ICOM presents the most advanced all mode, two meter base station available today… the IC-271A.

25 watts of power from 12 VDC or from 117 VAC with the optional internal power supply. 32 full function memories/multimodes/subaudible tones/PLL locked to 10Hz/high visibility, multi-color fluorescent display/RIT readout/scanning/dual VFO's/new size.

25 watts. Now a 2 meter base station with 25 watts of power and an optional internal power supply. The IC-271A is a complete station.

32 full function memories. Each memory holds frequency, offset, offset direction, mode, and subaudible tone. Frequency, tones and offset are selected by rotating the main tuning knob.

Subaudible tones. Subaudible tones are selected by rotating the main tuning knob and may be stored into memory.

PLL locked to 10Hz. Extremely low noise, a good signal-to-noise ratio, PLL allows synthesizer lock to 10Hz.

High visibility display. ICOM's new high visibility, multi-color display gives easy to read at-a-glance display of frequency, mode, offset, VFO in use, memory channel, and RIT offset direction and amount.

Scanning. The IC-271A can scan memories, programmable sections of the band, or modes. Mode-S scan is a mode scan and can be used to scan memories with a particular mode or to lock out frequencies continuously busy so that the receiver will not stop at that memory channel each time.

Dual VFOs. ICOM's new dual VFO system is now even more versatile with the ability to transfer from memory to VFO. This allows frequencies from the tunable memories to transfer directly into another memory without moving a VFO to the new frequency first.

New size. Only 11 1/4"W x 4 3/4"H x 10 1/8"D the IC-271A is styled to look good and engineered for ease of operation.

Other features. To make the IC-271A functional and easy to use, ICOM has incorporated many asked for features: UP/DN buttons, dial lock, switchable preamplifier, duplex check, all mode squelch, receive audio tone control, 5 meter, center meter, computer interface, and 7 year lithium battery memory backup.
MFJ RTTY / ASCII / CW COMPUTER INTERFACE

Lets you send and receive computerized RTTY/ASCII/CW. Copies all shifts and all speeds. Copies on both mark and space. Sharp 8 Pole active filter for 170 Hz shift and CW. Plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 or most other personal computers. Uses Kantronics software and most other RTTY/CW software.

- Copies on both mark and space tones.
- Plugs between rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers.
- Uses Kantronics software and most other RTTY/CW software.

This new MFJ-1224 RTTY/ASCII/CW Computer Interface lets you use your personal computer as a computerized full featured RTTY/ASCII/CW station for sending and receiving. It plugs between your rig and your VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64, and most other personal computers.

It uses the Kantronics software which features split screen display, 1024 character type ahead buffer, 10 message ports (255 characters each), status display, CW-ID from keyboard, Centronic type printer compatibility, CW send/receive 5-99 WPM. RTTY send/receive 60, 67, 75, 100 WPM, ASCII send/receive 110, 300 baud plus more. You can also use most other RTTY/CW software with nearly any personal computer.

A 2 LED tuning indicator system makes tuning fast, easy and positive. You can distinguish between RTTY/CW without even hearing it. Once tuned in, the interface allows you to copy any shift (170, 425, 850 Hz and all shifts between and beyond) and any speed (5 to 100 WPM on RTTY/CW and up to 300 baud on ASCII).

Copies on both mark and space, not mark only or space only. If either the mark or space is lost the MFJ-1224 maintains copy on the remaining tone. This greatly improves copy under adverse conditions.

A sharp 8 pole active filter for 170 Hz shift and CW allows good copy under crowded, fading and weak signal conditions. Uses FET input op-amps.

An automatic noise limiter helps suppress static crashes for better copy. A Normal/Reverse switch eliminates retuning while stepping thru various RTTY speeds and shifts. The demodulator will even maintain copy on a slightly drifting signal.

A +250 VDC loop output is available to drive your RTTY machine. Has convenient speaker output jack. Phase continuous AFSK transmitter tones are generated by a clean, stable Exar 2206 function generator. Standard AFSK signals are 2125 Hz and mark tones of 2295 and 2975 Hz are generated. A set of microphones lines is provided for AFSK out, AFSK ground, PTT out and PTT ground.

FSK keying is provided for transceivers with FSK. High voltage grid block and direct outputs are provided for CW keying of your transmitter. A CW transmit LED provides visual indication of CW transmission. There is also an external hand key or electronic keyer input jack.

In addition to the Kantronics compatible socket, an exclusive general purpose socket allows interfacing to nearly any personal computer with most appropriate software. The following TTL compatible lines are available: RTTY demod out, CW demod out, CW-ID input, +5 VDC ground. All signal lines are buffered and can be inverted using an internal DIP switch. For example, you can use Gallo software with Apple computers, or RAK software with VIC-20's. Some computers with some software may require some external components.

DC voltages are IC regulated to provide stable AFSK tones and RTTY/ASCII/CW reception. Aluminum cabinet. Brushed aluminum front panel. 7.5 x 11 x 6.5 inches. Uses 12-15 VDC or 110 VAC with optional adapter, MFJ-1312, $9.95.

RTTY/ASCII/CW Receive Only SWL Computer Interface

- Uses Kantronics software which features CW receive 5-99 WPM, RTTY receive 60, 67, 75, 100 WPM, and ASCII receive 110, 300 baud plus more.

An automatic noise limiter helps suppress static crashes for better copy, while a simple 2 LED tuning indicator system makes tuning fast, easy and positive.

In addition to the Kantronics compatible socket, an exclusive general purpose socket provides RTTY out, RTTY inverted out, CW out, CW inverted out, ground, and +5VDC for interfacing to nearly any personal computer with most appropriate software.

Audio in, speaker out jacks. 47/8 x 11 x 6.5 in. 12-15 VDC or 110 VAC with adapter, MFJ-1312, $9.95.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
- One year unconditional guarantee. Made in USA.
- Add $4.00 each shipping/handling. Call or write for free catalog, over 100 products.
The TS-830S has every conceivable operating feature built-in for 160-10 meters (including the three new bands). It combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the 455-kHz second IF.

TS-830S FEATURES:

- Wide receiver dynamic range, Junction FETs in the balanced mixer, MOSFET RF amplifier at low level, and dual resonator for each band.
- Variable bandwidth tuning (VBT). Varies IF filter passband width.
- Notch filter high-Q active circuit in 455-kHz second IF.
- IF shift (passband tuning).
- Noise-blanker threshold level control.
- Built-in digital display, (fluorescent tube), with analog dial.
- 6146B final with RF negative feedback. Runs 220 W PEP (SSB)/180 W DC (CW) input on all bands.
- Built-in RF speech processor.
- Narrow wide filter selection on CW.
- SSB monitor circuit.
- RIT and XIT (transmitter incremental tuning).

Optional accessories:

- SP-230 external speaker.
- VFO-230 external digital VFO with five memories, digital display.
- VFO-240 external analog VFO.
- AT-230 antenna tuner.
- YG-455C (500 Hz) or YG-455CN (250 Hz) CW filter for 455 kHz IF.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter for 8.83 MHz IF.
- KB-1 deluxe heavyweight knob.

The TS-530S SSB/CW transceiver covers 160-10 meters using the latest, most advanced circuit technology, yet at an affordable price.

