For the ultimate in two-meter communications, ICOM presents the IC-271H transceiver with a high dynamic range receiver and a 100 watt transmitter. Operating from the IC-PS30, IC-PS15, or the internal IC-PS35 (optional), the IC-271H brings all the advanced functions of the latest CW controlled radios to your shack.

400 Watts. Now a two-meter base station with 100 watts of internal power! The IC-271H provides all the power required for operation from remote places to repeaters, or for simplex.

Subaudible Tones. Included as a standard feature are 32 built-in subaudible tones which are easily selected by rotating the main tuning knob. PL tones may be stored into memory.

32 Full-Function Memories. Each tunable memory holds frequency, offset, offset direction, mode and subaudible tone. Each parameter is selected by rotating the main tuning knob in conjunction with the switches on the front panel.

PLL Locked at 10Hz. An extremely low-noise, professional receiver and a good signal-to-noise ratio PLL allows the IC-271H's synthesizer to lock to 10Hz providing receiver performance unparalleled by any other VHF receiver.

Fluorescent Display. ICOM's high-visibility, multicolor display gives easy-to-read display of all information necessary for logging a contact. Frequency, mode, duplex, offset direction, PL frequency, memory channel, and PL tone can be displayed.

Scanning. The IC-271H can scan memories and programmed sections of the band or modes. Mode-S scan can be used to scan only memories with a particular mode or lock out frequencies continuously busy so the receiver will not stop at that memory channel while scanning.

Other Standard Features. To facilitate the operation of the IC-271H, ICOM has incorporated a duplex check switch, all-mode squelch, receive audio control, S-meter, center meter, seven-year lithium battery memory backup, accessory connector and microphone.

Optional Features. IC-271H options are: switchable preamplifier, CTCSS encoder/decoder (encoder is standard), computer interface and voice synthesizer.

Size. Only 11⅜ inches wide by 4½ inches high, the IC-271H is styled to look good and engineered for ease of operation.

The IC-271A. The IC-271A with 25 watt output is available and has the same features as the IC-271H, plus an optional IC-PS25 internal power supply to make it a compact, go-anywhere two-meter base station. See the IC-271A(H) and other fine ICOM equipment at your ICOM dealer today.
For a crystal clear picture, choose a Lowrance System 70 Satellite Receiver

Lowrance System 70 receivers truly have no equal for picture quality. Colors are true and vibrant — not that washed-out look so common in other receivers. Lines are clear and distinct — not fuzzy. Low threshold makes 1000-foot runs a snap. And the audio is crystal clear. No wonder that Lowrance, one of the world’s finest electronics companies, is proud to put its name on the new System 70 models.

Look over the multitude of easy-use features. With detent tuning, you click right to the channel you want — no fishing around. A polarity push-button with separate skew adjustment makes polarization changes easy and works with the Polarotor 1, Omni polarizer, or a Ferite device. Fixed and variable audio tuning with wide or narrow filter selection makes audio tuning extremely versatile. The System 70 models are equipped with scan tuning, 125 feet of pre-made cables, built-in modulator, AFC defeat and signal strength meter, so installation and antenna positioning are a breeze.

Two Models to Choose From

The System 70° has all the remarkable features of the standard 70°, plus superb stereo reception with discreet and matrix capability. The stereo reproduction will please the most discriminating listener, and it’s easy to tune with independent subcarrier A and B tuning capabilities.

For System 70 dealers, we provide outstanding support with product brochures, posters, the popular customer question-and-answer brochures AND the best warranty service in the industry.

Lowrance System 70° and 70°. They’re the clear choice in satellite receivers and downconverters.
TS-830S
TS-830S...a "top notch" field proven performer.

The TS-830S is the HF transceiver that delivers the performance the others can only talk about.

Kenwood's TS-830S offers you every conceivable operating feature built-in for 160-10 meters, including the WARC bands. Key operating features such as wide receiver dynamic range, variable band width tuning, notch filter, adjustable noise-blanker, IF shift (pass-band tuning), and receive capability of WWV on 10 MHz, have established the TS-830S as the first choice of the serious Amateur.

Two 6146B's in the final assure you of rugged, reliable service. The fluorescent tube digital display, RF speech processor, narrow/wide filter selection on CW/SSB monitor circuit and receiver (RIT) and transmitter (XIT) incremental tuning, add to the operating ease and enjoyment of the TS-830S.

Yes, all these features along with unprecedented reliability have made the field-proven TS-830S truly "top notch."

Optional accessories:
- SP-230 external speaker
- AT-230 antenna tuner
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter for 8.88 MHz IF
- SP-230 external speaker with selectable audio filters
- VFO-240 remote analog VFO
- VFO-230 remote digital VFO
- MC-50 desk microphone
- AT-230 antenna tuner/SWR/ power meter
- KB-1 deluxe VFO knob
- YK-88SN (1.8 kHz) narrow SSB filter
- KB-1 deluxe VFO knob

More information on the TS-830S and TS-530SP is available from authorized dealers of Trilo-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.

TS-530SP
TS-530SP..."Centsational" in performance and value.

No other HF-transceiver gives you all these features at such an affordable price.

The TS-530SP covers 160-10 meters, LSB, USB, CW, including WARC bands and it also receives WWV on 10 MHz.

When you turn on your TS-530SP, the IF shift tunes out interfering signals, and the tunable audio notch filter also helps eliminate QRM. Your frequency is displayed in six digits by the fluorescent tube display, with an analog dial for added convenience. Other key features include wide receiver dynamic range, narrow/wide filter selection for CW and/or SSB, built-in speech processor for extra talk power, adjustable noise-blanker and RIT/XIT to allow independent fine-tuning of receive or transmit frequencies. All this along with two 6146B's in the final to allow for lasting, dependable operation.

The TS-530SP, solid dependability at a price everyone can afford.

Optional accessories:
- SP-230 external speaker with selectable audio filters
- VFO-240 remote analog VFO
- VFO-230 remote digital VFO
- KB-1 deluxe VFO knob
- YK-88CN (500 Hz) or YK-88SN (270 Hz) CW filter
- MC-50 desk microphone
- AT-230 antenna tuner/SWR/ power meter
- KB-1 deluxe VFO knob
- YK-88SN (1.8 kHz) narrow SSB filter

More information on the TS-830S and TS-530SP is available from authorized dealers of Trilo-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.
SAVE $10.00* with home delivery

*(One year newsstand cost $30.00)

Here's my address label, enter my subscription.

☐ 1 Year 12 issues $19.95 ☐ Payment enclosed
☐ 2 Years 24 issues $32.95 ☐ Bill me later
☐ 3 Years 36 issues $44.95 U.S. prices only

Name __________________________

Address _________________________ State ________ Zip __________

City ____________________________

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $22.95 for one year by surface mail.
JULY 1984
volume 17, number 7

T. H. Tenney, Jr., W1NLB
publisher

Rich Rosen, KZRR
editor-in-chief
and associate publisher

Dorothy Rosa, KA1LBO
assistant editor

Joseph J. Schroeder, W9JUV
associate editor

Susan Shorrock
editorial production

editorial review board
Forrest Gehke, K2BT
Bob Lewis, W2CSF
Mason Logan, K4MT
Ed Wetherhold, W3NQN

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher

Rally Dennis, KAJWF
director of advertising sales

Dorothy Sargent, KA1ZKF
advertising production manager

Susan Shorrock
circulation manager

Therese Bourgault
circulation
Wayne Pierce, K3SUK
cover art

ham radio magazine is published by Communications Technology, Inc. Greenville, New Hampshire 03048-0498
Telephone: 603 878 1441

subscription rates
United States:
one year, $19.95; two years, $32.95; three years, NA 95
Canada and other countries (via surface mail):
one year, $22.95; two years, $41.00; three years, NA8 00
Europe, Japan, Australia Air Forwarding Services: one year, NA 0 0
All subscription orders payable in U. S. funds via international
postal money order or check drawn on U. S. bank.

international subscription agents: page 130

Macmillan copiers are available from University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles from ham radio
are available to the blind and physically handicapped
Team Recorded Periodicals,
919 Walnut Street, Philadelphia 19107
Copyright 1984 by Communications Technology, Inc.
Title registered at U. S. Patent Office
Second-class postage paid
at Greenville, New Hampshire 03048 0498
and at additional mailing offices
ISSN 0148.1089
Postmaster send form 3579 to ham radio
Greenville, New Hampshire 03048-0498

14 the VHF/UHF primer: an introduction to propagation
Joe Reisert, W1JR

33 cooling semiconductors
part 1: designing and using heatsinks
Vaughn D. Martin

42 all-metal, 2-meter J-pole antenna
Michael Hood, KD8JB

49 wideband VCO design
Alan Victor, WA4MGX

63 the weekender: reflected power limiter
William Vissers, K4KI

73 applied Yagi antenna design
part 3: 432 MHz with Knadle and Tilton
Stanley Jaffin, WB3BGU

88 ham radio techniques
Bill Orr, W6SAI

95 ground rod resistance
Mason A. Logan, K4MT

132 advertisers index
128 ham mart

14 book and product reviews
115 new products

12 comments
11 prestop

103 DX forecaster
109 ham notebook

114 product reviews
115 new products

12 comments
11 prestop

103 DX forecaster
109 ham notebook

114 product reviews
115 new products

12 comments
11 prestop

103 DX forecaster
109 ham notebook

114 product reviews
115 new products

12 comments
11 prestop

103 DX forecaster

contents
THE NUMBER 1 QUESTION

I've recently discovered that if I connect two framastans in parallel, water-cool them, operate them in Class E, and drive them with my 2N5109 solid-state QRP transmitter, I can achieve the legal output power level and cover 160 meters through 40,000 GHz without retuning. Would you be interested in seeing a manuscript on this subject?

Every time I read a question like this from a prospective author my interest is definitely aroused. Editors constantly receive telephone and mail inquiries about possible articles covering a wide range of subjects. We at ham radio are no exception, because every day we receive proposals for manuscripts ranging in size from quarter-page ham notes through six-part series of epic proportions. In order to encourage you to contribute your wisdom and experience to the pages of ham radio, I'd like to tell you what I'd like to see coming through the transom.

If you'll look at a magazine — any magazine — you'll notice that there are a number of realities associated with it. One is the number of pages allocated to editorial content. Ah, but what's editorial content? you ask. Basically, “editorial” content is anything that isn't advertising — technical articles, ham notes, columns, letters, Presstop, new product announcements, and even the front cover, as well as (ahem) this editorial. If you were to view each page as if it were a parcel of extremely valuable land, you’d understand the dilemma (and the joy) an editor faces when reviewing manuscripts. So many good ideas . . . and so little space!

We have a mandate from our readers, consistent with our charter and clearly reaffirmed by the Reader Survey of September, 1983, that directs us to provide high quality technical material. For my part, I'm more than willing to meet this demand. For those of you who are thinking of proposing an idea for an article, please keep the following guidelines in mind:

Length. Don’t worry about it. With very few exceptions (and this editorial may be one of them), the subject will dictate the length of the article. It’s difficult to write more than a paragraph or two about how to insert 6146s into sockets (with a hammer, of course), so if you’re going to write on a small, limited topic, keep your article short. But if you’re going to deal with a larger topic in a more comprehensive way, then give your subject the room it needs; consider, for example, K2BT’s series on vertical phased arrays, which ran in six installments spread over a year’s time.

Style. Yours is fine. Just keep it simple; the point is, after all, to convey information. Don’t worry about grammar; we’ll worry about that. It may help to remember this rule of thumb: write to inform, not impress.

Accuracy. Here’s where we all get into trouble now and then. “In conclusion, my superduper loudenboomer metal noodle, described herein, works on the principle of thermoquality of non-homogeneous turf.” It very well might. But please prove it. If you’ve discovered some fabulous new technique that promises to revolutionize the world’s understanding of antennas, propagation, or anything else, we want to hear about it . . . but please present your idea in a logical sequence of facts and build your case. If you decide to compare your method to a standard, make sure your setup is carefully designed and that it generates reproducible results.

Subject. This I leave to you. However, you might want to ask yourself one question before taking pen in hand. How many readers will be interested? Three, three thousand, or thirty thousand? This is especially true in regard to conversions. Not too many readers are interested in converting a BC610 to 11 meters. However, a simple circuit that adds the three WARC bands to an older transceiver will generate substantial interest. How about a short article on receivers, or on some particularly exciting aspect of future technology? I’ll be glad to consider your idea. Just pick up the phone or send a one-page outline of your proposed manuscript. (I can’t, by the way, consider simultaneous submissions.)

A final word. Please double space your manuscript. Don’t hide or crowd your words . . . let them sing out and tell your story. For this — and more — I thank you.

Rich Rosen, K2RR
Editor-in-Chief
FREE MFJ SOFTWARE

Free MFJ RTTY/ASCII/CW software for VIC-20 or C-64 with purchase of MFJ-1224, MFJ-1225 or MFJ-1228 from MFJ. Send/receive Baudot, ASCII, CW. Type ahead buffer. 24 hour clock. Supports VIC printer. Menu Driven. MFJ-1224/1225 cable. On tape. Available separately for $29.95.

UNIVERSAL RTTY/ASCII/AMTOR/CW COMPUTER INTERFACE

Lets you send and receive computerized RTTY/ASCII/AMTOR/CW. Copies all shifts and all speeds. Copies on both mark and space. Sharp 8 pole active filter for 170 Hz shift and CW. Plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 or other personal computers. Uses MFJ, Kantronics, AEA software and other RTTY/CW software.

Super RTTY filter greatly improves copy under crowded, fading and weak signal conditions. Improves any RTTY receiving system. 8 pole broadband active filter for 170 Hz shift (2125/2975 Hz mark/space). 200 or 400 Hz bandwidths. Automatic noise limiter. Audio in, speaker out jack. On/off/bypass switch. "ON" LED. 12 VDC or 110 VAC with optional AC adapter, MFJ-1312, $9.95. 3x1-4x1 inch aluminum cabinet.

Free MFJ RTTY/ASCII/CW Software

Includes MFJ-1228. Software on tape. Add VIC-20 OR C-64 and rig to enjoy computerized RTTY/ASCII. ORDER MFJ-1224/MFJ-1225 FOR VIC-20, MFJ-1228/MFJ-1268 FOR C-64.

Most versatile RTTY/ASCII/AMTOR/CW interface cartridge available for VIC-20 and Commodore 64. Gives you more features, more performance, more value for your money than any other interface cartridge available.

Some interface cartridge works for both VIC-20 and Commodore 64. Plugs into user's port. Choose from wide variety of RTTY/ASCII/CW, even AMTOR software. Not married to one on-board software package. Use MFJ, Kantronics, AEA plus other software cartridge, tape or disk.

850 Hz and 170 Hz shifts on receive and transmit. Has main and FL out puts for scope tuning. Normal/Reverse switch eliminates retuning. True dual channel mark and space active filters and automatic threshold correction gives copy good when one tone is obliterated by ORM or select tone is obliterated by ORM or select.

New MFJ-1224 RTTY/ASCII/AMTOR/CW Computer Interface lets you use your personal computer as a computerized full featured RTTY/ASCII/AMTOR/CW station for sending and receiving. Plugs between rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most others.

Use MFJ software for VIC-20, Commodore 64 and Kantronics for Apple, TRS-80C, Atari, TI-99 and most other software for RTTY/ASCII/AMTOR/CW.

Easy, positive tuning with twin LED indicators. Copy any shift (107, 145, 180 and all other shifts) and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII).

Copies on both mark and space, not mark only or space only, to improve copy under adverse conditions. Sharp 8 pole 170 Hz shift/CW active filter gives good copy under crowded, fading and weak signal conditions. Automatic noise limiter suppresses static crashes for better copy.

Normal/Reverse switch eliminates retuning. $29.95 VDC loop output drives RTTY machine. Speaker jack.

Kantronics compatible socket. Exclusive general purpose socket allows interfacing to nearly any personal computer with most appropriate software. Available TTL lines: RTTY demod. out. CW demod. out. CW-1D input. +5 VDC ground. All signal lines are buffered and can be inverted using an internal DIP switch.

Use Gallo software with Apple, RAK with VIC-20, Kantronics with TRS-80C, TI-99. NUE with TRS-80 and Atari. Some computers with some software may require some external components.

Metal cabinet. Brushed alum. front 8x1/4x6 in. 12-15 VDC or 110 VAC with adapter, MFJ-1312, $9.95. MFJ-1225, 329.95, R-232 adapter for MFJ-1224.

To order or for your nearest dealer, call toll-free 800-647-1800. Call 601-323-5869 in Miss. and outside continental USA. Telex 53-4590 MFJ STKV.
Kantronics Interface II

The Interface For
Apple, Atari, TI-99/4A, TRS-80C,
VIC-20, and Commodore 64
Computers

Interface II is the new Kantronics transceiver-to-computer interface. Interface II features a highly sensitive front end with mark and space filtering. Even the most discerning operator will be surprised with the Interface II's ability to dig out signals in poor band conditions. Our unique tuning system even displays signal fading.

Kantronics Software — The Industry Standard

Hamsoft

Our original program for reception and transmission of CW/RTTY/ASCII. Features include Split Screen Display, Message Ports, Type-ahead buffer, and printer compatibility. Apple Diskette $29.95, VIC-20 cartridge $49.95, Atari board $49.95, TRS-80C board $59.95, TI-99/4A cartridge $99.95.

Hamtext

All the features of Hamsoft with the following additional capabilities: text editing, received message storage, variable buffer sizes, diddle, word wraparound, time transmission, and text transmission from tape or disc. The program is available on cartridge for the VIC-20 or Commodore 64, and diskette for the Apple. Suggested Retail $99.95.

X-Y scope outputs and dual interface outputs for VHF and HF connections make Interface II compatible with almost any shack. All three standard shifts are selectable, and Interface II is AMTOR compatible. Interface II is designed for use with Kantronics software.

Hamsoft/Amotor

This program has Hamsoft features with the added ability of communicating in the newest coded amateur format-AMTOR. AMTOR offers error free low power communication. Hamsoft/Amotor is available for the Atari, TRS-80C, VIC-20, and Commodore 64 computers. Suggested Retail $79.95.

Amotorsoft

For the serious AMTOR operator using a VIC-20, Commodore 64, or Apple computer. This program is similar to Hamtext in capabilities, but can only be used for AMTOR. The Apple version includes both Hamtext and Amotorsoft on one diskette ($139.95), while the Vic-20 and Commodore 64 cartridge is just Amotorsoft ($89.95).
Kantronics UTU
The Universal Terminal Unit
For Everyone Else

Suggested Retail Price 199.95

KANTRONICS SETS A NEW STANDARD WITH THE KANTRONICS UNIVERSAL TERMINAL UNIT.

UTU allows any computer with an RS232 port and a terminal program to interface with any transceiver. Additional software isn't necessary with UTU, as an internal microcomputer gives the unit data processing capabilities to send and receive in four coded amateur formats; Morse code, Radioteletype, ASCII, and AMTOR.

Sample terminal programs for IBM, TRS-80 Model III and IV, Kaypro, and other computers are included in the manual. Enhanced features can be user defined by altering the terminal program, giving you flexibility to program for your specific needs.

The Kantronics Universal Terminal Unit can send and receive CW at 6-99 WPM; RTTY 60, 67, 75, 100, and 132 WPM; ASCII 110, 150, 200, and 300 baud; and AMTOR. Dual tone detection and our unique bargraph tuning system make tuning fast and easy. Additional LEDs indicate Lock and Valid status during AMTOR operation. The RS232 port is TTL or RS232 level compatible.

If you've been waiting for a Kantronics system for your computer, the wait is over.

For more information contact an Authorized Kantronics Dealer,
or write:

Kantronics
1202 E. 23rd Street
Lawrence, Kansas 66044
OWN THE WORLD WITH THE R3
NO RADIAL VERTICAL 10, 15, 20 METERS

The R3 half wavelength design eliminates the ground radial system required by other verticals. Optimum current distribution gives more efficiency and low angle radiation for DX communications.

R3 brings high performance antenna features to those living in apartments, condominiums or on small city lots. Even if you have plenty of space, R3's combination of neat appearance and DX capability make it ideal for your station. The R3 includes an integral tuner to give a perfect match across 10, 15, and 20 meters. The remote tuning feature allows easy fingertip control as you operate your station.

R3 is a complete antenna system ready to install in virtually any location from ground level to roof top.

FEATURES
3 dB Gain, ref 1/4 whip
No Radials
360° Coverage
Integral Tuner with
Remote Control Console and Indicator
24 Volts To Tuner
110 or 220 Volt Operation
7.5 ft (22.9m) Control Cable Included
Only 22 ft (6.7m) High
1 sq ft (.09 sq m) Space
Self Supporting
Stainless Steel Hardware
Mount: Sleeve Type Fits Pipe Up To
1 3/4 in (4.5cm) dia
Can Be Easily Stored and Set Up For Portable or Temporary Operation

Add up the features—you'll find that you can have ALL OF THIS PERFORMANCE without the need to buy tower, rotator and associated hardware. R3 IS ANOTHER PRODUCT CREATED FOR THE ENJOYMENT OF YOUR HOBBY BY THE WORLD RENOWNED CUSHCRAFT ENGINEERING DESIGN TEAM.

THE ANTENNA COMPANY
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108 USA
TELEPHONE 603-627-7877
TELEX 953-050 CUSHSIG MAN
AVAILABLE THROUGH DEALERS WORLDWIDE
OSCAR 11 IS BACK ON THE AIR AFTER 10 WEEKS OF FRUSTRATING SILENCE. UOSAT OSCAR 11, the University of Surrey’s scientific satellite, finally responded to signals from its parent command station May 14 and is now being tested to uncover its post-launch problem. Launched March 1 from Vandenberg AFB in California, the English Amateur satellite had gone off the air after only three orbits and then staunchly resisted all attempts to bring it back to life. The key to its resuscitation was provided by a crew in Greenland, who used a 100-foot dish to hear signals leaking from its 1.2 GHz command receiver that both confirmed its actual orbital position and provided clues to unlocking the command hangup! OSCAR 11’s Three Beacons Can Now Be Heard Again on 145.825, 435.025, and 2304.5 MHz. Another Sophisticated Amateur Satellite Could Be In The Offing, with a projected early 1986 launch date. This possible launch opportunity would permit a large payload, at least as heavy as OSCAR 10, opening the door for still another multi-function Amateur bird.

A World-Spanning Set Of Geostationary Amateur Satellites is also currently under consideration by AMSAT. Operating in the 1.3 or 2.3 GHz bands and stationed at suitable intervals around the equator, these satellites could provide a round-the-clock worldwide communications capability far beyond that of present orbiting Amateur satellites. Such a project would be expensive, however, so before proceeding too far with it AMSAT would like to hear expressions of interest and support. Write AMSAT, Box 27, Washington, D.C. 20044.

Volunteer Examiner Coordinators Are Now In Place In 10 of the 13 areas designated by the FCC. The sixth district now has a VEC, the Greater Los Angeles Amateur Radio Group (GLAARG), a grouping of area clubs; the San Diego Amateur Radio Council (SANDARC), should also have FCC acceptance before this sees print. Two additional VECs are on board in the fourth district, VE-administered exams have already been given in Alaska and the second, eighth and ninth call areas as this went to press, and GLAARG was hoping to start giving exams in the LA area in conjunction with Field Day. This leaves only the first and zero call areas, and the Pacific, without at least one acceptable VEC, though Wayne Green, WZNSD, has told Westlink that he intends to apply for first district VEC through the radio club at his recently established Wayne Green University.

The Proposal To Permit Exam Expense Reimbursement will probably be considered by the Commissioners by mid-July, and if there’s no hitch, exam fees could be in place before Labor Day. If so, expect the ARRL to submit its long-awaited VEC proposal very quickly. Just how soon a League-sanctioned program could get under way is questionable, however. The experiences of those VECs already up and running is that both the necessary paperwork and the exam process itself are sufficiently complicated to require some formal VE training. Dayton, for example, gives its VEs two three-hour training sessions. The League, however, expects to prepare its VE corps by simply distributing a “training manual!” Another factor to be resolved is whether the League can build an adequate “Chinese Wall” between its VEC role and its Amateur training and training publications activities, a problem that will also be a potential obstacle to any proposal from a Wayne Green enterprise.

The 1984 Summer Olympic Torch Run Kicked Off May 8 in New York City and passed through Chicago two weeks later. The torch bearers each run a four-mile segment, with their efforts coordinated by teams of 16 Amateur volunteers from AT&T’s Telephone Pioneers of America. Two meters is used for the bulk of their communications, using both simplex and area repeaters when available. By the time the run ends in Los Angeles in late July, the runners (and their Amateur Radio support teams) will have covered over 9000 miles.

Additional Expansion Of Phone Bands Could Be Decided before the end of July. Unlike the earlier FCC action on phone band expansion, which concerned only 20 meters, this time all other bands in the NPRM—75, 40, 15, and 10 meters—will be considered. However, just which phone bands will be changed and by how much is still an open question. Canada’s Department of Communications has proposed doing away with mandated subbands in its Amateur service! Amateur Access To The New 902 MHz Amateur Allocation may also be relatively imminent. IRAC (The Interdepartmental Radio Advisory Committee) seems to have no objection to giving Amateurs the band on a secondary basis, though RCA is protesting that its video disc players are susceptible to 902 MHz RFI. In the HF spectrum, 24 MHz may also see Amateur occupancy soon as well, but problems with existing users make access to 18 MHz a more distant hope. Getting New Bands From WARC Has A Negative Aspect, as well. Along with the gains come losses, the first of which will be a severe cut in the 1215-1300 MHz band. Amateurs along the Canadian border will also lose access to 420-430 MHz, and eventually (when AM broadcast expands upward) radiolocation will again lay claim to 1900-2000 MHz.

Further Expansion Of 20-KHz Channelization To Two Meter’s Top Half will be a major topic at the Texas VHF-FM Society’s August 11 meeting in Austin. Heading up the forum on this controversial change is Joe Jarrett, K5FOG, who seeks inputs from concerned Amateurs across the country. Papers (from those unable to attend in person) and outlines of oral presentations on the subject should go to Joe at 8501 Spring Valley Drive, Austin, Texas 78736.
Dear HR:

I am especially pleased to see Joe Reisert's VHF/UHF column and have written a personal note of thanks to him. I've been an avid V/UHF'er for over 20 years and try to communicate the excitement and challenge of operating on the VHF/UHF bands to other hams whenever I can. That's why I'm glad to see you giving someone of Joe's stature and expertise a chance to reach a large "lay" audience on a monthly basis!

Jack C. Parker, KCBW
Bismarck, North Dakota

Dear HR:

The January, 1984, issue came today, and I'm very pleased to be able to look forward to Joe Reisert's "VHF/UHF World" every month. I'm one of a handful of Amateurs in Montgomery who operate 2-meter SSB and plan to be on 432 soon. I am NCS of the Central Alabama 2-meter SSB net each Wednesday night at 0200 (Thursday) UTC on 144.250 MHz.

I also really liked the January "Ham Notebook." There have been many repeater controllers published in various publications, but this is the first time I have seen a repeater-to-phone schematic. This is a circuit I have been looking for — thanks.

Alton L. Erdman, W4CNQ
Montgomery, Alabama

Dear HR:

The January, 1984, issue came today, and I'm very pleased to be able to look forward to Joe Reisert's "VHF/UHF World" every month. I'm one of a handful of Amateurs in Montgomery who operate 2-meter SSB and plan to be on 432 soon. I am NCS of the Central Alabama 2-meter SSB net each Wednesday night at 0200 (Thursday) UTC on 144.250 MHz.

I also really liked the January "Ham Notebook." There have been many repeater controllers published in various publications, but this is the first time I have seen a repeater-to-phone schematic. This is a circuit I have been looking for — thanks.

Alton L. Erdman, W4CNQ
Montgomery, Alabama

I have been able to trace the company to the following address: 1819 South Central, Kent, Washington, 98031, but letters have been stamped "Not known" and returned. No phone number is listed.

I would like very much to have a copy of the workshop service handbook and/or circuit details, a copy of the operations handbook, and any other information — but specifically that which applies to the settings of the taps of the output stage.

I can arrange to have these photocopied in either the U.S. or Canada, or here in the U.K., and the original returned. I am willing to reimburse any expenses incurred.

Kris Partridge, G8AUU
6 Blagdon Walk,
Teddington, TW11 9LN,
United Kingdom

While the HI MANUALS catalog doesn't list the Maritek SB6-80, it's often a helpful source of hard-to-find manuals and schematics. For a copy, write to HI MANUALS, P.O. Box 802HR, Council Bluffs, Iowa 51502; enclose $1.00.

Editor

Operating etiquette

Dear HR:

I'm delighted when editors speak out about the selfish operating practices prevalent on the HF bands (Reflections, Ham radio, February, 1984). On the accidental occasions when I work DX, I want to get to know the other guy and find out interesting things about his country. I would never insult a foreign ham by implying that I am interested in him only for his QSL.

If I naively try to converse for more than a couple of minutes, however, the vultures pounce.

I'm also dismayed by hams who hog frequencies, claiming they are participating in phantom "nets" or handling nonexistent "overseas phone-patch traffic." I've heard better operating...
practices on the frequencies between 10 and 11 meters! CB isn’t to blame; some of the most rules-conscious hams I know are ex-CB’ers who hoped to find something better in Amateur Radio.

These things, plus the obnoxious proliferation of contests, cause me to confine most of my activity to experimental modes of communication where contacts are rare but always stimulating.

There are two kinds of hams — operators and experimenters. Both are necessary, but the operators vastly outnumber the experimenters. Bravo for ham radio for supporting us underdogs!

Frank Reid, W9MKV
Bloomington, Indiana

short circuit
filter design

In fig. 6 of W6NRW’s article, “Graphic Filter Design,” (April, 1984, page 37), the resistor labeled 528.2 should be labeled 582.2. This nominal 7 percent error in value results in some peaking and a general tilt to the filter’s passband.

Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM — Eastern time — before you begin construction. We’ll let you know of any changes or corrections that should be made to the article describing your project.
(See “Publisher’s Log,” April, 1984, page 6, for details.)
the VHF/UHF primer:
an introduction to propagation

To really work DX, try a new mode

One of the most interesting aspects of the world above 10 meters is radio wave propagation. Sure, we’ve all heard about F2, tropo, meteor scatter, ducting, EME, and perhaps auroral propagation. But are these the prime or only ways of working DX on VHF/UHF? No way!

In preparing my monthly column for ham radio, I’ve noticed that I’ll occasionally identify a propagation mode without providing any explanation about how that mode works. Sometimes it’s difficult to readily identify a particular mode of propagation on the VHF/UHF frequencies because not all modes are well understood. And different propagation modes are frequently combined, making identification difficult at best.

Over the years, the many articles written about VHF/UHF propagation have only rarely covered more than a few modes at a time. Lesser known modes have been hidden away and almost forgotten. In this article, I’ll identify and explain the most common modes of radio propagation, discuss some newly discovered, less common ones, and try to provide some insight into how you can exploit them and perhaps discover some new modes yourself. Wherever possible, references will be listed for those interested in pursuing the individual subjects further.

Before we proceed, remember that communications on any frequency is limited not only by the propagation mode and path length, but by several other factors such as transmitter power, receiver sensitivity, and antenna gain, among others. A full discussion of the latter parameters would fill an entire article, if not a book; hence, I’ll limit this discussion to a basic introduction and a review of most of the identified VHF/UHF propagation modes, as well as the operating techniques that make use of these modes. I’ll begin with the propagation modes on the lowest VHF frequencies and move on upward through SHF, adding some of my own observations and suggestions about how to use each mode to its best advantage.

line-of-sight

Line-of-sight, surely the most common form of VHF/UHF propagation; is easily understood. At one time it was thought to be the only reason to use VHF/UHF; even now, the idea of QRN-free local communications is appealing.

Light and radio signals usually travel in relatively straight lines. If the antenna height is known, a simple formula can be used to determine the distance to the horizon:

$$ D \text{ (miles)} = \sqrt{1.5H} $$

where H is in feet,

$$ D' \text{ (km)} = \sqrt{12.75H'} $$

where H' is in meters.

Because of changes in air pressure, temperature, and humidity along the path, the refractive index of the atmosphere may change and bend or refract signals over a greater distance than the normal line-of-sight. Generally speaking, this refractive index averages 1.33, meaning that we can normally communicate over a distance 33 percent further than the normal line-of-sight. To account for this we can modify eqs. 1 and 2 as follows:

$$ D \text{ (miles)} = \sqrt{2H} $$

or

$$ D' \text{ (km)} = \sqrt{17H'} $$

For example, station “A” has a 50-foot (15.24 meter) tower. It has a horizon of approximately 8.66 miles (13.94 km) and a radio horizon of 10 miles (16.09 km).

By Joe Reisert, W1JR, 17 Mansfield Drive, Chelmsford, Massachusetts 01824
Station “B” has a 100-foot (30.48 meter) tower. It has a horizon of approximately 12.25 miles (19.71 km) and a radio horizon of 14.14 miles (22.76 km). If stations “A” and “B” are on opposite ends of a straight line between the same point on the horizon, the distances can be added to find the maximum path length. In this example the line-of-sight distance would be 20.91 miles (33.65 km) and the radio horizon would be 24.14 miles (38.85 km). If two stations are attempting to communicate, any obstructions or trees at the common point on their respective horizons may attenuate signals!

path loss attenuation
Space does not permit me to discuss path loss attenuation at length; see reference 2 for a detailed summary of this phenomenon. In brief, it may be useful to know that typical line-of-sight attenuations for a 10-mile (16 km) unobstructed radio path are 90.5 dB at 50 MHz, 109.3 dB at 432 MHz, 123.8 dB at 2304 MHz and 136.6 dB at 10 GHz. Due to the inverse square law, attenuation increases or decreases by 6 dB every time you either double or half the path length or frequency, respectively. Hence, if you try to double the path length (providing you have line-of-sight), the path loss will be 6 dB greater.

F2 propagation
The supreme propagation mode for DX and the workhorse of the HF bands is F2 propagation. Once it was thought that ultraviolet radiation from the sun would never be sufficient to ionize the ionosphere sufficiently to support communications on 50 MHz via the F2 layer (approximately 150 to 250 miles or 250 to 400 km above the earth), but the experts were proven wrong when W1HDQ contacted G6DH crossband (6 to 10 meters) via this mode on November 26, 1946. Only hours later a transcontinental 6-meter two-way QSO using the same mode between W4GJO in Florida and W6QG in California occurred. Six-meter F2 was not too common during solar cycle 18, and the sun “cooled down” by November, 1947.

The International Geophysical Year (1957-1958) helped numerous stations obtain 6-meter permits where operation was normally forbidden. In October 1957 W4UMF worked SM5CHH, signaling what may have been the start of the greatest F2 openings ever recorded on 6 meters. Later that year K6GDI submitted the QSLs to qualify for the first WAC above 10 meters, showing the worldwide participation. In 1957, solar cycle 19 hit a tremendous peak, the highest recorded in history, when on December 24 to 25, the sunspot count reached 355 and worldwide propagation, even via the long path, became commonplace on 6 meters. But by early 1960, this cycle was on the decline, and unfortunately, solar cycle 20 displayed a more normal solar activity peak level with some 6-meter F2 contacts reported between November, 1967, and February, 1970. Most were single-hop contacts. It began to look as if we’d never see F2 on 6 meters again in our lifetime.

However, in the fall of 1978, during cycle 21, solar activity increased dramatically and F2 propagation began anew on 6 meters. The mean sunspot count in December, 1979, was 164.5, the highest for cycle 21. Unfortunately, many countries no longer permitted Amateur operation on 6 meters because of TV and other frequency allocations. As a result, many VHFers outside the United States had to be satisfied with SWLing or 6 to 10 meter crossband QSOs. 1980 saw a big F2 dip in the United States, but surprisingly, propagation returned for a strong second session in November, 1981, slowly diminishing in late 1982. (As I wrote this column, in March of 1984, F2 returned, with some USA areas working VK’s and ZL’s. No guess on how long it will last, but enjoy!)

Table 1. Claimed 2-meter (and up) terrestrial DX records.

<table>
<thead>
<tr>
<th>frequency band</th>
<th>record holder</th>
<th>date</th>
<th>mode</th>
<th>DX miles</th>
<th>km</th>
</tr>
</thead>
<tbody>
<tr>
<td>144-148 MHz</td>
<td>4EAT-ZS3B</td>
<td>30 March 1979</td>
<td>Trans. Eq.</td>
<td>4840</td>
<td>7788</td>
</tr>
<tr>
<td>220-225 MHz</td>
<td>KP4EOR LU7DJZ</td>
<td>9 March 1983</td>
<td>Trans. Eq.</td>
<td>3670</td>
<td>5606</td>
</tr>
<tr>
<td>420-450 MHz</td>
<td>K6ER-KH6IAA</td>
<td>28 July 1980</td>
<td>Tropo. duct.</td>
<td>2550</td>
<td>4103</td>
</tr>
<tr>
<td>1240-1300 MHz</td>
<td>V5SMC-VK7KZ/P</td>
<td>23 Jan. 1980</td>
<td>Tropo. duct.</td>
<td>1422</td>
<td>2290</td>
</tr>
<tr>
<td>2300-2450 MHz</td>
<td>V5SOR-VK6WG/P</td>
<td>27 Jan. 1978</td>
<td>Tropo. duct.</td>
<td>1190</td>
<td>1833</td>
</tr>
<tr>
<td>3300-3500 MHz</td>
<td>G3LDR-SM6HYG</td>
<td>11 July 1983</td>
<td>Tropo. duct.</td>
<td>576</td>
<td>927</td>
</tr>
<tr>
<td>5650-5925 MHz</td>
<td>G3ZEZ-SM6HYG</td>
<td>12 July 1983</td>
<td>Tropo. duct.</td>
<td>610</td>
<td>981</td>
</tr>
<tr>
<td>10-10.5 GHz</td>
<td>I6SNY/EA9-I8YLI/IT9</td>
<td>18 July 1983</td>
<td>Tropo. duct.</td>
<td>1034</td>
<td>1663</td>
</tr>
<tr>
<td>24-24.5 GHz</td>
<td>DJ2UH/P DJ4YJ/P</td>
<td>21 Feb. 1982</td>
<td>Tropo. duct.</td>
<td>152</td>
<td>244</td>
</tr>
<tr>
<td>48 GHz and up:</td>
<td>none reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: EME hasn’t been included since it would distort the records significantly. EME DX of over 11,000 miles (17,699 km) has been accomplished on 2 meters, 70 cm and 23 cm. 220 MHz is only limited by the lack of frequency allocations worldwide. 13 cm is the highest band where Amateur EME QSOs have been claimed.
F2 propagation requires a very high sunspot count, typically greater than 125, which is roughly equivalent to a 2800 MHz solar flux of 175 (as broadcast at 18 minutes after each hour on radio station WWV). Generally speaking, in the continental United States, openings start first at the southern latitudes, slowly working up to the northern latitudes over a period of days to weeks as the ionosphere gets "pumped up." Hence the solar activity has to be sustained for at least several days in a row. In the continental USA, openings usually occur between late October and March, favoring southern latitude stations.

At the first appearance of F2, single hop distances are right at the MUF and very long (typically 2500 miles or 4000 km), getting shorter as the ionization builds for several days. As the ionization increases, the MUF slowly rises, permitting operation above 52 MHz. Six-meter communications with low power (10 watts or less) become possible even with dipole antennas. If conditions remain favorable, multiple hops become possible.

The best propagation between two points usually occurs when the sun is about halfway between the stations and almost always requires that the entire path be in sunlight. At times the path can be rather selective, especially on multiple hops; this means that stations as few as 10 miles (16 km) apart may not be able to hear the same distant station. F2 can also link up with sporadic E (more on this later) and extend the path. When solar disturbances occur, the north-south paths show little or no change and often become enhanced soon after the storm subsides. However, the east-west paths drop off quickly and are usually good only during disturbed solar periods.

Although several crossband 50-70 MHz QSOs were reported during cycle 21 between VE1ASJ and the United Kingdom, the 70 MHz signals were almost certainly not propagated by F2 but rather by sporadic E, since sporadic E propagation was in evidence on 6 meters during these openings.

Much of the success during cycle 21 can be attributed to improved gear, propagation beacons, monitoring of commercial paging and television stations (such as the BBC on 48.25 MHz), and the various liaison nets, especially those on 28.885 MHz (this frequency is still used whenever 10 meters is open). Most of the 6 to 10 meter crossband operation takes place near this frequency. Solar bulletins on radio station WWV at 18 minutes after each hour are also helpful because they report solar flux, an indication of sunspot count, and disturbance warnings via the "A" and "K" indices. Much more information on F2 can be found in "The World Above 50 MHz" column in QST during the appropriate years. It's doubtful that any widespread F2 propagation will occur on 6 meters again until about the year 2000, but it sure was great while it lasted!

backscatter

This mode of propagation, a form of radar, often precedes sporadic E and F2 openings. It is most prevalent on 10, 15, and 20 meters and sometimes occurs even on 40 meters. Its presence indicates that the MUF is very high. In backscatter operation, what happens is that an area of the ionosphere is so highly charged that signals traversing the E or F2 layer path strike the earth at some distant point and are scattered. If two stations running reasonable power and antenna gain aim at this common scattering point, communication is made possible by reflection. Because signals arrive from several different directions at the same time (multipath), they are usually weak and distorted. A good time to look for 6-meter backscatter is when propagation is good on 10 meters; even then, it may be difficult to spot unless there is lots of activity. This mode is primarily limited to 6 through 40 meters and can be used for DX even up to 3000 miles (4825 km).

midlatitude intense sporadic E

This is truly the workhorse mode for DX on 6 meters. Propagation is typically from ionized clouds located in the E layer and usually approximately 60 miles (100 km) above the earth in the midlatitudes (25 to 55 degrees north latitude). There is also equatorial and polar sporadic E, but they are slightly different in nature and of little value for continental USA stations since they are too far south or north to be of any use.

In the continental USA, sporadic E propagation usually peaks near the summer solstice (June 21). Typical limits are from May to early August but can occur any time of year. Typical DX limits are about 300 to 1300 miles (485 to 2100 km) per hop but two and even three hops are not uncommon on 6 meters. A lesser peak occurs approximately within plus or minus one month of the winter solstice (December 21) but this peak is considerably shorter, weaker and usually limited to single hop. It is worthwhile noting that the peaks also occur in the southern hemisphere in reverse order. Although sporadic E propagation can start at any time of the day, it is most prevalent in the late morning, the late afternoon and into the early evening. There is some speculation that sporadic E occurrences are more common and stronger when sunspot activity is low. Hence propagation via this mode may improve in the next few years.

The exact mechanism that triggers sporadic E is still not known. Some people attribute it to weather-related phenomenon, especially wind shear and lightning storms. The late Mel Wilson, W1DEI/W2BOC, devoted much of his Amateur career to the study of sporadic E and wrote several very interesting articles on the subject. He pointed out that the clouds that produce the propagation originate at a location he
called the "birthplace" and usually travel in relatively straight lines at approximately 180 miles (290 km) per hour from southeast to northwest (fig. 1). For best propagation, he said, the cloud should be on or nearly on a line drawn between the two stations at the halfway point. Clouds ±5 degrees off the path can be used and up to ±10 degrees at the extreme. A single cloud will be usable for up to 5 minutes. The size of the cloud has been estimated to be in the order of tens to hundreds of feet (5 to 100 meters) vertically. Multiple clouds are often being formed in the same birthplace so they will pass by as they are generated. The best sporadic E propagation seems to occur when no major high pressure areas are present. (Mel's work will be carried on by his son Steve, W2CAP/1.)

Midlatitude sporadic E is also usable on 2 meters with the first reported contacts made between northern Texas and southern California on July 10, 1951, for a distance of approximately 1300 miles (2090 km). At first, other 2-meter openings were rare, probably due to lack of activity, and weren't recorded again until July, 1956 and June, 1959. Nowadays 2-meter contacts are usually reported yearly and tend to occur between late June and early August, but can occur on the winter peak as described above. Strong lightning activity, especially the type that occurs above 60,000 feet (18,288 meters), is often present near the midpath of big 2-meter openings. Tornadoes and hail storms are often present at the mid-point of the path during 2-meter openings. Typical 2-meter QSOs using sporadic E are shown in fig. 2 from data given to me by the late Mel Wilson. Although we have had some very long DX (over 1600 miles or 2575 km) 2-meter openings in the United States, I have never heard of a documented double-hop QSO over 2000 miles (3218 km) such as has been recorded in Europe. The greater number of reported 2-meter openings "caught" in recent years is probably due to better monitoring and improved equipment as well as the new common 2-meter calling frequency, 144.2 MHz. The frequency limits for sporadic E are believed to extend above 220 MHz and W1JR and WØVB have both been heard on this frequency by other stations but in each case equipment problems at one end of the path prevented...
completed QSOs! (I've noticed, by the way, that all the good east-to-west 2-meter sporadic E openings I've heard from the New England area in the past eight years have occurred within two weeks on either side of July 20th. Any comments?)

The best way to "catch" sporadic E openings is to listen on 10 meters for short skip conditions. When the 10-meter path gets down to 300 to 500 miles (483 to 805 km), the 6-meter band is probably ready to pop or is already open. Similarly, when the path on 6 meters gets very short (perhaps 400 to 500 miles or 645 to 805 km) and intense, try putting out a call on the 2-meter calling frequency. Remember that the reflection from the cloud will usually be different on 2 meters than on 6 meters. The distance will generally be much longer on the higher frequency, so judge accordingly if you're making schedules. Backscatter, especially from a local, is an indication that there are lots of clouds and a big opening is about to begin. You can't have a QSO without making some noise to alert others of an opening. W4WD has noticed that whenever WWV forecasts a "strat-warm," a sporadic E opening usually occurs within the following 12 to 24 hours.

TE (transequatorial) scatter

This was truly an Amateur Radio first when long-distance (5000 miles or 8000 km) propagation was established across the equator on 6 meters in August, 1947. It is significant that tests have verified that the signals first enter a bell-shaped ionized area midway between the station and the geomagnetic equator and then are ducted to the opposite ionized area without intermediate reflection from the earth.¹²

For best results, stations should be located about 1500 to 2500 miles (2400 to 4000 km) north and south of the geomagnetic equator and signals should cross the geomagnetic equator at close to right angles. However, deviations of up to ±20 degrees have been known to occur. It is also significant that propagation may not necessarily be present at the same time at lower frequencies. These contacts usually improve during the equinoctial periods, especially when solar activity is high, as occurs near the peaks of the solar cycles. Openings may start in the late afternoon with clear sounding signals but early evening (at the midpoint on the path) signals often have a flutter with up to a 15 Hz rate. Signals may last until midnight, long...
Stainless Steel... IS FOREVER!

The NOVA SS 112
"Compatible at 2° Spacing"
Also The NOVA SS 90
And The Amazing
NOVA SS 66

- Low noise deep dish design.
- Superior hydroforming process.
- High Gain one-piece design.
- Excellent durability and low maintenance.
- One piece for easy installation.
- All electronics enclosed in protective housing.
- Plated bolts, nuts and washers.
- Complete heavy duty packaging of entire system for safe shipment.
- Polarizer & LNA Bracket included.
- BEST OF ALL: A 10 Year Limited Warranty.

NOVA SS 112 ANTENNA DATA
Antenna Construction: Hydroformed, one piece, stainless steel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3.70 - 4.20 GHz</td>
</tr>
<tr>
<td>Gain</td>
<td>39.5 dB at 3.95 GHz - 40.0 dB at 4.20 GHz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>64%</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>B = 1.7°</td>
</tr>
<tr>
<td>Focal Length</td>
<td>33.5/8"</td>
</tr>
<tr>
<td>f/D</td>
<td>3</td>
</tr>
<tr>
<td>Wind operational</td>
<td>40-50 mph steady load</td>
</tr>
<tr>
<td>Survival</td>
<td>125 mph steady load</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-50° to 130°</td>
</tr>
<tr>
<td>Warranty</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Our NEW Full Color Catalogs Are Now Available!
Featuring a complete assortment of NOVA Equipment and accessories. Send name & address and $1 for postage.

KAUL-TRONICS, INC.
Route 2 • Box 637 • Richland Center, WI 53581 • For Service Phone 608/647-8902
Phone for Ordering: WI (800) 826-NOVA • USA (800) 826-KAUL

July 1984
after F2 has disappeared. The frequency usable is typically 1.5 times the MUF maximum that occurred earlier in the same day.

