- packet radio
- testing baluns
- digital audio filter for CW and RTTY
- hybrid couplers
- antenna carriage and track pole mount

RF SYNTHESIZERS for high-frequency communications

focus on communications technology
ICOM IC-751
The New Standard of Comparison

ICOM is proud to announce the most advanced amateur transceiver in communications history. Based on ICOM’s proven high technology and wide dynamic range HF receiver designs, the IC-751 is a competition grade HF receiver, a 100kHz to 30 MHz continuous tuning general coverage receiver, and a full-featured all mode solid state ham band transceiver, that covers all the new WARC bands. And with the optional internal AC power supply, it becomes one compact, portable/field day package.

Receiver. Utilizing an ICOM developed J-FET DBM, the IC-751 has a 100dB dynamic range. The 70.4515MHz first IF virtually eliminates spurious responses, and a high gain 9.0115MHz second IF, with ICOM’s PBT selectivity. A deep IF notch filter, adjustable AGC and noise blanker (can be adjusted to eliminate the woodpecker), audio tone control, plus RIT with separate readout provides easy-to-adjust, clear reception even in the presence of strong QRMs or high noise levels. A low noise receiver preamp provides exceptional reception sensitivity as required.

Transmitter. The transmitter features high reliability 2SC2097 transistors in a low IMD (-32dB @ 100W), full 100% duty cycle (internal cooling fan standard), 12 volt DC design. Quiet relay selection of transmitter LPF’s, transmit audio tone control, monitor circuit (to monitor your own CW or SSB signal), XIT, and a high performance speech processor enhances the IC-751 transmitter’s operation. For the CW operator, semi break-in or full QSK is provided for smooth, fast break-in keying.

Dual VFO. Dual VFO’s controlled by a large tuning knob provide easy access to split frequencies used in DX operation. Normal tuning rate is in 10kHz increments and increasing the speed of rotation of the main tuning knob shifts the tuning to 10kHz increments automatically. Pushing the tuning speed button gives 1kHz tuning. Digital outputs are available for computer control of the transceiver frequency and functions, and for a synthesized voice frequency readout.

32 Memories. Thirty-two tunable memories are provided to store mode, VFO, and frequency, and the CPU is backed by an internal lithium memory back up battery to maintain the memories for up to seven years. Scanning of frequencies, memories and bands are possible from the unit, or from the HM 12 scanning microphone. In the Mode-S mode, only those memories with a particular mode are scanned others are bypassed. Data may be transferred between VFO’s, from VFO to memories, or from memories to VFO.

Standard Features. All of the above features plus FM unit, high shape factor FL44A, 455 KHz SSB filter, full function metering, SSB and FM squelch, convenient large controls, FM option, a large selection of plug-in filters, and a new high visibility multi-color fluorescent display that shows frequency in white, and other functions in white or red, make the IC-751 your best choice for a superior grade HF base transceiver.

Options. External frequency controller, external PS-15 power supply, internal power supply, high stability reference crystal (less than 100Hz, -10°C to -60°C), HM12 hand mic, desk mic, filter options: SSB: FL30, CW: FL52A, FL53A, AM: FL33.

ICOM America, Inc., 2112-116th Ave NE, Bellevue, WA 98004 (206) 345-8155 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234 (214) 620-27
All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
MFJ RTTY / ASCII / CW COMPUTER INTERFACE

Lets you send and receive computerized RTTY/ASCII/CW. Copies all shifts and all speeds. Copies on both mark and space. Sharp 8 pole active filter for 170 Hz shift and CW. Plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers. Uses Kantronics software and most other RTTY/CW software.

- Copies on both mark and space tones.
- Plugs between rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers.
- Uses Kantronics software and most other RTTY/CW software.

This new MFJ-1224 RTTY/ASCII/CW Computer Interface lets you use your personal computer as a computerized full featured RTTY/ASCII/CW station for sending and receiving.

It plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64, and most other personal computers.

It uses the Kantronics software which features split screen display, 1204 character type ahead buffer, 10 message ports (255 characters each), status display, CW-ID from keyboard, Centronic type printer compatibility, CW send/receive 5-99 WPM, RTTY send/receive 60, 67, 75, 100 WPM, ASCII send/receive 110, 300 baud plus more.

You can also use most other RTTY/CW software with nearly any personal computer.

A 2 LED tuning indicator system makes tuning fast, easy and positive. You can distinguish between RTTY/CW without even hearing it.

Once tuned in, the interface allows you to copy any shift (170, 425, 850 Hz and all shifts between and beyond) and any speed (5 to 100 WPM on RTTY/CW and up to 300 baud on ASCII).

Copies on both mark and space, not mark only or space only. If either the mark or space is lost the MFJ-1224 maintains copy on the remaining tone. This greatly improves copy under adverse conditions. A sharp 8 pole active filter for 170 Hz shift and CW allows good copy under crowded, fading and weak signal conditions. Uses FET input op-amps.

An automatic noise limiter helps suppress static crashes for better copy.

A Normal/Reverse switch eliminates retuning while stepping thru various RTTY speeds and shifts.

The demodulator will even maintain copy on a slightly drifting signal. A +250 VDC loop output is available to drive your RTTY machine. Has convenient speaker output jack.

Phase continuous AFSK transmitter tones are generated by a clean, stable Exar 2206 function generator. Standard space tones of 2125 Hz and mark tones of 2695 and 2975 Hz are generated. A set of microphone lines is provided for AFSK out, AFSK ground, PTT out and PTT ground.

FSK keying is provided for transceivers with FSK.

High voltage grid block and direct outputs are provided for CW keying of your transmitter. A CW transmit LED provides visual indication of CW transmission. There is also an external hand key or electronic keyer input jack.

In addition to the Kantronics compatible socket, an exclusive general purpose socket allows interfacing to nearly any personal computer with most appropriate software. The following TTL compatible lines are available: RTTY demod out, CW demod out, CW-ID input, +5 VDC, ground. All signal lines are buffered and can be inverted using an internal DIP switch.

For example, you can use Gallo software with Apple computers, or RAK software with VIC-20's. Some computers with some software may require some external components.

DC voltages are IC regulated to provide stable AFSK tones and RTTY/ASCII/CW reception. Aluminum cabinet. Brushed aluminum front panel. 8x14x6 inches. Uses 12-15 VDC or 110 VAC with optional adapter, MFJ-1312, $9.95.

MFJ-1224

$99.95

MFJ RTTY CW COMPUTER INTERFACE

RTTY/ASCII/CW Receive Only SWL Computer Interface

$69.95

MFJ-1225

Use your personal computer to receive commercial, military and amateur RTTY/ASCII/CW traffic. The MFJ-1225 automatically copies all shifts (850, 425, 170 Hz shift and all others) and all speeds. It plugs between your receiver and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers.

It uses Kantronics software which features CW receive 5-99 WPM, RTTY receive 60, 67, 75, 100 WPM, and ASCII receive 110, 300 baud, plus more.

An automatic noise limiter helps suppress static copies for better copy, while a simple 2 LED tuning indicator system makes tuning fast, easy and positive.

In addition to the Kantronics compatible socket, a general purpose socket provides RTTY out, RTTY inverted out, CW out, CW inverted out, ground and 8VDC for interfacing to nearly any personal computer with most appropriate software.

Audio in, speaker out jacks. 4x1"x4x1/4" in 12-15 VDC or 110 VAC with adapter, MFJ-1312, $9.95.

More Details? CHECK OFF Page 108
TR-2500
BIG performance, small size, smaller price!

The TR-2500 is a compact 2 meter FM handheld transceiver with every conceivable operating feature.

TR-2500 FEATURES:
- LCD digital frequency readout.
- Ten memories includes "MO" for non-standard split repeaters.
- Lithium battery memory back-up, built-in, (est. 5 year life).
- Memory scan.
- Programmable automatic band scan, and upper/lower scan limits; 5-kHz steps or larger.
- Repeater reverse operation, 2.5 W or 300 mW RF output. (HI/LOW power switch).
- Built-in tunable (with variable resistor) sub-tone encoder.
- Built-in 16-key autopatch encoder.
- Slide-lock battery pack.
- Keyboard frequency selection.
- Covers 143.900 to 148.995 MHz.

Optional accessories:
- ST-2 Base station power supply/charger (approx. 1 hr.)
- MS-1 13.8 VDC mobile stand/charger/power supply.
- VB-2530 2 M 25 W RF power amplifier, TR-2500 only.
- TU-1 Programmable CTCSS encoder (TR-2500 only).
- TU-35B Programmable CTCSS encoder mounts inside TR-3500 only.
- PB-25H Heavy-duty 490 mAH Ni-Cd battery pack.
- DC-25 13.8 VDC adapter.
- BT-1 Battery case for AA manganese/alkaline cells.
- SMC-25 Speaker microphone.
- LH-2 Deluxe leather case.

TR-3500
70 CM FM Handheld
- Covers 440-449.995 MHz in 5-kHz steps.
- HI-15 W, Low-300 mW.
- TX OFFSET switch, ±5 kHz to ±9.995 MHz programmable.
- Auto/manual squelch control.
- Tone switch for opt, TU-35B
- Other outstanding features similar to TR-2500.

TR-7950/7930
Big LCD, Big 45 W, Big 21 memories, Compact.

Outstanding features providing maximum ease of operation include a large, easy-to-read LCD display, 21 multi-function memories, a choice of 45 watts (TR-7950) or 25 watts (TR-7930), and the use of microprocessor technology throughout.

TR-7950/TR-7930 FEATURES:
- New, large, easy-to-read LCD digital display. Easy to read in direct sunlight or dark (backlighted). Displays TX/RX frequencies, memory channel, repeater offset, sub-tone number, scan, and memory scan lock-out.
- Lithium battery memory back-up. (Est. 5 yr. life.)
- 45 watts or 25 watts output. HI/LOW power switch for reduction to 5 watts.
- Automatic offset. Pre-programmed for simplex or ±600 kHz offset, in accordance with the 2 meter band plan. "OS" key for manual change in offset.
- Programmable priority alert. May be programmed in any memory.
- Programmable memory scan lock-out. Skips selected memory channels during scan.
- Programmable band scan width. Center stop circuit for band scan, with indicator.
- Scan resume selectable. Selectable automatic time resume-scan, or carrier operated resume-scan.
- Scan start/stop from up/down microphone.

Optional accessories:
- TU-79 three frequency tone unit.
- KPS-12 fixed-station power supply for TR-7950.
- KPS-7A fixed-station power supply for TR-7930.
- SP-40 compact mobile speaker.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
SAVE $10.50* with home delivery

*One year newsstand cost $30.00

Here's my address label, enter my subscription.

- 1 Year 12 issues $19.50
- 2 Years 24 issues $32.50
- 3 Years 36 issues $42.50

U. S. prices only

Payment enclosed Bill me later

Name

Address State Zip

City

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $21.50 for one year by surface mail.
12 rf synthesizers
for high-frequency communications:
part 1
Craig Corsetto, WA60AA

18 Amateur packet radio: part 2
Margaret Morrison, KV7D,
Dan Morrison, KV7B,
and Lyle Johnson, WA7GXD

30 testing baluns
John J. Nagle, K4KJ

40 ham radio techniques
Bill Orr, W6SAI

46 antenna carriage and track pole mount
Ira L. Simpson, KB3K

50 the hybrid ring
Ernie Franke, WA2EWT

60 a digital audio filter for CW and RTTY
Don Kadish, W1OER

70 antenna hinge
J.R. Yost, N4LI

108 advertisers index
and reader service
83 new products
10 comments
82 product review
66 DX forecaster
6 reflections
76 flea market
97 short circuits
72 ham mart
74 technical forum
SPECIAL REPORT: W5LFL and SPACELAB STS-9

A three-hour teleconference call on June 9 brought together representatives of NASA, AMSAT, the broadcasting industry, and several key figures in Amateur Radio publishing. The subject: the 9-day STS Spacelab Mission of Dr. Owen Garriott, W5LFL. While this page is normally reserved for the editorial — and was scheduled this month to include the 1983 ham radio Reader Survey — we gladly postpone both in order to bring you details of the project.

For the first time in the history of the space program, individual citizens will be able to talk directly with an astronaut in space when NASA mission specialist Dr. Owen Garriott, W5LFL, attempts to contact as many Amateurs worldwide as possible during the last five days of the STS-9 spacelab mission, scheduled for launch on September 30.

W5LFL will be able to operate only during his leisure time periods, expected to be one hour per day, for a mission total of five hours. He will transmit on the even minutes for one minute and listen on the next odd minute while logging and tape recording what he hears. He will then acknowledge call signs heard on the next even minute. It is expected that he will QSO approximately 500 hams worldwide and be heard by 300,000. The ARRL will act as QSL manager and provide acknowledgements for all verified QSOs and SWL reports.

The equipment aboard the spacecraft will be a multichannel black box transceiver capable of 5 watts output from its battery power. The station, located on the aft flight deck of the space shuttle orbiter Columbia, will use a printed circuit loop antenna mounted on the upper crew compartment window.

Operation will take place on uplink frequencies (earth to space) of 144.910-145.470 (possibly no higher than 145.190) in 20 kHz steps while the downlink frequencies (space to earth) will be 145.510-145.770 (2 or 3 specific frequencies will be chosen), also in 20 kHz steps. Mode of operation will be 2-meter fm (split).

The 57-degree inclination, 90 minute, 155 mile altitude orbit will enable most of the earth's land mass to be (line-of-sight) visible from the spacecraft during a typical day, though any specific location will have an 8-minute maximum pass.

AMSAT recommends that ground station equipment consist of no more than a 10-15 watt 2-meter transceiver feeding a high lobe (80-90 degrees would be ideal) turnstile antenna mounted above any obstructions. They do not recommend using more elaborate antennas (such as a cross-Yagi).

A combined effort on the part of many individuals and organizations, this project is the result of a joint proposal by the ARRL and AMSAT to NASA. Earlier proposals to place an Amateur Radio transceiver aboard an orbiting U.S. spacecraft date back to the early '70s, when a project called "SKYLARC" — Spacelab Amateur Radio Communications — was planned but scrubbed because it came too late in the development of the program. The present proposal was recently accepted by NASA, with the only restrictions related to non-interference with higher priority mission objectives, systems and, of course, safety.

Starting in mid-July the ARRL is expected to provide a 900 telephone number for the latest orbital information. Other sources of information are NASA itself, which will provide a timetable (flightline) of the operation, and Westlink, whose report can be heard by calling (213) 465-5550.

The ARRL is also planning a videotape presentation featuring Dr. Garriott. Hosted by NBC's Roy Neal, it will document the role of Amateur Radio and Amateur Radio operators throughout the STS-9 mission.

This is truly a unique occasion for Radio Amateurs to show the world how they can contribute to technology and public awareness. Each Amateur will provide quite some service if he is able to acquire the signal, tape record it and contact the local media with details of the QSL and perhaps even a recording of any voice contact. Reporters may want to play the tape over their broadcast stations or transcribe it for newspaper use.

So clean up the shack, tape record everything you hear, and good luck!

Rich Rosen, K2RR
Editor-in-Chief

*credit where it's due

A short list of just some of the people instrumental in bringing about this effort is definitely in order: General James Abramson, Assistant Administrator of NASA, who gave final approval for Amateur operation on the mission; Bernie Glassmeyer, W5KDR, ARRL Space Program Manager; Peter O'Dell, KB1N, ARRL Public Information Coordinator; Steve Mendelsohn, WA2GFT, CBS technician and Vice-Director of the Hudson Division of the ARRL; Rich Moseson, N2BFG, Associate Producer, CBS News; Bill Tynan, W3KO, VHF Contributing Editor, GST; Roy Neal, K6DUE, NBC Science Editor; Vern Ripotella, WA2LQQ, AMSAT President-Elect; and Bill Pasternak, WA6ITF, Editor, Westlink Report.
"MAXCOM"

AUTOMATIC ANTENNA MATCHER

TUNES

ONE ANTENNA

.3 MHZ. TO 70 MHZ.

VSWR LESS THAN 1.5:1

WITH NO ANTENNA TUNING

* NO MOVING PARTS!
* 5 YEAR WARRANTY!
* INSTANT SWITCHING!
* 50 OHM INPUT!
* LOW NOISE!
* DIPOLE!
* MARINE!
* AMATEUR!

* 100% SOLID STATE!
* NO CONTROL LEADS!
* LIGHT WEIGHT!
* HIGH EFFICIENCY!
* 200 TO 2KW. P.E.P.!
* LONG WIRE!
* MILITARY!
* AVIONICS!

AT LAST! A RADIO STATION INSTALLATION THAT IS JUST THAT!
"INSTALLATION ONLY"

NO MORE TIME CONSUMING, FRustrating and COSTLY ANTENNA TUNING.

ONE ANTENNA FOR ALL FREQUENCIES AND ALL BANDS FROM:
.3 MHZ. TO 70 MHZ.

SEE YOUR LOCAL DEALER FOR MORE INFORMATION, IF HE CAN'T HELP YOU
ASK WHY?
AND CONTACT:

MAGNUM DISTRIBUTORS INC. 1000 S. DIXIE HWY. POMPANO BEACH, FLORIDA. 33060
305-785-2002

WE WILL GLADLY FURNISH INFORMATION AND YOUR CLOSEST STOCKING DEALER!

August 1983
FCC's "NO MAILBACK" NOVICE EXAM PROPOSAL WAS APPROVED June 29 by the Commissioners and goes into effect by the end of August. Under the new procedure, proposed in PR-Docket 82-727, a General Class or higher Amateur will make up a Novice exam from a bank of 200 FCC approved questions, then both administer and grade it himself. He'll then simply advise FCC's Gettysburg office if the applicant passes, and they'll issue a license.

The New Procedure Should Cut Licensing For A Novice to a fraction of its current turn-around time, and save the Commission a good deal of money as well. The list of 200 questions and procedural detail should be ready for distribution by mid-July.

"Business Communications" Was Another Issue Addressed at that same meeting, resulting in the adoption of an "Interpretive Order." A new paragraph has been added to Rules Part E (Prohibited Practice) which states simply that business communications are prohibited and then defines business communications as "...any transmission...to facilitate the regular business or commercial affairs of any party." which is the definition now found in (Amateur section) Part 97.114(c). Its application was also specifically extended to overseas third-party traffic.

FCC's Proposal To Change Power Limits And Measurements from dc input to rf output may also make it to the Commissioners' agenda before they adjourn for August recess.

The Ancient Issue Of Amateur "Broadcasting" may also turn up on the Commission agenda in the near future. Most recently at issue was the rebroadcast of Space Shuttle communications, but the question of what constitutes "broadcasting" in the Amateur Service and an Amateur "broadcast" is justified has never been formally addressed by the FCC. Informal Comments And Suggestions On The Broadcasting question could prove helpful at this time, when the issue is still in the discussion stage. Contact Personal Radio Branch Chief John Johnston or Private Radio Bureau Chief James McKinney.

CONTACTS WITH W5LEI/SPACE DURING SKYLAB'S OCTOBER VOYAGE will necessarily be quite limited, with no more than 500 lucky Amateurs likely to hear their calls to space acknowledged by Astronaut Owen Garriott as he passes overhead. An operating procedure has already been established (see this month's editorial for this and other technical information).

Final Details Will Become Available as the late September launch date approaches. Check ARRL bulletins, AMSAT nets, and WestLink's 213-465-5550 line after mid-September.

OSCAR 10 IS UP AND LOOKING GOOD, following a textbook Ariane launch at 1159Z June 16. 17 minutes into launch OSCAR 10 separated, entering a highly elliptical temporary orbit.

Due to a less than ideal attitude the first thrust motor burn was delayed until the end of June; the last burn (to final orbit) should be mid- to late-July, after which the Mode B transponder will be turned on. Mode L (1268 to 436 MHz) won't be turned on until later.

OSCAR 10's 145.810 MHz Beacon Has Been Putting Out an excellent signal, with a five minute CW "status report" every hour and half hour and telemetry data in between. Due to the 200 by 39,000 kilometer elliptical orbit, the beacon has been audible in the midwest for more than 8 hours at a time with slowly changing azimuth and elevation bearings.

THE FUTURE OF THE VOLUNTEER AMATEUR EXAM PROGRAM has been clouded by an apparent ARRL policy change Incorporated in Its Reply Comments on the exam program NPRM, PR Docket 83-27.

Their new position, which is reported to have taken the commission by surprise, is that the League wouldn't participate in the volunteer program unless it was permitted to recover costs of operating the program by charging applicants an examination fee.

Sen. Barry Goldwater, K7UGA, Whose Communications Act Rewrite provided the means for setting up the volunteer program, has just told WA6IF of WestLink that he is completely opposed to any such fee. Goldwater does, however, support the League against "No-Code."

AMSAT WILL OPPOSE OPENING 29-29.5 MHZ TO REPEATERS, as proposed in FCC's PR Docket 83-485. Comments were due July 25, and Reply Comments will be due August 24.

ALL AMATEUR LOG KEEPING REQUIREMENTS HAVE BEEN DROPPED by the FCC, including those concerning logging of repeater autopatches and even overseas third-party traffic. Though an Amateur may still keep a log for his own use, it's no longer a Part 97 requirement.

However, Some Related Information Previously Required under Part 97.103 must still be kept but has been moved to other parts of the rules. Examples include much of the information pertaining to remotely controlled stations and their security.

In a "Streamlining" move, The FCC Has Also Adopted a number of other rules changes. A station operating ATV or RTTY, for example, now need identify only in the mode in which he's operating. An interim permit may now be renewed, and the rules now spell out the right of the Commission to inspect an Amateur station.

ERIC SHALKHAUSER, W9CI, PASSED AWAY June 9. He was one of the few remaining active Amateurs from before WWI and among his many accomplishments were his designs of the RME 69 and 70 plus many other outstanding receivers and converters for Amateurs.
HF, VHF, UHF, Across the spectrum. VARIAN EIMAC.

Ham operators know that EIMAC started in power tube development with the 150T in 1934. While the 150T is now a collector's item, EIMAC, a division of Varian, still holds leadership in power tube design with its 4CX250B, 8874, 3-500Z, 8877 and 3CX400U7; modern examples of EIMAC's continuing, innovative solutions to tough communication requirements.

EIMAC's proven power tubes are used in amateur service for heavy-duty, reliable performance in traffic; RTTY; SSTV; DX operation; VHF/UHF work; moonbounce, and exploration of the outer limits of communication techniques across the spectrum.

High quality and long life make EIMAC tubes the favorite choice of operator and equipment builder, amateur and professional alike.

For communication and research worldwide, choose EIMAC. For information on VARIAN EIMAC power tubes, call or write today. Or contact the nearest Varian Electron Device Group sales office.

VARIAN EIMAC
301 Industrial Way
San Carlos, California 94070
415-592-1221

VARIAN EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
801-972-5000

VARIAN AG
Grienbachstrasse 17
Postfach
CH-6300 Zug, Switzerland
Tel: (042) 31 66 55
Telex: 845-78789

More Details? CHECK – OFF Page 108
no code

Dear HR:

Isn’t all this wailing against a “no-code” license a little illogical?

Code became a licensing requirement because all radio communication then was by code. Today, almost none is. Only a few Amateurs and a handful of outmoded commercial and maritime services use CW and code.

In today’s hyper-electronic age, requiring code proficiency in order to operate a radio-telephone (which is all most hams want to do) is like making you learn to ride a motorcycle well in order to get a license to drive an automobile. Silly, eh?

Some people like motorcycles. They’re fun, I’m sure. And they get you where you want to go, like automobiles do. But there the resemblance ends. The number of motorcycles in use probably compares with the number of autos in use in about the same ratio as the number of active CW stations compares with the number of active SSB stations. CW is fun, and I was a “CW Forever” ham for fifty-four years until I was given a mike. And CW provides communications, like SSB. But again — there the resemblance ends.

Once, you had to know code to use radios. Today you don’t. The great majority of newly licensed hams forget the code as soon as they get on the air. Many never even own a telegraph key.

It would seem that those hams most outspoken against the “no-code” license simply feel that everybody should suffer like they did. Human, perhaps, but illogical.

Forcing people to learn code has not filled our CW bands. Count the CW signals any time of the day between 14000 and 14200, and the SSB carriers between 14200 and 14350 and see how they compare. Sad, isn’t it? Do we want to lose all that unused space to some other (and more pressing) service — and we will, you can bet on it — or stop pushing an anachronism and let the ‘phones use it for expansion, as is now happening?

To paraphrase an old saying, “You can force a ham to learn the code, but you can’t make him use it.” Let’s get smart.

Bill Lipprman, W6SN
Pacific Palisades, California

converting TV

Dear HR:

The article by Carl Gregory, K8CG, (ham radio, April, 1983) on converting TV sets to video monitors for computer use was well done and informative, but he missed an important (and very simple) method of improving performance.

A couple of years ago I found myself in need of a video monitor for computer and high resolution VCR use and too decided to convert a TV set. Don Lancaster covers the subject beautifully in Chapter 8 in his TV Typewriter Cookbook. Following his instructions, I converted a Motorola 20TS chassis. It worked well, but showed the same defects as K8CG’s “simplest approach” solution — mainly, blurred pixels in computer use.

The situation was vastly improved by simply including another Lancaster suggestion: shorting out the 4.5 MHz sound trap in the output of the final video amplifier. As long as the sound trap is in the circuit, the set’s video response has a big hole in it. With the short rise times in the computer generated signal, such a gap in response can be fatal.

I will not deny that K8CG’s approach using an external video amplifier tied directly to the CRT cathode is superior (especially in terms of contrast and the best possible video bandwidth), but for those of us who are essentially too lazy to go that route, the sound trap refinement will make the easier route adequate for most purposes. Both the Betamax and TRS-80 Model I seem to be happy with the simpler approach, and so am I.

Tom Adams, K9TA
Marinette, Wisconsin

CATVI

Dear HR:

After seeing all the articles written in various magazines last year on CATVI, I did not think it could happen to me. I felt an underground cable system should be virtually problem-free.

I am now involved with a complaint to the FCC and writing this letter to warn other hams one more time. You need to keep a constant surveillance on your cable system for leaks. One of the easier frequencies to watch is 145.250 and 144.0 if you’re on an HRC system. To be sure of the frequencies used, contact your local cable office and ask the engineer in charge. A new cable installation can easily cause TVI to your entire neighborhood if it is not installed correctly. Also keep in mind that your cable system does not have to use a ham band frequency before you can cause interference to a cable system.

Ron Hooper, WB4NMA
Gainesville, Georgia
Model AC 1.8 - 30

The AC 1.8 - 30 Antenna uses only 80 feet horizontally, and, when space is limited, can be shortened even further with only slight loss of radiation efficiency.

Patent Pending

- SWR Maximum 2:1, 1.4:1 Average
- Handles 1 KW input ICAS
- Can be installed in approximately 80 feet of space
- Higher power models available (contact factory)

$149.50

SHIPPING AND HANDLING ADD $4.00
PLL frequency synthesis has become the dominant frequency generation technique in modern communications equipment as a result of the increased availability of PLL oriented ICs. This, in turn, has enabled the design of compact-low-power, inexpensive synthesizers. While this technology has been accessible for some time, it's necessary to understand how PLL synthesizers work before trying to design or build one.

the phase-locked loop

There are three basic circuit blocks in a PLL: the phase detector, the loop filter, and the voltage-controlled oscillator (VCO), as shown in fig. 1.

In a PLL two signals at the phase detector input are in phase and therefore matched in frequency. Should they not be in phase, the phase detector generates an error signal which is filtered and passed to the VCO to correct the phase difference. At all times the loop tries to maintain zero phase difference between the phase detector input signals. A synthesizer is formed through the addition of a frequency divider to the basic PLL, (fig. 2). A zero phase error at the phase detector input occurs when the VCO is operating at a frequency

\[f_{VCO} = N f_{REF} \]

Since \(N \) is a programmable divider, the VCO can oscillate at any frequency within its range as long as that frequency is a multiple of \(f_{REF} \), simply by changing \(N \).

Fig. 3 illustrates a synthesizer designed to tune from 5.000 to 5.500 MHz in 1 kHz steps, using a 1 kHz reference oscillator and a programmable divider with a range of 5000 to 5500.

phase detector

The phase detector can be built around either analog or digital circuitry. However, since it is easier to design the PLL around digital phase detectors than around analog phase detectors, only the digital phase detectors will be discussed.

Digital phase detectors use gates and flip-flops to detect phase and frequency differences. Their output are pulses whose average value is a dc voltage that is dependent on phase difference. A plot of voltage output versus phase difference input of a phase detector is shown in fig. 4.

From fig. 4, phase detector gain, \(K_\phi \), is defined as:

\[K_\phi = \frac{\Delta V_{OUT}}{\Delta \theta_{IN}} \]

where \(\Delta V_{OUT} \) is the averaged phase detector output voltage change and \(\Delta \theta_{IN} \) is the input phase difference in radians.

By Craig Corsetto, WA6OAA, 4312 Marlowe Drive, San Jose, California 95124
In fig. 4, K_ϕ is:

$$K_\phi = \frac{5V - 0V}{2\pi - (-2\pi)} = \frac{5V}{4\pi}$$

$$= 0.397 \text{ volts/radian}$$

K_ϕ is usually given in the manufacturer's specifications or in the applications notes for the device.

VCO

The VCO is an oscillator whose frequency is controlled by an externally applied voltage, V_T. For good phase noise performance the VCO usually employs an LC or crystal resonator because of the high Q of these components.

The VCO has a gain term, K_{VCO}, which is the amount of frequency change, Δf_{VCO}, caused by a change in voltage V_T, on the VCO tune line.

$$K_{VCO} = 2\pi \frac{\Delta f_{VCO}}{\Delta V_T}$$

Since varactor diodes have nonlinear capacitance versus voltage characteristics, K_{VCO} is not constant over the VCO frequency range. Therefore, two values of K_{VCO} should be specified at the two ends of the VCO range.

Fig. 5 illustrates how f_{VCO} varies with V_T, over a frequency range of 5.000 to 5.500 MHz.

$$K_{VCO} (5.0 \text{ MHz}) = 2\pi \frac{(5 \text{ MHz} - 4.9 \text{ MHz})}{(1.75 - 1.25)}$$

$$= 1.257 (10^6) \text{ rad/sec/volt}$$

$$K_{VCO} (5.5 \text{ MHz}) = 2\pi \frac{(5.6 \text{ MHz} - 5.5 \text{ MHz})}{(9.30 - 7.00)}$$

$$= 0.2732 (10^6) \text{ rad/sec/volt}$$

Programmable Divider

The programmable divider is a digital circuit that provides simple programmable integer frequency division. Frequency division is possible to beyond 1 GHz using available ICs.

The gain of the programmable divider is:

$$K_N = \frac{1}{N}$$

Since K_N is a function of N, two values of K_N must be specified. For example, a synthesizer is required to tune 5.00-5.50 MHz in 10 kHz steps. If a simple loop is designed as in fig. 2, then the reference frequency will be 10 kHz and:

$$N(5 \text{ MHz}) = \frac{5 \text{ MHz}}{10 \text{ kHz}} = 500$$

and $K_N(5 \text{ MHz}) = \frac{1}{500} = 0.002$
5.5 MHz \(\frac{N(5.5 \text{ MHz})}{10 \text{ kHz}} = 550 \)

and \(K_N(5.5 \text{ MHz}) = \frac{1}{N} = 0.00182 \)

Programmable dividers are often programmed from microprocessors, thumbwheel switches, or digital counters which may also drive a display.

loop filter

The loop filter is always the last circuit to be designed because it requires values of \(K_\phi \), \(K_{VCO} \), and \(K_N \) to determine component values. The other information needed is \(\omega_\beta \), or loop bandwidth, and \(\xi \), or damping factor. As a rule

\[
\omega_\beta \leq 2\pi \frac{f_{\text{REF}}}{100} \quad \text{and} \quad 0.7 < \xi < 5 \quad \text{with} \quad \xi = 1
\]

a commonly chosen value.

The loop filter provides two important functions — it filters the error voltage from the phase detector so that the VCO receives a “clean” tune voltage (any signal or noise on the VCO tune line would modulate it), and it controls the loop parameters. It controls loop stability, determines lock time, and influences the synthesizer phase noise and spurious signal performance. Because of its important effect on loop performance considerable attention should be placed on careful filter design.

The active loop filter described in Fig. 6 provides better control over loop parameters than passive filters.

Component values for \(R_1 \), \(R_2 \), and \(C_1 \) are calculated as follows:

\[
\omega_\beta \leq 2\pi \frac{f_{\text{REF}}}{100} \tag{1}
\]

\[
\omega_n = \frac{\omega_\beta}{\sqrt{2 \xi^2 + 1 + \sqrt{(2 \xi^2 + 1)^2 + 1}}} \tag{2}
\]

\[
t_1 = R_1 C_1 = \frac{K_\phi K_{VCO} K_N}{(\omega_n)^2} \tag{3}
\]

Where \(K_{VCO} \) and \(K_N \) are evaluated at the highest VCO frequency,

\[
t_2 = R_2 C_1 = \frac{2\xi}{\omega_n} \tag{4}
\]

Choose a common value for \(C_1 \), such as 2.7 \(\mu \text{F} \), and then calculate \(R_1 \) and \(R_2 \) to determine whether they come close to common component values.

\[
R_1 = \frac{t_1}{C_1} \quad R_2 = \frac{t_2}{C_1} \tag{5}
\]

For example, a synthesizer required to tune from 5.000-5.500 MHz in 1 kHz increments might appear as in Fig. 7.

A CD4046 used as the phase detector has a \(K_\phi \) of 0.397 volts/radian. The VCO is the same one described earlier where \(K_{VCO} = 1.257 \times 0.273 \times 10^6 \) radians/second/volt.

With the loop locking at 5.000 MHz,

\[
N = \frac{5 \text{ MHz}}{1 \text{ kHz}} = 5000 \quad \text{and} \quad \frac{1}{N} = 200 \times 10^{-6}
\]

With the loop locking at 5.500 MHz,

\[
N = \frac{5.5 \text{ MHz}}{1 \text{ kHz}} = 5,500 \quad \text{and} \quad \frac{1}{N} = \frac{1}{5500} = 181.82 \times 10^{-6}
\]

With a reference frequency of 1 kHz and \(\xi = 1 \), enough information is now available to design the loop filter.

Evaluating eqs. 1-5 we obtain:
\[\omega_B \leq 2\pi \frac{1 \text{ kHz}}{100} \text{ or } \omega_B \leq 62.83 \text{ rad/sec} \]
\[\omega_n = \frac{62.83}{\sqrt{[2(1)]^2 + 1 + \sqrt{[2(1)]^2 + 1}^2 + 1}} \]
\[\approx 25.3 \text{ rad/sec} \]
\[t_1 = R_1C_1 = \frac{(0.398)(0.2732)(10^6)(181.82)(10^{-6})}{(25.3)^2} \]
\[\approx 30.89 \text{ ms} \]
\[t_2 = R_2C_1 = \frac{2(1)}{(25.3)} \approx 79.1 \text{ ms} \]

letting \(C_1 = 2.7 \mu F \) then:
\[R_1 = \frac{30.89 \text{ ms}}{2.7 \mu F} = 11.4 \text{ kilohms} \]
\[\approx 12 \text{ kilohms} \]
\[R_2 = \frac{79.1 \text{ ms}}{2.7 \mu F} = 29.29 \text{ kilohms} \]
\[\approx 33 \text{ kilohms} \]

If \(R_1 \) and \(R_2 \) had not come close to convenient values, then another value of \(C_1 \) would have been tried and \(R_1 \) and \(R_2 \) recalculated.

