SUMMER SPECIAL — CONSTRUCTION: junk-box ingenuity
- building better boxes • improving ALC • make your own air-wound coils • cooling semiconductors • ALSO: using grayline — with or without computer • a 50 MHz Tilton/Greenblum Yagi • W1JR on filters • W6SAI's ham radio techniques
Now ICOM offers the best choices in compact 2-meter FM mobiles...the IC-27H 45-watt compact (4¼" H x 5½" W x 9¾" D) and the IC-27A 25-watt super compact mobile. The IC-27A and IC-27H are the smallest full-featured 2-meter mobile transceivers available, and feature an internal speaker for easy installation. For the ultimate portable station, the IC-37A 220MHz and IC-47A 440MHz 25 watt compact mobiles are also available.

32 PL Frequencies. The IC-27A and IC-27H come complete with 32 PL frequencies ready to go and are controlled from the front panel knob. Each PL frequency may be selected by the main tuning knob and stored into memory for easy access along with frequency and offset.

9 Memories. The IC-27A and IC-27H have nine memories available to store receive frequency, transmit offset, offset direction, and PL tone. Memories are backed up by a lithium backup battery, which will store memories for up to seven years.

Speech Synthesizer. As an added plus, the IC-27A/H features an optional speech synthesizer to verbally announce the receiver frequency of the transceiver through the simple touch of a button.

Priority Scan. Priority may be selected to be either a memory channel or a VFO channel. By using sampling techniques, the operator can determine if a frequency of interest is free or busy.

See the IC-27A/H compact mobile transceivers at your local ICOM dealer. For superb performance, reliability, and the ultimate in a VHF mobile radio, your only choice is an ICOM.

45 Watts. The IC-27H provides 45 watts of output power, while the IC-27A provides 25 watts of output power.

45Watts. The IC-27H provides 45Watts of output power, while the IC-27A provides 25Watts of output power.

The IC-25A 2-meter 25-watt mobile and its 45-watt companion, the IC-25H, are also available.

IC-27A
25 Watts
1¾" H x 5¾" W x 7¾" D

IC-27H
45 Watts
1¾" H x 5½" W x 9¾" D

ICOM America, Inc., 2112-116th Ave NE, Bellevue, WA 98004 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75229

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios exceed FCC regulations limiting spurious emissions. 24/7

Also Available: IC-37A 220MHz and IC-47A 440MHz Compact Mobiles
hat To
ook For In A
phone Patch

The best way to decide if a patch is right for you is to first decide what a patch should do. A patch should:

- Give complete control to the mobile, allowing full break-in operation.
- Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables (or flip switches!) every time you wish to use your radio as a normal base station.
- Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
- You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.
- The patch should have standard features at no extra cost. These should include programmable toll restrict (dip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.

ONLY SMART PATCH HAS ALL OF THE ABOVE.

How To Use SMART PATCH

You are in CONTROL

With CES 510SA Simplex Autopatch, there's no waiting for VOX circuits to drop. Simply key your transmitter to take control.

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

To Take CONTROL with Smart Patch — Call 800-327-9956 Ext. 101 today.

Communications Electronics Specialties, Inc.
P.O. Box 2930, Winter Park, Florida 32790
Telephone: (305) 645-0474 Or call toll-free (800)327-9956
Scan the World.

R-2000

Kenwood's R-2000 receiver has opened the doors to a new world in the 150-kHz to 30-MHz HF bands, with microprocessor controlled operating features and an UP conversion PLL circuit for maximum flexibility and to enhance the excitement of listening to stations from east to west, and from pole to pole. An optional VC-10 VHF converter, for 118 to 174-MHz, allows access to police, aviation, marine, commercial, and two-meter Amateur frequencies. With dual digital VFO's, ten memories that store frequency, band and mode information, memory scan, programmable band scan, fluorescent tube digital display, and dual 24-hour clock with timer, this outstanding radio has the versatility needed to reach out and catch those distant and elusive stations in the most remote areas of the world.

The R-2000 receives in the USB, LSB, CW, AM, and FM modes, and its ten memories allow moving from band to band without concern for mode of operation. The programmable band scan feature permits scanning over operator selected limits, reducing scan cycle time. Memory scan allows the operator to scan all, or only specific memories. Lithium battery memory backup (Estimated 5 year life) is built-in.

With the sensitive R-2000, only the best in selectivity will do. It has three built-in IF filters, with NARROW/WIDE selector switch, and an optional 500-Hz narrow CW filter is available. A noise blanker, and an all-mode squelch circuit further enhance the operators control of his listening environment. An AGC switch, and an RF attenuator switch allow selection of the best signal-to-noise ratio. It has a large, front mounted speaker, a tone control, an "S" meter, high and low impedance antenna terminals, and operates on 100/120/220/240 VAC, or on 13.8 VDC, with an optional DCK-1 DC cable kit. Other features include a record output jack, an audible "beeper," a carrying handle, a headphone jack, and an external speaker jack.

The R-2000 places the world at your finger tips.

R-2000 optional accessories:
VC-10 VHF converter • HS-4, HS-5, and HS-6 headphones • DCK-1 DC cable kit • YG-455C 500-Hz CW filter.
SAVE $10.00* with home delivery

*(One year newsstand cost $30.00)
Here's my address label, enter my subscription:

☐ 1 Year .... 12 issues .......... $19.95  ☐ Payment enclosed
☐ 2 Years .... 24 issues .......... $32.95  ☐ Bill me later
☐ 3 Years .... 36 issues .......... $44.95 U. S. prices only

Name ___________________________
Address _________________________ State _______ Zip _______
City ____________________________

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $22.95 for one year by surface mail.
AUGUST 1984
volume 17, number 8

T. H. Tenney, Jr., W1NLA
publisher

Rich Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KA1LBO
assistant editor

Joseph J. Schroeder, WJ4UV
associate editor

Susan Sherrock
editorial production

editorial review board

Forrest Gehke, K2BT
Bob Lewin, WO8JS
Mason Logan, K4MT
Ed Wetherhold, W3XGN

publishing staff

J. Craig Clark, Jr., N1ACH
assistant publisher

Rally Dennis, KA1JWF
director of advertising sales

Dorothy Sargent, KA1ZK
advertising production manager

Susan Sherrock
circulation manager

Theresa Bourgault
circulation

Wayne Pierce, K3SUK
cover art

---

ham radio magazine is published by
Communications Technology, Inc.
Greenville, New Hampshire 03046-0488
Telephone: 603-678-1441

subscription rates
United States:
one year, $19.95; two years, $32.95; three years, $44.95.
Canada and other countries (by surface mail):
one year, $22.95; two years, $41.00; three years, $58.00.
Europe, Japan, Africa (via Air Forwarding Service): one year, $52.00.
All subscription orders payable in U.S. funds, via international
postal money order or check drawn on a U.S. bank.

international subscription agents: page 136

microfilm copies are available from
University Microfilm, International
Ann Arbor, Michigan 48106
Order publication number 3076.

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Periodicals, 319 Walnut Street, Philadelphia, Pennsylvania 19107.
Copyright 1984 by Communications Technology, Inc.
Title registered at U.S. Patent Office
Second-class postage paid
at Greenville, New Hampshire 03046-0488
and at additional mailing offices.
ISSN 0306-5989
Postmaster send form 3579 to ham radio
Greenville, New Hampshire 03046-0488

---

contents

17  a 3CX800A7 linear amplifier
   Jerry L. Pittenger, KB8RA

32  junk-box ingenuity: how to buy, use, and recycle surplus electronic parts
   Bob Lombardi, WB4EHS

37  constructing air-wound coils
   Paul A. Johnson, W7KBE

40  improving amplifier ALC circuits: part 1
   J. Fred Riley, WA8AJN

45  build a better box
   Michael Gruchalla

52  cooling semiconductors
    part 2: blowers and fans
   Vaughn D. Martin

77  fundamentals of grayline propagation
    Bradley Wells, KR7L

81  DXing by computer
    Van Brollini, N56N, and Walter Buchanan

96  ham radio techniques
    Bill Orr, W6SAI

103  applied Yagi design
    part 4: a 50 MHz Tilton/Greenblum design
    Stanley Jaffin, WB3BGU

112  VHF/UHF world
    Joe Reisert, W1JR

140  advertisers index

122  new products and reader service

10  prestop

63  DX forecaster

136  flea market

134  ham mart

119  short circuit

August 1984
We hate to admit it, but we don’t know everything there is to know about Amateur Radio. What’s more, the field is so vast, and expanding so quickly, that we can’t even hope to know it all. We try — but there are times when our individual and collective wisdom fails and we have to turn to others for help. Perhaps the subject at hand is an idea so new that we need to learn more about it ourselves. Or perhaps all we need is confirmation of our opinion that an idea may be unworkable because of some flaw in the concept or method proposed.

When we need a knowledgeable friend to turn to — to review a questionable manuscript, or to clarify, confirm, or correct some detail or theory or practice — we turn to one of the four distinguished members of *ham radio*’s editorial board. We look to them for two things: first, for their expertise in their specific areas of knowledge and experience; and second, for their unique perspective on Amateur Radio. Spanning the past and present, with an eye on the future of Amateur Radio, these gentlemen give us a perspective that’s easy to lose sight of in the day-to-day business of making sure your copy of *ham radio* arrives each month.

While we’d like to introduce each one of the members of our editorial board to you personally, that’s obviously impossible. So we’ll do the next best thing and introduce them to you in print.

**Ed Wetherhold,** W3NQN, first encountered Amateur Radio in 1947 while in training as an Air Force radio technician. A buddy in the barracks had set up a station next to his bunk. Ed was “hooked.” He went on to study Radio Engineering at Tri-State University in Angola, Indiana, and graduated in 1956. Since 1962 he’s been with Honeywell in Annapolis, Maryland, where he’s responsible for testing communications systems. In addition, he distributes surplus 44- and 88-mH toroidal inductors in the United States and in the U.K. to facilitate easy assembly of his filter designs, and writes extensively in the international Amateur press. Ed also serves as technical advisor to the ARRL in the area of his specific interest, passive LC filters.

While Ed found Amateur Radio, Amateur Radio “found” **Forrest Gehrke,** K2BT. At 10, he was building one-tube regenerative broadcast band receivers, using UV-198’s and 201A’s. One day he inadvertently omitted some turns around the oatmeal box, and some fascinating activity on the 160-meter band spilled into his earphones. First licensed as W9WJD in 1936, Forrest says he was “bitten by the DX bug shortly afterward when, during sunspot peak openings, you could work the world on 10 meters with no discernible power output.” He earned an E.E. degree from the University of Wisconsin and spent 30 years trying to “push the state of the art” in electron tubes. By the early 1960’s, he was working in the development of a 10 GHz solid state power source for the Moonlander’s retro-rocket landing control radar. He now works in the data communications industry, developing packet networks that communicate at 56K bits per second.

World War II, marriage, and sharing in the raising of eight children caused what K2BT calls “slight intermission” in Amateur Radio activities until 1968, when he resumed the push for DXCC he’d begun in 1939. He reached 5BDXCC in 1974, Honor Roll in 1978, and is currently aiming for Honor Roll Status solely in the 80-meter band. His special interest: antennas.

**Mason Logan,** K4MT, studied physics at CalTech and Columbia and worked with Bell Telephone Laboratories for 50 years. His early work was in telephone transmission and signalling research; later he designed circuits for underwater acoustic and magnetic proximity fuzes, high-loop gain negative feedback amplifiers, and servomechanism circuits for the development model of the NIKE guided missile analog computer.

Now and then a problem will come along that demands a theoretical solution. If it pertains to any aspect of electromagnetics, we turn to **Bob Lewis,** W2EBS. Bob started out in Amateur Radio in 1921 (as did K4MT) when he was a 13-year old Boy Scout leafing through the pages of his handbook in search of another merit badge to win. The “Wireless” badge caught his eye and he ran to the store for some oatmeal — not for the cereal, or course, but for the box that it came in. Finally licensed in the early 1930’s, he attended Virginia Military Institute and graduated from the University of Pennsylvania. Graduate study — including an M.B.A. — followed.

Bob worked in research at RCA from 1932 through 1939, when he left to join the research team at CBS. (While at RCA, incidentally, he worked in the design of the television transmitting antennas atop the Chrysler Building in New York City.) He served overseas during World War II, working in radar countermeasures, with the office of Scientific Research and Development. After the war he returned to CBS and then went to Federal Telegraph and Radio. After ITT bought Federal, he joined the ITT research group in Nutley, New Jersey. He joined a small group of friends and colleagues in Prodelin, Inc., and spent the following 20+ years, until retirement, working in the development of transmission lines and antennas.

Over the coming months we’ll be looking to expand the editorial review board to include others of similar standing, but with different areas of expertise. If you have an area of special interest and achievement in Amateur Radio — and aren’t too modest to admit it — get in touch with us. You don’t have to be one of the Founding Fathers of Amateur Radio; if you “know your stuff,” and want to play a meaningful role in the production of a high-quality technical publication, let us know. We’d like to know you.

Dorothy Rosa, KA1LBO
Assistant Editor

**FREE MFJ RTTY/ASCII/CW Software**

Includes MFJ-1228, SOFTWARE ON TAPE. ADD VIC-20 OR C-64 AND RIG TO ENJOY COMPUTERIZED RTTY/ASCII/CW. FOR VIC-20, ORDER MFJ-1224 OR MFJ-1264 FOR VIC-20, MFJ-1225/MFJ-1265 FOR C-64.

Most versatile RTTY/ASCII/AMTOR/CW interface card available for VIC-20 and Commodore 64. Gives you more features, performance, more value for your money than any other interface card available.

Same interface card works for both VIC-20 and Commodore 64. Plugs into user's port.

Choose from wide variety of RTTY/ASCII/CW, even AMTOR software. Not married to one software package. Use MFJ, Kantronics, AEA plus other software cards, tape or disk.

- **850 Hz and 170 Hz shifts on receive and transmit.** Has mark and space outputs for scope tuning.
- **Normal/Reverse switch eliminates retuning.** True dual channel mark and space active filters and automatic threshold correction gives good copy when one tone is obliterated by QRM or selective fading.
- **Easy, positive tuning with twin LED indicators.** Narrow 800 Hz active CW filter. Automatic PTT. Exar 2206 sine generator for AFSK output.
- **Shielded XCVR AFSK/PTT Interface cable provided.** Plus or minus CW keyed output. FSK out.
- **Powered by computer (few ma.), no power adapter to buy or extra wire to dangle or pick up/ extraneous PTT.** Glass epoxy PCB. Aluminum enclosure. 4.5x4x5.5x1.5x.

**UNIVERSAL RTTY/ASCII/CW INTERFACE**

Use your personal computer and communications receiver to receive commercial, military and amateur RTTY/ASCII/AMTOR/CW traffic. Plugs between receiver and VIC-20. Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers. Requires appropriate software. Use with Atari, Kantronics, AEA and other RTTY/ASCII/AMTOR/CW software.

Copies all shifts and all speeds. Twin LED indicators makes tuning easy, positive. Normal/Reverse switch eliminates tuning for inverted RTTY. Speaker output jack. Includes cable to interface MFJ-1224 to VIC-20.

**SUPER RTTY FILTER**


**FREE MFJ RTTY/ASCII/CW Software**

Includes MFJ-1228, SOFTWARE ON TAPE. ADD VIC-20 OR C-64 AND RIG TO ENJOY COMPUTERIZED RTTY/ASCII/CW. FOR VIC-20, ORDER MFJ-1224 OR MFJ-1264 FOR VIC-20, MFJ-1225/MFJ-1265 FOR C-64.


Use MFJ software for VIC-20, Commodore 64 and Kantronics for Apple, TRS-80C, Atari, TI-99 and most other software for RTTY/ASCII/AMTOR/CW. 

Cancer shift on-board, 170, 425 Hz, and all other shifts, and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII).

Copies on both mark and space, not mark only or space only, to improve copy under adverse conditions.

Sharp 8 pole 170 Hz shift/CW active filter gives good copy under crowded, fading and weak signal conditions. Automatic noise limiter suppress static crashes for better copy.

Normal/Reverse switch eliminates retuning. +250 VDC loop output drives RTTY machine. Speaker jack.

**SUPER RTTY FILTER**


**CW INTERFACE CARTRIDGE FOR VIC-20/C-64**

High performance CW interface cartridge. Gives excellent performance under weak, crowded, noisy conditions. Works for both VIC-20 and Commodore 64. Plugs into user's port.

- 4 pole 100 Hz bandwidth active filter. 800 Hz center frequency. 4 pole active lowpass post detection filter. Automatic tracking comparator.
- Plus and minus CW switching. Audio in, speaker output jack. Powered by computer.

Includes Basic listing of CW transmit/receive program. Available on cassette tape, MFJ-1252 (VIC-20) or MFJ-1253 (C-64), $4.95 and on software cartridge, MFJ-1254 (VIC-20) or MFJ-1255 (C-64), $19.95.

You can also use Kantronics, AEA software and other RTTY/CW software. Also copy RTTY with single tone detection.
THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M, 2M, 220</td>
<td>$680</td>
<td>$880</td>
</tr>
<tr>
<td>440</td>
<td>$790</td>
<td>$980</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remote base.

FEATURES:

- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ± 12 KHz. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OU' (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVRS for 2M or 220 MHz. 0.15 uV sens.; 8 pole xtal filter & ceramic filter in IF, helical resonator front end for exceptional selectivity, more than ~100 dB at ± 12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xmts. Xtal oven avail. Kit only $138.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $138.
- R76 FM RCVR for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $118.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only $98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $98.

TRANSMITTERS

- T51 VHF FM EXCITER for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous, up to 2½ W intermittent. $68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $78.
- VHF & UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $78.
- A16 TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.

ACCESSORIES

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
  HRF-144 for 143-150 MHz $38
  HRF-220 for 213-233 MHz $38
  HRF-432 for 420-450 MHz $48
- COR-2 KIT With audio mixer, local speaker amplifier, tail & time-out timers. Only $38.
- COR-3 KIT as above, but with "ordinary" beep. Only $58.
- CWID KITS 158 bits, field programmable clean audio, rugged TTL logic. Kit only $68
- DTMF DECODER/CONTROLLER KITS Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Auto patch. Only $90
- NEW - SIMPLEX AUTOPATCH Use with any transceiver. System include DTMF & Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.

Tell 'em you saw it in HAM RADIO!
NEW LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 28 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted

MODEL | TUNES RANGE | PRICE
---|---|---
LNG-28 | 26-30 MHz | $49
LNG-50 | 46-56 MHz | $49
LNG-144 | 137-150 MHz | $49
LNG-220 | 210-230 MHz | $49
LNG-432 | 400-470 MHz | $49
LNG-450 | 30-46 MHz | $64
LNG-160 | 150-172 MHz | $64

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UHF units available 300 to 650 MHz.

- P30K, VHF Kit less case $18
- P30W, VHF Wired/Tested $33
- P432K, UHF Kit less case $21
- P432W, UHF Wired/Tested $36

HELICAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Gain = approx. 12 dB.

Model | Tuning Range | Price
---|---|---
HRA-144 | 143-150 MHz | $49
HRA-220 | 213-233 MHz | $49
HRA-432 | 420-450 MHz | $59
HRA( ) | 150-172 MHz | $59
HRA( ) | 450-470 MHz | $79

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

FM-5 PC Board Kit – ONLY $178
complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2M or 220 MHz.

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $60.

While supply lasts, get $60 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only $178?

Hamtronics, Inc.
65-E MOUL RD. • HILTON NY 14468
Phone: 716-392-9430
Hamtronics* is a registered trademark
SOME COMMERCIAL INCURSION INTO THE AMATEUR 220-225 MHZ BAND is still very possible, according to informed observers of the Washington and land Mobile scene. Despite strong denials at high FCC levels, there's an ongoing belief in some circles that at least a portion of the band (some say as much as half!) could be reallocated to land Mobile in the near future. If so, it would likely go for a narrowband technology such as ACSB.

A Proposal To Permit Novice Phone Operation On 220 MHz has been submitted to the FCC by WA2MCT and W5DON as a Petition for Rulemaking. Opposition to their proposal since it was first suggested has been very strong, both at the Dayton Hamvention 220 MHz Forum and in letters to "220 Notes," K9XI's national 220 MHz Newsletter.

In An Unrelated Move, A 224.750 MHz Experimental License has been granted to the University of Illinois' Wallops Island, Virginia, test facility to support research in ionospheric radio propagation required by U.S. Government contract.

420-430 MHz IS NO LONGER AVAILABLE TO U.S. AMATEURS located within 75 miles of the Canadian border. The ban results from Canada's decision several years ago to allocate the bottom 10 MHz of the 70-cm band to land mobile, and a consequent agreement between its DOC and the FCC to protect Canadian land mobile users from possible U.S. Amateur interference. Though the protection band wouldn't begin until on PODS 75 miles in some area, has theoretically been in effect for some time, the FCC has not yet begun to actively enforce it. Included in The Protection Band Are Such Major U.S. Cities as Seattle and Duluth, most of Michigan (Including Detroit), Toledo, Cleveland, Erie, at least half of the states of New York, Vermont, and New Hampshire, and most of Maine, including Bangor. A 75-mile band of protection also extends across the Alaska-Canada border, encompassing Juneau and Ketchikan. U.S. Land Mobile Stations Using Frequencies Between 30 And 470 MHz In The Protected Areas are also affected, but receive clearance for licensing on a non-interfering basis. U.S. land mobile stations with an ERP under five watts do not require any Canadian coordination. However, there is no such leeway for Amateur operations along the borders. Unusual Signals May Be Encountered In The 70-cm Band By Amateurs in much of New York, New Jersey, and Pennsylvania in coming months. Grumman Aerospace has received an FCC experimental license to operate on various frequencies between 424 and 446 MHz within a 150-mile radius of Binghamton, New York, in connection with work on the E-2C system.

A THIRD AMATEUR HAS BEEN NAMED TO BECOME AN ASTRONAUT BY NASA. Ron Parise, WA4SIR, a scientist employed by NASA at Greenbelt, Maryland, is scheduled to make his first trip on the Space Shuttle in 1986. He joins W5LFL, who conducted the first Amateur operation from space late last year, and W9ORE, who's up for his first Shuttle trip next spring.

Amateur Participation During Shuttle Flight has been formally proposed by the ARRL and AMSAT. In their joint proposal the two groups stated their goal was to involve as many Amateurs as possible, particularly through school and club stations. In addition to 2-meter FM such as W5LFL used, a 10-meter downlink for 2-meter audio and SSTV pictures from the Shuttle has also been suggested. NASA's decision is expected soon.

SIMPLEX AUTOPATCHES MUST HAVE A SEPARATE CONTROL MEANS ON ANY AMATEUR BAND, not just below 220.5 MHz. "Confusion arose with the ARRL Executive Committee's recent adoption of a requirement that all QST ads for simplex autopatch devices state their use is not permitted "...in the 2-meter band, or on any other frequency below 220.5 MHz..." without a separate control link. The FCC requires positive transmitter control on all Amateur frequencies—not just 2-meters—but feels the real issue is whether the simplex autopatch is really "Amateur Radio" rather than how existing rules can be bent to fit its operation.

VOLUNTEER EXAMINER COORDINATORS HAVE NOW BEEN ACCEPTED IN ALL AREAS, with the appointment of WSYT Report Editor/Publisher, Fred Maia, as a VEC for all 13 districts. The Zero District now also has a "resident" VEC, the PHD Radio Club from Missouri, until Maia's acceptance, the First District was the last still lacking a VEC. ARRL Applied To Become A VEC In All 13 Areas June 27. In their 1-1/2 page proposal, down sharply from an earlier 70-80 page draft, the League still remained adamant that its active participation wouldn't begin until the phonotagged collection of exam fees. However, it still looks very likely that the fee proposal will be adopted in some form before the FCC's summer recess begins August 1. The height of the "Chinese wall" between the League's publishing business and its VEC organization is still a likely problem area. Well Over 1000 Exams Have Now Been Given Under VEC Direction, and the program seems to be working quite well in most areas. Most VECs expect to have ready some Advanced and Extra Class exams by the end of July, and the Second District VEC, Metroplex, will be giving Novice through Extra Exams at the ARRL National Convention in New York July 21-22.

ARRL'S PETITION TO HAVE CABLE TV KEPT OFF THE AMATEUR BANDS has been rejected by the FCC. However, in their rejection the Commissioners put the cable TV industry firmly on notice that it has an obligation to prevent and remedy leakage problems, to all services.
If you thought you were priced out of the satellite television market, Relax

We've got your System!

World View Electronics has made owning a satellite television receiving system affordable with a choice of products manufactured by the most reputable names in the satellite TVRO industry.

Now you can choose the system that fits your needs and your pocketbook by ordering directly from World View Electronics.

For your convenience, we’ve packaged five systems together (Systems 1 through 5). Or if you wish, you can mix and match components to your own specifications.

Worried about installation? Relax. Installation is simple because each system we sell includes an installation guide that makes installing your system a breeze.

So call us today. With World View Electronics you don’t have to give up quality for price.

Nice Price & Good Advice
1-502-781-6715

World View Electronics
1527 US 31 West Bypass, Bowling Green, KY. 42101
STARFINDER now makes it possible to position your antenna from the comfort of your favorite chair... The imp, an optional infra-red remote with hand-held control has been designed to interface with the programmable (up to 80 positions), micro-processor-based STARFINDER, with extraordinary user-friendliness. SST is a self-contained, east/west switch with built-in infra-red remote designed for affordable antenna positioning, and easy installation. The stars are yours now with STARFINDER... for dealer information and the STARFINDER dealer closest to you, please contact...

STARFINDER, INC.
2960 South West Temple
Salt Lake City, Utah 84115
1-800-742-5924 then 15864 (touchtone)
(801) 467-2793
EIMAC's new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1221
COMMERICAL-GRAGE QUALITY AT AMATEUR PRICES

EXCLUSIVE 1 YEAR LIMITED WARRANTY! COMPARE!

THE 4000 SERIES

- WIDE FREQUENCY COVERAGE: PCS-4000 covers 142,000-149.995 MHz in selectable steps of 5 or 10 kHz. PCS-4200 covers 220,000-224.995 MHz in selectable steps of 5 or 20 kHz. PCS-4300 covers 440.000-449.995 MHz in selectable steps of 5 or 20 kHz. PCS-4500 covers 50.000-53.995 MHz in selectable steps of 5 or 10 kHz. PCS-4800 covers 28.000-29.990 MHz in selectable steps of 10 or 20 kHz.
- CAP/MARS BUILT IN: PCS-4000 includes coverage of CAP and MARS frequencies.
- TINY SIZE: Only 2.5" H x 5.5" W x 6.8" D. COMPARE!
- MICROCOMPUTER CONTROL: At the forefront of technology! COMPARE!
- UP TO 8 NONSTANDARD SPLITs: Ultimate versatility. COMPARE!
- 16-CHANNEL MEMORY IN TWO 8-CHANNEL BANKS: Retains frequency and standard simplex or plus/minus offsets. Standard offsets are 600 kHz for PCS-4000, 1.6 MHz for PCS-4200, 5 MHz for PCS-4300, 1 MHz for PCS-4500, and 100 kHz for PCS-4800.
- DUAL MEMORY SCAN: Scan memory banks either separately or together. COMPARE!
- TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan the two segments either separately or together. COMPARE!
- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel; auto-resume can be overridden if desired. Vacant scanning stops on unoccupied frequencies.
- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency.
- TWO PRIORITY MEMORIES: Either may be instantly recalled at any time. COMPARE!
- NICAD MEMORY BACKUP: Never lose the programmed channels!
- FREQUENCY REVERS: The touch of a single button inverts the transmit and receive frequencies, no matter what the offset.
- ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Unparalleled ease of operation.
- BRIGHT GREEN LED FREQUENCY DISPLAY: Easily visible, even in direct sunlight.
- DIGITAL S/R METER: Shows incoming signal strength and relative power output.
- BUSY-CHANNEL AND TRANSMIT INDICATORS: Bright LEDs show when a channel is busy and when you are transmitting.
- FULL 16-KEY TOUCHTONE PAD: Keyboard functions as a autopatch when transmitting (except in PCS-4800).
- PL TONE: Optional PL tone unit allows access to private-line repeaters. Deletion and tone frequency are fully adjustable.
- TRUE FM: Not phase modulation. Unsurpassed intelligibility and audio fidelity.
- HIGH/LOW POWER OUTPUT: 25 or 5 watts selectable in PCS-4000. 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4500, and PCS-4800. Transmitter power is fully adjustable.
- SUPERIOR RECEIVER: Sensitivity is 0.2 uV for better for 20 dB quieting. Circuits are designed and manufactured to rigorous specifications for exceptional performance, second to none. COMPARE!
- REMOTE-CONTROL MICROPHONE: Memory A-1 call, up/down manual scan, and memory address functions may be performed without touching the front panel. COMPARE!
- OTHER FEATURES: Dynamic microphone, rugged built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses, and hardware are included.
- ACCESSORIES: CS-7R 7-amp ac power supply, CS-45F 5-amp ac power supply, CS-AS remote speaker, and Communications Specialists SS-32 PL tone module.
- ONE YEAR LIMITED WARRANTY!
The First Name In Satellite TV...

When you invest in a DRAKE Earth Station Receiver, you've chosen the very finest. Elegantly designed with the latest engineering concepts in solid-state techniques, every DRAKE is characterized by superb performance and versatility. DRAKE... world-class leader in satellite television reception.

ESR240 EARTH STATION RECEIVER
- Infrared Remote Control
- Digital Channel Readout
- Preset 6.2/6.8 and Variable Audio Tuning

ESR324 EARTH STATION RECEIVER
- Digital Channel Readout
- Detent Channel Tuning
- Preset 6.8 and Variable Audio Tuning

...The Last Word In Performance!

R.L. Drake Company
540 Richard Street, Miamisburg, Ohio 45342, USA
Phone: (513) 866-2421
Telex: 288-017
a 3CX800A7 linear amplifier

1500 watts out on 10-160 meters, using a pair of EIMAC's new compact tubes

It took me about thirty seconds to accept ham radio's invitation to design and build a new high-frequency linear amplifier centered around EIMAC's new 3CX800A7 triode. I decided immediately that the design should capitalize on the small size of the tubes, cover the 10 through 160 meter bands, and be capable of meeting the new 1500 watt output power limit on a continuous basis. In other words, I wanted a small desk-top amplifier that "growled." My approach to the project was similar to the modular technique described in my previous ham radio article and to the structured approach to equipment design outlined earlier in QST.

In this article, I have made a special effort to provide the detail necessary to allow readers to easily duplicate my efforts. I have provided detailed layouts of the circuit boards and tried to identify sources for the parts where available. Readers who duplicate the design exactly should experience few problems.

Some unusual parts — a 500 pF/3000 volt vacuum variable capacitor and an RF vacuum relay — for example — are used. In each case, effort has been made to identify these parts and suggest alternative components that are more readily available.

I have also included construction details for a matching high voltage power supply. Remember that a well-regulated power supply is one key to making an amplifier perform well.

RF deck circuit design

The amplifier is designed around a pair of EIMAC 3CX800A7 high-mu power triodes that are capable of 15 dB gain. The tubes are very compact, measuring only 2-1/2 inches (6.35 cm) high and 2-1/2 inches in diameter. A matching socket, chimney, and plate connector are also available.

The amplifier uses a tuned input network (fig. 1) ganged to the main band switch to minimize distortion products and provide a good match to the exciter. Maximum SWR presented to the exciter is 1.3:1. Because of the high gain of the tubes (i.e. 15 dB) only about 60 watts is needed to drive the amplifier to the new 1500 watt output power limit. Therefore, a very effective ALC circuit (see fig. 2) also has been included to control drive power. (See ALC module PC board and component layout.)

Output matching is accomplished using a Pi-L circuit designed for a Q of 12. Toroids in both the input and output circuit have been used for compactness. Also included is a very effective grid trip circuit that latches the amplifier out of operation should the grid current exceed 90 milliamperes (45 milliamperes per tube). This feature provides positive protection for the tubes against excessive grid current. This is especially important with these tubes since the grids are capable of dissipating only 4.0 watts. If the protective circuit does trip, it can be reset by pushing a front panel mounted switch. However, the reason it tripped

By Jerry L. Pittenger, K8RA, 2165 Sumac Loop South, Columbus, Ohio 43229
in the first place should be determined before resetting the switch.

Additional protective devices include a solid-state time delay circuit that prevents operation of the amplifier for approximately 3 minutes until the indirectly heated cathodes of the tubes are properly conditioned. The HV cannot be turned on during this period. After warm-up, a relay actuates that allows the amplifier to be keyed up by the exciter and also sends AC power to the HV power supply to allow HV to be applied to the plates of the tubes.

A regulated 26 VDC power supply has been included to provide power for meter and switch pilot lights and relay control. The supply is regulated to avoid pilot light dimming under varying current loads.

**amplifier control circuitry**

The control circuitry for this amplifier is quite simple. 110 VAC enters the RF deck control circuit (fig. 3) from the HV power supply. When the front panel FIL power switch is actuated, AC power is applied to the blower, filament transformer and 26 VDC regulated power supply module. (See PC board and component layout.) The 26 VDC supply, in turn, applies power to the timing module, which starts the three minute warm-up cycle. When the warm-up cycle is over, the meter lights come on indicating that the amplifier is ready to operate. Note, actuating the front panel "HV" power switch will not send power to the HV power supply until the 3-minute warm-up cycle has completed.

The 26 VDC power supply uses an LM317 voltage regulator which can malfunction in the presence of strong RF fields. Consequently good design practices require careful placement. In this design, the 26 VDC supply is located up in the front meter compartment far away from RF.
Under normal operation, a pair of tubes draws about 30 mls. Therefore, I have the circuit adjusted to trip at 90 mls of grid current. When the circuit trips, relay RL3 (see fig. 1) is actuated which breaks the VOX line, thus deactivating the amplifier and lighting the “grid trip reset” push button on the front panel of the amplifier. It is necessary to push the RESET button to put the amplifier back into operation. Of course, one should determine why the amplifier exceeded 90 mls before resetting.

The circuit is actually quite simple. As grid current flows through R1, a voltage is developed across the resistor. The grid trip actuates when transistor Q1 is turned on (approximately 0.6 volts appears on the base). For example, if the base of Q1 were tied directly to R1, 60 milliamperes would generate 0.6 volt (E = IR = 0.060 x 10 = 0.6 volts). But this current is too low in normal operation to trip the grid current protection circuit. Therefore, a voltage divider is needed if a current different than 60 milliamperes is desired to actuate the grid trip. This voltage divider

grid-trip protection circuit

A grid trip module has been included to disable the amplifier should the grid current rise to levels dangerous to the tubes. A pair of 3CX800A7s is rated for a maximum grid current of 120 milliamperes (mils).
is created with the trim pot R2, which can be used to adjust the level at which the circuit trips (Q1 is turned on).

If Q1 turns on, relay RL3 actuates, grounding the relay coil and taking the load off transistor Q1. If this feature were not provided, the transistor would start gating the amplifier on and off. Therefore, it is essential to latch the grid trip relay closed. When RL3 is closed, another set of contacts breaks the VOX line, disabling the amplifier. Another set of contacts applies power to the grid trip reset pilot light on the front panel indicating to the operator what has happened. Pushing the reset button on the front panel breaks the coil line, which in turn unlatches relay RL3 and puts the amplifier back into normal operation. (See grid trip module PC board and component layout.)

I have used this circuit in several different amplifiers. It is a good addition to any amplifier that you might build considering the high price of tubes.

**solid-state timing module**

The 3-minute timing circuit used to insure proper conditioning of the 3CX800A/7s cathodes is shown in **fig. 4**. When the 26 VDC power supply comes on, current begins to flow through the 5.5M resistor R1,
Gillaspie 9600

Micro Processor Controlled Satellite Receiver

with wireless remote

- Clear sharp pictures
- Automatic Feed Rotation Control
- Built-in Satellite TV Switch
- Super Reliability
- Channel 3 - 4 Switchable Modulator
- Fine Wood Cabinet with Distinctive Styling

Gillaspie L.N.A.

Low Noise Amplifier

Model #
GLN-3742

- Full Band Coverage
  (3.7 GHz – 4.2 GHz)
- 100°K Max. Noise Temperature
  (GLN - 3742 - 100)
- 120°K Max. Noise Temperature
  (GLN - 3742 - 120)
- 50 db Gain (typical)
- DC Bias at 15v to 28v
  (150 mA max)
- CPR 229 Waveguide Input
- Input VSWR 1.3 – Output VSWR 1.5
- Single “N” Female Connector
  for RF Output & DC Bias
- Compact Design 3.1” x 3.9” x 8.4”
- Hermetically sealed
- Replaces any TVRO LNA
- 1 Year Warranty

DEALER AND DISTRIBUTOR INQUIRIES WELCOME!

NEVADA SATELLITE  702 - 452-5509

P.O. Box 2 – Las Vegas, Nevada 89125

More Details? CHECK—OFF Page 140
charging the 22 μF capacitor, C1. As C1 charges, the voltage is applied to the base of a Darlington configuration (Q1 and Q2) which forms an emitter follower circuit. Therefore, the emitter of the Darlington follows the voltage charge on capacitor C1. The Darlington is necessary to present a high impedance to C1 which would otherwise drain through the transistor. Relay RL5 is a 12 VDC relay that actuates at approximately 8.1 volts. Therefore when the voltage on C1 causes the emitter of Q2 to reach 8.1 volts, relay RL5 actuates allowing amplifier operation. Of course, this takes approximately 3 minutes.

Relay RL5 is a 4PDT relay. Two poles are wired in parallel and apply power to the HV power switch located on the front panel. Therefore, the HV power supply cannot be turned on during the warm-up period. Another set of contacts on RL5 is used to connect a 3-megohm resistor to C1 to discharge the capacitor thus resetting the timer module. This is a protective circuit to insure that a 3-minute warm-up cycle occurs should the amplifier be turned off for a short time and then turned back on. The fourth set of contacts serves three purposes. First, the meter lights come on, indicating an amplifier-ready condition. Second, 26 VDC is sent to the hot side of relay RL5 in the timing module itself thus latching the relay. This takes the power load off the Darlington and allows the reset function discussed above. Diode CR2 prevents the voltage on the VOX line to rise with the emitter on Q2. Third, 26 VDC is sent to the VOX line to allow the amplifier to be keyed up.

Note that it is extremely important to get a high impedance Darlington with very low leakage current to make this circuit work properly. I originally tried three different single package Darlingtons with no success. The transistors used are readily available.
from Radio Shack and I recommend you use these exact components. (See timer module PC board and component layout.)

**operating bias circuit**

Operating bias is generated through use of a high-power 2N3055 NPN transistor (Q2) which is biased by a 1-watt zener diode to function as a high power zener (see fig. 1). This circuit includes readily available components and provides an easy way to adjust the bias voltage merely by changing the 1-watt zener diode between the base and collector of the 2N3055. This amplifier is biased with 8.2 volts which results in a 40 milliampere zero signal resting plate current.

This circuit is much easier to work with than the more conventional 50-watt zener diodes. Here in the Midwest the 50 watt TO3 case zeners are very expensive special order items.

The bias circuit also has a 1.5 amp fuse to protect against excessive current. The current flowing through this circuit is the sum of the plate and grid current drawn by the tubes.

In the standby mode, the amplifier is biased to cut off (i.e. zero static plate current) by voltage generated by the current flow through the 39K resistor, R4. The resistor is shorted in the transmit mode by a set of contacts on the RF input relay RL1.

The bias circuit in the amplifier has been constructed as a single module. The module is located on the side wall of the cabinet next to the tube sockets and RF choke RFC5. (See bias module PC board and component layout.)

**metering circuits**

Metering is provided for plate current, grid current, high voltage, and filament voltage.

Plate current is monitored at all times. This meter is in series with the B- lead.

The other metered values are selected on the multimeter. The meter can be anything from a 100 microampere meter to a 5 milliampere meter full scale. You can make any of the meters work by choosing the proper calibration resistor. I used a 1 mA movement.

Grid current is measured by monitoring the voltage across the 10-ohm resistor (R1) through which grid current is drawn (refer to the discussion on the grid-trip module). Trimpot R3 is used to calibrate the meter to read full scale when 100 milliamperes is drawn through R1.

High voltage is measured by monitoring a low voltage value developed by a voltage divider in the power supply. This voltage should be kept very low since it is sent through the control cable that connects the amplifier to the power supply.

Filament voltage is very simple to monitor (see fig. 5) and often an ignored value in amplifier designs. A filament voltage that is too high can lead to premature tube failure. The meter has been calibrated from 10 to 15 volts. A 9.1 volt zener diode and a silicon diode are used to convert the AC filament voltage to DC and allow the bottom scale on the meter to be approximately 10 volts. No current flows in the metering circuit until the voltage across the zener diode exceeds 10 volts. (See filament voltage metering PC board and component layout.)

Labeling the meters takes a lot of patience but really contributes to the appearance of the amplifier. It is necessary to choose a meter with an analog scale that has the correct number of divisions. However, the meter labeling makes no difference. In a very clean environment, remove the meter plate from the meter.
Timer module (component view).

FILAMENT VOLTAGE 13.6 VAC

CR1 CR2

item description
CR1 100 PIV/2.5A (Radio Shack #276-1116)
CR2 1 volt Zener diode (Radio Shack #276-562)
R1 75K potentiometer/1/4-watt

fig. 5. Filament voltage metering circuit.

Any markings on the meter can be removed with a pencil eraser. Rub lightly, but be persistent. The markings will come off the face leaving a clean surface to which the number and letter markings can be applied. I use dry transfer lettering to mark the meter plates to reflect the scales I want to read. Dry transfers are now available from Radio Shack but the letters may be too large for small meters. Varied assortments of smaller letters are available from most art supply stores.

RF relay sequencing

It is important to properly sequence the input RF relay (RL1) and the high power output vacuum relay (RL2) to insure that the antenna is always connected to the amplifier before RF drive power is applied. This

fig. 6. RF relay sequencing circuit.
50 dB GAIN
OVER A 1/4 WAVE WET NOODLE!

It sounds ridiculous doesn’t it? Amateur Radio advertising is not exempt from exaggeration. When facts are distorted by fabrication you may be induced to buy a product that ultimately is incapable of meeting the performance claimed by the manufacturer. Caveat Emptor (buyer beware)

The AEA IsoPole antenna has 3 dB gain over a dipole in free space. This is an honest and supportable claim. Yet other manufacturers claim as much as a 7 dB gain for their antennas using no reference standard or a 1/4 wave antenna as reference. The 1/4 wave is not a recognized reference used by reputable antenna engineers because it is most difficult to properly decouple in a repeatable fashion.

The IsoPole antennas offer the maximum gain attainable for the length of antenna. This is a bold statement and one we know we can stand behind!

For any linear array antenna to outperform the IsoPole by 3 db or more on-the-horizon gain, it would have to be at least 20 feet long! Anything less and you can bet that advertising deception is being used.

Before you buy a VHF or UHF base station antenna, get some good honest facts about VHF antenna design. Send for your FREE copy of “Facts About Proper VHF Vertical Antenna Design” by Professor D.K. Reynolds, K7DBA. You’ll be glad you did.

In the meantime, we would like to expose you to some of the comments we have received from customers that are using the IsoPole:

Seattle, WA — Compact & easy to install, quality & keeps XYL happy -looks good! Half Moon Bay, CA — Found repeaters I only heard about before and my QTH — Excellent. Amazed at light weight and low cost... Sturgis, SD — The IsoPole Antenna has exceeded my expectations. Lumberton, NC — You really do what you say! The best 2 mtr. antenna I have ever owned!

La Habra, CA — Hooked up today, and it was a perfect match throughout the entire band. For the money, you can not go wrong.
Tok, AK — Truly a fine antenna, working better than the five element yagi it replaced.
Sacramento, CA — Assembly was remarkably easy, I needed an efficient, low profile antenna & your product fit the bill to a "T".

Warsaw, IND — AMAZED!!! Antenna ground mounted on required mast & outperforming a 5’ at 55’ on top of tower.

Loris, SC — I’m a commercial radio salesman, and the IsoPole is THE antenna I recommend.

Seattle, WA — Works well — excellent. Had (R.R.) at 80'. With the IsoPole at 20 ft. I now hear repeaters and simplex I never heard with (R.R.) The IsoPole will soon be at 80

Freehold, NJ — It is everything your ad says and more.

Great Neck, NY — Amazing difference between (R.R.), 10 db or better, raise rept. never heard before — SUPER, 73 and thanks.

Richfield, OH — Works extremely well, broke a repeater at 100 mi using 150 mw !

Vernon, TX — (The dealer) said the antenna WAS THE BEST ON MARKET and I AGREE! It IS AN EXCELLENT antenna & works to specs -Thanks.

Prices and Specifications subject to change without notice or obligation.

Henry Radio stocks and displays the most complete line of RTTY, AMTOR, printers and peripherals, all available for "hands on viewing". Veterans in RTTY, George Sanso (AB6A) and Boyd Crawford (K6RD) have set up a comprehensive display of RTTY AND AMTOR sending and receiving units that are actually "on the air". Stop by if you're in the area or call or write for literature and information. Henry Radio is a specialist in all types of teletype equipment, including commercial applications.
is accomplished by closing the output relay RL2 slightly before the input relay RL1.

The R1-C1 combination, shown in fig. 6, causes RF relay RL1 operation to be delayed with respect to RL2.

I checked the timing by applying a small voltage across the contacts of both RL1 and RL2 and watching the voltages on the scope as the amplifier was keyed up. The output relay RL2 closes approximately 25 milliseconds before the input relay RL1. The timing constant provided by R1-C1 is subject to change depending upon the type of relays used for RL1 and RL2.

**lead filtering**

All control and power leads entering or leaving the RF deck are filtered. This is accomplished through the use of small coils made by winding 10 turns on a 1/4-inch (6.35 mm) diameter ferrite rod. A bypass capacitor is included on each coil to ground. Locate each filter as close to the rear panel as possible.