TS-530S FEATURES:

- 160-10 meters, LSB, USB, CW, all amateur frequencies including new 10, 18, and 24 MHz bands. Receives WWV on 10 MHz.
- IF shift tunes out interfering signals.
- Built-in digital display [six digits, fluorescent tube], with analog dial.
- Narrow wide filter selector switch for CW and/or SSB.
- Built-in speech processor, for increased talk power.
- Wide receiver dynamic range, with greater immunity to overload.
- Two GI46B's in final, allows 220W PEP/180 W DC input on all bands.
- Advanced single-conversion PLL, for better stability, improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- RIT/XIT front panel control allows independent fine-tuning of receive or transmit frequencies.

Optional accessories:

- SP-230 external speaker with selectable audio filters.
- VFO-240 remote analog VFO.
- VFO-230 remote digital VFO.
- AT-230 antenna tuner/SSB power meter.
- MC-50 desk microphone.
- KB-1 deluxe VFO knob.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter.
- YK-88SN (1.8 kHz) narrow SSB filter.

TS-660

The TS-660 "QUAD BANDER" covers 6, 10, 12, 15 meters.
- FM, SSB (USB, CW), AM
- Dual digital VFO's
- Digital display
- IF shift built-in
- 5 memories with memory scan
- UP/DOWN microphone
- All-mode squelch
- Noise blanker
- CW semi break-in/sidetone
- 10 W on SSB, CW, FM; 4 W on AM.

Optional accessories:

- PS-20 power supply
- VOX-4 speech processor/VOX
- SP-120 External speaker
- MB-100 Mobile mount
- YK-88C, YK-88CN CW filters
- YK-88A AM filter.

KENWOOD TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
SAVE $10.50* with home delivery

*(One year newsstand cost $30 00)

Here's my address label, enter my subscription.

☐ 1 Year 12 issues $19.50
☐ 2 Years 24 issues $32.50
☐ 3 Years 36 issues $42.50 U. S. prices only

☐ Payment enclosed
☐ Bill me later

Name ____________________________

Address __________________________

City ____________________________ State ______ Zip ______

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $21.50 for one year by surface mail.
JULY 1983
volume 16, number 7

T. H. Tenney, Jr., W1NLB
publisher
Rich Rosen, K2RR
editor-in-chief
and associate publisher
Dorothy Rosa Leeds
assistant editor

editorial staff
Alfred Wilson, W6NIF
Joseph J. Schroeder, W9JUV
Leonard H. Anderson
associate editors
Susan Shorrock
editorial production
Margaret Morrison, KV7D
and Dan Morrison, KV7B

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JMF
director of advertising sales
Dorothy Sargent, KA1ZK
advertising production
Susan Shorrock
circulation manager
Theresa Bourgault
circulation

ham radio magazine
is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048-0408
Telephone: 603-879-1441

subscription rates
United States: one year, $19.50
two years, $33.00; three years, $46.50
Canada and other countries (via Surface Mail)
one year, $21.50; two years, $44.00;
three years, $67.00
Europe, Japan, Africa, Air Forwarding Services:
one year, $28.00
All subscription rates payable in
United States funds, please

foreign subscription agents
Foreign subscription agents are
listed on page 87

Microform copies
are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 30796

Cassette tapes of selected articles
from ham radio are available to the
blind and physically handicapped
from Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19107

Copyright 1983 by
Communications Technology, Inc.
Title registered at U.S. Patent Office
Second-class postage
paid at Greenville, N.H. 03048-0408
and at additional mailing offices

Postmaster send Form 3579 to
ham radio
Greenville, New Hampshire 03048-0408

contents

14 Amateur packet radio: part 1
Margaret Morrison, KV7D,
and Dan Morrison, KV7B

26 vertical phased arrays: part 3
Forrest Gehrke, K2BT

36 RTTY and the Atari™ computer
David W. King, K5VUV

42 ham radio techniques
Bill Orr, W6SAI

53 modular two-band receiver
Jim Forkin, WA3TFS

74 audio filter building blocks
Bob Witte, KB0CY

92 advertisers index
12 comments
82 DX forecaster
67 flea market
86 ham mart
22 ham notes
88 new products
8 prestop
92 reader service
6 reflections
80 short circuits
85 technical forum
Reflections

Where were you, Idaho?

Dayton Hamvention '83 is now a thing of the past but many memories of the hundreds of hams I spoke to at the show are still vivid. In looking through the log & I notice that most states were well represented (I counted 43), as were most provinces of Canada and quite a few other countries. I enjoyed seeing all of you personally. The booth itself was well designed and well displayed. Many of you are already aware of the many new products on the market. I was happy to see that many of you were interested in keen new products. I was happy to have the opportunity to discuss with you the latest trends in the industry. The Ham Radio Field Day was a great success and many of you were interested in discussing field test results. Many of you were interested in hearing about the many new projects and developments in the industry. The Ham Radio magazine is still the best technical journal. However, the main reason I was happy to have the opportunity to discuss with you the many new projects and developments in the industry. The Ham Radio magazine is still the best technical journal. However, the main reason I was happy to have the opportunity to discuss with you the many new projects and developments in the industry.

Editor-in-Chief

Rich Rosen, K2RR
JDL Leads Again

The Saturn-15 XHP, an engineering breakthrough from JDL laboratories, has new State-of-the-Art technology never before incorporated in amateur band general microwave receivers. This technology increases reception from distances never before achieved. By designing totally new circuitry, and using new ultra-sensitive components, coupled with a precision tuned 30 inch receiving dish, a system gain of 68 decibels makes the Saturn-15 XHP the leader in microwave receivers. In field tests, the Saturn-15 XHP received clear, crisp pictures, where other units tested were snowy. During these tests the Saturn-15 XHP's highly sensitive downconverter probe was able to receive a color picture without a dish. No other unit tested could pass this test.

Free Movies for You

That's right! Free movies, sports, and special events, 24 hours a day and all commercial free. The Saturn-15 XHP super deep fringe microwave receiver can be used by homeowners outside the service area of local over-the-air pay TV stations (ex: HBO, Showtime). Yes, if the local pay TV station installs microwave receivers on homeowners TV mast, you too can receive those unscrambled signals free by installing the Saturn-15 XHP on your TV mast in minutes. A signal can be received up to 100 miles, depending on the height and power of the local transmitter, and the installed height of the Saturn-15 XHP. If you have waited to own a microwave receiver, or own a low power unit, call and order your Saturn-15 XHP and own the most powerful receiver available today. Free TV—yours for a call. Note: General microwave receivers cannot be used for receiving scrambled signals. Nor can they pick up from cable TV or their relay towers.

A Total Unit

The Saturn-15 XHP comes complete with a 30 inch precision tuned receiving dish, advance design downconverter, power tuner, 60 feet coaxial cable, necessary adapters, mounting hardware, and installation instructions. A six month parts and service warranty covers the Saturn-15 XHP.

Information for your Area

By calling our information number (916) 454-2190 and talking to one of our trained technicians, we can help determine if the Saturn-15 XHP will work for you.

A Very Special Introductory Offer!!!!

As JDL Industries has and continues to provide the very best in products and customer service, we want everyone to be able to enjoy our new system, Saturn-15 XHP. The regular price for the Saturn-15 XHP is $285.00. Order C.O.D., pay only $260.00 and save $25.00. Trade in your old unit, from any manufacturer or home built, working or not, with your order, pay only $235.00—save $50.00. Or if you own our original Saturn-5 and wish to upgrade to the Saturn-15 XHP, we will give you a savings of $75.00. We also accept Visa and Mastercharge at the regular price, $285.00. Sorry—no personal checks. Shipping ($9.50) and 6% sales tax for Calif. residents not included. Trade-in units become the property of JDL Industries and cannot be returned under any circumstances.