With loop filter components calculated, (see fig. 8) a quick check is required to ensure proper loop operation with the chosen filter component values at both extremes of the synthesizer frequency range.

At \(f_{\text{VCO}} = 5.000 \text{ MHz} \)
\[t_1 = R_1C_1 = (12 \text{ kilohms})(2.7 \mu F) = 32.4 \text{ ms} \]
\[t_2 = R_2C_1 = (33 \text{ kilohms})(2.7 \mu F) = 89.1 \text{ ms} \]
\[\omega_n = \sqrt{\frac{K_D K_{\text{VCO}} K_N}{t_1}} \]

\[= \sqrt{\frac{(0.398)(0.2732)(10^6)(181.82)(10^{-6})}{(25.3)^2}} \]
\[= 25.57 \text{ rad/sec} \]
\[\xi = \frac{(\omega_n) t_2}{2} = \frac{(55.57)(89.1 \text{ ms})}{2} = 2.47 \]

With \(\xi \) greater than 0.7 the loop is considered stable.

At \(f_{\text{VCO}} = 5.500 \text{ MHz} \)
\[t_1 = 32.4 \text{ ms} \]
\[t_2 = 89.1 \text{ ms} \]
\[\omega_n = \sqrt{\frac{(0.398)(0.2732)(10^6)(181.82)(10^{-6})}{(25.3)^2}} \]
\[= 24.7 \text{ rad/sec} \]
\[\xi = \frac{24.7(89.1 \text{ ms})}{2} = 1.1 \]

Both \(\omega_n \) and \(\xi \) are indeed very close to the design values; therefore, so will \(\omega_B \). The loop is definitely stable at both extremes of the synthesizer range and therefore at all points in between. This synthesizer should work fairly well.

Conclusion

This first article demonstrates basic PLL synthesizer theory and design. Future articles will provide a more thorough explanation of the PLL and show more accurate methods of design. Methods to improve performance and test the loop will be included.

In the final article a 5.000-5.500 MHz synthesizer design will be presented. Performance of the completed synthesizer will then be compared with the initial design goals.
AMT-1
The Definitive AMTOR Terminal Unit

$499.95 Introductory Price

AMTOR is the system of error correcting RTTY which has been rapidly overtaking conventional RTTY in Europe, just as its marine equivalent, SITOR, has been taking over in ship to shore communications.

It was originated by Peter Martinez, G3PLX (see June 1981 QST, p. 25). He first interpreted the international marine CCIR 476-1 specification for amateur use. Virtually all of the 400+ stations presently on AMTOR world wide are using software/hardware designs originated by Peter. The AMT-1 is a proven product which represents his latest and most highly refined design. It represents the culmination of over three years of development and on the air testing, and sets the standard against which all future AMTOR implementations will be judged.

Not only does it incorporate the latest AMTOR specification, but it gives superlative performance on normal RTTY, ASCII and CW (transmit only). As well as some fairly incredible real time microprocessor software, the AMT-1 boasts a four pole active receive filter, a discriminator type demodulator, a crystal controlled transmit tone generator, and a 16 LED frequency analyzer type tuning indicator, which is very easy to use.

Driven from a 12 volt supply, the AMT-1 connects to the speaker, microphone and PTT lines of an HF transceiver and to the RS-232 serial interface of a personal computer or ASCII terminal. All mode control is via ESCAPE and CONTROL codes from the keyboard (or computer program).

It used to be that C.W. was the ultimate mode for “getting through” when QRM and fading were at their worst. That’s no longer true — AMTOR will get through with perfect error-free copy when all other conventional transmission modes become useless.

Henry Radio

54 Years Of Service

AEA Brings you the Breakthrough!
CP-1 Computer Patch™ Interface

The AEA Model CP-1 Computer Patch™ interface will let you discover the fastest growing segment of Amateur Radio: computerized RTTY and CW operation.

When used with the appropriate software package (see your dealer), the CP-1 will patch most of the popular personal computers to your transceiver for a complete full-feature RTTY/CW station. No computer programming skills are necessary. The CP-1 was designed with the RTTY neophyte in mind, but its sophisticated circuitry and features will appeal to the most experienced RTTY operator.

The CP-1 offers variable shift capability in addition to fixed 170 Hz dual channel filtering. Auto threshold plus pre and post limiter filters allow for good copy under fading and weak signal conditions.

Transmitter AFSK tones are generated by a clean, stable function generator. Plus (+) and minus (-) output jacks are also provided for CW keying of your transmitter. An optional low cost RS-232 port is also available. The CP-1 is powered with 16 VAC which is supplied by a 117 VAC wall adaptor included with the CP-1.
Amateur packet radio:
part 2

Understanding the TNC

This article describes the inner workings of a terminal node controller (TNC), with emphasis on those aspects which are novel and useful to others interested in implementing digital radio systems. The discussion is based on the TNC designed by the Tucson Amateur Packet Radio Corporation (TAPR). As shown in fig. 1, the TNC is essentially a special-purpose microcomputer. In many ways it is very much the same as any small computer system in that it contains a central processor, memory, and input/output (I/O) sections. The TNC differs from the average home computer in its I/O design, however, and we shall focus on these features.

The TAPR TNC uses a 6809 microprocessor, with 24K bytes of read-only memory (ROM) for program storage, and 6K bytes of read-write memory (RAM), for message buffers and other temporary data. The serial I/O port conforms to the EIA RS-232-C specification and is used to communicate through a terminal or with a computer. A dual 8-bit parallel I/O port is available for auxiliary use. A crystal-controlled clock provides system timing for various parts of the TNC.

The components of the TNC that make it a packet radio controller, and that could be added to a personal computer for a home-brew system, are the HDLC controller and the modulator/demodulator (modem). The HDLC controller is an LSI circuit which provides a convenient means for implementing much of the level 1 and level 2 protocol discussed in part one of this series (Ham Radio, July, 1983). It acts as a bidirectional digital port between the computer and the modem.

Equivalent to an RTTY terminal unit, the modem is a key part of the TNC, and contains the interface circuit that ties the computer to the station radio. It generates tones whose level can be adjusted for compatibility with the radio used, and its audio can be keyed to generate a Morse code station identification. The circuitry provides transmitter PTT line keying and a fail-safe timer to prevent excessively long key-down. The demodulator can be easily configured to accept audio from different radios, and includes LED level indicators for adjusting the receiver volume.

The versatile interface adapter (VIA) block includes two 8-bit parallel I/O ports which communicate with the nonvolatile (RAM) semi-permanent storage, read user-settable switches, and control the modem. It also includes two counter-timers which provide interrupts for software timing and a program-mable clock signal for the HDLC controller. The nonvolatile RAM, a Xicor NOVRAM™ which stores 32 bytes of information without battery or other standby power, represents a new technological achievement that should have wide application in Amateur Radio.

The TAPR TNC will soon be available in the form of bare boards, documentation, and partial or complete parts kits. Please send an SASE to TAPR, P.O. Box 22888, Tucson, Arizona 85734, for details on price and availability, as well as further information on packet radio.

By Margaret Morrison, KV7D, and Dan Morrison, KV7B, 4301 E. Holmes, Tucson, Arizona 85711, and Lyle Johnson, WA7GXD, 5971 S. Aldorn Drive, Tucson, Arizona 85706

August 1983
to the MF-10 dual switched-capacitor audio input filter, which is configured as a highpass section followed by a lowpass section. Both sections operate in Mode 3, as described by the manufacturer, with a clock input of 115.2 kHz produced by the TNC system clock. The response of the filter is optimized for typical transceiver combinations using a computer-aided design procedure.

The necessity for this filter is dictated by the audio spectrum of 1200 Hz and 2200 Hz NRZI data at 1200 baud. This spectrum, shown in Fig. 3, suggests that ideally the system should exhibit flat response from below 500 Hz to above 2900 Hz. In fact, the typical overall response measured using a pair of 2-meter FM transceivers is shown in Fig. 4A. Without proper filtering the rolloff shown prevents data from being demodulated much above 600 baud. The filter with the eight programming resistors shown (slightly different from those on the TAPR Beta TNC) restores the response to that shown in Fig. 4B, and seems a good compromise for a wide variety of FM rigs.

The filtered audio is demodulated by the XR2211, which is configured as recommended by Exar for demodulating 1200 Hz and 2200 Hz 1200 baud data, except for the lock-detect filter at pin 3. For better immunity to false lock indications this filter's time constant was increased. In addition to digital data from pin 7, the lock detect signal at pin 5 is required by the software to monitor channel activity.

The MF-10/XR2211 demodulator combination works well with a wide variety of FM transceivers. However, the lowest bit error rates for a given degree of receiver quieting will be achieved only by custom tailoring the input filter to produce the proper response for a specific transceiver pair. Normal experience is that data will be received perfectly under "full quieting" conditions, but deteriorates rapidly as the noise level goes up.

Data originating on the TNC at the TxD output of the WD-1933 generates phase-continuous AFSK via the XR2206 modulator. As in the case of the demodulator, Exar's recommended values were used for loop components. A control signal generated by the TNC's VIA under software control is used at point E to key the AFSK signal on and off. This permits the software to generate the CW identification and to eliminate modulator output except when actually sending packets. The modulator output is buffered by the second section of U6 before going to the microphone input of the transmitter.

The remaining circuitry of Fig. 2 grounds the radio's PTT line to key the transmitter whenever the WD-1933 MSCOT output is brought low. To prevent channel lockup a NE555 one-shot "watchdog" times

![Block Diagram of TAPR Beta TNC](image.png)
out after approximately 14 seconds, and MSCOT must be toggled high to restore PTT operation. This simple circuit has proven invaluable.

special digital hardware

The TAPR TNC includes digital circuitry that sets it apart from ordinary personal computers. Some de-

fig. 2. Schematic of the radio interface portion of the TNC, showing the modem components, input filter, and PTT circuits.
CLEANLINESS...
a unique CORSAIR virtue

Cleanliness in the TEN-TEC CORSAIR means unusual spectral purity of both received and transmitted signals.

In Receive mode, even with the r.f. preamp in operation, the 3rd order intercept (at 20 kHz tone spacing) is +5 dBm. With the preamplifier off, the 3rd order intercept rises to a superlative +18 dBm and remains constant even at 3 to 6 kHz away from the pass-band.

In Transmit mode, if you look at the output of the CORSAIR on a spectrum analyzer, you note an almost complete absence of phase noise—a phenomenon which plagues most PLL transceivers. At 20 kHz from the carrier, the generated phase noise in the CORSAIR is a spectacular -148 dBc/Hz, and at 1 kHz it is -132 dBc/Hz.*

This breakthrough in circuit design, using proven crystal mixed oscillators with the latest USA solid state technology, is setting new standards of cleanliness and purity of signals. All of which means enhanced reception with less fatigue, lower noise floor, no overloading and more DX worked. And your signal will be a bit easier to read under adverse conditions. Compare.

Other virtues of the CORSAIR include:

- All solid state, broadband design
- All 9 hf bands
- Triple conversion receiver with 0.25 µV sensitivity on all bands and better than 90 dB dynamic range
- Variable bandwidth plus Passband tuning
- Dual range, Triple mode, Offset tuning
- Variable Notch filter
- Built-in Speech Processor
- Built-in Noise Blanker
- 200 W input, 100% duty cycle
- Dual-speed QSK (full or semi)
- Many operating conveniences including headphone attenuator, cw signal spotter, 5-function meter, WWV reception, adjustable AGC threshold
- Lighted status indicators, selectable AGC, adjustable pitch and volume of sidetone, complete interfacing
- Full accessory line including remote VFO, keyers, microphones, power supplies, antenna tuners, ssb and cw filters
- Reliable American manufacture and service, fully warranted.

See CORSAIR at your TEN-TEC dealer, or write for full details.

TEN-TEC, Inc., Sevierville, TN 37862

Specifications measured by independent laboratory
tails of these circuits will now be discussed; if you have a TNC, this information will help clarify some of its design considerations. Should you choose to homebrew a packet adapter for your computer, the discussion will serve as an example.

The most important such chip on the TNC is the HDLC controller. There are several HDLC controller chips on the market today, and more are being introduced regularly. This is fortunate for the would-be TNC designer, because the HDLC chip relieves him of a fairly complex hardware design (typically 19 SSI and MSI ICs) or an equivalently complex software
RCA is a Leader in Communications Command and Control Systems

RCA Engineers Explore the Leading Edge of Technology in:
- Frequency agile HF antenna couplers
- Very fast VLSI frequency synthesizers
- HF-VHF-UHF spread spectrum
- Communication's radio design

If you share our commitment to HF long range communications and want to contribute to circuit and system designs of the future, contact:

Dr. U. L. Rohde (DJ2LR)
RCA Corporation
Government Communications Systems
Mail Stop 13-4
Camden, NJ 08102

FREE QSL CARDS

☐ Yes, I would like free QSL cards printed from the artwork in this advertisement.

Name __________________________
Address ________________________
City ____________________________
State __________ ZIP ____________

Mail coupon to: Tom Bluestein, RCA Government Communications Systems, Mail Stop 13-4, Camden, NJ 08102
THE 4000 SERIES

PCS-4300 70-cm FM Transceiver

PCS-4500 6-m FM Transceiver

PCS-4800 10-m FM Transceiver

COMING SOON
PCS-4200 1 1/2-m FM Transceiver

PCS-300
2m Handheld FM Transceiver
142-149.995 MHz

- WIDE FREQUENCY COVERAGE: PCS-4000 covers 142.000-149.995 MHz in selectable steps of 5 or 10 kHz. PCS-4200 covers 220.000-224.995 MHz in selectable steps of 5 or 20 kHz. PCS-4300 covers 440.000-449.995 MHz in selectable steps of 5 or 25 kHz. PCS-4400 covers 28.000-29.990 MHz in selectable steps of 5 or 10 kHz.
- CAP/MARS BUILT IN: PCS-4000 includes coverage of CAP and MARS frequencies.
- TINY SIZE: Only 2"H x 5.5"W x 6.8"D. COMPARE!
- MICROCOMPUTER CONTROL: At the forefront of technology!
- UP TO 8 NONSTANDARD SPLIT: Ultimate versatility. COMPARE!
- 16-CHANNEL MEMORY IN TWO 8-CHANNEL BANKS: Retains frequency and standard simplex or plus/minus offsets. Standard offsets are 600 kHz for PCS-4000, 1.6 MHz for PCS-4200, 5 MHz for PCS-4300, 1 MHz for PCS-4400, and 100 kHz for PCS-4480.
- DUAL MEMORY SCAN: Scan memory banks either separately or together. COMPARE!
- TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan the two segments either separately or together. COMPARE!
- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel; auto-resume can be overridden if desired. Vacant scanning stops on unoccupied frequencies.
- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency.
- TWO PRIORITY MEMORIES: Either may be instantly recalled at any time. COMPARE!
- NICAD MEMORY BACKUP: Never lose the programmed channels!
- FREQUENCY REVERSE: The touch of a single button inverts the transmit and receive frequencies, no matter what the offset.
- ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Unparalleled ease of operation.
- BRIGHT GREEN LED FREQUENCY DISPLAY: Easily visible, even in direct sunlight.
- DIGITAL S/RF METER: Shows incoming signal strength and relative power output.
- BUSY-CHANNEL AND TRANSMIT INDICATORS: Bright LEDs show when a channel is busy and when you are transmitting.
- FULL 16-KEY TOUCHTONE® PAD: Keyboard functions as autopatch when transmitting (except in PCS-4800).
- PL TONE: Optional PL tone unit allows access to private-line repeaters. Deviation and tone frequency are fully adjustable.
- TRUE FM: Not phase modulation. Unsurpassed intelligibility and audio fidelity.
- HIGH/LOW POWER OUTPUT: 25 or 5 watts selectable in PCS-4000: 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4400, and PCS-4480. Transmitter power is fully adjustable.
- SUPERIOR RECEIVER: Sensitivity is 0.2 uV or better for 20-dB quieting. Circuits are designed and manufactured to rigorous specifications for exceptional performance, second to none. COMPARE!
- REMOTE-CONTROL MICROPHONE: Memory A:1 call, up/down manual scan, and memory address functions may be performed without touching the front panel! COMPARE!
- OTHER FEATURES: Dynamic microphone, rugged built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses, and hardware are included.
- ACCESSORIES: CS-7R 7-amp AC power supply. CS-4.5R 4.5-amp AC power supply. CS-AS remote speaker, and Communications Specialists SS-32 PL tone module.
- ONE YEAR LIMITED WARRANTY!
program (in assembly language) to implement those parts of the HDLC protocol standard adopted by the overwhelming majority of packeteers.

As mentioned in the previous article, the most frequently used digital signalling technique employs Non-Return to Zero, Inverted (NRZI) encoding. This means that a digital zero is encoded as a transition from a high to a low or vice-versa, while a one is passed as the absence of a transition. The result of this, along with "bit-stuffing" (in which a zero is inserted by the sending station after five consecutive ones and stripped out at the receiving end), is that the clock signal can be recovered from the data stream. A phase-locked clock is necessary to ensure proper recovery of the data in this synchronous data mode, since the data must be latched in the middle of a bit and not, for example, just as a transition occurs.

Clock recovery is fairly straightforward using a phase-locked loop (PLL). Fortunately, the NRZI scheme is also widely used in the commercial world, so a few manufacturers have included a Digital PLL (DPLL) on their HDLC controller chips. In order to minimize the number of chips used in the TNC, both the VADCG and the TAPR designs incorporate these HDLC controllers.

Among single-channel devices, only the Intel 8273 and the Western Digital 193X series incorporate the DPLL, and the TAPR TNC uses the WD-1933, as it is generally about half the price of the Intel device. Of course, nothing is free, and some special considerations apply when interfacing this chip to a microcomputer. The software must take account of the inverted data bus of the WD-1933 which treats zeros as ones and vice-versa. In addition, the interrupt lines must be buffered and inverted prior to connection to the control bus. Furthermore, this chip requires a baud rate clock 32 times the data rate (for 1200 baud this means a 38.4 kHz clock) to drive the DPLL when using the NRZI mode, and also requires a special reset signal to be applied after the baud rate clock has been applied.

In exchange for these interfacing considerations, the HDLC controller provides automatic generation of pre-frame and post-frame flag bytes for synchronization, transparent bit-stuffing on transmit and unstuffing on receive, recovery of the clock signal from the incoming data stream, calculation of the Frame Check Sequence (FCS) used to validate data integrity on both transmit and receive, and automatic detection and reporting of errors in sending or receiving a frame. All in all, the usefulness of these LSI devices more than compensates for any interface difficulties.

In order to supply the HDLC controller with the needed reset and clock signals, and to provide other services, the TAPR TNC incorporates a 6522 Versatile Interface Adapter (VIA). This unit contains a pair of 8-bit parallel ports, which can be set on a bit-by-bit basis for input or output. Two of the four handshaking lines provided are used as single-bit control outputs. A pair of 16-bit counter-timers are also provided.

One of the control lines is used to provide a soft-

fig. 3. Sound spectrum of a one-second burst of 1200 Hz/2200 Hz 1200 baud random NRZI data. This data was generated and analyzed by computer.

fig. 4A. Measured frequency response using a pair of 2-meter FM transceivers. fig. 4B. The same frequency response after filtering. The filter design was optimized for the range 1000 Hz to 2400 Hz.
ware controlled reset to the HDLC chip, while the other is used to effect a tone on-off command to the modem. This allows generation of an easily-copied CW station identification, as well as enabling an operator to insert a voice signal over the channel without disconnecting the TNC from the radio.

Two lines of one of the 8-bit ports (port B) connect to the internal 16-bit counter-timers. One timer is used as a software-controllable baud rate generator for the HDLC chip. This not only allows the operator a simple means for control of the baud rate, it also allows generation of non-standard baud rates, such as the 400 baud used in the AMSAT Phase III satellite.

The other timer is used for calibrating the modem frequencies and for primary system timing. From this clock are derived all the various clocks that must be updated for proper operation of the packet station of which the TNC is an integral part.

Two lines on the VIA are used to test the settings of a pair of switches on the board. These switches may thus be read by the software and are presently being used to tell the TNC whether to use the default parameter settings found in the system EPROM or whether to take these parameters from NOVRAM™.

The remaining lines from the VIA parallel port are used for the NOVRAM™ interface. This helps prevent accidental alteration of NOVRAM™ parameters, as well as easing system bus timing constraints. The NOVRAM™ is a nibble-oriented device, meaning that its data bus is only 4 bits wide, rather than the 8-bit bus width of the host microprocessor. It also has six address lines and four control inputs. The control lines allow for device selection, read/write control of data between the RAM portion of the chip and the data bus, recall of the contents of the Electrically Eraseable Programmable Read Only Memory (EEPROM), and storing of data from RAM into EEPROM.²

The presence of the NOVRAM™ permits long-term storage of parameters peculiar to the station, such as the call sign and terminal characteristics. In addition, infrequently adjusted parameters, such as those associated with the timing of data retries and other link activity, may be stored. Without such a long-term storage function there are only two choices. Either the operator must enter all necessary information every time the unit is powered up (which is not too practical), or the various parameters must be “burned-in” at assembly time, meaning that the operator must have his EPROMS erased and re-programmed every time he wants to change baud rates, call sign, station ID, and so forth.

controller software

The software present on the TAPR TNC is organized on two levels. The High Level Routines (HLRs) implement the machine-independent logical processes associated with protocol decisions and response to user commands. These routines know nothing of the hardware details of the TNC and, in fact, are written in a transportable high level language (Pascal). As the HLRs require data transfers or status information they call subroutines contained in the Low Level Routines package (LLRs), and leave the nitty-gritty details of interrupt service, terminal editing features, and timer maintenance to the LLRs. The LLRs, naturally, are written in 6809 assembly language, and are definitely not transportable. However, the logical organization of the LLRs is universal and should serve as a model for other implementations of packet radio.

The HLRs can be divided roughly into two major parts. One implements the command protocol, allowing the user to request connect and disconnect packets, control the digital-relay function of the station, and perform other tasks as necessary. For the TAPR TNC, this section consists of a command parser which compares a string of characters from the terminal with a list of commands and takes appropriate action when a match is found. In addition to issuing connect and disconnect packets, the user can alter program parameters, save the parameters in nonvolatile RAM, display current parameter values, identify in Morse code, change input mode, or enter a special service routine. For maximum flexibility in a test environment, the parser controls some sixty parameters, including the operator’s call sign, terminal attributes, input editing features, radio interface characteristics, packet baud rate, and timing parameters.

The other part of the HLRs is a procedure which implements the packet radio protocol. This section assembles and disassembles packets, maintains information about the link status (for example, to whom you are connected), keeps track of unacknowledged outbound packets, acknowledges inbound packets, and sends supervisory packets as required by whatever protocol is implemented. This routine watches a clock to time retransmissions of unacknowledged packets, formulates input from the terminal into packets, and passes the contents of received packets to the terminal.

Both sections of the HLRs depend on the LLRs to maintain buffers and perform I/O under interrupt control. The LLRs also update clocks on receipt of timer interrupts and service the non-volatile RAM. When the program is required to transmit a message to the terminal or to send a packet, the information is actually loaded into a buffer to be sent when the peripheral component is ready. Similarly, the program reads incoming information not directly from
the peripheral, but from a buffer. The presence of complete messages to be read is signalled by flags set by the low-level input routines. This makes it relatively easy to implement the protocol in a high-level programming language without direct access to the peripheral devices.

The utility of the HLR/LLR separation cannot be overemphasized. It allowed, for example, the two sections of the HLRs (command parser and packet protocol generator) as well as the LLRs to be developed independently by three people, in two different cities, on three different computers, prior to the final integration onto the TNC.

program structure

The structure of the packet protocol section of the HLR is shown in fig. 5. This procedure is part of an infinite loop in which all routines alternately check for tasks to be done.

fig. 5. Flowchart for operation of the packet protocol HLR routine.

The first half of the procedure is concerned with reading incoming packets and determining the appropriate action to take. The action taken on receipt of a packet addressed to this station is determined by the protocol. Several possible link states are defined, which are stages in the communication sequence starting with a connect request and ending with a disconnect request. For each type of packet received (specifed by the CONTROL field) there is a prescribed action depending on the link state. If the action involves sending a packet — say, an acknowledgment — a flag is set for the second half of the procedure. When all incoming packets have been read, the clock is checked to see if packets have been sent which should have been acknowledged by now.

The second half of the packet protocol procedure, which sends outgoing packets, is entered only if the frequency is clear, indicating that all packets of a group have been received. This is determined by monitoring the demodulator carrier detect signal. Outgoing packets are formulated with header information and moved to the outgoing packet buffer following any packets being retried. Acknowledgments are sent as part of the control information with these packets if possible; otherwise, a special acknowledgment packet is sent. Finally, any special supervisory packets requested either in the first section of the procedure or by the user are sent. When transmission is complete, the clock is started for packets which should be acknowledged.

I/O management

The interrupt-driven I/O routines contained in the LLRs basically form a simple operating system for supporting the HLRs. In order to isolate the main program from the details of the hardware, all input and output is done through buffers. Since the HLRs do not examine incoming data until an entire line or packet has been received, terminal support such as character echoing, line-feed insertion, and response to character, line, and packet delete instructions (implemented by single editing characters) are managed by the low-level interrupt routines.

The structure of a typical buffer is shown in fig. 6. There are four buffers, input and output buffers for terminal and radio data, each of which is accessed by an insertion pointer and a removal pointer. An input buffer, for example, has an insertion pointer which is advanced by an LLR interrupt routine as data is read from a peripheral device, and a removal pointer which is advanced by the HLR as it reads the data. All buffers are circular, meaning that when a pointer reaches the top of the buffer space it is moved back to the bottom. Input buffers require additional pointers to mark the beginning of a string which may be deleted by an editing command from the terminal, or
in the case of the packet input buffer, by an error occurring during receipt of a packet. Since a data string can be any length, the end of a packet or command line must be marked, either by a special character in the buffer or by a byte count at the beginning of the string.

interrupt handling

Only one hardware interrupt-request input of the 6809 microprocessor is used in the TAPR design — all interrupt lines are wire-ORed together. This means that when an interrupt occurs, each peripheral which could have generated it must be queried in turn, and an appropriate routine selected from a dispatch table when the cause of the interrupt is identified. Since more than one device could be in need of service at once, the order in which the devices are queried determines the interrupt priorities, which are as follows:

1. UART (terminal) input
2. UART output
3. VIA timer interrupt
4. HDLC (radio interface)
5. Parallel port input
6. Parallel port output

The serial input port is given highest priority, since if a character is not read before a new one is received, it is lost. The radio I/O interrupts are placed relatively low, since servicing the WD-1933 chip is complex and potentially time-consuming. Data lost in either direction due to slow service of this chip will be detected as an error, and the packet will be retransmitted. If the parallel port is used for user I/O, it should be serviced last, since full “handshaking” is used, and a sending device will not send new data until the old data has been read.

The timer interrupt is generated as the timer counts down past zero. By examining the count, the service routine can determine the actual elapsed time and compensate for any delay caused by conflict with other interrupts. For this reason, the priority for servicing the timer interrupt is arbitrary. Compensation must be made for the fact that the two count bytes are read at different times.

The timer interrupt service routine has a special function. After the software counters have been updated, a general housekeeping routine is entered. Time elapsed since a carrier drop is monitored and a packet transmission may be started from this routine. The CW station identification is also sent at appropriate intervals, and the timer routine toggles the audio signal on and off to produce dits and dahs.

The WD-1933 HDLC controller generates interrupts for the following seven conditions:

- **Receive Interrupts (by priority)**
 - Data received
 - Received message without errors
 - Received message with errors
 - Change in carrier detect state

- **Transmit Interrupts (no priority)**
 - Data requested
 - Transmitted message without errors
 - Transmitted message with errors
 - (Abort signal sent automatically)

Since they may potentially be present in any combination, and querying the chip resets most conditions, all conditions must be checked on each interrupt. The only difficulty results when logically inconsistent or out-of-place interrupts occur. For example, the presence of both “Received message without errors” and “Received message with errors,” or a carrier-detect change while the transmitter is keyed, may occur. This is solved by ordering the receive interrupt...
Carrier detect can be ignored during transmission.

Transmit interrupts present a different sort of problem. The WD-1933 transmits HDLC frames automatically, but it must be commanded to send each section of the frame—flags, data, and frame-check sequence. While the transmit function is active, it generates regular interrupts. These are "Data request" if the data function is commanded, and otherwise "Transmit end of message." These interrupts are treated as equivalent, and the interrupt service function is determined by the progress of the packet being transmitted.

conclusion

In the first article of this series we described packet radio and the protocols in general use. In this article we have presented some details of the actual implementation of these concepts.

The TNC design presented represents the culmination of nearly two years of intensive effort by several Amateurs. These efforts resulted in both the formation of Tucson Amateur Packet Radio, a nonprofit R&D corporation of over 300 members worldwide, and the design and distribution of the TAPR TNC.

The TNC design was subjected to a Beta test with 172 boards placed at 19 sites. This test served to provide many useful improvements. Perhaps most importantly, it exposed literally thousands of Amateurs to this exciting new mode. We expect that soon there will be a rapid expansion in the use of this mode among Amateurs, and hope that you will join it.

references

3. Technical Product Information, MFIO, National Semiconductor, 2900 Semiconductor Drive, Santa Clara, California 95051.

TRANSMITTING TUBES

<table>
<thead>
<tr>
<th>Tube</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA2</td>
<td>$2.00</td>
<td>304TH</td>
</tr>
<tr>
<td>OB2</td>
<td>2.00</td>
<td>304TL</td>
</tr>
<tr>
<td>1ADB</td>
<td>9.50</td>
<td>572B-T160L</td>
</tr>
<tr>
<td>2C394A</td>
<td>45.00</td>
<td>801</td>
</tr>
<tr>
<td>2D21</td>
<td>2.45</td>
<td>811A</td>
</tr>
<tr>
<td>2E24</td>
<td>9.50</td>
<td>812A</td>
</tr>
<tr>
<td>2E26</td>
<td>7.50</td>
<td>813</td>
</tr>
<tr>
<td>3-400Z</td>
<td>88.00</td>
<td>816</td>
</tr>
<tr>
<td>3-1000Z</td>
<td>367.00</td>
<td>832A</td>
</tr>
<tr>
<td>3-288</td>
<td>12.50</td>
<td>833A</td>
</tr>
<tr>
<td>3-400U7</td>
<td>205.00</td>
<td>864</td>
</tr>
<tr>
<td>3C800A7</td>
<td>125.00</td>
<td>865</td>
</tr>
<tr>
<td>3C1500A7/8877</td>
<td>125.00</td>
<td>866</td>
</tr>
<tr>
<td>3E29</td>
<td>19.00</td>
<td>870</td>
</tr>
<tr>
<td>4-165A</td>
<td>19.50</td>
<td>871</td>
</tr>
<tr>
<td>4-125A</td>
<td>70.00</td>
<td>874</td>
</tr>
<tr>
<td>4-250A</td>
<td>80.00</td>
<td>876</td>
</tr>
<tr>
<td>4-400A/C</td>
<td>89.00</td>
<td>877</td>
</tr>
<tr>
<td>4-400B/527</td>
<td>99.00</td>
<td>878</td>
</tr>
<tr>
<td>4-1000A</td>
<td>452.00</td>
<td>882</td>
</tr>
<tr>
<td>4C2508</td>
<td>73.00</td>
<td>884A</td>
</tr>
<tr>
<td>4C2508C</td>
<td>73.00</td>
<td>884B</td>
</tr>
<tr>
<td>4C3503A</td>
<td>137.00</td>
<td>889A</td>
</tr>
<tr>
<td>4C1000A</td>
<td>395.00</td>
<td>8948/8737</td>
</tr>
<tr>
<td>4C1500B</td>
<td>500.00</td>
<td>895</td>
</tr>
<tr>
<td>4E27A</td>
<td>150.00</td>
<td>896</td>
</tr>
<tr>
<td>4X150A</td>
<td>12.50</td>
<td>902A</td>
</tr>
<tr>
<td>4X150K</td>
<td>50.00</td>
<td>902B</td>
</tr>
<tr>
<td>4X150G</td>
<td>75.00</td>
<td>902C</td>
</tr>
<tr>
<td>5R4WB</td>
<td>50.00</td>
<td>903A</td>
</tr>
<tr>
<td>5U4G</td>
<td>50.00</td>
<td>903B</td>
</tr>
<tr>
<td>6D8</td>
<td>2.75</td>
<td>905</td>
</tr>
<tr>
<td>6DGC</td>
<td>3.50</td>
<td>906</td>
</tr>
<tr>
<td>7N7</td>
<td>15.00</td>
<td>907</td>
</tr>
<tr>
<td>254W</td>
<td>150.00</td>
<td>908</td>
</tr>
</tbody>
</table>

Minimum order $25.00 - Shipping charges extra

F.O.B. East Rutherford, NJ.

COAST TO COAST TOLL FREE NUMBERS:

To call NJ office **800-526-6362** (except from NJ)

To call CA office **800-421-7549** (except from CA)

800-824-6232 (from CA only)

ham radio
Measure characteristic impedance, balance, coupling coefficient, and saturation level accurately

testing baluns

In recent years baluns have become widely used in the antenna systems of most Amateur stations. Because of their popularity, many companies manufacture and advertise baluns regularly; their relative simplicity encourages many Amateurs to wind their own. Unfortunately, very little has been published about the performance requirements of baluns or even about which performance parameters are important. The performance characteristics of baluns can be measured, however, and by testing baluns according to the procedures described, users can learn what to expect from the baluns they install in their own antenna systems.

The tests described apply primarily to the familiar 1:1 transmission line balun of either the toroidal or ferrite rod type (see fig. 1), but may also be coincidentally appropriate for the 4:1 auto-transformer type balun.

Generally more than one test can be used to measure a given parameter. Most tests can be performed using equipment available to Amateurs. The choice of test will depend, to some extent, on whether the balun is purchased or homemade, since this will determine what terminals are available for testing. Because some tests require that the tertiary winding be disconnected from the top section of the main winding, not all tests can be applied to a purchased balun. All commercial baluns are factory-sealed and cannot be opened without breaking their cases; consequently, it is impractical to open the tertiary junction. With a homemade balun, all tests can be made before the tertiary winding is connected to the circuit.

balun operation

A balun serves two principal purposes. First, it provides two equal and opposite voltages to a balanced load with respect to ground. Second, the balun provides isolation between the balanced load (usually a dipole antenna) and an unbalanced transmission line (coaxial cable). Of particular importance is isolation between the coaxial outer conductor and the half of the dipole connected to the outer conductor. If this isolation is not adequate, then this half of the antenna essentially extends down the outside of the coaxial outer conductor and into the ham shack. This, of course, is undesirable. Fig. 2 shows the problem graphically.