Also, feedthrough capacitors are used to filter all leads from the under chassis RF section of the amplifier to the front section meter compartment (see bottom view of the amplifier). All circuits that are sensitive to RF are mounted in this front compartment.

**Pi-L tank circuit design**

The tank circuit uses the popular Pi-L design for two reasons. First, a Pi-L gives approximately 15 dB better attenuation of the second harmonic over a more conventional Pi design. Secondly, a Pi-L allows use of a lower value plate tuning capacitor for the circuit.

The design parameters for the Pi-L circuit are provided in table 1 (see also reference 3). The values shown in table 1 are for a plate impedance of 1200 ohms.

\[
\text{plate impedance} = \frac{\text{plate voltage}}{(1.57 \cdot \text{plate current})} = \frac{2250}{(1.57 \cdot 1.2)} = 1194.3
\]

Because of a limitation of 500 pF for the plate tuning capacitor C1, the design for 160 meters is for a plate impedance of 2500 ohms. This translates to 570 mA plate current at 2250 volts or 1289 watts input. This provides about 700 watts output. I felt that this was sufficient power. If full power is desired on 160, some method of adding additional capacitance is needed.

Several coils are required to obtain the desired inductance. Specifications for these coils are contained in table 1. Note that the 160 meter and L coils are wound as toroids for compactness. Also, the self-shielding characteristics of the toroids help especially in isolating the L coil from the rest of the tank circuit.

It has become apparent to me that the one place most Amateurs feel uncomfortable is designing and installing the tank circuit in an amplifier. There always seems to be uncertainty about where to tap the coils to achieve the desired design no matter how many times you do it.

I first use a Heathkit impedance bridge to determine the approximate capacitance at various settings of the tuning knobs. I then take a high-tolerance fixed capacitor and connect it in parallel with the tank circuit at different points to determine approximate inductances of the coil set. This is done with the coil set in place in the amplifier, but with the plate and load tuning capacitors disconnected. The tubes are also re-

---

**table 1. Pi-L tank circuit values.**

<table>
<thead>
<tr>
<th>F(MHz)</th>
<th>C1</th>
<th>C2</th>
<th>L1</th>
<th>L2</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8*</td>
<td>462</td>
<td>2121</td>
<td>22.02</td>
<td>8.90</td>
<td>13.1</td>
</tr>
<tr>
<td>3.5</td>
<td>469</td>
<td>1443</td>
<td>6.25</td>
<td>4.45</td>
<td>13.4</td>
</tr>
<tr>
<td>7.0</td>
<td>235</td>
<td>656</td>
<td>3.23</td>
<td>2.44</td>
<td>12.4</td>
</tr>
<tr>
<td>14.0</td>
<td>116</td>
<td>320</td>
<td>1.65</td>
<td>1.24</td>
<td>12.2</td>
</tr>
<tr>
<td>21.0</td>
<td>77</td>
<td>213</td>
<td>1.10</td>
<td>0.83</td>
<td>12.2</td>
</tr>
<tr>
<td>29.7</td>
<td>54</td>
<td>146</td>
<td>0.80</td>
<td>0.60</td>
<td>12.0</td>
</tr>
</tbody>
</table>

*R1 = 2500 ohms  I = 570 mA or 1289 watts input (1200 ohms for all other frequencies)

**Coil description:**

28 MHz - 3/16 inch tubing; 3-1/2 turns with 1-3/4 inch diameter
21 to 3.5 MHz - 3/16 inch tubing; 14 turns with 2-3/4 inch diameter
   taps: 21 MHz - 1-1/2 turns
   14 MHz - 3-1/2 turns
   7 MHz - 7-1/2 turns
   3.5 MHz - 13-1/2 turns
1.8 MHz - toroid; 3 x T200-2s covered with fiberglass tape; 26 turns

**L-coil**

28 to 21 MHz - No. 12 tinned wire; 1-1/8 inch diameter, 5 turns
   taps: 28 MHz - 3 turns
   21 MHz - 5 turns
14 to 1.8 MHz - toroid; 2 x T200-2S covered with fiberglass tape; 17 turns
   taps: 14 MHz - 2 turns
   7 MHz - 6 turns
   3.5 MHz - 9 turns
   1.8 MHz - 17 turns
The next step is to put a 50-ohm carbon composition resistor on the output of the tank circuit to simulate an antenna load. Then set the tuning capacitors at the design values for the band being considered, allowing approximately 12 pF for tube interelectrode capacitance. Using the grid dip meter, locate the tap on the coils to obtain resonance of the circuit. The approximate setting was determined by measuring the inductance at various points with the fixed capacitor, earlier.

This method of finding where to tap the coils is effective. In operation, the setting of the tuning capacitors is almost exactly where I had predicted, using the procedure described above.

I recommend that you go through this procedure even though I have presented, in table 1, a design complete with taps. Variations in physical layout of the inductors and stray capacitances unique to any single amplifier could affect the exact tap settings in the Pi-L tank circuit.

**Input network**

The input network is designed for a Q of 1. The network, ganged to the main bandswitch, provides a separate pi-network section on each band. Table 2 summarizes the component values for each pi-section.
Attention
Moonbouncers
and Satellite Communications Enthusiasts

Introducing New Ultra High Performance Antennas from KLM Electronics, Inc.

KLM Electronics is fueling the Moonbounce and Oscar 10 revolution with Antenna Equipment that delivers truly Out-of-This-World performance.

For the Moonbouncer, our New 2M-16LBX is designed to be the highest gain 2 meter antenna available on the market today by more than a full db, making the 2M-16LBX an outstanding performer as a single antenna or in Moonbounce (EME) arrays.

The New 432-30LBX follows the same pattern as the 2M-16LBX, and soon will become the industry's standard of comparison.

Featuring straightforward construction, and an innovative tapered boom that greatly reduces windload and adds strength and durability. Virtually unbreakable, insulated, 3/16' rod parasitic elements are anchored through the boom to insure years of trouble-free performance.

For the satellite enthusiasts, the 2M-22C high gain 2 meter, circular polarized antenna, features the same rugged construction and total flexibility as our very popular 2M-14C with a 2db increase in gain.

Four or more 2M-22Cs make an excellent array for Moonbounce (EME) by eliminating Faraday fading.

Fiberglass/aluminum stacking frames are available as well as 2 and 4 port power dividers and phasing harnesses to optimize the performance of these type arrays.

Watch for our new elevation drive system coming soon.

---

**432-30LBX**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>430–440 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>17.3 dBi</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>(E) 19°, (H) 20°</td>
</tr>
<tr>
<td>Feed Imp</td>
<td>50 ohms unbal.</td>
</tr>
<tr>
<td>Balun</td>
<td>Included</td>
</tr>
<tr>
<td>Boom Length</td>
<td>21 ft. 11 in.</td>
</tr>
<tr>
<td>F/B</td>
<td>20 dB F/S</td>
</tr>
<tr>
<td>VSWR</td>
<td>30 dB</td>
</tr>
<tr>
<td>Windload</td>
<td>1.71 sq. ft. (max.)</td>
</tr>
<tr>
<td>Turning Radius</td>
<td>12 ft. 4 in.</td>
</tr>
<tr>
<td>WT. (lbs)</td>
<td>9 lbs.</td>
</tr>
</tbody>
</table>

**2M-22C**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>144–148 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>13 dBi</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>(E) 32°, (H) 32°</td>
</tr>
<tr>
<td>Feed Imp</td>
<td>50 ohms unbal.</td>
</tr>
<tr>
<td>Balun</td>
<td>(2) 4:1 coaxial</td>
</tr>
<tr>
<td>Boom Length</td>
<td>19 ft. 1 in. (tapered)</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Windload</td>
<td>1.85 sq. ft. max.</td>
</tr>
<tr>
<td>Ellipticity</td>
<td>± 1.5 dB max.</td>
</tr>
<tr>
<td>Circularity Switcher</td>
<td>CS-3 included</td>
</tr>
<tr>
<td>WT. (lbs)</td>
<td>11 lbs.</td>
</tr>
</tbody>
</table>

**2M-16LBX**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>144–146 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>(144 MHz) 14.5 dBi</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>(E) 26°, (H) 29°</td>
</tr>
<tr>
<td>Feed Imp</td>
<td>50 ohms unbal.</td>
</tr>
<tr>
<td>Balun</td>
<td>4:1 coaxial, 2 KWPEP</td>
</tr>
<tr>
<td>Boom Length</td>
<td>28 ft. 1 in. (tapered)</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Windload</td>
<td>(H) 4.75 sq. ft. (V) 2.44 sq. ft. max.</td>
</tr>
<tr>
<td>WT. (lbs)</td>
<td>10 lbs.</td>
</tr>
<tr>
<td>Turning Radius</td>
<td>15 ft. 5 in.</td>
</tr>
</tbody>
</table>

See the complete line of KLM antennas and equipment at your local dealer, or write for our catalog.

*To provide a more accurate and consistent gain figure, performance of this KLM antenna has been carefully measured and correlated in accordance with National Bureau of Standards Note #688. This gain figure may appear somewhat conservative when compared with others commonly found in conventional industry literature and based on older, less exacting rating methods.*
The coils are wound on T68-2 toroid cores. Input impedance for a pair of 3CX800A7s is approximately 29 ohms. The input network is important not only for impedance matching for the exciter but also to minimize distortion products.

Fine tuning of the networks can be accomplished by either spreading or compressing the coil turns on each core for minimum SWR on each band, respectively. Exact replication of the network from table 2 may still require some small adjustment due to variations in component tolerances and differences in physical layout.

The network is built as a module on a separate PC board. A board layout has been provided.

cooling

Sufficient cooling is essential in any high power amplifier. The 3CX800A7s require forced-air cooling to maintain the anodes and seals of the tubes at safe operating temperatures.

The specifications for cooling are summarized as follows:

<table>
<thead>
<tr>
<th>Dissipation (watts)</th>
<th>Flow Rate (cfm)</th>
<th>Water Pressure (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>7</td>
<td>0.10</td>
</tr>
<tr>
<td>600</td>
<td>14</td>
<td>0.23</td>
</tr>
<tr>
<td>800</td>
<td>23</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Refer to the 3CX800A7 technical sheet for more information on cooling at different altitudes.

The blower used in this amplifier is a Dayton model 4C004 which is capable of supplying 45 cfm at 0.4 inch static pressure. The operating speed of the blower is 2880 RPM, which is slow enough to assure relatively quiet operation.

To obtain the legal 1500 watts output requires that the amplifier run at approximately 2500 watts input assuming 60 percent efficiency. This means that the amplifier is dissipating about 1000 watts which is well below the capabilities of the tubes.

The blower mounts on the rear panel of the amplifier and blows air into a pressurized chassis. The air vents up through the tube anodes and out the top of the cabinet. I plan to eventually make a duct flange to mount in place of the blower on the rear panel and remote the blower where it can not be heard. Flexible hose will duct the air from the remote blower to the amplifier.

high-voltage power supply

One key to optimal performance of any amplifier is the power supply. It takes a supply that not only holds regulation under maximum current draw but also can supply the needed current. This translates to a quality transformer and plenty of filter capacitance. This is the area in which many commercial amplifiers fall short.

The circuit for the power supply is shown in fig. 7. The supply operates off of 240 VAC and incorporates a step-start circuit. When the HV switch is pushed on the front panel of the amplifier (assuming the warmup time delay has expired), 110 VAC is returned to the power supply to actuate the mercury plunger relay, RL1. This sends 240 VAC to the HV transformer through the dropping resistors R1 and R2. This avoids...
a current surge in the supply to charge the 53 μF filter capacitor, C1. A surge could damage the diode bank. After approximately 2 seconds, relays RL2 and RL3 actuate to short out resistors R1 and R2 thus turning the HV supply on to maximum voltage.

The 2-second delay is accomplished by the time constant set up by R3 and C1. 110 VAC is rectified using diode CR5 and proceeds to charge capacitor C1. When the DC voltage on C1 reaches approximately 60 VDC, the DC relays RL2 and RL3 close (relays RL2 and RL3 have 90 VDC coils). This takes about 2 seconds.

Metering is accomplished across the voltage divider created by the 103K bleeder resistors and the pair of 225 ohm resistors. This drops the voltage in the control cable to the amplifier to approximately 5.5 volts. A voltmeter is also included in both the RF deck and power supply cabinets. Note that the meter calibration pots must be adjusted together since they affect one another.

The plate transformer used in the HV power supply was supplied by the Peter Dahl transformer company. A 2.8 kVA CCS hypersil unit is designed specifically for a pair of 3CX800A7s; the unit, now a stock item, is available at a reasonable price. Under no-load conditions, the supply provides 2520 volts. Under a load of 1.2 amperes, the transformer output voltage drops to about 2300 volts! If you want the most out of an amplifier like this one, you need a power supply with a transformer of this high quality.

Peter Dahl also stocks a filament transformer for a pair of the 3CX800A7s (13.6 volts at 3.0 amperes). Both the filament transformer and the plate transformer are well worth the investment. At the time of this writing, Peter Dahl also stocked the 53 μF filter capacitors rated at 5 kV.

**concluding remarks**

Building around the 3CX800A7s is a real pleasure. Their compactness and low voltage requirements open up a wide range of projects for compact amplifiers that do not have to sacrifice power capability. The thing that makes the tubes unique is that they are designed for full power operation up to at least 350 MHz.

My thanks to those who contributed so much to this project: Rich Rosen, K2RR, Bill Orr, W6SAL, Dan Redman, K8DR, and Peter Dahl. And last and most important, Jim Garland, W8ZR, who taught me how to build.

**references**


---

2500-volt high-voltage power supply. Cabinet is constructed from 1/8-inch aluminum panels joined with 1/2-inch angle stock.
As a leading manufacturer of precision motor drive systems, we believe the newly developed DR10 is the finest dual drive system for satellite antennas. To provide you the highest level of performance and convenience, the DR10 Dual Axis Rotor features:

- COMPACT CONTROL UNIT WITH SELF CONTAINED AC POWER SUPPLY
- SINGLE DUAL SCALE METER (AZIMUTH/ELEVATION)
- SINGLE 8 WIRE CONTROL CABLE (BELDEN TYPE)
- STANDARD TOWER TOP MOUNTING
- ACCEPTS 1½ INCH ANTENNA BOOM
- SERVICEABLE WITHOUT ANTENNA REMOVAL
- DYNETIC SYSTEMS' HIGH TORQUE, PRECISION GEAR MOTORS

- LIST PRICE LESS THAN TWO CONVENTIONAL ROTORS
- AVAILABLE FOR AUGUST DELIVERY

Our DR10 will out-perform any combination of conventional rotors popularly used, and is supplied ready to mount, including the rotor, control unit, and all stainless steel mounting hardware. (less cable)

For immediate ordering information, individuals and dealers call or write

612-441-4303

DYNETIC SYSTEMS
19128 INDUSTRIAL BOULEVARD
ELK RIVER, MN 55330
junk-box ingenuity: how to buy, use, and recycle surplus electronic parts

Don't throw away resistors and capacitors — cook them

At one time, a well-stocked junk-box was a ham's pride and joy. Parts scavenged from discarded televisions, radios, and record players could be used to build anything from test equipment to transceivers. Using vacuum tubes, 1/2 watt 10 and 20 percent resistors, ceramic disk and dipped mylar capacitors, almost any circuit could be built for use up through 450 MHz.

Today's junk boxes are different; chances are they contain odd parts from scavenged surplus boards or parts bought by mail or as assortments at hamfests. They contain various types of semiconductors, 5 percent tolerance resistors, electrolytic and tantalum capacitors, as well as the old stand-by ceramic disks.

Despite the differences in content, all junk boxes are alike in one regard: by definition, they are where parts are stored for long periods until used. Storage takes a toll on electronic components, although much of it is reversible; before examining this, let's consider the parts themselves.

The average ham always seems to be looking to buy new, prime, MIL-spec parts at hamfest prices. Unfortunately such parts are usually not available to the small buyer at any price, although some manufacturers will sell directly to individuals. As a result we buy blister-packed parts at Radio Shack, or by mail from any number of suppliers. While nearly all of these dealers are reputable, the parts you get may not always be exactly what you originally had in mind.

what is "surplus"?

Consider, for example, the origin of parts termed "surplus." Sometimes a company accidentally over-purchases some new parts and instead of paying a restocking charge, elects to sell them to a surplus agent; these are the parts you want. Sometimes a manufacturer discovers that a part from one company — often a semiconductor — works in their circuit, while another company's equivalent doesn't. If no other use for them can be found, they will either be thrown away or sold as surplus. (Since the fault lies within the idiosyncracy of the design, the parts are usually not returnable.) These may also be good parts. An important point to remember is that most large buyers of parts have sufficiently amicable relations with their suppliers to return good parts for credit.

There's another end of this spectrum: from time to time a manufacturer buys parts that don't meet specifications, but can't be returned for some reason. These will occasionally end up on the surplus market. A component manufacturer, for example, may produce a run of products that is not in "spec." While these are most frequently discarded (although garbage cans are sometimes raided) they may be sold to the surplus market. It has even happened that manufacturing runs of semiconductors have been stolen before testing and culling of rejects can be completed; obviously, you don't want these parts.

The surplus boards on the market are of a few basic types:

- those that have lived out their expected life and are now experiencing a high failure rate;
- boards made obsolete by a change in design;
- seriously damaged and therefore non-repairable boards (damage can include degradation of critical areas, such as gold fingers; submersion in a solder wave; cuts from a mass lead trimmer; or other actions rendering the board electrically unfixable);
- boards simply overbuilt by a company; now and then a manufacturer will sell boards from inventory to raise some cash.

While surplus boards should not be expected to perform their original design functions, chances are that most of the components on all but the first type listed are usable. Even the unfixable boards rarely have more than a few bad components.

By Bob Lombardi, WB4EHS, 1874 Palmer Drive, Melbourne, Florida 32935
In general, then, there’s no telling where “grab-bag” parts come from. They might be old or new, merely extras, or genuine junk. Given the diversity of parts from so many varied sources, it’s no wonder that we occasionally build a project and find that it’s a bad component that keeps it from working.

Take a clue from industry, then, and test your parts before using them. For ICs this may be impractical, but for many types of transistors, diodes, and, of course, resistors, capacitors, and coils, it is entirely reasonable.

**are they out of spec?**

Chances are that if you took out a DVM and tested every one of your ±5 percent carbon composition resistors, you’d find plenty of them out of tolerance. In particular, they’d all be on the high side of their marked value, perhaps as much as 7 to 10 percent above it. Don’t throw them out.

The reason for these high values is something I alluded to earlier: improper storage. Carbon composition resistors are essentially carbon and impurities mixed into a binder and molded into shape. The resultant mixture is hygroscopic — that is, it absorbs moisture, which raises the resistance value. This phenomenon is entirely reversible, if the parts have not been over a flow solder (or through any other high temperature operation) while loaded with moisture.

The importance of this consideration depends on the intended use. With the exception of precise RC timing circuits, digital circuits are quite forgiving of resistor values. Analog circuits can be fussier, especially those (such as audio filters) requiring balanced parts or matched values. Most other circuits are less particular. In designing homebrew circuits, you frequently make up for these parts by various means, making the actual value, even if it is “wrong,” the design value!

If you need to reverse the problem — i.e., lower the values — heat the parts to about 200 degrees F (93.3 degrees C) for a period of time appropriate to the size of the part: 25 hours for 1/8 watt, 50 hours for 1/4 watt, 75 hours for 1/2 watt, 130 hours for 1 watt and larger. If running your oven at 200 degrees for 50 hours or more is inconvenient or too expensive, you can construct a plywood box, line it with fireproof insulation, and add a light bulb or two for temperature control. Some experimenting is necessary for a controlled temperature, but I’ve seen similar boxes used by small companies for many purposes.

If you can’t control the temperature accurately, err on the side of too cool rather than too hot; waterlogged parts heated beyond the boiling point of water will explode like popcorn. Using lower temperatures will necessitate leaving the parts in longer; just how long can be determined by removing parts from time to time and checking values.

**handling capacitors**

Manufacturers of ceramic capacitors also recommend a heat soak of a day or two at 200 degrees F prior to critical value measurement, although I’ve never seen a problem with this in industry. One manufacturer recommends heat soaking at 125 degrees C for 4 hours or 150 degrees C for 1/2 hour. This “de-ages” the part to its original value and effectively begins its life anew.

Electrolytic capacitors deform with time as a result of a breakdown of the dielectric layer, and should be reformed before use. This is done by applying the rated voltage to the part for 30 minutes through a current-limiting resistor; 1 K ohm is adequate for up to 100 VDC capacitors. Let the part “rest” for a day at room temperature.

The small aluminum electrolytic capacitors popular today may not be much of a bargain if garnered from surplus boards. There are two reasons for this: first, they have a rated life of only 3 to 5 years, if run constantly; second, cleaning these capacitors in hot vapor degreasers will cause premature failure if the parts are not sealed with epoxy over the rubber seal plug on the cap. Of course, because you never know how used parts were handled, you’ll have to decide whether to use them or not.

Tantalum, silver mica, polyfilm, and most other capacitors tend to be more stable in storage if their hermeticity is good. In general, if a capacitor is so damaged that the plates are visible, it should be thrown out. Minor chips and cracks may not matter; obviously no electrolytic should be used if its case is punctured or badly dented.

**active devices require special handling**

Transistors, diodes, and ICs in epoxy packages are quite rugged, but only if the seals are good. Beware of ceramic or glass packages, which can have hairline cracks.

Enough has been written about static damage that all hams should be aware of it. But less widely known is electrical overstress (EOS) due to a static field, rather than a discharge. This causes operation to degrade gradually, resulting in “flaky” operation (subtle timing errors that occur intermittently, some “soft” RAM failures, and so on) until the system degrades to failure. The only solution to this problem is prevention; with parts bought from anyone other than the manufacturer, there can be no guarantee that electrical overstress has not occurred.

By the way, don’t think that this problem is only found in CMOS or MOSFETs. All semiconductor families, including bipolar, have been shown to be degradable by low-level fields of less than 1000 volts.
Announcing
DMM confidence

Our figures are in. The HP 3468A DMM reliability numbers indicate over 50,000 hours MTBF (Mean-Time-Between-Failure). Order now ($750*) and have one in your hands in just two weeks—that’s fast delivery for this 5½ digit DMM that measures dc and ac voltage and current, and two- or four-wire resistance with basic 0.007% accuracy. And, when needed, electronic calibration (no pots to adjust) is easy. You can even order a battery pack ($125*) for full portability. Order this outstanding bench DMM today and we’ll also send you information on how to integrate it into your own low-cost measurement system. Call your local HP sales office listed in the telephone directory white pages. Ask for the electronic instruments department.

*U.S.A. price only.

AMATEUR TELEVISION
ATV TRANSMITTER/CONVERTER
ALL YOU NEED IN ONE BOX
$399 delivered
TC-1 plus

- OVER 10 WATTS PEP OUTPUT. Crystal controlled continuous duty transmitter. Specify 439.25, 434.0, 426.25 standard or other 70 cm frequency. 2 freq. option add $26.
- BASE, MOBILE, or PORTABLE. Use the built-in AC supply or external 13.8 vdc. Do parades, Marathons, CAP searches, etc.
- TWO VIDEO AND AUDIO INPUTS for camera, TVRO, VCR, or computer. Wide bandwidth for broadcast quality color video and computer graphics. Standard broadcast subcarrier sound which is heard thru the TV speaker.
- RECEIVE ON YOUR STANDARD TV SET tuned to channel 3 or 4. Sensitive varicap tuned TVC-2L downconverter covers simplex and repeater freq. over the whole 420-450 mhz 70 cm amateur band.
- ATTRACTIVE 10.5 x 3 x 9 CABINET.

CALL OR WRITE FOR OUR CATALOG or more information on ATV antennas, transmit modules, cameras, etc. or who is on in your area. See chapter 14 1984 ARRL Handbook. TERMS: Visa, Mastercard, or cash only UPS CODs by telephone or mail. Postal money orders and telephone orders usually shipped within 2 days. All other checks must clear before shipment. Transmitting equipment sold only to licensed amateurs, verifiable in the 1984 call book.

(818) 447-4565 m-f 8am-6pm pst.
P.C. ELECTRONICS
Tom W6ORG Maryann W8YSS
2522 Paxson Lane
Arcadia CA 91006

(Actually, once you’ve read some of the literature available on this topic, you begin to not want to handle semiconductors unless you’ve strapped yourself to a conductive table top with No. 2 battery cables.) If you’ve measured parts and found them to be well out of spec, it may pay to consider the accuracy of your measuring device. Your meter (DVM, cap meter, LCR bridge, or other instrument) also has accuracy tolerances, and can overlap with the part being measured. If your meter is rated ±3 percent, for example, and is running at the high end of its tolerance, any parts that are only 2 percent higher than their rated value will appear to be 5 percent above, and thereby possibly out of spec. It’s no wonder that calibration is so highly stressed in high quality operations!

Yet another factor is test method. Consider a common case: that hypothetical DVM you’re using probably applies about 1 to 1.5 volts to a resistor during ohm measurement, and reads the current flowing in the circuit. With low value parts, such as those of 10K or less, this is fine; assuming 1.5 volts, the current being measured is 150 microamperes. With parts over 100K, say 1 megohm, the current is 1.5 microamperes; this is somewhat harder to measure accurately, especially the detection of small differences in current. This is one reason why exacting specifications for resistor tests call out higher voltages for measuring larger value resistors.

Although this article might seem to emphasize problems — first telling you to measure your parts, then urging you to doubt your results — that’s not at all my point; what I’m suggesting is that in order to buy parts intelligently, it helps to know where they came from and what to do with them when problems arise.

It seems strange to me that homebrewing should be on the decline today; this should be a “Golden Age” of homebrewing if there ever was one! Why? Just look at what’s available! ICS that perform all manner of digital and analog functions are at our disposal, and most are quite cheap. Using reasonable parts counts, we can build circuits capable of performance that was no more than the stuff of dreams in the 1950s and 1960s; in the 50s, who would have dreamed of a 3-terminal voltage regulator! We can even build things more cheaply today than we could then; just look at old issues of the several Amateur Radio magazines, and you’ll find that the dollar prices of gear are essentially the same now as they were in the mid-1960s; taking inflation into account, prices have come down considerably, while performance has gone up.

Keep a well-stocked junk-box, know what’s in it, and do your part in restoring the Golden Age of homebrewed gear!

ham radio
SATELLITE HANDBOOKS

INTRODUCTION TO SATELLITE TV

by Chris Bowick, W9DC, and Tim Keary, N2KL

Forty years ago, the most sophisticated piece of electronics in the average home was an AM radio. Today, many homes are set up with state-of-the-art receivers designed to pick up signals from satellites orbiting 23,000 miles in space. Instead of getting into a nuts and bolts approach to TVRO, this book gives you a general overview of what TVRO is all about. Chapters 2 and 4 give you a broad overview of the equipment used to transmit and receive TVRO signals. Chapter 3 deals with servicing satellites and a glossary of TVRO terms. 1st 1983, 142 pages. $21.97

THE SATELLITE TV HANDBOOK

by Anthony T. Easton

Answers virtually any question you might have on satellite TV. This new book goes you a complete overview of the satellite service, how satellites work, what programming is available, who the various satellites, networks and stations, how to engineer and install a system, and the legal background of TVRO for the "homebrewer", there is a section on building your own TV dish and receiver for around $50. You also get a section about the non-television services from satellites: radio, weather, and navigation on existing international satellites. 1st 1983, 485 pages, 1st edition. Softbound $16.95

GUIDE TO UTILITY STATIONS

by Thomas Harrington

Tuning in to the different services is the best way to keep abreast of all the latest news developed by hundreds of news service babyrega stations operate around the clock from all parts of the world. Stations are listed by time and frequency for easy locating. Also gives plenty of helpful hints on the ins and outs of TVRO equipment and other "tricks of the trade." 1st 1983, 4th edition. Softbound $8.95

VHF-UHF HANDBOOK

by G.R. Jessop, G6JP

This revised 4th edition is jam-packed with circuits, antennas, converters, cables, and much, much more. Practical theory and construction covers more than 70 MHz to 24 GHz. The chapter on Microwaves, 86 pages expanded to 83 state-of-the-art pages. Receiver and transmitter for all VHF and UHF bands are covered in 181 pages. The balance of this book contains information on propagation, tuned circuits, space communications, filters, test equipment, antennas, plus a handy easy-to-use section. Equipment designed for the British 4 meter band can be adapted fairly easily to the U.S. 6 meter allocation. 1st 1983, 512 pages, 4th edition. Hardbound $17.50

INTRODUCTION TO AND THE OPERATION OF AMTOR

by Phil Anderson, W9DI

Here’s a great new book to answer all of your questions about AMTOR, Amateur Teletype Over Radio. It’s the error free mode of Amateur communications. AMTOR is a special form of RTTY, radio telegraph, that uses a seven bit code and a special operating procedure. TDF, Teletype Over Radio, was first developed for ship-to-shore communications where reliability is an absolute must. AMTOR allows hams to take advantage of this unique technology and benefit from reliable, nearly 100% error-free communications. Phil Anderson covers all the easy-to-read description of the basics of AMTOR, how to set up a station, equipment, operating procedures, software and theory of operation. From there it’s up to you. AMTOR station and running. This is the only book of its kind available today. 1st 1983, 1st edition. Softbound $3.95

WIND/SOLAR ENERGY FOR RADIO COMMUNICATIONS AND LOW POWER ELECTRICAL SYSTEMS

by Edward M. Cohen, N4XX

Author Noll’s book is your first step towards energy independence. Chapter 1 covers solar energy and its use as transmitter converters. Chapter 2 tells how to convert wind power into energy. Chapter 3 deals with the systems required to store the power and how to run a wind powered station. Chapter 4 discusses various power storage systems. Chapter 5 deals with the large practical applications that we may see as future power sources. Take advantage of cheap solar panel system prices and put them to work. 1st 1981, 2nd edition, 264 pages. Softbound $12.95

Please add $2.50 for shipping and handling.

IC VOLTAGE REGULATOR SOURCEBOOK WITH EXPERIMENTS

by Vaughn Martin

Power supplies have changed quite a bit since the days of mercury vapor tubes. This new book was written to introduce you to modern IC voltage regulators. In depth coverage includes transformers, rectifiers, filters and semiconductors with special attention to temperature compensated zener diodes, bandgap references, avalanche diodes and voltage and current differencing op-amps. You also get plenty of practical projects and experiments. Invaluable as a source book for hobbyists and experimenters as well as professional technicians and electronics engineers. 1st 1983, 264 pages. $18.75

2ND OP

by Jim Raftery, NBJR

The 2nd Op is an indispensable operating aid for all Radio Amateurs. It’s the only book on how to operate from an extended, remote, zone, country, band heading, time differential, positions, QSOs and QSLs, reports and the official pre-printed call list. Every ham needs a 2nd Op. Order yours today. 1st 1981, N9BJR’s 1st Edition. Softbound $4.95

RADIOS THAT WORK FOR FREE

by K. F. Edwards

It’s not often that you can get something for nothing in this world. This book will tell you how to come as close to it as possible. "Radios That Work for Free" tells you how to build several circuits, each of which will provide you with electronic news and entertainment while using only the intercepted power of the station itself. The parts used are inexpensive, or if you are a good bargain hunter and a savvy expert, you’ll find most of the parts for free, just as the signals are. Descriptions are amply complete. More than just a dip into notation, the book is a lesson in basic radio principles and techniques — and you can dance to these new designs. 1st 1977, 127 pages. Spiralbound $5.00
Production Expertise And Service Integrity
Form The Foundation For Your Long-Term Satisfaction

The fact that the Computer Patch Interface unit by Advanced Electronic Applications, Inc. is known as the best value on the market is no accident. The CP-1 was designed by Al Chandler, K6RFK (PHD-E.E.), an active RTTY user since 1963.

Given a cost per unit budget for the CP-1, Al designed as much performance as possible into the Computer Patch, including a unique new tuning indicator, referred to by one of our customers as the "Dead Eye Dick" tuning indicator. This indicator is ideal for RTTY and CW, in that it is both fast to tune and (within 10Hz) as accurate as scope tuning. It also performs under poor signal to noise conditions in which other indicators provide no useful data.

Al's variable shift tuning was designed to move the space filter center frequency from 2225 Hz to 3125 Hz without changing the bandwidth (by varying the Q of the filter). All this is accomplished using a precision ganged potentiometer to assure proper tracking of the multiple filter stages. We could have used a pot costing a tenth as much by simply using a two-pole filter design, but we feel the advantage of a sharper filter reduces the noise bandwidth significantly and allows the variable shift control to be used like passband tuning for extra elimination of adjacent channel interference.

Some manufacturers are concerned that amateurs might try calibrating their own equipment and, therefore, have used non-adjustable components, which results in sub-optimal performance. Although more costly, trimpots used in AEA equipment allow factory adjustment for performance to design specifications. Competently designed active filter circuits need not be adjusted after leaving the factory; however, for specialized use the owner can easily change filter parameters.

Mindful of the fact that many of our customers are new to RTTY, Al made the CP-1 tuning as forgiving as possible, while providing the most critical operator a piece of equipment in which he could be proud. Even old "pro's" are surprised at the poor signal conditions under which the CP-1 will still provide good copy.

You can now experience the BEST RTTY, CW, and AMTOR offered. Couple the CP-1 with our new AEASOFT™ software packages designed for the MARS, SWL, or amateur radio operator, and you will feel a pride reminiscent of what "made in U.S.A." brought in years gone by. Please do not hold the low price of the CP-1 against us. This is one case where you get much more than you pay for relative to any of the competitive units. For more information send for our FREE catalog. Better yet, see your favorite dealer.

MIDWEST AMATEUR RADIO SUPPLY
3456 Fremont Avenue, North
Minneapolis, MN 55412
Store Hours: Mon.-Fri. 9-6, Saturday 9-3
For service call: (612) 521-4662
For orders call: 1-800-328-6365

AEA Brings you the Breakthrough!
constructing air-wound coils

Build your own for high Q, low cost

For the lack of a proper coil, a project such as an amplifier, tuner, or antenna, may be slowed down or stopped. If your local supply house doesn’t stock coils and if you don’t want to order by mail, you can wind your own.

Using this simple technique, professional looking air inductances (fig. 1) 2 to 4 inches (5 to 10 cm) in diameter with wire sizes No. 8 to No. 16, can be fabricated, at a cost of no more than about 25 percent of commercial coils.

easily obtained materials

This method is based on the use of a wood cylinder commonly called a mandrel (fig. 2). Fig. 3 shows the dimensions of wood blocks which will produce a mandrel to fabricate 3-inch (7.6 cm) diameter coils. I have three such mandrels, 2, 2-1/2, and 3 inches (5, 6.4, and 7.6 cm) in diameter. This selection accommodates all my coil needs. Fig. 4 shows the dimensions of a 3-inch (7.6 cm) diameter mandrel, in finished form.

Several choices of wire are appropriate. You can use the bare, soft copper wire (grounding wire) available in many sizes at building supply houses, or plastic covered solid wire stripped of its insulation. Enamelled wire works well, but may present a problem if you intend to solder taps on the coil; the enamelled insulation is difficult to scrape off. Tinned copper makes especially good looking coils, but while it’s easy to solder, it may be difficult to obtain.

The coil supports are glass epoxy board cut into strips 12 inches (30 cm) long, 1/2-inch wide (13 mm) by 1/16-inch (1.6 mm) thick. I use discarded printed circuit board material, which can be cut easily with a hack saw. Just insert the blade of a knife under the copper foil and peel it off. Any remaining holes in the board will be filled with epoxy cement.

Sand one side of the PC board strips to remove the glaze and improve the bond between the cement and board. Do not use plexiglass or equivalent, which will deteriorate with exposure to heat or sunlight.

Other materials needed are 5-minute epoxy cement, kitchen type wax paper, some wood screws, a few rubber bands, and twine or plastic covered hook-up wire, the diameter of which will determine the wire spacing.

fabricating the mandrel

Fig. 3 shows two blocks of wood held together with wood screws. The screw heads are counterbored deeply enough to prevent interference with the turning operation on the lathe. Place the assembled block in a metal or wood turning lathe on the indicated centers. Shape this assembly into a tapered cylinder — while the tapered dimensions are not critical, tapering is necessary — per fig. 4. This is a simple job. If you don’t have a lathe, a friend with a lathe should be willing to do this for you.

Grooves are cut using a table saw with a dado cutter of correct width. The insulating strips must fit loosely in these grooves; observe the tolerances shown in fig. 4. Grooves can also be cut with an ordinary blade on the circular saw by setting the blade to the proper depth. Cut one blade width at a time, rotating the mandrel to widen the groove progressively until it is wide enough. Because of the limited space available on its circumference, a 2-inch (5 cm) diameter mandrel can have only three grooves. These cannot cross the diagonal split; if they did, the mandrel would not slide apart. The finished mandrel is a cylinder split diagonally and tapered from one end to the other. It will slide apart freely after the coil has been wound and cemented.

winding the coil

Take the mandrel apart and insert three layers of wax paper between the two halves. This paper will allow the mandrel to slide apart easily. Put the man-

By Paul A. Johnson, W7KBE, 10817 Brookside Drive, Sun City, Arizona 85351

fig. 1. Finished coil on mandrel.
drel together with the screws and cover it with wax paper, allowing an overlap of about 1.5 inches (3.8 cm). Lay the glass epoxy strips (or cut epoxy board strips) in each groove, sanded side up, over the wax paper; they should fit in the grooves loosely, with play in the width as well as depth. Slip several tight rubber bands over the mandrel to keep the wax paper and strips in place. Center the strips and paper on the mandrel lengthwise.

Calculate the length of wire and twine needed to wind a 12-inch (30 cm) long coil by multiplying the number of turns you need times circumference of the mandrel. While you may not need this much coil, the leftover stock can be used for your next project and it’s better to cut a piece too long than too short. Anchor one end of the wire securely, working outdoors if necessary for sufficient work space. Stretch the wire to remove all bends and kinks, then polish the wire with sandpaper for an attractive appearance. The epoxy cement will adhere better to the polished wire than to unpolished wire, and if you have to tap the coil, soldering will be easier.

Bend a hook in the free end of the stretched wire and fasten this hook to the wood mandrel, about 1.5 inches (3.8 cm) from one end with a wood screw. Lay out a length of twine the same length as the copper wire. Then wind the wire and twine on the mandrel tightly, parallel, removing the rubber bands as the winding progresses. The wound wire will hold the wax paper and strips in place. Wind the wire and twine tightly against each other to insure accurate spacing.

After the wire and twine are completely wound, fasten the wire to the mandrel with another wood screw, and remove the twine. Mix and apply only enough 2-part epoxy cement to cover one insulating strip sparingly, with no excess cement on the wax paper. If you’ve maintained the proper clearances on the wood mandrel, the insulating strip should move freely under the wire. Slide the strip back and forth, distributing the cement evenly between the wire and strip. Let it set for 5 minutes. Cement the other strips at 5-minute intervals. When cementing is complete, set the project aside overnight to allow the cement to harden completely.

**removing the mandrel**

Remove all wood screws anchoring the wire and holding the mandrel together. Place the mandrel vertically, larger end down, on the edge of a table. (The table should support the mandrel only up to the edge of the split.) Hit the smaller diameter split end with a block of wood. The mandrel will then slide apart easily. You now have a finished coil.

**the end product**

If you feel the finished coil needs more support, another layer of epoxy cement can be applied to each strip. I cement another strip on the coil for mounting purposes; this also makes a structurally stronger coil. In addition to strength and stability, this home-built coil offers high Q dissipating very little power even at the kilowatt power level. I have used coils built by this method in my trapped dipoles, antenna tuner, and final amplifier, with great success.

---

**fig. 2.** Finished coil with the mandrel removed and disassembled.

**fig. 3.** Wood blocks before turning. Offset turning centers are necessary to obtain a tapered split.

**fig. 4.** After the lathe turning operation, the mandrel is round and slightly tapered.
**DRACE MN75**

**ANTENNA TUNER**

The Drake MN75 matching network will optimize your system performance with a surprising range of features and flexibility. From 1.8 to 30MHz., the MN75 matches balanced lines, coaxial lines, or random wires. (Optional B-1000 balun required for balanced lines.) RF output and VSWR readings are available at the push of a button. The rugged MN75 is rated at 200 watts continuous duty and features antenna switching as well as bypass capability. Get maximum power to your antenna system with the Drake MN75.

**DRACE SP75**

**SPEECH PROCESSOR**

The Drake SP75 Speech Processor packs the punch it takes to be heard! The SP75 is an RF type speech processor designed to give your signal that needed boost when the going gets tough. Connect the SP75 between your microphone and your Drake TR7 or TR5 — that’s all! Front panel switching gives you a bypass option as well as phone patch or tape player input. Special muting circuitry even allows you to operate VOX while using the SP75. The clipping level is adjustable and the LED indicator shows the proper audio input level.

**DRACE CW75**

**ELECTRONIC KEYER**

A no-nonsense keyer for the '80's: the Drake CW75. Smooth iambic keying (grid block or direct) is at your fingertips with either a squeeze key, semi-automatic "bug", or straight key. 5 to 50 WPM capability with front panel speed control. Built-in side tone monitor with volume control. Operates from an external 7 to 14 volt supply or a nine volt optional internal battery.

**DRACE P75**

**PHONE PATCH**

Use your station to its fullest! The Drake P75 Phone Patch puts you on the front lines of amateur radio public service. With the P75, your station can be that vital link between the remote location and the folks back home. The P75 is a hybrid patch for use with the Drake 7-line or other transmitter/receiver combinations. Features such as in/out switching and adjustable RX/TX level controls make the P75 Phone Patch the choice you can count on.
improving amplifier ALC circuits: part 1

Grid current derived ALC helps upgrade AB2 amplifier performance

Although modern exciters contain adequate ALC circuits, modern AB2 amplifiers lack truly automatic practical circuits. In this article, several approaches to amplifier-developed ALC are examined and a practical circuit is developed, using a grid current derived sample. This circuit is used in a Dentron MLA-2500 to protect the 8875 tubes from overdrive and grid destruction. Adaptability to other tube types is also discussed.

One of the most important assets of a modern exciter is an ALC circuit that prevents overdrive of the exciter's final and intermediate stage amplifiers. Controlling the drive — or load — helps preserve spectrum space as well as the exciter's output devices.

Few, if any, modern exciters lack ALC. Forward power, reflected power, final amplifier current, frequency and other parameters are used to set a power output level at which the exciter can operate without distortion or destruction. It is also true that few — if any — modern linear amplifiers have a satisfactory ALC circuit to prevent overdrive from occurring. This is so even though it is as important to control drive to an external amplifier as it is to control the drive to an exciter's final stage.

The term ALC is derived from early Collins nomenclature: Automatic Load Control. Many amplifiers include a circuit such as that shown in fig. 1. This circuit is clearly not automatic, but is based solely on RF input voltage. Such circuits offer protection from overdrive only when adjusted for each set of operating conditions on each band; they also offer no amplifier tube protection. Two important exceptions to the rule are amplifiers that do protect themselves from overdrive and consequent destruction when connected to the exciter's ALC: the Collins 30S-1 and the E.T.O. Alpha 77.

30S-1 ALC circuit

An example of true ALC is the circuit used in the Collins 30S-1 amplifier (fig. 2). The 30S-1 is an AB1 amplifier; any grid current automatically indicates an overdrive condition. A 10K:10K transformer provides DC isolation between the ALC and grid circuits. In SSB service, an AC voltage is developed across the primary and secondary of the ALC transformer proportional to the grid current that flows at the audio frequency (rate) of the incoming signal. A substantial amount of control voltage is available for small values of grid current by using a voltage doubler circuit to rectify the AC voltage present across the secondary of the transformer. Sensing grid current variations is an effective way of preventing overdrive and distortions.

By J. Fred Riley, WA8AJN, 1721 Poplar Street, Kenova, West Virginia 25530
tion in this amplifier. The particular sensitivity of the circuit is achieved by the 10 kilohm impedance of the grid transformer. This high impedance in series with the grid can cause problems if the ALC voltage is not returned to the ALC buss in the exciter. Anyone who has ever heard a 30S-1 being used without the ALC interconnected can testify to the extraordinary bandwidth that results from even minimum overdrive when the grid voltage is subject to dynamic instability.

The 30S-1 circuit is not adaptable to most modern amplifiers in Amateur use. The most common circuits use zero-bias tubes operated in Class AB₂. Significant values of grid current are necessary and normal. But there is an important analogy: just as the onset of grid current signals an overdrive condition in an AB₁ amplifier, certain fixed amounts of grid current can signal overdrive or dangerous drive levels in an AB₂ amplifier. It is quite possible to destroy a grid by applying drive without plate voltage being present. As the price of tubes soars, protective circuitry based on grid current seems a necessary adjunct for tube preservation alone even without consideration of performance.

E.T.O.* uses this type of circuit. The Alpha 77 is a modern AB₂ amplifier that has an ALC circuit designed to positively limit the 8877 grid current to 150-200 milliamperes (see fig. 3). Grid current is sensed, amplified, and inverted by the Q204, Q205 circuitry. In operation the negative ALC output voltage serves to limit the grid current to a preset, nondestructive limit even under conditions of mistuning, or worse, no plate voltage. In normal operation 150 milliamperes of grid current represents the upper limit of the tube’s linear range.

modifying an older ALC circuit

The MLA-2500 amplifier ALC circuit shown in fig. 1 is representative of the majority of ALC circuits used in other amplifiers. The lack of protection for the grids of the 8875 tubes offers an opportunity to adapt a circuit that protects against overdrive and potential tube destruction. An added incentive is the fact that it costs as much to replace the final tubes in an MLA-2500 as to buy a used amplifier.

The first circuit I experimented with was based on the tuning and loading circuit of the 30S-1. Fig. 4 shows the comparator circuit which samples both input and output RF voltages to detect nonlinearity resulting from any cause. The use of DC amplifiers to generate a negative going ALC voltage when the comparator output voltage departs from its null seemed initially to be a satisfactory solution. In practice it failed. The impedance is fairly high and stray capacitance and inductance effects were different on each band. In addition, the circuit required correction to provide protection when the mode of operation was changed from SSB to CW which increased circuit complexity substantially. Disabling the circuit was also necessary in order to initially tune up. I soon abandoned this approach.

