• Dr. Ulrich Rohde on EMI/RFI receiver design requirements

• optical FM receiver

• time domain reflectometer

• modern communication receiver design

• time and frequency standards

• weekend project: simple shortwave broadcast receiver

BUILD THIS COMPACT SSB RECEIVER
25 watts / switchable AGC / 32 full-function memories / 2-color fluorescent display / subaudible tones / CW monitor / and RIT readout. Make the IC-271A and IC-471A all-mode base stations the most advanced on the market.

Subaudible Tones. Subaudible tones are selected by rotating the main tuning knob. These tones may then be stored into memory along with the frequency, offering ease of operation.

Dual VFO’s. ICOM’s dual VFO system is now even more versatile with the ability to transfer from memory to VFO. This allows frequencies from the tunable memories to transfer directly into another memory without moving a VFO to the new frequency first.

Phase Lock Loop. Extremely low noise and a good signal to noise ratio PLL design allows the IC-271A and 471A to lock to 10Hz for extreme accuracy.

New Display. ICOM’s new easy-to-read two color fluorescent transceiver situation display shows frequency, mode, offset direction, VFO in use, memory channel, and RIT offset direction and amount.

Scanning. Scanning of memories, programmable band scan, and mode scanning are available and easy to use.

New Size. Only 11”W x 4”H x 10”D the IC-271A and IC-471A are styled to look good and engineered for ease of operation.

Other Features. To make the IC-271A / IC-471A functional and easy to use, ICOM has incorporated many asked for features: UP/DN buttons, dial lock, switchable preamplifier (optional), duplex check, all mode squelch, receive audio tone control, S meter, center meter, and 7 year lithium battery memory backup.
MFJ ACCESSORIES

300 WATT ANTENNA TUNER HAS SWR/WATTMETER, ANTENNA SWITCH, BALUN. MATCHES EVERYTHING FROM 1.8 to 30 MHz.

$99.95 MFJ-941D

NEW FEATURES

RTTY/ASCII/CW COMPUTER INTERFACE MFJ-1224 $99.95
Send and receive computerized RTTY/ASCII/CW with nearly any personal computer (VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64, etc.). Use Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including 170, 245, 850 Hz) and any speed (1-100 WPM). RTTY/CW, 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170, 850 Hz shift. Normal/Reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. 8x1 x4x6 in. 12-15 VDC or 110 VAC with adapter. MFJ-1312, $9.95.

POLICE/FIRE/WEATHER 2 M HANDHELD CONVERTER
Turn your synthesized scanning 2 meter handheld into a hot Police/Fire/Weather band scanner! 144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on 160-164 MHz. Converter mounts between handheld and rubber ducky. Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. 2x4x1½ in. BNC connectors.

MFJ/BENCHER KEYER COMBO MFJ-422 $99.95
The best of all worlds! a deluxe MFJ Keyer in a compact configuration that fits right on the Bench iambic pad! MFJ Keyer - small in size, big in features. Curtis 8044 IC, adjustable weight and tone, front panel volume and speed controls (5-60 WPM). Built-in dot-dash memories. Speaker, sidetone, and push button selection of semi-automatic/tone or automatic modes. Solid state keying. Bencher package is fully adjustable; heavy steel base with non-skid feet. Uses 9 V battery or 110 VAC with optional adapter, MFJ-1305, $9.95.

VHF SWR/WATTMETER MFJ-812 $29.95
Low cost VHF SWR/Wattmeter! Read SWR (14 to 170 MHz) and forward/reflected power at 2 meters. Has 30 and 300 watts scales. Also read relative field strength. 4x2x3 in.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
- One year unconditional guarantee
- Made in USA.
- Add $4.00 each shipping/handling. Call or write for free catalog, over 100 products.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. In Miss. and outside continental USA Telex 53-4956 MFJ STKV

November 1983
TS-930S
"DX-traordinary"...
superior dynamic range, auto. antenna tuner, QSK, dual NB, 2 VFO's, general coverage receiver.
A superlative, high-performance, all solid-state HF transceiver, that covers all amateur HF bands, and incorporates a 150 kHz to 30 MHz general coverage receiver having an excellent dynamic range.

TS-930S FEATURES:
- 160-10 Meters, with 150 kHz-30 MHz general coverage receiver. Covers all Amateur frequencies, plus WARC, on SSB, CW, FSK, and AM. UP conversion digital PLL circuit.
- Excellent receiver dynamic range. Typical two-tone dynamic range, 100 dB (20 meters, 50 kHz spacing, 500 Hz CW bandwidth).
- All solid-state 28 volt operated final amplifier. Lowest IM distortion. Power input 250 W on SSB/CW/FSK, 80 W on AM.
- SWR/Power meter.
- Available with AT-930 automatic antenna tuner built-in, or as an option. Covers 80-10 meters, including WARC bands.
- CW full break-in. CMOS logic IC, plus reed relay. Switchable to semi break-in.
- Dual digital VFO's, 10 Hz steps, includes band information.
- Eight memory channels. Stores frequency and band data. Internal battery memory backup, est. 1 yr. life. (Battery not Kenwood supplied.)
- Dual mode noise blanker. NB-I, with threshold control, for "pulse" noise. NB-2 for "woodpecker".
- SSB IF slope tuning, allows independent adjustment of the low and/or high frequency slopes of the IF passband.
- CW VBT and pitch control. VBT tunes out interfering signals. CW pitch control shifts IF pass-band and beat frequency. "Narrow-Wide" filter switch.
- Tuneable, peak-type audio filter for CW.
- AC power supply built-in.
- Fluorescent tube digital display (100 Hz resolution, modifiable to 10 Hz) with digitalized sub-scale. In 20 kHz steps.
- RF speech processor.
- One year limited warranty.
- SSB monitor circuit.

Optional Accessories:
- AT-930 Auto. antenna tuner.
- SP-930 External speaker with selectable audio filters.
- YG-455C-1 (500 Hz) or YG-455CN-1 (250 Hz) plug-in CW filters for 455 kHz IF.
- YK-88C-1 (500 Hz) CW plug-in filter for 8.83 MHz IF.
- AT-302 10 kHz AM plug-in filter for 8.83 MHz IF.
- SO-1 commercial grade TCXO.
- MC-42S UP/DOWN hand mic.
- MC-60A deluxe desk mic.
- MC-80 desktop UP/DOWN mic.
- MC-85 multi-function desk mic.

TS-430S
"Digital DX-terity"...
General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch, COMPACT!
Combines compact styling with state-of-the-art circuit design and performance.

TS-430S FEATURES:
- 160-10 meters, with 150 kHz-30 MHz general coverage receiver. Covers all Amateur frequencies, plus WARC. UP conversion digital PLL circuit.
- USB, LSB, CW, AM, and FM (optional) all mode.
- Compact lightweight design. Only 10.5/8 (2700 W x 3-3/4 (96) H x 10-7/8 (275) D, inches (mm); only 14.3 lbs. (6.5 kg).
- Superior receiver dynamic range with Dyna-Mix high sensitivity direct mixing system.
- IF shift circuit for minimum QRM.
- Tuneable Notch filter, built-in.
- Narrow-wide filter selection on SSB and CW filter option.
- Speech processor, built-in.
- All solid state. Input rated 250 W PEP on SSB, 200 W DC on CW. 120 W on FM (optional), 60 W on AM. Operates on 120 VAC or 220 VAC with optional PS-430 AC power supply.
- Fluorescent tube digital display indicates frequency to 100 Hz (10 Hz modifiable).
- All-mode squelch circuit, built-in.
- Built-in noise blanker.
- RF attenuator (20 dB).
- VOX circuit, plus semi break-in with side-tone.

Optional accessories:
- PS-430, PS-30 or RPS-21 AC power supplies.
- SP-430 external speaker.
- MB-430 mobile mounting bracket.
- AT-250 automatic antenna tuner, 160-10 m, incl. WARC.
- AT-130 compact antenna tuner, 80-10 m, incl. WARC.
- FM-430 FM unit.
- YK-88C-1 (500 Hz) or YK-88CN (270 Hz) CW filters.
- YK-88SN-1 (4 khz) SSB filter.
- YK-88A-1 (4 kHz) AM filter.
- MC-42S UP/DOWN hand mic.
- MC-55 (8P) potentioc mic.
- MC-60A deluxe desk mic.
- MC-80 desk top UP/DOWN mic.
- MC-85 multi-function desk mic.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
contents

10 compact SSB receiver
Rick Littlefield, K1BOT

23 designing a modern receiver
Cornell Drentea, WB3JZO

36 time and frequency standards: part 1
Vaughn D. Martin

49 a time domain reflectometer
Bill Unger, VE3EFC

53 construct an optical FM receiver
Ting-Chung Poon and Ronald J. Pieper

65 ham radio techniques
Bill Orr, W6SAI

70 EMI/RFI test receivers
Dr. Ulrich L. Rohde, DJ2LR

84 the weekender: build a simple shortwave broadcast receiver
Ed Marriner, W6XM

118 advertisers index

8 comments

90 DX forecaster

116 flea market

114 ham mart

103 ham notebook

106 new products

6 prestop

105 book and

4 reflections

92 short circuits

95 technical forum
Thank You

Thank you for responding to the reader survey published in the September issue. I want you to know how very valuable your comments are to me. You are providing to us at *ham radio* an understanding of your needs, likes, and dislikes.

As we go to press, we have not yet “closed the books” on this survey; survey forms and letters continue to arrive daily in considerable quantity. In reviewing the forms that have been returned, I already see important trends which together with the survey compilation, will be detailed in a future issue. In general, readers are telling us to continue to provide a technically superior magazine and not to succumb to the temptation of trying to offer “something for everybody.” This was clearly brought out in one of the many letters that accompanied the survey forms:

“I cannot resist writing to tell you how grateful I am that you have gone back to the original aims of *ham radio*. I had originally subscribed to the magazine because of the technical content and I am so pleased to see a return to the more technically oriented articles. The fact is that there are already three other magazines devoted to operating news and ‘beginner’ type construction articles — we don’t need one more. I am sure that your general reader response will confirm that there is a need for material that has some body to it and which can be used for future reference....

Taking all of the responses (so far) into account, I promise to follow a policy I adopted several years ago while editor of another magazine (*rf design*): *always try to inform, not impress.* Now, I have to admit that some of our past articles did not exactly meet that criterion, and I plead guilty with explanation. In the publishing industry it’s not unusual for an editor to be working with the content of four or more issues in various stages of development at the same time. But by pushing the schedule ahead with excellent material received from our readers, I’ll be able to improve the quality of *ham radio*. I’ve just finished editing some exciting new material to be included in the early 1984 issues.

While on the subject of articles, I’d like to ask all prospective authors to remember that the most important reason for writing and publishing a manuscript is to communicate — be it an idea or a complete system down to the last diode. Sometimes it helps to ask a friend to read your manuscript with a critical eye. If there’s something he or she doesn’t understand, chances are that others will have the same problem. Before you start, I firmly believe that it’s always a good policy to make a single-sided, single-page outline on the proposed subject. Don’t write another word until you really like the outline. It’s much easier to modify an outline than to cut and paste or start a manuscript all over after you’ve gotten into it. By all means, once you like the outline, stick with it, taking one section or thought at a time — in order. This makes the job considerably easier.

The kitchen sink. Yes, I’ve found a few of them in some of the manuscripts. There is a tendency among some of us (and I am not excluding myself) to try to squeeze everything you possibly can into a five-printed-page article. Please believe me, you can save some material for another article or a book or even an encyclopedia. We at *ham radio* can help out in many ways. Send for our well-written six page *Author’s Guide*. It will provide you with many helpful hints for producing your manuscript (hint number 1: type your manuscript, double-spaced). Drop me a line with your outline and I will try to respond ASAP with suggestions.

Just a final word on artwork. Penciled sketches are fine. We normally redraw all schematics, block diagrams, etc., unless you happen to follow our drafting style and produce camera-ready artwork (some authors do). Photographs should be black and white, 35 mm or larger. Use the best photographic techniques you can master (clean backgrounds, good lighting, logical presentation) and don’t hesitate to seek professional assistance. Remember, if accepted, your work will adorn the pages of a widely, worldly circulated magazine.

There we have it. I’ve thrown the kitchen sink into this editorial. Let me just say thanks again for your support. Please keep reading the magazine; we’ll keep trying to improve and expand it to meet your needs.

Rich Rosen, K2RR
editor-in-chief

4 November 1983
Morse Keyers & Trainers

AEA produces the finest Morse keyers and trainers in the world. All AEA keyers operate with any standard keyer paddle and offer selectable monitor tone, selectable dot and dash ratios, full weighting and selectable dot and/or dash memory. In addition, all our keyers offer full, semi-automatic or straight key modes. The keyers and trainers are keypad controlled which significantly reduces the complexity of operation for all the features offered. Each keyer has separate + and - keyed outputs for keying any modern transmitter. All keyers and trainers operate from 12 VDC (or 117 VAC with optional model AC-1 wall adaptor) which makes them ideal for portable operation. AEA microcomputer-based products are all subjected to a full burn-in and test prior to shipment, as well as being designed for maximum R.F. immunity.

NEW BT-1

The BT-1 Basic Trainer is a hand-held computerized unit which teaches the code one character at a time at 18 or 20 words per minute. The BT-1 contains a self-paced training program that allows serious students the possibility of learning Morse to 20 wpm in as little as one month! Each character represents a separate practice session in which the character is first introduced by itself, and then presented 50% of the time along with all previously learned characters. There are no tapes to memorize, wear out, or break. No programming skills are necessary; the BT-1 is very easy to use. The tone oscillator can also be keyed for sending practice. An earphone jack is provided for private listening. The BT-1 will go as high as 99 WPM in 1 WPM increments. A battery operated version, the BT-1P, is available with wall charger and internal NICAD batteries.

NEW KT-3

The MM-2 MorseMatic™ is a computerized keyer available featuring an automatic serial number generator for contesting. The MM-2 keyer features a large 500 character message memory that can be soft-partitioned into as many as 10 sections. An exclusive AEA edit mode makes it possible to correct mistakes made while entering messages or to insert words into previously established messages. Two different speeds can be set for fast recall in addition to a stepped variable speed control. The CK-2 features an automatic message repeat mode with variable delay-before-repeat for automatic CQ transmissions or TVI testing.

The MM-2 Morsematic Keyer represents the most sophisticated paddle keyer ever designed and features two powerful microcomputers. The Morsematic incorporates virtually all the features (except the preset and stepped variable speeds) of both the CK-2 and KT-2 shown above. In addition, the MM-2 offers an exclusive automatic beacon mode which is invaluable for meteor scatter, moonbounce scheduling, or beacon operation.
THE VOLUNTEER EXAM PROGRAM FOR AMATEURS WAS ESTABLISHED officially September 22, when the FCC acted on PR Docket 83-27. The biggest surprise was the Commissioners' decision to use 13 regional Volunteer Examiner Coordinators instead of one national VEC, with a VEC in each U.S. call area plus one each for Alaska, the Pacific islands and the Caribbean. The decision to go with regional VECs is being widely interpreted as a direct slap at the ARRL, whose last-minute introduction of a demand that VECs be compensated for their efforts after assuring the FCC they could handle it gratis caused much consternation at the Commission.

Exam Administration Fees Are Specifically Prohibited by the Report and Order, in a section reportedly written by the FCC's legal staff and based on the enabling legislation. The League is lobbying on Capitol Hill for a bill that would legalize fee collection, but Senator Coldwater has come out strongly against such fees and without his support it's unlikely that it can receive much support in either house.

Three-Person Examining Teams Are Still Required for the Technician and higher class exams. All but Technician will require that all three team members be Extra Class. Specifically, 13 as well as 20 wpm code tests plus Elements 4(A) (Advanced and Extra) and 4(B) (Extra) must be administered by a team consisting of three Extra Class Licensees.

Negotiations With Groups Wishing To Become Regional VECs will be opened by the FCC on December 1. Since some areas will respond more quickly and have an acceptable examiner organization in place more rapidly than others, it appears almost certain that the program will be up and running in some parts of the country long before it will be in others.

LAUNCH OF THE STS-9 SPACECRAFT IS STILL SET FOR OCTOBER 28, with W5LFL due to begin his 2-meter operation from space a few days later as outlined in September Presstop. Late-breaking information will be made available via recorded messages on various special phone lines, including: ARRL- (203) 292-0688, Westlink--(213) 465-5550, and the Johnson Spaceflight Center--(713) 483-2477. In addition, Electra (Bearcat) is making its toll-free line (800) SCA-INNER available as a mission progress hotline to Amateurs as well as other VHF listeners for the duration of the STS-9 mission.

The Most Up-To-Date STS-9 Information Will Probably Be From W5RRR, the Space Center Radio Club which will be on the air before and after working hours plus weekends, using 28600, 21375, 14280, and 3845 KHz, all day chunks, starting October 9.

Retransmission Of Space Shuttle Transmissions By Amateurs has been authorized by the FCC in response to several petitioners. However, Amateurs wishing to perform this service must first get permission from NASA.

FCC ACTION ON THE "NO-CODE" AMATEUR LICENSE is unlikely until early 1984, according to Washington sources. There is also considerable speculation that the rebuff the League took on the Amateur licensing program is a harbinger of a pro No-Code decision when the Commissioners do finally consider that thorny issue.

The Widely Heralded Air Force Letter Operating No-Code was apparently only a statement by some Air Force MAOS people that their MAOS appointments (which do include HF band operations) would require CW ability, and was not a statement of official Air Force policy. In addition, no basis has been found for a recently circulated rumor that the CIA had told the FCC that a No-Code license "would not be in the national interest."

2-METER USE BY FISHING BOATS IN PUGET SOUND is concerning Amateurs in the Pacific Northwest. Reminiscent of similar episodes during the height of the CB boom, when some truckers discovered readily available 2-meter rigs offered them a refuge from the bedlam of channel 19, the fishermen are using 2 meters for "private communications channels to discuss matters inapropriate for the regular marine band or which they want kept secret from others not "in the know." It appears the operation was set up by someone knowledgeable, since the fishermen have pretty well avoided use of active Amateur frequencies.

The FCC Has Been Informed And Is Actively Monitoring the illegal operations. At least a dozen of the pirate stations seem to be active.

When the FCC's Program To Involve Amateurs In Enforcement will get under way seems up in the air at the moment. Despite earlier hopes it would be in operation by this fall, there has apparently been little progress on it in the last few months.

"WB23XYZ" AND "A884C" WILL BE LEGITIMATE CALLSIGNS for California Amateurs during July and August, 1984. California Amateurs with "8" in their callsigns have been authorized by the FCC to use either "23" (for 23rd Olympiad) or "84" (for 1984) instead of "6" during the period of the Olympic games in California next year.

Amateur Involvement in the Olympics Is Progressing Well, with plans now firm to have Amateur HF stations operating from each of the three Olympic villages. Tentative agreements are already well along with a number of countries to waive their restrictions on third-party traffic, to enable their Olympic athletes to keep in touch with home via Amateur Radio.

PIZZA ORDERING BY AMATEUR RADIO WAS BRIEFLY LEGALIZED by a recent, short-lived FCC policy relaxation. The change, in effect for only a few weeks in September, was another effort to resolve on-going conflicts over what constitutes prohibited communications. It has since been rescinded and the Part 97.114(c) restrictions remain in effect.
WE'RE THE NUMBER 1 EARTH STATION FOR DEALERS.

WE'RE QUARLES SATELLITE SYSTEMS.

HERE ARE SOME OF THE TOP NAMES IN THE INDUSTRY THAT WE CARRY:

- Prodelin
- Luxor
- Dexcel
- ACM
- KLM
- Paraclipse
- Chaparral
- Tracker Systems
- Janeil

If you've never dealt with Quarles Satellite Systems before, you're in for a pleasant surprise. Because we provide exactly what the dealer is looking for: the best line of products in the industry, complete in-house inventory, authorized service, and competitive pricing.

So, to provide your customers a space-age adventure in the world of satellites, tune to Quarles Satellite Systems...We are the "#1 Earth Station" for you.

Tomorrows Communications...Today

Call Toll Free 1-800-845-6952
In South Carolina 1-800-922-9704
Mr. Sanford's paragraph on using an anti-corrosion compound cannot be stressed too strongly. Failure to do so can cause the cable to self-destruct in less than a year in certain environments. (Contact an electrician or electrical supply house for the brand names available in your area.) Results must be taken with a grain of salt. If a certain homebrew connector works for your particular project, by all means use it. Up to approximately 150 MHz, just about anything will work reasonably well and give a return loss of 14 dB (VSWR 1.5) or better. Commercial connectors readily achieve return losses of better than 25 dB and virtually immeasurable insertion loss. The 1-inch cables that I am familiar with have a loss per 100 feet of from 0.4 to 0.5 dB at 150 MHz and 0.75 to 0.95 dB at 450 MHz. This can go a long way toward putting power where it belongs. One final caution about the cable. Use only fresh cable, the source of which you are certain. If possible, find out the upper frequency limit of the CATV system in which it is used. Most new systems are operating to 400 MHz or higher and are using cable with excellent characteristics well past 500 MHz. There are, however, many varieties of older design cable that are being passed off to hams by unscrupulous individuals at fleamarkets. Many of those cables deliver horrible performance above about 200 MHz. When going up through the UHF bands, verifiable results require sophisticated test equipment and thorough attention to detail. Even more insidious is the type of cable that does not have the foam dielectric bonded to the sheath and inner conductor. Any water ingress will then migrate completely through the cable. This will quickly turn a kW station into QRP level ERP even at 20 meters! For high power, at least 3/4-inch cable should be used to reduce the possibility of high-voltage RF flashover.

I am personally all for the use of 75-ohm hardline and am designing my station for its use. It is produced by the millions of feet, is reliable and reasonably priced even when new. Hams have been getting ripped off for years by sticking to 50-ohm cable. If you don't have the time or mechanical dexterity to produce a connector, contact your local CATV engineer. You will probably be pleasantly surprised to find what is available for the asking.

Carl Huether, KM1H
Pelham, New Hampshire

frebies
Response to our recent offers of supplementary materials has been tremendous — our thanks to all who wrote. Copies of the World Press List, the NASA Tech Brief, and the RTTY-Atari™ program are still available; send a large SASE (with 20C in stamps for the press list, 37C for the tech brief, and 54C for the program) for copies of one or all. A sampling of recent letters follows. — Editor

Dear HR:
I enjoyed the article "RTTY and the Atari™ Computer" by Dave King, K5VUV. Hopefully I can figure out a way to interface into the computer serial port on my Atari 400, rather than use the Atari interface module, which costs more than the computer!

Chuck Hastings, KB3QU
Annapolis, Maryland

Dear HR:
I really enjoyed "RTTY and the Atari™ Computer." Although my recently-purchased computer is a TRS-80C™, I believe I can use the interface. Please send the program listing.

P.B. Johnson, VE7DHM
Sooke, British Columbia

Dear HR:
Please send me a copy of the NASA tech brief.
Thank you for a fine publication. I am particularly interested in Forrest Gehrke's series on phased verticals, having used and worked with them with moderate success for some time. This is the first definitive article on the subject to appear in the Amateur literature.

Arthur J. Conebeer, W6DRL
Laguna Beach, California
ASTRON POWER SUPPLIES

- **HEAVY DUTY**
- **HIGH QUALITY**
- **RUGGED**
- **RELIABLE**

PERFORMANCE SPECIFICATIONS
- **INPUT VOLTAGE**: 105 - 125 VAC
- **OUTPUT VOLTAGE**: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- **RIPPLE**: Less than 5mV peak to peak (full load & low line)

SPECIAL FEATURES
- **SOLID STATE ELECTRONICALLY REGULATED**
- **FOLD-BACK CURRENT LIMITING** Protects Power Supply from excessive current & continuous shorted output.
- **CROWBAR OVER VOLTAGE PROTECTION** on all Models except RS-4A.
- **MAINTAIN REGULATION & LOW RIPPLE** at low line Input Voltage.
- **HEAVY DUTY HEAT SINK** • **CHASSIS MOUNT FUSE**
- **THREE CONDUCTOR POWER CORD**
- **ONE YEAR WARRANTY** • **MADE IN U.S.A.**

RM-A Series
- **19” x 5 ¼ RACK MOUNT POWER SUPPLIES**

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 ¾ x 19 x 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 ¾ x 19 x 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A Series
- **MODEL RM-35A**

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 ½ x 6 ¼ x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 ½ x 6 ¼ x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 x 7 ¼ x 10½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 ¼ x 10½</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M Series
- **MODEL RS-35M**

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 ½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 ¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M Series
- **MODEL RS-4S**

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty @13.8V DC (Amps)</th>
<th>ICS* @13.8V DC (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>9</td>
<td>5 x 9 x 10½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>15</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>22</td>
<td>6 x 13 ¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S Series
- **MODEL RS-12S**

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 ½ x 10½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 ½ x 10½</td>
<td>12</td>
</tr>
<tr>
<td>RS-10L (For LTR)</td>
<td>7.5</td>
<td>10</td>
<td>4 x 9 x 13</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
</tbody>
</table>

More Details? CHECK — OFF Page 118

November 1983
compact SSB receiver

Bigger isn't always better. Here's a small, easy-to-build unit that performs much like a full-sized receiver.

This simple, compact receiver has a lot of grown-up features: a built-in speaker, automatic gain control, good sensitivity, wide dynamic range, and the potential for excellent selectivity. Add a small voltage-probe antenna and you can cast off the feedline and take the receiver with you.

Most of the necessary components are readily available and inexpensive; modular design allows you to chose your own packaging. All board layouts, photos, and diagrams are provided, and any builder with modest experience should find construction no problem at all.

Circuit description

In many respects, this circuit is similar to others described in recent Amateur literature. However, it has some practical features which offer a great deal of flexibility.

Fig. 1 shows the main receiver board. A switchable 20-dB attenuator provides RF gain control to prevent receiver overload. Q1 is a grounded-gate RF amplifier which provides 10 dB of gain ahead of mixer Q2. Q2 is a single-ended MOSFET mixer. This stage is coupled to bandpass filter FL-1 by means of T1, a broadband matching transformer. Either a mechanical or crystal filter can be employed by choosing the appropriate turns-ratio. The filter's output is terminated by resistor R_F. Since the filter is not mounted on the circuit board, physical size is not a factor in filter selection.

Q3 is the receiver's gain IF stage. Gain is controlled by a simple audio-derived AGC system. Diodes replace Q3's source resistor in order to bias gate-2 negative with respect to gate-1. This extends the AGC attenuation range.

IF transformer T2 is capacitively coupled to product detector Q4. The transformer's secondary is not used. A toroidal LC circuit can replace this transformer for non-standard IF frequencies. IF frequencies from 455 kHz to 9 MHz and beyond can be employed without board modification.

Product detector Q4 is an active circuit which provides audio pre-amplification ahead of the gain control. U1, the audio amplifier, is an LM-386. This IC provides a voltage gain of 200 and delivers 400 mW of power into an 8-ohm load. A 10-ohm series resistor in the output line protects miniature 200 mW speakers from damage.

The AGC system is a simple audio-derived limiter. A diode samples the output of U1 and sends a negative voltage to dc amplifier Q5/Q6. The output of Q6 is set for a resting bias of +4 volts under no-signal conditions. When a strong signal appears, this voltage drops to as low as +0.5 volts, reducing Q3's gain. Resistor R_D sets the AGC sampling level. The value of R_D is selected for best AGC action. Capacitor C_A is optional, but recommended for SSB operation since it slows release time.

The VFO shown in fig. 2 is a near-copy of a W7ZOI/W5IRK circuit. This design provides excellent performance. The Hartley JFET oscillator drives a single MOSFET buffer/amplifier. VFO-output is coupled to the mixer through a broadband trans-
former. Builders desiring a thorough treatment of the design along with temperature compensation information should refer to current editions of the ARRL Handbook.

Figs. 3A, B, and C show BFO circuits. These provide plenty of output at the high input impedance presented by Q4. The 455 kHz version employs a ceramic resonator instead of a crystal. These devices are considerably cheaper, and much easier to "rubber." Frequency adjustment is accomplished with a small 60 pF trimmer. The high-frequency version uses standard crystals, and oscillates easily in the 3-12 MHz range.

Fig. 4 shows an optional tuned voltage probe antenna circuit. The telescoping rod antenna is coupled directly to the Hi-Z end of L1. A dual-gate MOSFET provides pre-amplification and impedance matching for the rod. Pre-amp output is transformed to 50 ohms through a broadband transformer. The longer the rod antenna, the more broadband the response. On 20 meters, a 2-foot (60-cm) rod allows coverage of the entire phone band. On 75, a 4-foot (120-cm) rod covers around 50 kHz. The antenna and pre-amp can be mounted in a receiver case, or remoted from the exterior of a structure or vehicle.

Finally, fig. 5 shows a simple regulator and pilot

The completed receiver can be packaged to suit the builder. This 20-meter version features a signal-strength meter and a built-in voltage probe antenna system. The illuminated frequency pointer is an LED that has been filed to shape and polished.
COMPUTERS
PACKAGES
#1 AEA CP1, VIC 20 Computer, Kentronics Hamsoft, with cables to fit your radio $325.00
#2 Above Package

SSTV ROBOT
800 (limited) 447.00
1200C .. 1139.00
450C/800C each 789.00
400C Kit 489.00
800C Kit 155.00

ANTENNAS
DB+Enterprises 2 element QUAD
in stock .. 275.00
HF6V ... 125.00
2M CV-5 .. 39.00
6TV ... 139.00
G7 144 .. 108.00
TH7DX .. 369.00
7+10 Kit ... 79.95
Explorer 14 279.00
HD73 ... 99.00
Ham4 .. 199.00
B&W AV25 10-80 vert 85.00
A3 ... 219.00
A4 ... 289.00
V2 Oscar ... 38.00
435 16TB ... 58.00
144-20T twist 74.00
ARX2B ... 38.00
HG52SS Hygain/Telex 52' self supporting crank-up tower to hold 9.5 sq ft at 50 mph Rotator mount inside top section. Nested ht 20.5 feet .. 939.00

DON'S CORNER: Our Hurricane Alicia left us with a bunch of wet antenna boxes (usable antennas inside). One of the windows blew out right over the antenna department. Take the lowest nationally advertised price you can find, deduct 20%, add suitable shipping or call us with your charge card & we'll check stock for you. Items are subject to prior sale, but we got a bunch of them!

We have a great line-up of repair techs. The crew looks like this:
Tech #1 Kenwood, Icom, Yaesu VHF-UHF + the new digital
Tech #2 Older tube Kenwoods, Yaesus and older transitor HF's
Tech #3 Drake, C lines, Swan, Galaxy, Tempo
Tech #4 S line and KWM2
Tech #5 KWM 380 and ETO ALPHE
Modisalotone: The first Saturday of each month we have a sidewalk sale. Bring your surplus and try to sell it to fellow amateurs.

We stock what we advertise, and much more.
TOLL FREE ORDERS ONLY
1-800-231-3057
LED circuit. The LM-7812 holds the operating voltage at 12 volts, protects the modules from damage, and keeps noise out of the system.

construction

The entire receiver chain, RF amplifier through audio, is contained on one main circuit board. Because oscillators require shielding, they are built separately. Optional circuits such as the regulator and antenna pre-amp are also separate, since some builders may choose to omit them.

Original artwork for my boards was prepared on transparent acetate stock using Radio Shack rubons. Boards were prepared with the General Cement positive developer system and pre-sensitized board. You can use this same system by applying lift-film to pull the board patterns from this article. Pre-etched boards are also available from Radiokit.

Component density is fairly high on all of these boards. Miniature parts should be used wherever possible to prevent crowding. Choosing small tantalum audio coupling capacitors, low voltage by-passes, 1/4- or 1/8-watt resistors, and compact elec-

fig. 1B. Parts layout for main receiver board.

Good things can come in small packages. This 75-meter net monitor is almost dwarfed by its AC adapter.
R.F. Power Monitoring

IM Suppression Panels

Receiver Multicoupling

The Problem Solvers

Duplexers & Preselectors

Bandpass, Pass-Reject and Notch Cavity Filters

Transmitter Combining 150 – 900 MHz

COMPLETE SYSTEM ENGINEERING ASSISTANCE

TELEWAVE, INC.

2166 OLD MIDDLEFIELD WAY, MOUNTAIN VIEW, CA 94043
(415) 968-4400 • TWX 910-379-5055

14 November 1983
trolytics will result in attractive and uncluttered boards. Shielded and unshielded wires should also be small in diameter and flexible. Most components are available at Radio Shack stores or by mail-order through Radiokit. I reduced construction costs considerably by drawing on a parts inventory built from junked circuit boards and surplus grab-bags. Coils are much more difficult to prune after they are installed on the circuit board. For that reason, all tuned circuits are wound, tacked together with solder, and checked for resonance with a grid-dip meter prior to actual board construction. A length of hook-up wire is used to link-couple the grid-dipper to the toroids. Each tuned circuit is then marked and set aside for later installation.

Oscillators are constructed first, since they are needed to test the main board. Special attention is given to mechanical stability, especially while constructing the VFO. Cement firmly in place anything that can move or vibrate. Upon completion, check for oscillation and proper output level.

When selecting a VFO main-tuning capacitor, look for a “ball-bearing” type with a good vernier drive (either built-in or added on). Variables and vernier drives are available from several sources including Radiokit and BCD Electro. Select fixed capacitors for the VFO tank with the main tuning capacitor mounted in the receiver case. This provides mechanical stability during component substitution. Values for C1, C2, and C3 are juggled until the desired tuning range and dial linearity is obtained. During this process, a frequency counter and pocket calculator are very helpful. The counter provides an accurate measure of the oscillator frequency, and the calculator adds and subtracts the IF frequency to give the actual receive frequency. If a counter is not available, a good general coverage receiver will suffice.
After final installation of all frequency determining components, mount the VFO board in place and mark dial calibrations on the front panel. While full shielding of the VFO is desirable, this may be difficult in compact packages like the “Micro-75” shown in the photo on page 13. In practice, some VFO leakage does not appear to degrade performance.