Unfortunately for stations in the continental United States, the geomagnetic equator runs about 15 degrees south of the true equator in this hemisphere. Consequently only stations in very southerly latitudes of the continental United States are optimally located. Stations in South Africa to the Mediterranean as well as Japan to Australia are in more favorable locations for this mode of radio propagation.

equatorial FAI (field aligned irregularities)

There was always the hope that someday there would be propagation as high as 2 meters across the equator. Then on October 29, 1977, it happened, when YV5ZZ/6 in Venezuela made a 2-meter contact with LU1DAU (in Argentina) at a distance of about 3135 miles (5045 km). After this initial success, openings kept occurring and distances kept improving, and by February, 1979, contacts were established between Puerto Rico and Southern Argentina, Australia and Japan as well as between Rhodesia and Greece.

Often the signals had an auroral sound (more on this later). Stations with elevation control noticed that signals were optimized at 5 to 8 degrees elevation. And while 70 cm (432 MHz) signals could be heard no QSOs were made on that frequency. Finally, in 1983, a successful 220 MHz QSO was completed between KP40ER and LU7DJZ (see table 1). Some Amateurs speculated on the existence of a new propagation mode, possibly one using a scatter mechanism and FAI from ionized bubbles. Others suggested ducts. At this time no one agrees except to say that more time and study is required.

We now know that propagation between stations equally spaced north and south of the geomagnetic equator can occur up to 70 cm. The best times and seasons for these contacts seem to be those most frequently observed for TE, as explained above. There is much more to be done in this important area — another Amateur Radio first.

ionospheric scatter

This mode of propagation, a form of forward scatter, is believed to be due to scattering in the lower D region (30 to 55 miles or 50 to 90 km) of the ionosphere. Typical distances are 800 to 1300 miles (1300 to 2100 km). Signals are usually continuous, but weak and wavy with a broad peak around midday at the midpath and during the summer months. Signal attenuations are approximately 90 dB greater than free-space loss at 6 meters and 115 dB at 2 meters. Hence this mode of propagation is definitely within the capability of two well equipped stations with 2-meter EME capability and deserves more attention.

aurora

Aurora, caused by magnetic disturbances on the sun, is called *aurora borealis* (or “northern lights”) in the northern hemisphere and *aurora australis* in the southern hemisphere. Aurora borealis are most common around the equinoxes in March and September and usually begin in the late afternoon or early evening, though they can occur at any time of the year and are sometimes active in the early afternoon as well as all through the night and even into morning! The number of auroral occurrences tends to peak at the beginning and at the end of a solar cycle peak (e.g. 1978-79 and 1982-83) and decrease significantly when sunspot activity is low. They usually occur 24 to 48 hours after a major solar flare. A WWV “A” index of 30 or greater or a “K” index of 4 or more is a good warning of impending aurora. Weak or “watery” sounding HF signals are an excellent indicator of aurora presence although their presence does not guarantee that the openings will extend to VHF/UHF.

Typical auroral propagation occurs in a region between 47 to 84 miles (75 to 135 km) above the earth. If you were to look down on the earth from directly over the magnetic pole, an aurora would appear to be shaped like a halo or doughnut. (See satellite photograph shown in reference 11.) From a vantage point on the earth, auroras appear to be thin sheets or columns of light that are not quite vertical but tipped at the local dip angle of the magnetic field. Those in the far north are usually green, while those that extend further south may be red. The further south the aura extends, the greater the DX possibilities; they are, after all, a superb reflector of radio waves.

The auroral reflection occurs when the angle of incidence equals the angle of reflection, but incidence and reflection paths need not lie in the same plane. Propagation via auroral reflection has been verified up to about 3000 MHz, but no known Amateur contacts have been reported above 70 cm (432 MHz). The best reported DX is about 1336 miles (2150 km). High power (several hundred watts or greater) is beneficial, but even 10-watt stations have had confirmed 70 cm QSOs. Occasionally the aurora extends far enough south so that even stations in Florida, Texas, New Mexico, and Arizona can establish auroral contacts.

For communications via auroral propagation, both stations should aim their antennas at the same “hot” spot. The cross-section of reflection decreases with increasing frequency. The angle of perpendicularity with respect to the earth’s magnetic field also decreases with frequency. Typical accuracies required are ±12 degrees at 220 MHz, ±9.5 degrees at 432 MHz and ±6 degrees at 780 MHz. Since typical antenna installations have beamwidths that usually decrease in both the horizontal and vertical planes with
increasing frequency, the path becomes more difficult and would definitely be improved above 220 MHz if both stations could also change antenna elevation. This is particularly true when trying to contact a station that is either several degrees of latitude north or south of you. Hence, higher power is definitely preferable to increased antenna gain.

Auroral signals usually sound like a “buzz” or white noise because of the Doppler spreading caused by the rapidly changing ionization. CW is preferred, but SSB is usable, though hard to understand and lacking high pitched sounds, if you are operating on the lower VHF bands and the aurora is strong. I’ve noticed that if a CW signal is narrow (1 to 2 kHz) on 2 meters, there is usually sufficient ionization to permit 220 MHz and maybe even 70 cm contacts. I’ve also noticed that the MUF usually peaks shortly after the onset of the aurora, perhaps in 15 to 30 minutes, and then slowly decreases as time passes. Hence it is advisable to take advantage of the higher VHF/UHF bands as soon as the aurora gets going rather than discover later that the MUF has dropped.

“Watery” or wavery sounding signals on HF (10 to 160 meters) are an excellent indication that aurora is present and can be a tip-off to look for VHF/UHF auroral propagation. Auroras can be easily detected using a TV video carrier monitor on channel 12 (205.25 MHz) or 13 (211.25 MHz), similar to the one I described in last month’s column. Just point your beam north and listen for the “buzz” on the carriers. This is also a good system for finding where the aurora is peaking and whether the MUF is high. I’ve noticed that the “hot” spot may be in a slightly different place at 220 MHz than on 6 or 2 meters (perhaps due to antenna patterns or other variables). This is invaluable information when trying to find 220 MHz and 70 cm signals.

Another observation I’ve made is that the Doppler shift may vary when you swing your beam back and forth while listening to an auroral signal. I’ve measured up to ±1 kHz shift on 2 meters on locals and considerably more on 220 MHz and 70 cm. Consequently it’s advisable to tune ± several kHz when listening for answers to a CQ. If you’re using a modern transceiver, tune with your RIT so you don’t transmit back on a new frequency! Lately I’ve noticed this happening more often — but doing so can be disastrous on aurora, since you may land on top of another signal and be completely unreadable in the QRM, causing confusion to the operator you’ve answered, who is no doubt wondering where you went! Likewise, be careful where you zero-beat your own signal if you want an answer.

Finally, look for activity on or near the VHF/UHF calling frequencies. During auroras, this is usually 50.100, 144.100, 220.100 and 432.100 MHz on CW and with 50.110 and 144.2 on SSB. By all means, call CQ.

When you hear a reply, try to peak your beam quickly in order to optimize the path, since each station will come in at a slightly different direction depending on latitude and longitude.

artificial auroras

Attempts have been made to generate artificial auroras by using rockets to inject barium clouds into the ionosphere; in recent years, scientists in both the United States and the Soviet Union have created yet another form of artificial radio aurora. This propagation mode is similar to the natural auroras described except in that it is generated by radiating very high amounts (typically 40 Megawatts of ERP) of HF (typically 3 to 10 MHz) CW power vertically into the ionosphere. The scattering center is directly above the transmitter. The principal tests have been conducted in Platteville, Colorado, with a 1-Megawatt transmitter and a large antenna array, and at Arecibo, Puerto Rico, with 100 kilowatts, using the 1000 foot (305 meter) spherical dish. Operations have been successful as high as 430 MHz, and the signals are usually narrower than those generated by natural aurora.

auroral “Es”

This is a much sought after mode of propagation on 6 meters. According to WA0IQN, ionospheric sounders have verified that sporadic E may be present just below an aurora, but the reasons for this are not known. When particle precipitation becomes strong enough, sufficient electrons collect at the bottom of the field line and form a “puddle” which can spread horizontally. It may then appear like sporadic E after the effects of the aurora wear off and thus yield DX in the northern regions of the United States and Canada. This may explain why some 6 meter auroras sound almost like sporadic E propagation. Auroral Es usually occur within a few hours after an aurora fades out.

meteor scatter

Meteor scatter is one of the prime modes for DXing on VHF/UHF. Every day 50 to 100 million particles randomly enter the earth’s atmosphere, where they burn up in the E region (50 to 150 km high) and leave ionized trails capable of reflecting radio signals. Due to the orbital characteristics of the earth, these random particles tend to increase slowly after midnight, reaching a broad peak at 6 AM and slowly decrease as the morning wears on, reaching a minimum at about 6 PM local time. The best months for random meteors in the continental United States are between June and August, with a minimum occurrence in February.

Even more important to the VHF/UHF DXer are meteor showers. They can occur at any hour of the day, and while they may be short in duration (any-
where from a few hours to a day or two long), they do occur on predictable dates. The better known showers are the Perseids (approximately August 11) and the Geminids (approximately December 11). DX, typically 500 to 1400 miles (805 to 2250 km) is accomplished by reflecting signals off these meteor trails.16

Most meteor scatter operation is on 6 and 2 meters, but 220 MHz and occasionally 70 cm (although there have been only about a half dozen reported contacts on this frequency to date) can be used in the higher speed showers. A recent article13 described how to optimize the use of this mode; readers who wish to know more should refer to that article.

FAI

The authors of reference 7 speculated that FAI similar in nature to that which produces the great TE FAI may be present in the midlatitude regions, and that signals in this mode would probably have an auroral quality. At the same time this article was published, K4GFG was conducting a nightly over-water tropo schedule in an attempt to QSO KP4EOR, who was also involved in the TE FAI experiment. What transpired was a QSO, not by tropo propagation, but by FAI with weak and “watery” signals peaking about 10 to 20 degrees north of the great circle path.17

During the following summer (1979), signals appeared over the United States and FAI-type QSOs were made from Florida to Texas and Alabama again, with auroral-type signals peaking north of the great circle path. Occurrences seem to be in the late evening, following sporadic E openings. Typical path loss is in the area of 218 to 230 dB at 2 meters and 248 dB at 220 MHz, meaning that fairly large setups (kW and modest gain antennas) are required to take advantage of this mode. Reference 17 provides charts for pointing antennas and speculates that this mode may be possible as high as 70 cm, although no known QSOs have taken place above 2 meters as of this writing. It is a fascinating possibility for VHFers and a nice way to work real DX when the band would otherwise be quiet!

EME

Earth-Moon-Earth, or “moonbounce” is one of my favorite subjects because it’s the ultimate DX for the Radio Amateur. When you bounce your signal off the moon and listen for the returning signal, the path is up to 500,000 miles (804,500 km) in length and it takes the signal over 2.5 seconds to traverse the distance! Hence EME allows you to monitor your own signal after it is sent — and if you hear your own echoes, you know that your signal got where it was supposed to go, not like the dead-band syndrome on HF. You also know your equipment is operating successfully; by listening to the strength of the echo you can also tell how well it’s working and whether your most recent improvement actually works.

While EME is not for the faint-hearted, it can be achieved by the typical VHF/UHFer. The first EME stations were highly experimental and results were marginal at best. However, with the advances in the state-of-the-art (such as good low-noise transistors and GaAs FETs, high performance Yagis and parabolic dishes as well as efficient amplifiers), EME really took off in the late 1960s. Nowadays, when conditions are good on 2 meters, you have the capability of hearing your own echoes; WAS as well as WAC are possible with 500 watts of output power and four 3.2 wavelength NBS-type Yagis. Even a single-Yagi station with a good low-noise antenna-mounted preamplifier can hear the larger EME 2-meter and 70 cm stations off the moon when conditions are good. Over 50 DXCC countries are now or have been active on EME in the last few years and EME expeditions are no longer uncommon.

Typical path losses for EME range from 251 dB on 2 meters to 276 dB on 13 cm (2300 MHz), the highest frequency band on which Amateur contacts have been claimed.18 A few EME QSOs have been made on 6 meters, but the antenna systems were very large, and noise was a limiting factor. EME is now commonplace on 2 meters, 220 MHz, 70 cm, and 23 cm, where contacts are made almost daily and even SSB QSOs are not uncommon. Typical EME operating and calling frequencies are listed in table 2.

<table>
<thead>
<tr>
<th>band</th>
<th>frequencies used</th>
<th>calling frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 meters</td>
<td>144.000-144.110</td>
<td>144.003-144.010</td>
</tr>
<tr>
<td>220 MHz</td>
<td>220.0-220.080</td>
<td>220.020</td>
</tr>
<tr>
<td>70 cm</td>
<td>432.000-432.070</td>
<td>432.010</td>
</tr>
<tr>
<td>23 cm</td>
<td>1296.000-1296.060</td>
<td>1296.010</td>
</tr>
<tr>
<td>13 cm</td>
<td>2304-2304.1 and 2304.050 and 2320-2320.2</td>
<td>2320.150*</td>
</tr>
</tbody>
</table>

*Most Europeans can no longer operate below 2320 MHz in the 13 cm band. The USA Amateurs may soon lose the frequencies between 2310-2390 MHz. Therefore, cross band operation may be required.

13 cm is now being tried, and DFØEME has reported several QSOs using a 9-meter dish. The interesting thing about 23 and 13 cm is that the power levels and antenna systems are small in comparison to 2 meters and 220 MHz. For example, some stations on 23 cm have been making QSOs rather routinely with dishes as small as 8 to 13 feet (2.5 to 4 meters) in diameter and with power as low as 100 watts at the feed. They’re making good use of the new low-noise GaAs FET preamplifiers mounted right at the feed and of the
NEW MBATEXT™

$109.95 List/CALL FOR PRICE VIC-20 MBATEXT or C-64 MBATEXT

MBATEXT™ is the most advanced MBA (Morse, Baudot, ASCII) software plug-in cartridge available for the VIC-20 or Commodore 64 computer. Compare our outstanding features and price to the competition.

- KEYBOARD OVERLAY instructions to avoid constant referral to the manual
- RTTY and ASCII SPEED ESTIMATE MODE
- BREAK-IN CW MODE
- QSO BUFFER RECORD TOGGLE
- WORD PROCESSOR style insertion, deletion, and correction in TEXT EDIT MODE
- CW AUTO SPEED TRACKING plus SPEED LOCK
- BREAK-IN BUFFER that is easy to use
- Low speed FARNsworth CW TRANSMISSION (between 5 and 14 WPM)
- RE-TRANSMIT RECEIVED TEXT DIRECTLY without need of disk or cassette
- DISK, CASSETTE, OR PRINTER storage of message and QSO buffers
- RECEIVE AND TRANSMIT 5-99 WPM MORSE
- 10 SOFT-PARTITIONED™ MESSAGE (OR TEST) BUFFERS
- WORD WRAP
- TIME OF DAY CLOCK
- PRECOMPOSE SPLIT SCREEN OPERATION
- STATUS INDICATORS on screen
- EASY START-UP by simply typing SYS 44444 or SYS 33333
- DEDICATED FUNCTION KEYS for quick operation
- Ability to IMBED CONTROL FUNCTIONS in type-ahead buffer
- WORD OR CHARACTER mode
- SELECTABLE BAUDOT UNSHIFT ON SPACE (USOS)
- SEND/RECEIVE 60, 67, 75, 100, 132 WPM BAUDOT PLUS 100, 300 BAUD ASCII
- RTTY BLANK-FILL and MORSE BT option for idle transmit periods
- AUTOMATIC PTT
- computer control of TONE REVERSE
- MASTER MENU, COMMAND MENU, and OPTIONS MENU makes MBATEXT™ easy to use with no prior experience
- INCLUDES CABLE TO INTERFACE WITH AEA model CP-1 COMPUTER PATCH™
- POWERED BY HOST COMPUTER

NEW MICROPATCH™

MICROPATCH™ is a new low-cost, high-performance Morse, Baudot and ASCII software/hardware computer interface package. The MICROPATCH™ model MP-20 or MP-64 incorporates the complete MBATEXT™ software ROM (described above) for either the VIC-20 or Commodore 64 computers. All circuitry and software is incorporated on a single, plug-in cartridge module featuring the following:
- TRUE DUAL CHANNEL MARK AND SPACE MULTI-STAGE 4 POLE, CHEBYSHEV ACTIVE FILTERS
- AUTOMATIC THRESHOLD CORRECTION for good copy when one tone is obliterated by QRM or SELECTIVE FADING
- EASY, POSITIVE TUNING with TRIPLE LED INDICATOR
- NOT a low-cost, low-performance phase-locked loop detector!
- SWITCH SELECTED 170 Hz or WIDE SHIFT on receive
- 800 Hz multi-stage active CW FILTER
- AUTOMATIC PTT
- RTTY ANTI-SPACE demodulator circuitry powered by external 12VDC (not supplied) to AVOID OVERLOADING HOST COMPUTER and for maximum EMI ISOLATION
- EXAR 2206 SINE GENERATOR for AFSK output
- SHIELDED TRANSCIEVER AFSK/PTT INTERFACE CABLE PROVIDED
- PLUS or MINUS CW KEYED OUTPUT
- FSK keyed output.

The Micropatch is structured for easy upgrading to the AEA Computer Patch™ advanced interface unit without having to buy a different software package! Simply unplug the external computer interface cable (supplied with the Micropatch) from the Micropatch and plug it into the Computer Patch.

COMPUTER PATCH™

COMPUTER PATCH™ is the name of our most advanced computer interface equipment for Morse, Baudot, ASCII, or AMTOR operation. The CP-1 will allow you to patch most of the popular personal computers to your transceiver when used with the appropriate AEASOFT™ TU software such as AEA MBATEXT, AMTOR TEXT™, or the MBATEXT RESIDENT ON THE MICROPATCH units. AEA also offers a full feature software package for the Apple II, II Plus and IIE; TRS-80 Models I, III and IV; and the IBM-PC. The CP-1 will also work with certain other computers using commonly available software packages.

The CP-1 offers the following advanced and high quality features:
- HANDSOME ALL METAL ENCLOSURE FOR MAXIMUM RF IMMUNITY
- DUAL CHANNEL, MULTI-STAGE ACTIVE MARK AND SPACE FILTERS
- AUTOMATIC THRESHOLD CORRECTION
- RECEIVE 170 Hz FIXED OR 100-1000 Hz VARIABLE SHIFT
- 800 Hz multi-stage CW FILTER
- PRE-LIMITER AND POST-LIMITER FILTERS
- SERIAL RS-232 FIELD INSTALLABLE OPTION
- 117 VAC WALL ADAPTOR SUPPLIED
- PLUS (+) and MINUS (-) CW OUTPUT JACKS
- MAGIC EYE STYLE BAR GRAPH TUNING INDICATOR
- SCOPE OUTPUT JACKS
- NORMAL/REVERSE front panel switch
- MANUAL (override) PTT switch
- VARIABLE THRESHOLD for CW
- ANTI-SPACE RTTY
- KEY INPUT JACK for narrow shift CW ID on RTTY, CW practice, or keyboard bypass.

The CP-1 is made in the U.S. with high quality components including double-sided glass epoxy through-hole plated boards, complete with solder mask and silk screened parts designators.

PACKAGE SPECIALS

$239.95

CP-1/20 (CP-1 with VIC 20 MBATEXT) CP-1/64 (CP-1 with C-64 MBATEXT)

SUGGESTED AMATEUR DISCOUNT PRICE THROUGH PARTICIPATING DEALERS ONLY

C & A ROBERTS, INC.
18511 Hawthorne Blvd., Torrance, CA 90504
213-370-7451 800-421-2258

AEA Brings you the Breakthrough!
The only manufacturer offering Amateurs
the advantages of MOSFET RF Power Amps

MOSFET Mobile Power Amplifiers

4101 Complete 2 Meter Handie Talkie Accessory - All mode RF power amp., 2 Watts in = 25 Watts out, 50 Watt max. Regulated power supply, with adjustable current limit, for HT power or battery charge. 4 Watt speaker amplifier. Optional plug-in receive preamp. You must fabricate a cable to connect to HT; plug supplied. $215

4102 Complete 2 Meter Handie Talkie Accessory - All mode RF power amp., 2 Watts in = 100 Watts out. Regulated power supply, with adjustable current limit, for HT power or battery charge. 4 Watt speaker amplifier. Optional plug-in receive preamp. You must fabricate a cable to connect to HT; plug supplied. $325

4103 All Mode 100 Watt 2 Meter Amplifier - 10 Watts in = 90 Watts out, 2 Watts in = 30 Watts out. No harm with 25 Watt transceivers. Optional plug-in receive preamp. Optional #4106 remote control. $245

4104 All mode 100 Watt 220 MHz amplifier - 10 Watts in = 70 Watts out, 2 Watts in = 25 Watts out. No harm with 25 Watt transceivers. Optional plug-in receive preamp. Optional #4106 remote control. $245

4105 All mode 100 Watt 2 Meter amplifier - 2 Watts in = 100 Watts out. Optional plug-in receive preamp. $295

Also come to FALCON for your MOSFET Repeater Amplifiers
very low sky noise above 400 MHz. All things being equal, path loss and antenna gain increase directly with frequency. However, since the antenna gain is added twice (once on receive, and once on transmit), the overall signal-to-noise ratio increases with increasing frequency. Another advantage of EME is that you don’t have to wait for a band opening!

The EIMAC EME notes are a great help for the newcomer to EME. Reference 20 describes the requirements for 70 cm EME as well as helpful hints to improve your station and equipment both on EME and terrestrial. (A later column will describe 220 MHz requirements. See you off the moon!)

tropospheric scatter

This mode of propagation uses the reflections off dust particles, clouds and the refractive index variations that occur in the troposphere (1000-50,000 ft. or 305-15,250 meters above sea level) to provide reliable VHF/UHF propagation up to 1000 miles (1609 km) between well equipped stations. 21,22 For several years starting in 1953 Chisolm et al 22 conducted interesting tropo scatter tests over 98-830 mile (158-1335 Km) paths from Massachusetts to North Carolina. They proved that with adequate equipment, 70 cm signals could always get through with path loss varying from 190 dB at 98 miles (158 km) to 258 dB at 618 miles (994 km) and 300 dB at 830 miles 1335 km).

Both stations should aim their antennas at each other on the great circle path and their signals will scatter from the common volume of the atmosphere somewhere near the mid point in the path. For best long haul DX, a low angle of radiation is essential making it desirable to have your antenna fairly high (10 wavelengths minimum but greater than 20 wavelengths is unnecessary), in the clear, and a good low-angle horizon. Antenna gain is not fully realized since the power is not from a point source but from a volume in the atmosphere.

Typical path attenuations for the long DX (greater than 300 miles or 483 Km) are such that an EME type setup is desirable. However, many EME stations are now using their EME arrays with mast mounted pre-amplifiers so DX is no longer a problem on the VHF/UHF frequencies. Recent work in the U.K. on 3 cm (10 GHz) shows that troposcatter is a very reliable mode. 21 They predict that a 440 Km range is possible using 1 watt and 4 foot (1.22 meter) dishes by each station. This propagation mode deserves more attention especially on 70 cm and above!

tropospheric bending

Tropospheric communication utilizes weather-related changes in the atmosphere to propagate VHF/UHF signals over much greater than line-of-sight distances. Under normal weather conditions, the temperature of the atmosphere decreases in a more or less linear fashion with increasing altitude. However, if the temperature should abruptly increase with increasing altitude, the conditions are right for long haul DX. This usually happens between 3000 and 6000 feet (915 to 1930 meters) above local terrain and causes the refractive index to significantly increase beyond 1.33 as started earlier in the line-of-sight discussion. If you are at an elevated QTH, you could get above the temperature inversion and be unable to propagate through this layer!

Best tips are to look for increased cloudiness following a period of fair and calm weather. Best periods occur after a long (two or more days) high steady barometer (greater than 30.3 inches or 1025 millibars) starts to drop due to the approach of a slow moving low pressure area from a few hundred miles away, especially when moist air masses are approaching such as from the Gulf of Mexico. Signals are usually strongest in the late evening and especially in the early morning around sunrise. For advanced warning watch weather maps especially on TV. Remember that weather maps in the newspapers may be 24-48 hours old and hence may be after the fact! The late Ross Hull wrote several interesting articles on this subject. 23

I have also noticed that the really good overland tropospheric bending generally occurs in the winter months in the states bordering or near the Gulf of Mexico and between mid-August and late November in the central, northern and northeastern continental USA. Openings are also prevalent when there are large inversion layers with uncomfortably high humidity. The eastern USA should look for enhanced north to south DX when a weather condition called a “Bermuda High” is present. The best DX, especially east to west, seems to occur when a hurricane is bearing down on the area. Fortunately or unfortunately, the hurricanes that used to come roaring across the eastern half of the USA have been few in numbers since the early 1970s.

tropo ducting

This form of propagation is quite similar to the tropospheric bending just discussed but is more prevalent on the over water paths. In contrast to the normal tropospheric bending caused by an abrupt temperature change with increasing altitude, this form of propagation usually has two abrupt changes, one very low (maybe only a few meters above the surface) and the other one above it by perhaps 1000 feet (300 meters) or so. The net result is that a sort of waveguide is formed, the thickness of which determines the best frequencies of radio propagation. If you are in the duct, signals will propagate almost unattenuated until the duct deforms. If you are outside, take up another pastime!
Those who have studied ducting of radio signals tell me that at the onset of the duct, the optimum frequency is often quite high, typically 1500 MHz, and may slowly decrease as the duct stabilizes often going up again as the duct starts to disappear. During the great tropospheric ducting conditions between Hawaii and California in July, 1973, the openings were first heard on 70 cm and then slowly shifted to 2 meters. Two days later even 6-meter signals (viz. KH6JU) were making the grade. It is noteworthy that this duct took place while two tropical (hurricane type) storms were traversing the path between Baja, California, and Hawaii just to the south of the path.

There are other peculiarities about tropo ducting. If you are above or below the duct (as in tropospheric bending), you will not be able to couple sufficiently into the duct to take advantage of it. Seldom does an over-water duct extend very far inland. Instead, the duct may abruptly become elevated as it passes over land. Hence, if you are over 10 to 40 miles (16 to 64 km) inland, the only effective way to use the duct will be if you are elevated or have a reflection assist (more on this later).

Let me elaborate on the later point. Researchers in the United States Navy and others have studied the California to Hawaii ducting with aircraft and often found that the duct was elevated 1 to 2 miles (1.6 to 3.2 km) as it approached Hawaii. The Amateurs active in Hawaii frequently drove up and down the side on Mauna Loa to optimize this path. After several years of observing this path, they installed the 24-hour-a-day warning beacons well up the side of Mauna Loa! Unfortunately, if an opening takes place (as seen by monitoring the beacon from California), there has to be an able body to drive up to the sight as soon as possible to catch the opening, and this hasn’t always been possible!

The farthest inland ducting I know of is the KD6R to KH6JAA QSO. Ironically, both stations were elevated. KD6R was about 38 miles (61 km) inland, but at an elevation of almost 6000 feet (1828 meters) on the side of Mount Palomar. Likewise, the Bermuda-to-USA path where coastal stations can often access the duct but inland stations can’t except K2RIW who is about 10 miles (16 km) inland but elevated on one of the highest spots (400 feet or 121 meters) on Long Island. K1PXE, at sea level in Connecticut, has never heard Bermuda, perhaps because the signals have to first traverse Long Island and are thereby elevated beyond reasonable altitudes.

The best ducts observed and used for long DX are the “Great Australian Bight” off southern Australia, the Gulf of Mexico, the Mediterranean Sea, the North Sea, Bermuda to the United States, the Atlantic Ocean between the United Kingdom and the Canary Islands, and of course the California-to-Hawaii path. In fact, rumor has it that a 5 GHz microwave signal from the Philippines was intercepted in Southern California in the mid 1970s but that the news was suppressed because no one would believe the story! There is still much to be learned about tropospheric ducting and perhaps someday the United States-to-Europe path will finally be conquered using this mode.

super refraction

With a few exceptions, this mode is really an extension of tropospheric ducting. These ducts are usually very intense, over warm water, close to the surface and probably not as thick as the usual tropospheric ducts. Hence they are primarily good at 23 cm and above. The British were the first ones I know to really exploit this mode. In their somewhat casual manner (as we see it!) they would go to the beach for a Sunday outing with a pair of “GunnPlexers” or similar 3 cm gear. During the day they would occasionally go down to the beach and try to communicate with a station on another beach over an all-water path. By trial and error they would often find an optimum height and time for a QSO.

Another interesting story I’ve heard also comes from the UK. The English Channel is an ideal spot to try UHF between England and the European continent. As the story goes, an English station was in 3 cm communications across the channel with a French station, when communications abruptly ceased and then returned just as quickly a few moments later. Upon observation of the path with binoculars, it was discovered that a larger ship had apparently passed between the stations and momentarily broken up the duct!

Not to be outdone, the Italians and Yugoslavians used the Adriatic and Mediterranean Seas. They had many successes, the greatest DX being the 3 cm QSO between I0SNY/EA9 and I0YLI/IT9 (see Table 1). This was an incredible DX record of 1034 miles (1663 km), using only 50 milliwatts of power and 1 meter dishes. Once again, there is much to be learned about super refraction, but what is clear is that UHF/SHF ducts do appear on over-water paths during warm weather, especially during the summer months.

lightning scatter

The first known QSO via this mode took place on 70 cm between W0DRL (KS) and W5RCI (MS) on September 16, 1968, over a 449 mile (722 km) path. They noticed that signals peaked 15 to 18 degrees off the great circle path at an area which turned out to be a storm cell over Texas. Enhancements were up to 40 dB, some with durations of 25 seconds, with extremely rapid QSB and lots of Doppler shift. Since then, other observers have noticed the same phenomenon. This is a mode worth looking into, especially
when severe lightning storms are in progress. I have observed this same type of propagation on 70 cm on somewhat shorter paths between New Jersey and Massachusetts when severe lightning was over the central Connecticut area. Since most VHFers tend to shut off their rigs during stormy weather, it may be well to rethink our operating habits — but only if the storm isn’t nearby!

aircraft scatter

Few VHF/UHFers give this mode a thought or even are aware of its capabilities. While in California, I discovered (undoubtedly as others did), that aircraft make fine reflectors for radio signals, especially on 70 cm and above. Since commercial aircraft often fly as high as 40,000 feet (12,192 meters), they can be used for propagation via line-of-sight out to 500 miles (805 km) and above. Since commercial aircraft are available and usually fly at high altitudes. Coastal QTHs are not as favored because these aircraft usually fly low or are in takeoff or landing patterns. But don’t rule them out; the California coast and the eastern seaboard of the United States have lots of traffic though these areas aren’t quite as good for the long DX via aircraft scatter.

All you have to do to work via aircraft scatter is to be alert, know when the flights are in between and set up a schedule! Don’t use long transmissions: at the longer DX, the mutual location for best scatter may last only a minute or less! Beware also of the Doppler shift which can be as much as 100-300 Hz on 70 cm and up to 1.5 kHz on 2304. When I QSO’d Harley, WA6HXW, on 2304 MHz from W6FJZ, a path of 310 miles (500 km), I copied Harley on two different frequencies separated by almost 1.5 kHz, one via tropo and the other via aircraft. At times the aircraft-reflected signal was up to 5 degrees off the great circle path!

Some relative data on aircraft sizes and figures of merit are listed in table 3. This data, which may be of use to those who want to make radar path loss calculations, show why larger aircraft are preferred. I have also noticed that aircraft scatter can often assist with another mode for a sort of link-up. For instance, on both the Bermuda to USA and the California to Hawaii paths, my 70 cm signals have been coupled into the duct and copied, probably via aircraft scatter at my end, but I was unable to complete the QSO due to insufficient access time before signals disappeared. This is an entertaining mode that deserves more attention since it is available 365 days a year as long as you have a reasonably good station. The possibilities for long DX on 3 cm and above are fascinating.

knife-edge diffraction

This mode of propagation, used for many years for Gigahertz microwave communications by commercial stations, is well documented. It is based on the theory that if a sharp peak or hill lies between two stations, signals can be diffracted over them. Losses of only 10 to 20 dB over the typical free space path loss are possible. The sharper the peak, the better. Lack of foliage or reflecting objects is preferred at the peak; 3 cm signals do not go through tree leaves! Although this is a specialized propagation mode and is primarily for moderate DX, it is nevertheless interesting, especially to the UHFer who is in a low lying area or surrounded by hills or mountains.

rain scatter

This mode of propagation was discovered in 1978 by G3JVL and G3YGF/A when operating on the 3 cm band over a 110 km path during a rain squall. They found that if two stations both aimed their antennas at the storm center, they could communicate at distances greater than 100 km. They were unable to reproduce this mode at lower Amateur frequencies. The signals are highly distorted and have an auroral quality with some noticeable Doppler. Signals tend to peak very broadly in azimuth and elevating the antenna can improve signals if the storm is nearby. 10-20 dB enhancements are typical. Other British Amateurs also participated and verified this phenomenon, even with low power stations. This mode is especially interesting when one or both of the stations have obstructed views or a poor VHF/UHF QTH since the scattering center may be well above the horizon at one or both ends of the path. Hopefully this mode will soon be more fully utilized here in the USA.

conclusion

VHF/UHF radio propagation is a fascinating subject to which every Amateur can contribute. All it takes is time, patience, good notes, and of course some reasonably good equipment. The records listed in table 1 are good goals to pursue.
To review, VHF/UHF radio propagation is basically divided into four categories:

1. **Natural** (line-of-sight, tropo/ionospheric scatter).
2. **Weather-related** (tropospheric bending, ducting, sporadic E, precipitation scatter).
3. **Celestial** (EME, meteor scatter, F2, aurora), and
4. **Manmade** (satellite, aircraft scatter, artificial aurora).

A basic knowledge of all these types of radio propagation will show that the VHF/UHF bands are hardly a quiet and uninteresting place!

To predict radio propagation conditions we can use several sources of data such as: HF/VHF or satellite nets, propagation beacons, TV video carriers monitoring or the warning sounds on HF signals as well as alerts such as weather maps/reports and WWW forecasts at 18 minutes after each hour.

<table>
<thead>
<tr>
<th>band</th>
<th>frequency</th>
<th>mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 meters</td>
<td>50.110</td>
<td>SSB</td>
</tr>
<tr>
<td>2 meters</td>
<td>144.100</td>
<td>CW</td>
</tr>
<tr>
<td>2 meters</td>
<td>144.200</td>
<td>SSB</td>
</tr>
<tr>
<td>220 MHz</td>
<td>220.100</td>
<td>CW/SSB</td>
</tr>
<tr>
<td>70 cm</td>
<td>432.100</td>
<td>CW/SSB</td>
</tr>
<tr>
<td>23 cm</td>
<td>1296.100</td>
<td>CW/SSB</td>
</tr>
<tr>
<td>13 cm</td>
<td>2304.100</td>
<td>CW/SSB</td>
</tr>
</tbody>
</table>

Calling frequencies listed in table 4 are also helpful. Sometimes there just aren’t enough signals to go around and congregating on special frequencies can increase the probability of observing good conditions. However, you must put out an occasional call because silence doesn’t convey much activity! Above all, when you do establish contact on a calling frequency, move off so that someone else can use it. Activity nights are also helpful. In the northeast, we concentrate 2 meter activity on Monday evenings, 220 MHz on Tuesdays, 70 cm on Wednesdays, and 23 cm on Thursdays.

acknowledgements

I want to thank all those who helped contribute information for this article, and in particular G3WDG, VE1YX, W4WD, WA4MV1, WB5LUA, W6ABN, and K6FV — it takes lots of cooperation to gather so much material. I hope that some of this information will be new or helpful to you and that you too will be able to help in the future.

references

19. Emac EME Notes, can be obtained by writing to William Orr, W6SAI, c/o Varian EIMAC, 301 Industrial Way, San Carlos, California 94070.

VHF/UHF coming events

July 3: EME perigee

July 20 (± 2 weeks): look for 2-meter E openings

July 27: (21:15 UTC) peak of Delta Aquarids Meteor Shower

July 27-29: Central States VHF Society Conference, Cedar Rapids, Iowa. (Contact WØOHU for further information.)

July 31: EME perigee

If you have any VHF/UHF events or contests planned, let me know at least 2 to 3 months in advance so I can let others know through this column. — W1JR

ham radio
The First Name in Satellite TV...

When you invest in a DRAKE Earth Station Receiver, you've chosen the very finest. Elegantly designed with the latest engineering concepts in solid-state techniques, every DRAKE is characterized by superb performance and versatility. DRAKE... world-class leader in satellite television reception.

ESR240 EARTH STATION RECEIVER
- Infrared Remote Control
- Digital Channel Readout
- Preset 6.2/6.8 and Variable Audio Tuning

ESR324 EARTH STATION RECEIVER
- Digital Channel Readout
- Detent Channel Tuning
- Preset 6.8 and Variable Audio Tuning

...The Last Word in Performance!

R.L. Drake Company
540 Richard Street, Miamisburg, Ohio 45342, USA
Phone: (513) 866-2421
Telex: 286-017
You can DX and receive weather charts from around the world.
Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!

You’ve heard those curious facsimile sounds while tuning through the bands—now capture these signals on paper!
Assemble ALDEN's new radiotelegraphy Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble—Backed by the ALDEN name.
For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!
You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Easy to order.
Only $995 for the complete ALDEN Weather Chart Recorder Kit.
To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $995. Add $5 for shipping and handling in the U.S. and Canada, plus applicable sales tax for CA, CO, CT, IA, MA, NY, WI. (Export price is $1250 F.O.B. Westborough, MA. Specify 50 or 60 Hz.) To use your MasterCard or Visa by phone, call (617) 366-8851.

ALDENELECTRONICS
Washington Street, Westborough, MA 01581

NAME: __________________________
CALLSIGN: ________________________
ADDRESS: ________________________
CITY: ___________________ STATE: _______ ZIP: _______

I've enclosed a check or money order for $995.00 and $5.00 for shipping and handling, plus applicable sales tax.

Charge to: [] MasterCard [] Visa
ACCOUNT # (ALL DIGITS) ____________________________
EXPIRATION DATE ________________/_______________
SIGNATURE REQUIRED IF USING CREDIT CARD

203
The Digital vs. Analog battle is over.

$85* buys you the new champion. The new Fluke 70 Series.

They combine digital and analog displays for an unbeatable two-punch combination.

Now, digital users get the extra resolution of a 3200-count LCD display.

While analog users get an analog bar graph for quick visual checks of continuity, peaking, nulling and trends.

Plus unparalleled operating ease, instant autoranging, 2,000+ hour battery life and a 3-year warranty.

All in one meter.

Choose from three new models. The Fluke 73, the ultimate in simplicity. The feature-packed Fluke 75. Or the deluxe Fluke 77, with its own multipurpose protective holster and unique "Touch Hold" function (patent pending) that captures and holds readings, then beeps to alert you.

Each is Fluke-tough to take a beating. American-made, to boot. And priced to be, quite simply, a knockout.

For your nearest distributor or a free brochure, call toll-free anytime 1-800-227-3800, Ext. 229. From outside U.S., call 1-402-431-350, Ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Fluke 73

$65*

Analog-digital display
Volts, amps, 10A, diode test
Auto range
0.7% basic dc accuracy
2000+ hour battery life
3-year warranty

Fluke 75

$95*

Analog-digital display
Volts, amps, 10A, multimeter
Auto range
0.5% basic dc accuracy
2000+ hour battery life
3-year warranty

Fluke 77

$125*

Analog-digital display
Volts, amps, 10A, multimeter
Auto range
0.3% basic dc accuracy
2000+ hour battery life
3-year warranty
Multipurpose holster

* Suggested U.S. list price, effective October 1, 1983.

©1983, John Fluke Mfg. Co., Inc. All rights reserved.
And you can see it—in color—again and again when you own the N2NY Ham MasterTapes.

You've never seen this, like this, before this!

Ever see a cap discharge in slow motion? You will on The N2NY Ham MasterTapes. Ham MasterTapes can perform the dozens of complicated demonstrations necessary for a beginner's understanding of Ham Radio Theory.

Finally, a step-by-step course in Ham Radio Theory is available on color videotape. The Larry Horne N2NY Ham MasterTapes video course is a unique, effective teaching technique expertly produced by New York's leading professionals in studio and field videotape.

- Video Graphics highlight important details.
- Carefully worked-out demonstrations on video avoid the problem of getting complex gadgets to work on command in front of a class.
- Working examples of every ham radio component, device, or system covered in the FCC guide can be clearly understood.

The N2NY Ham MasterTapes give you a basic grasp of concepts that build theory background—not only for passing the FCC tests, but for understanding electronics.

The hobby has long needed better, clearer, high-tech teaching aids to help newcomers into our wonderful world of Ham Radio.

These six-hour tapes cover completely all the material needed to understand Novice and Tech/General Theory and operations, and include the new 200-question FCC syllabus used beginning September 1983.

Only $199.95. Order direct and specify Beta or VHS format. Call or write: Larry Horne, N2NY

Ham MasterTapes
136 East 31st Street
New York, N.Y. 10016 212-673-0680.

© 1983 N2NY Productions, Inc.
cooling semiconductors
part 1:
 designing and using heatsinks

Can’t stand the heat?
dissipate it!

What effect does heat have on semiconductors? How can that heat be dissipated? And what are the implications, for designers of electronic equipment, of the answers to these questions? Part one of this series will cover the design and use of heatsinks; part two will address other means, both novel and conventional, of monitoring and cooling semiconductors without the use of semiconductors — for example, by using a fan with flapping blades that operates on the piezoelectric crystal principle.

It is crucial for transistors, ICs, or thyristors (triacs and SCRs) to remain within their safe operating junction temperature ranges. Semiconductor junctions can withstand temperatures between 85 degrees C and 200 degrees C. Germanium withstands from 85 degrees C to 100 degrees C maximum temperature, while silicon withstands from 150 degrees C to 200 degrees C maximum temperature. However, semiconductors operated at these high temperatures show reduced performance. For example, low-input bias op amps require twice as much bias current for every 10-degree C rise in junction temperatures. (Note the typical power derating curve in fig. 1 for a power transistor.)

Both junctions in a transistor give off heat; however, since the collector-base junction is reverse biased, it has higher resistance and produces more heat. In fact, the collector-base junction produces so much more heat than the transistor’s forward-biased emitter-base junction that the heat generated by the later junction is usually ignored. As a result, the power dissipation equation is simplified and can be defined as follows:

\[P_D = I_C \times V_{CE} \]

where
- \(P_D \) = power dissipation
- \(I_C \) = collector current
- \(V_{CE} \) = voltage from collector to emitter

electrical-thermal analogies

Analogies can be helpful in visualizing abstract phenomena. For example, high school science teachers will often compare electricity to water flowing from a tower. In this comparison, voltage is defined as the “push” or potential (height) of the water within this tower. Current is equated with flow of water, and resistance is compared to the action of the tower’s faucet, which impedes or constricts flow.

By Vaughn D. Martin, 114 Lost Meadows, Cibolo, Texas 78108
Table 1. Unit symbols in electrical and thermal models.

<table>
<thead>
<tr>
<th>Electrical Quantity</th>
<th>Unit Symbol</th>
<th>Thermal Quantity</th>
<th>Unit Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>V</td>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Current</td>
<td>A</td>
<td>Heat Flow</td>
<td>W</td>
</tr>
<tr>
<td>Resistance</td>
<td>Q</td>
<td>Thermal Resistance</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

An analogy can also be drawn between heat transfer and electrical parameters (fig. 2). The flow (transfer of heat) corresponds to current. The heat differential between the hottest object (the transistor’s junction) and the coolest object (the free-standing ambient air) is seen as voltage, and each thermal resistance — from the resistor’s junction to its case, to the heatsink, and eventually to the free-standing ambient air — is compared to electrical resistances in series. Therefore, thermal resistances are added together to determine the total thermal resistance.

In fig. 2, the dual subscript on a thermal resistance, such as θ_{SA}, means resistance of the sink (S) to ambient air (A). Table 1 illustrates the unit symbols in both the electrical and thermal models.

The basic thermal relationship is:

$$T = P_D \theta$$ \hspace{1cm} (2)

where $T =$ temperature rise
$P_D =$ power dissipation
$\theta =$ thermal resistance

It becomes obvious from this equation that thermal resistance θ must be minimized. This is what a heatsink does.

how heatsinks work

Power transistors and voltage regulators with 1A or greater ratings are usually installed in large metal cases so that they can radiate more heat. Because the case size may still be inadequate for the amount of power to be dissipated, a heatsink or similar metal fitting is added to the case to increase thermal mass, lower thermal resistance, and provide additional surface area to allow heat to radiate from the surface more effectively.

The purpose of a heatsink is to transfer heat away from the semiconductor, causing it to flow from one medium to another by means of one or more of the three heat transfer methods: conduction, convection, and radiation.

Conduction is the most effective means of moving heat from the semiconductor junction to the case and from the case to the heatsink. Convection — which is merely surface conduction from a surface to a fluid or to air — is the most effective means of moving heat from case or heatsink to ambient air. Radiation, the most effective means of transferring heat from radiating heatsink fins, depends on the existence of a difference in temperature between radiating and adjacent objects or space. Emissivity is a term used to describe this effect; table 2 illustrates some typical emissivities of various common surfaces. (The greater the emissivity, the better the ability to radiate heat.) Note that black oil-painted heatsinks radiate most effectively; this is why commercially available heatsinks (fig. 3) are almost always painted black.

heatsink materials

The two most common materials for heatsinks are copper and aluminum. Copper has a thermal conductivity four times that of aluminum, but is much more expensive. Aluminum, therefore, is the most commonly used heatsink material. In applications in which weight is a concern, magnesium can be used. If insulation is necessary, beryllium oxide (BeO), an excellent electrical insulator, can be used.

Very often, power transistors such as the ones packaged in TO-3 or TO-66 cases (“TO” stands for “transistor outline”; the number identifies the shape and size of the case) have their collectors soldered directly to the cases. Unless the collector is to be electrically grounded, the case must be isolated from the chassis.

Three other materials (used in electrical insulating washers) are also effective heat conductors: mica,
anodized aluminum, and beryllium oxide. Mica is the most common. Although anodized aluminum is fairly widely used, an electrical short will result if its surface is scratched. Beryllium oxide performs better than mica or anodized aluminum, but both its powdered form and its fumes are toxic.

custom made heatsinks

For the homebrew enthusiast in electronics who wants to make his or her own heatsinks, the nomographs of metal types and shapes and fin effectiveness, shown in figs. 4 and 5, will aid in the selection of appropriate materials and forms. Perhaps you have access to some surplus extruded copper or aluminum, or just want to attach a single flat square or rectangular piece of metal to a voltage regulator or power transistor and wonder whether it will do the job. A good question!

Before making any calculations, identify the semiconductor’s case. If its case is a TO-220 to TO-202 metal tab, look at the accompanying data sheet to see whether the metal tab is the collector on a transistor or the output pin on a voltage regulator, or if it is the emitter (which might be grounded) or the ground pin on a voltage regulator. If the metal surface of the semiconductor’s case had any voltage indicated on it, paint the heatsink — or chunk of metal you are about to fashion into a heatsink — so that it will be electrically insulated. A mica insulating wafer or washer may also be used, but will add a small thermal resistance.

Will a heatsink be necessary? Is the one you have in mind adequate? Use this typical heatsink calculation to be sure. A generalized equation of temperature differential (rise), power dissipation, and thermal resistance is:

\[P_{D(MAX)} = \frac{T_{j(MAX)} - T_{A(MAX)}}{\theta_{JA}} \]

where

- \(T_{j(MAX)} \) = maximum junction temperature in degrees centigrade
- \(T_{A(MAX)} \) = maximum ambient air temperature in degrees centigrade
- \(\theta_{JA} \) = junction-to-air thermal resistance

This equation states that the maximum power dissipated is equal to the maximum junction temperature of the transistor or regulator minus the maximum ambient or outside free-standing air temperature divided by the thermal resistances from the junction \((J)\) to the ambient air \((A)\). These thermal resistances, analogous to electrical resistances in series, are added together. Stated mathematically, \(\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA} \); the thermal resistance from junction to air \((\theta_{JA})\) equals the sum of the thermal resistances:

fig. 3. Commerically-available heatsinks vary in form, but are almost always painted black.

\(\theta_{JC} \) = junction-to-case thermal resistance
\(\theta_{CS} \) = case-to-heatsink thermal resistance
\(\theta_{SA} \) = heatsink-to-air thermal resistance
\(T_{j} \) = junction temperature
\(T_{A} \) = ambient air temperature

Let us solve the far right side of the equation first, \(T_{j} - T_{A} = 65^\circ C \). The denominator is the 800 mA output current times 10 volts, the input-output voltage differential. The three thermal resistances, then, sum to 8.13°C/W. From the data sheet we already know that the junction-to-case thermal resistance is 5°C/W, so the other two remaining resistances must add up to 3.13°C/W. With the use of silicon thermal grease (table 4), we can approximate with some assurance from table 1 that the case-to-sink resistance is
0.13°C/W, so this leaves the \(\theta_{SA} = 3°C/W \). Refer again to fig. 4 and note that a 22 square-inch piece of aluminum 3/16-inch thick with vertically bent ends will meet this requirement. The note at the bottom of the figure explains how to use the nomograph.

