS

6v at 2.5AMP HR 3 D Cells used e 10.00
12v at 2.5AMP HR 6 D Cells used e 19.99
12v at 5AMP HR 6 X Cells used e 24.99

Toll Free Number
800-528-0180
(For orders only)

MH2 electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Tell 'em you saw it in HAM RADIO!
RF Transistors (continued)

Relays

BNC To Bannana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.

$7.99 or 2 For $13.99 or 10 For $50.00

$8.99 or 2 For $15.99 or 10 For $60.00

Amphenol

Part # 316-10102-8
115Vac Type BNC DC to 3 GHz.

$29.99

COAXIAL RELAY SWITCHES SPLIT

FXR

Part # 300-11182
120Vac Type BNC DC to 4 GHz.

FSN 5985-543-1275

$39.99

POSTAGE: Minimum shipping and handling is the U.S., Canada, and Mexico is $3.00 for ground shipments and $5.00 for air shipments. Air rates are available at the time of your order. All foreign orders please include 25% of the amount ordered for shipping and handling. C.O.D.'s are shipped Air Only.

PREPAID ORDERS: Orders must be accompanied by a check.

PRICES: Prices are subject to change without notice.

PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check.

RESTOCK CHARGES: If parts are returned to MHZ ELECTRONICS, INC. due to customer error, the customer will be held responsible for all fees incurred and will be charged a 15% RESTOCK CHARGE with the remainder being CREDIT ONLY. The following must accompany any return: A copy of our invoice, return authorization number which must be obtained prior to shipping the merchandise back. Returns must be done within 10 DAYS of receipt of parcel. Return authorization numbers can be obtained by calling (602) 242-8916 or notifying us by post card. Return authorizations will not be given out on our 500 number.

SALES TAX: Arizona residents must add 5% sales tax unless a signed Arizona resale tax card is currently on file with us. All orders placed by persons outside of Arizona, but delivered to persons in the 5% sales tax area, must be paid in full in advance of shipping the equipment.

SHORTEST OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of receipt of parcel. Claims must include a copy of our invoice, along with a return authorization number which can be obtained by contacting us at (602) 242-8916 or sending a post card. Authorities will not pay for claims on our 500 number. All claims must be properly packed. If items are not properly packed make sure to contact the carrier so that they can come out and inspect the package before it is returned to us. Customers who do not notify us within this time period will be held responsible for the entire order as we will consider the order complete.

OUR NO. ORDER IS STRICTLY FOR ORDERS ONLY (800) 528-0180 INFORMATION CALLS ARE TAKEN ON (602) 242-8916 or (602) 242-3037

TOLL FREE NUMBER

800-528-0180

(For orders only)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

For information call: (602) 242-3037

SMHZ ELECTRONICS

2111 W. CAMELBACK ROAD
PHOENIX, ARIZONA 85015

S

M

H

Z

ELECTRONICS

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

More Details? CHECK - OFF Page 128

February 1985 119
California

C & A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
Not The Biggest, But The Best —
Since 1962

FONTANA ELECTRONICS
8626 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County,

JUN’S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades Habla Espanol

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:5-5:30, Sat. 9-3

AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

Hawaii

HONOLULU ELECTRONICS
810 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.

Delaware

AMATEUR & ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757
Delaware’s Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7000
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon. Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Massachusetts

James Milen Components by:
ANTENNAS ETC.
16 HANSOM ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, binding posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.

Michigan

ENCN PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-623-1650
Amateur Radio, Repeaters, Satellite, Computer applications.
Call Paul WD6AHO

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porrar “Squeak,” AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9:30-3:00, Sat. 9-3

JUN’S ELECTRONICS
460 E. PLUMB LANE — 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom — Yaesu Dealer

New York

ADIRONDACK ELECTRONICS, INC.
1991 CENTRAL AVENUE
ALBANY, NY 12205
518-456-0203
Amateur Radio for the Northeast since 1943.