Construction of either BFO board is simple. After assembly and testing, a “can” or small box is constructed to shield the board. Unlike the VFO, the BFO must be fully shielded to prevent birdies and common-mode detector noise. Tin flashing, two-sided board, or aluminum all make good boxes. Two small holes are needed for the leads, plus an access hole for tuning the trimmer. Install the shielded BFO in the receiver case.

With the exception of the oscillators, all receiver circuitry is contained on the main board. Interconnecting leads for the speaker, volume control, and DC power are salvaged rainbow-wire.

Since the main board is more complex than the others, it is constructed one stage at a time. Start with the audio and AGC sections, and work back to the RF amplifier. This keeps the process orderly, and allows stage-by-stage inspection. It also leaves installation of vulnerable toroid inductors until last.

A number of frequency plans are possible for this receiver. Here are some construction tips for the two versions I have built.

The “Micro-75” receiver is based on a 455 kHz IF. Most 455 kHz designs use a mechanical filter. A 1:1 input transformer and a 2.2 K value for R_F matches most of these devices. If external resonating capacitors are required, install them at the filter. A data chart for most Collins filters appears in current editions of the *ARRL Handbook.* T_2 can be any miniature 455 kHz can. Avoid using the 455 kHz IF above 40 meters, since insufficient image rejection will be available at the higher frequencies.

The 20-meter portable uses a 9 MHz IF. High-frequency IF’s generally employ a crystal filter. This requires a 4:1 input transformer and a 300 to 800 ohm output termination. When termination numbers are not available, use a 560 ohm resistor for R_F. For transformer T_2, use any 10.7 MHz miniature can and add 15 - 22 pF of padding to lower the resonant frequency. This capacitor can be installed beneath the board on the extra set of pads provided for this purpose.

Coil data is supplied for 80- and 20-meter operation. For operation on 40, 30, and 15 meters, a survey of other receiver articles will provide LC values close enough to get started. The T37-2 forms are quite small. Preparing the 20-meter inductors is easy enough, but concentration and a steady hand are needed to wind the 75-meter versions. I used No. 36 wire for these because it was available, but there is room on the form to substitute No. 34. All toroid coils and transformers are glued to the board after installation to prevent excess movement and lead breakage. Note that the 100 pF padding capacitors are installed for the 75-meter front-end only.

Oscillator inputs and mounting pads for resistor R_D require solder-pins on the top side of the board. (Small flea-clips or discarded resistor leads are fine for this purpose.) After all components are mounted, wires for interconnections are installed. Cut all leads
Total shielding of the VFO may not be possible in small packages like this one. This does not seem to degrade performance. The BFO should always be fully shielded. Note the bandpass filter mounted on the rear panel to save interior space.

on the long side to facilitate dressing during final assembly. Ground-loops are always a possibility when modules are interconnected. To prevent this, ground shielding at one end only.

receiver check-out and alignment

Final assembly can begin after the main board is completed. In my prototypes, the bandpass filter is externally mounted on the back panel of the receiver case. This saves interior space and eliminates the need to fabricate a mounting bracket. All jacks, the RF attenuator, gain control, and speaker are mounted prior to board installation. The board itself is mounted on short spacers with No. 2-56 hardware. Leads are then trimmed to length and connected to their destinations.

Initial testing and alignment is quite simple. Connect a resistance substitution box or a calibrated 50K pot to the terminals provided for resistor "Rd". A value of 10K is fine for initial testing. Advance the receiver gain control to about 3/4 volume, and apply power to all three modules. A very soft hiss from the speaker indicates that no serious shorts are present. Adjust the "bias-set" for a resting AGC voltage of +4 volts, as measured at the top end of the potentiometer. Tune the IF through its range, looking for a slight noise peak to indicate resonance. Finally, peak the RF amplifier. If everything is working and the band is open, the receiver will come to life. RF trimmers should show two signal-peaks as they are rotated through 360 degrees. This confirms that resonance is within the trimmer range, and not off to one

The main board, two oscillator boards, and a bandpass filter are the basic modules required to build one of these receivers. Interconnecting wires are salvaged rainbow-wire and mini-audio cable.
side. Stagger tune the RF stage to provide even sensitivity across the entire tuning range of the radio.

To determine the correct value for R_D, tune in an extremely strong signal and vary the resistance until AGC action is smooth. Too much AGC produces overshoot. This is a condition where the AGC overresponds, producing a "pumping" effect. Too little AGC allows the audio amplifier to go into distortion. The best value should fall somewhere between 10K and 50K. Install the nearest standard-value resistor.

This design has one quirk that might cause alarm during the testing phase. Extremely strong signals will sound fuzzy at low volume, yet miraculously clear up when the gain is increased. This is because AGC is derived from the audio output, and the AGC's ability to control the IF is pre-empted by the manual gain control at very soft listening levels. Fuzziness at low volume indicates overloading. A 20-dB RF attenuator is included in the receiver-chain to correct this condition. In practice, it becomes second nature to switch in the attenuator when the band is open and signals are strong.

options

The most important addition is the regulator circuit described earlier in fig. 5. This provides cheap insurance for a project well done, and cleans up dirty power sources like automotive electrical systems and inexpensive AC adapters. Since these are the sources I use most often, both of my receivers are regulated. Mount the LM-7812 on the interior of the back panel, and use the positive output lead as a tie point for all of the module power leads. If hum persists with your AC adapter, it could be that the ripple is dipping below the regulating range of the LM-7812. If this happens, install a 10-ohm resistor in series with adapter’s plus-lead or get a new adapter with more output voltage.

![Simplicity of design is reflected in the front panel of this 75-meter net monitor. In place of a signal-strength meter, an LED peak-indicator illuminates at full audio output to indicate AGC action.](image)

The optional meter circuit shown in fig. 1 is not a full blown S-meter, but does measure relative signal strength. Almost any sensitive movement can be adapted to this circuit with the appropriate value of R_S. Use care while experimenting, since accidently grounding the AGC line destroys the 2N3906.

The voltage probe antenna circuit is a great addition when the receiver is going to be taken along as a portable. This circuit board is mounted inside the cabinet of my 20-meter prototype and connected to a short collapsible whip that extends through the top of the case (the 75-meter receiver uses one as an external accessory). The pre-amp components are very similar to those used in the receiver front-end, and the same techniques apply for construction. A DPDT switch on the back panel applies power and brings the pre-amp on line for portable use. The antenna trimmer is accessible through the back of the cabinet, since peaking is quite critical and may require readjusting from time to time. (It's a thrill to hear VK's and ZL's rolling in on a 2-foot [60 cm] whip while sipping coffee at the kitchen table!)

conclusion

This is a very functional receiver design, easy to construct from available parts. The unusually flexible circuit allows selection of alternate frequency-plans without board modification. Many of the features one would expect to find in a full-sized communications receiver are included.

references

6. Etched circuit boards, parts, and kit for the "Compact SSB Receiver" are available from Radiokit, Box 411, Greenville, New Hampshire 03048.
7. Variable capacitors and other parts available from BCD Electro, P.O. Box 119, Richardson, Texas 75080.

ham radio
performance
by design

Folding Meters are Better
Not all multimeters fold. There's a reason. While other manufacturers were busy copying each others designs, BBC looked at where portable meters were used and how they could be improved.

The result is a unique approach. Folding meters with large displays (18 mm LCDs) and adjustable viewing angles. Now you can have high performance in a meter that excels in the field and on the bench.

Hands Free vs Handheld
In multimeters "hands free" is significantly better than "handheld." You need three hands to operate the typical "handheld" meter in the field. One for the meter and two for the probes. BBC's folding design lets you use a neck strap for the meter. This frees your hands for the probes.

On the bench, the large, adjustable displays pay off. It's a sensible design that lets you make measurements faster and more easily.

A Heritage of Precision
BBC's track record of expertise in precision engineering spans eight decades. All our meters are built to tough VDE and DIN safety standards. The 3½-digit DMM's feature 0.1% basic dc accuracy and externally accessible fuses for overload protection.

Compact, Rugged and Affordable
To design the impact resistant case that protects these DMM's, BBC relied on the industrial design skills of the Porsche Design Studios.

When open, the display angle is easily adjustable. When closed, the display and the controls are protected, and the meters turn off automatically.

Competitive pricing is another feature of BBC meters. Prices start at $193.00.

Available Locally
BBC meters are available throughout the U.S. If your instrumentation supplier doesn't carry BBC yet, we'll gladly tell you who does. Call toll free:

1-800-821-6327
(In CO, 303-469-5231)

BBC - METRAWATT/GOERZ
6901 W. 117th Avenue
Broomfield, CO 80020, Telex 45-4540
Engineering Excellence in Test and Measurement
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ±1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021

SS-32 $29.95, TS-32 $59.95
And you can see it—in color—again and again when you own the N2NY Ham MasterTapes.

Ever see a cap discharge in slow motion? You will on The N2NY Ham MasterTapes. Ham MasterTapes can perform the dozens of complicated demonstrations necessary for a beginner's understanding of Ham Radio Theory.

Finally, a step-by-step course in Ham Radio Theory is available on color videotape. The Larry Horne N2NY Ham MasterTapes video course is a unique, effective teaching technique expertly produced by New York's leading professionals in studio and field videotape.

- Video Graphics highlight important details.
- Carefully worked-out demonstrations on video avoid the problem of getting complex gadgets to work on command in front of a class.
- Working examples of every ham radio component, device, or system covered in the FCC guide can be clearly understood.

The N2NY Ham MasterTapes give you a basic grasp of concepts that build theory background—not only for passing the FCC tests, but for understanding electronics.

The hobby has long needed better, clearer, high-tech teaching aids to help newcomers into our wonderful world of Ham Radio.

These six-hour tapes cover completely all the material needed to understand Novice and Tech/General Theory and operations, and include the new 200-question FCC syllabus used beginning September 1983.

Only $199.95. Order direct and specify Beta or VHS format. Call or write: Larry Horne, N2NY or Virginia Hamilton, N2EGJ at Ham MasterTapes 136 East 31st Street New York, N.Y. 10016 212-673-0680.
NEW PRODUCT ANNOUNCEMENT

QUAD BAND BEAMS

7-14-21-28 MHz

THE NEWEST INNOVATIVE ADDITIONS to the TET LINE FEATURE TRUE MULTI-ELEMENT PERFORMANCE ON 4, NOT 3, BUT 4 BANDS.

ALL ON A SINGLE BOOM!!

All the usual TET multi-band beam features are included in these two models, including wide bandwidths, increased gain, low SWR, light weight and superior mechanical construction and easy assembly.

Preliminary Specifications:

<table>
<thead>
<tr>
<th></th>
<th>HB443DX</th>
<th>HB433DX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Elements</td>
<td>7 MHz</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>14 MHz</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>21 MHz</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>28 MHz</td>
<td>4</td>
</tr>
<tr>
<td>Gain</td>
<td>7/14/21/28</td>
<td>2.0:1 or better adjustable</td>
</tr>
<tr>
<td>FB Ratio</td>
<td>9/14/21/28</td>
<td>2.0:1 or better adjustable</td>
</tr>
<tr>
<td>Power</td>
<td>1KW CW</td>
<td>1KW CW</td>
</tr>
<tr>
<td>VSWR</td>
<td>7.0-7.1</td>
<td>2.0:1 or better adjustable</td>
</tr>
<tr>
<td></td>
<td>7.1-7.25</td>
<td>2.0:1 or better adjustable</td>
</tr>
<tr>
<td>14.0-14.5</td>
<td>20.1</td>
<td>1.5:1 or better</td>
</tr>
<tr>
<td>21.0-21.45</td>
<td>12/21.8/22.3/23.0</td>
<td>1.5:1 or better</td>
</tr>
<tr>
<td>26.0-29.0</td>
<td>12/21.8/22.3/23.0</td>
<td>1.5:1 or better</td>
</tr>
<tr>
<td>Boom Length</td>
<td>6.0/19.8</td>
<td>4.0/13.2</td>
</tr>
<tr>
<td>Max. Element Length</td>
<td>9.25/30.5</td>
<td>9.25/30.5</td>
</tr>
<tr>
<td>Weight</td>
<td>18.0/39.6</td>
<td>14.6/32.1</td>
</tr>
<tr>
<td>Introductory Price</td>
<td>$450.00</td>
<td>$325.00</td>
</tr>
</tbody>
</table>

AVAILABLE FROM YOUR AREA DISTRIBUTORS:

Available October, 1983

2775 Kurtz Street, Suite 11
San Diego, CA 92110-3171
Telephone (619) 299-9740
Telex 181747
Louis N. Anclaux WB6NMT

KDK

FM-2030

25 Watt 2 Meter FM

NOW Suggested Retail $299

Wins the Cost/Benefit Contest with its 6-in-1 Features.

1 **DIAL** — Selects the desired frequency at the twist of the knob when the concentric ring switch is in the DIAL position. Easy and fast 2-speed dialing with audible beep at the end of band.

2 **M-CH** — Selects and displays the memory channel numbers as the knob is turned. Audible beep is made at channels 1 and 10 for safer mobile operation.

3 **M-FR** — Selects the memory channels but displays the frequency contained in each channel instead of the channel number. Same safety beep at channels 1 and 10.

4 **CALL** — A flick of the concentric switch ring selects the eleventh memory channel which is used for your favorite frequency for calling or listening.

5 **WRITE** — By pushing the dial in, the frequency selected is programmed into the appropriate memory location.

6 **RIT** — 1 kHz steps for RIT. Clears up the distortion caused by the transmitting station's off frequency condition.

The C-MOS Microcomputer Controlled Digital Transceiver with MORE!

- Remote Stepping From Microphone
- Remote Memory Selection
- Computer Programmable Call Channel
- Bank Scan
- Memory Scan
- Repeater Reverse Button
- NiCd Battery Memory Back-up
- Pluggable Initialize Module, allowing wide band operation [143-149.995 MHz] for MARS
- Touchtone microphone included
- CTCSS Encoder included (Tunable)
- Small Size [55H x 162W x 182D]
- 2 Speed Dialing [100kHz/5kHz]

KDK

KDK LTD.
TOKYO, JAPAN

Distributed by Encom Inc.
2000 Ave. G, Suite 800
Piano, Texas 75074
(214) 623-2024 Telex 7994783 ENCOMM DAL
[For orders of exportation please 305-594-4313]
Achieve high performance through careful selection of LO and IF frequencies using IMD charts

Most general-coverage receivers have, up till now, been designed around commercially available IF filters. The popular 9 MHz approach performs well but exhibits a variety of internally generated spurious products when used in a general coverage mode. The chart in table 1 shows some of these products and how they impact on received frequencies. (Products produced in the premixing schemes of local oscillators have not been considered in this example.)

While the design trend has been to use up-conversions with first IF's higher than the highest frequency to be received (typically 35 percent higher for improved image rejection), performing a system design for the frequency scheme of a multi-conversion receiver has been considered a complicated mathematical analysis beyond the ability of the average Amateur. This need not be so; this article provides the reader with the tools necessary for understanding the design process more fully.

In a receiver, mixers provide undesired output products in addition to their sum and difference frequencies. These products are called intermodulation products. This phenomenon is complicated by the increased front-end bandwidth requirement referred to as general coverage as well as by the IF bandwidth requirement. If a multi-mixer situation exists, such as in a multiconversion receiver, the problem is further aggravated, as initial unwanted products from one mixer combine with those of another, creating a multitude of "birdies" (unwanted interference that sounds like the whistling of a bird) at the final IF output. Regardless of whether a receiver is dedicated or general coverage, the problem of intermodulation products has to be carefully understood and weighed against system parameters so that the fewest possible "birdies" are internally generated and heard within the passband of the receiver.

predicting IMDs

Let's look at some analytical tools the system designer uses to determine these products. Assume we're going to design a fixed-frequency receiver for 70 MHz (fig. 1). With a local oscillator of 90 MHz, the receiver will have a first IF of 160 MHz using an up-conversion mixing technique. (The second conversion of this receiver is not discussed here in order to simplify this case.) To use the mixer product chart (fig. 2) normalized frequencies must be calculated. Dividing the design frequency by the local oscillator frequency generates the first normalized number:

$$\frac{f_1}{f_2} = \frac{70}{90} = 0.778$$

Dividing the first IF by the local oscillator frequency generates the second normalized number:

$$\frac{f_{1-IF}}{f_2} = \frac{160}{90} = 1.778$$

With this information and the mixer product chart, find the locus point (the intersection of a system of lines which satisfies one or more given conditions) for the two ratios, as shown in fig. 3. The chart in fig. 2 shows all products produced not only by the fundamentals, but also by multiples of the signal and oscillator frequencies present in the mixer stage, and correspond to the second, third, fourth, fifth, and sixth harmonics of the two mixed signals.

By Cornell Drentea, WB3JZ0, 7140 Colorado Avenue North, Brooklyn Park, Minnesota 55429
The order of the product is determined by the sum of the harmonic orders involved. For example, \(5f_1 + 2f_2\) is a seventh-order product (regardless of the mathematical operation involved) because it involves the fifth harmonic of \(f_1\) combined with the second harmonic of \(f_2\). Higher-order products are also present, but they are usually of a sufficiently low level so as not to cause problems. Any line that crosses the locus point corresponds to a product which is identified on the edge of the chart. Values of \(f_1\) and \(f_2\) can be substituted and the interference can be anticipated and avoided. If the locus point is examined closely, one can be assured that there are no in-band products in this case, but analyzing the areas adjacent to the locus point indicates some out-of-band spurs (spurious, unwanted products) which will have to be suppressed by the IF filter to the level specified in the requirement. By knowing their order (given by the chart), their predicted amplitude can be found (in our case, 170 MHz). The seventh and ninth-order products \((5f_1 - 2f_2\) and \(5f_2 - 4f_1)\) are predicted to be 81 dB below the IF level (typical manufacturer prediction). The IF filter will have to provide 9 additional dB of attenuation at 170 MHz to accomplish a system requirement of 90 dB as shown in fig. 1. A simpler method of finding these products can be achieved by using the charts in tables 2 and 3. The chart shown in table 2 is for mixers used in an additive mode \((B + A)\) where \(A\) and \(B\) are the mixing frequencies and \(B > A\). The chart shown in table 3 is for mixers used in a subtractive mode \((B - A)\) with the same conditions applying. If using the same example, and substituting \(f_1\) for \(A\) and \(f_2\) for \(B\), the same ratio can be obtained.

\[
\frac{f_1}{f_2} = \frac{A}{B} = \frac{70}{90} = 0.778
\]

We then use table 2, since the mixer in our example operates in the additive mode, and find the corresponding products as indicated in fig. 4 \((5A - 2B\) and \(5B - 4A)\). If the numerical values of \(A\) and \(B\) are inserted in these formulas, the same resultant values can
be obtained with this method, which is usually preferred. If this receiver were not designed for a fixed frequency, you can imagine what a job it would be to evaluate all the higher-order products generated by using this method.

computers speed the analysis

Today, computer programs are used successfully to help designers anticipate potential problems. In our example, a TI-59 programmable calculator is used to perform this tedious task. (A program listing is included in table 4 for those wishing to work out their own problems.)

This program finds all combinations of \((m \times \text{LO}) \pm (n \times \text{RF})\) and prints those frequencies that fall in the center of the IF by actually indicating “IF” in the printout. Those frequencies that fall within the predetermined IF bandwidth but are not exactly in the center are also reported in the printout by the indication “BW” (fig. 6). The sample program in fig. 6 shows how our 70 MHz fixed-frequency receiver may be analyzed using this method. If the 90 MHz LO is entered into the user-defined key A, the 70 MHz RF into B, the 160 MHz IF into C, and the IF bandwidth we wish to analyze into D (50 MHz), a report is obtained by depressing key E’, indicating that we are ready to run the program with the entered data as shown in fig. 5. If a mistake occurred in the process of entering the information, new data can be entered by repeating the above process with no alteration to the actual program. We can now run our analysis by depressing key E. A complete list of products will be automatically printed as shown in fig. 6. The process takes approximately four minutes to analyze all cases.

fig. 2. Intermodulation products chart.
of \(m \) and \(n \) within the 50 MHz bandwidth. This may seem to be a long time, but not if we compare the time expended in manually searching the product chart in fig. 2.

This program can be recorded on two magnetic cards. For those with a TI-59, table 4 shows the actual listing of the intermodulation products program. Partitioning (OP 17) is 479.59. Table 5 lists the procedures necessary for running the program. The amplitude of the undesired products identified depends on their particular order number \((m + n)\). Most products of the seventh order or higher will be at least 60 dB down from the IF level, and are usually not considered to cause problems. Unless different instructions are entered, the program will automatically calculate all products to the twelfth order \((6 \times \text{LO}) \pm (6 \times \text{RF})\) (no user inputs to \(A'\) and \(B'\) are required). If a different resolution is desired, the two keys should be addressed accordingly. The execution time of this program is a direct function of the product order and the IF bandwidth required by the user.

a system design for a general coverage communications receiver

In the following pages we will consider a system design for a general coverage HF receiver with a wide input bandwidth (28 MHz). Unlike the dedicated single frequency receiver analyzed in the above, this wideband receiver presents a considerably more
AMT-1
The Definitive
AMTOR Terminal Unit

Call us for our best price

AMTOR is the system of error correcting RTTY which has been rapidly overtaking conventional RTTY in Europe, just as its marine equivalent, SITOR, has been taking over in ship to shore communications.

It was originated by Peter Martinez, G3PLX (see June 1981 QST, p. 25). He first interpreted the international marine CCIR 476-1 specification for amateur use. Virtually all of the 400+ stations presently on AMTOR world wide are using software/hardware designs originated by Peter. The AMT-1 is a proven product which represents his latest and most highly refined design. It represents the culmination of over three years of development and on the air testing, and sets the standard against which all future AMTOR implementations will be judged.

Not only does it incorporate the latest AMTOR specification, but it gives superlative performance on normal RTTY, ASCII and CW (transmit only). As well as some fairly incredible real time microprocessor software, the AMT-1 boasts a four pole active receive filter, a discriminator type demodulator, a crystal controlled transmit tone generator, and a 16 LED frequency analyzer type tuning indicator, which is very easy to use.

Driven from a 12 volt supply, the AMT-1 connects to the speaker, microphone and PTT lines of an HF transceiver and to the RS-232 serial interface of a personal computer or ASCII terminal. All mode control is via ESCAPE and CONTROL codes from the keyboard (or computer program).

It used to be that C.W. was the ultimate mode for “getting through” when QRM and fading were at their worst. That’s no longer true — AMTOR will get through with perfect error-free copy when all other conventional transmission modes become useless.

So join the swing to AMTOR now and the large number of satisfied AMT-1 users already on the air outside of the U.S.A. Choose the definitive product. You’ll wonder why anyone uses normal RTTY! Send for details. Better yet, see your favorite AEA dealer.

C & A ROBERTS, INC.
18511 Hawthorne Blvd., Torrance, CA 90504
213-370-7451 24 Hours call 213-834-5868

AEA Brings you the Breakthrough!
The intersection of the vertical and horizontal lines corresponding to f_1 and f_2 (locus point of normalized frequencies) indicates the in-band intermodulation products. The out-of-band spurious outputs that happen to be in the vicinity of the IF frequency can also be verified by looking at the products adjacent to the locus point.

The design objectives are a communication receiver covering 2 to 30 MHz, with good image rejection, having a minimum of unwanted products. Looking at fig. 7, a double conversion approach is considered with an up-conversion first IF compatible with commercially-available monolithic crystal filters at 75 MHz. A phase-locked synthesizer used as the local oscillator produces the intermediate frequency. The same results can be obtained as with our previous example by using the intermodulation chart from table 2. Ratio $\frac{A}{B} = 0.778$ which points to a 7th and 9th order product (5A-2B and 5B-4A).
And many other Hustler Antennas & Mounts

HUSTLER ANTENNAS

SF2 - "Buck Buster" 5/8" Wave
2 Meter Antenna
w/3/8 x 24" Threaded Base - 3dB gain

CG144
5.2dB gain Collinear
w/3/8 x 24" Threaded Base

G6144 - 6dB
Base Antenna

G7144 - 7dB -
Commercial Grade
Base Antenna

$8.95
$23.95
$68.50
$98.00

HOT - EASY ON/OFF TRUNK MOUNT
with 3/8 x 24" Swivel Ball
for CG144 & SF-2

BBL144
BBLT144
BBLT440
HLM

...............................
...............................
...............................
...............................

$14.95

MRK-1
SF6M
THF
UHT-1

...............................
...............................
...............................
...............................

13.75
24.25
13.95
8.95

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF & COMMERCIAL LINE

DEALER INQUIRIES INVITED

TC1109 MONITOR

$140.00

TC1501 CAMERA

$140.00

SLOW/Fast SCAN SPECIAL

• TC1109
• TC1501

$298.00

WAHL SOLDER STATION

7 Watt DC
with Adjustable Temperature Control

$35.00

WAHL CORDLESS 7700

Quick Charge Cordless Iron
with Charger

$25.00

TOP BRAND Popular Receiving Tube Types FACTORY BOXED 75/80% OFF LIST

SEMI-CONDUCTORS

MRF 245/5D1416 $30.00
MRF 455 $18.95
MRF 456 $12.50
MRF 644/5D1088 $19.95
2N3055 $95
2N6084 $12.50
811A $12.00
812 $35.00

TUBES

3-400Z $85.00
3-500Z $85.00
4-400A $80.00
4CX2508 $50.00
572B $39.50
576 $95
8112 $96.00
8908 $16.50

6146 $6.50
6369 $4.25
6683B $6.75
7360 $9.15
7735 $29.50
8156 $10.95

MINIMUM ORDER $25.00

ALLOW $3.00 MINIMUM FOR UPS CHARGES

DEALER INQUIRIES INVITED

COMMUNICATIONS, INC.

2115 AVENUE X • BROOKLYN, N.Y. 11235
800-221-0860 212-646-6300 TWX235125
oscillator for the first mixer must be tunable in 10 kHz steps over this range. Fine tuning is achieved in the second conversion stages with another synthesizer which provides frequency resolution of 100 Hz within the 10 kHz steps. A 9 MHz second IF was chosen because of the availability of good crystal-lattice filters at that frequency. Two sideband filters are used in this IF. The system will be analyzed using the previously described charts; the TI-59 computer program will be used to perform the calculations.

Fig. 8 shows the mathematical model for this receiver. An RF signal within a 2.000 to 30.000 MHz range is injected into the first mixer, where it subtracts from the first local oscillator frequency and table 5. User instructions for the TI-59 intermodulation products program.

<table>
<thead>
<tr>
<th>STEP</th>
<th>DESCRIPTION</th>
<th>ENTER</th>
<th>PRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input the highest LO harmonic of interest*</td>
<td>m</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Input the highest IF harmonic of interest*</td>
<td>n</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>INPUT LO FREQUENCY</td>
<td>LO</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>INPUT IF FREQUENCY</td>
<td>IF</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>INPUT LO FREQUENCY</td>
<td>IF</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>INPUT BANDWIDTH</td>
<td>BW</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>PRINT CONDITIONS ENTERED</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RUN PROGRAM</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Program finds all combinations of m x LO ± n x IF and frequencies that are equal to the IF chosen (m=IF) and those that lie within the IF bandwidth (BW). *If no input, a sixth order will be automatically analyzed.

<table>
<thead>
<tr>
<th>USER DEFINED KEYS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LO</td>
</tr>
<tr>
<td>B</td>
<td>IF</td>
</tr>
<tr>
<td>C</td>
<td>BW</td>
</tr>
<tr>
<td>D</td>
<td>RUN PROGRAM</td>
</tr>
<tr>
<td>E</td>
<td>NOT USED</td>
</tr>
<tr>
<td>F</td>
<td>CONDITIONS REPORT</td>
</tr>
</tbody>
</table>

Conditions

6	x	LO
6	x	RF
90	LO	
70	RF	
160	IF	
50	BW	

fig. 5. Depressing Key E will print out all conditions entered by the operator.

Table 4. Listing of the TI-59 program for intermodulation products. Partitioning is 478.58.

```
000 76 LBL 049 43 RCL 096 01 1
001 11 R 050 02 03 099 94 0
002 45 STD 051 95 + 100 04 0
003 03 03 052 42 RCL 101 02 02
004 91 R 053 02 02 102 97 852
005 76 LBL 054 65 × 103 09 09
006 12 B 055 43 RCL 104 19 05
007 45 STD 056 04 04 105 43 RCL
008 04 04 057 95 = 106 12 10
009 91 R 058 50 101 107 42 STD
010 76 LBL 059 42 STD 108 02 02
011 13 C 060 05 05 109 85 +
012 42 STD 061 71 SFR 110 01 1
013 06 06 062 01 01 111 95 =
014 91 R 063 15 15 112 42 STD
015 76 LBL 064 43 RCL 113 09 09
016 14 D 065 01 01 114 91 RCL
017 42 STD 066 65 × 115 43 RCL
018 07 07 067 43 RCL 116 06 06
019 91 R 068 03 03 117 32 RCL
020 76 LBL 069 75 - 118 43 RCL
021 15 E 070 43 RCL 119 05 05
022 43 RCL 071 02 02 120 67 E 2
023 06 06 072 65 - 121 01 01
024 75 - 073 43 RCL 122 45 45
025 43 RCL 074 04 04 123 43 RCL
026 07 07 075 95 - 124 13 13
027 55 + 076 50 101 125 32 XIT
028 02 02 077 42 STD 126 42 RCL
029 95 + 078 05 05 127 05 05
030 42 STD 079 71 SFR 128 17 05
031 13 13 080 01 01 129 01 01
032 85 + 081 15 15 130 32 32
033 43 RCL 082 01 01 131 92 RTH
034 07 07 083 94 × 132 43 RCL
035 95 + 084 44 SUM 133 44 44
036 42 STD 085 01 01 134 32 XIT
037 14 04 086 97 852 135 43 RCL
038 69 NDP 087 08 08 136 05 05
039 69 NDP 088 19 R 137 22 XIT
040 69 NDP 089 42 RCL 138 77 GE
041 68 NDP 090 11 11 139 01 01
042 69 NDP 091 42 STD 140 60 00
043 69 NDP 092 01 01 141 92 RTH
044 76 LBL 093 95 + 142 00 00
045 19 R 094 01 01 143 00 00
046 43 RCL 095 95 - 144 00 00
047 01 01 096 42 STD 145 71 SFR
048 65 × 097 08 03 146 01 01
```

30 November 1983
produces a 75.000 MHz IF. This local oscillator is configured as a synthesizer operating from 77.000 to 105.000 MHz in 0.01 MHz (10 kHz) steps. This dictates the bandwidth of the first IF to be 10 kHz minimum, from 74.995 to 75.005 MHz in order for the second local oscillator to be able to provide fine tuning in the second IF. A 75 MHz tandem monolithic filter from Piezo-Technology Inc. can be used in this application. If $RF = A$ and $LO = B$, two ratios $\frac{A}{B}$ can be created: R_{minimum} and R_{maximum}.

$$R_{\text{MIN}} = \frac{2.000}{77.000} = 0.025$$
$$R_{\text{MAX}} = \frac{30.000}{105.00} = 0.285$$

We will use the mixing product chart (table 3) for subtraction since our IF is 75 MHz, and find the entire band between R_{MIN} and R_{MAX} as shown in fig. 8. Any product indicated within this band could be a potential problem for the corresponding received frequency.

A look at the chart indicates a series of problems (7A, 6A, 5A, 4A, 3A, 2B-5A, with the worst one at 3A). If the TI-59 program is used, we can verify this case as shown in fig. 8. At first we can say that the third harmonic of one of the two mixing signals could be quite powerful and could indeed produce a problem, but a closer look at the system indicates that the offending frequency A, is actually a received frequency and chances are very good that a distant 25 MHz station has a level of insignificant third harmonic (75 MHz) appearing at the antenna of our receiver.

The problem is further diminished by our receiver's preselector, which greatly attenuates at 75 MHz. The same conditions apply to the other products indicated by the chart. They present even a better case since they are further removed from the received frequencies. This is a case where judgment is more important than all our tools, which are only used to warn of possible problems.

The case would be different, however, if the B signal were the offender, as 3B would have been the third harmonic of the local oscillator, which can be of relatively high amplitude and cause interference.
The filtered first IF range of 74.995 to 75.005 MHz is further mixed with the second local oscillator operating in 0.0001 MHz (100 Hz) steps over the 10 kHz range of 83.995 to 84.005 MHz, providing fine tuning for the receiver. If R_{MIN} and R_{MAX} are found for the second IF a new band of interest can be located on our chart, as shown in fig. 8.

$$R_{MIN} = 74.995 \quad 83.995 = 0.89285076$$
$$R_{MAX} = 75.005 \quad 84.005 = 0.89286352$$

Since the range to be covered is only 10 kHz, the band is very narrow and in reality is expressed by the same number (0.892) because the chart extends to only three decimal places. The IF is centered at 9.000 MHz and its bandwidth is determined by the two single-sideband filters. For simplicity, the minimum corner frequency (-3 dB) of the lower filter and the upper corner frequency for the higher filter were chosen, determining a total bandwidth (-3 dB) of 0.0061 MHz (5.1 kHz for both sidebands). Fig. 8 clearly indicates that there is no problem except for a thirteenth order product which can be ignored. Since the band is so narrow and close to the 1.000 ratio which presents quite a few problems, the computer

![Diagram](image-url)
CONDITIONS

7. \(\times \) LO
7. \(\times \) RF
83.995 LO
74.995 RF
9. IF
0.0374 BW
1. \(\times \) LO
1. \(\times \) RF
9. = IF

fig. 9. TI-59 program indicates no intermodulation problem in the second IF of the double-conversion communications receiver. The \(-60\) dB bandwidth \((0.0374\ MHz)\) of the filters was used for a worst-case analysis.

is used to completely insure safety. Unless otherwise instructed, the program will not point out the thirteenth product as it is programmed to only calculate products to the twelfth order. If the order is increased to 14, the computer will indicate that there is no case for a 7A-6B within the ratio range.

In analyzing the second IF in fig. 8, a total bandwidth of 0.0374 MHz \((37.4\ kHz)\) is considered to insure complete freedom from intermodulation products within the slopes of the 8-pole filters used in this IF \((37.4\ kHz)\) is the \(-60\) dB total bandwidth of the two filters, as shown in fig. 9. It can be seen from this analysis that the charts can be used only as a guideline. For a more in-depth analysis, the TI-59 program or some other means of calculation must be used to obtain precise answers.