Calculating the effectiveness of a heatsink with fins is much more involved than calculating the effectiveness of a heatsink of square or rectangular metal as was just done. The heatsink-to-ambient air thermal resistance is expressed as:

\[
\theta_{SA} = \frac{1}{2H^2\eta(h_c + h_r)} \degree C/W \tag{5}
\]

where

- \(H \) = vertical height of fins in inches
- \(\eta \) = fin effectiveness factor
- \(h_c \) = convection heat transfer coefficient
- \(h_r \) = radiation heat transfer coefficient

\[
h_c = 2.21 \times 10^{-3}\left(\frac{T_S - T_A}{H}\right)^{1/4} W/in^2\degree C \tag{6}
\]

\[
h_r = 1.47 \times 10^{-10} E\left(\frac{T_S + T_A}{2} + 273\right)^3 W/in^2 \degree C \tag{7}
\]

where \(T_S \) = temperature (°C) of heatsink at regulator mounting

\(T_A \) = temperature (°C) of ambient air

\(E \) = surface emissivity (refer to table 2)

\(H \) = vertical height of fins in inches

do it yourself

Using fig. 5 and the formulas shown, let’s design a finned heatsink for a 5-volt regulator. Assume that we are using a 1/16-inch thick piece of black anodized aluminum and want to have symmetrical square heatsink fins. Our desired heatsink will have a thermal resistance of 4°C/W. An LM340T-5 is used under the following realistic conditions:

\[
T_J = 125°C \quad V_{OUT} = 5V
\]

\[
T_A = 60°C \quad I_{OUT} = 800 mA
\]

\[
V_{IN} = 15V
\]

We find \(T_S \) by \(I \cdot V \cdot \theta_{IS} = T_J - T_S \). \(V \) equals \(V_{IN} - V_{OUT} \) or \((15V - 5V) \cdot 800 mA \cdot 4°C/W = 125°C - T_S \). Solving for \(T_S \) we obtain \(T_S \) equals 93°C. Next \(h_c \) is solved for using a 4-1/4 inch high fin.

\[
h_c = 2.21 \times 10^{-3}\left(\frac{93°C - 60°C}{4.25 \text{ in}}\right)^{1/4} = 3.7 \times 10^{-3}
\]

and \(h_r \) is solved for with \(E = 0.9 \), which is found in table 2.

\[
h_r = 1.47 \times 10^{-10} \times 0.9 \left(\frac{93°C + 60°C}{2} + 273\right)^3 = 5.6 \times 10^{-3}
\]

Next, add \(h_r \) to get \(h = 9.3 \times 10^{-3} \). Now we find \(\eta \) from fig. 5. Draw the first line on the nomograph in fig. 5 from \(h \) through the fin thickness (remember, we are using 0.0625-inch (1/16-inch) aluminum to find

\[
\eta = \frac{9.3 \times 10^{-3}}{25.4 \text{ mm}^2} = 0.00029 \text{ in}^{-1}
\]

fig. 5. Fin effectiveness nomogram for symmetrical, flat, uniformly thick, vertically mounted finned heatsinks.
THE STANDARD OF EXCELLENCE

The world of CW, RTTY, and new DUAL AMTOR* is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000E.

AutomaticSender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY), and new ARQ/FEC (AMTOR).

Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), JIS (RTTY), ARQ/FEC (AMTOR).

Characters: Alphabet, Figures, Symbols, Special Characters, Kana, Built-in Monitor; 5" high resolution, delayed persistence green monitor—provides sharp clear image with no aggle or jitter even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.

Select Selective Calling System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either 170Hz, 425Hz or 850Hz shift with manual fine tune control of space channel for old shifts. HIGH (Mark Frequency 125Hz) LOW (Mark Frequency 125Hz) tone pairs select. Mark only or Space only copy capability for selective fading. ARQ/FEC features incorporated.

Crystal Controlled AFSK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.

Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient ASCII Key Assignment: The keyboard layout is ASCII assignment with twist keys. Automatic insertion of LTR/FIG code makes operation a breeze.

Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters x 16 lines x 2 pages.

Screen Display Type-Ahead Buffer Memory: A 160-character buffer memory is displayed on the lower part of the screen. The characters move to the left erasing one by one as soon as they are transmitted. Messages can be written during the receiving state for transmission with battery back-up memory or SEND function.

Function Display System: Each function (mode, channel number, speed, etc.) is displayed on the screen.

Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy.

Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from the keyboard at any rate between 5-100 WPM (every word per minute). AUTOTRACK on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modem and between 12-600 Baud when using TTI level. The variable speed feature makes the unit ideal for amateur, business and commercial use.

Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.

"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspellings can also be erased while the information is still in the buffer memory.

Automatic CR/LF: While transmitting, CR/LF automatically sent every 64, 72 or 80 characters.

WORD MODE operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.

LINE MODE operation: Characters can be transmitted by line groupings from the buffer memory.

WORD-WRAP-AROUND operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.

"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape.

Cursor Control Function: Full cursor control (up/down, left/right) is available from the keyboard. This function enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hand key and displays the characters on the screen. CW keying output circuit works according to the key operation.

RTTY is very easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning.

Built-in AC/DC Power supply is switchable as required; 100-120 VAC: 220-240 VAC 50/60Hz + 13VDC.

Color: Light grey with dark grey trim—matches most current transceivers. Dimensions: 163(W) x 121(H) x 35(D) mm; Terminal Unit.

Warranty: One Year Limited

Specifications Subject to Change

Dual Amtor. Commercial quality, the EXL-5000E incorporates two completely separate boards to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.

EXCLUSIVE DISTRIBUTOR:

AMATEUR-WHOLESALES ELECTRONICS

8817 S.W. 129th Terrace, Miami, Florida 33176

Telephone (305) 233-3631

TEL: 800-327-3102

FOR YOUR NEAREST DEALER OR TO ORDER:

MANUFACTURER:

Tono Corporation

98 Motoosig Machi, Manbashi-Shi, 371, Japan

VISA

MasterCard
SWL HEADQUARTERS
NATIONS LEADING SHORTWAVE EQUIPMENT SUPPLIER

ICOM R71
The Ultimate Receiver

- 100KHz-30MHz
- Keyboard entry
- 32 memories
- Remote control (optional)
- Scanning
- Pass band & notch tuning
- Memory back-up
- Wide dynamic range
- Voice synthesizer (optional)
- See ICOM's ad in this issue for more details.

UNIDEN CR 2021

* Uniden's Worldwide Radio is among the finest multi-purpose available anywhere. It features a triple conversion receiver that precisely locates weak, distant signals automatically. It locks the precise stations in for perfect reception.

- 12 Channel Programmable Memory
- Dual Power AC or DC
- Micro-processor
- Triple Conversion Receiver
- Keyboard Channel Selector
- LCD Readout
- Preset Channels

KENWOOD R-2000

- 100 KHz to 30 MHz
- All mode AM-CW-SSB-FM
- 10 memories (memorizes mode)
- Memory backup
- Memory scan
- Programmable band scan
- 24-hour clock/timer
- VC-10 VHF converter 118-174 MHz $139
- R-2000 $599.95
- R-1000 $499.95
- R-600 $399.95
- ADD $6.50 UPS

SONY ICF-2002

Introductory Special $299
List $349.95

Features:
- Ten memory channels + 12/24 hour quartz clock/PLL tuning for drift-free performance + Dual conversion Super-heterodyne for high sensitivity + SSBCW

ICR-4800 $99.95
ICF-6500W $199.95
ICF-6800W $599.95
ICF-7600A $169.95
AN-1 $79.95 (AC Adapt $9.95)
ADD $4.00 UPS

YAESU FRG-7700

- 150 KHz-30MHz
- All mode AM-CW-SSB-FM
- Digital frequency and clock

Options:
- FRA-7700 active antenna $59
- MU-7700 12 channel memory $135
- FRT 7700 antenna tuner $58
- FF-5 VLF pass filter $20
- DC-7700 12 VDC kit $8
- PV-7700 VHF converter $135
- ADD $6.50 UPS

PANASONIC RF-B600

- 1.6 to 30 MHz, FM/LV/WM/WW
- Micro computer multi-tuning system
- 9 memory stations, scan
- Slow/Fast rotary tuning
- 10 key direct access tuning
- Universal voltage

- RF-9 $399.95
- RF-850 $199.95
- RF-845 $485
- RF-8300 $249.95
- RF-3100 $379
- ADD $4.00 UPS

FREE CATALOG

- We ship worldwide
- Shipping charges not included
- Prices & specifications subject to change without notice
- Canadian Orders: VISA, MC or POSTAL MAIL ORDERS ONLY!

Electronic Equipment Bank
516 Mill Street, N.E.
Vienna, Virginia 22180
Order Toll Free 800-368-3270
Virginia 703-938-3350

July 1984

a.) Next, determine B, which is approximately the height of the fins divided by 2, or 2.1 inches. Draw the second line from this value of B through $\alpha = 0.38$ and extend it all the way over to η. Now that we have found η graphically to be 86 percent, the equation for θ_{SA} can be solved.

If the solution for θ_{SA} is too large, this indicates an adequate amount of heat-radiating ability; in such a situation, the fin height should be increased. If the equation yields a number that is less than the designed thermal resistance, $4{^\circ}\text{C}/\text{W}$ in this example, the heatsink is larger than it needs to be. A heatsink that is too large provides an additional thermal safety factor. But if the size of your case — or the cost of materials — prevents use of a large heatsink, you can choose a copper heatsink, a smaller one of the same material, or reduce the V_{IN} minus V_{OUT} differential. Any of these measures will help.

Returning to the derivation of θ_{SA}, h_c can also be improved upon from the 0.9 we used (for E) in the form of black anodized aluminum. Table 2 indicates that black oil paint can have an E of 0.96. The preceding derivation of θ_{SA} assumed that the heatsink was vertically mounted and that the fins were symmetrically square. The maximum effectiveness of any heatsink can not be achieved with horizontal mounting; if a finned heatsink is mounted horizontally, this is even worse. If horizontal mounting is used, derate h_c by multiplying by 0.8. If the confines of the case necessitates horizontal mounting, the “one side only” finned heatsink should have its η multiplied by 0.5 and its h_c derated by being multiplied by 0.94.

Table 3. Commercially available heatsinks.

No attempt has been made to provide a complete list of all heatsink manufacturers. This list is only representative.

<table>
<thead>
<tr>
<th>θ_{SA} Approx. $(^\circ\text{C/}W)$</th>
<th>Manufacturer & Type</th>
<th>θ_{SA} Approx. $(^\circ\text{C/}W)$</th>
<th>Manufacturer & Type</th>
<th>θ_{SA} Approx. $(^\circ\text{C/}W)$</th>
<th>Manufacturer & Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>For TO-202 Packages</td>
<td></td>
<td>For TO-202 Packages</td>
<td></td>
<td>For TO-202 Packages</td>
<td></td>
</tr>
<tr>
<td>12.5 - 14.2</td>
<td>Staver V4-3-192</td>
<td>12</td>
<td>Thermalloy 1101, 1103 Series</td>
<td>0.4 (5")length</td>
<td>Thermalloy (Extruded) 6590 Series</td>
</tr>
<tr>
<td>13</td>
<td>Staver V5-1</td>
<td>12 - 16</td>
<td>Wakefield 260-6 Series</td>
<td>0.4 - 0.5</td>
<td>Thermalloy (Extruded) 6660</td>
</tr>
<tr>
<td>15.1 - 17.2</td>
<td>Staver V4-3-128</td>
<td>15</td>
<td>Staver V3A-5</td>
<td>0.4 - 0.5</td>
<td>Thermalloy (Extruded) 6660</td>
</tr>
<tr>
<td>19</td>
<td>Thermalloy 6106 Series</td>
<td>22</td>
<td>Thermalloy 1116, 1121, 1123 (6")length</td>
<td>6560 Series</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Staver V6-2</td>
<td>22</td>
<td>Series</td>
<td>0.56 - 3.0</td>
<td>Wakefield 400 Series</td>
</tr>
<tr>
<td>25</td>
<td>Thermalloy 6107 Series</td>
<td>22</td>
<td>Thermalloy 1130, 1131, 1132 (6.7")length</td>
<td>6470 Series</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>IERC PA-17CB with PVC-1B Clip</td>
<td>22</td>
<td>IERC Thermal Links (6.5")length</td>
<td>6423, 6424, 6450 Series</td>
<td></td>
</tr>
<tr>
<td>40 - 42</td>
<td>F1-7</td>
<td>24</td>
<td>Staver F5-5C</td>
<td>0.7 - 1.2</td>
<td>Thermalloy (Extruded) 6423, 6424, 6441, 6450 Series</td>
</tr>
<tr>
<td>40 - 43</td>
<td>F1-7</td>
<td>26</td>
<td>Staver F7-2</td>
<td>1.0 - 5.4</td>
<td>Thermalloy 6427, 6500, 6123, 6401, 6403, 6421, 6463, 6176, 6129, 6141, 6169, 6135, 6442, 6444, 6442, 6446 Series</td>
</tr>
<tr>
<td>42</td>
<td>IERC PA-27CB with PVC-1B Clip</td>
<td>27 - 83</td>
<td>Wakefield 200 Series</td>
<td>1.0 - 5.4</td>
<td>Thermalloy 6427, 6500, 6123, 6401, 6403, 6421, 6463, 6176, 6129, 6141, 6169, 6135, 6442, 6444, 6442, 6446 Series</td>
</tr>
<tr>
<td>42 - 44</td>
<td>F1-7</td>
<td>28</td>
<td>Staver F5-5B</td>
<td>13")length</td>
<td>Thermalloy 6427, 6500, 6123, 6401, 6403, 6421, 6463, 6176, 6129, 6141, 6169, 6135, 6442, 6444, 6442, 6446 Series</td>
</tr>
</tbody>
</table>

For TO-220 Packages		For TO-220 Packages		For TO-220 Packages	
5 - 6	IERC HP3 Series	35	IERC Clip Mount Thermal Link	1.9	IERC E2 Series (Extruded)
6.4	Staver V3-7-225	39	Thermalloy 2215 Series	2.1	IERC E1, E3 Series (Extruded)
6.5 - 7.5	IERC GP5 Series	42	Staver F5-5A	2.3 - 4.7	Wakefield 600 Series
6.8	Staver V3-5	45 - 65	Wakefield 236 Series	4.2	IERC HP3 Series
8.1	Staver V3-7-96	46	Staver F8-5, F6 SL	4.5	IERC HP3 Series
8.9	Staver V3-9	50	Thermalloy 2225 Series	5.6	IERC 6103 Series
9.5	Staver V3-3	55	IERC Fan Tops	5.2 - 6.2	IERC 6103 Series
10	Thermalloy 6032, 6034 Series	51	Thermalloy 2205 Series	5.6	Staver V3-3
12.5 - 14.2	Staver V4-3-192	53	Thermalloy 2211 Series	5.8 - 7.9	Thermalloy 6001 Series
13	Staver V5-1	55	Thermalloy 2210 Series	5.9 - 10	Wakefield 680 Series
15	Thermalloy 6030 Series	56	Thermalloy 1129 Series	6.4	Wakefield 390 Series
15.1 - 17.2	Staver V4-3-128	60	Thermalloy 2230, 2235 Series	6.5 - 7.5	IERC UP Series
16	Thermalloy 6106 Series	68	Staver F1-5	8	Staver V1-5
18	Thermalloy 6107 Series	72	Thermalloy 1115 Series	8.1	Staver V3-3
19	IERC GP5 Series	75	Staver V3-7-96	8.8	Thermalloy 6013 Series
20	Staver V6-2	80	Staver V3-7-96	9.5	Staver V3-3
25	IERC GP5 Series	80 - 90	Staver V3-7-96	9.5 - 10.5	IERC LA Series
26	Thermalloy 6025 Series	88	Wakefield 630 Series	9.8 - 13.9	Wakefield 630 Series

For TO-92 Packages		For TO-92 Packages		For TO-92 Packages	
30	Staver F2-7	88	Staver V1-3	10	Staver V1-3
46	Staver F5-7A, F5-8-1	90	Thermalloy 2224 Series	13	Thermalloy 6117
50	IERC RUR Series	90	Wakefield Engin Ind.: Wakefield, MA 01880		
57	Staver F5-7D	Staver Co., Inc.: 41 51N. Saxon Ave., Bay Shore, NY 11706			
65	IERC RU Series	IERC: 135 W. Magnolia Blvd., Burbank, CA 91502			
72	Staver F1-7	Thermalloy: PO Box 34828, 2021 W. Valley View Ln., Dallas TX			
85	Thermalloy 2224 Series	Wakefield Engin Ind.: Wakefield, MA 01880			

1All values are typical as given by mfr. or as determined from characteristic curves supplied by mfr.
When you're in a tight spot, dependable communications is crucial. Like repairing a split cable or a broken waterline underground. If you lose touch with the outside world, it's a long climb back to the top.

That's why underground crews use a Larsen Antenna and Magnetic Mount topside, attached to a handheld below. Because Larsen Antennas keep high performance standards, even with the underground.

Kürotd® plating, a Larsen exclusive, gives your antenna high conductivity to assure that maximum power goes into communicating—not heat. And the precision tapered stainless steel whip provides flexibility while minimizing radiation pattern distortion, giving you a consistent signal.

Whether your communications take you down under, or just downtown, Larsen Antennas will keep you on top of the situation with dependable performance.

That full measure of performance goes into our product integrity too. With a no nonsense warranty that won't let you down.

For more range with your handheld, or your mobile, you'll find Larsen's performance is tops. Ask your favorite Amateur dealer to demonstrate how you can hear the difference with Larsen Antennas.
Table 4. Use of silicon grease or adhesive decreases thermal resistance.

<table>
<thead>
<tr>
<th>Insulator</th>
<th>Thermal resistance, °C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silicon insulator dry</td>
</tr>
<tr>
<td>none</td>
<td>0.20 0.10</td>
</tr>
<tr>
<td>Teflon</td>
<td>1.45 0.80</td>
</tr>
<tr>
<td>mica</td>
<td>0.80 0.40</td>
</tr>
<tr>
<td>anodized aluminum</td>
<td>0.40 0.35</td>
</tr>
</tbody>
</table>

With the values used thus far, η has been graphically determined to be 0.86. Substituting our numbers in eq. 5 we obtain the following:

$$\theta_{SA} = \frac{10^3}{2 \times 18 \times 0.86 \times 9.3} = 3.47°C/W$$

Incidentally, the 10^{-3} was changed to 10^3 by moving it to the numerator and changing the sign of the exponent. The value of 3.47 °C/W is not exactly the desired 4.00 °C/W we initially sought, but gives a margin of safety. Remember, when doing it yourself, these formulas apply to both round and square symmetrical fins. Rectangular 2:1 aspect ratio (length-to-height) fins may also be used with the appropriate deratings used. Table 3 shows some typical θ_{SA} values per case size in commercially available heatsinks; by following figs. 4 and 5 you can build your own, and know it will do the job!

guidelines for use

Avoid placing voltage regulators next to heat-generating components like power resistors. When using smaller package regulators like the TO-5, TO-39, or TO-92 cases, keep the lead lengths to a minimum and use the largest possible printed circuit board copper connector runs to provide a heat dissipation path for the regulator. Make sure that the heatsink-to-case surfaces mate. With larger heatsinks, this is more difficult, so for good thermal conduction, use a thin layer of silicon thermal grease such as Dow Corning 340, General Electric 662, or Thermalloy’s “Thermacote” or a thermal adhesive. Metallic-oxide-filled silicon grease placed between two surfaces eliminates air gaps and fills in scratches on the two metal surfaces. (A typical transistor mounted dry with a 0.2 °C/W resistance will exhibit half this resistance after a layer of thermal grease or adhesive is applied.)

Negative voltage regulators, in particular, require that the heatsink and metal voltage regulator case be electrically insulated from each other. To accomplish this, use either a fiberglass or mica 0.003 to 0.005-inch thick insulating washer. While the presence of the washer will naturally increase thermal resistance, this effect can be partially offset by applying thermal grease to each side of the washer. When mounting a regulator on a heatsink with fins, orient the fins in the vertical plane. And be very careful when bending the regulator’s leads, should such action ever be necessary.

bibliography

This article has been adapted, with permission, from IC Voltage Regulator Sourcebook with Experiments, by Vaughn D. Martin, published by TAB Books, Inc., and available from Ham Radio’s Bookstore, Greenville, NH 03048 ($14 postpaid).
all-metal 2-meter
J-pole antenna

5/8 wave vertical survives any weather

While the J-pole antenna shown in fig. 1 is by no means a new design, it doesn't seem to be used often. Basically it's a 5/8-wave radiator with a 1/4-wave matching section. The matching section is positioned 1-1/4 inch from and parallel to the 5/8-wave element.

I've built two of these antennas; one is for mounting to a conventional upright mast, as shown by the unit on the left in fig. 1; the other is for mounting to a horizontal boom on a tower. No significant problems were experienced in either installation.

The advantages of the J-pole design are its omnidirectional radiation pattern, characteristic of vertical antennas, and its small-diameter installation area. It lacks the radials common to ground plane antennas, and does not require driven elements to be cut in order to tune for best match.

Advantages less readily apparent, but equally important, are the elimination of the need to insulate the radiating element from the ground system, making possible an all-metal unit of rigid construction. With the whole antenna effectively grounded and installed atop a tower or mast which is grounded at the base, there is very little static noise buildup. The additional gain possible over the quarter wave ground plane because of the increased length is considered yet another advantage.

construction

A list of materials is provided in table 1; dimensional information is shown in fig. 2. The mounting plate is shown in fig. 3. The extra set of four holes in the plate allows the J-pole to be mounted in either of two different planes, depending on the location of the final installation.

The total length of the longest piece of tubing is 57 inches (144.8 cm) from the tip to the mounting plate. This piece can be made from a 5-foot (152-cm) section of lightweight (20 gauge) mast available from Radio Shack. There is no reason to spend more for the heavier gauge mast because it doesn't support anything other than its own weight. (If you really want to spend more money on this antenna, put the money to good use and buy better coax, or stainless steel assembly hardware, or both.)

By Michael Hood, KD8JB, 849 Dickinson S.E., Grand Rapids, Michigan 49507
table 1. List of materials.

<table>
<thead>
<tr>
<th>quantity</th>
<th>item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20-gauge galvanized steel TV mast, 5 ft. x 1-1/4 in. (152 x 3.18 cm)</td>
</tr>
<tr>
<td>1</td>
<td>length aluminum tubing, 22 x 1/2 x 0.035 inch (56 x 1.3 cm x 0.89 mm)</td>
</tr>
<tr>
<td>1</td>
<td>mounting plate, 6 x 4-1/2 x 1/8 inch (15.2 x 11.4 x 0.32 cm)</td>
</tr>
<tr>
<td>3</td>
<td>6-32 x 1 inch stainless steel panhead machine screws</td>
</tr>
<tr>
<td>3</td>
<td>No. 10 star lockwashers*</td>
</tr>
<tr>
<td>3</td>
<td>6-32 stainless steel hex nuts*</td>
</tr>
<tr>
<td>4</td>
<td>1-1/4 inch U-bolts</td>
</tr>
<tr>
<td>6</td>
<td>6-32 x 1/2-inch self-tapping sheet-metal screws**</td>
</tr>
<tr>
<td>1</td>
<td>1/2-inch diameter clamp (MS21919-D5)</td>
</tr>
<tr>
<td>1</td>
<td>10-32 x 5/8-inch stainless steel panhead machine screw</td>
</tr>
<tr>
<td>2</td>
<td>No. 10 flat washers</td>
</tr>
<tr>
<td>2</td>
<td>No. 10 star lockwashers</td>
</tr>
<tr>
<td>2</td>
<td>10-32 stainless steel hex nuts</td>
</tr>
<tr>
<td>1</td>
<td>3/8 x 3 inch dowel</td>
</tr>
<tr>
<td>2</td>
<td>tubing caps for element ends (optional)</td>
</tr>
</tbody>
</table>

*Can be replaced by 6-32 nuts with star washers attached as part of the nut itself.
**One screw is not required if the through-bolt arrangement is used. In this case, a 10-32 x 1-1/2 inch cap screw, two star washers, two plain hexnuts, and one spring lockwasher will be required to replace the one 6-32 sheet-metal screw and its associated star washer. The choice is yours.

Metric dimensions are approximate; build to fit. — Editor

The clamps holding the 5/8 wave section to the mounting plate are 1 to 1-1/4 inch (3.2 cm) U-bolts expanded slightly to pass comfortably around the compressed portion of the mast without distorting the tubing.

Electrical connection with the mounting plate is accomplished by filing or wirebrushing the paint from the bottom 3 inches (7.6 cm) of the mast where it comes in contact with the mounting plate. A second electrical connection is made by passing a self-tapping sheet-metal screw (6-32 or larger preferred) through the mounting plate and into the mast section as shown in fig. 4.

The quarter wave matching section is made from any gauge aluminum tubing of 1/2 inch (1.3 cm) O.D. In this case, 0.035 inch (0.89 mm) or so wall thickness was used; again, there's no need to buy heavier tubing because no weight is supported. A total of 19 inches (48.26 cm) must project above the mounting plate (see fig. 2), making the total length 22 inches (55.88 cm) for this portion of the assembly.

Electrical connection with the mounting plate is made by removing any oxidation from the tubing before bolting it to the mounting plate. Insert a piece of 3/8-inch (0.95 cm) wooden dowel into the end of the tubing until it's flush with the bottom edge; then bolt the matching section to the mounting plate with 6-32 x 1 inch machine screws, star lockwashers, and...
hexnuts (see fig. 5). Inserting the dowel permits the 6-32 hardware to be tightened without unduly distorting the tubing, which would allow hairline cracks to form and cause premature element failure.

The clamp used to attach the coax center conductor (fig. 4) is an aircraft-type Adel clamp with the rubber sleeve removed. This clamp was originally intended for 5/16-inch (0.79 cm) tubing, but with the rubber removed and the clamp installed as shown, a tight fit is maintained around the matching section. Any such device can be used as long as a good mechanical connection is maintained.

As shown in fig. 4, the shield of the cable is attached to the larger diameter element at a point 1-1/2 inches (3.8 cm) away from the mounting plate. Two different methods of attaching the shield to the 5/8-wave section were used; both are satisfactory, though I feel more confident about the No. 10 through-bolt in the 5/8ths section than I do about the No. 6 sheet-metal screw and lockwasher. This is a matter of personal preference. A No. 14 AWG terminal lug was used to terminate the shield as shown, but both lug ends were replaced with a solderable lug and then silver soldered on the completed installation.

If a certain amount of hardware "overkill" seems apparent in this project, it's because in the case of antennas, too much is usually better than too little, particularly where weather conditions are severe. It's a good idea to invest in stainless steel hardware and to protect the mounting plate assembly with a polyurethane coating or spray varnish, following the directions and precautions on the spray can. Do this after tuning the matching section.

tuning

To tune the matching section, start at a point about 2 inches (5 cm) from the mounting plate and apply RF at the frequency most likely to be used, for example, 146.52 MHz. Note the SWR at that frequency and adjust the clamp, sliding it as necessary to produce minimum SWR. The antennas in the photographs tuned at approximately 2-1/2 to 4 inches (6.4 to 10 cm) from the mounting plate. They did not tune to identical points on the respective matching sections. In both cases, the antennas tuned to an indicated SWR of 1.2:1 at 146.52 MHz. If you've worked with antennas before, you probably know that any SWR reading depends on so many factors that tuning for minimum SWR is, more often than not, sufficient for most purposes.

installation

Figure 6 shows the antenna mounted to a horizontal boom off the side of a mast. Convention dictates that the antenna point upward when installed, but there is no reason that it cannot be pointed downward.
The Drake MN75 matching network will optimize your system performance with a surprising range of features and flexibility. From 1.8 to 30MHz., the MN75 matches balanced lines, coaxial lines, or random wires. (Optional B-1000 balun required for balanced lines.) RF output and VSWR readings are available at the push of a button. The rugged MN75 is rated at 200 watts continuous duty and features antenna switching as well as bypass capability. Get maximum power to your antenna system with the Drake MN75.

DRAKE SP75
SPEECH PROCESSOR
The Drake SP75 Speech Processor packs the punch it takes to be heard! The SP75 is an RF type speech processor designed to give your signal that needed boost when the going gets tough. Connect the SP75 between your microphone and your Drake TR7 or TR5 — that's all! Front panel switching gives you a bypass option as well as phone patch or tape player input. Special muting circuitry even allows you to operate VOX while using the SP75. The clipping level is adjustable and the LED indicator shows the proper audio input level.

DRAKE CW75
ELECTRONIC KEYER
A no-nonsense keyer for the '80's: the Drake CW75. Smooth iambic keying (grid block or direct) is at your fingertips with either a squeeze key, semi-automatic "bug", or straight key. 5 to 50 WPM capability with front panel speed control. Built-in side tone monitor with volume control. Operates from an external 7 to 14 volt supply or a nine volt optional internal battery.

DRAKE P75
PHONE PATCH
Use your station to its fullest! The Drake P75 Phone Patch puts you on the front lines of amateur radio public service. With the P75, your station can be that vital link between the remote location and the folks back home. The P75 is a hybrid patch for use with the Drake 7-line or other transmitter/receiver combinations. Features such as in/out switching and adjustable RX/TX level controls make the P75 Phone Patch the choice you can count on.
plished by using the other set of mounting holes in the antenna mounting plate. No special problems were noted with this arrangement.

variations

As with any project, several additional ideas came to mind after the antennas were completed. For instance, the coaxial shield attachment to the 5/8th’s element could certainly be made to be adjustable. Doing this might result in a better SWR reading, or perhaps allow the coax terminations to be physically matched more evenly at the antenna. If I were to build another, I would try this approach. Should you decide to make both connections adjustable, remember to remove the paint from the portion of the mast the clamp will rest against when tuned.

It may also be possible to make the 5/8th’s element diameter smaller. The 1-1/4 inch tubing is convenient because it can be purchased at the proper length, but if you have stock left over from other antenna projects, it would be less expensive to use what you have. If you do, remember that antennas built from different stock may tune at positions other than those indicated in this article. I’d be delighted to hear from anyone who attempts this alternative approach.

reference

bibliography

Great Novice Gift Idea

HOW TO TROUBLESHOOT & REPAIR AMATEUR RADIO EQUIPMENT

by Joseph J. Carr, K4IPV

not everyone is lucky enough to have someone to teach them the basics of troubleshooting. For many of us the only way to learn was by trial and error. Joe Carr has put in one comprehensive guide, a complete step-by-step program on how to troubleshoot electronic equipment. Chapters include how to use simple test equipment like the voltmeter and ammeter and the more complex kinds of equipment like the oscilloscope. You also get plenty of helpful hints, the kind you can only get from someone who knows how to repair broken gear. Fully illustrated to help insure that you understand what you are doing.

©1980

□ T-1194

Softbound $9.95

Please add $1.00 for shipping and handling.

Ham Radio’s Bookstore

Greenville, NH 03048
The fact that the Computer Patch Interface unit by Advanced Electronic Applications, Inc. is known as the best value on the market is no accident. The CP-1 was designed by Al Chandler, K6RFK (PHD-E.E.), an active RTTY user since 1963.

Given a cost per unit budget for the CP-1, Al designed as much performance as possible into the Computer Patch, including a unique new tuning indicator, referred to by one of our customers as the "Dead Eye Dick" tuning indicator. This indicator is ideal for RTTY and CW, in that it is both fast to tune and (within 10 Hz) as accurate as scope tuning. It also performs under poor signal to noise conditions in which other indicators provide no useful data.

Al's variable shift tuning was designed to move the space filter center frequency from 2225 Hz to 3125 Hz without changing the bandwidth (by varying the Q of the filter). All this is accomplished using a precision ganged potentiometer to assure proper tracking of the multiple filter stages. We could have used a pot costing a tenth as much by simply using a two-pole filter design, but we feel the advantage of a sharper filter reduces the noise bandwidth significantly and allows the variable shift control to be used like passband tuning for extra elimination of adjacent channel interference.

Some manufacturers are concerned that amateurs might try calibrating their own equipment and, therefore, have used non-adjustable components, which results in sub-optimal performance. Although more costly, trimpots used in AEA equipment allow factory adjustment for performance to design specifications. Competently designed active filter circuits need not be adjusted after leaving the factory; however, for specialized use the owner can easily change filter parameters.

Mindful of the fact that many of our customers are new to RTTY, Al made the CP-1 tuning as forgiving as possible, while providing the most critical operator a piece of equipment in which he could be proud. Even old "pro's" are surprised at the poor signal conditions under which the CP-1 will still provide good copy.

You can now experience the BEST RTTY, CW, and AMTOR offered. Couple the CP-1 with our new AEASOFT™ software packages designed for the MARS, SWL, or amateur radio operator, and you will feel a pride reminiscent of what "made in U.S.A." brought in years gone by. Please do not hold the low price of the CP-1 against us. This is one case where you get much more than you pay relative to any of the competitive units. For more information send for our FREE catalog. Better yet, see your favorite dealer.

MIDWEST AMATEUR RADIO SUPPLY
3454 Fremont Avenue, North
Minneapolis, MN 55412
Store Hours: Mon.-Fri. 9-6, Saturday 9-3
(612) 521-4662
VECTOR VT-4 INSTALLS DIRECTLY AT THE ANTENNA FEEDPOINT WHERE YOU CAN REALLY "TUNE" THE ANTENNA.

* DESIGNED FOR HALF WAVE DIPOLES, INVERTED V'S, AND QUARTER WAVE VERTICALS USING 50 OHM COAX FEEDLINES.

* OPERATES WITH SINGLE BAND OR MULTIBAND ANTENNAS, TRAP TYPE OR PARALLEL ELEMENT TYPES.

* WORKS ALL BANDS FROM 10 THROUGH 160 METERS.

* FULL BAND COVERAGE WITH MAXIMUM EFFICIENCY AND VERY LOW VSWR, TYPICALLY LESS THAN 1.2 TO 1.

* FINGER TIP CONTROL FROM THE HAM SHACK FOR EXACT RESONANCE AND IMPEDANCE MATCH.

* FOR MOBILE OPERATORS THE VECTOR VT-3 INSTALLS IN THE TRUNK AND TUNES STANDARD TYPE MOBILE ANTENNAS FOR FULL BAND COVERAGE, (All of 75M phone band), WITH TYPICAL VSWR LESS THAN 1.2 TO 1.

VT-3 WRITE FOR INFORMATION.

VT-4

WRITE FOR INFORMATION.

GEM-QUAD FIBRE-GLASS ANTENNA FOR 10, 15, AND 20 METERS

Two Elements $235.00
Extra Elements $164.00
Price is F.O.B. Transcona
INCLUDES U.S. Customs Duty

KIT COMPLETE WITH
* SPIDER
* ARMS
* WIRE
* BALUN KIT
* BOOM WHERE NEEDED

WINNER OF MANITOBA DESIGN INSTITUTE AWARD OF EXCELLENCE

Buy two elements now — a third and fourth may be added later with little effort.

Enjoy up to 8 dB forward gain on DX, with a 25 dB back to front ratio and excellent side discrimination.

Ask for our new 2m Quad Kit when you order your Gem Quad. It's FREE for the asking!

Get maximum structural strength with low weight, using our "Tridentic" arms. Please inquire directly to:

GEM QUAD PRODUCTS LTD.
Box 53
Transcona Manitoba
Canada R2C 2Z5
Tel. (204) 866-3338

MOUSER ELECTRONICS
11431 WOODSIDE AVE Santee CA 92071
PHONE (619) 449-2222 TWX 910 331-1175

1984 CALLBOOKS

Known throughout the world for accuracy, the 1984 Callbooks are a better value than ever before. The U.S. Callbook contains over 433,000 listings; the Foreign Callbook has over 413,000. More than 100,000 changes have been made in each edition since last year. Special features include call changes, Silent Keys, census of amateur licenses, world-wide QSL bureaus, international postal rates, prefixes of the world, and much more. You can't beat this value! Order your 1984 Callbooks now.

<table>
<thead>
<tr>
<th></th>
<th>Each</th>
<th>Shipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Callbook</td>
<td>$19.95</td>
<td>$3.05</td>
<td>$23.00</td>
</tr>
<tr>
<td>Foreign Callbook</td>
<td>18.95</td>
<td>3.05</td>
<td>22.00</td>
</tr>
</tbody>
</table>

Order both books at the same time for $41.95 including shipping within the USA.

Order from your dealer or directly from the publisher. Foreign residents add $4.55 for shipping. Illinois residents add 5% sales tax.

Keep your 1984 Callbooks up to date. The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $12.00 per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 5% sales tax. Offer void after November 1, 1984.

RADIO AMATEUR CALLBOOKS INC.
Dept. F
925 Sherwood Dr., Box 247
Lake Bluff, IL 60044, USA

Tel: (312) 234-6600

176
This article discusses the design and construction of a wideband voltage controlled oscillator (VCO). It can be used as an LO in a broadband receiver or spectrum analyzer, as a low-noise phase locked source in a VHF or UHF exciter, or alone as a basic signal generator.

This particular design is used in an HF communications receiver. When phase locked to a low-noise reference, it demonstrates excellent signal-to-noise performance — greater than 130 dBc/Hz at 20 kHz offset from the carrier. As mentioned in previous articles, this noise performance, or spectral purity of the oscillator, is quite important if the receiver is to perform well in the presence of strong adjacent channel signals.

design concept

The oscillator design uses a resonator or tank circuit which consists of a transmission line terminated by a voltage variable capacitor or varactor. A transmission line of correct length looks like a variable inductance as the varactor voltage is varied (fig. 1). The oscillator uses the Colpitts configuration, and takes advantage of the feedback capacitor voltage divider plus any parasitic capacitance present. If the Colpitts configuration is operated with a fairly high C to L ratio, then this condition tends to improve the oscillator operating Q and consequently the oscillator signal-to-noise ratio. To assist in the design of the VCO a BASIC computer program routine has been included. Some examples, as well as actual designs and performance data, are also provided. Finally some interesting applications are highlighted.

equations developed

The input impedance of a lossless transmission line, \(Z_s \), is equal to:

\[
Z_s = \frac{Z_0 \cos \beta L + j Z_0 \sin \beta L}{\cos \beta L + j (Z_0 / Z_0) \sin \beta L}
\]

(1)

If \(Z_s \) is zero (the line is shorted at the end) from the preceding equation, \(Z_s = j Z_0 \tan \beta L \) and the line has an inductive reactance of \(Z_0 \) ohms times the electrical length of the line. This is true provided the value of \(\beta L \) (\(\beta = 2\pi / \lambda \)) is less than 90 degrees or the line is less than a quarter wavelength long. If the line is precisely a quarter wave long (electrically), then from eq. 1 we have:

\[
Z_s = Z_0^2 / Z_0 L
\]

(2)

By Alan Victor, WA4MGX, 8758 SW 51st Place, Cooper City, Florida 33328
In this case, if \(Z_2 \) were a capacitive reactance of \(-jX_{C_v}\) then
\[
Z_3 = jZ_0^2/X_{C_v} \tag{3}
\]
and the capacitive reactance of the termination is reflected to the input of the line as an inductive reactance of \(j/X_{C_v} = Z_v/Z_0^2 \) and an inductance of
\[
L = C_vZ_0^2 \tag{4}
\]
For example, an oscillator that tunes 135 MHz to 145 MHz requires the electrical length to remain a quarter wavelength or less at the maximum frequency of 145 MHz. If a 50-ohm transmission line is used, then the physical length of a quarter wave is calculated using:
\[
\text{length (feet)} = \frac{246}{f_0 (\text{MHz}) \sqrt{\varepsilon_r}} \tag{5}
\]
where \(\varepsilon_r \) is the relative dielectric constant of the line. The \(\varepsilon_r \) for a 50-ohm line using a Teflon® dielectric is 2.2; therefore, the physical line length is 13.7 inches. If our oscillator includes device shunt capacitance, feedback capacitance, and parasitics totaling 20 pF, then the required inductance to achieve resonance is 60 nH at 145 MHz and 70 nH at 135 MHz. Consequently, the required variation in the varactor capacity is calculated from eq. 4 as 24 pF to 28 pF or 4 pF. If a lower \(Z_0 \) line were chosen, and the total capacitance remained the same, an increase in the varactor capacitance change would be required.

The equations developed so far allow us to choose a value for the transmission line impedance \(Z_0 \) and obtain a value of inductance \(L \) for a given varactor capacity, \(C_v \). This equivalent inductance then becomes part of our oscillator tank. Since a transmission line and capacitor are readily controlled, it becomes very attractive to construct VHF and UHF oscillators in this manner since small fixed inductances are difficult to control. Furthermore, the resonator or tank is a shielded structure and therefore quite immune to outside disturbances, such as, microphonics, which can lead to hum and modulation effects.

three parameters affect frequency

Now consider what happens if the transmission line length, impedance, or the oscillator shunt capacitance is varied. Under these conditions, any value of inductance necessary to resonate the oscillator tank can be developed. Given these three variables, an oscillator frequency change of 50 percent can be achieved for a given value of transmission line length and impedance \(Z_0 \). With careful design, even an octave is possible. The necessary design equations are presented in the appendix, and a BASIC program is included to solve for the transmission line impedance, \(Z_0 \), electrical length, and required varactor capacitance change. Finally, the transmission line physical length is calculated, with the dimensions given in both inches and metric units. Because the program is in-

Switched transmission line injection oscillators as shown in fig. 2.

fig. 2. HF communications receiver using switched transmission line VCOs.
Program 1. Varactor oscillator design program listing.

LIST

10 HOME: REM CLEARS THE SCREEN
20 PRINT " VARACTOR TUNED WIDEBAND"
30 PRINT " OSCILLATOR DESIGN"
40 PRINT " A.M.VICTOR"
50 PRINT " 1.1 9/9/84"
60 PRINT : PRINT : PRINT
70 PI = 3.1415926
80 PRINT "WHAT IS THE MIN AND MAX TUNE": PRINT " RANGE IN MHZ ";: INPUT F1,F2
90 W2 = 2 * PI * F2 * 1E6
100 W1 = 2 * PI * F1 * 1E6
110 PRINT : PRINT "ENTER TRANSMISSION LINE ZO,";: PRINT "AND STARTING LINE LENGTH": PRINT " IN DEGRESS";: INPUT Z0,ITHETA
120 STHETA = ITHETA
130 PRINT : PRINT "ENTER LINE LENGTH INCREMENT";: INPUT DL
140 PRINT : PRINT "ENTER THE DEVICE CAPACITANCE": PRINT " PLUS ANY PARASITICS IN PF";: INPUT CIN
150 HOME: REM BEGIN CALCULATIONS
160 XIN = 1 / (W1 + CIN * 1E-12)
170 X2IN = 1 / (W2 + CIN * 1E-12)
180 PRINT : PRINT "DELTA XCV LENGTH"; TAB(12);"CVMIN"; TAB(20);"CVMAX"
190 FOR THETA = ITHETA TO 180 STEP DL
200 RTHETA = THETA / 57.29578
210 A = (Z0 * TAN ((W2 / W1) * RTHETA)) - (W1 / W2) * XIN
220 B = 1 + (XIN * TAN (RTHETA) / ZO)
230 C = 1 + ((W1 / W2) * (XIN / ZO) * TAN ((W2 / W1) * RTHETA))
240 D = ZO * TAN (RTHETA) - XIN
250 XQUOT = (A + B) / (C + D)
260 XCVW1 = (Z0 * TAN (RTHETA) - XIN) / (1 + (XIN / ZO) * TAN (RTHETA))
270 Y2CVW2 = ((Z0 * TAN ((W2 / W1) * RTHETA) - X2IN)) / (1 + (X2IN / ZO) * TAN ((W2 / W1) * RTHETA))
280 CMAX = 1 / (2 * PI * F1 * XCVW1 * 1E6)
290 CMAX = CMAX * 1E12
300 X = CMAX
310 GOSUB 450
320 CMAX = H
330 YMIN = 1 / (2 * PI * F1 * Y2CVW2 * 1E6)
340 YMIN = YMIN * 1E12
350 X = YMIN
360 GOSUB 450
370 YMIN = H
375 REM; NEXT 4 LINES CHECK FOR VALID TRANSMISSION LINE LENGTHS AND CAPACITOR VALUES.
380 IF XQUOT < 0 THEN 430
390 IF YMIN < 0 THEN 430
400 IF CMAX < 0 THEN 430
410 IF YMIN > CMAX THEN 430
420 PRINT XQUOT; TAB(13);THETA;"DEG"; TAB(20);YMIN;"PF"; TAB(30);CMAX;"PF"
430 NEXT THETA
440 GOTO 530
450 G = INT (X)
460 H = G - X
470 H = ABS (H)
480 H = 100 + H
interative, you can try various combinations of line impedance, line length, and oscillator shunt output capacitance, which can be altered by shunting the oscillator device with an external capacitance. The program is arranged to automatically increment the transmission line length by a specified amount. During the program operation you'll notice that a particular line length exists which minimizes the required varactor capacitance change. Depending on the oscillator's tuning range and the line impedance, the required capacitance change of the varactor is affected and changes. For a large percentage tuning bandwidth, a high Z_0 is needed to keep the varactor capacitance change within practical limits.

VCO circuit

Several versions of the oscillator were tried. The VCOs shown in fig. 2 and in the photograph work well in an HF receiver using up-conversion. Each of the three VCOs covers 20 MHz in the 140-200 MHz range. The oscillators are phase-locked to a 1 MHz reference and their outputs are divided by 2. The final output is then tunable from 70 to 100 MHz in 500 kHz steps and provides injection for an up-conversion receiver with a 70 MHz first IF. U310 J-FETs and MV109 varactors are used. Trimmer capacitor values, varactor capacitance swing, and transmission line dimensions were determined by using the computer program. Each oscillator uses clamp bias to help regulate oscillator feedback as it is tuned and to prevent the FET gate-source junction from becoming forward-biased. This appears to help the oscillator noise performance as evidenced by measured values of better than 135 dBc/Hz, measured 25 kHz away from the car-
AEA Brings you the Breakthrough!

MBA-RC Code Converter

This full function decoder and display unit represents the latest in state-of-the-art decoders. Morse, Baudot, and ASCII. Will perform serial to parallel and parallel to serial code conversions as well as cross mode conversions. Two powerful μPS, 43 ICS, make up one complete package. Compatible with HF, VHF and UHF bands and RTTY modes. Separate receive filters are ahead of and behind a special signal limited circuit.

CALL FOR YOUR PRICE

AEA Computer Patch CP-1

A Personal Computer + Your Transceiver = AEA's CP-1 = FUN! Get a professional quality RTTY/CW terminal on a beer budget price. Easy to hook up and use. The CP-1 demodulator provides greatly improved performance compared to popular single channel RTTY detectors. With appropriate software and your personal computer, you can have hours of fun.

CALL FOR YOUR PRICE

ISOPOLE™

Models available for: 144 MHz, 220 MHz and 440 MHz. Maximum gain, very low angle of radiation. Covers complete band with SWR less than 1.4-1.

CALL FOR YOUR PRICE

AEA Contestor™ CK-2

Here's great gift idea for your favorite ham. Designed with the needs of the active contestor in mind — at a price that is affordable. Has an 800 character message memory that can be soft partitioned into as many as 10 sections. Mistakes are easily corrected with unique edit mode. Also has automatic serial number generator.

CALL FOR YOUR PRICE

AEA Moscow Muffler WB-1

Blank the woodpecker — once and for all. No modifications necessary to your equipment. Hooks up in your antenna so synchronous blanker works where most effective, in the RF stage. Will not overload from strong adjacent signals. Also has low noise, broadband 6 dB preamp. WB-1 will typically display 40-50 dB of attenuation. Two pulse rates blanking speeds available — 10 and 16 Hz.

CALL FOR YOUR PRICE

AEA Amtor Terminal Unit AMT-1

AMTOR is fast growing in popularity. Don't you want to join the fun? Computer based, self correcting mode of transmission virtually ensures error-free copy — even with strong interference or weak signals, AMTOR can get your message through. AMT-1 contains everything you need to get on AMTOR with the addition of your radio and personal computer. Will also work on standard RTTY and CW for additional flexibility. Great Christmas gift idea. State-of-the-art FUN.

CALL FOR YOUR PRICE

HAMTRONICS is your complete ham dealer. Looking for something and can't find it elsewhere? CALL HAMTRONICS TODAY
Program 2: Varactor oscillator design examples.