*Ehrhorn Technological Operations, Canon City, Colorado.
NEW!

Full Featured - Miniature
H/T Power to Go...

FROM
MIRAGE

B23A
(144–148 MHz)
- 2 Watts in = 30 Watts out
- Built-in Receive Preamp
- All mode operation (FM, CW, or SSB)
- Automatic Antenna Changeover

Actual Size:
2” x 3½” x 7¼”

C22A
(220–225 MHz)
- 2 Watts in = 20 Watts out
- Built-in Receive Preamp
- All mode operation (FM, CW, or SSB)
- Automatic Antenna Changeover

See the complete line of MIRAGE amplifiers at your local dealer, or write to Everett Gracey.

MIRAGE
COMMUNICATIONS
P.O. Box 1000
Morgan Hill, CA 95037

ADM-10'
When cost is a factor, don’t sacrifice performance.

The ADM-10' satellite antenna system gives you the most for your investment. At the cost of an 8' dish, the ADM-10' provides performance margins to account for loss of signal due to satellite aging. Constructed of rugged steel or aluminum with fully adjustable polar mount, ADM-10'—the competitive edge in the private TVRO market.

P.O. BOX 1178 • POPLAR BLUFF, MO 63901 • (314) 785-5988

Free Antenna Accessories Cats

- Coaxial Antenna Relay
  Remotely select up to 9 antennas from your transmitter, using only coaxial cable. Environmentalized, power and low-loss.

- W2AU and W2DU Baluns
  Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8–200 MHz.

- W2VS Antenna Traps
  Add these traps to your dipole to get low SWR on 2 to 6 bands, depending on how many you add. Ant wire and custom kits also available.

Send For Yours Today!
Don’t delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line.
Dealer inquiries also welcome.

42 August 1984
fig. 5. Final circuit as installed in Dentron MLA-2500.

a working MLA-2500 ALC circuit

Fig. 5 shows the final circuit that was developed for the MLA-2500. It operates solely through the sensing and control of grid current. I had observed non-linearity in several different sets of tubes at more than 55-60 mA of grid current. After reviewing the tube specification sheets it soon became apparent that I could prevent overdrive and tube destruction by simply limiting exciter drive to 60 mA grid current under all conditions. The key to the circuit was a simple change in the value of the grid shunt. The new value was chosen to develop 0.6 VDC at 60 mA grid current, i.e., 10 ohms. A series multiplier resistor had to be added to the metering line. By using a 1-kilohm meter multiplier, full scale grid current was changed from 1 ampere to 100 mA. I modified the existing MLA-2500 ALC and power supply boards taking advantage of existing parts and wiring. Fig. 6 shows the construction technique used for the remaining components added. Fig. 7 shows the actual installation in the MLA-2500. The open area beneath the meter/function switches offered enough space to mount the component strips. After installing the ALC circuit and connecting it to the exciter, the grid current could not be driven past 60 mA. Combined with the visual warning of the front panel-mounted transmit lamp, X-2, and the increased sensitivity of the grid current meter the circuit offers positive protection. Now, if the supply voltage is accidentally left in the CW position I no longer see the high grid current that previously occurred. It is also now practically impossible to overdrive the amplifier in the SSB mode. Loading the amplifier too lightly results in excess grid current which reduces the drive and prevents flat-topping; the load is automatically controlled. It is truly an ALC circuit.

adapting to other amplifiers

Other tube circuits operating in AB2 can also benefit from the addition of this circuit. 3-500, 813, and 811 users can all probably point to some finite value of grid current in their amplifiers which represents an overdrive condition: for example, my 3CV1500A7 (3CX1000A) begins to distort above 325 mA. The circuit is adapted to other amplifiers by simply choosing a value of grid shunt so that the desired maximum grid current develops 0.6 VDC. The circuit I developed is useful where the grid voltage sample is negative; the E.T.O. circuit could be used where the sample is positive. In either case the addition of a grid-current-derived ALC circuit represents the addition of an extremely useful operating adjunct. By using multiple isolation transistors, as shown in fig. 8, other parameters can be used to limit exciter drive. I have not found such circuits necessary with the 8875s, however. (A more extensive set of construction notes.

fig. 6. Terminal strip construction technique used for grid-current-derived ALC circuit in MLA-2500.

fig. 7. Final installation of ALC circuit in MLA-2500.
9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$72.10</td>
</tr>
<tr>
<td>XF-9I</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9J</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9D</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9F</td>
<td>CW</td>
<td>500 kHz</td>
<td>4</td>
<td>$54.10</td>
</tr>
<tr>
<td>XF-9G</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9H</td>
<td>CW</td>
<td>250 kHz</td>
<td>8</td>
<td>$131.20</td>
</tr>
<tr>
<td>XF-9I</td>
<td>CW</td>
<td>15 kHz</td>
<td>2</td>
<td>$17.15</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>NSFM</td>
<td>12 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-B</td>
<td>NSFM</td>
<td>15 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-C</td>
<td>WBFM</td>
<td>30 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-D</td>
<td>WBFM</td>
<td>36 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-E</td>
<td>PixiData</td>
<td>40 kHz</td>
<td>4</td>
<td>$67.30</td>
</tr>
<tr>
<td>XM107-54</td>
<td>FM</td>
<td>14 kHz</td>
<td>4</td>
<td>$30.15</td>
</tr>
</tbody>
</table>

Linear Transverters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Output</th>
<th>Input</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>1.3 W</td>
<td>2M in</td>
<td>$299.95</td>
</tr>
<tr>
<td>432/435</td>
<td>10 W</td>
<td>10 M</td>
<td>$259.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>10 W</td>
<td>10 M</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

Linear Power Amplifiers

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Output</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>20 W</td>
<td>ASK</td>
</tr>
<tr>
<td>432/435</td>
<td>100 W</td>
<td>$699.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>100 W</td>
<td>$369.95</td>
</tr>
</tbody>
</table>

Export inquiries invited. Shipping $3.50

MICROWAVE MODULES VHF & UHF EQUIPMENTS

Use your existing HF or 2M rig on other VHF or UHF bands.

LOW NOISE RECEIVE CONVERTERS

1691 MHz
1396 MHz GaAsFET MM1691-1037 $249.95
432/435 MM1296-144G $149.95
439-ATV MM432-29(S) $74.95
220 MHz MM220-2S $69.95
144 MHz MM144-28 $54.95
Options: Low NF (2.0 dB max., 1.25 dB max), other bands & IF's available

LINEAR TRANSVERTERS

1296 MHz 1.3 W output, 2M in MM1296-144G $299.95
432/435 10 W output, 10 M MM432-29(S) $259.95
144 MHz 10 W output, 10 M MM144-28 $199.95
Other bands & IFs available

LINEAR POWER AMPLIFIERS

1296 MHz 20 W output UT1296BL $699.95
432/435 100 W output MML432-100 $369.95
144 MHz 100 W output MML144-100 $249.95
All models include VOX T/R switching. "L" models 1 or 3W drive, others 10W drive.

Shipping: FOB Concord, Mass.

ANTENNAS

420-450 MHz MULTIBEAMS
48 Element 70/MBM48 15.7 dBi $69.95
88 Element 70/MBMB8B 18.5 dBi $89.95

144-146 MHz J-SLOTS
8 over 8 Hor. pol DB2M 12.3 dBi $63.40
8 by 8 Vert. pol DB2M-var 12.3 dBi $63.40
10 + 10 Twist 10XY2M 11.3 dBi $79.95

UHF LOOP YAGIS
1250-1350 MHz 29 loops 1296-LY 20 dbi $44.95
1650-1750 MHz 29 loops 1691-LY 20 dbi $44.95
Order Loop-Yagi connector extra: Type N $14.95, SMA $5.95

Send 40c (2 stamps) for full details of your VHF & UHF equipment and KVG crystal product requirements.

Hi-Pro LB-VHF-UHF Repeaters

Hi-Pro TRANSMITTER AND RECEIVER

Hi-Pro transmitter designed for repeater service with excellent audio, stability, harmonic rejection, and low sideband noise.

Adjustable power output up to 5 watts from the exciter board COOL OPERATION

NOW USED IN ALL HI PRO REPEATERS

ASK ABOUT OUR NEW COMPUTER CONTROL SYSTEM AND MICROCONTROL AUTO PATCH

Maggiore Electronic Laboratory
590 Snyder Ave. Tel: 499-0741-MELCO West Chester, Pa 19380 Phone 215-436-6051

fig. 8. The ALC circuit can also be used to protect other circuit elements, e.g., plate current.

and an input matching circuit follows in Part Two of this article. — Editor.)

acknowledgement

I wish to thank Tom Kneadle, W8EII, for the photography, and Rodger Miller, KC8DA, for the use of his amplifier.

ham radio
Sometimes it seems that packaging a project is more difficult than building the actual project itself. In packaging a complete project, building the right box is critical, because if the packaging is not done well, the device inside may not work properly.

Commercially available die-cast boxes — you know, the ones that seem to be just about perfect for many things, but are never quite right for anything — appear, at first glance, to be ideal for small RF enclosures. There is no convenient way to mount anything in these. If you try to mount your neat, low noise, wideband amplifier in one of these boxes with a few standoffs to the bottom, you quickly find that your mounted amplifier has become an oscillator and now generates a considerable amount of output with no input.

If pre-manufactured boxes are to be used successfully for RF enclosures, particularly above several hundred megahertz, they must be modified first, with a solid, well defined grounding configuration to tightly couple the box to the circuit ground. The mechanical assembly described and illustrated in this article, though not particularly simple, provides an excellent packaging configuration for small RF projects through L-band. Its fabrication should be well within the capability of most Amateurs (no machine shop is required) and result in a much more successful and professional-looking project than any collection of coffee cans, PC board pieces and shim stock, however skillfully assembled.

Fig. 1 shows what your finished project should look like using this method.

**drilling patterns**

I used a Pomona 2901 diecast box for this article, but similar products can be adapted with equal success. The overall assembly is shown in fig. 2. From that you can see the relative mounting positions of the eight mounting blocks and RF connectors. The details of the box modifications are shown in fig. 3. All holes must be positioned with reasonable accuracy. The best way to accomplish this manually is with a precision steel rule calibrated in tenths or hundredths of an inch. This should be available from almost any hardware store or machine tool supply store. Because the diecast boxes vary somewhat in size, the holes in fig. 3 are dimensioned from the side center lines. Experience has shown that dimensioning from one end can lead to problems with fitting parts. Before drilling, be sure to centerpunch all holes to prevent the drill from “walking.”

**By Michael Gruchalla, 2450 Alamo Avenue, S.E., P.O. Box 9100, Albuquerque, New Mexico 87119**

---

**fig. 1. Interior view of box built for a wideband RF amplifier.**
(See *ham radio*, March 1984, pages 12-28.)
A number of different filters may be used. If you use other than the one listed, be sure to drill and tap the filter mounting hole to fit your particular filter.

Don't try to use solder-in filters; the box alloy is very difficult to solder. The various screw-mounted filters are your best choice. You'll also notice that one RF connector is centered and the other offset in the corresponding ends. This is a convenient layout, but be creative and mount the connectors where best suited to your project.

**treating the surface**

The paint must be removed from the inside of the box where the mounting blocks are to be installed. The paint in these boxes is tenacious; the easiest method of removal is with a small sandblaster. But if you don't have a sandblaster in your work room the next best thing is sandpaper. A little work with about 120 grit wet-or-dry should do the trick. Use plenty of water to keep the paper from loading. (If you use regular sandpaper, don't use water — you'll end up with a handful of wet sand and soggy paper.)

An unpainted box such as the Pomona 2906 can also be used, but then you'll have to prepare the sur-
face and paint the finished unit for an attractive "professional" look. This can be tricky; the bare cast box requires considerable effort if you're determined to produce a visually appealing product. All things considered, I think the painted box — with interior paint removed — is the easier to use.

interior details

Once you have all the holes drilled in the box and the paint is removed, you have to make all those little pieces that fit inside the box behind the holes. This is a tedious task, but with a little care and patience, good results can be expected. The details of the six side blocks and the two end blocks are shown in fig. 5. The 2-56 tapped holes are quite small, so you must be very careful when drilling and tapping — particularly in tapping. Use plenty of oil for both drilling and tapping, and be sure to back the tap out often to prevent jamming.

component assembly

After all the interior pieces are completed, the box is ready for assembly. For a little more professional appearance, use flat washers with all the screws, but be sure to mount the filter without a washer. On some filters, the thread is long enough to accept a nut on the inside of the box to lock the filter in place. You may have a problem purchasing the ground terminal specified in small quantities; if a suitable terminal cannot be found, a 3/4-inch, 4-40 screw and nut may be used. Place the nut about half way up the screw, drive the screw into the ground terminal location about 1/4 inch, and tighten the nut. Use a plated brass or steel screw to make soldering easier.

The finished box is now ready to have something put in it. What you install is up to you, but be sure your board is tailored to fit the box and mounting blocks. An outline drawing of the cutout and mounting details of the board is shown in fig. 4. This should help you in getting a board cut to fit the box. Be careful not to run any wiring or conductors within about 5/16 inch of the board edges, since that's where the mounting blocks attach.

This versatile packaging technique adapts easily to other boxes. When carefully done, it results in a professional-looking enclosure providing the strong electrical bond between the board ground plane and the box in critical RF circuits. I've used this assembly
Over the past 58 years Harvey Electronics has offered to customers the finest products in the HAM category. And for 1984, Harvey Electronics has picked the most innovative HF Transceivers to provide the best possible communications in the amateur field.

KENWOOD TS-930S HF TRANSCEIVER
The TS-930S is a solid state HF Transceiver key to the exciting requirements of DX and contest operators. It covers all Amateur bands from 160 through 10 meters, and incorporates a 150kHz to 30MHz general coverage receiver having an excellent dynamic range. It also features SSB slope tuning, CW/VIBF, IF notch filter, CW pitch control, dual digital VFO's, full break-in on CW and an automatic antenna tuner.

ICOM IC-751 HF TRANSCEIVER
The IC-751 is ICOM's most advanced amateur transceiver. It is a 100KHz to 30MHz continuous tuning general coverage receiver, and a full featured all mode solid state ham band transmitter, that covers all the new WARC bands. And with an optional internal AC power supply it becomes a compact portable. It also features dual VFOs, 32 tunable memories, SSB filter, FM squelch and more.

YAESU FT-980 COMPUTER AIDED HF TRANSCEIVER
The FT-980 CATX presents a new leap forward in the amateur field; incorporating an 8-bit microprocessor (80C35) for the high-level computer control that is offered in an all mode, all solid state HF transceiver. Plus, it features continuous general coverage reception from 150KHz to 30MHz, a 12 channel memory system, Dual VFOs and programmable bands for tuning.

with excellent results for applications in excess of 1500 MHz; good luck on your future projects.

HAM RADIO

SHORT CIRCUIT HOTLINE
Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM — Eastern time — before you begin construction. We'll let you know of any changes or corrections that should be made to the article describing your project.
(See "Publisher's Log." April, 1984, page 6, for details.)

603-878-1441
<table>
<thead>
<tr>
<th>SOCKET</th>
<th>P.O. Box 280298 Dallas, Texas 75228</th>
<th>(214) 271-5546</th>
</tr>
</thead>
</table>

**74LS**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS00</td>
<td>74LS164</td>
<td>.60</td>
</tr>
<tr>
<td>LS01</td>
<td>74LS165</td>
<td>.90</td>
</tr>
<tr>
<td>LS02</td>
<td>74LS166</td>
<td>.99</td>
</tr>
<tr>
<td>LS03</td>
<td>74LS169</td>
<td>1.25</td>
</tr>
<tr>
<td>LS04</td>
<td>74LS174</td>
<td>1.60</td>
</tr>
<tr>
<td>LS05</td>
<td>74LS175</td>
<td>.50</td>
</tr>
<tr>
<td>LS08</td>
<td>74LS181</td>
<td>1.95</td>
</tr>
<tr>
<td>LS10</td>
<td>74LS191</td>
<td>.90</td>
</tr>
<tr>
<td>LS11</td>
<td>74LS192</td>
<td>.80</td>
</tr>
<tr>
<td>LS12</td>
<td>74LS193</td>
<td>.80</td>
</tr>
<tr>
<td>LS13</td>
<td>74LS195</td>
<td>.65</td>
</tr>
<tr>
<td>LS14</td>
<td>74LS197</td>
<td>.70</td>
</tr>
<tr>
<td>LS20</td>
<td>74LS221</td>
<td>.80</td>
</tr>
<tr>
<td>LS21</td>
<td>74LS240</td>
<td>95</td>
</tr>
<tr>
<td>LS27</td>
<td>74LS241</td>
<td>.80</td>
</tr>
<tr>
<td>LS30</td>
<td>74LS242</td>
<td>.90</td>
</tr>
<tr>
<td>LS32</td>
<td>74LS243</td>
<td>.90</td>
</tr>
<tr>
<td>LS42</td>
<td>74LS244</td>
<td>1.25</td>
</tr>
<tr>
<td>LS51</td>
<td>74LS245</td>
<td>1.50</td>
</tr>
<tr>
<td>LS74</td>
<td>74LS251</td>
<td>.50</td>
</tr>
<tr>
<td>LS85</td>
<td>74LS257</td>
<td>.55</td>
</tr>
<tr>
<td>LS86</td>
<td>74LS258</td>
<td>.55</td>
</tr>
<tr>
<td>LS90</td>
<td>74LS266</td>
<td>.50</td>
</tr>
<tr>
<td>LS93</td>
<td>74LS273</td>
<td>1.25</td>
</tr>
<tr>
<td>LS109</td>
<td>74LS279</td>
<td>45</td>
</tr>
<tr>
<td>LS112</td>
<td>74LS283</td>
<td>60</td>
</tr>
<tr>
<td>LS123</td>
<td>74LS290</td>
<td>85</td>
</tr>
<tr>
<td>LS124</td>
<td>74LS293</td>
<td>.85</td>
</tr>
<tr>
<td>LS125</td>
<td>74LS298</td>
<td>.89</td>
</tr>
<tr>
<td>LS132</td>
<td>74LS299</td>
<td>1.60</td>
</tr>
<tr>
<td>LS133</td>
<td>74LS366</td>
<td>.45</td>
</tr>
<tr>
<td>LS138</td>
<td>74LS367</td>
<td>.50</td>
</tr>
<tr>
<td>LS139</td>
<td>74LS368</td>
<td>.40</td>
</tr>
<tr>
<td>LS151</td>
<td>74LS373</td>
<td>1.25</td>
</tr>
<tr>
<td>LS153</td>
<td>74LS374</td>
<td>1.35</td>
</tr>
<tr>
<td>LS154</td>
<td>74LS375</td>
<td>1.19</td>
</tr>
<tr>
<td>LS155</td>
<td>74LS377</td>
<td>1.49</td>
</tr>
<tr>
<td>LS156</td>
<td>74LS378</td>
<td>.85</td>
</tr>
<tr>
<td>LS157</td>
<td>74LS390</td>
<td>1.25</td>
</tr>
<tr>
<td>LS161</td>
<td>74LS393</td>
<td>1.19</td>
</tr>
<tr>
<td>LS162</td>
<td>74LS399</td>
<td>1.25</td>
</tr>
<tr>
<td>LS163</td>
<td>74LS395</td>
<td>50</td>
</tr>
</tbody>
</table>

**TTL**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>74125</td>
<td>.49</td>
</tr>
<tr>
<td>7402</td>
<td>74151</td>
<td>.50</td>
</tr>
<tr>
<td>7404</td>
<td>74154</td>
<td>1.19</td>
</tr>
<tr>
<td>7408</td>
<td>74157</td>
<td>.50</td>
</tr>
<tr>
<td>7410</td>
<td>74164</td>
<td>.75</td>
</tr>
<tr>
<td>7414</td>
<td>74174</td>
<td>.85</td>
</tr>
<tr>
<td>7435</td>
<td>74175</td>
<td>79</td>
</tr>
<tr>
<td>7496</td>
<td>74367</td>
<td>9.75</td>
</tr>
<tr>
<td>7469</td>
<td>74367</td>
<td>9.75</td>
</tr>
<tr>
<td>74109</td>
<td>.45</td>
<td></td>
</tr>
</tbody>
</table>

**6500**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6502</td>
<td>6545</td>
<td>10.00</td>
</tr>
<tr>
<td>6522</td>
<td>6551</td>
<td>10.00</td>
</tr>
</tbody>
</table>

**6800**

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6808</td>
<td>6840</td>
<td>10.00</td>
</tr>
<tr>
<td>6802</td>
<td>6845</td>
<td>10.00</td>
</tr>
<tr>
<td>6803</td>
<td>6850</td>
<td>2.60</td>
</tr>
<tr>
<td>6810</td>
<td>68A21</td>
<td>4.95</td>
</tr>
<tr>
<td>6820</td>
<td>68845</td>
<td>17.50</td>
</tr>
<tr>
<td>6812</td>
<td>2.95</td>
<td></td>
</tr>
</tbody>
</table>

**5280N-5**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>10.50</td>
<td></td>
</tr>
</tbody>
</table>

**8200**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.95</td>
<td></td>
</tr>
<tr>
<td>8253</td>
<td>4.95</td>
</tr>
<tr>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>8253-5</td>
<td>5.95</td>
</tr>
<tr>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>8253-5</td>
<td>5.50</td>
</tr>
<tr>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>8257</td>
<td>6.00</td>
</tr>
<tr>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>8259A</td>
<td>4.95</td>
</tr>
<tr>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>8275</td>
<td>19.95</td>
</tr>
<tr>
<td>10.50</td>
<td></td>
</tr>
<tr>
<td>8275-9</td>
<td>7.95</td>
</tr>
<tr>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>828</td>
<td>7.57</td>
</tr>
<tr>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>8251</td>
<td>24.98</td>
</tr>
</tbody>
</table>

**8K RAM**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708</td>
<td>$1.49 or 10/$12.00</td>
</tr>
</tbody>
</table>

**STATIC RAM**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001-1-256X4</td>
<td>8/3.99</td>
</tr>
<tr>
<td>500</td>
<td>.75</td>
</tr>
<tr>
<td>2102L-1-350</td>
<td>.65</td>
</tr>
<tr>
<td>2102AL-4</td>
<td>L.P. 450</td>
</tr>
<tr>
<td>2114L-1-1</td>
<td>X4X 300</td>
</tr>
<tr>
<td>TMS4044 (MCM6664C-25)</td>
<td>8/6.00</td>
</tr>
<tr>
<td>4XK1 250</td>
<td>.65</td>
</tr>
<tr>
<td>TMS4645</td>
<td>.65</td>
</tr>
<tr>
<td>5100E-8</td>
<td>256X4</td>
</tr>
<tr>
<td>HM6131P-4-256X8</td>
<td>8/3.99</td>
</tr>
<tr>
<td>6501-5</td>
<td>256X4</td>
</tr>
<tr>
<td>1080-1</td>
<td>X8 NMOS 500NS</td>
</tr>
</tbody>
</table>

**4K STATIC RAMS**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS THAN 50¢ EACH</td>
<td></td>
</tr>
<tr>
<td>MK4104J-4</td>
<td>250 N.S. 18 Pin Ceramic Computer Mfg.</td>
</tr>
</tbody>
</table>

**DMA CONTROLLER**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIAL</td>
<td>9517A-4 (8237-4)</td>
</tr>
</tbody>
</table>

**2114 SPECIAL**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER MANUFACTURERS EXCESS INVENTORY SALE!</td>
<td></td>
</tr>
<tr>
<td>PRICE! 2114-300 n.s. INCREDIBLE PRICE! YOU SAVE!</td>
<td>8/$9.00 GUARANTEED</td>
</tr>
</tbody>
</table>

**TERMS:** (Unless specified elsewhere) Add $1.50 postage, we pay balance. Orders over $50.00 add $3.50 for Insurance. No COD. Texas Res. add 8th tax. 30 Day Money Back Guarantee on all items. All items subject to prior sale. Price subject to change without notice. Foreign order - US funds only. We cannot ship to Mexico. Countries other than Canada, add $2.50 shipping and handling.
Big Computer Mfg. Makes $900,000 Goof!!

COMPUTER/DISK DRIVE SWITCHING POWER SUPPLY

ORIGINALY DESIGNED TO RUN A Z-80 BASED SINGLE BOARD COMPUTER WITH TWO 5-1/4 IN. DISK DRIVES AND CRT MONITOR.

BRAND NEW: UNUSED!

$37.50 EA
3 FOR $95.00

ADD $1.50 PER UNIT FOR UPS

SPECs:
- +5VDC 5 AMPS MAX
- #1 +12 VDC 2.8 AMPS MAX
- #2 +12 VDC 2.0 AMPS MAX
- -12 VDC .5 AMPS MAX

INPUT: 115 or 230 VAC 60Hz

SMALL SIZE: 6-1/8 x 7-3/8 In.
HIGH EFFICIENCY SWITCHER MFG.
BY CAL. DC IN USA!

The poor Purchasing Agent bought about 10 times as many of these DC switchers as his company would ever use! We were told that even in 10,000 piece lots they paid over $72 each for these multi-output switchers. When this large computer manufacturer discontinued their Z-80 Computer, guess what the Big Boss found in the back warehouse; several truckloads of unused $72.00 power supplies. Fortunately we heard about the deal and made the surplus buy of the decade. Even though we bought a huge quantity, please order early to avoid disappointment. Please do not confuse these high quality American made power supplies with the cheap import units sold by others.

TERMS: Orders over $50 add 85¢ insurance. No COD. Tex. Res. Add 6% Sales Tax. Subject to prior sale. Foreign orders: US funds only. We cannot ship to Mexico. Foreign countries other than Canada add $5 per board shipping.

Tell 'em you saw it in HAM RADIO!
**Z80** SINGLE BOARD COMPUTER!

64K RAM — 80 x 24 VIDEO DISPLAY — FLOPPY DISK CONTROLLER
RUNS CP/M* 2.2!

**NEW PRICE**

$29.95

(BLANK BOARD WITH DATA AND ROM’S.)

GROUP SPECIAL:
BUY 6 FOR $165!

USERS EASY TO GET PARTS!

BOARD MEASURES 11½" x 12½"

ALL ORDERS WILL BE PROCESSED ON A STRICT, FIRST COME, FIRST SERVED BASIS! ORDER EARLY!

---

**GIANT COMPUTER MANUFACTURER’S SURPLUS!**
**UNBELIEVABLE LOW PRICE!!!**

Recently Xerox Corp. changed designs on their popular 820* computer. These prime, new, 820-1 PC boards were declared as surplus and sold. Their loss is your gain! These boards are 4 layers for lower noise, are solder masked, and have a silk screened component legend. They are absolutely some of the best quality PC boards we have seen, and all have passed final vendor QC. Please note, however, these surplus boards were sold by Xerox to us on an AS IS basis and they will not warranty nor support this part.

We provide complete schematics, ROM’S, and parts lists. If you are an EXPERIENCED computer hacker, this board is for you! Remember, these are prime, unused PC boards! But since we have no control over the quality of parts used to populate the blank board, we must sell these boards as is, without warranty. You will have to do any debugging, if necessary, yourself!

ADD $2 PER PC BOARD FOR SHIPPING. (USA and Canada)

---

**WE’VE GOT ‘EM!**

5-1/4” HALF SIZE DRIVES

- 40 Track per side
- Double-sided, double density
- Same as SA455
- Latest head & drive technology
- Fast access time

Two of These Half Size Drives will Fit in the Same Space as 1 Full Size Drive!

$179.00 per drive

Compare at up to $395 ea.

ADD $3.00 UPS PER DRIVE

---

**TERMS:** Orders over $50 add 65¢ insurance. No COD. Tex. Res. Add 6% Sales Tax. Subject to prior sale. Foreign orders: US funds only. We cannot ship to Mexico. Foreign countries other than Canada add $6 per board shipping.

More Details? CHECK—OFF Page 140
cooling semiconductors
part 2:
blowers and fans

Heatsinks aren’t the only way to dissipate excess heat

In Part One of this series we discussed the design and use of heatsinks in cooling electronic equipment. In this part, we’ll examine the several other means by which excess heat can be prevented, monitored, and dissipated.

While heat sinks are without doubt the most familiar means of moving heat away from electronic equipment, they can be of limited use if the ambient temperature itself is high, or if the area surrounding the unit remains warm because heat is not evacuated quickly enough. If, for example, a power supply were enclosed in a poorly ventilated cabinet, a heat sink would be of little or no use; in such a situation, a fan or blower would be more effective.

While similar to heat sinks in principle, fans and blowers are significantly different in application and design. Fans (see fig. 1) generally employ propeller-like blades to move large volumes of low-pressure air. Blowers, on the other hand, usually consist of a revolving wheel that displaces air; they are therefore more efficient while operating near their maximum (non-moving) pressure (see fig. 2).

In cooling a poorly ventilated cabinet, pressurization of the enclosure by pumping filtered air in is vastly preferable to drawing air out because air pulled into the cabinet may contain particulate matter whose presence, over time, can compound the problem of temperature control by collecting in cabinet openings, such as those between panels or around doors, and blocking the exit of air.

Of the four methods of cooling electronic equipment housed in cabinets — forced-convection filtered air, air-to-air heat exchangers, air-to-water heat exchangers, and specially packaged air conditioning units — only the first (see fig. 3) is appropriate for Amateur Radio applications.

forced-air cooling

In designing the forced-convection filtered air-cooling of the interior of an equipment cabinet, five design guidelines should be followed: first, there should be no constrictions; the cross-sectional area of the air current should be at least as large as the intake. Second, the exhaust area must be located downstream from the heat-producing elements. Third, baffles work best when used to channel a small volume of air across an exceedingly hot component at a high velocity. Fourth, ducts may be used to maintain a more even cooling effect throughout the cabinet. If maintenance of an even temperature from the top to bottom of the cabinet is important, ducts should be located along the sides of the cabinet.

Finally, because blowers and especially fans can cause vibration, it’s important that neoprene vibration isolators or similar devices be built into the fan if this is a concern. If you decide to use a fan, using the following two formulas will enable you to determine the required fan size:

\[
\text{volume of air at inlet} = \frac{3.17 \times \text{power} \times 1.25}{T\text{ (°F)}}
\]

\[
= \frac{1.76 \times \text{power} \times 1.25}{T\text{ (°C)}}
\]

By Vaughn D. Martin, 114 Lost Meadows, Cibolo, Texas 78108

This article has been adapted, with permission, from IC Voltage Regulator Sourcebook with Experiments, by Vaughn D. Martin, published by TAB Books, Inc., and available from Ham Radio's Bookstore, Greenville, New Hampshire 03048 ($14 postpaid).
The power to be dissipated is expressed in watts; the temperature is the average temperature rise within the cabinet, expressed in the first equation as degrees Fahrenheit and in the second equation as degrees Celsius. These two formulas as well as the nomograph shown in fig. 4 have a built-in safety factor of 25 percent (note the 1.25 for 125 percent). If only a quick approximation is required, the nomograph may be used.

Let's work through a typical design example, assuming we are designing for a typical cabinet and using both the formula and the nomograph. Let's strike a line through the nomograph and see how close it comes to the exact calculated value.

Assume we have exactly 200 watts of power to be dissipated and can accept only a $10^\circ$F rise in temperature within the cabinet. The first equation for degrees Fahrenheit yields 
\[
\frac{(3.17)(200 \text{ watts})(1.25)}{10} = 79.25 \text{ cubic feet per minute.}
\]

Note in fig. 4 that the nomograph indicates approximately 80 cubic feet per minute — very close to 79.25, the value derived by actual calculation.

**thermoelectric devices**

In addition to forced air venting, thermoelectric devices such as Peltier and Thomson-Joule devices may be used to pull heat away from a specific small area in the cabinet or a critical semiconductor that must remain cool.

Four basic physical phenomena are associated with thermoelectric devices:

- The Seebeck effect is the EMF that exists when two dissimilar conductors are connected and have their junctions maintained at different temperatures. This is the basis of thermocouples.
- The Thomson effect is the heating or cooling effect that takes place in a homogeneous conductor when an electric current passes in the direction of the temperature gradient.
- The Joule effect occurs when an electric current passes through a conductor (which is isothermal or maintains the same temperature throughout) and generates heat — this is called "Joule heat."
- The Peltier effect, named in honor of Jean C.A. Peltier, who in 1834 discovered that the passing of electric current through the junction of two dissimilar materials causes a cooling effect when passed in one direction and a heating effect when the direction of current flow is reversed.

The Seebeck, Peltier, and Thomson effects are all
120 volt primaries

3.00

6 VOLTS @ 150 MA $1.25

8 VOLTS @ 150 MA $1.75

12.5 V @ 200 MA $3.50

16.5 V @ 3 AMPS $6.50

18.5 V @ 3.5 AMPS $6.95

18 V @ 1 AMP $4.50

24 VOLT @ 250 MA $2.50

42 VOLT @ 1 AMP $2.50

43 VOLT @ 1.5 AMP $4.50

ALL ARE 115 VAC PLUG IN

FOR $1.50 10 FOR $9.00

FOR $17.00 5 FOR $9.00

FOR $75.00 3 FOR $25.00

FOR $150.00 6 FOR $84.00

FOR $15.00 1 FOR $5.00

FOR $50.00 2 FOR $10.00

FOR $100.00 5 FOR $18.00

FOR $100.00 5 FOR $18.00

FOR $200.00 2 FOR $35.00

FOR $100.00 5 FOR $18.00

FOR $200.00 2 FOR $35.00

FOR $400.00 5 FOR $60.00

FOR $800.00 5 FOR $100.00

FOR $1600.00 5 FOR $200.00

FOR $3200.00 5 FOR $400.00

FOR $6400.00 5 FOR $800.00

FOR $12800.00 5 FOR $1600.00

FOR $25600.00 5 FOR $3200.00

FOR $51200.00 5 FOR $6400.00

FOR $102400.00 5 FOR $12800.00

FOR $204800.00 5 FOR $25600.00

FOR $409600.00 5 FOR $512000.00

FOR $819200.00 5 FOR $1024000.00

FOR $1638400.00 5 FOR $2048000.00

FOR $3276800.00 5 FOR $4096000.00

FOR $6553600.00 5 FOR $8192000.00

FOR $13107200.00 5 FOR $16384000.00

FOR $26214400.00 5 FOR $32768000.00

FOR $52428800.00 5 FOR $65536000.00

FOR $104857600.00 5 FOR $131072000.00

FOR $209715200.00 5 FOR $262144000.00

FOR $419430400.00 5 FOR $524288000.00

FOR $838860800.00 5 FOR $1048576000.00

FOR $1677721600.00 5 FOR $2097152000.00

FOR $3355443200.00 5 FOR $4194304000.00

FOR $6710886400.00 5 FOR $8388608000.00

FOR $13421772800.00 5 FOR $16777216000.00

FOR $26843545600.00 5 FOR $33554432000.00

FOR $53687091200.00 5 FOR $67108864000.00

FOR $107374182400.00 5 FOR $134217728000.00

FOR $214748364800.00 5 FOR $268435456000.00

FOR $429496729600.00 5 FOR $536870912000.00

FOR $858993459200.00 5 FOR $1073741824000.00

FOR $1717986918400.00 5 FOR $2147483648000.00

FOR $3435973836800.00 5 FOR $4294967296000.00

FOR $6871947673600.00 5 FOR $8589934592000.00

FOR $13743895347200.00 5 FOR $17179869184000.00

FREE! FREE! FREE! SEND FOR 48 PAGE CATALOG FREE! FREE! FREE!
reversible phenomena. The Peltier effect is the one most useful in power supply design because of its ability to literally draw heat away from a semiconductor, although the Thomson effect also has some limited applications in these areas and will be discussed shortly.

Peltier cooling devices (fig. 5) may be attached directly to surfaces of heat-producing semiconductors. The effect of heat being drawn away in proportion to the current passing through the cooling device is what makes this device so effective, if somewhat expensive; a device large enough to handle a TO-3 power transistor is priced at about $15.00.

Another interesting thermoelectric device is the Joule-Thomson cooler, as shown in fig. 6. Described by its manufacturer as a "micro-miniature refrigerator," it cools a wide range of IR (infrared) and millimeter wave detectors down to 77°K, or Kelvin, which is the temperature of liquid nitrogen (N2). Zero degrees Kelvin is absolute zero (where all molecular motion stops); this is equal to –273.15°C or –459.67°F. (One degree Kelvin equals in magnitude one degree Celsius, so to convert Kelvin to Celsius, just subtract 273.15 degrees from it. So 77°K = 77 – 273.15 = –196.15°C or –321.07°F.)

These 1.5 cm (0.6 inch) in diameter devices can cool some detectors to 80°K (–193.15°C) in just one second.

**piezoelectric fan**

Another interesting cooling device is the piezoelectrically driven fan designed for PC board use. Manufactured by PiezoElectric Products,* this device (fig. 7)

---

*Piezo Electric Products, 212 Durham Avenue, Metuchen, New Jersey 08840.
AT LAST A MINIATURE BASE STATION AT A MINIATURE PRICE...

The MX-15 is a 15-meter band SSB/CW hand-held transceiver. It measures only 1 1/2" (D) x 2 3/4" (H) and offers 300mW for SSB and CW operation. A single-conversion receiver employing a MOS/FET front-end offers clear and sensitive reception. As a base or portable station, the MX-15 offers an unlimited challenge in QRP operation. Additional accessories are available to extend your operation.

The MX-15 comes with full 90 day warranty and is available from factory direct or HENRY RADIO (800) 421-6631

$129.95

ACCESSORIES SUPPLIED
- Standard Frequency crystal of your choice
- 6 pc. AAA Batteries
- DC Cable
- Instruction sheet

ACCESSORIES AVAILABLE
- MX Channel crystal.... (Standard Frequency) $7.00
- MS-1 External Speaker-Microphone $23.50
- Noise Blanker Kit $6.50
- NB-1 Side Tone Kit $11.50
- SP-15 Telescopy antenna $19.50
- 2M2 DC-DC Converter set $17.50
- PR-1 Mobile Rack Kit $25.50
- VX-15 External VXO (one crystal supplied) $53.50
- PL-15 10W Linear amplifier $89.50

Photo shown MX-15, VX-15, PL-15, SP-15, MS-1 and PR-1

ACE communications, Inc. 2802 D WALNUT AVENUE TUSCON, CALIFORNIA 92680 (714) 544-8281

---

ALL BAND TRAP ANTENNAS!

PRETUNED-ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR ALL BANDS! EXCELLENT FOR APARTMENTS. IMPROVED DESIGN! COMPLETE with 90 ft. RG58U-52 shielded line, and PL-259 connector, isolation, 20ft. 500 ft. test design and supports, center connector with built in lightning arrestor and static discharge. Low SWR over all bands - Tuners usually NOT NEEDED! Can be used as inverted V, dipole, in attic, on building caps or corner lots. THE ONLY ANTENNA YOU WILL EVER NEED FOR ALL BANDS! NO BALUNS NEEDED!

80-40-20-15-10 - 2 trap 104 ft. Model 9986 $69.95
40-20-15-10 - 2 trap 54 ft. Model 10068BUC $99.95
20-15-10 meter - 2 trap 261 ft. Model 10078BUC $197.95

SEND FULL PRICE FOR POSTPAID INSURED. DEL IN U.S.A. (Canada add $5.00 for postage - clerical - handling etc.) or order using VISA - MAESTER CARD - AMEX INCREASEemble Good number and ex date. P.O. 1-800-236-5333 9AM - 6PM week days. We ship by 2-3 days. ALL PRICES MAY INCREASE. SAVE - ORDER NOW! All antennas guaranteed for 1 year. 30 day money back trial if returned in new condition. Made in U.S.A.

FREE INFO. AVAILABLE ONLY FROM WESTERN ELECTRONICS

GROTH-Type COUNTS & DISPLAYS YOUR TURNS
- 99.99 Turns One Hole Panel Mount
- Handy Logging Area
- Spinner Handle Available

Case: 2 x 4", shaft 4/"x3"

Model TC2: Skirt 2-1/8"; Knob 1-5/8" $12.50
Model TC3: Skirt 3"; Knob 2-3/8" $13.50

Spinners Handle Add $1.50

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143

Brings You
The PACKET
Breakthrough!

PACKET RADIO lets you share a simplex channel error-free with up to 20 simultaneous users at 1200 Baud.

AEA introduces the MODEL PKT-1 PACKET CONTROLLER. Through an arrangement with TAPR (Tucson Packet Radio, Inc.), AEA brings you the proven performance of the TAPR kit board and software in a rugged metal package, fully wired and tested with a full year's warranty and with all the free applications assistance you can stand.

Using only your existing radio and RS232 terminal (or computer), you can join the rapidly expanding packet radio community. Operate on VHF, HF or satellite and talk to more than 1000 existing packet users. Store messages addressed to you automatically and read them from your printer or monitor later. Easy to hook-up! Easy to use!!

Call today for the rest of the story: 206-775-7733!!

Better yet, see your favorite AEA dealer.

Advanced Electronic Applications
P.O. Box C-2160
Lynnwood, WA 98036

All right, AEA, send me info fast!
To: AEA, P.O. Box C-2160, Lynnwood, WA 98036

Name:
Address:
City, State, Zip:
Phone:

Date:

August 1984
is available in either 50 or 60 Hz at 120 or 240 VAC. Used for spot cooling, it consumes about 1/15 of the power of a fan, yet accomplishes the same cooling effect. Its reliability is very high because of flexible metal strap blades laminated to thin-sheet piezoceramic elements. The mechanical vibrations that result when an AC voltage is applied across the piezoelectric element in the bender assembly cause the attached plastic blades to flap. This principle is illustrated in fig. 8. The highly “focused” air streams are responsible for the unit’s exceptional efficiency; the fan moves 20 cubic feet/minute of air while using just 0.36 watts.

the heat pipe

In size, heat pipes range from very small — about the size of a pipe cleaner (fig. 9) — to very large, as in furnace linings and factory smokestacks. The heat pipe’s claim to fame is its unique ability to equally and uniformly distribute heat and thus equalize the differences between the hottest and coolest objects (usually ICs and ambient air, respectively). The smallest heat pipes fit nicely beneath and between the two adjacent rows of IC pins.

Heat pipes are metallic, sealed, self-contained units (fig. 10) with a thin outer wall or shell of copper which surrounds an internal wick saturated with a working fluid. As one end of the heat pipe (the evaporator end) is heated, the fluid within vaporizes and travels to the other end (the condenser end). As the vapor condenses, heat is given off and the vaporized liquid condenses and travels back, via capillary action, to the evaporator end. The end result is an efficient self-contained heat exchange system with the following advantages:

- The ability to transfer over 1000 times more heat than a copper rod of the same size and weight.
- Virtually absolutely uniform heat transfer and distribution throughout the heat pipe with less than 0.1 degree C drop or heat gradient from one end of the pipe to the other.
- Lightweight and compact.
- No moving parts, no maintenance or external power required.
- No noise — either electrical or audible.
- Capability of being fused to an existing heat sink (fig. 11).

If, for example, you had an LED display composed of a row of adjacent DIPs, and very poor or no ventilation, as in fig. 12, you wouldn’t be able to use a slip-on DIP heat sink such as the one shown in fig. 13; slipping this heat sink over the DIP displays would obscure the front of the display, rendering it useless. In
applications such as this, a heat pipe is ideal. When it’s necessary to vent heat away after it has been transferred and evenly distributed, a radiator, as shown in fig. 14, may be attached to the heat pipe.

monitoring temperature

After heat sinks, heat pipes, and either a fan and/or a Peltier or Thomson-Joule device are added, the temperature should be within acceptable limits, and temperature monitoring should begin. A number of companies manufacture a crayon-like pen that can be used to apply a heat-sensitive substance to the surface of a semiconductor whose temperature is to be monitored (fig. 15). There are also TO-3, TO-66, and DIP stick-on temperature indicators (fig. 16) and other heat-sensitive products such as paints and tablets (fig. 17) that change colors in direct relation to the temperature they monitor; as the temperature changes, so does the color of the temperature indicator. These indicators are available in two types. The more traditional throwaway types change color as temperature rises, but if the temperature falls again, cannot change back to a color corresponding to this lower temperature. This unfortunate “ratchet” effect can be avoided by use of an LCD temperature indicator. Instead of the more traditional nematic crystals, these indicators use cholesteric crystals — produced in the cholesterol in lambs wool and cuttlefish — and cost about four dollars each, feature as many as seven colors, and have 5-degree C temperature increments as standard. There are larger indicators based on the same principle that can cover whole power supplies or entire printed circuit boards.

protection devices

In order for overheating to be controlled, it must first be sensed. The visual methods just described (shown in fig. 15 through 17) are one form of indicator; however, in unattended applications, electrical parameters, as well as heat, must be sensed and controlled. In a typical power supply, there is a fuse at the transformer, but other protection can be provided for individual component parts within the system.

A PTC (positive temperature coefficient) thermistor can help. These devices are very inexpensive — about $1 — and are two-lead devices that sense ambient heat by having the body or encapsulating cover experience heating, causing its resistance to rise by an order of magnitude (a factor of ten) for each 10 degree C rise in temperature above its trip point. This trip point is different per unit and can be specified, but a typical trip point is about 100 degrees C. Once this elevated
fig. 12. An ideal candidate for a heat pipe application, a poorly vented LED display.

fig. 13. A DIP slip-on heat sink, unfortunately not useful in an application such as with the display in fig. 12. (Photo courtesy Aavid Engineering, Inc.)

fig. 14. A "radiator" attached to a heat pipe for more effective heat radiation. (Photo courtesy Noren Products, Inc.)

fig. 15. Heat sensitive crayons used to visually detect temperature changes. (Photo courtesy Tempil Division, Big Three Industries, Inc.)

temperature is reached, though, automatic reset by merely removing power to the PTC thermistor is not possible. An actual cooling of the PTC thermistor to below its trip temperature must first occur before re-
fans can be selected and sized to maintain specified temperature rises for a given power dissipation requirement. On a smaller scale, thermoelectric devices exhibiting the Seebeck, Thomson, Joule, or Peltier effect can be used to cool individual semiconductors. Heat pipes are also very effective in uniformly transferring heat from one location to another. The effectiveness of these devices can be determined by using temperature indicators in the form of stick-ons or paints. Overheating protection devices that generate voltages in a feedback loop can be used to reduce the original cause of heat buildup.