Up to this stage no real interference problems have been encountered. The last conversion is from 9.000 MHz \(\pm \) 0.00255 MHz to audio between 0.00045 to 0.00255 MHz \((450\ Hz\ to\ 2.550\ kHz)\) in both single-sideband filter cases. The conversion takes place in a third mixer (product detector), as shown in the example (fig. 10).

\[
R_{\text{MIN}} = \frac{8.9985}{9.000} = 0.999833
\]

\[
R_{\text{MAX}} = \frac{9.000}{9.0015} = 0.999833
\]

These identical ratios locate the intermodulation band to be analyzed as very close to the 1.000 ratio in the chart and with a \(-3\) dB bandwidth of 0.0021 MHz \((2.1\ kHz)\). No problems are found for either one of the single-sideband filters. However, if the \(-60\) dB bandwidth \((0.0374\ MHz)\) of the 8-pole filters is used for the TI-59 computer program, the 2B-2A problem circled in fig. 8 becomes evident at the 3 kHz point in the slopes of our filters. This is true for either sideband filter as shown in fig. 11 and the resulting audio distortion can be cured only by improving the shape factor of the filters, in our case by doubling the number of poles to 16 for each one of the single-sideband filters.

Another way to cure this problem would be to introduce a lowpass filter in the audio portion of our receiver which will cut off all frequencies beyond the 2.55 kHz which is the highest frequency passed by the filters. A practical cut-off point would be at 2.8 kHz. The first method is preferred, however, because it also provides better adjacent-channel rejection, improving overall receiver selectivity.

Conclusion

In performing this analysis for the design of a double-conversion general-coverage communications receiver.
tions receiver, we have shown that the design meets the requirements which introduces a minimum of intermodulation problems. We can now proceed with confidence to the circuit design of our receiver. All frequency mixing techniques used in communications receivers generate unwanted products within their outputs, and the fact remains that any configuration chosen is simply the best compromise in the opinion of the designer. The problem of intermodulation distortion within a receiver's scheme can be minimized by performing a careful analysis, such as explained in this article.

Bibliography

This article was adapted from the author's book, *Radio Communications Receivers*, published by Tab Books, Inc., and available from Ham Radio's Bookstore, Greenville, NH 03048. ($14.95 ppd).

Artwork adapted or reprinted with permission from EDN Magazine, Cahners Publishing Company, copyright August 1967. Editor
CHAMPAGNE RTTY/CW on a Beer Budget

CP-1 Computer Patch™ Interface

The AEA Model CP-1 Computer Patch™ interface will let you discover the fastest growing segment of Amateur Radio: computerized RTTY and CW operation.

When used with the appropriate software package (see your dealer), the CP-1 will patch most of the popular personal computers to your transceiver for a complete full-feature RTTY/CW station. No computer programming skills are necessary. The CP-1 was designed with the RTTY neophyte in mind, but its sophisticated circuitry and features will appeal to the most experienced RTTY operator.

The CP-1 offers variable shift capability in addition to fixed 170 Hz dual channel filtering. Auto threshold plus pre and post limiter filters allow for good copy under fading and weak signal conditions.

Transmitter AFSK tones are generated by a clean, stable function generator. Plus (+) and minus (-) output jacks are also provided for CW keying of your transmitter. An optional low cost RS-232 port is also available. The CP-1 is powered with 16 VAC which is supplied by a 117 VAC wall adaptor included with the CP-1.
time and frequency standards: part 1

Accurate measurement requires accepted standards, precision electronics, and an understanding of atomic physics.

Radio Amateurs are probably more concerned about frequency than about any other electrical parameter. However, when discussing frequency, it is important to remember that the reciprocal of frequency is period, and that this is expressed in units of time. Because of this relationship, accurate frequency standards must be based on accurate time standards. This two-part article gives a brief historical overview of this field, examines the more common methods of determining frequency and time standards, discusses the advantages and limitations of each, and also succinctly describes some commercial equipment employed in these areas. Part 1 addresses VLF single-frequency comparison techniques; part 2 will cover multiple-frequency VLF techniques and other more advanced systems.

The World Administrative Radio Council (WARC) has set aside five bands for standard frequency and the time signal emissions as shown in fig. 1. The carrier frequencies for such broadcasts should be maintained accurately enough so that the average daily fractional frequency deviations from these internationally designated standards for measurement of time intervals do not exceed $\pm 1 \times 10^{-10}$. The map in fig. 2 shows numerous radio stations used for time-frequency determination (TFD). Stations that provide strong signal transmissions to North America are listed in table 1. Other stations that can be received elsewhere in the world are listed in table 2.

LF time and frequency systems

The majority of American and international “VLF” standards stations transmit within the VLF (10 to 30 kHz) and LF (30 to 300 kHz) bands, respectively.

In the early part of this century, both systems were used for long-range communication between colonies and parent countries, and by navies for general trans-oceanic communication. Then, as now, the advantages of VLF and LF systems included reliability with very little signal attenuation, even over vast distances.

In many instances these systems were replaced with HF systems that used smaller antennas. But many novel VLF antenna systems have been built; some consist of long cables strung across valleys or volcanic craters, from towers several hundred meters tall. One such system in Cutler, Maine, radiates 1 MW of power using a “top hat” supported by twenty-six masts, each approximately 300 meters in height. This installation covers over two square kilometers and has a radial ground system of buried copper wire that totals over three million meters in length.

Interest in LF band communications was revived

<table>
<thead>
<tr>
<th>Band No.</th>
<th>Designation</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>VLF (Very Low Frequency)</td>
<td>20.0 kHz ± 50 Hz</td>
</tr>
<tr>
<td>6</td>
<td>MF (Medium Frequency)</td>
<td>2.5 MHz ± 5 kHz</td>
</tr>
<tr>
<td>7</td>
<td>HF (High Frequency)</td>
<td>5.0 MHz ± 5 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0 MHz ± 5 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0 MHz ± 10 kHz</td>
</tr>
<tr>
<td>9</td>
<td>UHF (Ultra High Frequency)</td>
<td>20.0 MHz ± 10 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.0 MHz ± 10 kHz</td>
</tr>
<tr>
<td>10</td>
<td>SHF (Super High Frequency)</td>
<td>400.1 MHz ± 25 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(satellite)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.202 GHz ± 2 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(satellite space to earth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.427 GHz ± 2 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(satellite earth to space)</td>
</tr>
</tbody>
</table>

fig. 1. International standard time and frequency radio assignments.

By Vaughn D. Martin, 114 Lost Meadows, Cibolo, Texas 78108
during World War II, with the evolution of the Radux navigational system, in which low-frequency carriers demonstrated exceptional stability.

Since the mid-1950s there has been great progress in the development of LF communications. Work by Pierce, Mitchell, Essen, and Crombie showed a 100 to 1000 time improvement in frequency compared to existing HF techniques. Early in the 1960s, more stable atomic frequency standards began to take the place of crystal oscillators, and confidence in the

<table>
<thead>
<tr>
<th>station</th>
<th>frequency</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBR</td>
<td>16.0 kHz</td>
<td>Rugby, England</td>
</tr>
<tr>
<td>NAA</td>
<td>17.8 kHz</td>
<td>Cutler, Maine</td>
</tr>
<tr>
<td>NPG</td>
<td>18.6 kHz</td>
<td>Jim Creek, Washington</td>
</tr>
<tr>
<td>NPM</td>
<td>23.4 kHz</td>
<td>Lulaulei, Hawaii</td>
</tr>
<tr>
<td>WWVL</td>
<td>20.0 kHz</td>
<td>Fort Collins, Colorado</td>
</tr>
<tr>
<td>NSS</td>
<td>21.4 kHz</td>
<td>Annapolis, Maryland</td>
</tr>
<tr>
<td>NBA</td>
<td>24.0 kHz</td>
<td>Balboa, Canal Zone</td>
</tr>
</tbody>
</table>

Table 1. “Standard” VLF stations receivable in the United States (10.0-30.0 kHz).

Table 2. Worldwide VLF stations.

<table>
<thead>
<tr>
<th>station</th>
<th>frequency</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>JG2AS</td>
<td>40.0 kHz</td>
<td>Komingawa, Japan</td>
</tr>
<tr>
<td>OMA</td>
<td>50.0 kHz</td>
<td>Podezbady, Czechoslovakia</td>
</tr>
<tr>
<td>WWVB</td>
<td>60.0 kHz</td>
<td>Fort Collins, Colorado</td>
</tr>
<tr>
<td>MSF</td>
<td>60.0 kHz</td>
<td>Rugby, England</td>
</tr>
<tr>
<td>HBG</td>
<td>76.0 kHz</td>
<td>Pranginis, Switzerland</td>
</tr>
<tr>
<td>DCF-77</td>
<td>77.5 kHz</td>
<td>Mainflingen, Federal Republic of Germany</td>
</tr>
<tr>
<td>CYZ-40</td>
<td>80.0 kHz</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>FTA-91</td>
<td>91.15 kHz</td>
<td>St. Andre de Corc, France</td>
</tr>
</tbody>
</table>

Figure 2. Worldwide location of broadcasting stations useful for TFD.

November 1983
A typical electromechanical VLF single-frequency comparator.

fig. 3. A typical electromechanical VLF single-frequency comparator.

fig. 4. The Fluke Model 207/205 VLF receiver/comparator.

fig. 6. The Tracor frequency difference meter (Model 527E).

VLF single frequency comparison

An older, electromechanical VLF method is shown in fig. 3. It uses the principle of a servo-driven phase shifter continuously phase locking a synthesized signal from the local standard to the received VLF signal. A linear potentiometer’s output, connected to a constant voltage source, generates a voltage related to the phase shifter’s position. The recorder shows the amount of phase shift experienced by the local synthesized signal and whether or not it agrees with the phase of the received signal. An early instrument that used this principle was the Fluke model 207/205 VLF receiver/comparator (see fig. 4). A more modern piece of equipment designed for the same purpose is the Tracor model 900A VLF/LF receiver shown in fig. 5, which operates in the VLF band from 20 to 25 kHz, and compares the phase of a local frequency standard with the received carrier of a frequency-stabilized transmitter. With this instrument, a local standard can be checked to within ten parts per billion.

A related instrument manufactured by Tracor is the model 527E frequency difference meter, shown in fig. 6. This solid-state instrument measures frequency differences instantly and has a built-in meter to provide signal-quality assessment regardless of whether the two signals (the reference and signal frequencies) are the same. Since this device is used in the calibration and determination of time and frequency, it is assumed that the two measured frequencies are relatively close to one another. The 527E has a scale that determines signal difference magnitude in the parts per 10^7 to 10^{11} range. An external recorder connector on the back of the instrument is available so that the internally generated dc voltage that is produced in proportion to frequency difference can be recorded. Consequently, this instrument can be used to adjust two oscillators to the same frequency, measure frequency differences between two oscillators, offset one oscillator from another by a given amount, and determine the short and long-term drift of an oscillator.

fig. 5. The Tracor VLF/LF receiver (Model 900A).

new system was soon rewarded when Pierce, Winkler, and Corke demonstrated that a transatlantic phase comparison could be made on a 16-kHz carrier to within 2 microseconds. Today, most FTDs are made by atomic frequency standards and referenced to a coordinated international time base. This has seen the realization of economical and reliable dissemination of frequency to within several parts per 10^{11} in a 24-hour period.
Please enter my gift subscriptions to HAM RADIO Magazine as follows:

EACH GIFT JUST $14.50
SAVE OVER 25%
Prices U.S. only

REG. $19.50

Name ___________________________ Call ___________________________
Address ___________________________ ___________________________
City ___________________________ State ____________ Zip ____________

☐ new ☐ renewal

Name ___________________________ Call ___________________________
Address ___________________________ ___________________________
City ___________________________ State ____________ Zip ____________

☐ new ☐ renewal

Name ___________________________ Call ___________________________
Address ___________________________ ___________________________
City ___________________________ State ____________ Zip ____________

☐ new ☐ renewal

☐ Start or ☐ Renew my own HR subscription
☐ Enclosed is a check or money order for $________ for ________ subscriptions (use separate envelope)
☐ VISA ☐ MasterCard ☐ Bill me later
Acct # ____________ Expires ____________ MC Bank # ____________
My Name ___________________________ Call ___________________________
Address ___________________________ ___________________________
City ___________________________ State ____________ Zip ____________

Prices U.S. only
SUPER GIFT IDEA
GIVE HAM RADIO THIS YEAR!

It’s simple and easy and
You save over 25%.

That’s right. You save over 25% off the regular one
year rate of $19.50. Just $14.50 brings 12 big, fat,
issues, jam-packed with all the latest from state-of-
the-art electronics to easy-to-build projects. We will
even send an attractive personalized gift card to
the recipient(s) so they will know about your
interest in their future as hams.

1984 is going to be an exciting year for
Amateur Radio. The only way to stay on top of
all of the late breaking developments is with a
subscription to ham radio Magazine.

There has never been a better time than
now to “gift” ham radio to that hard-
to-buy-for friend . . . or yourself.

One year, 12 issues
Reg. $19.50
SPECIAL PRICE $14.50
SAVE OVER 25%

Please send my ham radio gift subscrip-
tions as indicated. Also send a handsome gift
acknowledgement card. (Gift card will be sent
if your order is received before Dec. 16, 1983.)

From:
Name ____________________________
Address ____________________________
City ____________________________State _______ Zip ______________

☐ Payment enclosed $(check or money order)
☐ Mastercard ☐ VISA/BAC
Acct. # __________ Exp. __________ Bank # __________
(MC only)

SEND TO:
Name ____________________________
Address ____________________________
City ____________________________State _______ Zip ______________
☐ New Subscription ☐ Subscription Renewal

SEND TO:
Name ____________________________
Address ____________________________
City ____________________________State _______ Zip ______________
☐ New Subscription ☐ Subscription Renewal

SEND TO:
Name ____________________________
Address ____________________________
City ____________________________State _______ Zip ______________
☐ New Subscription ☐ Subscription Renewal

FILL OUT AND MAIL TO:
HAM RADIO MAGAZINE
Greenville, NH 03048
(603) 878-1441

PRICES U.S. Only. CANADA $21.50 per year.
Use Handy Bind-in Card or this Form.
The Tracor rubidium frequency standard, Model 308-A. Fig. 7.

Diagram of the hydrogen maser. Fig. 8.

Many labs in which extremely accurate and drift-free frequency standards are required use the Tracor 308-A to determine rubidium 87 frequency standards. This instrument, shown in fig. 7, is set at the factory for 10 parts per billion accuracy and has a month-long drift stability term of better than 30 parts per billion. Used in astronomy, navigation, metrology and communications, this instrument has an MTBF (mean time between failures) of better than 25,000 hours; compare this to many airborne military electronic pieces of equipment with MTBFs of less than 500 hours.

With the advent of solid-state electronics and mass production techniques these seemingly exotic pieces of equipment are not unduly expensive, considering the cost of comparable units ten years ago. The VLF/LF receiver with antenna is priced at approximately $2500; the frequency difference meter, $4800; and the rubidium 87 frequency standard, $14,500.

Why is the rubidium 87 standard so much more expensive than the others? First, let’s take a look at atomic frequency standards in general.

Atomic frequency standards

Atomic frequency standards employ an atomic resonance device with a frequency source such as a voltage-controlled oscillator phase-locked to it. These devices fall into two categories, active and passive. Cesium beam tubes and rubidium vapor gas cells are passive devices, whereas hydrogen masers are active devices, or resonators.

The hydrogen maser. This — the most stable of all known sources — provides a frequency that is well defined without any need for comparison with an external standard, as we have done previously. (For a quick visual explanation of the operation of the hydrogen maser, see fig. 8.) Unfortunately, this piece of equipment is large, expensive, power consuming, and at best suited only to laboratory use at this time. Its use is consequently limited to specialized applications requiring extreme accuracy as well as extraordinary stability. The hydrogen maser uses a beam of hydrogen atoms directed through a highly nonhomogeneous magnetic field that selects atoms in states of higher energy and allows them to proceed into a quartz bulb. Here, a tuned microwave cavity allows atoms to make random transits; the atoms reflected at each encounter within the bulb walls. While undergoing many collisions with the walls, the atoms' effective interaction times with the microwave field is lengthened to about 1 second. During this interaction process, the atoms tend to "relax" and release energy to the microwave field within the tuned cavity. This field also stimulates more atoms to radiate, and a steady-state maser reaction is achieved.
Cesium beam standards. The basis for operation of the cesium beam standard is the Cesium 133 atom. This system yields an accurate frequency of 9,192,631,700.0000 Hz and is relatively impervious to external electric and magnetic field disturbances. (Refer to fig. 9 for a visual explanation of the cesium beam standards.) As the Cesium 133 atoms leave the "oven," they are beamed into a vacuum chamber, where they are subjected to excitation by microwave energy. For frequency control, the atoms are made to perform a resonant absorption of energy from the microwave signal; after passing through a second magnetic field, they are deflected toward a hot-wire ionizer. The atoms are then passed through a mass spectrometer that detects and helps remove any contaminants that could otherwise cause random electrical noise bursts. Ion current is converted to electric current by the electron multiplier, and the amplified current is passed through signal processing electronics, which in turn regulates the frequency of a voltage-controlled oscillator. The oscillator's output frequency is multiplied and fed back again to the cesium beam through a waveguide that closes the loop and provides feedback control.

Rubidium vapor standards. Rubidium vapor standards, like cesium beam standards, employ a passive resonator to stabilize a quartz oscillator. Rubidium standards, however, are not self-calibrating and must therefore be checked against a cesium standard during construction. But once built, they are relatively small and are easily transported. Operation (see fig. 10,) is based on the principle of the containment of rubidium vapor and an inert buffer gas in a cell illuminated by a beam of precisely filtered light. A photodetector monitors changes, near resonance, in the amount of light absorbed as a function of applied microwave frequencies. The microwave signal is derived by multiplication of the quartz oscillator frequency. Resonance frequency is influenced by the inert buffer gas pressure. This is why rubidium must be calibrated against a cesium reference standard. The Hewlett-Packard model 5065A, shown in fig. 11, is one rubidium vapor frequency standard. It exhibits an extremely low drift rate of less than 10 parts per billion per month and a short-term stability of better than 5 parts per billion averaged over a 1-second period.

Time standards

As stated previously, time and frequency are reciprocal quantities; therefore, in order for one to be accurate, its counterpart must likewise be accurate. But how is time precisely defined? This discussion examines several methods and demonstrates the inherent inaccuracies of each.

In 1958, Ephemeris Time (ET) based on orbital motion of the earth about the sun at the beginning of the year 1900, was established. But this is a difficult method, and comparisons to ET are impractical. In 1964 the General Conference of Weights and Measures tentatively adopted the "atomic second" based on the number of transitions of the Cesium 133 atom. The standard was fully adopted in 1967.

fig. 11. The Hewlett-Packard rubidium vapor frequency standard, Model 5065A.

fig. 12. The seasonal wavy motion on the circular path of precession of the Earth's orbit.
TU-470 WIRED
HOLIDAY SPECIAL $429.95
TU-300 WIRED $349.95

TU-170A WIRED $289.95
KIT $189.95
TU-170 KIT $149.95
DM-170 KIT $47.95

For more information & sales
1-800-HAM-RTTY
SERVICE 1-913-234-0198

ROM-116 TRS-80 RTTY/CW
• Split Screen Video
• Real Time
• Fourteen Buffers
• Text Editor
• Auto CW/ID
• Selcal, WRU
• Word Wrapping
• For Model I, III, IV
• Many More Features
• Mail Box software available too

Word Wrapping
For Model
I
II
III
IV

Many More Features
Mail Box software available too
Call for Prices

TOPEKA, KS 66601

The T.E.L. Model CS-1100 Total Communication System.
AT LAST! There is a state-of-the-art CW/RTTY/ASCII communications system that meets the sophisticated operator's demands for a quality product.

Feature
CMOS uprocessor based.
Membrane Switch front panel.
16 chr Intelligent LED display.
Super Narrow Filters.
Built-in 110 VAC supply.
500 chr Buffer (all modes).
Parallel Data Port.

Benefit
No RFI problems.
Insures reliability.
Readable to 12 feet.
No tuning required.
No extras to buy.
Review received text.
Connect to any printer or computer.

CW Operation: Send/Recv 5-90 wpm with Automatic Speed Tracking.
Four-99 chr memories with ability to insert text, will key any rig.
RTTY/ASCII: Receive at 60, 67, 75, 100 wpm and 110, 300 Baud with One Button Speed Selection.
A 30day unconditional guarantee and 1 year parts/labor warrantee assure satisfaction. Dealer inquiries invited.

Send for a free data package and comparison sheet.

Random Access Inc.
P.O. Box 61117 Raleigh, N.C. 27661

CeCo
COMMUNICATIONS, INC.
2415 AVENUE X
BROOKLYN, N.Y. 11235
(212) 646-6300
(800) 221-0840
TELEX: 235125

November 1983
Table 3. National Laboratories collaborating with BIH.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Laboratory</th>
<th>Qty</th>
<th>Mfr.</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHI</td>
<td>Deutsches Hydrographisches Institut, Hamburg, West Germany</td>
<td>1</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>F</td>
<td>Commission National de l’Heure, Paris, France</td>
<td>11</td>
<td>HP</td>
<td>CS Std</td>
</tr>
<tr>
<td>FOA</td>
<td>Research Institute of National Defence, Stockholm, Sweden</td>
<td>2</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>IEN</td>
<td>Instituto Elettrotecnico Nazionale, Torino, Italy</td>
<td>4</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>IGMA</td>
<td>Instituto Geografico Militar, Buenos Aires, Argentina</td>
<td>1</td>
<td>E</td>
<td>Cs Std</td>
</tr>
<tr>
<td>ILOM</td>
<td>International Latitude Observatory, Mizusawa, Japan</td>
<td>1</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>MSO</td>
<td>Mount Stromlo Observatory, Canberra, Australia</td>
<td>1</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of Standards, Boulder, Colorado</td>
<td>8</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>NIS</td>
<td>National Institute for Standards, Cairo, U. A. R.</td>
<td>1</td>
<td>LAB</td>
<td>Cs Std</td>
</tr>
<tr>
<td>NPL</td>
<td>National Physical Laboratory, Teddington, U. K.</td>
<td>1</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
<tr>
<td>NPRL</td>
<td>National Physical Research Laboratory, Pretoria, South Africa</td>
<td>1</td>
<td>Lab</td>
<td>Cs Std</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council of Canada, Ottawa, Canada</td>
<td>3</td>
<td>HP</td>
<td>Cs Std</td>
</tr>
</tbody>
</table>

Apparent solar time

It is based on the rotation of the earth about its axis with respect to the sun. Problems with this system because its unit of time derived would be valid only if the sun were to reappear over a fixed point of observation at uniform intervals; of course, it does not. Additionally, there are irregular variations in the rotational speed of the earth and the earth’s orbit is elliptical, not circular (see fig. 12). The orbital plane, therefore, does not coincide with the plane of the equator. (Then too, the orbital speed of an object whose path describes an ellipse is constantly changing.)

Mean solar time

It is simply apparent time averaged to eliminate variations due to orbital eccentricity and the tilt of the earth’s axis. In a leap year, we should have 365.25 days per year. But actually, we have 365.2444 mean solar days.

Universal time

As with mean solar time, is based on the rotation of the earth about its axis; the units UT were chosen so that on the average, local noon would occur when the sun was on the local meridian. The problem with this system is again that the rotation of the earth is not constant.

Coordinated universal time

It is corrected universal time which involves the frequency of a precision universal oscillator such as a cesium or rubidium clock being offset from its nominal frequency by an amount which allowed for the clock rate to be nearly coincident with UT2. (UT2 is a type of universal time that uses correction factors for seasonal variations in the rotation of the earth.) On January 1, 1972, the UTC system was improved to allow UTC time to accumulate at the same rate as International Atomic Time and therefore eliminate the problem of operating systems adding offsets such as the so-called “leap second” that is added each year.

Laboratories that collaborate with the Bureau International de l’Heure (BIH), the French equivalent of our NBS (see fig. 13), are listed in table 3. In addition to the three hydrogen masers listed, it is likely that the U.S.S.R. has at least one maser, although this information is hard to obtain.

There are other systems, including apparent sidereal time, and mean sidereal time, but it is sufficient to say that these herculean attempts to establish accurate time intervals are made so that somebody can have an oscillator that is truly fine-tuned. Seriously though, if this area of time-keeping seems fascinating to you, as it does to me, then you may want to obtain map No. 76, depicting worldwide time zones, from the U. S. Navy Defense Mapping Agency. You may also wish to be placed on the mailing list of the NBS Time and Frequency Services Bulletin issued monthly by the Time and Frequency Division of the National Bureau of Standards.
Anyway You Look At It.... ADM Has Your Antenna

ADM 11, ADM 13, ADM 16, ADM 20
Sturdy Aluminum & Steel Construction
Easy Assembly & Installation

ANTENNA DEVELOPMENT & MANUFACTURING, INC.
P. O. Box 1178, Hwy. 67 South
Poplar Bluff, MO 63901
(314) 785-5988 686-1484

acknowledgments
I would like to thank P. K. Weir of Hewlett-Packard and Lupe Lopez and Dick Rogers of John Fluke Mfg. and their respective companies as well as Tracor, Inc., for providing technical assistance and artwork for this article.

references

bibliography
Sprang, Steve, Calibration-Philosophy in Practice, Application Note, John Fluke Manufacturing Co., Inc.

ham radio
Clean up the computer clutter.

For less than $250 you can make your investment in yourself pay off!

Chances are you have spent a couple thousand dollars on setting up a computer system that gets a lot of your work done. But sometimes it gets to be work to work at it.

I know that when I have to move two program manuals and a pencil holder to boot up the disk drive, it is work. When there is an unlabeled floppy (that I am going to identify some day) on top of the monitor and the business checkbook is on top of the printer... and I will remember (I hope) before the next "report" comes through... that is work.

I found the annoyance of my own "computer clutter" was even worse than the extra work the disorder created. And that is when I started looking for some practical furniture for my computer set up. Since I had already spent a lot of money on the system itself, I was really dismayed when I found out how much it would cost to get a decent-looking desk or even a data table for my equipment. $400... $500... even more for a sleasy unit that looked like junk! In fact, it was junk! And it took a long time for me to find something that was really worth the money... and more.

A lot of my working day is spent with my computer, and I will bet a lot of your time is too. So I figure a "home" for my system—a housing that is good looking as well as efficient to work at—will pay off two ways:

1. Less work: an efficient and orderly layout will save me time and energy.
2. Personal satisfaction: good quality furnishings look better, they just plain feel better to work at too.

So imagine how good I felt to find the "Micro-Office" Work Center! These are fine pieces of computer system furniture that make my office-at-home as pleasant a place to work as it ought to be. And the biggest and best surprise is the low, low price for such good quality.

Here is what you get—all for only $249.50 plus shipping.

- Mar-resistant work surface. Your choice of oak or walnut grained. Work surface height is adjustable to your keyboard, your chair, your height.
- Two shelves plus work surface extender. Both shelves tilt to lock in position so that monitor faces you—in a position that does away with screen glare squinting and neck craning forever. Retainer bar keeps equipment from sliding off shelf. Snap-in bookends hold reference manuals and programs.
- Strong, sturdy and steady. All-steel welded frame construction is concealed by top-quality wood grain surfaces with finished trim. Adjustable floor levelers included. The work center is really a piece of fine furniture.
- There is no risk in buying from us either. We will make a full refund of purchase price plus shipping charges if you return the workcenter within 30 days for any reason whatsoever. In addition, the product is warranted for any defects in materials or construction for a full year from date of purchase. This is a no-risk investment in your own productivity and work efficiency that will pay off for years to come—even if you do not yet have a microcomputer of your own.
- Take your choice for your own work center decor. Order 48-inch unit in walnut, #2KPO-945, or in oak, #2KPO-947. Only $249.50 for each unit plus $20.00 shipping charge. On orders for two or more units at the same time, shipping charge applies to only the first unit ordered. Shipment made UPS, so we cannot ship to post office box. Illinois residents please add $15 per unit sales tax. Please allow 10 extra days for personal checks to clear. Sorry—at these special offer prices we cannot ship c.o.d. or bill direct.

CALL TOLL FREE TODAY WHILE SUPPLIES LAST: 1-800/323-8064.

In Illinois call 1-312/251-5699. Or mail check with order to:

Micro-Mart Distributors
Dept. HR • 1131 Central Street • Wilmette, IL 60091

More Details? CHECK—OFF Page 118

November 1983
International Crystals & Kits FOR THE EXPERIMENTER

$7.80 ea.

0.02% Calibration Tolerance

EXPERIMENTER CRYSTALS
(HC 6/U Holder)

Cat. No. Specifications
031300 3 to 20 MHz — For use in OF-1 OSC Specify when ordering.
031310 20 to 60 MHz — For use in OF-1 OSC Specify when ordering.

OF-1 OSCILLATOR
The OF-1 oscillator is a resistor-capacitor circuit providing oscillation over a range of frequencies by inserting the desired crystal. 2 to 22 MHz, OF-1 LO, Cat. No. 035108. 18 to 60 MHz, OF-1 HI, Cat. No. 035109. Specify when ordering.

MXX-1 Transistor RF Mixer
3 to 20 MHz, Cat. No. 035105
20 to 170 MHz, Cat. No. 035106

SAX-1 Transistor RF Amp.
3 to 20 MHz, Cat. No. 035102
20 to 170 MHz, Cat. No. 035103

BAX-1 Broadband Amp
20 Hz to 150 MHz, Cat. No. 035107

WRITE FOR BROCHURE

International Crystal Mfg. Co., Inc.
10 North Lee, P.O. Box 26330
Oklahoma City, OK 73126

CONSIGNMENTS OF SALE: Sold on a cash basis. Shipping and postage inside U.S.A. will be prepaid by ICM if full remittance is received with order.

ORDERING INSTRUCTIONS: Order by catalog number. Enclose check or money order with your order.

FOREIGN ORDERS: Prices quoted for U.S. orders only. Orders for shipment to other countries will be quoted on request. Prices subject to change. Minimum foreign order $25.00.

Hi we're
Hatry Electronics

CDE
AMPHENOL

AMIDON Associates

HUSTLER
J. W. Miller

B&W
DRAKE

DAIWA
ICOM

Hustler Antennas

MFJ ENTERPRISES, INCORPORATED

Bash Books

UNR-ROHN
Division of UNR, Inc.

ICNE
Radio Amateur Callbook INC.

hi-gain

Larsen

Hatry Electronics
The Elect in Electronics
500 LEYARD STREET
HARTFORD, CONN. 06114
Phone 203-527-1881

NEW FROM LUNAR

STRIPLINE
POWER AMPLIFIER KITS
50, 144, 220 AND 432 MHZ.

Perfect for EME, aurora, meteor and tropo scatter, and other specialized communications modes.

These high performance state-of-the-art amplifiers come in two basic models: 500 watts output using either the 4CX250 family or 8730 tetrode tubes. 1000 watts output using 8874 triode tubes. The amplifier is 12" x 8" x 6" and weighs just 14 lbs. excluding cooling blower.

Power supply kits for both triode and tetrode models available in kit form. Rated outputs are 2,000 VDC @ 500 ma; 7.6 VAC @ 6A for filament voltages; for tetrode models 300 VDC regulated at 40 mA screen and -120 VDC bias supply voltage. Power supply is 12" x 8" x 6" and weighs 37 lbs. Full line of accessories, rack or cabinet mounts, manufactured and kit options available. Contact factory for details.

Each kit comes with fully illustrated, easy-to-read instructions. Factory back-up assistance is available from trained technicians.

CALL FOR PRICING
2775 Kurtz St., Suite 11
San Diego, CA 92110
(619) 299-9740
Combine a scope and an NE555 multivibrator to build an important diagnostic tool:

a time domain reflectometer

*Before I describe how to build a TDR and discuss how it works, consider this simple example of the theory behind time domain reflectometry. Assume you’re standing some distance away from the front of a large building. Yell, and you’ll hear your echo. If you know the speed of sound and measure the time it takes between your initial call and the return of your echo, you can determine the distance between yourself and the building. Just multiply the speed of sound by the time it took for you to first hear your echo and divide by two. (You divide by two because the sound wave goes to and from the building; all you need to know is the distance in one direction.)

Suppose, now, that you get a call from the local repeater group saying the repeater cannot be heard. They believe the malfunction is in either the transmission line or the antenna, but they’re not certain which it might be. With a time domain reflectometer, you can tell whether the problem is in the antenna or the line — and if the trouble is in the line, approximately where it is.

By sending a pulse or transition of levels down a transmission line, and then observing the reflected signal, you can determine whether the transmission line is open, shorted, or terminated by some value of resistance. If the termination resistance is different from the characteristic impedance of the line, its value can also be approximately determined.

setting up

The test setup is illustrated in fig. 1.

The more accurately you measure the time, the more accurately you’ll be able to locate the fault in the transmission line or antenna. Consequently, your oscilloscope should be capable of measuring time periods down to 0.1 μS and have a reasonably accurate time base. The bandwidth of the scope is not critical, but should be at least 5 MHz. Vertical sensitivity is relatively unimportant; any scope capable of measuring video signals should be adequate.

By Bill Unger, VE3EFC, 431 North Syndicate, Thunder Bay, Ontario, Canada P7C 3W9
Some scopes have a terminal marked "Gate Output," a pulse that coincides with the sweep time; this can also be used to provide the signal. It is important, however, that the scope output have the same impedance as the line you want to measure.

A 555 IC wired as an astable multivibrator provides the pulse train as it oscillates at a frequency of 60 kHz (see fig. 2). Frequency here is not critical; if yours is slightly different, that's fine. The value of R1 in the circuit should match the impedance of the line being tested — generally 50 or 75 ohms (fig. 3).