ANOTHER RUN WITH NEW PARAMETERS Y/N ?N
TRANSMISSION LINE LENGTH CALCULATION

ENTER REL.DIELECTRIC CONSTANT OR
VELOCITY FACTOR, (E) OR (V) AND VALUE?E, 2.2
ENTER TRANSMISSION LINE
LENGTH IN DEGREES? 45
METRIC LENGTH INCHES
.252824948 9.95373812
ANOTHER RUN Y/N? Y

EDIT WHICH PARAMETERS?
FREQUENCY RANGE (1)?
TRANSMISSION LINE (2)?
DEVICE CAPACITANCE (3)?
OR DO TRANSMISSION LINE LENGTH CALCULATION (4)?
START NEW CALCULATION (5)
OR (6) TO END
? 1
ENTER TUNING RANGE MIN, MAX? 200, 400

EDIT WHICH PARAMETERS?
FREQUENCY RANGE (1)?
TRANSMISSION LINE (2)?
DEVICE CAPACITANCE (3)?
OR DO TRANSMISSION LINE LENGTH CALCULATION (4)?
START NEW CALCULATION (5)
OR (6) TO END
? 5

DELTA XCV LENGTH CVMIN CVMAX
164.421688 15DEG 12.84PF 4223.22PF
7.06193955 20DEG 8.34PF 117.86PF
5.11163621 25DEG 5.8PF 59.3PF
4.8057213 30DEG 4.07PF 39.2PF
5.22462976 35DEG 2.76PF 28.92PF
6.73458529 40DEG 1.67PF 22.6PF
12.9839108 45DEG .7PF 18.27PF
ANOTHER RUN WITH NEW PARAMETERS Y/N ?N
TRANSMISSION LINE LENGTH CALCULATION

ENTER REL.DIELECTRIC CONSTANT OR
VELOCITY FACTOR, (E) OR (V) AND VALUE? V, .66
ENTER TRANSMISSION LINE
LENGTH IN DEGREES? 40
METRIC LENGTH INCHES
.11 4.33070866
ANOTHER RUN Y/N? N

RUN
VARACTOR TUNED WIDEBAND
OSCILLATOR DESIGN
A.M. VICTOR
1.1 9/9/84
WHAT IS THE MIN AND MAX TUNE RANGE IN MHZ? 100, 200

ENTER TRANSMISSION LINE 20, AND STARTING LINE LENGTH IN DEGRESS? 50, 10

ENTER LINE LENGTH INCREMENT? 5

ENTER THE DEVICE CAPACITANCE PLUS ANY PARASITIC IN PF? 40

DELTA XCV LENGTH CVMIN CVMAX
62.3339054 40DEG 9.82PF 1225.29PF
22.0994892 45DEG 6.33PF 279.89PF
23.7659259 50DEG 3.29PF 156.62PF
114.03646 55DEG .47PF 107.54PF

ANOTHER RUN WITH NEW PARAMETERS Y/N? Y

EDIT WHICH PARAMETERS?
FREQUENCY RANGE (I)?
TRANSMISSION LINE (2)?
DEVICE CAPACITANCE (3)?
OR DO TRANSMISSION LINE LENGTH CALCULATION (4)?
START NEW CALCULATION (5)
OR (6) TO END
? 2

ENTER TRANSMISSION LINE 20? 75

EDIT WHICH PARAMETERS?
FREQUENCY RANGE (I)?
TRANSMISSION LINE (2)?
DEVICE CAPACITANCE (3)?
OR DO TRANSMISSION LINE LENGTH CALCULATION (4)?
START NEW CALCULATION (5)
OR (6) TO END
? 5

DELTA XCV LENGTH CVMIN CVMAX
28.0326343 30DEG 10.55PF 591.88PF
11.6044757 35DEG 7.38PF 171.5PF
10.1093855 40DEG 4.91PF 99.38PF
12.2899117 45DEG 2.81PF 69.17PF
29.0553268 50DEG .9PF 52.38PF

rier frequency (see fig. 3). Each VCO output is combined through switched pin diodes and the VCO is enabled by switching DC power from a bandswitch control logic board. The tuning line voltage of each VCO is tied together through shielded coax and 400 nH RF chokes. A small series resistor is used in line with the chokes to provide for a lower choke Q. Note that a small resistor is used; large decoupling resistors add excessive amounts of thermal noise and can ruin an otherwise low-noise design.

digital VFO applications

The octave-tuned oscillator presented in fig. 4 covers 100-200 MHz. The layout is more critical since any additional parasitic capacitance present tends to reduce the achievable tuning range. The circuit does
Authorized Dealers For

KENWOOD & ICOM

Also displaying the popular accessories needed to complete a HAM STATION...

ARRL PUBLICATIONS • AEA • ALPHA DELTA • ASTRON •
AUSTIN • BENCHER • B&W • DAIWA • MIRAGE •
TELEX/HY-GAIN • VIBROPLEX • WELZ • ETC.

TRY US FOR YOUR MAIL ORDER PURCHASES

VISA and MASTER CARDS Accepted

OPEN SIX DAYS A WEEK

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1/4 miles from Rte. 495 (Exit 31) toward Groton, Mass.

AMATEUR TELEVISION

KPAS 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races & other public service events, remote VCR, etc. Remote control of R/C airplanes or robots. Show home video tapes, computer programs, repeat SSTV to local ATVenna. DX depends on antennas and terrain typo. 1 to 40 miles.
- FULL COLOR VIDEO & SOUND on one small 3.25"x4" board.
- RUNS ON EXTERNAL 13.8 VDC at 300 ma supply or battery.
- TUNED WITH ONE CRYSTAL on 426.25, 434.0, or 439.25 mHz.
- 2 AUDIO INPUTS for a low Z dynamic and line level audio input found in most portable color cameras, VCRs, or home computers.
- APPLICATION NOTES & schematic supplied for typical external connections, packaging, and system operation.
- PRICE ONLY $159 delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? An set with a NC-2 or TVC-4 420-450 mHz to channel 3 downconverter, 70 cm antenna, and coax cable to receive. Package up the KPAS, add 12 to 14 vdc, antenna, and any TV camera, VCR, or computer with a composite video output. Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG & more info on atv downconverters, antennas, cameras, etc., or who is on in your area.

TERMS: Visa, Mastercard, or cash only. UPS COD by telephone or mail. Telephone orders & postal MO usually shipped within 2 days, all other checks must clear before shipment. Transmitting equipment sold only to licensed amateurs verified in 1984 Callbook. Call includes sales tax.

(618) 447-4565 m-f 8am-6pm pst.

CeCo COMMUNICATIONS, Inc.
2112 Avenue X, Brooklyn, NY 11235
SERVING THE INDUSTRY SINCE 1922
Phone (212) 646-6300
Call CeCo For Your CCTV Security And Color Production Requirements

Your Ham Tube
Headquarters!

TUBES BOUGHT, SOLD AND TRADED
SAVE $$$—HIGH $$$ FOR YOUR TUBES

Call Toll Free 800-221-0860

Major Brands on Receiver Tubes

75% off list

Semicondutors

<table>
<thead>
<tr>
<th>Tube</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF 245/SD1416</td>
<td>$30.00</td>
</tr>
<tr>
<td>MRF 454</td>
<td>$14.95</td>
</tr>
<tr>
<td>MRF 455</td>
<td>$10.95</td>
</tr>
</tbody>
</table>

RF Connectors

<table>
<thead>
<tr>
<th>Tube</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL259</td>
<td>$10.49</td>
</tr>
<tr>
<td>PL258</td>
<td>$10.95</td>
</tr>
<tr>
<td>UG 175/176</td>
<td>$10.16</td>
</tr>
<tr>
<td>UG255/u</td>
<td>$2.50</td>
</tr>
<tr>
<td>UG273/u</td>
<td>$2.25</td>
</tr>
</tbody>
</table>

Apply $3.00 min. for UPS charges

CeCo COMMUNICATIONS, Inc.
2112 Avenue X, Brooklyn, NY 11235
SERVING THE INDUSTRY SINCE 1922
Phone (212) 646-6300
Call CeCo For Your CCTV Security And Color Production Requirements
provide octave coverage and requires a varactor voltage change from 1 to 20 volts. The noise performance was less impressive (115 to 120 dBc/Hz). However, if used in a low-noise phase lock loop and followed by frequency division, it provides the basis for a low noise synthesizer or digital VFO with 10 Hz resolution.

Another example of a digital VFO is shown in fig. 5. How about a continuous-tuning HF receiver with 1 kHz steps, using a single phase lock loop and the popular 9 MHz IF? The approach outlined uses a single 200 to 400 MHz VCO. Despite the coverage of the VCO, which is only an octave, appropriately dividing down the VCO frequency provides for frequency coverage in excess of an octave! If the first IF is 9 MHz, then an LO injection frequency from 10 to 40 MHz will provide reception from 1 to 31 MHz. Using the 200 to 400 MHz VCO with a divide by 10/20 circuit following it yields the needed coverage. The VCO is locked to a 10 kHz reference and programmed in 1 kHz steps.

Steps smaller than 1 kHz could be provided for by tuning or synthesizing the BFO.

A 200 to 400 MHz VCO was constructed and the measured noise performance varied from 110 dBc/Hz at 25 kHz offset from the carrier. Division by 10 or 20 improves the noise by at least 20 dB or 130 dBc/Hz, which is quite adequate for most receiver applications. Signal generation is handled in a similar fashion, using a cascade of binary dividers. Our 200 to 400 MHz VCO, could provide the basis of an HF through UHF source by using successive division of the VCO and bandpass filtering. A number of commercially available signal sources use this approach.

summary

A design technique which allows the construction of wideband tunable oscillators with excellent noise performance is presented. The technique uses a trans-
mission line and voltage variable capacitor that simulates an inductive change. A BASIC program which aids in the design of this configuration is included. Oscillators which exhibit broadband and low-noise performance have many applications. I would be very interested in hearing from readers who have similar applications.

references

appendix

determination of the transmission-line resonator parameters

The transmission line formula (eq. 1) can be rearranged to solve for Z_0.

$$ Z_v = \frac{jZ_0 \tan \beta L - Z_a}{j(Z_0/Z_a) \tan \beta L - 1} \tag{A1} $$

Now $Z_v = +jX_{in}$ and resonates with $-jX_{in}$ of the device at resonance. Therefore, substituting for Z_v in eq. A1 gives:

$$ Z = -j(Z_0 \tan \beta L - X_{in}) \tag{A2} $$

and the reactance of our tuning varactor is:

$$ X_{CV} = \frac{Z_0 \tan \beta L - X_{in}}{1 + X_{in} \tan \beta L} \tag{A3} $$

Simplify by setting $\beta L = X$ at frequency f_1, and $\beta L = \frac{f_2}{f_1} X$ at frequency f_2. Since the oscillator shunt capacitance remains constant, X_{in} at f_2 equals (f_2/f_1) times X_{in} at f_1. This information is now used to obtain the following reactance change needed to tune the VCO from f_1 to f_2. The following expression can be solved using the BASIC computer program or even a hand-held calculator. The equation is:

$$ \frac{X_{C1}(f_2)}{X_{C1}(f_1)} = \left[\frac{Z_0 \tan \left(\frac{f_2}{f_1} X \right) - \frac{f_1}{f_2} X_{in}(f_1)}{1 + \frac{X_{in}(f_1) \tan X}{Z_0}} \right] \left[1 + \frac{X_{in}(f_2) \tan X}{Z_0} \right] \left[\frac{1 + \frac{X_{in}(f_1) \tan X}{Z_0}}{1 + \frac{X_{in}(f_2) \tan X}{Z_0}} \right] \tag{A4} $$

where $X_{in}(f_1)$ = oscillator total shunt reactance at frequency f_1,

$X_{in}(f_2)$ = oscillator total shunt reactance at frequency f_2,

$X_{C1}(f_1)$ = varactor reactance at frequency f_1,

$X_{C1}(f_2)$ = varactor reactance at frequency f_2.

Using the BASIC program and eq. A4 values of X, Z_0, X_{in} will yield the required tuning ratio.

ham radio
B. G. MICRO

P. O. Box 280298 Dallas, Texas 75228
(214) 271-5546

115

74LS
LS00 .24 LS164 .60
LS01 .24 LS165 .90
LS02 .24 LS166 .99
LS03 .24 LS169 1.25
LS04 .24 LS174 .60
LS05 .24 LS175 .50
LS08 .24 LS181 1.99
LS10 .24 LS191 .90
LS11 .24 LS192 .80
LS12 .30 LS193 .85
LS13 .50 LS195 .65
LS14 .50 LS197 .85
LS20 .24 LS221 .80
LS21 .25 LS240 .95
LS27 .24 LS241 .80
LS30 .28 LS242 .90
LS32 .36 LS243 .90
LS42 .49 LS244 1.25
LS51 .24 LS245 1.50
LS74 .40 LS251 .50
LS85 .60 LS257 .55
LS96 .38 LS258 .55
LS90 .50 LS266 .50
LS93 .55 LS273 1.25
LS109 .39 LS279 .45
LS112 .39 LS283 .80
LS123 .75 LS290 .85
LS124 2.75 LS293 .85
LS125 .45 LS298 .89
LS132 .50 LS299 1.60
LS133 .49 LS386 .45
LS138 .60 LS387 .50
LS139 .60 LS388 .45
LS151 .50 LS373 1.25
LS153 .50 LS374 1.35
LS154 1.75 LS375 1.19
LS155 .50 LS377 1.49
LS156 .55 LS378 .85
LS157 .60 LS390 1.19
LS162 .65 LS393 1.25
LS163 .50

DIP SWITCH
DT08 BY ALCO
8 POSITION DIP SWITCH
Super low profile - Made for automatic insertion - SPECIAL .90 10/7.50

DIAGRAMS

REPLACEMENT IC'S

F.D. CONTROLLERS
1771 Single Density 15.00
1791 Single Density 20.00
1793 22.00
1797 24.95
2793 35.95

CONTROLLER SET
THREE CHIP SET
1797, 2143-03, 1691 by W.D. Compare at up to 86.85.
B.G. SPECIAL
All 3 for only $29.95

C R Y S T A L S
32.768 Khz SPECIAL .65
262.144 .75
300.000 1.00
307.200 1.25
1.5432 Mhz 1.75
1.8432 2.49
2.000000 2.49
3.000 1.15
3.120 1.20
3.579545 - HC18 1.00
4.000 2.49
4.194304 1.50
4.433618 .75
4444.00 1.25
4.9152 2.49
4.916 Bd Rate 1.50
5.000000 1.50
5.6068 3.75
5.616 1.59
8.000 1.99
9.9000 1.25
10.6942 3.75
10.8864 1.49
11.098 1.59
13.440 1.00
12.000 2.75
15.2 1.10
16.3181 2.49
16.0000 1.50
17.430 2.49
18.2259 1.00
20.000 3.75
21.87108 1.00
22.0900 1.00
32.000 2.49
40.000 2.00
87.3333 1.00
91.000 1.00
104.8 1.00

DMA CONTROLLER
SPECIAL
9517A-4 (8237-4) .10.50

2114 SPECIAL!
COMPUTER
MANUFACTURERS
EXCESS INVENTORY
SALE!
PRIME! 2114-300 n.s.
INCREDIBLE PRICE!
YOU SAVE!
8/$9.00 GUARANTEED

TLDR (Unless specified elsewhere): Add $1.50 postage, we pay balance. Orders over $50.00 add $.50 for insurance. No C.O.D. Texas Res. add 6%. Tax: 90 Day Money Back Guarantee on all items. All items subject to prior sale. Prices subject to change without notice. Foreign order - US funds only. We cannot ship to Mexico. Countries other than Canada, add $3.50 shipping and handling.
Big Computer Mfg. Makes $900,000 Goof!!

COMPUTER/DISK DRIVE SWITCHING POWER SUPPLY

ORIGINALLY DESIGNED TO RUN A Z-80 BASED SINGLE BOARD COMPUTER WITH TWO 5-1/4 IN. DISK DRIVES AND CRT MONITOR.

BRAND NEW: UNUSED!

$37.50 EA

3 FOR $95.00

ADD $1.50 PER UNIT FOR UPS

SPECS:

- + 5VDC 5 AMPS MAX
- #1 + 12 VDC 2.8 AMPS MAX
- #2 + 12 VDC 2.0 AMPS MAX
- -12 VDC .5 AMPS MAX

INPUT: 115 or 230 VAC 60Hz

SMALL SIZE: 6-1/8 x 7-3/8 In.

HIGH EFFICIENCY SWITCHER MFG. BY CAL. DC IN USA!

The poor Purchasing Agent bought about 10 times as many of these DC switchers as his company would ever use! We were told that even in 10,000 piece lots they paid over $72 each for these multi-output switchers. When this large computer manufacturer discontinued their Z-80 Computer, guess what the Big Boss found in the back warehouse; several truckloads of unused $72.00 power supplies. Fortunately we heard about the deal and made the surplus buy of the decade. Even though we bought a huge quantity, please order early to avoid disappointment. Please do not confuse these high quality American made power supplies with the cheap import units sold by others.

TERMS: Orders over $50 add 85¢ insurance. No COD. Tex. Res. Add 6% Sales Tax. Subject to prior sale. Foreign orders: US funds only. We cannot ship to Mexico. Foreign countries other than Canada add $6 per board shipping.

Tell 'em you saw it in HAM RADIO!
Z80* SINGLE BOARD COMPUTER!
64K RAM — 80 x 24 VIDEO DISPLAY — FLOPPY DISK CONTROLLER
RUNS CP/M* 2.2!

$29.95
(NEW PRICE)
(BRAND NEW PC BOARDS WITH SCHEMATICS)

GROUP SPECIAL:
BUY 6 FOR $165!

USES EASY TO GET PARTS!

BOARD MEASURES
11½" x 12½"

ALL ORDERS WILL BE
PROCESSED ON A STRICT,
FIRST COME, FIRST SERVED
BASIS! ORDER EARLY!

GIANT COMPUTER MANUFACTURER'S SURPLUS!
UNBELIEVABLE LOW PRICE!!!

Recently Xerox Corp. changed designs on their popular 820* computer. These prime, new, 820-1 PC boards were declared as surplus and sold. Their loss is your gain! These boards are 4 layers for lower noise, are solder masked, and have a silk screened component legend. They are absolutely some of the best quality PC boards we have seen, and all have passed final vendor QC. Please note, however, these surplus boards were sold by Xerox to us on an AS IS basis and they will not warranty nor support this part.

We provide complete schematics, ROM'S, and parts lists. If you are an EXPERIENCED computer hacker, this board is for you! Remember, these are prime, unused PC boards! But since we have no control over the quality of parts used to populate the blank board, we must sell these boards as is, without warranty. You will have to do any debugging, if necessary, yourself!.

ADD $2 PER PC BOARD FOR SHIPPING. (USA and Canada)

*CP/M TM OF DIGITAL RESEARCH INC. (CALIF.) 820 TM OF XEROX CORP. 280 TM OF ZILOG

TERMS: Orders over $50 add $5 insurance, No COD. Tex. Res. Add 6% Sales Tax. Subject to prior sale. Foreign orders: US funds only. We cannot ship to Mexico. Foreign countries other than Canada add $6 per board shipping.

WE'VE GOT EM!
5-1/4"
HALF SIZE DRIVES

- 40 Track per side
- Double-sided, double density
- Same as SA455
- Latest head & drive technology
- Fast access time

Two of These Half Size Drives will
Fit in the Same Space as 1 Full Size Drive!

$179.00 per drive

Compare at up to $249 ea.
ADD $3.00 UPS PER DRIVE

More Details? CHECK — OFF Page 132
1.8 - 30 MHz. Continuous Coverage Antenna for Commercial and Amateur Service

Model AC 1.8 - 30
The AC 1.8 - 30 Antenna uses only 80 feet horizontally, and, when space is limited, can be shortened even further with only slight loss of radiation efficiency.

Patent Pending

- SWR Maximum 2:1, 1:4:1 Average
- Handles 1 KW input ICAS
- Can be installed in approximately 80 feet of space
- Higher power models available (contact factory)

BALUN
DIRECT COAX FEED

25 to 35 FT. HIGH
BALANCING NETWORK

80 FT.

STUMPED FOR A GIFT IDEA?

I.D. BADGES
No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Wear it with pride! Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

- $2.50

HERE'S A GIFT IDEA!
How about an attractive BASEBALL style cap that has name and call on it. It's the perfect way to keep eyes shaded during Field Day. It gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion you want it to be. Hats come in the following colors: GOLD, BLUE, RED, KELLY GREEN. Please send call and name (maximum 6 letters per line).

- $5.00

REGULAR PRICE HAT AND BADGE $7.50 + SHIPPING

SPECIAL $6.49
SAVE $1.00

Please enclose $1 to cover shipping and handling.

HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441
Most of the newer transistorized transceivers have circuits that limit output power if a high SWR or reflected power condition is encountered. But because many earlier rigs — and also linears — do not have such protection, the following unit was designed and built to automatically shut down equipment if a pre-set value of reflected power is exceeded. As some of us already know through sad experience, high reflected power, even if only for a few seconds, can be both damaging and costly.

Operation.

The idea is to sample a small amount of RF voltage from your SWR or reflected power meter, rectify it, and feed it through a sensitivity control to the base input of a Darlington transistor. At the proper triggering level, a relay in the collector circuit will close two of its contacts, locking itself in. At the same time another set of relay contacts will open the AC input power to your transceiver, shutting it off. The RF voltage selected by switch S2 is either REFLECTED or FORWARD, which makes it easy to initially set up the unit. A switch, S3, provides an override circuit which simplifies initial setup.

A Darlington transistor was chosen because it has a Beta (current gain) of more than 5000, which provides more than sufficient sensitivity. The LED is useful in setting the bias control, and also indicates when the relay is locked in. During the breadboard development of the unit, some troublesome RF and 60 cycle pickup was encountered. This was readily cured by adding capacitors C1 and C2 as shown. They were incorporated into the final finished unit, as a precaution to eliminate such problems.

My own RF wattmeter is a SWAN WM-1500, and is generally representative of how SWR meters and wattmeters are constructed. The partial schematic is shown to indicate how the FORWARD and REFLECTED voltages are picked off and rectified by the added diodes CR1 and CR2. A stereo jack, J1, grounded to the meter chassis is a neat, easy way to transfer the voltages to the unit. Fig. 1 shows the schematic of the pick off voltages. At first glance it might seem that the DC voltage required for the unit could be picked off directly at the outputs of CR3 and CR4, thus eliminating the need for the added diodes CR1 and CR2. This worked well, except that under certain circumstances, a small amount of DC voltage from the unit would feed back into the wattmeter and cause the indicating meter of the wattmeter to read downscale by a few microamperes. The addition of the two diodes as shown eliminated that problem.

By William Vissers, K4KI, 1245 South Orlando Avenue, Cocoa Beach, Florida 32931
Without any RF voltage being fed into the unit, the bias control, if turned up sufficiently in the clockwise position, will turn on the transistor, locking in the relay. The bias control is a screwdriver adjustment on the rear of the unit. (It could also have been more conveniently mounted on the panel, using a conventional knob.) It is normally set somewhat below the turn-on point of the LED and relay lock in. The lower the bias control is set, the lower the standby current will be; I found that for normal operation, the standby current is less than a half a milliampere, which makes for long battery life. Switch S1 performs two functions, turning the power to the unit on, and when in the off position, isolating the unit from the wattmeter. Actually, the loading effect is so small as to be almost undetectable; the circuit was added more as a precaution than as a necessity.

The easiest way to set up the unit is to first determine the level of reflected power at which you want your transistor to turn OFF. With the override switch, S3, on, and the bias properly set as just described, turn your sensitivity control counterclockwise. Set switch S2 in the FORWARD position. Then load up your transmitter until the forward power is the amount at which you want your reflected power level to trip the relay. Now turn the sensitivity control (clockwise) until the LED lights and the relay locks in. Throw S2 to the REFLECTED position, reset the relay by momentarily turning switch S1 OFF and then ON, and turn the override switch S3 OFF. The unit is now calibrated and ready to go. Now, if your reflected power in your system reaches the preselected level already set up, your LED will light up, your relay will lock in, and contacts DE of the relay will open, turning off your transmitter almost instantaneously and automatically protecting your equipment.

The required level of reflected power can be easily determined by knowing that if it is one tenth of the maximum forward power, then your SWR will be slightly below 2:1. Naturally, each operator may want to determine the maximum SWR at which the equipment will be shut off. When the unit is set up for its most sensitive condition, it actually will trip at about 3 to 4 watts of reflected power, which I have found is more sensitivity than you will normally need. Although the unit and the circuit shown in fig. 2 turn off my transceiver input power, the relay contacts could instead easily be used to reduce your drive, increase your bias, reduce your plate voltage, or any one of the many different ways to reduce power output. The unit shown was built for my Yaesu FT-101-B transceiver. Its relay contacts have a current capacity of 3 amperes. Some experimentation was also done using an NPN Darlington transistor TIP 120, (Radio Shack™ part number 276-2068), which has a power dissipation of 65 watts, and would therefore be suitable for a high power linear control, in which a larger relay with heavier current contacts would be needed. It works in the circuit shown, but is slightly less sensitive. None of the parts listed were critical in any way; most of them came from my collection gathered over more than fifty years of hamming. The unit is housed in a metal box measuring 4 × 5 × 3 inches (10 × 12.7 × 7.6 cm). Any similar metal box will do.

I'd be interested in hearing from others who have built or experimented with a similar unit, and will be glad to answer any questions I can. Just include an SASE with your letter, addressed to me at the address provided.

Ham Radio
If you thought you were priced out of the satellite television market, Relax

We’ve got your System!

World View Electronics has made owning a satellite television receiving system affordable with a choice of products manufactured by the most reputable names in the satellite TVRO industry.

Now you can choose the system that fits your needs and your pocketbook by ordering directly from World View Electronics.

For your convenience, we’ve packaged five systems together (Systems 1 through 5). Or if you wish, you can mix and match components to your own specifications.

Worried about installation? Relax. Installation is simple because each system we sell includes an installation guide that makes installing your system a breeze.

So call us today. With World View Electronics you don’t have to give up quality for price.

Nice Price & Good Advice
1-502-781-6715

World View Electronics
1527 US 31 West Bypass, Bowling Green, K.Y. 42101
With SMART PATCH
You are in CONTROL

With CES 510SA Simplex Autopatch, there's no waiting for VOX circuits to drop. Simply key your transmitter to take control.

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

To Take CONTROL with Smart Patch – Call 800-327-9956 Ext. 101 today.

COMMUNICATIONS ELECTRONIC SPECIALTIES, INC.
P.O. Box 2930 • Winter Park, Florida 32790
Phone (305) 645-0474 • Order Only (800) 327-9956

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

12033 Otsego Street, North Hollywood, Calif. 91607

Since 1963

NEW FROM
NEMAL
your one stop coax supplier!

HARDLINE
Two styles, two sizes for all installation needs

- Aluminum Outer Conductor with Polyethylene Jacket
 1/2 inch loss: 0.1 dB/100 ft @ 30 MHz
 3.48 dB/100 ft @ 1000 MHz...$1.25/100 ft
 7/8 inch loss: 0.1 dB/100 ft @ 30 MHz
 5.24 dB/100 ft @ 1000 MHz...$3.25/100 ft

- Copperized Copper Outer Conductor with Polyethylene Jacket
 1/2 inch loss: 0.1 dB/100 ft @ 30 MHz
 (FLC12-50) 2.78 dB/100 ft @ 1000 MHz...$1.59/100 ft
 7/8 inch loss: 0.1 dB/100 ft @ 30 MHz
 (FLC12-75b) 1.33 dB/100 ft @ 1000 MHz...$3.92/100 ft

COMPARE RG 213: 1.25 dB/100 ft @ 30 MHz
3.85 dB/100 ft @ 1000 MHz

HARDLINE CONNECTORS

- 1/2 inch aluminum UHF M/F $19.00 Type N M/F $22.00
- 7/8 inch aluminum UHF M/F $49.00 Type N M/F $49.00
- 1/2 inch copper UHF M/F $22.00 Type N M/F $22.00
- 7/8 inch copper UHF M/F $49.00 Type N M/F $49.00

Call or write for Free Catalog
shipping
Cable — $6.00 per 100 ft
Connectors — $3.00 per order
Orders under $20 add $2 additional plus shipping.
COD add $2.00. Florida Residents add 5%.

NEMAL ELECTRONICS
Dept. H, 12240 N.E. 14th Ave., N. Miami, FL 33161
Telephone: (305) 895-9224

Tell 'em you saw it in HAM RADIO!
SANTEC presents
the smarter
handhelds
FOR 144 VHF, 220 VHF & 440 UHF

SANTEC Handhelds just got a little smarter, with new computer-control software designed by U.S. Hams who are also professional programmers. Now SANTEC Handhelds, which were the first to offer you varactor diode tuning in a handheld, first to offer you thick-film technology, first to provide 3.5W as a selectable handheld option and first to give you the time of day on a handheld read-out, have made another user-friendly leap forward in the logical progression of computer-controlled handhelds.

Now three SANTEC Handhelds can lock-out selected memory channels from the memory scan, allowing you to check your favorite frequencies much faster, without interruption from less commonly used ones or from unprogrammed memory channels. SANTEC Handheld's new operating programs now allow you to store variable offset values in all 10 user-written memory channels; and, as always with SANTEC Handhelds, your stored offset automatically comes back when you select a channel through the memory mode, and the plus or minus indication shows on the LCD display.

Other new features are the provision in Memory 9 for split memory offset operation, for those really unusual offset situations, and the capacity for hardware storage of a special PL tone for each memory channel (requires an optional encoder, available December, 1983). The new SANTEC Handheld will also accept the keyboard input of all frequencies as either short, fast 4-digit numbers or the familiar 6-digit versions: your SANTEC Handheld is smart enough to know what you want, either way.

The handhelds with the most now have more for you. Don't you dare settle for anything less: get your hands on a SANTEC Handheld today!
ROHN Self Supporting Towers On SALE!

Rugged

*Cell Construction—Rugged—
Gallumined Finish--Long Life—
Total Free Standing—No Guy Wires*—

*America’s Best Tower Buy—
Compare Save $*—

*Complete with Base and Rotor Plate—
In Stock Now—Fast Delivery*

Now Available from Texas Towers! All models available On Sale for tremendous savings to you!

*To save on freight costs, all towers are shipped directly from the Tri-Ex factory to you! Check these features: All steel construction—
Hot dip galvanized after fabrication—
Complete with base and rotor plate—
Total self-supporting—no guys needed*

HY-GAIN CRANKUP SALE!

All Models Shipped Factory Direct—Freight Paid!*

*Check these features:
All steel construction—
Hot dip galvanized after fabrication—
Complete with base and rotor plate—
No guys needed*

Model

Height

Load

Price

Model

Height

Load

Extended Price

Height Up Down

Wind Load

List Price

Model

Height

Wind

List Price

Height

Wind

List Price

Height

Wind

List Price

CUBICRAFT MULTI-BAND HF ANTENNAS

6C 3-Element $124.00 150-160-170 MHz $129.00

HAB ROYAL

113-A 3-Element $129.00 100-110-120 MHz $134.00

OSCAR/TWIST ANTENNAS

A144-107 $29.12 45 mph $39.12

VHF/HF 7M ANTENNAS

A147-107 $29.12 45 mph $39.12

CARLISLE & ROYAL

KLM

KT344 4-el Broad Band Tripod $314.00

KT34X 6-el Broad Band Tripod $514.00

KT34X-2 6-el Broad Band Tripod $485.00

Roths & Cables

Halo-HD

110-120-130 MHz $159.00

111-121-131 MHz $159.00

112-122-132 MHz $159.00

113-123-133 MHz $159.00

114-124-134 MHz $159.00

115-125-135 MHz $159.00

116-126-136 MHz $159.00

117-127-137 MHz $159.00

118-128-138 MHz $159.00

119-129-139 MHz $159.00

120-130-140 MHz $159.00

121-131-141 MHz $159.00

122-132-142 MHz $159.00

123-133-143 MHz $159.00

124-134-144 MHz $159.00

125-135-145 MHz $159.00

126-136-146 MHz $159.00

127-137-147 MHz $159.00

128-138-148 MHz $159.00

129-139-149 MHz $159.00

South River Roof Tripods

HD1-3 3 Tripod $19 HDIT-5 5 Tripod $29

HD1-10 Tripod $49 HDIT-15 Tripod $59

Heavy Duty Tripod includes mfg new UPS Shippable

Texas Towers

Div. of Texas RF Distributors Inc.

1108 Summit Ave., Suite 4 • Plano, Texas 75074

Butternut Electronics Co.

- Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
- Automatic Band Switching (80/10 meters).
- Semi-rotary Band Switching (160/10 meters).
- **New Model** HMFV $129.00
- **New Model HMDV (High Power) $160.00**

Showroom

July 1984

Tell 'em you saw it in HAM RADIO!
COMMUNICATIONS EQUIPMENT SALE!

ICOM IC-751A LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

ICOM IC-745 LIST PRICE $999
CALL FOR SPECIAL SALE PRICE!

TS-930S LIST PRICE $1799
CALL FOR SPECIAL SALE PRICE!

TS-430S LIST PRICE $899.95
CALL FOR SPECIAL SALE PRICE!

TR-2500 2.5W/300 mW (Switchable) 2 Meter
Handheld Transceiver
Small Size— Small Price—
Big Performance!
• LCD Readout
• 3 Memories
• Offset Storage
• Lithium Memory Backup
• 13.8VDC Operation!
Sealed Case!
SUGGESTED LIST PRICE $349
CALL FOR SALE PRICES!

FT-757DX LIST PRICE $829
CALL FOR SPECIAL SALE PRICE!

FT-208R 2M HT
List $319
List $319
• LCD Display
• 10 Memories
CALL FOR SPECIAL PRICES!

CORSAIR List $1189
Deluxe AC Supply List $199
Both Items—Yours for $169!
All Ten-Tec Accessories In Stock
for Fast Shipment!

TEN-TEC
New 2M HT
Full Featured!
List $319
Sale $279.95!
4229 2KW Tuner Kit $189.95!

ASTRON POWER SUPPLIES
Heavy Duty, High Quality
Rugged, Reliable
• Input Voltage 90-125 VAC
Output 13.8 VDC ±5%
• Fully Electrically Regulated 5 VDC Maximum Ripple
• Current Limiting & Crowbar Protection Circuits
• M Series With Meter – A Series Without Meter

Model	Cont. Amps	ICS Amps	Price
PG5A | 3 | 4 | $39
PG14A | 5 | 6 | 69
PG16A | 5 | 10 | 99
PG18A | 7 | 12 | 129
PG20A | 22 | 14 | 259
PG26A | 22 | 25 | 279
PG33A | 25 | 35 | 319
PG50A | 25 | 50 | 399

c model b1016 $249

Model	Band	Frequency	Input	Output	DC	Price
A-0156 | 6M | 15W | 25A | 12V | $249
B23 | 2M | 2W | 30W | 24A | 75
B25 | 2M | 1W | 30W | 24A | 75
A108 | 2M | 10W | 10W | 24A | 159
A148 | 2M | 10W | 10W | 24A | 159
A168 | 2M | 10W | 10W | 24A | 159
B3016 | 2M | 30W | 10W | 25A | 249
C116 | 2M | 20W | 10W | 25A | 79
C126 | 2M | 10W | 10W | 24A | 79
C192 | 2M | 20W | 10W | 25A | 249
D24 | 4KW | 4KW | 8A | 179
D1010H | 10W | 20W | 25A | 219
RC | Remote Control for Mirage Amplifiers | $24
MF1 and MF2 Peak Reading Wattmeter | $99

NEW ST142e-P
2M HT
• 3.5W/1W0.1W
• 142-149.995 MHz
• LCD Display
• Programmable PL Option
List $339.95
SALE $299.95!

FT-144e-P $259.95
FT-222e-P CALL!
FT-442e-P CALL!

SANTEC Accessories
SM3 Speaker Mic. $34.95
ST-8 Leather Case $34.95
ST-500 NiCad Battery $29.95
ST-650 NiCad Battery $39.95

SALE! NEW RTTY/CC COMPUTER INTERFACES

CRI-100 List $249 SALE $229.95!
CRI-200 List $290 SALE $269.95!

CRI-100
List $999 SALE $749.95!

Other HAL Products On Sale

CWR6950 .. $429.95
CWR6951 .. $529.95

Electronic Design

The Interface Reg. $169.95 Sale $129.95
The Interface II Reg. $299.95 Sale $239.95

Apple Antenna球
WC-20 Hamstick $99
WC-20 Antenna Soft... $99
Hamstick WC-20 .. $99

Model 64 Hamstick Model 64... $99
Antenna Soft $99
Alati Hamstick $49

Apple Hamstick...... TRS-BIC Hamstick ...$9

METRON MA1000B AMPLIFIER
Solid State 1KW Amplifier
• No Tailing 13.8VDC Operation
• Remote Bandswitching Compact
• Heavy Duty Construction
List Price $995 SALE PRICE $895.95

TEXAS TOWERS
Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 Plano, Texas 75074

Telephone (214) 422-7306

Monday-Friday 9 AM · 5 PM Saturday 9 AM · 1 PM

More Details? CHECK — OFF Page 132
ANTENNA SALE

<table>
<thead>
<tr>
<th>HY-GAIN</th>
<th>HY-GAIN TOWERS</th>
<th>CUSHCRAFT</th>
<th>BEARCAT SPECIAL SALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH3RJS</td>
<td>HG37SS $629</td>
<td>A-3 $209</td>
<td>BC 350 $375.00</td>
</tr>
<tr>
<td>TH5MK2S</td>
<td>HG50MT2 $739</td>
<td>A-4 $279</td>
<td>BC 300 $339.00</td>
</tr>
<tr>
<td>TH7BX3S</td>
<td>HG52SS $899</td>
<td>40-2CD $279</td>
<td>BC 20/20 $279.00</td>
</tr>
<tr>
<td>EXPLORER 14</td>
<td>HG54HD $1449</td>
<td>R-3 $265</td>
<td>BC 210XL $219.00</td>
</tr>
<tr>
<td>14AVQB</td>
<td>HG70HD $2269</td>
<td>AV5 $98</td>
<td>BC 200 $169.00</td>
</tr>
<tr>
<td>18AVT/WBS</td>
<td></td>
<td>32-19 $91</td>
<td>BC 180 $159.00</td>
</tr>
<tr>
<td>V2S</td>
<td></td>
<td>214B-FB $77</td>
<td>BC 260 $249.00</td>
</tr>
<tr>
<td>V3</td>
<td></td>
<td>ARX-2B $37</td>
<td>BC 100 $279.00</td>
</tr>
<tr>
<td>V4</td>
<td>KT34A $329</td>
<td>A144-11 $46</td>
<td>BC WA $34.95</td>
</tr>
<tr>
<td>66BS</td>
<td>KT34XA $479</td>
<td></td>
<td>CP2100 $279.00</td>
</tr>
<tr>
<td>CD45 II</td>
<td>40M-2 $290</td>
<td></td>
<td>ALL SOFTWARE $39.95</td>
</tr>
<tr>
<td>HAM IV</td>
<td>2M-13LBA $77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2X</td>
<td>2M-14C $85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLIANCE HD73</td>
<td>435-18C $59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUTTERNUT</td>
<td>432-16LB $65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$109</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LARSEN CALL

- NEW
- HUSTLER CALL

BEARCAT SPECIAL SALE

- BC 350 $375.00
- BC 300 $339.00
- BC 20/20 $279.00
- BC 210XL $219.00
- BC 200 $169.00
- BC 180 $159.00
- BC 260 $249.00
- BC 100 $279.00
- BC WA $34.95

R.F. DESIGNERS

COME TO WORK WITH US NOT FOR US!

We have an immediate need for an **ENGINEER** with a minimum of 2 years of hands-on experience in RF communications design and implementation in the 30-500 MHz range. You should be able to take total responsibility for RF circuit design and make significant contribution to our design effort.

We also have an immediate opening for an **RF TECHNICIAN** with similar background.

ChipCom Corporation is an early stage company specializing in state-of-the-art data communication equipment. We offer a challenging environment, professional growth potential and an attractive compensation package including an equity position.

Please send your resume, in confidence, to Joseph L. Linde, Vice President of Engineering.

ADM-10'

When cost is a factor, don’t sacrifice performance.

The ADM-10' satellite antenna system gives you the most for your investment. At the cost of an 8' dish, the ADM-10' provides performance margin to account for loss of signal due to satellite aging. Constructed of rugged steel or aluminum with fully adjustable polar mount. ADM-10' - the competitive edge in the private TVRO market.

For the competitive edge, call:

ANTENNA DEVELOPMENT & MANUFACTURING, INC.

P.O. BOX 1178 • POPLAR BLUFF, MO 63901 • (314) 785-5988

CHIPCOM CORPORATION

19 BROOK ROAD

NEEDHAM, MA 02194
Commercial-Grade Quality at Amateur Prices

Exclusive 1 Year Limited Warranty! Compare!

The 4000 Series
- **Wide Frequency Coverage**: PCS-4000 covers 142,000-149.995 MHz in selectable steps of 5 or 10 kHz. PCS-4300 covers 220,000-224.965 MHz in selectable steps of 5 or 20 kHz. PCS-4300 covers 440,000-449.995 MHz in selectable steps of 5 or 25 kHz. PCS-4500 covers 50,000-53.995 MHz in selectable steps of 5 or 10 kHz. PCS-4800 covers 28,000-29,995 MHz in selectable steps of 10 or 20 kHz.
- **CAP/MARS Built In**: PCS-4000 includes coverage of CAP and MARS frequencies.
- **Tiny Size**: Only 2”H x 5.5”W x 6.8”D. COMPARE!
- **Microcomputer Control**: At the forefront of technology! Use the included computer mode.
- **Up To 8 Nonstandard Splits**: Ultimate versatility. COMPARE!
- **16-Channel Memory In Two 8-Channel Banks**: Retains frequency and standard simplex or plus/minus offsets. Standard offsets are 600 kHz for PCS-4000, 1.6 MHz for PCS-4200, 5 MHz for PCS-4300, 1 MHz for PCS-4500, and 100 kHz for PCS-4800.
- **Dual Memory Scan**: Scan memory banks either separately or together. COMPARE!
- **Two Ranges of Programmable Band Scanning**: Limits are quickly reset. Scan the two segments either separately or together. COMPARE!
- **Free and Vacant Scan Modes**: Free scanning stops 5 seconds on a busy channel; auto-repeat can be overridden if desired. Vacant scanning stops on unoccupied frequencies.
- **Discriminator Scan Centering (AZDEN Exclusive Patent)**: Always stops on frequency.
- **Two Priority Memories**: Either may be instantly recalled at any time. COMPARE!
- **Nicad Memory Backup**: Never lose the programmed channels!
- **Frequency Reverse**: The touch of a single button inverts the transmit and receive frequencies, no matter what the offset.
- **Illuminated Keyboard with Acquisition Tone**: Unparalleled ease of operation.
- **Bright Green LED Frequency Display**: Easily visible, even in direct sunlight.
- **Digital S-Rf Meter**: Shows incoming signal strength and relative power output.
- **Busy-Channel and Transmit Indicators**: Bright LEDs show when a channel is busy and when you are transmitting.
- **Full 16-Key Touchtone Pad**: Keyboard functions as autopatch when transmitting (except in PCS-4800).
- **Pl Tone**: Optional PL tone unit allows access to private-line repeaters. Deviation and tone frequency are fully adjustable.
- **True FM**: No phase modulation. Unsurpassed intelligibility and audio fidelity.
- **High/Low Power Output**: 25 or 5 watts selectable in PCS-4000; 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4500, and PCS-4800. Transmitter power is fully adjustable.
- **Superior Receiver**: Sensitivity is 0.2 uV or better for 20-dB quieting. Circuits are designed and manufactured to rigorous specifications for exceptional performance, second to none. COMPARE!
- **Remote-Control Microphone**: Memory A-1 call, up/down manual scan, and memory-address functions may be performed without touching the front panel. COMPARE!
- **Other Features**: Dynamic microphone, rugged built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses, and hardware are included.
- **Accessories**: CS-7R 7-amp ac power supply, CS-45R 4.5-amp ac power supply, CS-AS remote speaker, and Communications Specialists SS-32 PL tone module.
- **One Year Limited Warranty**!
ICOM IC-27H

Ultra Compact 45 Watt, 2-Meter Mobile!

Now ICOM offers the best choices in compact 2-meter FM mobiles...the IC-27H 45-watt compact (11½" H x 5½" W x 9¾" D) and the IC-27A 25-watt super compact mobile. These units are the smallest full-featured 2-meter mobile transceivers available, and they feature an internal speaker for easy installation.

Internal Speaker

45 Watts. The IC-27H provides 45 watts of output power, while the IC-27A provides 25 watts of output power. Even though both units are the smallest available 2-meter mobile units, they have not sacrificed features found in fully featured VHF models.

32 PL Frequencies. The IC-27A and IC-27H come complete with 32 PL frequencies ready to go and are controlled from the front panel knob. Each PL frequency may be selected by the main tuning knob and stored into memory for easy access along with frequency and offset.

9 Memories. The IC-27A and IC-27H have nine memories available to store receive frequency, transmit offset, offset direction, and PL tone. Memories are backed up by a lithium backup battery, which will store memories for up to seven years.

Priority Scan. Priority may be selected to be either a memory channel or a VFO channel. By using sampling techniques, the operator can determine if a frequency of interest is free or busy.

See the IC-27A/H compact mobile transceivers at your local ICOM dealer. For superb performance, reliability, and the ultimate in a VHF mobile radio, your only choice is an ICOM.

The IC-25A 2-meter 25-watt mobile and its 45-watt companion, the IC-25H, are also available.

IC-27A/H/M TRANSMITTER

IC-25A

The World System

ICOM America, Inc., 2112-116th Ave NE, Bellevue, WA 98004 (206) 454-8155 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234 (214) 250-2788

All listed specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 27/268
applied Yagi antenna design
part 3:
432 MHz with Knadle and Tilton

Computer model analyzes, optimizes Knadle, Tilton/Greenblum antenna designs

From the viewpoint of the antenna experimenter, the 432-MHz band is one of Amateur Radio’s more intriguing frequency assignments. A Yagi with a boomlength of many wavelengths can be easily constructed, and stacking distances allow almost any operator to build arrays with formidable levels of performance. But with these advantages come several possible pitfalls: feedline losses can be a considerable factor in how well an array performs, and even the best of coaxial cables are noticeably lossy at 432 MHz. The matching system is very critical, and great care must be taken to avoid power losses between the driven element and the feedline.

While greater precision is required in cutting the parasitic elements for a 432 MHz Yagi than for a 144 MHz Yagi, precise element lengths are not as critical as is commonly believed. As is obvious from even a cursory examination of the tables of antenna iterations presented in this article, considerable latitude in the precise lengths of a series of parasitic elements is possible before the operator at either end of the signal path would notice any difference in signal strength.

Finally, even at today’s inflated prices, a single pound of welding rod would yield the elements for many long Yagis at 432 MHz.

432 MHz computer iterations

Two different Yagi design approaches — based on the Knadle and Tilton/Greenblum design data — are discussed in this article. Both are familiar to VHF/UHF Amateurs; both enjoy good reputations for excellent performance and reproducibility; and both resulted from long hours of effort on the parts of well known, experienced Amateurs. The design frequency is 432.0 MHz. Previous articles used 144.5 MHz and 220.5 MHz for those respective VHF bands.1,2 This was a function of the stated design frequencies used in the development of the Yagis being iterated, or of the specific usage patterns of a particular band’s frequency assignments. As is true of these two bands, the majority of weak-signal activity on 432 MHz is very close to 432.0 MHz. In addition, even long Yagis are comparatively broadbanded in frequency response on 432 MHz, making the use of 432.1 or 432.5 MHz as a design frequency of little practical purpose. An 8 MHz bandwidth, 428-436 MHz, is used to provide frequency response parameters. Because 0.0625 inch is probably the smallest measurement to which most Amateurs can accurately cut, it is used as the iteration increment.

the K2RIW Yagi antenna

Richard Knadle, K2RIW, is one of the most prolific contributors to Amateur VHF/UHF practice; his anten-

By Stanley Jaffin, WB3BGU, 800 Stonington Road, Silver Spring, Maryland 20902
NUMBER OF DIRECTORS

fig. 1. Comparison between the Kmosko-Johnson and Knadle 432 MHz Yagis — boomlength (starting from driven element) versus number of directors.

na and EME work is in addition to the transmitters, amplifiers, and receiver pre-amplifiers whose designs he has published in Amateur Radio journals. His original Yagi antenna design has been modified for introduction as a commercial product. Yet another modification of his original design is the subject of this article’s computer iterations.

For a while it seemed that locating a copy of the Knadle-Yagi antenna design was akin to trying to locate a schematic of the fabled Black Widow VHFIUHF transceiver. However, a full set of specifications was finally found in a rather obvious and the optimization process was begun.