**summary**

Though useful for the applications intended, heat sinks are not the only means of dissipating heat, especially within an equipment cabinet. Blowers and

**reference**


**bibliography**


Announces:

A User-Friendly Software Package
Designed For Easy Operation of Morse, Baudot, ASCII, and AMTOR. A Feature-Packed Program Called:

MA BA-TOR™

Now Available for the Commodore 64 Computer in Two Versions. MBA-TOR 64 Software Package Only, at $119.95 Suggested Retail. MAP-64/2 Software with Self-Contained Interface $239.95 Retail.

Just Look At Some Of The Features:

--- CW receive and transmit at 5 to 99 wpm, auto speed track on receive.
--- 8 bit ASCII, receive and transmit at 110, 150 or 300 baud.
--- 5 bit Baudot, receive and transmit at 60, 67, 75, 100 or 132 wpm.
--- TOR, receive and transmit ARQ (Mode A) or FEC (Mode B) and listen.
--- Beacon and WRU system, includes QRG check before XMT, won't QRM.
--- Message forwarding system, AUTO-AMTOR still functions in this mode.

Select command menu.
Select options menu.

+ Break-in buffer on all modes, toggle QSO buffer on or off.
+ CW speed lock and Farnsworth low-speed CW.
+ 10 soft-partitioned™ message buffers plus direct from disk or tape.

--- Allows loading of message or QSO buffers from disk or cassette.
--- Word processor type edit functions on message and QSO buffers.
--- Allows transmission of QSO buffer without disk or cassette systems.
--- Allows you to save message and QSO buffers to disk or cassette.
--- Set the transmit pre-type buffer to any size you like.
--- Chose between any of 16 colors for character, screen or border.
--- Lets you set the time of day clock.

+ Insert QSO station's call into any buffer while still copying.
+ Includes a complete manual, keyboard overlays and cables for the AEA Computer Patch™ or Micropatch™ Interface.
+ For more information call AEA, or see your AEA Dealer.

C & A ROBERTS, INC.
18511 Hawthorne Blvd., Torrance, CA 90504
213-370-7451  24 Hours call 213-834-5868

AEA Brings you the Breakthrough!

More Details? CHECK--OFF Page 140 August 1984
BODY BEATS

OUR PRICES!!!

$35.00 per month
nothing down
FINANCING AVAILABLE

100 CHANNELS OF TV MOVIES • SPORTS • NEWS

J & J SATELLITE TV SYSTEMS

9504 Tara Blvd., Jonesboro
404/477-1030 • 404/477-1238

FILTERS — BLANKERS
AND CONVERTERS
FOR THE SERIOUS AMATEUR

DISTRIBUTED EXCLUSIVELY BY

AllComm
5717 NE 56TH
SEATTLE, WA 98105
(206) 641-7461

HOBBY KITS®

EXPERIMENT — LEARN ELECTRONICS
BUILD AND DESIGN YOUR OWN AM, FM, CW,
OR SSB RECEIVERS, TRANSMITTERS AND ETC.
WITH OUR MINI-LINEAR CIRCUIT KITS
All kits Come Complete With Etched and Drilled Circuit Boards
and All Parts Needed To Function As Described

AFA-1 AUDIO AMP. LM 380 1-2 Watts 4-16 OHM Output
AFP-1 AUDIO PREAMP. Dual Audio Preamplifier For Mix Etc.
BMD-1 BAL. MIX. LM 1496 Mixer — S.B. Modulator Tuned Output
DET-1 AM DET. Am Envelope Detector With AGC Output
DET-2 FM DET. LM 3045 FM Detector (455 KHz or 4-11 MHz)
DET-3 SSB DET. LM 1496 SSB Detector (Needs OSC-1 or OSC-4)
DET-4 DETECTOR CW/SSB Using a dual gate FET transistor
IFA-1 IF AMP. CA 3028 30-80 DB Gain, Optional AGC (455 KHz or 9-11 MHz)
IFA-2 IF AMP. CA 3028 30 dB Gain 100-100 MHz Optional AGC
MBA-1 FREQ. MULT. Tuned Output Buffer Multiplier To 500 MHz
OSC-1 CRYSTAL OSC. 100 KHz — 20 MHz Not Tuned
OSC-2 CRYSTAL OSC. 16-200 MHz Tuned Output
PSV-1 POWER SUPPLY, CA3028 With Pass Transistor, 3 amps max.
PPL-2 TONE DETECTOR LM567 PLL Tone Detector
RF/MIX-1 RF-AMP/MIXER CA 3028 — Tuned RF AMP/Mixer 1-100 MHz
RF/MIX-2 RF-AMP/MIXER 3N204 Tuned RF Amp/Mixer 1 — 250 MHz
VCO-3 VARIABLE HI STAB OSC. Varactor tuned. 400 to 600 KHz output
VCO-4 VARIABLE HI STAB OSC. Varactor tuned. 3 to 20 MHz output

Add $2.00 For Shipping & Handling — Send For FREE Brochure
SEND $2.00 FOR FULL MANUAL WITH CIRCUIT DIAGRAMS AND
TYPICAL RECEIVER AND TRANSMITTER HOOK UPS
MANY OTHER MODULES AVAILABLE

MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA. 33011

62 August 1984
summer noise

Summertime DX really isn’t too bad on the higher frequency bands, 6-30 meters. Between sporadic-E short-skip openings near noontime and the bands staying open longer, enough DX fun is still available to keep us happy all day and well into the evening. The bands hardest hit by summertime problems are 80 and 160 meters of the lower-frequency bands. Their problem is summer thunderstorm noise — QRN.

Thunderstorm noise propagated from the equatorial regions increases the overall average noise level of the lower-frequency HF bands. At any given moment, 3600 storms are in progress around the world. That’s a lot of QRN! Some, of course, are inevitably nearby.

Air-mass thunderstorms, which form only over land, build up from the hot summer sun’s heating the ground and the air above it. They form in the afternoon if the humidity is above 50 percent, and last into the night before cooling off enough to dissipate. Unlike spring and fall frontal passage thunderstorms, which simply pass by your QTH, air-mass thunderstorms stay around for days until they release their moisture in the form of rain. During the evening DXing hours, the air-mass thunderstorm QRN more or less limits the usefulness of these band’s signals to local ragchewing, and rule out weak-signal DX.

So how do you get some DXing in on these bands? Most operators switch operating hours, giving up evenings in favor of the pre-dawn hours of early morning. By this time, the thunderstorms have dissipated locally and are dissipating on paths to the west. This is a cool, comfortable time of the day to be up and around. Good luck, early bird!

last-minute forecast

August is the last full month of summertime DX conditions, characterized mainly by sporadic-E short skip and longer daylight for high-frequency band DX operating. These higher frequencies are forecast to be best during the first two weeks of the month because of an expected high solar flux. The lower frequency bands, 30-160 meters, should improve during the last two weeks of the month because of lower noise and lower absorption of the signal’s energy. This trend will become even more apparent next month.

The moon’s perigee will occur on the 27th, with a full moon on the 11th. The Perseids meteor shower occurs from the 10th to 14th, with its maximum on the 11th and 12th, with better than fifty meteors per hour. This is an excellent shower.

band-by-band summary

Six-meter paths will open for a half hour to a couple of hours on some days around local noon. Sporadic-E propagation will make this short-skip path possible out to nearly 1200 miles (2000 km) per hop.

Ten, fifteen, twenty, and thirty meters will support DX propagation from most areas of the world during daylight and into the evening with long-skip out to 2000 miles (3500 km) per hop. Sporadic-E short skip will also be available on many days for several hours near local noon. The direction of propagation will follow the sun across the sky: morning to the east, south at midday, and toward the west in the evening. Daylight is still long, providing many hours of good DXing.

Thirty, forty, eighty, and one-sixty meters are the nighttime DXer’s bands. On many nights 30 and 40 meters will be the only usable bands because of thunderstorm QRN. Try the pre-dawn hours for less QRN. The direction of propagation follows the darkness path across the sky: evening to the east, south around midnight, and toward the west in the pre-dawn hours. Distances will decrease to 1000 miles (1600 km) for skip on these bands. Sporadic-E openings will be most frequently observed around sunrise and sunset. These may be the only signals getting through the noise in the evening.

ham radio
<table>
<thead>
<tr>
<th>AUGUST</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
<th>2400</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>FAR EAST</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>EUROPE</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCEANIA</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during 'normal' hours.*

*Look at next higher band for possible openings.*

---

64 August 1984
YOU GET MORE "BANG FOR YOUR BUCK" AT TNT RADIO SALES!

Kenwood  |  Mirage  |  MFJ  |  Welz
Icom     |  KLM     |  Astron |  Azden
Bencher  |  Telex Hygain | Alpha/Delta |  Santec
AEA      |  Nye Viking | Bearcat  |  KDK
Kantronics | Larsen   |  Regency   |  Ameritron

August/September Special—BUTTERNUT HF6V $107.00

SALES AND SERVICE AT PRICES YOU CAN AFFORD!

CALL OUR WATS LINE FOR LOW LOW PRICES!

1-800-328-0250
1-612-535-5050

TROUBLESHOOTING MICROPROCESSOR-BASED EQUIPMENT AND DIGITAL DEVICES

Attend this highly acclaimed seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques. $595.00

1984 FALL/WINTER SCHEDULE
- Washington, DC - September 11-14
- Boston - September 18-21
- Phoenix - October 9-12
- Los Angeles - October 16-19
- Atlanta - November 6-9
- Miami - November 13-16

*References provided upon request.

MICRO SYSTEMS INSTITUTE
Garnett, Kansas 66032
(913) 898-3265

RADIO EXPO 84 HAMFEST
sponsored by Chicago FM Club

September 22 & 23
Lake County Fairgrounds
Grayslake, IL Rts. 45 & 120

Giant Outdoor Flea Market
Reserved Indoor Tables — $5.00 ea/day
Major Manufacturers Exhibits
Tech talks — Seminars — Ladies’ Programs

Tickets good for both days
$3.00 advance — $4.00 at gate

SASE to RADIO EXPO 84
BOX 1532
Evanston, IL 60204
(312) 582-6923

NEW FROM NEMAL
your one stop coax supplier!

HARDLINE
Two styles, two sizes for all installation needs
- Aluminum Outer Conductor with Polyethylene Jacket
  1/2 inch loss: 48 dB/100 ft @ 30 MHz
  2.54 dB/100 ft @ 1000 MHz
  $1.25/ft.
  7/8 inch loss: 28 dB/100 ft @ 30 MHz
  2.54 dB/100 ft @ 1000 MHz
  $3.25/ft.
- Copper Outer Conductor with Polyethylene Jacket
  1/2 inch loss: 38 dB/100 ft @ 30 MHz
  2.78 dB/100 ft @ 1000 MHz
  $1.59/ft.
  7/8 inch loss: 13 dB/100 ft @ 30 MHz
  2.78 dB/100 ft @ 1000 MHz
  $3.92/ft.

COMPARISON: RG-213
  1/2 inch: 25 dB/100 ft @ 30 MHz
  8.5 dB/100 ft @ 1000 MHz

HARDLINE CONNECTORS
- 1/2 inch aluminum UHF M/F $19.00 Type N M/F $22.00
- 7/8 inch aluminum UHF M/F $49.00 Type N M/F $49.00
- 1/2 inch copper UHF M/F $22.00 Type N M/F $22.00
- 7/8 inch copper UHF M/F $49.00 Type N M/F $49.00

Call or write for Free Catalog

SAY YOU SAW IT IN...
RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
- RIPPLE: Less than 5mV peak to peak (full load & low line)

RS-A SERIES

MODEL RS-7A

RS-M SERIES

MODEL RS-35M

VS-M SERIES

MODEL VS-20M

RS-S SERIES

MODEL RS-12S

INSIDE VIEW - RS-12A

MODEL RS-50A

MODEL RS-50M

MODEL VS-50M

19" X 5¼ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 ¼ x 19 x 12 ½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 ¼ x 19 x 12 ½</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 ¼ x 6 ½ x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 ¼ x 6 ½ x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 x 7 ½ x 10 ¼</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 ½ x 10 ¼</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>5 x 9 x 10 ½</td>
<td>18</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>6 x 13 ¼ x 11</td>
<td>46</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 ½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¼ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 ½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¼ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 ½ x 10 ¼</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 ½ x 10 ¼</td>
<td>12</td>
</tr>
<tr>
<td>RS-10L (For LTR)</td>
<td>7.5</td>
<td>10</td>
<td>4 x 9 ½ x 10 ¼</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 x 9 ½ x 10 ¼</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 ½</td>
<td>18</td>
</tr>
</tbody>
</table>

Switchable volt and Amp meter

Seperate Volt and Amp Meters

Output Voltage adjustable from 2-15 volts

Current limit adjustable from 1.5 amps to Full Load

Built in speaker
STATE OF THE ART


CLAIRE E. AWAY

1984 The Radio Amateur’s Handbook

The American Radio Relay League
225 Main St.
Newington, CT 06111

More Details? CHECK --- OFF Page 140

113

THE CHAMP

BIRD MODEL 4304

NO ELEMENTS
25-1000 MHZ
RF SAMPLING PORT

AUTHORIZED DISTRIBUTOR

Webster Communications Inc.
115 Bellarmine
Rochester, MI 48063
313-375-0420

CALL TOLL FREE
800-521-2333
800-482-3610

THE CHAMP

FRESH STOCK - NOT SURPLUS
TESTED — FULLY GUARANTEED

2-30MHz 12V (* = 28V)

<table>
<thead>
<tr>
<th>PIN</th>
<th>Rating</th>
<th>Ea</th>
<th>Match Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF406</td>
<td>20W</td>
<td>$14.50</td>
<td>$32.00</td>
</tr>
<tr>
<td>MRF412</td>
<td>80W</td>
<td>18.00</td>
<td>40.00</td>
</tr>
<tr>
<td>MRF412A</td>
<td>80W</td>
<td>18.00</td>
<td>40.00</td>
</tr>
<tr>
<td>MRF421</td>
<td>100W</td>
<td>25.00</td>
<td>54.00</td>
</tr>
<tr>
<td>MRF421C</td>
<td>110W</td>
<td>27.00</td>
<td>58.00</td>
</tr>
<tr>
<td>MRF422</td>
<td>150W</td>
<td>38.00</td>
<td>82.00</td>
</tr>
<tr>
<td>MRF426</td>
<td>25W</td>
<td>17.00</td>
<td>40.00</td>
</tr>
<tr>
<td>MRF426A</td>
<td>25W</td>
<td>17.00</td>
<td>40.00</td>
</tr>
<tr>
<td>MRF433</td>
<td>13W</td>
<td>14.50</td>
<td>32.00</td>
</tr>
<tr>
<td>MRF435</td>
<td>150W</td>
<td>42.00</td>
<td>90.00</td>
</tr>
<tr>
<td>MRF449</td>
<td>30W</td>
<td>12.00</td>
<td>27.00</td>
</tr>
<tr>
<td>MRF449A</td>
<td>30W</td>
<td>12.00</td>
<td>27.00</td>
</tr>
<tr>
<td>MRF453</td>
<td>60W</td>
<td>15.00</td>
<td>33.00</td>
</tr>
<tr>
<td>MRF455</td>
<td>60W</td>
<td>15.00</td>
<td>33.00</td>
</tr>
<tr>
<td>MRF456</td>
<td>80W</td>
<td>16.00</td>
<td>35.00</td>
</tr>
<tr>
<td>MRF458</td>
<td>80W</td>
<td>16.00</td>
<td>35.00</td>
</tr>
<tr>
<td>MRF460</td>
<td>80W</td>
<td>16.00</td>
<td>35.00</td>
</tr>
<tr>
<td>MRF462</td>
<td>80W</td>
<td>16.00</td>
<td>35.00</td>
</tr>
<tr>
<td>MRF464</td>
<td>80W</td>
<td>16.00</td>
<td>35.00</td>
</tr>
<tr>
<td>MRF470</td>
<td>115W</td>
<td>25.00</td>
<td>58.00</td>
</tr>
<tr>
<td>MRF472</td>
<td>125W</td>
<td>25.00</td>
<td>58.00</td>
</tr>
<tr>
<td>MRF476</td>
<td>150W</td>
<td>38.00</td>
<td>82.00</td>
</tr>
<tr>
<td>MRF478</td>
<td>150W</td>
<td>38.00</td>
<td>82.00</td>
</tr>
<tr>
<td>MRF485</td>
<td>150W</td>
<td>60.00</td>
<td>120.00</td>
</tr>
<tr>
<td>MRF492</td>
<td>90W</td>
<td>18.00</td>
<td>35.00</td>
</tr>
<tr>
<td>SRF2072</td>
<td>75W</td>
<td>15.00</td>
<td>30.00</td>
</tr>
<tr>
<td>CD2545</td>
<td>50W</td>
<td>24.00</td>
<td>55.00</td>
</tr>
</tbody>
</table>

Selected High Gain Matched Pairs Available

VHF TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Rating</th>
<th>Ea</th>
<th>Match Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF221</td>
<td>15W</td>
<td>$10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>MRF222</td>
<td>15W</td>
<td>$10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>MRF224</td>
<td>20W</td>
<td>$10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>MRF231</td>
<td>3.5W</td>
<td>10.00</td>
<td>15.00</td>
</tr>
<tr>
<td>MRF234</td>
<td>25W</td>
<td>15.00</td>
<td>25.00</td>
</tr>
<tr>
<td>MRF237</td>
<td>3W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF238</td>
<td>3W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF239</td>
<td>3W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF240</td>
<td>3W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF245</td>
<td>8W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF247</td>
<td>8W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF260</td>
<td>5W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF264</td>
<td>30W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF492</td>
<td>70W</td>
<td>18.00</td>
<td>39.00</td>
</tr>
<tr>
<td>MRF507</td>
<td>1.8W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF527</td>
<td>0.5W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF614</td>
<td>15W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF644</td>
<td>25W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF646</td>
<td>40W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>MRF648</td>
<td>60W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>SD1416</td>
<td>25W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>SD1477</td>
<td>125W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N4427</td>
<td>1W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N5945</td>
<td>4W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N5946</td>
<td>10W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N6080</td>
<td>5W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N6581</td>
<td>15W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N6582</td>
<td>25W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N6583</td>
<td>30W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>2N6584</td>
<td>40W</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>TMOS FET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRF137</td>
<td>30W</td>
<td>22.50</td>
<td>45.00</td>
</tr>
<tr>
<td>MRF138</td>
<td>30W</td>
<td>22.50</td>
<td>45.00</td>
</tr>
<tr>
<td>MRF140</td>
<td>150W</td>
<td>92.00</td>
<td>184.00</td>
</tr>
<tr>
<td>MRF150</td>
<td>150W</td>
<td>92.00</td>
<td>184.00</td>
</tr>
<tr>
<td>MRF172</td>
<td>80W</td>
<td>65.00</td>
<td>130.00</td>
</tr>
<tr>
<td>MRF174</td>
<td>125W</td>
<td>88.00</td>
<td>176.00</td>
</tr>
</tbody>
</table>

Technical Assistance & cross-reference information on CD. PT, RF, SRF, SD PINs
Call Engineering Dept. (619) 744-0728

RF Parts Catalog Available

Minimum Order $20 Add $5.50 Shipping
WE SHIP SAME DAY C.O.D./VISA/MC

ORDERS ONLY: 800-854-1927

WESTCOM
1320 Grand Ave.
San Marcos, California 92069
(619) 744-0728

MOSLEY... a Better Antenna
For New and Old
* EASY ASSEMBLY
* NO MEASURING
* LOW SWR
* ALL STAINLESS HARDWARE
* BUILT TO LAST

Whether you are just starting out or trying to
complete the Honor Roll, MOSLEY offers a Full
Line of Tri-Banders which will mechanically and
electronically outperform the competition.
For the new ham with limited space and pocket
book, start with our TA-31 jr. rotatable dipole.
You can make our TA-31 jr. into a 2 or 3 element
as your needs increase.
If you start with the need to run higher power,
then the TA-31 is for you. This also can be made
into a 2 or 3 element beam as you expand your
stations.

For the ham that wants a little more performance
out of a Tri-Bander but is limited in room, then
our CL-33 on a 18 foot boom is the way to go.
For those that want MONO BAND performance
out of a Tri-Bander, want to hear better and be
louder, the CL-33 is for you.

For the ham that wants to start right at the top,
the PRO-37 is the antenna that will give you king
of the hill performance. It is the broadest band-
ed, highest power, best performing Tri-Bander
in our line.

Compare ours before buying any other antenna.
All stainless standard, all heavy telescop-
ing elements which means better quality and
no measurement. Ease of assembly gives you a
quality antenna with consistent perfor-
mance. Our elements are pre-drilled so you will
get the game performance as we do. All of our
Tri-Banders come with a 2 year warranty.

If you are a new ham and are not familiar with
MOSLEY, ask an older ham about us or call the
PRESIDENT OF MOSLEY. He will be glad to
explain why MOSLEY IS A BETTER ANTENNA.

These and other MOSLEY products are available
through your favorite DEALER. Or write to
MOSLEY for the DEALER nearest you.

1800-854-1927

August 1984
Kantronics Interface II

The Interface For Apple, Atari, TI-99/4A, TRS-80C, VIC-20, and Commodore 64 Computers

Interface II is the new Kantronics transceiver-to-computer interface. Interface II features a highly sensitive front end with mark and space filtering. Even the most discerning operator will be surprised with the Interface II’s ability to dig out signals in poor band conditions. Our unique tuning system even displays signal fading.

X-Y scope outputs and dual interface outputs for VHF and HF connections make Interface II compatible with almost any shack. All three standard shifts are selectable, and Interface II is AMTOR compatible. Interface II is designed for use with Kantronics software.

Kantronics Software — The Industry Standard

Hamsoft

Our original program for reception and transmission of CW/RTTY/ASCII. Features include Split Screen Display, Message Ports, Type-ahead buffer, and printer compatibility. Apple Diskette $29.95, VIC-20 cartridge $49.95, Atari board $49.95, TRS-80C board $59.95, TI-99/4A cartridge $99.95.

Hamtext

All the features of Hamsoft with the following additional capabilities: text editing, received message storage, variable buffer sizes, diddle, word wraparound, time transmission, and text transmission from tape or disc. The program is available on cartridge for the VIC-20 or Commodore 64, and diskette for the Apple. Suggested Retail $99.95.

Hamsoft/Amtor

This program has Hamsoft features with the added ability of communicating in the newest coded amateur format—AMTOR. AMTOR offers error free low power communication. Hamsoft/Amtor is available for the Atari, TRS-80C, VIC-20, and Commodore 64 computers. Suggested Retail $79.95.

Amtorsoft

For the serious AMTOR operator using a VIC-20, Commodore 64, or Apple computer. This program is similar to Hamtext in capabilities, but can only be used for AMTOR. The Apple version includes both Hamtext and Amtorsoft on one diskette ($139.95), while the Vic-20 and Commodore 64 cartridge is just Amtorsoft ($89.95).
Kantronics UTU
The Universal Terminal Unit For Everyone Else

Suggested Retail Price 199.95

KANTRONICS SETS A NEW STANDARD WITH THE KANTRONICS UNIVERSAL TERMINAL UNIT.

UTU allows any computer with an RS232 port and a terminal program to interface with any transceiver. Additional software isn’t necessary with UTU, as an internal microcomputer gives the unit data processing capabilities to send and receive in four coded amateur formats: Morse code, Radioteletype, ASCII, and AMTOR.

Sample terminal programs for IBM, TRS-80 Model III and IV, Kaypro, and other computers are included in the manual. Enhanced features can be user defined by altering the terminal program, giving you flexibility to program for your specific needs.

The Kantronics Universal Terminal Unit can send and receive CW at 6-99 WPM; RTTY 60, 67, 75, 100, and 132 WPM; ASCII 110, 150, 200, and 300 baud; and AMTOR. Dual tone detection and our unique bargraph tuning system make tuning fast and easy. Additional LEDs indicate Lock and Valid status during AMTOR operation. The RS232 port is TTL or RS232 level compatible.

If you’ve been waiting for a Kantronics system for your computer, the wait is over.

For more information contact an Authorized Kantronics Dealer,
or write: Kantronics
1202 E, 23rd Street
Lawrence, Kansas 66044
# ANTENNA SALE

<table>
<thead>
<tr>
<th>HY-GAIN</th>
<th>HY-GAIN TOWERS</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3RJS</td>
<td>$169</td>
<td></td>
</tr>
<tr>
<td>TH5MK2S</td>
<td>$355</td>
<td></td>
</tr>
<tr>
<td>TH7BX3S</td>
<td>$410</td>
<td></td>
</tr>
<tr>
<td>EXPLORER 14</td>
<td>$269</td>
<td></td>
</tr>
<tr>
<td>14AVQD</td>
<td>$59</td>
<td></td>
</tr>
<tr>
<td>18AVT/WBS</td>
<td>$95</td>
<td></td>
</tr>
<tr>
<td>V2S</td>
<td>$37</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>$40</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>$49</td>
<td></td>
</tr>
<tr>
<td>66BS</td>
<td>$109</td>
<td></td>
</tr>
<tr>
<td>CD45 II</td>
<td>$125</td>
<td></td>
</tr>
<tr>
<td>HAM IV</td>
<td>$199</td>
<td></td>
</tr>
<tr>
<td>T2X</td>
<td>$245</td>
<td></td>
</tr>
<tr>
<td>ALLIANCE HD73</td>
<td>$99</td>
<td></td>
</tr>
<tr>
<td>BUTTERNUT</td>
<td>$59</td>
<td></td>
</tr>
<tr>
<td>AEA</td>
<td>$109</td>
<td></td>
</tr>
</tbody>
</table>

- TH3RJS HY-GAIN TOWERS TH37S $629
- HG50MT2 HY-GAIN TOWERS HG52S $799
- HG54HD HY-GAIN TOWERS HG70HD $2269
- HG57SS HY-GAIN TOWERS HG70HD $2269
- HG58HD HY-GAIN TOWERS HG70HD $2269
- HG54HD HY-GAIN TOWERS HG70HD $2269
- HG57SS HY-GAIN TOWERS HG70HD $2269

**NEW HY-GAIN TOWERS**

<table>
<thead>
<tr>
<th>HY-GAIN TOWERS</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG57SS</td>
<td>$629</td>
</tr>
<tr>
<td>HG50MT2</td>
<td>$739</td>
</tr>
<tr>
<td>HG52S</td>
<td>$899</td>
</tr>
<tr>
<td>HG54HD</td>
<td>$1449</td>
</tr>
<tr>
<td>HG70HD</td>
<td>$2269</td>
</tr>
</tbody>
</table>

**KLM**

<table>
<thead>
<tr>
<th>KLM</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT34A</td>
<td>$329</td>
</tr>
<tr>
<td>KT34X</td>
<td>$479</td>
</tr>
<tr>
<td>40M-2</td>
<td>$290</td>
</tr>
<tr>
<td>2M-13LBA</td>
<td>$77</td>
</tr>
<tr>
<td>2M-14C</td>
<td>$85</td>
</tr>
<tr>
<td>435-18C</td>
<td>$59</td>
</tr>
<tr>
<td>432-16LB</td>
<td>$65</td>
</tr>
</tbody>
</table>

**HUSTLER CALL**

<table>
<thead>
<tr>
<th>HUSTLER CALL</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$269</td>
<td></td>
</tr>
<tr>
<td>$279</td>
<td></td>
</tr>
<tr>
<td>$289</td>
<td></td>
</tr>
<tr>
<td>$290</td>
<td></td>
</tr>
<tr>
<td>$299</td>
<td></td>
</tr>
</tbody>
</table>

**LARSEN CALL**

<table>
<thead>
<tr>
<th>LARSEN CALL</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$269</td>
<td></td>
</tr>
<tr>
<td>$279</td>
<td></td>
</tr>
<tr>
<td>$289</td>
<td></td>
</tr>
<tr>
<td>$290</td>
<td></td>
</tr>
<tr>
<td>$299</td>
<td></td>
</tr>
</tbody>
</table>

**BEARCAT SPECIAL SALE**

<table>
<thead>
<tr>
<th>BEARCAT SPECIAL SALE</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 350</td>
<td>$375.00</td>
</tr>
<tr>
<td>BC 300</td>
<td>$339.00</td>
</tr>
<tr>
<td>BC 20/20</td>
<td>$279.00</td>
</tr>
<tr>
<td>BC 210XL</td>
<td>$219.00</td>
</tr>
<tr>
<td>BC 200</td>
<td>$169.00</td>
</tr>
<tr>
<td>BC 180</td>
<td>$159.00</td>
</tr>
<tr>
<td>BC 260</td>
<td>$249.00</td>
</tr>
<tr>
<td>BC 100</td>
<td>$279.00</td>
</tr>
<tr>
<td>BC WA</td>
<td>$34.95</td>
</tr>
<tr>
<td>CP2100</td>
<td>$279.00</td>
</tr>
</tbody>
</table>

**ALL SOFTWARE**

<table>
<thead>
<tr>
<th>ALL SOFTWARE</th>
<th>CUSHCRAFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$39.95</td>
<td></td>
</tr>
</tbody>
</table>

**STUMPED FOR A GIFT IDEA?**

**I.D. BADGES**

No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Wear it with pride! Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

- UID Engraved I.D. Badge $2.50

**HERE'S A GIFT IDEA!**

How about an attractive BASEBALL style cap that has name and call on it. It's the perfect way to keep eyes shaded during Field Day. It gives a jaunty air when worn at Hamlets and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion you want it to be. Hats come in the following colors: GOLD, BLUE, RED, KELLY GREEN. Please send call and name (maximum 6 letters per line).

- UFBC-81 $5.00

**REGULAR PRICE HAT AND BADGE $7.50 + SHIPPING SPECIAL $6.49 SAVE $1.00**

Please enclose $1 to cover shipping and handling.

**HAM RADIO'S BOOKSTORE**

GREENVILLE, NH 03048

(603) 878-1441
Build a "Supershack"

From QRP to SSB, Heath leads the way with high tech products that perform.

- HW-9 Deluxe QRP CW Transceiver covers CW in 80, 40, 20 and 15 meters, expandable to 30, 17, 12 and 10 meter bands.
- SS-9000 microprocessor-based, solid-state Deluxe HF Transceiver with nine band operation.
- HD-8999 UltraPro CW micro-controlled keyboard. Send letter perfect code at up to 99 WPM.
- HW-5400 Synthesized HF SSB/CW Transceiver. Our lowest cost, high tech transceiver.
- HL-2200 2kW Linear Amplifier. The lowest cost-per-watt in 2k linears.
- Plus dozens of other high tech amateur products and accessories.

See our complete amateur radio line including the new Tunable Active Audio Filter, RTTY Terminal Interface, Smart Outlet Box and more.

Over 50 value-priced products for the well-equipped ham shack. See them on display at a nearby Heathkit Electronic Center!
ROHN
Self Supporting Towers On SALE!
FREIGHT PREPAID
• All Steel Construction—Rugged
• Galvanized Finish—Long Life
• Totally Free Standing—No Guy Wires
• America's Best Tower Buy—Compare Save $ 
• Complete With Base and Rotor Plate
• In Stock Now—Fast Delivery

ROHN Self Supporting Towers On SALE!
FREIGHT PREPAID
• All Steel Construction—Rugged
• Galvanized Finish—Long Life
• Totally Free Standing—No Guy Wires
• America's Best Tower Buy—Compare Save $ 
• Complete With Base and Rotor Plate
• In Stock Now—Fast Delivery

MINI-PRODUCTS HQ-1
LIST $182.50 SALE $159
• Wire Span - 11 ft
• Wire Area - 1.5 sq. ft
• Boom - 54 in. long
• 1200W P.E.P. Input

ALPHA DELTA COMMUNICATIONS
Tran-Trans? Surge Protectors—In Stock Now!
Model I.T/1 200W Klystron $29
Model HT I 200W Klystron $29
Model R-T 200W Deluxe $29
Model HV 2kW Deluxe $29

KLM
KT344 4-6 Band Broad Band Beam $339
KT345A 6-Band Broad Band Beam $499
KT345B 8-Band Broad Band Beam $499
10/12/15/18 MHz Rotor Durable Pipe $179
20-40 MHz Rotatable Pipe $599
40-72 MHz Rotatable Pipe $599
15 MHz 6-16 MHz $259
16-10 MHz $259
30-70 MHz Log Periodic Beam $699

ROTOR S/CABLES
Alliance H073 (10.7 sq. ft rating) $109
Alliance U10 1/2 (10 sq. ft rating) $219
Telcom HAM 415T (10 sq. ft rating) $199
Telco TDS40 20W TDS 194B-60 Watt 194B-60 Watt $279
Kenpro KR 580 Heavy Duty $189

SOUTHERN RIVER ROCK TRIP ODS
HDT-3 3 Tri Pod $19
HDT-5 5 Tri Pod $39
HDT-10 10 Tri Pod $49
HDT-15 15 Tri Pod $69

ROHN GUAYED TOWERS
10 ft Stack Sections
20G $375.00
25G $456.00
45G $107.50
55G $127.50
All 20G, 25G, 45G and 55G Accessories
In Stock at Discount Prices—CALL!
KENWOOD

IOM IC-751A LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

IOM IC-745 LIST PRICE $999
CALL FOR SPECIAL SALE PRICE!

IC-92AT NEW 2 METER
TOP OF THE LINE HT
- Digital LCD Readout
- Scanning
- Programmable PL Tones
- Optional SWR Battery
- 5-meter Function
- 10 Memories
- Offset Storage
- Lithium Memory Back-up
- 8-DVD Operation!
- Sealed Case
SUGGESTED LIST PRICE $349 CALL FOR SALE PRICES!

TS-930G LIST PRICE $1799
CALL FOR SPECIAL SALE PRICE!

TS-430S LIST PRICE $899.95
CALL FOR SPECIAL SALE PRICE!

FT-757GX LIST PRICE $289
CALL FOR SPECIAL SALE PRICE!

FT-726R LIST PRICE $289
CALL FOR SPECIAL SALE PRICE!

TR-2500 2.5W/300 mW
(Glitchless) 2 Meter
Handheld Transceiver
Small Size — Small Price—
Big Performance!
- LCD Readout
- Fan Memories
- Lithium Battery
- Band and Memory Scan
- Built-In 9-Key
- Auto Coll Out
- Slide Lock Battery Pack
TR-2500 List Price $329.95
CALL FOR SPECIAL PRICES!

NEW ST142b/P
2M HT
- 3.5W/1W/0.1W
- 142-149.995 MHz
- LCD Display
- Programmable
- PL Option
List 339.95
SALE 299.95!

ST144b/P...........
CALL!

ST222b/P...........
CALL!

SANTEC Accessories
SM-3 Speaker Mic. . . . $34.95
ST-LC Leather Case . . . $34.95
ST-500 NiCad Battery . . . $29.95
ST-40C Base Charger .. $69.95

CALL FOR SPECIAL SALE PRICE! CALL FOR SPECIAL SALE PRICE! CALL FOR SPECIAL SALE PRICE!

ST144b/P ..........
TR-222b/P .........

SANTEC Accessories
SM-3 Speaker Mic. . . . $34.95
ST-LC Leather Case . . . $34.95
ST-500 NiCad Battery . . . $29.95
ST-40C Base Charger .. $69.95

1COM

IC-751A LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

IC-745 LIST PRICE $999
CALL FOR SPECIAL SALE PRICE!

IC-7200 LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

IC-7200 LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

IC-7200 LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

CALL FOR SPECIAL SALE PRICE!
1984 38TH EDITION
WORLD RADIO AND TV HANDBOOK

The brand new 1984 edition is jam-packed with station addresses, frequencies, schedules and all the latest general data you need to get the most enjoyment out of SWL’ing. Also includes latest equipment reviews; handy hints and tips on how to improve your DXing. It’s the only complete reference guide to international broadcasting available today. ©1984
WR-TV Softbound $17.50

RTTY TODAY
A Modern Guide to Amateur Radio Teletype
by Dave Ingram, KATWJ
Brand new and completely up-to-date. Dave’s clear, concise writing style and a wealth of illustrations, diagrams and photos, make RTTY easy as A-B-C. Extensive coverage is given to using home computers for RTTY. Eleven chapters start with an overview of RTTY operation, then gives you coverage of operating parameters, computers, equipment you can build, dedicated systems and teletypes. 135 pages. ©1984 1st edition.
UE-AR Softbound $8.50

THE SATELLITE EXPERIMENTER’S HANDBOOK
In 1961, a new era was begun in Amateur Radio with the launch of the first Orbiting Satellite Carrying Amateur Radio, OSCAR. Since then, thousands of electronic hobbyists, around the world, have used OSCAR for experimentation, education and for commercial purposes. This new League publication also carries information on communication satellites in orbit and satellite design as well as material on ground station and antennas. ©1984, 1st edition.
AR-SE Softbound $10.00

1984-85 ARRL REPEATER DIRECTORY
You can order this book the “repeater bible”. Close to 8,000 listings include stations organized first by frequency then by state and region. All of the important details such as access tones, auto patch, etc. are also included. If you do any traveling and have a two-meter rig with you, this is the book for you. ©1984 AR-RD Softbound $2.00

GENERAL CLASS RADIO AMATEUR FCC EXAM MANUAL
Here is the first General Class study guide keyed to both the FCC and AMC examinations. The 500 questions provided for the Voluntary exam are fully covered with detailed, concise answers. You also get ten pages of study material taken from the currently administered FCC exam. As a bonus, all questions are keyed to AEC’s Theory Course, 10-01, for a more detailed explanation of the study material. If you have mastered this book, you will be ready to pass either an FCC or Voluntary exam administered by your ARRL section. ©1984, 1st edition.
12-01 Softbound $3.25

COMPUTER PROGRAMS FOR AMATEUR RADIO
by Wayne Overbeck, N6NB, and James Steffen, K6CA
Here’s your complete guide to computer programs for the Radio Amateurs. Besides covering the basic computer programs like Morse code generator, logging and data processing, the authors show you how to speed up math calculations, store codes and times by any location on earth, set up a record system for DXCC, WAS, VUCC, or any other award, track the moon’s path for your QSL cards, and so much more. Programs included are written for popular computers. Take full advantage of your computer’s capabilities with this well written, easy-to-use resource book. ©1984, 1st edition.
HA-0657 Softbound $16.95

THE COMPLETE DX’ER
by Bob Locher, W9KNI
DXing can be as simple as turning on the radio and searching across a band, or it can be hours spent studying propagation reports, sunspot fig-
ures and the DXCC newsletters looking for tidbits of information. This book tells all and should be read before anyone starts their quest for DXCC. Even if you don’t care about DXCC, Bob’s easy-to-understand text and the practical suggestions make this book one that is enjoyable reading. ©1984, 1st edition.
ID-DX Softbound $10.95

THE DX EDGE
This handy DX operating aid should be in every ham’s shack! Twelve different month overlays are included showing the sun’s position over the earth. To use the DX Edge, you simply align the hour print.
ed on the top of the overlay with your local time. You instantly see the sun’s relative position around the earth. Great for determining possible gray line and long path openings. Plastic slide rule format and large size makes the DX Edge very easy to use. ©1984, 1st edition.
NX-DX Softbound $16.95

THE TAB HANDBOOK OF RADIO COMMUNICATIONS
by Joe Carr, K4PV
Starting with an overview of the basic building blocks of physics, Joe Carr gives the reader a complete self-contained course in basic electronics and electronics. Besides an excellent electronics reference book, it’s also an ideal study guide for both Amateur and commercial license exams. All aspects of radio are covered: receivers, transmitters,課 operating modes, radio-wave propagation, transmission lines, antennas, and more. Of importance to beginners, Joe Carr also covers in detail the fundamentals of radio repair and troubleshooting. ©1984, 1st edition.
T-1636 Softbound $29.50

THE AMATEUR RADIO VERTICAL HANDBOOK
by Cpl. Paul H. Lee, USN (Ret.), N6PL
This brand new, second edition of the only book dedicated to the vertical antenna, will be of interest to all those using or looking to use the vertical antenna. Based upon the author’s years of work with a number of vertical antenna designs, you’ll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for simple 1/4- and 5/8-wave antennas, as well as broadband and high impedance vertical antennas. Paul Lee is an engineer and avid ham and is Amateur Radio’s resident expert on the vertical antenna. ©1984, 2nd edition.
CC-VAH Softbound $9.95

SYNCHRONOUS PACKET RADIO USING THE SOFTWARE APPROACH
Vol. 2 A2.25 Protocol
by Bob Richardson, WA4UCH
There are two basic ways to get into packet radio. The first is the hardware approach and requires a sophisticated "black box." The second way is to use machine language programs that are specially designed for packet radio. WA4UCH, author of The GammaMax Cookbook, will help you in getting your Model I or IIB T1500 Radio Shack computer on packet radio. Twelve chapters take step by step through the process of getting your computer to first create the new information format and then to decode the information. You also get six appendixes that are a handy reference guide as you improve your computer’s skills. ©1983, 1st edition.
RE-AK Softbound $21.95

BUY BOTH CALLBOOKS SAVE
CB-USF $32.90
Includes shipping U.S.A

Callbooks shipped postpaid. Shipping & handling for ARRL Repeater Directory and ARRL CQDX 12-01, $1.50. All other books $2.50.

Tell 'em you saw it in HAM RADIO!
Every preamplifier is precision aligned on ARR's Hewlett Packard HP9070A/HP904A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are RF switched (for use with transceivers) and handle 25 watts transmitter power. Mount Inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special amplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7-1/2% sales tax. C.O.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or Inline preamplifier today and start hearing like never before!

**Advanced Receiver Research**

Box 1242 • Burlington, CT 06013 • 203 582-9409

---

**SEMICONDUCTORS:**

| MRF-268 | 12.00 | MHW-252 | 53.00 |
| MRF-300 | 16.40 | MHW-7101 | 61.00 |
| MRF-309 | 33.80 | MP81H81 | 50.00 |
| MRF-322 | 44.00 | 73L08CP | 50.00 |
| MRF-324 | 55.00 | 182025 | 50.00 |
| MRF-901 | 1.75 | 2N5190 | 1.50 |
| SBD-1 | Double-Balance Mixer | 6.50 |

**CAMBION CHOKES:** 15 µh, 22 µh, 33 µh, 4.7 µh, 10 µh, 120 µh

**BROADBAND TRANSFORMERS PER MOTOROLA BULLETINS:** AN-762, EB-27A, EB-83

**UNDERWOOD/SEMCO METAL-CLAD MICA CAPACITORS:** 5pf, 10pf, 15pf, 25pf, 30pf, 40pf, 56pf, 60pf, 68pf, 80pf, 100pf, 120pf, 200pf, 250pf, 390pf, 470pf, 1000pf

We also carry a line of VHF, UHF amplifiers and ATV equipment. Call or write for our free catalog.

---

**P.C. BOARDS FOR MOTOROLA BULLETINS:**

| AN-762 | 14.00 |
| EB-27A | 14.00 |
| EB-83 | AN-791 | 10.00 |
| EB-63 | 14.00 |
| EB-67 | 14.00 |
| KEMET CHIP CAPACITORS: | 56 pf, 82 pf, 100 pf, 390 pf, 470 pf, 5000 pf | 50 ea, 55 ea, 100 ea, 1000 ea, 15000 ea |

---

**DIGITAL ANTENNA CONTROL FULLY COMPUTERIZED**

**SMALL IN SIZE**

3¼ "H x 5¼ "W x 6 ¼ D

**10 MEMORIES**

For storing your favorite headings

**ONE YEAR FULL WARRANTY**

Pro-Search is adaptable to many systems, simple to install.

No modifications are necessary.

Presently we’re having our Fall and Christmas Special. A PSE-1, used with the CDE Series. Now only $315.00 plus shipping. Regular retail price $419.91. Offer good until December 15, 1984. Order Early we expect a back order problem due to demand and availability of parts.

Also ask about our Fall Rotor, Antenna and Unit Special.

**CALL NOW 1-800-325-4018**

Controllers also available for other rotors.

Prices and specifications subject to change without notice or obligation.

**U.S. and Foreign Patents**
The Problem Solver...

The RF Wattmeter Model 81000-A from Coaxial Dynamics, Inc. does more than provide accurate rf measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assure optimum equipment performance.

The 81000-AK Wattkit features this easy-to-read RF Wattmeter (picture here), with its optional carrying case and an array of elements and accessories. Coaxial Dynamics elements can be purchased separately for use in other manufacturer's Wattmeters. For more information on the 81000-A Wattmeter or any of the complete line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

Coaxial Dynamics, Inc.
15210 Industrial Parkway, Cleveland, OH 44135 • (216) 267-2233
Outside Ohio, WATS: (800) Coaxial, Telex: 980-530

Rand
New

RTTY Today

Modern Guide to Amateur Radioteletype

by Dave Ingram, K4TWJ

This brand new book is the only RTTY handbook available that covers all facets of RTTY operation from the "green key" generation to personal computers. Author Dave Ingram, K4TWJ, noted RTTY enthusiast, writes in a personable, easy-to-understand style that will appeal to all levels of RTTY interest. RTTY Today is fully illustrated with photos, diagrams, RTTY station set ups and equipment to help ensure full understanding of the material. 11 chapters cover: an overview of RTTY operation, operating parameters, home computers, equipment you can build, dedicated systems and complete chapters on RTTY SWLing with frequencies, codes and other helpful hints and tips. Old time RTTY users and novices alike will find this book extremely useful. ©1984.