This entire assembly can be built on a Radio Shack project board (No. 276-024), with a switch added for selection of either 50 or 75 ohms output.

interpreting results

If the line is properly terminated in its characteristic impedance, the trace will appear as a straight line, indicating that all of the forward signal has been dissipated in the resistance and no reflection exists (see fig. 4). If, however, there is a reflection and the trace goes up, this would indicate that the end of the line is either open or of higher impedance than the cable (see fig. 5). If the trace goes down, the line is either shorted or of lower impedance than the cable (see fig. 6). As an aid to remembering which is which, consider this: when measuring voltage, a short (or low impedance) lowers the voltage and an open allows the voltage to rise.

To determine the location of the fault, you must measure the time between the initial pulse and the pulse caused by the problem. The speed of radio waves in free space is 983.5 feet per micro-second, so if you multiply the time it takes by the speed of light, the result will be the distance to the fault in feet. However, because the radio wave is slowed by the velocity factor of the coax, you must therefore multiply the previous distance by the velocity factor and then divide by two to determine location of the malfunction.

Perhaps the method will be clearer if we look at an example. Suppose we have a piece of RG-213, with a velocity factor of 0.66. A problem exists at a point that measures 0.3 µS down the line. The distance to the malfunction is the speed of radio waves multiplied by the time (983.5 × 0.3) = 295 feet.

fig. 2. Output of an NE555 multivibrator. Horizontal deflection is 5 microseconds per centimeter.

fig. 3. Schematic diagram of an NE555 astable multivibrator used in the time domain reflectometer.

fig. 4. One hundred feet of RG-213 transmission line is terminated in 50 ohms. Note the basically flat response after the pulse arrives.
fig. 5. One hundred feet of RG-213 is now pulsed while an open exists at the far end (load end). The rapid rise in pulse height marks the location of the "fault" (open circuit). Horizontal deflection is 0.1 microseconds per centimeter.

fig. 6. The same length of RG-213 is pulsed while a short exists at the far end. The rapid drop in pulse height marks the location of the "fault" (short circuit). Horizontal deflection is 0.1 microseconds per centimeter.

ting for the velocity factor, we multiply 295 feet by 0.66 to obtain 194 feet. Since this is the total distance the signal traveled, dividing 194 by two determines the distance from the measuring point to the fault. In this case the distance is 97 feet.

I have prepared a graph (fig. 7) showing the distance in feet versus the time to the problem, on which the result can be read directly in feet. There are two lines, each representing a different velocity factor; the top line represents transmission lines with a velocity factor of 0.80, which is typical of foam-filled lines, and the bottom one, a velocity factor of 0.66, which would include coax such as RG-8, RG-58, and RG-213.

conclusion

If your oscilloscope doesn't have a calibrated time base you may still be able to employ this method by using a section of cable of a known length and then expressing the unknown cable in lengths of the known one. If a 100-foot cable takes 0.3 μS to indicate a problem, then a measurement of 0.6 μS would indicate a cable 200-feet long. (Be sure the cables you use have the same velocity factor; if they don't, the comparison will not be valid.)*

If you want to measure cables that are less than 40 feet in length, the task becomes rather difficult because of the extremely short times involved. In this case it would be desirable to add a 100-foot section of coax and then subtract 100 feet when you are calculating the distance.

Now back to that phone call from the repeater group. By taking the TDR you've built from a scope and an NE555 multivibrator to the base of the tower — and keeping the principles of time domain reflectometry in mind — you'll be able to tell the climbers roughly where and what the problem is.

*Even if the velocity factors differ, the fault can still be located as long as the ratio of velocity factors is known. While this method cannot be used to measure complex impedances, it is useful in determining problems along the line. Keep in mind that the antenna at the end of the line may be either open or shorted; this wouldn't be a fault on the line itself. Editor
For those who want to see the ATV action before they commit to a complete station, the TVC-4 is for you. Great for public service setups, demos, and getting a buddy interested. Just add an antenna and a TV set tuned to CH. 2, 3, or 4 and plug in to 117 volts a.c. TVC-4L extra low-noise version... $105 delivered in USA

ATV TRANSMITTER/CONVERTER

$399

- High resolution and color video
- 10 watts output
- Broadcast standard sound
- Tunable downconverter and preamp

Connect to the antenna terminals of any TV set, add a good 450 MHz antenna, a camera and there you are... Show the shack, home movies, computer games, video tapes, etc.

ATV DOWNCONVERTER

$89.00

FMAS Audio Subcarrier Generator... $29.00 ppd.

Puts audio on your camera video just as broadcast does at 4 Mhz. Puts out 1 V p-p to drive FMAS. Requires low 2 mcs. 150 to 600 Ohm and 12 to 18 VDC @ 75 mA. Works with any transmitter with 5 Mhz video bandwidth.

PAS 10 Watt ATV Power Amplifier... $89.00 ppd.

Connects between UHF antenna and TV set. Operates as broadcast does at 4 Mhz. Puts out 1 V p-p to drive FMAS. Requires 13.8 VDC @ 100 mA. Works with any transmitter with 5 Mhz video bandwidth.

Call or write for our complete catalog of specifications, station setup diagrams, and optional accessories which include: antennas, modulators, test generators, cameras and much, much more. See Ch. 14 1983 ARRL Handbook.

TERMS:
- VISA or MASTERCARD by telephone or mail, or check or money order by mail. All prices are delivered in USA. Charge orders normally shipped within 24 hours. Personal checks must clear first.
- (213) 447-4565

P.C. ELECTRONICS

2522 Paxson Lane
Arcadia, California 91006

PROHAM ELECTRONICS INCORPORATED

3420 Lakeland Blvd. Eastlake OH 44094
(216) 951-2110

NOT JUST ANOTHER REGULATED POWER SUPPLY!

The FASTRAK* model 2001 voltage regulator module is ideal for making reliable power supplies in a jiffy. Use it to power your mobile rig, other FASTRAK* series modules or as a general purpose bench supply.

- Component selection sets output voltage (3.3 to 400 V dc) and current capability (5 mA to 100 A). Over voltage protection and remote shutdown included. Uses no ic's.
- One evening assembly using 2 x 3.6 inch pc board and comprehensive instructions supplied.
- Price: $10.80

Price includes: glass-epoxy, etched, plated, drilled pc board; instruction manual; postage in U.S.A. (Ohio residents add 5% sales tax).

Send $1.00 for illustrated FASTRAK* product catalog and refund coupon.

PROHAM ELECTRONICS INCORPORATED
3420 Lakeland Blvd. Eastlake OH 44094
(216) 951-2110

November 1983
construct an optical FM receiver

"See" the entire FM band and detect each station independently and simultaneously.

The ability to see — instantaneously — and detect a wide band of frequencies is possible using an electro-optical technique known as Bragg cell operation.1,2 A receiver providing this performance consists of an acoustic medium such as a slab of glass, a transducer bonded to the glass, a light source, optical elements and associated RF drive circuits.3 What is achieved is a series of position-modulated light spots in the output (plane), each representing a separate station with its own information content. The practical result of this device is an FM receiver achieving 200 kHz resolution, sufficient to separate and detect all FM band stations.

Bragg cell operation can be understood in terms of a few physical concepts. An RF signal when applied across the terminals is transformed into a traveling acoustic (sound) wave in the cell. The pressure in the sound wave creates a traveling wave of rarefaction and compression in the glass medium which in turn causes analogous changes in the index of refraction. The Bragg cell, as shown in fig. 1, acts as a phase diffraction grating with an effective grating line separation equal to the wavelength of sound \(\lambda \) (which is related to the wavelength of the RF-injected signal). The deflection angle \(\phi_d \) (measured outside the cell) between the incident and the first order light term equals

\[
\frac{\lambda_0}{\lambda} = \left(\frac{\lambda_0 \cdot f}{V_s} \right)
\]

where \(f \) is the frequency and \(V_s \) the sound velocity.

Incident light is most efficiently diffracted when the incident angle equals \(1/2 \cdot \frac{\lambda}{\lambda_c} \) where \(\lambda_c \) refers to the center of the band. This angle, \(\phi_B \), known as the Bragg angle, may also be written as:

\[
\phi_B = \frac{\lambda_0 f_c}{2V_s}
\]

where \(f_c \) is the center frequency, and \(V_s \) is the sound velocity.

This design uses a Bragg cell made of glass (\(V_s = 4000 \text{ m/second} \)) and the light source is a He-Ne laser [\(\lambda_0 = 6328 \text{ Å} \) (Angstrom unit)]. Substituting these values in eq. 1 shows that the Bragg angle is equal to:

\[
\phi_B = 7.91 \times 10^{-5} f_c (\text{MHz}) \text{ radians}, \text{ or } \\
\phi_B = 4.53 \times 10^{-3} f_c (\text{MHz}) \text{ degrees}
\]

Denoting the incident angle by \(\phi_B \), the Bragg cell operation can be represented as shown in fig. 1. All...
angles have been exaggerated for clarity. The Bragg cell diffracts light rays into angles controlled by spectrum of acoustic frequencies f_i, where $i = 1, 2, \ldots$. This acoustic spectrum is identical to the frequency spectrum of the electrical signal. Though Bragg cells exhibit limited bandwidth, this design is sufficiently wide to accommodate the entire FM band.

system configuration

By definition, an electro-optical receiver contains both electronic circuits and optics (see fig. 2). The electronics are used as the input and output stages of the system with an optical medium in between. The input stages "condition" the received signal, providing compatibility with and driving the optics interface. The input stage electronics consists of an FM low-level amplifier, balanced mixer, local oscillator and RF power amplifier. Specifically an FM signal is amplified in the low-level stage (using a Radio Shack FM amplifier), mixed with a local oscillator in the HP 10514A mixer, and further amplified by the RF power amplifier (Intra-Action EE-40), achieving a power level of 1-2 watts necessary to drive the Bragg cell. Since the Bragg cell (Intra-Action ADM-40) is tuned for operation at 40 MHz, with an effective bandwidth of 40 MHz, it is necessary to translate the FM band (center frequency 97 MHz) down to this center frequency. This is accomplished by mixing with a 57 MHz local oscillator. In addition, the associated Bragg angle for 40 MHz, according to eq. 2, is 0.181 degrees.

The optics, shown in fig. 2, include four lenses, two of which are identical spherical converging lenses (L2 and L3, having a focal length of $F_2 \approx 20$ cm) and two are identical cylindrical lenses (L1 and L4, having a focal length of $F_1 \approx 3$ cm). The optical processing which precedes the Bragg cell is intended to spread the beam laterally (i.e., in the plane of the paper) which, for reasons to be explained later, en-
fracted in a direction determined by the carrier frequency. For clarity, only a few of the diffracted light beams are shown in fig. 2. The second spherical lens, L3, is intended to focus the emerging beams in its back focal (output) plane. The second converging cylindrical lens, L4, is placed in such a way that the back focal plane of L3 is imaged in the plane of the knife edge in front of the photodiode (see figs. 2 and 4).

Theory of Operation

For the ith FM station the signal's instantaneous frequency is represented by

$$f_{FM} = f^0_{FM} + \Delta f_i(t)$$ \hspace{1cm} (3)

which is the sum of a fixed carrier frequency f^0_{FM} and a time varying frequency difference $\Delta f_i(t)$, the latter being proportional to the audio signal. The FM variation Δf_i is small compared to the carrier f^0_{FM}. Using eq. 3 the ith FM station is beamed, on the average, in a direction given by

$$\phi_{di} = \left(\frac{f^0_{FM}}{V_i} \right) \times \left[f^0_{FM} (MHz) - f_m (MHz) \right] \text{ radians}$$

or

$$\phi_{di} = 9.06 \times 10^{-3} \left[f^0_{FM} (MHz) - f_m (MHz) \right] \text{ degrees}$$ \hspace{1cm} (4)

where f_m is the mixing frequency (57 MHz). This is illustrated in fig. 5. The actual instantaneous angle of deflection deviates slightly from the above angle due to the inclusion of $\Delta f_i(t)$ which causes a 'wobble,' $\Delta \phi_{di}$, in the deflected beam:

$$\Delta \phi_{di} = 1.58 \times 10^{-4} \Delta f_i (MHz) \text{ radians or}$$

$$\Delta \phi_{di} = 9.06 \times 10^{-3} \Delta f_i (MHz) \text{ degrees}.$$ \hspace{1cm} (5)

This relationship between the audio signal (as encoded in Δf_i) and the variation in the deflected angle is used to generate an electrical signal with an amplitude proportional to the strength of the signal. By placing a knife edge screen in front of a photodiode (see fig. 6) in the detection plane, the integrated light

Figures:

- Fig. 1: Schematic representation of the laser spots representing different FM stations.
- Fig. 2: Diagram showing the diffracted light beams and the knife edge in front of the photodiode.
- Fig. 3: Acousto-optic Bragg cell with laser beam and sound field illustrated for clarity.
- Fig. 4: Photodiode circuit used in FM receiver.
- Fig. 5: Graph illustrating the instantaneous angle of deflection and its deviation due to the audio signal.
- Fig. 6: Diagram of the photodiode circuit with a knife edge screen.
intensity varies with the wobble, $\Delta \phi_{di}$, and hence provides a current proportional to Δf_i, i.e., proportional to the audio signal.

frequency resolution

Resolution is proportional to the lateral width of the light beam transversing the Bragg cell. The number of resolvable angles2 for a total frequency change, Δf, is given by:

$$N = \frac{d}{V_f} \Delta f$$

where d is the lateral width of the light beam. You may notice that (d/V_f) is the transit time of the sound as it transverses the light beam. In our case, the laser beam width is increased from 1 mm to 20 mm (2 cm), which is the lateral width L as shown in fig. 2. Since the full FM band (88-108 MHz) is used, Δf is then 20 MHz. Substituting the velocity of sound for glass, 4×10^3 m/sec in the equation, the calculated transit time, $(0.02 \text{ m} / 4 \times 10^3 \text{ m/sec})$, is 5×10^{-6} second. Direct substitution into eq. 6 results in 100 resolvable points over the FM band or a frequency resolution of 200 kHz. Therefore all FM stations are resolvable. Eq. 6 can be used to predict the resolution for any Bragg spectrum analyzer application.

In summary, the audio signal of the ith FM station, Δf_i, results in a wobbling diffracted beam, $\Delta \phi_{di}$, which is then transferred to the electrical domain by using a photodiode positioned in the shadow of a knife edge.

where to get parts

Electronics obtainable from Radio Shack are:

- Archer FM amplifier, Catalog No. 15-1122
- Realistic stereo integrated-amplifier SA-102, Catalog No. 31-1963
- FM antenna, Catalog No. 15-1639

The following optics are available from Edmund Scientific Co., 101 E. Gloucester Pike, Barrington, New Jersey 08007:

- He-Ne laser
- Spherical converging lens ($F \approx 20$)
- Cylindrical converging lens ($F \approx 3$)

The following are available from Intra-Action Co., 3719 Warren Avenue, Bellwood, Illinois 60104, telephone 312-595-3770:

- RF amplifier — E-40
- Bragg cell — ADM-40 or AOM-40

acknowledgments

We would like to thank Professor A. Korpel for his suggestions and critical review. The device discussed here represents an educational aspect of more fundamental research into acousto-optics supported by the National Science Foundation under grant #ECS-8121781.

references

ham radio
The Bearcat® DX1000 makes tuning in London as easy as dialing a phone.

Direct access keyboard tuning brings a new level of simplicity to shortwave radio. With the Bearcat® DX 1000, dialing in the BBC in London is as easy as dialing a telephone. And you can switch from the BBC to Peruvian Huayno music from Radio Andina instantly, Without bandswitching.

Featuring the innovative microprocessor digital technology made famous by Bearcat scanner radios, the DX 1000 covers 10 kHz to 30 MHz continuously, with PLL synthesized accuracy. But as easy as it is to tune, it has all the features even the most sophisticated "DXer" could want. 10 memory channels let you store favorite stations for instant recall—or for faster "band-scanning" during key openings.

The digital display measures frequencies to 1 kHz, or at the touch of a button, doubles as a two time zone, 24-hour digital quartz clock. A built-in timer wakes you to your favorite shortwave station. Or, it can be programmed to activate peripheral equipment like a tape recorder to record up to ten different broadcasts—any frequency, any mode—while you are asleep or at work.

The DX 1000 also includes independent selectivity selection to help you separate high-powered stations on adjacent frequencies. Plus a noise blanking system that stops Russian pulse radar interference.

There's never been an easier way to hear what the world has to say. With the Bearcat DX 1000 shortwave radio, you have direct access to the world.

For the name of your nearest retailer dial toll-free... 1-800-SCANNER.

Frequency Range: 10 kHz to 30 MHz continuously. Tuning: Direct keyboard entry, selectable 3 or 24 kHz per revolution knob tuning, or manual step tuning in selectable 1-99 kHz steps. Sensitivity: 1.0 µV AM, 0.5 µV CW/SSB/FM, 1.6-30 MHz. Image and IF Rejection: 70 dB or more.

Memory: 10 frequency capacity. Frequency Stability: Better than 100 Hz after warm-up.

Direct Access To The World.
At Ungar, we've designed the ultimate heat gun for the hardworking pro. Feature for feature, no other heat gun can make your job quicker, easier or safer.

To begin with, our new 6977 is the lightest heat gun of its kind (28 ounces). You can use it for hours on end with maximum control and minimum fatigue. The contoured handle provides a firm grip and remains cool at all times.

The 6977 is a high-temp, high air volume heat gun with power for the heaviest jobs. It delivers 975°F to the nozzle in seconds and is perfect for curing adhesives, forming plastics, shrinking tubing, peeling paint and just about any other tough job you'll ever run across.

And the 6977 can take it in the real world. The body is made of rugged, impact-resistant Valox® 855. It features a proven, reliable high-rpm motor, low noise operation, long-life heating element and a 6-foot, 3-conductor ground cord.

A wide range of optional attachments can provide additional versatility. The new Ungar 6977 heat gun...light years ahead of the competition, is Underwriter's Laboratory, Inc. listed. For more information, contact your local Ungar distributor or call Ungar in California 1-213-774-5950.
ICOM IC-730
ICOM's GoAnywhere HF Rig for Everyone's Pocketbook

Compact.
Only 3.7 in (H) x 9.5 in (W) x 10.8 in (D) will fit into most mobile operations (compact car, airplane, boat, or suitcase)

Affordable.
Priced right to meet your budget as your main HF rig or as a second rig for mobile/portable operation.

Convenient.
- Unique tuning speed selection for quick and precise QSY, choice of 1 KHz, 100 Hz or 10 Hz tuning.
- Electronic dial lock, deactivates tuning knob for lock on, stay on frequency operation.
- One memory per band, for storage of your favorite frequency on each band.
- Dual VFO system built in standard at no extra cost.

Full Featured.
- 200W PEP input—powerful punch on SSB/CW (40 W out on AM)
- Receiver preamp built-in • VOX built-in
- Noise blanker (selectable time constant) standard
- Large RIT knob for easy mobile operation
- Amateur band coverage 10-80M including the new WARC bands
- Speech processor—built-in, standard (no extra cost)
- IF shift slide tuning standard (pass band tuning optional)
- Fully solid state for lower current drain
- Automatic protection circuit for finals under high SWR conditions
- Digital readout • Receives WWV • Selectable AGC
- Up/down tuning from optional microphone
- Handheld microphone standard (no extra cost)
- Optional mobile mount available

ICOM
2112 116th Avenue N.E., Bellevue, WA 98004
3331 Towerwood Dr., Suite 307, Dallas TX 75234
A DIVISION OF WHIRL PACK & ASSOCIATES INC. 1344 BURLINGTON RD. LOUIS, MO. 63122 1-314-994-7872

MOSLEY ELECTRONICS

YOUR RECEIVER CAN'T TELL THE DIFFERENCE... MOSLEY... TRAP MASTERS QUALITY STILL SETTING THE PACE

REMEMBER WHETHER YOU USE TRAPS OR LINEAR LOADING, 8DB GAIN IS 8DB GAIN

ASK ABOUT OUR FALL SPECIAL

1-800-325-4016

OR CALL TOLL FREE

ORDER QUALITY DEVICES AND CATALOGS AVAILABLE AN ALL MOSLEY ANTENNAS

Used around the world

SPECIFICATIONS

Outstanding SWR

Excellent gain

Support front to back ratios

Expandable to 30 or 40 meters

Built to last

Now a standard 2" mast adapter

Now a 2 Year limited warranty

No glue required

Ease of assembly

All stainless steel hardware

3 Element full power

LOOK WHAT THE MOSTLEY TA-33 OFFERS

WHY SETTLE FOR LESS?

A BETTER ANTENNA

introducing a new dimension...

COMPUTERIZED ANTENNA CONTROL
FROM PRO-SEARCH™

For Contesters,
DX'ers, Handicapped
Operators and General
Purpose Ham
Operators:
The Most Advanced
Antenna Control
Available...
- The Only
Computerized Unit
- The Only Talking
Unit
- The Only Scanning
Unit
- The Only
Programmable Unit
- The Only Automatic
Braking Unit

Contesters:
Pro-Search seeks out a
pre-programmed heading, plus
stores various common head-
ings and automatically scans
for those rare multipliers,
giving the operator hands-free
operation and more time for
contesting.

DX'ers:
Pro-Search loads in short path
and long path headings and
with the touch of a button, the
system works between both
headings. Plus you have all of
the other features of the Pro-
Search to aid you in catching
that rare DX station.

Handicapped Operators:
Pro-Search offers ease of
operation...control the entire
system with just one touch. A
talk loop...vocally calls out the
headings, allowing blind opera-
tors to accurately program and
read their headings.

General Purpose Operators:
Pro-Search has numerous
uses.
Pre-set beam headings for
SCEDS, VHR WORK, and many
others. Current headings can
be read, by displaying the
present directions with LEDs.

Pro-Search also displays and
stores the last station worked,
which can be recalled by the
Auto-Locate system with the
ouch of a button.

Pro-Search is
Adaptable To Many
Systems, Simple
To Install.

Pro-Search is NOW
available for most
popular rotors. CDE,
HY-GAIN, TELREX,
WILSON, ALLIANCE,
and PROP-PITCH,
Disconnected your
present antenna
control system and
connect ours.

Some modifications
are necessary
depending on type of
rotor.

To Order:
1-800-325-4016
1-314-994-7872 (Missouri)

Or write:
Pro-Search Electronics
A Division of Wurdek and
Associates, Inc.
10411 Clayton Road
Suite 305
St. Louis, Missouri 63131

*Patent Pending
CRT oscilloscopes just became obsolete! The revolutionary new solid-state digital LED Pocket-O-Scope does it all, in a 4-ounce package you can put in your pocket.

Easily use. Ideal for the hobbyist or the technician. The Pocket-O-Scope is 100% solid-state, focus and brightness on the 210 point, high-intensity illuminated screen are electronically self-controlled. The trace is always in sharp focus. Zero and sweep positions are maintained automatically. Zero-reference, or cross-over line is always centered for full trace minimum on the screen. Automatic internal circuitry always assures a properly positioned waveform.

The only knobs on the Pocket-O-Scope are for positive and negative sensitivity and for coarse and fine synchronization of the frequency of the incoming signal. The easiest to use, full capability scope available!

Features: All solid-state, digital design • Hand-held or bench operation • High resolution 210 point, 1.5" square display • Battery or A/C operation with adapter • Factory calibrated - never requires recalibration • Full function, single trace capability plus ½ channel dual trace and signal inverter • Full overload protection to prevent damage to scope • Automatic zero voltage centering • Automatic free run or locked image • Automatic full horizontal sweep circuit • External input/output for add-on capability

Specifications: - Vertical gain - 0 to 120 volts - Continuous free run to locked image response • Power supply 9VDC - dual polarity

Controls: Single or dual trace • On-off, battery-A/C • Sensitivity; separate pos. & neg. controls • Sync C & Sync F controls

Limited, 90-day warranty

No risk introductory offer. The revolutionary Pocket-O-Scope is a development of Calvert Instruments, Inc., for 25 years a manufacturer of electrical equipment. As an introductory offer for a limited time only, you can buy the Pocket-O-Scope including a carrying case, A/C adapter, 3 standard "grabber" probes and 2 high voltage probes for only $249.95, a $321 value. If you act now, you will also receive FREE Calvert's 200-page Comprehensive Oscilloscope Training Manual, a $15.95 value! Put your Pocket-O-Scope to the test for two weeks. And if you decide, for any reason, that the Pocket-O-Scope is not for you, return it within the 14-day trial period for a prompt refund. The training manual will still be yours to keep.

Mail this coupon today, or call toll-free* while the introductory offer is still in effect.

Patent Pending

Calvert Instruments, Inc.
19851 Ingersoll Dr., Cleveland OH 44116 • 216-356-2155

Please send me: Pocket-O-Scope(s), including carrying case, A/C adapter, standard and high voltage probes, and FREE training manual. (Batteries not included) all for $249.95 plus $5 for postage and insurance. Ohio residents add 5.5% sales tax.

Pocket-O-Scope only with standard probes: $179.95 plus $5 postage. Ohio residents add 5.5% sales tax.

My check is enclosed.

* Please charge the credit card account checked below. (Fill in all account number digits of the one credit card you wish to use.)

Mastercard • Visa

Expiration Date

Full signature

Name

Address

City

State

Zip

to order by phone, request further information or to inquire about becoming a distributor.

In Kansas, call 800-362-2421 Ext. 118. Allow 6-8 weeks for delivery.
COMMERCIAL-GRADE QUALITY AT AMATEUR PRICES

EXCLUSIVE 1 YEAR LIMITED WARRANTY! COMPARE!

THE 4000 SERIES

- WIDE FREQUENCY COVERAGE: PCS-4000 covers 142.000-149.995 MHz in selectable steps of 5 or 10 kHz. PCS-4200 covers 220.000-224.995 MHz in selectable steps of 5 or 20 kHz. PCS-4300 covers 440.000-449.995 MHz in selectable steps of 5 or 25 kHz. PCS-4500 covers 50.000-53.995 MHz in selectable steps of 5 or 10 kHz. PCS-4800 covers 28.000-29.990 MHz in selectable steps of 10 or 20 kHz.

- CAP/MARS BUILT IN: PCS-4000 includes coverage of CAP and MARS frequencies.

- DIGITAL SIRF METER: Shows signal strength and relative power output.

- BUSY-CHANNEL AND TRANSMIT INDICATOR: Displays busy and transmit state.

- TRUE FM: Not phase modulation. Unsurpassed intelligibility and audio fidelity.

- HIGH/Low POWER OUTPUT: 25 or 5 watts selectable in PCS-4000: 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4500, and PCS-4800. Transmitter power is fully adjustable.

- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel; autoresume can be overridden if desired. Vacant scanning stops on unoccupied frequencies.

- DUAL MEMORY SCAN: Scan memory banks either separately or together. COMPARE!

- TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan the two segments either separately or together. COMPARE!

- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency.

- TWO PRIORITY MEMORIES: Either may be instantly recalled at any time. COMPARE!

- FREQUENCY REVERSE: The touch of a single button inverts the transmit and receive frequencies, no matter what the offset.

- BRIGHT GREEN LED FREQUENCY DISPLAY: Easily visible, even in direct sunlight.

- DIGITAL RF METER: Shows incoming signal strength and relative power output.

- BUSY-CHANNEL AND TRANSMIT INDICATORS: Bright LEDs show when a channel is busy and when you are transmitting.

- FULL 16-KEY TOUCHTONE PAD: Keyboard functions as autopatch when transmitting (except in PCS-4800).

- PL TONE: Optional PL tone unit allows access to private-line repeaters. Deviation and tone frequency are fully adjustable.

- MICROCOMPUTER CONTROL: At the forefront of technology!

- HIGH POWER OUTPUT: 25 or 5 watts selectable in PCS-4000: 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4500, and PCS-4800. Transmitter power is fully adjustable.

- SUPERIOR RECEIVER: Sensitivity is 0.2 µV or better for 20-dB quieting. Circuits are designed and manufactured to rigorous specifications for exceptional performance, second to none. COMPARE!

- REMOTE-CONTROL MICROPHONE: Memory A-1 call, up/down manual scan, and memory address functions may be performed without touching the front panel! COMPARE!

- OTHER FEATURES: Dynamic microphone, rugged built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses, and hardware are included.

- ACCESSORIES: CS-7P 7-amp ac power supply, CS-4.5R 4.5-amp ac power supply, CS-AS remote speaker, and Communications Specialists SS-32 PL tone module.

- ONE YEAR LIMITED WARRANTY!
ACCURACY
DIGIMAX PERFORMANCE

ALL MODELS HAVE 1 YEAR WARRANTY
Optional factory installed rechargeable battery pack available.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PRICE</th>
<th>FREQUENCY RANGE</th>
<th>ACURACY OVER TEMPERATURE</th>
<th>READ OUTS</th>
<th>SENSITIVITY TYP.</th>
<th>POWER REQ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D500</td>
<td>$149.95</td>
<td>50 Hz - 512 MHz</td>
<td>TCXO</td>
<td>8</td>
<td>15 to 50 MV</td>
<td>B-15 VDC</td>
</tr>
<tr>
<td>D510</td>
<td>$179.95</td>
<td>50 Hz - 1.5 MHz</td>
<td>TIME BASE</td>
<td>15 to 50 MV</td>
<td>300 MA</td>
<td></td>
</tr>
<tr>
<td>D512</td>
<td>$299.95</td>
<td>50 Hz - 1.5 MHz</td>
<td>1 PPM 20° - 40°</td>
<td>15 to 50 MV</td>
<td>110 VAC</td>
<td></td>
</tr>
<tr>
<td>D1200</td>
<td>$299.95</td>
<td>10 Hz - 1.5 MHz</td>
<td>10 MHz OVEN</td>
<td>15 to 50 MV</td>
<td>500 MA</td>
<td></td>
</tr>
</tbody>
</table>

AC-12 AC-ADAPTER $8.95
T-1200 BNC-BASE 21" ANT. $6.95
BAC12 $34.95
BAC5 $29.95

FOR DEALER LOCATIONS
ON PHONE ORDERS:
1-800-854-1596
California Call 619-589-6582
Tel/Fax #97120-DATEMAX-103
EXPORT AGENT: MAGNUS
3500 Devon Avenue
Chicago, IL 60660
312-679-0376
Tel/fax #253503 MAGNUS COO

“BLINKY”

MODEL 959
SSTV-RTTY-FAX TUNER

$99.95

Precision tuned temperature stable filter circuit drives frequency indicating LEDs to provide perfect SSTV, RTTY, and FAX tuning.
No more missed contacts trying to tune by guess or "by ear".
- Wired and Tested
- Operates on 12 to 16 VDC
- Simple input connection to speaker
- 12 VDC wall adapter (Model 89) is available for $9.95
- Warranted for one full year

ORR BOOKS

BEAM ANTENNA HANDBOOK
by Bill Orr, W6SAI

- RP-BA
Softbound $7.95

SIMPLE LOW-COST WIRE ANTENNAS
by Bill Orr, W6SAI

Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagramed. 192 pages. 1972.
- RP-WA
Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, W6SAI and Stuart Cowan, WZLX

Contains lots of well illustrated construction projects for vertical, long wire, and HF/TV/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference. 190 pages. 1978.
- RP-AH
Softbound $7.95

ALL ABOUT CUBICAL QUAD ANTENNAS
by Bill Orr, W6SAI

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad (X-Q) design. There's a wealth of supplementary data on construction, feeding, tuning, and mounting quad antennas 112 pages. 1977.
- RP-CQ
Softbound $6.95

Please add $1.00 to cover shipping and handling.

HAM RADIO'S BOOKSTORE

GREENVILLE, NH 03048

64 November 1983
I met Pat Hawker, G3VA, some years ago at an electronics trade show in New York, and since then, we've QSO'd from time to time. One of Pat's attributes is his ability to ferret out new ideas that otherwise could be lost in the noise of the day-to-day progress of the electronics world. I always enjoy reading Pat's column, "Technical Topics," in the magazine Radio Communication, the flagship publication of the Radio Society of Great Britain.

"absorbing yagi"

In his November, 1982, column, Pat described the "absorbing Yagi" antenna scheme of John Beech, G8SEQ. It appears that John has developed a new technique that improves the pattern of the conventional Yagi antenna, particularly in regard to the front-to-back ratio of this popular antenna (fig. 1). It's not difficult to achieve good gain with a Yagi; the antenna is most forgiving when it comes to adjustment and layout. The adjustment of front-to-back ratio, on the other hand, is both sensitive and crucial, and will vary greatly from one installation to the next. G8SEQ has achieved very high front-to-back ratios by the addition of a new element to the Yagi, which he calls an absorber element. He reports ratios as high as 75 dB for a 13-element VHF array!

As the name suggests, the absorber element absorbs energy that would otherwise be radiated to the rear of the array. In its simplest form it is an extra dipole element, resonant at the operating frequency of the Yagi, with a resistor placed at its center. The resistance is approximately equal to the center impedance of the driven element (fig. 2).

The absorber adjustments consist of varying the spacing to the reflector and adjusting the value of the center resistor until optimum front-to-back ratio is observed. If the Yagi has a reasonable front-to-back ratio to begin with, an absorber resistor power rating of 25 watts will suffice even at full legal power.

According to Hawker, "G8SEQ suggests that one can regard the Yagi array as a directional bandpass filter, and that the absorber is the element that has been missing for years. With the same thinking now sometimes being applied to absorptive lowpass TVI filters, the unwanted RF is safely dissipated in a dummy load rather than attempting merely to 'short circuit' it with a reflector."

While no specific dimensions are given, G8SEQ suggests that the absorber element be self-resonant at the operating frequency and placed about 0.23 wavelength behind the re-
SPECIAL OFFER TO LICENSED HAMS -

Do you think Ham Radio is the number 1 Amateur Publication?
Are you interested in Satellite Television?
Then why not read Satellite TV Magazine?

Believe me – this is the number 1 Satellite TV Publication!

Now ... as a special offer to licensed amateurs only – we will send you a sample copy of Satellite TV Magazine for only $1.00* (Reg. $2.95) and offer you an annual subscription for only $19.95* (Reg. $24.95).

If you’re still not convinced - QSO the Satellite TV Net each Sunday at 2:00 pm Eastern Time on 14,310 MHz and hear what the other HAMS are saying about Satellite TV Magazine.