Call our toll free number for placing orders only. Information is not available at this number. U.P.S.—C.O.D./Volume prices on request — (916) 454-2190

Microwave Systems

JDL INDUSTRIES, INC.
4558 Auburn Blvd., Suite 208, Sacramento, CA 95841

Saturn-15 XHP must be returned within 14 days of delivery for refund if not satisfied, and subject to a 25% restocking charge.
PCB CONTAMINATED DUMMY LOADS MAY POSE A SERIOUS HEALTH HAZARD in many ham shack! According to the Center for Disease Control in Atlanta, many RF dummy loads manufactured as recently as the late 70s utilized transformer cooling oil containing PCBs, which have been linked with liver cancer. PCB use is now prohibited by law, and all contact with any oil that could contain PCB should be avoided. Even fumes from a warm load could be dangerous in a poorly ventilated shack! Area EPA offices may have disposal suggestions.

EXPANSION OF THE 10-METER REPEATER SUBBAND DOWN TO 29.0 MHZ was proposed by the FCC at its May 12 meeting. Ten meter repeaters are presently restricted to 29.5 to 29.7 MHz, with 100 kHz offset the accepted standard. Under this new proposal, PR Docket 83-485, Amateur satellite downlinks at 29.3-29.5 MHz would become subject to FM repeater interference. 10-Meter Simplex Interference To Satellite Users Has Become a significant problem in the past few years. Increased use of 10-meter FM has driven FM users to below 29.5 to find clear frequencies, while more and more SSB operators have moved above 29 MHz for the same reason. The resulting interference to 29.3-29.5 MHz satellite downlink signals has become a major problem at times, and even triggered some on-the-air confrontations.

Without Suggesting Any Solutions To This Problem the FCC asked that it be one of the factors considered by comment submitters. The comment due date was pending at press time.

The 28.3 MHz Lower Phone Limit Proposed In The FCC's further NPRM on the phone band expansion, PR Docket 82-83, is also being questioned by some 10 meter users. A world-wide system of beacons now operate between 28.2 and 28.3 MHz, but setting the lower U.S. limit at the top of the beacon band would push some foreign SSB operators into the midst of the beacons. Perhaps a 28.4 MHz lower limit would be better, leaving 28.3-28.4 MHz open for foreign phone operation. Comments close July 1, with Reply Comments open until August 1.

HAND-HELD RADIOS VS. USER HEALTH HAS BECOME a legal issue in New Jersey. A fire chief there has sued General Electric, alleging his use of one of their hand-helds over a 14-year period damaged his sight and hearing. At issue is GE's alleged negligence in not providing a warning of possible health hazards, despite a recommendation by the federal government in 1973 that such a warning be provided with portable transceivers.

Whether Close Exposure To Moderate RF Fields actually causes physical ailments has been the subject of heated debate for years. Despite many government and industry studies no clear-cut consensus has been reached. Attempts have been made on the local level, most recently in Massachusetts, to closely regulate all transmitter operators, and an on-going effort (strongly supported by ARRL's Biological Effects of RF Energy Committee) is being made for the adoption of a federal preemption law with exemptions for Amateur Radio.

The Effects Of A Decision Favoring The Fire Chief could have an even more serious effect on Amateur Radio than the current antenna ordinance problems, barring federal pre-emption. Local governments, acting to protect citizens, could enact legislation that would severely restrict if not bar operation of Amateur transmitters within their borders.

VOLUNTEER ADMINISTERED AMATEUR EXAMS WERE "AN ABSOLUTE, UNQUALIFIED SUCCESS" at this year's Dayton Hamvention, according to the FCC's John Johnston. With only one FCC staff member present to act as "overseer," Dayton Amateur Radio Association members were able to administer 683 exams to 484 applicants. The volunteers were obviously well prepared for their task, as the program came off extremely smoothly despite only one evening of "formal training with the FCC." Oddly enough, the ARRL quietly made a last minute attempt to scuttle the Dayton exam session, on the grounds that it was likely to be improperly done and would thus set the entire volunteer program back!

Proposed Questions For The Volunteer Exam Program are already being sought informally from the Amateur community, even though the exam program itself is still to be acted on by the Commission. It's felt that having a pool of appropriate questions on hand would facilitate preparation when the FCC is ready to move on both the overall exam program, PR Docket 83-27, and the Novice "No-Mail-Back" proposal, PR Docket 82-727. Action on the latter could take place as early as June.

BURBANK (ILLINOIS) TOWER CASE MOVED CLOSER TO COURT after a magistrate recommended to the presiding judge that the city's motion to dismiss the Amateurs' suit be denied. In his recommendation the magistrate agreed that the Amateurs' argument that their constitutional rights of free speech and civil rights were both violated by Burbank's anti-tower ordinance raised a federal issue, so the case did belong in U.S. District Court.

A Status Call Has Been Set By The Judge for June 21, when he's expected to adopt the magistrate's recommendation. A date for the trial should be set soon after that. ARRL Funding Of Amateur Radio Legal Cases will essentially cease, following a vote to that effect at the April 21-22 League Directors' meeting. The League will, however, continue to offer other forms of support to Amateurs with legal problems and may, under special circumstances, offer financial assistance as well.

PHASE III-B COULD BE IN SPACE BY THE TIME THIS SEES PRINT with a June 16 launch date announced at press time. An AMSAT crew was to leave momentarily for the French Guiana launch site for final checkout and fueling. If Phase III-B is up, check with ARRL or an AMSAT net for status, as it's not to be used until completion of the post-launch test.

OSCAR 8 Is Now On Mode J Only, due to ongoing battery problems with the aging bird.
Connect your computer to the air!

The “AIRWAVES” that is, thru the Microlog AIR-1, a single board terminal unit AND operating program that needs no external power supply or dangling extras to put your VIC-20 computer on CW & RTTY. And what a program! The famous Microlog CW decoding algorithms, superior computer enhanced RTTY detection, all the features that have made Microlog terminals the standard by which others are compared. Convenient plug-in jacks make connection to your radio a snap. On screen tuning indicator and audio reference tone make it easy to use. The simple, one board design makes it inexpensive. And Microlog know-how makes it best!

There’s nothing left out with the AIR-1. Your VIC-20, America’s most popular computer, can team-up with Microlog, America’s most successful HAM terminal, to give you an unbeatable price and performance combination for RTTY & CW. If you’ve been waiting for the right system at the right price, or you’ve been disappointed with previous operating programs, your time is now. At $199, the complete AIR-1 is your answer. Join the silent revolution in RTTY/CW and put your VIC-20 ON-THE-AIR! See it at your local dealer or give us a call at Microlog Corporation, 18713 Mooney Drive, Gaithersburg, Maryland. TEL (301) 258 8400. TELEX 908153.

Note: VIC 20 is a trademark of Commodore Electronics, Ltd.
MICROLOG
INNOVATORS IN DIGITAL COMMUNICATION
AMT-1
The Definitive
AMTOR Terminal Unit

$499.95 Introductory Price

AMTOR is the system of error correcting RTTY which has been rapidly overtaking conventional RTTY in Europe, just as its marine equivalent, SITOR, has been taking over in ship to shore communications.