Order yours today $8.95 plus $1.75 shipping

Universal Electronics

4555 Groves Rd. • Suite 3 • Columbus, OH 43232
(614) 866-4805

Dealer Inquiries Invited

This Publication is available in Microform.

University Microfilms
International

Please send additional information for:
Name:
Institution:
Street:
City:
State:
Zip:

300 North Zeeb Road
Dept P.R.
Ann Arbor, MI 48106

Custom Mailing Lists on Labels!
Amateur Radio Operator NAMES
Custom lists compiled to your specifications
• Geographic by ZIP and/or State
• By License Issue or Expiration Date
• On Labels of Your Choice
Total List: 435,000 Price: $25/Thousand
Buckmaster Publishing

$12.95

TEXAS
ULF-104
WDE5EQM

HAMS-TAGS
Your call on each vehicle. Call at top or bottom of frame, and frame front plate. No-nonsense, full refund guarantee. $1.50 shipping (First Class Mail).

1716 Woodland, Houston, TX 77019 (713) 522-5755

$12.95
fundamentals of grayline propagation

Signals don’t always follow “normal” paths

The decline of the sunspot cycle has been accompanied by a corresponding decrease in DX opportunities on the higher frequency bands. Ten meters is becoming very sporadic in nature, as F-layer path openings continue to decrease in both number and duration. Within a few years, at the bottom of the solar cycle, the only activity remaining on 10 meters will be via sporadic-E propagation. The 15-meter band is not much better; as 10 meters goes downhill, so goes 15: this band will also continue to decline, offering fewer and poorer openings of much shorter duration.

As the levels of solar flux continue to drop, there will be an increasing number of days when the only (high HF band) activity will be found on 20 meters. Even this band won’t offer the same quality openings of several years past. During many of the years to come, it will be a strictly daylight DX band with only scattered openings to various parts of the world.

With the knowledge that much of the DX has migrated to 40 and 80 meters, and believing that high power is required on these bands, many Amateurs feel that there’s no place left for the “barefoot” DXer. After all, even though the low power operator can compensate for the lack of a kilowatt with a good beam and tower combination on the higher frequency bands, how many of us have the money and/or acreage for beams or phased arrays on 80 or 40 meters? Today, many low power operators will attempt to work DX on these bands only during contests, believing that their signals will never be heard at any other time.

Is there really no place left for the “barefoot” DXer? Of course not: nature has provided us with a mode of propagation on these low bands that will allow DX operation without the use of maximum power or costly low-band directive arrays. This type of propagation — called “grayline” or “shadow edge” propagation — takes place along that line dividing the daylight and darkness hemispheres of the planet, functions on both 80 and 40 meters, and offers outstanding conditions during all phases of the sunspot cycle. What’s more, it’s at its best during the years of low solar activity!

The line that divides the region of the Earth in daylight from the nighttime side is called the terminator. The terminator is not a distinct division, but instead a gray, “twilight” band approximately 1000 miles in width and stretching completely around the Earth. The time at any point along this band will be that of local sunrise or local sunset.

As shown in fig. 1, the position of the terminator changes as the position of the Earth changes with respect to the Sun. (This familiar phenomenon causes the change in seasons of the year and is due entirely to the tilt of the Earth’s rotational axis. Since this axis is not perpendicular to the plane of the ecliptic, but rather tilted 23 degrees, 27 minutes, the terminator swings back and forth through an arc of just under 47 degrees during the course of a year. The northerly and southerly limits of this motion are delineated by the Antarctic and Arctic circles, respectively.)

The absorptive and refractive characteristics of the ionosphere are directly related to the angle of solar radiation. Normally, the higher this angle (the more nearly the Sun is to vertical), the more enhanced these characteristics become. Conversely; at very low angles of radiation, the absorption characteristics change much more quickly than do the refractive characteris-

By Bradley Wells, KR7L, 5053 37th Avenue, S.W., Seattle, Washington 98126
effective absorber of radio frequency energy within the frequency range of 300 kHz to approximately 10 MHz. While the F-layer is capable of refracting radio signals within this range of frequencies, the high levels of absorption within the D-layer prevent these signals from reaching the F-layer. This explains why the 160, 80, and 40-meter bands are essentially nighttime bands except for local or regional communications.

visualizing grayline

To visualize how grayline propagation works, examine station "A" in fig. 2. Located in the daylight hemisphere, its 40-meter signal is severely attenuated as it passes through the D-layer. That signal which remains is refracted by the F-layer, only to be further attenuated as it passes through the D-layer on its return path. Some RF energy will, in fact, reach the surface, but it will be well below the threshold of detectability in Amateur receivers. The only way to avoid this dilemma would be to increase power to levels well above those allowed in the Amateur service or to increase integration time of receiver detection systems well beyond that which is required for either CW or SSB.

Station "C," in fig. 2, suffers from the opposite problem. The D-layer is nonexistent due to the lack of solar radiation, but because of changes in the F-layer, the MUF (Maximum Usable Frequency) has dropped below 7 MHz. As a consequence, the 40-meter signal radiated by station "C" penetrates the ionosphere and is lost.

Now look at station "B," located in the terminator region on the Earth’s surface. Signals radiated toward the daylight region are as severely attenuated as those of station "A," while the signals radiated toward the nighttime region pass through the ionosphere, as are those of station "C." It would seem that station "B" is in no more a favored position than those other two stations. Fig. 3 illustrates what would happen in actual operation. Signals radiated parallel to the terminator are propagated for long distances with little attenuation.

Because the terminator, shown in fig. 3, extends completely around the Earth, it is possible to work into any area of the world within this region. This situation is most noticeable on 80 and 40 meters and, to a lesser degree, on 20, 30, and 160 meters. Since these low-band signals suffer little attenuation on this path, long distance communications are possible with low power levels and ordinary non-directional antennas, such as dipoles and verticals.

There are, unfortunately, some areas of the world you’ll never be able to work using grayline; this is because any two selected areas on the surface of the Earth do not necessarily share a common terminator. If the Earth’s rotational axis were tilted 45 degrees from the plane of the ecliptic, then, at some time or other...
during the year, your QTH would be on the terminator with every other spot on the Earth’s surface. In addition, the position of the terminator and hence the path of grayline propagation is not stationary, but instead moves with the changing seasons because of the yearly movement of the Earth’s rotational axis with respect to the Sun.

Two other factors enter into grayline DXing. Remember that local time will vary all along the length of the terminator. Since most Amateurs are more active in the local afternoon and early evening, rather than at dawn, time your operating to coincide with that time when they are most active. Thus, to work hams on the other side of the world with this mode, the best time would be between 30 minutes before to 30 minutes after your local sunrise. In addition, remember that the position of the terminator at sunrise is not the same as its position at sunset, local time.

Figs. 4, 5, and 6 show the positions of the terminator at various times throughout the year. Notice that the only time the sunrise and sunset paths coincide is twice a year, during the spring and fall equinoxes. The information shown in these three charts is valid only for a station located in the Pacific Northwest and will be different for stations located elsewhere.* It is apparent that a station in Seattle could work half of Africa, Europe, much of Asia, parts of South America, and much of the South Pacific during the course of a year using grayline propagation on 80 and 40 meters.

**determining grayline paths**

There are several methods used to determine grayline paths for your location. The easiest, but most cumbersome, involves the use of a globe and a piece of thin cardboard. Any globe will do, even the type sold as piggybanks in the local five-and-dime. Cut a circular hole in the center of the cardboard just big enough to allow it to slip over the globe. It can then be positioned on the globe to represent the grayline path during any particular day of the year. This method can also be used to determine the grayline path for

---

*Custom-made azimuthal-equidistant (great circle) maps centered on your own location are available from Bill Johnston, N5KR, 1808 Pomona Drive, Las Cruces, New Mexico 88001.

---

August 1984
ELECTRONIC Equipment?

You’ll Find Them in the Nation’s No. 1 Electronic Shopper Magazine

NUTS & VOLTS

Now in Our 5th Year
Nuts & Volts is published MONTHLY and features:
- NEW STATE-OF-THE-ART PRODUCTS
- SURPLUS EQUIPMENT • USED BARGAINS
- LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • FREE CLASSIFIED AD WITH SUBSCRIPTION

SUBSCRIPTION RATES

☐ One Year - 3rd Class Mail ....................... $7.00
☐ One Year - 1st Class Mail ....................... $12.50
☐ One Year - Canada & Mexico (in U.S. Funds) .. $15.00
☐ Lifetime - 3rd Class Mail (U.S. Only) .......... $25.00

ORDER NOW! Rates Go Up in October!

SEND: ☐ CHECK ☐ MONEY ORDER ☐ VISA ☐ MASTERCARD

TO: NUTS & VOLTS MAGAZINE  
P.O. BOX 1111-H  
PLACENTIA, CALIFORNIA 92670  
(714) 632-7721

Name ____________________________
Address __________________________
City __________________ State ______ Zip ________________
Card No __________________ Exp. Date ____________

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY! — Dealer Inquiries Invited

selected times during the year and plot the results on a map as was done in figs. 4, 5, and 6. (These base maps are available through a number of sources, most of which advertise in the various Amateur magazines.) By taking the time to devise three sets of maps, the approximate grayline path for any day of the year can be quickly and easily determined.

Perhaps the most convenient method of figuring grayline paths is through the use of "The DX Edge," slide rule-type device with a map of the world printed on one side and equipped with a series of overlays representing the grayline paths for each month of the year. By sliding the appropriate overlay back and forth along the map, the path of the terminator across the Earth's surface is easily determined.

Regardless of the method used, figuring and using grayline propagation paths will enhance your ability to work low-band DX. Of course, the old adage "The higher the antenna, the better" is still true. But the fact that you don't have a directional antenna array or a 2000 watt amplifier is no excuse for not snagging the rare ones. Patience, perseverance, and a knowledge of grayline propagation will catch all the 80 and 40-meter DX you can handle, and you won't have to stay up until two o'clock in the morning to do it.

Bibliography


Pocket-sized DX Edge is available from Ham Radio's Bookstore, Greenville, New Hampshire 03048 ($16.95 plus $1.50 postage and handling).
You're an avid contest who needs an elusive KX6 multiplier on 10 and 15 meters during the VK/ZL contest in October; when should you spend time looking for this rare prefix? Or perhaps you don't care too much about DXing, but are interested in talking with a friend in Pakistan; which band and at what time should you expect propagation to be at its best? Or maybe you've heard about grayline propagation, but don't know how to tell what countries are on the grayline or when to try to make contact with them. What's the beam heading to South Africa? How far is the long path distance? If you do make contact with your friend in Australia, how good will the band conditions be? Should you use CW or SSB? It's questions such as these that suggest that the only way to manage the variety and volume of information available to Amateurs is by computer.

The user-friendly program described in this article consolidates the best features of many programs already on the market. It makes available, for the first time, a means of accurately determining the sunrise and sunset grayline for any location on the earth and for any desired day during a year.

A summary of the program's features is shown below, and a short discussion of the outputs follows.

In addition, several examples of how to use the program are demonstrated by answering some of the questions raised at the beginning of the article.

User inputs (data entered) include the date, base location, the name of any of 433 target locations (countries, states, or provinces), DX location (target), 10.7 cm solar flux, geomagnetic A factor, and the grayline desired and its width.

Printed program outputs include the grayline output and screen output. Computer inputs include the following:

**Base sunrise/sunset times.** This is normally the user's operating location sunrise/sunset times given in UTC, or more popularly, GMT. The algorithm used to calculate the sunrise and sunset times has been extensively compared to world and nautical almanacs and no error greater than 1 minute has been found.

**Target sunrise/sunset times.** If the target selected is a single point — that is, one specific location — the output will give only the target average sunrise/sunset time. If you have chosen a country for your target location, and the country is large enough to have significantly different sunrise/sunset times, then the output will include a minimum and maximum sunrise and sunset time. This output can be used to determine the coincident darkness and daylight between you and the desired target. In general, look for 10 and 15-meter openings during daylight coincidences (except in years of very high sunspot activity). Look for openings on

By Van Brollini, NS6N, 5861 Bridle Way, San Jose, California 95123, and Walter Buchanan, 6569 Belbrook Court, San Jose, California 95120
40, 80, and 160 meters during darkness coincidences. Twenty meters is normally open most days and nearly through the night to some areas of the world.

**Long/short path output.** The program computes the long path and short path great circle distance in nautical miles (1 nautical mile = 1.15 statute miles = 1.85 kilometers) and also computes the long and short path compass beam headings between the user’s operating location and the desired target location.

**Sunspot number/quality factor.** The program determines the sunspot number based on the 10.7 cm solar flux. The quality factor comes from the August, 1982, issue of *ham radio* and is an empirical means of describing the quality of a QSO, with 0 being poor and 9 being very good.¹

**MUF/FOT.** The MUF or Maximum Usable Frequency is a definite boundary that the HF user cannot overcome with power, antenna, or other mechanical means. The MUF is the range of frequencies that can be used before radio waves penetrate the F layer and not return to earth. Because of minimum signal absorption at this frequency, the MUF gives the greatest signal strength at the receiving point for a given transmitted power. Fifty percent of the month the highest propagated frequency achieves this value — MUF. Ninety percent of the month, the highest propagated frequency will achieve the value known as FOT (Frequency of Optimum Transmission). FOT is also included in the program and uses the same algorithm as was used to do MUF. This section of the program makes use of information provided by Robert Rose, K6GKU, on MINIMUMUF.²

**Grayline.** Observation has shown that enhanced conditions for working DX often occur at sunrise and sunset. This is particularly true when both the base location and the desired target location are undergoing sunrise or sunset at the same time. This section of the program provides an easy means of determining who else in the world is experiencing sunrise or sunset at the same time that you are. The grayline is the great circle path that describes the line drawn on the earth that separates the half that is in daylight from the half in darkness. The width of the grayline is a variable that is determined by the user; for most applications, a time window of ±½ hour is sufficient to determine which countries can be found. This corresponds to a grayline width of 15 degrees.

The two questions that are answered by this part of the program are first, for any day, when will my sunrise/sunset occur? And second, what will be the bearing of the grayline, and what targets will lie along it?

---

As you can see from the list above, the number of inputs needed is really very small and readily available from just a few sources. Using any world atlas, the latitude and longitude of the base location — this is where you are — can be determined. Again, using the world atlas, any specific target location — this is where you want to go — can be obtained. The data base of 433 unique radio locations stored in the program eliminates the need to know or look up the latitude or longitude of a specific country; all you need to know is the name of the country. The 10.7 cm solar flux and the geomagnetic A index can be obtained from WWV. Listen to any of the assigned frequencies you are able to receive, (2.5, 5, 10, 15 and 20 MHz) at 18 minutes past the hour or use the hotline telephone number (303-497-3235). The program uses the 10.7 cm flux to calculate the sunspot number, and the geomagnetic A index to determine the quality factor. The two final items that the program needs are the date for which you wish to calculate the program outputs, and the width of the grayline.

**using the program**

After the program is loaded, the monitor will display information similar to that shown in Table 1. Three distinct sections are seen on the screen and in Table 1: data, coordinates, distances and headings; sunrise, sunset, and the geophysical information; and MUF and FOT. The numbers in brackets indicate where the user must input data to the program. All input routines are user-friendly and have built-in error detection to prevent data that is out of range: for example, February 31 or a 10.7 cm solar flux of 0 (minimum solar flux)
flux is 63.75). The ability to perform a screen dump to get hard copy is also available, and that format will be used to answer some of the questions raised at the beginning of the article.

**Kansas to Marshall Islands**

Suppose you’re a top Kansas contester who needs that KX6 prefix on 10 and 15 meters for the VKIZL contest during the middle of October. You’ve determined that the geomagnetic A index is presently 8 and the 10.7 cm flux is 133. When do you look for that rare one? Once the coordinates, date, country, and the geophysical information have been entered, the computer will give the information shown in table 2.

The first thing to note is that the great circle distance is less than 6000 miles. Since this is within the 250 to 6000 mile range in which the MUF algorithm is most accurate, you can feel fairly comfortable about using the MUF/FOT data. By examining the MUF, you can see that the best time to start looking for a 15-meter path is approximately 1800 GMT, which corresponds to the KX6 sunrise. Looking for the KX6 on 10 meters, you should wait about two hours, according to the MUF. Because the FOT shows that 10 meters might not be too dependable, spending more time on 15 meters could prove more fruitful; you would probably look for KX6 on 15 first. If you got him, you’d then look for him on 10.

**Kansas to Pakistan**

Once you’ve received the greatest number of points ever accumulated in the VK/ZZ contest, you decide that it would be good to talk to your friend in Pakistan. Assuming that the 10.7 cm flux and the A index have not changed, you have all the information you need to use the program. After inputting the needed data, the computer calculates the information shown in table 3.

Using table 3, the first thing you’ll note is that the great circle distance is greater than 6000 miles, so you’ll use the MUF and FOT data with caution. You’ll see with some surprise that there is an overlap between your sunrise and sunset in Pakistan. Knowing that the best chance for a long path contact is when your sunset occurs slightly before sunrise in Pakistan, you see that you have a 20-minute window (01:13 - 01:33) for a possible try at that time. There are two peaks in the MUF; you’re going to try them both to maximize your chances of hooking up with your friend. You’ll also try 30 meters between 0100 and 0300 GMT and try 20 meters between 1200 and 1500 GMT.

**Texas grayline determination**

What grayline locations are available to a station in Texas during sunrise? Once you’ve entered your base coordinates and the date, the computer will provide the data listed in table 4.
table 4. Grayline countries available to Texas at sunrise on November 15. Base latitude is 030:00. The longitude is 097:00. Sunrise is at 12:52, and sunset is at 23:33. The grayline headings are 201 and 021. For a grayline width of 16.00 degrees, these are the “gray” countries.

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>PREFIX</th>
<th>SS/SR</th>
<th>DISTANCE</th>
<th>HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFGANISTAN</td>
<td>YA</td>
<td>SS</td>
<td>14694</td>
<td>195</td>
</tr>
<tr>
<td>ALABAMA</td>
<td>W6-AL</td>
<td>SR</td>
<td>553</td>
<td>75</td>
</tr>
<tr>
<td>ALAND ISLAND</td>
<td>OH0</td>
<td>SS</td>
<td>17021</td>
<td>207</td>
</tr>
<tr>
<td>ARKANSAS</td>
<td>W5-AK</td>
<td>SR</td>
<td>383</td>
<td>37</td>
</tr>
<tr>
<td>ASIATIC R.S.F.S.R.</td>
<td>UAO-0</td>
<td>SS</td>
<td>16289</td>
<td>182</td>
</tr>
<tr>
<td>AZERBAIJAN</td>
<td>UD6</td>
<td>SS</td>
<td>15430</td>
<td>207</td>
</tr>
<tr>
<td>CASEY STATION</td>
<td>VK0</td>
<td>SS</td>
<td>13175</td>
<td>17</td>
</tr>
<tr>
<td>CHAGOS ISLANDS</td>
<td>V09</td>
<td>SS</td>
<td>12291</td>
<td>204</td>
</tr>
<tr>
<td>CLIPPERTON ISLAND</td>
<td>F08</td>
<td>SR</td>
<td>1433</td>
<td>216</td>
</tr>
<tr>
<td>COLORADO</td>
<td>W0-CO</td>
<td>SR</td>
<td>699</td>
<td>323</td>
</tr>
<tr>
<td>DENMARK</td>
<td>G2</td>
<td>SS</td>
<td>17179</td>
<td>214</td>
</tr>
<tr>
<td>DUMONT D’URAVILLE STATION</td>
<td>F88Y</td>
<td>SS</td>
<td>13792</td>
<td>25</td>
</tr>
<tr>
<td>EASTERN ISLAND</td>
<td>CQA</td>
<td>SR</td>
<td>3492</td>
<td>193</td>
</tr>
<tr>
<td>ESTONIA</td>
<td>UR2</td>
<td>SS</td>
<td>16842</td>
<td>206</td>
</tr>
<tr>
<td>EUROPEAN R.S.F.S.R.</td>
<td>UA2</td>
<td>SS</td>
<td>15906</td>
<td>206</td>
</tr>
<tr>
<td>FINLAND</td>
<td>OH</td>
<td>SS</td>
<td>17000</td>
<td>203</td>
</tr>
<tr>
<td>FLOREO</td>
<td>W4-FL</td>
<td>SR</td>
<td>744</td>
<td>96</td>
</tr>
<tr>
<td>GEORGIA</td>
<td>W4-GA</td>
<td>SR</td>
<td>688</td>
<td>72</td>
</tr>
<tr>
<td>GEORGIA (USSR)</td>
<td>U56</td>
<td>SS</td>
<td>15666</td>
<td>209</td>
</tr>
<tr>
<td>GREENLAND</td>
<td>OX-XP</td>
<td>SR</td>
<td>3107</td>
<td>19</td>
</tr>
<tr>
<td>ICELAND</td>
<td>TF</td>
<td>SR</td>
<td>3495</td>
<td>29</td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>W9-IL</td>
<td>SR</td>
<td>717</td>
<td>31</td>
</tr>
<tr>
<td>INDIA</td>
<td>VU</td>
<td>SS</td>
<td>13981</td>
<td>178</td>
</tr>
<tr>
<td>INDIANA</td>
<td>W9-IN</td>
<td>SR</td>
<td>797</td>
<td>38</td>
</tr>
<tr>
<td>IOWA</td>
<td>W0-IA</td>
<td>SR</td>
<td>109</td>
<td>10</td>
</tr>
<tr>
<td>IRAN</td>
<td>EP</td>
<td>SS</td>
<td>14939</td>
<td>206</td>
</tr>
<tr>
<td>JAN MAYEN</td>
<td>JX</td>
<td>SS</td>
<td>17912</td>
<td>202</td>
</tr>
<tr>
<td>KANSAS</td>
<td>W0-KS</td>
<td>SR</td>
<td>490</td>
<td>349</td>
</tr>
<tr>
<td>KARELGA FINNISH REPUBLIC</td>
<td>UN1</td>
<td>SS</td>
<td>16665</td>
<td>198</td>
</tr>
<tr>
<td>KAZAKH</td>
<td>UL7</td>
<td>SS</td>
<td>15500</td>
<td>191</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td>W4-KY</td>
<td>SR</td>
<td>720</td>
<td>51</td>
</tr>
<tr>
<td>LABRADOR</td>
<td>V02</td>
<td>SR</td>
<td>2077</td>
<td>36</td>
</tr>
<tr>
<td>LACCADIVE ISLANDS</td>
<td>V05</td>
<td>SS</td>
<td>13262</td>
<td>104</td>
</tr>
<tr>
<td>LATVIA</td>
<td>U02</td>
<td>SS</td>
<td>16797</td>
<td>208</td>
</tr>
<tr>
<td>LENINGRADSKAYA STATION</td>
<td>U01</td>
<td>SS</td>
<td>14253</td>
<td>24</td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>W5-LA</td>
<td>SR</td>
<td>215</td>
<td>73</td>
</tr>
<tr>
<td>MALDIVE ISLANDS</td>
<td>BO-V59</td>
<td>SS</td>
<td>13035</td>
<td>197</td>
</tr>
<tr>
<td>MANITOBA</td>
<td>V64</td>
<td>SR</td>
<td>1440</td>
<td>1</td>
</tr>
<tr>
<td>MARKET REEF</td>
<td>GOJ</td>
<td>SS</td>
<td>17034</td>
<td>206</td>
</tr>
<tr>
<td>McMurdo</td>
<td>K4C</td>
<td>SS</td>
<td>14369</td>
<td>14</td>
</tr>
<tr>
<td>MEXICO</td>
<td>XE</td>
<td>SR</td>
<td>604</td>
<td>206</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>W8-MI</td>
<td>SR</td>
<td>990</td>
<td>29</td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>W9-MN</td>
<td>SR</td>
<td>915</td>
<td>9</td>
</tr>
<tr>
<td>MISSISSIPPI</td>
<td>W5-MS</td>
<td>SR</td>
<td>428</td>
<td>72</td>
</tr>
<tr>
<td>MISSOURI</td>
<td>W6-MO</td>
<td>SR</td>
<td>514</td>
<td>20</td>
</tr>
<tr>
<td>NEBRASKA</td>
<td>W0-NE</td>
<td>SR</td>
<td>671</td>
<td>300</td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>W5-NM</td>
<td>SR</td>
<td>517</td>
<td>300</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>W2-NY</td>
<td>SR</td>
<td>1329</td>
<td>48</td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>W4-NC</td>
<td>SR</td>
<td>587</td>
<td>64</td>
</tr>
<tr>
<td>NORTH DAKOTA</td>
<td>W0-ND</td>
<td>SR</td>
<td>1033</td>
<td>352</td>
</tr>
<tr>
<td>NORTHWEST TERRITORIES</td>
<td>V86</td>
<td>SR</td>
<td>2255</td>
<td>353</td>
</tr>
<tr>
<td>NORWAY</td>
<td>LA</td>
<td>SS</td>
<td>17379</td>
<td>209</td>
</tr>
<tr>
<td>OHIO</td>
<td>W8-OH</td>
<td>SR</td>
<td>911</td>
<td>45</td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>W6-OK</td>
<td>SR</td>
<td>243</td>
<td>351</td>
</tr>
<tr>
<td>OMAN</td>
<td>AX4</td>
<td>SS</td>
<td>14155</td>
<td>210</td>
</tr>
<tr>
<td>ONTARIO</td>
<td>VE3</td>
<td>SR</td>
<td>1273</td>
<td>23</td>
</tr>
<tr>
<td>PAKISTAN</td>
<td>AP</td>
<td>SS</td>
<td>14602</td>
<td>195</td>
</tr>
<tr>
<td>PENNSYLVANIA</td>
<td>W3-PA</td>
<td>SR</td>
<td>1154</td>
<td>50</td>
</tr>
<tr>
<td>QUEBEC</td>
<td>VE2</td>
<td>SR</td>
<td>1666</td>
<td>31</td>
</tr>
<tr>
<td>SCOTT STATION</td>
<td>ZL5</td>
<td>SS</td>
<td>14369</td>
<td>14</td>
</tr>
<tr>
<td>SOUTH DAKOTA</td>
<td>W9-SD</td>
<td>SR</td>
<td>856</td>
<td>350</td>
</tr>
<tr>
<td>SVALBARD</td>
<td>JV4</td>
<td>SS</td>
<td>18119</td>
<td>194</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>SK</td>
<td>SS</td>
<td>17166</td>
<td>207</td>
</tr>
<tr>
<td>TADZHIK</td>
<td>UJ8</td>
<td>SS</td>
<td>14938</td>
<td>190</td>
</tr>
<tr>
<td>TENNESSEE</td>
<td>W4-TN</td>
<td>SR</td>
<td>647</td>
<td>53</td>
</tr>
<tr>
<td>TEXAS</td>
<td>W5-TX</td>
<td>SR</td>
<td>164</td>
<td>312</td>
</tr>
<tr>
<td>TURKMEN</td>
<td>UH6</td>
<td>SS</td>
<td>15180</td>
<td>201</td>
</tr>
<tr>
<td>UKRAINE</td>
<td>UB5</td>
<td>SS</td>
<td>15266</td>
<td>211</td>
</tr>
<tr>
<td>UNITED ARAB EMIRATES</td>
<td>A6X</td>
<td>SS</td>
<td>14383</td>
<td>211</td>
</tr>
<tr>
<td>UZBEKISTAN</td>
<td>U8</td>
<td>SS</td>
<td>15364</td>
<td>203</td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>W4-VA</td>
<td>SR</td>
<td>927</td>
<td>55</td>
</tr>
<tr>
<td>WHITE R.S.S.R.</td>
<td>UC2</td>
<td>SS</td>
<td>16546</td>
<td>210</td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>W9-WI</td>
<td>SR</td>
<td>907</td>
<td>20</td>
</tr>
</tbody>
</table>
MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012.

**NEW YORK CITY**

*NEW YORK'S LARGEST STOCKING HAM DEALER* COMPLETE REPAIR LAB ON PREMISES

“We Se Habla Espanol” BARRY INTERNATIONAL TELEX 12-7976 TOP TRADERS GIVEN ON USED EQUIPMENT

ORDER LINE CALL 800-221-2683

**ROHN“FOLD-OVER” TOWERS**

- **EASE OF INSTALLATION** ROHN “Fold-Over” Towers are quickly and easily installed. The “Fold-Over” is safe and easy to service.

- **ADAPTABILITY** ROHN has several sizes to fit your applications or you can purchase the “Fold-Over” components to convert your ROHN tower into a “Fold-Over”.

- **HOT DIP GALVANIZED** All ROHN towers are hot dip galvanized after fabrication.

- **REPUTATION** ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.
**REMOTE A PAD® MODEL RAP-1**

- **Model RAP-1**
  - $149.95
  - "Remote A Pad" DTMF and tone-pad controller.

**TUNE THE WORLD FROM YOUR HANDHELD VHF/UHF RADIO**

- Audiocodes from any source, converted to solid state switches which control any 16 digit keypad of a radio or other device.
- Some examples you can control include the Pro-Search Rotator (rotate beam remotely), ICOM IC-701 or ICOM IC-211 when using the RM-2 controller, ICOM IC-700D, ICOM IC-701D, and many more.
- Anything you can do manually with your 16 digit keypad, the RAP-1 will do remotely using audio touch tones from any source.
- Two [four digit] programmable access codes are used to operate relays or other on/off functions.
- LED decoder status indicators and momentary plus steady decoder outputs are provided.
- 25 gold pin card edge connector, 16 pin dip socket, and ribbon cable are supported.
- All CMOS low power drain [30mA], State of the art LSI IC's.
- Hook eight wires (4 rows and 4 columns) in parallel with the existing keypad of the radio you wish to control remotely. Connect audio from any source, 12V D.C. and you are in control.
- The dual 4 digit decoders will turn your links on and off using your programmable access code.
- Detailed interface diagrams and instructions included with purchase.

**Model AB-1**

"Audio Blaster" Module for the ICOM IC-2AT/IC-4AT.

Ask for info for use with other hand held Transceivers.

Price includes postage and handling; U.S.A. Calif. residents add 8%. Send check or money order to:

**ENGINEERING CONSULTING**

583 CANDLEWOOD ST., BREA, CA 92621, (714) 671-2009

---

**TOWERS by ALUMA**

**HIGHEST QUALITY ALUMINUM TELESCOPING (CRANK-UP)**

- **Model T** 60 ft.
- **Crane-Up** Model 1140

**EXCELLENT FOR AMATEUR COMMUNICATIONS**

- Mobile Transmitters
- Trailer Type

- Over 36 types aluminum and steel towers made special sizes designed and made—write for details.

**ALUMA TOWER CO.**

BOX 2806HR
VERO BEACH, FLA. 32960-2806
(305) 567-3423 TELEX 80-3405

---

**PORTA-TENNA**

VHF/UHF Telescopic 1/4 & 5/8 Wavelength Antennas for Hand-Heled Transceivers & Test Equipment

**1/4 WAVELENGTH**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Freq. MHz</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-210</td>
<td>5/16-32</td>
<td>0.5/16-32 stud w/spring</td>
<td>$5.95</td>
</tr>
<tr>
<td>101-204</td>
<td>BNC connector w/spring</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>101-214</td>
<td>BNC connector</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>101-224</td>
<td>144-UP BNC conn. adj. angle</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>101-814</td>
<td>220-225 BNC connector</td>
<td>6.95</td>
<td></td>
</tr>
</tbody>
</table>

---

**5/8 WAVELENGTH**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Freq. MHz</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-210</td>
<td>5/16-32</td>
<td>0.5/16-32 stud w/spring</td>
<td>22.95</td>
</tr>
<tr>
<td>101-214</td>
<td>BNC connector</td>
<td>19.95</td>
<td></td>
</tr>
<tr>
<td>101-219</td>
<td>PL-259 w/M-359 adj.</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>101-810</td>
<td>220-225 5/16-32</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>101-814</td>
<td>BNC connector</td>
<td>19.95</td>
<td></td>
</tr>
<tr>
<td>101-840</td>
<td>440-450 5/16-32 H1-220</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>101-842</td>
<td>1/4-32 stud</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>101-844</td>
<td>BNC connector</td>
<td>19.95</td>
<td></td>
</tr>
</tbody>
</table>

Largest Selection of Telescopic Antennas. Write for Info. Price are postpaid via UPS to 48 States. For air delivery via UPS Blue add $1.50. Florida add 5% sales tax. Payment by M.O. or Cashiers Check only.

---

**SANTEC handheld**

**ST-142**

- **FREE UPS**
- $142.00

**ST-222 T/H**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Frequency MHz</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-222</td>
<td>(220 MHz)</td>
<td>$289</td>
</tr>
<tr>
<td>ST-442</td>
<td>(440 MHz)</td>
<td>$299</td>
</tr>
</tbody>
</table>

---

**KDK LKD**

**FM-2033**

- **25 Watt 2 Meter FM**

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Frequency MHz</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM-4633</td>
<td>(220 MHz)</td>
<td>$339</td>
</tr>
<tr>
<td>FM-6033</td>
<td>(6-Meters)</td>
<td>$289</td>
</tr>
<tr>
<td>FM-7033</td>
<td>(440 MHz)</td>
<td>$339</td>
</tr>
</tbody>
</table>

**FREE UPS**

The Nation's Largest Mail Order Santa Deals

WILLIAMS RADIO SALES

600 LAKEDALE ROAD, DEPT. H
COLFAX, N.C. 27235
(919) 993-5881 Noon to 10 P.M. EST

**DRAKE R-4T-4X OWNERS AVOID OBsolescence**

**NEW**

- **Plug-in Solid State Tubes!**
- Get state-of-the-art performance.

**Most types available**

**INSTALL KITS TO UPGRADE PERFORMANCE!**

- **BASIC Improvement**
- **Audio Bandpass Filter**
- **Audio IC Amplifier**

**TUBES $23 PPD**

**KITS $25 PPD**

**OVERSEAS AIR $7**

**SARTORI ASSOCIATES, W5DA**

BOX 832085
RICHARDSON, TX 75083
214-494-3093

---

**NEW • NEW • NEW • NEW • NEW**

**REMOTE CONTROLLED ANTENNA TUNE!**

Installs outside a new antenna. Mi: imum efficiency. Optimum impedance match. Full remote control. Works with all antennas, doublets, inverted V's, verticals, single band, multiband, trap or parallel type elements. Also available in mobile version to full band coverage from driver's seat.

**Model VT-4 Home installation**

**ONLY $159.00**

For more information write:

**VECTOR RADIO**

PO Box 1166 • Cardif, CA 92007
Assume that you’re interested in working only long path this morning. If you know that the best chance for a long path QSO occurs between the distant station’s sunset and your sunrise, use the program to determine which of the countries listed in table 4 meet that condition. These countries are listed in table 5. The value given in the HEADING column is the long path direction to the particular country. The program gives long path when the sunrise or sunset of the distant QTH is opposite yours.

**do it yourself?**

This program is available for purchase in two versions (one with the grayline feature, DX1, and one without the grayline feature, DX2), each configured for any 64k Apple with a disk drive and 16K expander (a printer is optional; if you have one, be sure to plug it into slot No. 1). Purchase information, as well as information describing computer services available to owners of computers other than the Apple, is provided at the end of this article.

It took the two of us *nine months* to develop and debug this program. But if you’d like to try writing your own, here’s what you’ll need to know. Almost all the information any DX or SWL operator needs for effective operation is available in standard sources and can be written into a single program. You’ll need a variety of resources — a thorough understanding of programming your computer — but it can be done.

Basic sources of data include a DX country list and for each country given, the appropriate coordinates; you’ll also need a MUF summary, beam headings, Great Circle Distances, Sunrise and Sunset times, and a list of grayline countries. The grayline list can be generated using a variety of techniques, including calculation from sunrise/sunset times and longitude\(^3\) or a slide rule-like product, *DX Edge*;* what makes this program unique is not the data itself, but how it is assembled and made useful.

### developing the data base

From the beginning it was clear that the program would have to have a world data base that was always in memory. This would allow the other sections of the program using the data base to run at a higher speed, and eliminate the need for disk access, which would slow the program down. The program would also have to be done in a language that would allow the source code to be compiled; we chose Pascal, which allowed a structured approach to be followed and made “modular code development” possible. By using Pascal, we could write, debug, and compile each module separately. The program would also have to integrate the various data in such a way that would allow the program to be easy to use — i.e., “user friendly.” It would have to “fit” into a 64k Apple.\(^1\)

The most challenging part of designing this program was the development of the grayline feature; this is the area we’ll discuss here in the greatest depth. The other sections of the program will be summarized, with the sources or the equations used to develop them shown in appendix A.

Using the equations shown in appendix A, you can write your own version of the program. *The version of the program shown in the examples in this article has been copyrighted*; however, all pertinent information is shown here for the benefit of *Ham Radio*'s readers who wish to experiment with developing their own programs.

Our final world data base consists of 433 countries, states, and provinces, as well as prefixes and an average of three points per country for doing the grayline determination. A complete 15-page listing of the world data base will be provided for a 8½ × 11 SASE and $3.00 to help defray the cost of photocopying. (Send requests directly to author.)

The final program consists of 1600 lines of code or about 26 sheets of paper requiring 61,440 bytes of storage before compilation. After the data is compiled, an additional 21,504 bytes are needed for storage. Again, note that a large portion of this program is designed to produce “friendly” input and output routines; this results in a great deal of software “overhead.”

The data base required 71,440 bytes of disk storage — more than our machine’s memory could accommodate. By applying a “compaction scheme,” we were able to reduce the number of bytes required to 19,456.

### determining grayline

The grayline is the Great Circle path that defines or

---

* DX Edge is available from Ham Radio’s Bookstore, Greenville, New Hampshire 03048 ($16.95 plus $1.50 postage and handling).

1A 16K extender card must be added for the version of the program reproduced here and the purchased program as well. The cost of a 16K card is approximately $25.00.

---

<table>
<thead>
<tr>
<th>table 5. List of long path countries from Texas at sunrise on November 15. (These countries meet the additional criterion that Texas sunrise occurs after their sunset.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFGHANISTAN</td>
</tr>
</tbody>
</table>

---

\(^{3}\) DX Edge is a slide rule-like product. It can be purchased from Ham Radio’s Bookstore for $16.95 plus $1.50 postage and handling.
THE FIRST NAME IN ELECTRONIC TEST GEAR

NEW FROM RAMSEY-20 MHz DUAL TRACE OSCILLOSCOPE

Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope compares to others costing hundreds more. Features include a component testing circuit that will allow you to easily test resistors, capacitors, digital circuits and diodes, TV video sync filter, wide bandwidth, 20 MHz, high sensitivity - internal graticule - high quality rectangular CRT - front panel trace rotator, x axis, high sensitivity x-y mode, low power consumption, regulated power supply, built-in calibrator, rock solid triggering, high quality hook-on probes.

$399.95 high quality hook-on probes included

RAMSEY D-1100 DIGITAL MULTIMETER

Compact and reliable, designed to serve a wide variety of equipment. Features include: mirror back scale, double-jeweled precision moving coil, double overload protection, an ideal low cost unit for the beginner or as a spare back-up unit.

$199.95 test leads and battery included

CT-70 7 DIGIT 525 MHz COUNTER

Lab quality at a breakthrough price. Features include: accuracy, low power consumption, regulated power supply, built-in calibrator, rock solid triggering, high quality hook-on probes.

$419.95 wired includes AC adapter
CT-70 kit ............... $99.95
BP-4 ncid pack ............... 6.95

CT-90 9 DIGIT 600 MHz COUNTER

The most versatile for less than $300. Features include: accuracy, low power consumption, regulated power supply, built-in calibrator, rock solid triggering, high quality hook-on probes.

$1,499.95 wired includes AC adapter
CT-90 kit ............... $129.95
DW-1.5 kHz timing base $59.95
BP-4 ncid pack ............... 8.95

CT-125 9 DIGIT 1.2 GHz COUNTER

A 9 digit counter that will outperform units costing hundreds more. Features include: accuracy, low power consumption, regulated power supply, built-in calibrator, rock solid triggering, high quality hook-on probes.

$169.95 wired includes AC adapter
BP-4 ncid pack ............... 8.95

PR-2 COUNTER PREAMP

The PR-2 is ideal for measuring weak signals from 10 to 1,000 MHz. Features include: accuracy, low power consumption, regulated power supply, built-in calibrator, rock solid triggering, high quality hook-on probes.

$449.95 wired includes AC adapter
PR-2 kit ............... $34.95

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna - BNC plug - $8.95
High impedance probe, light loading - 16.95
Low pass probe, audio use - 16.95
Direct probe, general purpose use - 13.95
Tilt ball, for CT-70, 96, 125 - 3.95

PHONE ORDERS CALL

716-586-3950

TELEX 466735 RAMSEY CI

TERMS: satisfaction guaranteed, examine for 10 days. If not pleased, return in original form for refund. add 8% for shipping and insurance to a maximum of $100.00. oversize add 18%, for surface mail, add $2.95 (COD add $2.95) in USA only. orders under $15.00 add $1.50. NY residents add 7% sales tax. 90 day parts warranty on all units. 1 year parts & labor warranty on all units.

RAMSEY ELECTRONICS, INC.

2595 Baird Rd.
Pembroke, N.Y. 14626

88 August 1984
separates the regions of the world that are in daylight and darkness. Each location on the globe has two graylines each day; one at sunrise and the other at sunset. In order to accurately determine the grayline, an accurate equation for sunrise is necessary. Part of the sunrise/sunset equation is the declination of the sun; the equation that describes sunrise time and sunset time and declination of the sun are shown in appendix A.

In order to determine whether or not a particular country is on the grayline, a comparison must first be made between the sunrise/sunset of the desired location and the desired country. But which coordinates should be used to describe the location of a country? Consider, for example, the USSR. This country has several different radio prefixes within it and spans thousands of miles. It's obvious, then, that any "average" of the latitude and longitude would be grossly incorrect in describing the USSR. If the country selected were Andorra, then this means of describing the country would be fully acceptable. So what's the best way to describe each country? Each country must be described (i.e., digitized with a sufficient number of points) in such a manner that during the year all minimum and maximum sunrise/sunset points will have been obtained.

By trial and error, the following approach has been successful in limiting the total number of data points necessary to describe each country.

In the rough outline drawing of the state of California (fig. 1), the extreme points of the state are emphasized. These are the points that were assumed to be the minimum number necessary to describe California as far as differences in sunrise and sunset time are concerned.

All of the points on the outline of the state were programmed into the sunrise and sunset equations shown in the appendix along with intermediate points to confirm that they were, in fact, sufficient to describe a "radio country." This approach was determined to be valid. (While the simple drawing shown in fig. 1 is far less complex than a sketch of the USSR — with its many prefixes — would be, for example, it should be easy to imagine what the final "radio country" sketch of such a vast area would look like.)

This approach was used for every country in the DX Callbook, for each one of the United States, for all provinces of Canada, and for any new country that could be found at the time the program was developed. Once the world data base was developed, a second data base was extracted from it and used to calculate beam headings and Great Circle distances. This second data base is essentially the average of all the given points that describe each country. In fig. 1, point E represents the average.

Readers who want to generate their own data base can produce the best result if they use a computer that automatically digitizes each country and then computes sunrise and sunset times throughout the year.

**using the data base**

If the sunset or sunrise time is accurately known for your location, then it's easy to determine the countries that lie on the grayline. Calculate the sunrise and sunset times for each of the points of a particular country. Since the time that the grayline occurs is identical for all the points along it, compare each of the calculated times in the countries of interest to the time at your base location. If the difference in time is within the range of time desired — typically ± 1/2 hour, or if the base sunrise/sunset lies between the minimum and maximum rise/set times, then that particular country is on the grayline.

When printing out the grayline, the subroutines for heading and distance are also used as an aid in determining long and short path propagation. The beam heading for grayline can be determined by first using the equation of time rewritten to solve for longitude. The latitude used is arbitrarily chosen to be the target latitude + or - 25 degrees. Once the longitude is found, the equation for beam heading is employed by using your base location and the arbitrarily chosen latitude and computed longitude. This will then be the grayline heading. To output long path distance, just subtract the short-path distance computed by the equation in appendix A from 21600. The final item of
interest that can be extracted from the data base is whether the country that is on the grayline is going through sunrise or sunset. Keep track of which time equation was used to match your base location time — sunrise or sunset — and make note of which one it was when printing out your listing. A brief excerpt from the program manual will show why this information is important to you:

**Daylight overlap.** Compare your sunrise with the target sunset(s). The time span between could be good for daylight openings.

**Daylight openings.** Try 10 or 15 meters, except when the sunspot number is high.

**Darkness overlap.** Compare your sunset with the target sunrise(s). The time span could be good for darkness openings.

**Darkness openings.** Try 30, 40, 80, 160 meters.

**Long-path openings.** Base sunset occurs before target sunrise; base sunrise occurs after target sunset; use long-path heading.

**Grayline openings.** Eastern paths: look before sunrise; western paths: look after your sunrise; use grayline heading.

**Conclusion**

With the writing of this program, we have attempted to combine a variety of aids for the Novice or experienced operator that will free up his or her schedule for more time on the air. For the first time, an accurate computerized grayline that leaves no doubt as to what country lies on the grayline and what time to operate is available. (This program will not help predict those cases in which what appears to be grayline propagation is occurring, but is one hour too early.) Propagation modes are varied and many; this program serves as a predictive tool to the ham operator and SWLer alike in providing assistance for some, but not all, modes of propagation.

**Acknowledgement**

We would like to acknowledge the patience that both our wives exhibited while we developed and tried to perfect this program. Many thanks also to Vern, K6VXY, for his unflagging love of CW that gave us the idea and inspiration for this program.

**References**

appendix

Use the following equations to determine base and target sunrise/sunset times, long/short path output, MUF/FOT, and gray-line. Note that some equations include additional code; be sure to include these codes to prevent "crashing" when implementing this program on your computer.