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345

Dealers:

YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH (CLEVELAND AREA)
44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-866-4267

and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTROSES
4033 BROWNsville ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
BOX 349 RD 4
MOUNTAINOP, PA 18707
717-686-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY
1508 MckINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30
Sat 9-3
SUPER deal with the publisher allows us to drop the price of the Bill Orr RADIO HANDBOOK to the low, low price of just $12.95!

RADIO HANDBOOK by William Orr, W6SAI

Some selected subjects covered include:
- Electronic Fundamentals
- Semiconductor Devices
- Vacuum Tube Principles
- Special Microwave Tubes
- Radio Frequency Power Amplifiers
- SSB Transmission and Reception
- Amplification of RF Energy
- Frequency Synthesis
- FM and Repeaters
- RFI
- Equipment Design
- Transmitter Keying and Control
- Power Supplies
- Radiation and Propagation
- The Transmission Line
- Antenna Matching Systems
- HF General Purpose Antennas
- Fixed Directive Arrays
- Rotary Beam Antennas
- VHF & UHF Antennas
- Test Equipment
- The Oscilloscope
- Construction Practices
- Electronics Math and Calculations

This book certainly is one of the finest reference sources available today. The 22nd edition reflects the very latest in state-of-the-art techniques in a comprehensive single source reference book. Invaluable for hams, electronics technicians, design engineers, and hobbyists alike. Over 1,000 pages of information found in earlier editions plus more on antennas, amplifiers, theory, and semiconductors to name just a few of the updated sections. The Radio Handbook is chock-full of practical, tested projects that run from high powered RF amplifiers and state-of-the-art equipment to “Weekender” type projects to upgrade overall station performance. This book will be of interest to all levels of electronic expertise. At this special price, you can’t afford to pass up a value like this. Order yours today. 1136 pages. ©1981. 22nd edition.

[21874] Hardbound Limited quantities are available. Order now. $12.95

Please add $3.50 to cover shipping & handling.

This is the very latest edition. No new edition is about to be issued. This is not a close out.

ham radio magazine BOOKSTORE

GREENVILLE, NH 03048 (603) 878-1441

February 1985
Now there's a hardware magazine that's all about computers for people who like to build their own. Computer Smyth's premiere issue is coming in March 1985, providing all the pleasure, economy and satisfaction of build-it-yourself projects that Hams know so well.

Our authors take you inside the chips, talk about what they do and how they're controlled, and explain command options you may never have heard of before. Computer Smyth's first quarterly issue begins a series on a complete Z80 based computer on three 4x6½" boards, which lets you interface 3½, 5¼ and 8½ floppy disks in all densities and track configurations. John Adams' series will include a switching power supply, a PROM burner, a modem and software options for this rack-mount system.

The first issue will also feature an X/Y plotter you can build, an inexpensive motorized wire-wrap tool and much more.

During its premiere year, Computer Smyth will survey the more than two dozen computer kits now available in the US. Kit builders will report on many of them from the simplest Z80 CPU offerings to some of the newest 68000, 32-bit machines.

Computer Smyth is published by Audio Amateur Publications, publishers of Audio Amateur and Speaker Builder magazines. All three are reader-centered, hardware-intensive publications whose editors believe that a magazine's primary job is satisfying the reader not consumer marketing. Our magazines are run by tech enthusiasts not MBAs looking for profits.

Computer Smyth's editors guarantee that if you are unhappy with Computer Smyth for any reason, your money will be refunded upon request.

☐ Yes, enter my subscription to Computer Smyth for one year at $15.
☐ Make that two years at $25.
☐ Check enclosed.
☐ Charge to credit card.

Name:
Street & No.:
Town State Zip
MC/VISA Card # signature

Computer Smyth Magazine
PO Box 176 Peterborough, NH 03458
Charge card orders: (603) 924-9464
WANT old antenna books handbooks. CO.

WANTED: HP 478A Power head TUBES.

CUSTOM MADE embroidered patches Any K4NBN

inc include full name and address. We reserve the availability.

WANTED: In 2020.

Sponsors by non-profit or organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads not the commercial rate.