It was originated by Peter Martinez, G3PLX (see June 1981 QST, p. 25). He first interpreted the international marine CCIR 476-1 specification for amateur use. Virtually all of the 400+ stations presently on AMTOR world wide are using software/hardware designs originated by Peter. The AMT-1 is a proven product which represents his latest and most highly refined design. It represents the culmination of over three years of development and on the air testing, and sets the standard against which all future AMTOR implementations will be judged.

Not only does it incorporate the latest AMTOR specification, but it gives superlative performance on normal RTTY, ASCII and CW (transmit only). As well as some fairly incredible real time microprocessor software, the AMT-1 boasts a four pole active receive filter, a discriminator type demodulator, a crystal controlled transmit tone generator, and a 16 LED frequency analyzer type tuning indicator, which is very easy to use.

Driven from a 12 volt supply, the AMT-1 connects to the speaker, microphone and PTT lines of an HF transceiver and to the RS-232 serial interface of a personal computer or ASCII terminal. All mode control is via ESCAPE and CONTROL codes from the keyboard (or computer program).

It used to be that C.W. was the ultimate mode for “getting through” when QRM and fading were at their worst. That’s no longer true — AMTOR will get through with perfect error-free copy when all other conventional transmission modes become useless.

Henry Radio

AEA Brings you the Breakthrough!

2050 S. Bundy Dr., Los Angeles, CA 90025 (213) 820-1234
931 N. Euclid, Anaheim, CA 92801 (714) 772-9200
Butler, Missouri 64730 (816) 679-3127
TOLL FREE ORDER NUMBER (800) 421-5631
For all states except California.
Calif. residents please call collect on our regular numbers.

Tell 'em you saw it in HAM RADIO!
CHAMPAGNE RTTY/CW on a Beer Budget

CP-1 Computer Patch™ Interface

The AEA Model CP-1 Computer Patch™ interface will let you discover the fastest growing segment of Amateur Radio: computerized RTTY and CW operation.

When used with the appropriate software package (see your dealer), the CP-1 will patch most of the popular personal computers to your transceiver for a complete full-feature RTTY/CW station. No computer programming skills are necessary. The CP-1 was designed with the RTTY neophyte in mind, but its sophisticated circuitry and features will appeal to the most experienced RTTY operator.

The CP-1 offers variable shift capability in addition to fixed 170 Hz dual channel filtering. Auto threshold plus pre and post limiter filters allow for good copy under fading and weak signal conditions.

Transmitter AFSK tones are generated by a clean, stable function generator. Plus (+) and minus (-) output jacks are also provided for CW keying of your transmitter. An optional low cost RS-232 port is also available. The CP-1 is powered with 16 VAC which is supplied by a 117 VAC wall adaptor included with the CP-1.

Henry Radio

54 YEARS OF SERVICE

AEA Brings you the Breakthrough!

More Details? CHECK—OFF Page 92
Dear HR:

Just a few comments in regards to W6BCX’s article on the Bobtail curtain featured in the February and March issues of *ham radio*.

I received word just four days before departure for Haiti that I had a license waiting for me. What to do about an antenna for 20 meters? I had just reviewed the few paragraphs on the Bobtail curtain in the ARRL Antenna Book when W6BCX’s timely article came along. This was enough for me to make preparations to build such an array.

During the last couple of days before I was to leave, I built up a parallel tuned network consisting of a 70 pF variable capacitor and 12 turns of No. 14 wire spaced 1 inch apart. Ten turns tapped one turn up from cold end and about 3/4 maximum capacity gave a perfect match into 2000 ohms. So with a roll of No. 18 copperweld wire, some insulators made from 1/2 x 2 inch pieces of 1/4 inch phenolic, my Swan dual meter SWR bridge, the parallel tuned network built into a 4-1/2 x 5 x 2-1/2 inch aluminum box and a few short lengths of RG-58 stuffed into my briefcase, I was off. Destination, 120 miles west of Port au Prince in the mountains of the panhandle of western Haiti.

It took me, with help from my son, about 20 minutes to build the antenna. Twenty feet of bamboo put the northeast leg 24 inches above the new galvanized metal roof of his carport. The center leg also was 24 inches above the metal of the back porch roof and just six feet above my proposed operating position. The southwest leg was about three feet from the ground on a sloping hillside of about 45 degrees.

Results were outstanding. From deep in a mountain valley, with a ridge all across the north from east to west, 300 to 500 feet higher and a quarter to half a mile away, I worked all areas of the United States. I received 59+ reports from my home country of northwest Wyoming and southern Montana and 59+20 from the Denver area. The rig was HH2DR’s TS520, sometimes operating on battery power. I worked a CN8 off the northeast end of the antenna just before the ARRL DX contest and had an OE6 and an HA6 call me during the contest even though I was not contesting. They gave me 55 to 57 reports. I probably had some distortion of the signal because of the large mango trees near both end elements. Compared to the 2-element quad of HH6BG located just 100 yards north, whom I had worked quite a few times from my home QTH, it was 2 to 4 S-units better. It was not the fault of the quad but instead of its location. The mountain hillside is 200-300 feet higher, begins 50 feet directly in front of the quad and at a 45 degree angle.

I brought the antenna home and will be using it on Field Day. By fall I hope to have a 40 meter version up and aimed at Europe and the South Pacific. I’m looking forward to some good 40 meter DX next winter. A match for my 20 meter 5-element log-Yagi at 70 feet it is not, but truly a fine, easy-to-pack antenna with gain broadside and rejection off the ends.

Thanks to W6BCX for his research.

Paul M. Rich, WA7BPO
Cody, Wyoming

power supply

Dear HR:

In the March, 1983, article “Dual Voltage Power Supply,” the LM317 could be replaced with a 723-type regulator IC realizing the following benefits: lower cost, current limiting features, and, what I view as the most important improvement over any LM317 series pass transistor design, improved voltage regulation. An additional benefit could be improved ripple rejection.

The only drawback is an increase in circuit complexity required to accommodate the feedback and the internal voltage reference. The 723 has enough output current to drive the existing pass transistor. The 723 is available at Radio Shack with required specs and circuits for about 89 cents.

Peter J. Schuch, WB2UAQ
Little Ferry, New Jersey

noise figure data

Dear HR:

I was rather surprised at some of the noise figure data presented by Dennis Mitchell, K8UR, in the article “GaAs FET Performance Evaluation and Preamplifier Application” in *ham radio*’s March issue, and I would like to present some additional information regarding the performance of the Mitsubishi devices tested by Mr. Mitchell.

At the 1982 meeting of the Central States VHF Society, at Baton Rouge, Louisiana, there was a preamplifier noise figure competition. These tests
were conducted with the current Hewlett-Packard programmable automatic noise figure meter with matching noise head. The results, however, departed significantly from the figures quoted in the article, particularly for the MGF-1200s.