Your transmitter is actually a generator that drives a coaxial transmission line which is connected to a dipole. Assume the polarity is such that a current, I1, flows into the center conductor from the left half of the dipole; an equal and opposite current, I2, flows up the inside of the outer conductor. At the junction point between the outer conductor and the right half of the dipole, current I2 divides.

Because of skin effect at radio frequencies, the inside and outside of the outer coaxial conductor may be thought of as two separate conductors. The division of the current I2 into I3 and I4 depends on the relative impedances of the right half of the dipole and the impedance of the path down the coaxial outer conductor into your ham shack and through the power wiring to ground. If this length is an odd number of half wavelengths, the impedance will be low compared to the impedance of one-half a dipole (usually taken to be about 35 ohms). Much of the current I2 will flow back down the outside of the coaxial and I4 will be relatively high. Consequently I3 will be low and different from I1. In addition to causing the antenna to be fed asymmetrically, the outside of the coaxial can also be “hot” inside the shack, which not only creates operational problems, but introduces a safety hazard as well. However, if the length down the outside of the coaxial to ground is

By John J. Nagle, K4KJ, 12330 Lawyers Road, Herndon, Virginia 22071
an odd number of 1/4-wavelengths, this impedance will be relatively high, forcing I_4 to be small in comparison to I_3 and the balancing dipole. The balun provides isolation between the right half of the dipole and the outside of the coaxial, and at the same time provides equal and opposite voltages and currents to the two halves of the dipole. Let's see how a 1:1 transmission line balun accomplishes these objectives.

1:1 balun

The simplest form of the 1:1 transmission line balun is shown schematically in fig. 1. Here a transmission line with a characteristic impedance (Z_0) is wound on a rod or toroidal ferrite core. One end of the winding is connected to the coaxial cable; the other end is connected to the balanced load, as shown. The characteristic impedance of the winding should be as close as practical to the load resistance of the dipole. The balun will provide isolation, but not a balanced output unless the center-tap of the balanced load is grounded.

Unless the center-tap of the balanced load is grounded or a tertiary winding is used, there is no ground reference point on the balanced side and no guarantee that the balanced side output is actually balanced with respect to ground. The degree of balance, if any, depends on parasitic inductances and capacitances and is not under control of the user. The only way the user can guarantee a balanced output is to actually ground the center-tap of the load. The lack of balance on a two-winding balun has been verified by actual measurements.

To guarantee balanced output voltages and adequate isolation, it is necessary to provide a path for magnetizing current. Ruthroff has stated that with the balanced load disconnected, there must be dc continuity between the unbalanced input and ground. The two-winding balun does not provide this continuity.

In order to guarantee balanced output voltages as well as provide adequate isolation, a tertiary winding, EF (see fig. 3), must be added. Note that the polarity of the tertiary winding is reversed.

If the voltage at the unbalanced input is V volts, the voltage at point B is $V/2$ volts since point B is halfway down the winding AB-FE with $V/2$ volts being developed in each winding. This is better shown when fig. 3 is redrawn as an auto-transformer.
as shown in fig. 4. This arrangement guarantees that the balanced output voltages are balanced with respect to ground, provided that the coupling between tertiary and main windings is “tight.”

Though fig. 4 is drawn as an auto-transformer, the balun is nevertheless a transmission line device. Signal currents flow only through the transmission line windings and the input impedance/load impedance relationship follows the transmission line equation and not the auto-transformer law. With this thought in mind we will move on to the actual tests.

dc ohmmeter test

One of the simpler tests, to determine if the balun has a tertiary winding or not, is one that should be performed on any purchased balun. That test is important because a tertiary winding is absolutely essential if the balun is to work properly with most antennas.

This test consists simply of measuring the dc resistance between the unbalanced input terminals and ground with the balanced terminals open-circuited (see fig. 5). If a tertiary winding is present, this resistance should be a few tenths of an ohm and will appear on most ohmmeters as a short-circuit. An open circuit reading indicates no tertiary winding.

Using an accurate ohmmeter or Wheatstone bridge can provide other information. With the unbalanced side open-circuited, measure the dc resistance between each balanced load terminal and the grounded side of the unbalanced terminal. Each of these resistances should be one-half the value obtained in the first test. The success of this test ensures that each of the windings is the same length and that the balun is reasonably well balanced, at least in regard to dc.

characteristic impedance

One of the most important parameters of any transmission line balun is its characteristic impedance which should be the same as the characteristic impedance of the transmission line with which the balun will be used. If too great a difference between these impedances exists, use of the balun may cause more problems than it cures.

There are several ways of measuring the characteristic impedance of a balun. The method used will depend on the measuring instrument available and on whether or not the balun is store bought or homemade.

Perhaps the most straightforward method of measurement is to take advantage of the fact that the characteristic impedance can be found by taking the square root of the input impedance with the far end open-circuited and short-circuited or:

\[Z_0 = \sqrt{Z_{dc} \cdot Z_{sc}} \]

While this approach is theoretically straightforward, it presents instrumentation problems. At some frequencies, the input impedance of the line will have a very high or very low resistive and/or reactive component for either an open- or short-circuited condition at the far end with one or more of these components outside the range of the measuring instrument. If it is possible to find a frequency or a test instrument where both open- and short-circuit measurements can be made, this method provides a convenient way to determine the characteristic impedance of the balun.

It is important to note that this test can not be used with a tertiary winding connected. If the balun is homemade, make the test with the tertiary winding in place but not yet connected to the main windings. If the balun is commercially made, you may have to figure out a way to open the balun and disconnect the tertiary winding. If this is not practical, use a different measuring technique.

A second method which does not put such severe requirements on the test equipment but is more time consuming is to measure the input impedance of the
REPEATER CONTROL
- Complete repeater control incorporating ID, tail and timeout timers, audio generator, local control and PL enable
- Perfect as main controller or as backup for your present system
- Master enable input for non-override local control
- Switchable PL input for access security
- ID on start-up can be selected
- Non volatile ID memory
- Selectable timeout length
- Automatically powers up and runs; ideal for remote applications
- Selectable ID transmission rate
- Adjustable tail timer length
- Force ID input for manual trigger of ID sequence
- Latched COR for ID holdoff and timing control
- Two separate Morse outputs for interfacing to audio and/or logic
- One is direct audio, the other can be used as a keying line
- Crystal controlled timers
- Any number of selectable messages can be transmitted using MCMG chip
- Test input for automatic transmission of CW test message following ID

Digital Microsystems™ SCRC Chip $98.95

ASCII to MORSE CODE CONVERTER
- Turns any ASCII terminal or computer into a Morse code keyboard
- When used with a computer, reduces system overhead and allows system time for disk access
- When used with Morse to ASCII chip, any ASCII terminal or computer is transformed into a Morse code system
- 1 to 90 words per minute transmission rate keyboard selectable, 1-30 wpm in 1 wpm increments, 32-90 wpm in 2 wpm increments
- Master enable output for compatibility with Morse to ASCII converter chip
- Two separate Morse outputs for easy interface to your transmitter; one high, one low
- Logically perfect Morse code generation
- 110 and 300 baud
- Automatic line feed insertion selectable by user
- Selectable automatic echo back of ASCII characters
- Internal 32 byte type-ahead buffer
- Supports modem control type handshaking with UARTS
- Comptable with personal computer RTTY packages
- PARALLEL ASCII TO MORSE CODE CONVERTER
- Similar to SATOM chip but for parallel strobed ASCII keyboards
- 16 letter buffer for ID
- Automatic test and GO message generation

Digital Microsystems™ SATOM Chip $34.95
Digital Microsystems™ PATOM Chip $24.95

GENERAL SPECIFICATIONS
- All circuitry contained on a single chip
- Crystal controlled for accuracy
- Requires 5 volts DC
- TTL/CMOS compatible I/O pins
- Chips designed with the experimenter/homebrew specialist in mind
- Manual for each chip available for $5 postpaid
- Deductible with order

ORDERING INFORMATION
- All prices include shipping. Massachusetts residents please add 5% sales tax. Check or Money Order for payment. Prices and specifications subject to change without notice or obligation.

DTMF DIGITAL CONTROL
- Provides digital input and output capability under the control of a DTMF decoder
- Perfect for repeater, remote base, and other homebrew control applications
- 21 separate I/O pins which can be set high or low by a four digit custom sequence. Each bit may be checked by entering a digit code. The chip will respond with an Morse code 1 or 0 depending upon the logic state
- Direct interface with the Mostek 5102 DTMF decoder chip
- Anti-jamming mode automatically activates to prevent jamming
- Five second timer for proper control sequencing and grouping
- May be purchased in two different versions - version 'A' for 12 digit decoding, 'B' for 16 digit decoding
- Each chip is different - the codes for each chip are randomly selected by computer, but custom codes are available at extra cost

Digital Microsystems™ DCC Chip $34.95

MORSE CODE to ASCII CONVERTER
- Advanced adaptive-algorithm converts hand sent and machine sent Morse code to ASCII
- 110 and 300 baud
- Automatic carriage return insertion selectable by user
- Automatic carriage return insertion selectable by user
- Selectable number of characters per line before insertion of carriage return or line feed (if selected)
- Master enable input for compatibility with ASCII to Morse converter chip (SATOM)
- Two separate ASCII outputs for easy interface to RS232 or RS422 drivers
- Designed to work with any ASCII compatible terminal or computer
- Internal inverter may be selected to invert incoming Morse waveform before decoding

Digital Microsystems™ MTOA Chip $39.95

MORSE CODE MESSAGE GENERATOR
- Up to 6 separate user definable messages
- Completely non-volatile memory
- Will not forget your messages when power is shut off
- Supports manual, continuous automatic, and timed automatic modes
- User selectable transmission rate
- Individual messages, or groups of messages may be transmitted
- Can be wired as a beacon controller, automatically repeating any selected messages
- Can be wired as a repeater/remote base ID controller
- Automatic repeat of any selected message(s) at selectable intervals
- Latched COR input for trigger of ID mode
- Latched COR input for Morse outputs available - direct audio or digital logic
- Two message in-progress signals available - one high, the other low
- Crystal controlled 1, 5, 6, 7, 8, 9, and 10 minute timers, useful for repeater ID mode
- Perfect companion to your RTTY, ATV, or SSTV station

Digital Microsystems™ MCMG Chip $49.95

ACCESSORIES
- CRYSTALS: one required per chip $5.00 ea.

DIGITAL MICROSYSTEMS, Inc.
607 Sudbury Street
Marlboro, MA 01752
balun with an arbitrary load impedance as the electrical length of the line changes, or place the value of load resistance across the balanced load that you think the balun characteristic impedance is, or that you would like it to be. Then measure the input impedance of the balun across the frequency range and see how close your guess was. Fig. 6 shows the input impedance of a transmission line balun with four different values of load resistance: 65, 76, 84, and 101 ohms.

Starting at the top, notice that the input impedance with the 101 ohm load rolls off at higher frequencies. At first glance this roll-off appears as normal high-frequency drop off. However, looking at the 65-ohm load line, we see a “roll up” in the input impedance as the frequency increases. These two input impedance characteristics suggest the impedance inverting effect of a 1/4-wave transmission line whose characteristic impedance, which is what we are trying to find, is between 65 and 101 ohms.

Looking between 65 and 101 ohms, we see that the 84 ohm line rolls off slightly while the 76 ohm load response is practically flat — only a very slight roll-up. This indicates that the characteristic impedance of the balun is just above 76 ohms. If these measurements were made beyond a 1/4-wavelength, the slope of the curves would reverse and the frequency for a 1/4-wavelength could be determined. My equipment does not go high enough in frequency to do this, however.

If a General Radio 821 Twin-Tee admittance bridge or similar instrument is available, a third approach may be used that gives not only the characteristic impedance but also the electrical length of the winding as well. If the physical length of the winding (in inches or meters) is known, the velocity coefficient of the winding can also be determined from this data.

This test is based on the fact that a short-circuited transmission line 1/8-wavelength long has an inductively reactive input impedance equal to the characteristic impedance of the line. Similarly, if the far end is open-circuited, the input impedance presents a capacitive reactance equal to the characteristic impedance. This can be seen by examining the transmission line equation for the short-circuited case, which is the simplest:

$$Z_{in} = Z_0 \frac{Z_r \cos X + jZ_0 \sin X}{Z_0 \cos X + jZ_r \sin X}$$

when $Z_r = 0$ (short circuit load)

then $Z_{in} = Z_0 \frac{jZ_0 \sin X}{Z_0 \cos X} = jZ_0 \tan X$

when $X = \lambda/8$ or 45°,

then $Z_{in} = jZ_0$

The open-end and short-circuit values of reactance are plotted versus frequency on the same piece of graph paper; the reactance at which they intersect is the characteristic impedance of the balun. An example of this is shown in fig. 7. Also, the frequency of intersection is the frequency at which the balun is 1/8-wavelength long. The electrical length at any frequency can easily be determined from this.

Because this test cannot be used when the tertiary winding is connected, it can be used only on homemade baluns or commercial baluns where the tertiary winding can be opened.

The limitations on the test equipment are that the impedance measuring device must be capable of measuring impedances with high resistive components and measuring reactive components in the range of the expected characteristic impedance at the frequency where the balun is 1/8-wavelength long.

winding inductance

The balun winding inductance is important because it determines the frequency range over which the balun can be used and also determines balun isolation. In general, the winding reactance should be about five times the characteristic impedance for a general purpose balun. You may want to use a factor of ten times the characteristic impedance for a precision or an instrument balun, however.
As the frequency increases, the balun impedance increases until the inductance resonates with the stray capacity across the inductance. At this frequency, the impedance of the winding and the isolation are the highest. As the frequency is further increased, the impedance becomes capacitively reactive and decreases until series resonance occurs and the winding is effectively a short-circuit. The balun is obviously worthless at this frequency as the balun develops no isolation between the balanced and unbalanced sides. There is no problem in operating the balun through parallel resonance, but it should not be operated above the frequency where the impedance falls below about five times characteristic impedance.

Fig. 8 shows a typical inductance curve.

To perform this test, the tertiary winding must be disconnected so you may not be able to make these measurements on a commercial balun. The test arrangement is shown in fig. 9.

coefficient of coupling

The coefficient of coupling between the main winding and tertiary winding is important because it affects the degree of balance of the balanced output and also limits the high frequency response. To measure the coefficient of coupling, the tertiary winding must be disconnected from the main wind-

\[k^2 = 1 - \frac{L_{oc}}{L_{ic}} \]

Values of \(k \) — not \(k^2 \) — should be at least 0.98 to 0.99. If the coefficient of coupling is less than about 0.98, you should expect problems, especially if broadband operation and/or a mismatch condition exists. Since this test involves measuring the inductance of the main winding, it is convenient to do it simultaneously with the inductance test.

achieving a balanced output

A very important performance characteristic of any balun is the degree of balance of the balanced output (assuming a balanced load). Fortunately, the test for this is easy to do, and a number of different approaches are possible.

The simplest and most direct approach is to measure the rf voltage between each side of the balanced load and ground over the frequency range of interest. If the input voltage is held constant, any unbalance or variations in the transmission through the balun will be apparent.

Another approach is to use a dual channel oscilloscope with one channel connected to each of the balanced terminals. This has the advantage that phase differences between the two halves of the balanced output can also be measured by the horizontal displacement of the two traces.
ICOM IC-751 all mode general coverage HF transceiver
Just arrived, Icom's most advanced HF transceiver! Features all mode operation including SSB, CW, AM, RTTY and optional FM. A built-in microprocessor enables memory storage for up to 32 channels plus band scan capability. Other features include dual VFO's, large, 6-digit frequency display, passband tuning and adjustable notch filter. Covers 160-10 meters, including WARC plus general coverage receive. RF power input: 200W PEP on SSB. Power requirement: 13.8V DC.
$139.10
List Price 149.99
Item No. IC751
Add 5.10 shipping & handling

ICOM IC-271 all mode 25 watt 2-meter transceiver
Packed with features including a hefty 25 watts of power, 143.8-146.1999 MHz coverage and FM, SSB or CW transceive capability. Built-in microprocessor enables 32 channel scannable memory plus band and mode scanning. Other features include dual VFO's with data transfer, large multicolor frequency display and built-in 7-year Lithium battery for memory protection. Requires 13.8V DC. Optional power supply available.
$629.10
List Price 699.00
Item No. IC271
Add 4.32 shipping & handling

MFJ 1224 computer interface
Lets you send and receive computerized RTTY/ASCII/CW. Connects between your rig and VIC-20, Commodore 64, Atari or most other personal computers. Uses Kantronics or other RTTY/CW software. Requires 12V DC.
$89.95
List Price 99.95
Item No. MFJ1224
Add 2.19 shipping & handling

COMMODORE VIC-20 personal computer price slash!
Now drastically reduced! And the VIC-20 is a full function computer with 5K memory, expandable to 32K, full size typewriter keyboard and built-in BASIC language. Wide range of add-on accessories including ready-to-run programs is available.
$75.00
List Price 299.00
Item No. COMVIC20
Add 3.54 shipping & handling

Long's Electronics
MAIL ORDERS: 2700 CRESTWOOD BLVD. BIRMINGHAM, AL. 35210 SHOWROOM: 3131 4TH AVENUE SOUTH, BIRMINGHAM, AL. 35233
Tell 'em you saw it in HAM RADIO!
NEW FROM KENWOOD!

KENWOOD TW-4000A mobile
2m/70cm FM transceiver
This new dual-band rig from Kenwood covers 142-148.995 MHz as well as 430.000-449.995 MHz and features twin digital VFO's. An extra-large, backlighted LCD display indicates frequency, S level and a host of other functions. There's also a scannable 10-channel memory plus programmable band scan. GaAs FET RF amplifiers for high receive sensitivity on both bands. Lithium battery for memory backup. RF power output: 25 watts. Dimensions: 6 1/4" x 2 3/8" x 6 7/8". Complete with 16-key autopatch up/down mic and mobile mounting bracket. Power requirement: 13.8V DC.

539.95
List Price 599.95
Item No. KENTW4000A
Add 2.98 shipping & handling

KENWOOD SW-2000 SWR/power meter
Individual SWR/power meters with 1.8-450 MHz frequency range. Comes with one through-type detector with 1.8-54 MHz range which connects to the meter console. Jacks provided for 2 additional detector units for wider coverage. Requires 12V DC.

98.95
List Price 109.95
Item No. KENSW2000
Add 1.98 shipping & handling

KENWOOD SW-100 mobile SWR/power meter
Ultra compact meter with separate through-type detector and 1.8-150 MHz range. Measures power from 0-150 watts. Complete with adjustable tilt mounting bracket for meter and DC power cables. Requires 13.8V DC.

49.95
List Price 59.95
Item No. KENSW100A
Add 1.98 shipping & handling

KENWOOD MC-80 base station microphone
Handsome stand unit featuring a gooseneck-mounted condenser mic with PTT switch, power switch and up/down controls for use with scanning transceivers. Silver with dark gray trim.

59.95
List Price 69.95
Item No. KANMC80
Add 1.79 shipping & handling

DENTRON Clipperton QRO-7 linear amplifier
Covers 160-15 meters, including most MARS frequencies and delivers 2000 watts PEP on SSB, and 1000 watts DC input on CW, RTTY or SSTV. Tuned input for solid state radios. Built-in continuous duty power supply with forced air cooling. Other features include high/low power switching, adjustable ALC and bypass switch. 117V or 234V (50 or 60 Hz) operation. Complete with tubes (packed separately).

599.00
List Price 799.50
Item No. DENQRO7
Add 9.98 shipping & handling

Call Toll Free 1-800-633-3410

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

More Details? CHECK — OFF Page 92

August 1983
A variation on this test is convenient for measuring the electrical length of the winding; connect one scope channel to the balun input (unbalanced input) and the second channel to the high side of the balanced output of the balun. The balanced voltage to ground at this point should be one-half the input voltage for a 1:1 balun. You will probably want to synchronize the scope on the channel connected to the balun input. The electrical length of the winding can be determined from this measurement from the horizontal displacement of the two traces. Scopes with vertical channel responses of 30, 45, and even 60 MHz are now readily available to Amateurs, making this an attractive method.

The ideal method of measuring the balance is to use a Hewlett-Packard model 8405A vector voltmeter; this instrument measures the magnitude of two voltages and the phase angle between them. Unfortunately, this is a $5000 instrument and very few Amateurs can afford to spend this much for a voltmeter. If you are employed in electronics, see if your lab has one; it’s a common instrument in rf labs. The vector voltmeter can also be used to determine the electrical length of the balun.

Another simple and useful test for estimating the degree of balance is to use a balanced load impedance composed of two resistors in series, with each resistor being one-half the value of the desired balanced load. The input impedance is then measured with the center-tap of these resistors both grounded and open-circuited. If the balun and load are well balanced, there will be no change in the input impedance of the balun when the center-tap of the load is grounded or ungrounded. By “grounding the center-tap,” I mean connecting the center-tap to the grounded terminal of the unbalanced input. When I have performed this test on a well-designed balun, I have found that the change in input impedance is always less than the width of the calibration line of the dial.

As the balance test must be made with the balun in its final operating configuration, it can be made on commercial baluns as well as homemade ones. This is one of the simplest and most effective tests I am aware of for determining the effectiveness of a balun. As the balun test involves only measurements of input impedances, it is convenient to check balance when the input impedance is measured. To demonstrate the benefit of a tertiary winding, try making this test on a 1:1 balun without a tertiary winding.

short-circuit test

This test was first described by Reisert. Readers have often called it to my attention after publication of my previous articles about baluns. Basically, this test is intended to give an estimate of the isolation provided between the balanced and unbalanced sides of the balun.

This test is performed by measuring the input impedance at the unbalanced terminals with a normal balanced load connected to the balanced side. The input impedance is again measured when each of the balanced terminals is shorted to ground. If baluns provided perfect isolation, there would be no change in the measured input impedance; but because nothing is perfect, some change in input impedance should be expected. Despite extensive reading in the field, I have not yet discovered what constitutes an acceptable change in input impedance, but I would assume that a change of ten percent or less is acceptable. This would suggest that the series impedance of the balun is at approximately ten times its characteristic impedance.

However, this test must be approached with extreme caution. First, if the balun has a tertiary winding, shorting the high side of the balanced terminal to ground will also short-circuit the tertiary winding. As the tertiary winding is tightly coupled to the main windings, this will effectively short-circuit the main winding, thereby ruining the balun action. If the balanced-load center-tap is grounded, shorting either side to ground will also short-circuit one-half of the load resistance, which will obviously affect the input impedance.

My principal objection to this test, however, is that the test conditions alter the operating conditions of the balun. Grounding either balanced terminal provides a path for the magnetizing current (a dc path to ground) and also increases the voltage across the main winding by a factor of two — from V/2 volts to V volts where V is the unbalanced input voltage. For these reasons, I am not convinced that this test is really a reliable indication of balun performance.

fig. 9. Circuit for measuring balun inductance and calculating the coefficient of coupling between main and tertiary windings.
core saturation

One final test that should be mentioned is magnetic saturation of the core. I have not tried this test myself, but it’s easy enough to perform, at least in theory. Wrap three or four turns of insulated wire around the balun core and connect it to an oscilloscope. If the waveform on the scope is a sine wave, the core is not being saturated. The test must obviously be made at full power while connected to the actual load. This presents some practical as well as safety problems.

summary

I have briefly discussed the purposes and operation of a 1:1 transmission line balun and described seven tests that can be used to measure the characteristics of the balun. The tests include:

1. tertiary winding (using an ohmmeter)
2. determination of characteristic impedance
3. isolation determination by winding inductance
4. balance
5. coefficient of coupling of tertiary winding
6. electrical length
7. core magnetic saturation

The tests described above do not appear to require specialized test equipment or training and I feel that balun vendors should list the various technical parameters as do manufacturers of other products. This information would benefit the users because they would be better able to choose the balun that best met their requirements. Perhaps if balun manufacturers were to share their test results with consumers by including technical specifications in their promotional materials, users could be spared some of the time and effort testing requires. Armed with such information, users would be better able to choose the balun that best meets their needs.

references

bibliography

Last winter and spring the West Coast experienced severe weather with flooding, land slides and heavy property damage. Radio Amateurs supplied emergency communications in many cases. One important point learned by all concerned with these emergencies is that disasters occur suddenly and unexpectedly. Advance preparation is absolutely essential. In general, communications from home stations were of little use; hand-helds and portable stations carried the larger portion of the communications burden.

During these emergencies, many emergency communication coordinators found that the common “rubber duck” antenna on the hand-held unit was not suitable for emergency use. A better antenna was needed, but it had to be inexpensive and also rugged. A successful emergency antenna had been developed in Arizona for the Scottsdale Amateur Radio Club and the Arizona Repeater Association, and that design has been copied for use by the Red Cross and other emergency communications organizations.

the 2-meter J-pole

As described by Jack Hanny, KB7CH, of Scottsdale, the emergency J-pole antenna is light enough to be rolled up and carried in a tool box or emergency kit.

The J-pole is made from a 55 1/2-inch section of TV “ribbon” twin lead. A 1/4 inch of insulation is removed at one end (fig. 1A) and the wires soldered together. 16 inches above the short, a piece of the ribbon line is notched out and one lead is cut open. A 1/4 inch of wire is removed. The break is then taped or covered with heat-shrink tubing.

The next step is to measure 1 1/2 inches from the shorted end of the ribbon line and then carefully trim away the insulation to expose the two wires. Be careful not to nick the wires. The feedline is attached at this point (fig. 1B). Solder the center conductor of a random length of RG-58/U coaxial cable to the long wire of the ribbon line and solder the braid of the coax to the short conductor.

Jack made his coaxial cable about 12 feet long and placed a matching plug for his hand-held unit at the free end of the line. He wrapped the short section of ribbon line to the coaxial cable with string and covered the joint with tape or heat-shrink tubing.

The last step is to punch a small hole in the insulating web at the opposite end of the ribbon line and tie a section of heavy string to the top end of the antenna. This makes it possible to support the antenna from the branch of a nearby tree. An extra length of RG-58/U cable can be made up with matching connectors to be used if the antenna is to be hung from a greater height.

more on the sloper

A lot of words have appeared about slopers during the past decade. There’s no doubt that it works, but the theory behind this unusual antenna is obscure. In brief, the sloper is simply a 1/4-wavelength (approximately) wire, fed at the top end supported by the station antenna tower or mast. The bottom end of the wire is anchored a few feet above ground. The coaxial center conductor feeds the wire at the top, with the shield of the line attached to the metal tower, which apparently works as a ground point.

Dick, WD4FAB, has broadbanded a sloper by increasing its effective diameter with a four-wire cage (fig. 2). The bottom ends of the four wires must be interconnected; if they are not, each of the individual wires will take on its independent characteristics, resulting in some unpleasant bumps in the SWR curve. The WD4FAB sloper is suspended at the 50-foot point on a 58-foot-high tower.

comparing an inverted-V with a 5-band trap vertical

Jim, KW2W, compared a 5-band trap vertical to an 80-meter inverted-V used with an antenna tuner for operation between 80 and 10 meters. Jim says he has a very good location for a vertical — on a sandy beach, only about two feet above the salt water level. The soil beneath the antenna is always moist with salt water. The 5-band vertical was mounted atop a 10-foot pipe driven...
IN THE GOOD OLD SUMMERTIME

The publishers of The Final Exam offer you books to while away those lazy summer days!

* Teaching Novice classes? Your students will thank you for using the Novice Class edition of The Final Exam. Not a Q & A manual, but a straightforward book that tells your students what you want them to know while keeping them amused. Your students will finally enjoy learning! Used in classes all over the country. Only $4.95 plus $2.25 Shipping & Handling (S & H) for a single copy. Quantity discounts usually available through your local dealer.

* Want to keep up with changes in the FCC rules? For only $9.95 per year we offer you a subscription to Part 97 of the FCC Rules & Regs with verbatim updates mailed 1st Class every 2 months. There's no better service anywhere!

* The Complete Idiot's Guide to DX by Stu Gregg is just what beginning DXer's need. With a sense of humor, Stu teaches the basic ins and outs of DX. Only $9.95 (plus $2.50 S & H).

* Got an Apple II, II+, or III and like DX? The DX-Pediter will help you tremendously with your record keeping while you work on DXCC! On 5 1/4" floppy with good documentation for $29.95 (plus $2.00 S & H).

* Can't remember where you saw an important formula or table with ham data? Look in Band-Aids! This is an encyclopedia of miscellaneous info for hams for just $9.95 (plus $2.25 S & H).

* Here's the newest book by Bob Shrader - W6BNB: Amateur Radio Theory & Practice. If you really want to understand ham radio theory, then this book is a must! Available for $19.95 (plus $3.00 S & H).

* Antenna enthusiasts! You need Antennas by John Kraus - W8JK. This is loaded with calculus and trig but is the "Bible" of antenna books. Only $44.95 (plus $4.00 S & H).

* Do you want antenna applications? Order Antenna Engineering Handbook. This 1,013 page book by H. Jasik has more info than you'll use in three lifetimes. Just $74.95 (plus $4.00 S & H).

* Ready to learn solid state? Get Electronic Principles by Malvino. This is the book to read after Electronic Communication. Put it on your bookshelf for $26.95 (plus $4.00 S & H).

* California orders must include 6 1/2% sales tax (no tax on S & H). Visa & MasterCard accepted. All of the above items are in stock at this time. Prices valid until September 1, 1983. Free shipping via UPS or Parcel Post on orders over $75.

In The Works

The Ham Radio Instructor's Guide (Vol. I) will instruct you how to teach ham classes. The first volume discusses the psychology of learning, lesson plans, course development, etc. What's more, an organization is being developed to certify ham radio instructors. Dick Bash - KL7IHP is almost finished with the book and plans to have it available in September. Price will be $14.95 (tentative) plus $2.50 S & H.

- Attention Authors -

We are seeking authors for books on RTTY, satellites (Phase III-B or later), antennas, and VHF/UHF theory. Please send for our information sheet and get your book published now!

Orders should be mailed to:

Bash Educational Services, Inc.
P.O. Box 2115 • San Leandro, CA 94577 • 415-352-5420
Telephone orders accepted Monday - Friday, 10 AM - 6 PM (California time)
into the soil and had two resonant radials for each band, for a total of 10 radial wires. The inverted-V was cut for the middle of the 80-meter band. The center of the antenna was about 50 feet high and the ends were about 15 feet high.

Over a period of time, Jim concluded that manmade and atmospheric noise was much less on the inverted-V and that reports received nearly always favored the inverted-V over the vertical.

Jim said, "I feel there's an antenna for every location — meaning that what works well in one place may work poorly someplace else. Antenna experimentation for a given location is worth the effort. The question of which antenna is better is really not applicable; the question of which antenna, for a given location, will perform better, is more precise."

the no-code license — a brief history

The present FCC proposal for a VHF/UHF "no-code" license brings back memories to old timers who remember the 1932 uproar over a similar suggestion.

1932 was a critical year for Amateur Radio. At the depths of the Great Depression, millions were out of work and industry was at a standstill. Many young men with plenty of time but little money turned to the fascinating hobby of shortwave listening. For a few dollars, or even less, an old battery-operated radio could be torn down and rebuilt into a simple shortwave receiver. Many newspapers carried columns about shortwave reception and shortwave clubs were founded for avid young listeners all over the country.

These enthusiastic SWLs soon discovered the Amateur bands, particularly the phone stations. Amplitude modulation was exclusively used for voice transmission in those days and the signals could be readily received on a one or two tube receiver.

A direct result of the SWL hobby was an expanded interest in Amateur Radio. Thousands of listeners yearned to be Amateurs and would have been — except for the bothersome task of learning the Morse code! Why was the knowledge of code required for "radiophone" operation, especially on the "ultra-high" frequencies above 10 meters?

The interest in a no-code license came to a head in May, 1932, when Short Wave Craft magazine, edited by Hugo Gernsback, announced the formation of the "Short Wave League" (fig. 3) devoted to "the Amateur who is not interested in code, but who is interested in the transmission of voice only." The Short Wave League had no dues or membership fees. The charter of the League was vague, but the editorial in the issue announcing the formation of the League was specific: the goal was to be the lifting of the code restriction on the Amateur "extra-short wavelengths." The May, 1932, editorial in Short Wave Craft promised that if "a sufficient number of letters were received, they would form a basis of negotiations between the League and the Federal Radio Commission."

In this manner the request for a no-code VHF license was created. Looking back, it seems unclear whether the Short Wave League was merely a gimmick to increase magazine circulation, or in fact represented an authentic desire for a no-code Amateur license. For a year or so Short Wave Craft was full of angry letters to
The next no-code license uproar occurred shortly after World War II when the FCC proposed a "Citizen Radio Service" to be placed in the 400 MHz region. The proposal was greeted with little enthusiasm by hams and non-hams alike because no commercial equipment was available for the band. Furthermore, because of the very high frequency chosen, any homemade rigs were of the "squawk-box," super-regenerative type, which had poor sensitivity and selectivity.

Faced with a likely failure, the FCC next proposed to expand the unwanted VHF CB service into the so-called "industrial-scientific-medical" frequency range at 27 MHz, heretofore used by Radio Amateurs on a secondary basis. Radio Amateurs and others protested the plan, predicting that the FCC wouldn't have the manpower, desire or ability to police the operation properly. How true that prediction turned out to be! And as the MUF rose, providing long-distance contacts at 27 MHz, CBers quickly discovered that with modified ham gear, linear amplifiers and big antennas, they could work worldwide DX just like real radio hams! And best of all, the FCC couldn't really catch them — especially if they had no license at all and their names weren't in the FCC computer! No-code license? Why worry about that when no license at all was necessary?

refighting the battle of 1932

Little was heard of the no-code proposal until a few years ago when it began to surface once again, possibly resurrected because of the monumental CB problem that arose about 1976. The CB channels exploded with activity after CB radio received national publicity during a truckers' strike. Unlicensed CB activity spread beyond the authorized channels, until today it occupies the spectrum from about 26 MHz to 27.99 MHz.

One solution to the CB problem was to give CBers another band. The 220 MHz ham band was proposed, but protests from amateurs and the military finally defeated the idea. Probably without recalling the 1932 hassle, and with the hope of solving the CB problem, the FCC proposed a no-code license for Radio Amateur operation on certain VHF bands, re-opening the old argument that had been settled decades ago.

Why has this idea resurfaced after 50 years? Is there a grassroots movement for a no-code license? Are the CBers enthusiastic about a no-code license? Are the Radio Amateurs enthusiastic about a no-code license? As far as I can determine, the answer to these questions is no.

If this conclusion is correct, who, then, wants a no-code license? (All eyes turn toward the FCC.)

The present problem, as I see it, is more fundamental than whether or not a no-code license structure is established. The root of the matter is who will control the destiny of Amateur Radio in the United States? Do amateurs have a voice in their own destiny? A dangerous precedent can be set if the FCC ignores the feelings of the majority of Radio Amateurs and forces a new class of Amateur into existence, flaunting the time-honored foundation of Amateur Radio itself.

It would be easy to establish a no-code Amateur group. But, once created, it would be impossible to disband it. The speed at which the undertaking advances provides little time for reflection or judgment of the long-term possibilities.

The Morse code has been with us for a long, long time. It may be scoffed at by those who don't know it; on the other hand, it could be considered a badge of honor to those of us who use it and appreciate it. I think it would be a mistake of the first magnitude if a complete new class of Amateur licensee were to be artificially created who had no "feel" for the majestic scope of Amateur Radio — the Morse code included.