**Date-dependent constants.** This little do-loop determines the day number of the present date: for example, January 1 is Day Number 1; December 31 is Day Number 365.

```
monum='303232332323'
FOR I = 1 TO (MONTH - 1) DO
  DAYNUM = DAYNUM + ORD(MONUM[I]) - 20;
DAYNUM = DAYNUM + DAY;
```

Sunrise/sunset constants.

```
pi = 3.14159265
pj = pi / 180
pk = 180 / pi
```

(*Lat signifies latitude; Lon indicates longitude. Both are expressed in radians.*)

```
DAYCONST = 0.017202 * (DAYNUM - 1.5)
EQ_OF_T = (-1.842 * SIN(DAYCONST-0.05952) - 2.682 * SIN(2*DAYCONST+0.3557) - 0.079 * SIN(3*DAYCONST+0.2967) - 0.055 * SIN(4*DAYCONST+0.6981) - 0.003 * SIN(5*DAYCONST+0.7156)) / 15
DECL = PJ * (0.379 - 23.267 * COS(DAYCONST+0.1793) - 0.381 * COS(2*DAYCONST+0.1292) - 0.171 * COS(3*DAYCONST+0.5184) - 0.008 * COS(4*DAYCONST+0.4538) - 0.003 * COS(5*DAYCONST+1.658))

temp = 12 - eq_of_t + long * pk / 15
templ = arccos((-0.01454 - sin(lat) * sin(dec)) / (cos(lat) * cos(dec))) * pk / 15;
sunrise = temp - templ
sunset = temp + templ
```

Answer is in decimal hours.

**Conversion of 10.7 cm flux and the quality factor.**

```
sunspot number = (-0.728 + sqrt(0.728*0.728 - 4 * (63.75 - flux) * 0.00089)) / 0.00178;
qual := 1.0857 * ln(flux) * (1.0 - 0.2625 * cos(8.642E-3 * daynum) * cos(8.642E-3 * daynum)) * exp(-0.01 * gflux) + 0.82;
```

*Flux or A factor; flux signifies the 10.7 cm flux as reported by WWV.

**Great Circle distance/beam headings.** (Distance expressed in radians*; heading from Lat 1, Lon 1 to Lat 2, Lon 2. Check for poles.)

```
IF LAT1 > 1.5533 THEN LAT1 = 1.5533
IF LAT1 < -1.5533 THEN LAT1 = -1.5533
IF LAT2 > 1.5533 THEN LAT2 = 1.5533
IF LAT2 < -1.5533 THEN LAT2 = -1.5533
```

*To convert distance to nautical miles, multiply by 60 * pk.
Check for diurnally opposed locations.

\[
\text{IF } (|\text{ABS}(|\text{LON1} - \text{LON2}|) > 3.124139) \text{ AND }
\]
\[
((-1.0 * \text{ROUND}(|\text{LAT1} + 120|)) = \text{ROUND}(|\text{LAT2} + 120|))
\]

\]
\text{THEN } \text{LON2} = \text{LON1} + 0.01745

Check for equal longitudes.

\[
\text{IF } \text{ROUND}(|\text{LON1} * 120|) = \text{ROUND}(|\text{LON2} * 120|) \text{ THEN } \text{DISTANCE} = \text{ABS}(|\text{LAT1} - \text{LAT2}|)
\]
\[
\text{IF } \text{LAT1} > \text{LAT2} \text{ THEN } \text{HEADING} = \pi \text{ ELSE } \text{HEADING} = 0.0
\]

\[
\text{DISTANCE} = \text{ARCCOS}(|\text{SIN}(|\text{LAT1}|) \cdot \text{SIN}(|\text{LAT2}|) + \text{COS}(|\text{LAT1}|) \cdot \text{COS}(|\text{LAT2}|) \cdot \text{COS}(|\text{LON2} - \text{LON1}|))
\]

\[
\text{HEADING} = \text{ARCCOS}(|\text{SIN}(|\text{LAT2}|) - \text{SIN}(|\text{LAT1}|) \cdot \text{COS}(|\text{DISTANCE}|)) / \text{COS}(|\text{LAT1}|)
\]

Check to see if heading needs to be reversed.

\[
\text{IF } |\text{SIN}(|\text{LON2} - \text{LON1}|) > 0.0 \text{ THEN } \text{HEADING} = 2 * \pi - \text{HEADING}
\]

For information on how to order a copy of the program, or to obtain other DX computer services if you don't own an Apple, contact Van Brollini, N56N, 5861 Bridle Way, San Jose, California 95123 (SASE appreciated).

Ham Radio
TELEVISION MASTER ANTENNA SERVICE TECHNICIAN

Candidate must have thorough knowledge of the operation of RF Transmission Lines, RF Amplifier and Television Reception Equipment.

Work will involve trouble shooting and repair of MATV Systems in multifamily buildings in the greater Boston, Southern New Hampshire area.

A background in CCTV and intercoms while not necessary would be an advantage.

The person applying for this position must have a minimum of 3-5 years experience in this field.

Salary for this position will range from $18,225 to $25,500 depending on experience and previous related work background.

Call for an appointment or send resume with salary history.

GMB SYSTEMS
110 Middlesex Street
N. Chelmsford, Mass. 01863
(617) 256-3000

TOUCH TONE CONTROL

OUR NEW CS-16 DUAL PASSWORD DECODER BOARD IS THE FINAL SOLUTION TO REPEATER CONTROL SECURITY

- 16 latched on/off functions
- Open collector (can drive relays directly) and logic outputs for each function.
- Two separately programmable three digit passwords allow hierarchy control
- Primary password can access all 16 functions
- Secondary password can access 8 functions
- A primary password command can enable/disable secondary password control
- Can be strapped to operate without passwords
- Adjustable pre-amp accommodates 10MV-2V input
- Retransmission of control tones can be eliminated by use of either open collector or data strobe logic outputs
- Power up reset
- XTAL controlled tone decoder
- Operates from 10 VDC to 25VDC. Reverse polarity protected
- Standard 4 1/2" x 5 1/2" glass board with 44 pin gold plated edge connector. Holes permit hard mounting
- Comes complete with manual and mating connector
- 30 day return privilege
- Limited six month warranty

CALL OR WRITE FOR BROCHURE $149

ANOTHER QUALITY PRODUCT FROM

CONNECT SYSTEMS INCORPORATED
23731 Madison Street
Torrance, CA 90505
Phone (213) 373-6803

GMB SYSTEMS
110 Middlesex Street
N. Chelmsford, Mass. 01863
(617) 256-3000
### Static RAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS128</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>74LS162</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74LS164</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
<tr>
<td>74LS313</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>74LS314</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74LS315</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
<tr>
<td>74LS316</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>74LS317</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74LS318</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>

### Dynamic RAMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS125</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>74LS161</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74LS162</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
<tr>
<td>74LS313</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>74LS314</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74LS315</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
<tr>
<td>74LS316</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>74LS317</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74LS318</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>

### EPROMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2716</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>2726</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>2736</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
<tr>
<td>2746</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>2756</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>2766</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>

### EPROMs (27xx)

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2726</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>2736</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
<tr>
<td>2746</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>2756</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>2766</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>

### 74LS00, 7400, 74S00

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS00</td>
<td>1</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>7400</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>74S00</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>

### Other Chips

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>820</td>
<td>2</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>820A</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>820B</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>

### Interface Chips

<table>
<thead>
<tr>
<th>Model</th>
<th>Size (in MB)</th>
<th>Data Rate (MHz)</th>
<th>Price (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>820</td>
<td>2</td>
<td>6.0</td>
<td>2.30</td>
</tr>
<tr>
<td>820A</td>
<td>2</td>
<td>6.0</td>
<td>4.60</td>
</tr>
<tr>
<td>820B</td>
<td>4</td>
<td>6.0</td>
<td>9.20</td>
</tr>
</tbody>
</table>
**1984**

**THE IC MASTER**

Your ticket to fast and easy IC selections

$89.95

---

**IBM Expansion Kit**

Upgrade Chips

4164 200ns 9 @ 5.45 ea.

**micromax**

---

**VIEWMAX-80**

149.95

- 80 Column card for Apple II+
- Video Soft Switch
- Inverse Video
- 2 Year Warranty

---

**VIEWMAX-80e**

129.95

- 80 Column card for Apple IIE
- 64K RAM expandable to 128K

---

**64K RAM Upgrade**

$43.60

---

**COOLING FAN**

38.95

---

**QUV-T8/1 EPROM Eraser**

---

**QUV-T8/1 Economy Model:**

Low cost EPROM eraser in plastic enclosure. The UV element is in the lid and you place the EPROMS in the bottom half. No timer or switch option.

- Erases up to 8 EPROMS in 15 - 20 minutes.
- 12,000 wUatts at 1st. distance.
- 90-Day Warranty 49.95

---

**The FLIP SORT™**

The new Flip Sort™ has all the fine qualities of the original with some added benefits: a new design and 50% greater capacity. Holds 75 diskettes and the price is now lower than ever — $16.95

---

**APPLE COMPATIBLE POWER SUPPLY**

74.95

- Powers Apple type systems
- +5V @ 5A +12V @ 3A
- -5V @ .5A -12V @ .5A
- includes instructions

---

**The Flip Sort PLUS™**

The new Flip Sort PLUS™ adds new dimensions to storage. Its smoked acrylic elegance holds over 100 diskettes with all the features you expect from the Flip Sort Family — $24.95

---

**APLLE COMPATIBLE JOYSTICK**

29.95

---

**16K RAM Card — Apple II+**

- 2-Year Warranty

---

**Terms:**

Minimum order $10.00.

For shipping and handling, include $2.50 for UPS ground or $3.50 for UPS Blue (air). For each additional air pound, add $1 for UPS Blue shipping and handling. California residents must include 6% sales tax. Bay area and LA residents include 6.5% sales tax. Prices are subject to change without notice. We are not responsible for typographical errors. We reserve the right to limit quantities and to substitute manufacturers. All merchandise subject to stock availability.

**CALLER OF VOLUME Quotes**

**HOURS:**

Mon - Fri: 7:30 to 5:00

Saturdays 10:00 to 3:00

**VISIT OUR RETAIL STORE**

2100 De La Cruz Blvd.
Santa Clara, CA 95050

(408) 988-0697

**ALL MERCHANDISE IS**

100% GUARANTEED

**Telex:** 756440

**DoKay**
As of this writing (mid-June) it looks as if the FCC is slowly moving toward the possible release of additional frequencies for Amateur Radio, as authorized by the 1979 World Administrative Radio Conference. A good guess is that the so-called 24-MHz band may be released on Special Temporary Authority in the near future.

Interest in the new bands has received a boost because of the ARRL Antenna Design Competition, announced this past spring. The goal of the contest is to provide new antenna designs that can be constructed at home and will cover as many of the WARC-79 bands as possible. The two entry categories include a five-band design that will cover all Amateur bands between 14 and 30 MHz and a six-band design that adds the 10-MHz band. (Details are listed in table 1; a "design frequency" indicating the midpoint of each band is also listed.)

the "multiband" antenna

The problem of designing a single antenna that covers the frequency range of 14 to 30 MHz (or 10 to 30 MHz, as the case may be) is an interesting one. No doubt many fascinating antenna designs will surface during the next few months. One basic choice that must be made is whether the antenna designed will be a wideband type that covers the entire frequency span, or a type that functions only over the bands in question. Let's look at the wideband concept first.

For this discussion, a wideband antenna is defined as one that has relatively constant gain, polarization, and table 1. Most antennas built for the design frequency specified will work well over the whole Amateur band. Two design frequencies are chosen for 10 meters, one for operation at the low frequency end of the band and one for operation at the high frequency end.

<table>
<thead>
<tr>
<th>band</th>
<th>design frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.100-10.150</td>
<td>10.12</td>
</tr>
<tr>
<td>14.000-14.350</td>
<td>14.17</td>
</tr>
<tr>
<td>18.068-18.168</td>
<td>18.11</td>
</tr>
<tr>
<td>21.000-21.450</td>
<td>21.22</td>
</tr>
<tr>
<td>24.890-24.990</td>
<td>24.94</td>
</tr>
<tr>
<td>28.000-29.700</td>
<td>29.20 (high)</td>
</tr>
<tr>
<td>28.60 (low)</td>
<td></td>
</tr>
</tbody>
</table>

fig. 1. A terminated rhombic antenna for the frequency range of 14 to 30 MHz. Antenna is terminated with a noninductive resistor capable of dissipating about half the transmitter average power output. (Design taken from The ARRL Antenna Book, 14th Edition, Chapter 7, fig. 16.)
impedance characteristics over the operating range.

One of the earliest wideband gain antennas is the terminated rhombic\(^2\) shown in fig. 1. This antenna works well over a 2-to-1 frequency range, provides good front-to-back ratio and can exhibit as high as 14 dB gain over a dipole, providing the leg-length of the array is long enough. The front-to-back ratio is achieved by choice of leg length and the use of a terminating resistor, at the far end of the array, which absorbs reflected power. Because the feedpoint resistance is about 50 to 800 ohms, an impedance matching transformer is required to match the antenna illustrated in fig. 1 to a 50-ohm transmission line.

Other varieties of traveling-wave antennas, such as the terminated V-antenna, exist, but their main disadvantage is their large size and the corresponding amount of real estate they require.

The log-periodic array

Two relatively new types of wideband antennas, the equiangular antenna and the log-periodic antenna, are more practical for Amateur service.

The equiangular antenna evolved from the observation that the properties of an antenna (impedance and pattern) are determined by its shape and dimensions with respect to operating wavelength. When the antenna is scaled, its properties are independent of frequency, provided its form is specified only by angles and not by any particular dimension. A two-arm equiangular spiral antenna, shown in fig. 2, is an example of this design.

This antenna is a variation of the dipole, where the two halves have been twisted into a pair of equiangular arms. The antenna is fed by a balanced line at the center point. High frequency cutoff is determined by antenna configuration near the feedpoint; low frequency cutoff is determined by the outer circumference of the spiral, indicated by the dashed line. Feedpoint resistance of the antenna is quite high, being of the order of 120 to 180 ohms, depending upon antenna size and design. Frequency spans as great as 10-to-1 have been achieved in practice with this antenna type.

A second wideband antenna design, with which most Amateurs are familiar, is the log-periodic antenna (fig. 3).* The geometry of this antenna design is chosen so that the electrical properties repeat periodically with the logarithm of frequency. The basic trapezoidal-tooth log periodic structure is shown in the illustration.

The design can be further simplified if the structure is replaced by dipole elements (fig. 4). This log-periodic dipole antenna is a popular design for TV and FM receiving antennas, and versions of this antenna are often used by Amateurs on the VHF bands. The frequency limits of this antenna are those at which the outer elements are about one-half wavelength long.

The dipoles are fed at the center from a parallel wire transmission line in such fashion that successive dipoles have 180-degree phase reversal between them. A broadband structure is formed, with most of the radiation coming from the section containing elements approximately half a wavelength long at the operating frequency. Gain and bandwidth bear a definite relationship to the length and included angle of the antenna.

Unfortunately, at any given frequency in the operating passband, some of the elements in this array are inactive; the active element area moves along the structure as the frequency of operation is changed. At the lowest operating frequency, the longest elements have the most current in them and, as operating frequency is raised, the center elements become active and have the greatest current in them. At the upper frequency of operation, the shortest elements have the greatest current in them, with the longer elements relatively inactive. Thus a log-periodic dipole beam antenna must be considerably longer than a parasitic Yagi antenna of equivalent gain.

*Designed by KLM Electronics, Morgan Hill, California 95037.
The KLM 13-30 LPY array covers 13-30 MHz with an average power gain of 5 dB over a dipole. The average front-to-back ratio is 15 dB. The array uses a single parasitic element.

### Parallel-connected Dipoles

A simple multiband antenna used in the HF region consists of two or more dipoles connected in parallel at the feedpoint. The ends of the dipoles are separated a foot or two. This arrangement works well when the bands are harmonically related (7, 14, and 2 MHz, for example), but problems arise when the principle is applied to the new HF bands. Dipoles for 18 and 2 MHz, for example, when paralleled in this fashion do not seem to perform properly. The 18-MHz dipole is unaffected, but the 24-MHz dipole is completely detuned and will not perform; all other combinations have not been tried, to my knowledge, but perhaps one of Ham Radio's readers will try different combinations, such as 10 and 18 MHz, or 14 and 24 MHz. I think the parallel-dipole approach has merit, but I haven't hit upon the lucky combination that works for the new bands.

### Narrowband Tuned Antennas

The easiest way to get on one of the proposed new HF Amateur bands is to use a dipole cut to the midpoint of the band. A more useful antenna is a half-wave wire cut to the lowest band (for example, 10 MHz) and fed at the center with an open wire transmission line and an antenna tuner (fig. 6).

This is a very simple antenna and, when properly built and tuned, will cover all Amateur bands between 10 and 29.7 MHz. In fact, if the tuner is flexible enough, this antenna can also be used for the 40 and 80-meter bands, thus making a true “all-band” HF antenna.

At my station, I have an old Johnson Kilowatt "Matchbox" tuner that I picked up at a flea market. No longer made, this useful device will match almost anything at any frequency in the HF region. With this, or an equivalent tuner, the center-fed antenna dimensions are not critical at all because the tuner makes up for variation in antenna and feeder length. If difficulty is experienced in loading up a particular combination of flat-top/feeder lengths, adding or subtracting a foot or two of feeder length will usually cure the problem.

### The Multiband Loop Antenna

One interesting antenna that covers five or six bands when used with an open wire line and tuner is the quarter-wave loop antenna (fig. 7). With each side cut to 24 feet 6 inches (7.47 meters), the loop will cover bands from 10 MHz up through 24 MHz. Most loops of this type are mounted in the vertical plane and fed at the bottom to provide horizontal polarization. Some experimenters have had luck with this loop mounted in the horizontal plane, about 30 to 40 feet above the ground. Horizontal polarization is still provided.

If operation is desired only on 10 MHz and up, the sides of the loop can be reduced to 13 feet 9 inches (4 meters).
the trap dipole

The trap dipole (fig. 8) makes use of the high impedance of a parallel resonant circuit to isolate or decouple unwanted tip portions of the antenna. The inner set of traps is placed in the element to isolate the center portion for operation on the highest frequency band (f1). A second set of traps may be placed somewhat farther out along the element to isolate a longer portion, with the first set of traps becoming part of the antenna element at the lower operating frequency (f2). Trap dipole antennas have been built with eight traps to allow operation on four Amateur bands. Trap design is straightforward, but determining the length of the tip sections, and the wire length between the traps is usually done on a cut-and-try basis.*

An approximate system for mathematically determining the length of the tip sections has been described in the Amateur literature.3

trap construction

Traps can be built either with discrete components (inductors and capacitors) or by using a length of coaxial line as a combined inductor and capacitor. Gary O’Neil, N3GO, described an interesting coaxial cable trap in *Ham Radio*, just a few years ago.4 While his design provided somewhat better operational bandwidth than the conventional trap design, unfortunately, any form of trap made of coaxial cable is very difficult to accurately adjust to frequency because any variation in the spacing of the coiled cable can change the resonant frequency of the trap many hundreds of kilohertz. Trap construction and adjustment become quite a problem.

The trap made up of a capacitor and a separate inductor is easier to adjust to frequency, which is usually chosen as the midpoint of the band. A fixed, high voltage capacitor is commonly used; one popular unit is a 25 pF, 5 kV ceramic type.* Frequency can be adjusted by pruning the parallel-connected coil. Many Amateurs use prewound, spaced air inductors mounted on four plastic strips. One type of coil, the “miniductor” manufactured by Barker & Williamson Co., is suitable for this purpose.†

Unfortunately a trap made up of an air coil and a ceramic capacitor must be protected from the weather. Water can damage the capacitor, and ultraviolet light from the sun can quickly ruin the plastic strips supporting the coil! Solving these problems is not an easy task, and any ideas supplied by the readers as to the design of a weatherproof trap assembly would be appreciated.

practical two-band dipole for 18 and 24 MHz

Here’s a simple antenna you can build in anticipation of the happy day when the 18 and 24-MHz bands are made available to Radio Amateurs for general communication. Important antenna dimensions are shown in fig. 9. The traps are made of a coil-capacitor combination, as discussed previously, and mounted to a small ceramic insulator which serves to take the pull of the antenna.

Before the traps are installed, they must be frequency-checked with a dip oscillator and a calibrated receiver. Place the trap in an area free of nearby metallic objects and loosely couple the dip oscillator to it. When reso-
nance is indicated, note the frequency of the oscillator on the nearby receiver. The traps should show resonance within ±100 kHz of 24.9 MHz. One end turn on each trap should be broken free of the coil bars so that it can be moved about to set the exact resonant point of the trap. You’ll find that when you attach the trap across the supporting insulator, the resonant frequency will drop a bit because of the capacitance across the insulator. It’s best to shoot for a resonant trap frequency about 150 kHz. When the trap is tuned, it was hauled up my tower and anchored at the 45-foot level, with the ends dropping down to the 25-foot level and tied to two nearby trees. SWR measurements revealed that the maximum figure on either range was under 1.3:1-to-1, with near-unity SWR at the design frequency on each band.

Note: More information on multi-band antennas and trap antennas can be found in the 22nd edition of Radio Handbook, available from Ham Radio’s Bookstore, Greenville, NH 03048, at $21.95, postpaid.

references

ham radio

Who Needs Them
Lightning is the most common cause of component damage. However, we occasionally run into those who say “I’ve never been hit by lightning” or “I live on the West Coast and we don’t have much lightning.” Don’t be fooled. There are demons lurking everywhere from your AC line to antenna that can damage your gear. Before exposing those, let’s look at data about thunderstorms.

On average, the number of annual days with thunderstorms per area are approximately: West Coast, 5; Southwest, 20 to 40; Texas, 40 to 70; Midwest, 40 to 50; East Coast, 30 to 50; South, 50 to 70; and Florida, up to 100! Really, no matter where you live, you should be aware and protected from the potential for lightning-induced damage.

Now, what about what you can’t see that does damage equipment? Dry desert winds in the Southwest and West Coast, wind driven snow and summer cloud buildup are all generators of enormous amounts of static electricity. Static-induced voltages from any one of these conditions can build up levels of 3 kV or more! If you’ve ever had the occasion to watch the static discharge jumping from the end of a long wire hanging near a chassis, you’ll know what we mean.

What’s worse, this type of damage is not always catastrophic. Semiconductors can suffer junction damage and will degrade over a period of weeks or months, causing subtle system problems and a gradual loss of sensitivity. In the case of AC line protection, semiconductors are known to be damaged by transients caused by AC motors starting and switches, surges from power company “brown-outs” and poor regulation and ever the effects of fluorescent lighting. If you have had the chance to see a graphic printout from an AC wall socket analyzer, you wouldn’t plug anything in again that was unprotected.

So who needs Alpha Delta? Everyone. Regardless of season or geographic location.
Alpha Delta Transi-Trap™ ceramic gas tube protectors do provide effective protection because they were designed and tested to be used with the most sensitive semiconductors. They do this because they fire fast enough, (less than 100 nanoseconds), and at a low enough level to effectively by-pass the typical range of induced currents and voltages. Standard air-gap devices cannot reach this performance level due to variations in atmospheric conditions that will effect conduction of the static charge to ground.

In addition, Transi-Trap™ protectors are the only devices in the industry employing a combination of “fail-safe” isolated ground design and a field replaceable ARC-PLUG™ cartridge. Isolated ground prevents the ARC discharge from flowing to the equipment chassis via the coax shield. “Fail-safe” means the ARC-PLUG cartridge is designed to fail “shorted” instead of “open” in the event of a heavy discharge in excess of its rating. In this event, the equipment is still protected until the cartridge is replaced. Replacement is indicated by a “dead” receiver and high VSWR during tune-up.

Competitive air-gap devices suffer electrode disintegration and fail “open.” You will lose your protection and you don’t even know it! One competitive gas tube device is designed to melt its solder connections and fail “open” in the event of heavy current flow. The protection is gone, the element is non-replaceable and you still don’t know it!

Transi-Trap™ protectors have been thoroughly tested by independent government and military test labs, and have been ordered for use around the world in a number of government and military programs. An Avionics user recently reported that since installing Transi-Trap™ devices, there has been no loss of communications due to induced transients. A leading designer of quality HF and VHF antennas, Butternut Electronics, suggests the use of Transi-Trap protectors in their literature.

A major computer manufacturer has selected MACC Master AC Control Consoles to protect their own systems from AC line transient related damage. This was done after extensive testing of all devices presently available.

Why Are There Several Different Models

We offer a choice of models to provide the most effective cost/power/frequency/connector combination.

STEP #1: Select your power range. The 200-watt models are the most sensitive to transient pulses and are the best choice for receivers and transceivers. The 2 kW models are designed for overall station protection and for linear amplifiers.

STEP #2: Select your frequency range. The UHF “T” connector models (LT, HT) offer low insertion loss protection through 146 MHz. The lowest-loss devices are the R-T and HV (typically 0.1 dB at 500 MHz) with UHF-type connectors. The R-T and HV models utilizing type “N” or “BNC” connectors offer even less loss through 1000 MHz! They are perfect for cellular radio and STL operation in the 800 and 900 MHz ranges.

Models available are:

Model LT: UHF “T” type, 200 W, through 146 MHz........ 19.95
Model HT: UHF “T” type, 2 kW, through 146 MHz........ 24.95
Model R-T: UHF connectors, 200 W, through 500 MHz........ 29.95
Model HV: UHF connectors, 2 kW, through 500 MHz........ 32.95
Model R-T/N: N connectors, 200 W, through 1000 MHz........ 32.95
Model HV/N: N connectors, 2 kW, through 1000 MHz........ 35.95

(BNC connectors also available)

The surge protected MACC models are: Model MACC - 8 outlets, and master switch control 79.95. MACC-4, same as above but with 4 outlets 59.95. ACTT - wall socket direct plug-in with 2 outlets 29.95.

Alpha Delta Transi-Trap antenna line protectors and MACC Master AC Control Consoles provide more than near-hit lightning protection. They will give you protection to cover all forms of static and transient surges from your antenna to your power line — at an attractive price.

Available from your local Alpha Delta dealer or direct plus shipping $2 Transi-Trap™, $4 MACC.
NOTE: PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.
applied Yagi antenna design

part 4:

a 50-MHz Tilton/Greenblum design

Computer model analyzes, updates an atypical Yagi design

Of the four VHF/UHF bands discussed in this series, 50 MHz is the most difficult mechanically. Where the other bands’ Yagis are able to employ welding rods for the driven and parasitic elements, 50 MHz requires tubing of at least 0.5 inches (1.27 cm) in diameter. Fortunately, long enough single lengths of tubing are available so the builder can avoid the additional calculations needed to compensate for telescopic elements. While element mounting may require methods that have some effect on element lengths, these effects are known quantities, and of relatively minor consequence.

Because the NBS 1.2 wavelength design is often the practical limit, long-boom Yagis are not common on 50 MHz. Larger Yagis would be difficult to impossible for most 50 MHz operators; stacking would present even more difficulties. In effect, 50 MHz presents the VHF operator many of the antenna problems normally associated with the HF bands.

selecting a 50 MHz design

Lawson demonstrated that the simple Yagi performed almost as well as any other antenna in the lengths feasible on 50 MHz. Any significant improvement would have to be derived from an unequal spacing approach for the parasitic elements. Tilton presented one such design, and since its initial publication 27 years ago, it has become a standard of comparison, even being adopted by a commercial antenna manufacturer. As is true of Tilton’s other fine antennas, his six-element 50 MHz classic is based on the Greenblum design data.

Simply adding another director to Tilton’s antenna for iteration purposes would result in a higher calculated gain and hopefully in a better overall pattern. But as is evident from examining Greenblum’s data, there is a difference between an optimized seven-element Yagi and a six-element Yagi with an added element.

Tilton experimented with Greenblum Yagis of up to eleven elements. Of these Yagis, a seven-element 220 MHz design was published. The design frequency appears to be 221.5 MHz, and a non-conductive boom is used. Scaling to the 50 MHz band is easily accomplished, permitting the iteration process to begin.

Table 1 presents spacing data for this Yagi; column two of that table contains the inter-element spacings that were calculated from those given for the 220-MHz design. The former Yagis’ spacings were stated in inches and were converted to wavelengths at 221.5 MHz. These wavelengths were converted to the comparable number of inches at 50.25 MHz. For the builder’s convenience, the 50.25 MHz spacings were rounded to the nearest 0.125 inch. Column three of Table 1 shows the cumulative addition of the spacings in column two, and column four is the restatement of column three in wavelengths at 50.25 MHz. All element diameters are 0.5 inches, as used in Tilton’s classic. Some builders may want to use 0.75-inch tubing as is done in The Radio Amateur’s Handbook for the NBS Yagi of this same boom length.

iterating the 50-MHz Yagis

Reflector and director lengths were incremented in

By Stanley Jaffin, WB3BGU, 800 Stonington Road, Silver Spring, Maryland 20902

August 1984

103
Table 2. A comparison of optimized 50.25 MHz Yagis for each of six different director tapering approaches.

<table>
<thead>
<tr>
<th>taper parameter</th>
<th>optimized performance</th>
<th>parasitic element length in inches</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 gain</td>
<td>116.000</td>
<td>105.750</td>
<td>12.493</td>
<td>15.192</td>
</tr>
<tr>
<td>0.000 F/B</td>
<td>115.500</td>
<td>103.000</td>
<td>12.066</td>
<td>49.580</td>
</tr>
<tr>
<td>0.125 gain</td>
<td>116.000</td>
<td>106.000</td>
<td>12.481</td>
<td>15.624</td>
</tr>
<tr>
<td>0.125 F/B</td>
<td>115.750</td>
<td>103.250</td>
<td>12.066</td>
<td>50.774</td>
</tr>
<tr>
<td>0.250 gain</td>
<td>116.000</td>
<td>106.500</td>
<td>12.469</td>
<td>15.109</td>
</tr>
<tr>
<td>0.250 F/B</td>
<td>115.750</td>
<td>103.500</td>
<td>12.063</td>
<td>59.342</td>
</tr>
<tr>
<td>0.500 gain</td>
<td>116.000</td>
<td>107.000</td>
<td>12.441</td>
<td>15.843</td>
</tr>
<tr>
<td>0.500 F/B</td>
<td>116.000</td>
<td>104.000</td>
<td>12.057</td>
<td>52.097</td>
</tr>
<tr>
<td>1.000 gain</td>
<td>116.000</td>
<td>107.750</td>
<td>12.375</td>
<td>17.878</td>
</tr>
<tr>
<td>1.000 F/B</td>
<td>117.000</td>
<td>104.250</td>
<td>11.884</td>
<td>60.431</td>
</tr>
<tr>
<td>1.500 gain</td>
<td>116.250</td>
<td>108.500</td>
<td>12.301</td>
<td>19.108</td>
</tr>
<tr>
<td>1.500 F/B</td>
<td>117.500</td>
<td>104.750</td>
<td>11.769</td>
<td>42.259</td>
</tr>
</tbody>
</table>

Table 3. Optimized gain iteration for a taper of 0.000 with a reflector length of 116.00 inches.

<table>
<thead>
<tr>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.00</td>
<td>11.859</td>
<td>30.072</td>
</tr>
<tr>
<td>102.25</td>
<td>11.939</td>
<td>32.852</td>
</tr>
<tr>
<td>102.50</td>
<td>11.967</td>
<td>36.683</td>
</tr>
<tr>
<td>102.75</td>
<td>12.020</td>
<td>39.984</td>
</tr>
<tr>
<td>103.00</td>
<td>12.074</td>
<td>42.259</td>
</tr>
<tr>
<td>103.25</td>
<td>12.127</td>
<td>45.093</td>
</tr>
<tr>
<td>103.50</td>
<td>12.179</td>
<td>47.850</td>
</tr>
<tr>
<td>103.75</td>
<td>12.229</td>
<td>48.580</td>
</tr>
<tr>
<td>104.00</td>
<td>12.278</td>
<td>51.343</td>
</tr>
<tr>
<td>104.25</td>
<td>12.325</td>
<td>54.107</td>
</tr>
<tr>
<td>104.50</td>
<td>12.366</td>
<td>57.872</td>
</tr>
<tr>
<td>104.75</td>
<td>12.405</td>
<td>61.637</td>
</tr>
<tr>
<td>105.00</td>
<td>12.438</td>
<td>65.401</td>
</tr>
<tr>
<td>105.25</td>
<td>12.464</td>
<td>69.165</td>
</tr>
<tr>
<td>105.50</td>
<td>12.483</td>
<td>72.929</td>
</tr>
<tr>
<td>105.75</td>
<td>12.493</td>
<td>76.693</td>
</tr>
<tr>
<td>106.00</td>
<td>12.492</td>
<td>75.326</td>
</tr>
<tr>
<td>106.25</td>
<td>12.497</td>
<td>78.090</td>
</tr>
<tr>
<td>106.50</td>
<td>12.461</td>
<td>80.854</td>
</tr>
<tr>
<td>106.75</td>
<td>12.432</td>
<td>83.618</td>
</tr>
<tr>
<td>107.00</td>
<td>12.352</td>
<td>86.382</td>
</tr>
<tr>
<td>107.25</td>
<td>12.276</td>
<td>89.147</td>
</tr>
<tr>
<td>107.50</td>
<td>12.183</td>
<td>91.912</td>
</tr>
<tr>
<td>107.75</td>
<td>12.072</td>
<td>94.686</td>
</tr>
<tr>
<td>108.00</td>
<td>11.944</td>
<td>97.460</td>
</tr>
<tr>
<td>108.25</td>
<td>11.802</td>
<td>100.234</td>
</tr>
<tr>
<td>108.50</td>
<td>11.648</td>
<td>103.007</td>
</tr>
<tr>
<td>108.75</td>
<td>11.486</td>
<td>105.781</td>
</tr>
<tr>
<td>109.00</td>
<td>11.320</td>
<td>108.555</td>
</tr>
<tr>
<td>109.25</td>
<td>11.154</td>
<td>111.329</td>
</tr>
<tr>
<td>109.50</td>
<td>10.989</td>
<td>114.098</td>
</tr>
<tr>
<td>109.75</td>
<td>10.822</td>
<td>116.867</td>
</tr>
<tr>
<td>110.00</td>
<td>10.633</td>
<td>119.636</td>
</tr>
</tbody>
</table>

Table 4. Optimized F/B iteration for a taper of 0.000 with a reflector length of 115.50 inches.

<table>
<thead>
<tr>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.00</td>
<td>11.856</td>
<td>27.029</td>
</tr>
<tr>
<td>102.25</td>
<td>11.909</td>
<td>29.117</td>
</tr>
<tr>
<td>102.50</td>
<td>11.961</td>
<td>32.046</td>
</tr>
<tr>
<td>102.75</td>
<td>12.014</td>
<td>35.980</td>
</tr>
<tr>
<td>103.00</td>
<td>12.066</td>
<td>39.912</td>
</tr>
<tr>
<td>103.25</td>
<td>12.118</td>
<td>41.466</td>
</tr>
<tr>
<td>103.50</td>
<td>12.169</td>
<td>33.637</td>
</tr>
<tr>
<td>103.75</td>
<td>12.218</td>
<td>21.029</td>
</tr>
<tr>
<td>104.00</td>
<td>12.266</td>
<td>29.117</td>
</tr>
<tr>
<td>104.25</td>
<td>12.312</td>
<td>24.152</td>
</tr>
<tr>
<td>104.50</td>
<td>12.354</td>
<td>22.247</td>
</tr>
<tr>
<td>104.75</td>
<td>12.393</td>
<td>20.612</td>
</tr>
<tr>
<td>105.00</td>
<td>12.475</td>
<td>19.172</td>
</tr>
<tr>
<td>105.25</td>
<td>12.454</td>
<td>17.881</td>
</tr>
<tr>
<td>105.50</td>
<td>12.486</td>
<td>16.708</td>
</tr>
<tr>
<td>105.75</td>
<td>12.488</td>
<td>15.631</td>
</tr>
<tr>
<td>106.00</td>
<td>12.488</td>
<td>14.634</td>
</tr>
<tr>
<td>106.25</td>
<td>12.478</td>
<td>13.707</td>
</tr>
<tr>
<td>106.50</td>
<td>12.454</td>
<td>12.841</td>
</tr>
<tr>
<td>106.75</td>
<td>12.416</td>
<td>12.032</td>
</tr>
<tr>
<td>107.00</td>
<td>12.362</td>
<td>11.275</td>
</tr>
<tr>
<td>107.25</td>
<td>12.290</td>
<td>10.570</td>
</tr>
<tr>
<td>107.50</td>
<td>12.201</td>
<td>9.915</td>
</tr>
<tr>
<td>107.75</td>
<td>12.093</td>
<td>9.312</td>
</tr>
<tr>
<td>108.00</td>
<td>11.969</td>
<td>8.764</td>
</tr>
<tr>
<td>108.25</td>
<td>11.829</td>
<td>8.277</td>
</tr>
<tr>
<td>108.50</td>
<td>11.676</td>
<td>7.859</td>
</tr>
<tr>
<td>108.75</td>
<td>11.513</td>
<td>7.522</td>
</tr>
<tr>
<td>109.00</td>
<td>11.344</td>
<td>7.286</td>
</tr>
<tr>
<td>109.25</td>
<td>11.172</td>
<td>7.175</td>
</tr>
<tr>
<td>109.50</td>
<td>10.998</td>
<td>7.236</td>
</tr>
<tr>
<td>109.75</td>
<td>10.818</td>
<td>7.642</td>
</tr>
<tr>
<td>110.00</td>
<td>10.613</td>
<td>8.231</td>
</tr>
</tbody>
</table>

0.25 inch steps, and element tapering was initially incremented in 0.5 inch steps. As a result of obtaining what appeared to be strange results for Greenblum Yagis, iterations were also made for tapers of 0.125 and 0.25 inch. All of these results are summarized in Table 2. A zero taper clearly gives the highest calculated gain figures, even though Greenblum Yagis usually require some degree of parasitic element...
Technology, just a console

Automatic current photocoupler keyer can he read out continuously. You can erase one by one while receiving.

Screen Display: The characters are displayed on the screen.

Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead: The characters move to the left even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Battery Back-Up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead: The characters move to the left even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Built-in Monitor: The built-in monitor provides sharp image with no jiggie or jitter even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX-RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either 170Hz, 425Hz or 850Hz shift with manually fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125Hz)/LOW (Mark Frequency 1275Hz) tone pair select. Mark only or Space only copying capability for selective fading. ARQ/FEA features incorporated.

Crystal Controlled AF SK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator circuit controlled by the computer.

Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient Key Arrangement: The keyboard features an arrangement of functional keys. Automatic insertion of LTR/FIG code makes operation a breeze.

Battery Back-Up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead: The characters move to the left even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Built-in Monitor: The built-in monitor provides sharp image with no jiggie or jitter even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX-RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either 170Hz, 425Hz or 850Hz shift with manually fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125Hz)/LOW (Mark Frequency 1275Hz) tone pair select. Mark only or Space only copying capability for selective fading. ARQ/FEA features incorporated.

Crystal Controlled AF SK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator circuit controlled by the computer.

Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient Key Arrangement: The keyboard features an arrangement of functional keys. Automatic insertion of LTR/FIG code makes operation a breeze.

Battery Back-Up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead: The characters move to the left even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Built-in Monitor: The built-in monitor provides sharp image with no jiggie or jitter even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX-RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either 170Hz, 425Hz or 850Hz shift with manually fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125Hz)/LOW (Mark Frequency 1275Hz) tone pair select. Mark only or Space only copying capability for selective fading. ARQ/FEA features incorporated.

Crystal Controlled AF SK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator circuit controlled by the computer.
tapering. The zero taper F/B optimized Yagi, while not possessing the maximum calculated F/B, does have an outstanding F/B that is clearly representative of the F/B optimized Yagis.

Table 3 presents the iterations that identified the optimized gain of 12.493 dBi. Table 4 presents the iterations that identified the optimized F/B of 49.580 dB. Tables 5 and 6 present these antenna's respective frequency performance parameters, in 500 kHz increments across a 6 MHz bandwidth. The gain optimized antenna shows a clear peak at 50.25 MHz. The F/B optimized antenna also shows a peak in the optimized parameter at 50.25 MHz, almost to the point of being of the single frequency vectorial cancellation type of F/B. Figs. 1 and 2 display these antennas' respective E-plane plots.

The comparison between these two Yagis serves to emphasize the superiority of the F/B antenna. This is the Yagi with the obviously more clearly defined main lobe and the reduced-amplitude minor lobes. With the
exceptions of a slightly narrower main lobe and additional unwanted signal attenuation between 132 and 158 degrees, the gain optimized Yagi is a second choice. While unwanted signals are rarely an exact 180 degrees away from desired signals, a 15 dB F/B is more or less marginal for a Yagi of this length. However, the adequacy of this F/B ratio is really a function of band activity and operator preference.

A final question, addressing the bandwidth over which the F/B optimized antenna’s F/B ratio and general pattern can be realized, remains. Table 7 presents this Yagi’s performance parameters as calculated from 50.0 MHz to 50.5 MHz, in 50 kHz increments. Figs. 3 through 13 contain the E-plane plots that correspond to each 50 kHz increment, with that for 50.25 MHz being repeated for purposes of clarity. Over the frequency range of interest to weak signal operators, calculated F/B begins at 31.168 dB, peaks at 49.580 dB, and drops to 33.170 dB. Calculated gain begins at 11.988 dBi and rises to 12.139 dBi. These figures serve a second purpose, as they provide a study in the effects of slight variances in frequency response on the performance criteria on which a given Yagi was optimized. It is interesting to note the emergence of another minor lobe starting at 50.3 MHz.

A comparison with the NBS 1.2 wavelength Yagi proves the value of either of the optimized Tilton/ Greenblum designs. While only 0.0192 wavelengths
fig. 6. F/B optimized Yagi at 50.15 MHz.

fig. 7. F/B optimized Yagi at 50.20 MHz.

fig. 8. F/B optimized Yagi at 50.25 MHz.

fig. 9. F/B optimized Yagi at 50.30 MHz.
FREQUENCY: 50 350
EL NUM = 7
EL DIAM = 0.50000
REF = 115.0000
FB = 37.300
fig. 10. F/B optimized Yagi at 50.35 MHz.

FREQUENCY: 50 400
EL NUM = 7
EL DIAM = 0.50000
FB = 33.170
fig. 11. F/B optimized Yagi at 50.40 MHz.

FREQUENCY: 50 450
EL NUM = 7
EL DIAM = 0.50000
FB = 30.363
fig. 12. F/B optimized Yagi at 50.45 MHz.

FREQUENCY: 50 500
EL NUM = 7
EL DIAM = 0.50000
FB = 28.255
fig. 13. F/B optimized Yagi at 50.50 MHz.
WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

STV SATELLITE TELEVISION MAGAZINE

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, & industry insights.

- $24.95 per yr. (12 monthly issues)
- $2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subscription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

OnSat — the best in satellite TV programming.

- Weekly Updated Listings
- All Scheduled Channels
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights

- $39.00 per yr. (52 weekly issues)
- $1.00 for Sample Copy

Visa® MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV™/OnSat™
P.O. Box 2384 - Dept. PS
Shelby, NC 28151-2384
Subscription calls only Toll Free 1-800-438-2020

---

Table 7. Detailed performance parameters for the F/B optimized Yagi with a 0.000 taper.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00</td>
<td>11.933</td>
<td>27.145</td>
</tr>
<tr>
<td>50.05</td>
<td>11.961</td>
<td>28.924</td>
</tr>
<tr>
<td>50.10</td>
<td>11.988</td>
<td>31.168</td>
</tr>
<tr>
<td>50.15</td>
<td>12.014</td>
<td>34.207</td>
</tr>
<tr>
<td>50.20</td>
<td>12.040</td>
<td>38.924</td>
</tr>
<tr>
<td>50.25</td>
<td>12.066</td>
<td>49.580</td>
</tr>
<tr>
<td>50.30</td>
<td>12.091</td>
<td>54.266</td>
</tr>
<tr>
<td>50.35</td>
<td>12.115</td>
<td>37.304</td>
</tr>
<tr>
<td>50.40</td>
<td>12.139</td>
<td>33.170</td>
</tr>
<tr>
<td>50.45</td>
<td>12.162</td>
<td>30.363</td>
</tr>
<tr>
<td>50.50</td>
<td>12.184</td>
<td>28.233</td>
</tr>
</tbody>
</table>

longer, these Yagis provide far more additional gain than this miniscule difference in boom length can explain. The model calculates 11.80 dBi gain for the NBS Yagi, as compared to 12.49 dBi for the gain optimized Tilton antenna, and 12.06 dBi for the F/B optimized Tilton antenna. With approximately 19 dB of F/B, the NBS Yagi is superior to the gain optimized Tilton Yagi, but falls far short of the F/B optimized Tilton Yagi.

It should be noted that F/B was never a design criterion for any of the NBS Yagis. In conclusion it can be stated that as a result of the calculated performances of either of these two Tilton/Greenblum Yagis, either is preferable to the 1.2 wavelength NBS Yagi. The F/B optimized Yagi is the more preferable of the pair. The additional director on what is substantially the same boom length, provides a significant increase in performance.

Next month's installment addresses the general subject of Yagi performance optimization. In addition to discussing approaches taken by authors in the engineering literature, specific examples of techniques from the Amateur Radio literature will be modeled and iterated.

references

hammer
The small dish that captures all the entertainment.

Only Wilson Microwave Systems can give you the versatility of hand-held control of the total satellite television spectrum at such a remarkably low price.

**Total System Design.**
From the solid steel antenna to the state-of-the-art electronic receiver and hand-held control unit, Wilson gives you the most complete, integrated system you can own.

At Wilson Microwave Systems, we put the world of entertainment in the palm of your hand.

**NOW ONLY**

$1695.00 F.O.B. Nampa, ID

Includes: 110° LNA - Polarizer 1 - 100' Cable
Wilson MD9 Dish - YM1000 Receiver

Dealerships Available
Antenna is shown with optional LNA cover.