NOT any layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

IBM-PC RTTY ASCII/BAUDOT/CW send and receive. Split screen. buffers and features. Incl. SASE to E. Alline. 773 Rossa. Metairie. LA 70005

C7X REPAIRS. 415-549-9210

WANTED: HP 478A Power head, TUBES.

WANTED: HP 478A Power head TUBES.

Sponsors by non-profit or organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads not the commercial rate.

NOT any layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

IBM-PC RTTY ASCII/BAUDOT/CW send and receive. Split screen. buffers and features. Incl. SASE to E. Alline. 773 Rossa. Metairie. LA 70005

C7X REPAIRS. 415-549-9210

WANTED: HP 478A Power head, TUBES.

WANTED: HP 478A Power head TUBES.

Sponsors by non-profit or organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads not the commercial rate.

NOT any layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

MICHIGAN: The 2nd annual Amateur Radio Auction sponsored by the Holland Amateur Radio Club, Saturday, March 9, Hudsonville High School Auditorium, 5051 32nd Avenue Hudsonville. No admission fee. Equipment can be checked in from 8 AM to 12 noon. Auction 9 AM to 1 PM. A 10% donation for each item sold. Refreshments available. Talk in on 146.06 and 52. For information: Dan Ruter, 1306 Michael Drive, Hudsonville, MI 49426.

MINNESOTA: The Robindale Amateur Radio Club’s 3rd annual Midwinter Madness Hobby Electronics Show, February 23, 8 AM to 9 PM. Toko-Grace High School, 1350 Gardena Avenue NE, Fridley (suburb of Minneapolis). Admission $4 at door. Manufacturers, dealers, flea market. Talk in on 147.60/00 KBLT/T, 146.52 simplex. For information: Robindale ARC, PO Box 22813, Robindale, MN 55422 or call Bob (612) 533-7354. All Amateur Radio tests will be given. For information: Elmo Nygaard, 4151 Adair Avenue NE, Robindale, MN 55422.

OREGON: The Cuyahoga Falls Radio Club’s 31st annual Electronic Equipment Auction and Hamfest, Sunday, February 24, North High School. Admission $3.00 at the door. Dealers may bring their own tables and setup can be available to rent. Talk in on 877/27. For information or reservations: SASE to Bob Sosnowski, KBJL, 2300 – 24th St., Cuyahoga Falls, Ohio 44023 or call (216) 923-3830.

INDIANA: The LaPorte ARC’s Winter Hamfest, Sunday, February 24, at the LaPorte Civic Auditorium. Donation $2.50 Tables $20 advance; $2.50 at door. Talk in on 52 simplex. For information and reservations: LARC, PO Box 30, LaPorte, IN 46350.

MICHIGAN: The 15th annual Livonia Amateur Radio Club’s Swap’s Shop, Sunday, February 24, 8 AM to 4 PM. Churchill High School, Livonia. Plenty of tables, refreshments and free parking. Talk in on 144.75/36 and 52 simplex. For information or table reservations: SASE to Neil Coffin, WA4GWL, c/o Livonia ARC, PO Box 2111, Livonia, MI 48151.

KENTUCKY: Annual Glasgow Swapfest, Saturday, February 23, 8 AM to 4 PM. Glasgow Flea Market Building, 2 miles south of Glasgow off 31E. Free coffee, free parking, large flea market and a friendly gathering of hams. Admission $2.00.

Under the guidance of the “United States TV Society,” Amateur TV (FSTV-SSTV-FAX) is growing in activity. And, we’ve been promoting it now for over 18 years!

Sample Issue - Just $2.50 ppd.
Special Trial Subscription - $10.00.
superchips come of age

About five years ago the Department of Defense embarked on an ambitious program to develop a family of Very High Speed Integrated Circuits (VHSIC). The objective was to design a group of VLSI chips with 1.25 micron features and a computational throughput of 5×10^9 gate-Hertz. The program has cost over $350 million, but has yielded some impressive results. Signal processing chips capable of performing 100 million multiplications per second, memories with densities of 5 million transistors per square inch, a complete vector arithmetic processor and a self-contained convolutional decoder (a form of detector that can recognize very complex codes without going through all the arithmetic) have now been implemented.