The possible origin of the $K2RIW$ Yagi may be apparent from table 1 and fig. 1. While its similarity to the Kmosko-Johnson design is apparent, the basic Knadle antenna has slightly more forward gain than the basic Kmosko-Johnson antenna (15.657 dBi versus 15.601 dBi). These basic antennas have thirteen elements and a zero director taper. What is perhaps the most interesting result of baselining the original $K2RIW$ Yagi was finding the peak performance to be calculated to occur at the exact parasitic element lengths Knadle specified. Such close agreement between the empirical findings of a prominent practitioner and the iterations of a mathematical model is always a source of joy to the model’s developers and users.

Before presenting the results of the computer iterations, it is worth noting that Knadle’s exact matching method should be used on $K2RIW$ Yagis. Other methods are probably equally efficient, but by following the designer’s instruction for at least the first antenna, the builder is able to establish a baseline for later comparisons.

Iterating the $K2RIW$ Antenna

The original thirteen-element $K2RIW$ Yagi was just over 3.4 wavelengths long, and was probably designed for use in multi-Yagi arrays; this would explain the relatively short boomlength. Extending this design to sixteen elements results in a Yagi still readily stacked, but with even more impressive results for the single antenna. Baselined in table 2, this antenna is just over 4.5 wavelengths long and fits easily on a 10-foot boom. All elements are 0.125 inch in diameter, and the design frequency is 432.0 MHz. As is necessary for successful

Table 1. A comparison of the interelement spacings of the Knadle and Kmosko-Johnson thirteen-element Yagis.

<table>
<thead>
<tr>
<th>element number</th>
<th>name</th>
<th>spacing in wavelengths from previous element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reflector</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>driven</td>
<td>0.2289</td>
</tr>
<tr>
<td>3</td>
<td>director 1</td>
<td>0.1096</td>
</tr>
<tr>
<td>4</td>
<td>director 2</td>
<td>0.0984</td>
</tr>
<tr>
<td>5</td>
<td>director 3</td>
<td>0.1235</td>
</tr>
<tr>
<td>6</td>
<td>director 4</td>
<td>0.2013</td>
</tr>
<tr>
<td>7</td>
<td>director 5</td>
<td>0.2745</td>
</tr>
<tr>
<td>8</td>
<td>director 6</td>
<td>0.4323</td>
</tr>
<tr>
<td>9</td>
<td>director 7</td>
<td>0.3888</td>
</tr>
<tr>
<td>10</td>
<td>director 8</td>
<td>0.3888</td>
</tr>
<tr>
<td>11</td>
<td>director 9</td>
<td>0.3888</td>
</tr>
<tr>
<td>12</td>
<td>director 10</td>
<td>0.3888</td>
</tr>
<tr>
<td>13</td>
<td>director 11</td>
<td>0.3888</td>
</tr>
<tr>
<td>14</td>
<td>director 12</td>
<td>0.3888</td>
</tr>
<tr>
<td>15</td>
<td>director 13</td>
<td>0.3888</td>
</tr>
<tr>
<td>16</td>
<td>director 14</td>
<td>0.3888</td>
</tr>
</tbody>
</table>

Table 2. Baselined $K2RIW$ Yagi at 432.0 MHz with fixed parasitic element spacings and parasitic element lengths supplied during each iteration.

<table>
<thead>
<tr>
<th>element number</th>
<th>name</th>
<th>length (inches)</th>
<th>spacing (l)</th>
<th>cumulative length (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reflector</td>
<td>–</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>driven</td>
<td>12.991445</td>
<td>0.228755</td>
<td>0.228755</td>
</tr>
<tr>
<td>3</td>
<td>director 1</td>
<td>–</td>
<td>0.109802</td>
<td>0.338557</td>
</tr>
<tr>
<td>4</td>
<td>director 2</td>
<td>–</td>
<td>0.098364</td>
<td>0.436922</td>
</tr>
<tr>
<td>5</td>
<td>director 3</td>
<td>–</td>
<td>0.123527</td>
<td>0.560450</td>
</tr>
<tr>
<td>6</td>
<td>director 4</td>
<td>–</td>
<td>0.201304</td>
<td>0.761755</td>
</tr>
<tr>
<td>7</td>
<td>director 5</td>
<td>–</td>
<td>0.274506</td>
<td>1.036261</td>
</tr>
<tr>
<td>8</td>
<td>director 6</td>
<td>–</td>
<td>0.432347</td>
<td>1.468609</td>
</tr>
<tr>
<td>9</td>
<td>director 7</td>
<td>–</td>
<td>0.388884</td>
<td>1.857493</td>
</tr>
<tr>
<td>10</td>
<td>director 8</td>
<td>–</td>
<td>0.388884</td>
<td>2.246378</td>
</tr>
<tr>
<td>11</td>
<td>director 9</td>
<td>–</td>
<td>0.388884</td>
<td>2.635262</td>
</tr>
<tr>
<td>12</td>
<td>director 10</td>
<td>–</td>
<td>0.388884</td>
<td>3.024146</td>
</tr>
<tr>
<td>13</td>
<td>director 11</td>
<td>–</td>
<td>0.388884</td>
<td>3.413030</td>
</tr>
<tr>
<td>14</td>
<td>director 12</td>
<td>–</td>
<td>0.388884</td>
<td>3.801914</td>
</tr>
<tr>
<td>15</td>
<td>director 13</td>
<td>–</td>
<td>0.388884</td>
<td>4.191789</td>
</tr>
<tr>
<td>16</td>
<td>director 14</td>
<td>–</td>
<td>0.388884</td>
<td>4.579683</td>
</tr>
</tbody>
</table>
Table 3. A comparison of optimized 432 MHz K2RIW Yagis for each of six different director tapering approaches.

<table>
<thead>
<tr>
<th>taper parameter</th>
<th>reflector (inches)</th>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000000</td>
<td>13.3125</td>
<td>11.5000</td>
<td>16.741</td>
<td>17.253</td>
</tr>
<tr>
<td>0.015625</td>
<td>13.4375</td>
<td>11.2500</td>
<td>16.372</td>
<td>17.535</td>
</tr>
<tr>
<td>0.031250</td>
<td>13.5000</td>
<td>11.3750</td>
<td>16.380</td>
<td>17.966</td>
</tr>
<tr>
<td>0.046875</td>
<td>13.5000</td>
<td>11.7500</td>
<td>16.713</td>
<td>17.447</td>
</tr>
<tr>
<td>0.062500</td>
<td>13.5000</td>
<td>11.5000</td>
<td>16.400</td>
<td>25.026</td>
</tr>
<tr>
<td>0.078125</td>
<td>13.1875</td>
<td>12.0625</td>
<td>16.595</td>
<td>17.428</td>
</tr>
</tbody>
</table>

Table 4 presents the gain optimizing iteration that produced 16.741 dBi, and Table 5 presents the F/B optimizing iteration that produced 32.666 dB. Tables 6 and 7 present these antennas' respective performance over the 8-MHz bandwidth. The gain optimized Yagi effectively illustrates the relatively broadbanded response of even long Yagis at 432 MHz. The F/B optimized antenna provides an excellent F/B across this same bandwidth. This optimized F/B is not a single frequency F/B resulting from sharp vectorial cancellation, but is the high level of F/B that comes naturally with long Yagis that are well designed. Figures 2 and 3 present these antennas' respective E-plane plots. The gain optimized antenna has the sharper main lobe, but the F/B optimized antenna has a deeper first null. Knadle seems to have preferred a gain optimized antenna, but depending on the chosen antenna's designated use, either of these optimized K2RIW designs result in first-rate antennas. His original thir-

Table 4. Optimized gain iteration for the zero taper K2RIW antenna with a reflector length of 13.3125 inches.

<table>
<thead>
<tr>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0000</td>
<td>15.754</td>
<td>20.051</td>
</tr>
<tr>
<td>11.0625</td>
<td>15.918</td>
<td>21.305</td>
</tr>
<tr>
<td>11.1250</td>
<td>16.081</td>
<td>23.071</td>
</tr>
<tr>
<td>11.1875</td>
<td>16.241</td>
<td>25.658</td>
</tr>
<tr>
<td>11.2500</td>
<td>16.394</td>
<td>29.312</td>
</tr>
<tr>
<td>11.3125</td>
<td>16.533</td>
<td>30.406</td>
</tr>
<tr>
<td>11.3750</td>
<td>16.648</td>
<td>25.467</td>
</tr>
<tr>
<td>11.4375</td>
<td>16.724</td>
<td>20.842</td>
</tr>
<tr>
<td>11.5000</td>
<td>16.741</td>
<td>17.253</td>
</tr>
<tr>
<td>11.5625</td>
<td>16.676</td>
<td>14.346</td>
</tr>
<tr>
<td>11.6250</td>
<td>16.504</td>
<td>11.908</td>
</tr>
<tr>
<td>11.6875</td>
<td>16.214</td>
<td>9.836</td>
</tr>
<tr>
<td>11.7500</td>
<td>16.004</td>
<td>8.469</td>
</tr>
<tr>
<td>11.8125</td>
<td>15.336</td>
<td>6.733</td>
</tr>
<tr>
<td>11.8750</td>
<td>14.848</td>
<td>5.873</td>
</tr>
<tr>
<td>11.9375</td>
<td>14.075</td>
<td>8.464</td>
</tr>
<tr>
<td>12.0000</td>
<td>13.632</td>
<td>8.218</td>
</tr>
</tbody>
</table>

Table 5. Optimized F/B iteration for the zero taper K2RIW antenna with a reflector length of 13.4375 inches.

<table>
<thead>
<tr>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0000</td>
<td>15.727</td>
<td>21.757</td>
</tr>
<tr>
<td>11.0625</td>
<td>15.911</td>
<td>22.437</td>
</tr>
<tr>
<td>11.1250</td>
<td>16.058</td>
<td>25.633</td>
</tr>
<tr>
<td>11.1875</td>
<td>16.219</td>
<td>29.167</td>
</tr>
<tr>
<td>11.2500</td>
<td>16.372</td>
<td>32.666</td>
</tr>
<tr>
<td>11.3125</td>
<td>16.510</td>
<td>29.167</td>
</tr>
<tr>
<td>11.3750</td>
<td>16.621</td>
<td>23.494</td>
</tr>
<tr>
<td>11.4375</td>
<td>16.890</td>
<td>19.491</td>
</tr>
<tr>
<td>11.5000</td>
<td>16.696</td>
<td>16.335</td>
</tr>
<tr>
<td>11.5625</td>
<td>16.614</td>
<td>13.715</td>
</tr>
<tr>
<td>11.6250</td>
<td>16.424</td>
<td>11.474</td>
</tr>
<tr>
<td>11.6875</td>
<td>16.116</td>
<td>9.549</td>
</tr>
<tr>
<td>11.7500</td>
<td>15.704</td>
<td>7.929</td>
</tr>
<tr>
<td>11.8125</td>
<td>15.232</td>
<td>6.684</td>
</tr>
<tr>
<td>11.8750</td>
<td>14.766</td>
<td>5.902</td>
</tr>
<tr>
<td>11.9375</td>
<td>14.339</td>
<td>6.060</td>
</tr>
<tr>
<td>12.0000</td>
<td>13.616</td>
<td>8.739</td>
</tr>
</tbody>
</table>
The small dish that captures all the entertainment.

Only Wilson Microwave Systems can give you the versatility of hand-held control of the total satellite television spectrum at such a remarkably low price.

Total System Design.
From the solid steel antenna to the state-of-the-art electronic receiver and hand-held control unit, Wilson gives you the most complete, integrated system you can own.

At Wilson Microwave Systems, we put the world of entertainment in the palm of your hand.

NOW ONLY

$1695.00 F.O.B. Nampa, ID

Includes: 110° LNA - Polarizer 1 - 100' Cable Wilson MD9 Dish - YM1000 Receiver

Dealerships Available

Antenna is shown with optional LNA cover.

Distributed by

NAMPA SATELLITE SYSTEMS

312 12th Avenue South • Nampa, Idaho 83651

(208) 466-6727

In State Wats 1-800-654-1319 • Out of State Wats 1-800-654-0795
teen-element Yagi provided a single frequency type of F/B when optimized for F/B.

the Tilton/Greenblum Yagi

The evolution of the Greenblum and Tilton/Greenblum designs was discussed in a previous article. Tilton's 432 MHz Yagi was originally published as an eleven-element design. For purposes of computer iteration and comparison with the Knadle design, a sixteen-element Yagi is presented. The additional five directors are spaced equally apart in accordance with

Table 6. Frequency response parameters for the gain optimized zero taper K2RIW antenna.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.630</td>
<td>25.127</td>
</tr>
<tr>
<td>429.0</td>
<td>16.683</td>
<td>23.056</td>
</tr>
<tr>
<td>430.0</td>
<td>16.721</td>
<td>20.926</td>
</tr>
<tr>
<td>431.0</td>
<td>16.736</td>
<td>18.982</td>
</tr>
<tr>
<td>432.0</td>
<td>16.741</td>
<td>17.253</td>
</tr>
<tr>
<td>433.0</td>
<td>16.717</td>
<td>15.716</td>
</tr>
<tr>
<td>434.0</td>
<td>16.667</td>
<td>14.340</td>
</tr>
<tr>
<td>435.0</td>
<td>16.589</td>
<td>13.097</td>
</tr>
<tr>
<td>436.0</td>
<td>16.480</td>
<td>11.969</td>
</tr>
</tbody>
</table>

Table 7. Frequency response parameters for the F/B optimized zero taper K2RIW antenna.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.122</td>
<td>23.635</td>
</tr>
<tr>
<td>429.0</td>
<td>16.191</td>
<td>25.519</td>
</tr>
<tr>
<td>430.0</td>
<td>16.256</td>
<td>27.874</td>
</tr>
<tr>
<td>431.0</td>
<td>16.316</td>
<td>30.675</td>
</tr>
<tr>
<td>432.0</td>
<td>16.372</td>
<td>32.666</td>
</tr>
<tr>
<td>433.0</td>
<td>16.422</td>
<td>31.198</td>
</tr>
<tr>
<td>434.0</td>
<td>16.466</td>
<td>27.976</td>
</tr>
<tr>
<td>435.0</td>
<td>16.501</td>
<td>25.028</td>
</tr>
<tr>
<td>436.0</td>
<td>16.526</td>
<td>22.584</td>
</tr>
</tbody>
</table>

Table 8. Baseline Tilton/Greenblum Yagi at 432.0 MHz with fixed parasitic element spacings and parasitic element lengths supplied during each iteration.

<table>
<thead>
<tr>
<th>element number</th>
<th>element name</th>
<th>length (inches)</th>
<th>spacing (l)</th>
<th>length (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>reflector</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>driven element</td>
<td>13.03281</td>
<td>0.137253</td>
<td>0.137253</td>
</tr>
<tr>
<td>3</td>
<td>director 1</td>
<td>-0.137253</td>
<td>0.214506</td>
<td>0.214506</td>
</tr>
<tr>
<td>4</td>
<td>director 2</td>
<td>-0.173854</td>
<td>0.448361</td>
<td>0.448361</td>
</tr>
<tr>
<td>5</td>
<td>director 3</td>
<td>-0.237906</td>
<td>0.666266</td>
<td>0.666266</td>
</tr>
<tr>
<td>6</td>
<td>director 4</td>
<td>-0.265356</td>
<td>0.951622</td>
<td>0.951622</td>
</tr>
<tr>
<td>7</td>
<td>director 5</td>
<td>-0.274506</td>
<td>1.226129</td>
<td>1.226129</td>
</tr>
<tr>
<td>8</td>
<td>director 6</td>
<td>-0.347708</td>
<td>1.573837</td>
<td>1.573837</td>
</tr>
<tr>
<td>9</td>
<td>director 7</td>
<td>-0.347708</td>
<td>1.921545</td>
<td>1.921545</td>
</tr>
<tr>
<td>10</td>
<td>director 8</td>
<td>-0.347708</td>
<td>2.269254</td>
<td>2.269254</td>
</tr>
<tr>
<td>11</td>
<td>director 9</td>
<td>-0.347708</td>
<td>2.616962</td>
<td>2.616962</td>
</tr>
<tr>
<td>12</td>
<td>director 10</td>
<td>-0.347708</td>
<td>2.964670</td>
<td>2.964670</td>
</tr>
<tr>
<td>13</td>
<td>director 11</td>
<td>-0.347708</td>
<td>3.312378</td>
<td>3.312378</td>
</tr>
<tr>
<td>14</td>
<td>director 12</td>
<td>-0.347708</td>
<td>3.660086</td>
<td>3.660086</td>
</tr>
<tr>
<td>15</td>
<td>director 13</td>
<td>-0.347708</td>
<td>4.007795</td>
<td>4.007795</td>
</tr>
<tr>
<td>16</td>
<td>director 14</td>
<td>-0.347708</td>
<td>4.355503</td>
<td>4.355503</td>
</tr>
</tbody>
</table>

fig. 2. E-plane plot of the gain optimized K2RIW Yagi.

fig. 3. E-plane plot of the F/B optimized K2RIW Yagi.
table 9. A comparison of the optimized Tilton/Greenblum 432 MHz Yagis for each of thirteen director tapering approaches.

<table>
<thead>
<tr>
<th>taper parameter</th>
<th>reflector</th>
<th>director 1</th>
<th>gain (dB)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tapers</td>
<td>gain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000000</td>
<td>13.6500</td>
<td>11.6875</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>FIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015625</td>
<td>13.6250</td>
<td>12.0625</td>
<td>14.303</td>
<td>12.277</td>
</tr>
<tr>
<td>0.031250</td>
<td>13.60625</td>
<td>12.1875</td>
<td>14.473</td>
<td>12.794</td>
</tr>
<tr>
<td>0.046875</td>
<td>13.59375</td>
<td>12.7500</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.062500</td>
<td>13.5875</td>
<td>12.8750</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.078125</td>
<td>13.58125</td>
<td>12.5625</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.093750</td>
<td>13.5750</td>
<td>12.2500</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.109375</td>
<td>13.56875</td>
<td>12.0625</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.125000</td>
<td>13.5625</td>
<td>12.5000</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.140625</td>
<td>13.55625</td>
<td>12.5625</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.156250</td>
<td>13.5500</td>
<td>12.7500</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.171875</td>
<td>13.54375</td>
<td>12.8750</td>
<td>15.942</td>
<td>12.794</td>
</tr>
<tr>
<td>0.187500</td>
<td>13.5375</td>
<td>12.8750</td>
<td>15.942</td>
<td>12.794</td>
</tr>
</tbody>
</table>

the Greenblum design data and Tilton's adaptation. This Yagi is constructed on a non-conductive boom and is baselined in table 8. Parasitic element diameter is 0.09375 inches, and the design frequency is 432.0 MHz. Tilton did not specify his own exact design frequency, but a careful reading of his article gives the impression that a slightly higher frequency was used. This would follow from the general band usage patterns of that era. As the matching of the transmission line and driven element is very critical on 432 MHz, Tilton's driven element assembly should be duplicated exactly. Any desired changes should be made in a sec-

78 NR July 1984
table 12. Frequency response parameters for the gain optimized antenna with a 0.0625 taper.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.419</td>
<td>16.157</td>
</tr>
<tr>
<td>429.0</td>
<td>16.446</td>
<td>16.589</td>
</tr>
<tr>
<td>430.0</td>
<td>16.469</td>
<td>17.061</td>
</tr>
<tr>
<td>431.0</td>
<td>16.487</td>
<td>17.570</td>
</tr>
<tr>
<td>432.0</td>
<td>16.498</td>
<td>18.106</td>
</tr>
<tr>
<td>433.0</td>
<td>16.492</td>
<td>18.641</td>
</tr>
<tr>
<td>434.0</td>
<td>16.487</td>
<td>19.127</td>
</tr>
<tr>
<td>435.0</td>
<td>16.460</td>
<td>19.622</td>
</tr>
<tr>
<td>436.0</td>
<td>16.411</td>
<td>19.622</td>
</tr>
</tbody>
</table>

Table 13. Frequency response parameters for the F/B optimized antenna with a 0.0625 taper.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>15.201</td>
<td>18.096</td>
</tr>
<tr>
<td>429.0</td>
<td>15.244</td>
<td>20.376</td>
</tr>
<tr>
<td>430.0</td>
<td>15.263</td>
<td>23.657</td>
</tr>
<tr>
<td>431.0</td>
<td>15.173</td>
<td>27.940</td>
</tr>
<tr>
<td>432.0</td>
<td>15.187</td>
<td>30.226</td>
</tr>
<tr>
<td>433.0</td>
<td>15.073</td>
<td>24.244</td>
</tr>
<tr>
<td>434.0</td>
<td>14.908</td>
<td>28.625</td>
</tr>
<tr>
<td>435.0</td>
<td>14.700</td>
<td>32.882</td>
</tr>
<tr>
<td>436.0</td>
<td>14.469</td>
<td>36.625</td>
</tr>
</tbody>
</table>

ond Yagi so as to allow comparisons with an established standard.

Table 9 summarizes the results of iterating thirteen pairs of Tilton/Greenblum 432 MHz Yagis. Performance trends are easily noted and there is no real need for additional iterations. As it is highly unlikely that many VHF/UHF operators could reliably measure or build to tolerances of 0.015625 inch, the Yagis of real interest are those at intervals of 0.0625 inch. These four Yagis also represent peaks or near-peaks in either gain or F/B. Furthermore, the zero taper Yagis can be readily seen to be the poorest performers of these four pairs of antennas. As such they are excluded from the detailed examinations that follow for the tapering approaches of 0.0625, 0.125, and 0.1875 inch. The tables that follow refer to these Yagis.

taper = 0.0625

This is the only Tilton/Greenblum 432 MHz Yagi that was actually presented by Tilton. The two Yagis that follow (0.125 and 0.1875 taper) are the products of computer iteration. Table 10 presents the gain optimizing iteration that resulted in 16.498 dBi of gain, and table 11 presents the F/B optimizing iteration and its calculated result of 42.848 dB. Nearly 1.3 dB of gain and over 24 dB of F/B separate these two 0.0625 taper Yagis. Tables 12 and 13 present these antennas' respective calculated performance over the specified bandwidth. Both antennas show peaks in their calculated performance parameters at 432.0 MHz. The F/B optimized value is clearly the result of single frequency vectorial cancellation. When coupled with a weak signal bandwidth that is relatively narrow in terms of the design frequency's wavelength, this F/B value will not deteriorate as rapidly as it would at a lower frequency. Extensive QSYs will probably result in noticeable decreases in rearward attenuation. Figures 4 and 5 present E-plane plots of these antennas. The gain optimized antenna has a significantly sharper and deeper main lobe as well as a measurably higher degree of unwanted signal attenuation between 100 and 160 degrees. The F/B optimized antenna provides the expected outstanding level of unwanted signal attenuation from 160 to 180 degrees.

Table 14. Optimized gain iteration for a taper of 0.125 with a reflector length of 13.5625 inches.

<table>
<thead>
<tr>
<th>director 1 gain (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0000</td>
<td>15.826</td>
<td>20.040</td>
</tr>
<tr>
<td>12.0625</td>
<td>15.968</td>
<td>20.006</td>
</tr>
<tr>
<td>12.1250</td>
<td>16.103</td>
<td>20.023</td>
</tr>
<tr>
<td>12.1875</td>
<td>16.229</td>
<td>20.117</td>
</tr>
<tr>
<td>12.2500</td>
<td>16.345</td>
<td>20.324</td>
</tr>
<tr>
<td>12.3125</td>
<td>16.433</td>
<td>20.524</td>
</tr>
<tr>
<td>12.3750</td>
<td>16.532</td>
<td>21.296</td>
</tr>
<tr>
<td>12.4375</td>
<td>16.592</td>
<td>21.274</td>
</tr>
<tr>
<td>12.5000</td>
<td>16.651</td>
<td>24.326</td>
</tr>
<tr>
<td>12.5625</td>
<td>16.601</td>
<td>26.163</td>
</tr>
<tr>
<td>12.6250</td>
<td>16.519</td>
<td>30.366</td>
</tr>
<tr>
<td>12.6875</td>
<td>16.359</td>
<td>36.590</td>
</tr>
<tr>
<td>12.7500</td>
<td>16.119</td>
<td>28.599</td>
</tr>
<tr>
<td>12.8125</td>
<td>15.825</td>
<td>24.253</td>
</tr>
<tr>
<td>12.8750</td>
<td>15.543</td>
<td>20.913</td>
</tr>
<tr>
<td>12.9375</td>
<td>15.355</td>
<td>16.600</td>
</tr>
<tr>
<td>13.0000</td>
<td>15.271</td>
<td>16.726</td>
</tr>
</tbody>
</table>

Table 15. Optimized F/B iteration for a taper of 0.125 with a reflector length of 13.4375 inches.

<table>
<thead>
<tr>
<th>director 1 gain (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0000</td>
<td>15.826</td>
<td>18.494</td>
</tr>
<tr>
<td>12.0625</td>
<td>15.962</td>
<td>18.442</td>
</tr>
<tr>
<td>12.1250</td>
<td>16.090</td>
<td>18.422</td>
</tr>
<tr>
<td>12.1875</td>
<td>16.210</td>
<td>18.456</td>
</tr>
<tr>
<td>12.2500</td>
<td>16.318</td>
<td>18.573</td>
</tr>
<tr>
<td>12.3125</td>
<td>16.411</td>
<td>18.812</td>
</tr>
<tr>
<td>12.3750</td>
<td>16.486</td>
<td>19.229</td>
</tr>
<tr>
<td>12.4375</td>
<td>16.538</td>
<td>19.905</td>
</tr>
<tr>
<td>12.5000</td>
<td>16.658</td>
<td>20.971</td>
</tr>
<tr>
<td>12.5625</td>
<td>16.537</td>
<td>22.664</td>
</tr>
<tr>
<td>12.6250</td>
<td>16.460</td>
<td>25.498</td>
</tr>
<tr>
<td>12.6875</td>
<td>16.315</td>
<td>31.062</td>
</tr>
<tr>
<td>12.7500</td>
<td>16.099</td>
<td>42.827</td>
</tr>
<tr>
<td>12.8125</td>
<td>15.832</td>
<td>28.671</td>
</tr>
<tr>
<td>12.8750</td>
<td>15.567</td>
<td>22.795</td>
</tr>
<tr>
<td>12.9375</td>
<td>15.373</td>
<td>19.036</td>
</tr>
<tr>
<td>13.0000</td>
<td>15.262</td>
<td>16.159</td>
</tr>
</tbody>
</table>
10 REASONS WHY KNOWLEDGEABLE AMATEUR RADIO OPERATORS CHOOSE

flexible, electrically transparent Phillystran® guys

1. non-absorption and no re-radiation of radio signals.
2. no need to compute non-resonant lengths.
3. complete elimination of RFI associated with steel guys.
4. substantial reduction in guy-installation time.
5. no more cutting of steel cable to install insulators and cable clamps.
6. no more handling of steel cable; and no "fish hook" frayed ends to snag your hands.
7. non-corroding and maintenance-free.
8. high strength combined with lightweight, non-stretch and inherent flexibility.
9. a neater, more aesthetically pleasing tower appearance.
10. substantial reduction in ice loading.

FIELD PROVEN: More than 450 commercial radio & TV towers have been guyed with Phillystran. Pourable resin provides convenient, highly efficient terminations.

TECHNICAL LITERATURE AVAILABLE. Call/write Philadelphia Resins Corporation

P.O. Box 454 • 20 Commerce Drive, Montgomeryville, PA 18936
Telephone: (215) 855-8450 Telex 84-6342 Cable: Phires MMLL

DISTRIBUTORSHIPS AVAILABLE to qualified suppliers of amateur-radio equipment

ENGINEERING CONSULTING INTRODUCES

"REMOTE A PAD®" MODEL RAP-1

- 2 four-digit DTMF decoders, plus 16 digit keypad control

TUNE THE WORLD FROM YOUR HANDHELD VHF/UHF RADIO

- Audio tones from any source, are converted to solid state switches which control any 16 digit keypad of a radio or other device.
- Some examples you can control include the Pro-Search Rotator (rotate beam remotely); ICOM IC-701, or ICOM IC-711 when using the RM-2 controller; ICOM IC-900, or ICOM IC-9000, handsets such as Yaesu FT-220R, FT-780R, ICOM IC-780T, and many more.
- With the remote control you do manually with your 16 digit keypad, the RAP-1 will do remotely using audio touch tones from any source.
- Two (four digit) programmable access codes are used to operate relays or other on/off functions.

- LED decoder status indicators and momentary plus steady state decoder outputs are provided.
- Two gold pin card edge connector, 16 pin dip socket and ribbon cable are supplied.
- All-CMOS 16 pin dip socket (40mA), State of the art, RS-232C.
- Hook eight white (4 rows, 4 columns) in parallel with the existing keypad of the radio you wish to control remotely. Connect audio from any source. 12 volts D.C. and you are in control.
- Two or four digit decoders will turn your links on and off using your programmable access code.

- Detailed interface diagrams and instructions included with purchase.

FIELD PROVEN: More than 450 commercial radio & TV towers have been guyed with Phillystran. Pourable resin provides convenient, highly efficient terminations.

TECHNICAL LITERATURE AVAILABLE. Call/write

Philadelphia Resins Corporation

P.O. Box 454 • 20 Commerce Drive, Montgomeryville, PA 18936
Telephone: (215) 855-8450 Telex 84-6342 Cable: Phires MMLL

DISTRIBUTORSHIPS AVAILABLE to qualified suppliers of amateur-radio equipment

TOWERS by ALUMA

HIGHEST QUALITY ALUMINUM

- TELESCOPING (CRANK-UP)
- GUED (STACK-UP)
- TILT-OVER MODELS

Easy to install. Low Prices. Crank-ups to 100 ft.

EXCELLENT FOR AMATEUR COMMUNICATIONS

Over 36 types aluminum and steel towers made—specials designed and made—write for details.

SPECIAL

Four Section 50 Ft. Van Mounted Crank-Up Aluma Tower

ALUMA TOWER CO.

BOX 23068HR VERO BEACH, FLA. 32960-2306
(305) 587-3423 TELEX 60-3405

July 28 thru Aug. 10, 1984

Our 25th year

TAKE A VACATION WITH A PURPOSE THIS YEAR

Join students from around the world at OAK HILL's SILVER ANNIVERSARY Session

Over 25 years of successful teaching experience means upgrading is as easy as 1-2-3.

Your vacation is spent in the beautiful Blue Ridge Mountains of Virginia with expert instructors in friendly surroundings and with excellent accommodations.

Oak Hill also has a ham lab set up for all to use.

Courses offered are:
- Novice to General
- General or Tech to Advanced
- Advanced to Extra

Learn — don't just memorize the answers to the exam questions.

C. L. PETERS, K4DNJ, Director
Oak Hill Academy Amateur Radio Session
Box 43
Mouth of Wilson, VA 24363

Name ____________________________ Address ____________________________

City/State/Zip ____________________________
taper = 0.125

This antenna exists solely as a product of computer iterations. In comparison with the 0.0625 tapered antenna design presented by Tilton and optimized through computer iteration, the optimized antennas with a 0.0125 taper require shorter reflectors and longer directors. Table 14 presents the gain optimizing iteration that resulted in 16.651 dBi of gain, and table 15 presents the F/B optimizing run with a calculated F/B of 42.825 dB. Over 0.5 dB of gain and 18 dB of F/B

Table 16. Frequency response parameters for the gain optimized antenna with a 0.125 taper.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.498</td>
<td>19.253</td>
</tr>
<tr>
<td>429.0</td>
<td>16.542</td>
<td>20.106</td>
</tr>
<tr>
<td>430.0</td>
<td>16.578</td>
<td>21.101</td>
</tr>
<tr>
<td>431.0</td>
<td>16.604</td>
<td>22.290</td>
</tr>
<tr>
<td>432.0</td>
<td>16.651</td>
<td>24.325</td>
</tr>
<tr>
<td>433.0</td>
<td>16.622</td>
<td>25.548</td>
</tr>
<tr>
<td>434.0</td>
<td>16.608</td>
<td>27.807</td>
</tr>
<tr>
<td>435.0</td>
<td>16.575</td>
<td>30.379</td>
</tr>
<tr>
<td>436.0</td>
<td>16.520</td>
<td>31.856</td>
</tr>
</tbody>
</table>

Table 17. Frequency response parameters for the F/B optimized antenna with a 0.125 taper.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.249</td>
<td>21.400</td>
</tr>
<tr>
<td>429.0</td>
<td>16.253</td>
<td>23.727</td>
</tr>
<tr>
<td>430.0</td>
<td>16.231</td>
<td>27.083</td>
</tr>
<tr>
<td>431.0</td>
<td>16.180</td>
<td>32.775</td>
</tr>
<tr>
<td>432.0</td>
<td>16.099</td>
<td>42.827</td>
</tr>
<tr>
<td>433.0</td>
<td>15.990</td>
<td>32.371</td>
</tr>
<tr>
<td>434.0</td>
<td>15.861</td>
<td>26.835</td>
</tr>
<tr>
<td>435.0</td>
<td>15.722</td>
<td>23.582</td>
</tr>
<tr>
<td>436.0</td>
<td>15.587</td>
<td>21.398</td>
</tr>
</tbody>
</table>

Table 18. Optimized gain iteration for a taper of 0.1875 with a reflector length of 13.625 inches.

<table>
<thead>
<tr>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2500</td>
<td>15.690</td>
<td>23.557</td>
</tr>
<tr>
<td>12.3125</td>
<td>15.830</td>
<td>23.848</td>
</tr>
<tr>
<td>12.3750</td>
<td>15.962</td>
<td>24.218</td>
</tr>
<tr>
<td>12.4375</td>
<td>16.083</td>
<td>24.698</td>
</tr>
<tr>
<td>12.5000</td>
<td>16.190</td>
<td>25.333</td>
</tr>
<tr>
<td>12.5625</td>
<td>16.277</td>
<td>26.172</td>
</tr>
<tr>
<td>12.6250</td>
<td>16.337</td>
<td>27.266</td>
</tr>
<tr>
<td>12.6875</td>
<td>16.364</td>
<td>28.608</td>
</tr>
<tr>
<td>12.7500</td>
<td>16.348</td>
<td>29.837</td>
</tr>
<tr>
<td>12.8125</td>
<td>16.281</td>
<td>30.465</td>
</tr>
<tr>
<td>12.8750</td>
<td>16.167</td>
<td>29.535</td>
</tr>
<tr>
<td>12.9375</td>
<td>16.023</td>
<td>27.980</td>
</tr>
<tr>
<td>13.0000</td>
<td>15.897</td>
<td>26.706</td>
</tr>
<tr>
<td>13.0625</td>
<td>15.845</td>
<td>25.256</td>
</tr>
<tr>
<td>13.1250</td>
<td>15.855</td>
<td>21.841</td>
</tr>
<tr>
<td>13.1875</td>
<td>15.733</td>
<td>17.729</td>
</tr>
</tbody>
</table>
separate these two antennas. Tables 16 and 17 present these antennas' respective calculated performance over the relevant bandwidth. Both antennas' optimized parameters show peak values at 432.0 MHz. The F/B optimized antenna's F/B value is clearly a single frequency peak. However, as is true of the 0.0625 tapered F/B optimized antenna, the relative broad frequency responses of Yagis at 432 MHz is coupled with a relatively small bandwidth for the weak signal area. Consequently it is very likely that high F/B values, though not the calculated peak values, will be recognized in practice. Figures 6 and 7 present these antennas' respective E-plane plots. The gain optimized antenna has the more sharply defined main lobe and generally deeper nulls throughout the pattern. Signal attenuation between 150 and 170 degrees is also greater than for the F/B optimized antenna. It is in the last 10 degrees that the F/B antenna provides a noticeable difference in performance. To some degree this F/B antenna typifies some of the exceptions to the use of F/B as an antenna performance parameter that were detailed by Lawson.

taper = 0.1875

As is the case for the 0.125 tapered antennas, this pair of Yagis exists solely as the result of computer iterations. Compared to the 0.125 tapered antennas, longer reflectors and longer directors are used. Table 18 presents the gain optimizing iteration that resulted in 16.364 dBi of gain, and table 19 presents the F/B optimizing iteration with a calculated F/B of 31.650 dBi. Less than 0.5 dB of gain and just over 3 dB of F/B separate these antennas. Tables 20 and 21 present these antennas' respective calculated performance over the relevant bandwidth. Both antennas show peaks at 432 MHz for their respectively optimized parameters. The F/B values shown in table 21 are not the single frequency F/B ratios of the two prior F/B optimized antennas. This F/B comes naturally from the antenna's design and is available over a 3 MHz bandwidth. Figures 8 and 9 present these antennas' nearly identical E-plane plots, respectively. There are no distinguishing differences of any major consequence.

comparative results of computer iteration

These iterated comparisons between the single Knadle and multiple Tilton designs indicate there are no really significant differences in calculated forward gain. Any choice between these two design approaches, or from within the Tilton design approach would have to be based on a given antenna's calculated radiation pattern.

With the exception of the 0.1875 tapered Yagi, the F/B optimized antenna in each Tilton pair has the less clearly defined main lobe. The opposite was true of...
As a leading manufacturer of precision motor drive systems, we believe the newly developed DR10 is the finest dual drive system for satellite antennas. To provide you the highest level of performance and convenience, the DR10 Dual Axis Rotor features:

- **COMPACT CONTROL UNIT WITH SELF CONTAINED AC POWER SUPPLY**
- **SINGLE DUAL SCALE METER (AZIMUTH/ELEVATION)**
- **SINGLE 8 WIRE CONTROL CABLE (BELDEN TYPE)**
- **STANDARD TOWER TOP MOUNTING**
- **ACCEPTS 1½ INCH ANTENNA BOOM**
- **SERVICEABLE WITHOUT ANTENNA REMOVAL**
- **DYNETIC SYSTEMS' HIGH TORQUE, PRECISION GEARMOTORS**

- **LIST PRICE LESS THAN TWO CONVENTIONAL ROTORS**
- **AVAILABLE FOR AUGUST DELIVERY**

Our DR10 will out-perform any combination of conventional rotors popularly used, and is supplied ready to mount, including the rotor, control unit, and all stainless steel mounting hardware. (less cable)

For immediate ordering information, individuals and dealers call or write

612-441-4303
NO FRILLS—JUST LOW PRICES
CALL FOR SPECIAL PRICES ON—

KENWOOD YAESU

ICOM TEN-TEC

DAIWA METERS—KEYERS—AUDIO FILTERS

CUSHCRAFT LINE OF ANTENNAS

CALL TOLL FREE
1-800-433-3203

IN TEXAS CALL 817-496-9000
5635 EAST ROSEDALE
FT. WORTH, TEXAS 76112

SEMICONDUCTORS:

MRF-208	12.00	MHW-252	53.00
MRF-240	19.40	MHW-710.1	61.00
MRF-247	34.80	MPSH-81	50
MRF-309	33.80	MV2205	58
MRF-422	41.40	78L08CP	50
MRF-454	23.00	2N4401	75
MRF-901	1.15	2N5190	1.50
SBL-1 Double-Balance Mixer	6.50		

CAPACITORS:

56 pf.	82 pf.	100 pf.	390 pf.
680 pf.	470 pf.	250 pf.	390 pf.
100 pf.	390 pf.	470 pf.	1000 pf.

METERS—KEYERS—

- AUDIO FILTERS

WE ALSO CARRY A LINE OF VHF, UHF AMPLIFIERS AND ATV EQUIPMENT.

Call or write for our free catalog.

This Publication is available in Microform.

University Microfilms International

This Publication is available in Microform.

University Microfilms International

This Publication is available in Microform.

University Microfilms International

This Publication is available in Microform.

University Microfilms International

This Publication is available in Microform.

University Microfilms International
the single Knadle Yagi. However, the first minor lobe on the Knadle Yagis tended to be of greater amplitude than the same lobe on comparable Tilton Yagis.

The need for an exceptionally high F/B on 432 MHz is open to question. F/B is a moot point for EME, and for terrestrial paths there simply is not the level of QRM comparable to 40 meters. Given that the pattern-wide attenuation of unwanted signals calculated for the Tilton 0.0625 and 0.125 gain optimized Yagis exceeds that of the F/B optimized Yagi in these pairs, these

<table>
<thead>
<tr>
<th>director 1 (inches)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2500</td>
<td>15.627</td>
<td>25.171</td>
</tr>
<tr>
<td>12.3125</td>
<td>15.774</td>
<td>25.658</td>
</tr>
<tr>
<td>12.3750</td>
<td>15.912</td>
<td>26.283</td>
</tr>
<tr>
<td>12.4375</td>
<td>16.040</td>
<td>27.094</td>
</tr>
<tr>
<td>12.5000</td>
<td>16.151</td>
<td>28.143</td>
</tr>
<tr>
<td>12.5625</td>
<td>16.239</td>
<td>29.453</td>
</tr>
<tr>
<td>12.6250</td>
<td>16.299</td>
<td>30.867</td>
</tr>
<tr>
<td>12.6875</td>
<td>16.319</td>
<td>31.050</td>
</tr>
<tr>
<td>12.7500</td>
<td>16.291</td>
<td>30.726</td>
</tr>
<tr>
<td>12.8125</td>
<td>16.211</td>
<td>28.534</td>
</tr>
<tr>
<td>12.8750</td>
<td>16.083</td>
<td>26.331</td>
</tr>
<tr>
<td>12.9375</td>
<td>15.936</td>
<td>24.760</td>
</tr>
<tr>
<td>13.0005</td>
<td>15.823</td>
<td>24.066</td>
</tr>
<tr>
<td>13.0625</td>
<td>15.796</td>
<td>23.808</td>
</tr>
<tr>
<td>13.1250</td>
<td>15.782</td>
<td>21.524</td>
</tr>
<tr>
<td>13.1875</td>
<td>15.506</td>
<td>17.627</td>
</tr>
<tr>
<td>13.2500</td>
<td>14.849</td>
<td>15.985</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.248</td>
<td>23.482</td>
</tr>
<tr>
<td>429.0</td>
<td>16.311</td>
<td>24.298</td>
</tr>
<tr>
<td>430.0</td>
<td>16.340</td>
<td>25.563</td>
</tr>
<tr>
<td>431.0</td>
<td>16.358</td>
<td>27.004</td>
</tr>
<tr>
<td>432.0</td>
<td>16.364</td>
<td>28.608</td>
</tr>
<tr>
<td>433.0</td>
<td>16.357</td>
<td>30.223</td>
</tr>
<tr>
<td>434.0</td>
<td>16.335</td>
<td>31.363</td>
</tr>
<tr>
<td>435.0</td>
<td>16.299</td>
<td>31.314</td>
</tr>
<tr>
<td>436.0</td>
<td>16.406</td>
<td>25.784</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>gain (dBi)</th>
<th>F/B (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>428.0</td>
<td>16.290</td>
<td>27.628</td>
</tr>
<tr>
<td>429.0</td>
<td>16.312</td>
<td>28.969</td>
</tr>
<tr>
<td>430.0</td>
<td>16.326</td>
<td>30.323</td>
</tr>
<tr>
<td>431.0</td>
<td>16.328</td>
<td>31.389</td>
</tr>
<tr>
<td>432.0</td>
<td>16.319</td>
<td>31.650</td>
</tr>
<tr>
<td>433.0</td>
<td>16.297</td>
<td>30.838</td>
</tr>
<tr>
<td>434.0</td>
<td>16.260</td>
<td>29.321</td>
</tr>
<tr>
<td>435.0</td>
<td>16.210</td>
<td>27.614</td>
</tr>
<tr>
<td>436.0</td>
<td>16.146</td>
<td>25.995</td>
</tr>
</tbody>
</table>

fig. 8. E-plane plot of 0.1875 taper gain optimized Tilton Yagi.

fig. 9. E-plane plot of 0.1875 taper F/B optimized Tilton Yagi.
Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Send For Yours Today!
Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line. Dealer inquiries also welcome.

W2AU and W2DU Baluns
Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Free Antenna Accessories Catalog
Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

W2AU and W2DU Baluns
Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

For Full Instructions Included

CB-10 FM SPECIAL

- Hy Gain 40-Channel Board
- 40-Channel Switch
- Volume & Squelch Control
- FM Detector Module
- Full Instructions Included

$14.95 Add $2.00 shipping & handling

BOARD ONLY $6.95

QRP TRANSCEIVER SET – $34.95
VHF CONVERTER SET – $24.95

Add $2.00 For Shipping & Handling - Send For FREE Brochure
SEND $2.00 FOR FULL MANUAL WITH CIRCUIT DIAGRAMS
MANY OTHER MODULES AVAILABLE

MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA. 33011
(305) 884-9686

gain optimized Yagis seem to be preferable. To a much lesser degree this is also true for the 0.1875 Tilton Yagi pair. In effect the real choice of antennas is narrowed to any of the gain optimized Tilton Yagis and either of the Knadle Yagis.

The minor lobe structure of the 0.125 and 0.1875 gain optimized Tilton Yagis is measurably sharper than either of the Knadle antennas. If a final choice of antennas were to be made, either of these Tilton designs would be appropriate, with the 0.125 design preferable. The selection of one antenna design from these many fine designs depends more on the station operator than any of the calculated differences in the stated selection criteria. Excellent results can be expected from either of the two preferable Tilton designs or from either of the Knadle Yagis. The differences in forward gain are more a function of the Knadle Yagi’s longer boomlength than any verifiable design superiority. In fact, the additional 0.22 wavelength advantage should have given the Knadle Yagi a larger margin by at least another 0.1 dB.

Comparisons among these Tilton and Knadle Yagis and the NBS 4.2 wavelength Yagi are also interesting. Though the former Yagis are only marginally longer, they provide higher calculated forward gains. The NBS Yagi has a calculated forward gain of 15.71 dBi. The 0.0625, 0.125, and 0.1875 Tilton gain optimized Yagis were calculated to have 16.498, 16.651, and 16.364 dBi of gain, respectively. The gain and F/B optimized Knadle Yagis had calculated gain figures of 16.741 and 16.372 dBi, respectively. The additional gain calculated for any of these five Yagis is in excess of what the comparative differences in boomlength would explain. An additional director and the use of varying parasitic element spacing are the main reasons for these differences. The NBS antenna’s first minor lobe is of greater amplitude than these 0.0625 and 0.125 Tilton Yagis. The NBS antenna also has slightly less F/B than these 0.125 and 0.1875 Tilton Yagis.

Next month’s article will present a single pair of 50 MHz Yagis with highly desirable performance parameters. They represent an interesting exception to a very popular design approach.

references
SATELLITE HANDBOOKS

INTRODUCTION TO SATELLITE TV
by Chris Bowick, WD4C and Tim Kearney, N2Q4

Forty years ago, the most sophisticated piece of electronics available for the average home was an AM radio. Today, many homes are set up with state-of-the-art receivers designed to pluck signals from satellites orbiting 22,500 miles in space. Instead of getting into a nuts and bolts approach to TVRO, this book gives you a broad overview of TVRO in general and emphasis on home use. Chapter 1 covers TVRO background and gives a general explanation of what TVRO is all about. Chapters 2-4 give you a broad overview of the equipment used to transmit and receive TVRO signals. Three appendixes also cover DBS, locating satellites and a glossary of TVRO terms. 1st edition 1984.

21978 Softbound $9.95

THE SATELLITE TV HANDBOOK
by Anthony T. Easton

Answers virtually any question you might have on satellite TV. This new book gives you a complete overview of the satellite service, how satellites work, what programs are available, who operates the various satellites, networks and stations, how to engineer and install a system, and the legal background for TVRO. Here's a selection on building your own TV dish and receiver for around $600. You also get tips on the non-television services from satellites — radio feeds, teletext, news wire and information on DXing international satellites. 1984. 439 pages 1st edition.

22055 Softbound $16.95

Please include $2.50 shipping and handling, Foreign orders shipped FOB, Greenville.

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

More Details? CHECK — Off Page 132
160 redux

Fifty years ago 160 meters was the beginner’s phone band. Use of the 80- and 20-meter phone bands was restricted to the Class A (Advanced) licensee, 15 meters was not an Amateur band, 10 meters was sparsely occupied by experimenters and the 40-meter phone band did not exist.

During weekdays, until about 5 PM local time, 160 phone was a cross-section of juvenile America. High school lads, with plenty of enthusiasm and little money, were on the air with 20 or 30-watt phone rigs. In the evening hours, they were obliterated by older, more affluent Amateurs who boasted powerful rigs of 50 to 150 watts. All in all, it was a lot of fun.