Here are some of the results:

<table>
<thead>
<tr>
<th>device</th>
<th>noise figure (dB)</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGF-1200</td>
<td>0.27</td>
<td>144</td>
</tr>
<tr>
<td>MGF-1200</td>
<td>0.42</td>
<td>144</td>
</tr>
<tr>
<td>MGF-1402</td>
<td>0.42</td>
<td>144</td>
</tr>
<tr>
<td>MGF-1200</td>
<td>0.48</td>
<td>220</td>
</tr>
<tr>
<td>MGF-1402</td>
<td>0.38</td>
<td>220</td>
</tr>
<tr>
<td>MGF-1402</td>
<td>0.45</td>
<td>220</td>
</tr>
<tr>
<td>MGF-1200</td>
<td>0.47</td>
<td>220</td>
</tr>
<tr>
<td>MGF-1402</td>
<td>0.49</td>
<td>432</td>
</tr>
<tr>
<td>MGF-1402</td>
<td>0.58</td>
<td>432</td>
</tr>
</tbody>
</table>

The Central States VHF Society results were significantly better than those of the author for the MGF-1200 at 144 MHz. Assuming that Mr. Mitchell presented median noise figure values in his article, then the figures presented above are at least 0.1 dB better in the worst case, taking the stated ±0.23 dB root-sum of squares uncertainty into account. In the best case for the MGF-1200 at 144 MHz the deviation from the author’s noise figure is 0.3 dB.

The figures for the MGF-1402 are included to show that this device seems to reach a plateau at 432 MHz, and is not really a cost effective device at 144 MHz, with most GaAs FET users preferring the MGF-1200 or other similarly priced device at lower frequencies. Finally, the price structure that is mentioned in the article is about one year out of date, with the MGF-1200 currently selling for around $10, rather than the $15 indicated, and the MGF-1402 available for $15 or less, as opposed to $30.

From my experience, anyone using the MGF-1200 at 144 MHz should expect, and get, substantially better results than those indicated by Mr. Mitchell, in terms of noise figure attainable.

Jack C. Parker, KCBW
Bismarck, North Dakota

UHF DECODER FREE IC-CHIPS

WITH PURCHASE OF FV-3 COMPONENTS WHICH CONSIST OF:
- FV-3 BOARD
- INSTRUCTION MANUAL
- BOX TO HOUSE IT IN
- POWER SUPPLY
- EDGE CONNECTORS
- TUNER

FOR ONLY $190.00
LIMITED TIME ONLY!

CALL NOW FOR YOUR ORDER:
1-800-433-5169
FOR INFORMATION CALL: 817-460-7071

P B RADIO SERVICE
1950 EAST PARK ROW DRIVE
ARLINGTON, TX 76010
WE HONOR VISA AND MASTERCARD
Amateur packet radio: part 1

The history and operation of packet radio are examined along with its requirements for software and hardware.

Imagine sitting down in front of your station for an evening. You get out your 2-meter fm transceiver, attach it to a cable coming from an 8 x 8 x 3-inch "black box" connected to your data terminal. After turning everything on and initiating a short dialog between the terminal and the box, you enter a friend's call letters. After a short pause you see:

***CONNECTED to (call sign)

on your terminal. From this point on, everything you type appears on your friend's terminal, and everything he types appears on yours. Your friend could be within simplex range, or within voice repeater distance, or accessible only via a series of linking stations. In fact, you might need a satellite link to talk to your friend!

He asks, "Would you like a copy of my latest program for playing 'Escape The Maze'?"

"Sure," you reply, "only my compiler can't handle your gigantic programs. Why don't you just send me a dump of the machine language (binary) program?"

"No problem. Let me know when you're ready," he sends back.

You go over to your home computer, power it up, load your communications program, connect it to the box instead of the terminal, and type, "OK, let 'er rip."

Then you start your file-loading program and wait. Soon, binary data begins arriving from your friend at slightly less than 120 bytes of data per second. You sit back relaxed, knowing that even though the QSO is being held under noisy conditions, with occasional QRM breaking through, you won't receive a single bit incorrectly.

After the program has been stored away, you resume your conversation. It is almost boringly error-free, and with the speaker disconnected from your radio you don't even hear the QSO, which is being periodically interrupted by the automatic identification of both stations in CW. Later on you try out the new program and, sure enough, find you've received the whole thing perfectly.

Does this sound like magic? It shouldn't — it's happening right now with packet radio.

Packet radio promises to open new worlds of communications undreamed of just a few years ago by making possible the rapid transfer of digital information over great distances — with a virtual guarantee of integrity down to the last bit. This is tremen-

By Margaret Morrison, KV7D, and Dan Morrison, KV7B, 4301 E. Holmes, Tucson, Arizona 85711
dously attractive. Not only can traffic be exchanged between hams equipped with data terminals, but just as easily between a ham and a computer, or between two computers.

Let's look first at what a packet is and then at the history of packet communications and the kind of hardware and software packet radio requires. We will use the two most familiar systems to serve as examples, although others are in use as well. These two are the VADCG (Vancouver Amateur Digital Communications Group) system and the TAPR (Tucson Amateur Packet Radio) system.

what is a packet?

Packet radio is a relatively new form of digital communications. It has some characteristics in common with older forms, such as ASCII and RTTY, now both familiar to the Amateur community. In all of these modes information is coded in binary form, that is, as a series of 1s and 0s. The information is translated into an audio signal consisting of alternations between two tones, and the audio signal then used to modulate an rf signal to produce an FSK or AFSK transmission.

In an ASCII or RTTY system, the transmission typically consists of a sequence of individual characters separated by periods of unmodulated carrier transmission. In order for the receiving station to interpret the characters correctly, extra transitions are added at the beginning and end of each character (start and stop bits). Depending on reception conditions, anywhere from all the information to virtually none of it may be received correctly; what's not received correctly may be garbled or missed completely.

A packet consists of binary data (which might be ASCII, Baudot, or some other code), and the modulation techniques may be essentially the same as for conventional ASCII or RTTY, although the exact interpretation of the tones may be different. The VADCG and TAPR TNCs produce AFSK, but more sophisticated schemes are being developed. (The TNC, or terminal node controller, is the "black box" referred to in the introduction to this article. It is a complete microcomputer-based communications system with a good-sized memory, 30 kilobytes in the case of the TAPR TNC. It does all the work involved in sending and receiving packets).

In a packet, the individual characters, or bytes, are run together with no space at all between. This eliminates the need for both the start and stop bits as well as the dead time between characters. The result is much more efficient information transfer. The analog of start and stop bits are sent only for the beginning and end of the packet, and the transmitter is keyed only while information is actually being sent.

Extra information is inserted into each packet that enables the receiving station to determine automatically whether the packet was received without error. Thus every correctly received transmission is acknowledged. The sending station can keep retransmitting its information until it is assured that it has gotten through. Other features of the packet which facilitate this "handshaking" are described later.

history of packet radio

Packet switching is a technology that was developed to tie computer users into a network which could extend over a wide area. It has been used for many years over common carrier lines, both commercially and by government. The first large-scale packet network in North America was ARPANET, set up in 1969 by Bolt Beranek and Newman, Inc., for the Defense Advanced Research Projects Agency. This network introduced packet switching, in which each message sent is broken up into small packets and each is switched to its destination over the quickest communications path available at that instant. Data interconnections are typically 50-kilobit-per-second wideband lines, and the packets are passed from node to node until they arrive at their destination. Typical end-to-end times are 250 milliseconds, and receipt of data is acknowledged.

Other networks around the world soon began operation, and today there are many government and commercial computer networks, such as TYMNET and Telenet, which allow users all over the country to access thousands of computers remotely.

Packet radio experiments began in the 1970s. One of the largest packet radio systems, based at the University of Hawaii and known as the ALOHANET, linked together a number of computers and users, and also provided access into ARPANET and satellite links. Other systems were developed for the purpose of providing distributed automatic digital communications for remote sensing stations.