Although some of the chips being fabricated have specialized military functions, most are designed to form a family of arithmetic and signal processing functions. Both bipolar and CMOS designs have been implemented, and some include current mode logic, which can perform sub-nanosecond operations. All of this exciting work is intended to be available eventually for commercial use. The next phase of the DoD program will aim at 0.5 micron features and nearly 100 times the speed — by the end of this decade!

advanced materials serve RF needs

We sometimes forget the key role that proper materials selection plays in the correct performance of many products. For example, we all know that a stable oscillator requires a tuned circuit with a high Q; that the active element must have carefully controlled gain and phase characteristics; and that all these parameters change with temperature. In the region below 100 MHz, the most stable oscillators have been traditionally built using silicon dioxide (quartz) crystal elements as the resonator. In the VHF and microwave region, cavity resonators have been the principal alternative.

The ideal resonator would have a very high Q, zero temperature coefficient, high permittivity (low radiation losses) and be supported by a dielectric with no electrical or thermal losses. Designers of semiconductor oscillators find series resonant (low impedance) tank circuits convenient. This means that a high Q series tank will have high capacity and low equivalent inductance. The modern alchemists have been at work on the problem and have now given us nearly perfect materials with which to solve the problem. Dielectric resonators made of ceramic materials with high dielectric constants (over 30) have made possible microwave resonators with unloaded Q's of 25,000 at 4 GHz and over 10,000 at 12 GHz. These materials have extremely low losses and excellent temperature characteristics, making possible the production of oscillators offering crystal-like performance at microwave frequencies.

But hold on to your hat! In the search for the best dielectric materials to support these resonators, the thermal tiles used to protect the Space Shuttle on re-entry emerged as an optimum material. With a dielectric constant of 1.15 and legendary thermal characteristics, the tiles, made of foamed quartz, become a nearly perfect enclosure/support for a dielectric resonator. Using this combination of advanced materials, a major defense contractor has fabricated an oscillator that exhibits only ± 10 kHz drift per month — at over 6 GHz!

Gallium arsenide digital circuits are already available in the 4 GHz region, so it shouldn’t be too long before we can have phase locked loops at 5 GHz or so. Combined with SAW or dielectric resonator filters, image-free up-conversion receivers through 2300 MHz can be a reality for Amateurs of the next decade.

telephones to be more versatile

Over the past few years the plain old family telephone has become a hot consumer product. We’ve seen a proliferation of telephones that offer just about every convenience we could want in a single desk instrument. Up to 60 memories, on-hook dialing, full duplex speakerphone, as well as time and message unit recording, are now available in a multitude of styles at competitive prices. All of this capability has been made possible by the development of specialized ICs which have considerable processing power in their structure.

Most telephones now have 12-digit keypads, with each digit identified by a unique tone. If each digit is thought of as a single data “bit,” then our ordinary keypad becomes a 12-bit code
generator. Twelve bits equals 2^{12}, or 4096 possible codes if we use each tone just once in a 12-digit binary number. If your telephone were used as a small programmable data instrument, then you would have more than enough codes, and ample data resolution, to control most of the common household items that now each have individual and far less accurate, controllers. Household heating and cooling, selection of cooking times and temperatures, cost-effective regulation of hot water use and temperature, security entry codes, and choice of entertainment channels, for example, can all be controlled, changed, and recorded on our ordinary telephone. Moreover, because the telephone is connected to the rest of the world, we can change this household data from remote locations as the need arises.

For Amateurs, the possibilities are especially appealing. Many repeaters now have their functions controlled by tone decoders, in addition to having all the usual auto-patch facilities. Antenna rotor controllers that accept bearing instructions from the telephone touchpad, remote frequency setting of transceivers, and a variety of data management functions will all become much easier and require only a single instrument for control. Someday we may even be able to reach out and... well, you know.

Ham Radio

New CMOS DTMF Chip Kit

Teltone's TRK-957 Kit makes it easier and less expensive to breadboard a low-power, central office quality DTMF detection system.