The editor expressing various views, pro and con, on the no-code proposal. It is interesting to note that arguments used then were strikingly similar to those used today. The principal difference between the situation in 1932 and that of today seems to be that the early no-code proposal was apparently a grassroots movement sponsored by the magazine and supported by many of its readers. The Federal Radio Commission (the predecessor of the FCC) had nothing to do with the launching of the proposal. Moreover, it seemed to have given little thought to it, since no official comment was made on the matter. Most Amateurs and QST ignored the uproar, hoping it would go away. And, sure enough, it did.

The fad of shortwave listening died out quickly and by 1934, Short Wave Craft magazine turned pro-Amateur and the no-code proposal was forgotten for a few years.

fig. 3. The battle for the no-code amateur license was fought — and lost — by the "Short Wave League" in 1932. The platform of the League makes interesting reading today. Point 2, which seems unusual today, had meaning in 1932. Police radio was in its infancy and many local police organizations relied upon Radio Amateurs to relay messages for them. But the real purpose of the League was point 3, the no-code license for the "ultra-high" frequencies. As for point 5, we are still working on that problem today! (Material reprinted from Short Wave Craft magazine.)

ham radio
New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily retuned to nearby freq. For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 watts output.

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure = 1 to 1.2 dB. Gain = 12 to 15 dB.

Models LNA/ L P30, and P432 shown.

Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less. VHF models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tunable</th>
<th>Freq Range</th>
<th>Noise Figure</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA 28</td>
<td>20-40</td>
<td>20 dB</td>
<td>$39.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA 50</td>
<td>40-70</td>
<td>20 dB</td>
<td>$39.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA 144</td>
<td>120-180</td>
<td>1.0 dB</td>
<td>$39.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA 220</td>
<td>180-250</td>
<td>1.0 dB</td>
<td>$39.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNA 432</td>
<td>380-470</td>
<td>1.0 dB</td>
<td>$44.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less. UHF models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tunable</th>
<th>Freq Range</th>
<th>Noise Figure</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRA-144</td>
<td>143-150 MHz</td>
<td>$49.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRA-220</td>
<td>213-233 MHz</td>
<td>$49.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRA-432</td>
<td>420-450 MHz</td>
<td>$59.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UHF units available 300 to 650 MHz.

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure = 1 to 1.2 dB. Gain = 12 to 15 dB.
For years, Hamtronics® Modules have been used by individual hams and manufacturers to make repeaters. Now, in the Hamtronics tradition of top quality and superb value, we are proud to offer a complete repeater package.

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M,2M,220</td>
<td>$595</td>
<td>$745</td>
</tr>
<tr>
<td>440</td>
<td>$645</td>
<td>$795</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking/crossband & 10M.

FEATURES:
- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ± 12 KHZ. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY-TUNE TRANSMITTER; UP TO 20 WATTS OUT.

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

INTRODUCING — NEW 1983 RECEIVERS

- **R144/R220 FM RCVRS** for 2M or 220 MHz. 0.15 uV sens., 8 pole xtal filter & ceramic filter in H, helical resonator front end for exceptional selectivity (curves at left). AFC in cl, xtal oven avail. Kit only $119.95.
- **R451 FM RCVR** Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $119.95.
- **R76 FM RCVR** for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $109.95. Also avail w/4 pole filter, only $94.95/kit.
- **R110 VHF AM RECEIVER** kit for VHF aircraft band or ham bands. Only $84.95.
- **R110 UHF AM RECEIVER** for UHF uses, including special 259 MHz model to hear SPACE SHUTTLE. Kit $94.95

- **HELICAL RESONATOR FILTERS** available separately on pcb w/connectors.
 HRF-144 for 143-150 MHz $34.95
 HRF-220 for 213-233 MHz $34.95
 HRF-432 for 420-450 MHz $44.95
 (See selectivity curves at left)

- **COR KITS** With audio mixer and speaker amplifier. Only $29.95.
- **CWD KITS** 158 bits, field programmable, clean audio. Only $59.95.
- **DTMF DECODER/CONTROLLER KITS.** Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with autopatch. Only $89.95.
- **AUTOPATCH KITS.** Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $89.95. Requires DTMF Module.
- **A16 RF TIGHT BOX** Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Only $18.00.

TRANSMITTERS AND ACCESSORIES

- **T51 VHF FM EXCITER** for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous. Kits only $59.95
- **T451 UHF FM EXCITER** 2 to 3 Watts on 450 ham band or adjacent. Kits only $69.95.
- **VHF & UHF LINEAR AMPLIFIERS.** Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Kits from $69.95.

More Details? CHECK—OFF Page 108
antenna carriage
and track pole mount

Mounting a rotatable antenna on a utility pole can be easy, inexpensive

Some ingenious ways have been devised to raise antennas. These have included mounting a stationary mast on a rotatable base; digging a hole, setting a pole, and then cranking the mast up and down; raising and lowering a mast through the roof; making a tiltable mast, using gin poles; and using a mast with telescoping sections.

The technique I've devised consists of stringing two cables vertically on a utility pole, 10 inches apart. A pulley at the top of the pole serves as a sheave for the steel cable that raises and lowers the antenna-bearing carriage. The carriage rides up and down the vertical cables.

access to the top

Mounting the pulley requires the use of an extension ladder tall enough to reach the top of the pole.

Start by mounting a curved block of wood on the top rung of the ladder as shown in fig. 1. This prevents the ladder from sliding sideways while positioned at the top of the pole. The base of the ladder should be secured by lashing it to stakes driven into the ground. Use guy ropes to keep the ladder from swaying.

pulley and cables

Because the top of the pole is 8-1/2 inches (21.6 cm) in diameter, a 9 inch (22.8 cm) die-cast aluminum pulley is required. The pulley is attached to a pair of aluminum brackets and mounted with lag screws see (fig. 2). It may be necessary to use shims to keep the pulley in a vertical position if the top of the pole is not straight.

Both a support and winch cable are needed. The support cable is a single 70 foot (21.3 m) length of 1/4 inch (6 mm) flexible steel cable. The winch cable is about 75 feet (22.8 m) of 1/8 inch (3 mm) cable. A heavier carriage and antenna would require using a heavier winch cable.

By Ira L. Simpson, KB3K, 1201 Walters Mill Road, Forest Hills, Maryland 21050
A spring-loaded plunger (fig. 4) is attached on the underside of the bottom plate. When the carriage is in position at the top of the pole, the plunger slides into a mating hole in the pole, to act as a safety catch in case the winch cable breaks. A nylon string is attached to the eye on the plunger assembly so it can be released from the ground.

antenna mast guides

To stabilize the mast, a right angle bracket is installed at the top of the carriage. A hole slightly larger than \(\frac{3}{4}\) - diameter of the mast is made in the bracket. A bearing plate is mounted over the hole while the mast is fitted into the rotor. The size of the bearing plate depends on the size of the mast; some measuring and alignment is necessary to assure that the rotor is correctly aligned with the hole in the top bracket and that the mast is straight.

winch

The winch is mounted on the pole at shoulder level. Purchased from Montgomery Ward, mine was strong enough to pull about 1200 pounds (545 kg). It

carriage

The carriage (fig. 3) is fabricated from ordinary slotted steel shelving upright strips available at hardware stores. Each strip is 4 feet (1.2 m) long. The steel support cables fit easily in the channels of these strips.

Lay the steel strips on a work bench 10 inches (25.4 cm) apart, the required spacing for the support cables. Bolt two metal supports at right angles to the strips at points one quarter and three quarters of the way up the carriage. Weld the two shelving brackets into the bottom slots of the uprights. Then bolt the bottom shelf to these brackets. Make six clips which will slide onto the upright carriage strips to hold the support cable securely in the groove when the carriage rides up and down the support cables. When mounting the carriage onto the support cables, hold these clips in place with cotter pins.

fig. 1. Wooden chock for stabilizing top of ladder.

fig. 2. Details of assembly at top of pole.

fig. 3. The carriage. Clip can be seen on the left upright. Notice the pipe at the top of the carriage. This was used to wrap the steel cable to the carriage. The two rubber balls mounted at the bottom are shock absorbers.
was spaced far enough away from the pole for the handle to clear and bolted to the pole with two 3/8 inch (9.6 mm) threaded rods. (Each of the two threaded rods should be ground to a point at one end and squared off to accommodate a wrench at the other end. Finished this way, each rod can be screwed into the pole by first drilling a hole slightly smaller in diameter and then using a wrench to turn the rod into the hole. A little grease may make the job easier.) When the rod is in place, cut away the excess length and mount the winch.

vertical guide cable and cable spreader

To install the vertical guide cable on the pole, mount a top support bracket at the top of the pole using two 1/2 inch (13 mm) bolts made from threaded rod (fig. 5). The cable spreader (fig. 5) is lag bolted to the pole about 6 feet (1.8 m) from the ground. To fasten the turnbuckles install a triangular plate about 3 feet (0.9 m) from the ground using a 1/2 inch (13 mm) rod through the pole (fig. 5). Lay the 1/4 inch (6 mm) flexible steel carriage support cable in the top cable bracket and attach the turnbuckles to the ground end of the cables with the cable clamps. After the cable is installed and tightened, the carriage can be mounted and run up and down the pole a few times to assure proper operation.

conclusion

This simplified method of assembly, using inexpensive and readily available materials, can be used to raise antennas to effective working heights.

My antenna stands 20 feet (6 m) high in its lowered position; in the raised position, it stands 40 feet (12 m) high. The pole to which it is attached measures 35 feet (10.6 m).

materials list

<table>
<thead>
<tr>
<th>quantity</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>turnbuckles</td>
</tr>
<tr>
<td>4</td>
<td>cable clamps — 1/4 inch (6 mm) cable</td>
</tr>
<tr>
<td>3</td>
<td>cable clamps — 1/8 inch (3 mm) cable</td>
</tr>
<tr>
<td>1</td>
<td>9 inch (22.8 cm) pulley</td>
</tr>
<tr>
<td>1</td>
<td>hand operated utility winch</td>
</tr>
<tr>
<td>70 feet</td>
<td>1/8 inch (3 cm) steel cable (21.3 m)</td>
</tr>
<tr>
<td>75 feet</td>
<td>1/4 inch (6 mm) flexible steel cable (22.8 m)</td>
</tr>
<tr>
<td>30 feet</td>
<td>nylon string (9.2 m)</td>
</tr>
<tr>
<td>2</td>
<td>upright steel shelving strips</td>
</tr>
<tr>
<td>2</td>
<td>shelf brackets to fit strips</td>
</tr>
<tr>
<td>aluminum plate</td>
<td></td>
</tr>
<tr>
<td>aluminum mast material</td>
<td></td>
</tr>
<tr>
<td>steel plate</td>
<td></td>
</tr>
<tr>
<td>lag bolts</td>
<td></td>
</tr>
<tr>
<td>threaded rod with nuts (also known as All-thread)</td>
<td></td>
</tr>
<tr>
<td>steel metal for brackets, braces, and clamps.</td>
<td></td>
</tr>
</tbody>
</table>

A few details should be noted: be sure to prime and paint any metal parts subject to rust. Lubricate as necessary. Run a ground wire from the support cable and the winch, and install a ground rod at the base of the pole. The transmission line and rotor cable can be run underground to the shack, if you wish. Remember to rotate the antenna only in the raised position.
For The Best Buys In Town
Call: 212-925-7000

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, N.Y. 10012.

AUTHORIZED DISTS. MCKAY DYMEN FOR COMMERCIAL COMMUNICATIONS SYSTEMS

LARGEST STOCKING HAM DEALER COMPLETE REPAIR LAB ON PREMISES

"Aqui Se Habla Espanol"

BARRY INTERNATIONAL TELEX 12-7670
TOP TRADES GIVEN ON USED EQUIPMENT
STORE HOURS: Monday-Friday 9 to 6:30 PM
Saturday 10 to 4 PM (Free Parking)
AUTHORIZED DISTS. MCKAY DYMEN FOR SHORTWAVE ANTENNAS & RECEIVERS.

New York City's LARGEST STOCKING HAM DEALER COMPLETE REPAIR LAB ON PREMISES

"Aqui Se Habla Espanol"

BARRY INTERNATIONAL TELEX 12-7670
TOP TRADES GIVEN ON USED EQUIPMENT
STORE HOURS: Monday-Friday 9 to 6:30 PM
Saturday 10 to 4 PM (Free Parking)
AUTHORIZED DISTS. MCKAY DYMEN FOR SHORTWAVE ANTENNAS & RECEIVERS.

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, N.Y. 10012.
the hybrid ring

Using the "rat race" for power combining, splitting, and coupling

The hybrid ring, also known as the "rat race," is a device used either to divide or combine power at VHF and UHF. The hybrid ring is easily constructed using double-sided printed circuit boards; tolerances in dielectric thickness and etching accuracy are not critical. The hybrid ring's outputs, in one application, can be either equal amplitude in-phase or 180-degree out-of-phase signals, depending on the input port chosen. Or it can be used as a directional coupler with different power levels available at the output ports.

defining a hybrid

In general, the impedance seen at any port on a hybrid is equal to the characteristic impedance of the transmission line if all of the remaining ports are properly terminated in this same impedance. Each pair of output ports must remain isolated from each other; the input ports must also remain isolated from each other. This is very important when power is to be divided equally to feed two power amplifiers, or when you wish to minimize local oscillator radiation during the combination of two signals (such as in a mixer hybrid.) The hybrid ring, or rat race, is a directional coupler that can be used to sample power trav-

By Ernie Franke, WA2EWT, 63 Hunting Lane, Goode, Virginia 24556
The hybrid ring provides (A) two equal signals 180 degrees out of phase or (B) two in-phase signals. It is simple to construct and very tolerant of line-width variations when microstrip transmission line is used. The power ratio at the output ports can be varied by varying the impedances of the interconnecting lines, and the simple hybrid ring can provide a good match and excellent isolation over a ±20 percent bandwidth. The size of the microstrip version of the hybrid limits its use to 432 MHz and above.

The simple hybrid ring consists of a ring of 70.7-ohm transmission line terminated in four places. The top view of the microstrip hybrid ring etched on a printed wire board is shown in fig. 1A. Three ports are separated by quarter-wavelength sections. The last transmission line is three-quarters wavelength long, adding up to a total circumference of 1.5 wavelengths.

The hybrid ring is commonly used to split or combine rf power, and if a signal is applied to port 1 of the ring, the power will be equally divided between ports 3 and 4: the phase relationship between the output signals will be 180 degrees. Power incident at port 2, fig. 1B, will also be equally divided between ports 3 and 4, but the two output signals will be of similar phase.

Hybrid ring operation can be understood by studying the simple power divider shown in fig. 2A. An input signal at port 2 is equally divided at the junction of the two quarter-wave lines. The transmission lines act as impedance transformers whose characteristic impedance is equal to the square root of the product of the end impedances. If the terminations are all 50 ohms, then the quarter-wave line transforms the output load of 50 ohms at port 3 and at port 4 up to 100 ohms at the input, port 2. The parallel combination of the input impedance (100 ohms) to each of the two quarter-wave lines at port 2 is equal to 50 ohms. This divider can also be used as a combiner if two identical signals of equal phase are applied to ports 3 and 4. This power divider is still not a true hybrid, because ports 3 and 4 have only 6 dB of isolation. In other words, a signal applied to port 3 will be 6 dB down when measured at port 4.

Additional transmission lines, fig. 2B, transform the simple power splitter into a true hybrid. Any power reflected at output port 3 due to a mismatch arrives at the other output port 4 by two paths. One signal travels one-half wavelength in a clockwise rotation from port 3. The counter-clockwise signal appears at port 4 delayed by a full wavelength. This half-wave difference in arrival time and equal path loss causes the two signals to cancel at port 4, with total cancellation resulting in highest isolation. The reflected signal from any mismatch at port 3 arrives at port 1, in phase from both circular paths, where it is dissipated. This port is designated the isolation port. A detector placed at this port indicates imbalance between the output ports. The input signal from port 2 cancels at port 1 because the clockwise and counterclockwise paths differ by one-half wavelength. If two equal signals with 180-degree phase
difference are needed, the input signal can be changed to port 1 and the output taken from ports 3 and 4, as in fig. 1A.

70-ohm rat race

The impedance of the ring, or "race," is the port impedance multiplied by the square root of two \((50 \text{ ohms} \cdot \sqrt{2} = 70.7 \text{ ohms}) \). The input match of the hybrid is given in terms of return loss, that is, the ratio of reflected power to incident power,

\[
\text{return loss} = -10 \log_{10} \left(\frac{\text{reflected power}}{\text{forward power}} \right) \tag{1}
\]

The theoretical and experimental results of a 1.5-wavelength rat race are shown in fig. 3. The experimental results, using semi-rigid coaxial cable to form the race, are shown for 432 and 1296 MHz. The input return loss is greater than 20 dB (SWR \(\leq 1.2:1 \)) over a 20 percent bandwidth at port 1 or port 2. This means that only 1 percent of the input power is reflected at the input port. The hybrid ring displays an equal power split (3.01 dB) to within 0.25 dB over the same \(\pm 10 \) percent bandwidth. This means that at 90 percent and at 110 percent of the center frequency the output power at one port is only 0.25 dB greater (6 percent unbalance) than at the other output port. The isolation between ports 3 and 4 is greater than 20 dB over the same bandwidth. Any mismatch at port 3 causes the reflected signal appearing at port 4 to be at least 20 dB down (1 percent of the reflected signal).

The theoretical and experimental results using microstrip were also very close to the predicted values at 432 and 1296 MHz.
International Crystals & Kits FOR THE EXPERIMENTER

$7.80 ea.
0.2% Calibration Tolerance

EXPERIMENTER CRYSTALS
(HC 6/U Holder)

Cat. No. Specifications
031300 3 to 20 MHz — For use in OF-1L OSC Specify when ordering.
031310 20 to 60 MHz — For use in OF-1H OSC Specify when ordering.

CONDITIONS OF SALE: Sold on a cash basis. ICM will prepay regular shipping costs inside U.S.A. when full remittance is received with order.

ORDERING INSTRUCTIONS: Order by catalog number. Enclose check or money order with your order. FOREIGN ORDERS: Prices quoted for U.S. orders only. Orders for shipment to other countries will be quoted on request. Prices subject to change. Minimum foreign order $25.00.

OF-1 OSCILLATOR

The OF-1 oscillator is a resistor/capacitor circuit providing oscillation over a range of frequencies by inserting the desired crystal. 2 to 22 MHz, OF-1L, Cat. No. 035108. 18 to 60 MHz, OF-1H, Cat. No. 035109. Specify when ordering.

MXX-1 Transistor RF Mixer
3 to 20 MHz, Cat. No. 035105
20 to 170 MHz, Cat. No. 035106
$8.00 ea.

SAX-1 Transistor RF Amp.
3 to 20 MHz, Cat. No. 035102
20 to 170 MHz, Cat. No. 035103
$8.00 ea.

SAX-1 Broadband Amp
20 Hz to 150 MHz, Cat No. 035107
$8.00 ea.

International Crystal Mfg. Co., Inc.
10 North Lee, P.O. Box 26530
Oklahoma City, OK 73126

YOU’LL NEVER GET A BETTER DEAL

HUSTLER ANTENNAS

SF2 - “Buck Buster” 5/8” Wave
2 Meter Antenna w/3/8 x 24” Threaded Base -
3dB gain $8.95

C6144 5.2dB gain
Collinear w/3/8 x 24” Threaded Base
$23.95

G6144 - 6dB
Base Antenna $68.50

G7144 - 7db
Commercial Grade Base Antenna $98.00

And many other Hustler Antennas & Mounts

BBL144 MRK-1 $13.95
BBLT144 SFM $24.95
BBLT440 THF $13.95
HLM UHF $8.95

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF & COMMERCIAL LINE
DEALER INQUIRIES INVITED

FERRITRONICS
MOBILE DATA SYSTEMS
1319 PINE AVE
NIAGARA FALLS NY 14301

CeCo COMMUNICATIONS, INC.
2115 AVENUE X
BROOKLYN, N.Y. 11235
(212) 646-6300
(800) 221-0560
TELEX: 235125

August 1983

More Details? CHECK — OFF Page 108
The effects of variations in the impedance of the ring are displayed in fig. 5. Variations of ±10 percent in impedance produce only minor changes; the greatest change was in the input return loss. Still, the hybrid displayed an input return loss greater than 17.5 dB (SWR ≤ 1.3:1) over a 20-percent bandwidth. A variation of 10 percent in ring impedance corresponds to a line width range of from 77 mils to 113 mils about the desired value of 95 mils, for a one-ounce Teflon-fiber glass PC board. This amounts to an almost ±20 percent variation in the width of the microstrip, much greater than expected.

The PC board version used homemade microstrip-to-coax launchers soldered directly to the ground plane. Type-N female chassis connectors (UG58A/U) were modified by hacksawing a notch, as shown in fig. 6. The hacksaw blade was held flat.

A printed-circuit board version of the hybrid ring was also constructed, with the results shown in fig. 4. The width of a microstrip line on one-ounce, 1/16-inch thick, copper-clad Teflon-fiber glass board (ε = 2.55) is 95 mils for 70.7-ohm line and 166 mils for the 50-ohm termination leads. The relative velocity of propagation in that board material for a 70.7-ohm microstrip line is 0.700; but it’s only 0.688 for a 50-ohm line. The length of a quarter-wave line is thus shortened from its free-space value by this amount. The mean diameter of the ring is simply the average of the inner and outer diameters. The dimensions of hybrid rings for use at several UHF bands are given in table 1.
$70.7 \text{ ohms} = 50 \text{ ohms} \tan \theta$ \hspace{1cm} (3)

$\theta = 54.7 \text{ degrees}$ \hspace{1cm} (4)

The short cable lengths required are 0.152 wavelength; $(54.7^\circ/360^\circ = 0.152$ wavelength). The cable section between ports 1 and 4 is one-half wavelength longer, 0.652 wavelength. The circumference is only 1.108 wavelengths for the 50-ohm rat race, compared to 1.5 wavelengths for the 70-ohm model. A disadvantage of this lower-impedance hybrid is in the reduced bandwidth, as indicated by the frequency response curves in fig. 8.

uneven power-divide rat race

Output power ratios other than 1:1 are possible through selection of different transmission line impedances between the ports. A 10-dB coupler using this approach is illustrated in fig. 9. For a signal input P_1 at port 1 and in-phase outputs at ports 3 and 4, the value of transmission line impedance is:

$$Z_1 = Z_0 \sqrt{P_1/P_3} \quad Z_2 = Z_0 \sqrt{P_1/P_4}$$ \hspace{1cm} (5)

where P_3 is the output power at port 3 and P_4 is the power output at port 4. The sum power from ports 3

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>70 ohms one-quarter wavelength (inches)</th>
<th>70 ohms three-quarter wavelength (inches)</th>
<th>1.5% mean diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>432</td>
<td>4.78</td>
<td>14.34</td>
<td>9.13</td>
</tr>
<tr>
<td>1296</td>
<td>1.59</td>
<td>4.78</td>
<td>3.04</td>
</tr>
<tr>
<td>2304</td>
<td>0.896</td>
<td>2.69</td>
<td>1.71</td>
</tr>
</tbody>
</table>

fig. 8. A hybrid ring formed using 50-ohm line microstrip operates over a much smaller bandwidth.

50-ohm rat race

If the rat race is constructed of 50-ohm coaxial cable, the cable lengths between each port are shorter, as shown in fig. 7.

$$Z_{\text{line}} = Z_0 \tan \theta$$ \hspace{1cm} (2)

where Z_0 is the characteristic impedance of the line (50 ohms) and θ is the electrical length in degrees.

fig. 9. The power division is controlled by adjusting the ring transmission line impedance between ports.
and 4 must equal the input power. Constructing a 10-dB coupler, as an example:

\[Z_1 = 50 \sqrt{1/0.1} = 158.1 \text{ ohms} \]
\[Z_2 = 50 \sqrt{1/0.9} = 52.7 \text{ ohms} \] (6)

The output signal at port 3 is a sample of the input signal at port 1 with -10 dB of coupling. To use the hybrid as a directional coupler standing-wave-ratio meter, detectors are placed at ports 2 and 3. Forward power is detected at port 3 and reflected power at port 2. Both signals are sampled 10 dB down from true power. The theoretical response is shown in fig. 10. The line width for a 158-ohm line (10 mils) is just too thin, however, for Amateur etching.

applications

The principal use for the hybrid ring is to split or combine power. If more power is needed from a power amplifier than a single transistor can handle, it is necessary to parallel two devices. To maintain stability the two devices must remain isolated from each other. The hybrid performs this function as indicated in fig. 11. By using the 180-degree ports, the amplifier operates in a balanced or push-pull manner as seen in fig. 11A. The input impedance is effectively four times as great as would be in the case of a single transistor with twice the power-handling capabilities. The case of an in-phase parallel amplifier is shown in fig. 11B. Comparison of the insertion loss between the two arrangements (assuming unity gain amplifiers) shows the broader bandwidth response of fig. 12, for the push-pull amplifier. If one amplifier should fail, the output power will drop to one-fourth the normal level. The remaining amplifier will deliver one-half its power to the antenna and the remaining one-half to the termination at the isolation port. If the input to either amplifier were to open or short, the input return loss at the hybrid input port 1 would drop to 6 dB (SWR ≤ 3:1).

When the rat race is used as a power splitter, each output will have equal amplitude and phase, provided the ports are reasonably terminated. When it is used to combine the output power from two transis-

fig. 10. The theoretical response of the 10-dB coupler appears quite good over a 20 percent bandwidth.

fig. 11. The hybrid ring may be used as a power splitter/combiner for a (A) push-pull amplifier or (B) an in-phase amplifier.
Specifications of CUE DEE antennas:

<table>
<thead>
<tr>
<th>Antenna</th>
<th>414A</th>
<th>10144A</th>
<th>10X144A</th>
<th>15144A</th>
<th>15X144A</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Elements</td>
<td>4</td>
<td>10</td>
<td>2X10</td>
<td>15</td>
<td>2X15</td>
</tr>
<tr>
<td>Gain</td>
<td>8 dBd</td>
<td>11.4 dBd</td>
<td>11.4 dBd</td>
<td>14 dBd</td>
<td>14 dBd</td>
</tr>
<tr>
<td>Front / Back</td>
<td>20 dB</td>
<td></td>
<td>25 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front / Side</td>
<td></td>
<td></td>
<td></td>
<td>40 dB</td>
<td></td>
</tr>
<tr>
<td>SWR</td>
<td>< 1.5 / 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture Angle E</td>
<td>2 x 29°</td>
<td>2 x 18°</td>
<td>2 x 18°</td>
<td>2 x 15°</td>
<td>2 x 15°</td>
</tr>
<tr>
<td>Aperture Angle H</td>
<td>2 x 46°</td>
<td>2 x 24°</td>
<td>2 x 24°</td>
<td>2 x 16°</td>
<td>2 x 16°</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 ohm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast Diameter</td>
<td>50 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boom Length</td>
<td>1.1 m</td>
<td>4.5 m</td>
<td>4.55 m</td>
<td>6.45 m</td>
<td>6.5 m</td>
</tr>
<tr>
<td>Surface Area</td>
<td>0.03 m²</td>
<td>0.12 m²</td>
<td>0.16 m²</td>
<td>0.18 m²</td>
<td>0.23 m²</td>
</tr>
<tr>
<td>Weight</td>
<td>1 Kg</td>
<td>3 Kg</td>
<td>3.4 Kg</td>
<td>5 Kg</td>
<td>5.5 Kg</td>
</tr>
<tr>
<td>Boom</td>
<td>3 sections</td>
<td>3 sections</td>
<td>4 sections</td>
<td>4 sections</td>
<td></td>
</tr>
</tbody>
</table>

N-type connector may be supplied upon request. SO 239 type connector is delivered as standard on all antennas.

CUE DEE yagi antennas 144 MHz.

CUE DEE antennas are designed to last for decades—the best possible aluminium alloy for this purpose is used (SIS 4212-06).

The booms are made of 28 mm tubing with 1.5 mm wall, with colour marks clearly indicating where to fit the elements. By using tubular boom, and a synthetic guy wire on the long yagis, the windload is reduced by a factor 0.66 compared to using square shaped material for boom and guyng.

The driver element is made of 12 mm tubing and features a PTFE (Teflon) insulated gamma match which is pre-tuned at the factory and made for 50 ohm feeder with a PL 259 type connector. No further adjustments or power consuming balun needed. This matching system ensures a clean radiation pattern and transfers the power without losses.

The parasitic elements are made of 6 mm solid rod and mounted to the boom with aid of a CUE DEE element washer, boom to element part and a screw. This, together with our intelligible assembly manual, makes an extremely easy and solid assembly which assures the long life of a CUE DEE antenna.

AVAILABE THIS SUMMER THROUGH:
NAMPA SATELLITE SYSTEMS
312 12th Ave. So., Nampa, ID 83651
(208) 466-6727

CUE DEE Produkter HB
Box 10, S-915 00 Robertsfors, Sweden, Phone 0934 151 68
HIGH PERFORMANCE COMMERCIAL QUALITY UHF/VHF CONVERTER KITS

Professionally engineered using the high performance QRM, these kits are designed with the active VHF'er in mind. All parts, components and circuit board are of the highest quality. Gold coated case ensures circuit integrity. Each kit includes easy to read, fully illustrated instructions. VHF units use crystal control. UHF converters are tunable. Crystal control UHF models available soon. In the unlikely event of construction problems, complete factory back up assistance is available from trained technicians.

Typical Specs:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>INPUT FREQ</th>
<th>OUTPUT FREQ</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX2/16</td>
<td>50</td>
<td>78</td>
<td>$39.95</td>
</tr>
<tr>
<td>RX2/10</td>
<td>50</td>
<td>78</td>
<td>$39.95</td>
</tr>
<tr>
<td>RX2/6</td>
<td>50</td>
<td>78</td>
<td>$39.95</td>
</tr>
<tr>
<td>RX3/10</td>
<td>270</td>
<td>78</td>
<td>$39.95</td>
</tr>
<tr>
<td>RX3/6</td>
<td>270</td>
<td>78</td>
<td>$39.95</td>
</tr>
<tr>
<td>RX4</td>
<td>439</td>
<td>60</td>
<td>$39.95</td>
</tr>
<tr>
<td>RXS</td>
<td>439</td>
<td>60</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

Cryslals for VHF models available.
Other frequency conversions available. Specify requirements.

NO MORE BAD CASSETTE LOADS with THE Z-DUBBER

The frustration of trying to load a cassette program into your Sinclair ZX80/81 or Times 1000, is this what you really bought your computer for? Who put up with it? Now you don’t have to. The Z-Dubber is a small device which connects between your computer and cassette player, improving your loading ease 100%.

The Z-Dubber also allows you to connect two tape recorders together, to create perfect duplicates of your favorite cassette programs. The Z-Dubber can be yours for $31.95 postage paid within the U.S., Canada & Mexico. Add $2.50 additional for other postal areas. Visa & Mastercard welcome.

FOR CHARGE AND C.O.D. ORDERS

1-(800) 227-3800 TOLL FREE
1-(800) 792-0990 IN CALIFORNIA
ASK FOR OPERATOR 225

For additional information or service, call or write:
BYTESIZE MICRO TECHNOLOGY
PO BOX 21123 - DEPT. AQ - SEATTLE, WA 98111
(206) 236-BYTE

fig. 12. The insertion loss of two hybrids is lower for push-pull connections.

tor amplifiers, the input power delivered to the two input ports may not be equal or in phase. This may be due to differences in transistor gain and internal phase shift. The output power is then less than the sum of the two input powers. The percentage difference (η) of this ideal sum of the two powers is given by:

$$\eta = \left[0.5 + \left(\frac{r \cos \theta}{r + i} \right) \right] \times 100 \text{ percent} \quad (7)$$

where r is the power ratio of the two input powers, and θ is the phase angle between them. If the two input signals are in phase but differ in amplitude, the above equation reduces to:

$$\eta = \left[0.5 + \left(\frac{r \cos \theta}{r + 1} \right) \right] \times 100 \text{ percent} \quad (8)$$

For an input power ratio of 2:1 (3 dB), the output power will be down only 0.13 dB, or 97 percent of the sum of the two input powers. If the amplitudes are balanced, but the phase of the two input powers differs then,

$$\eta = \left[0.5 + \left(\frac{\cos \theta}{2} \right) \right] \times 100 \text{ percent} \quad (9)$$

For an input phase difference of even 15 degrees, the output power will be down just 0.7 dB, or 98 percent of the available power. For a combination of a power unbalance of 2:1 and a phase unbalance of 15 degrees between inputs, one would suffer a total loss of only 0.2 dB, leaving 96 percent of the original available power.

references

MICROWAVE TV ANTENNA SYSTEMS
Freq. 2.1 to 2.6 GHz • 34 db Gain +
COMPLETE SYSTEMS (as Pictured)
Commercial 40" Rod Style $ 99.95
Parabolic 20" Dish Style $ 79.95
COMPONENTS
Down Converters (both types) $ 34.95
Power Supplies (12V to 16V) $ 24.95
Data Info (Plans) $ 9.95
CALL OR WRITE FOR KITS, PARTS, INDIVIDUAL COMPONENTS
We Repair All Types Down Converters & Power Supplies

Phillips-Tech Electronics
P.O. Box 34772
Phoenix, AZ 85067
(602) 265-8255
Special Quantity Pricing
Dealers Wanted

KCS ELECTRONICS CORPORATION
SEMICONDUCTOR PARTS & PRODUCTS
FACTORY PRIME DEVICES INCLUDE:
- Capacitors
- all types & styles
- Chokes & Coils
- Connectors
- Digital & Linear IC's
- Hardware & Accessories
- IC Sockets
- Memory
- Microwave Semiconductors
- Resistors
- fixed & variable
- Transformers
- Transistors & MORE!
MANUFACTURERS SUCH AS: Motorola, National, NEC, J.W. Miller, Texas Instruments and more!
WE STOCK & SUPPLY DEVICES FOR: OEM's, Distributors, Hobbyists, Magazine Projects, Engineers, Schools, Technicians & You! Call or Write for Quantity Pricing and FREE Catalog.
P.O. Box 33205
Phoenix, AZ 85067 (602) 274-2885

Find the Right Crystal Source
by ordering
1983-84 QUARTZ CRYSTAL INDUSTRY GUIDE & DIRECTORY
Published each May, this Directory lists quartz crystal manufacturers worldwide and details each company’s products, services and frequency ranges.

MOBILE TOWERS by ALUMA
FOR MOBILE VAN, TRUCK OR TRAILERS.
USE FOR COMMUNICATION OR CHECK YOUR SIGNALS.
HIGHEST QUALITY ALUMINUM & STEEL
- TELESCOPING: Cranks Ups to 100 ft
- TILT-OVER MODELS: Easy to install. Low Prices.
EXCELLENT FOR HAM COMMUNICATIONS

Order Yours Today!
A Good Investment at
$35.00
Plus $1.95 postage & handling
GSM, inc.
p.o.box 10277 • Ft Lauderdale, Fl 33334
(305) 563-1338

ALUMA TOWER COMPANY
BOX 2606HR
VERO BEACH, FLA. 32960
(305) 567-3423 TELEX 80-3405

August 1983/59
a digital audio filter
for CW and RTTY

Build a useful audio notch and bandpass filter

This filter, designed around the National MF10 integrated circuit, consists of CMOS (Complementary Metal Oxide Semiconductor) active filter building blocks. Each block, together with an external clock and a few resistors, can provide different filter functions such as notch or bandpass.