Packet switching networks (both wire and radio based) generally use one of two methods for routing packets from the originating station, through intermediaries, to the destination. In one system used by TYMNET and others, a central controller determines the optimum path for a particular pair of stations on the basis of the stations present in the network at any time. In the other system, the network itself is intelligent and determines the routing between stations. This is the system that was pioneered by ARPANET.

North American Amateurs first entered the picture in Canada, where, beginning in 1978, the Department of Communications encouraged the use of packet radio by permitting Amateur packet transmis-
sions and by giving exclusive use of 221 to 223 MHz and 433 to 434 MHz to packet and digital transmissions. Taking advantage of this ruling, VADCG, a group in Vancouver, British Columbia, designed the first well-known Amateur packet radio TNC, and soon TNCs became widely distributed.\(^3\) Their use in the U.S. followed a rule by the FCC making such ASCII transmissions legal in March of 1980. Finally, in October of 1982, the FCC revised Part 97.69, lifting many restrictions on digital communications and advanced data transmission. Today many experimenters using the VADCG TNC, the TAPR TNC, and homebrew systems are hard at work, developing this new mode of communications.

anatomy of a packet

The basic element in packet radio is the frame — a string of bits with a specific format. The bits are presented to the transmitter on a modulator output line. In the case of the TAPR and VADCG TNCs, the modulation system uses 1200-Hz and 2200-Hz tones and coherent (phase-continuous) FSK, with a data rate of up to 1200 bits per second; it is compatible with the Bell 202 standard modem. Other modulation systems being developed for Amateur use include minimum shift keying (MSK), and various forms of phase shift keying (PSK). These schemes, which are more efficient than ordinary FSK, are useful for long-haul traffic, especially via satellite.\(^4\)

The FSK signal is related to the bit stream according to specific digital encoding rules. The most commonly used system is non-return to zero inverted (NRZI) encoding. In this system, a transition from one tone to the other is interpreted as a 1, whereas no transition during the bit period is a 0. Such a method is used because, according to the rules by which the frame is constructed, a transition is guaranteed at least once in every five bit periods. This is needed to keep the receiving station in “sync” with the incoming data.

The actual structure of the frame varies from one packet radio system to another. The structure makes possible, among other things, the delivery of the message to the proper recipient and a system for ensuring data integrity. The most frequently encountered format for frames is known as HDLC, or High Level Data Link Control. Each HDLC frame consists of six fields, as shown in fig. 1.

In order of transmission, FLAG1 is first. It is at least eight bits long, consisting of the bit pattern 01111110. This particular combination is unique to FLAG1 and FLAG2, and appears nowhere else in the frame. Part of the transmitting station’s job is to alter the message content of the frame to prevent this combination from appearing elsewhere (a process known as bit-stuffing). This alteration is, of course, undone by the receiving station. FLAG1 (which may be repeated several times before the rest of the frame is sent) says, “Get ready! Here comes a frame!”

The ADDR (address) field varies among the various packet radio systems developed in the Amateur community. HDLC requires only that it be at least one byte long. It typically contains the source address, and may contain the destination address and perhaps routing information. The address field contains the information which permits delivery of the packet.

The CONTROL field also varies among systems. The length of this field specified by HDLC is one or two bytes. The information contained in this field typically includes acknowledgment information for previous packets successfully received; an indication that the sender would like to begin talking (connect) to the destination station; a request to terminate the conversation (disconnect); or other “supervisory” functions, such as requests to stop transmitting or to resume transmitting (referred to as flow control).

The DATA field consists of zero or more bytes of information (zero in the case of simple acknowledgments, for example). They may be in any bit pattern — ASCII characters, part of a binary program, you name it. (The FCC, however, would like you to have available enough information so they can decipher your data!) The HDLC standard requires that when five consecutive 1s appear a 0 be inserted. This is the bit-stuffing mentioned above. It prevents data from being mistaken for flags, and also ensures frequent tone transitions if NRZI encoding is used. Upon reception, these extra 0s are discarded. Typically, the maximum data length is 128 to 256 bytes.

The last item in the frame prior to the ending flag bits is the FCS, or frame check sequence, an extremely important two-byte number computed by the transmitting station based on all the bits in the frame following FLAG1. If the frame is received in garbled condition it is extremely unlikely that it would be garbled in such a way as to produce the same FCS. The FCS is separately computed by the receiving station and, if both numbers agree, there is virtual certainty that the frame was received as sent.

Finally, the frame ends with another byte of flag field, thus indicating to the receiving station that the previous two bytes were indeed the FCS.
protocols

What we have described is not yet truly packet radio. It could be called "frame radio," the exchange of frames of information. The protocol, in addition to specifying the structure of the frame, determines the contents of the ADDRESS, CONTROL, and possibly the DATA fields. It also determines action to be taken in various situations. For example, just exactly what should be done if the first, second, and fourth frames received in a single transmission check out, but the third does not? Or, what should be done if the other station suddenly stops responding? The list of "what-ifs" increases rapidly as other users join the frequency.

The interchange of packets results in communications between the participating stations on more than one level. The ISO, International Standards Organization, has defined a model network structure consisting of seven "layers." The first three, levels 1, 2, and 3, are concerned with communications and are the ones of interest to us. Each consists of a set of related tasks which would ordinarily be handled by correspondingly related processes (electrical or software). The ISO layer structure does not define the specific protocol to be followed to accomplish the tasks of any level, and the operation of each level should be independent of how lower-level tasks are performed.

Furthermore, each layer is "transparent" to the levels above it. This means, for example, that information used to direct actions by a level 3 process is treated as data by the level 2 process. A packet is structured like an onion. Each process peels off the applicable control information before passing the remainder to the next higher level.

The bottom layer is called the physical layer. It is concerned with such things as modulation and transmission techniques, signaling the beginning and end of packets, bit-stuffing, and maintaining synchronization with the incoming data stream. The second level, or data link layer, defines the use made of the address, control, and FCS fields of the packet. Level 2 is responsible for setting up and maintaining a connection or data link with the other station. This includes verifying data integrity, acknowledging receipt of intact frames, retransmitting unacknowledged frames, and performing various link control functions. The third level, the network layer, defines routing functions and inter-network communication. Level 3 is concerned with setting up and maintaining routing tables for communication between stations which are not in direct contact. Amateur packet radio has implemented some level 3 functions but not all.

An additional set of rules, a collision avoidance protocol, is necessary for packet radio but not for communications over wires. Since stations cannot receive at the same time they are transmitting, "collisions" occur when two or more stations transmit simultaneously. A scheme for avoiding repeated collisions must ensure different retransmission times after an initial transmission has failed. If all stations can hear each other, as is the case when all transmissions are made on the same frequency and all stations are close together, all that is needed is to impose a short random wait time for stations retransmitting a packet. If a central controller (or a satellite) transmits on one frequency and listens for all other transmissions on another frequency, a more elaborate scheme is required.