All you need is a power source from 5 to 12 VDC. The sensitivity, wide dynamic range, noise immunity, and low-power consumption make the TRK-957 ideal for telephone switching, computer, and remote control applications. The TRK-957 DTMF Kit is only $24.75. To order call:

(800) 227-3800, ext. 1130.

Call or write for information on these signaling products also:

Model CS-10 DIP relay board...packages 10 DIP relays.

Model CS-100 ... A 19" rack mount that houses a control card and two CS-10's. All inputs and outputs available on convenient barrier strips.

Touch Tone® Control

Never Before Has So Much Control...Cost So Little!!

Model CS-16 $164 Amateur net

Model CS-1688 $189 Amateur net

Two independent user programmable three digit passwords permit hierarchy control. The secondary (user) password can only access 8 of the 16 latched[ON/OFF] functions. However full 16 function control is available to control operators using the primary password. Additionally secondary password access can be enabled/disabled with a special primary password command.

Our CS-16 puts repeater control ops...IN CONTROL.

Our new CS-1688 is the most powerful touch tone controller in the industry! DIP switch programmability allows you to choose any of these tone, mode, function combinations...

Output Functions

D 1 2 3 4 5 6 7 8 9 0 # A B C

1. 8 LATCHED and 8 MOMENTARY
2. 8 LATCHED and 8 LATCHED
3. 1 OF 8 SELECT and 1 OF 8 MOMENTARY
4. 1 OF 8 SELECT and 1 OF 8 LATCHED
5. 1 OF 8 SELECT and 1 OF 8 LATCHED
6. 1 OF 8 SELECT and 1 OF 8 SELECT
7. 1 OF 8 SELECT and 1 OF 8 SELECT
8. 8 LATCHED and 8 MOMENTARY
9. 8 LATCHED and 8 LATCHED
10. 1 OF 16 SELECT

Common Features

- Open collector (can drive relays directly) and logic outputs for each of the 16 functions
- SSI-202 central office quality XTAL controlled tone decoder
- Adjustable pre-amp accommodates 10MV-2 volt input
- Retransmission of control tones can be eliminated by use of either open collector or data strobe logic outputs
- Operates from 10-25 volts DC. Reverse polarity protected
- 4 1/2" x 6 1/2" glass board with 44 pin gold plated edge connector
- Comes complete with manual and mating connector

Add $3.00 P&H. California residents add sales tax

TYPICAL REPEATER CONTROL APPLICATIONS

HILO POWER - PLCOR - TIGHT/LOOSE SQUELCH - OPEN/CLOSED SQUELCH - REPEATER ON/OFF - AUTOPATCH ON/OFF - TOLL RESTRICT ON/OFF - RINGBACK ON/OFF - LONG/SHORT HANGTIME - ANTENNA TANTENNA 2 - REMOTE REPEATER ON/OFF - F.F. - AUX LINK ON/OFF - TONE MUTING ON/OFF - SPARE TRANSMITTER INOUT - ETC ETC.

SELECTOR MODE APPLICATIONS

1 OF N FREQUENCIES - 1 OF N PHONE LINES - 1 OF N ANTENNAS - 1 OF N REPEATERS ETC.
HUSTLER DELIVERS RELIABLE ALL BAND HF PERFORMANCE

Hustler's new 6-BTV six-band trap vertical fixed station antenna offers all band operation with unmatched convenience. The 6-BTV offers 10, 15, 20, 30, 40, and 75/80 meter coverage with excellent bandwidth and low VSWR. Its durable heavy gauge aluminum construction with fiberglass trap forms and stainless-steel hardware ensures long reliability. Thirty-meter kits (30-MTK) for 4-BTV and 5-BTV are also available.

NEW!

6-BTV

Don't miss our 30 meter excitement.

HUSTLER STILL THE STANDARD OF PERFORMANCE.