There was plenty of DX excitement for the young operators. Many a tired teen-ager stumbled into class in the morning after an all-night DX session. On the east coast, the mark of a true DXer was that he had been able to hear W6JYH in Los Angeles on phone. (Working him was out of the question!) On the west coast, the test was to hear W1DJL in Massachusetts. And everybody envied the booming 160 phone signal of W4CPG in New Port Richey, Florida.

With the advent of World War II and the invasion of LORAN, the old 160-meter band remained practically deserted except for a few die-hards — until recently. Now, with the band appearing on the bandswitch of most new exciters, and LORAN banished to the low frequencies, interest in "top band" has exploded.

I listened in during the spring CW contest. The band was jumping with CW signals from all over the United States and Canada, crowding the

fig. 1. The active element of an HF antenna plus the feedline can be used as a T-Marconi antenna on 160 meters. One-half the element length plus the feedline length (L) is the length of the 160-meter antenna. Note that the coax conductors are jumpered at the feedpoint (A-G).

fig. 2. Approximation of feedpoint resistance (R_p) for a short 160-meter Marconi antenna.
band from 1800 to about 1850 kHz. And there was plenty of SSB activity from 1850 to 1950 kHz, with some contented AM operation at the top end of the band.

Yes, 160 had come back to life and I had to get on. All I needed was an antenna.

Let's get on 160 meters

One possible choice is to use the high frequency antenna (dipole, Yagi, Quad, or groundplane) as a T-type Marconi antenna, working the antenna-plus-feedline against ground (fig. 1).

This can be accomplished by shorting the inner and outer conductors on the coaxial line at the station and using a good earth ground connection as the return. If half of your driven element plus the feedline length approaches a quarter wave (about 126 feet) on the top band, you’re in good shape; a simple antenna tuner will get you on 160 meters quickly. Just make sure your coaxial line is clear of the ground and not bundled up with rotator cables and such as it functions on 160 meters as part of the radiating system.

If your regular antenna tuner covers 160 meters, it may work with overall antenna lengths between 115 and 150 feet. But what do you do if your antenna-plus-feedline length is shorter than this? A different approach to the problem is required.

Very short antennas for 160 meters

I measured my feedline length, plus half the driven element length of my tribander and the total length came out to be only 87 feet 6 inches. Could I work this shortened antenna system on 160 meters?

First, I had to determine if the physical length (L) was the same, or close to, the electrical length. I connected the T-antenna to my ground connection via a small 4-turn coil and used a dip oscillator to determine the natural quarter-wave resonance of the system. It was 2.73 MHz. That agreed closely with the theoretical resonance value, which is:

$$f(MHz) = \frac{234}{\text{length (feet)}} = \frac{234}{87.5} = 2.67 MHz$$

Now that I knew the electrical and physical length of my proposed 160-meter antenna were very close, I could determine the radiation (feedpoint) resistance of the antenna, assuming I had a perfect ground.

If your regular antenna tuner covers

*Derived from data presented in reference 1.

Figure 2 shows that value to be close to 12.5 ohms. (See note, fig. 2)

For my ground I ran a short, heavy conductor to the copper plumbing system of the house and grounded the pipes via two eight-foot long ground rods driven into the soil at each end of the house. (Unfortunately, the lawn sprinkling system buried in the front yard was constructed of PVC plastic pipe, otherwise it would have been added to the ground system too.)

I decided to use a simple L-matching network between my transceiver and the 160 meter T-antenna and concluded it would be best to design this for the lowest estimated feedpoint resistance of my antenna because it’s much easier for the network to match a load higher in resistance than the design value than lower in value. Accordingly the worst-case feedpoint resistance was chosen to be 10 ohms. Because I didn’t know the ground resistance, and didn’t have the time or inclination to measure it, I ignored it for the time being.

Antenna reactance

I wasn’t out of the woods yet. An antenna shorter than an electrical quarter wavelength exhibits negative (capacitive) reactance at the feedpoint, with the exact value depending upon the antenna length and the length/diameter ratio of the conductor. For a thin wire, the chart in fig. 3 provides an approximation. (See fig. 3 footnote.)

My particular antenna would have a negative reactance of about -400 ohms. A schematic representation of what the antenna is, as far as the transceiver and matching network is shown...
in fig. 4. Expressed as a complex number, the load to be matched is about 12.5-400. The resistive portion of the load can be estimated more accurately than the reactive portion, which varies widely with antenna capacitance to ground and nearby objects.

In any event, the requirement is a 4:1 impedance transformation to 50 ohms plus cancellation of the -400 ohms of capacitive reactance. The cancellation can be accomplished by adding +400 ohms of inductive reactance between the antenna and the matching device. The required reactance is termed a loading coil.

the matching network

The equivalent antenna circuit shown in fig. 4 has to be accurately matched to 50 ohms in order for modern transceivers to work properly on the top band. Because of limited adjustment range, most transceivers are not very "forgiving" with regard to a mismatched antenna load, particularly on the 160 meter band.

A matching network to transform approximately 12 ohms to 50 ohms and cancel out the negative reactance exhibited by the antenna is shown in fig. 5. The circuit is an L-network, with extra series inductance added to cancel the capacitive effect of the short antenna. In practical terms it boils down to lots of shunt capacitance (C) plus a modest amount of series inductance (L1) in the network, plus the large extra loading inductance (L2) required as a loading coil. The two coils can be combined into one, as shown in the assembly of fig. 6.

Surplus mica capacitors are used, plus a large variable capacitor. A multigang "broadcast" capacitor with the sections tied in parallel can be substituted for the single section capacitor used in this unit.

it works — almost

In real life, the required inductance turned out to be less than the calculated amount, indicating that the antenna had less capacitive reactance than determined by the design chart. The antenna was measured to actually be 11.8 ohms in series with -211 ohms (407 pF).

After all was tuned up and the SWR reading between the tuner and the transceiver was unity, the last step was to decouple the house wiring from the antenna system. As soon as I got on the air, the lights in the family room blinked on and off in step with my keying.

It seemed as if a goodly proportion of my radiated power was being absorbed by the nearby house wiring. Since I couldn't move the antenna, or the house, the only thing left to do was to decouple the wiring from the RF field as much as possible. This was accomplished by taking a few AC plugs and mounting 0.01 μF, 1.6 kV ceramic capacitors across the pins.* The plugs were then inserted into wall outlets around the house at random until no lights came on when I was on the air and turning lights off and on did not affect the SWR reading. No kidding, when the house wiring was "hot," switching lights on and off did change the 160-meter antenna tuning and the SWR on the transmission line! (Live and learn.)

This all came about because the exposed house wiring was in close proximity to the antenna. It can happen on other bands, too. The best situation is to live in a home where the wiring is fed through metal conduit.

the results

After all of this horsing around (which took only about a day of spare time) I settled down to see what I could work with this puny antenna. While I was not the biggest kid on the block, I could do well within 500 miles and could get reasonable reports out to the Midwest. I capped my DX activities one weekend by working two stations in New England! Granted, I got only a 339 report from each of them, but the contacts were genuine.

a 160-meter harmonic filter

Part 97.73 of the FCC rules specifies that spurious signals generated by the transmitter must be attenuated 40 dB below the output power level at frequencies between 1 and 5 MHz. Most Amateur exciters can meet this require-

*The "garden variety" 0.01 μF, 600-volt disc ceramic capacitor is not rated for operation at 115 VAC. Various manufacturers market special capacitors for this purpose that are rated for continuous operation at 125 VAC and 1400 to 1600 VDC. (The high DC rating is required because of high-voltage transients that often appear on the power line.) Three well-known brands of capacitors are Aerovox type AC-7, CentraLab type CI-103, and Sprague type 125L-S10.
ment with room to spare, but this doesn’t help the nearby Amateur working DX on 80 meters when he or she picks up your weak second harmonic atop the weaker, more desirable signal. A few extra dB of harmonic attenuation will solve this problem.

installation for 160-meter operation. This measurement is from one tip of the antenna element to the station. You can readily see that the coaxial line comprises the greater portion of the antenna. If the line runs close to the ground, performance on the top band won’t be very good, because your makeshift antenna will be low. If the line runs 10 to 20 feet above the ground, you are in luck. Don’t worry about twists or turns in the line; the antenna tuner will take care of that.

Watch out for coupling between your antenna and the house wiring or other nearby antennas. Some time ago, during an earlier attempt to get on 160 meters, I loaded up a random, 100-foot wire I’d used for general reception with my vintage National HRO receiver. During the tuning process I noticed smoke coming out from underneath by beloved receiver. I turned everything off quickly and soon discovered that the 15-foot long lead-in to the HRO antenna post was draped near the wire serving as part of the 160-meter antenna. Enough RF pickup existed to fry the receiver antenna coil to a crisp, even though no physical connection existed between the transmitter and the receiver.

The point is that a large portion of the 160-meter antenna was in the house, or near to it, and a strong RF field existed where one had never existed before, because the usual high-frequency antenna is not in close proximity to the house. Any unbalanced Marconi-type antenna working against ground is capable of pumping large portions of RF into the house wiring, if you don’t take precautions to prevent it!

So there you have it. 160-meter operation is possible even with a small antenna if you have a reasonably good ground connection and the right antenna tuner. Keep clear of your house wiring, get on the band, and I’ll see you on the low end!

reference

ham radio

shown in fig. 7 is a simple 5-element Chebyshev lowpass filter that will attenuate the second and higher harmonics of a 160-meter signal about 24 dB, provided the SWR on the transmission line is near unity. The filter is placed immediately after the transceiver and the SWR meter and before the tuner.

Construction of the filter is simple. A two-compartment box is soldered up out of circuit board and a filter section is placed in each compartment. The size of the box depends upon the size of the components. For powers below 150 watts, postage-stamp size mica capacitors can be used, together with miniature air-wound coils. Matching coaxial receptacles are placed on the ends of the box.

The cutoff frequency of this filter is just above the top edge of the 160-meter band, so be sure to remove it from your antenna circuit when you operate on the higher bands, or you’ll have fireworks.

in summary, then...

In order to use your HF beam, dipole, or whatever, with your feedline as a Marconi antenna, you’ll have to determine the electrical length of the

![fig. 7. Harmonic filter for 160-meters. Inductors are 1-inch diameter, 24 turns No. 18, 8 turns per inch (24-1/2 turns).](image-url)
THE FIRST NAME IN
ELECTRONIC TEST GEAR

NEW FROM RAMSEY-20 MHz
DUAL TRACE OSCILLOSCOPE

Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope
comparisons to others costing hundreds more. Features include a compo-
nent testing circuit that will allow you to easily test resistors, capacitors,
digital circuits and diodes • TV video sync filter • wide bandwidth &
high sensitivity • internal graticule • high quality rectangular CRT
• front panel trace rotator • Z axis • high sensitivity x-y mode • very
low power consumption • regulated power supply • built-in calibrator
• rock solid triggering • high quality hook-on probes

$399.95
high quality
hook-on probes included

RAMSEY D-1100
VOM-MULTITESTER
Compact and reliable, de-
signed to service a wide vari-
ety of equipment. Features in-
clude • mirror back scale
• double-reed precision
moving coil • double over-
load protection • an added low
cost unit for the beginner or
as a spare back-up unit.

$199.50
includes test leads and battery

RAMSEY D-2100
DIGITAL MULTITESTER
A compact easy to use unit
designed to operate like a pro.
Features • 3 ½ digit LCD • low-
BAT indicator • all range over-
load protection • overload indica-
tion • auto-polarity • transis-
tor test • dual-slope integration
• vinyl carrying case

$54.95
includes test leads, battery & vinyl
carrying case

RAMSEY D-3100
DIGITAL MULTIMETER
Reliable, accurate digital
measurements at an amaz-
ingly low cost • In-line color
coded push buttons, speeds
range selection • plastic
stand • recessed input
jacks • overload protection
on all ranges • 3 ½ digit LCD
display with auto zero, auto-
polarity & low BAT indicator

$59.95
includes test leads and battery

CT-70 7 DIGIT
525 MHz COUNTER
Lab quality at a breakthrough price. Features include • 3 frequency ranges each
with pro amp • dual selectable gate times • dual activity indicator • 50mV/150 MHz typical sensitivity
• wide frequency range • 1 ppm accuracy

$119.95
wired includes AC adapter
CT-70 kit $99.95
BP-4 nicad pack 8.95

CT-90 9 DIGIT
600 MHz COUNTER
The most versatile for less than $300. Features include • 3 selectable gate times • 9
digits • gate indicator • display hold • 50mV/150 MHz typical sensitivity
• 10 MHz timebase for WWV calibration
• 1 ppm accuracy

$149.95
wired includes AC adapter
CT-90 kit $129.95
QV-1 1 PPM oven timebase......... $99.95
BP-4 nicad pack 8.95

DM-700 DIGITAL
MULTIMETER
Professional quality at a hobbyist price. Features include 26 different
ranges and 5 functions • 3 ½ digit • ½ inch LED display • automatic decimal
placement • automatic polarity

$119.95
wired includes AC adapter
DM-700 kit $99.95
MP-1 probe set 4.95

PS-2 AUDIO
MULTIPLIER
The PS-2 is handy for high resolution
audio resolution measurements. mul-
tiples UP in frequency • great for PL
tone measurements • multiples by 10
or 100 • 0.01Hz resolution & built-in
signal preamp/conditioner

$49.95
wired includes AC adapter
PS-2 kit $39.95

PR-2 COUNTER
PREAMP
The PR-2 is ideal for measuring weak
signals from 10 to 1,000 MHz • flat
25 dB gain • BNC connectors • great for
sniffing RF • ideal receiver/TV
preamp

$44.95
wired includes AC adapter
PR-2 kit $34.95

PRESCALER
Extends the range of your present
counter to 600 MHz • 2 stage preamp
• divide by 10 circuitry • sensitivity
25mV @ 150 MHz • BNC connectors
• Driven any counter

$59.95
wired includes AC adapter
PS-1B kit $49.95

ACCESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna—BNC plug .. $8.95
High impedance probe, light loading .. 16.95
Low pass probe, audio use 16.95
Direct probe, general purpose use 13.95
Tilt ball, for CT-70, 90, 125 3.95

PHONE ORDERS CALL
716-586-3950
TELEX 466735 RAMSEY CI

TERMS: Satisfaction guaranteed. Examine for 10 days; if not pleased return in
original form for refund. Add 6% for shipping and insurance to a maximum of
$10.00. Overseas add $5 for surface mail. COD add $5.50 (COD in USA only)
Orders under $15.00 add $1.50. For residents of the states of New York no tax
90 day parts & labor warranty on all kits. 1 year parts & labor warranty on all wired units.
CLOCK KITS

Try your hand at building the finest looking clock on the market. Its satin finish anodized aluminum case looks great anywhere. With six 4" LED digits provide a highly readable display. This is a complete kit, no extras needed, and it only takes 1-2 hours to assemble. Your choice of case colors: silver, gold, black (specify). Clock kit, 12/24 hour. DC-5 $24.95
Clock with 10 mm 1D timer, 12/24 hour, DC-10 $29.95
For wired and wireless clocks, add $10.00 to kit price. SPECIFY 12 OR 24 HOUR FORMAT.

FM MINI

A super high performance FM wireless mike kit. Transmits a stable signal up to 300 yards with exceptional audio quality by means of mini built-in electret microphone. Kit includes case, mike, off-switch, antenna, battery and supplementary instructions. This is the finest unit available.

FM-3 Kit $14.95
FM-3 Wired and Tested $22.95

FM Wireless Kit

Transmits up to 300 yards on any AM FM broadcast radio, uses any type of microphone. Runs on 3-9V Type-FM has added sensitive mike preamplifier.

FM-1 Kit $3.95
FM-2 Kit $4.95

Universal Timer Kit

Provides the basic parts and PCB required to provide a source of precision timing and pulse generation. Uses 555 timer IC and includes a range of parts for most timing needs.

UT-5 Kit $5.95

SATELLITE TV KIT

FEATURES:
- Free Lifetime Service
- Complete Kit including Antenna, LNA (Low Noise Amplifier) and Modulator
- FM Receiver, Wired and Tested $195.00
- AM Receiver and Modulator $149.95
- Power Supply $49.95
- Kit with DTH $295.00
- Prices include domestic UPS shipping and insurance.

NEW, LOWER PRICES!

2 Way 50 mW PWR AMP
Simple Class C power amp features 8 times power gain. 1W for 8 Ohm, 4W for 16W. Max output of 35W. Incredible value, complete with all parts. Less case and T-R relay PA-1, 30W pwr amp kit $24.95
TR-1, RF sensed T-R relay kit $6.95

30 Watt 2 mW PWR AMP

MF-258 transistor as used in PA-1. 1-10W gain for PA-1. MF-258 $1.95

RF acted relay senses RF (1W) and closes DPD relay for RF sensed T-R relay TR-1 kit $6.95

OP-AMP Special

Bi-FET LF3741 - Directional rectifier pin 7A4-7.5A, max 5000WEG input. 2 super low 50 mA input current. 50 for only $9.90

Power Supply Kit provides regulated power supply prevents variable 610W volts at 200W. 10 for 2.00. Excellent working regulation and wide range. Lower transformers, requires 6V 1A and 24V Complete kit. PS-3LT $6.95

FM-258 Pre-amplifier

Stable, long life with 1W input. Very good output of over 1000W. Complete kit for $9.95

Opto-Reflectors - Photo diode + LED $1.00 ea.

MOSFETs

MOSFETs are available in the following quantity packs:
- 50 pieces per pack at $0.10 each
- 100 pieces per pack at $0.09 each
- 500 pieces per pack at $0.08 each
- 1000 pieces per pack at $0.07 each

More Details? CHECK — OFF Page 132
10GHz GUNNPLEXER transceiver

- Complete ready to use 10GHz fm voice FM transceiver
- 10 mW power output
- Typical frequency coverage 10.235-10.295 GHz
- Full duplex operation
- Internal Gunnplexer for portable operation
- Gunnplexer removable for tower mounting in fixed location service — three shielded cables required for interconnection
- Powered by 13 volts dc nominal at 250 mA
- 30 MHz fH
- 10-turn potentiometer controlled VCO tuning
- 220 KHz ceramic filter
- Extra diode switched filter position for optional filter
- Dual polarity afs
- Rugged two tone grey enclosure
- Full one year warranty
- $399.95 with 10 mW Gunnplexer
- $269.95 without Gunnplexer

Advanced Receiver Research
Box 1242 • Burlington CT 06013 • 203 582-9409

Postpaid for U.S. and Canada. CT Residents add 7.5% sales tax. C.O.D. orders add $2.00. Air mail to foreign countries add 10%.

WARNING
SAVE YOUR LIFE OR AN INJURY

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10 or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchor, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

JENSEN TOOLS INC.
7815 S. 46th Street
Phoenix, AZ 85040
(602) 968-6231

FREE CATALOG!
Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-to-find precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.

Dysan Corporation
5 1/4" SSDD
$33 Box of 10
(10 or more $31/Box)

FREE SUPPLIES CATALOG
Write Today
Payment: Mastercard/Visa (include Number and expiration date), Money Order, Cashier's Check, Personal Checks (allow 10 days to clear). Shipping 3%, $3 minimum, by UPS mainland USA. Sorry no APO/FPO/COD's. New Jersey add 6%. Prices and availability subject to change without notice.

Outprint Computer and Word Processing Supplies
44 Forrest Road
Randolph, New Jersey 07869

TUNE IN THE WORLD OF HAM-TV!
Amateur Radio operators in the 1980's are discovering the fascinating "World of Amateur Television" - Be at Fast Scan TV (FSTV), Slow Scan TV (SSTV), Facsimile (FAX) or somewhere in between. Video communications modes are growing at an exciting pace!

New advances are taking place in High Resolution Color SSTV and the use of personal computers for ATV graphics, SSTV/FAX/RTTY communications. Interest is even growing in MICROWAVE and TVO applications.

A5 ATV MAGAZINE has supported these modes of Amateur Specialized Communications since 1967 - over 17 years. And now, under the guidance of the UNITED STATES ATV SOCIETY, HAM-TV will continue to grow rapidly. Interested? Send SASE for "free" information brochure today!

Paid for By the Following:
ROHN®
P.O. Box 2000
Peoria, IL 61656

A5 ATV MAGAZINE™ P.O. BOX H
LOWDEN, IOWA 52253
A DIVISION OF JED PUBLICATIONS, INC.
ground rod resistance

Exploring ground, ground rod, and antenna relationships

An approximate equation has been derived for determining the resistance of a ground rod under a quarter wave vertical antenna. The physical factors involved are the antenna height and ground rod length and diameter, combined with the resistive and dielectric properties of the ground under the antenna. The derivation is based on choosing earth current paths which are both realistic and expressible with simple equations. With the equation it can then be demonstrated that in the regions where the current path is less certain, the power loss and hence the resistance contributions are minor.

The electrical characteristics of the ground are that of a "quasi-conductor" because of its dielectric property. At 160 meters, it behaves more nearly as a resistive body, but at 10 meters, the dielectric currents become predominant. The effect is to markedly reduce the "ground resistance" at the higher frequencies.

The "constriction resistance" to the radial current as it leaves the ground rod can be calculated. As an example, at 80 meters, over one-third of the ground rod resistance is located within 6 inches (12.7 cm) of a 1-inch (2.54 cm) diameter ground rod. It confirms that the injection of salt brine into this very small region is of great benefit in reducing the effective ground resistance.

The equation will answer such questions as what would be the effect of changes to the ground system. Such changes might be the use of longer or greater diameter ground rods, or the addition of more, well separated ground rods.

A ground rod can be considered as an inverted antenna in a lossy dielectric. At 10, 15, and even 20 meters, adverse resonances can occur, adding to the ground resistance. The approximate equation derived in this article does not include this effect, although the conditions for its presence are discussed in an appendix.

approximate equivalent circuit for ground currents

When a vertical quarter wave antenna is used with a ground rod, the current which enters the ground rod leaves it along its length, just as the antenna current leaves along its length. Figure 1 shows the antenna system considered here, sketching the vertical plane through the antenna. Dimensions h, g, and d indicate antenna height, ground rod length, and ground rod diameter, respectively, and will appear in the ground rod resistance equation. The assumed current paths are discussed later.

Evaluation of the ground currents which flow from the ground rod requires a knowledge of the electrical characteristics of the ground. Ground has both resistive and dielectric properties. Resistivity is the reciprocal of conductivity, the latter being the characteristic usually tabulated. In this article, resistivity will be used in the ground rod equation. However, conductance may be used in the discussion, when appropriate.

The normal ranges for resistivity and relative permittivity are given in fig. 1. The resistivity shows such great variability that at a particular site it probably should be measured. This can be done simply and accurately with a four-point probe.

Fortunately the relative dielectric constant seems to be less subject to variation. A major contributor is the

By Mason A. Logan, K4MT, 1607 Monmouth Drive, Sun City Center, Florida 33570

July 1984
moisture content. A choice of 12 to 14 could suffice, and is adequate for the present article.

These two fundamental constants will now be related to approximate discrete equivalent circuit elements. A cubic meter of ground is shown in fig. 2. Two one-meter square conducting plates are placed on opposite sides. Such a meter cube has the property that when using MKS (meter-kilogram-second system of units — metric) units, the resistance between the two plates is numerically equal to the resistivity. Thus from a measurement or by estimation the parallel resistance can be determined for the approximate equivalent circuit shown below the cube in fig. 2.

A representative relative dielectric constant, \(\varepsilon_r = 13 \), will usually be used for discussion, and preparation of figures in this article. The capacitance for this value is 115 pF.

The formula for the capacitance between two parallel plates is from reference 5. Because the cube obviously conducts DC, the approximate equivalent network capacitance must appear in parallel.

When RF current flows through the ground, both equivalent parallel elements conduct. At very low frequencies, almost all goes through the resistor. As the frequency increases, an increasing part passes through the lossless dielectric. Only current through the resistor causes power loss. As shown in fig. 2, the magnitude of the resistive part of the current is:

\[
I_R = \frac{I}{1 + Q^2}
\]

where \(Q \) from fig. 2 introduces the current division effect. The sum of all the power losses, \(P \), determines the ground rod resistance through the relation:

\[
R_g = \frac{P}{I^2}
\]

The ground behaves as an inductive impedance, rather than simply as a resistance. (This is discussed in appendix B.) The inductive effect is caused by the lower velocity of wave transmission through the dielectric, compared to that through the resistance, acting like current lagging a voltage. This inductive effect contributes to a vertical antenna being shorter than the length called for by the formula; the negative phase angle of the antenna is used to neutralize the positive phase angle of the ground.

ground resistance equation

The approximate equation for the ground rod resistance is:

\[
R_g = \frac{\varepsilon_r}{(1 + Q^2)} \cdot \frac{l}{2\pi g} \left(\log_e \frac{2h}{d} \right) - 1 \text{ ohms}
\]

where \(h = \text{antenna height, meters} \)

\(g = \text{ground rod length, meters} \)

\(d = \text{ground rod diameter, meters} \)

\(\varepsilon_r = \text{ground resistivity, ohm-meters} \)

\(Q = 55.6f_{MHz} \varepsilon_r \times 10^{-6} \), from fig. 2.

The derivation of this equation is given in appendix A. As an example, take a 20-meter high, quarter wave vertical for 80 meters, with an 8-foot ground rod 1 inch in diameter, and a ground resistivity of 200 ohm-meters. Using the equations in fig. 2, \(Q = 0.5 \). Then:

\[
R_g = \frac{200}{(1 + 0.5^2)} \cdot \frac{l}{2\pi g} \left(\log_e \frac{2 \times 20}{0.025} \right) - 1
\]

\(\text{equal to about that for eight radials.} \)

If the ground rod diameter were increased to 12 inches, the ground resistance would be 40.5 ohms, about 40 percent reduction. Thus, as mentioned earlier, over one-third of the ground loss occurs within 6 inches of a 1-inch rod. One half is inside the 1-foot radius.

It is convenient to consider this equation as the product of two factors, which have been plotted as curves in figs. 3 and 4. Figure 3 represents how the ground resistivity, with its relative dielectric constant and the frequency, enter into the equation. Figure 4 represents how the one-quarter wavelength vertical antenna height and the relatively shorter ground rod dimensions enter. The product of the two factors determined by these curves is the ground rod resistance in ohms.

equivalent series resistivity

The curves of fig. 3, one for each frequency band, are directly proportional to the antenna's ground resistance. The ground resistivity usually is reported as being in the range from 100 to 500 ohm-meters.
antenna system dimensions

The curves of fig. 4 are drawn using the ratio of the one-quarter wavelength high antenna to the ground rod diameter as the x-axis. The height of the antenna is taken as representing the radius on the ground beyond which practically no ground currents flow. The curves are for different ground rod lengths. A possible adverse resonant effect not included in the approximate equation and which may be important at 10 and 15 meters, is considered in appendix B.

The chart is entered through the x-axis. The ground rod length is found next. From there across to the y-axis determines the dimension factor.

Repeating the 80-meter example calculated earlier, from fig. 3, the ground resistivity factor is 150. From fig. 4, for \(g = 2.4 \) meters, the dimension factor is about 0.42. The product is 63 ohms, duplicating the earlier result.

These curves can be considered as plots of the equivalent series resistance determined by a fixed capacitor shunted by a range of resistances. For each curve, the plot is for a shunting resistor increasing from less than the reactance of the capacitor, up to 700 ohms. Such a network has the property that the maximum equivalent series resistance occurs when the parallel resistance is numerically equal to the reactance, and for that condition, that is \(Q = 1 \), the series resistance maximum is exactly equal to half the parallel resistance.

The curves for 40 and 80 meters surprisingly show that because the maximum is centrally located, the series resistance changes less than 2 to 1 over the normal ground conductivity range.

The reactance of the parallel capacitor decreases inversely with increasing frequency. Thus the corresponding equivalent series resistivity peak decreases, with each curve becoming much lower overall. Two advantageous effects appear here. Not only is the peak less, but because it moves outside the parallel resistivity range normally encountered, the working equivalent series resistivity range is much lower than the peak. For example, at 10 meters, the effective resistivity is decreasing to below 10 ohm-meters, less than 1/20th of that for 80 meters. This is because an increasing portion of the ground current has become lossless dielectric current.

For convenience, a bar is drawn with ticks shown for each Amateur HF band, locating the h/d for 1-inch diameter ground rods and quarter-wave verticals. For other diameters, start with a tick for 1 inch, then move right or left inversely as the ratio of the 1-inch diameter to the diameter wanted. For instance, for a 1/2-inch diameter ground rod, move right to twice the 1-inch h/d value. Thus at 20 meters, move from a scale of 200 to 400. Then locate \(g \) to find the dimension factor.

The curves clearly show that there is a large decrease in effective ground resistance as the frequency increases. The dimension factor from fig. 4 is also lower for the higher frequencies. Approximate ground resistance measurements at 10, 15, and 20 meters to support the results of these calculations will be given later.
parallel ground rods

The parallel resistance of two ground rods may be estimated through a study of the current flow paths. When there are two ground rods, each receiving half of the total current, each acts as an "image" for the other. This effect causes the resistance of the two in parallel to be higher than just half of either alone.

The image repels any current flow across a perpendicular plane which bisects the line joining the two rods. The bisector thus acts as a virtual insulator. Visualization of the current flow paths from the two perpendicular plane which bisects the line joining the two rods is helped by field maps shown in many texts. They usually are drawn for static charges, but the field lines are like current flow lines in sheets.

Near each rod and inside a radius of about half the distance to the bisector, the effect of the other rod, while increasing, is small. Inside this region then, almost the full advantage of separate rods is realized. A resistance factor of 1/2 will be used.

For the next region, to a radius of the distance to the bisector, all currents including those which started out toward the bisector have completed most of their change in direction. The advantage of separate ground rods thus decreases in this region. A resistance factor of three quarters will be used.

Beyond this second region there is very little gain.

To apply the above discussion an estimation involves first calculating the external resistance for circles centered around a single ground rod. This is done for diameters of 2 feet, 3 feet, and so on, using the formula. Such calculations for 80 meters are shown in fig. 5. Two cases have been chosen as examples, applying to 4-foot and 6-foot spacings.

For Case 1, the estimate of the resistance using two ground rods spaced 4-feet apart is shown as 48 ohms or a reduction compared to a single rod of 27 percent. For comparison, about 14 radials have a resistance of 48 ohms.* The calculation for the first foot assumed a 0.5 factor as complete independence, as discussed earlier. The second foot used a 0.75 factor for an intermediate effect, while outside that, negligible reduction compared to a single ground rod was used.

A very large number of rods in the circle could only approach 26 ohms. Thus two rods accomplish almost half of the possible reduction.

Case 2 is for rods spaced 6 feet apart. Calculating in the same manner there is a reduction to about 45 ohms, or a 31 percent decrease. The increased spacing from 4 to 6 feet thus gained another 2.3 ohms.

20 meter measurements

The striking information of fig. 3 and 4 is the exhibition of the beneficial effect of the ground's dielectric property in reducing the effective ground resistance. With increasing frequency, the increasing Q rapidly reduces the resistance.

Elementary but restricted resistance measurements were made with a double-pointer SWR bridge. The restriction with this method is that the resistance can be determined only at a frequency where the SWR is a minimum.

Starting with a vertical wire having a 16 foot 9 inch formula length, the wire was shortened until the minimum was within the band (final length was 15 feet, 10 inches). Using two rods four feet long and four feet apart, measurements and calculations were as follows:

<table>
<thead>
<tr>
<th>Rods</th>
<th>SWR</th>
<th>(R_g) ohms</th>
<th>(R_g) (calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" D</td>
<td>1.43*</td>
<td>34.5</td>
<td>27</td>
</tr>
<tr>
<td>3/4" D</td>
<td>1.33</td>
<td>28.0</td>
<td>30</td>
</tr>
<tr>
<td>parallel</td>
<td>1.18*</td>
<td>19.0</td>
<td>20 (est.)</td>
</tr>
</tbody>
</table>

The addition of a shunt resistor* has reduced the SWR in the measurements printed in bold type, establishing that the load was greater than 50 ohms. The formula for such a minimum SWR, is:

\[
R_g = [(50 \times SWR) - 37.5] ohms
\]

These results agree to within a few ohms of the resistances calculated using the formula. The measurement formula for \(R_g \) may be optimistic in that the radiation resistance of the antenna probably decreases from 37.5 ohms as the wire is shortened for system resonance.

10 and 15 meter measurements

There was further confirmation at 10 and 15 meters when measuring with a shorter 2 foot, 3/4-inch diameter round rod:

<table>
<thead>
<tr>
<th>Band (meters)</th>
<th>formula height</th>
<th>tuned height</th>
<th>min. SWR</th>
<th>(R_g) ohms</th>
<th>calc. (R_g) ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>11' 0"</td>
<td>9' 9"</td>
<td>1.49</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>8' 4"</td>
<td>7' 7"</td>
<td>1.14</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

July 1984
Even with a 2 foot ground rod, at 10 meters (10 meter band) the resistance was about half that at 20 meters with a 4 foot ground rod.

However, a problem was found when trying to measure using the 4-foot ground rod. As the antenna height was reduced, the SWR curve kept the same slope across the band, reached a lowest curve, and then increased again. There was no minimum in the band. Thus the SWR bridge method could not be used. The lowest SWR, at the band edge for both bands, was higher than the minimum found for 20 meters.

The lower end of the SWR curve was on the high frequency edge for 15 meters and on the low frequency edge for 10 meters. It may be that a resonance in the 4-foot ground rod, acting as an inverted antenna in a lossy dielectric prevents the lowest SWR curves having a minimum in the band. (Further discussion is in appendix B.) At 10 and 15 meters, for the local conductivity condition, one-quarter wavelengths are 2-1/2 and 3 feet respectively. Thus the 4-foot ground rods were above their series resonance. It may be that an odd number of underground quarter wave lengths is best.

conclusion

An approximate equation for the resistance of a ground rod has been derived when using a quarter wave vertical antenna. It relates the elements which affect the ground rod resistance and provides a means for estimating the result of changes in the ground system. Measurements confirm the importance of the relative dielectric constant of ground in reducing the effective ground resistance as the frequency increases.

How well the formula applies to trap verticals has not been established. Knowing the trap antenna resistance for the subtraction is another problem.

With the use of ground rods only there always is some power loss penalty. However, sometimes pavements, sidewalks, buildings, or someone else’s property precludes other approaches. Even with such a restriction, it appears that a system equivalent in some power loss penalty. However, sometimes pave-

appendix A

derivation of the approximate ground resistance equation

This equation applies to the antenna and ground rod system shown earlier in fig. 1. That figure, and fig. 2, defined the physical characteristics included in the ground resistance formula.

Figure 6 shows in more detail the underground geometry and the current flow paths assumed. The ground current I_0, entering the ground rod is assumed to leave the rod uniformly along its length. This is represented by the equation:

$$I = I_0 \left[1 - \frac{z}{g}\right]$$

where z is the variable depth from the ground surface and g is the length of the ground rod.

An elliptical path is shown leaving the ground rod. An ellipse terminates at right angles to both the ground and ground rod. The path shown leaves the ground rod at z, and ends at x on the ground surface. This sheet, which starts with thickness dz, and is flattened out in fig. 7, carries the current dl. All such circuits are in parallel and account for the total current. For any sheet like the one shown, the current entering is:

$$dl = \frac{-I}{g} \; dz$$

As discussed earlier, the resistive current portion is:

$$dl_R = \frac{-I_1}{g\sqrt{1 + Q^2}} \; dz$$

The resistance to radial current flow through the parallel resistive part of the differential ring shown in fig. 7, is:

$$dR = \frac{\rho}{\text{length}} \left(\frac{\text{area}}{2\pi r d}\right) dz$$

At this point, two simplifying assumptions will be made: first, the outer radius is just x rather than 1.1x, applicable to the elliptical perimeter, and second, that the thickness of the sheet remains a constant dz instead of increasing. These are reasonable because they introduce opposite resistance changes having a cancelling effect, and because their effect is in the far region where only a small part of the total resistance is involved. By integration, the sheet resistance to a radial current leaving the ground is:

$$dR = \frac{\rho}{\text{length}} \int_b^x \frac{dr}{2\pi r} = \frac{\rho}{2\pi} \int_b^x \frac{dx}{r}$$

There is an equal differential current in each sheet. Squaring the current which flows through the resistance and multiplying by the sheet resistance just arrived at, determines the sheet power:

$$dP = \left(\frac{I_0}{g\sqrt{1 + Q^2}} \; dz\right)^2 \frac{\rho}{2\pi} \int_b^x \frac{dx}{r}$$

Substituting

$$dz = \frac{\rho}{h} \; dx$$

$$P = \frac{I_0^2}{gh} \frac{\rho}{2\pi} \int_b^h \log_e \frac{x}{b} \; dx$$

where the quarter wave antenna height is used as a measure of the end of the outer region.

Finally, dropping the very small lower limit factor for simplicity, the approximate ground rod resistance formula is:

$$P = R_e = \frac{\rho}{(1 + Q^2)^{1/2}} \frac{1}{2\pi} \left[\log_e \frac{2h}{d} - 1\right]$$

where ρ = ground resistivity

h = quarter wave antenna height

d = ground rod diameter

g = ground rod depth

$Q = 55.6 f M H z \times 10^{-6}$
appendix B
ground electromagnetic wavelength

For the Amateur HF bands, the ground is described as a quasi-conductor because of its relative dielectric constant, greater than unity. In such a medium, the velocity of an electromagnetic wave is reduced, compared to the velocity of an electromagnetic wave in a vacuum. The physical characteristics which apply to a conducting medium are:

- \(\epsilon_r = \) relative permittivity (12 to 14 estimated locally)
- \(\epsilon_0 = \) vacuum permittivity = 8.85 \(\times \) 10\(^{-12}\) farads/meter
- \(\mu_r = \) actual permeability
- \(\mu_0 = \) vacuum permeability = 4\(\pi\) \(\times\) 10\(^{-7}\) henrys/meter
- \(\sigma = \) conductivity - siemens/meter
- \(\rho = \) resistivity ohm-meters
- \(\theta = 2\pi \times \text{frequency - radians/second} \)

The equation\(^{20}\) for a wave travelling in a positive \(x \) direction is:

\[
E_y = E_0 e^{-jy}
\]

where \(y \) is the propagation constant and \(x \) is the distance. The constant is:

\[
y = j\omega \mu_0 - \omega^2 \mu
\]

It is convenient in the last term to substitute:

\[
a = \epsilon_0/\epsilon
\]

Then \(y^2 = \omega \mu (j - a) \)

But \(\sqrt{j - a} = 4 \sqrt{1 + a^2} (\cos \theta + j \sin \theta) \)

where \(\theta = (90^\circ + \tan^{-1}I_a)/2 \)

Finally:

\[
y = \sqrt{\omega \mu} 4\sqrt{1 + a^2} (\cos \theta + j \sin \theta)
\]

Thus \(y \) has a real and imaginary part. The real part is associated with attenuation and the imaginary part with phase. Equating the phase part to \(2\pi \) determines the \(x \) which is equal to one wavelength. Thus the equation for one wavelength is:

\[
\lambda = \frac{2\pi}{\sqrt{\omega \mu} 4\sqrt{1 + a^2} \sin [(90^\circ + \tan^{-1}I_a)/2]}
\]

This equation has been plotted in fig. 8. The reciprocal of "\(a \)" is the \(x \)-axis. The label for each curve uses the variable part from the left of the fraction above. The left vertical axis is the result and gives the wavelength inside the conducting ground. It always is less than the wavelength in free space.

References

4. Jerry Sevick, "4-Point Probe Measurements," *QST*, March, 1981, page 38. (Caution: use an isolating transformer in the extension cord to prevent any current to the lightning ground rod near the power meter.)
10/160M

THE 10/160M GIVES YOU THAT EXTRA BIT OF QUALITY THAT REALLY GETS YOU THROUGH TO THAT SPECIAL DX STATION, OR JUST ENJOYING A FULLY RELAXED QSO WITH ANOTHER AMATEUR THE OTHER SIDE OF THE COUNTRY. YOUR 10/160M GIVES YOU THE EASE OF OPERATION THAT YOU WANT WITH 4 MEMORY CHIPS OR THE 3-WAY AUTO SCAN, DUAL VFO, IF SHIFT, CW-W CW-N, HAND MIC AND BUILT IN AC/DC POWER. ALL BANDS ARE FULLY OPERATIONAL INCLUDING THE NEW WARC BANDS. YOUR CHOICE OF EASY OPERATING USB, LSB, CW OR RTTY IS AT YOUR FINGER TIPS. WITH A FULL 200 WATTS PEP OUTPUT YOUR FINALS ARE PROTECTED FROM HIGH SWR.

YOUR 10/160M IS ALL SOLID STATE WITH MODULAR BOARDS THAT ARE EASY ACCESSIBLE. A BRIGHT BLUE FLUORESCENT DIGITAL DISPLAY IS EASY TO READ AT ALL TIMES.

BEST OF ALL THERE ARE NO EXTRA OPTIONS TO BUY TO GET YOU ON THE AIR, IT'S ALL THERE.

JUST TAKE YOUR 10/160M HOME AND 1. CONNECT A ANTENNA. 2. PLUG INTO 120V AC OUTLET. 3. TURN THE SWITCH ON. 4. SELECT THE BAND AND FREQUENCY AND YOUR ON THE AIR.

YOUR RECEIVING AUDIO IS CRISP AND CLEAR, YOUR TRANSMITTED SIGNAL WILL GET YOU A PRAISE FROM EACH CONTACT. THE 10/160M GIVES YOU A SUPERIOR TRANSCIEVER THAT IS UNCOMPARABLE.

MORE INFORMATION IS AVAILABLE FROM YOUR LOCAL DEALER, OR NCG CO.
1275 N. Grove St., Anaheim, CA 92806

15M

15M-MOBILE IS YOURS TO CONTINUE YOUR QSO WITH THAT SPECIAL FRIEND WHEN YOU GO ON A VACATION OR JUST GOING TO OR FROM WORK. A TRULY QRP RIG WITH THE BIG SIGNAL EITHER CW OR USB. THE DIGITAL FREQUENCY DISPLAY IS EASY TO READ AND YOUR 10 WATTS OR 2 WATTS ON USB OR CW WITH A BUILT IN SIDE TONE, HIGHLY EFFECTIVE NOISE BLANKER, AUDIO ALC GIVES DISTORTION FREE TRANSMISSION. THE VFO BALL WITH GEARS ALLOWS HIGH-PRECISION TUNING. DIGITAL DISPLAY OFFSET WHEN RIT IS IN OPERATION (A MODIFICATION THAT TAKES 5 MINUTES CHANGES THE RIT TO A FINE TUNE CONTROL). A LARGE S/RF METER IN THE CENTER AND A TOP 8 OHM .5W SPEAKER, YOUR RECEIVE AUDIO IS DIRECTED UP.

EXTERNAL SPEAKER AND CW JACKS, MOBILE MOUNTING BRACKET AND A 400 OHM PT DYNAMIC MICROPHONE. FULL 15 METER BAND OPERATION FROM 21 TO 21.450 MHZ, YOUR OFFSET FREQUENCY RANGE OR FINE TUNE IS ±4 KHZ. THE SIGNAL TO NOISE SENSITIVITY IS MORE THAN 10DB DOWN AT -6DB INPUT POWER SOURCE IS 13.8V DC, 3 AMPS. THE SMALL SIZE WILL ALLOW MOBILE OPERATION FROM THE SMALL CARS, ITS ONLY 9" H x 2.5W x 9.5D, THE LIGHT WEIGHT OF ONLY 5.7 LBS. MAKES THE 15M A POSSIBLE BACKPACKERS DREAM.

WITH YOUR 15M YOU WILL NOT HAVE A BIG EXPENSIVE PIECE OF EQUIPMENT SETTING IN YOUR VEHICLE, IT CAN BE UNDER THE DASH OUT OF SIGHT.

NOTE: PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.
summer DX

Every season of the year offers advantages and disadvantages for DX operation. The winter and summer solstices (days of shortest and longest daylight) and the equinoxes (days of equal light and darkness) produce distinct propagation characteristics that require specialized operating procedures.

Summertime DX offers longer high frequency (10-30 meter) operating time. Higher MUFs occur earlier in the day and end later than they did in previous seasons. In the higher latitudes (i.e., in the northern hemisphere), MUFs for east-west and transpolar paths are highest at this time of year.

But summer is not without its operating disadvantages: signal strengths are generally lower, as are midday MUFs; hop lengths are shorter; and there’s little one-long-hop transequatorial propagation. Amateurs in the northern hemisphere can expect increased noise QRN as well.

Some of these negative characteristics of summertime operation can be turned into advantages. Others can be overcome. In this column and the next, I’ll discuss these characteristics and offer some suggestions for improving your summertime DX operating.

last-minute forecast

The higher frequency bands (6-30 meters) are expected to be best during the first ten days of July. During this time, both long and short skip openings should be plentiful except on 6 meters, where only short skip openings by sporadic E are possible. During the latter two weeks of the month sporadic-E short skip will provide the best openings. The lower bands (30-160 meters) are expected to be of limited use during the month because of summer thunderstorm QRN; the first of the month may have the better nighttime openings, and the last two weeks the better daytime openings if the solar radio flux is 80 or less, as expected.

A full moon will occur on the 13th; perigee (closest approach) is on the 2nd and 30th. The Aquarid meteor shower starts on July 18, peaks on the 28th, and lasts until August 7 (all dates approximate, but close). The radio-echo rate at maximum is about 34 per hour.

band-by-band summary

Six meter paths will exist during several days around local noon by means of sporadic-E short skip propagation. Ten and fifteen meters will provide long-skip conditions in the afternoon during the peak times of the 27-day solar maximum. Otherwise, look to sporadic-E short-skip and multihop openings around local noon for DX on these bands. Transequatorial evening openings do not usually occur in the summertime.

Twenty and thirty meters will be open all day and much of the night. If twenty does not stay open through the night, thirty probably will. Sporadic-E short-skip is also often effective on these bands throughout the day. Propagation paths to most areas of the world are possible in a sequence that follows the sun’s journey across the sky: east in the morning, south during midday, and west during the evening.

Thirty and forty meters will be the main nighttime DX bands this time of year, although long-skip distances will be shorter. Sporadic-E openings are possible during most of the day into pre-sunrise and after sunset. With thunderstorm-induced static levels high in the evening, look to pre-dawn periods for best results.

Eighty and one-sixty meters are difficult DX bands during this time of year. Short nights and high noise levels hamper DX operation, although eighty offers slightly lower noise levels. Most useful openings may occur during the pre-dawn hours. Sporadic-E propagation signal strengths may exceed the static level near sunrise and sunset.
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during "normal" hours.

*Look at next higher band for possible openings.

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during "normal" hours.

*Look at next higher band for possible openings.
Get More Bang for the Buck!

ICOM 745 NOW ONLY $779.00 A SUPER VALUE

and Get a SM-6 DESK MIKE FREE (Reg. $39.00 Value)

SPECIAL SALE ON ICOM ACCESSORIES
- PS-35 Int. Pwr. Supply $144.95
- PS-15 Ext. 20 Amp. Pwr. Supply $134.95
- AT-100 (100w) Automatic Ant. Tuner $999.95
- AT-500 (500w) Automatic Ant. Tuner $389.95
- EX-243 Int. Electronic Keyer $44.95

SPECIAL OF THE MONTH: LARSEN MAG MOUNT 2M % PKG—$36.95

VISA/Master Card FREE SHIPPING ON MOST RIGS FOR CASH!

S.A.S.E. FOR OUR "BENCH-TESTED" USED EQUIPMENT LISTING

MONDAY - SATURDAY
9 AM TO 6 PM CENTRAL TIME

4124 West Broadway, Robbinsdale, MN 55422 (Mpls./St. Paul)

RTTY TODAY
MODERN GUIDE TO AMATEUR RADIOTELETYPE
by Dave Ingram, K4TWJ

This brand new book is the only RTTY handbook available that covers all facets of RTTY operation from the "green key" generation to personal computers. Author Dave Ingram, K4TWJ, noted RTTY enthusiast, writes in a personable, easy-to-understand style that will appeal to all levels of RTTY interest. RTTY TODAY is fully illustrated with photos, diagrams, RTTY station set ups and equipment to help ensure full understanding of the material. 11 chapters cover: an overview of RTTY operation, operating parameters, home computers, equipment you can build, dedicated systems and comprehensive chapters on RTTY SWLing with frequencies, codes and other helpful hints and tips. Old time RTTY users and newcomers alike will find this book extremely useful. ©1984. 95 illustrations. 1st edition. $89.95

Order yours today $89.95
plus $1.75 shipping

UNIVERSAL ELECTRONICS
4555 Groves Rd. • Suite 3 • Columbus, OH 43232
(614) 866-4605

Custom Mailing Lists on Labels!
Amateur Radio Operator NAMES
Custom lists compiled to your specifications
- Geographic by ZIP and/or State
- By License Issue or Expiration Date
- On Labels of Your Choice

Total List: 435,000 Price: $25/Thousand

Buckmaster Publishing
Whitehall
Mineral, VA 23117 U.S.A. (703) 894-5777

BUTTERNUT

BRAND NEW

P.C. BOARDS AND ART SERVICES
FACE PLATES ENCLOSURES
WRITE OR CALL
615-325-3511

For Literature or Quotes

Let us quote you on any stage of your product from prototype to production.