The HDLC frame structure described above is imposed on levels 1 and 2 of all protocols implemented so far for Amateur packet radio, and both the VADCG and TAPR TNCs use LSI chips that perform many of the level 1 and 2 tasks. The two most widely used protocols, VADCG and AX.25, are thus functionally equivalent on level 1 and quite similar on level 2.6,7 AX.25 is modeled on X.25, a standard developed by the Consultative Committee for International Telegraph and Telephone (CCITT) of the ITU8. AX.25 was put forward by a group of Amateurs at the AMSAT packet conference in October of 1982. AX.25 specifies the address as containing Amateur call signs of both the sending and receiving stations, with optional routing information in the form of the call signs of stations requested to relay, or digipeat, the packet. The VADCG address field contains a numeric address of the sending station only; packets setting up the connection contain call sign information in the data field. Relay by an unspecified digipeater can be requested. The control functions implemented in AX.25 are summarized in table 1. Most control func-

<table>
<thead>
<tr>
<th>Table 1. Level 2 control functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
</tr>
<tr>
<td>RNR</td>
</tr>
<tr>
<td>REJ</td>
</tr>
<tr>
<td>DM</td>
</tr>
<tr>
<td>SABM</td>
</tr>
<tr>
<td>DISC</td>
</tr>
<tr>
<td>UA</td>
</tr>
<tr>
<td>FRMR</td>
</tr>
</tbody>
</table>
tions can be performed by a packet which also transmits data. Fewer level 2 control functions are specified in the VADCG protocol.

implementation

If you have a home computer, you are probably wondering where you can get a packet radio program for it. You may even be thinking about writing one yourself. The only hitch here is that you need more than a program. At a minimum, you need some hardware to enable the computer to control the radio push-to-talk line, put signals into the microphone input, and interpret signals on the speaker output. Specialized hardware, such as an HDLC controller, is very desirable. This hardware must be able to generate interrupt requests to the computer. The program itself should take care of the input and output requirements of both the radio and the terminal through interrupt processing. You can’t afford to miss part of an incoming packet because you got busy parsing a line from the terminal! This means that the program probably has to be written at least partly in assembly language. Interpreted languages, such as BASIC, are commonly used on small computers, but they are neither fast enough nor versatile enough for real-time programming of this kind. These obstacles are not insurmountable, and in fact many hams have been successfully running packet radio programs on various home computers.

There are disadvantages with this approach, however. These programs are not very portable: they work on a specific computer with a specific operating system, and depend on the specific configuration of the hardware “extras.” The programming has to be done over for each different type of computer. Modifying a protocol would be a major undertaking involving reprogramming many computers. Furthermore, many hams who don’t own computers or who don’t want to get involved in a programming project are interested in packet radio. After all, an RTTY terminal unit or a CW keyboard need not be connected to a computer. This is why most Amateurs involved in packet radio are using a terminal node controller. The TAPR and VADCG TNCs have standard terminal interface connections, and provisions for versatile radio interfaces. The ROM memory chips can be programmed with software implementing a standard packet radio protocol, and, once such software is written, it can be easily transferred to any similar TNC. Since the TNC is basically a dedicated microprocessor, the demands of radio communications do not interfere with a resident operating system.

packet radio — communications of the future

Hams all over North America are now involved in sending packet radio messages across town on VHF on UHF bands. Digipeater relays and ordinary voice repeaters make it possible to communicate over distances of 100 miles or more. Packet radio mailboxes and bulletin boards are on the air in several areas. Interest is growing rapidly in this newest mode of communications. With more experimentally inclined packeteers joining the ranks, exciting developments will be forthcoming. The emphasis for the future will be on long-distance communications and inter-network linking protocols. Experimental hf packet communications has been done on 10 meters. Inter-network communications through UHF and microwave linking stations using high data rate modulation techniques is envisioned. The digital special communications channel on the AMSAT Phase III-B satellite will see use by packet radio stations. Groups are working on protocol standards for this application and on L-band amplifiers to allow inexpensive access to this satellite mode. Possibly the most ambitious project in the works is a packet radio satellite with a store-and-forward mailbox as well as direct relay capability.

Part two will continue with a detailed description of the TAPR terminal node controller; it will provide a clearly defined set of interface requirements and point out pitfalls to be avoided in making reliable radio connections.

ting to make reliable software for these purposes. This is why TNCs generally aren’t used with packet radio stations.

references

bibliography

Proceedings of the IEEE, Vol. 6, October, 1978. This entire issue is devoted to packet communications.
Second ARRL Amateur Radio Computer Networking Conference Proceedings, March 19, 1983. This recent publication contains descriptions of packet radio systems, including implementation details.
Tucson Amateur Packet Radio Corporation Packet System Beta Test (1983) This manual contains information on AX.25, VADCG protocol, modulation, and HDLC.
KITTY SAYS: WE ARE NOW OPEN 7 DAYS A WEEK. Saturday & Sunday 10 to 5 PM Monday-Friday 9 to 6:30 PM

Come to Barry’s for the best buys in town. For Orders Only Please Call: 1-800-221-2683.

SMART PATCH
CES Simplex Autopatch 510 SA VHF Patch FM Transceiver To Your Telephone. Great For Telephone Calls From Mobile To Base. Simple To Use $319.95

SANTEC
ST-22UP
ST-144UP
ST-440UP

NEW IMPROVED
MURCH Model UT2000B

SANTEC
Models 900, 940B, 941C & 982.

DENTRON AMPLIFIERS
GLA-1000C

SPECTRUM COMMUNICATIONS REPEATERS
SCR-1000, 4000 & 77 Commercial & Amateur In Stock

Complete Butternut Antenna Inventory In Stock!

Communications Specialists
Encoders in Stock!

SMallest Wireless Telephone Available 600 ft. range w/encoder $135.00

BENCH PADDLES & Vibroplex Keys In Stock!!

New TEN-TEC Corsair In Stock

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012.

COMERCIAL RADIOS stacked & serviced on premises.

Amateur Radio & Computer Courses Given On Our Premises, Call Export Orders Shipped Immediately. TELEX 12-7870

More Details? CHECK – OFF Page 92

July 1983
RECEIVE WEATHER CHARTS IN YOUR HOME!

You can DX and receive weather charts from around the world.
- Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!
- You've heard those curious facsimile sounds while tuning through the bands — now capture these signals on paper!

Assemble ALDEN'S new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble — Backed by the ALDEN name.
- For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!
- You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Easy to order.
- Only $995 for the complete ALDEN Weather Chart Recorder Kit. To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $995. Add $5 for shipping and handling in the U.S. and Canada (for Massachusetts delivery, add $49.75 sales tax). To use your MasterCard or Visa by phone, call (617) 366-8851.

ALDEN ELECTRONICS
Washington Street, Westborough, MA 01581

NAME:

CALLSIGN:

ADDRESS:

CITY:

STATE:

ZIP:

ACCOUNT # (ALL DIGITS):

EXPIRATION DATE

SIGNATURE REQUIRED IF USING CREDIT CARD

I've enclosed a check or money order for $995.00 and $5.00 for shipping and handling, plus applicable sales tax.

Charge to:

- MasterCard
- Visa
TERMINALL T4 is a hardware and software system that converts your Atari 400, 800 or 1200 personal computer into a state-of-the-art communications terminal. TERMINALL features simple connections to your computer and radio plus sophisticated and reliable software.

New on Atari Version

- **Cursor Editing** - use the cursor keys to compose, overwrite, delete or insert any text to be transmitted, any preprogrammed message, or any received text.
- **Color Displays** - on a color TV or color monitor.
- **Disk Save and Retrieve** received text or any preprogrammed message. Files are compatible with most word processors including Text Wizard®.
- **Backup Copy** saves all user selectable options as defaults - such as callsign, modes, messages, etc.

Simplicity

TERMINALL was designed from the outset to be easy to connect to your radio and easy to use. Plug into your receiver headphone jack and copy Morse Code or radioteletype (RTTY). Plug into your CW key jack and send Morse Code. Attach a microphone connector and send Baudot.