Distributed by

**NAMPA SATELLITE SYSTEMS**

312 12th Avenue South • Nampa, Idaho 83651
(208) 466-6727
In State Wats 1-800-654-1319 • Out of State Wats 1-800-654-0795
Attention Hfer’s — Don’t skip Joe’s column this month. The principles he discusses apply to other frequency ranges as well. — Editor

VHF/UHF WORLD

Joe Reiser, W1JR

the VHF/UHF primer: an introduction to filters

Although most Amateurs seem to understand the difference between the categories of filters, described later in this column, they seldom understand how filters work. Sometimes they fail to recognize the interrelationship between bandwidth, insertion loss, and out-of-band attenuation, and what the best design for an application may be or how one goes about designing and building a filter. Although space doesn’t permit presentation of a detailed design compendium, some designs and guidance will be provided in this and future columns.

Fig. 1. Insertion loss and VSWR of a 70-cm cavity filter.

Filter basics

Filters can be classified according to two general types: absorptive and reflective, with absorptive filters the less common type. Absorptive filters accept all frequencies received. The desired frequency or frequencies are passed through to the output, while the undesired frequencies are directed to either a built-in or external load where they are dissipated. An example of an absorptive filter is the diplexer for terminating a double balanced mixer recommended in a previous column. The better homebrew TVI low-pass filters are absorptive filters. The advantage of this type of filter is that the source or transmitter almost always sees a good VSWR almost regardless of frequency, harmonics, etc.; its disadvantages lie in the fact that the filter is usually twice as complex and requires an extra termination.

The most common type of filter is the reflective type, which allows the desired signals to pass through from the input or source to the output, but reflects the undesired frequencies back to the source. A good analogy to this type of filter is the typical Amateur Radio antenna system. The resonant (or bandpass) frequency of the antenna has, if properly matched, a low
VSWR, and radiates power into space. Frequencies off resonance are usually reflected back to the transmitter in the form of a high VSWR.

Fig. 1 illustrates this characteristic. A typical frequency versus input to output amplitude response and VSWR for a 70-cm reflective type bandpass filter is shown. Note that the insertion loss, as expected, increases on either side of the center frequency, \( F_c \). Note, too, that the VSWR rapidly increases on either side of \( F_c \) in a similar manner, and is approximately 6:1 at the half power or 3 dB down cutoff frequencies, \( F_{c1} \) and \( F_{c2} \).

**filter categories**

Within each of the two filter types, absorptive and reflective, there are four basic categories: low-pass, high-pass, band pass, and band reject or band stop. Each has a specific passband in which the insertion loss is low and a cutoff frequency (or frequencies) where the output is one half or 3 dB lower than the power in the desired passband. Sometimes filters consist of a combination of two or more of these categories. For instance, a low-pass and a high-pass filter may be connected in cascade to form a bandpass filter.

Low-pass filters have low loss up to the cutoff frequency and high insertion loss above this frequency (fig. 2A). They are most often used on the output of oscillators and transmitters to prevent harmonics from being radiated. (Typical low-pass filter schematics are also shown.) As the number of elements in the filter is increased, the passband insertion loss and the stop band attenuation increase. Also the passband insertion loss approaching cutoff is less as shown.

High-pass filters have high insertion loss below and low loss above the cutoff frequency (fig. 2B). They are most often used to prevent lower frequency transmitters from saturating the front end of a receiver. A common application involves using the filter on TV set inputs to prevent fundamental overload and on the input of an HF receiver to prevent overload from high power broadcast band transmitters. As the number of elements in the filter increases, the passband insertion loss and the stop band rejection increase, while the passband insertion loss approaching the cutoff frequency is less as shown in fig. 2B.

Bandpass filters have low insertion loss between two cutoff frequencies and high loss above and below the cutoff frequencies (fig. 2C). They are probably the most common form of filter used by VHF/UHF Radio Amateurs and can be considered as a combination of a low-pass and a high-pass filter. They are most often used as front-end filters to reject out-of-band signals that may overload a receiver. As the number of sections increases, the passband insertion loss and the stop band rejection increase, but the passband insertion loss is also less as you approach the cutoff frequency.

Band reject or band-stop filters have high insertion loss at a specific frequency or band of frequencies but low loss on all other frequencies (fig. 2D). They are used to eliminate discrete frequencies such as an IF image, a birdie, or local transmitter. For increased rejection, the number of sections must be increased.

**filter parameters**

The most important filter parameters are usually bandwidth and insertion loss. Secondary considerations are VSWR, passband ripple, out-of-band rejection, and shape factor. These parameters are all interrelated.

Insertion loss is especially important when a filter is at the input of a low-noise receiver because filter insertion loss at this location increases the noise figure by the same amount. If a filter follows a transmitter, the output power will be reduced by the amount of the insertion loss and if the filter is too lossy, it may break down or be destroyed when subjected to high power. Generally speaking, insertion loss increases if either the filter bandwidth is decreased, the number of sections in the filter is increased or the unloaded \( Q, Q_u \), of the inductors is low (more on this later in this column).

Bandwidth is very important because it defines the operational frequency range over which signals will not be attenuated more than 3 dB. Bandwidth should never be any less than necessary, since narrow bandwidth usually goes hand-in-hand with higher passband insertion loss and more critical tuning.

VSWR is usually low at the center...
frequency of a well designed and built reflective type bandpass filter and climbs abruptly near the cutoff frequency going toward infinity in the rejection band (fig. 1). VSWR will also be low in the passband of other categories of filters (to be discussed later in this article) but will increase abruptly as the cutoff frequency is approached. If a low VSWR is desired over a wide band, either the bandwidth of the filter must be increased or additional filter sections added.

Passband ripple is a function of the design parameters, the insertion loss and how well the filter is tuned and built. Remember that at each point where there is ripple, the input VSWR will increase or decrease accordingly. Ripple is associated with certain classes of filters as shall be discussed shortly.

Out-of-band rejection is a function of the design parameters, the bandwidth, the types of components used in the filter, construction, and alignment; but most importantly, it is primarily determined by the number of elements or tuned sections in the filter. If a low out-of-band rejection filter is used, it could mean overload to a low-noise receiver or harmonics radiation from a transmitter. Sometimes the bandwidth cannot be sufficiently reduced, and the number of sections in the filter must be increased to adequately attenuate out-of-band signals. As mentioned earlier, when the number of sections in the filter is increased, so is the insertion loss. Consequently, to increase out-of-band rejection, the filter complexity will usually increase.

Similarly, the shape factor of a filter is a direct function of the number of elements or tuned sections in a filter as well as the design parameters. VHF/UHF filters usually do not approach rectangular shape factors like IF filters because losses and the complexity of the filter would be difficult to work with at these frequencies. Hence, if good shape factor is required, the desired frequency range is usually converted to a lower frequency where insertion loss and components do not provide such a constraint.

**filter classes**

Frequency domain filters are the most commonly used "LC" filters. The three classes most often used are the Butterworth (or maximally flat), the Chebyshev, and the Cauer (or elliptical function). Each has specific characteristics defined by the design equations used to determine the component values and the tuning of the filter.

The most common filter, the Butterworth, or maximally flat filter, has been around for a long time. Its main advantages are that it has low insertion loss, low VSWR, a flat passband response and standard design tables are available.4-7 Designs using normalized tables from these references are based on the 3 dB cutoff frequency. The disadvantage of the Butterworth filter is that its attenuation is only moderate out-of-band. A typical low-pass Butterworth filter response is shown in fig. 3A. Note that the attenuation in the stop band increases approximately 6 dB per octave (2 times the frequency) per filter element.

Chebyshev filters are a result of the development of modern filter theory. They are most often used when steep stop band attenuation (than Butterworths can provide) is required. For example, the stop band attenuation for a properly designed Chebyshev filter may increase (depending on passband ripple selected) to approximately 9 dB per octave per element, up to 3 dB more than a Butterworth design. The principal drawback of a Chebyshev filter is that it has ripples in the passband. The greater the desired attenuation out-of-band per number of elements in the filter, the more the ripple in band. As a point of interest, when the passband ripple goes to 0 dB, the design goes from Chebyshev to Butterworth. Design tables in references 4, 5, 6, and 7 are available. Beware, however; some authors specify the cutoff frequency as the 3 dB down bandwidth,5 while others specify the cutoff frequency as the limit where the ripple bandwidth is constant.5,7 A typical Chebyshev low-pass filter frequency response is shown in fig. 3B.

Cauer, or elliptical function filters, are also a result of the development of modern filter theory. Similar to the Chebyshev, they have resonant circuits that are used to produce notches in the stopband and are most often used when very steep attenuation is required just outside of the passband, particularly when you want to notch a specific frequency or frequencies. Other applications include designs that require only a finite amount of stop
DUAL FLOPPY DISC DRIVES
BRAND NEW, dual floppy disc drives made for Digital Equipment Corp. (DEC model no. RX 180 AB). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, 5¼” mini-floppy disc drives brand new in the case with their own regulated, switching power supply, cooling fan & on/off switch. Each unit also comes with a line cord & documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, & the Color Computer, and other Shugart compatible interfaces. Naturally you supply the cables and disc controller card to suit your particular system. The RX 180 AB runs off of 115/230 VAC 50/60 Hz. w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy!!! Shpg. wt. 20 lb. Stock no. RX 180 AB $250.00
Modified to run with TI 99/4A personal computer system $285.00

HIGH SPEED KSR PRINTER TERMINAL
World famous, high speed G. E. Terminet 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous data comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 3PS, 80 columns on pin feed paper, and less weight & size than an ASR 35 teletype with far less racket. They are virtually electronically foolproof as every pc board is tri-fused protected. Should your machine not work, just check the on board fuses & out of 10 times that is where the problem lies. Schematics are provided w/ each machine sold. Current price of this machine new is over $2000.00! Our meager price for his fantastic printer is only 10% of this: $200.00 each!!! Visually inspected prior to shipment to insure completeness. Shpd. truck freight collect. $200.00

IBM 745 SELECTRIC BASED TYPEWRITER PRINTERS
These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the selectric mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard 115 VAC, 5 VDC at 100 ma, and 24 VDC at 4 amps. All are new in factory boxes, but may require adjustments. We provide literature and schematics with 1 ribbon and cleaning tools.
With the addition of our Centronics to Selectric interface, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE 1000 A $375.00, 745 manual $30.00
Ship wt approx. 80 Lbs, shpd by truck, collect.

CENTRONICS TO SELECTRIC INTERFACE
This interface will adapt a Redactron Selectric I/O typewriter mechanism to be used as a parallel ASCII compatible printer. The parallel input port provides compatibility to Centronics standards for both "busy" and "acknowledge" protocols. The interface requires only +5 VDC at 350 ma. This interface is fully built, less power supply, is guaranteed operational, and comes with data. Shpg wt. 15 lbs DE 201 A, $245.00

19" HI-RESOLUTION COLOR X-Y DISPLAY
Thru a special purchase we got hold of 50 brand new 19" color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19" color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus! Requires 25 V - 0 - 25 V input for amps, available separately. Some specs for you technical people: signal inputs “X” horizontal 16 V P-P ±8 V, “Y” vertical 12 V P-P ±6 V, “Z” beam drive, 4 V max brightness, 1.0 Volt black level. Writing rates “X” amp is .35 inch/usec, “Y” amp is .3375 inch/usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use. Supplied with schematics. Shpg. wt. 45 Lbs.
Transformer for above $12.00

Surplus Electronic Material
Send for our free 72 page catalogue jam packed with goodies.

More Details? CHECK — OFF Page 140

158

August 1984
band attenuation. The passband ripple is similar to Chebyshev designs. However, in the stop band, they also have ripple and reach only a minimum level of out-of-band rejection determined by the design parameters and filter alignment. Elliptical function filters also require extra tuning elements and possibly some peculiar component values. Hence, they are usually only used at audio through HF. A typical low-pass elliptical function filter response is shown in fig. 3C.

### physical characteristics

Filters are made in many shapes and sizes. As discussed earlier, when the desired stop band rejection increases, the number of components and sections in the filter must increase. At lower frequencies (audio and HF), discrete components such as disc capacitors and inductors are usually used. However, as the frequency increases into the VHF/UHF range, other types of components such as air variables and rods for inductors are used. Also, at VHF/UHF, filters may take on other physical structures such as cavity, microstrip, stripline, combline, interdigital, or helical.

A cavity filter, especially the quarter-wave type (fig. 4A) is quite common at UHF, is basically an enclosure, usually a cylinder, with a rod typically close to a quarter-wave in length down the center of the enclosure that takes the place of a discrete inductor. By making the rod shorter or longer, it can be resonated, if desired, without a tuning capacitor. This is often referred to in the microwave community as the TEM (Transverse Electromagnetic) mode. However, the rod is often shortened slightly and tuned with a capacitor, typically two metal plates whose spacing can be varied, at the top of the rod to facilitate “tweaking” the filter to frequency. Cavities have low loss if they are large in diameter (between 0.05 and 0.33 λ), close to 77 ohms in impedance (3.6:1 ratio between the inside diameter of cavity and the outside diameter of the rod), have good conductivity particularly at the high current point at the base of the rod, and especially if they are silver plated internally.

However most people ignore or are not aware of the fact that a quarter-wave cavity filter is also resonant at several other frequencies in addition to the design frequency. If the filter is tuned mainly by adjusting the length of the rod, the other resonances will be close to 3, 5, 7 (etc.) times the design frequency. Hence they are not good harmonic filters! These other resonances can be pushed higher and placed above the harmonic by fore-shortening the quarter-wave rod and using capacitance tuning as just described. The shorter the rod, the higher the frequency of the other resonances.

Another favorite Amateur filter configuration is the “half-wave” type (fig. 4B). Basically composed of two quarter-wave filters in tandem, its chief advantages are its requirement of only one tuning capacitor and its very symmetrical out-of-band rejection (more on this later in this article). The inductor can even take the form of a flat strip, thus yielding a mechanical advantage in some situations, since the input and output are at different ends of the filter.

Interdigital filters are very common especially at UHF and above. They get their name from their physical appearance — they look like fingers joined (or interdigitated) together (fig. 4C). The rods are nearly a quarter-wave long, and ground is alternated from side to side. The spacing between resonators, the rod diameters, and the thickness of the structure are the major factors in determining bandwidth. Because the open ends have some fringing capacitance, it is best to shorten the rods slightly and add a small tweaker such as a silver-plated screw. This type of filter, properly constructed, usually has low passband insertion loss and is easily duplicated. It is readily scaled in frequency by keeping the thickness, rod diameter, and spacing constant, and just changing the length. The new frequency will have the same percentage bandwidth as the original frequency. This type of filter is usually large and also suffers from the overtone problems as mentioned above with the quarter-wave cavity type filter.

Combline filters — so named because they look like the teeth of a metal comb — are very common in the industry, (fig. 4D). Their rods or resonators are usually about one-eighth wave long (in contrast to the quarter-wave interdigital type). These filters are usually used where space is at a premium. Frequently the resonators are close together, and partitions or walls are placed between them, with the height of the partitions determining the coupling and hence overall filter bandwidth. The advantage of this type of filter configuration is that if the resonators are close short, the response to overtones (as discussed above) will be much higher in frequency and may not be detrimental, as in the case of the interdigital type. One advantage or disadvantage, depending on your point of view, is that tuning capacitors are required.

Microstrip and stripline techniques are often used, especially when designing combline and interdigital filters. The spacings and impedances are set for the desired filter response. Losses in this type of construction are frequently higher than those using resonators etc. but this type of structure is usually reproducible.

Let us not forget helical resonator filters which resemble a large coil, usually with large diameter wire wound like a helix antenna (fig. 4E). Placed in a structure similar to the cavity filter, a helical resonator filter is usually used when relatively high inductance and low passband insertion loss are required, especially on the VHF and lower UHF frequencies.

### filter anomalies

Several things must be understood before filter design can begin. It is assumed at the outset that all formulas used and the computed values are correct; the principal filter design problems occur with the values of the components and the types of component selected. Components are usually
chosen using standard design equations or normalized tables. \(^a\) It would be very difficult to build a filter if the component values were not standard or readily available. Therefore, it is usually preferable to make some of the components variable, especially in bandpass filters. I prefer to use variable capacitors instead of variable inductors because they usually have higher \(Q_u\) and are easier to tune.

If insertion loss is important, and/or if the bandwidth of the filter is narrow, the components chosen must have high \(Q_u\) at the filter frequency. Air variables or small tuners made from plated screws are usually preferred at VHF/UHF frequencies. Inductance in series with the capacitor may cause loss or distortion such as a decrease in attenuation at some frequency or frequencies in the rejection band.

However, the greatest filter loss usually occurs in the inductors. The \(Q_u\) of an inductor should be as high as possible. For reference, I have shown some typical values of \(Q_u\) in table 1. This table is by no means complete, but can be used as a guide. Note that most discrete inductors have only moderate \(Q_u\) while cavities and helicals are high.

To determine the loss of an inductor in a bandpass filter, it is first necessary to determine the loaded \(Q\), \(\frac{Q_u}{Q}\), of the filter as follows:

\[
Q_L = \frac{Q_u}{F_c2 - F_c1} \quad (1)
\]

where \(F_c\) is the center frequency, \(F_c1\) is the lower cutoff (\(-3\) dB) frequency and \(F_c2\) is the upper cutoff frequency all in the same units. For example, the filter in fig. 1 has a center frequency of 432 MHz and upper and lower cutoff frequencies of approximately 440 and 432 MHz respectively. Therefore:

\[
Q_L = \frac{432}{(440 - 423)} = 25.4
\]

The loss in a filter is directly related to the ratio of the \(Q_u\) and \(Q\) of the filter as shown in eq. 2:

\[
\text{insertion loss (dB)} = 10 \log_{10} \left(1 - \frac{Q_u}{Q}\right) \quad (2)
\]

For the sake of simplicity, I have drawn a graph for the most common ratios of \(Q_u/Q\) in fig. 5. If the same example is used from fig. 1, and the \(Q_u\) of the inductor is approximately 1000 (from table 1), the \(Q_u/Q\) ratio is 39.37, and the insertion loss of this filter will be approximately 0.22 dB. Now if the inductor had a \(Q_u\) of only 300, the \(Q_u/Q\) ratio would be 11.8, and the loss would rise to approximately 0.77 dB — a huge increase! This example shows why cavities are preferred at VHF/UHF frequencies.

Before leaving this subject, it might be wise to explain how insertion loss can be determined in a multi-section filter. Cohn provides an equation to

---

**Table 1. Typical \(Q_u\) versus frequency for some commonly used inductors.**

<table>
<thead>
<tr>
<th>inductor type</th>
<th>frequency range (MHz)</th>
<th>typical unloaded (Q_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>toroid</td>
<td>1-100</td>
<td>50-200</td>
</tr>
<tr>
<td>0.25&quot; (6.35 mm) diameter coil</td>
<td>50-500</td>
<td>300-400</td>
</tr>
<tr>
<td>0.5&quot; (12.7 mm) diameter coil</td>
<td>50-300</td>
<td>400-500</td>
</tr>
<tr>
<td>microstrip (on G-10 PC board)</td>
<td>400-2300</td>
<td>175-420</td>
</tr>
<tr>
<td>microstrip (on PTFE fiberglass)</td>
<td>400-2300</td>
<td>200-775</td>
</tr>
<tr>
<td>1&quot; (25.4 mm) diameter 77-ohm cavity</td>
<td>300-1000</td>
<td>500-1000</td>
</tr>
<tr>
<td>3&quot; (76.2 mm) diameter 77-ohm cavity</td>
<td>100-500</td>
<td>1000-1500</td>
</tr>
<tr>
<td>1&quot; (25.4 mm) helical resonator</td>
<td>100-500</td>
<td>500-1000</td>
</tr>
</tbody>
</table>

---
I have simplified his formula and listed the values or “K” factor necessary to determine the loss for common two through seven-section Butterworth bandpass type filters. Other types of filters may have slightly higher insertion losses. To obtain the loss of a multi-section bandpass filter, use the following equation:

\[
\text{total insertion loss (dB)} = K \left( \frac{Q_y}{Q_u} \right)
\]  

(3)

where \( K \) is the number from table 2 for the number of sections in the filter and \( Q_y \) and \( Q_u \) are as determined above. For example, if the filter in fig. 1 had 3 sections but the same \( Q_u \) (1000) and \( Q_y \) (25.41), the insertion loss would be approximately 0.441 dB, much greater than the single section. If the \( Q_y \) were only 300, the insertion loss would climb to 1.47 dB. Hence, you are trading insertion loss for better out-of-band rejection — not always a bad compromise!

Insertion loss has one other detrimental effect. Since the insertion loss as you pass through the filter is cumulative, the amount of energy reaching each successive section in the filter is less. As a result, if the insertion loss of a filter is high, the bandwidth of the filter and its ripple characteristics may change from those predicted or calculated. Hence it is best to design a filter with slightly wider bandwidth than required because losses reduce bandwidth when the filter is finally tuned to frequency.

Other anomalies depend on the topography chosen. For instance, if the coupling into and out of a bandpass filter is capacitive, the filter will acquire a high-pass characteristic in the rejection band. Inductive coupling, a low-pass characteristic, may also occur. A combination of the two will yield a more symmetrical rejection band. This is illustrated in fig. 6.

Finally, input or output VSWR due to component selection, tuning, or loading will cause increased insertion loss, asymmetry in the pass or reject band and/or ripple in the passband. In this regard, bandpass filters with single sections are preferred, especially when they are placed ahead of a low-noise preamplifier since the point of minimum insertion will usually fall at the center of the band. Hence, if there is a severe mismatch (typical of low-noise amplifiers) the chances are that the minimum ripple will remain at the center frequency. To a somewhat lesser degree, 3 or 5-section filters are also preferred over 2 and 4-section filters for the same reason.

**table 2. Approximate insertion loss in a multi-section Butterworth bandpass filter can be determined by using this information in conjunction with eq. 3.**

<table>
<thead>
<tr>
<th>number of sections</th>
<th>K factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12.28</td>
</tr>
<tr>
<td>3</td>
<td>17.36</td>
</tr>
<tr>
<td>4</td>
<td>22.70</td>
</tr>
<tr>
<td>5</td>
<td>28.10</td>
</tr>
<tr>
<td>6</td>
<td>33.55</td>
</tr>
<tr>
<td>7</td>
<td>39.10</td>
</tr>
</tbody>
</table>

**fig. 5. Insertion loss is a function of the loaded and unloaded \( Q \) of the filter.**

**designing filters**

Low and high-pass filter designs are available in references 4 through 7 and also in 12. Band reject or band stop filters, primarily used in diplexers for FM repeaters where very high attenuation is needed between two close frequencies\(^4\) are documented in references 4 and 5. My favorite bandpass filter design procedures are found in Zverev’s book (reference 5). Some selected Chebyshev bandpass filter designs can be found in Anderson’s *Ham Radio* article of June, 1977.\(^5\) Design programs for many of these filters are now available for computer-oriented\(^6\) Amateurs.

Bandpass filters seem to be the most widely used by VHF/UHFers, especially in receivers, transmitters, and ahead of preamplifiers. Hence I have dedicated the major part of this column to that subject and direct you to the applicable reference for the other categories of filters because they are usually easier to design. However many of the suggestions in this column apply to filters of any category.
adjusting and measuring performance

This is really a subject for a whole column in itself. Remembering what has been said so far, the simple single-section filters (such as quarter-wave cavity) can usually be adjusted to frequency simply by placing a good low VSWR 50-ohm termination on the output of the filter and tuning for ~p usually VSWR. Multi-section filters require some sort of sweep setup with detectors. A typical procedure is to first align the filter for approximately the amplitude response expected. Then the final testing and alignment is performed by observing VSWR over the entire bandwidth.

Dishal used a slightly different method, in which he adjusted a slotted line and successively either shorted or opened each section of the filter as it was adjusted. Suffice it to say that the proper alignment of a multi-section filter requires both excellent test equipment and the skill to recognize what is taking place.

summary

It is important to recognize the different electrical and physical properties that are observed or understood what filter is the type required for a specific application before designing or building it. It is also nice to at least know the difference between a Butterworth, Chebyshev, or Cauer filter, and whether it is a low-pass, high-pass, band stop or bandpass type. Hopefully this article has provided sufficient information to make this possible.

acknowledgements

I would like to thank Ron Matthews and Keith Whynot, WA1GZN, for their helpful suggestions in preparing this month's column.

references


ham radio

important VHF/UHF events in August, 1984

August 5-6: ARRL UHF Contest
August 11: 1945 UTC, predicted peak of Perseids meteor shower
August 28: Moon at perigee

short circuit
digital audio filter

In W10ER's "A Digital Audio Filter for CW and RTTY" (August, 1983, page 61), U4 and U5 should be labeled LF356N, not LF365N.
touch-tone decoder

Connect Systems, Inc., has introduced a new 16-function touch-tone decoder board. Designated model CS-16, the decoder will securely control virtually any apparatus via radio or wireline. The CS-16 is especially useful for controlling various repeater on/off functions.

A unique feature of the CS-16 is dual password control. Two separately user-programmable three-digit passwords create hierarchy control capability. The primary control password can access all 16 of the available functions. The secondary password, however, can access only 8 of the 16 functions. A special primary password command, capable of enabling or disabling secondary password access, is available. The CS-16 provides such a high degree of multi-level security that control can be accomplished directly on voice channels, thus eliminating the need for controlling various repeater on/off functions.

two new mobiles from ICOM

ICOM has added two more transceivers to its line of ultra-compact mobiles: the IC-27H 45-watt 2-meter mobile and the IC-47A 25-watt 440 MHz mobile.

Standard features of the IC-27H include 45 watts output, compact size (1-5/8’’ high x 5-1/2’’ wide x 9-3/8’’ deep), a built-in internal speaker for easy mounting, nine full-function memories, 32 built-in PL frequencies, professional communications design and styling, and an IC-HM23 DTMF microphone with up/down buttons. Scanning functions include memory scan, band scan, and priority scan. An internal lithium memory battery backup maintains memories for up to five years.

The features of the IC-47A are similar to those of the IC-27H, with the exception of 25-watt operation and somewhat smaller size.

Both units include the IC-MB27 mobile mount. A variety of options, including an IC-UT16 speech synthesizer and IC-SP4 and SP5 external speakers, are available for both units. The IC-27H is priced at $409; the IC-47A, at $469.

For further details, contact ICOM America, Inc., 2112 116th Avenue, N.E., Bellevue, Washington 98004.

Circle #302 on Reader Service Card.

new terminal

Robot's new 800C specialty mode terminal is an improved version of their Model 800 “super terminal,” provides Amateur Radio operators a all-in-one package with display, storage, an automatic operation for the transmission and reception of RTTY and Morse code signals. A major feature of the 800C is its built-in demodulator, which uses separate active discriminant filters for the demodulation of the RTTY signal.

Key features of the new 800C terminal include a 1023 character transmit buffer, ten 64-character message memories with soft partitioning, a RS-232 serial and Centronics parallel printer interface, color SSTV graphics capability with eight graphics memories (when used with Robot's new color scan converters), and battery back-up on all memories. These new features are all available in a retrofit kit for existing Model 800C.

For more information, contact Robot Research, Inc., 7591 Convoy Court, San Diego, California 92111.

Circle #303 on Reader Service Card.

desoldering pump

A compact spring powered desoldering pump has been introduced by the Ungar Division of Eldon Industries, Inc.

The Ungar 7870 desoldering pump can be operated with one hand, leaving the other free to hold the soldering iron. A spring-loaded piston is set with the thumb and released by pushing button. The vacuum created by a piston stroke less than two inches instantly removes molten solder. The thumb tap is recessed into the handle to prevent eye injury doing close-tolerance desoldering, and a plated interior rod cleans the tip each time the pump is used.

Further information is available from Ungar P.O. Box 6005, Compton, California 90220.

Circle #304 on Reader Service Card.

extended warranty on satellite TV equipment

The R.L. Drake Company has announced that it has extended the limited warranty on the new Drake ESR-240 satellite earth station receiver and all other Drake satellite television equipment from one year on parts and 90 days on labor to one year for both parts and labor because no problems have been experienced with the new receiver's state-of-the-art infrared tuning feature.

For further information, contact R.L. Drake Company, 540 Richard Street, Miamisburg, Ohio 45342.

Circle #301 on Reader Service Card.

Circle #302 on Reader Service Card.
Mini Jini Record Keeper

Mini Jini Record Keeper from Jini Micro Systems is a powerful, yet easy-to-learn, plug-in data-base manager for both the VIC-20 and Commodore 64. (The term “data base” is synonymous with “file cabinet,” updated to take advantage of the latest in computer technology.)

In the ham shack we store important information in a number of different and sometimes disorganized ways: in logbooks, cardboard boxes, and drawers. This can all add up to a disorganized and difficult-to-use system of data management.

Mini Jini was originally developed for the PET line of Commodore computers as the JinSam 8.2 Data Manager. This software has been used extensively throughout the business world because of its powerful record keeping capabilities and its easy-to-use design.

NASA, for example, has made extensive use of JinSam in its management of landing site facilities for the space shuttle program. Space shuttles have two main landing sites: one at Edwards Air Force Base in California and the other in California at Edwards Air Force Base. Because of the possibility of problems that might preclude landing at either of these sites, NASA has designated five additional sites around the world.

In order to be ready to use any one of these, and to hold costs down, NASA’s contingency plan specifies that in the event of an unscheduled landing at any alternate site, equipment would be shipped to the landing site from a central location. Obviously, manual file maintenance of such an elaborate system would be costly and cumbersome. Using their Commodore CBM and the JinSam 8.2, NASA’s records now contain fields for equipment nomenclature, serial number, and present location. In just a few minutes, NASA personnel can do full file searches to produce organized shipping lists of equipment for each or all landing sites.

Since the developers of the JinSam 8.2, Jim and Nancy Iscaro, are both hams, it was only a matter of time before they turned their attention to using JinSam for Amateur Radio purposes. Noting that both the Commodore 64 and VIC-20 are quite popular in the Amateur Radio field, the Iscaros set about the task of converting JinSam to a usable format for the C-64 and VIC-20. The result was Mini Jini. Of tremendous interest is that this program is not limited to Amateur Radio use, but can be used to store a variety of business, household, or personal information.

For the Radio Amateur, Mini Jini can be used to log OSOs, print QSL labels, inventory equipment, keep contest logs, organize magazine files, and catalog foreign phrases, to name just a few of its many uses.

Mini Jini comes in a manufactured board that is inserted into either the VIC-20 or C-64 cartridge slot. With a stock (expanded) VIC-20, you can store up to 50 full records of 250 characters each. With a 24K memory expander added, the VIC-20 can handle up to 500 records in memory. The C-64 will hold up to 750 records. For permanent file storage, it’s necessary to add either a disk drive or cassette recorder.

The well written and informative instruction book makes data entry easy. Mini Jini’s manual should answer just about any question you may have; it’s also full of helpful hints and tips on how to get the most of Mini Jini’s capabilities.

In the ham shack, computers are no longer a luxury. In fact, after seeing how many VIC-20 and Commodore owners responded to our reader survey (see September, 1983, for the survey, and January, 1984, for our editorial response), it’s hard to imagine that there’s anyone who doesn’t have a computer to use! Record keeping with computers can be a real plus when you’re contesting, QSLing, or organizing your collection of magazine articles. Mini Jini will do it for you with a minimum of fuss and hassle.

For more information, contact Jini Micro Systems, Box 274 Kingsbridge Street, Riverdale, New York 10463.

Circle #305 on Reader Service Card. NTACH

power and power supply

The Spectrum SCA100V is a new 150-watt repeater/base station amplifier that operates in the 136-174 MHz range. Its unique heatsink and high efficiency cooling system design allow cool operation even under continuous duty conditions in a hot environment. The “behind the panel” heatsink permits use in a locking front door cabinet without loss of cooling effectiveness. It also features automatic high-VSWR shutdown/“bypass” with 4X auto-reset circuit and automatic amp bypass (if the power supply should fail or if the amp should overheat), as well as unusually tight RF shielding and heavy-duty construction. A 100-watt UHF version is also available.

At your Distributor or call
10 Canal Street
Riverside, N.J. 07455
(201) 788-5581
PATENT PENDING
1984 CALLBOOKS

Order today! 1984 RADIO AMATEUR CALLBOOKS

Known throughout the world for accuracy, the 1984 Callbooks are a better value than ever before. The U.S. Callbook contains over 433,000 listings, the Foreign Callbook has over 143,000. More than 100,000 changes have been made in each edition since last year. Special features include call changes, Silent Keys, census of amateur licenses, world-wide QSL bureaus, international postal rates, prefixes of the world, and much more. You can't beat this value! Order your 1984 Callbooks now.

Each Shipping Total
- U.S. Callbook $19.95 $3.05 $23.00
- Foreign Callbook 18.95 3.05 22.00
- Order both books at the same time for $41.95 including shipping within the USA.
- Order from your dealer or directly from the publisher. Foreign residents add $4.55 for shipping. Illinois residents add 5% sales tax.

Keep your 1984 Callbooks up to date.

The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $12.00 per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 5% sales tax. Offer void after November 1, 1984.

EGBERT] RTTY - CW - XFER

for the Apple II, Il+, Ile
Transmit & Receive with Software Only
NO TU REQUIRED

The Egbert I+ has RTTY/CW/XFER on the same disk! and features: split screen operation, type ahead buffer, selectable mark, space, split and speed, change modes and speeds from menu, mailbox with selective call and save to disk. Provisions for up to 9 canned messages on each data disk, and much more.

FOR MORE INFO, ORDER, CALL OR WRITE:
W.H. NAIL COMPANY
275 Lodgeview Drive
Oroville, Ca 95965
(916) 589-2043

Egbert I+ = 69.95 includes program, back up & documentation. USA Residents add $2.50 for shipping. All others add 6% sales tax.

INCLUDE CALL SIGN WITH ORDER!

GO MOBILE WITH YOUR H.T.

Model I - Icom IC-2AT, Etc. Model K - TR 2400:
- powered thru battery plug
- Model N - FT-208R
Model T - Simple mod for Tempo and all Sancet

NOW FOR FT 208R & TR 2500

Model Y - FT-207R, Wilson
- fits into battery compartment
- a unique battery eliminator
- HAND-TEK Regulator allows constant hand held operation from auto DC or base supply with no idc drain and WITHOUT RADIO MODIFICATION $24.95 PPD in USA.

P.O. BOX 556, DEER HAVEN, CA 92372

HAND-TEK

(52.50 VISA)

12-296 & PHASE III

MAKI UTV 1200 - $499.95
MAKI 20W AMP - $430.00

KT 200 ET

O-10 TRACKING PROG.
TIMEX/2X - 16K
Vic-Basic $12.95
Also Avail. w/R5 & STS

SASE for full details on the
Timex/2X Autotrack Rotator Controller

SPECTRUM WEST
5717 NE 56th, SEATTLE, WA 98105

BACK 184

1296 & PHASE III

MAKI UTV 1200 - $499.95
MAKI 20W AMP - $430.00

KT 200 ET

O-10 TRACKING PROG.
TIMEX/2X - 16K
Vic-Basic - $12.95
Also Avail. w/R5 & STS

SASE for full details on the
Timex/2X Autotrack Rotator Controller

SPECTRUM WEST
5717 NE 56th, SEATTLE, WA 98105

122 August 1984

The companion power supply for the SCA-100V amplifier, the SCP30, may also be used for any type of high-power amplifier, to drive VHF circuits, or industrial application requiring very heavy duty supply. Its output is 13.6 V at 25 amperes, continuous, 30 amperes intermittent.

For further details, contact Spectrum Communications Corp., 1065 West Germantown Parkway, Norristown, Pennsylvania 19401-961

Circle #306 on Reader Service Card.

break-in adapter

Design Electronics Ohio has introduced its first break-in adapter amplifier, the QSK-1500. Signed to mate currently available full break-in adapters — such as all Ten-Tec units, the Kenwood TS930, Drake TR-5, the Yaesu FT1, FT980, and FT757, and the ICOM 751 — to either commercial or homebrew power amplifiers. Installation of the QSK-1500 requires no internal modifications to most transceivers or amplifiers; a minor modification is necessary with Ten-Tec units and SSB.

While the QSK-1500 was designed primarly with the CW operator in mind, it will also function on SSB and RTTY. High power Amor now also possible with this unit.

The QSK-1500 uses ultra high speed PIN diode switching and has no clicking or annoying relay. The unit is designed to handle 1500 watts RF in a 100-volt load at 40 WPM. Insertion loss is less than 0.6 dB on receive. A maximum receiver input voltage is 3800 V before the protective circuit is activated. An in-line fuse lamp will trip out 7.5 watts RF. Control lines for keyer must be of the positive, cathode keying lines only. Amplifier switch time is less than 800 microseconds. The units measure 3 x 6.25 x 3.75 inches (7.6 x 15.9 x 9.5 cm), and control and 3.2 x 6.6 x 9. inches (8.1 x 16.8 x 23.5 cm) RF unit, or weighs 5 and 4 pounds (11 kg and 8.8 kg) respectively. The unit is available for $279 from either Universal Amateur Radio, Inc., 1290 Aird Drive Reynoldsburg, Ohio 43068, or DEO, 4925 S Hamilton Drive., Grovesport, Ohio 43125.

Circle #307 on Reader Service Card.

new 40-meter antenna

Telex/Hy-Gain has introduced the “Discoverer” a new series of 40-meter antennas designed for high-performance operations in response to the effects of declining sunspot activity on the 10-20 meter bands.

The new series consists of several configurations. The Discoverer 7-1 is a 45-foot (13.7 meter) rotatable dipole that can be added to many existing beam installations and tuned to any band from 30 or 40 meters.

The Discoverer 7-2, a two-element beam wi
Battery Manager™

Designed with the communications specialist in mind, the Battery Manager™ from URDC Measurements, Inc., analyzes and conditions all common types of 2-way radio NICAD batteries or optimum field performance and extended life.

The unit is specifically designed to combat “Memory Effect” – the premature loss of power on a battery that’s just been fully charged. Caused by repetitive shallow discharging followed by repeated overcharging, Memory Effect reduces reliability in the field and plays havoc with battery replacement schedules.

With the Battery Manager™, batteries that have been discarded as “not usable” can often be reconditioned and returned to service, and the life of batteries currently in use can be extended.

Battery Manager™ operates on 110V, 60 Hz and can be adapted at the factory for use on 20V, 0 Hz. Its maximum power consumption is 150 watts.

For more information, contact TELECT Preparator, Inc., 1050 Aldrich Avenue South, Minneapolis, Minnesota 55420.

Circle #50 on Reader Service Card.

New CMOS DTMF Chip Kit

Telton’s TRK-957 Kit makes it easier and less expensive to breadboard a low-power, central office quality DTMF detection system. All you need is a power source from 5 to 12 VDC. The sensitivity, wide dynamic range, nois immunity, and low-power consumption make the TRK-957 ideal for telephone switching, computer, and remote control applications. The TRK-957 DTMF Kit is only $24.75. To order call (60) 227-3800, ext. 1130.
<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N567</td>
<td>$25.00</td>
</tr>
<tr>
<td>2N1962</td>
<td>$25.00</td>
</tr>
<tr>
<td>2N2222</td>
<td>$25.00</td>
</tr>
<tr>
<td>2N2222/2222</td>
<td>$1.55</td>
</tr>
<tr>
<td>2N2222/2222/2222</td>
<td>$1.50</td>
</tr>
<tr>
<td>2N2222/2222</td>
<td>$1.50</td>
</tr>
<tr>
<td>2N2222/2222/2222</td>
<td>$1.50</td>
</tr>
</tbody>
</table>
### GaAs, TUNNEL DIODES, ETC.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2511</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2522</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2519</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2520</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2518</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2517</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2516</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2515</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2514</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2513</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2512</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2511</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2522</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2519</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2520</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2518</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2517</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2516</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2515</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2514</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2513</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2512</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2511</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2522</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2519</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2520</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2518</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2517</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2516</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2515</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2514</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2513</td>
<td>$6.00</td>
</tr>
<tr>
<td>TEA8015</td>
<td>$5.00</td>
<td>TEA2512</td>
<td>$6.00</td>
</tr>
</tbody>
</table>

We can reference Cross Reference of RF Transistors, Diodes, Hybrid Modules and Any other Type of Semiconductor.

---

**RF TRANSISTORS**

---

**Prices Subject to Change Without Notice**

---

For information call: (602) 242-3037

---

More Details? CHECK --- OFF Page 140

---

August 1984

---

MHZ ELECTRONICS

---

For orders only

---

Toll Free Number

800-528-0180

---

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."
COAXIAL RELAY SWITCHES SPDT

Electronic Specialty Co./Raven Electronics FSN #5985-556-9683
Part # 25828 Part # SU-01
26Vdc Type N Connector, DC to 1 GHz.

$49.00

Amphenol
Part # 316-10102-B
115Vac Type BNC DC to 3 GHz.

$29.99

FXR
Part # 300-11182
120Vac Type BNC DC to 4 GHz.
FSN #5985-543-1225

$39.99

FXR
Part # 300-11173
120Vac Type BNC Same
FSN #5985-543-1850

$39.99

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.

$7.99 or 2 For $15.99 or 10 For $50.00

SOLID STATE RELAYS

P&B Model ECT1DB72
5vdc turn on
$5.00

Digisig, Inc. Model ECS-215
5vdc turn on
$7.50

Grigsby/Barton Model GB7400
5vdc turn on
$7.50

NOTE: *** Items may be substituted with other brands or equivalent model numbers.***

“All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.”

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

For information call: (602) 242-3037
Toll Free Number
800-528-0180
(For orders only)

Tell 'em you saw it in HAM RADIO!
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2CS9/289</td>
<td>$34.00</td>
<td>1182/4600A</td>
<td>$500.00</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>2266</td>
<td>7.95</td>
<td>4600A</td>
<td>500.00</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>310.00</td>
<td>7854</td>
<td>130.00</td>
</tr>
<tr>
<td>3-500C</td>
<td>102.00</td>
<td>4657</td>
<td>84.00</td>
<td>ML7855KAL</td>
<td>125.00</td>
</tr>
<tr>
<td>3-1001Z/8164</td>
<td>400.00</td>
<td>4662</td>
<td>100.00</td>
<td>7984</td>
<td>14.95</td>
</tr>
<tr>
<td>3B286</td>
<td>9.50</td>
<td>4665</td>
<td>500.00</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CX400/78961</td>
<td>255.00</td>
<td>4687</td>
<td>P.O.R.</td>
<td>8106</td>
<td>5.00</td>
</tr>
<tr>
<td>3CX1100A7/8283</td>
<td>526.00</td>
<td>5675</td>
<td>42.00</td>
<td>8117A</td>
<td>225.00</td>
</tr>
<tr>
<td>3CX300F1/8239</td>
<td>567.00</td>
<td>5721</td>
<td>250.00</td>
<td>8121</td>
<td>110.00</td>
</tr>
<tr>
<td>3CW30000H7</td>
<td>1700.00</td>
<td>5768</td>
<td>125.00</td>
<td>8122</td>
<td>110.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>473.00</td>
<td>5819</td>
<td>119.00</td>
<td>8134</td>
<td>470.00</td>
</tr>
<tr>
<td>3X300F1</td>
<td>567.00</td>
<td>5836</td>
<td>232.50</td>
<td>8156</td>
<td>12.00</td>
</tr>
<tr>
<td>4-65A/155</td>
<td>69.00</td>
<td>5837</td>
<td>232.50</td>
<td>8233</td>
<td>60.00</td>
</tr>
<tr>
<td>4-125A/4021</td>
<td>79.00</td>
<td>5861</td>
<td>140.00</td>
<td>8236</td>
<td>35.00</td>
</tr>
<tr>
<td>4-250A/5022</td>
<td>98.00</td>
<td>5867A</td>
<td>185.00</td>
<td>8295/PL172</td>
<td>500.00</td>
</tr>
<tr>
<td>4-400A/8438</td>
<td>98.00</td>
<td>5868/A9902</td>
<td>270.00</td>
<td>8458</td>
<td>35.00</td>
</tr>
<tr>
<td>4-400V/7527</td>
<td>110.00</td>
<td>5876/A</td>
<td>42.00</td>
<td>8462</td>
<td>130.00</td>
</tr>
<tr>
<td>4-400C/6775</td>
<td>110.00</td>
<td>5881/6L6</td>
<td>8.00</td>
<td>8505A</td>
<td>95.00</td>
</tr>
<tr>
<td>4-100A/8166</td>
<td>444.00</td>
<td>5893</td>
<td>60.00</td>
<td>8533A</td>
<td>136.00</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>54.00</td>
<td>5894/A</td>
<td>54.00</td>
<td>8560/A</td>
<td>75.00</td>
</tr>
<tr>
<td>4CX250F/6821</td>
<td>75.00</td>
<td>5894/B/8737</td>
<td>54.00</td>
<td>8560/A</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX25K/8245</td>
<td>125.00</td>
<td>5946</td>
<td>395.00</td>
<td>8608</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX25R/7580W</td>
<td>90.00</td>
<td>6083/A9909</td>
<td>95.00</td>
<td>8624</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>170.00</td>
<td>6146/6146A</td>
<td>8.50</td>
<td>8637</td>
<td>70.00</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>110.00</td>
<td>6146/6298</td>
<td>10.50</td>
<td>8643</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350F/8322</td>
<td>115.00</td>
<td>6148/6212</td>
<td>17.95</td>
<td>8647</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX350F/8904</td>
<td>140.00</td>
<td>6156</td>
<td>110.00</td>
<td>8683</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX600A/8909</td>
<td>835.00</td>
<td>6159</td>
<td>13.65</td>
<td>8877</td>
<td>465.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>242.50*</td>
<td>6159B</td>
<td>23.50</td>
<td>8908</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>485.00</td>
<td>6161</td>
<td>325.00</td>
<td>8950</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1500B/8660</td>
<td>555.00</td>
<td>6280</td>
<td>42.50</td>
<td>8930</td>
<td>137.00</td>
</tr>
<tr>
<td>4CX5000A/8170</td>
<td>1100.00</td>
<td>6291</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX1000B/8171</td>
<td>1255.00</td>
<td>6293</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX1500A/8281</td>
<td>1500.00</td>
<td>6326</td>
<td>P.O.R.</td>
<td>6CA7/EL34</td>
<td>5.38</td>
</tr>
<tr>
<td>4CW800F</td>
<td>710.00</td>
<td>6360/A</td>
<td>5.75</td>
<td>6L6</td>
<td>3.50</td>
</tr>
<tr>
<td>4D32</td>
<td>240.00</td>
<td>6399</td>
<td>540.00</td>
<td>6Q9</td>
<td>2.50</td>
</tr>
<tr>
<td>4E72A/5-125B</td>
<td>240.00</td>
<td>6550A</td>
<td>10.00</td>
<td>6Q9</td>
<td>6.58</td>
</tr>
<tr>
<td>4PR60</td>
<td>200.00</td>
<td>6883B/8032A/8552</td>
<td>10.00</td>
<td>6F6</td>
<td>5.85</td>
</tr>
<tr>
<td>4PR60</td>
<td>345.00</td>
<td>6897</td>
<td>160.00</td>
<td>6J65A</td>
<td>6.20</td>
</tr>
<tr>
<td>4PR65A/8187</td>
<td>175.00</td>
<td>6907</td>
<td>79.00</td>
<td>6K6</td>
<td>6.00</td>
</tr>
<tr>
<td>4PR1000A/8189</td>
<td>590.00</td>
<td>6922/6DJ8</td>
<td>5.00</td>
<td>6H5</td>
<td>6.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>22.00</td>
<td>6HF</td>
<td>8.73</td>
</tr>
<tr>
<td>4X150D/7609</td>
<td>95.00</td>
<td>7094</td>
<td>250.00</td>
<td>6J66A</td>
<td>6.28</td>
</tr>
<tr>
<td>4X250B</td>
<td>45.00</td>
<td>7117</td>
<td>38.50</td>
<td>6J6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X250F</td>
<td>45.00</td>
<td>7203</td>
<td>P.O.R.</td>
<td>6J6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X500A</td>
<td>412.00</td>
<td>7211</td>
<td>100.00</td>
<td>6J6</td>
<td>7.25</td>
</tr>
<tr>
<td>5CX1100A</td>
<td>660.00</td>
<td>7213</td>
<td>300.00*</td>
<td>6K6</td>
<td>5.05</td>
</tr>
<tr>
<td>KT88</td>
<td>27.50</td>
<td>7214</td>
<td>300.00*</td>
<td>6K6</td>
<td>8.25</td>
</tr>
<tr>
<td>4168</td>
<td>45.00</td>
<td>7271</td>
<td>135.00</td>
<td>6L6</td>
<td>7.00</td>
</tr>
<tr>
<td>416C</td>
<td>62.50</td>
<td>7289/2C39</td>
<td>34.00</td>
<td>6L6 G.E.</td>
<td>7.00</td>
</tr>
<tr>
<td>572B/1160L</td>
<td>49.95</td>
<td>7325</td>
<td>P.O.R.</td>
<td>6L96/G6W6 Sylvania</td>
<td>9.00</td>
</tr>
<tr>
<td>592/3-200A3</td>
<td>211.00</td>
<td>7360</td>
<td>13.50</td>
<td>6ME6</td>
<td>8.90</td>
</tr>
<tr>
<td>807</td>
<td>8.50</td>
<td>7377</td>
<td>85.00</td>
<td>12A7</td>
<td>3.50</td>
</tr>
<tr>
<td>811A</td>
<td>15.00</td>
<td>7408</td>
<td>2.50</td>
<td>12A7</td>
<td>3.00</td>
</tr>
<tr>
<td>812A</td>
<td>29.00</td>
<td>7609</td>
<td>95.00</td>
<td>12B8</td>
<td>5.00</td>
</tr>
<tr>
<td>813</td>
<td>50.00</td>
<td>7735</td>
<td>36.00</td>
<td>123B6A</td>
<td>6.50</td>
</tr>
</tbody>
</table>

NOTE: * = USED TUBE  
NOTE: P.O.R. = PRICE ON REQUEST  

"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM."