Hustler 3275 North "B" Avenue
Kissimmee, Florida 32741

ADVERTISERS' INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or the listing, check off the numbers, fill in your name and address, affix a postage stamp, and return it. We will respond promptly. The advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on separate sheets of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

READER SERVICE # PAGE #
111 Accessory Specialties 121
164 Ace Communications 103
112 Advanced Receiver Research 109
171 AEA 23
104 All LL Electronics 28
118 Alpha Delta Communications 37
132 Aluma Tower Co. 121
1 Amateur Electronics Supply 95
163 Amateur Wholesale Electronics ... 66, 111
184 American Radio Relay League ... 74
185 ATV Magazine 125
119 Aztec Industries 57
1 Barker & Williamson 49
1 Barry Electronics 107
116 Baum Sales 102
117 BHCO 123
165 Bill Company ... 108
171 Bing's 2-Way Radio 110
186 Bookman Publishing 107
1 Buttermilk Electronics 76
139 C & A Roberts 30
1 Caddell Co 109
108 Callmark Computing 76
131 Cayson Electronics 123
134 Ceeco 58
1 Central Intelligence Agency 74
153 CES 1
125 CMC Communications 103
121 Communications Concepts, Inc. 37
120 Communications Specialists 18
142 Computer Smyth 123
144 Computer Trader Magazine 92
115 Connect Systems 127
1 Dayton Hamvention 113
115 DEO 55, 89
158 Digital Instruments 89
157 Electro-Com ... 43
136 Electro Industries ... 73
179 Electronic Equipment Bank 49
107 Engineering Consulting ... 98
129 Epison ... 89
123 John Fluke Manufacturing Co., Inc. ... 4
189 Fox Tango Corp ... 105
114 GB Electronics 100
141 Ham Radio's Bookstore ... 34, 63, 86, 102, 106, 110, 111, 112, 122, 123
104 Ham Radio Outlet ... 10, 11
154 Hamronics 80, 81
146 Hatley Electronics 100
197 Hi-Fi, Inc. 128
101 ICOM America, Inc. ... Cover II
103 ICOM America, Inc. ... 57
109 International Radio ... 108
177 J.I.I ... 7
130 JRS Distributors 89
181 Kantronics ... 63
137 KCS Electronics ... 56
1 Trio Kenwood Communications ... 2, Cover IV
173 MFJ Enterprises 9
152 MHz Electronics ... 114, 119
178 Madison Electronic Supply ... 46
195 Memorex Satellite ... 112
160 John J. Meadha, Jr., Co., Inc. ... 96, 97
147 Micro Control Specialists ... 16
148 Microwave Filter, Inc. 72
145 Missouri Radio Center ... 73
159 Morning Distributing 92
156 Nampa Satellite Systems ... 84

*Please contact this advertiser directly.

PRODUCT REVIEW/NEW PRODUCT

READER SERVICE # PAGE #
143 NCG 98
166 Nemal Electronics 102
149 Nuts & Volts 110
197 Oak Hill Academy ARS ... 111
192 Orbit Magazine ... 112
* Orlando Hamcation 58
180 P.C. Electronics ... 72
138 Phillips Tech Electronics 56
122 Processor Concepts ... 76
133 Radio Amateur Callbook 62
151 Ramsey Electronics 99
150 VND Design Corp ... 73
175 Robot Research, Inc. ... 17
128 Rosensch Microwave 107
127 Sartori Associates ... 63
198 Satellite Television ... 37
140 Satellite TV Magazine ... 100
162 Scamp Systems, Inc. ... 121
187 Shore Brothers ... 91
168 SIBEX ... 63
180 Sinclair Radio Laboratories, Inc. ... 49
199 Spectrum International ... 32
106 Spi-Ro Distributing ... 63, 121
193 Spi-Ro Distributing ... 108
113 Tel-Com ... 48
196 Telone Corp ... 127
169 Texas Towers ... 64, 66
167 TNT Radio Sales ... 106
182 Transmitter, Inc. ... 105
* UNR Rohn ... 104, 125
* University Microfilms International ... 104
105 Vanguard Labs ... 76
176 Varian/Emac ... 56
126 Vector Radio ... 89
156 VHF Communications ... 44, 76
136 James Walter Test Equipment ... 92
124 Webster Communications ... 121
188 Westcom Engineering ... 101
194 Western Electronics ... 123
172 Western Satellite ... 78, 79
* Wheeler Applied Research Labs ... 37
102 Yama Electronics Corp. ... Cover III

NEW! 6-BTV

Don't miss our 30 meter excitement.