Just give us your name and QTH

Name
Address
State
Zip

Please Enclose Check or Money Order or if you prefer we accept Visa® & Mastercard®.

Card Number
Exp. Date

Call Toll Free 1-800-438-2020

*All Prices in US Funds.
fig. 2. The G8SEQ absorbing Yagi for 144 MHz. The 12-element beam has conventional dimensions plus the addition of an absorber element 17 inches behind the normal reflector. Absorber has same dimensions as driven element. Elements are made of 3/8-inch diameter tubing.

fig. 3. (A) Representation of current distribution on 3/2-wavelength dipole, and (B) optimum-shaped dipole. (C) Current distribution in modified dipole causes radiation to increase in forward direction.

flector and that the center resistor be about 10 ohms, noninductive. I would guess that less spacing could be used, provided absorber length and resistance were varied.

I think this is a good idea and I would be pleased to hear from any experimenters who try this novel technique. In today's world of heavy interference, antenna front-to-back ratio may be of more importance than antenna gain.

optimum-shaped antenna element

For some time I have heard about a new antenna element design that provided increased gain and improved operating characteristics. Again, Pat Hawker tracked it down and described it in his November column. The antenna, discussed at an International Conference on Antennas and Propagation in London in 1979, was developed by F. M. Landstorfer at the Technical University in Munich. Further work was done on the antenna by Cheng and Liang of Syracuse University in 1982.

For many years it was assumed that the "building block" of a beam antenna was a straight dipole element about a half-wavelength long. Landstorfer investigated the use of 3/2-wavelength element, curved in a specific manner, to provide forward gain and directivity (fig. 3). Landstorfer's element has a forward gain of about 5 dBi.

The main disadvantage of this idea is simply the larger size of the basic element. Even so, this is compensated for by the fact that far fewer elements are needed to obtain equivalent gain.

A three-element Yagi using this technique (fig. 4) was tested. The gain was measured at 11.5 dBi (about 9.4 dB over a dipole), with a front-to-back ratio of 26 dB. Sidelobe attenuation was better than 20 dB.

G3VA points out that the optimized shape of the elements is related to element diameter, and until more specific information is available, the cut-and-try technique is recommended for those wishing to experiment with this novel antenna.

the terminated, traveling-wave antenna

A final note before we leave Pat Hawker, G3VA. Pat wrote about an interesting antenna development originally described in the IEEE Transactions on Antenna and Propagation,2 by Matsuzuka and Nagasawa of Nihon University (home of the famous Dr. Yagi of Yagi antenna fame), Tokusuda, Japan. Matsuzuka

fig. 4. Top view of experimental Yagi using gain-optimized elements, each approximately 3/2-wavelengths long. VHF array of this design provided 11.5 dBi gain and a front-to-back ratio of about 26 dB.
and Nagasawa described a rectangular loop antenna, fed at the center of one side and terminated with a resistor placed in the opposite side (fig. 5). The loop provides a unidirectional pattern with the approximate dimensions shown. A very high (unspecified) front-to-back ratio is achieved over a significant bandwidth. Dimensions and resistor value are relatively non-critical.

![Diagram of rectangular loop antenna](image)

fig. 5. The terminated, traveling wave loop antenna provides good directivity, front-to-back ratio and bandwidth. Value of terminating resistor is not critical. RF energy reaching far end of antenna is dissipated in the resistor rather than being reflected back to the feedpoint. Wattage rating of resistor is equal to about one-half the power output of the transmitter.

VCR RFI: more problems for hams

I've heard that some Amateurs are experiencing RFI problems with their transmissions interfering with video cassette recorders (VCRs). I have a VCR myself, and have had no problems with it, perhaps because I'm not on the air when I'm watching it. However, I would appreciate hearing from any readers who have had VCR RFI and solved the problem (if they did). I have also heard that video disc recorders are RFI-prone, especially to signal in the region of the forthcoming 800 MHz Amateur band and the forthcoming mobile communication band.

As solid-state electronics invades our lives more and more, the RFI problem will become more severe.

References

Unluckily, even though Public Law 97-256 requires manufacturers to produce RFI free equipment, the FCC favors voluntary standards, rather than imposed standards. This leaves the door wide open to abuse and circumvention of the law, leaving the Radio Amateur to take the blame for RFI caused by poorly designed products.

the 4-1000A linear amplifier

There's a considerable amount of interest in using the 4-1000A tetrode as a cathode-driven, linear amplifier, and it is a popular tube for "home brew" equipment. In grounded grid service, the tube will operate well at plate potentials between 3 and 5 kV and can easily provide up to the legal 1.5 kW PEP output limit. Typical operation of this tube at 3 kV is as follows:

- DC plate voltage: 3 kV
- Zero-signal plate current: 55 mA
- Single-tone plate current: 700 mA
- Single-tone grid current: 275 mA
- Single-tone driving power: 120 watts
- Load impedance: 2350 ohms
- Driving impedance: 104 ohms
- Plate input power: 2100 watts (PEP)
- Useful output power: 1320 watts (PEP)
- 3rd order distortion: -34 dB
- 5th order distortion: -36 dB

Note: Single-tone grid current is sum of grid one and grid two currents. Useful power output is power delivered to the load. Plate power output is 1500 watts PEP.

For full information on the 4-1000A and other glass tubes suited for grounded grid service, write to me at EIMAC, 301 Industrial Way, San Carlos, California 94070. (Enclose two first-class stamps or two IRCs for postage.)

Circuit design and additional information on linear amplifiers may be found in the 22nd edition of *The Radio Handbook*, published by Howard W. Sams and available from Ham Radio's Bookstore, Greenville, New Hampshire 03048.
Whether sending QSL's or locating old friends, the new 1984 CALLBOOKS are a "must" for the active amateur. Respected for accuracy since the beginnings of amateur radio, the U.S. and Foreign CALLBOOKS list the address information for over 800,000 hams around the world in an easy-to-use format. Not simply a reprint of license records, CALLBOOK listings are taken from our own extensive master files, updated continuously to bring you the latest information available.

As an added service, optional supplements will keep your 1984 CALLBOOKS up to date throughout the year. Published March 1, June 1, and September 1, each supplement contains all activity for the preceding 3 months. Thousands of new licenses, call changes, and address changes are listed in each issue.

The 1984 CALLBOOKS are loaded with extra features for rag-chewers and DX'ers alike. Order your copies now. See your dealer or order directly from the publisher.

COMPARE!
YOU CAN'T BEAT CALLBOOK VALUE!

- 425,000 current U.S. Listings
- 400,000 current Foreign Listings
- Great Circle Bearings
- Then & Now call changes
- Silent Keys
- Census of Amateur Licenses in all countries
- Standard Time Charts
- International Postal Information
- World-wide QSL Bureaus
- Table of Amateur Prefix Allocations
- Prefixes of the World
- Plus many other features.

Publication: December 1, 1983

<table>
<thead>
<tr>
<th></th>
<th>Including shipment to U.S.A. points</th>
<th>Illinois residents, incl. tax & shipping</th>
<th>Including shipment to foreign countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single 1984 U.S. Callbook</td>
<td>$23.00</td>
<td>$24.05</td>
<td>$24.50</td>
</tr>
<tr>
<td>Single 1984 Foreign Callbook</td>
<td>22.00</td>
<td>22.99</td>
<td>23.50</td>
</tr>
<tr>
<td>SPECIAL OFFER: Order both 1984 Callbooks at the same time for shipment to one address.</td>
<td>41.95</td>
<td>43.99</td>
<td>43.45</td>
</tr>
<tr>
<td>Set of 3, 1984 U.S. Supplements</td>
<td>12.00</td>
<td>12.60</td>
<td>12.00</td>
</tr>
<tr>
<td>Set of 3, 1984 Foreign Supplements</td>
<td>12.00</td>
<td>12.60</td>
<td>12.00</td>
</tr>
</tbody>
</table>

Name __ Amount enclosed ____________________
Address __

radio amateur callbook
925 Sherwood Dr., Box 247, Lake Bluff, IL 60044, USA
Tel: (312) 234-6600

More Details? CHECK-OFF Page 118

November 1983
EMI/RFI test receivers

Specialized receivers demand tighter design requirements

Many electrical devices — from computers to hair dryers — generate electrical noise. This noise is either conducted along power cables to other electrical devices, or radiated through the unit's enclosure, keyboard, or screen to the world outside, thereby producing interference that affects still other electrical instruments.

A receiver able to detect and measure this interference and relate it to precise (accepted) international standards must necessarily be based upon a different design than that of a communications receiver. The latter type normally covers the 10 kHz to 1000 MHz frequency range and is primarily designed to receive and decode selected transmissions. Conversely, an EMI receiver must include the following design features:

- **A greater instantaneous dynamic range** than that of a communications receiver, since the energy of incoming pulses can be higher than several intelligence-bearing signals or constant carriers
- **A circuit that monitors the maximum allowable voltage** at different stages, to prevent short-term overload
- **Detector time constants that conform to internationally agreed-upon standards**
- **Appropriate IF bandwidths**
- **Precise amplitude calibration over the operating frequency range** (Attainment of this normally requires the use of either a spectrum generator or tracking generator.)
- If active antennas are used to measure the field in the low frequency range, they must have the **necessary dynamic range and proper antenna correction factor**.

The different requirements of test receivers and normal communications receivers will be discussed in this article, with special attention paid to the relative advantages or disadvantages of manual and automatic measuring capability.

dynamic requirements

Before specific EMI/RFI receivers — such as the Rohde & Schwartz ESH2 manually-operated

By Dr. Ulrich L. Rohde, DJ2LR, President, Communications Consulting Corp., 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458

fig. 1. Manually operated EMI/RFI test receiver, type ESH. Frequency range, 10 kHz to 30 MHz.
EMI/RFI 10 kHz to 30 MHz receiver (fig. 1) or the ESH3 computer-controllable EMI/RFI test receiver with built-in intelligence (fig. 2) - were introduced, spectrum analyzers were generally used to detect and characterize emitted noise spectrums. There has been some controversy as to whether spectrum analyzers that employ special “quasi-peak” detectors (CISPR/ANSI) can provide the necessary information. This is an important issue and should be clarified.1

The spectrum analyzer, while quite capable of rapidly providing data on CW and various sinusoidal signals, is not as suited to measure pulse spectrum parameters with the same facility. To understand why, a discussion on spectrum and bandwidth requirements is called for.

Electrical pulses of short duration possess considerable energy over a wide frequency range. When this signal is introduced into a bandpass filter, the output peak voltage (of the pulse) is proportional to the pulse bandwidth (which is approximately the 6 dB bandwidth of the filter).

\[E_{\text{peak}} \propto BW (6 \text{ dB}) \]

(1)

If a signal having a pulse spectrum is introduced into two cascaded bandpass filters with different bandwidths, BW1 and BW2 (with BW1 > BW2), the ratio of the output peak voltage is equal to the ratio of the filter bandwidths or:

\[\frac{E_{1\text{peak}}}{E_{2\text{peak}}} = \frac{BW1}{BW2} \text{ or,} \]

\[\Delta E (dB) = 20 \log \frac{BW1}{BW2} dB \]

(2a)

(2b)

significance of different bandwidths

Here, the question of RF preselection (input RF bandwidth) comes into play. If no preselection exists (as in the case with a spectrum analyzer), the measured output levels (analyzer and receiver) are different. Assume you are testing in the 30-1000 MHz range. Typical input filter bandwidths are

- measuring receiver \(BW1 = 30 \text{ MHz} \)
- spectrum analyzer \(BW1 = 1800 \text{ MHz} \)

Consequently, the voltage \(E_1 \) presented to the first mixer of the device is 48 dB and 83.5 dB higher, respectively, than the output (indicated) voltage \(E_2 \). Therefore, the narrower RF filter of the measuring receiver lowers the required mixer dynamic range by 35.5 dB (83.5 - 48 = 35.5).

Let us apply these facts to the measuring receiver and spectrum analyzer. We have assumed that each device uses the same mixer (with equal maximum input voltages), and the receiver has an approximately 10 dB lower noise figure. (This is typical, though the difference may even be greater, as in fig. 3.)

![Figure 3](image-url) **fig. 3.** Comparison of EMI/RFI receiver and spectrum analyzer to evaluate usable dynamic range.

![Figure 4](image-url) **fig. 4.** Pulse response curve for the frequency range 10 kHz to 150 kHz (per CISPR Publication No. 16, 1977).
BASIC PROGRAM MANUAL
FOR AMATEURS
Programs Design: Qs, beams, trap dipoles, antenna wind load, filters, striplines, op amps, microwave. RF coils, calc. Ohms law, L.C power, log QSO's, global distances and much more.
ALL FOR $9.95 INCLUDES SHIPPING AND HANDLING
ATTENTION YAESU FT-207R OWNERS AUTOMATIC SCAN MODULE
15 minutes to install; scan restarts when carrier drops off; busy switch controls automatic scan on-off; includes module and instructions.
Model AS-1 $25.00
BATTERY SAVER KIT
Model BS-1 $14.95
- No more dead batteries due to memory backup
- 50% less power drain when squelched
- Simple to install, step-by-step instructions and parts included
- 4 mA memory backup reduced to 500 uA
- 45 mA receiver drain reduced to 30 mA
- Improved audio fidelity and loudness.

ENGINEERING CONSULTING
P.O. BOX 216 DEPT. H
BREA, CALIFORNIA 92621

MICROWAVE COMPONENTS
25 MW EXCITER
45 MHZ SUBCARRIER
AM VIDEO MODULATOR
50 MW UP CONVERTER
$49.95
$19.95
$19.95
$149.95
GIZMO ELECTRONICS, INC.
P.O. BOX 1205
PITTSBURG, KS 66762
PH. 316-231-8171
Kansas residents 3% sales tax

Our 4th Year
BUY • SELL
TRADE
ELECTRONICS
IN
NUTS & VOLTS
The Nation's #1 Electronic Shopper Magazine
P.O. BOX 11111-H • PLACENTIA, CA 92670
(714) 632-7721
Join 1000's of Readers Nationwide
Each Month
U.S.A. SUBSCRIPTIONS
$ 7.00 - 1 YEAR 3RD CLASS MAIL
$12.50 - 1 YEAR 1ST CLASS MAIL
$25.00 - LIFETIME - 3RD CLASS MAIL

With Free Classified Ad

This tower is ready for shipment to one of our customers, or is it? If we were an ordinary tower company, this tower would have already been sent.
We are not an ordinary tower company and that is why this tower did not go out.
We have the best quality control in the business and we are not afraid to say so. That is why when John Pasillas found a 1/8" clearance on the swedged guide, he placed a red tag of rejection on this tower and made sure it was corrected to 1/16" before he stamped his final approval for shipment.
Every employee at Tri-Ex knows that the reputation you establish in an industry is what will make or break his company. That is why Tri-Ex has been in business continually since 1955.

When you purchase your tower from Tri-Ex, you can be assured that all welds have been done by certified welders, all construction and galvanizing has met ASTM standards, all towers have been constructed in precision jigs, all steel has been tested for carbon content and tensile strength.

When it goes to shipping, John is ready.

When you decide on Tri-Ex you have many models to choose from.

STACKED:
Light, medium, heavy duty
10 feet and up.

CRANK UPS:
Light, medium, heavy duty
25 feet to 88 feet standard.

SPECIAL TOWERS:
Sky needle, Clementower
37 feet to 180 feet & higher

Introducing Tri-Ex's new DX-86
- 86 feet tall, 25 square feet in a 50 mph wind.

Call you local dealer for details.
FOR ADDITIONAL INFORMATION WRITE TO:

TOWER CORPORATION
7182 Rasmussen Ave.
Visalia, Calif. 93291
P.O. Box 5009
Visalia, California 93278
(209) 651-2171

204
Therefore, one can see that when making “peak” measurements with a spectrum analyzer the usable dynamic range is so limited that the measurement must be monitored carefully to assure the linear operation of the mixer. This can be accomplished by switching in a small amount of attenuation and comparing this value to the drop in measured output. However, this is time-consuming, and definitely not in line with the requirements for rapid automated testing.

Problem with quasi-peak detectors

The most serious flaw in the application of spectrum analyzers is in the use of a “quasi-peak” detector. A “quasi-peak” detector is simply a weighting network that gives a weighted indication based on the PRF (pulse repetition frequency) of the incoming pulse spectrum. (The curves for this weighting are shown in figs. 4, 5, and 6). The variation in weighting in the VHF/UHF range is 39.5 dB. It is impossible for a measuring device with a usable dynamic range of only 7.5 dB to give a correctly weighted output over a 39.5 dB range. (Remember, the weighting circuitry is at the IF, after the “damage” is done.)

The final conclusion is that, based on the simple physics of the measurement, it is difficult to measure pulse spectra peaks with a spectrum analyzer, and the use of “quasi-peak” circuitry at the IF of an analyzer is impossible without appropriate RF preselection. (Fig. 7 shows overall selectivity as a function of frequency range required for the EMI/RFI test receiver to meet specifications.)

High-dynamic range required

Fig. 8 shows the block diagram of a modern RFI test receiver. It consists of an RF attenuator, a built-in calibrator, a tracking input filter, a mixer, IF stages, and the detector for demodulation, as well as the required weighting filter and rectifiers.

It becomes immediately apparent that the major difference between this block diagram and the block diagram of a typical communication receiver is the RF attenuator, the calibrator, and the lack of preamplification ahead of the mixer.

Assume that a high level double-balanced mixer is used, and that both the RF attenuator and the band-pass filter do not introduce any intermodulation distortion. In this case, the large signal performance of the receiver is determined by the mixer and the stage immediately following the mixer, most likely a termination amplifier with a crystal filter immediately following it.

The mixer, typically a passive device, introduces 5.5 to 6 dB of loss to the next stage (an amplifier). Most likely, these two stages determine the overall intermodulation distortion performance of the receiver. The high level double balanced mixer and the post-amplifier probably have a +30 dBm intercept point.

The presence of the input filter not only reduces the number of signals but also improves the second order intermodulation distortion substantially, relative to a wide-open front end.
prevention of overload

The receiver can saturate if the combined signal level present at the output of the input tracking and IF crystal filters is excessive. While it may not be possible to prevent such an overload condition initially, it is important to detect the condition. The input RF attenuator can then be used to reduce the overload.

The automatic and computer controllable EMI/RFI receiver ESH3 automatically switches in the required attenuation to make sure that this overload condition does not occur while providing a 60 dB dynamic range at the IF.

The microprocessor-controlled receiver has its own intelligence and combines the proper RF and IF attenuation for optimum dynamic range. It is theoretically possible to increase the IF attenuation rather than the RF attenuation. As in the manually operated receiver, the two functions are not tied together, and the inexperienced operator may not be aware that the intermodulation distortion products can only be reduced by using the RF attenuator.

In order to monitor the actual overload, special detectors are placed after the mixers, because modern receivers use a first IF approximately twice the maximum receiving frequency, the first IF of the test receivers can be expected to be in the vicinity of 70 to 80 MHz. The second IF is then substantially lower (between 9 and 11 MHz), depending upon the receiver, and sometimes even a third IF (30 kHz) for the very narrow bandwidth requirements is used. This design requires two monitoring stages after the mixers to make sure no overload occurs.

time constants

EMI receivers are also distinguished by specific values of detector attack and decay time constants, with typical values being 1 and 160 milliseconds, respectively, in the 0.15-30 MHz frequency range. A good communications receiver uses totally different time constants. In the SSB/CW mode, the attack time would probably vary between 3 and 15 ms, depending upon the manufacturer, and the discharge time constant would be in the vicinity of 200 ms to 10 seconds selectable. The 1 ms attack time for the pulse receiver is too fast and will result in a "quasi-peak" reading, which for the EMI receiver is desirable.
Another super deal by Meshna! We acquired a limited number of these beautifully made, super intelligent computer terminals. They were made by one of the largest computer companies in the world. The name has been withheld by request of the manufacturer, but you will recognize it when you see the terminal. Each terminal comes with its own 106 key keyboard and monitor which houses 2 of the systems micro-processors, memory system, and 115 vac switching power supply. There are too many features to list here, but here are just a few: 3 micro-processors (2 in the monitor & 1 in the keyboard), 16K RAM, 48K ROM, EAROM (which is programmable by the keyboard), serial RS 232 asynchronous communications (synchronous optional), selectable baud rates (75-19.2K BPS), high resolution, green screen display with reverse video option, 80 x 25 line scrolling display, expandable character font (40 x 25 lines), built in 115 vac regulated, switching power supply, and much, much more. Most units are new in original factory cartons, but sold "as is." Each system comes with an operators manual. At our ridiculously low price, how can you lose?

UPS sbg. wt. 55 lb. no. MT 686 $289.00
We offer the following as options: schematic pac. 3 lb. $10.00
25 ft. RS 232 cable w/ 2 DB 25 connectors (1 male, 1 female) $20.00
USRT for synchronous data comm. w/ installation instructions $10.00
For more data, send $3.00 for a brochure. The $3.00 is applicable to your order for a terminal.

RECEIVER/TRANSmitter PRC 509 & 510
We just purchased a nice, clean lot of surplus Canadian military PRC 509 & PRC 510 radios. They are similar to US PRC 9A & 10A. 800 milliwatt output will transmit an average of 5 miles over a tuneable range of 27-39 MHz (PRC 509) and 38 55 MHz (PRC 510). For best operation the handset and antenna listed below should be used with the radio, but you can always jury rig your own. Radios are whole, untested and sold as is. Each one comes with free battery box (batteries not included) and schematic. Front panel controls marked for easy operations. Accessories available H-33 handset (mic & earphone) $12.00, semi-rigid antenna $5.00, 4300 MHz calibration crystal $3.00 (not necessary for normal operation), & military operations handbook $3.00 PRC 509 or 510 9 lb. $20.00

PDR-27 NAVY RADIATION METER
Just released by the US Navy. They appear to be in excellent condition and include the fitted aluminum transit case. Batteries not furnished but are available in most electronic supply houses. 4 ranges 0.5 to 500 mR/hr. Removable hand probe, detection of Beta and Gamma radiation. With todays world events and perhaps proximity to a nuke power station, it might provide a little insurance to own one of these instruments. With no facilities to check or test, we offer AS IS, visually OK Schematic provided with each. We have some accessories and offer as an option although not required for operation.
Shipping wtg. 22 lb. PDR-27 Rad Meter $50.00
PDR-27 phones $7.00 Approx. 100 page instr. Book $10.00
Hi Sensitivity GM tube $10.00
Low Sensitivity GM tube $5.00
The above listed tubes are already installed in the meter.
We are offering these as spares if desired.

'HONE ORDERS accepted on MC, VISA, or AMEX to COD's. Sbpg. extra on above.
Send for free 72 page catalogue jam packed w/ bargains.
BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

HOBBY KITS®

EXPERIMENT — LEARN ELECTRONICS; BUILD AND DESIGN YOUR OWN AM, FM, CW, OR SSB RECEIVERS, TRANSMITTERS AND ETC. WITH OUR MINI-LINEAR CIRCUIT KITS

All kits come complete with etched and drilled circuit boards and all parts needed to function as described.

AFA-1 AUDIO AMP, LM-380 1-2 Watts 4-16cm Output
AFP-1 AUDIO PREAMP, Dual Audio Preamplifier — For Mike Etc.
BMD-1 BAL. MIX, LM 1496 Mixer — S.B. Modulator Tuned Output
DET-1 AM DET, Am Envelope Detector With AGC Output
DET-2 FM DET, LM 3065 FM Detector (Galv KHz or a-11 KHz)
DET-3 SSB DET, LM 1496 SSB Detector (Neds OSC-1 or OSC-4)
IF-1 IF AMP, CA 302B 10 DB Gain, Optional AGC (455 KHz or 9-11 MHz)
IF-9 SSB FILTER 19 KHz/2.1 KHz BW with USB XAL, for OSC-1
IF-2 IF AMP, CA 302B 10 DB Gain 1-100 MHz Optional AGC
FREQ. MULT, Tuned Output Buffer-Mult-Ampifier To 250 MHz
CRYSTAL OSC. 100 KHz — 20 MHz Not Tuned
CRYSTAL OSC. 18-200 MHz Tuned Output
VARIEABLE FREQ OSC Varactor Tuned 455KHz
VARIEABLE FREQ OSC Varactor Tuned 4-11 MHz
POWER SUPPLY LM 723 With Pass Transistor, 3 amps max
PLL-2 TONE DETECTOR LM656 Pll Tone Detector
RF/MIX-1 RF-AMP/MIXER CA 302B — Tuned RF AMP/Mixer 1-100 MHz
RF/MIX-2 RF-AMP/MIXER 3n204 Tuned RF AMP/Mixer 1 — 250 MHz

MANY OTHER MODULES AVAILABLE

ADD 12¢ SHIPPING & HANDLING

MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA. 33011

172

$149.95 (Specify Band)

TUCSON AMATEUR PACKET RADIO

- ERROR-FREE DIGITAL COMMUNICATIONS
- COMPLETE TERMINAL-INTERFACE SYSTEM
- CUSTOM TRANSFORMER AND POWER SUPPLY
- BUILT-IN MODEM (TU)
- 32K OF EPROM SOFTWARE INCLUDED
- FULL AX.25 AND VADCoG PROTOCOLS
- NONVOLATILE STORAGE OF CALL SIGN AND OTHER ADJUSTABLE PARAMETERS
- DESIGN FIELD TESTED BY 200 AMATEURS WORLDWIDE
- KIT INCLUDES PCB BOARD, COMPONENTS AND MANUAL

ONLY $240 plus $7 Shipping and Handling
(5% Sales Tax for Arizona Residents)

FOR FURTHER INFORMATION WRITE
Tucson Amateur Packet Radio Corp.
P.O. Box 29988
Tucson, AZ 85734

MANUAL PURCHASE SEPARATELY for $15
plus $1.50 Shipping. (Maximum price can be credited toward Kit Purchase)

Computer Program Books for Beginners

Color Computer

101 Color Computer Programming Tips & Tricks, learn-by-doing instructions, hints, secrets, shortcuts, techniques, insights, for TRS-80 Color Computer. 128 pages.

Pocket Computer

Pocket Computer Programming Made Easy, new fast 'n easy way to learn BASIC, make your computer work for you. For TRS-80, Sharp, Casio pocket computers. 128 pages.

101 Pocket Computer Programming Tips & Tricks, secrets, hints, shortcuts, techniques from a master programmer. 128 pages.

50 Programs in BASIC for Home, School & Office, sourcebook of tested ready-to-type-in-and-run software for TRS-80 and Sharp pocket computers. 96 pages.

50 MORE Programs in BASIC for Home, School & Office, ideal source for lots more useful software for TRS-80 and Sharp pocket computers. 96 pages.

Please add $2.00 for shipping and handling. Allow 2-4 weeks for delivery.

SEND TO: HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441

November 1983
but would lock up the AGC in a communication receiver each time an unwanted noise spike occurred.

Some manufacturers have chosen to make the EMI/RFI receivers more universal by adding built-in detectors for the communication mode as well. The ESH2 and ESH3 have this flexibility.

IF bandwidth

Special IF bandwidths are needed in EMI/RFI receivers; 200 Hz is chosen for the lowest frequency range (10 kHz-150 kHz) 9 kHz for 0.15-30 MHz and 120 kHz for 30-1000 MHz.

At 200 Hz, the bandwidth for the frequency range of 10 kHz to 150 kHz almost requires a triple conversion receiver in order to obtain narrow bandwidth with a good shape factor.

At 30 kHz, the 200 Hz bandwidth filter is more likely a mechanical filter than a crystal filter, as the cost otherwise would be prohibitive.

amplitude calibration

There are two ways to calibrate the receiver. One is to use a pulse generator, such as the ones manufactured by Schwarzbeck, (models IGM 2913, 10 kHz to 30 MHz, and IGU 2912, 25 MHz to 1000 MHz) which operate over a fairly wide pulse rate. With a calibrating pulse of 0.316 microvolts per second and a repetition frequency of 100 Hz, the frequency range of 150 kHz to 30 MHz can be covered. The particular calibration voltage should give a 0 dB reading on the meter.

Sine wave calibration is also possible. This requires a second generator which can be provided inside the instrument. The sine wave output is a good cross-reference for the calibration of the pulse generator. As the calibration of the instrument depends upon these signal sources, it is important that these signal sources be built in such a way that aging effects, temperature, and voltage variations do not affect them. Modern special feedback circuits can solve this problem.

In the case of automated receivers, like Rohde & Schwarz ESH3, the built-in microprocessor, together with the random access memory, allows the development of a scanning program in which the receiver is calibrated over the entire frequency range, and the actual error is stored in memory. As measurements are made, the receiver uses a "look-up" table to add the correction factor. This is convenient because the operator does not have to worry about the accuracy of the receiver.

A manually operated receiver has to be calibrated for each major frequency change, which can be time-consuming since the values also have to be written down for future use. A word of caution: it should be remembered that the frequency synthesizer also is an important factor in receiver performance. The noise sideband of the synthesizer and its inherent spurious performance have to be good enough to prevent any spurious frequencies or sidebands from appearing and giving erroneous readings. Therefore, the reference suppression and all mixing products have to be suppressed sufficiently.

antennas

The use of tuned antennas is rare at lower frequencies (between 10 kHz and 150 kHz). In this frequency range it is better to use loop antennas or active antennas. Again, it is important to make sure that the dynamic range of the active antennas are sufficient. While the test site has to be properly designed and reflections have to be avoided it should be mentioned here that if an active antenna is used, its dynamic range must be sufficient.

For frequencies above 20 or 30 MHz, reference dipoles or logarithmic periodic antennas may be used, depending upon the particular frequency. It would be best to look up the particular recommendations and
THE UHF COMpendium
by K. Weiner, DJ9HO

First published in German in 1980 — this book was an instant European best seller. Now available in English — only from Ham Radio Magazine. This hefty, 413 page book is an absolute must for every VHF and UHF enthusiast. The UHF Compendium has been divided into 7 sections to fully cover theory and practical building instructions. Special emphasis has been placed on state-of-the-art such as GaAs Fet preamplifiers and converters. Author Weiner also fully describes all of the test equipment, alignment tools, power measuring equipment and other handy gadgets that will be of use to the UHF/VHF Amateur. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large megaparameter arrays. Noted VHF enthusiast, Joe Reisert, W1JR, tells us that every ham interested in UHF/VHF should have a copy of this book. Get yours today — only from Ham Radio Magazine.

KW-UHF

Softbound $23.95

Please add $2.50 shipping and handling.

Ham Radio's Bookstore
GREENVILLE, NH 03048

1983-1984 AMATEUR RADIO CALL DIRECTORY

THE BARGAIN AT $14.95

A no frills directory of over 435,000 U.S. Radio Amateurs. 8½ x 11, easy to read format. Completely updated.

Also available for the first time ever—
(Alphabetically arranged — Sold separately)

Geographical Index
By State, City and Street No. and Call

Name Index
By Name and Call

Ordering Information:
- Directory — $14.95
- Geographical Index — $25.00
- Name Index — $25.00

Add $3.00 Shipping to all orders.

Dealer/Club inquiries welcome

Send your order—enclosing check or money order in U.S. dollars to:

Buckmaster Publishing
Whitehall, Mineral, VA 23117 U.S.A.
requirements by CISPR and VDE/FTZ. (To measure conducted interference, current probes and absorbing clamps can be connected to the receiver, but this will not be discussed here, since this article is limited to discussion of the receiver itself.)

Fig. 9 shows a loop antenna; fig. 10 shows an active rod antenna; fig. 11 shows a log-periodic antenna for VHF/UHF.

Conclusion

The EMI/RFI receiver is a more sophisticated and, therefore, more expensive receiver than standard communication receivers. While it is possible to incorporate features to make the reception of communication transmission possible, which is useful for signal identification, then overall accuracy, special pulse response behavior, and the necessary preselector make the receiver more complicated and, thus more expensive. EMI/RFI receivers should be offered in both manual and automated versions to fit varying budgets. However, if large quantities of data must be handled, the automated version is the more logical choice.

References

Bibliography

Fig. 11. Logarithmic periodic antenna for EMI/RFI testing up to 1000 MHz.
THE MOST AFFORDABLE
REPEATER

ALSO HAS THE MOST IMPRESSIVE
PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD
EQUIPMENT!)

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M, 2M, 220</td>
<td>$680</td>
<td>$680</td>
</tr>
<tr>
<td>440</td>
<td>$780</td>
<td>$980</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remote base.

FEATURES:

- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ±12 KHZ. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR
REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE
RECEIVER MODULES

- R144/R220 FM RCVRS for 2M or 220 MHz. 0.15uV sens.; 8 pole staT filter & ceramic filter in-l, helical resonator front end for exceptional selectivity, more than -100 dB at ±12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only $138.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $138.
- R76 FM RCVR for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $118. Also avail w/4 pole filter, only $98/kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only $98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $98.

R144 Shown

- T51 VHF FM EXCITER for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous, up to 2½ W intermittent. $68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $78.
- VHF & UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $78.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 9 x 2 inches. Designed especially for repeaters. $20.

ACCESSORIES

- COR KITS With Audio mixer, speaker amplifier, tail & time out timers. Kit only $38.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only $68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $90

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
 HRF-144 for 143-150 MHz $38
 HRF-220 for 213-233 MHz $38
 HRF-432 for 420-450 MHz $48

Tell 'em you saw it in HAM RADIO!
For literature or more information, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

NAME
ADDRESS
CITY _STATE_ ZIP

Please use before December 31, 1983

November 1983
NEW LOW-NOISE PREAMPS

Models to cover every practical rf if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less.

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq Range</th>
<th>Noise Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA 28</td>
<td>20-40</td>
<td>0.9 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>LNA 50</td>
<td>40-70</td>
<td>0.9 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>LNA 144</td>
<td>120-180</td>
<td>1.0 dB</td>
<td>18 dB</td>
</tr>
<tr>
<td>LNA 220</td>
<td>180-250</td>
<td>1.0 dB</td>
<td>17 dB</td>
</tr>
<tr>
<td>LNA 432</td>
<td>380-470</td>
<td>1.0 dB</td>
<td>16 dB</td>
</tr>
<tr>
<td>LNA 800</td>
<td>470-960</td>
<td>1.2 dB</td>
<td>15 dB</td>
</tr>
</tbody>
</table>

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq, band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UV units available 300 to 850 MHz.