FABTROD DIV. P.O. Box 929
Columbus, OH 43201
(614) 381-1143

CALL TOLL FREE FOR QUOTES
1-800-328-0250
1-612-535-5050
(IN MINNESOTA—COLLECT)

KENWOOD
ICOM
MIRAGE
AEA
KANTRONICS
SANTEC
KDK
AZDEN
NYE VIKING
MFJ
TELEX HY-GAIN
HUSTLER
KLM
CUSHCRAFT
ROHN
LARSEN

APPLIED INVENTION
GaAs FETS by MITSUBISHI

144 MHz ~ 12 GHz lowest noise and largest noise price available
- MIG1106 - Dual Gate $85.00
- MIG1200 - Dual Gate $95.00
- MIG1203 - Dual Gate $105.00
- MIG1404 - Quad Gate $149.00
- MIG1412 - Quad Gate $159.00

Full Data and Pricing in Current Catalog

MITSUBISHI X-BAND MITSUBISHI GaAs FET DRO Modules — Great
- PS1418X 10.5 GHz, 150mW act, UHF 0 dBm $59.00
- PS1419X 11.5 to 12 GHz, UHF 20 dBm $59.00
- PS1420X 11.5 to 12 GHz, UHF 25 dBm $59.00
- PS1425X 11.5 to 12 GHz, UHF 30 dBm $59.00

MITSUBISHI X-BAND MITSUBISHI GaAs FET DRO Modules —Great
- PS1418X 10.5 GHz, 150mW act, UHF 0 dBm $59.00
- PS1419X 11.5 to 12 GHz, UHF 20 dBm $59.00
- PS1420X 11.5 to 12 GHz, UHF 25 dBm $59.00
- PS1425X 11.5 to 12 GHz, UHF 30 dBm $59.00

ALL THE SOURCE TO RETICON Universal Audio Active Fibers
- RS620 digital programmed switched capacitor audio filter $7.95
- RS621 dual section resistor programmed SDF $8.50
- RS622 quad section resistor programmed SDF $11.07

Optoelectronics - MITSUBISHI Lasers and Avalanche photodiodes
- HIGH OUTPUT LEDS, PM Photodiodes, InP Phosphor Screens

MITSUBISHI ULTRASONIC POWER TRANSDUCERS FOR 900-1200KHz
- UF611 Santamore 20/61/17: 5W/100W/1000W $1.50
- NEC-6435 direct replacement: Siemens BOQ 74 $6.68
- UR and Microwave Low Loss Capacitors
- Small signal and transmitting type chips

STIPPLE SHAPED TRIMMERS (VOLT:036CN) 81 2 7 5 5/4 $3.84
- N-3 SERIES CERAMIC POT TRIMMERS (VOLT:011CN) 81/2 6/4 $1.58
- SAPPHIRE TRIMMERS Johnson 0.4 2.5f $8.97
- For WA-22220 potentiometer $8.97
- Therma Electric Heat Pumps & Sub Miniature Cryogenic Refrigerators
- 34 ZX500 glass/pc board 0.012 and 0.042
- Litt Johnson 0.024 connections
- WA-22220 2.54 and EG-2002 B-type Kits
- PROMPT SERVICE, Send for Catalog. MINIMUM ORDER $5.00
- VISITING/MASTER CARD Accepted. Cash payment takes 5% discount
- USA * ITEMS (INS $3.75) ALL OTHER ITEMS 2.0% (1ST CLASS)
- NY STATE RESIDENTS 7% SALES TAX

R.D.2 ROUTE 21 HILLSDALE, NY 12529
518-325-3511

134

More Details? CHECK — OFF Page 132
OUTSTANDING PERFORMANCE with MOSLEY ANTENNAS

The Pro-37 follows in the Mosley tradition of high performance, dependability, and quality construction. The Pro-37 is pre-drilled for easy assembly. No adjustments or measuring. Average assembly is about 1½ to 2 hours. As with all the Mosley antennas we use stainless steel hardware throughout. Rugged construction makes our antenna the cleanest, strongest of its class, no cluttered elements or boom to cause electrical and mechanical problems down the road. Put it up and leave it up. In performances it has no peers... It is as broadbanded or broaderbanded than any antenna made. Its gain and front to back is as good or better than other antennas in its class, even those with longer booms. Mechanically we feel it's the best built. The Pro-37 has 7 elements on a 24 foot boom which needs no boom support. It has 3 wide spaced elements on 20 and 15 not counting the extra driven element. 10 meters has 4 wide spaced elements not counting the extra driven element. The Pro-37 uses a unique direct feed system which enables the driven elements to contribute gain to the antenna, while giving it the broadest possible frequency spectrum. Clean design makes the antenna easy to assemble and erect and solves maintenance problems. No clutter on the elements or boom. The Pro-37 uses the proven Mosley traps which on the Pro-37 will handle 2.5 KWDC out on C.W. and 5 KWPEP on SSB. We're quite excited about the Pro-37 and we know you will be too!

Want 40 Meter DX?
Then Try...

FULL SIZE PERFORMANCE WITH 44' ELEMENT AND A 20' BOOM
Excellent Gain and Front to Back.
Strongest Built 2 Element on 40 Meters
Good Bandwidth. Can be made to 3 element later.

BROADBANDED SINGLE ELEMENT
Can be made into 2 element or 3 element later.

NOW ALL THESE ANTENNAS ARE UPS SHIPPABLE!

1344 Baur Boulevard St. Louis, Mo. 63132 1-314-994-7872 1-800-325-4016

Tell 'em you saw it in HAM RADIO!
NOW THREE MODELS OF OUR
DIGITAL ANTENNA CONTROL
Your Choice Of Center, North Or South

GOOD
PSE-1A, 3A

The "CONTESTER" provides the least expensive DIGITAL CONTROL UNIT WITH COMPLETE COMPUTERIZED CONTROL, BUT WITH LESS FEATURES, than the "DXER" and "DELUXE". This unit gives you the current position of your antenna digitally in 0.5 steps. It has 2 memories and the command mode, plus single button operation. The PSE-1A, "CONTESTER" comes with a 2.0 amp, continuous duty motor supply. PSE-3A has a 12 amp power pack.

It is not capable of being modified to talk or accept the computer interface or remote interface. It is completely shielded and made of the same quality components as the other models. The warranty on our unit is one year on materials and labor, and ninety days on parts.

This unit is an inexpensive way to have the best of both worlds. A real time saver during contests. Hands off operation will save many hours of hanging on the rotor. Just a few dollars more than the manual control box, but worlds apart in state-of-the-art and operation. Price $299.95

BETTER
PSE-1, PSE-3

The "DXER" is the top of the line of the non-voice synthesized units, and is the ham who is in need of more features on their controller. It has 7 digital readouts, one to show the antenna's current position, plus a storage readout which holds your heading or digitally displays your last position. This is valuable for switching between long path or short path, or checking front to back, or working between two different stations a real time saver and a nice convenience.

The "DXER" also has 5 scan functions: 500-900, 900-1800, 1800-270, 270-900, and 900-1800. This is a real aid in looking for that doppler opening or peaking a weak signal. The "DXER" has 2 memories for storing headings. It can be expanded to talk, and does have the hardware necessary to use with the computer interface. It can be remotely keyed, where verbal confirmation isn't required. Price $362.95

BEST
PSE-2, PSE-4

This is the ultimate in rotor controls. Nothing tops this one. It has all the features of the other models, plus it talks....Yes, it talks.

The "DELUXE" has a voice synthesizer which confirms your entries, plus tells you your heading as you enter it and when your antenna arrives. All commands are spoken, plus as your antenna turns you hear a 400Hz tone going in one direction and a 80Hz tone in the other. This gives you positive verification of movement.

This unit, as the others, will combine with the HAM IV, T2X and HDR-300; giving you the best antenna rotor combination you could ever want at any price. Price $469.00

INTRODUCING THE ULTIMATE PACKAGE...FROM PRO-SEARCH™ NINE COMBINATIONS OF OUR CONTROL UNIT AND THE TELEX/HYGAIN® ROTOR MOTORS...
FOR JUST A FEW DOLLARS MORE YOU CAN HAVE THE CONTROLLER OF THE FUTURE TODAY!

Package #1 PSE-1A

The "Contest" Package...try one of these ELEXHY-GAIN rotors with our PSE-1A/3A. A system which is low in cost, high in performance.

PSE-1A will save you lots of time in your favorite contests. No more hanging on the rotor control. Gives you positive control with DIGITAL displays and REDIAL key to check long path or short path. Has all internal hardware to plug into our computer interface. Can be remotely controlled from accessory jack.

Try this with any of the ELEXHY-GAIN® Rotors! This will give you the broadest of functions with a mid-range price.

Package Special

PSE-1A + HAM IV $369.95
PSE-1A + T2X 415.95
PSE-3A + HDR-300 544.95

*Printed with permission of TELEXHYGAIN
*Telex Communications, Inc.

Package #2 PSE-1/PSE-3

The "DXER" Package...Couple this unit with a rotor and you have the best non talking control we make. Expandable, plus has 5 scan functions, 2 DIGITAL displays and REDIAL key to check long path or short path. Has all internal hardware to plug into our computer interface. Can be remotely controlled from accessory jack.

Try this with any of the ELEXHY-GAIN® Rotors! This will give you the broadest of functions with a mid-range price.

Package Special

PSE-1 + HAM IV $502.95
PSE-1 + T2X 548.95
PSE-3 + HDR-300 677.95

Package #3 PSE-2/PSE-4

The "DELUXE" is the most sophisticated antenna control unit ever made. With the "DELUXE" you have all the functions of our other units, plus it talks...Yes, it talks. Not only do you have your headings digitally displayed, but it is also said as your antenna stops. All commands are spoken, plus as your antenna turns you hear a 400Hz tone going in one direction and a 80Hz tone in the other, giving you positive verification of movement. This unit, when combined with the HAM IV, T2X or HDR-300 gives you the best buy anywhere at any price...

Package Special

PSE-2 + HAM IV $608.95
PSE-2 + T2X 655.00
PSE-4 + HDR-300 784.00

Controllers also available for other rotors.
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents
*For PSE-3A, 3. 4 add $24.50 for 12 amp power pack
RIT for the KWM2

Tired of playing leapfrog when working stations on CW that have rigs like yours, but lack any clarifier provision in the receive mode? And are you tired of working in nets where 20 percent of the operators aren’t exactly on frequency, and you have to keep leaving the NCS (Net Control Station) frequency in order to read them clearly?

Well, I was — so I decided to add a clarifier module to my KWM2A (fig. 1).

Most of the necessary parts, with the exception of a varactor diode, are probably already in your junk box; the diodes are quite plentiful and reasonably priced.

design approach

No kinks were found in this unit; it works like a charm, providing about 2 kHz or better frequency swing on receive.

You can make the swing as much as you desire by using different types of varactor diodes or by varying the size of C7 (see fig. 1), which is effectively in series with the varactor diode. The diode I used has a capacitance variation of 4.5 to 22 pF when the bias is varied from 0 to 10 volts. Many varactor sizes are available from 5 to 10 pF up to hundreds of pF in value. Choose whatever you need; any of those in the parts list should suffice.

For the Collins modification I decided the best place for the power supply section was in the external power supply speaker unit. I had never used the built-in speaker, so I just removed it and used the space to house a board with the voltage doubler circuit shown, using the 6.3 VAC filament supply as a source.

I found one lead in the power cable from the AC power supply to the KWM2 that terminated in an unused pin (power supply end). This is pin 6, which actually has switched 110 VAC coming from the transceiver end. I disconnected the 110 VAC from this lead and used it to carry the 15 VDC from the AC power supply into the transceiver. I also disconnected this lead from the T/R relay, K4, in the KWM2, in which it formerly appeared on relay contact No. 13, and ran it via shielded wire up through a hole in the chassis near the VFO unit. This becomes the 15 VDC supply to power the RIT board and regulator circuit. This leaves a relay arm and two contacts (No. 12 and 11) unused in T/R relay K4. I put the arm (No. 12) to use as a disable circuit so that during transmit the clarifier is automatically out of the circuit, regardless of whether it is left switched on from the front panel switch or not. When receiving, this relay arm furnishes a ground and in turn activates the RIT control relay. When transmitting, however, this arm closes to contact No. 13; this prevents the confusion that would result from transmitting with the clarifier inadvertently left on and thereby operating on an undesired frequency. I made the entire regulator and RIT circuitry on one small perforated hole board and mounted it on the two screws on the back of the Collins PTO. This puts it as close to the VFO tube (6AU6) as possible and permits running a short lead from the varactor diode blocking capacitor, C7, to the cathode lead of the 6AU6 VFO tube. It isn’t necessary to enter the PTO box at all. Just wrap a small solid wire a turn or two around the cathode pin of the 6AU6 tube and solder it. Be careful; too much heat for too long a time will cause the glass on the tube to crack. Be sure the potentiometers used are the linear taper type in order to obtain a smooth frequency swing from stop to stop; one is used for adjusting the transmit frequency and should be set somewhere near mid-range. The other potentiometer is switched in only when the RIT switch is on. This potentiometer has a shaft brought out to the front panel right over the top of the PTO chassis. This is your receiving RIT control. If you’re squeamish about drilling holes in the front panel, knocking out the “Collins” name decal will leave a hole in the

Notes:

- The value of C7 will depend on how much frequency swing one desires for the RIT function.
- The larger amount gives about 1.5 kHz spread. The smaller amount up to 0.3 kHz spread. I used a 152236 (Japanese part number), but any varicap that will give a swing from about 10 to 30 pF will work. Others that would be satisfactory are the 1N950 and 1N955.

item	**description**
C1,C2 | 500 microfarad 25 volts
C3,C4 | 100 microfarad, 25 volts
C5,C6 | 0.01 microfarad disc ceramic
C7 | 40 to 80 picofarad NPO
CR1,CR2 | 1 amp 50 volt diodes
CR3 | varicap diode 152236
K1 | 5DPT small 12 volt relay (low current type)
K2 | contacts on relay K4 inside KWM2
Lamp | small 12 volt low current pilot lamp
R1,R2 | 2.5K linear potentiometer
R3 | 10K 1/2 watt
RFC | any small RF choke or ferrite bead
SW | SPST mini toggle switch
U1 | 3-terminal 12 volt regulator
RF TRANSISTORS

FRESH STOCK - NOT SURPLUS TESTED — FULLY GUARANTEED

2-30MHz 12V (+*28V)

P/N Rating Ea Match Pr

MRF406 20W $14.50 $32.00
MRF412 80W 18.00 40.00
MRF425A 80W 18.00 40.00
MRF425 100W 25.00 54.00
MRF425C 110W 27.00 58.00
MRF426 150W 38.00 80.00
MRF426A 150W 38.00 80.00
MRF426A 17.00 40.00
MRF432 13W 14.50 32.00
MRF450A 150W 22.00 46.00
MRF450A 25W 12.00 27.00
MRF449 30W 12.00 27.00
MRF450A 30W 11.00 25.00
MRF455 30W 12.00 27.00
MRF455A 60W 12.00 27.00
MRF455A 60W 12.00 27.00
MRF460 60W 16.00 35.00
MRF460A 60W 16.00 35.00
MRF465 60W 12.00 27.00
MRF465A 60W 12.00 27.00
MRF475 12W 3.00 9.00
MRF476 2W 2.50 9.00
MRF477 40W 13.00 29.00
MRF479 15W 10.00 23.00
MRF485* 15W 6.00 15.00
MRF492 90W 18.00 39.00
SR2072 75W 15.00 33.00
CD2545 50W 24.00 55.00

Selected High Gain Matched Quad Available

VHF TRANSISTORS

Type Rating Ea Match Pr

MRF406 10W $10.00 2.00
MRF412 12W 12.00 2.00
MRF424 40W 13.50 32.00
MRF425 3.5W 10.00
MRF423 25W 15.00 39.00
MRF427 1W 2.50 9.00
MRF428 30W 12.00 27.00
MRF450 60W 12.00 27.00
MRF460 60W 16.50 36.00
MRF465 60W 12.00 27.00
MRF465A 60W 12.00 27.00
MRF475 60W 18.00 40.00
MRF460 60W 16.50 36.00
MRF465 60W 12.00 27.00
MRF465A 60W 12.00 27.00
MRF476 3W 2.50 9.00
MRF465 60W 12.00 27.00
MRF477 40W 13.00 29.00
MRF479 15W 10.00 23.00
MRF485* 15W 6.00 15.00
MRF492 90W 18.00 39.00
SR2072 75W 15.00 33.00
CD2545 50W 24.00 55.00

Technical Assistance & cross-reference information on CD, PT, RF, SRF, SD P/Ns
Call Engineering Dept. 619-744-0726

RF Parts Catalog Available O.E.M. & Quantity Discounts

Minimum Order $20 Add $3.50 Shipping
WE SHIP SAME DAY C.O.D./VISA/MC

ORDERS ONLY: 800-854-1927

This modification can be used in most transceivers that do not have RIT, such as the Drake TR4, Heath SB104, etc., by connecting a lead from the varactor blocking capacitor C7 to the proper point in your VFO tuned circuit. This additional capacitance helps tune the VFO. This in turn will require you to estimate the amount of capacitance your varactor diode will need in order to cause your VFO frequency to swing the desired number of kHz.

After adding this modification to the KWM2, your VFO (Collins PTO) will read a little off frequency one way or the other. Just take a turn or two on the coil slug, which is on top of the PTO box and just to the right of the 6AU6 VFO tube. This adjustment corrects the readout for all bands. The amount you have to adjust this slug is small and will depend somewhat on the particular varactor diode you select.

Joe Fenn, KH6JF

QRP wattmeter

Prowling around radio swap meets or surplus stores, one sometimes finds a Weston Thermo Galvanometer. Because no one seems to know how they can be used, they just stay in the junk pile.

A 0-100 mA RF current galvameter makes an excellent direct-reading 0-5 watt power meter that can be used with QRP rigs. The internal resistance is 5.2 ohms for 100 mA full scale reading.

Using three 150-ohm 2-watt resistors in parallel, and putting the galvanometer in the leg of one of them makes an excellent wattmeter (fig. 1) with an accuracy of 2 percent up to 65 MHz.

Ed Marriner, W6XM
DUAL FLOPPY DISC DRIVES

BRAND NEW, dual floppy disc drives made for Digital Equipment Corp. (DEC model no. RX 180 AB). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, 5¼” mini-floppy disc drives brand new in the case with their own regulated, switching power supply, cooling fan & on/off switch. Each unit also comes with a line cord & documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, III, & the Color Computer, and other Shugart compatible interfaces. Naturally you supply the cables and disc controller card to suit your particular system. The RX 180 AB runs off of 115/230 VAC 50/60 Hz. w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy!! Shpg. wt. 20 lb. Stock no. RX 180 AB $250.00

HIGH SPEED KSR PRINTER TERMINAL

World famous, high speed G. E. Termiten 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous data comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 BPS, 80 columns on pin feed paper, and less weight & size than an ASR 35 teletype with far less racket. They are virtually electronically foolproof as every pc board is Pico fuse protected. Should your machine not work, just check the on board fuses & 9 out of 10 times that is where the problem lies. Schematics are provided w/ each machine sold. Current price of this machine new is over $2000.00! Our meager price for this fantastic printer is only 10% of this: $200.00 each!!! Visually inspected prior to shipment to insure completeness. Shpd. freight collect. $200.00

5 MEGABYTE SEAGATE ST 506 5¼” MICROWINCHESTER HARD DISC DRIVES

The Seagate Technology ST 506 MicroWinchester hard disc drives are identical in size and mounting configuration to the industry standard 5¼” mini-floppy disc drives. These drives utilize 2 5¼” fixed platters as storage media. Each surface employs 1 read/write head to service 153 tracks. The storage capacity is 5 megabytes formatted! The voltage requirements are only 5vdc 700ma & 12vdc 1.6 amps. hardly more than a regular mini-floppy drive. The drives we have are in beautiful condition and look to be unused. Each one comes with factory literature which includes the pinouts. The ST 506’s will run with computer systems from Kaypro, IBM, Xerox, and other Shugart compatible interfaces when used with the proper controller card (not provided). Only 10 pieces in stock, so order early.

Seagate ST 506 Shpg. wt. 9 lb. $300.00 2/$575.00

NEW IBM SELECTRIC BASED TYPEWRITER PRINTERS

These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the selectric mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard 115 vac, 5 vdc @ 100 ma, & 24 vdc @ 4 amps. All are new in factory boxes, but may require adjustments. We provide literature and schematics with 1 ribbon & cleaning tools. With the addition of our Centronics to Selectric I/O adapter, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE 1000A $375.00 shpg wt. approx. 80 lb. shpd. by truck collect. Centronics to Selectric adapter. Fully tested & operational $245.00 Shpd. UPS 15 lb.

BA 279 BATTERIES

Unused surplus from Uncle Sam. Output is 135v, 67½ w, 6v, & 1½v. Socket is made to fit plug from PRC 8,9, & 10. May fit other rigs as well. Current list price is $42.25. Our price is only $15.00 Shpg. wt. 9 lb.

Surplus Electronic Material Send for our free 72 page catalogue jam packed with goodies.

Phone Orders accepted on MC, VISA, or AMEX No COD’s. Tel. 1-617-595-2275

More Details? CHECK — OFF Page 132
THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M, 2M, 220</td>
<td>$680</td>
<td>$880</td>
</tr>
<tr>
<td>440</td>
<td>$780</td>
<td>$980</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.

Also available for remote site linking, crossband, and remote base.

FEATURES:

- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV on VHF, 0.3 uV on UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ±12 KHz. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVR for 2M or 220 MHz. 0.15 uV sens.; 8 pole xtal filter & ceramic filter in H, helical resonator front end for exceptional selectivity, more than -100 dB at ±12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xmt's. Xtal oven avail. Kit only $138.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $138.
- R76 FM CRVR for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $118. Also avail w/4 pole filter, only $98ikit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only $98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $98.

TRANSMITTERS

- T51 VHF FM EXCITER for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous, up to 2½ W intermittent. $68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $78.
- VHF & UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $78.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.

ACCESSORIES

- COR KITS With Audio mixer, speaker amplifier, tail & time out timers. Kit only $38.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only $68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones®, e.g., repeater and autopatch. Use with main or aux. receiver or with Auto-patch. Only $90
- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
 - HRF-144 for 143-150 MHz $38
 - HRF-220 for 213-233 MHz $38
 - HRF-432 for 420-450 MHz $48

Tell 'em you saw it in HAM RADIO!
Hamtronics Breaks the Price Barrier!

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 28 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted
- Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less.

Antenna Input Range Output
VHF MODELS 28-32 144-148
50-52 29-30
Kit with Case $49 28-30 50-52
Less Case $39 28-30 50-54
Wired $69 28-30 50-54
144-148 28-30

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

VHF & UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $78.

LEGEND

VHF = 27 to 300 MHz.
UHF = 300 to 650 MHz.
FM-5 PC Board Kit - ONLY $178 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2M or 220 MHz.

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $60.

REPEAT OF A SELLOUT!

While supply lasts, get $50 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only $178

Hamtronics, Inc.
65-E MOUL RD. • HILTON NY 14468
Phone: 716-392-9430
Hamtronics ® is a registered trademark
Palomar Engineers P-308 preamplifier

Not everyone needs a preamplifier these days because most of the newest generation of receivers and transceivers have more than sufficient sensitivity. Some, like the ICOM 751, Yaesu FT-102 and TenTec Corsair, to name a few, have switchable RF amplifiers already installed. However, for older solid-state units and for tube-type radios, preamplifiers can make the difference between being able to hear the weak station or missing it altogether.

Another situation that will often require the use of preamplifiers is when you’re using specially designed receiving antennas such as beverages and loops. These antennas aren’t “gain” devices and are, in fact, 10-20 dB down from full-sized dipoles or other types of antennas. They’re used because they’re less susceptible to noise and because they exhibit directivity.

In my installation, the beverages are several hundred feet away from the station, so in addition to the low signal input, I also have several hundred feet of coax to get a signal through. As you VHF/UFHers know, this is a major problem. On 160 meters, coax loss isn’t nearly as bad as at VHF/UFH, but a dB here, a dB there, all add up.

I looked through my 160-meter file to see what I had in the way of information on preamps and found several interesting circuits and specs for commercially manufactured gear. I realized I wouldn’t have enough time to collect all the parts I needed to complete the project before the upcoming 160 meter CO CW test. So I decided that this would be a good opportunity to try out a commercially manufactured preamp, and I gave Palomar Engineers a call.

Within a few days I had a P-308 preamplifier in hand to try out.

the unit

The P-308 is one of four dual-gate FET amplifiers available from Palomar. The P-308 is designed to be used with receivers and runs off 110 VAC (the P-305 is the same unit, but it runs off a 9 volt battery). The P-310X and P-312X are designed to be used with transceivers and have a built-in carrier operated relay (COR) that automatically switch the preamp circuit in and out.

All Palomar preamps use a tuned RF circuit and cover 1.8-54 MHz in four continuous bands: 1.8-4 MHz, 4-10 MHz, 10-23 MHz, and 23-54 MHz. The preamp uses a dual-gate FET and has a variable gain of up to 20 dB controlled by a front-panel control. The unit also has a 20 dB pad included for situations in which you might have too much gain in crowded band conditions, where cross mod or overloading the receiver could be a problem.

One tricky feature about the unit is making absolutely sure that it is properly tuned when in use. Failure to properly tune the preamp can result in images or spurs being amplified at the same time as the weak signal. The RF tuner stage uses a tapped coil that is switch-selectable by band and a 150 pF variable capacitor. Careful adjustment of this capacitor will eliminate this potential problem.

use

I’ve used this unit during the last two 160-meter contests and found it to be quite helpful in bringing those very weak DX signals up to an audible level. (That doesn’t mean I actually worked them — but at least I could hear them!) During the contests, careful adjustment of the capacitor and gain reduction reduced or eliminated cross mod and overloading, due to the extremely crowded band conditions. (Last night I tried to get through the “wall of 4s” to work YV BAA. The YV was uncopyable without the preamp being on.)

I haven’t spent much time with the P-308 on 15 or 10 meters. I would expect that it would be useful at that end of the ham spectrum, because that’s the region where many ham receivers and transceivers need extra “oomph.”

Conclusion

If you’re looking to pep up an old tube-type receiver, one of the Palomar preamplifiers may be just right for you. The attractive silver-gray front panel and black chassis will fit quite nicely into any ham shack. The unit weighs approximately 3 pounds and measures 8 x 5 x 3 inches.

For the name of your local dealer, contact Palomar Engineers, Box 465, Escondido, California 92025.

Circle #315 on Reader Service Card. N1ACH

“The Complete DX’er” by Bob Locher, W9KNI

Over the years there have been some pretty good DX books, and a few that have been simply terrible. What there hasn’t been is a really great DX book — until now, that is. Drawing on the skill and knowledge that earned him one of the first CW DXCCs in 1975 and has kept him at the top of that mode’s DXCC Honor Roll ever since, W9KNI has created a first-class treatise on the art of DXing that’s every bit as entertaining as it is educational.

Of course this should be no surprise to readers of Ham Radio or Ham Radio Horizons. Bob’s very popular articles on DXing and DX adventures in the two magazines were avidly read by all kinds of people, even non-hams, because they were well written and entertaining. Hams read them eagerly because each one of those articles included priceless “tricks of the trade” known but to consummate DXers. No one, whether newly-licensed Novice or grizzled DXCC Honor Roll member will fail to find something useful in Bob’s latest dissertation on DXing. (Even though Bob’s credentials are for CW, what he has to say applies equally well to other modes as well. That’s why this is a unique DX book.)

The book is divided into two sections, the first primarily directed to the beginning DXer and the second for the advanced (200+ countries) DX chaser. The experienced DXer might be tempted to skim or even skip the first. Don’t. It’s not only very entertaining reading, but every page is laced with those little morsels of DX wisdom that always spice Bob’s writing. Oh yes, there are chapters on the basics of listening, operating, and equipment, but even in those mundane subjects Bob has sewn some pearls that almost any DXer, regardless of experience, will find profitable.

The fun continues in the second half. After a very practical discussion of the art of OSL-chasing, Bob launches into “Graduate Hunting” and later on “Hunting — Again.” Here the reader learns that a first class station and operating skills are not always sufficient in themselves. The top DXer must also bring to the chase the deductive ability of a Sherlock Holmes, the results of which Bob demonstrates with some fascinating anecdotes. Finally, after a much-needed chapter on the ethics of DXing and discussions on various special tools for the DXer, Bob sends the reader back to the shack to resume the search for that ever-elusive new one. He’ll find him, too, now that he’s been helped along by one of the true masters of the art.

Those who buy this book looking for beam heading charts, prefix lists and postal rates are going to be disappointed — there are no charts or tables. What it does contain is the wit and wisdom of DX chasing, written by an acknowledged expert. This book could be the best investment a DXer could make; I can think of no higher recommendation!

The Complete DX’er is available from Ham Radio’s Bookstore, Greenville, NH 03048, for $10.95 plus $2.50 shipping and handling.

W9JUV

N1ACH

“The Complete DX’er” by Bob Locher, W9KNI

Over the years there have been some pretty good DX books, and a few that have been simply terrible. What there hasn’t been is a really great DX book — until now, that is. Drawing on the skill and knowledge that earned him one of the first CW DXCCs in 1975 and has kept him at the top of that mode’s DXCC Honor Roll ever since, W9KNI has created a first-class treatise on the art of DXing that’s every bit as entertaining as it is educational.

Of course this should be no surprise to readers of Ham Radio or Ham Radio Horizons. Bob’s very popular articles on DXing and DX adventures in the two magazines were avidly read by all kinds of people, even non-hams, because they were well written and entertaining. Hams read them eagerly because each one of those articles included priceless “tricks of the trade” known but to consummate DXers. No one, whether newly-licensed Novice or grizzled DXCC Honor Roll member will fail to find something useful in Bob’s latest dissertation on DXing. (Even though Bob’s credentials are for CW, what he has to say applies equally well to other modes as well. That’s why this is a unique DX book.)

The book is divided into two sections, the first primarily directed to the beginning DXer and the second for the advanced (200+ countries) DX chaser. The experienced DXer might be tempted to skim or even skip the first. Don’t. It’s not only very entertaining reading, but every page is laced with those little morsels of DX wisdom that always spice Bob’s writing. Oh yes, there are chapters on the basics of listening, operating, and equipment, but even in those mundane subjects Bob has sewn some pearls that almost any DXer, regardless of experience, will find profitable.

The fun continues in the second half. After a very practical discussion of the art of OSL-chasing, Bob launches into “Graduate Hunting” and later on “Hunting — Again.” Here the reader learns that a first class station and operating skills are not always sufficient in themselves. The top DXer must also bring to the chase the deductive ability of a Sherlock Holmes, the results of which Bob demonstrates with some fascinating anecdotes. Finally, after a much-needed chapter on the ethics of DXing and discussions on various special tools for the DXer, Bob sends the reader back to the shack to resume the search for that ever-elusive new one. He’ll find him, too, now that he’s been helped along by one of the true masters of the art.

Those who buy this book looking for beam heading charts, prefix lists and postal rates are going to be disappointed — there are no charts or tables. What it does contain is the wit and wisdom of DX chasing, written by an acknowledged expert. This book could be the best investment a DXer could make; I can think of no higher recommendation!

The Complete DX’er is available from Ham Radio’s Bookstore, Greenville, NH 03048, for $10.95 plus $2.50 shipping and handling.

W9JUV
ICOM mobile transceiver

ICOM has announced the release of the new IC-37A 220 MHz ultra-compact mobile transceiver. The IC-37A features: 25 watts/5 watts low; and measures only 5-1/2" wide x 1-1/2" high x 7" deep, offering the same compact design as the IC-27A. 32 PL frequencies are standard and built-in; nine memories with offset and PL storage are included. Dial steps are in increments of 10 kHz/5 kHz. Scanning features include memory scan, band scan, and priority scan. Dual VFOs and HM-23 Touchtone® and scanning mic are standard. A speech synthesizer option is available.

For additional information, contact ICOM America, Inc., 2112 116th Avenue, N.E., Bellevue, Washington 98004.

Circle 317 on Reader Service Card.

H/T amplifiers

Mirage Communications has added two new low-profile H/T amplifiers to its expanding line of American made communications equipment.

The B23A (144-148 MHz) and C22A (220-225 MHz) incorporate features that are typically available only on larger, more expensive amplifiers. Both feature a built-in receive preamp that delivers a 1.5-2.0 dB noise figure, all-mode operation (CW, FM, or SSB), and automatic antenna changeover.

Their RF power input range is from 100 mW to 5 watts; high RF power output (B23A, 2W in, 20W out/C22A, 2W in, 30W out) makes them ideal for use with virtually all low-power transmitters. Both feature a built-in receive preamp that delivers a 1.5-2.0 dB noise figure, all-mode operation (CW, FM, or SSB), and automatic antenna changeover. Their RF power input range is from 100 mW to 5 watts; high RF power output (B23A, 2W in, 20W out/C22A, 2W in, 30W out) makes them ideal for use with virtually all low-power transmitters.

They're each backed by a five-year factory warranty (1 year on RF power transistors) and a worldwide sales network, and priced at $89.95.

For more information, contact Mirage Communications, P.O. Box 1000, Morgan Hill, California 95037.

Circle 313 on Reader Service Card.

Fox Tango Filters

Your rig — old or new — is no better than its i.f. filter.

TOP PERFORMANCE

Fox Tango Filters contain eight specially treated discrete quartz crystals, unlike miniature ceramic or monolithic corner-cutting designs. Give your set new life with a Fox Tango implant or transplant. It's a lot cheaper than buying a new rig with features you don't need and probably won't use!

VARIETY

Fox Tango stocks superior CW, SSB, and AM filters for practically all Yaesu, Kenwood, and Heath models. Also for Drake R-4C, 7-line; Collins 7553-B/C, and some ICOM's. More than 80% of our filters sell for $60. Most are designed for easy drop-in installation. For the others, complete instructions and all needed parts are included in the price.

INFORMATION

Tell us the make and model of your set. You'll get the complete information on FT filters to fill optional spots, replace your present tired or inferior stock units or supplement them with Fox Tango Filter-Cascading kits. If you phone you can order at the same time; we accept MasterCard, VISA, and American Express. If you send in, 30 cent handling charge per filter.

Circle 1317 on Reader Service Card.

ALL BAND TRAP ANTENNAS!

Priced Assembled

ALL MADE IN THE USA

For all Makes Amateur Transceivers - Guaranteed For 5000 Watts SSB Input For Novice And All Class Amateurs!

COMPLETE with 90 ft. RG58U-52 abn, feedline, and PL-259 connector, insulators, 30 ft. 300 ft. test leads and supports, center connector with built in lightning arrester and static discharge. Low SWR over all bands. Tumblers usually NOT Included. Can be used as inverted V', elemental or vertical, on building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED FOR ALL BANDS! NO BALUNS NEEDED!

40-40-20-15-10-20-10-10 meter - 27 ft. - Model FT-4080BUC...$99.95
40-20-15-10-20-10 meter - 22 ft. - Model FT-4070BUC...$99.95
20-10 meter - 22 ft. - Model FT-4060BUC...$97.95

SEND FULL PRICE FOR POSTPAID INSURED DEL. IN USA (Canada is $5.00 extra for postage - clerical - customs etc.) or order using VISA - MASTERCARD - AMEX EXPRESS. Give number and ex. date. Ph: 1-306-236-5337 9AM - 9PM west days. We ship in 2-3 days. ALL PRICES MAY INCREASE SAVES! ORDER NOW!

ALL ANTENNAS GUARANTEED FOR 1 YEAR. 10 day money back trial if returned in new condition. Made in USA. FREE INFO. AVAILABLE ONLY FROM WESTERN ELECTRONICS

ROHN

"FOLD-OVER" TOWERS

EASE OF INSTALLATION

ROHN "Fold-Over" Towers are quickly and easily installed. The "Fold-Over" is safe and easy to service.

ADAPTABILITY

ROHN has several sizes to fit your applications or you can purchase the "Fold-Over" components to convert your ROHN tower into a "Fold-Over".

HOT DIP GALVANIZED

All ROHN towers are hot dip galvanized after fabrication.

REPUTATION

ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.

QUALITY STEEL PRODUCTS BY ROHN

Box 2000-Peoria, Illinois 61615 USA

July 1984 115
NEW products

robot color SSTV converter

Robot Research has introduced a new black and white compatible single-frame slow scan TV color converter. Designated Model No. 450C, it incorporates the latest in microcircuit technology and represents a significant breakthrough in the application of microprocessor-based systems to Amateur SSTV.

Model 450C features touch-sensitive front panel switches for full station control and several automatic functions for easy use. Fine tuning, speed switching and color or black and white detection are automatically accomplished without operator intervention.

Three selectable 4-bit memory planes combine to form 4,096 color combinations in a 128 pixel by 120 line full screen display. Eight different black and white and color transmission formats are available with automatic selection on receive. The unit accepts color or black and white composite video from standard TV cameras and has RGB, composite or RF modulated video output.

A unique feature of the 450C is the 8-bit parallel I/O ports for computer interface and hard copy picture printing. This analog provides total access to each individual pixel by a host computer for image processing, transformation, storage and recall, and graphics. In addition, the unit has provisions to connect to the new robot model 800C super terminal for color graphics, SSTV graphics composition, graphics overlays, and special test patterns.

For further information, contact Robot Research, Inc. 7591 Convoy Court, San Diego, California 92111.

Circle #12 on Reader Service Card.

Model 230 decoder

SYT Corporation has announced the Model 230 DTMF mobile decoder for autopatch and selective call systems.

The 230 DTMF decoder is housed in a compact metal housing for RFI protection. It features a high-speed precision decoder with wrong-digit lockout to prevent falsing. It is field programmable for DTMF code lengths from 1 to 8 digits. Call alert outputs are provided for horn, external speaker control, and internal cell lamp. An optional internal alert buzzer is available.

For more information, contact Larry Francis at SYT Corporation, 1220 Barranca, El Paso, Texas 79935.

Circle #31 on Reader Service Card.

Transi-Trap™

The new Alpha Delta Model ACTT AC Transi-Trap™ is a direct plug-in-the-wall AC surge protector providing two 120 VAC sockets, status light, circuit breaker, and a three-stage automatic surge protection circuit. The Model ACTT provides both transverse and common mode protection with a hot-to-neutral, neutral-to-ground and hot-to-ground 6000 volt, 2000 ampere surge discharge self-restoring high speed circuit. The configuration of the Model ACTT also protects equipment plugged into any other common branch AC wall outlet down line from the ACTT. The unit is UL listed and is priced at $29.95.

For further information, contact North American Soar Corporation, 1126 Cornell Avenue, Cherry Hill, New Jersey 08002.

Circle #30 on Reader Service Card.

pen-type DMM

North American Soar Corporation has released the new Model 3100 Pen Type DMM, offering 25 percent greater range capability and a 3 1/2 digit LCD readout with annunciators that are said to be 50 percent larger than similar units presently available.

Model 3100 is fully autoranging and can measure DC voltages from 0.1 mV through 500 volts on five ranges, AC volts from 1 mV through 500 volts on four ranges and resistance from 0.1 ohm through 2 Megohms on six auto-ranges. This dynamic range capability is made possible by use of Soar's custom 80-pin flat pack chip. Use of this state-of-the-art circuit allows fast, stable readings to be obtained. The Model 3100 has an audible continuity check feature that indicates a circuit is continuously conductive by beeping; the beeper reaction time is 0.4 seconds or less. A "Data Hold" switch is provided for freezing a reading even though the test probe is removed from the test point.

The unit is supplied with two interchangeable test points, one uninsulated 1/2 inch and one 2 3/4 inch insulated extension tip, safety type ground probe with slip-on insulated alligator clip, and two batteries. The Model 3100 is priced at $49.99.

For further information, contact North American Soar Corporation, 1126 Cornell Avenue, Cherry Hill, New Jersey 08002.

Circle #31 on Reader Service Card.

VHF/UHF diplexer

If you operate VHF and UHF, you know that long coaxial cable runs will reduce your power to the antenna significantly. You also know that low-loss coaxial cable is quite expensive. So what do you do if you want to operate both VHF and UHF without using a lot of expensive coax to feed your antennas? Microwave Filter has come up with an answer: the Model 4525 diplexer.

But what's a diplexer? A diplexer either combines or splits RF signals; for example, you could use one diplexer in the shack to combine RF from your 144 MHz and your 420 MHz radios. These combinations or splits are limited to 250 MHz or less. Microwave Filter's Model 4525 diplexer has a bandwidth of 144 MHz and can be used for either VHF or UHF.<ref>

For further information, contact Alpha Delta Communications, P.O. Box 571, Centerville, Ohio 45459.

Circle #30 on Reader Service Card.

For further information, contact Sabadia Export Corporation, P.O. Box 1132, Yorba Linda, California 92687.

Circle #38 on Reader Service Card.
combined signals would then be fed through just one coaxial cable to the top of the tower, where a second diplexer would be located. This diplexer would again split the signals and route one to the 144 MHz antenna and the other to the 420 MHz antenna.

The Model 4525 diplexer, priced at $104.50, is designed for the 144 and 420 MHz bands. With insertion loss less than 0.4 dB, it's designed to handle up to 200 watts of RF.

For more information, contact Microwave Filter Company, 6743 Kinne Street, East Syracuse, New York 13057.

Circle 306 on Reader Service Card.

Design Kit™ Series

Communications Consulting Corp. has announced the availability of its General Purpose Design Kit™ series. The series currently consists of an RF design kit, communications design kit, and a PLL design kit.

Most software packages available for desktop computers are concentrated in the area of computer aided analysis. The important area of circuit synthesis is frequently overlooked. In introducing the Design Kit™ Series, Communications Consulting Corp. has made these very powerful tools available for the HP series 9845B/C, series 200 and series 500 (Model 9020). They all consist of a universal mathematical function plot, frequency selection for minimum IMD products in mixers, and relevant programs.

The RF Design Kit™ includes software for a universal mathematical function plot; frequency selection for minimum IMD products in mixers; optimization of noise figure, equalizers; and design of microwave striplines. The Communications Design Kit™ contains software for a universal mathematical function plot; frequency selection for minimum IMD products in mixers; digital filter design programs; complex impedance of electrical short antennas; antenna array pattern with all driven elements; and quarter and half wavelength UHF oscillators; and design of microwave striplines.

The PLL Design Kit™ includes software for a universal mathematical function plot; frequency selection for minimum IMD products in mixers; dual loop AGC with group delay correction; digital filter design program; complex impedance of electrical short antennas; antenna array pattern with all driven elements; and quarter and half wavelength UHF oscillators.

For further information, contact Communications Consulting Corp., 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458.

Circle 306 on Reader Service Card.

Design Kit™ is a registered trademark of Communications Consulting Corp.
computer-controlled scanner

Electra Company has announced that the Bearcat CP-2100, said to be the first scanner radio designed as a peripheral for today's popular personal computers, is now available in versions compatible with the IBM Personal Computer, Apple II, Apple IIe, Osborne and Commodore 64 personal computers.

The CP-2100 can monitor live police and fire calls, emergency and Amateur Radio transmissions, Coast Guard rescues, and aircraft communications.

Each of its 200 channels can be programmed to display the source and location of a transmission, 10-codes, phone numbers and more. Whenever a broadcast is monitored, the information programmed into the channel will automatically appear on the screen. For scanner enthusiasts, the Bearcat CP-2100 can eliminate pages of cumbersome frequency lists. In the newsroom, it can help news crews be dispatched to the scene of a story with less confusion.

Its 200-channel capacity is three times that of the most sophisticated programmable scanners.

too. No external power supply is required. Technician class hams will find the 7-21-50 to be well suited to 6 meter SSB and 40 and 15 meter CW.

The 7-21-50 comes complete with an internal AC/DC power supply.

For additional information, contact NCG, 1275 N. Grove Street, Anaheim, California 92806.

Circle 316 on Reader Service Card.

VIC-20 programs

Three new HAMWARE programs developed by John Vesty Company are said to extend the utility of VIC-20 computers to logging and OSO operations.

Ham List serves as a memory jogger during a QSO, quickly searching for a call and displaying data on file. The program provides for the convenient addition, revision, or deletion of entries, and a screen-review of the list.
Quick Log provides automatic logging of data and time, and search by call or QTH. The list can be printed, saved to tape, or screen-reviewed as desired. Time is displayed on the menu page.

QSO Manager combines a ten-minute identification timer and a 24-hour clock, with a screen-based notepad for use during a phone or CW QSO. The notepad incorporates a word-wrap routine to eliminate broken words at the end of a line. The timer can be set, reset, or cancelled at any time.

The three programs are available on tapes, and are designed for use with both unexpanded and expanded VIC-20 computers. The capacity of the logging programs ranges from 100 to 700 entries 'maximum, depending on the memory expansion used and the length of individual entries.

For further information, contact John Vesty Company, 415 Elm Street, Fayetteville, New York 13066.

Circle 1303 on Reader Service Card.

support system

“Lightfoot,” a new antenna support system that evenly distributes loads to rooftop structures, features a pedestal that holds a tower/ elevator suspended above the roof with three extended legs secured to the roof structure on mounting pads at the outer ends.

This design is said to reduce roof load by as much as 65 percent over conventional rooftop systems.

Once in place, an elevator track allows the array or rotator to be lowered to comfortable working height by one person in minutes. The height is 23 feet, pedestal radius is 13 feet. The aluminum unit weight is 640 pounds; the steel unit, 1400 pounds.

Designated RM-20, the system is available in either steel or aluminum. Additionally, the RM-20 is available in combination with antenna arrays and rotators, as well as a power winch system for raising and lowering.

For further information, contact Sabre Communications Corp., 117 Main Street, Sioux City, Iowa 51102.

Circle 1302 on Reader Service Card.
Clean up the radio/computer clutter.
For less than $250 you can make your investment in yourself pay off!

Chances are you have spent a couple thousand dollars on setting up a computer system that gets a lot of your work done. But sometimes it gets to be work to work at it.

I know that when I have to move two program manuals and a pencil holder to boot up the disk drive, it is work. When there is an unlabeled floppy (that I am going to identify some day) on top of the monitor and the business checkbook is on top of the printer... and I will remember (I hope) before the next "report" comes through...

I found the annoyance of my own "computer clutter" was even worse than the price for such good quality. The biggest and best surprise is the low, low price plus shipping charges if you return the workcenter within 30 days for any reason whatsoever. In addition, the product is warranted for any defects in materials or construction for a full year from date of purchase. This is a no-risk investment in your own productivity and work efficiency that will pay off for years to come—even if you do not yet have a microcomputer of your own.

- Take your choice for your own work center decor:
 Order 48-inch unit in walnut, #2KP-945, or in oak, #2KPO-947. Only $249.50 for each unit plus $20.00 shipping charge. Orders for two or more units at the same time, shipping charge applies to only the first unit ordered. Shipment made UPS, so we cannot ship to post office box. Illinois residents please add $15 per unit sales tax. Please allow 10 extra days for personal checks to clear. Sorry—at these special offer prices we cannot ship c.o.d. or bill direct.

CALL TOLL FREE TODAY WHILE SUPPLIES LAST: 1-800/323-8064.
In Illinois call 1-312/251-5699. Or mail check with order to:

Micro-Mart Distributors
Dept. HR • 1131 Central Street • Wilmette, IL 60091

120 July 1984
satellite antenna

Cushcraft has introduced a new Amateur satellite antenna system featuring two high gain circularly polarized Yagi antennas. The 70 cm, 16-element uplink and 2-meter, 20-element downlink antennas are fixed to a common mounting boom. The entire array is lightweight with reasonable dimensions for quick installation.

For more information, contact Cushcraft Corporation, P.O. Box 4680, Manchester, New Hampshire 03108.
Circle f301 on Reader Service Card.

HF antenna design program

HF Antenna Design is the latest offering in Cynwyn's line of software for Amateur Radio operators. The program makes the necessary calculations for building three popular types of antennas — dipole, Yagi, and quad — for frequencies of 18-30 MHz and displays them in an easy-to-read tabular format. The dimensions for the Yagi and quad are optimized for maximum gain.