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
HEWLETT PACKARD SIGNAL GENERATORS

608E $600.00
614A $600.00
604F $600.00
51550 $600.00
604G $600.00
51550 $600.00
612A $600.00
614A $600.00
6154 $600.00
5154 $600.00

 TERMS: DOMESTIC: Prepaid C.O.D. or Credit Card
FOREIGN: Prepaid only by U.S. Funds, Money Order, or Cashier’s Check Only
C.O.D.: By telephone only. Return goods will be accepted for C.O.D. orders, but we are unable to accept personal checks. C.O.D. orders are shipped only by our regular United Parcel Service.

CONFIRMING ORDERS: We want you to be assured that confirming orders not be sent after a telephone order has been placed. If company policy necessitates a confirming order, please mark “CONFIRMING ORDER” on your order or if duplicate shipments are due to an order which is not promptly marked, the customer will be held responsible for any charges incurred. A 10% minimum charge will be added to any order not properly marked.

ORDER CANCELS: Orders are now accepting MASTER CARD, VISA, and AMERICAN EXPRESS.

DATA SHEETS: When we have data sheets in stock on devices we will supply them with the order.

DEFECTIVE MATERIALS: All claims for defective materials must be made within 30 days of receipt of the part. All claims must be made to the factory to which the item was purchased. We assume no liability beyond the replacement value of any item sold to a customer. Claims must include a description of the item and the reasons for the claim. We reserve the right to inspect any item returned to us. Due to manufacturing variances we are unable to replace or issue credit on items which have been subject to or have been removed from an apparatus. In the event an item is returned and it is determined that it is not defective, customer will be charged for shipping charges incurred.

DELIVERY: Orders are usually shipped the same day they are received or the next business day, unless we are out of stock on the item. The customer will be notified by our post office if we are going to backdate the item. Our normal shipping method is UPS or USPS. If required, an extra fee of $25 will be charged to ensure that the part will reach the buyer within the specified time frame. If the item is shipped by UPS, we will charge a minimum of $25.00 for each additional 25 lbs. over the first 25 lbs. All air freights orders are shipped UPS only. If you wish to have it shipped through the post office, there is a $5.00 fee which is in addition to the shipping. Handling and insurance are included.

OPEN ACCOUNTS: We regret that we do not issue open accounts.

ORDER FORMS: New order forms are included with each order for your convenience. Additional order forms are available on request.

PARTS: We reserve the right to substitute or replace any item with a part of equal or comparable specification.

POSTAGE: Minimum shipping and handling in the U.S., Canada, and Mexico is $3.00 for ground shipments, all other countries is $3.50. Air rates are available at the time of your order. All foreign orders please include 25% in the ordered amount for shipping and handling. C.O.D.’s are shipped AIR ONLY.

PREPARED ORDERS: Orders must be accompanied by a check.

PRICES: Prices are subject to change without notice.

PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check.

RESTOCK CHARGES: If parts are returned to MZH ELECTRONICS, INC due to customer error, the customer will be held responsible for all fees incurred and will be charged a 15% RESTOCK CHARGE with the remainder in CREDIT ONLY. The following will not be accepted returns: A copy of the order, return authorization number which must be obtained prior to shipping the merchandise back. Returns must be made within 10 DAYS of receipt of parcel. Return authorization numbers must be obtained by calling (602) 242-8916 or nothing us by post card. Returns will be shipped at customer’s expense unless otherwise notified. All returns must be prepaid. The cost of a return does not include the cost of the merchandise.

SALES TAX: ARIZONA residents must add 6% sales tax, unless a signed Arizona resale tax card is currently on file with us. All orders placed by persons outside of ARIZONA, delivered to persons in ARIZONA are subject to the 6% sales tax.

SHORTAGE OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of receipt of parcel. Claims must include a copy of our invoice, along with a return authorization number which can be obtained by contacting us at (602) 242-8916 or sending a post card. Authorization cannot be on our 800 number, all items must be properly packed, and properly packed to make sure that they can be restocked. Our invoice number must be returned to us. We will return the shipment to the customer or we will replace the item. We will not accept any claims for shortages or damages which are caused by customer error.

B U I L D E R S  D I S C O U N T : (602) 242-8916

C O N S U M E R S  S H O P P I N G : (602) 242-3037

Toll Free Number
800-528-0180
(For orders only)

For information call: (602) 242-3037

PRICES SUBJECT TO CHANGE WITHOUT NOTICE.
IC-271H
Now a 100 Watt, 2 Meter Base!

For the ultimate in two-meter communications, ICOM presents the IC-271H transceiver with a high dynamic range receiver and a 100 watt transmitter. Operating from the IC-PS30, IC-PS15, or the internal IC-PS35 (optional), the IC-271H brings all the advanced features of the latest CW controlled radios to your shack.

Fluorescent Display: ICOM’s high-visibility, multicolor display gives easy-to-read display of all information necessary for logging a contact. Frequency, mode, duplex, offset direction, RIT frequency, memory channel and PL tone can be displayed.

Scanning: The IC-271H can scan memories and programmed sections of the band or modes. Mode-S scan can be used to scan only memories with a particular mode or lock out frequencies continuously busy so the receiver will not stop at that memory channel while scanning.

Optional Features: IC-271H options are: switchable preamplifier, CTCSS encoder/decoder (encoder is standard), computer interface and voice synthesizer.

Size: Only 11½ inches wide by 4½ inches high, the IC-271H is styled to look good and engineered for ease of operation.

Subaudible Tones: Included as a standard feature are 32 built-in subaudible tones which are easily selected by rotating the main tuning knob. PL tones may be stored into memory.

32 Full-Function Memories: Each tunable memory holds frequency, offset, offset direction, mode and subaudible tone. Each parameter is selected by rotating the main tuning knob in conjunction with the switches on the front panel.

The IC-271A. The IC-271A with 25 watt output is available and has the same features as the IC-271H, plus an optional IC-PS25 internal power supply to make it a compact, go-anywhere two-meter base station. See the IC-271A(H) and other fine ICOM equipment at your ICOM dealer today.

ICOM America, Inc., 2112-116th Ave NE, Bellevue, WA 98004 (206)454-8155 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234 (214)620-2780

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
ATTENTION
DEALERS!
Interested in making a PROFIT?
Sell our magazine in your store with
100% Return Privileges
Rose will tell you how —
CALL 1-603-878-1441
The Ham Radio
Publishing Group
Greenville, NH 03048

FCC LOWERS
REQUIREMENTS — GET YOUR RADIO
TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement.
A small investment for a high-paying career in electronics.

$19.95 ppd.
Satisfaction Guaranteed
SPI-RO DISTRIBUTING
P.O. Box 1538
Hendersonville, N. C. 28793

We now accept MC and VISA
Give card #, exp. date, and signature

Tell 'em you saw it in HAM RADIO!
Stuck with a problem?  

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we’re a stickler for 1 day delivery with a full 1 year warranty.

- Output level flat to within 1.5 db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

<table>
<thead>
<tr>
<th>TE-12PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 ZX</td>
</tr>
<tr>
<td>71.9 XA</td>
</tr>
<tr>
<td>74.4 WA</td>
</tr>
<tr>
<td>77.0 XB</td>
</tr>
<tr>
<td>79.7 SP</td>
</tr>
<tr>
<td>82.5 YZ</td>
</tr>
<tr>
<td>TEST-TONES:</td>
</tr>
<tr>
<td>Frequency accuracy, ± 1 Hz maximum -40°C to +85°C</td>
</tr>
<tr>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td>Continuous tone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TE-12PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST-TONES:</td>
</tr>
<tr>
<td>TOUCH-TONES:</td>
</tr>
<tr>
<td>BURST TONES:</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>2175</td>
</tr>
<tr>
<td>2805</td>
</tr>
<tr>
<td>697</td>
</tr>
<tr>
<td>770</td>
</tr>
<tr>
<td>852</td>
</tr>
<tr>
<td>941</td>
</tr>
<tr>
<td>1209</td>
</tr>
<tr>
<td>1336</td>
</tr>
<tr>
<td>1477</td>
</tr>
<tr>
<td>1633</td>
</tr>
<tr>
<td>1215</td>
</tr>
<tr>
<td>1600</td>
</tr>
<tr>
<td>1650</td>
</tr>
<tr>
<td>1700</td>
</tr>
<tr>
<td>1750</td>
</tr>
<tr>
<td>1650</td>
</tr>
<tr>
<td>1900</td>
</tr>
<tr>
<td>1950</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2050</td>
</tr>
<tr>
<td>2100</td>
</tr>
<tr>
<td>2200</td>
</tr>
<tr>
<td>2250</td>
</tr>
<tr>
<td>2300</td>
</tr>
<tr>
<td>2350</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td>2450</td>
</tr>
<tr>
<td>2500</td>
</tr>
<tr>
<td>2550</td>
</tr>
<tr>
<td>+1 Hz maximum</td>
</tr>
<tr>
<td>+40°C to +85°C</td>
</tr>
<tr>
<td>Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor</td>
</tr>
</tbody>
</table>

$89.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021
And you can see it—in color—again and again when you own the N2NY Ham MasterTapes.

The N2NY Ham MasterTapes give you a basic grasp of concepts that build theory background—not only for passing the FCC tests, but for understanding electronics.

Finally, a step-by-step course in Ham Radio Theory is available on color videotape. The Larry Horne N2NY Ham MasterTapes video course is a unique, effective teaching technique expertly produced by New York's leading professionals in studio and field videotape.

- Video Graphics highlight important details.
- Carefully worked-out demonstrations on video avoid the problem of getting complex gadgets to work on command in front of a class.
- Working examples of every ham radio component, device, or system covered in the FCC guide can be clearly understood.

You've never seen this, like this, before this!
Clean up the radio/computer clutter.

For less than $250 you can make your investment in yourself pay off!

Chances are you have spent a couple thousand dollars on setting up a computer system that gets a lot of your work done. But sometimes it gets to be work I know that when I have to move two program manuals and a pencil holder to boot up the disk drive, it is work. When there is an unlabeled floppy (that I am going to identify some day) on top of the monitor and the business checkbook is on top of the printer . . . and I will remember (I hope) before the next “report” comes through . . .

MICRO-OFFICE WORK CENTER

I found the annoyance of my own “computer clutter” was even worse than the extra work the disorder created. And that is when I started looking for some practical furniture for my computer set up. Since I had already spent a lot of money on the system itself, I was really dismayed when I found out how much it would cost to get a decent-looking desk or even a data table for my equipment. $400 . . . $500 . . . even more for a sleazy unit that looked like junk! In fact, it was junk! And it took a long time for me to find something that was really worth the money . . . and more.

A lot of my working day is spent with my computer, and I will bet a lot of your time is too. So I figure a “home” for my system—a housing that is good looking as well as efficient to work at—will pay off two ways:

1. Less work: an efficient and orderly layout will save me time and energy.
2. Personal satisfaction: good quality furnishings look better, they just plain feel better to work at too.

So imagine how good I felt to find the “Micro-Office” Work Center! These are fine pieces of computer system furniture that make my office-at-home as pleasant a place to work as it ought to be. And the biggest and best surprise is the low, low price for such good quality.

Here is what you get—all for only $249.50 plus shipping:

- Mar-resistant work surface. Your choice of oak or walnut grained. Work surface height is adjustable to your keyboard, your chair, your height.
- Two shelves plus work surface extenders. Both shelves tilt to lock in position so that monitor faces you—in a position that does away with screen glare squinting and neck craning forever. Retainer bar keeps equipment from sliding off shelf. Snap-in bookends hold reference manuals and programs.
- Strong, sturdy and steady. All-steel welded frame construction is concealed with top-quality wood grain surfaces with finished trim. Adjustable floor levelers included. The work center is really a piece of fine furniture.
- There is no risk in buying from us either. We will make a full refund of purchase price plus shipping charges if you return the work center within 30 days for any reason whatsoever. In addition, the product is warranted for any defects in materials or construction for a full year from date of purchase. This is a no-risk investment in your own productivity and work efficiency that will pay off for years to come—even if you do not yet have a microcomputer of your own.

- Take your choice for your own work center decor:
  Order 48-inch unit in walnut, #2KPO-945, or in oak, #2KPO-947. Only $249.50 for each unit plus $20.00 shipping charge. On orders for two or more units at the same time, shipping charge applies to only the first unit ordered. Shipment made UPS, so we cannot ship to post office box. Illinois residents please add $15 per unit sales tax. Please allow 10 extra days for personal checks to clear. Sorry—at these special offer prices we cannot ship c.o.d. or bill direct.

CALL TOLL FREE TODAY WHILE SUPPLIES LAST: 1-800/323-8064.
In Illinois call 1-312/251-5699. Or mail check with order to:

Micro-Mart Distributors
Dept. HR • 1131 Central Street • Wilmette, IL 60091

August 1984
### California

**C & A ROBERTS, INC.**  
18511 HAWTHORN BLVD.  
TORRANCE, CA 90504  
213-370-7451  
24 Hour: 800-421-2258  
Not The Biggest, But The Best — Since 1962.  

**FONTANA ELECTRONICS**  
8626 SIERRA AVENUE  
FONTANA, CA 92335  
714-822-7710  
714-822-7725  
The Largest Electronics Dealer in San Bernardino County.

**JUN'S ELECTRONICS**  
3919 SEPULVEDA BLVD.  
CULVER CITY, CA 90230  
213-390-8003  
800-882-1343 Trades  
Habla Espanol

### Connecticut

**HATRY ELECTRONICS**  
500 LEDYARD ST. (SOUTH)  
HARTFORD, CT 06114  
203-527-1881  
Call today. Friendly one-stop shopping at prices you can afford.

### Delaware

**AMATEUR & ADVANCED COMMUNICATIONS**  
3208 CONCORD PIKE  
WILMINGTON, DE 19803  
Delaware’s Friendliest Ham Store.

**DELAWARE AMATEUR SUPPLY**  
71 MEADOW ROAD  
NEW CASTLE, DE 19720  
302-326-7728  
800-441-7008  
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more.  
One mile off I-95, no sales tax.

### Florida

**AMATEUR ELECTRONIC SUPPLY**  
1898 DREW STREET  
CLEARWATER, FL 33755  
813-461-4267  
Clearwater Branch  
West Coast’s only full service Amateur Radio Store.  
Hours M-F 9-5:30, Sat. 9-3

### Hawaii

**HONOLULU ELECTRONICS**  
819 KEEAUMOKU STREET  
HONOLULU, HI 96814  
(808) 949-5564  
Serving Hawaii & Pacific area for 51 years. Complete lines of Amateur equip-ment, accessories and parts.

### Illinois

**ERICKSON COMMUNICATIONS, INC.**  
5456 N. MILWAUKEE AVE.  
CHICAGO, IL 60630  
312-631-5181  
Hours: 9:30-5:30 Mon. Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

### Indiana

**THE HAM SHACK**  
808 NORTH MAIN STREET  
EVANSVILLE, IN 47710  
812-422-0231  
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

### Kentucky

**L & S RADIO**  
307 McLEAN AVENUE  
HOPKINSVILLE, KY 42240  
502-885-8071  
Ten-Tec, Azden, Ameritron Sales and Service.

### Massachusetts

**TEL-COM, INC.**  
675 GREAT ROAD, RTE. 119  
LITTLETON, MA 01460  
617-486-3400  
617-486-3040  
The Ham Store of New England You Can Rely On.

### Michigan

**ENCON PHOTOVOLTAICS**  
Complete Photovoltaic Systems  
27600 Schoolcraft Rd.  
Livonia, Michigan 48150  
313-523-1850  
Amateur Radio, Repeaters, Satellite, Computer applications  
Call Paul WD8AHO

### Nevada

**AMATEUR ELECTRONIC SUPPLY**  
1072 N. RANCHO DRIVE  
LAS VEGAS, NV 89106  
702-647-3114  
Dale Porray "Squeak," AD7K  
Outside Nev: 1 (800) 634-6227  
Hours M-F 9-5:30, Sat. 9-3

### New York

**ADIRONDACK ELECTRONICS, INC.**  
1991 CENTRAL AVENUE  
ALBANY, NY 12205  
Delaware’s Friendliest Ham Store.

**BARRY ELECTRONICS**  
512 BROADWAY  
NEW YORK, NY 10012  
212-925-7000  
New York City’s Largest Full Service Ham and Commercial Radio Store.

**TEL-COM, INC.**  
675 GREAT ROAD, RTE. 119  
LITTLETON, MA 01460  
617-486-3400  
617-486-3040  
The Ham Store of New England You Can Rely On.

### Dealers:

**YOU SHOULD BE HERE TOO!**  
Contact Ham Radio now for complete details.
**Amateur Radio Dealer**

**Ohio**

AMATEUR ELECTRONIC SUPPLY
2860 EUCLID AVE.
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

**Pennsylvania**

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LARUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
BOX 349 RD 4
MOUNTAIN TOP, PA 18707
717-868-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna/F9FT, UHF Units/Parabolic, Sante, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

**Texas**

MADISON ELECTRONICS SUPPLY
1508 McKinney
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

**Wisconsin**

AMATEUR ELECTRONIC SUPPLY
4826 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30
Sat 9-3

---

**RTTY BOOKS**

**RTTY TODAY**
A Modern Guide to Amateur Radio Teletype
by Dave Ingram, K4TWJ
Grand new and fully up-to-date. Dave Ingram is a noted RTTY enthusiast. His clear, concise writing style and a wealth of illustrations, diagrams and photos, make RTTY as easy as 1-2-3! Extensive coverage is given to using home computers for RTTY. Eleven chapters start with an overview of RTTY operation, then give you coverage of operating parameters, computers, equipment you can build, dedicated systems and four chapters on RTTY SWLing info. 135 pages. ©1984, 1st edition.

**WORLD PRESS SERVICES**
by Thomas Harrington
Turning to the different press services is the best way to keep abreast of all the latest news developments. Hundreds of news service teletype stations operate around the clock from all parts of the world. Stations are listed by time and frequency for easy locating. Also gives you plenty of helpful hints on the ins and outs of RTTY equipment and other "tricks of the trade." ©1983, 4th edition.

**WORLD UTILITY FREQUENCY and CALL SIGN GUIDE—3-30 MHz**
6,000 frequencies, 4,000 different call signs, tabulated in an easy-to-use format. The first part of this book is arranged in an ascending frequency order starting at 3 MHz. Part two is a complete listing of abbreviations commonly used. Part three is comprised of one of the most up-to-date call sign listings along with common frequencies. There is also a complete listing of both Aeronautilal and Maritime Mobile Service frequencies. Casual SWLing or looking for information from certain specific sources, this book should be in your personal library. ©1983, 1st edition.

**RADIO TELETYPE PRESS BROADCASTS**
Edited by Michel Schaay
A convenient, easy-to-use listing of 1500 press broadcasts in all languages. This book is divided into two sections to enhance usability. Part one is a time order list of English, French, German, Spanish and Portuguese news bulletins. Part two contains a detailed time and frequency schedule for 96 different news agencies around the world as well as addresses. Foreign news agencies often provide an interesting, different slant to the world's news. Listening to them can provide a unique insight to the state-of-the-world's affairs. ©1983, 4th edition.

Order any two books and deduct 10% from total
(Shipping not included)

Please add $2.50
U.S. only shipping and handling.
Foreign orders FOB Greenville.

Ham Radio's Bookstore
Greenville, NH 03048

---

**MOSLEY...A Better Antenna...**
For New and Old

*EASY ASSEMBLY*
*NO MEASURING*
*LOW SWR*
*ALL STAINLESS STEEL*
*ONE-PIECE BUILT-TO-LAST*

Whether you are just starting out or trying to complete the Honor Roll, Mosley offers a full line of Tri-Banders which will mechanically and electronically outperform the competition. For the new ham with limited space and pocket book, start with our TA-31 Jr. rotatable dipole. You can make our TA-31 into a 2 or 3 element as your needs increase. If you start with the need to run higher power, then the TA-31 is for you. This also can be made into a 2 or 3 element beam as you expand your station.

---

**RTTY BOOKS**

**RTTY TODAY**
A Modern Guide to Amateur Radio Teletype
by Dave Ingram, K4TWJ
Grand new and fully up-to-date. Dave Ingram is a noted RTTY enthusiast. His clear, concise writing style and a wealth of illustrations, diagrams and photos, make RTTY as easy as 1-2-3! Extensive coverage is given to using home computers for RTTY. Eleven chapters start with an overview of RTTY operation, then give you coverage of operating parameters, computers, equipment you can build, dedicated systems and four chapters on RTTY SWLing info. 135 pages. ©1984, 1st edition.

**WORLD PRESS SERVICES**
by Thomas Harrington
Turning to the different press services is the best way to keep abreast of all the latest news developments. Hundreds of news service teletype stations operate around the clock from all parts of the world. Stations are listed by time and frequency for easy locating. Also gives you plenty of helpful hints on the ins and outs of RTTY equipment and other "tricks of the trade." ©1983, 4th edition.

**WORLD UTILITY FREQUENCY and CALL SIGN GUIDE—3-30 MHz**
6,000 frequencies, 4,000 different call signs, tabulated in an easy-to-use format. The first part of this book is arranged in an ascending frequency order starting at 3 MHz. Part two is a complete listing of abbreviations commonly used. Part three is comprised of one of the most up-to-date call sign listings along with common frequencies. There is also a complete listing of both Aeronautilal and Maritime Mobile Service frequencies. Casual SWLing or looking for information from certain specific sources, this book should be in your personal library. ©1983, 1st edition.

**RADIO TELETYPE PRESS BROADCASTS**
Edited by Michel Schaay
A convenient, easy-to-use listing of 1500 press broadcasts in all languages. This book is divided into two sections to enhance usability. Part one is a time order list of English, French, German, Spanish and Portuguese news bulletins. Part two contains a detailed time and frequency schedule for 96 different news agencies around the world as well as addresses. Foreign news agencies often provide an interesting, different slant to the world's news. Listening to them can provide a unique insight to the state-of-the-world's affairs. ©1983, 4th edition.

Order any two books and deduct 10% from total
(Shipping not included)

Please add $2.50
U.S. only shipping and handling.
Foreign orders FOB Greenville.

Ham Radio's Bookstore
Greenville, NH 03048

---

**MOSLEY...A Better Antenna...**
For New and Old

*EASY ASSEMBLY*
*NO MEASURING*
*LOW SWR*
*ALL STAINLESS STEEL*
*ONE-PIECE BUILT-TO-LAST*

Whether you are just starting out or trying to complete the Honor Roll, Mosley offers a full line of Tri-Banders which will mechanically and electronically outperform the competition. For the new ham with limited space and pocket book, start with our TA-31 Jr. rotatable dipole. You can make our TA-31 into a 2 or 3 element as your needs increase. If you start with the need to run higher power, then the TA-31 is for you. This also can be made into a 2 or 3 element beam as you expand your station.

---

**RTTY BOOKS**

**RTTY TODAY**
A Modern Guide to Amateur Radio Teletype
by Dave Ingram, K4TWJ
Grand new and fully up-to-date. Dave Ingram is a noted RTTY enthusiast. His clear, concise writing style and a wealth of illustrations, diagrams and photos, make RTTY as easy as 1-2-3! Extensive coverage is given to using home computers for RTTY. Eleven chapters start with an overview of RTTY operation, then give you coverage of operating parameters, computers, equipment you can build, dedicated systems and four chapters on RTTY SWLing info. 135 pages. ©1984, 1st edition.

**WORLD PRESS SERVICES**
by Thomas Harrington
Turning to the different press services is the best way to keep abreast of all the latest news developments. Hundreds of news service teletype stations operate around the clock from all parts of the world. Stations are listed by time and frequency for easy locating. Also gives you plenty of helpful hints on the ins and outs of RTTY equipment and other "tricks of the trade." ©1983, 4th edition.

**WORLD UTILITY FREQUENCY and CALL SIGN GUIDE—3-30 MHz**
6,000 frequencies, 4,000 different call signs, tabulated in an easy-to-use format. The first part of this book is arranged in an ascending frequency order starting at 3 MHz. Part two is a complete listing of abbreviations commonly used. Part three is comprised of one of the most up-to-date call sign listings along with common frequencies. There is also a complete listing of both Aeronautilal and Maritime Mobile Service frequencies. Casual SWLing or looking for information from certain specific sources, this book should be in your personal library. ©1983, 1st edition.

**RADIO TELETYPE PRESS BROADCASTS**
Edited by Michel Schaay
A convenient, easy-to-use listing of 1500 press broadcasts in all languages. This book is divided into two sections to enhance usability. Part one is a time order list of English, French, German, Spanish and Portuguese news bulletins. Part two contains a detailed time and frequency schedule for 96 different news agencies around the world as well as addresses. Foreign news agencies often provide an interesting, different slant to the world's news. Listening to them can provide a unique insight to the state-of-the-world's affairs. ©1983, 4th edition.

Order any two books and deduct 10% from total
(Shipping not included)

Please add $2.50
U.S. only shipping and handling.
Foreign orders FOB Greenville.

Ham Radio's Bookstore
Greenville, NH 03048
RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit or- ganizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QUARTERLY STAMPS & RUBBER STAMPS — Top Quality! Card Samples and $2.50, $5.00, $10.00, $25.00, $50.00, $100.00. Eabez Graphics, Box D. Wester- ville, Ohio 43081.

QSL SERVICE — QSL service available to Rotarian friends and others. Send request and payment with self-addressed stamped envelope. Mr. G. H. Arbo, Box 118, Fargo, North Dakota 58107.

FREE MATERIALS — Ham Radio is always looking for free material to distribute to our readers. If you have a publication you would like to see distributed, please send a sample copy to Ham Radio, 200 Fourth Street, Wheeling, West Virginia 26003.

COMING EVENTS ACTIVITY "Places to go..."

ALABAMA: The Huntsville Hamfest, Saturday and Sunday, August 19 and 20 at Braun Civic Center, Huntsville. No admission charge. Exhibits, forums, air-conditioned indoor flea market and non-ham activities. Tours of the Alabama Space & Rocket Center available. A limited number of camping sites with hookups at VBCB. Reserved flea market tables available $40/day. Talk on 3484. For information: Huntsville Hamfest, 2684 S. Memorial Dr., Huntsville, AL 35801.


Radio Expo '84 sponsored by the Chicago FM Club, Saturday and Sunday, September 22 and 23, Lake County Fairgrounds, Rt. 120 & 60, Gurnee, IL. Major manufacturers and gigantic outdoor flea market. Flea market opens 6 AM Exhibits 9 AM Free parking and overnight camping. Reserved indoor flea market $55/day. Tickets $3.00 advance. $4.00 a gate. Good for both days. Seminars, technical talks and ladies programs. Talk-in on 146.1676. SASE to Radio Expo '84, Box 180, Evanston, IL 60204.

FLORIDA: The Platinum Coast Amateur Radio Society's annual Hamfest, September 8 and 9, Melbourne Auditorium. Melbourne Swap tables, meetings, forums, awards, tailgating. For information or reservations: PCARS, Box 10004, Melbourne, FL 32901.

OTTAWA, ONTARIO: The Radio Society of Ontario's 19th annual Convention, October 5, 6 and 7, Westin Hotel, Ottawa Friday night ballet and dance. Saturday and Sunday tech nical sessions, demonstrations and commercial exhibits. Saturday night banquet and dance. For information: RSO Convention Committee, Box 15086 Station "F", Ottawa, Ontario.

PENNSYLVANIA: The 47th annual South Hills Brasspounder and Modularists Hamfest, August 5, 9 AM to 4 PM, South Carr park of the Community College of Allegheny County, Pittsburgh. Tickets $3 each or $20. Indoor/outdoor flea market space available. Food and refreshments available Free parking. Talk-in on 146.1373 and 146.250 simplex. For information: Jack W. Wood, 448 Jennie Dr., Pittsburgh, PA 15236.

PENNSYLVANIA: Change of location for the Mid-AtlanticARR Hamfest, August 12-13, Heathwood Hotel (Jill H). It will be held at the Bucks County Drive-in, Route 611, Warrington, PA.

MINNESOTA: The St. Cloud Amateur Radio Club's annual Hamfest, Sunday, August 12, 8 AM to 4 PM, Sauk Rapids Mi
OPERATING EVENTS

"Things to do..."

AUGUST 14-19: The Bergen Amateur Radio Association, Paramus, New Jersey, will operate special event station K2TM, from 1500 to 2400Z to celebrate the Club's 51st anniversary. Certificate available to large SASE and QSL via K2TM, 31 Forest Drive, Hillsdale, NJ 07642.

AUGUST 15-10: The Ramapo Mountain ARC, W2SASRA, will operate its 8th annual flea market August 18, Oaksford, Ohio. General admission is $1.00, non-ham family members free. For information, call Bill Longin, W2SASRA.


AUGUST 9-15: The Southern Amateur Radio Association (SCARA) is planning to have a special events station K5R for the 1993 Summer Pageant. Check September Ham Radio for details.

THE UHF COMPOUND

by K. Weiner, DJ9HO

This 431 page book is an absolute must for every VHF and UHF enthusiast. Special emphasis has been placed on state-of-the-art techniques. Author Weiner fully describes test equipment, alignment tools, power measuring equipment and other handy gadgets. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega-element arrays. ©1980

continued

BIRCH HILL SALES, P.O. Box 296
Petersborough, NH 03458

Tel. (603) 924-7959

August 1984

VHF Books

THE UHF COMPOUND
by K. Weiner, DJ9HO

This 431 page book is an absolute must for every VHF and UHF enthusiast. Special emphasis has been placed on state-of-the-art techniques. Author Weiner fully describes test equipment, alignment tools, power measuring equipment and other handy gadgets. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega-element arrays. ©1980

KW-UHF

Softbound $23.95

VHF-UHF MANUAL
by G.R. Jessop, G6JP

This new, revised 4th edition is jam-packed with circuits, antennas, converters, cavity amplifiers and much, much more. Practical theory and construction projects cover from 70 MHz to 24 GHz. The chapter on Microwave has been expanded to 83 state-of-the-art projects. Receiver and transmitters for all VHF and UHF bands are covered in 181 pages. The balance of this book contains information on propagation, tuned circuits, space communications, filters, test equipment, antennas and other handy, easy-to-use data sections. Equipment designed for the British 4 meter band can be adapted fairly easily to the U.S. 6 meter allocation. ©1984, 512 pages, 4th edition

RS-VH

Hardbound $17.50

VHF RADIO PROPAGATION
by J. D. Stewart

Riddled by VHF propagation? It’s not a mystery if you have a copy of this book. J.D. Stewart explains in detail propagation mechanisms such as atmospheric ducting, scattering, auroral reflections and ionized meteor trails. You also learn how to observe the Sun and evaluate weather conditions so you can predict favorable propagation conditions. ©1982, 112 pages, 2nd edition

NO-PH

Softbound $4.95

VHF HANDBOOK
by W9EGQ and WW6SAI

Contains all the latest information for VHF operation. Antenna design and construction from 50-342 MHz is fully covered with proven practical design information. You also get a complete rundown on FM theory, design and plenty of hints and tips. In the construction section, the authors detail how to build low noise, high performance converters, transverters, antennas and plenty of other interesting equipment. This book is a must for both the beginner and expert in VHF communications. ©1974, 336 pages, 3rd edition

BP-VH

Softbound $11.95

ANTISIIC DUST COVERS

Radio Covers Available:
Alpha Halarcrafts
Handicrafts
Collins Henry
Dentron Drake

BIRCH HILL SALES, P.O. Box 296
Petersborough, NH 03458
Tel. (603) 924-7959

August 1984

Panasonic
Sanyo
Toshiba
Morgon
J_MR
Swan
Ten-Tec
Yaesu

August 1984

Panasonic
Sanyo
Toshiba
Morgon
J_MR
Swan
Ten-Tec
Yaesu
WARNING
SAVE YOUR LIFE OR AN INJURY

Installation and dismantling of towers is dangerous and temporary towers of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10’ or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed. Get professional, experienced help and read your Rohn catalog or other tower manufacturers’ catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

Paid for
By the
Following:
ROHN
P.O. Box 2000
Peoria, IL 61656

EXCITING NEW PROGRAM
To TRAIN You
With . . . SOUND . . . To Increase
Your Code Speed To Any Level!!
Unique method helps you copy fast and easy.

Computer Programs for IBM PC and all compatibles:
Complete Menu and Six Programs
. . . . . $19.95

Or:
Cassette Tapes (Set of Three 60 Min. Tapes):
. . . . . $19.95

Send Money Order to avoid C.O.D. charges:
PM-100 Software Group
c/o Clearwater Computer Center Inc.
3447 U.S. 19 N.
Clearwater, FL 33759
(813) 785-8022
KB4AAX

SAY YOU SAW IT IN HAM RADIO

Get Your Best Deal . . .
Then CALL US . . . TOLL FREE!
1-800-238-6168 (In Tennessee, call 901-683-9125)
KENWOOD ICOM

AUTHORIZED DEALER FOR: Kenwood, ICOM, Drake, Ten-Tec, Santec, MFJ, Astron, AEA, Mirage, B&W, Hustler, Cushcraft, Larsen, Hy-Gain, and others . . . PLUS CURRENT USED GEAR

When you call, talk to a Qualified Ham Operator! Ask for MARSHALL, KU4O, or BILL, W4TNP

Store Hours:
Monday-Friday, 9 to 5, Saturday 9 to 12
(Central Time)

WE TRADE!
Call us for a free appraisal!

Memphis Amateur Electronics, Inc.
1465 Wells Station Rd., Memphis, TN 38108
FM-2033

2m C-MOS MICROPROCESSOR CONTROLLED
DIGITAL SYNTHESIZER FM TRANSCEIVER

6 in!

Exclusive KDK 6 in 1 control is now joined by 6 exciting new KDK features:
NEW! % Soft Orange background Liquid Crystal Display (LCD) for direct sunlight viewing plus lighting for night viewing.
NEW! % Offset (+, - S) stored in memory along with the frequency information.
NEW! % Frequency coverage of 142.000 to 149.995 MHz for M.A.R.S. and C.A.P. usage.
NEW! % Chrome front panel with accent knobs and lighter color on case to match today's auto decor.
NEW! % Scan for signal now has 3-second delay before resume after loss of signal.
NEW! % Repositioned controls for more convenient operation.

The Exclusive KDK 6 in 1 Knob.

- Only memories with data are scanned; blanks are skipped.
- Complete memory back-up with power unplugged. Re-chargeable Ni-Cd with capability of several months back-up of memory.
- Single frequency sub-audible tone generator included as a standard feature.
- Tone unit switch on front panel to prevent "humming" on the wrong channel.
- Repeater input monitor capability with the push of a single momentary switch.
- Solid-state level meter for both output level and input level monitoring.
- User programmable initial characteristics for band limits, channel step size, etc.
- Odd repeater splits can be handled with the memory in the AxB mode.
- Programmable band-scan limits are stored in protected RAM.
- Modular construction with pluggable interconnecting wiring.
- Touch-Tone microphone TM-2 is standard with each radio.
- Change channels, skip-scan or step up and down the band from TM-2 microphone.
- Audible beep for end-of-band or last memory location for better "eye's off" operation.

The KDK FM-2033 represents a significant advance in user convenience and simplicity of operation for the radio user. The KDK '33 series of transceivers provides excellent readability in any lighting condition for either the operating frequency or the memory channel number in use. The use of a warm orange background for the LCD displays improves the readability by providing an easy on the eyes contrast improvement.

Simplicity of operation has always been the mark of the KDK design team and the FM-2033 is no exception. From the single knob frequency and memory selection to the automatic recall of the desired repeater offset from memory, the FM-2033 continues to provide relaxed, comfortable mobile operation.

Once the 10 memory frequencies have been selected, a single knob is all that is required for operation on the standard simplex or repeater channels. Using the audible beep as the end of memory marker allows setting to a particular channel without even looking at the radio.

In the scan mode, scanning for a busy memory or pre-programmed band scan keeps you up to date on the happenings in the area. Very busy frequencies can be skipped by using the up key on the TM-2 microphone. If a full 10 memories are not used, the unused ones can be marked for scan, so that no time is wasted checking them.

The FM-2033 provides a clean 25 watt output signal across 142 - 149.995 MHz to operate in balance with most repeater signals and provide quieting on the simplex operations. M.A.R.S. (NAVY tool) and C.A.P. frequencies are also accommodated.

You want convenience, reliability and easy operation for your mobile station and a tough to beat dollar value. Check out the FM-2033 at your local dealer TODAY or send a QSL for specifications.

* Touch Tone is a Registered Trade Mark of American Telephone and Telegraph.

Specifications are nominal and are subject to change. All KDK transceivers meet or exceed FCC regulations regarding spurious emissions.

Distributed by
Encomm, Inc.
2000 Avenue G, Suite 800, Plano, Texas 75074
Phone (214) 423-0024 TLX 79-4783 ENCOMM DAL

136
Take home a world champion.

$85* gets you a technical knockout. The Fluke 70 Series. Winners of the digital vs. analog battle. Since their debut, they've become the worldwide champions of the industry. Never before have such tough, American-made meters offered so many professional features at such unbeatable prices.

Each comes with a 3-year warranty, 2,000+ hour battery life, and instant autoranging. You also get the extra resolution of a 3200-count LCD display, plus a responsive analog bar graph for quick visual checks of continuity, peaking, nulling and trends.

Choose from the Fluke 73, the ultimate in simplicity. The feature-packed Fluke 75. Or the deluxe Fluke 77, with its own protective holster and unique "Touch Hold" function** that captures and holds readings, then beeps to alert you.

So don't settle for just a contender. Take home a world champion.

For your nearest distributor or a free brochure, call toll-free anytime 1-800-227-3800, Ext. 229. From outside the U.S., call 1-402-496-1350, Ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73
FLUKE 75
FLUKE 77

* Suggested U.S. list price, effective July 1, 1984
** Patent pending.
FT-77 The Rig for All Seasons!

Answering the call for an HF rig that goes everywhere, sounds great, and is cost-effective, Yaesu proudly introduces the FT-77 Compact HF Transceiver System.

Computerized Design and Manufacture
The FT-77 design engineers utilized the latest computerized circuit board layout methods, resulting in a compact, reliable transceiver with maximum utilization of available space. Automated insertion techniques are used in assembly, providing improved reliability and quality control over earlier designs.

Operating Versatility
The FT-77 is equipped for operation on all amateur bands between 3.5 and 29.7 MHz, including the three new WARC bands. Fully operational on SSB and CW, the FT-77 includes a dual width noise blanker (designed to minimize the "Woodpecker" or ignition noise), full SWR metering, R.I.T., and optional CW filter with wide/narrow selection. The optional FM-77 permits operation on the FM mode, with front panel squelch sensitivity control.

Expandable Station Concept
Ideal for mobile operation because of its compact size and light weight, the FT-77 forms the nucleus of a versatile base station. Available as options for the FT-77 are the FP-700 AC Power Supply, FV-700DM Synthesized External VFO and Memory System, FTV-707 VHF/UHF Transverter, and FC-700 Antenna Coupler, providing top performance at an extraordinarily low price.

Best of All, It's a Yaesu!
With the most experience in transceiver design and manufacture, the Yaesu trademark is your guarantee of quality and durability. We've got all-new technology and an all-new warranty policy to back it up.

See the FT-77 and the all new line of Yaesu HF, VHF, and UHF transceivers, receivers and accessories at your Yaesu Dealer today! It's time you tried a Yaesu!
TR-7950, watts to see!

**TR-7950/7930**

The TR-7950/7930 has become the unanimous choice of the 2 meter FM operator! It stands alone in features, performance and reliability, with no other rig even close!

The TR-7950/7930 features a large L.C.D. display that is easy to read in direct sunlight and is back lighted for comfortable night-time viewing. It displays TRANS/REC frequencies, memory channel, repeater offset (+, -), sub-tone number (F-0, 1, 2, 3) tone, scan, and memory scan lock-out. It includes an LED S/RF bar meter, and LED indicators for reverse, center TUNING, PRIORITY and ON AIR. The 21 multi-function memory channels store frequency, repeater offset, and optional sub-tone channels. Memories 1 through 15 are for simplex or ±600 Hz offset. Memory pairs 16/17 and 18/19 are paired for non-standard repeater offset. Memories “A” and “B” set upper and lower scan limits, or are for simplex or ±600 kHz offset. In MEMORY mode, a circle of light appears around the memory selector knob. When the memory selector knob is rotated in either direction to channel 1, an audible “beep” sounds.

With 45 big watts, the TR-7950 is the most powerful 2 meter FM rig you can buy. The TR-7930 with a modest 25 watts is also available. A HI/LOW power switch allows power reduction to approx. 5 watts.

Other key features include:

- Programmable band-scan width, Center stop during band-scan, with indicator. Scan stops on busy channel and resume scan is automatic (time 5 sec. adjustable) or carrier operated. A scan delay of approx. 1.5 sec. is built-in. Scanning can also be accomplished with UP/DOWN microphone or “SC” key on front panel.
- Programmable priority alert can be set into any of 21 memory channels. With Alert switch “ON,” a dual “beep” sounds when signal is present. The microprocessor is pre-programmed for simplex or ±600 kHz offset in accordance with the 2 meter band plan, with an "OS" key to allow manual changes in offset. The keyboard functions as a 16 key autopatch encoder during transmit. Frequency coverage is 142.000-148.995 MHz, and it has a repeater reverse switch and mobile mounting bracket. All these features are available in one compact, lightweight rig.

Yes, Kenwood is on top with the TR-7950! Its field proven reliability and matchless performance makes the TR-7950 the rig of tomorrow, today!!

**TR-7950 optional accessories:**

- TU-79, three frequency tone unit, KPS-12 fixed-station power supply (7950), KPS-7A fixed-station power supply (7930), SP-40 mobile speaker, SP-50 mobile speaker, MC-55 mobile microphone with time-out timer, MC-46 16-key autopatch UP/DOWN mic, SW-100A/B power meters, PG-3A noise filter.

More information on the TR-7950/7930 is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

Specifications and prices are subject to change without notice or obligation.