- P30K, VHF Kit less case $18
- P30W, VHF Wired/Tested $33
- P432K, UHF Kit less case $21
- P432W, UHF Wired/Tested $36

P432 also available in broadband version to cover 20-650 MHz without tuning. Same price as P432; add "B" to model #.

HELICAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure = 1 to 1.2 dB. Gain = 12 to 15 dB.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tuning Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRA-144</td>
<td>143-150 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>HRA-220</td>
<td>213-233 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>HRA-432</td>
<td>420-450 MHz</td>
<td>$59</td>
</tr>
<tr>
<td>HRA(-)</td>
<td>450-470 MHz</td>
<td>$79</td>
</tr>
</tbody>
</table>

SAVE A BUNDLE ON VHF FM TRANSCIEVERS!

FM-5 PC Board Kit - ONLY $178 complete with controls, heat sink, etc. 10 Watts, 5 Channels, for 2M or 220 MHz.

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $60.

REPEAT OF A SELLOUT!

While supply lasts, get $60 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only $178?

TRANSMIT OUTPUT

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

VHF & UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $78.

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:

1. Largest selection of vhf and uhf kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery; most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs., and have for years. Can give quality features for much lower cost.

• Call or Write for FREE CATALOG
• (Send $1.00 or 4 IRC’s for overseas mailing)
• Order by phone or mail • Add $3 S & H per order (Electronic answering service evenings & weekends)
• Use VISA, MASTERCARD, Check, or UPS COD.

hamtronics, inc.
65-C MOUL RD. • HILTON NY 14446
Phone: 716-392-9430
Hamtronics is a registered trademark

November 1983
a simple shortwave broadcast receiver

Most Amateur transceivers just cover the ham bands. Because I wanted something with which I could listen to international shortwave newscasts, I constructed this simple shortwave broadcast receiver that tunes the 6 and 9 MHz SW bands and is inexpensive to build. Building it takes a little skill and you’ll need a few test instruments to get it going, but I’m sure you’ll enjoy listening to something you’ve built completely on your own.

To keep construction simple and costs down, I based the circuit on the J.W. Miller 8901-B and 8902-B IF amplifier and detector (mechanical assemblies are illustrated in figs. 1A and 1B). This unit contains three stages of IF amplification and a diode detector inside the capsule. The output is more than enough to drive a 2N2222 audio stage, which in turn drives an LM380N audio chip at several watts output. This in turn drives a 12-inch loudspeaker.

In order to keep the circuit simple and eliminate self-oscillation problems which would require decoupling and shielding, no RF stage was used. The antenna just goes through a double-tuned circuit directly into the 40673 mixer. The large capacity 365-365 gang-tuning condenser eliminates the need for bandswitching for the input stage since it tunes the entire 6 to 9 MHz band. The only drawback is that it has very sharp tuning, and care must be used to make sure the input tuning is on the station you are listening to. With this broad tuning range, it is possible to tune on an image station 455 kHz away. If the panel is marked, there should be no problem making the tuned circuits track and tune to the same frequency, once the two input slugs are adjusted as described in the following section.

All of the coils in the receiver are wound on National XR-50 coil forms; the number of turns indicated is only approximate, since lead length to the bandswitch can vary. I used a two-position tone control switch for bandchanging.

The receiver was built on a California chassis (No. 122) that measures 4.5 x 8.5 inches (11.43 x 21.59 cm). Using etched boards, everything fits on the top of the chassis, making it easier to work on. Spacers are needed to keep the printed circuit board high enough to prevent the RG-174/U from being punctured by wires projecting from below.

The variable oscillator could probably be made without the emitter follower. However, experience suggests that the isolation between stages is necessary to prevent oscillator pulling. Finally, the oscillator is mechanically tuned using a Jackson Ball 5:1 drive. A schematic of the completed receiver is provided in fig. 2.

construction and alignment

The power supply was built first, followed by the audio section. Once I knew the audio section was working I added the IF and mixer stage. The antenna-tuned circuit was last and perhaps the most difficult to adjust. Here a grid dip oscillator is a must. I unsoldered the 7 pF coupling capacitor and tuned each coil separately on 6 MHz for best tracking. The 15 pF trimmer was primarily used to reduce any “mis-tracking” when different antennas were attached.

By Ed Marriner, W6XM, 528 Colima Street, La Jolla, California 92037
table 1. Abbreviated list of stations that transmit in the 6 and 9 MHz bands.

<table>
<thead>
<tr>
<th>frequency (kHz)</th>
<th>station</th>
<th>frequency (kHz)</th>
<th>station</th>
</tr>
</thead>
<tbody>
<tr>
<td>5955</td>
<td>Voice of Nicaragua</td>
<td>9360</td>
<td>Radio Madrid, Spain</td>
</tr>
<tr>
<td>5975</td>
<td>BBC - London</td>
<td>9410</td>
<td>BBC</td>
</tr>
<tr>
<td>5985</td>
<td>Radio China</td>
<td>9510</td>
<td>BBC Northern Ireland</td>
</tr>
<tr>
<td>6005</td>
<td>BBC</td>
<td>9540</td>
<td>Radio Nederland</td>
</tr>
<tr>
<td>6020</td>
<td>Habana, Cuba</td>
<td>9545</td>
<td>Radio Germany</td>
</tr>
<tr>
<td>6030</td>
<td>Voice of America</td>
<td>9565</td>
<td>Voice of America</td>
</tr>
<tr>
<td>6040</td>
<td>Radio Haban, Cuba</td>
<td>9580</td>
<td>Radio South Africa</td>
</tr>
<tr>
<td>6050</td>
<td>Voice of America</td>
<td>9590</td>
<td>Radio Nederland</td>
</tr>
<tr>
<td>6060</td>
<td>Radio Haban, Cuba</td>
<td>9630</td>
<td>Radio Spain</td>
</tr>
<tr>
<td>6065</td>
<td>Radio Madrid, Spain</td>
<td>9635</td>
<td>Radio Moscow</td>
</tr>
<tr>
<td>6070</td>
<td>WYFR ("Family Radio")</td>
<td>9650</td>
<td>Voice of America</td>
</tr>
<tr>
<td>6075</td>
<td>WYFR ("Family Radio")</td>
<td>9670</td>
<td>Voice of America</td>
</tr>
<tr>
<td>6095</td>
<td>HCJB - Quito, Ecuador</td>
<td>9700</td>
<td>Voice of America</td>
</tr>
<tr>
<td>6115</td>
<td>Radio Moscow</td>
<td>9720</td>
<td>HCJB - Quito, Ecuador</td>
</tr>
<tr>
<td>6115</td>
<td>Voz de Llanos, Colombia</td>
<td>9730</td>
<td>BBC</td>
</tr>
<tr>
<td>6120</td>
<td>CBC</td>
<td>9745</td>
<td>HCJB - Quito, Ecuador</td>
</tr>
<tr>
<td>6125</td>
<td>BBC and Voice of America</td>
<td>9755</td>
<td>Voice of America</td>
</tr>
<tr>
<td>6140</td>
<td>Radio Canada</td>
<td>9780</td>
<td>Radio Moscow</td>
</tr>
<tr>
<td>6155</td>
<td>Voice of America</td>
<td>9810</td>
<td>Radio Moscow</td>
</tr>
<tr>
<td>6165</td>
<td>Radio Nederland</td>
<td>9825</td>
<td>BBC</td>
</tr>
<tr>
<td>6170</td>
<td>BBC</td>
<td>9835</td>
<td>Radio Budapest</td>
</tr>
<tr>
<td>6175</td>
<td>BBC</td>
<td>9915</td>
<td>BBC</td>
</tr>
</tbody>
</table>

fig. 2. Two shortwave band receiver schematic diagram.
Two great ways to get Q5 copy

Ask:
G4HUW KB5DN WA4FNP WD5DMP
KJ2E K61MV WD4BKY WD8QHD
K4XG K8MKH WD4CCI WB9N0V
KA4CFI KB7TM WD4CCZ WD9DYYR
KA5DXY W4YPL W5GAI

444D SSB/FM Base-Station Microphone
Shure's most widely used base-station microphone is a ham favorite because it really helps you get through...with switch-selectable dual impedance low and high for compatibility with any rig! VOX/NORMAL switch and continuous-on capability make the 444D easy to use even under tough conditions. If you're after more Q5's, you should check it out.

526T Series II
SUPER PUNCH Microphone
Truly a microphone and a half! Variable output that lets you adjust the level to match the system. The perfect match for virtually any transceiver, regardless of impedance. Turns mobile-NBFM unit into an indoor base station! Super for SSB operation, too. These and many other features make the 526T Series II a must-try unit.

FREE! Amateur Radio Microphone Selector Folder. Write for AL645.

SHURE
THE SOUND OF THE PROFESSIONALS...WORLDWIDE
Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204

the weekender

If you have a signal generator modulated by an audio tone it helps to align the 455 kHz IF and approximately calibrate the main frequency dials. If your signal generator is not accurate, then the dial should be checked against another receiver and recalibrated if necessary. (A frequency scale template is provided in fig. 3.)

Since only the 6 and 9 MHz bands are used, adjusting the receiver should not be much of a problem. For daytime listening, a coil could be wound for the 11 MHz band.

operation

This receiver is appropriate for language practice and for listening to the news, which most shortwave stations give on the hour. Several religious stations also come in strong: two are WYFR "the Family Radio station," and HCJB in Quito, Ecuador. In the early morning the Japanese stations are particularly strong. I have listed some of the stations active on the two bands and actually heard all those listed in table 1.

where to get parts

Be sure to include an SASE when writing for catalogs or information. Transistors and other parts may be obtained from:

Circuit Specialists
Box 3047
Scottsdale, AZ 85257

BCD Radio Parts Co.
P.O. Box 06017
Fort Myers, FL 33906-6017

Radio Shack

Ham radio
CATCH THE EXCITEMENT!
Without catching all the noise.

With the new NXL line of noise-killer indoor antennas

There is a world full of exciting communication action out there just waiting for you to listen in on! But you are not going to hear much of it if your receiver is plagued by man-made noise. And you are not going to hear any of it if you can't put up an outdoor antenna.

Now you don't have to worry about any of these problems anymore because now there is the new NXL series of active indoor antennas. Both the NXL-250 and the NXL-1000 utilize a Faraday-shielded loop antenna, one foot in diameter, for reception. This antenna inherently cancels most man-made noise, and, by using it's special turntable and tiltable mounting, can null out strong interfering noise sources. It can also null out local signals and most skyway-propagated signals too. The noise-free signals picked up by this antenna are fed into the unit, first to go through a tuned circuit which adds selectivity to help reduce overload and image interference to your receiver, then through a high-gain amplifier, and then into your receiver.

The NXL-250 gives you this performance from 25 MHz all the way down to 150 kHz. The NXL-1000, intended for shortwave listeners, has less coverage, from 30 MHz to 1.5 MHz, but offers a 100 kHz and 1 MHz crystal calibrator, switch-selectable.

And now for the best news. Even though the NXL antennas offer noise-rejection and directionality that none of the other indoor active antennas have, and offer sensitivity in most locations comparable to a long-wire outdoor antenna, they are priced lower than the competition! The NXL-250 is only $59.95, and the NXL-1000 is only $59.95! So whether you are looking for an indoor, amplified antenna or are just fed up with battling the noise, get one of the new NXL-250 or NXL-1000 noise-killer antennas and catch the excitement!

Mobilize your H.T.!

For Only $24.95 POSTPAID

The unique MOBILE ENERGIZER will both charge the batteries in your hand-held transceiver and provide ALL-TX operating power at the same time. It is housed in a rugged metal case that plugs into the cigarette lighter jack of your car. It uses a built-in regulator circuit and comes with a 90 day warranty. It works with the following hand-helds: Kenwood P6100, Yaesu FT-207, and FT-200, Kenwood TR-2400. Tempo S1 through S5, all Sante models and all VHF versions of the above. Specify model when ordering.

CONTEMPORARY ELECTRONIC PRODUCTS (305) 255-7660

GLB PACKET RADIO CONTROLLER

Now you can get in on the fun on packet radio!

- Low cost!
- Adaptable to any transceiver
- Easy to learn, easy to use
- Nearly 50 commands
- Built-in packet modem and CW identifier
- Use with teltype machines computers terminals
- RS232 serial interface-45 to 1600 baud
- Uses both ASCII and baudot
- Vancouver protocol-AX 25 to be released soon
- Stores received messages until requested at a later time
- Operates in connected and general mode
- Activates teltype motor to print messages
- Board accepts up to 14K of RAM
- Model PK1 can be customized for Commercial Systems

Protocol can be changed by swapping ROM chips. Board designed to accept 6264's for up to 56K of RAM with minor modification.

Dimensions: 4.5 x 9.5 inches; 1" vertical clearance.
Power requirement: +12 VDC, approx. 20 ma.
Standard equipment includes 4K of RAM (expandable to 14K).
Model PK1, wired & tested—$149.95
additonal memory, installed & tested (up to 10K)—$10/2K
RTTY adaptor board—$9.95
Connecting cables & enclosure—optional

Model PK1 (shown with 14K RAM and 4K ROM)

We offer a complete line of transmitters and receivers, strips, preselector-preamps, CWIDers & synthesizers for amateur & commercial use. Request our FREE catalog. MC & Visa welcome. Allow $2 for UPS shipping.

GLB ELECTRONICS
1952 Clinton St. Buffalo, NY 14206
716-824-7938. 9 to 4

The old reliales at old-fashioned prices with the new look.

Shurite Panel Meters.

Rugged and reliable from as far back as 1904. They got even better. And better-looking.

And today, there are many more to choose from. For both OEM and end-user applications, write or phone for the new quick-selection guide for low cost panel meters from Shurite. Or see your local distributor.

Shurite METERS INC.
577 Grand Avenue. P.O. Box 1846
New Haven, CT 06508-1846 • 203/624-1188

260 combinations of models and ranges. 1% accuracy.
Special ranges and colors available.

112

November 1983
DYNAMIC RAMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS126</td>
<td>16 bit x 8 (160ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS127</td>
<td>16 bit x 8 (100ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS128</td>
<td>16 bit x 8 (150ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS129</td>
<td>16 bit x 8 (200ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS130</td>
<td>16 bit x 8 (250ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS131</td>
<td>16 bit x 8 (300ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS132</td>
<td>16 bit x 8 (350ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS133</td>
<td>16 bit x 8 (400ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS134</td>
<td>16 bit x 8 (450ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS135</td>
<td>16 bit x 8 (500ns)</td>
<td>3.50</td>
</tr>
<tr>
<td>74LS136</td>
<td>16 bit x 8 (550ns)</td>
<td>3.50</td>
</tr>
</tbody>
</table>

EPROMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708</td>
<td>8 bit x 1 (150ns)</td>
<td>4.45</td>
</tr>
<tr>
<td>2716</td>
<td>8 bit x 4 (450ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2725</td>
<td>8 bit x 4 (100ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2736</td>
<td>8 bit x 4 (150ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2737</td>
<td>8 bit x 4 (200ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2738</td>
<td>8 bit x 4 (250ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2739</td>
<td>8 bit x 4 (300ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2740</td>
<td>8 bit x 4 (350ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2741</td>
<td>8 bit x 4 (400ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2742</td>
<td>8 bit x 4 (450ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2743</td>
<td>8 bit x 4 (500ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2744</td>
<td>8 bit x 4 (550ns)</td>
<td>3.90</td>
</tr>
</tbody>
</table>

EPROMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708</td>
<td>8 bit x 1 (150ns)</td>
<td>4.45</td>
</tr>
<tr>
<td>2716</td>
<td>8 bit x 4 (450ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2725</td>
<td>8 bit x 4 (100ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2736</td>
<td>8 bit x 4 (150ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2737</td>
<td>8 bit x 4 (200ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2738</td>
<td>8 bit x 4 (250ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2739</td>
<td>8 bit x 4 (300ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2740</td>
<td>8 bit x 4 (350ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2741</td>
<td>8 bit x 4 (400ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2742</td>
<td>8 bit x 4 (450ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2743</td>
<td>8 bit x 4 (500ns)</td>
<td>3.90</td>
</tr>
<tr>
<td>2744</td>
<td>8 bit x 4 (550ns)</td>
<td>3.90</td>
</tr>
</tbody>
</table>

LP = Low Power | **Quasi-Static** = Quasi-Static
VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>REGULATOR</th>
<th>VALUE</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805T</td>
<td>74</td>
<td>700K</td>
</tr>
<tr>
<td>7805C</td>
<td>34</td>
<td>700K</td>
</tr>
<tr>
<td>7812T</td>
<td>74</td>
<td>700K</td>
</tr>
<tr>
<td>7812F</td>
<td>74</td>
<td>700K</td>
</tr>
<tr>
<td>7805K</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7812K</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7805L</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7805N</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7805M</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7805J</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7805H</td>
<td>1.34</td>
<td>700K</td>
</tr>
<tr>
<td>7805G</td>
<td>1.34</td>
<td>700K</td>
</tr>
</tbody>
</table>

DIP SWITCHES

<table>
<thead>
<tr>
<th>POSITION</th>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>2</td>
<td>14 pin ST</td>
<td>ST = SOLE</td>
</tr>
<tr>
<td>3</td>
<td>16 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>4</td>
<td>18 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>5</td>
<td>20 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>6</td>
<td>22 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>7</td>
<td>24 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>8</td>
<td>28 pin ST</td>
<td>ST = SOLDE</td>
</tr>
<tr>
<td>9</td>
<td>40 pin ST</td>
<td>ST = SOLDE</td>
</tr>
</tbody>
</table>

IC SOCKETS

<table>
<thead>
<tr>
<th>SOCKET</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>12 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>14 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>16 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>18 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>20 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>22 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>24 pin ST</td>
<td>99</td>
</tr>
<tr>
<td>28 pin ST</td>
<td>99</td>
</tr>
</tbody>
</table>

CRYSTALS

<table>
<thead>
<tr>
<th>CRYSTAL</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.79kHz</td>
<td>1.90</td>
</tr>
<tr>
<td>1.0MHz</td>
<td>4.90</td>
</tr>
<tr>
<td>1.01432</td>
<td>4.90</td>
</tr>
<tr>
<td>2.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>2.097152</td>
<td>3.90</td>
</tr>
<tr>
<td>2.4576</td>
<td>3.90</td>
</tr>
<tr>
<td>3.2768</td>
<td>3.90</td>
</tr>
<tr>
<td>3.829538</td>
<td>3.90</td>
</tr>
<tr>
<td>4.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>5.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>5.165</td>
<td>3.90</td>
</tr>
<tr>
<td>5.713</td>
<td>3.90</td>
</tr>
<tr>
<td>6.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>6.5536</td>
<td>3.90</td>
</tr>
<tr>
<td>8.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>10.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>10.738635</td>
<td>3.90</td>
</tr>
<tr>
<td>14.31818</td>
<td>3.90</td>
</tr>
<tr>
<td>15.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>16.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>16.4kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>18.4kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>20.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>22.0kHz</td>
<td>3.90</td>
</tr>
<tr>
<td>32.0kHz</td>
<td>3.90</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>RESISTOR</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 WATT</td>
<td>CARBON FILM</td>
</tr>
<tr>
<td>50 PCS.</td>
<td>1.25</td>
</tr>
<tr>
<td>100 PCS.</td>
<td>2.00</td>
</tr>
<tr>
<td>1000 PCS.</td>
<td>15.00</td>
</tr>
</tbody>
</table>

APPLE ACCESSORIES

<table>
<thead>
<tr>
<th>ACCESSORY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 Column Card</td>
<td>129.95</td>
</tr>
<tr>
<td>16K Card</td>
<td>42.50</td>
</tr>
<tr>
<td>Fan</td>
<td>9.95</td>
</tr>
<tr>
<td>Power Supply</td>
<td>84.95</td>
</tr>
<tr>
<td>RF Mod</td>
<td>24.95</td>
</tr>
<tr>
<td>Joy Stick (Apple II)</td>
<td>29.95</td>
</tr>
<tr>
<td>Paddles Apple</td>
<td>9.95</td>
</tr>
<tr>
<td>ZEC Card</td>
<td>9.95</td>
</tr>
<tr>
<td>SCRIG Switch-A-Slot</td>
<td>19.95</td>
</tr>
<tr>
<td>Paddle Adapater</td>
<td>24.95</td>
</tr>
<tr>
<td>Extend-A Slot</td>
<td>19.95</td>
</tr>
<tr>
<td>Disk Drive</td>
<td>244.95</td>
</tr>
<tr>
<td>Controller Card</td>
<td>69.95</td>
</tr>
</tbody>
</table>

DISKETTES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5¼"</td>
<td>18.95</td>
</tr>
<tr>
<td>5½"</td>
<td>22.95</td>
</tr>
<tr>
<td>5½"</td>
<td>27.95</td>
</tr>
</tbody>
</table>

ACCESSORIES FOR APPLE II & III

ALL WITH 1 YEAR WARRANTY BY

PRINTERLINK

CENTRONICS PARALLEL INTERFACE

- Simple to use — No configuring required
- Use with any centronics printer — EPSON, OKIDATA, etc.
- Includes Cable & Manual

$58.00

MESSENGER

SERIAL INTERFACE

- Connects to any RS-232 serial device
- 8 switch selectable drivers for printers, terminals and modems
- Includes Cable & Manual

$98.00

TIMELINK

REAL TIME CLOCK

- Applications in file management, word processing, communications, etc.
- Exclusive Alarm Clock feature
- Battery recharges automatically

$83.00

NEW BUFFERLINK

ADD-ON PRINTER BUFFER

- No more waiting for printed output
- Connects easily to any parallel interface
- Expandable from 16K to 64K

$138.00 (16K)

The Flip Sort™

The new Flip Sort™ has all the fine qualities of the original Flip Sort™, with some added benefits. Along with a new design, capacity has increased 50%, to hold 75 diskettes and the price is more reasonable than ever. 19.95 ea.

The Flip Sort Plus™

The Flip Sort Plus™ adds two new dimensions to storage. Designed with similar elegant lines as the original Flip Sort™, in a transparent smoked acrylic. The Flip Sort Plus™ has a storage capacity of over 100 diskettes and has all the outstanding features you have come to expect from the flip sort family. 24.95 each

Do Ray

2100 De La Cruz Blvd.
Santa Clara, CA 95050
The proximity of November to the winter solstice, a time when the geomagnetic field is quiet, normally means undisturbed conditions. But because this year is one of several in the sunspot decline, many disturbances can be expected this month. Therefore, we can expect unusual propagation conditions to occur, with the emphasis on the following days: November 7th through 12th, 17th through 20th, and on the 25th and 30th.

vhf-ers take note

Many days of meteor showers will occur between October 26th and November 22nd, with a shower maximum from the 3rd through the 10th at a rate of ten per hour. This shower is known as the Taurids. Lunar perigee is on the 1st and 26th, and the full moon on the 20th.

winter season DX

November through February constitutes the winter DX season. Because the D and E regions of the ionosphere receive less energy from the sun in the northern hemisphere during this time, less ionization occurs. Therefore the daytime attenuation of radio signals in winter is lower than during the rest of the year. At the same time, ion production each day is better able to drift and diffuse up into the F region of the ionosphere. The result is an increased range of operating frequencies between the lowest and the maximum usable frequencies (LUF-MUF). The maximum usable frequency rises rapidly as the sun rises each day, peaking just after noontime. The frequency diminishes in the late afternoon, evening, and through the night to a low value just before dawn the next day. The exception to this situation is for locations nearer to the equator, where the F region ionization continues to drift and diffuse up during the afternoon and evening to become the trans-equatorial maxima described in last month's column. The maximum usable frequency peak reached each day and the depth of the predawn minimum frequency of the next morning are related to the solar flux each day. The higher the flux during the day, the higher the frequency and the lower the dip the next morning.

Wintertime DX provides openings with these characteristics:

- Better daytime signal strengths on the lower frequencies
- Nighttime DX openings earlier each day in the evenings
- More frequent transequatorial paths toward the south
- Higher signal strengths on all bands most of the time.

band-by-band summary

Ten and fifteen meters will be open for F2 long skip and transequatorial one-long-hop propagation. Worldwide DX is prevalent from after sunrise until well after sunset most days, especially during periods of high solar flux conditions and moderate geomagnetic field disturbances.

Twenty meters will be open most days and nearly throughout the night to some areas of the world. This mode follows the sun across the sky: east, south, then west with long skip of 1000-2500 miles.

Thirty meters is a day and night band. The day portion should be similar to 20 meters; signal strengths, however, may decrease during midday on some days of higher solar flux values. This band will also be usable well into the night and often through the night. Problem nights will probably follow high solar flux days and be related to the deep dip of MUF an hour or so before dawn. The distances covered on this band might exceed 80-meter nighttime paths while being less than 20-meter daytime paths.

Forty meters, like 30 meters, is a transition band with all-night propagation as well as some short-hop conditions during the daytime. Most areas of the world can be worked from darkness until just after sunrise. Hops shorten to about 2000 miles on this band, but the number of hops can increase since the signal attenuation is low at night.

Eighty meters, traditionally the rag-chewing band, is also good for distant operation. The band operates much like 40 meters, except in that the hop distances shorten to around 1500 miles at night and even less during the daytime. Because the noise is so low, this band is a pleasure to work during this time of year. The path direction follows the darkness across the earth — east, south, then west. Lots of QRM can be expected, however. (Remember, the DX window is 3790-3800 kHz.)

One-sixty meters will be similar to 80 meters, with skip hops reduced to
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during 'normal' hours.

*Look at next higher band for possible openings.
about 1000 miles. It will provide good DX for late night and early morning DXers. Stations in many areas of the country can now run higher power. (Once again, please keep the DX windows — 1825-1830 kHz and 1850-1855 kHz — free of local contacts.)

last-minute forecast

During November expect the higher frequency bands — 10 through 30 meters — to be best during the middle of the month; a solar radio flux maximum is expected during that time. Maximum flux is also possible on the 25th which would mean a good, long DX holiday weekend. (Monitor radio station WWV for geophysical data at 18 minutes after the hour on 2.5, 5, 10, 15 or 20 MHz to update this forecast.) The lower frequency bands are expected to be good throughout the month, but somewhat better during the predawn hours at the beginning and end of the month.

short circuits

building blocks

In KB0CY’s article, “Audio Filter Building Blocks”, (July, 1983), fig. 2 (page 76) should show all +12V connections going to pin 7 of the four LF356’s. One LF356 (upper center) shows pin 1 as the +12V connection; this is incorrect.

briefcase bobtail

In the directions for a "Briefcase Bobtail" given by Paul M. Rich (Comments, July, 1983, page 12), the twelve turns of No. 14 wire should be spaced 1/4 inch apart, not one inch apart. The call sign HH2KR was incorrectly given as HH2DR.

Bobtail curtain

In part one of the Bobtail curtain series by W6BCX (February, 1983, page 82), an article on the Bobtail is referred to in the April, 1948, issue of CQ. The correct date of publication is March, 1948.
MANUFACTURERS OF QUALITY COMMUNICATIONS EQUIPMENT

9 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$54.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$72.05</td>
</tr>
<tr>
<td>XF-9B1</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9D2</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9B10</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>$125.65</td>
</tr>
<tr>
<td>XF-5C</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-8D</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>$77.40</td>
</tr>
<tr>
<td>XF-9M</td>
<td>CW</td>
<td>500 Hz</td>
<td>4</td>
<td>$54.10</td>
</tr>
<tr>
<td>XF-9NC</td>
<td>CW</td>
<td>500 Hz</td>
<td>6</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9P</td>
<td>CW</td>
<td>250 Hz</td>
<td>6</td>
<td>$131.20</td>
</tr>
</tbody>
</table>

10.7 MHz CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>NBFM</td>
<td>12 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-B</td>
<td>NBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-C</td>
<td>WBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-D</td>
<td>WBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-E</td>
<td>FM/FM Data</td>
<td>40 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
</tbody>
</table>

LOW NOISE RECEIVE CONVERTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>NF</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMK1691-137</td>
<td>1691 MHz</td>
<td>1.35 dB</td>
<td>$199.95</td>
</tr>
<tr>
<td>MMK1296-144</td>
<td>1296 MHz</td>
<td>1.25 dB</td>
<td>$199.95</td>
</tr>
<tr>
<td>MMK432-285</td>
<td>432 MHz</td>
<td>1.25 dB</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

LINEAR TRANSVERTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMK1296-144</td>
<td>1296 MHz</td>
<td>1W</td>
<td>$299.95</td>
</tr>
<tr>
<td>MMK432-285</td>
<td>432 MHz</td>
<td>10W</td>
<td>$299.95</td>
</tr>
<tr>
<td>MMK144-28</td>
<td>144 MHz</td>
<td>10W</td>
<td>$299.95</td>
</tr>
</tbody>
</table>

LINEAR POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMK1296-10L</td>
<td>1296 MHz</td>
<td>10W</td>
<td>$299.95</td>
</tr>
<tr>
<td>MMK432-100</td>
<td>432 MHz</td>
<td>100W</td>
<td>$299.95</td>
</tr>
<tr>
<td>MMK144-100L</td>
<td>144 MHz</td>
<td>100W</td>
<td>$299.95</td>
</tr>
</tbody>
</table>

MICROWAVE MODULES VHF & UHF EQUIPMENTS

- Use your existing HF or 2M rig on other VHF or UHF bands.
- Export Inquiries Invited: Shipping $3.50

ANTENNAS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>420-450 MHz MULTIBEAMS</td>
<td>48 Element</td>
<td>15.7 dBi</td>
</tr>
<tr>
<td>88 Element</td>
<td>18.5 dBi</td>
<td></td>
</tr>
<tr>
<td>144-148 MHz J-SLOTS</td>
<td>8 over 8 Hor. pol</td>
<td>12.3 dBi</td>
</tr>
<tr>
<td>8 over 8 Vert. pol</td>
<td>12.3 dBi</td>
<td></td>
</tr>
<tr>
<td>8 over 8 Twist</td>
<td>9.5 dBi</td>
<td></td>
</tr>
<tr>
<td>UHF LOOP YAGIS</td>
<td>1250-1350 MHz</td>
<td>39 loops</td>
</tr>
<tr>
<td>1650-1750 MHz</td>
<td>29 loops</td>
<td></td>
</tr>
</tbody>
</table>

Send stamps for details of all your VHF & UHF equipment and KVG crystal product requirements.

PACIFIC ONE CORPORATION

More Details? CHECK—OFF Page 118

November 1983
U.S. Orders TOLL FREE
1-800-431-7777
OHIO CALL
216-828-2071

CALL ANY TIME, DAY OR NIGHT

PARAMOUNT

COMMUNICATIONS ELECTRONICS
506 Burnett Ave., Dalton, OH 44618

STOCKING DISTRIBUTORS
VOCOM

R5 PRODUCTS

pro·am

Larsen Antennas

INTERSPACE POWER SUPPLY

ICOM

Prepayment (Certified check) 5% discount and we pay shipping costs

FREE! CABLE LOSS CHART
IN FALL CATALOG

NEMAL ELECTRONICS
COAXIAL CABLE SALE
POLYETHYLENE DIELECTRIC
- RG-8/U 95% shield Mill Spec. ($79.95/100) or 31 ft.
- RG-11/U 96% shield 75 ohm 500 ft.
- RG-58/U double shield (RG-58 coax) 50 ohm.
- RG-58/U 96% shield Mill Spec. (50 ft.)
- RG-58/U 95% shield 50 ohm.
- RG-174/U 95% shield Mill Spec. 93 ohm.
- RG-174/U 95% shield Mill Spec. 125 ft.
- RG-174/U double shield 50 ohm.
- RG-174/U double shield 95% 5/8" OD.

LOW LOSS FOAM DIELECTRIC
- RG-8/U 95% shield Mill Spec. ($14.95/100) or 1 ft.
- RG-11/U 95% shield Mill Spec. ($54.95/100) or 21 ft.
- RG-8/U 95% shield Mill Spec. ($52.95/100) or 21 ft.
- RG-8/U 95% shield Mill Spec. ($36.95/100) or 21 ft.
- RG-8/U 95% shield Mill Spec. ($26.95/100) or 21 ft.
- RG-8/U 95% shield Mill Spec. ($21.95/100) or 21 ft.
- RG-8/U 95% shield Mill Spec. ($16.95/100) or 21 ft.

CONNECTORS MADE IN USA

Amphenol PL-259 $1.75
Pl-259 and/or 50-239 $0.95
Double Male Connector $1.79
Pl-259 Female Connector $0.95
PL-259 Silver-Titron Kings $1.50 ea.
Reducer PL-175 or 176 $1.95
PL-259 PL-259 NiBG $2.95
Elbow (M-359) UHF Elbow $1.79
F354 TV type $1.00
UG-21 D/U Type N Male for R.G. 174 $3.00
UG-86/U TV Type Male for R.G. 58 $3.00
UG-275 BRN (PL-259) Amphenol $3.00
2/16 inch Mike Plug for Collins etc. ($1.95)

Shipping - Call or write for Free Catalog

COD - $3.00 per 100 ft.
Connectors - add 10%, $3.00 minimum.
Orders under $20 add 2% additional plus shipping.
COD add 2.00 Florida Residents add 5%.

NEMAL ELECTRONICS
Dept. H, 12240 N.E. 14th Ave., N. Miami, FL 33161
Telephone: (305) 892-3924

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON Associates Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen Wilhelm---Mellies Str 88, 4930 Detmold 18, West Germany

In Japan: Toyomura Electronics Company, Ltd, 7-9-2 Gome Seta Kanda Chiyoda Ku, Tokyo, Japan

DIRECTION FINDING?

- Doppler Direction Finding
- No Receiver Mods
- Mobile or Fixed
- Kits or Assembled Units
- 135-165 MHz
- Standard Range

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from $270. Assembled units and antennas also available. Call or write for full details and prices.

DOPPLER SYSTEMS, 5540 E. Charter Oak, Scottsdale, AZ 85254 (602) 998-1151

November 1983
bunny hunt

In the May, 1983, Technical Forum, N3BEK raised the problem of RFI on 160 meters from a local broadcast station.