![Notch Filter Response](image)

fig. 1. Notch filter response can be translated in frequency by changing the clock rate.

![Bandpass Filter Response](image)

fig. 2. Bandpass filter response at two different center frequency settings.

A major advantage of this type of filter is that the notch and bandpass position is determined by the clock frequency. Therefore, by varying potentiometer R2 the notch or bandpass can be moved in position as shown in the spectrum analyzer photographs in figs. 1 and 2. Fig. 1 indicates a notch filter response (notch depth approximately 60 dB) and fig. 2, the bandpass display displaced in two positions. The bandpass filter was adjusted for CW or RTTY operation.

By Don Kadish, W1OER, 135 Barbara Road, Waltham, Massachusetts 02134
A 555 timer chip, U1, provides the variable clock input. U2 inverts the clock output to providing a TTL level into the clock inputs of U3. A switch, S1, is used to switch from notch to bandpass operation. R12 in conjunction with R11 is a volume control. A speaker or headphones can be directly driven by U4. An input volume control, R10, is used to prevent saturation of the filter stage U3. Once R10 is set it does not have to be adjusted further. U4 and U5 isolate the filter chip from the input and output connections.

fig. 3. Audio notch and bandpass filter schematic.

constructing and operating the filter

Construction is simple; neither layout nor component values are critical. However, use of decoupling capacitors on all ICs is good practice and minimizes the chance of high-frequency oscillations occurring. All components are mounted on a single-side copper clad vector board.

Filter operation requires connecting V_{IN} to the audio output of a communications receiver through a phono jack and connecting V_{OUT} to a speaker or headphones. Switch S2 to V_{IN} in order to bypass the filter. Adjust the receiver audio gain control for comfortable listening, then switch S2 to V_{OUT} to insert the filter. Adjust the sensitivity control, R10, for comfortable listening volume. Actually the only precaution necessary is to adjust the volume so that clipping of the filter stage does not occur. If clipping does occur, reduce the receiver audio gain until it sounds "clean."

On-the-air tests in the notch filter position gave excellent rejection of adjacent signals. RTTY operation in the bandpass mode is also very simple. Adjust R2 to the extreme end of the potentiometer (the end that accepts the mark and space tones). Except for an occasional adjustment of the volume control, further adjustment is unnecessary.

dc supply voltages needed

Any positive and negative voltage between plus and minus 5 and plus and minus 12 should be satisfactory. Batteries can be used with this device. If low power drain is desired, substitute a CMOS timer (7555) for the 555 timer. All ICs should be of the CMOS type.
carrying case for the IC2AT

To ease the crunch on my pocketbook after buying an ICOM 2AT, I made a leather belt carrying-case. It cost me a total of $11.45, which was a considerable saving, and I had a lot of fun making it!

If you have a leather store in your town, ask them for the scrap leather box. Go through it and find some nice black-dyed leather about one-eighth-inch thick. Draw the outline as shown, then soak the leather overnight to make it soft and workable. After cutting it out, bend the corners by placing it between two blocks of wood and tapping the edge with a rawhide mallet. Don’t punch any holes until you have fitted the ICOM inside to see if all the dimensions are right. Trim off the surplus leather on the bent-up edges and punch holes with a No. 2 Rampart punch. Place the leather on the end grain of a block of wood, or it will dull the punch.

The holes should be 3/8-inch apart and staggered on the sides so the lacing will drop down each time you thread through a hole. Use leather lacing with a lace needle. Tie a figure-8 knot at the bottom of the lacing string and pull it up to the first hole. I laced mine starting at the bottom.

![Diagram of belt carrying-case pattern](image)

fig. 1. Pattern for belt carrying-case.
The holes for the rivets are also punched with the Rampart punch. (Be sure to buy rivets long enough to go through the leather.) I use a separate belt to carry my ICOM slipped through the belt holder. The belt strap is riveted to the case.

Ed Marriner, W6XM

low-duty-cycle tune-up method for transmitters

Having found from sad experience that most final amplifier tubes experience damage and life shortening during tune-up, I decided to use my automatic electronic keyer as a duty-cycle device to cut down tube dissipation during this critical adjustment period. Put your transmitter in the CW position and set your keyer to send dots in the highest speed mode.* Because your transmitter is on only a fraction of the time, your average plate dissipation is low, and you will find it almost impossible to damage your tubes during tune-up. If you work phone often, you can leave your transmitter in the SSB condition and feed the keyer’s audio side tone into your microphone input circuit. This is readily accomplished with a simple switch and a small variable potentiometer used to set your input at the desired voltage level. This method will save you the trouble of changing your transmitter mode switches from SSB to CW and back to SSB when you want to tune up. When you use this technique for phone, you avoid the necessity of yelling AHHHHHHHHHH into the microphone, a rather unscientific way of establishing a tune-up reference level.

If you do not have an automatic keyer, a relay connected to act as a buzzer with an RC time constant circuit can be used to provide an intermittent on-off low-duty-cycle keying signal. I prefer the automatic keyer, as the tone is a lot cleaner than when using the relay buzzer technique.

William Vissers, K4KI

*Use a dummy load at all times. – Editor
CQ CQ HAMS
- SPECIAL OFFER TO LICENSED HAMS -

Do you think *Ham Radio* is the number 1 Amateur Publication?
Are you interested in Satellite Television?
Then why not read *Satellite TV Magazine*?
Believe me – this is the number 1 Satellite TV Publication!

Now... as a special offer to licensed amateurs only – we will send you a sample copy of *Satellite TV Magazine* for only $1.00* (Reg. $2.95) and offer you an annual subscription for only $24.95* (Reg. $29.95).

If you’re still not convinced - *QST* the Satellite TV Net each Sunday at 2:00 pm Eastern Time on 14.310 MHz and hear what the other HAMS are saying about *Satellite TV Magazine*.

Chris J. Schultheiss VE-2FRJ
Editor & Publisher

Just give us your name and QTH

Name
Address
State
Zip

Please Enclose Check or Money Order or if you prefer we accept Visa® & Mastercard®.

Card Number
Exp. Date

Satellite TV Magazine
P.O. Box 2384
Shelby, North Carolina 28150

Call Toll Free 1-800-438-2020

*All Prices in US Funds.

MACRONT Roomics, inc.
1111 N. Golden State Blvd.
Turlock, CA 95380

MACRONT Roomics, inc.
1111 N. Golden State Blvd.
Turlock, CA 95380

Tell 'em you saw it in HAM RADIO!
GET YOUR LICENSE THE EASY WAY!

Over 200,000 persons have used TUNE IN THE WORLD WITH HAM RADIO as their steppingstone into Amateur Radio, the space-age hobby. The third edition of this popular package consists of 134 pages of easy-to-understand text and an additional 26 pages of equipment and publication advertising. The cassette prepares the prospective Novice for the 5-words-per-minute code exam by teaching the code character by character—a proven method. Code practice at 5 words per minute follows. Packed into the Tune in the World booklet are chapters on:

EXPLORING HAM RADIO: Hams come from all walks of life: age is no barrier; building your own station; a look back in time.

MANAGING THE RADIO SPECTRUM: The FCC: rules and regulations; the Novice license; licensing classes.

LEARNING YOUR NEW LANGUAGE: The Morse Code—where every ham knows it; how to learn it the right way.

UNDERSTANDING BASIC THEORY: Easy-to-learn explanation of electronic theory and what you need to know to qualify for a Novice license.

SETTING UP YOUR STATION: Choosing a location; how to select your equipment; what antenna to use; glossary.

OVER THE AIRWAVES PAINLESSLY: How to operate; tuning up; safety; identifying stations in foreign countries; awards; clubs; The ARRL and QST.
last-minute forecast

DX conditions for August will depend on which of two solar longitudes is active. Recent information indicates that the lower hf bands (30-160 meters) will be best around the 9th and the higher hf bands (10-30 meters) about the 23rd. However, it's possible that just the reverse will occur. The deciding factor is the 10.7 cm radio flux readings obtained from WWV's broadcast at 18 minutes after the hour. When flux is above 120, use the higher bands. In either case, disturbed periods are expected around the 6th, 15th, and 27th of August with a three day spread on either side of each date.

The moon's perigee will occur on the 8th, with a full moon on the 23rd. The Perseids meteor shower occurs from the 10th to 14th, with its maximum on the 11th and 12th with better than fifty meteors per hour rate. This is an excellent shower.

more on fading

Long duration (slow fade) signal level attenuation was discussed last month. We now consider shorter duration fading or QSB. Two ionospheric conditions (see last month's table, shortwave fadeout and MUF failure) are related to QSB. Listed in this month's table are fading characteristics with possible solutions for each type.

shortwave fadeout (SWF) or ionospheric storm

SWF fading is caused by the geomagnetic field variations that modulate signal levels. The fades are deeper than those caused by solar variations and signal levels take longer to return to normal. The geomagnetic field variations are caused by an in-flux of solar wind particles during the daytime and trapped particles by night. Particles spiral down toward earth following geomagnetic field lines in the polar regions. Particle variations are transmitted to the ions and electrons in the ionosphere and consequently affect the signal level. This signal modulation occurs at its maximum penetration into the ionospheric layer during refraction providing clues of the state of the ionosphere. Higher latitude propagation paths (greater than 60 degrees — Auroral zone) suffer the most attenuation and QSB; transsequatorial paths (geomagnetic equator) are next, and mid-latitudes the least during these storms. Night-time QSB is usually the worst. Auroral QSB is often fast enough to cause signal “flutter” and is associated with VHF auroral scatter propagation openings.

MUF failure

Consider this: during an afternoon 15 meter opening from the states to South Africa, you note that there's a weak, long-duration fade on signals. After 15 minutes the QSB deepens and becomes even longer in duration. Signal peaks are louder (the result of focusing) and nulls quite a bit weaker. This is explained by the fact that the geomagnetic field separates transmitted energy into three components that travel their separate ways to the receiver. The energy components from the DXer's transmitter are beating against each other, almost like zero beating two audio frequencies, until they peak at the MUF, then both decrease in signal strength to a minimum level. This weaker signal is a result of ionospheric forward scatter and has a rough sounding note (see QST for January, 1982). Many times this signal is not heard since it is as much as 40 dB weaker than a normally propagated signal (near the MUF). Another case where the signal takes multiple paths in the ionosphere is at a frequency lower than the MUF. This frequency is low enough (50 percent below the MUF) to propagate by the F2, F1, or E layer. A time delay of between 3 to 8 milliseconds occurs between the signals' arrival, causing RTTY pulse elongation errors in addition to its effect on DX signals. It's possible to be too close or too far from the MUF, with its resultant poor propagation conditions. Often these modes of fading might exist simultaneously. However, when they can be heard separately, useful information is available for predicting near future DX conditions.
| AUGUST | 0000 | 0400 | 0800 | 1200 | 1600 | 2000 | 0100 | 0500 | 0900 | 1300 | 1700 | 2100 | 0200 | 0600 | 0000 |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| ASIA | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| FAR EAST| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| EUROPE | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| S. AFRICA| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| OCEANIA| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| AUSTRALIA| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| JAPAN | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

*Look at next higher band for possible openings.
This tower is ready for shipment to one of our customers, or is it? If we were an ordinary tower company, this tower would have already been sent.

We are not an ordinary tower company and that is why this tower did not go out.

We have the best quality control in the business and we are not afraid to say so. That is why when John Pasillas found a 1/8" clearance on the swedged guide, he placed a red tag of rejection on this tower and made sure it was corrected to 1/16" before he stamped his final approval for shipment.

Every employee at Tri-Ex knows that the reputation you establish in an industry is what will make or break his company. That is why Tri-Ex has been in business continually since 1955.

When you purchase your tower from Tri-Ex, you can be assured that all welds have been done by certified welders, all construction and galvanizing has met ASTM standards, all towers have been constructed in precision jigs, all steel has been tested for carbon content and tensile strength.

When it goes to shipping, John is ready.

band-by-band summary

Ten, fifteen, twenty, and thirty meters will support DX propagation from most areas of the world during daylight and into the evening with a lengthened skip out to 2500 miles (4000 km) per hop. The amount of daylight is still near the yearly maximum, providing many hours of good DXing.

Thirty, forty, eighty, and one-sixty meters are the night DXer's bands. On many nights 30 to 40 meters will be the only usable band because of thunderstorm QRN, but signal strengths via Es short skip may overcome the static, when Es is available. Although Es is available in August, it should be tapering off toward the next month. Try the pre-dawn hours for less QRN.

When you decide on Tri-Ex you have many models to choose from.

STACKED:
Light, medium, heavy duty 10 feet and up.

CRANK UPS:
Light, medium, heavy duty 25 feet to 88 feet standard.

SPECIAL TOWERS:
Sky needle, Clementower 37 feet to 180 feet & higher.

Introducing Tri-Ex's new DX-86 - 86 feet tall, 25 square feet in a 50 mph wind.

Call you local dealer for details.

FOR ADDITIONAL INFORMATION WRITE TO:

ham radio

new solar index bulletin

A new monthly bulletin from the National Geophysical Data Center provides solar information including:

- daily sunspot number tabulation from previous month
- list of latest predictions of smoothed sunspot numbers
- daily radio flux tabulation of the quiet sun at 9 wavelengths
- non-technical explanatory text

To subscribe, send check or money order ($20 for one-year subscription), payable in U.S. currency and made out to the U.S. Department of Commerce, NOAA/NGDC, to the National Geophysical Data Center, Solar-Terrestrial Physics Division (E/GC2), 325 Broadway, Boulder, Colorado 80303. To charge your subscription on American Express, phone 303-497-6324 or include account number and expiration date with written order.

ham radio
CLOSE OUT SPECIAL
SAVE 50%

* Call Directories *

The low-cost answer to your call and QTH questions.

AMATEURS LISTED BY AREA AND CALL SIGN

It's finally been done. A complete directory of all licensed Radio Amateurs in the U.S. at three-quarters the price of the other well-known books. Similar in layout and appearance but printed on higher quality paper for easier reading, this book is a full 8½" x 11" and is very easy to handle. Generic in appearance but, oh what a value! Over 410,000 licensed amateurs listed. ©1983.

Softbound $10.45
($7.49 + $3.00 shipping)

Two More Call Directories

Here are two other call directories never before available. A bit expensive but well worth every dollar. See who the other Amateurs are in your area. Find those old friends you lost track of many years ago. Perfect for your club or your own library.

AMATEURS LISTED BY GEOGRAPHICAL LOCATION

Lists Amateurs in each town in the U.S. ©1983.

Softbound $15.50
($12.50 + $3 shipping)

AMATEURS LISTED BY NAME

Softbound $15.50
($12.50 + $3 shipping)

HAM RADIO'S BOOKSTORE
Greenville, NH 03048
antenna hinge

A method of mounting your beam more easily with less help

For more than thirty years I have used a method of erecting a beam that enables me to put up the antenna either by myself or with a minimum of assistance. I use a simple hinge that permits a Yagi-type antenna to be changed from a horizontal to a vertical position with the removal of a single bolt (fig. 1). The hinge is made of two pieces of channel steel or aluminum, with the latter preferred since it’s lighter.

The hinge should be as long as the top of the tower is wide. This ensures that when the antenna is tilted to a vertical position the bottom half of the antenna is parallel to the tower. The top half of the hinge should be at least 4 inches (102 mm) wide when you’re using it with an antenna boom 2 inches (51 mm) in diameter; a larger-diameter boom requires a wider hinge. This is necessary so that the U bolts, muffler clamps, or the mounting method recommended by the beam manufacturer will give you enough clearance on the bottom of the top piece for properly tightening the nuts.

The bottom half of the hinge is positioned with the flat side down (channel up), and the top half, with the flat side up (channel down), is mated with the bottom half. In-line holes are drilled through both pieces approximately 3/4 inch (19 mm) from the ends. These holes should be slightly oversize to freely accept 1/2-inch bolts 6 inches (152 mm) long. This is all that is required at this time.

classified data

hinge-to-mast mounting plate

The plate shown in fig. 2 is cut from 3/16-inch (4.8-mm) steel that measures 17 x 14 inches (43.2 x 35.6 cm). It is almost necessary to have a machine shop fabricate it. In order to reduce weight, 4 x 12-inch (10.2 x 30.5-cm) triangles are cut from each side prior to making a 90-degree bend that provides a horizontal shelf 5 inches wide x 14 inches long (12.7 x 35.6 cm). This leaves a vertical section 14 inches wide at the top, 6 inches wide at the bottom, and 12 inches high (35.6 x 15.2 x 30.5 cm).

The bottom of the hinge can now be mounted to the 5 x 14-inch shelf using four 5/16-inch x 1-inch bolts. The holes are approximately 1-1/2 inches (3.8 cm) in from each end of the shelf and hinge.

parts assembly

Mount a short section of the boom to the top half of the hinge. Mate the two pieces of the hinge and insert the hinge bolts. Remove one of the bolts and the position of the boom can now be changed from horizontal to vertical. Repeat the procedure by replacing the first and removing the second bolt. While this temporary section of boom is in place, two additional holes are required approximately 3 inches (7.6 cm) from each end of the hinge on both sides of the boom. Holes to accommodate 3/8-inch (9.5-mm) bolts are drilled through both pieces of the hinge and mounting shelf, clearing the boom.

After the antenna installation has been completed, the last thing to do before coming down the tower is to install the above bolts (3/8 x 2-1/2-inch) to join the hinge and mounting plate. Without the bolts, wind vibration could damage the hinge. Mark the hinge, top and bottom, so that the ends can always be correctly mated. If reversed, some of the holes might not be in alignment.

Check the antenna for balance before mounting it on the tower. If you balance it well, little effort will be

By J.R. Yost, N4LI, Route 3, Box 342, Mocksville, North Carolina 27028
needed to change the antenna from a horizontal position to a vertical one.

mounting the antenna

If the antenna weighs more than 50 pounds a gin pole is recommended. The antenna with all elements in place is positioned on the ground at the base of the tower with the boom at a right angle to the tower. The rope from the gin pole is tied to the boom near the end nearest to the tower. By pulling the rope you can stand the antenna on end and lean it against the tower. The rope tied to the boom can now be repositioned to a point 1 or 2 feet above the hinge. A helper on the ground can pull the antenna up the tower, assisted by one man near the top of the tower. The antenna is kept in a vertical position right up to the point where the bottom end of the hinge attached to the boom is at a right angle to the horizontal half of the hinge attached to the mast (fig. 3). At this point the holes in the two pieces of the hinge should be aligned and a hinge bolt inserted. With this bolt in place the antenna is secured to the antenna mast (fig. 4).

final note

Carefully plan your antenna installation. Write up each step to be taken including the tools needed. Always use a safety belt when working on the tower. Make sure there is no way for the antenna to get near a power line. And always have someone standing by, clear of the tower and the antenna, in case of an emergency.

ham radio
<table>
<thead>
<tr>
<th>State</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FONTANA ELECTRONICS 8628 SIERRA AVENUE FONTANA, CA 92335</td>
<td>714-822-7710 714-822-7725 The Largest Electronics Dealer in San Bernardino County.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUN'S ELECTRONICS 3919 SEPULVEDA BLVD. CULVER CITY, CA 90230</td>
<td>213-390-8003 619-463-1886 San Diego 800-882-1343 Trades The Home of the One Year Warranty — Parts at Cost — Full Service. Hable Espanol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS 500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881</td>
<td>Call today. Friendly one-stop shopping at prices you can afford.</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD NEW CASTLE, DE 19720 302-328-7728 800-441-7008</td>
<td>Icom, Ten-Tec, DenTron, Yaesu, Azden, Santec, KDK, and more. One mile off I-95, no sales tax.</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET CLEARWATER, FL 33515 813-461-HAMS Clearwater Branch West Coast's only full service Amateur Radio Store.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE. ORLANDO, FL 32803 305-694-3238</td>
<td>Fta. Watc: 1 (800) 432-9424 Outside Fla: 1 (800) 327-1917</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMATEUR RADIO CENTER, INC. 2805 N. E. 2ND AVENUE MIAMI, FL 33137 305-573-8383</td>
<td>The place for great dependable names in Ham Radio.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAY'S AMATEUR RADIO 1590 US HIGHWAY 19 SO. CLEARWATER, FL 33716 813-535-1416</td>
<td>Your complete Amateur Radio and Computer Store.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE. ORLANDO, FL 32803 305-694-3238</td>
<td>Fta. Watc: 1 (800) 432-9424 Outside Fla: 1 (800) 327-1917</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMATEUR RADIO CENTER, INC. 2805 N. E. 2ND AVENUE MIAMI, FL 33137 305-573-8383</td>
<td>The place for great dependable names in Ham Radio.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAY'S AMATEUR RADIO 1590 US HIGHWAY 19 SO. CLEARWATER, FL 33716 813-535-1416</td>
<td>Your complete Amateur Radio and Computer Store.</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE. CHICAGO, IL 60630</td>
<td>312-631-5181 Outside Illinois — 800-621-5802 Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM SHACK 808 NORTH MAIN STREET EVANSVILLE, IN 47710 812-422-0231</td>
<td>Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.</td>
<td></td>
</tr>
<tr>
<td>Kansas</td>
<td>ASSOCIATED RADIO 8012 CONSER, P. O. BOX 4327 OVERLAND PARK, KS 66204 913-381-6900</td>
<td>America's No. 1 Real Amateur Radio Store. Trade — Sell — Buy.</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>THE COMM CENTER, INC. LAUREL PLAZA, RT. 198 LAUREL, MD 20707 800-638-4486</td>
<td>Kenwood, Drake, Icom, Ten-Tec, Tempo, Microlog, AEA, Ameritron.</td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY 1072 N. RANCHO DRIVE LAS VEGAS, NV 89106 702-647-3114</td>
<td>Dale Porray "Squeak," AD7K Outside Nev: 1 (800) 634-6227</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>RADIOS UNLIMITED P. O. BOX 347 1760 EASTON AVENUE SOMERSET, NJ 08873 201-469-4599 800-526-0903</td>
<td>New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dealers: YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
measuring small values

I noticed that K9EBA (ham radio, February, 1983) was having trouble trying to measure small values of inductance, so I've decided to add my comments.

I built my own version of the inductance meter described by Ed Marriner, W6XM, in the April, 1982 issue of ham radio. Since I wanted to be able to measure values of L over a wide range, I decided the easiest way to do so was to use different rf frequencies, separating that function from the amplifier and meter amplifier. This meant I had to come up with a gain control on the input of the amplifier that did not cause detuning of the tuned circuit in the output of amplifier. (While the circuit shown, fig. 1, may not please the purists, it does work. Use no more signal than is necessary, however, in the interest of avoiding harmonic generation in the tuned amplifier.)

I found that sensitivity was poor when trying to measure values of L below 1 μH, so I wound a small air-wound coil in series with the unknown value of L. This increased sensitivity by making for a more favorable L/C ratio at maximum capacity setting of CT and helped tremendously. The size is not critical as long as you can still measure the desired minimum value of L; in my case this was 0.039 μH, as stamped on the case.

As you can see from the enclosed calibration chart for the highest band, 15 MHz (fig. 2), it is possible to cover from 3.3 μH down to 0.039 μH with one frequency; lower frequencies can be used to measure larger values of L. 300 kHz can be used to measure as high as 10 mH, the limit for most commonly used inductors, with readily available equipment covering larger values of L.

Do not use the small tuning capacitors normally found in small transistor broadcast receivers at CT. The dielectric tends to wear thinner, throwing calibration off, especially at the maximum capacity setting.

If you use a low cost signal generator for furnishing the frequencies to drive the amplifier, be sure to use minimum setting of output attenuator, since harmonic content is quite high on some of the less expensive generators and can cause false readings when trying to read values of unknown inductors.

I used frequencies as follows: 15 MHz, 3.3 to 0.039 μH; 5 MHz, 33 to 3.3 μH; 1.5 MHz, 500 to 33 μH; 600 kHz, 2.5 mH to 0.5 mH; 300 kc, 10 mH to 1 mH.
In the schematic and on the calibration chart (figs. 1 and 2), to find unknown value of L, tune amplifier for maximum on the meter, with 15 MHz signal applied, then pick off the percentage reading that intersects with the dial reading. Multiply the maximum value of L (3.3 μH) that equals 10% percent times the percentage thus found; i.e., 1.6 μH equals 49 percent. This is not strictly accurate, since 3.3 does not equal minimum, or zero setting of dial, but it does allow accurate matching, which is usually what is needed. One can tell which L is the larger for sure, and that is a help.

On the calibration chart (fig. 2) the transfer oscillator 15 megacycle 28 #6 refers to the dipper coil used in the homegrown oscillator I built to use with this thing. Built in a beef stew can, it is an FET Sellar oscillator with buffer which drives the amplifier. (I also used a can to house the inductance measuring device.)

John L. McDonald, W6SDM
CABLE CONVERTER SALE

MANRAOY FV-25 - 26 CHANNEL WITH REMOTE CONTROL - VHF-MIDBAND - SUPERBAND - REG $99.95 - NOW $49.95
JERROLD 26X-203C - 36 CHANNEL WITH IN BAND DATED SYNC DECODER - REG $299.95 - NOW $149.95
JERROLD SB-3 - IN BAND DATED SYNC DECODER WITH ANY CONVERTER WITH OUTPUT ON CHANNEL 2 - REG $149.95 - NOW $199.95
UNF BLOCK CONVERTER - CONVERTS MIDBAND AND SUPERBAND TO UNF - REG. $249.95 - NOW $26.95
SEND $1.00 (REFUNDABLE) FOR CATALOG
ADD $4.25 SHIPPING/HANDEL FOR EACH UNIT ORDERED
HVS ADD SALES TAX - C.O.D.'S OK
24 HOUR ORDER LINE (617) 962-7351
ORDER DIRECT FROM TAYCO COMMUNICATIONS 81-1644 NARRAGANSETT RD CONING, NEW YORK 10430

CABLE CONVERTER SALE

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of ham fest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

LEGAL NOTICES

ANTE Cassette Tape Converter with output on channel 1, $1.50. Will NOT work with VHF or UHF tuners.

RADIO DIRECTION FINDER The SuperDF

Inexpensive kit and assembled units for use with Hand-Held, Mobile, or Base Station. 100 to 260 MHz or 200 to 550 MHz with one antenna. Nonambiguous. No overloading. Use with unmodified HT, scanner, or transceiver. No attenuator or "S" meter needed. Can DF signals below the noise. Averages out local reflections while mobile-in-motion. Used by FCC, US Army, State of California, Coast Guard Aux. Price starts at $125. For details send SASE to: BMG Engineering, 9935 Garibaldis Ave, Temple City, Cal, 91780

FCC LOWERS REQUIREMENTS — GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our short cuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section cover ing Radar Endorsement. A small investment for a high-paying career in electronics.

$19.95 ppd. Satisfaction Guaranteed

SPI-RO DISTRIBUTING P. O. Box 1538 Hendersonville, N. C. 28793

RIDING MARKET

182

FLEA MARKET

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of ham fest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

LEGAL NOTICES

ANTE Cassette Tape Converter with output on channel 1, $1.50. Will NOT work with VHF or UHF tuners.

RADIO DIRECTION FINDER The SuperDF

Inexpensive kit and assembled units for use with Hand-Held, Mobile, or Base Station. 100 to 260 MHz or 200 to 550 MHz with one antenna. Nonambiguous. No overloading. Use with unmodified HT, scanner, or transceiver. No attenuator or "S" meter needed. Can DF signals below the noise. Averages out local reflections while mobile-in-motion. Used by FCC, US Army, State of California, Coast Guard Aux. Price starts at $125. For details send SASE to: BMG Engineering, 9935 Garibaldis Ave, Temple City, Cal, 91780

FCC LOWERS REQUIREMENTS — GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our short cuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section cover ing Radar Endorsement. A small investment for a high-paying career in electronics.

$19.95 ppd. Satisfaction Guaranteed

SPI-RO DISTRIBUTING P. O. Box 1538 Hendersonville, N. C. 28793
RADIO EXPO sponsored by Chicago FM Club
September 24 & 25
Lake County Fairgrounds
Grayslake, Illinois
Flex Market
Major Manufacturer Exhibits
Tech talks - Seminars - Ladies' Programs
Tickets good for both days $3.00 advance - $4.00 at gate

SALE TO RADIO EXPO '83
Box 1532
Evanston, IL 60204
(312) 582-6923

FREE CATALOG OF NEW DEVICES
GOLDSMITH SCIENTIFIC CORPORATION
P.O. BOX 318H, COMACK, NY 11725
PHONE ORDERS WELCOME - (516) 397-7944
MASTERCARD AND VISA ACCEPTED
POSTAGE - ADD $1.00 PLUS 8% INSURANCE, C.O.D. BEYOND EXTRA

SALE BOUND VOLUMES
HAM RADIO magazine
REGULAR
$12.95 each
SALE SPECIAL
$19.95 each
3 for $49.95
Please add 12.50 for shipping and handling

QUANTITIES LIMITED
CALL TODAY
Yrs. Avail.
1980 1981 1982

HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441
NEW! NEW! NEW!

RADIO ELECTRONICS BUYERS GUIDE

A Guide To Radio and Electronic Parts
Sold By Retail Mail Order

Suppose you could buy a book that would quickly direct you to nearly any component you will ever need to complete your electronic projects. Maybe you want to build a circuit shown in a magazine construction article or one that you invented yourself. The Radio Electronics Buyers Guide is the book that will do the job! This guide catalog radio, antenna, computer, electronic, microwave, and mechanical parts, from 75 mail order companies willing to sell in small quantities to you! The address, phone number, and ordering information is included for each supplier. Several sell mostly surplus parts. Order your copy today and put excitement back into your circuit building.

$6.95 postage paid. Fast Service. Overseas orders please add $1.50 for air mail.

HALLWARD PRODUCTS
39 Sunnyside Ct. St. Louis. MO 63121

GO MOBILE WITH YOUR H.T.!

Model K — TR-2400; — powered thru battery plug

Model T — FT-208R

Model T — Simple mod for Tempo and all Santec

NOW FOR FT-208R & TR-2500

Model Y — FT-207R, Wilson — fits into battery compartment ‘A unique battery eliminator’ HANDI-TEK Regulator allows constant hand-held operation from auto DC or base supply with no nicad drain and WITHOUT RADIO MODIFICATION TO ICOM $12.50 PWD in USA Call and add $1.50 Sales Tax.

HANDI-TEK
P.O. BOX 2205, LA PUENTE, CA 91746

CB TO TEN METER CONVERSION KITS

KITS for AM — SSB — FM 40 Channel PLL chas to conversions

DETAILED INSTRUCTIONS for easy installation with minimum time and equipment

BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.

PRICES Low cost prices range from $8.00 to $50.00

All kits are in stock including several different FM kits.

FREE CATALOG Write or call today.

INDEPENDENT CRYSTAL SUPPLY COMPANY
P.O. Box 183
Sandwich, Ma. 02563-0183
(617) 886-4302

Ducks are getting smaller...and!

Because you and the leading radio manufacturers want the best-performing, the best looking antenna; Centurion has grown to be the leader's choice. We've developed many smaller antennas to make the handheld radio perform better, and now the newest duck...the Tuf DUCK "mini". It's shorter (about 3") yet it's a full 1/4 wave radiator on VHF.

Actual Size

CENTURION

TUF DUCK ANTENNAS

CENTURION PHONE 408-463-4491

TELEX 94-4377 CENTURION LN

P.O. BOX 98846 LINCOLN, NE 68501 9846

August 1983 79
ANNOUNCING
HAM-PAK™
The Multi-Purpose Program for Computer-Equipped Ham Shacks

Throw away your dog-eared heading chart (if you can find it.) Stop tearing through your old logbooks to see if you verified that VU-7. And what was that coil-winding formula again? HAM-PAK puts the answers at your fingertips with:

- Instant, accurate beam headings from your QTH to 300 countries
- Instant retrieval of past DX confirmations
- Instant prefix identification
- Math formulas for radio use

Minimum System: TRS-80 III, 32K, 1 disk

ONLY $29.95 and we pay the postage!
(No cash or money order, please. No COD’s)

HAM-PAK is a trademark of Sunderland Software
Inquire about HAM-PAK for Apple, Atari, & VIC

SUNDERLAND SOFTWARE
3956 Sudderland Drive
Mt. Clemens, MI 48044

80 August 1983
OPERATING EVENTS “Things to do...”

AUGUST 10-13: The Cuyahoga Falls Amateur Radio Club will operate W6VPR from the All-American Soap Box Derby, Akron, Ohio 2300 to 0200Z. August 10-12 and 1900 to 2300Z. August 13. Frequencies: 3845, 7260, 14140, 21365 and 28595. QRN and Technicians look 10 kHz up from lower band edge on the hour. For certificate send 2 units of postage to: Cuyahoga Falls ARC, PO Box 6, Cuyahoga Falls, OH 44222.

AUGUST 13: The Marin Amateur Radio Club will operate W6SG to commemorate the 50th anniversary of its club’s founding. Operations will begin 1200 UTC and continue for the day. Bands, modes and frequencies: 20M CW, 14065, 20M phone, 14265; 15M CW, 21065; 15M phone 21365; 40M CW, 7056, 40M phone 70265.

AUGUST 13: The Tri-County Wireless Group will operate W9COY from the famous Grand Hotel’s “Longest Porch in the World” on Mackinac Island, Michigan, Operation 1500-2300Z. SSB 7280, 14280, 21380, 28580 and FM 147480. For a special QSL send QSL and regular SASE to N8COY.

AUGUST 13 AND 14: The Bergen Amateur Radio Association will operate K2TM from 1500 to 2400Z to mark BARA’s 20th anniversary. Frequencies: 7735, 14275, 21100, 28570, and 146520. For a certificate send large SASE and QSL to K2JMF, Warren P. Hager, 31 Forest Drive, Hillsdale, NJ 07642.

Mail entries by October 1 (include large SASE) to NH5E, Ed Graham, 12449 Regent NE, Albuquerque, NM 87112. — Ed Graham, 12449 Regent NE, Albuquerque, NM 87112. —

SEPTEMBER 10: The West Alabama Amateur Radio Society (WAARS) will operate special event W6WYP in commemoration of Paul “Bear” Bryant. Operation 1900 to 0200Z to mark the 50th anniversary of its club’s founding. Frequencies: 21025 and 21075. Also 2 meters FM locally. RARA’s special event station K6EJP will operate special event station K6EJF. For a QSL send large SASE and QSL to WAARS, P.O. Box 1741, Tuscaloosa, AL 35403.

SEPTEMBER 10 AND 11: Cray Valley Radio Society’s 13th SWL Contest, 1800 GMT to 1900 GMT. Up to 18 hours logging allowed. Rest period must be observed. Multi-operators may log continuously. Contest open to anyone. Two sections and two categories. Phone and CW. Single/multi-operator: Bands 10, 15, 20, 40, 80, 160 MHz. Scoring: one point for each band heard times number of different countries heard on each band. A list of countries must be furnished and a separate log for each band. Callsigns of the U.S., Canada, and Australia will each count as a separate country. No QSO or QZ calls allowed. Log sheets are available for large SASE from QWBC, Box 28 Garden Ave., Beefbeak, Kent Day 4L. Entries to contest manager, QWBC at above address NLT October 31, 1983. Certificates award at the discretion of the Cray Valley RS.