HUSTLER STILL THE STANDARD OF PERFORMANCE.

Hustler 3275 North "B" Avenue
Kissimmee, Florida 32741

PRODUCT REVIEW/NEW PRODUCT

READER SERVICE # PAGE #
164 Ace Communications ... 107
126 CMC Communications, Inc. ... 108
120 Communications Specialists ... 106
305 Doppler Systems ... 103
107 Engineering Consulting ... 101
154 Hamtronics, Inc. ... 102
306 Heath Company ... 101
109 International Radio ... 107
301 KIE Enterprises ... 106
306 Larsen Electronics ... 102
172 MFJ Enterprises ... 104
148 Microwave Filter, Inc. ... 108
166 Nemal Electronics ... 106
307 Paulin Industries ... 102
175 Robot Research, Inc. ... 101
302 Sabauda Export Corporation ... 106
312 Sinclair Radio Laboratories, Inc. ... 101
304 Xantec, Inc. ... 106

Limit 15 inquiries per request.
The DX is better out here. Ask anyone who owns an FT-726R.

It's true. Linking up to OSCAR 10 is the one sure way to bring the world into your ham shack. No matter where your shack is.

FT-726R owners know. You'll find them working the world from their apartments. Attics. And from their antenna-restricted neighborhoods. They'll even boast of a signal quality and DX potential that would make any 20-meter operator envious. Regardless of where we are in the sunspot cycle.

In fact, the FT-726R is the world's most popular link to OSCAR 10. And for good reason. This 2-meter, 10-watt rig gives you full cross-band duplex capability. Simply plug in two optional modules, one for 435-MHz operation, another for cross-band duplex.

You can set up your earth station just about anywhere. All you need is the 726 and two Yagi antennas: 435-MHz for transmit and 2-meters for receive.

Even as a conventional base station, the FT-726R is a real standout. You can choose from three operating modes: SSB, FM or CW. Expand to three-band operation with your choice of optional modules for 10 meters, 6 meters, 430-440 MHz and 440-450 MHz.

Then store your preferred frequencies and modes into the eleven memories for instant recall. With pushbutton transfer capability to either of two VFO registers. And versatile scanning functions you'd expect from a Yaesu radio.

Plus you get a lot more extras, including a built-in speech processor. All-mode squelch and a noise blanker.

So no matter where your shack is, let Yaesu's FT-726R introduce you to OSCAR 10. The world is waiting.

Yaesu Electronics Corporation
6851 Wath null Way, Paramount, CA 90723
(213) 631-4007

Yaesu Cincinnati Service Center
9070 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.
Pocket-size performers!

TH-21AT/41AT

Kenwood's advanced electronic technology brings you a new standard in pocket/handheld transceivers! The TH-21AT/41AT features a high impact molded case and is designed to deliver convenient, reliable performance in a package so small, it will slip into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and only weighs 260 g (0.57 lb) with batteries. In typical Kenwood fashion these transceivers provide superior transmit and receive performance.

Both the 2 meter and 70 cm versions deliver one watt R.F. output on Hi power and 150 mW low, for really extended battery life! Functional design includes three digit thumb-wheel switch for easy frequency selection along with a built-in 5 kHz UP-Shift switch and repeater offset switch. (±500 kHz or simplex, 2m version and ±5 MHz or simplex 70 cm version.)

Both the 2 meter and 70 cm pocket/handheld transceivers are available in standard or 16-key autopatch DTMF encoder versions. Kenwood thread-loc antenna connector is also provided.

See your authorized Kenwood dealer and take home a pocket full of 2 m or 70 cm performance today!

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 Ni-Cd 180 mAH battery
- DC-21 DC power supply
- BT-2 battery case
- EB-2 external C manganese/alkaline battery case
- SC-8 soft case for TH-21A/41A
- SC-8T soft case for TH-21AT/41AT
- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter

More information available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

TH-21A/41A

Standard versions.