May I suggest he try using the station’s field intensity meter to go on a low-frequency “bunny hunt.” It is not unusual for the down guys on utility poles to unintentionally provide 60 Hz rectification at corroded joints and create fluorescent light-type noise in high-frequency receivers. Utility wires, down guys, grounds from pole-mounted transformers, and the like can all have partially corroded splices and connections that are good at power line voltages but act as semi-conductors when exposed to the 1-10 volts of RF (field intensity in V/M). This type of re-radiation is common in many AM antenna systems, and has to be tuned out at the source of re-radiation; that particular parasitic element has to be made non-resonant at the carrier frequency in order to make the antenna system of the station produce the desired radiation pattern.

It is entirely possible that a down guy, power drop messenger cable, or the ham antenna might have a discontinuity that would produce the “mystery station on 160 meters.” The temperature/frequency relationship mentioned in the column would indicate a change in the resonant frequency as the element gets warm; it gets longer due to expansion, and the self-resonance lowers. The fact that the station uses asymmetrical modulation has no bearing on the situation other than developing 3 dB additional sideband power on modulation tips. Assuming mixing is taking place by the diode-type action mentioned above, at a non-linear portion of that diode, and the self-resonance of the antenna producing the carrier and higher sideband energy, this would account for the unintelligible audio mentioned in the letter. The cure can be as simple as cleaning the connection or adding a resonant circuit to detune it from the 160 meter band or 1500 kHz station. Judging by the report of the station’s engineering people and the intensity at N3BEK’s QTH, my guess is that it’s close to the shack. But, since you have to find the source to cure it, that’s where the field intensity meter is helpful. It should be able to detect signals to fractions of a microvolt. Hope this helps. Good luck. — Ed Karl, KØKL

too many turns

Like WB2NTQ (June, 1983), I have also tried to create high impedance (above 100 ohms) transformers with powdered iron toroids and failed. Here is why.

The problem in WB2NTQ’s transformer is in his secondary winding, which at 29 MHz, is operating above its natural resonant frequency. The usable bandwidth for a transformer on the high end is determined by the self-resonance of the windings. This resonance occurs when a winding is effectively 1/4-wavelength long. Due to the dielectric constants of wire insulation and core material, and the capacity between adjacent turns the total wire length in a resonant winding can be significantly less than 1/4 wavelength in air.

The low frequency limit of a transformer is determined by the inductive reactance of the transformer winding becoming lower than five or so times the source or load impedance. Small cores of high permeability material produce transformers with the greatest bandwidth.

The largest core I can find data on is a T200 size. Each turn is 1.85 inches on that core and could be longer on a larger toroid. Total length on WB2NTQ’s high impedance winding is then about 135 inches (ignoring wire size and winding looseness). This is a quarter wave at 21.86 MHz, neglecting dielectric effects. Thus the capacitive reactive term is in parallel with the resistive component on the input side.

There are just too many turns on the transformer. The low permeability of the powdered iron core makes the design all the more difficult. I’d first cut the secondary length down to about 1/8-wavelength at the maximum desired frequency. That would
THE UHF COMpendium

by K. Weiner, DJ9HO

This 413 page book is an absolute must for every VHF and UHF enthusiast. Special emphasis has been placed on state-of-the-art techniques. Author Weiner fully describes test equipment, alignment tools, power measuring equipment and other handy gadgets. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega-element arrays. ©1980.

RF CIRCUIT DESIGN

by Chris Bowick, WB4UYH

This book has been written for those who desire a practical approach to the design of RF amplifiers, impedance measuring devices and filters. Experts will find this book to be an invaluable reference source. Students will gain a way to bridge from classroom studies to practical application. The hobbyist will find plenty of practical projects and design ideas. 7 chapters cover from basics to advanced design concepts. You get a complete design run down for multiple pole Butterworth, Chebyshev and Bessel filters. RF Circuit Design also includes a bibliography of books and a critical analysis of their value. ©1983, 176 pages, 1st edition.

CONFIDENTIAL FREQUENCY LIST

5th Edition

by Oliver P. Ferrell

Enjoy tuning across the bands looking for who knows what? This book is jam-packed with frequency and call signs. Hundreds of stations are listed first by frequency and then by call sign. You also get helpful hints and tips. Author Ferrell is known worldwide as one of the most knowledgeable folks around when it comes to SWLing. ©1983, 5th edition, 249 pages.

RADIO HANDBOOK

22ND EDITION

by Bill Orr, W6SAI

A best seller for over 40 years! The 22nd edition reflects state-of-the-art techniques in a comprehensive, single source reference book. invaluable for hams, technicians, and engineers alike. Chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981, 22nd edition.

GUIDE TO RTTY FREQUENCIES

by Oliver P. Ferrell

Fully revised to reflect latest information available. Contains most shortwave military, commercial, press, aeronautical, embassy and weather broadcast RTTY stations. You also get shift, speed, power, schedules, formats, special 0's plus much more. Author Ferrell gives you the benefits of his years of experience in helpful hints and tips. He also tells you the secrets behind current trends in encoding signals and what it means to you the listener. ©1983, 190 pages, 2nd edition.

AMATEUR RADIO THEORY AND PRACTICE

by Robert Shadrer, W68NB

In response to requests from the Amateur community, Mr. Shadrer has extracted from his best seller, Electronic Communication, just those parts necessary to pass all five classes of Amateur License. You save 1/3 off the price of the larger book, too! A complete step-by-step guide to Amateur Radio including self-check quizzes and a FCC-like exam for each license class. 340 pages. Taken from 4th edition of Electronic Communication. ©1982.

AMATEUR EXAM

by Robert Shrader, W6NB

This is the very first book written that is geared to the new FCC Novice exam program. Clear and concise answers are provided for each of the FCC sample questions. Author Shrader, a former FCC examiner, provides technical background in American's easy-to-understand style. This book is cross referenced to ARRL's Novice Theory Course, EX-01 and Amateur Theory Course, 12021-01 for detailed explanations beyond the scope of a Q&A book. Every instructor and student should have this book. Why not a copy from Ameico, long known for their excellent study material. ©1983, 44 pages, 1st edition.

RF CIRCUIT DESIGN

by Chris Bowick, WB4UYH

This book has been written for those who desire a practical approach to the design of RF amplifiers, impedance measuring devices and filters. Experts will find this book to be an invaluable reference source. Students will gain a way to bridge from classroom studies to practical application. The hobbyist will find plenty of practical projects and design ideas. 7 chapters cover from basics to advanced design concepts. You get a complete design run down for multiple pole Butterworth, Chebyshev and Bessel filters. RF Circuit Design also includes a bibliography of books and a critical analysis of their value. ©1983, 176 pages, 1st edition.

CONFIDENTIAL FREQUENCY LIST

5th Edition

by Oliver P. Ferrell

Enjoy tuning across the bands looking for who knows what? This book is jam-packed with frequency and call signs. Hundreds of stations are listed first by frequency and then by call sign. You also get helpful hints and tips. Author Ferrell is known worldwide as one of the most knowledgeable folks around when it comes to SWLing. ©1983, 5th edition, 249 pages.

RADIO HANDBOOK

22ND EDITION

by Bill Orr, W6SAI

A best seller for over 40 years! The 22nd edition reflects state-of-the-art techniques in a comprehensive, single source reference book. invaluable for hams, technicians, and engineers alike. Chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981, 22nd edition.

GUIDE TO RTTY FREQUENCIES

by Oliver P. Ferrell

Fully revised to reflect latest information available. Contains most shortwave military, commercial, press, aeronautical, embassy and weather broadcast RTTY stations. You also get shift, speed, power, schedules, formats, special 0's plus much more. Author Ferrell gives you the benefits of his years of experience in helpful hints and tips. He also tells you the secrets behind current trends in encoding signals and what it means to you the listener. ©1983, 190 pages, 2nd edition.

AMATEUR RADIO THEORY AND PRACTICE

by Robert Shadrer, W68NB

In response to requests from the Amateur community, Mr. Shadrer has extracted from his best seller, Electronic Communication, just those parts necessary to pass all five classes of Amateur License. You save 1/3 off the price of the larger book, too! A complete step-by-step guide to Amateur Radio including self-check quizzes and a FCC-like exam for each license class. 340 pages. Taken from 4th edition of Electronic Communication. ©1982.

AMATEUR EXAM

by Robert Shrader, W6NB

This is the very first book written that is geared to the new FCC Novice exam program. Clear and concise answers are provided for each of the FCC sample questions. Author Shrader, a former FCC examiner, provides technical background in American's easy-to-understand style. This book is cross referenced to ARRL's Novice Theory Course, EX-01 and Amateur Theory Course, 12021-01 for detailed explanations beyond the scope of a Q&A book. Every instructor and student should have this book. Why not a copy from Ameico, long known for their excellent study material. ©1983, 44 pages, 1st edition.

RF CIRCUIT DESIGN

by Chris Bowick, WB4UYH

This book has been written for those who desire a practical approach to the design of RF amplifiers, impedance measuring devices and filters. Experts will find this book to be an invaluable reference source. Students will gain a way to bridge from classroom studies to practical application. The hobbyist will find plenty of practical projects and design ideas. 7 chapters cover from basics to advanced design concepts. You get a complete design run down for multiple pole Butterworth, Chebyshev and Bessel filters. RF Circuit Design also includes a bibliography of books and a critical analysis of their value. ©1983, 176 pages, 1st edition.

CONFIDENTIAL FREQUENCY LIST

5th Edition

by Oliver P. Ferrell

Enjoy tuning across the bands looking for who knows what? This book is jam-packed with frequency and call signs. Hundreds of stations are listed first by frequency and then by call sign. You also get helpful hints and tips. Author Ferrell is known worldwide as one of the most knowledgeable folks around when it comes to SWLing. ©1983, 5th edition, 249 pages.

RADIO HANDBOOK

22ND EDITION

by Bill Orr, W6SAI

A best seller for over 40 years! The 22nd edition reflects state-of-the-art techniques in a comprehensive, single source reference book. invaluable for hams, technicians, and engineers alike. Chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981, 22nd edition.

GUIDE TO RTTY FREQUENCIES

by Oliver P. Ferrell

Fully revised to reflect latest information available. Contains most shortwave military, commercial, press, aeronautical, embassy and weather broadcast RTTY stations. You also get shift, speed, power, schedules, formats, special 0's plus much more. Author Ferrell gives you the benefits of his years of experience in helpful hints and tips. He also tells you the secrets behind current trends in encoding signals and what it means to you the listener. ©1983, 190 pages, 2nd edition.

AMATEUR RADIO THEORY AND PRACTICE

by Robert Shadrer, W68NB

In response to requests from the Amateur community, Mr. Shadrer has extracted from his best seller, Electronic Communication, just those parts necessary to pass all five classes of Amateur License. You save 1/3 off the price of the larger book, too! A complete step-by-step guide to Amateur Radio including self-check quizzes and a FCC-like exam for each license class. 340 pages. Taken from 4th edition of Electronic Communication. ©1982.

AMATEUR EXAM

by Robert Shrader, W6NB

This is the very first book written that is geared to the new FCC Novice exam program. Clear and concise answers are provided for each of the FCC sample questions. Author Shrader, a former FCC examiner, provides technical background in American's easy-to-understand style. This book is cross referenced to ARRL's Novice Theory Course, EX-01 and Amateur Theory Course, 12021-01 for detailed explanations beyond the scope of a Q&A book. Every instructor and student should have this book. Why not a copy from Ameico, long known for their excellent study material. ©1983, 44 pages, 1st edition.
be about 49 inches and would wind twenty-six turns. I would wind these as thirteen turns bifilar connected series aiding. The center tap would be the ground side of the 50 ohm connection. This would be a simple 75 to 300 ohm transformer. To get 50 ohms I would tap one side of the bifilar winding at 10 or 11 turns out from the center tap. Ten turns would give a turns ratio of 10 to 26 or an impedance ratio of 50 to 338 ohms. Tapping at 11 turns would give a ratio of 50 to 279 ohms.

The low frequency end of this transformer would be at the frequency where the inductance of the 11-turn section has an inductive reactance of $5 \times 50 = 250$ ohms. On a T200-2 this winding inductance is about 1.3 microhenries. To the limit of the accuracy with which I can read my Shure reactance rule, this happens at 30 MHz!

A larger core would give more inductance per turn but at the same time would have more wire in a turn. High impedance, large size and low permeability together prevent this core from performing adequately. The powdered iron toroid just is not appropriate for such a high impedance winding, but might function if constructed within these limits for a single band.

A better core for this application might be either an F-240 or F-114 in Q1 (mix 61) or Q2 (mix 62) ferrite. The smaller core in Q1 would require five turns on the 50 ohm section and twelve turns total on the 300 ohm winding for a minimum operating frequency of 14 MHz. I would wind this as six bifilar turns connected series aiding with the primary tap at five turns. The windings should be spread uniformly around the whole core. The impedance ratio would be 50 to 288 ohms. On this core a winding would have a length of about one inch per turn. Twelve secondary turns would be about 12 inches long and should work well beyond 50 MHz.

To achieve wide bandwidth it is necessary to use a high permeability core material to extend to low frequency end of the pass band with a minimum winding conductor length. At the high frequency limit the core is practically uncoupled from the winding and only the core's dielectric constant is significant. The dielectric constant for ferrite can be high, so isolating the winding from the core can help extend the high frequency end as long as the winding conductor length does not grow too much at the same time. Thick wire insulation reduces the inductive coupling between adjacent bifilar turns at the high frequency end of the pass band. A better winding would be made of enameled wires twisted together for the bifilar winding and then covered with a heavy walled Teflon™ insulating tubing. — Gerald A. Johnson, K8CQ

standing-wave indicator
I have just bought a standing-wave indicator, type B812A, manufactured by FXR, Inc., of Woodside, New York. The unit is not functioning at present and I wonder whether anyone might have a circuit diagram or other information which would help me get the unit working.

After reading the interesting article on this type of unit by Bob Stein, W6NBI, in the January, 1977, issue of ham radio, I feel the device would be a very useful addition to my workshop. — Arthur Williams, GW8FKB

SAY YOU SAW
IT IN
ham radio!
ANNUAL LAS VEGAS PRESTIGE CONVENTION

HACIENDA RESORT HOTEL
Las Vegas, Nevada
JANUARY 12-13-14-15, 1984

Cocktail Party hosted by *Ham Radio* Magazine Friday evening for all *SAROC* exhibitors and *SAROC* Advance or Regular paid registered guests. Ladies' Program on Saturday included with *SAROC* Advance or Regular paid registration at no additional charge for ladies who register. Two HACIENDA RESORT HOTEL Breakfasts or Brunches in the Sunburst room are included with each Advance or Regular paid registration; one on Saturday and one on Sunday. Technical sessions, EXHIBITS, and SWAP TABLES open on Friday and Saturday to all *SAROC* paid registered guests. One SWAP TABLE available free to *SAROC* non-commercial guests holding Advance or Regular paid registration. Main award drawing Saturday afternoon. You must be present to win and ownership of award does not pass until picked up. *SAROC* Advance registration is only $17.00 per person, if postmarked before January 1, 1984. After January 1, 1984, *SAROC* Regular registration is only $19.00 per person.

Enclosed is $___________ check or money order (no cash) for *SAROC* Advance Registration(s) @ $17.00 each; after Jan. 1, 1984 *SAROC* Regular Registration is $19.00 each. Extra drawing tickets for main drawing are $1.00 ea., limit 5 with each *SAROC* Advance Registration, I want __________ Advance Registration.

OM __________________________ Call __________ License Class
YL __________________________ Call __________ License Class
Address __________________________ Please type or print
City __________________________ Please type or print
State __________________________ Telephone No./AC

☐ Yes, I want a SWAP Table space (limit one free table per registered guest for Friday and Saturday).

I have attended *SAROC* ______ times. ☐ Yes, I plan to attend Ham Radio Magazine Cocktail Party.

I am interested in Antenna, ARRL, Cocktail Party, Computers, CW, DX, FCC, MARS, RTTY, TV, other

I receive: CQ, Ham Radio Magazine, QST, QCWA, RTTY, 73, Westlink, Worldradio, other
Completing my 53rd year as an active Ham-DXer, Contester Rag Chewer etc. — the Corsair is an excellent transceiver and performs superly for me on both CW and SSB. W1BH (P42J)

A fine piece of equipment—thanks for building it in America. KV8Q

Radio is impressive in all ways. KA8RQK

Wonderful Rig! WB2RBA

Excellent Results! VE4CCK

Finally! A rig made for the RTTY operator—Excellent gentlemen, absolutely excellent! N4EIV

Beautiful (physically and technically). W4SFT

Thank you for an American radio & the 1 year warranty. KA3KMK

Consistently get good audio reports on SSB. N8BAR

The Folks at Ten Tec are reason enough to purchase their products. K4CJX

Corsair is everything I hoped for in a transceiver. W8DRW

Extremely Ham oriented radio made for high performance and operating excellence. KB4IL

Excellent equipment. W2LOG

Outstanding Radio! W9GIN

Engineering is Superb!! W2ZSX

First QSO Report—“5x9 Plus With Beautiful Audio.” K5SP

A fine instrument. K6AY

I am “convinced!” K5PXM

You have proved that Americans can still make the Best. K8WYH

Nice, neat, not crowded. Receive section best I have used. Great on RTTY. W0YFR

Superb receiver. W9DWT

A perfect performer and a pleasure to operate. W3LKA

I like the Ten-Tec quality and service. W4DDK

Well-Built—EZ to Operate. VE3NZQ

It is a great pleasure to deal with a company which gives their customers some real attention and service. W4BW

And our thanks to all the others whose comments we didn’t have room to print.

CORSAIR features include: • All solid state, broadband design • All 9 hf bands • Triple conversion receiver with 0.25 µV sensitivity on all bands and better than 90 dB dynamic range • Variable bandwidth plus Passband tuning • Dual range, Triple mode, Offset tuning • Variable Notch filter • Built-in Speech Processor • Built-in Noise Blanker • 200 W input, 100% duty cycle • Dual-speed QSK (full or semi).

See Corsair at your Ten-Tec dealer, or write for full details.

TEN-TEC, Inc., Sevierville, TN 37862
Drake ESR24 solid state satellite TV receiver

The ESR24 is a full performance receiver designed with the private earth station owner in mind. It uses the latest concepts in solid state techniques for cable head-in quality. You get clear, noise-free video with drift-free reception, thanks to its PLL discriminator and high gain AFC circuitry. A downconverter is included for remote installation near the antenna and features “imageless mixer” design for purity of signal. Receiver features digital tuning with LED readout and fine tuning control, AFC and video invert switch. Separate tuning meters for signal strength and center tune. Transponder scan for finding the different satellites. Variable audio tuning from 5 to 8.5 MHz. Optional RF modulator available.

DRAKE ESR24 satellite TV receiver

RF modulator
Mounts inside the ESR24 receiver. Crystal controlled for drift-free performance. Selectable outputs for channel 3 or 4. Power supplied from receiver.

SHP-24 splash-proof housing
Necessary when mounting the ESR24 downconverter outdoors. Protects your downconverter from the elements.

TM-24 remote tuning meter
Eliminates the need for a TV monitor while adjusting your antenna's position. Cable from meter connects to terminal on rear of ESR24 satellite receiver. Large, easy to read meter. Makes one-man adjustments possible.

$695
List Price 745.00
Item No. DRAESR24
Add 3.35 shipping & handling

59.95
List Price 79.95
Item No. DRAFRMOD24
Add 1.59 shipping & handling

27.00
List Price 30.00
Item No. DRAFPH24
Add 1.59 shipping & handling

38.95
List Price 49.00
Item No. DRATM24
Add 1.46 shipping & handling

Long's Electronics
Complete 10 ft. satellite TV system featuring Drake

NOW ONLY $1695!

ESR-24 receiver with digital LED's

10 FT. PARABOLIC
List Price 2795.00
Item No. SAT4W
Shipped Motor Freight Collect

What the system will do:
Brings you up to 60 channels of satellite television via your home receiver. Movies, sporting events, news, religious programs, other TV stations and much more.

What the system includes:
2. Polar mount complete with azimuth and elevation adjustments for accurate satellite-to-satellite tracking. Special linkage allows antenna to travel from horizon to horizon. Available with slab or earth mounts.
3. Tripod LNA mount complete with rotor and control console. Tubing for mount legs not included.
4. Drake ESR-24 satellite receiver with downconverter. Outdoor mounted downconverter linked to receiver via coax cable. Receiver features LED transponder indicator, pushbuttons for up/down channel selection, scan tuning and variable audio tuning from 5-65 MHz. Separate meters for signal strength and center tuning. Optional RF modulator available.
6. Scalar feed horn. Delivers 0.5 dB more gain than conventional types. Virtually eliminates system noise.

Note: A VCR's RF modulator will work with this system, otherwise one will be needed (approximate cost $59). Connecting cables between receiver and antenna not included.

Call Toll Free 1-800-633-3410

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

More Details? CHECK—OFF Page 118

November 1983
1984 HANDBOOK

Another super edition of the standard manual of rf communications! Each year, The Handbook is revised to reflect changes in the state-of-the-art and this 61st edition is no exception. The chapter on Specialized Communications Systems has been completely revised with new material on Packet Radio, AMTOR, Spread Spectrum, etc. The Interference chapter has been reorganized and updated and you will find a new and better index. There are new tables for low and high pass filters, updated section on amplifier operation, a new kilowatt amplifier for 160, 80, and 40 meters, a 4-1000 amplifier for 6 meters and a refined version of the Deluxe Audio Filter. In 640 pages and 23 chapters, The Handbook presents everything from electrical laws and circuits to sophisticated communications techniques including packet radio and spread spectrum. Order your copy today! Paper edition: $12 in the U.S., $13 in Canada, and $14.50 elsewhere. Cloth edition: $17.75 in the U.S. and $20 elsewhere. Payment must be in U.S. funds.

ANTENNA BOOK 14th EDITION

Here is the most comprehensive and up-to-date antenna book available. It's chock-full of theory and practical information and includes proven designs for: Yagis, quads, wires, verticals or the more specialized designs: Beverage, curtain arrays and fish-bone antennas. It also has a chapter that covers UHF and VHF antenna design. You'll find antennas for any kind of real estate from the apartment dweller to the true antenna farm. The Antenna Book covers in complete, easy-to-understand language, antenna and transmission line theory and includes the most complete explanation available of the SMITH CHART®. Finally there is a thorough discussion of the phenomena of radio wave propagation. 328 pages 14th edition. Softbound Price $8.00 in the US. Elsewhere $8.50. Clothbound $12.50, US; $13.50 elsewhere. (US FUNDS). Available from your local dealer or direct from ARRL.

Please include $1.00 per title for shipping and handling.

THE AMERICAN RADIO RELAY LEAGUE, INC.

225 MAIN STREET
NEWINGTON, CT 06111
improved stability and dial calibration for the
Heathkit HW-8

The HW-8 transceiver exhibits approximately 1500 Hz drift in transmit and receive frequency when the supply voltage varies over a range of 10 to 13.5 VDC. This results in CW chirp when using a poorly regulated supply, such as a weak, dry battery. Additionally, even with a well-regulated supply, the VFO dial calibration is in error on all but the 7 MHz band.

Most of the drift and chirp problem is caused by the Heterodyne Oscillator (Q6). The reverse-biased switching diodes in the tuned circuits of all but the selected band exhibit a capacitance which varies with supply voltage. This capacitance, essentially in parallel with the selected crystal, causes pulling of the oscillator frequency. The solution is to regulate the supply voltage to Q6. The small amount of shift which still remains after Q6 is stabilized is caused by the inability of the Zener diode (ZD-1) to fully stabilize the voltage for the Variable Frequency Oscillator (Q2). This can be corrected by replacing the Zener-diode regulator circuit with a Motorola MC7808CP three-terminal regulator integrated circuit.

The VFO dial calibration problem is a matter of fine tuning the VFO and HFO in accordance with the procedure described here. The Heathkit procedure does not calibrate the frequency of the HFO; it also does not switch in the offset capacitor (C55) during VFO calibration so that the dial will read transmit frequency.

modification procedure

Remove the following resistors: R78, R81, R82, R84, R85, R87, R88, and R91 (see fig. 1).

Install 7.5-volt, 1-watt (SK-3059) or equivalent, Zener diodes (anode lead to ground) in the positions formerly occupied by R81, R84, R87, and R91 (100k resistors).

Install 470 ohm, 1/4-watt resistors in the positions formerly occupied by R78, R82, R85 and R88 (1k resistors).

Install a 0.01 µF, 25 VDC ceramic capacitor on the foil side of the main PC board. Solder one lead to the junction of R36 and the yellow wire which attaches to point B. Solder the other lead of the capacitor to a nearby ground foil.

Remove ZD-1 and R33 (470 ohm). Drill a 1/32 inch hole midway between the two holes from which R33 was removed. Install the MC7808CP voltage regulator as follows:

Input B lead to R33 hole which ties to 13.4 volt line; insert common C lead through the drilled hole and output E lead to R33 hole which ties to C52 and R3 (47 ohm).
Solder and clip the excess from the B and E leads. Slip a piece of insulation over the C lead and solder the lead to a nearby ground foil. Be sure that it does not short to other foil leads.

fine alignment procedure

Make a pick-up loop as shown in fig. 2 and place it around L19/21. Connect the opposite end to the antenna terminals of a calibrated receiver capable of tuning 12 to 30 MHz.*

Press the 3.5 MHz bandswitch.

Tune the calibrated receiver to 12.395 MHz.

Adjust L17 (bottom slug) for zero-beat.

Press the 7.0 MHz bandswitch.

Tune the calibrated receiver to 15.895 MHz.

Adjust L18 (top slug) for zero-beat.

Press the 14.0 MHz bandswitch.

Tune the calibrated receiver to 22.895 MHz.

Adjust L19 (bottom slug) for zero-beat.

Press the 21.0 MHz bandswitch.

Tune the calibrated receiver to 29.895 MHz.

Adjust L21 (top slug) for zero-beat.

Temporarily attach a 10-inch piece of wire to the end of R29 (22k) which connects to point WW. Connect the other end of the wire to one of the ON/OFF switch terminals. This will cause the antenna relay to close and the receiver to mute.

Realign the VFO as described in the Heathkit instruction manual, page 62.

Remove the temporary wire and reinstall the cabinet cover. This completes the modification and alignment.

Robert W. Lewis, W3HVK

* If a calibrated receiver for this frequency range is not available, a frequency counter can be used. The output of the heterodyne oscillator can be picked off at the emitter of Q7, preferably through a 0.001 to 0.01 μF coupling capacitor. The pick-up loop described for use with a receiver likely will not provide enough signal to drive a frequency counter. — Editor
Soar model 5025 digital multimeter

A number of different multimeters have crossed my desk in recent months and I must admit it has been fascinating to see and use the latest state-of-the-art equipment. The newest unit on my desk for review, however, is quite different from the others.

The Soar Model 5025 is not just a nuts-and-bolts measuring device. It incorporates a unique comparator circuit that can be used in a number of different ways.

One of the greatest advantages of the "new breed" of multimeters is the automatic ranging feature. The Soar Model 5025 has a unique 80 pin LSI chip that keeps overall parts count down while ensuring long term stability and accuracy. Only by examining the schematic can one fully appreciate how LSI has changed the complexion of equipment design and utilization.

general specifications

The 5025 has an easy-to-read, low current consumption, LCD readout with a maximum reading of 1999. The readout also has annunciators to audibly alert for function, unit polarity, decimal, low battery, continuity and diode test. The unit is mounted in a rugged ABS plastic case with a U-bracket handle/tilt stand and is fully shielded from RFI/EMI. The probes are designed for safety to reduce the chance of an accidental shock when being used. One of the "neatest" innovations of this new breed of multimeters is the automatic ranging feature.

When doing a number of different voltage or resistance readings, this feature is quite a timesaver.

Battery life is estimated at >300 hours with alkaline batteries and >200 hours with regular zinc carbon batteries. Four size "C" batteries or a portable AC adapter may be used. The model 5025 also incorporates a built-in overload protection for all ranges with surge protection up to 6000 volts.

comparator circuit

Besides standard ohms, volts, and current measurements, the Soar Model 5025 also has a built-in comparator circuit. The comparator can be used on all measurement ranges and was designed with production and QC testing in mind.

To use the comparator circuit, you select the designated high and low figure on the thumb-wheel switches above the LCD readout, punch in the proper range to be tested, and press the "compare" switch. The 5025 will then measure the parameter in question. If the value being measured is within the limit set, the beeper will sound and the value will appear in the LCD readout. If the value is either above or below the preset limits, the beeper will not sound.

use

I had occasion to use the Soar 5025 while troubleshooting a broken radio. I found the U-bracket to be invaluable in getting the multimeter into a position that was easy to see. I also found the 1/2 inch LCD readouts to be a nice feature. I also used it outside to make a number of continuity checks on a vertical antenna ground system. The LCD readouts are easy to read in the sun and the handy beeper assured that there was circuit continuity without the need of looking at the unit.

Specifications

- Size: 7.25" x 2.25" x 7.125" (186 x 57 x 180 mm)
- Weight: 1.9 pounds (850 g) less batteries
- Temperature: 0°C to 40°C
- Accuracy guaranteed for 1 year:
 - DCV ±25%
 - ACV ±5%
 - Resistors: 200-200 kilohms ±2.5%
 - 2000 K ±1%
 - 20 M ±2% (Coil)
 - DCA: 200μA to 200 mA
 - 10A ±1.0%
 - ACA: 200μA to 20 mA ±1%
 - 200 mA ±10 A ±1.2%

For more information contact NA Soar, 1126 Cornell Avenue, Cherry Hill, New Jersey 08002. RS#F313

NEW products

ICOM transceiver

ICOM's new IC-471A is a 20 MHz coverage base station transceiver for 430-450 MHz. It features the automatic ranging feature, allowing users to select the proper range for their measurements. The comparator circuit also allows for easy troubleshooting of various electronic devices. The unit is compact and portable, making it ideal for use in the field. It is powered by either batteries or an AC adapter and includes features such as a high/low range switch, a zero span function, and a built-in beeper for audible alerts.

PROJECT PACKS

- 2 Meter Ham Base Pre-Amplifier: 123.50
- 2 Meter Converter: 37.50
- UHF (70 cm) Pre-Amplifier: 9.50
- UHF (70 cm) Converter: 38.50
- UHF (170 cm) to VHF (TV) Converter: 60.50

OTHER KITS

- CPP1 Code Practice Processor/Electronic Keyer: 47.00
- General Coverage for Drake RAC & RAC Receivers: 60.50
- Split Band Speech Processor: 69.95
- Smart Speak: 55.95
- R. X. Noise Bridge: 33.45
- L-Meter: 22.50
- 40 Meter QRP Transceiver: 161.95

(Shipping and Handling $2.50 added)

1983 Catalog 50 cents

PAYMENT TERMS:
Domestic Orders 50% with order 50% C.O.D. Foreign Orders Letter of Credit or Advance Payment. Allow 2 to 6 weeks for delivery.

OTHER PRODUCTS
- Simplex and Full Duplex
- VHF/UHF Mobiles and Bases
- Rural Radio Telephone
- Auto Patch
- HF SSB Transceiver
- Catalogues available upon request

DEALER INQUIRIES INVITED
ITS International Telecommunications Systems Florida Inc.
8416 N.W. 51st St. / Miami, Florida 33166
TEL: (305) 593-0214 / TELEX: 525834

THE AFFORDABLE REPEATER
FROM THE MANUFACTURER OF COMMERCIAL & MILITARY EQUIPMENT MADE IN USA AT OUR MIAAMI, FLORIDA PLANT

$699 * Basic Price

FEATURES:
- Several Frequency Ranges 30-50 MHz, 132-172 MHz, 200-240 MHz, 380-480 MHz.
- Sensitivity .3 Microvolt 12 DB S/N
- Power Output 30 Watts.
- Four Pole IF Filter.
- Complete separate transmitter and receiver.
- 13.6 VDC or 115/220V UAC Power Supply.
- 19" Rack Mounting.

RTTY/CW interface
The ROM-116 is now distributed and sold exclusively by the Flesher Corporation. The ROM-116 interfaces the Radio Shack TRS-80 Model III, III, and IV, and comes with features that include two serial ports, fourteen buffers, split-screen (formatted or unformatted) vertically displayed status, automatic CW/ID, PTT control, Sel-Cal, error correction, text editor, quick break with word mode, word wrapping, preload, two independent call signs, and disk versions (and cassette or disk save messages or pictures). Several software packages, such as a MAILBOX program (1.4MBO or 3.4MBO) and LOAD HEX (for receiving/sending disk files on RTTY), are also available. Two versions are marketed; prices will range from $225.00 for the older units to $325.00 for the newer units.

For information, contact Flesher Corporation, at P.O. Box 976, Topeka, Kansas 66601. RS#309

A trademark of the Tandy Corp.
power center

Ultima Electronics announces the immediate availability of a new state-of-the-art electronic outlet power center designed for fail-safe industrial, residential, and commercial use.

Designated “Surgefree,” the new unit features all solid-state electronic circuitry. Compact in size, it can be plugged into any 120 VAC outlet to instantly sense and suppress destructive effects of high-voltage transient spikes and surges to sensitive electronic equipment. It is rated at 15 amps (1875 Watt), 125 VAC, with a resettable circuit breaker that protects against accidental power overloads.

Model SF-200, with two sockets, sells for $69.95; Model SF-600, with six sockets, $89.95; Model SF-1000, with ten sockets, $99.95.

For further information, contact Ultima Electronics Ltd., 59-7 Central Avenue, Farmingdale, New York. RS#308

compact mobile transceivers

Tri-Okenwood Communications has announced the addition of two new ultra-compact models to their line of mobile transceivers.