SEPTEMBER 10 AND 11: The Starved Rock Radio Club will operate special event station K9Z at their clubhouse in Oglesby, LaSalle County, Illinois. Operation will be on all Amateur bands. A special QSL is being designed for this occasion in celebration of 50 years of Amateur Radio in Central Illinois.

SEPTEMBER 13-17: The Southern Counties Amateur Radio Association (S.C.A.R.A.) is planning to have a special event station during the Miss America Pageant. Contact September Ham Radio for details.

TUNING IN THE WORLD OF HAM-TV!

Amateur Radio operators in the '80s are discovering the fascinating “World of Amateur Television.” It’s a fun-to-see TV (STV), Novice TV (NTV), Facsimile (FAX) or somewhere in between. Video communications modes are growing at an exciting pace!

New advancements are taking place in High Definition Color STV and the use of personal computers for ATV graphics. STV - FAX - ATV communications continue to evolve, even growing in MICROVU and TVRO applications.

ATV MAGAZINE™ has supported these modes of Amateur Spectral Communications since 1967 - over 15 years! And now, under guidance of the UNITED STATES ATV SOCIETY, HAM-TV will continue to grow rapidly. Interested? Send SASE for “free” information brochure today.

SPECIAL 6 month TRIAL subscription only $10.00
Our trial subscription (12 issues) is $30.00
Sample issue available but $3.95 ppd.
A5 ATV MAGAZINE™ PO BOX 119 LOWDEN, IOWA 52255

More Details? CHECK — OFF Page 108
the basics

The Alden 9321 is designed using commercially tested and proven circuitry. Relatively speaking it is mechanically very simple and has all the latest in state-of-the-art electronics. It is packaged in a rugged plastic case designed to withstand the rigors of a hostile environment. And, unlike other facsimile equipment I've used, the Alden unit is relatively quiet and free from smoke odor and fumes. (I remember reading about a facsimile recorder that required an extensive venting system to remove the foul odors that accompanied its operation.) Light and compact, it requires only a stable, general-coverage SS8 receiver to be put on line.

The 9321 uses two motors to provide stylus scanning and paper feed. The first motor is a tachometer-controlled dc motor that sweeps the stylus across the paper while the second motor slowly plays the paper out of the easy-to-change paper cassette. The stylus scans across the paper; when an image is transmitted, a slight electrical current flows through the paper and causes the image to appear. The reason the Alden unit does not produce unpleasant odors is that its specially-designed moistened paper does not burn, but instead uses electron deposition to produce the image.

the kit

As I unpacked the kit, I discovered that the shipping box is divided into twelve clearly marked compartments numbered to correspond to the twelve-step, easy-to-follow, illustrated instruction manual. Parts for each subassembly are clearly inventoried and identified to make the construction process as simple as possible. To ensure that the parts are not damaged in transit, they are carefully stored in plastic bags and wrapped in protective foam.

Assembly is basically mechanical, not electronic. Each step is carefully detailed, diagrammed, and explained in the forty-two page instruction manual. All of the electronics for the Model 9321 kit are factory assembled and tested, thereby taking advantage of the similarity to Alden's line of commercial facsimile recorders. Assembly involves nothing more than selection of parts, installation, and in some cases, physical alignment. All interconnections are either through ribbon connectors or sturdy nylon shell pin connectors. The only electrical work is the installation of the LEDs and switches in the control panel assembly.

Some kit builders may be disappointed that the electronics are preassembled and tested. But my feeling is that kit builders benefit from Alden's experience . . . and for most of us, anyway, the real reward comes when the unit is turned on and the first charts start to come off the recorder.

It took ten hours to put this kit together — not in one sitting, but rather during evenings within a one week span. Before turning the recorder on I ran a few tests to ensure that assembly had been done according to the manual. (Testing procedures are fully described with step-by-step instructions to make the process as simple as possible.)

Alden went to the trouble to include two very important and helpful booklets as part of their instruction manual. The Worldwide Marine Radio Facsimile Broadcast Schedule is a complete compilation of stations from around the world, and includes frequencies, transmission times, and schedules. Here on the east coast, the strongest U.S. station is the Naval Eastern Oceanography Center (NAM) in Norfolk, Virginia. NAM transmits weather data that covers the area east of the Mississippi River including the Gulf of Mexico, the Caribbean, and the northern half of the Atlantic Ocean. In addition to various status maps, they also transmit detailed computer-enhanced photos taken from the GOES geostationary satellites. These photos are taken using either infrared or visible light so they can be of use day or night.

Alden has also included a reprint of the Naval Eastern Oceanography Center's Facsimile Product Guide. The facsimile service from Norfolk can be broken down into four separate categories: atmospheric analysis, atmospheric prognosis, oceanographic analysis, and oceanographic prognosis. Each service is fully explained with a number of illustrations and examples included to assist in interpretation of information received.

As I mentioned earlier, there are over fifty stations transmitting up-to-date weather information from twenty-five different countries. Most of these stations transmit at 120 scans per minute at an Index of Cooperation of 576.

The Index of Cooperation is an internationally agreed upon standard for expressing compatibility between transmitting and receiving equipment. A few charts are transmitted at 288 IOC, but most are transmitted at 576; consequently, you'll be able to get good quality pictures from the Alden 9321 for the majority of facsimile frequencies. (The 288 IOC charts will be compressed when received on a 576 IOC recorder, but are still usable.)

tuning

Facsimile broadcasts are normally transmitted on upper sideband. After you connect the
unit to 120 volts ac and the audio output from the receiver, tune the receiver approximately 1900 Hz lower than the facsimile station's frequency to correctly position the facsimile sensing circuitry. For example: to correctly tune NAM on 3357, tune the receiver down to 3355.1 kHz. When you are correctly tuned, the two LEDs will be flashing. The green LED corresponds to white and is usually the one that will be lighted the most. The red LED lights only when a black image is transmitted.

At any given moment of the day, somebody, somewhere, is transmitting weather information. So it's likely that whenever you turn your unit on, you'll be receiving a chart — but perhaps not properly framed. If you turn your unit on and find that you've missed the framing signal, all you have to do is push the framing button and keep it depressed long enough to center the chart correctly.

The unit also incorporates an auto-start and auto-stop feature so there's no need to be present during the transmission of charts. Each broadcasting station transmits a signal shifting between 1500 and 2300 Hz at a 300 Hz rate for three to five seconds before beginning transmission of a chart. This tone triggers the auto-start. The framing signal at the beginning of each chart is a 1500 Hz tone for approximately 40 scan lines interrupted once each scan line by a 2300 Hz pulse. The auto-stop signal at the end of each chart is a signal shifting between 1500 and 2300 Hz at a 450 Hz rate for three to five seconds.

The first two charts I received were an atmospheric analysis chart and a GOES satellite picture. These gave clear details of an approaching storm, including its precipitation and cloud cover. They confirmed the weekend forecast, which was bad. I was fascinated by the upper air or steering current charts which came later on.

As I mentioned before, it's fun to try to second-guess the local weatherman. As it turned out, he was right. But I'm looking forward to being able to watch the weather as it develops and make my own forecasts.

Facsimile hasn't yet caught on as a popular mode of Amateur communication. Facsimile devotees are much like the RTTY and SSTV gang — they're relatively few in number, but very interested and quite active. The new Alden 9321 will go a long way toward popularizing facsimile in the Amateur ranks. I'm sure it will be only a matter of time before enterprising and knowledgeable tinkerers will be hard at work modifying this equipment to make it do more than even Alden could have imagined.

I've done a lot in Amateur Radio over the past sixteen years from 160 meter DXing to 2-meter fm. I can truthfully say that I've really enjoyed using the Alden 9321 Recorder. I'm sure you will, too.

For more information, contact Alden Electronics, Washington Street, Westborough, Massachusetts 01581, RS#701

N1ACH

cable connection

Nemal Electronics, Miami, Florida, has been appointed a master distributor of Kings' coaxial and special connectors, including a unique line of TeflonTM insulated UHF, N and BNC connectors. Kings' TeflonTM connectors are rated from -60 to +165 degrees C at 1000 volts RMS.

The top-of-the-line PL259 is made using a special TR-4TM metal alloy that resists tarnish and enhances solderability. Retail price of the TR-4TM PL259 is $1.59. Other high quality but less expensive connectors are also available.

For more information or a catalog, contact Nemal Electronics, 1325 N.E. 119th Street, North Miami, Florida 33161, RS#902

hf transceiver

ICOM has announced what it calls the most advanced, highest performing hf transceiver with general coverage receiver available to Amateurs today. The IC-751 features ICOM's new CPU, with internal battery memory back-up, provides many advanced features, such as 32 memories with memory storage of mode and frequency, and the scanning capability to cover large segments of the spectrum very slowly, or to scan the memories by selected mode. The IC-751 provides instantaneous, silent, band selection and has a unique 3-speed tuning system. Other features included in the IC-751 are full break-in keying, passband tuning, notch filter, RIT and XIT with separate readout, fm built-in as standard, a very steep-sided FL44 sideband filter, continuously adjustable noise blanker levels, dual VFO operation, and all mode squelch. An easy-to-read two color or fluorescent readout showing the frequency in white and the control functions in red, for low eye fatigue and high visibility in all ambient conditions.

RTTY

TU-470
- Full featured RTTY to 300 baud plus CW terminal unit.
- 3 Shifts, active filters, remote control, xtal AFSK, FSK, plus much more.
- Suggested retail price. . .$499.95
- Introductory offer. . . .$429.95
- Offer Expires 9-1-83

TU-170A
- Single shift RTTY terminal unit.
- Xtal AFSK, FSK, active-filters and more.
- Kit $189.95
- Wired $289.95

TU-170
- Single shift RTTY terminal unit.
- Low cost, AFSK, active-filters.
- $149.95
- (Kit only)

TRS-80® RTTY/CW
- *Trademark of TANDY CORP.

SALES ONLY
1-800-HAM-RTTY
Flesher Corporation
P.O. BOX 976
TOPEKA, KS. 66601

136

August 1983
THE AFFORDABLE REPEATER
FROM THE MANUFACTURER OF COMMERCIAL &
MILITARY EQUIPMENT MADE IN USA AT OUR
MIAMI, FLORIDA PLANT

$699. Basic Price

FEATURES:
- Several Frequency Ranges
 30-50 MHZ, 132-172 MHZ,
 200-240 MHZ, 380-480 MHZ.
- Sensitivity .3 Microvolt 12 DB S/N
- Power Output 30 Watts.
- Four Pole IF Filter.
- Complete separate transmitter
 and Receiver
- 13.6 VDC or 115/220 VAC
 Power Supply.
- 19" Rack Mounting.

PAYMENT TERMS:
- Domestic Orders 50% with order
 50% C.O.D.
- Foreign Orders Letter of Credit
 or Advance Payment.

Allow 2 to 6 weeks for delivery.

OTHER PRODUCTS
- Simplex and Full Duplex
- VHF/UHF Mobiles and Bases
- Rural Radio Telephone
- Auto Patch
- HF SSB Transceiver
- Catalogues available upon request

DEALER INQUIRIES INVITED
ITS International Telecommunications Systems Florida Inc.
8416 N W. 61 ST / MIAMI, FLORIDA 33166
TEL: (305) 593-0214 / TELEX: 525834

PREVENT HI-TECH HEADACHES

Our isolators eliminate
equipment interaction,
curb up interference,
curb damaging power line spikes and
lightning bursts.

ISO-1 Isolator
3 isolated sockets; quality spike
suppression; basic protection... $74.95
ISO-3 Super-Isolator
3 dual isolated sockets; suppressor;
commercial protection 115.95
ISO-17 Magnum Isolator
4 quad isolated sockets; suppressor;
laboratory grade protection.... 200.95

Electronic Specialists, Inc.
171 S. Main St., Box 389, Natick, MA 01760
Toll Free Order Desk 1-800-225-4876
MasterCard, VISA, American Express

TS430S FILTER DEAL
For superior performance at lower cost, use
top-rated 8-pole Fox Tango crystal filters to fill
the optional spots in your rig. For example,
your 1800 Hz FT2808 equivalent of the YK88SN
has a 60/6dB shape factor of 1.7 compared with 2.0, a price of $25 vs $63, and square
shoulders at the top with steeper skirts all the
way down to more than .80dB.

For more pleasant audio use our 2100 Hz for
SSB and/or the 6000 Hz for AM.

BIGGER IS BETTER!
Fox Tango filters are better because of their
discrete crystal (not monolithic) construction.
This makes them slightly longer than YK filters
so they are patched into the circuit with short
lengths of coax. Installation is easy — no drill-
ing or circuit changes. Order with confidence.

INTRODUCTORY PRICES — Complete Kit
Any ONE filter...................... $55
Any TWO filters $100 (Save $10)
Any THREE filters............. $145 (Save $20)

Includes all needed cables, parts, detailed in-
structions. Specify the type(s) desired.

AM — FT2811 (6000 Hz Bandwidth)
CW — FT2801 (250 Hz); FT2802 (400 Hz)
SSB — FT2809 (1600 Hz); FT2808 (2010 Hz)

Shipping $3 per order. ($5 air) FL Sales Tax 5%

ONE YEAR WARRANTY
GO FOX-TANGO— TO BE SURE!
Order by Mail or Telephone.

FOX TANGO CORPORATION
Box 15944 H, W. Palm Beach, FL 33416
(305) 683-9587

light conditions is standard. The IC-751 is
equipped standard for operation from 12 volts
dc, and there is an optional internal ac power
supply. The IC-751 has an advanced receiver
design that provides true competition-grade
performance.

For further information, contact ICOM, 2112
116th Avenue, N.E., Bellevue, Washington
98004. RS#303

improved antenna

Bilal’s new Isotron 20 is easier to tune, more
versatile in mounting, and covers a greater fre-
quency range than previous models. The new
model is omnidirectional and will handle the full
legal limit of power. It’s adjustable for reso-

nance, weighs approximately two pounds, and
measures only 21 inches in length.

The Isotron 20 requires a single coaxial feed-
line; no tuners or radials are necessary. Its
small size makes the Isotron 20 ideal for travel
for or for use in limited space. The price is $49.95
plus $3.50 for shipping via UPS.

For further information, contact the Bilal
Company, Star Route 2, Eucha, Oklahoma
74342. RS#304

vhf converter

Trio-Kenwood has recently announced the
release of an optional accessory VHF converter
— the VC-10 — to accompany its highly so-
nophisticated R-2000 communications receiver
introduced last December. The VC-10 allows
the R-2000 to receive signals in the 118-174
MHz range; through the use of microprocessor
technology, frequencies in this range may be
tuned, displayed, stored in memory, recalled,
and scanned, using the R-2000 front panel con-
trols and frequency display.

The R-10 installs easily on the rear panel of
the R-2000.

Additional information is available from Trio-
Kenwood Communications, 1111 West Walnut
Street, Compton, California 90220. RS#305
RECEIVE WEATHER CHARTS IN YOUR HOME!

You can DX and receive weather charts from around the world.

- Tune in on free, worldwide government weather services.
- Some transmitting sites even send weather satellite cloud cover pictures!

You've heard those curious facsimile sounds while tuning through the bands—now capture these signals on paper!

Assemble ALDEN's new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble—Backed by the ALDEN name.

For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!

You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Easy to order.

Only $995 for the complete ALDEN Weather Chart Recorder Kit.

To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $995. Add $5 for shipping and handling in the U.S. and Canada, plus applicable sales tax for CA, CO, CT, IA, MA, NY, WI. (Export price is $1250 F.O.B. Westborough, MA. Specify 50 or 60 Hz.) To use your MasterCard or Visa by phone, call (617)366-8851.

ALDEN ELECTRONICS
Washington Street, Westborough, MA 01581

<table>
<thead>
<tr>
<th>NAME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALLSIGN:</td>
</tr>
<tr>
<td>ADDRESS:</td>
</tr>
<tr>
<td>CITY: STATE: ZIP:</td>
</tr>
<tr>
<td>I've enclosed a check or money order for $995.00 and $5.00 for shipping and handling, plus applicable sales tax.</td>
</tr>
<tr>
<td>Charge to: [] MasterCard [] Visa []</td>
</tr>
<tr>
<td>ACCOUNT # (ALL DIGITS)</td>
</tr>
<tr>
<td>EXPIRATION DATE</td>
</tr>
<tr>
<td>SIGNATURE REQUIRED IF USING CREDIT CARD</td>
</tr>
</tbody>
</table>
microcircuit soldering kit

A kit including soldering iron, tips, and holder for precision microelectronic soldering is now available from the Ungar Division of Eldon Industries, Inc.

The Ungar 9375 Micro-soldering kit includes a three-wire handle, slimmer than those on earlier models, to facilitate close-tolerance soldering. A "Thermo-duric" heating element allows the heating elements to reach working temperature faster, recover more quickly, and use less energy, and last longer than other types of heating elements. Electric leakage, which could ruin microcircuits, is also said to be eliminated.

Three precision tips of differing configurations (needle-point, spade point, and screwdriver) are also included with the kit. Nine additional tips are available.

The handle, heater, and tip are all modular, permitting quick replacement or change. The price is $51.75.

Further information is available from the Ungar Division of Eldon Industries, Inc., 100 West Manville, Compton, California 90220. RS#306

new from HAL

The HAL CT2200 is the successor to the popular CT2100 Communications Terminal. It offers all the features of the CT2100 plus keyboard programming of all eight "brag-tape"
messages, programmable selective call control of the printer output, manual printer on-off control, non-volatile storage of HERE IS, "brag-tape" capability, selective call codes, and new rear panel connections for use with the ARQ1000. While the CT2200 is a new product that replaces the CT2100, a kit (including a new front panel) is available to enable CT2100 owners to update their units to CT2200 capability.

The CWR6750 is a receive-only RTTY and CW demodulator and display generator. The CWR6750 features a built-in 5 inch video display. Operating from +12 Vdc, this compact, portable unit is recommended for RTTY and CW short-wave listening. For further details, contact HAL Communications Corp., P.O. Box 365, Urbana, Illinois 61801. RS#307.

programmable CTCSS encoder/decoder

Ferritronics has announced the availability of the new P505A CTCSS Encoder/Decoder. The unit features quartz-accurate frequency synthesis and DIPSWITCH programming to all 37 EIA sub-audible tone assignments.

A choice of plug on or soldered on lead set is offered to suit various mobile and portable applications of the unit, which measures 2.1 x 1.2 x 0.4 inches.

For further details, contact Ferritronics, Inc., 1319 Pine Avenue, Niagara Falls, New York 14301. RS#309.

A new challenge in the amateur radio world...

Introducing 2m & 6m SSB/CW QRP Transceiver kit...

MX2 (144 MHz band) and MX6-2 (50 MHz band) SSB/CW QRP...

Transceiver offers the user unlimited challenges in QRP. It creates a new dimension in amateur radio operation and lots of fun to play with. The major circuits are factory assembled and tested to insure superior performance. Just solder a few wires to switches and connectors and you are in operation. No special tools are needed, only about one hour of your time assembling, and you are ready to challenge the amateur world...

FEATURES

- 200mW for MX-2 and 250mW for MX-6Z
- MOS FET receiver front-end
- Noise blanker built in
- Single conversion receiver
- Built-in CW keyer
- VXO controlled (+50kHz per channel)
- External microphone and speaker jacks
- High quality crystal filter (7.8MHz)
- Provision for external DC operation
- 6 x AAY dry-cell or 9V transistor battery

SPECIFICATIONS

- Model MX-2 144MHz band SSB/CW Transceiver
- Model MX-6-2 50MHz band SSB/CW Transceiver
- Operating Mode: A3J (USB), A1 (CW)
- Maximum Output Power: 200mW (MX-2), 250mW (MX-6Z)
- Spurious Output: Greater than 40dB down
- Sideband Suppression: Greater than 40dB
- Receiver Sensitivity: Less than 0.5uV for 15dB S/N
- Frequency Tuning Range: Maximum +50kHz per channel
- No. of Channels: 2

$129.95 semi-knock-down kit with channel crystal (one channel) and assembly instructions.

Order today direct from HENRY RADIO (800) 421-6631. To order direct include $3.00 shipping/handling. From California add sales tax. VISA/MC orders welcome. We will pay shipping/handling charge for all prepaid orders. NO C.O.D. PLEASE.

ACE communications, Inc.
2832-D WALNUT AVENUE, TUSTIN, CALIFORNIA 92680 (714) 544-8281
TELEX 855-306
AMT-1 terminal unit

The AMT-1 terminal unit contains everything that is needed to convert an Amateur Radio station and personal computer (or ASCII terminal) into a fully operational data communications system. It combines modern circuitry (AFSK modulator/demodulator) with a microprocessor which handles AMTOR data transmission and also translates between AMTOR code and ASCII code.

An ASCII, RS232 interface has been chosen for the AMT-1 because of the extra CONTROL and ESCAPE code flexibility which this allows. Additionally, home computers and data terminals with ASCII interfaces are now available at reasonable prices.

In addition to AMTOR capability, the AMT-1 also transmits and receives standard RTTY and transmits CW (morse code). A fourth "Transparent" or "Direct" mode is available, which connects the terminal directly to the modem. Using an ASCII terminal, it allows the AMT-1 to transmit and receive ASCII at any suitable baud rate.

The modem incorporates an active 4-pole receive bandpass filter, feeding into an audio discriminator. It has a performance much higher than that normally offered by Amateur RTTY terminal units. Transmit tones are crystal controlled. Frequency shift is 170 Hz, using the U.S. recommended tone pairs:

- **MARK**: 2125 Hz
- **SPACE**: 2295 Hz

Additionally, home computers and data terminals with ASCII interfaces are now available at reasonable prices.

No switches appear on the front panel of the terminal unit. All control is via ESC and CONTROL functions sent from the terminal or computer.

For complete information, contact Advanced Electronic Applications, Inc., P.O. Box 2160, Lynnwood, Washington 98036. RS4308
Now, you can enjoy over 60 television channels with Lowrance Earth Station/System 7 Receiver.

Today, television and stereo programming is so diverse — so complete, it’s no longer enough to have access to only a few channels.

With the magic of satellites, you can receive more than 60 channels of television and over 20 channels of stereo directly into your home. Including first-run movies, sports events, special children’s shows, religious programs, news, live coverage of Congress, farm reports — and much, much more.

It all comes from a satellite earth station — consisting of a dish antenna, amplifier and satellite receiver. The station picks up signals from satellites thousands of miles overhead and converts them into television and stereo for you to enjoy. And it’s surprisingly affordable. (Systems start as low as $2,900.)

The most advanced receiver on the market today is System 7, made by Lowrance Electronics. We supply the satellite receiver, and our distributors add a dish antenna. Lowrance has been a leader in the electronics industry for more than 25 years now. You may already be familiar with our sportfishing sonar products, acclaimed as the finest in the world. And we’re building that same quality and reliability into our satellite receivers.

Right now, you’re missing out on worlds of entertainment. For more information on the Lowrance Earth Station/System 7 Receiver, clip the coupon below and mail.

*While most satellite programming is free, some channels are reserved for pay audiences and may require a small viewing fee.

Lowrance Electronics, Inc.
12000 E. Skelly Dr., Tulsa, Okla. 74128
The RC-850 Repeater Controller is creating a New Breed of repeaters. Providing the ultimate in reliable, versatile communication, with the most advanced repeater autopatch available, and synthesized linking to other repeaters.

Its mailbox, informative ID and tail messages, and user signal diagnostics make it your group’s “Information Center”.

Plus two-tone paging, site alarms, and remote control functions. With remote metering to let you troubleshoot your system from home. Its built-in time of day clock and Scheduler have redefined the meaning of “automatic” control.

The RC-850 controller is remotely programmable with Touch-Tone commands, and is available with life-like synthesized speech for an ideal human interface.

And it’s upgradable through software so it’ll never become obsolete.

Communication, information, signalling, control. The New Breed...

MAKE YOUR REPEATER A WHOLE NEW ANIMAL WITH THE RC-850 REPEATER CONTROLLER

Call or write for detailed specifications on the RC-850 Repeater Controller.

10816 Northridge Square • Cupertino, CA 95014 • (408) 749-8330

frequency counter

Global Specialties’ new 1 GHz frequency counter, Model 6002, delivers accurate frequency measurement from 5 Hz to 1 GHz and also measures period from 100 ns to 200 ms. With three selectable resolutions (cycles averaged in the period mode), LED indicators, and simple push-button control, this unit offers uncomplicated operation as well as versatility. A 10 MHz crystal oven oscillator time-base assures ±0.5 ppm (10-40 degrees C), ±1 ppm/year stability.

Two front panel mounted, ac-coupled BNC input connectors provide flexibility in use. The A input accepts signals from 5 Hz to 100 MHz with an input impedance of 1 megohm at 20 pF and resolutions of 10 Hz, 1.0 Hz and 0.1 Hz. A switchable lowpass filter provides a 6 dB/octave roll-off at 60 kHz to facilitate audio and ultrasonic measurements. A × 100 multiplication mode is available to speed up measurement and display of frequencies in the 5 Hz to 10 kHz range. The B input accepts signals from 80 MHz to 1 GHz with an input impedance of 50 ohms at 10 pF with resolutions of 1 kHz, 100 Hz, and 10 Hz.

The front panel of the 6002 allows ready access to controls. Push-button controls include: Standby/On; Mode; Resolution; A/B input; and Lowpass Filter. The 8-1/2-digit display features leading zero blanking, bright 0.43-inch characters, and a contrast enhancement filter to ensure legibility in ambient light. LED indicators for “Gate Open,” “Oven Ready,” and “Overflow” provide additional user convenience, and a flip-up leg gives added flexibility for benchtop use.

Augat packaged products

A major industrial manufacturer has announced the nationwide distribution of a complete line of specially-packaged industrial-quality electronic and electromechanical products for consumer use.

More than 600 styles of sockets, interconnection products, ribbon cable, and IDC products and accessories — including Alcoswitch switches, lamps, and knobs are now available to Amateurs.

A complete catalog is available. For information, contact Augat, Inc., 89 Forbes Boulevard, Mansfield, Massachusetts 02048. RS#311

satellite receiver

National Microtech, Inc., announces the addition of the Apollo Q-1 satellite receiver and down converter to its product line. The Apollo Q-1 satellite receiver/down converter carries a one-year warranty from National Microtech. It features push-button transponder selection, automatic polarity control, an audio-in signal strength meter display, and a built-in modulator. The Apollo Q-1 is packaged in a wood-grain cabinet with a sleek, black, anodized face plate. A separate down converter with integral LNA power block complete the package.

National Microtech is a leading national dis-
At Ungar, we've designed the ultimate heat gun for the hard-working pro. Feature for feature, no other heat gun can make your job quicker, easier or safer.

To begin with, our new 6977 is the lightest heat gun of its kind (28 ounces). You can use it for hours on end with maximum control and minimum fatigue. The contoured handle provides a firm grip and remains cool at all times.

The 6977 is a high-temp, high air volume heat gun with power for the heaviest jobs. It delivers 975°F to the nozzle in seconds and is perfect for curing adhesives, forming plastics, shrinking tubing, peeling paint and just about any other tough job you'll ever run across.

And the 6977 can take it in the real world. The body is made of rugged, impact-resistant Valox® 855. It features a proven, reliable high-rpm motor, low noise operation, long-life heating element and a 6-foot, 3-conductor ground cord.

A wide range of optional attachments can provide additional versatility. The new Ungar 6977 heat gun...light years ahead of the competition, is Underwriter's Laboratory, Inc. listed. For more information, contact your local Ungar distributor or call Ungar in California 1-213-774-5950.

Ungar®
Division of Eldon Industries, Inc.
Compton, California 90220
Dual-purpose power amplifiers for HT and XCVR!

- 1-10 Watts Input
- All-mode operation
- 5 year warranty

model:

B1016 (2 meters)

<table>
<thead>
<tr>
<th>Wattage</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W In</td>
<td>35W Out</td>
</tr>
<tr>
<td>2W In</td>
<td>90W Out</td>
</tr>
<tr>
<td>10W In</td>
<td>160W Out</td>
</tr>
</tbody>
</table>

with RX preamp! $279.95

C106 (220 MHz)

<table>
<thead>
<tr>
<th>Wattage</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W In</td>
<td>15W Out</td>
</tr>
<tr>
<td>2W In</td>
<td>30W Out</td>
</tr>
<tr>
<td>10W In</td>
<td>60W Out</td>
</tr>
</tbody>
</table>

with RX preamp! $199.95

D1010 (430-450 MHz)

<table>
<thead>
<tr>
<th>Wattage</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W In</td>
<td>20W Out</td>
</tr>
<tr>
<td>2W In</td>
<td>45W Out</td>
</tr>
<tr>
<td>10W In</td>
<td>100W Out</td>
</tr>
</tbody>
</table>

$319.95

There’s more, and WAIT/SWR Meters, too! See your nearest Dealer

The first in a planned low-cost line of mass-produced, in-stock miniature high-voltage vacuum relays for military and industrial applications. The K42A series relays are designed to meet the requirements of MIL-R-83725. The new ceramic relays are priced from $25 to $30 in quantities of 1000.

Kilovac designs and manufactures electromechanical relays for high voltage, high peak current applications, including medical electronics, ECM, communications, sonar and radar pulse forming networks, antenna switching and coupling, electrostatic coating, dielectric strength testing, laser and x-ray power supplies.

For further information, contact Kilovac Corporation, P.O. Box 4422, Santa Barbara, California 93103. RS#313

universal spacers

Made from natural nylon per MIL-M-20693B, an expanded line of permanent spacers from Bivar, Inc., gives users an extremely wide selection of tubular spacers for mounting PCB discrete devices in almost any lead pattern and elevation.

Simple in design and extremely easy to use, four basic ID/OD combinations with thicknesses ranging from 0.020 inch through 1.250 inches, in 0.005-inch increments, are available immediately from factory stock or within two weeks. There are 988 standard sizes to choose from, and special heights are also readily available.

The broad selection permits the user to choose the most suitable sizes for strength, elevation, and ease of assembly, as well as to provide for proper filleting and cleaning. Simplified mounting of devices with unusual configurations is easily accomplished.
self-contained keyer

A new completely self-contained keyer from Globalman features variable speed, monitor volume control, automatic or semi-automatic switch, and an on/off switch on the front panel. The other controls such as tone, output keying switch from transistor to relay, external speaker or earphones, battery option input jack, output terminals, fuse, and ac line cord are on the back panel.

The relatively heavy keyer is housed in a crackle-finished steel cabinet designed to remain stationary in use.

An unconditional guarantee covers materials and labor for one year from date of purchase, as long as the keyer is not dissembled or abused. Should malfunction occur, the factory will repair the keyer at no cost to the owner.

For further information, contact Globalman, Inc., El Toro, California 92650. RS#315

cable stretcher

What do you do when your printer - with 15 feet of cable - is needed 50, 100, or 1000 feet away from your computer?

The new "cable stretcher" from Cronos can help keep your computer and printer in two-way communication without loss of speed or degradation of performance. Model 100LS consists of two heavyweight stretcher boxes, one at each end of the center cable.

The stretcher comes with 25 feet of twisted 15-pair cable (extra lengths may be ordered) up to 1000 feet. Each end terminates in a DB-37P connector. The interfaces weigh about 3 pounds each, use 3 VA of 120 volt 50-60 cycle power, and will operate in ambient temperatures of 0 to 70 degrees C. The size is 6-1/2 x 6-1/2 x 3-1/4 inches. Six feet of flat cable connecting stretcher to printer are supplied.

For more information, contact Cronos Engineering, Inc., 105 N.W. 43rd Street, Boca Raton, Florida 33431. RS#316
products

ROHN
"FOLD-OVER" TOWERS

- **Ease of Installation**
 ROHN "Fold-Over" Towers are quickly and easily installed. The "Fold-Over" is safe and easy to service.

- **Adaptability**
 ROHN has several sizes to fit your applications or you can purchase the "Fold-Over" components to convert your ROHN tower into a "Fold-Over".

- **Hot Dip Galvanized**
 All ROHN towers are hot dip galvanized after fabrication.

- **Reputation**
 ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.

Electronic Grade Coolant

A newly formulated electronic circuit/component coolant from Chemtronics is said to make thermal intermittent trouble shooting of electronic circuits components easier than ever. Applied as an aerosol spray, Freez-It, freezes to -65 degrees F (54 degrees C) instantly. Sprayed copper circuitry frosts and turns white, exposing hairline cracks in PC boards. Rapid chilling of suspected components allows individual components to be isolated for instrument testing. Defective resistors, transistors, capacitors, and other component parts may be quickly and easily identified. Freez-It can also be used to prevent transformer burnout. If a transformer starts to smoke, spraying the transformer will keep wax, varnish and shellac from running and causing short circuits. It will also freeze adhesives for quick removal.

Other uses include low temperature testing of circuits and equipment, preventing cold solder joints and soldering delicate, heat sensitive components, and as an aid in shrink fit assembly.

The product can be used safely on plastics, rubber, paints, or metal and leaves no residue. It is also non-flammable, non-toxic and odorless. Active ingredients are 100 percent pure Freon 12. Freez-It has been tested to meet Federal Specification BB-F-1421.

A specially designed 3-way variable control valve controls the spray zone; a pinpoint appli-
cation or wide area coverage can be selected. An extension tube is also supplied for difficult to reach areas.

Freez-It is supplied in 15 and 22 ounce aerosol spray cans.

For further information, contact Chemtronics, Inc., 681 Old Willets Path, Hauppauge, New York 11788. RS#317

clamp-on ammeter adapter
The new Trippett Model 10-N clamp-on AC ammeter adapter is universally adaptable to any digital multimeter with 3/4 inch center banana plugs, 10m ohm input and a 200 mV ac current range. Said to be ideally suited for in-field, non-interruptive circuit testing, the Model 10-N may be used with a line separator (Trippett Model 101), for single-conductor current measurements on two conductor cables.

Current ranges are 0-20 amps and 20-200 amps with an accuracy of ±3 percent. The range switch may be operated under load with no damage.

The spring-loaded clamp jaws permit simple one-hand operation. Model 10-N is molded from high-impact thermoplastic material to provide years of durable, trouble-free operation.

For further information, contact Trippett Corporation, One Trippett Drive, Bluffton, Ohio 45817. RS#318

new Sinclair catalog
Sinclair Radio Laboratories, Inc., has released the new edition of their product information catalog. The 16-page booklet contains updated technical specifications on a full range of Sinclair’s multicouplers, combiners, duplexers, and ferrite accessories. Copies are available from Sinclair Radio Laboratories.