HF Antenna Design required a TRS-80 Color Computer™ with 16K RAM and Extended Color Basic or MC-10 with 4K RAM. The program is available from Cynwyn — 4791 Broadway, Suite 2F, New York, New York 10034 — on cassette for $10 plus $2 shipping and handling.
Circle f305 on Reader Service Card.

repeater amplifier

Falcon Communications has announced its new Model 4114 2-meter repeater amplifier, a basic amplifier that supplies a full 100-Watt output when driven with 2 watts. Features include carrier operated relay or external keying; operation on 13.8 volts DC, from either a battery or power supply; regulated bias supply (adjustable for limited power output adjustment); and a thermostat designed to prevent any damage in the event of overheating. No damage results from high VSWR.

Other units in this series supply maximum power outputs of from 50 to 100 watts and accept drive levels up to 25 watts. A 220 MHz unit is also available.
For further information, contact Falcon Communications, P.O. Box 620625, Woodside, California 94062.

increased weather protection

The improved NMO series of antenna hardware from Larsen Electronics features an extra lip around the bottom of the coil, providing a place for an "O" ring. The ring surrounds the threads that tighten to the vehicle surface, eliminating the chance that water may be drawn through the threads, decreasing performance and corroding mounting hardware. This improvement is said to make a difference in areas where antennas are constantly exposed to heavy rain, and to offer additional protection under less severe conditions as well. All NMO-series VHF and UHF products now incorporate this change; LM and NLA series are also equipped with a neoprene gasket around mounting hardware for a weather-tight seal.

For details, contact Larsen Electronics, P.O. Box 1799, Vancouver, Washington 98668.
Circle f314 on Reader Service Card.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC1</td>
<td>$2.50</td>
</tr>
<tr>
<td>2SC1251</td>
<td>$5.25</td>
</tr>
<tr>
<td>2SC1062</td>
<td>$6.00</td>
</tr>
<tr>
<td>2SC1042</td>
<td>$7.20</td>
</tr>
<tr>
<td>2SC896</td>
<td>$8.00</td>
</tr>
<tr>
<td>2SC897</td>
<td>$8.00</td>
</tr>
<tr>
<td>2SC1760</td>
<td>$10.00</td>
</tr>
<tr>
<td>2SC703</td>
<td>$12.00</td>
</tr>
<tr>
<td>2SC668</td>
<td>$15.00</td>
</tr>
<tr>
<td>2SC567</td>
<td>$17.25</td>
</tr>
<tr>
<td>2SC592</td>
<td>$20.00</td>
</tr>
<tr>
<td>2SC593</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC703</td>
<td>$2.50</td>
</tr>
<tr>
<td>2SC668</td>
<td>$5.25</td>
</tr>
<tr>
<td>2SC567</td>
<td>$8.00</td>
</tr>
<tr>
<td>2SC592</td>
<td>$12.00</td>
</tr>
<tr>
<td>2SC593</td>
<td>$15.00</td>
</tr>
<tr>
<td>2SC1760</td>
<td>$20.00</td>
</tr>
<tr>
<td>2SC703</td>
<td>$25.00</td>
</tr>
<tr>
<td>2SC668</td>
<td>$30.00</td>
</tr>
<tr>
<td>2SC567</td>
<td>$40.00</td>
</tr>
<tr>
<td>2SC592</td>
<td>$50.00</td>
</tr>
<tr>
<td>2SC593</td>
<td>$60.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC1</td>
<td>$2.50</td>
</tr>
<tr>
<td>2SC1251</td>
<td>$5.25</td>
</tr>
<tr>
<td>2SC1062</td>
<td>$6.00</td>
</tr>
<tr>
<td>2SC1042</td>
<td>$7.20</td>
</tr>
<tr>
<td>2SC896</td>
<td>$8.00</td>
</tr>
<tr>
<td>2SC897</td>
<td>$8.00</td>
</tr>
<tr>
<td>2SC1760</td>
<td>$10.00</td>
</tr>
<tr>
<td>2SC703</td>
<td>$12.00</td>
</tr>
<tr>
<td>2SC668</td>
<td>$15.00</td>
</tr>
<tr>
<td>2SC567</td>
<td>$17.25</td>
</tr>
<tr>
<td>2SC592</td>
<td>$20.00</td>
</tr>
<tr>
<td>2SC593</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SC703</td>
<td>$2.50</td>
</tr>
<tr>
<td>2SC668</td>
<td>$5.25</td>
</tr>
<tr>
<td>2SC567</td>
<td>$8.00</td>
</tr>
<tr>
<td>2SC592</td>
<td>$12.00</td>
</tr>
<tr>
<td>2SC593</td>
<td>$15.00</td>
</tr>
<tr>
<td>2SC1760</td>
<td>$20.00</td>
</tr>
<tr>
<td>2SC703</td>
<td>$25.00</td>
</tr>
<tr>
<td>2SC668</td>
<td>$30.00</td>
</tr>
<tr>
<td>2SC567</td>
<td>$40.00</td>
</tr>
<tr>
<td>2SC592</td>
<td>$50.00</td>
</tr>
<tr>
<td>2SC593</td>
<td>$60.00</td>
</tr>
</tbody>
</table>

Toll Free Number
800-528-0180
(For orders only)

For information call: (602) 242-3037

*All parts may be new or surplus, and parts may be
substituted with comparable parts
if we are out of stock of an item.*
<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs, TUNNEL DIODES, ETC.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs, TUNNEL DIODES, ETC.</td>
<td></td>
</tr>
</tbody>
</table>

H. F. TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs, TUNNEL DIODES, ETC.</td>
<td></td>
</tr>
</tbody>
</table>

DIODES (HERCULES, MELMAYRE, P.A. CHROMIUM, TUNNEL, VACUUM, GEN.)

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs, TUNNEL DIODES, ETC.</td>
<td></td>
</tr>
</tbody>
</table>

For information call: (602) 242-3037

MH2 electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
COAXIAL RELAY SWITCHES SPDT

Electronic Specialty Co./Raven Electronics
Part # 25N28
Part # SU-01
26Vdc Type N Connector, DC to 1 GHz.

Amphenol
Part # 316-10102-8
115Vac Type BNC DC to 3 GHz.
$29.99

FXR
Part # 300-11182
120Vac Type BNC DC to 4 GHz.
FSN 5985-543-1225
$39.99

FXR
Part # 300-11173
120Vac Type BNC Same
FSN 5985-543-1850
$39.99

BNC to Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.

- $7.99 or 2 For $13.99 or 10 For $50.00
- $8.99 or 2 For $15.99 or 10 For $60.00

SOLID STATE RELAYS

P&B Model ECT1D872
5vdc turn on
120vac contact at 7amps or 20amps on a 10"x 10" x .124 aluminum. Heatsink with silicon grease.
PRICE EACH $5.00

Digisig, Inc. Model ECS-215
5vdc turn on
240vac contact 14amps or 50amps on a 10"x 10" x .124 aluminum. Heatsink with silicon grease.
PRICE EACH $7.50

Grigsby/Barton Model GB7400
5vdc turn on
240vac contact at 15amps or 40amps on a 10"x 10" x .124 aluminum. Heatsink with silicon grease.
PRICE EACH $7.50

NOTE: ***Items may be substituted with other brands or equivalent model numbers.***

For information call: (602) 242-3037

MHZ Electronics

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Tell 'em you saw it in HAM RADIO!
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39/7289</td>
<td>$34.00</td>
<td>1182/4600A</td>
<td>$500.00</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>2E26</td>
<td>7.95</td>
<td>4600A</td>
<td>500.00</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>310.00</td>
<td>7854</td>
<td>130.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>102.00</td>
<td>4657</td>
<td>84.00</td>
<td>7855KAL</td>
<td>125.00</td>
</tr>
<tr>
<td>3-1000Z/8164</td>
<td>400.00</td>
<td>4662</td>
<td>100.00</td>
<td>7994</td>
<td>14.95</td>
</tr>
<tr>
<td>3B26/866A</td>
<td>9.50</td>
<td>4665</td>
<td>500.00</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CX400U/8961</td>
<td>255.00</td>
<td>4667</td>
<td>42.00</td>
<td>8106</td>
<td>5.00</td>
</tr>
<tr>
<td>3CX1000A/8263</td>
<td>526.00</td>
<td>4675</td>
<td>250.00</td>
<td>8117A</td>
<td>225.00</td>
</tr>
<tr>
<td>3CX3000F/8239</td>
<td>567.00</td>
<td>5721</td>
<td>125.00</td>
<td>8121</td>
<td>110.00</td>
</tr>
<tr>
<td>3CX3000OH/7</td>
<td>1700.00</td>
<td>5768</td>
<td>119.00</td>
<td>8122</td>
<td>110.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>473.00</td>
<td>5819</td>
<td>232.50</td>
<td>8134</td>
<td>470.00</td>
</tr>
<tr>
<td>3X3000F1</td>
<td>567.00</td>
<td>5836</td>
<td>140.00</td>
<td>8156</td>
<td>12.00</td>
</tr>
<tr>
<td>4-65A/8165</td>
<td>69.00</td>
<td>5837</td>
<td>232.50</td>
<td>8233</td>
<td>60.00</td>
</tr>
<tr>
<td>4-125A/4021</td>
<td>79.00</td>
<td>5861</td>
<td>140.00</td>
<td>8236</td>
<td>35.00</td>
</tr>
<tr>
<td>4-250A/5D22</td>
<td>98.00</td>
<td>5867A</td>
<td>185.00</td>
<td>8295/PL72</td>
<td>500.00</td>
</tr>
<tr>
<td>4-400A/843B</td>
<td>98.00</td>
<td>5868/A992</td>
<td>270.00</td>
<td>8458</td>
<td>35.00</td>
</tr>
<tr>
<td>4-400B/7527</td>
<td>110.00</td>
<td>5876A</td>
<td>42.00</td>
<td>8462</td>
<td>130.00</td>
</tr>
<tr>
<td>4-400C/6775</td>
<td>110.00</td>
<td>5881/6L6</td>
<td>40.00</td>
<td>8505A</td>
<td>95.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>444.00</td>
<td>5939</td>
<td>60.00</td>
<td>8533W</td>
<td>136.00</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>54.00</td>
<td>5949/A</td>
<td>54.00</td>
<td>8560/A</td>
<td>75.00</td>
</tr>
<tr>
<td>4CX250FG/8621</td>
<td>75.00</td>
<td>5949B/8737</td>
<td>54.00</td>
<td>8560AS</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250K/8245</td>
<td>125.00</td>
<td>5946</td>
<td>395.00</td>
<td>8608</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>90.00</td>
<td>6083/A2990</td>
<td>95.00</td>
<td>8624</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>170.00</td>
<td>6146/6146A</td>
<td>8.50</td>
<td>8637</td>
<td>70.00</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>110.00</td>
<td>6146B/6296</td>
<td>10.50</td>
<td>8643</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350F/8322</td>
<td>115.00</td>
<td>6146W/7212</td>
<td>17.95</td>
<td>8647</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX350FJ/8904</td>
<td>140.00</td>
<td>6156</td>
<td>110.00</td>
<td>8683</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX600J/8909</td>
<td>835.00</td>
<td>6159</td>
<td>13.85</td>
<td>8877</td>
<td>465.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>242.50</td>
<td>6159B</td>
<td>23.50</td>
<td>8903</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>485.00</td>
<td>6161</td>
<td>325.00</td>
<td>8950</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1500B/8660</td>
<td>555.00</td>
<td>6280</td>
<td>42.50</td>
<td>8930</td>
<td>137.00</td>
</tr>
<tr>
<td>4CX5000A/8170</td>
<td>1100.00</td>
<td>6291</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX1000D/8717</td>
<td>1255.00</td>
<td>6293</td>
<td>24.00</td>
<td>6L6C</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX1500D/8261</td>
<td>1500.00</td>
<td>6326</td>
<td>P.O.R.</td>
<td>6CA7/EL34</td>
<td>5.38</td>
</tr>
<tr>
<td>4CW50F/8</td>
<td>710.00</td>
<td>6360/A</td>
<td>5.75</td>
<td>6L6</td>
<td>3.50</td>
</tr>
<tr>
<td>4D32</td>
<td>240.00</td>
<td>6399</td>
<td>540.00</td>
<td>6D18</td>
<td>2.50</td>
</tr>
<tr>
<td>4E27A/5-1258</td>
<td>345.00</td>
<td>6550A</td>
<td>10.00</td>
<td>6D5</td>
<td>5.85</td>
</tr>
<tr>
<td>4PR60A</td>
<td>240.00</td>
<td>6898</td>
<td>160.00</td>
<td>6D5A</td>
<td>6.20</td>
</tr>
<tr>
<td>4PR65A/8187</td>
<td>175.00</td>
<td>6907</td>
<td>79.00</td>
<td>6GK6</td>
<td>6.00</td>
</tr>
<tr>
<td>4PR1000A/8189</td>
<td>590.00</td>
<td>6927/6DJB</td>
<td>5.00</td>
<td>6H5B</td>
<td>6.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>22.00</td>
<td>6H5F</td>
<td>8.73</td>
</tr>
<tr>
<td>4X150D/7609</td>
<td>95.00</td>
<td>7094</td>
<td>250.00</td>
<td>6J56A</td>
<td>6.28</td>
</tr>
<tr>
<td>4X250F</td>
<td>45.00</td>
<td>7117</td>
<td>35.50</td>
<td>6JM6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X250F</td>
<td>45.00</td>
<td>7203</td>
<td>P.O.R.</td>
<td>6JN6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X600A</td>
<td>412.00</td>
<td>7211</td>
<td>100.00</td>
<td>6J56C</td>
<td>7.25</td>
</tr>
<tr>
<td>5CX1500A</td>
<td>660.00</td>
<td>7213</td>
<td>300.00*</td>
<td>6K6</td>
<td>5.05</td>
</tr>
<tr>
<td>KT88</td>
<td>27.50</td>
<td>7214</td>
<td>300.00*</td>
<td>6KD6</td>
<td>8.25</td>
</tr>
<tr>
<td>416B</td>
<td>45.00</td>
<td>7271</td>
<td>135.00</td>
<td>6LF6</td>
<td>7.00</td>
</tr>
<tr>
<td>416C</td>
<td>62.50</td>
<td>7289/2C39</td>
<td>34.00</td>
<td>6LQ6 G.E.</td>
<td>7.00</td>
</tr>
<tr>
<td>5725/T160L</td>
<td>49.95</td>
<td>7325</td>
<td>P.O.R.</td>
<td>6L06/6M6 Sylvania</td>
<td>9.00</td>
</tr>
<tr>
<td>592/3-200A3</td>
<td>211.00</td>
<td>7360</td>
<td>13.50</td>
<td>6ME6</td>
<td>8.90</td>
</tr>
<tr>
<td>807</td>
<td>8.50</td>
<td>7377</td>
<td>85.00</td>
<td>12AT7</td>
<td>3.50</td>
</tr>
<tr>
<td>811A</td>
<td>15.00</td>
<td>7408</td>
<td>2.50</td>
<td>12AX7</td>
<td>3.00</td>
</tr>
<tr>
<td>812A</td>
<td>29.00</td>
<td>7609</td>
<td>95.00</td>
<td>12BY7</td>
<td>5.00</td>
</tr>
<tr>
<td>813</td>
<td>50.00</td>
<td>7735</td>
<td>36.00</td>
<td>12JB6A</td>
<td>6.50</td>
</tr>
</tbody>
</table>

NOTE * = USED TUBE
NOTE P.O.R. = PRICE ON REQUEST

"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

For information call: (602) 242-3037

MHz electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
HEWLETT PACKARD SIGNAL GENERATORS

60A
50kHz to 65MHz in 6 bands • IS. Output level adjustable 0.1uV to 3V into 50 ohms built-in crystal calibrator, 400-1000MHz
$650.00

60B
Same as above but has frequency control feature to allow operation with HP 8700A synchronizer.
$1100.00

60C
100kHz to 40MHz • 0.1uV-1V into 50 ohms, AM, CW, or pulse modulation, calibrated attenuator.
$500.00

60D
100kHz to 40MHz, 0.1uV-1V into 50 ohms, 0.5% accuracy, built-in crystal calibrator. AM, CW or pulse output.
$575.00

60E
Improved version of popular 600C, up to 1V output, improved stability, low residual FM.
$1450.00

60F
10kHz to 65MHz in 5 bands • IS. Output frequency accuracy with built-in crystal calibrator can be used with HP 8700A synchronizer. Output continuously adjustable from 0.1uV to 1V into 50 ohms.
$1100.00

61A
450-1230MHz • 0.1uV-1V into 50ohms calibrated output.
$750.00

61A
900-2200MHz with many features including calibrated output and all modulation characteristics.
$500.00

61A/6
Direct reading and direct control from 1.8 to 4.2GHz. This HP 611A features +1.5dB output frequency accuracy from 1.8GHz to 4.2GHz. The output is directly calibrated in microvolts and dBm with continuous monitoring. The frequency dial accuracy is 0.05% and stability varies from 0.005% to 0.01% over entire output band. 50 ohm impedance unit can be used with 50KHz to 5GHz, variable pulse width, high duty cycle variable pulse repetition rate, and variable level output modulation inputs.
$75/5.0

61B
Same as above but later model.
$600.00

61B
5 to 26GHz range, with calibrated output and selection of Pulse-PM or square wave modulation.
$600.00

61E
Same as above but later model.
$2200.00

62A
7 to 12GHz range, with calibrated output and selection of Pulse-PM or square wave modulation.
$750.00

62B
Same as above but later model.
$2200.00

62A
10 to 15GHz, 10mW output power with calibrated output and Pulse-square wave or FM modulation.
$4200.00

8700A
Synchronizer used with 6068/608F. The synchronizer is a phase-lock frequency stabilizer which provides exceptional frequency stability of ±10 MHz in the 608B signal generator. Phase locking eliminates microphony and drift, resulting in excellent frequency stability. The 8700A includes: a vernier which can tune the reference oscillator over a range of ±0.025%, permitting frequency stability ±2 parts in 10 to the seventh. Provides a very stable signal that satisfies many critical applications.

EMC-10
ELECTROMAGNETIC MITIGATION FILTER, Low frequency preamplifier covers 60Hz to 500Hz frequency range, extends to 500kHz in broadband mode.
$2500.00

NF-105F
Miniature Device Field Intensity Meter, field: NF-105F, NF-105/F, NF-105/F, NF-105/F, NF-105/F, NF-105/F, NF-105/F, NF-105/F.
$2100.00

ALL EQUIPMENT CARRY A 30 DAY GUARANTEE.
**EQUIPMENT IS NOT CALIBRATED.

TERMS: DOMESTIC: Prepaid COD or Credit Card, FOREIGN: Prepaid only. U.S. Funds, Money Order, or Cashier's Check. We are sorry but we cannot accept personal checks for COD's. G.O.D. is shipped by an on-time and rushed the air

CREDIT CARDS: We accept major credit cards: MASTERCARD, VISA, and AMERICAN EXPRESS.

DATA SHEETS: When we have data sheets in stock on devices with the order.

DEFERRAL MATERIALS: All claims for defective materials must be made within 30 DAYS after receipt of the parcel. All claims must include the defective examine for testing purposes a copy of invoice received and a return authorization number which must be obtained from us prior to the return of defective materials. Claims for material damaged in transit must be made with the carrier. The purchaser is responsible for all freight charges. Due to the nature of these units we are unable to replace or issue credit on items which have been damaged or have been damaged in transit. Returns must be returned to us in the original packaging and handling charges incurred.

DELIVERY: Orders are usually shipped the same day they are placed in the next business day, unless we are out of stock on an item. The customer will be notified by phone on or before the second day. Our normal shipping method is UPS or U.S. Air Mail and the weight varies from 1.0 to 150 lbs per unit. Some larger items are shipped VIA AIR MAIL.

FOREIGN ORDERS: All foreign orders must be prepaid with a Cashier's Check, or Money Order made out in U.S. FUNDS ONLY. We are sorry but COD is not available to foreign countries and letters of credit are unacceptable as a form of payment. Further information is available on request.

HOURS: Monday thru Friday 8:30 a.m. to 5:00 p.m. Saturdays 8:30 a.m. to 4:00 p.m.

INSURANCE: Please include 26% of the total cost of the will be charged to your card. All insured packages are shipped Ups. If you wish to have it shipped through the post office there is a $2.00 fee which is in addition to the shipping handling in the price.

OPEN ACCOUNTS: We regret that we do not issue open accounts.

ORDER FORMS: New order forms are included with each order for your convenience, all orders are available from our office.

SEARCH: Minimum shipping and handling in the U.S., Canada, and Mexico is $3.00 for ground shipment, all other countries is $5.00. All prices are available at the time of your order. All foreign orders include 25% of the ordered amount for shipping and handling. COD is shipped AIR ONLY.

PREPAID ORDERS: Orders must be accompanied by a check.

PRICES: Prices are subject to change without notice.

PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check.

RESTOCK CHARGES: If parts are returned to MHz ELECTRONICS, INC. due to customer error, the customer will be held responsible for all lost labor and will be charged a 15% RESTOCK CHARGE with the remainder in CREDIT ONLY. The following must accompany any return: A copy of our invoice, return authorization number which must be obtained prior to shipping the merchandise. Returns must be made within 30 DAYS of receipt of parcel. Return authorization numbers can be obtained by calling (602) 242-6916 or notifying us by post card. Return authorizations will not be given out on our 800 number.

SALES TAX: Arizona residents must add 6% sales tax, unless a signed Arizona resale tax card is currently on file with us. All orders placed by persons outside of Arizona, but delivered to persons in Arizona are subject to the 6% sales tax.

SHORING OR DAMAGE: All claims for shortages or damage must be made within 5 DAYS of receipt of parcel. Claims must include a copy of our invoice, along with a return authorization number which can be obtained by contacting us at (602) 242-8816 or sending a post card. Authorizations cannot be on our 800 number. All items must be properly packed. If items are not properly packed, we will not accept the claims and the merchandise will be returned to us. Customers who do not notify us of this within this time period will be held responsible for the entire order as we will consider the order complete.

OUR 800 NUMBER IS STRICTLY FOR ORDERS ONLY (800) 528-0180. INFORMATION CALLS ARE TAKEN ON (602) 242-8816 or (602) 242-9307.

Toll Free Number
800-528-0180 (For orders only)

For information call: (602) 242-3037

PRICES SUBJECT TO CHANGE WITHOUT NOTICE.
Get Your Best Deal...
Then CALL US... TOLL FREE!

1-800-238-6168
(In Tennessee, call 901-683-9125)

KENWOOD O ICOM

AUTHORIZED DEALER FOR: Kenwood, ICOM, Drake, Ten-Tec, Santec, MFJ, Astron, AEAI, Mirage, B&W, Hustler, Cushcraft, Larsen, Hy-Gain, and others... PLUS CURRENT USED GEAR

When you call, talk to a Qualified Ham Operator! Ask for MARSHALL, KU4O, or BILL, W4TNP

Memphis Amateur Electronics, Inc.
1465 Wells Station Rd., Memphis, TN 38108

LATE NEWS...

Get the news
As it happens

Westlink Report is your source for information on all the late breaking stories in the exciting world of Amateur Radio. Westlink Report summarizes the news that will impact the future of Amateur Radio. Westlink digs into its stories and gives you the latest from Newton, summaries the actions of the FCC, reports on the important international news, keeps you fully informed about space and AMSAT news and much, much more.

Subscribe to Westlink Report today. Be informed. Don't be surprised by the latest developments in this fast paced hobby.

26 issues just $22.50 per year U.S., Canada, Mexico.
$42.50 per year Air Mail.

Westlink Report
11119 Allegheny Street
Sun Valley, CA 91352

More Details? CHECK—OFF Page 132
<table>
<thead>
<tr>
<th>State</th>
<th>Company Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>C & A ROBERTS, INC.</td>
<td>1851 HAWTHORN BLVD. TORRANCE, CA 90504</td>
<td>213-370-7451, 24 Hour: 800-421-2258, Not the Biggest, But the Best — Since 1962.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FONTANA ELECTRONICS</td>
<td>8628 SIERRA AVENUE FONTANA, CA 92335</td>
<td>714-822-7710, 714-822-7725, The Largest Electronics Dealer in San Bernardino County.</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114</td>
<td>203-527-1881, Call today, Friendly one-stop shopping at prices you can afford.</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>DELAWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD NEW CASTLE, DE 19720</td>
<td>302-326-7728, 800-441-7008, Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 DREW STREET CLEARWATER, FL 33575</td>
<td>813-461-4267, Clearwater Branch, West Coast’s only full service Amateur Radio Store, Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>TEL-COM, INC.</td>
<td>675 GREAT ROAD, RTE. 119 LITTLETON, MA 01460</td>
<td>617-486-3040, 617-486-3400 (this is new), The Ham Store of New England, You Can Rely On.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE LAS VEGAS, NV 89106</td>
<td>702-647-3114, Dale Porray “Squeak,” AD7K, Outside Nev: 1 (800) 634-6227, Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLCARI’S ELECTRONICS CENTER</td>
<td>61 LOWELL ROAD HUDSON, NH 03051</td>
<td>603-883-5005, Southern New Hampshire’s only Ham Store, Call today for quotes.</td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEEAMOKU STREET HONOLULU, HI 96814</td>
<td>(808) 949-5564, Serving Hawaii & Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERIKKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE. CHICAGO, IL 60630</td>
<td>312-631-5181, 9:30-8:00 Mon, Tu, Wed & Fri; 9:00-3:00 Sat.</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>THE HAM SHACK</td>
<td>808 NORTH MAIN STREET EVANSVILLE, IN 47710</td>
<td>812-422-0231, Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUN’S ELECTRONICS</td>
<td>460 E. PLUMB LANE — 107 RENO, NV 89502</td>
<td>702-827-5732, Outside Nev: 1 (800) 648-3962, Icom — Yaesu Dealer</td>
<td></td>
</tr>
</tbody>
</table>

** Dealers:** YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
nateur Radio Dealer

New Jersey

RADIOS UNLIMITED
P.O. BOX 347
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-526-0903
New Jersey's only factory authorized
Yaesu and Icom distributor. New and
used equipment. Full service shop.

ROUTE ELECTRONICS 17
777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8717
Drake, Cubic, DenTron, Hy-Gain,
Cushcraft, Hustler, Larsen, MFJ,
Butternut, Fluke & Beckman
Instruments, etc.

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying
all of your Amateur needs. Featuring
ICOM "The World System." Western
New York's finest Amateur dealer.

Virginia

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30
Sat 9-3

Wisconsin

VHF SHOP
BOX 349 RD 4
MOUNTAINTOP, PA 18707
717-868-6565
Lunar, Microwave Modules, ARCO,
Astron, KLM, Tama, Tonna-F9FT,
UHF Units/Parabolic, Santec, Tokyo
Hy-Power, Dentron, Mirage,
Amphenol, Belden

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, Beckman,
Larsen, Hustler, Astron, Belden,
Antenna Specialists, W2AU/W2VS,
AEA, B&W, Amphenol, Saxton, J.W.
Miller/Daiwa, Vibroplex.

THE VHF SHOP
412 maintain, PA 18707
717-868-6565
Lunar, Microwave Modules, ARCO,
Astron, KLM, Tama, Tonna-F9FT,
UHF Units/Parabolic, Santec, Tokyo
Hy-Power, Dentron, Mirage,
Amphenol, Belden

Jay NEW YORK (800) 321-3594

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-886-4267
Featuring Kenwood, Yaesu, Icom,
and other fine gear. Factory authorized
sales and service. Shortwave
specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

Say you saw it in ham radio!
RATES
Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS
Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY
No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE
15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

OSLS & RUBBER STAMPS
- Quality! Card Samples and Stamp info — 50¢ — Ebeneezer Graphics, Sx Box, 70, Westerly, Rhode Island, 02891.

4D2 Transmitting tubes new at $30.00 each. Limited supply. Collection of 30 years worth only one each. Send list of needs for availability. Trade commercial equipment for ham equipment for mass transit machinists from retired machinists, WSG7Q, P.O. Box 13151, El Paso, Texas 79913 (915) 581-2017.

WANTED: Old RCA, Western Electric, tubes, speakers, anodes, (713) 728-4343, Corb. 11 122 Walters, Houston, Texas 77006.

NEED: Printed schematics for HC-110. I'll copy and return or send you copy good condition. State price. 52A2A.

TRADE-PAK OSL KIT—Converts post cards, photos to OSLS. Stamp brings circular. Samco, Box 203-c, Wynantskill, New York 12198.

WANTED: Operational Heath HW-8 transceiver. Dean Olson, Box 161, Elder City, SD 57719

Flea Market

"HAMS FOR CHRIST"—Reach other hams with a gospel tract sure to please. Clyde Standfield, WA8EED, 1570 N. Albright, Utah 84006.

TENNATEST — Antenna nose bridge — out performs others, accurate, costs less, satisfaction guaranteed, $41.00. Send stamp for details. W8URR, 1052 Wildwood, Oxnard, CA 93036.

WANTED: Early Hallicrafter "Skyriders" and "Super Skyriders" with silver panels, also "Skydrier Commercial", early transmitters such as H-17, H-2, H-8, and other Hallicrafter gear, anodes, transformers, meters, Chuck Duchar, W5EGO, The Hallicrafter Collector, 6500 Russell Drive, Austin, Texas 78754.

HAVE A M-CAPABILITY? I'm a QRP general, and I enjoy QRPing, F0JNP, Box 8385, Weathervane, MA 01283.

QUALITY COMPONENTS Transcon #13100 UHF relay dual 28VDC cites mislabeled $80.00. FMR UHF relay 26VDC coil hermetic mislabeled new $45.00. Collins filter F455AF15 $65.00. HD receivers below $200 dual 28VDC mislabeled new $89.00. Power solenoids 3PST 130A-50 new $40.00 new $35.00 28VDC coils. Carborundum #8710 ohm 50 watt oven resistance $9.75. Price prepaid insured W6FR (714) 871-3607.

NEW: 1.2 GHz antennas from NCG. Base or repeater use (includes mounting hardware) $1260 - 17 step, 1/2 wave collinear. 10.2 dB gain, VSWR less than 1.5-1, 100 watts, 50 ohm coax. $145.00. 14127 - 17 step, 1/2 wave collinear, 10.8 dB gain VSWR less than 1.7-1, 20 watts, type N connector $54.50. For more information contact: NCG, 1275 North Grove St., Anaheim, CA 92806.

ATTENTION KENWOOD and Icom owners. Informative separate newsletters. 5th year of publication. Back issues available. Add more to your collection by $30. 830, and 530. Magico FM clipper processor for TS-120, 130, 430, 520 and 820. Call for prices. IC-730 FM kit $79.95. TS-830S FM kit $94.95. Send SASE (738) for free brochure to International Radio, Inc. 364 Kilpatrick Ave., Port St. Lucie, L. 34352 (305) 330-5545. Master/Visa accepted.

LIKE TO BUY, sell or trade? For the best deals, subscribe to the Ham Boneyard. A complete stockyard of ham radio and/or other electronic equipment. For used Speed Radar, for sale $15.00. Mobile antenna $127/50 - 1 step, 1/2 wave collinear, 5.85 dB gain, VSWR less than 1.7-1, 20 watts, $5.00. Mobile antenna $15.00. For more information contact: NCG, 1275 North Grove St., Anaheim, CA 92806.

MARCONI WIRELESS TELEGRAPH CO. OF AMERICA. We have a small quantity of ORIGINAL STOCK CERTIFICATES, signed by the Vice-President and Treasurer of the Company, sealed, issued, and cancelled. MARCONI first proved that messages actually could be sent by wireless, and sparked the imagination of those who would become the first Ham RADIO OPERAT. ORS. These certificates, dated in the 1910's, are colorful with an exceptionally nice VIGNETTE of Miss Liberty sitting between two masts of the West Hemispheres, with transmission towers on each side. Each comes beautifully framed and matted, including glass, with certificate, ready to add to the Ham Boneyard collection. MARCONI TRADE CERTIFICATES cost much less than limited edition art works, repre. senting the beginning of our great hobby, may increase in value (Scroobally, the collection of old stock and bond certificates, is in its infancy and becoming more popular), represents the beginning of your great hobby. MARCONI was formed with the express purpose of buying out the Marconi Wireless Telegraph Co. of America), makes a unique addition to any home, and makes a great addition to any personal collection. Price complete and delivered (we pay shipping charges) $49.95 (Pa residents must add $3 for sales tax). Send for our price list or price list, enclosed. Send for our price list or price list, enclosed. AATM MARCONI CERTIFICATES are forthcoming with a commitment to cover all sales with a very large company guarantee. Price complete and delivered (we pay shipping charges) $49.95 (Pa residents must add $3 for sales tax). Send for our price list or price list, enclosed. AATM MARCONI CERTIFICATES are forthcoming with a commitment to cover all sales with a very large company guarantee. Price complete and delivered (we pay shipping charges) $49.95 (Pa residents must add $3 for sales tax). Send for our price list or price list, enclosed. AATM MARCONI CERTIFICATES are forthcoming with a commitment to cover all sales with a very large company guarantee. Price complete and delivered (we pay shipping charges) $49.95 (Pa residents must add $3 for sales tax). Send for our price list or price list, enclosed. AATM MARCONI CERTIFICATES are forthcoming with a commitment to cover all sales with a very large company guarantee.
ILLINOIS: The Quad-C. ARC will sponsor the 27th annual “Breakfast Club” Hamfest, July 21 and 22, Terry Park, Palmyra. All other groups are invited. Please give prior notice to Hamfests Committee Chairperson, Mr. John Doe, 123 Main Street, Palmyra. Bring a basket lunch. Sandwiches and soft drinks available on grounds. Games, contests, golfing and fishing. Bring your swap table. Dealer registration Friday, 7 AM to 9 PM. Talk in on 3073 kHz. Write Hamfests, c/o Quad-C. ARC, 602-D East Walnut, Chatham, IL 62629.

SOUTH CAROLINA: The Charleston Amateur Radio Society will host the annual Charleston Hamfest, July 14 and 15, Omar Shrine Temple. Commercial tables $400. Over 2, 200 one each additional). Flea market tables $5.00 each. Talk in on 145.975 For information reservations: Hamfests Committee, P.O. Box 70341, Charleston Heights, SC 29405.

TENNESSEE: The Blossom Amateur Radio Television Society again presents the BRAT's Hamfest and Computerfest, Sunday, July 29, Howard County Fairgrounds, Route 144 at Route 32, West Springfield, indoor tables with AVC $20.00 each. Information: Bob Johnson, K4LW, 8003 South Road and US 25, Georgetown. Tech forums, awards, exhibits, AC facilities. Free outside flea market space. Tickets $5.00 advance. Registration and tickets available at W4YR, 1901 Jefferson Highway, Knoxville, TN 37919. Talk in on 147.00 (+ 600) or 52 simplex.

WEST VIRGINIA: Wheeling Hamfest, Sunday, July 22, Wheeling Flea market, auction, dealers welcome. Under roof tables available. Admission $3.00 For information: reservations: TISAC, Box 240, R.D. 1, Ada, OH 43911 (614) 546-3930.

INDIANA: The combined LaPorte-Michigan City Amateur Radio Clubs will sponsor their Summer Hamfest. Sunday, July 15, 8 AM to 10 PM. Indoor tables by registration. For more information, W8JPW, Box 30, LaPorte, IN 46350.

KENTUCKY: The Central Kentucky ARRL Hamfest, sponsored by the Bluegrass Amateur Radio Society, Sunday, August 2, 6 AM to 5 PM. Scott County High School, Long Sault Road and US 25, Georgetown. Tech forums, awards, exhibits, AC facilities. Free outside flea market space. Tickets $5.00 advance. Registration and tickets available at W4YR, 1901 Jefferson Highway, Knoxville, TN 37919. Talk in on 147.00 (+ 600) or 52 simplex.

NORTH CAROLINA: The WCAR's annual Hamfest, Sunday, July 28 and 29, Firemen's Training Center, Ashevile. Admission $4.00 Pre-registration $3.50 before July 15. Talk in 311, 161.7; 145.50, and 52.035. Flea market, admission $5.00. Talk in on 147.00 (+ 600) or 52 simplex. Plenty of parking and refreshments. Talk in on W8JPW, Box 1485, Ashevile, NC 28802.

PENNSYLVANIA: The Mid Atlantic ARRL announces its annual Hamfest, Sunday, August 12, 9 AM to 9 PM, rain or shine. Route 309 Drive-In Theater, Montgomery. Admission $3.00 plus $2.00 additional for each tailgate space. Bring your own meat and utensils and Sunday morning breakfast. Talk in on 52 and 3494. For more information SASE to Shirley Smith, K7COA, 1822 - 14th Avenue South, Great Falls, MT 59402.

MARYLAND: The Baltimore Radio Amateur Television Society again presents the BRAT's Hamfest and Computerfest, Sunday, July 29, Howard County Fairgrounds, Route 144 at Route 32, West Springfield, indoor tables with AVC $20.00 each. Information: Bob Johnson, K4LW, 8003 South Road and US 25, Georgetown. Tech forums, awards, exhibits, AC facilities. Free outside flea market space. Tickets $5.00 advance. Registration and tickets available at W4YR, 1901 Jefferson Highway, Knoxville, TN 37919. Talk in on 147.00 (+ 600) or 52 simplex.
check-off

for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio √ 234

ADVERTISERS

Madison

Electronics Supply

1508 McKinney

Houston, Texas 77040

Call for Quotes

713-658-0268

KDK FM2033 $289.45
SANTEC ST142 299.95
ST440up, (limited) 250.00
Accessories Available
TOKO HiPower 289.95
HC2000 Tuner 129.95
HC400L 89.95

TOKO HiPower Ampls LESS 15%

WELZ Meters 59.95

TRIPLET Model 50 VOM 59.00
FLUXE Model 77 115.00

Digital Multimeter 115.00

Crest MAXON 49.9kHz 39.95

FOXTANGO LESS 10%

MIRAGE AMPS 129.95

15430S RING US FOR A PRICE

GT757GX Mobile Deluxe 749.95
GE 51468 9.65

MER VIBOVAL antennas 7 104

BOOKS—AMECO BOOKS & CODETAPES
ARRL, GILF, SAM, TAB, RIDER, UNIVERSAL, WRTTH, RADIO PUB.

ALPHA DEC MACC-8

Console 73.00
BENCHER ST, BY/1 42.95
STV, BY/2 54.95

VIBRUPLEX, AMECO

Preamps LESS 10%

EMAC-3-500Z 99.95

RS-50, 50, 50, 50, 4 sections 1 sec, 26AC-2 or

2ASC-3 269.00

Belden 9913 Solid Center Coax

Foil - Braid Shield 456.75

8214 RG-8 Foam 436.00

102, 8214 - ends installed 45.00

BEARCAT DX1000 499.95

TRANSMITTING TUBES

CALL SPECIAL

65-287 CALLRAD SWR & POWER METER $29.95

Modular output and reflected power at the same time using 4 sec, 26AC-2 or 2ASC-3. Record insertion loss. May work in 1/2, 2/4, 2/8, 2/16 sec. 20/500 MHz, good through 1/2 GHz. Run time 1/2 sec.

Ameco Code Records 2.50
Ameco General Book (Cross P) 3.25
AEA Keysers STOCK

FoxTango 10% OFF

1-800-234-3057

NIGHT NUMBERS: 5-10 p.m. CST
Mon., Wed., Fri., 1-800-234-1064
INSIDE TEXAS 1-713-334-2235

NAME

CALL

ADDRESS

STREET

CITY

STATE ZIP

July 1984

Use please before August 31, 1984

Please use The Evening Newspaper. 132

HARO RADIO MAGAZINE — check off

Greenville, N. C. 27858-0408

ARL 101
Alden 203
All Comm 102
All Com 103
Alpha Delta 94, 307
Aluma 105
Amateur Wholesale 106, 107
ARRL 108
Ardudon 109
Analog Tech 110
AUD 111
Applied Inv 112
AVT Mag 113
Bass Antenna 114
B & B W 115
B & G Micro 116, 117
Bell Hill 116
Buckmaster 119
Buttress 120
C & B Roberts 120
Ceco 121
Certified Conn 122
Chappell 122
Comm Concepts 123
CED 124
Certif. Consulting 126
Comm. Spec 126
Comp. Tracker 126
Connect Systems 127
Cushcraft 128, 301
Dynex 305
Dabbin 129
Drake 130
Dyronics Systems 131
EEB 132
EEF 133
Eng. Cons 133
Faith 134
Fair Radio 135
Falcom 136
Favo 136
Fink 136
FLUXE 136
FOX Radio 136
G & H Master Tapes 138
HRB 138
Hamtronics, N. Y .. 139
Hamtronics, PA 141
Handi-Tek 142
Harry Radio 143
ICOM 144
IBM 145
Info. Unit 146
Jenspe 147
Kanseis 148
Kaul Transistor 149
Kenwood 151, 314
Larson 151
Lawrence 152
MFI 153
MM 154
*Please contact the advertiser directly.

Limit 15 inquiries per request.

July 1984

Please use before August 31, 1984

Send off and mail to

HAM RADIO MAGAZINE — check off

Greenville, N. C. 27858-0408

NAME

CALL

ADDRESS

STREET

CITY

STATE ZIP

* Please contact the advertiser directly.

Limit 15 inquiries per request.

July 1984
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in. Limit 15 inquiries per request.

NAME
ADDRESS
CITY
STATE
ZIP

Please use before August 31, 1984

July 1984
FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement.

A small investment for a high-paying career in electronics.

$19.95 ppd.
Satisfaction Guaranteed

SPI-RO DISTRIBUTING
P.O. Box 1528
Hendersonville, N. C. 28793
We now accept MC and VISA
Give card #, exp. date, and signature

DRAKE R-4/T-4X
OWNERS AVOID OBSOLESCENCE

PLUG-IN SOLID STATE TUBES!
Get state-of-the-art performance.
Most types available
INSTALL KITS TO UPGRADE PERFORMANCE!
- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier

TUBES $23 PPD KITS $25 PPD
OVERSEAS AIR $7
SARTORI ASSOCIATES, W5DA
BOX 832085
RICHARDSON, TX 75083
214-494-3093

SYNTHESIZED SIGNAL GENERATOR

MADE IN USA
MODEL SG-100E
$399.95

- Covers 100 MHz to 185 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/– 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spur and noise at least 60 dB below carrier
- Output adjustable from 500 mV at 50 Ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery
- $399.95 plus shipping
- Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details
- Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (212) 468-2720

EGBERT [+ RTTY - CW - XFER
for the Apple II, II+, IIe
Transmit & Receive with Software Only
NO TU REQUIRED

The Egbert [+ has RTTY/CW/XFER on the same disk! and features: split screen operation, turn on/off buffer, selectable mark, space, shift and speed, change mode and speeds from menu, mailbox with selective call and save to disk. Provisions for up to 9 canned messages on each data disk, and much more.

FOR MORE INFO, ORDER, CALL OR WRITE:

W.H. NAIL COMPANY
275 Lodgeview Drive
Orovile, CA 95965
(916) 589-2043

Egbert $69.95 includes program, backup & documentation. USA Residents add $2.50 for shipping. All others add $6.00. CA Res. add 6% sales tax.

INCLUD CALL SIGN WITH ORDER!

R-T HV Mark II

NEW, EASY-TO-USE DESIGN
GET TRANSI-TRAP™ LIGHTNING PROTECTION

Protect your valuable equipment from antenna voltage surges caused by nearby lightning, high wind and static build-up. Keeps harmful ARC energy off equipment by safely shutting it to ground. Use tested, field proven, and replaceable ARC-PLUG-IN gas filled ceramic cartridge.

Model LT 200 watts @ 500 $19.95
Model HT 2kw @ 500 $24.95
Ruggedized Super Low Loss (1dB) @ 500 MHz
Model LT 200 watts @ 500 $29.95
Model HY 2kw @ 500 $32.95

See your local dealer or order direct. Please include 50 for shipping and handling. MC and VISA accepted.

ALPHA DELTA
COMMUNICATIONS
P.O. Box 571, Centerville, Ohio 45459
(513) 435-4772

COMPUTER®
TRADE
R MAGAZINE

Baker's Dozen Special! $12.00 for 13 Issues
Regular Subscription $15.00 Year
Foreign Subscription: $55.00 (air mail)
$35.00 (surface)

Articles on MOST Home Computers, HAM Radio, hardware & software reviews, programs, computer languages and construction, plus much more!!!

Classified Ads for Computer & HAM Equipment
FREE CLASSIFIED ADS
for subscribers
Excellent Display and Classified Ad Rates
Full National Coverage

CHET LAMBERT, W4WDR
1704 Sam Drive, Birmingham, AL 35226
(205) 854-0271
Sample Copy $2.50

July 1984
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ±.1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021

SS-32 $29.95, TS-32 $59.95
Tired of paying too much for your Ham gear? The new generation of Yaesu high-technology equipment is designed with you in mind! New advances in computer-aided design and robotics manufacture help you save money while being assured of the best... from Yaesu!!

FT-757GX Line
Affordable Excellence

GENERAL COVERAGE
Continuous coverage on RX from 500 kHz to 29.99 MHz in 10 Hz steps, with easy modification for MARS TX outside the Ham bands. WARC bands factory installed.

ACCESSORIES FACTORY PACKED
Electronic keyer, 600 Hz CW filter, speech processor, AM and FM units, all-mode squelch, Woodpecker noise blanker, and receiver preamp... all included in the base price, not expensive options!

FULL PERFORMANCE
Full CW QSK, full 100 watts output at 100% duty cycle (SSB/CW/FM), and full microprocessor control with dual VFOs, eight memories with bilateral memory/VFO swap, and personal computer (CAT System) compatibility make the FT-757GX a winner, at home or away.

FT-757GX ACCESSORIES

FT-203R Line
The Compact Companion

ULTRA-COMPACT DESIGN
Chip components installed by Yaesu's assembly robots significantly reduce circuit board size, resulting in a rugged, reliable transceiver with a weight of only 450g, including the standard FNB-3 battery.

HANDS-FREE VOX
A VOX (voice-actuated transmit) unit is built-in, allowing hands-free operation when the optional VH-2 Headset is used. Ideal for tower work, public safety, or other applications where manual PTT control is inadvisable. Level control provided.

FULL FLEXIBILITY
Built-in S-meter, thumbwheel frequency programming, HI/LOW power switch, busy channel and transmit indicators are standard. DTMF Encoder versions, as well as 220 MHz and 440 MHz lines, are coming soon.

FT-203R ACCESSORIES
FT-7 CTCSS Module, FBA-5 AA Cell Case, VH-2 Headset, MH-12 Speaker/Mic, FNB-4 High-Capacity Battery, PA-3 Mobile Adapter, MM-21 Mobile Hanger, NC-15 Quick Charger/AC Adapter, FT-3 DTMF Keypad.

Next time you’re in the market for a better rig, ask about Yaesu. Designed with care and built with pride, your Yaesu will get you through!

Prices and specifications subject to change without notice or obligation.

YAESU ELECTRONICS CORPORATION
6814 Walthall Way, Paramount, CA 90723 (213) 633-4007

YAESU CINCINNATI SERVICE CENTER
9070 Gold Park Drive, Hamilton, OH 45011 (513) 874-3100
TS-930S “DX-traordinary”

TS-930S

We call it “DX-traordinary” because the TS-930S has now become the favorite rig of the serious contesters! Its superior capability for full break-in split-frequency operation, the speed and convenience with which its eight memory channels can be accessed, its unsurpassed receiver dynamic range and its remarkable ability to select the desired signal during periods of heavy QRM, utilizing VBT, Slope tuning, IF Notch filtering, and tuneable audio filtering, have all combined to make this the rig that gives you the EXTRA EDGE!

The TS-930S is loaded with all the special features that you always wanted in an HF transceiver. Full coverage of the 160 through 10 meter bands, including the new WARC frequencies, (easily modified for HF MARS), plus a general coverage receiver that can tune any frequency from 150 kHz to 30 MHz. Operation in the SSB, CW, FSK, and AM modes, with selectable full or semi CW break-in. All solid-state, with 260 watts PEP input on SSB, CW, FSK, and 80 watts input on AM. SWR/power meter, triple final protection circuits plus two cooling fans built-in, 10 Hz step synthesized frequency control. Available with optional automatic antenna tuner built-in, another industry first! Dual digital VFO’s. Eight memory channels that store both frequency and band information, with internal battery back-up. (batteries not supplied) Dual mode adjustable noise blankers, especially effective in eliminating “woodpecker” type interference. SSB IF slope tuning, for maximum rejection of interference. CW variable bandwidth, with pitch and sidetone control. IF notch filter. Tuneable audio peaking filter. Unique six digit white fluorescent tube digital display is easy-on-the-eyes during those long contests. RF speech processor, for higher average “talk-power.” SSB monitor circuit, 4-step RF attenuator. VOX, 100-kHz marker. AC power supply built-in, 120, 220, or 240 VAC.

Specifications and prices are subject to change without notice or obligation.