The 2-meter version, model TM-201A, incorporates microprocessor-controlled operating features in a new lightweight slim-line design. Features include 25 watts of RF output, dual-digit VFO’s, five memories, priority alert scan, memory and band scans, lithium battery memory back-up (estimated 5-year life), high-visibility yellow LED display, external speaker, and a 16-key autopatch UP/DOWN microphone. An audible “beeper” confirms operation of selected functions. An optional FC-10 frequency
Inexpensive kit and assembled units for use with Hand-Held, Mobile, or Base Station. 100 to 260 MHz or 200 to 550 MHz with one antenna. Non-ambiguous. No overloading. Use with unmodified HT, scanner, or transceiver. No attenuator or "S" meter needed. Can DF signals below the noise. Averages out local reflections while mobile-in-motion. Used by FCC, US Army, State of California, Coast Guard Aux. Prices start at $125. For details send SASE to: BMG Engineering, 9935 Garibaldi Ave, Temple City, Cal, 91780.
panel discussion

Two new photovoltaic panels, the SX-10 and SX-20, are available from ENCON. Rated at 10 watts; the SX-10 features different current/voltage selections (8 VDC at 1.05 amperes, 13.3 VDC at 0.52 amperes) the ham can wire himself. The SX-20, rated at 20 watts, offers a choice of 8.6 VDC at 2.09 amperes and 17.3 VDC at 1.05 amperes.

The SX-10 and SX-20 can be used for mobile QRP operations or can be permanently mounted for charging batteries. Their life expectancy is 30 years or more, and they’re said to be able to withstand a wind load of over 160 MPH and golfball-size hailstones. They’re both water- and moisture-proof.

For complete information, contact ENCON, 27690 Schoolcraft Road, Livonia, Michigan 48150. RS#306

precision tips

Six new precision soldering iron tips have been introduced for use with the recently introduced Ungar Series 9000 soldering iron and systems. The new tips are 1/16 and 0.090-inch spade, 1/32 and 3/64-inch screwdriver, 1/32-inch short spade and the 0.020 conical. The list price of each tip is $3.75. All are interchangeable with the modular Ungar System 9300 and System 9000 and 9100 variable-temperature systems.

For further information, contact Ungar, P.O. Box 6005, Compton, California 90220. RS#305

elevation rotators

The entire Kenpro product line is again available to Amateurs in the United States. Distributed to local dealers by Spectrum West, the Kenpro line includes the KR 500 elevation rotor, said to be the only dedicated elevation rotor available to retail consumers. The line also includes the KR 2000 RC, described as the strongest azimuth rotator available, with over 10,000 kg/cm torque and the ability to hold over 30 square feet of wind load in a tower configuration.

For more modest applications, Kenpro
DESIGN NARROWBAND MICROWAVE AMPLIFIERS WITH YOUR PERSONAL COMPUTER

- Maximum Gain Designs
- Minimum Noise Designs
- Gain and Noise Compromise Designs
- Gain and Stability Analysis
- 50 Ohm Stub Circuits
- Quarter Wave Transformer Circuits
- Microsoft BASIC

Manual with listing $16.95 ppd.
Check or money order drawn on U.S. bank ONLY

Phillip Young
1209 Sunset Road SW
Albuquerque, New Mexico 87105

DX TOUR

- Australia
- New Zealand
- Fiji
- Hawaii

THREE WEEKS
OCTOBER 11 thru 31, 1984
Departs from Los Angeles
For Hams, Spouses and Friends
Meet and greet your ham friends in their own countries. Welcoming events by local hams and clubs.
Tour directors: Jean (WAGAKP) and Bill (WGUFS) Thompson
Write for brochure:

HAVING LOADING PROBLEMS?

GET A Z-DUBBER

Because of the great variation in cassette recorders used with the Amateur Radio Loop, some in very poor condition, you may be having a hard time loading cassette programs. The (Z-Dubber) converts between the cassette recorder and the computer and as such produces a much better signal for the computer to read. The (Z-Dubber) also gives you the ability to connect two cassette recorders together to make perfect backup copies. The (Z-Dubber) can be yours for $19.95 postpaid, add $2.00 for shipping outside the U.S. or Canada.

Charge or COD orders call (206) 236-8676

PACKET RADIO TNC

The Model PK1 TNC from GLB Electronics has a self-contained MODEM and requires only a 12-volt power supply, a data terminal and a radio transceiver for packet operation. The data terminal can be a personal computer, a "dumb" terminal (keyboard and display), or even a mechanical teletype machine. The terminal interface is RS-232 compatible and self-adapts to ASCII or Baudot and at data rates ranging from 45 to 9600 baud. An adaptor is available for converting mechanical teletype machines to the RS-232 interface. Standard Bell 202 tones are used, with a data rate of 1200 baud, making it compatible with both Vancouver (VADC) and Tucson systems.

Utilizing a Z80A microprocessor, the Model PK1 has 8K of ROM and 4K of RAM as standard equipment. RAM can be readily expanded to 14K, using 2K "byte-wide" memory chips and to 56K via modification using 8K chips. The VADC protocol is available now, and AX.25 is to be released by the end of the year. Conversion to AX.25 is accomplished by means of exchanging ROM's at nominal cost.

The Model PK1 is a printed-circuit assembly, measuring 4.5 x 9.4 inches. It's priced at
BINAURAL SYNTHESIS THAT SUPPLIES TWO OUT-PUT CHANNELS WITH CROSS-OVER AT 750HZ - OPERATIONAL WITH ALL FUNCTIONS - AUDIO WHITE-NOISE GENERATOR - SEE MARK and SPACE frequency 500 Hz to 300 kHz. Hours to order. RTTY or CW Disk. (Call for Foreign Shipping)

Many Standard and UNIQUE FEATURES

Any MARK and SPACE frequency 500 Hz to 3000 Hz.

TRANSMIT OR RECEIVE

ALSO ACCEPTS TTL INPUT TO GAME I/O

C.W. VERSION AVAILABLE

PRICES: RTTY or CW Disk. $ 39.95
Black-Ups each $ 7.50
RTTY with CW $ 59.95
Shipping $ 2.50

(Residents add 6% tax) WRITE FOR DETAILS OR ORDER FROM:

W.H. NAIL COMPANY
275 Lodgeview Drive
Oroville, CA. 95965
(916) 589-2043

Free Tool Catalog

Thousands of hard-to-find products for building, testing, and repairing electronics. Everything is easy to order by phone or mail, ready for immediate delivery.

Contact East—Dept. 0227
7 Cypress Drive, Burlington, MA 01803
In a hurry to receive your catalog? Call (617) 272-5051.
The dismantling of some towers should be done when first. Temporary guys should be used on the tower, guys, anchors, and/or roof in many cases is even more dangerous since the condition of the tower. Individually, guys of sufficient strength and size should be used at all times. Insurance.

Installation and dismantling of towers is dangerous and temporary failures. Used or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

Warning
Save your life or an injury

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10' or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

For further information, contact Larsen Electronics, P.O. Box 1799, Vancouver, Washington 98668. RS#312
"maxi" baluns

The Unadiella/Reycos/inline W2DU-(6) and W2DU-(2) baluns handle 3.5 kW power. Model W2DU-(6) is used for 160-meter applications while the W2DU-(2) handles those in the 6-1.4 meter range. Pull-apart tensile strength is rated at more than 600 pounds.

The baluns are adaptable to dipoles, inverted-vee, quads and Yagi antennas. Both are contained in weatherproof housing and have built-in lightning arrestors.

The price of each is $24.75. For more information, contact Microwave Filter Co., Inc., 6743 Kinne Street, East Syracuse, New York 13057. RS/302
<table>
<thead>
<tr>
<th>State</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fontana Electronics 8628 Sierra Avenue Fontana, CA 92335</td>
<td>714-822-7710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J & S Radio, Inc. 3919 Sepulveda Blvd. Culver City, CA 90230</td>
<td>213-390-6302</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jun's Electronics 3919 Sepulveda Blvd. Culver City, CA 90230</td>
<td>213-390-6302</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shafer Radio, Inc. 1378 S. Bascom Avenue San Jose, CA 95128</td>
<td>408-397-6501</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>Hatry Electronics 500 Ledyard St. (South) Hartford, CT 06114</td>
<td>203-527-1861</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>Delaware Amateur Supply 71 Meadow Road New Castle, DE 19720</td>
<td>302-328-7728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L & S Radio 307 McLean Avenue Hopkinsville, KY 42240</td>
<td>502-885-8071</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>Amateur Electronic Supply 1898 Drew Street Clearwater, FL 33755</td>
<td>952-461-4267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amateur Radio Center, Inc. 2805 N.E. 2nd Avenue Miami, FL 33137</td>
<td>305-573-8303</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>Erickson Communications, Inc. 5456 N. Milwaukee Ave. Chicago, IL 60630</td>
<td>312-631-5181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Ham Shack 808 North Main Street Evansville, IN 47710</td>
<td>812-422-0231</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>Associated Radio 8012 Conner, P.O. Box 4327 Overland Park, KS 66204</td>
<td>913-381-5900</td>
<td>America's No. 1 Real Amateur Radio Store. Trade — Sell — Buy.</td>
</tr>
<tr>
<td>Kansas</td>
<td>L & S Radio 307 McLean Avenue Hopkinsville, KY 42240</td>
<td>502-885-8071</td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>The Comm Center, Inc. Laurel Plaza, Rt. 198 Laurel, MD 20707</td>
<td>301-341-7500</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Tel-Com, Inc. 675 Great Road, RTE. 119 Littleton, MA 01460</td>
<td>617-486-3040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Midwest Amateur Radio Supply 3452 Fremont Ave. NO. Minneapolis, MN 55412</td>
<td>612-521-4662</td>
<td>It's service after the sale that counts.</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Polcar's Electronics Center 61 Lowell Road Hudson, NH 03051</td>
<td>603-883-5005</td>
<td>Southern New Hampshire's only Ham Store. Call today for quotes.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Radios Unlimited P.O. Box 347 1760 Easton Avenue Somerset, NJ 08873</td>
<td>201-469-4599</td>
<td>New Jersey's only factory authorized equipment distributor. New and used equipment. Full service shop.</td>
</tr>
</tbody>
</table>

Dealers: You should be here too! Contact Ham Radio now for complete details.
Effective Sales Producer Needed by New Ham Radio Equipment Maker

We need you to set up and monitor a dealer network, and generally promote the product. Initial four VHF power amplifiers will be followed, in a few months, by additional products.

We'll convince you we can ship viable products. You convince us you will make us successful.

Our initial thoughts are:

- Age (high or low), sex, race, etc. not important. Ability is.
- You will be a partner. No initial investment. Your income depends on sales.
- You must be a ham.
- In this electronic world we communicate many ways. Operate out of your home, with only periodic trips to the factory, or set up an office.
- Product is first quality and priced accordingly.
- Dialogs with established companies are welcomed.
- All responses acknowledged.

WRITE TO:

COMMUNICATIONS
2995 Woodside Road
Suite 400-550
Woodside, CA 94062
TRADE general radio frequency and deviation meter model 1124-A for set of machinist tools from retired machinist, toolmaker. Sell Drake Rc-4 receiver with filters $262.50. Collection of over 35 years boxed receiving tubes most at one dollar each. Send your list of needs for availability, W3QJ, 314 N. Resler Dr., El Paso, TX 79912. April 7, 1983.

VLF-LF preamps, coupler, Lorcan boards. SASE, Burhans Electronics, 161 Groverson St., Athens, OH 45701.

ELECTRON TUBES: Receiving, transmitting, microwave all types available. Large stock. Next day delivery most cases. Daily Electronics, 14126 Willow Lane, Westminister, CA 92685. (714) 894-1368.

PRE-1946 TELEVISION SETS wanted for substantial cash. Finder’s fee paid for leads. Also interested in spinning disc, mirror-in-the-lid, early color sets, 2AP4 picture tubes. Arnold Chase, 9 Rushie Road, West Hartford, Conn. 01617. (203) 521-5280.

TRANSMITTER. Hallicrafters BC-610-1, 214 MHz; 400W, good condition and other best offer; Glenn, 3749 Yosemite, San Diego, CA 92109. (619) 272-7538.

MOBILE IGNITION SHIELDING. Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

DRAKE LAB with P.S. Pickup only $475.00. Wanted: Ten- Tec 2591. Hai, W6LXZ. (714) 679-8737.

CABLE CONVERTERS, decoders. Catalog $1 refundable. POS, 263 HR, Newport, RI 02840.

FOR SALE: HW-101 with CV filter, power supply, speaker, Shure 444 microphone. Mini condition, all for $350.00. P.O. Box 1133, Darien, CT 06820. (203) 452-5254.

RTTY EXCLUSIVELY for the Amateur Teleprinter. One year $7.00. Beginners RTTY Handbook $8.00 includes journal index. P.O. Box Ry, Cardiff, CA 92007.

RACAL RA.17 Military/Commercial grade communications receiver. The original up conversion design with continuous coverage from 5 - 30 MHZ. Selectivity in 6 steps from 100 Hz to 13 kHz North American model of British performance equivalent of Collins R260 without mechanical bandswitching. Complete set of replacement tubes. $450. John Harding, 1029 Sunset Drive, Blue Bell, PA 19422.

SATELLITE TELEVISION SYSTEM. Order the 2-year warranty licensed Dream Star 11000 receiver/L.N.C. with precision 9” spun aluminum antenna and ball-bearing polar mount at our call-for-current lowest price (approximately $1695.00). Chat and we’ll complete the system with a Chaparral Polartor lcontrol, hook-up assembly, 125’ line and installation instructions and assistance. Videolec, Inc., (600) 445/0383, Box 449, Prescott, Arizona 85362.

CHASIS and cabinet kits. SASE K3WJK.

WANTED: Cash paid for used Speed Radar equipment. Write or call: Brian R. Esterman, P.O. Box 8141, Northfield, Illinois 60093. (312) 251-9891.

WANTED: Pre-1960 bugs for my collection. Vibroplex, etc. Wanted: Card, Boulter, etc. K5RW, 1156 Midway, Richmond, TX 75081.

WANTED: Old RCA, Western Electric tubes. (713) 728-4343. Maury Corp, 11122 Atwell, Houston, Texas 77006.

PARABOLIC ANTENA, spun aluminum, 6 ft. with mount $325.00, 480-730-2500. Norman, 2222 Sharon Rd., #224, Menlo Park, CA 94025. (415) 654-6266.

WANTED: Early Hallicrafters “Skydroids” and “Super Skyriders” with silver panels, also “Skyrider Commercial”, early transmitters such as HT-1, HT2, HT-8, and other Hallicrafters gear, parts, accessories, manual’s Chuck Dachis, W3DSEG, c/o Hallicrafters Collector, 4500 Rushell Drive, Austin, Texas 78745.

WANTED: Boonton/HIP type 250B RX meter also service manual for ex USN receiver type RT051B/5RR. Write: Gill, 72 Egin Street, Gould, AR 72137.

COLLINS KW-1 parts wanted. Chuck, Box 667, Dahlgren, Virginia 22448.

VERY INTERESTING! Next 4 issues $2. Ham Trader “Yellow Sheets”, P.O.Box 356, Wheaton, IL 60189.

ANNIE’S EASY. Analyze dipoles, slopers, verticals, inverted-vees and arrays; any orientation, position, phasing, weight or combination with Annie antenna Analysis Software. Include REAL GROUND (conductivity, dielectric constant). Super hi-res plotting. Annie’s incredibly friendly and with 100% machine language, she’s PAST! For Apple II+ (language card required) or PC, 5.99 plus $2.00 postage, NY add sales tax. Include full name and call. S.A.S.E. for info, Commercial, library, etc., call for quote (515) 322-6364. Sonnet Software, HR, 4397 Luna Course, Livermore, KY 10388.

INDEPENDENT REP. ORGANIZATION wishes to sell out or merge. Good knowledge of two-way Radio systems and equipment required. Sales experience a must. Top notch lines. Territory all of New England. Respond to: Box O. Greenville, NH 03048.

Coming Events

ACTIVITIES

"Places to go..."

ILLINOIS: RA-COM ‘83 sponsored by the Mt. Prospect Amateur Radio Club and Tri-County Emergency, November 13, Prospect High School, 801 W. Kensington, Mt. Prospect. Doors open at 8 AM. Large indoor flea & market, exhibits and seminars. More talk on 146.52. For information, flea market or booth reservations: SASE to RA-COM, P.O. Box 452, Mt. Prospect, IL 60056.
MASSACHUSETTS: The Honeywell 1200 Radio Club, sponsor of 147.72/12 repeater and the Waltham Amateur Radio Association, sponsor of 146.0464 repeater, will hold their annual Amateur Radio and electronics swap meet, Saturday, November 19, Honeywell Plant, 300 Concord Road, Billerica. Exit 27 off Route 3. Doors open 10 AM. Free admission to veteran. Declaration on parking. Snack bar and refreshments available. For information/reservations: SASE to Herman Gardner, Oak Park High School, 13701 Oak Park Blvd., Oak Park, MI 48237. (313) 966-2675.

MINNESOTA: The annual Handi-Ham Winter Hamfest, Saturday, December 3, Eagles Club, Fairbank, Registration 9 AM. There will be a Handi-Ham equipment auction, dinner at noon followed by a program. Talk in on 1979. For information: Doug Pury, N1BUB, 3 Visco Road, Burlington, MA 01803.

NEW YORK: Radio Central ARC presents the 15th annual "Ham-Central!" All inside flea market and Hamfest, Sunday, November 27, Temple Isaiah's main social hall, 1404 Stony Brook Road, Stony Brook, Long Island. Doors open 7:30 AM for sellers/dealers; 9 AM general admission. Tickets $3.00 (OM or XYL and kids under 12 free). $7.00 at 11 AM; table and one free admission. Free parking. Nearby shopping. For information or reservations: Scotty Policastro, KAEOW (516) 589-2557 80 7th Street, Bohemia, N.Y. 11716 or Bob Kearns, KF2RZG (516) 981-2709, 3 Haven Ct., Lake Grove, NY 11755.

NORTH CAROLINA: The Guildford Amateur Radio Club's annual Hamfest/Computerfest, November 26 and 27, National Guard Armory, Greensboro, 9 AM each day. Admission $3.00, children under 12 free. Table space available with price of admission. Food and free parking. Talk in on 144.65/145.25 and 146.52 simplex. An equipment check-out booth with test equipment and a technician available free for those wishing to check equipment prior to purchase. For information or advance tickets: SASE to GARC, P.O. Box 3500, Greensboro, NC 27407. Please make checks payable to GARC.

OHIO: The Massillon Amateur Radio Club, W8BNF, will present "Auctionfest '83" Sunday, November 13, 8 AM to 5 PM, Massillon K of C Hall, 988 Cherry Road N.W., Massillon. Auction of antennas, amplifiers, M.A. Advance tickets $2.50, $3.00 at door. Tables $5.00 per 8 ft. space. Talk in on 147.76/81. For information and reservations: SASE to MARC, 920 Tremont Avenue S.W., Massillon, Ohio 44646.

PA: The Footlights ARC's 15th annual Hamfest, Saturday, November 5, St. Bruno's Church, South Greensburg. Tickets $2.00 or $3.50 indoor. Free flea market tables. $5.00. Indoor check in on 148.07/67. For information, tables: W8AMOL or write FARC, P.O. Box 236, Greensburg, PA 15601.

OPERATING EVENTS: "Things to do...

NOVEMBER 3 TO 6: The NBS-BRASS of Gaitersburg, Maryland, will operate K3AA to observe the dedication of the first active Amateur Radio Club station at the National Bureau of Standards. Multi-op activities on CW, Phone and RTTY near low end of 80 to 10 meter Novice and General classes bands. Certificate available for SASE to BRASS, c/o National Bureau of Standards, Mailroom, Washington, D.C. 20234.

NOVEMBER 5 AND 6: Radio Central ARC, Rocky Point, New York. QST will be available from the former RCA HF Radio Station called "Radio Central" to commemorate the 62nd year of the now silent station. 2,160 meters up to 10 kHz to expand band and on 2 meters on 146.52 and SASE 145.045 and 150 repeater. Yellow band operation 7.110 kHz. For a special QSL card showing a photo of the former station send your QSL with large SASE to Radio Central ARC, P.O. Box 860, Miller Place, NY 11764 or QSL to Callbox address.

NOVEMBER 11, 12 AND 13: The Armored Force Amateur Radio Nationwide Emergency Team (A FAR NET) will help commemorate Veteran's Day by operating a special event station, 1200 UTC and 2400 UTC on all three days. 40 meters: 7280 to 7290 kHz. 20 meters: 14320 to 14330 kHz. 15 meters: 21370 to 21380 kHz. Those making contact with member stations can obtain a commemorative certificate by sending $1.00 to Harry B. Thomsen, W2FJH, 341 Jefferson Avenue, Apt. 15, Canadaguys, NY 14424. Indicate call letters of station contacted, the station's A FAR number, date, time and bands. Include call, name and address.

NOVEMBER 24: Thanksgiving Day. A special events station sponsored by the Whitman ARC and Plimoth Plantation will operate from the Plimoth Plantation's "1627 Pilgrim Village." Call W1AMPO, 1300 GMT to 2000 GMT. This event will be supported by members of the Plymouth (Devon, England) Radio Club operating G3PRC from a site overlooking Plymouth Sound from which the original "Mayflower" sailed in 1620. To receive a certificate, send proof of contact and $1.00 or 3 IRC's to: Whitman ARC, P.O. Box 48, Whitman, MA 02382. For additional information: KA1CZS (617) 826-4772; WB1CNM (617) 856-7524; Rosemary Carroll, Plimoth Plantation, P.O. Box 1620, Plymouth, MA 02360 (617) 746-1622; or Peter Jackson, K3ADV, 92 Brown Avenue, Parkfield, Nantucket, Cheshire, UK, Phone 0270-626149.

NOVEMBER 26 TO JANUARY 8: The Niagara Falls Radio Club will operate special event station W2QYJ during the selected event days from the Festival of Lights. Hours are 1200 UTC to 0300 UTC in the General portion of 20, 40 and 80. For a color photograph award send QSL and $2.00 donation along with a 5x11 SASE (5/9 postage) to: Angelo Zino, W2ZUJR, Awards Manager, 16 Council St., Niagara Falls, NY 14304.

DECEMBER 3: The Connecticut DX Association will operate K01R, 1300 to 2000 ZT, from the home of Mark Tin, Mark Tin Memorial, Hartford, CT. Frequencies for Phone and CW will be lower portion of General and upper portion of Advanced bands. For a full color QSL send your QSL and SASE to: Conn. DX Assn., P.O. Box 181, Columbus, CT 06023.

The Key Element
SSB clarity starts at the microphone...

If you are not satisfied with the 'sound of your station' — it's no wonder -- most "communications" mics you use were designed for industrial paging or p.a., not for the sophisticated SSB techniques. The HC-3 response gives maximum articulation for getting through DX pile-ups and has set the new standard for all.

You can easily install this small, advanced 880 element to your present old mic or order the new HC-5 SSB Mic using the high quality HC-3.

For more details or to order the new HC-3 element at $19.95, the HC-5 SSB Mic at $54.95, contact HEIL LTD., Marissa, IL 62257 (618) 295-3000 (add $3.00 shipping).

PHOTOWATT PHOTOVOLTAICS

Best Performance
Best Price

SEND $2.00 FOR CATALOG OF PHOTOVOLTAICS, WIND AND WATER EQUIPMENT, INVERTERS, D.C. POWERED LIGHTS, STEREO, MULTI-COMPONENT SYSTEMS, SPEAKERS, STEREO, AND MUCH MORE.

ALTERNATIVE ENERGY ENGINEERING

P.O. BOX 339 DEPT. HR
REDWAY, CA 95560 (707) 923-2277

155

104

NEW MULTI-CHANNEL MICROWAVE

Complete Antenna Systems from $69.95

Full 800 Mhz Range
Tune 1.9-2.7 Ghz

Includes:

GOLD STAR

SILVER STAR

TELE STAR

GALAXY ELECTRONICS

6009 N. 61 Avenue
Glendale, AZ 85301

1-602-247-1151
LISTEN TO THIS!

UL2M is a FM Transmitter that plugs into the phone jack of most H.F., V.H.F. and U.H.F. radios. You can now monitor your favorite H.F., V.H.F. or U.H.F. frequency up to 100' away using the UL2M and your H.T. The UL2M is a XTAL controlled F.M. transmitter built inside a standard 1/4" phone plug. The UL2M will transmit the audio from your H.F., V.H.F. or U.H.F. radio to your H.T.

When ordering specify operating frequency of your H.T.

ONLY $19.95

To order, send check or money order to:

S and T Electronics
1401 Rae Lane
Madison, WI 53711
For C.O.D. order call Carol at 608/274-2599.
satisfaction guaranteed or full refund.

CABLE CONVERTER SALE

MAGNAVOX FX-25 - 26 CHANNEL WITH REMOTE CONTROL / VHF-MIDBAND-SUPERBAND - REG $97.95 - NOW $49.95

JERROLD JSK-304C - 56 CHANNEL WITH IN BAND GATED Sync DECODER - REG $299.95 - NOW $149.95

JERROLD SB-3 - 56 IN BAND GATED GATED Sync DECODER - USE WITH ANY CONVERTER WITH OUTPUT ON CHANNEL 3 - REG $149.95 - NOW $99.95

UHF BLOCK CONVERTER - CONVERTS M模BAND AND SUPERBAND TO UHF - REG $197.95 - NOW $26.95

SEND $1.00 (REFUNDABLE) FOR CATALOG

ADD $4.75 SHIPPING/HANDLING FOR EACH UNIT ORDERED

NYS ADD SALES TAX - C.O.D.'S OK

24 HOUR ORDER LINE

ORDER DIRECT FROM -
TAYCO COMUNICATIONS
33-14A MARGARET CREEK ROAD
CORNING, NEW YORK 14838

1296 & PHASE III
MAKI UTV 1200 - $499.95
2M or 6M I.F. / 3 WATTS
MICROWAVE MODULES
432 / PHASE III UNITS
$269.95

J-BEAM / LOOP YAGIS
AND ACCESSORIES

SEE US IN HOUSTON

SPECTRUM WEST
5717 NE 56th, SEATTLE, WA
206-382-2132

BUY! SELL! TRADE!
COMPUTER & HM APPIPMENT

ANNUAL SUBSCRIPTION
$15.00
Low Ad Rates - Mailed Monthly
Foreign Subscriptions - $30.00 Year
FREE 50 Word Classified Ad with Subscription Order

Chet Lambert, W4WDR
1704 Sam Drive Birmingam, AL 35235
(205) 884-0271
Sample Copy - $1.00

BUY THE ANTENNA CONTROLLER OF THE FUTURE TODAY!
A PRO-SEARCH™ DIGITAL
ANTENNA CONTROL FULLY COMPUTERIZED

SMALL IN SIZE
3 1/4 "H x 5 1/2 "W x 6 "D
10 MEMORIES FOR STORING YOUR FAVORITE HEADINGS
ONE YEAR FULL WARRANTY

PRO-SEARCH is Adaptable To Many Systems, Simple To Install.
No Modifications Are Necessary.

Presently we're having our Fall and Christmas Special. A PSE-1, used with the CDE Series, Now only $315.00 plus shipping. Regular retail price $419.91. Offer good until November 15, 1983. Order Early we expect a back order problem due to demand and availability of parts. Also ask about our Fall Rotor, Antenna and Unit Special.

CALL NOW 1-800-325-4016

Controllers also available for other rotors.
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents

Pro-Search Electronics Co.
1344 Bauer Boulevard St. Louis, Mo 63132
1-314-994-7872

November 1983

More Details? CHECK-OFF Page 118
THE INTERFACE

THE INTERFACE is the original Kantronics terminal unit that broke through the barrier of multi-computer compatibility. **THE INTERFACE** is an amateur modem for transceiver-to-computer communication. With **THE INTERFACE** and Hamsoft or Hamtext for your computer you can send and receive Morse Code, Radioteletype, and ASCII. **THE INTERFACE** is also compatible with our new software for AMTOR communication, AMTORSOFT. **THE INTERFACE** is our most popular unit combining active filtering, easy tuning, six-computer compatibility, and low price for an unbeatable package.

Suggested Retail \$139.95

INTERFACE II is the new Kantronics transceiver-to-computer interface. **INTERFACE II** features a new highly sensitive front end with mark and space filtering and a unique new tuning system. Even the most discerning operator will be surprised with the **INTERFACE II**'s ability to dig out signals in poor band conditions, and our new tuning system even displays signal fading. X-Y scope outputs and dual interface outputs for VHF and HF connections make **INTERFACE II** compatible with almost any shack. All three standard shifts are selectable and **INTERFACE II** is compatible with the industry standard Kantronics programs: Hamsoft, Hamtext, and Amtorsoft. Step up to state of the art in computer-amateur communications with **INTERFACE II**.

Suggested Retail \$269.95

For more information see your Kantronics dealer, or contact:
Kantronics 1202 E. 23rd Street Lawrence, KS 66044
The New Yaesu FT-726R Tribander is the world's first multiband, multimode Amateur transceiver capable of full duplex operation. Whether you're interested in OSCAR, moonbounce, or terrestrial repeaters, you owe yourself a look at this one-of-a-kind technological wonder!

Multiband Capability
Factory equipped for 2 meter operation, the FT-726R is a three-band unit capable of operation on 10 meters, 6 meters, and/or two segments of the 70 cm band (430-440 or 440-450 MHz), using optional modules. The appropriate repeater shift is automatically programmed for each module. Other bands pending.

Advanced Microprocessor Control
Powered by an 8-bit Central Processing Unit, the ten-channel memory of the FT-726R stores both frequency and mode, with pushbutton transfer capability to either of two VFO registers. The synthesized VFO tunes in 20 Hz steps on SSB/CW, with selectable steps on FM. Scanning of the band or memories is provided.

Full Duplex Option
The optional SU-726 module provides a second, parallel IF strip, thereby allowing full duplex crossband satellite work. Either the transmit or receive frequency may be varied during transmission, for quick zero-beat on another station or for tracking Doppler shift.

High Performance Features
Borrowing heavily from Yaesu's HF transceiver experience, the FT-726R comes equipped with a speech processor, variable receiver bandwidth, IF shift, all-mode squelch, receiver audio tone control, and an IF noise blanker. When the optional XF-455MC CW filter is installed, CW Wide/Narrow selection is provided. Convenient rear panel connections allow quick interface to your station audio, linear amplifier, and control lines.

Leading the way into the space age of Ham communications, Yaesu's FT-726R is the first VHF/UHF base station built around modern-day requirements. If you're tired of piecing together converters, transmitter strips, and relays, ask your Authorized Yaesu Dealer for a demonstration of the exciting new FT-726R, the rig that will expand your DX horizons!
SSB, CW, AM, FM, digital VFO's, 10 memories, band and memory scan, optional 118-174 MHz coverage...

R-2000

The R-2000 is an innovative all-mode SSB, CW, AM, FM receiver that covers 150 kHz—30 MHz, with an optional VC-10 VHF converter unit to provide coverage of the 118-174 MHz frequency range. New microprocessor controlled operating features and an optional conversion PLL circuit assure maximum flexibility and ease of operation to enhance the excitement of listening to stations around the world.

R-2000 FEATURES:

- Covers 150 kHz—30 MHz in 30 bands. Uses innovative UP-conversion digitally controlled PLL circuit. UP/DOWN band switches (1-MHz step). VFO's continuously tuneable across the band and from band to band.

- Optional 118-174 MHz coverage.

Through use of innovative microprocessor technology, frequency, band, and mode data of stations in the 118-174 MHz range may be tuned, displayed (full frequency, i.e., 146.000.0), stored in memory, recalled, and scanned, using the R-2000 front panel controls and frequency display, allowing maximum convenience and ease of operation.

- The optional VC-10 VHF converter unit may be easily installed on the rear panel of the R-2000.

- All mode: USB, LSB, CW, AM, FM.

Provides expanded flexibility in receiving various signal types. Front panel mode selector keys, with LED indicators.

- Digital VFO's for best stability.

50-Hz step, switchable to 500-Hz or 5-kHz. F. LOCK switch provided.

- Ten memories store frequency, band, and mode data. Complete information on frequency, band, and mode is stored in memory, assuring maximum ease of operation. Each memory may be tuned as a VFO. Original memory may be recalled. AUTO, M switch for automatic storage of current operating data, or, when off, selective storage of data using M, IN switch.

- Lithium battery memory back-up. (Est. 5 yr. life.)

- Programmable memory scan.

Scans all memories, or may be programmed to scan specific memories. HOLD switch interrupts scanning. Frequency, band, and mode are automatically selected in accordance with the memory channel being scanned. The scanning time is approximately 2 seconds per channel.

- Programmable band scan.

Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish upper and lower scan limits. HOLD switch interrupts scanning. Frequency may be adjusted, using the tuning control, during scan HOLD.

- Fluorescent tube digital display (100-Hz resolution).

Built-in 7 digit fluorescent tube digital display indicates frequency or time, plus memory channel number. DIM switch provided. The display may be switched to indicate CLOCK-2, FREQUENCY, CLOCK-1, and timer ON or OFF by the front panel FUNCTION switch.

- Dual 24-hour quartz clocks, with timer.

- Three built-in IF filters with NARROW/WIDE selector switch. (CW filter opt.) 6-kHz wide or 2.7-kHz narrow on AM. 2.7-kHz automatic on SSB. 2.7-kHz wide on CW, or, with optional YG-455C filter installed, 500-Hz narrow. 15-kHz automatic on FM.

- Squelch circuit, all mode, built-in, with BUSY indicator.

- Noise blanker built-in.

- Large front mounted speaker.

- Tone control.

- RF step attenuator. (0-10-20-30 dB). Four step attenuator, plus antenna fuse.

- AGC switch. (Slow-Fast.)

- "S" meter, with SINPO "S" scale.

- 100/120/220/240 VAC. or 13.8 VDC operation (with opt. DCK-1 cable kit).

- Other features.

- RECORD output jack.

- Audible "beeper" (through speaker).

- Carrying handle.

- Headphone jack.

- External speaker jack.

Optional accessories:

- VC-10 118-174 MHz converter.

- HS-4, HS-5, HS-6, HS-7 headphones.

- DCK-1 DC cable kit.

- YG-455C 500-Hz CW filter.

- HC-10 World digital quartz clock.

- AL-2 Surge Shunt

More information on the R-2000 is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street. Compton, California 90220.

Kenwood
pacesetter in amateur radio

Specifications and prices are subject to change without notice or obligation.