For more information, contact Sinclair Radio Laboratories, Inc., 14614 Grover Street, Suite 210, Omaha, Nebraska 68144. RS#319

SYNTHESIZED SIGNAL GENERATOR
MADE IN USA
MODEL SG100B $249.95 plus shipping

- Covers 100 to 185 MHz in 1-kHz steps with thumbwheel dial
- Accuracy 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at 1 kHz rate
- Spurs and noise at least 60 dB below carrier
- RF output adjustable from 5-500 mV at 50 ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery
- $349.95 plus shipping
- Add-on Accessories available to extend freq. range, add infinite resolution, voice and sub-audible tones, AM, precision 120 dB calibrated attenuator

Call for details - Dealers wanted worldwide.
VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (212) 468-2720

Big LCD Clock $29.95 + $1.50 shipping

12:42 18:42

Ham Tags $12.95 + $1.50 shipping

TEXAS AMATEUR RADIO ULE-104 WD5EQM

The best in self-instructional foreign language courses using audio cassettes — featuring those used to train U.S. State Dept. personnel in Spanish, French, German, Portuguese, Japanese, Greek, Hebrew, Arabic, Chinese, Italian, and more. Learn a foreign language on your own! Free Catalog

Call (203) 453-9794, or fill out and send this ad to -
Audio-Forum
Suite 37K, On-the-Green
Guilford, CT 06437

Name
Address
City
State/Zip

I am particularly interested in (check choice):
- Spanish - French - German - Polish
- Greek - Russian - Hungarian - Dutch
- Bulgarian - Turkish - Vietnamese - Other

August 1983
When it comes to **QSL's...**

it's the ONLY BOOK!
US or Foreign Listings

1983 callbooks

Here they are! The latest editions of the world-famous Radio Amateur Callbook are available now. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists calls and the address information you need to send QSL's. Special features include call changes, census of amateur licenses, world-wide QSL bureaus, prefixes of the world, international postal rates, and much more. Place your order for the new 1983 Radio Amateur Callbooks, available now.

<table>
<thead>
<tr>
<th></th>
<th>Each</th>
<th>Shipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Callbook</td>
<td>$19.95</td>
<td>$3.05</td>
<td>$23.00</td>
</tr>
<tr>
<td>Foreign Callbook</td>
<td>$18.95</td>
<td>$3.05</td>
<td>$22.00</td>
</tr>
</tbody>
</table>

Order both books at the same time for $41.95 including shipping.

Order from your dealer or directly from the publisher. All direct orders add shipping charge. Illinois residents add 5% sales tax.

SPECIAL OFFER!

Emblem Patch
only $2.50 postpaid

Pegasus on blue field, red lettering, 3" wide x 3" high. Great on Jackets and caps.

ORDER TODAY!

new Hamtronics® catalog

Hamtronics, Inc., announces publication of their 1983 catalog for the VHF/UHF/Oscar enthusiast and two-way shops. The thirty-six page, two-color catalog features many new products, including HF and VHF fm receivers, helical resonator preamps and filters, low-noise receiver preamps, and a UHF receiver for listening to the space shuttle. Also included are the popular fm transmitters and power amplifiers, HF and UHF receiving and transmitting converters, VHF transceivers, and other products.

For a free copy, write to Hamtronics, Inc., 65F Moul Road, Hilton, New York 14468. RS#320

tone signaling products catalog

The new product list from Communications Specialists includes their new direct plug-in CTCSS encoder-decoder boards for many two-way radios, paging, two-tone sequential, and burst tone devices. For a copy of the list, contact Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92667. RS#321
short circuits

6-meter amplifier

In the April, 1983, article by W2GN, "6-meter Amplifier," the two (parallel) plate blocking capacitors (fig. 1, page 73) are shown incorrectly wired. A correct installation would have them wired between the plate's copper strap and the inductor L as shown correctly done in fig. 2 on page 74.

remote control hf operation

The following corrections should be made to K5QY's article, "Remote Control hf Operations" (April, 1983):

The source of the eight-bit I/O card referred to on page 32 is Applied Engineering, Inc., P.O. Box 470301, Dallas, Texas 75247. The price is $62.00.

Line 3775 of K5QY's computer program (page 42) was omitted from the text. Line 3775 should read:

3775 IF T = 9 THEN DL = -.0001

In fig. 4, the center-tapped connection of the two series 0.01 μF telephone line shunt capacitors should only go to ground. The lower telephone line was inadvertently shown grounded.

noise bridge

The 365 pF capacitor required for construction of K2BT's rf impedance bridge (March, 1983) can be obtained from Radiokit, Box 411H, Greenville, New Hampshire 03048, or from Mouser Electronics, 11433 Woodside Avenue, Santee, California 92071.

keyer interface

In the February, 1983, article entitled "Low-Power Keyer and Interface," the following CMOS chips were used: type 4023 for U1, 4013 for U2, and 4001 for U3. Also, power (V+) is applied to pin 14 and GND to pin 7 of each chip.

UHF DECODER FREE IC-CHIPS

WITH PURCHASE OF FV-3 COMPONENTS WHICH CONSIST OF:
- FV-3 BOARD
- INSTRUCTION MANUAL
- BOX TO HOUSE IT IN
- POWER SUPPLY
- EDGE CONNECTORS
- TUNER

FOR ONLY $190.00
LIMITED TIME ONLY!

CALL NOW FOR YOUR ORDER:
1-800-433-5169

FOR INFORMATION CALL: 817-460-7071

P B RADIO SERVICE
1950 EAST PARK ROW DRIVE
ARLINGTON, TX 76010

WE HONOR VISA AND MASTERCARD

SPECTRONICS INC.
1005 GARFIELD ST., OAK PARK, IL 60304

Specialists in Amateur Radio, Short-Wave Listening And Contemporary Electronic Gear.

- Complete automatic operation
- Erases + Checks
- Rapid charges in 35 min. (typically)
- Repairs most shorted cells
- No dangerous heat buildup
- Front panel select up to 3 different packs
- Unlimited battery combinations with program modules (user programable)
- LED status indicators
- Supplied with universal EZ hook wire leads

Specify Voltage of Battery Pack(s) with order.
One program module included - optional modules $2.25 each.
$89.00 plus $4.00 Shipping
(PA Residents add 6% sales tax)

Now Available - A commercial version of the GMS 401. Designed to charge up to and including the commercial 15 volt Nicad packs. $139.00 plus same shipping and module cost as the GMS 401.

The GMS 401 is a complete automatic NICAD conditioner and rapid charger. Never before has this been offered anywhere at any price and it's so good it's being patented. NICAD memory characteristics must be dealt with otherwise your battery pack is not delivering all it could. The GMS 401 will automatically erase and rapid charge any type NICAD pack from 1 to 10 cells.

CONTROL PRODUCTS UNLIMITED, INC.
P. O. Box 10 Department H
Downingtown, PA 19335
215-383-6395

August 1983
MN9102 NON-VOLATILE QUAD LATCH

The Plessey MN9102 is a non-volatile 4-bit data latch which uses MNOS transistors as memory elements to retain stored data in the absence of applied power. The data that is applied to the four inputs is written into the memory when the SAVE control is taken to a logic '0' level and the data subsequently appears on the four outputs. The stored data is also automatically restored to the outputs whenever power is re-applied to the device.

An OUTPUT ENABLE is also available, which when taken to logic '0' level presents a high impedance state on each output line, permitting multiplexed operation.

The high voltage usually associated with MNOS memory devices is generated internally, requiring only a single external capacitor to act as a charge reservoir for supply operation when writing into the memory. The device therefore operates from standard voltage rails and requires no additional drive circuitry.

$5.45 each

FEATURES
- Data Retention for One Year in the Absence of Applied Power
- Simple to Use
- Standard Power Supplies Only (-5V, -12V)
- CMOS/TTL Compatible
- 14-lead DIL Package
- Typically Ten Million SAVE Operations

APPLICATIONS
- Metering Systems
- Elapsed Time Indicators
- Security Code Storage
- Last Channel Memory for Digital Tuning

SL748 PRECISION OPERATIONAL AMPLIFIER

The SL748 is a monolithic, precision operational amplifier. It is an excellent choice when performance versus cost trade-offs are possible between super beta or FET input operational amplifier and low cost general purpose operational amplifiers. The low offset and bias currents of the SL748 improve system accuracy in applications such as long term integrators, sample and hold circuits and high source impedance summing amplifiers. Even though the input bias current is extremely low, the SL748 maintains full 300V differential voltage range. The internal construction utilizes orthogonal layout and special electrical design to maintain system performance despite variations in temperature or output load. High common mode input voltage range, latch-up protection, short circuit protection, and simple frequency compensation make the device versatile and easy to use.

$6.72 each

FEATURES
- Low Offset Voltage and Offset Current
- Low Offset Voltage and Current Drift
- Low Input Bias Current
- Low Input Noise Voltage
- Large Common-mode and Differential Voltage Ranges

SL162IC AGC GENERATORS

The SL162IC is an AGC generator designed specifically for use in SSB receivers in conjunction with the SL1610C, SL1611C and SL1612C RF and IF amplifiers. It is designed for use with other advanced systems that generate a suitable AGC voltage directly from the detected audio waveform, providing a 'hold' period to maintain the AGC level during pauses in speech, and is immune to noise interference. In addition it will smoothly follow the fading signals characteristic of HF communication.

When used in a receiver comprising one SL1610C and one SL1612C amplifier and a suitable detector, the SL162IC will maintain the output within a 4dB range for a 110dB range of receiver input signal.

$4.04 each

FEATURES
- Wide Dynamic Range
- Speech Pause Memory
- Fast Attack/Adaptive Decay
- Only 4 External Components

SL1623C AM DETECTOR, AGC AMPLIFIER & SSB DEMODULATOR

The SL1623C is a silicon integrated circuit combining the functions of low level, low distortion AM detector and AGC amplifier with SSB demodulator. It is designed specifically for use in SSB/AM receivers in conjunction with SL1610C, SL1611C and SL1612C RF and IF amplifiers. It is complementary to the SL1626C SSB AGC generator.

The AGC voltage is generated directly from the detected carrier signal and is independent of the depth of modulation used. Its response is fast enough to follow the most rapidly fading signals. When used in a receiver comprising one SL1610C and one SL1612C amplifier, the SL1623C will maintain the output within a 5dB range for a 90dB range of receiver input signal.

The AM detector, which will work with a carrier level down to 100mV, contributes negligible distortion up to 90% modulation. The SSB demodulator is of single balanced form. The SL1623C is designed to operate at intermediate frequencies up to 30MHz. In addition it functions at frequencies up to 120MHz with some degradation in detection efficiencies. The encapsulation is a 14-lead DIL package and the device is designed to operate from a 5 voltage supply, over a temperature range of -30℃ to +70℃.

$6.11 each

ABSOLUTE MAXIMUM RATINGS

Storage temperature: -30℃ to +85℃
Ambient operating temperature: 0℃ to +80℃
Supply voltage: -0.5V to +12V
SP8640A & B 200 MHz

In frequency synthesis it is desirable to start programmable division at as high a frequency as possible, because this raises the comparison frequency and so improves the overall synthesizer performance.

The SP8840 series of UHF integrated circuits that can be logically programmed to divide by either 150 or 1, with input frequencies up to 350 MHz. The design of very fast fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesizers operating in the UHF band.

All inputs and outputs are ECL compatible throughout the temperature range and the clock inputs and programming inputs are ECL III compatible while the two complementary outputs are ECL II compatible to reduce power consumption in the output stage. ECL III output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two PE inputs. The counter will divide by 10 when either PE input is in the high state and by 11 when both inputs are in the low state. Both the PE inputs and the clock inputs have nominal 4 kΩ pull-down resistors to VEE (negative rail).

Fig. 1 Pin connections (top)

FEATURES

- Military and Industrial Variants
- 350 MHz Tolerance Frequency
- Low Power Consumption
- ECL Compatibility on All I/Os & O/Ps
- Low Propagation Delay
- True and Inverse Outputs

ABSOLUTE MAXIMUM RATINGS

Supply voltage \(V_{CC} - V_{EE} \) 8V
Input voltage \(V_{IN} \) (a.c.) Not greater than the supply voltage in use
Output current \(I_{OUT} \) 20mA
Max. junction temperature \(+150^\circ \text{C} \)
Storage temperature range \(-55^\circ \text{C} \) to \(+70^\circ \text{C} \)

$7.12 each

Gunn Effect Diode

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Power Output (mW)</th>
<th>Frequency Range (GHz)</th>
<th>Typical Operating Current (mA)</th>
<th>Typical Operating Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 03</td>
<td>10</td>
<td>8 - 12</td>
<td>110</td>
<td>7.5</td>
</tr>
</tbody>
</table>

$33.00 each

SW300
VESTIGIAL SIDEBAND FILTER

The SW300 is a two-channel Vestigial Sideband Filter which uses Surface Acoustic Wave (SAW) technology and is designed for use in TV Game circuits, or other applications where it is necessary to eliminate unwanted sideband radiation. Operation is specified for U.S. TV Channels 3 and 4 (61.25MHz and 67.25MHz respectively); the filter has one input for each channel and a common output intended to drive 75Ω loads. No tuning is required, and the device is supplied in a TO-8 type metal package for ease of shielding.

$9.44 each

FEATURES

- Surface Acoustic Wave (SAW) technology
- U.S. TV Channel 3 (61.25MHz) and 4 (67.25MHz) Operation
- Low-loss at Intended Fc
- High Unwanted Sideband Rejection

SL1626C

AUDI0 AMPLIFIER AND VOGAD

The SL1626C is a silicon integrated circuit combining the functions of amplifying with voice operated gain adjusting device (VOGAD). It is designed to accept signals from a low-sensitivity microphone and to provide an essentially constant output signal over a +6 dB range of input.

The encapsulation is an 8-lead plastic dual-in-line package and the device is designed to operate from a 6V +0.5 volt supply, over a temperature range of -30°C to +70°C.

$4.04 each

Fig. 1 Pin connections (top)

FEATURES

- Constant Output Signal
- Fast Attack
- Low-Power Consumption
- Simple Circuity

APPLICATIONS

- Audio AGC Systems
- Transmitter Overmodulation Prevention
- Speech Recording
- Level Setting Systems

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
- Input frequency 1kHz
- Supply voltage - 6V
- Temperature - 25°C
The SL6440 is a high level mixer for use in Radio Communications and in applications requiring linear mixer.

The SL6440A is packaged in 16 lead ceramic DIL (DG), and the SL6440C in 16 lead plastic DIL (DP).

FEATURES
- +3dBm Intercept Point
- Low Noise
- +15dBm Compression Point (1dB)
- -55 dB to 122 dB Temperature Range
- Programmable Performance
- Programmable Gain

SL6650C
LOW POWER IF/AF CIRCUITS FOR NARROW BAND FM

The SL6650 and SL6650C independently perform the IF/AF function of a low power FM receiver. Each carries complete IF/AF circuitry, pre-amplifier, limiting amplifier, quadrature detector, carrier squealch, DC volume control and audio output stage. The SL6650 and SL6650C differ in that the SL6650 features a power audio output stage (typically 250mV into 8Ω) whilst the SL6650C has a level audio output which drives high impedance loads (open collector output). With the SL6650 the demodulator and audio amplifier are metered by the squealch output. The SL6650 squealch output does not internally mute the demodulator, which means that it can be used for tone decoding. If, on the SL6650C, the squealch function is not required then, with some additional circuitry, (see Figure 8) a signal strength meter can be incorporated.

Electronic Emporium, Inc.
1614 West 12th Place
Tempe, Arizona 85281
602-968-3858
SPDT, BNC CONNECTORS, SIZE: RF COAX COIL, SIZE: RF COAX TYPE OVERALL SIZE: 1.375" Cube $39.99 each

SPDT, BNC Connectors, SIZE: 3" X 2" X 1.5" $59.99 each

RF COAX RELAY SP4T, SP3T, RF COAX RELAY SIZE: 3.5" X 2" X 3.75" RF COAX RELAY: DUAL COILS 26VDC, SPST NORMALLY CLOSED, BNC CONNECTORS and 6" COAX LEADS. 3 BRANDS AVAILABLE; state 1st choice! FXR, AMPHENOL, DANBURY-KNUDSON. #300-11451 $39.99 each

RF COAX RELAY SPOT, RF TRANSMISSION LINE SWITCH OVERALL SIZE: 2" X 2.75" X 1.25" $79.99 ea.

RF TRANSMISSTORS

2N2270 $.99
2N2857 1.55
2N2657JAN 2.55
2N3553 1.57
2N3553JAN 2.90
2N3866 1.30
2N386JAN 2.20
2N3925/ M9477 15.00
2N3948 5.00
2N3924/ 2270-3 3.35
2N3959 3.85
2N4072 1.80
2N4427 1.30
2N4577 1.00
2N4959 2.30
2N5070 18.40
2N5108 4.00
2N5109/ 107P80334 1.70
2N5583/2-2303/ SR5514 4.00
2N5160 3.45
2N5179 1.00
2N5589 6.65
2N5990 10.35
2N5991 13.80
2N5635 10.95
2N5636 12.00
2N5641/ 9.20
2N5643 15.50
2N5645 13.80
2N5946 19.00
2N5862 57.50
2N5942 40.00
2N5944 9.20
2N6080 9.20
2N6081 10.35
2N6082 11.50
2N6083 13.25
2N6084 15.00
2N6095 12.00
2N6096 15.50
2N6097 17.25
2N6368 28.75
MRF203 30.00
MRF227 4.00
MRF238 12.65
MRF425/ 247 34.50
MRF262 9.20
MRF425A 20.00
MRF421 36.80
MRF422 41.40
MRF422A 41.40
MRF426A 15.50
MRF449 12.65
MRF449A 12.65
MRF450 13.80
MRF452 17.25
MRF455-185- 282
WITH SLUG

MFR629
PAPER COIL FORMS
MWA330
MRA230
MWAllO
MRF809/SS2548/
MRF911
MRF660
A210 2.00
MRF517/
MRF479

CERAMIC COIL FORMS

#7 1.00
$1.00 each or
65
#4 1.50
CERAMIC

MWA320
MWA310
MWA120
BRF92A
BFW92
2SC2369K

MRF476
MRF455
RF TRANSISTORS

4CX250K/
4CX250B/
4-400Al
6775 95.00
14V 40V

3/16" x
dia. x
3/16" x
1/4"
3/16"

VARADYNE CHIP RESISTORS

$19.90
6.00
1/8" round $5.99
each
Sprague #68010688/
53050-28, 150mfd @
450VDC, Size: 3 1/8" high x
1/4" round $5.99
each

#225-450 by CDE
225mfd @ 450VDC,
Size: 3 5/8" long X
1" round $5.99
each

Sprague #68010688/
53050-28, 150mfd @
450VDC, Size: 3 1/8" high x
1/4" round $5.99
each

Mallory #01069S,
100mfd @ 350VDC
Size: 3" long x
1 1/16" wide $2.00 each

Mallory #11380919-P1
25mfd @ 200VDC
Size: 1 3/16" x
5/8" height $0.49 each

Mallory #113A3243P3
20mfd @ 350VDC
Size: 1 5/8" x 5/8" round

$7.99 each

$4.49
Phase Detector MC4024P

TO-3 Case Transistor Pair
NPN & PNP Audio Power
2N3055 & 2N2955 $2.00/pair

DPDT Slide Switch 5/$1.00

Black Rubber Feet 1" round x 1/4" high 12/$1.00

Spacer Assortment of all Types 25/$1.00

Variable Trimmer Cap Special of all Types 20/$2.00

USED FEATHER FANS 115VAC
7" Dia. x 2" $7.99

BUSS #2448 Fuse Holder for JAG
type 4/$1.00

Ferrite Beads 12/79¢

MALLORY SOLID STAFF SIGNAL
SONALERTS#SC-12 Freq. (Hz)
3900, 50ft. DC voltage min. 8,
max. 15, operating current in MA,
27 Ohm 1 K

3500, operating current in MA,
120 Ohm 680 Ohm

807 5.00
27 Ohm 1 K

99¢ each

82 Ohm 1.2K or 10/$7.50

100 Ohm 2.2K

120 Ohm 3.9K

150 Ohm 4.7K

390 Ohm 5.6K

550 Ohm

VOLTAGE CONTROLLED MULTIVIBRATOR
MC4044P $4.49

INSTRUMENT CASE with FOAM INSERTS
removable for easy customized tool

ATTACHE TOOL CASE

OMNI SPECTRA RF CONNECTOR #2007-7985-00 0SM 221-2
SMA MALE $3.99 each

INSTRUMENT CASE with FOAM INSERTS removable for easy customized tool

ATTACHE TOOL CASE

PORTABLE WATT METER
4/5" x 8.5" $4.99 each

1.00 each or
10/$5.00

10 Watt Zeners

10V 36V
11V 39V
14V 40V
20V 56V
22V 62V
24V 6W
27V 100V

33V

$1.99 each

METAL FRAME with KEYLOCKS

102 August 1983

Tell 'em you saw it in HAM RADIO!
Power Supply
- **300mA**

Power Amplifier
- **726 ea**
- **CA3036**
- **TLO-22CP Low Power Dual Amps**
- **Matched Low Noise Transistors**
 - **$3.38**
 - **$6.99 each**

Transformers
- **Tria1 F-23u Pri. 115VAC**
- **output 10VCT @ 7AMPS**
 - **$12.99 each**
- **Prem Enterprises, Inc.**
 - **#2E12#12A2A2AAA Pri. 120VAC**
 - **output 24VCT @ 230MA**
 - **$2.99 each**
- **HATA #30463835 Pri. 117VAC**
 - **output 25.2VCT @ 2.8AMPS**
 - **$6.99 each**
- **Electro Vector #E30554**
 - **input 110VAC**
 - **output dual 17V @ 1Amp**
 - **$5.99 each**
- **Schott Corp. #67069940**
 - **input 117VAC**
 - **output 26.8VCT @ 660MA**
 - **26.8VCT @ 660MA**
 - **21.7VCT @ 1.1AMP**
 - **$9.99 each**

Solid Carbide Drill Bits
- **New & Used in Mixed Sizes**
 - **$1.25 each or $10/$9.00**

Relays
- **AMF/Potter Brumfield**
 - **#R10-E4274-1, 1.8k Ohms**
 - **24VDC Coil, 4PDT $2.99**
- **Gould/Allied Control**
 - **#T351-CC-CC, 24VDC Coil, 680 Ohms, 4PDT $2.99**
- **Omron **
 - **#MHE202PG-UA**
 - **12VDC Coil, 200 Ohm DPDT, $2.99 each**
- **RBM Controls #93-6911676-1330004, 12VDC, 100 Ohm coil, Cont. Rating, 10 Amp, 125VAC $4.99 each**
- **RBM Controls #93-599606-14628A, 12VDC Coil, 12 Amp DC Coil, DPDT, good for RF Switching, 5 Amps, Cont. rating @ 125VAC, wet and dry relay $9.99 each**
- **SN75427 Display Driver**
 - **Variable to 90VDC $1.00 each**
- **TELONIC ATTENUATOR**
 - **Model TC50A, has BNC connectors for input and output, 0-lbd, 50 Ohm $39.99 each**
 - **50 WATT ZENERS**
 - **1N3313B S 14VDC $3.00**
 - **1N4554 10% 6-2VDC 2.50**
- **ALCO PROXIMITY SWITCH**
 - **Magnetic Reed Type RS-11 N.O. Type $2.59 each**
- **ERIE #1170-016**
 - **5000pf, 200VDC MINI ATTENUATION; 50 db from 200 MHz to 10GHz $2.01 each**
- **ERIE #1201-190**
 - **5500pf, 200VDC Mini ATTENUATION; 50 db from 100 MHz to 10 GHz $2.01 each**
- **RFI POWER FILTERS**
 - **Corcom #FB543**
 - **1Amp, 115V/250VAC, 50-400Hz $2.99**
 - **Cornell Dubilier Elect.**
 - **NF10970-6, 10 Amps @ 250VAC, 50/60Hz, has 3 connector 16AWG**
 - **power cord 15 ft. long $9.99 each**
 - **Corcom #1084, 10 Amps**
 - **115/250VAC, 50-400Hz $4.99 each**
 - **R.2-600010, 10 Amps**
 - **125/250VAC, 50-400Hz $4.99 each**

Variable Capacitors
- **ARCO 423**
 - **7 to 100pf $1.00 each or 2/$1.75**
- **ARCO PC464**
 - **25 to 280pf $1.00 each or 2/$1.50**
- **ARCO PC402**
 - **1.5 to 20pf $1.00 each or 2/$1.50**
- **COTOZ1/10**
 - **.7 to 46pf 79¢ each or 2/$1.10**
- **DUAL VARIABLE CAPACITORS**
 - **095-015 Atlas 1.2-30pf & 1.2-15pf $3.99**
 - **075-013 Atlas 9-55pf Dual $3.99**
 - **075-012 Atlas 1.1-175pf Dual $3.99**

RFI Power Filters
- **from 100 MHz to 10G**
 - **$2.01 each**
- **5500pf, 600V DC$2.99**

IC Sockets
- **Wire Wrap**
 - **10 pin 0.35**
 - **14 pin 0.35**
 - **16 pin 0.40**
 - **40 pin 0.99**

Transformer Coils
- **R.J.600D10, 300VAC**
 - **$5.00 each**
- **RBM Controls**
 - **#R10-E4274-1, 1.8k Ohms**
 - **24VDC Coil, 4PDT $2.99**

C heterogeneous filters
- **Murata CF260H**
 - **260KHz $7.50**
 - **CPU455H**
 - **455KHz 2.90**
 - **SFB455D**
 - **455KHz 2.50**
- **SFD455D**
 - **455KHz 5.00**
 - **SFE10.7MA Orange**
 - **10.7MHz 2.50**
 - **CFW455H6**
 - **455KHz 2.90**
 - **SFE10.7MA Black**
 - **10.7MHz 2.50**
 - **SFE10.7MA Red**
 - **10.7MHz 2.50**
 - **SFE10.7MA Blue**
 - **10.7MHz 2.50**
 - **SFE10.7MA White**
 - **10.7MHz 2.50**
- **Matsushita ECF-L455K41B**
 - **455KHz 2.50**
- **ECF-L455K4082**
 - **455KHz 2.50**
- **PTI 1479**
 - **10.7MHz 20.00**
Silicon Power Transistors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VCEO</th>
<th>Current</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU208</td>
<td>1500</td>
<td>5 Amps</td>
<td>NPN</td>
<td>$3.00</td>
</tr>
<tr>
<td>2N6307</td>
<td>300</td>
<td>5 Amps</td>
<td>NPN</td>
<td>2.00</td>
</tr>
<tr>
<td>MJ10005</td>
<td>400</td>
<td>20 Amps</td>
<td>NPN</td>
<td>6.00</td>
</tr>
<tr>
<td>MJ10006</td>
<td>350</td>
<td>10 Amps</td>
<td>NPN</td>
<td>4.00</td>
</tr>
<tr>
<td>2N3055</td>
<td>60</td>
<td>15 Amps</td>
<td>NPN</td>
<td>0.88</td>
</tr>
<tr>
<td>2N5886</td>
<td>80</td>
<td>25 Amps</td>
<td>NPN</td>
<td>2.00</td>
</tr>
<tr>
<td>2N5669</td>
<td>40</td>
<td>12 Amps</td>
<td>NPN</td>
<td>0.88</td>
</tr>
<tr>
<td>MJ2955</td>
<td>60</td>
<td>15 Amps</td>
<td>PNP</td>
<td>1.25</td>
</tr>
<tr>
<td>2N5102</td>
<td>30</td>
<td>30 Amps</td>
<td>PNP</td>
<td>2.00</td>
</tr>
<tr>
<td>MJ1012</td>
<td>250</td>
<td>10 Amps</td>
<td>PNP</td>
<td>2.00</td>
</tr>
<tr>
<td>2N5880</td>
<td>80</td>
<td>15 Amps</td>
<td>PNP</td>
<td>2.00</td>
</tr>
<tr>
<td>MJE4000</td>
<td>60</td>
<td>4 Amps</td>
<td>NPN</td>
<td>2.00</td>
</tr>
<tr>
<td>2N5240</td>
<td>350</td>
<td>6 Amps</td>
<td>NPN</td>
<td>1.25</td>
</tr>
<tr>
<td>2N4498</td>
<td>40</td>
<td>4 Amps</td>
<td>NPN</td>
<td>1.25</td>
</tr>
<tr>
<td>2N3767</td>
<td>80</td>
<td>4 Amps</td>
<td>NPN</td>
<td>1.25</td>
</tr>
<tr>
<td>2N3713</td>
<td>80</td>
<td>10 Amps</td>
<td>NPN</td>
<td>1.25</td>
</tr>
<tr>
<td>2N3235</td>
<td>60</td>
<td>7.5 Amps</td>
<td>NPN</td>
<td>1.25</td>
</tr>
<tr>
<td>2N3442</td>
<td>140</td>
<td>10 Amps</td>
<td>NPN</td>
<td>1.25</td>
</tr>
<tr>
<td>MJE402</td>
<td>80</td>
<td>4 Amps</td>
<td>NPN</td>
<td>1.00</td>
</tr>
<tr>
<td>2N6447</td>
<td>60</td>
<td>15 Amps</td>
<td>NPN</td>
<td>2.00</td>
</tr>
<tr>
<td>2N301</td>
<td>VCB 40</td>
<td>2 Amps</td>
<td>PNP</td>
<td>3.99</td>
</tr>
<tr>
<td>2N2140</td>
<td>VCB 75</td>
<td>2 Amps</td>
<td>PNP</td>
<td>6.99</td>
</tr>
<tr>
<td>2N1099</td>
<td>VCB 80</td>
<td>12 Amps</td>
<td>PNP</td>
<td>1.50</td>
</tr>
<tr>
<td>PDM10K40/2N6057</td>
<td>VCE 60</td>
<td>12 Amps</td>
<td>NPN</td>
<td>1.00</td>
</tr>
<tr>
<td>PDM12K40/M1000</td>
<td>VCE 60</td>
<td>8 Amps</td>
<td>NPN</td>
<td>.75</td>
</tr>
</tbody>
</table>

Linear ICs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM301H</td>
<td>Operational Amplifier</td>
<td>$1.25</td>
</tr>
<tr>
<td>LM301N</td>
<td>Quad Operational Amplifier</td>
<td>.48</td>
</tr>
<tr>
<td>LM324N</td>
<td>Quad Operational Amplifier</td>
<td>.71</td>
</tr>
<tr>
<td>LM555N</td>
<td>Timer</td>
<td>.33</td>
</tr>
<tr>
<td>LM339</td>
<td>Quad Comparator</td>
<td>.69</td>
</tr>
<tr>
<td>LM380N-14</td>
<td>Audio Power Amplifier</td>
<td>.90</td>
</tr>
<tr>
<td>LM1889N</td>
<td>TV Video Modulator</td>
<td>3.20</td>
</tr>
<tr>
<td>CA3028H/AV</td>
<td>Communications Amplifier</td>
<td>1.90</td>
</tr>
<tr>
<td>CA3130E</td>
<td>FET Operational Amplifier</td>
<td>1.50</td>
</tr>
<tr>
<td>MC1306P</td>
<td>1 Watt Audio Amplifier</td>
<td>1.30</td>
</tr>
<tr>
<td>MC1330P</td>
<td>Low Level Video Detector</td>
<td>1.50</td>
</tr>
<tr>
<td>MC1350P</td>
<td>IF Amplifier</td>
<td>.98</td>
</tr>
<tr>
<td>MC1356P</td>
<td>IF Amplifier, Limiter, FM Detector,</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>Electronic Attenuator</td>
<td></td>
</tr>
<tr>
<td>MC1590G</td>
<td>RF/IF Audio Amplifier</td>
<td>6.99</td>
</tr>
<tr>
<td>MC1723P</td>
<td>Voltage Regulator</td>
<td>.62</td>
</tr>
<tr>
<td>MC1709P</td>
<td>14 pin Operational Amplifier</td>
<td>.73</td>
</tr>
<tr>
<td>MC1741</td>
<td>8 pin Operational Amplifier</td>
<td>.56</td>
</tr>
<tr>
<td>MC3302P</td>
<td>Quadr Comparator</td>
<td>.80</td>
</tr>
</tbody>
</table>

Voltage Regulators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805/LM340T-5</td>
<td>5 Volt</td>
<td>$0.69</td>
</tr>
<tr>
<td>7808/LM340T-8</td>
<td>8 Volt</td>
<td>.69</td>
</tr>
<tr>
<td>7812/LM340T-12</td>
<td>12 Volt</td>
<td>.69</td>
</tr>
<tr>
<td>7815/LM340T-15</td>
<td>15 Volt</td>
<td>.69</td>
</tr>
<tr>
<td>78M05</td>
<td>8, 5 volt</td>
<td>.33</td>
</tr>
<tr>
<td>7912/LM320T-12</td>
<td>12 Volt</td>
<td>.79</td>
</tr>
<tr>
<td>79M05</td>
<td>8, 5 volt</td>
<td>.49</td>
</tr>
<tr>
<td>79M15</td>
<td>15 Volt</td>
<td>.49</td>
</tr>
<tr>
<td>LM317T</td>
<td>1.2 to 37 Volt</td>
<td>2.00</td>
</tr>
<tr>
<td>78H05C</td>
<td>5 Amp, 5 Volt</td>
<td>5.00</td>
</tr>
<tr>
<td>78H12C</td>
<td>5 Amp, 12 Volt</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Programmable Power Switch Amp

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3130T WIDEBAND AMPLIFIER</td>
<td>$2.65</td>
</tr>
<tr>
<td>CA3130E Wideband Amplifier</td>
<td>$1.50</td>
</tr>
<tr>
<td>CA3160T WIDEBAND Amplifier</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

EIMAC 4CW600F

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF454/450A</td>
<td>30Watts</td>
<td>$2.65</td>
</tr>
<tr>
<td>MRF454/450B</td>
<td>30Watts</td>
<td>14.37</td>
</tr>
<tr>
<td>MRF454/450C</td>
<td>30Watts</td>
<td>20.12</td>
</tr>
<tr>
<td>MRF455/A</td>
<td>30Watts</td>
<td>16.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>3 Amps</td>
<td>9.77</td>
</tr>
<tr>
<td>2N5590</td>
<td>10 Amps</td>
<td>10.92</td>
</tr>
<tr>
<td>2N5591</td>
<td>25 Amps</td>
<td>13.80</td>
</tr>
<tr>
<td>2N6081</td>
<td>15 Amps</td>
<td>12.07</td>
</tr>
<tr>
<td>2N6082</td>
<td>25 Amps</td>
<td>12.65</td>
</tr>
<tr>
<td>2N6083</td>
<td>175 Amps</td>
<td>13.00</td>
</tr>
<tr>
<td>2N6084</td>
<td>40 Amps</td>
<td>15.00</td>
</tr>
<tr>
<td>MRF901</td>
<td>Microwave RF Amp</td>
<td>2.00</td>
</tr>
<tr>
<td>BFR91</td>
<td>Microwave RF</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Ferrite Cores and Beads

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T20-12</td>
<td>33e</td>
<td>T37-6</td>
</tr>
<tr>
<td>T25-6</td>
<td>33e</td>
<td>T37-10</td>
</tr>
<tr>
<td>T30-2</td>
<td>33e</td>
<td>T44-6</td>
</tr>
<tr>
<td>T30-6</td>
<td>33e</td>
<td>T50-6</td>
</tr>
<tr>
<td>T30-12</td>
<td>33e</td>
<td>T50-10</td>
</tr>
<tr>
<td>T37-2</td>
<td>33e</td>
<td>T106-26</td>
</tr>
<tr>
<td>#43</td>
<td>Shield Beads</td>
<td>4/$1.00</td>
</tr>
<tr>
<td>#61</td>
<td>Toroid</td>
<td>3/$1.00</td>
</tr>
<tr>
<td>#43</td>
<td>Balun</td>
<td>10/$1.00</td>
</tr>
<tr>
<td>#61</td>
<td>Balun</td>
<td>8/$1.00</td>
</tr>
<tr>
<td>#61</td>
<td>Balun</td>
<td>6/$1.00</td>
</tr>
<tr>
<td>#61</td>
<td>Beads</td>
<td>4/$1.00</td>
</tr>
<tr>
<td>Ferrite Rod</td>
<td>3/8" x 5/16"</td>
<td>3.99</td>
</tr>
</tbody>
</table>

High Voltage Diodes

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>#SMRF20K</td>
<td>350V per diode, 350mA per diode, P.F.</td>
<td>$6.99</td>
</tr>
<tr>
<td>#SMRF35K</td>
<td>3V per diode, 350mA per diode, P.F.</td>
<td>$6.99</td>
</tr>
<tr>
<td>#SMRF50K</td>
<td>5V per diode, 350mA per diode, P.F.</td>
<td>$6.99</td>
</tr>
<tr>
<td>#SMRF75K</td>
<td>7.5V per diode, 350mA per diode, P.F.</td>
<td>$6.99</td>
</tr>
<tr>
<td>#SMRF100K</td>
<td>10V per diode, 350mA per diode, P.F.</td>
<td>$6.99</td>
</tr>
<tr>
<td>#SMRF200K</td>
<td>20V per diode, 350mA per diode, P.F.</td>
<td>$6.99</td>
</tr>
</tbody>
</table>

Semtech

- #SMRF20K, 1/1" long x 1/16", 10,000 volts, 20mA, $4.00 each
- Varo 1/1" long, 1/16" long, 20,000 volts, 20mA, $4.00 each
- Varo 2" long, 20,000 volts, $1.99 each
A/D Converter, 4 Bit
Model T16-1
TRANSFORMERS
MINI-CIRCUIT RF
MOTOROLA
Monolithic Video
TRW
Type 2
Ratio 16 Ohms,
TRANSFORMERS
TRIAC DRIVER OUTPUT
$1
TRANSISTOR "Mini Mold
Detector Diode
$3.95

TRX TD0121J
Monolithic Video
A/D Converter, 4 Bit
30 MPS $30.00 each
MINI-CIRCUIT RF
TRANSFORMERS
Model T16-1,
Ratio 16 Ohms,
Frequency .3-120MHz
$3.95
Model TMS-5T
Ratio 5 Ohms
Frequency .3-300MHz
$6.75
MICROWAVE ASSOCIATES Inc.
#MA4815 Point Contact
Detector Diode
Test Freq. .1GHz
$1.00 each
MOTOROLA MOC3011
TRIAC DRIVER OUTPUT
LED Trigger Current 5mA
Peak Blocking Voltage 250
Isolation Voltage 7500 V
$1.00 each
GLOBE RECHARGEABLE GEL/CELL BATTERY #GC-280
2VDC @ 8 Amp-HR
3 3/4" high x 2" deep
2" wide NEW $5.99 each or
6/$27.00
#GC1260 12VDC @ 6 Amp-
HR. 3 3/4" high x
3 1/8" deep x 6" long
NEW $29.99 each
POTTER & BRUMFIELD/AMF
RELAY DPDT #KUP7015
28VDC Coil, 1 HP
$120VAC or 10 Amps @
240 VAC. Size: 1 1/2" x
2" x 1/2" $3.99 each
SIGMA STEPPING MOTOR
#42-22350-28175
(Similar to Superior
MO-62 Series) 4VDC,
1.8° or 1.8° per step.
120oz/in. holding
torque. $31.99 each
NEW AVANTEK GPD403
General Purpose Thin-
Film Amplifier Modules
Four pin, TO-12 package
5-400MHz, 9db gain,
7.5db noise, 20db
reverse isolation,
15db power output
$19.50 each
HIGH CURRENT 25amp SCR
Stud Mount
2N6627 400 Volt $2.97
2N690 600 Volt $5.03
NARROW BAND CRYSTAL
FILTER 10.7MHz
Type 2194F
Input & Output
Impedance 7500 Ohms
$4.95 each
NEW & USED FANS
115V
4/" x 1 1/4/” x 1”
NEW $8.00
USED/TESTED $5.00
NICKEL CADMIUM 12VDC
PACK, GE AA BATTERIES
Pack of Ten
USED, AS IS $3.99/pack
NICKEL CADMIUM 12VDC
PACK, GE C BATTERIES
Pack of Ten
USED, AS IS $5.99/pack
HIGH SPEED SWITCHING
DIODES IN4148/IN914
$0.10 or 120/$3.00
VOLTAGE REGULATORS
7805 +5V 4/1.100
7809 +9V 4/1.100
7815 +15V 4/1.100
7812/7915/7905ML205-2
3V, 2V, 1V $0.69
STUD TRIACS T6410
2Amps, 800VDC
Case 263-03 $8.99 each
MAC15-6 TRIAC
15Amps, 400V, TO-220
$1.29 each
2N4442 SCR Case 90-05
8Amps @ 200V $1.25
MCR819-3 SCR STUD
20Amps, 1000V
Case 175-02 $3.00
GENERAL INSTRUMENTS
SOLID STATE 6X4/1X1R same
as 6X4 tube but solid
state $3.99 each
MAGNACRAFT W120X-14 SPDT
12VDC Coil @ 100 Ohms
100 Watts @ 0-470 MHz
$29.24 each
NEC NM2222A same as MOT
1M822222, 802, small signal
TRANSISTOR NPN VDE30
VEB 5 100-300ME
200MHz min. .79 each
TEN TURN POTS removed
from equipment. 1/4 shaft
1 long. Model 534 Spectral
2K Ohm, type 8400/203A
TRW 2K Ohm, model 532
Spectral 100K Ohm, type
8400/203A TRW 100K Ohm
$2.99 each
TURNS COUNTING DIALS FOR
TEN TURN POTS $4.99 each
E. F. JOHNSON TUBE SOCKETS
AND CAPS #124-0311-100 for
8072 etc. $10.99
#124-0113-001 and #124-
0113-021 capacitors for
sockets #124-0117-001
$12.99 each
UNDERCOIL CAPS
8.2pf
10pf
12pf
13pf
15pf
$1.00 each or
6/$2.99 each
MOTOROLA TP749, 1Amp NPN
POWER TRANSISTOR
VCO 350, VCB 450, VBI 5,
40 Watts, TO-220 Case
$1.00 each or 10/$7.50
MOTOROLA RF AMP MODULES
#44-4001-002 Similar to
MMAD101-2. 1.5kWatts out-
put, .047 Watts input
440-512MHz. 15 db gain
7.5VDC $39.99
1.1VDC Lamps
3/16” round $10.00
MOTOROLA SP1801 PNP
POWER TRANSISTOR
SP1801 will replace the
2N1529 thru 2N1560 in
most cases. $4.95 each
or 10/$35.00
BUSS FUSE #HB035
35 Amp $1.99 each
MRSTO RECTIFIER
3 Amp @ 1000 Volt
10/$2.99 $100/$20.00
1000/$150.00
1 WATT ZENER DIODES
IN4728 thru IN4755
Four of same part number
$1.00
TO-220 MICR INSULATOR
$20/$1.00
HIGH VOLTAGE CAPACITOR
Plastic Capacitors Inc.
#L80B-203YA
.02 mfd @ 8000 VDC
Size 2 1/2" x 1 1/2" $2.99 each
HYDRO-PRODUCTS MODEL RP-5
UNDERWATER PAN & TILT UNIT
FEATURES:
Positions payload to vir-
tually any azimuth and
elevation angle desired
by surface operator.
Develops 30 foot-pounds
of torque for overcoming
current force and un-
balanced loads.
Accomodates payloads up
to 90KG (200lbs.).
Operates to depths of
12,20000 (40,000 ft.)
one in any underwater
applications. $2500.00 ea.

MOTOROLA MD3251 DUAL
PNP SILICON ANNULAR
TRANSISTOR. Especially
designed for low-level,
differential amplifiers
VCO 50, VCO 40, VBE 5,
IC 50masc, 250MHz,
Case 32 $4.50 each
2N2894 PNP SILICON
ANNULAR TRANSISTOR,
designed for low-level,
high speed switching,
VCO 12, VBE 12, VBE 4,
IC 200masc, 400MHz,
TO-18 Case. House
numbered $1.00 each
MOTOROLA MMT3960 MICRO
MINIATURE NPN SILICON
TRANSISTOR, high speed
switching, designed for
high speed current mode
logic switching,
2200MHz, VCO 8, VBE 4,
VBE 3 $3.00 each
TO-3 GERMANIUM POWER
TRANSISTOR IR TR-01A/
EGC121, PNP, AF power
output, BVCBO 65,
BVECO 45, BVEBO 15,
IC Amps 7.0, 30 Watts,
120KHz, gain 80 $1.29 each
EIMAC PLATE CAPS
HR Type, 1/4" high X
11/16" diameter, 3/8" I.D.
$6.99 each or 10/$40.00
CERAMIC PLATE CAPS
Type 1 for 3/8" plate cap
Type 2 for 5/8" plate cap
$1.99 each
CA3183P NPN GENERAL
PURPOSE LINEAR ARRAYS
$1.35
MICROWAVE ASSOCIATES, INC.
MA41482 & MA41482R, 70GHz
to 12GHz, similar to
IN21 & IN23 series
$2.99 each

More Details? CHECK — OFF Page 108
DIPPED SILVER MICA CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10pf</td>
<td>500V</td>
<td>30pf 300V</td>
</tr>
<tr>
<td>12pf</td>
<td>500V</td>
<td>100pf 300V</td>
</tr>
<tr>
<td>15pf</td>
<td>500V</td>
<td>150pf 500V</td>
</tr>
<tr>
<td>18pf</td>
<td>500V</td>
<td>180pf 500V</td>
</tr>
<tr>
<td>20pf</td>
<td>500V</td>
<td>200pf 500V</td>
</tr>
<tr>
<td>22pf</td>
<td>500V</td>
<td>210pf 500V</td>
</tr>
<tr>
<td>24pf</td>
<td>500V</td>
<td>250pf 500V</td>
</tr>
<tr>
<td>26pf</td>
<td>500V</td>
<td>300pf 500V</td>
</tr>
<tr>
<td>28pf</td>
<td>500V</td>
<td>360pf 500V</td>
</tr>
<tr>
<td>30pf</td>
<td>500V</td>
<td>400pf 500V</td>
</tr>
<tr>
<td>33pf</td>
<td>500V</td>
<td>470pf 500V</td>
</tr>
<tr>
<td>36pf</td>
<td>500V</td>
<td>500pf 500V</td>
</tr>
<tr>
<td>39pf</td>
<td>500V</td>
<td>470pf 500V</td>
</tr>
<tr>
<td>42pf</td>
<td>500V</td>
<td>500pf 500V</td>
</tr>
<tr>
<td>47pf</td>
<td>500V</td>
<td>500pf 500V</td>
</tr>
</tbody>
</table>

HIGH VOLTAGE DOOR KNOB CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100pf</td>
<td>500V</td>
<td>30pf 300V</td>
</tr>
<tr>
<td>120pf</td>
<td>500V</td>
<td>100pf 300V</td>
</tr>
<tr>
<td>150pf</td>
<td>500V</td>
<td>150pf 500V</td>
</tr>
<tr>
<td>180pf</td>
<td>500V</td>
<td>180pf 500V</td>
</tr>
<tr>
<td>200pf</td>
<td>500V</td>
<td>200pf 500V</td>
</tr>
<tr>
<td>220pf</td>
<td>500V</td>
<td>210pf 500V</td>
</tr>
<tr>
<td>240pf</td>
<td>500V</td>
<td>250pf 500V</td>
</tr>
<tr>
<td>260pf</td>
<td>500V</td>
<td>300pf 500V</td>
</tr>
<tr>
<td>280pf</td>
<td>500V</td>
<td>360pf 500V</td>
</tr>
<tr>
<td>300pf</td>
<td>500V</td>
<td>400pf 500V</td>
</tr>
<tr>
<td>320pf</td>
<td>500V</td>
<td>470pf 500V</td>
</tr>
<tr>
<td>350pf</td>
<td>500V</td>
<td>500pf 500V</td>
</tr>
<tr>
<td>380pf</td>
<td>500V</td>
<td>500pf 500V</td>
</tr>
<tr>
<td>400pf</td>
<td>500V</td>
<td>500pf 500V</td>
</tr>
<tr>
<td>430pf</td>
<td>500V</td>
<td>470pf 500V</td>
</tr>
</tbody>
</table>

GIMMICK CAPACITORS (Axial Lead Construction like a Resistor)

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2pf</td>
<td>500VDC</td>
<td>1.2pf 500VDC</td>
</tr>
<tr>
<td>0.16pf</td>
<td>100V</td>
<td>1.5pf</td>
</tr>
<tr>
<td>0.22pf</td>
<td>250V</td>
<td>2.4pf</td>
</tr>
<tr>
<td>0.33pf</td>
<td>1000V</td>
<td>3.3pf</td>
</tr>
<tr>
<td>0.68pf</td>
<td>5000V</td>
<td>3.6pf</td>
</tr>
</tbody>
</table>

Silicon Rectifiers

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN4001</td>
<td>50V</td>
<td>1Amp</td>
</tr>
<tr>
<td>TN4002</td>
<td>100V</td>
<td>1Amp</td>
</tr>
<tr>
<td>TN4003</td>
<td>200V</td>
<td>1Amp</td>
</tr>
<tr>
<td>TN4004</td>
<td>300V</td>
<td>1Amp</td>
</tr>
<tr>
<td>TN4005</td>
<td>500V</td>
<td>1Amp</td>
</tr>
<tr>
<td>TN4006</td>
<td>800V</td>
<td>1Amp</td>
</tr>
<tr>
<td>TN4007</td>
<td>1000V</td>
<td>1Amp</td>
</tr>
</tbody>
</table>

Field Effect Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Gain</th>
<th>Power</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N4416</td>
<td>400MHz</td>
<td>4</td>
<td>4.5</td>
<td>300W</td>
</tr>
<tr>
<td>MPF102</td>
<td>100</td>
<td>16</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>3N140</td>
<td>200</td>
<td>4</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>3N128</td>
<td>200</td>
<td>4</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>J-310</td>
<td>VHF/UHF</td>
<td>4</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>40673</td>
<td>MOSFET</td>
<td>4</td>
<td>2.80</td>
<td></td>
</tr>
</tbody>
</table>

Rockwell International/ Collins #526-9963-040
Disc-Wire Mechanical Filter
Center Frequency 3.4/3.0 Typical P/B (KHz/dB)
Typical stopband 6.0/60 (KHz/dB)
Source & Load 5K - Ohms
Res. Cap. (pf) 360 $39.99 NEW

EF JOHNSON COMPANY TUBE SOCKET
#123-0210-001
Used for 811A, 8005, 3828, etc.
$6.99 each

GE#H13A1 PHOTO COUPLER/ INTERRUPTER
Output if 200µa min. to 200µa max. BXECO 30V
$1.00 each

AMPHENOL COAXIAL RELAY
#327-11506-3, 28VDC Coil
BNC Connectors, 0 to 1.5GHz
$49.99 each

AMPHENOL COAXIAL RELAY
#323-11506-3, 28VDC Coil
1P4T BNC Connectors, 0 to 200 Watts
RF, 2K, Peak, 0 to 1.5 GHz
$109.99 each

AMPHENOL #360-11895A-1
1P2T, 0 to 6 GHz, 0 to 500MHz
500 Watts CW, 5K Peak, 500 to 3 GHz 100 Watts CW, 3KX peak, 3 GHz to 6 GHz 50 watts CW, 2K peak, BNC Connectors
15VDC Coil $109.99 each

FXR/AMPHENOL #300-11540
0 to 1.5 GHz, 100 watts CW, 1K peak, BNC Connectors 26VDC $39.99
CRYSTALS (Odd) Each value $2.00 each

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.68960</td>
<td>0.565</td>
</tr>
<tr>
<td>3.579545</td>
<td>9.575</td>
</tr>
<tr>
<td>4.8384</td>
<td>9.585</td>
</tr>
<tr>
<td>7.4625</td>
<td>10.180</td>
</tr>
<tr>
<td>7.4725</td>
<td>10.040</td>
</tr>
<tr>
<td>7.4825</td>
<td>10.100</td>
</tr>
<tr>
<td>7.4925</td>
<td>10.020</td>
</tr>
<tr>
<td>7.5025</td>
<td>10.010</td>
</tr>
<tr>
<td>7.8025</td>
<td>10.130</td>
</tr>
<tr>
<td>9.545</td>
<td>10.160</td>
</tr>
<tr>
<td>9.555</td>
<td>10.170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRYSTALS (Even)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>12.6</td>
</tr>
<tr>
<td>17.015</td>
</tr>
<tr>
<td>17.065</td>
</tr>
<tr>
<td>17.115</td>
</tr>
<tr>
<td>17.165</td>
</tr>
<tr>
<td>17.215</td>
</tr>
<tr>
<td>17.265</td>
</tr>
<tr>
<td>17.315</td>
</tr>
<tr>
<td>17.365</td>
</tr>
<tr>
<td>24.8832</td>
</tr>
</tbody>
</table>

R.F. CONNECTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO-239</td>
<td>UHF Female</td>
</tr>
<tr>
<td>PL-259</td>
<td>UHF Male</td>
</tr>
<tr>
<td>2-330830-2</td>
<td>UHF Male Crimp</td>
</tr>
<tr>
<td>225398-9</td>
<td>BNC Female Crimp</td>
</tr>
<tr>
<td>UG273/U</td>
<td>BNC Female to UHF Male</td>
</tr>
<tr>
<td>UG914/U</td>
<td>BNC Female to BNC Female</td>
</tr>
<tr>
<td>UG1094/U</td>
<td>BNC Female</td>
</tr>
<tr>
<td>UG260/U</td>
<td>BNC Male</td>
</tr>
<tr>
<td>UG175/U</td>
<td>ADP</td>
</tr>
<tr>
<td>M23329/3-05</td>
<td>BNC Female Crimp</td>
</tr>
</tbody>
</table>

NEW EX-CELL-O CORPORATION, Remex Division 5½"
Model RFD480, DISK DRIVE, 2 3/16" Wide,
5 7/8" High, 8" Deep $299.99 each

COMMUNICATION EQUIPMENT & ENGINEERING CO.
#C-152-Al Loading Coil, Type C656
66MH $6.99 each

Check, money order, or MasterCard, and VISA welcome. No personal checks or certified personal checks for foreign countries accepted. Money order or cashiers check in U.S. funds only. Letters of credit are not acceptable. Minimum shipping is $2.70 plus $6.00 for insurance. Please allow extra shipping charges for heavy or long items. C.O.D. for cash only. All parts returned due to customer error or decision will be subject to a 15% restock charge. If we are out of an item ordered, we will try to replace it with an equal or better part unless you specify not to, or we will back order the item, or refund your money. PRICES SUBJECT TO CHANGE WITHOUT NOTICE. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale. USE OUR TOLL FREE NUMBER FOR CHARGE ORDERS ONLY FOR $10.00 OR MORE, NOT INCLUDING SHIPPING CHARGES. 800-528-3611. Requests for information must include a stamped, self addressed envelope. Return authorization required for exchange, credit or refund. No claims of any kind will be accepted after 60 days. MINIMUM ORDER $10.00, NOT INCLUDING SHIPPING CHARGES.

SEMICONDUCTORS SURPLUS

2822 North 32nd Street/Unit #1 Phoenix, Arizona 85018
800-528 - 3611
602-956 - 9423
Advertiser's V check-off

...for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 234

Ace Comm. 101
AEA 308
AEC 102
Advanced Receiver Research 163
Alden Electronics 104, 301
Alpha Delta 106
A. E. E 107
Aluma Tower 108
Amateur Wholesale 109
ARRL 110
ATV Magazine 111
Audio Forum 112
August 203
BMG Eng. 113
Barker & Williamson 114
Barry 5
Bash Ed. Serv. 115
Bauman Sales 116
Bial 5
Bivar 314
Buckmaster 117, 196
Byers 118
Cal. Antar. Sys. 119
Calvert 120
Ceco 121
Centurion 122
Chemtronics 131
Cinti Inter 123
Comm. Concepts 124
Comm. Spec 126, 321
Comm. Trader 126
Contact East 127
Contact Products 128
Cronus Eng. 139
Digital Micro 129
Direct Video 130
Digitron Systems 131
Elect. Spec. 132
Encore 133
Enq. Consulting 134
Ferritecom 135, 309
Fisher 136
Fox Tangio 137
GSM 138
Galileo Elec. 139
Globalcom 135
Global Spec. 310
Goldsmith Scientific 140
Hai Comm. 307
Hallward Prod. 141
H. R. B. 142
Ham Shack 143
Hamtronics 146
Handi-Tek 146
Ham Soil 147
Henry Radio 148, 149
Henry Crystal 150, 303
Independent Crystal 150
Intellitec Crystal 152
I. T. S. 516
Jas Crystals 154
Kantronics 156
Kenwood 156
KLavak 163
Lockheed - Ontario 181
Long's 164
Lowrance 168
Lunar Elec. 159
M & J 160
Machtronics 161
Madison Elec. 162
Magnus Dist. 163
Marshall 164
Migea Comm. 165
Morning Dist. 166
NGC 167
Nampa Satellite 168, 169
National Mototec 180
Nema 170, 202
No. American Soar. 171
Nuts & Volts 172
P B. Radio 173
P. C. Elec. * 174
Phillips-Tech 174
RCA 175
RP Products 176
Callbook 176
Radio Expo 177
Random Access 177
Samuel's TV Mag. 178
Semi Surfals 179
Sinclair Radio 319
Spectrumics 180
Spectrum Int. 180
Spectrum West 181
Spy-Ro Dist. 182
Sunderland 184
Tea Coffee 185
TelE Systems 185
Tentone 186
Telstar 186
The Comm Center 187
Tripod 187
TV T. 189
Unger 190, 306
UNH-Rohn 191
VADC 192
Vanguard Labs 193
Vanguard Mag. 194
Webster 195
Western 196
Yaesu 197

*Please contact this advertiser directly. Limit 15 inquiries per request.

August 1983

Please use before September 30, 1983

 Tear off and mail to
HANG RADIO MAGAZINE — "check-off"
Greenville, N. H. 03308 0498

NAME:

CALL:

STREET:

CITY:

STATE:

ZIP:

Advertisers Index

Ace Communications 87
Advanced Computer Controls 90
Advanced Receiver Research 93
Alden Electronics 85
All Electronics Corp. 95
Alpha Delta Communications 80
Alternative Energy Engineering 84
Aluma Tower Co. 59
Amateur Wholesale Electronics 23
American Radio Relay League 123
ATV Magazine 80
Audio Forum 96
BMG Engineering 73
Barker & Williamson 11
Barry Electronics 47
Bash Educational Services 41
Bauman, R. H. Sales Co. 88
Buckmaster Publishing Co. 79
Butterworths 108
Byzio Micro Technology, Inc. 58
California Antennas Systems 68
Calvert Electronics, Inc. 29
Ceco Communications 78
Centurion International 79
Corin International, Inc. 80
Tri-Kenneddy Concepts 14
Communications Specialists 24
Computer Trader 83
Contact East 80
Control Products Unlimited, Inc. 97
Digital Microsystems 93
Direct Video Sales 88
Doppler Systems 63
Electronic Specialists 81
Encomm, Inc. 75
Engineering Solutions 95
Ferrotech, Ltd. 53
Fisher Corp. 83
Fox Tangio Corp. 84
GSM. Inc. 59
Galileo Electronics 61
Goldsmith Scientific Corp. 77
Hallward Productions 29
Ham Radio's Bookstore 64, 69, 77
The Ham Shack 93
Hamtronics, N. Y. 44, 45
Hand-Tek 96
Heil Sound 98
Henry Radio 97
Himark 98
ICOM America, Inc. 19
Independent Crystal Supply Company 79
International Crystal 67
International Telecommunications Systems 84
Jan Crystals 78
KCS Electronics Corp. 59
Kantronics, Inc. 62
K pool 79
Kenwood Communications 2
Lockheed - Ontario 69
Long's Electronics 36, 37
Lowrance Electronics, Inc. 68
Luna Electronics 58
Luna Enterprises 64
Magnetron 96
Magnetron Distributing 67
Metheney Corp. 78
Milo Communications Equipment, Inc. 32
Montgomery Distributors 39
NGC 11
Nampa Satellite Receiver Systems 57
Nemal Electronics 75
North American Soar. 112
Nuts & Volta Magazine 94
P. B. Radio 97
P. C. Electronics 77
Phillips Tech Electronics 59
RCA Government Communications Systems 21
RF Products 93
Radio Amateur Callbook 96
Radio Expo 77
Random Access, Inc. 39
Satellite TV Magazine 64
Semi Surfals 198
Spectrumics 97
Spectrum International, Inc. 69
Spectrum West 96
Spy-Ro Distributing 76
Sunderland Software 80
Tavco Communications 76
TE Systems 95
Tetrafone Corp. 80
Ten Tec 111
The Comm Center 88
Translators Inc. 81
Tri-E- Tower Corp. 68
Unger 91
UNR Rohn 86, 94
VADC 96
Vanguard Labs 96
Variance, Inc. 9
Webster Communications, Inc. 86
Western Electronics 88
Yaesu Electronics Corp. 33

NEW

All BUTTERNUT ANTENNAS use stainless steel hardware and are guaranteed for a full year. For further information on these and other BUTTERNUT products write for FREE CATALOG.

Model 2MVC - 5 Super-Trombone - Same advanced features as the basic 2MVC but a full wavelength taller with additional Trombone phasing section for additional gain. Height: 19.76 ft. 98 meters.

Model 2MVC-6 Super-Trombone - Same advanced features as the basic 2MVC but a full wavelength taller with additional Trombone phasing section for additional gain. Height: 19.76 ft. 98 meters.
For literature or more information, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CALL</th>
<th>ADDRESS</th>
<th>CITY</th>
<th>STATE</th>
<th>ZIP</th>
</tr>
</thead>
</table>

Please use before September 30, 1983
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ± 1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021

SS-32 $29.95, TS-32 $59.95
NEW

POWERFUL

FLEXIBLE

FAST

RIGHT

MODEL 5025
$239.00 (includes handle not shown)

MODEL 3025
$179.00

SOAR CORP. MODELS 3025 & 5025

NEW

The inside circuitry of these DMM's use SOAR CORP.'s custom 80-pin LSI chip to achieve a low parts count for long term stability and accuracy — outside, these units are housed in rugged ABS plastic cases, each designed for strength, durability and ease of use.

POWERFUL

The 3025 and 5025 have a built-in comparator circuit that allows you to set a high and low limit for any function and range. This feature permits you to perform incoming component tests on items like resistors, right on through the confirming of logic levels in digital circuits. You don't even have to look at the readout since the beeper tells you if the measured value is within your pre-set limits — and it does it to an accuracy spec equal to that of the DMM's.

FLEXIBLE

All of these advanced design models can be operated either auto or manual range*. You now have the best of two technologies available with the push of a switch. Models 3030 at $139.00 and 5030 at $169.00 are the same as the 3025/5025 but less comparator. Model 3050 less comparator and DCV accuracy of ± 0.5% is available for a modest $109.00 each. *except current

FAST

You bet! In the manual range mode, all readings are displayed in one second or less, and around two seconds or less in the auto range mode. The continuity beeper sounds in less than a half second. We use tactile switches for fast positive function/range selection, and an easy access battery/fuse compartment make their inspection and replacement a snap.

RIGHT

Sure it is! In addition to what we have already stated, these DMM's have 10 ampere AC/DG ranges, measure resistance from 0.1Ω through 20 MΩ and they can withstand a surge of up to 6000V. The input impedance is a standard 10M Ohms except on the 200 mV range, where the input is a very high 1000M Ohms, so you don't load down your test circuit, therefore, improving low voltage reading accuracy. The DC accuracy spec. is ±0.25% with calibration guaranteed for one year. The readouts have full annunciators so you know precisely the displayed value.

These SOAR CORP. DMM's are supplied with batteries, spare fuse and safety test leads, with one year parts and labor warranty. SOAR products are available from selected Distributors throughout North and South America.

NORTH AMERICAN

SOAR CORPORATION

1126 CORNELL AVENUE
CHERRY HILL, N.J. 08002
(609) 488-1060
Join the computer revolution in Amateur Radio with the Computer Aided Transceiver . . . the new FT-980 from Yaesu Electronics!

- 8-Bit microprocessor for greater operating flexibility.
- High-voltage, all solid state transmitter PA for excellent linearity.
- Keyboard entry of frequencies into any of twelve independent VFO/memory registers.
- Amateur band transmit plus general coverage receive capability.
- Full CW break-in with quiet solid state switching.
- CW Spot switch on front panel.
- Digital frequency display with resolution to 10 Hz. Digital readout-board-type coarse frequency sub-display.
- Keyboard entry of sub-bands for Novice, General, or Advanced Class operators. Separate sub-bands may be programmed on each memory.
- Up/Down scanning plus instant ± 5 kHz/step QSY from front panel.
- SSB/CW/AM/FSK/FM operation built in. CW and AM Wide/ Narrow selection using optional filters.
- Wide dynamic range and noise floor maintenance provided by husky front end design and IF filter gain balancing.
- 10 Hz synthesizer steps. Quick frequency change via keyboard or scanning controls.
- IF Notch filter at 455 kHz for interference rejection.

- Audio Peak Filter for narrow band CW signal enhancement.
- RX Audio Tone Control for signal laundering in AF line.
- Variable IF Bandwidth and IF Shift using cascaded filters.
- Memory storage of both frequency and operating mode.
- Pushbutton Memory Check feature for verification of memory frequencies without actually changing operating frequency in use.
- Pushbutton Offset Check feature for verification of memory-to-VFO frequency difference.
- Variable Pulse Width Noise Blanker.
- IF Monitor with front panel volume control.
- RF Speech Processor.
- Dual metering of Vcc, Ic, ALC, Compression, Discriminator Center, Relative P0, and SWR (Calibrated).
- Selectable AGC: Slow/Fast/Off.
- Separate RX-only antenna jack.
- Three FSK shifts built in.
- Optional Electronic Keyer Module.
- Optimization of audio passband for mode in use, for preservation of noise figure with changing bandwidth.
- Computer interface optional module available mid-1983, for remote transceiver control from personal computer terminal.

For a detailed brochure covering the FT-980 CAT System, call or write your Authorized Yaesu Dealer.
General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch...COMPACT!

TS-430S

The TS-430S combines the ultimate in compact styling with advanced circuit design and performance. An all-solid-state SSB, CW, and AM transceiver, with FM optional, covering the 160-10 meter Amateur bands, it also incorporates a 150 kHz-30 MHz general coverage receiver having a superior dynamic range, and digital VFO's, 8 memories, memory scan, programmable band scan, IF shift, notch filter, all-mode squelch, and built-in speech processor.

TS-430S FEATURES:

- **160-10 meter operation, with general coverage receiver**
 With 160-10 meter Amateur band coverage, including WARC 30, 17, and 12 meter bands, it also features a 150 kHz-30 MHz general coverage receiver. Innovative UP-conversion digital PLL circuit, for superior frequency stability and accuracy. UP/DOWN band switches for Amateur bands or 1 MHz steps across entire 150 kHz-30 MHz range. Two digital VFO's continuously tuneable from band to band. Band information output on rear panel.

- **USB, LSB, CW, AM, with optional FM**
 Operates on USB, LSB, CW, and AM, with optional FM, internally installed. AGC time constant automatically selected by mode.

- **Compact, lightweight design**
 Measures only 10-5/8 (270) W x 3-3/4 (96) H x 10-7/8 (275) D inches (mm), weighs only 14.3 lbs. (6.5 kg.).

- **Superior receiver dynamic range**
 Use of 2SK125 junction-type FET's in the Dyna-Mix high sensitivity, balanced, direct mixer circuit provides superior dynamic range.

- **10-Hz step dual digital VFO's**
 10-Hz step dual digital VFO's operate independently. Include band and mode information. Different band and mode cross operation possible. Dial torque adjustable. STEP switch for tuning in 10-Hz or 100-Hz steps. A-D switch quickly shifts "B" VFO to the same frequency and mode as "A" VFO, or vice-versa. VFO LOCK switch provided. RIT control tunes VFO or memory. UP/DOWN manual scan possible using optional microphone.

- **Eight memories store frequency, mode, and band data**
 Memories store frequency, mode, and band data. Eight memory stores receive and transmit frequencies independently. MCH switch for operation of memory as independent VFO, or fixed frequency.

- **Lithium battery memory back-up**
 Estimated five-year life.

- **Memory scan**
 Scans memories in which data is stored.

- **Programmable automatic band scan**
 Scans programmed band width. Scan speed variable. HOLD switch interrupts band or memory scan.

- **IF shift circuit for minimum QR**
 IF passband may be moved to place interfering signals outside the passband, for best interference rejection.

- **Tunable notch filter built-in**
 Deep, sharp, tuneable, audio notch filter.

- **Narrow-wide filter selection**
 NAR-WIDE switch for IF filter selection on SSB, CW, or AM, when optional filters are installed. (1.25 kHz IF filter built-in.)

- **Speech processor built-in**
 Improves intelligibility, increases average "talk-power."

- **Fluorescent tube digital display**
 Indicates frequency to 100 Hz (10 Hz modifiable).

- **All solid-state technology**
 Input rated 250 W PEP on SSB, 200 W DC on CW, 120 W on FM (optional), 60 W on AM. Built-in cooling fan, multi-circuit final protection. Operates on 12 VDC, or 120/220/240 VAC with optional PS-430 AC power supply.

- **All-mode squelch circuit, built-in**
 Noise blanker, built-in.

- **RF attenuator (20 dB)**
 Vox circuit, plus semi-break-in with side-tone.

Optional AT-250 Automatic Antenna Tuner

Designed to match the TS-430S in size, color, and appearance. Functionally compatible with any HF transceiver of 200 watts PEP or lower. Requires manual bandswitching.

- Covers 160-10 meter incl. WARC
- ABC Automatic Band Changing System (when used with TS-430S) SWR/Power meter
- 4 antenna terminals
- Built-in AC Power Supply.

Other optional accessories:

- PS-430 compact AC power supply.
- PS-30 or KPS-21 AC power supplies.
- SP-430 external speaker.
- MB-430 mobile mounting bracket.
- AT-130 compact antenna tuner, 80-10 m incl. WARC.
- FM-430 FM unit.
- YK-88C (500 Hz) or YK-88N (270 Hz) CW filters.
- YK-88SN (2.8 kHz) narrow SSB filter.
- YK-88A (6 kHz) AM filter.
- MC-42S UP/DOWN hand microphone.
- MC-60A deluxe desk microphone.
- MC-80 UP/DOWN desk microphone.

More information on the TS-430S is available from all authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street. Compton, California 90220.