NO COMPROMISE HARDWARE

Let's be honest - ASCII RTTY using audio tones (AFSK). That's all there is to hooking it up.

The software is loaded into your computer from disk or cassette. Enter your callsign and the time and you will start receiving immediately. No settings or adjustments are necessary to receive Morse Code, it's fully automatic - and it works! You may type your message while receiving or transmitting.

You will be on the air, receiving and transmitting in any mode, in minutes. As we said, TERMINALL is simple.

More for your money.

- TERMINALL has the RTTY terminal unit - demod and AFSK - built in. This results in a lower total cost.
- **Fantastic Morse reception**. Six stage active filter demodulator copies the weak ones. Auto adaptive Morse algorithm copies the sloppy ones. Received code speed displayed on status line.
- **Outstanding documentation**. Professionally written, 90 page user manual contains step-by-step instructions.
- **Built**, in separate, multi-stage, active filter RTTY and CW demodulators. No phase lock loops. RTTY demodulator has 170 and either 425 or 850 Hz shift-keyboard selectable - and

MORE FOR YOUR MONEY

uses either the panel meter or scope outputs for easy tuning. Copy the weak ones. Copy the noisy ones. Copy the fading ones.

- **Built in crystal controlled AFSK**. Rock stable for even the most demandng VHF or HF applications. A must on many VHF RTTY repeaters.
- **Built in 110 or 220 volt AC power supply**.
- **Built in parallel printer driver software** through controller ports or Atari 850 Module. Write for details.
- **Multi level displays** - allows examining and editing of historical text.
- **Word wrapping**, word mode editing, scroll, ignore carriage returns, user programmable end of line sequence, adjustable carriage width, multiple user-defined WRS, transmit delay, break mode and more!
- **The all-in-one TERMINALL design** makes it great for use on HF or VHF. Ham, Commercial, SWL or MARS SWL’s. TERMINALL may be jumped for either 425 or 850 Hz reception to copy news and weather services.

Other versions available for TRS-80* Models I and III and Apple II, Apple II Plus or Apple Ile

*Atari is a registered trademark of Atari Inc., TRS-80 is a registered trademark of Tandy Corp, Apple is a registered trademark of Apple Computer Inc. and Text Wizard is a registered trademark of DataSoft Inc.

1 yr. parts and labor limited warranty. Call or write for more details.

![TERMINALL for ATARI](image)

SYSTEM REQUIREMENTS

Atari 400, 800 or 1200 computer with minimum of 32K RAM and one disk drive or a cassette recorder. Includes software on disk and cassette, assembled and tested hardware and an extensive instruction manual. $499.

Add $4.00 shipping UPS reg. delivery, CA residents add 6% sales tax.

CALL OR WRITE FOR DETAILS

(209) 667-2888

MAcroTRONICS, inc.®

1125 N. Golden State Blvd.
Turlock, California 95380

C.O.D.

We periodically experience telephone difficulties. Please keep trying.

The communications terminal that does it all!
heatsink cooling fan

Most modern transceivers in the 200 watt class mount the amplifier on the back of the cabinet. The heatsink is exposed, and should be cooled by a breeze. A muffin fan is just right to make that breeze.

Surplus houses sell them for around $12, but you can pick them up new at ham flea markets for around $4. These fans run from 120 Vac, but are fast and noisy, masking the speaker signal. To slow the fan down, put a 600 ohm 20/30 watt resistor in series with the 120 volt line. I put mine in front of the breeze to keep it cool. A four-inch resistor will mount on clips attached to the holes in the fan used for mounting (see fig. 1).

Ed Marriner, W6XM

HF antenna

Some time ago I tried a 160-meter antenna described in Editors & Engineers Radio Handbook by Bill Orr, W6SAI, (21st Ed., Section 27-17, fig. 22). The results were quite gratifying, probably because of the high ground conductivity under the antenna. The ground for the antenna was at the base of a 40-foot TV tower.

I now have a small home at the seashore on a small lot, too small to put up a 120-foot dipole for 75 meters. In the past I had tried a single-wire 1/4-wave antenna, but with only limited success. Then this year I put up the one shown in fig. 2. I first put up the 75-meter portion, made with 300-ohm TV ribbon to the specs given in the Handbook. My results on 75 were much better than with the 1/4-wave dipole, but this antenna, of course, worked on only one band.

Next I tried using two lengths of 300-ohm ribbon, cut for 40 meters and 20 meters, and sling under the 75-meter section. Because of the close coupling to the 75-meter section, these did not work. But it was interesting to note that the performance of the 75-meter antenna was not affected by the addition of these two sections. I replaced the 40-meter and 20-meter sections with wire, to form a 1/4-wave antenna on these bands. Now all three antennas tuned up well. VSWR at 3.825 MHz was 1.4, at 7180 it was 1.2, at 14275 it was 1.4, and at 21.300 it was 1.4. Normally it would not be necessary to use an antenna tuner, but with the TS-120S solid-state transceiver, maximum output occurs at only 50 ohms. Also, by using the tuner I work over the full portion of these phone bands.

construction

The spacers were made from three plastic clothes hangers purchased at the local discount store for 97 cents. Each hanger was cut up to get the straight sections. Six were cut to 9-inch lengths and these were used for the 40-meter and 20-meter sections. Four were cut to 6-inch lengths for the outer supports of the 40-meter section. Holes were drilled for passing the wires through them, and then the wire was tied to the supports with a piece of fishline. See fig. 3 for details.

Here I might remind you to make sure the grounded portion of the SO-239 cable connector is secured to the tower base with a strap or heavy wire (#14 or larger). The one grounded side of the 300-ohm ribbon is soldered to the SO-239 casing and the other three wires are soldered to the center pin. After soldering, the SO-239 was coated with Dow-Corning DC-9 for weather protection. Connection to the equipment is by means of thirty-five feet of RG8/U.

For use on a small lot, this system seems to work quite well, and it has a high angle of radiation, which I prefer for contacts up to 800 miles on 75. Don’t expect this type of antenna to compete with a high half-wave antenna on any of these bands, but it does perform well for reasonable distances — even with its short length.

J.F. Sterner, W2GQK
fig. 2. Construction details of the antenna for 75 through 15 meters.

fig. 3. Support sketch.
Experience tomorrow with a home computer!

SAVE $36!

HITACHI VM-900 9” black and white video monitor

Offers 500 lines of horizontal resolution for sharp video displays and features special circuitry for rock-steady pictures. All solid state design for greatest reliability. Inputs selectable for high impedance or 75 ohms with loop-through output for additional monitors. User adjustable brightness, contrast, vertical and horizontal controls. Built-in AC power supply. Lightweight and compact—weighs just 13.5 pounds and measures 9.6” x 9.2” x 9.3”.

$119
List Price 155.00 Item No. HITVM900
Add 4.32 shipping & handling

COMMODORE VIC-20 personal computer

Now drastically reduced in price! Features typewriter size keyboard, built-in BASIC language and 5K of memory, expandable to 32K. Operation is so easy, you’ll be writing your first program in just 15 minutes! A wide range of add-on accessories is available for amateur application as well as financial planning, self-education and entertainment. Connects in seconds to any black and white or color TV. Complete with RF modulator connecting cables and manual with sample programs. An extraordinary value!

$99 List Price 299.00 Item No. COMVIC20
Add 2.57 shipping & handling

Long’s Electronics
MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM, AL 35202 • STREET ADDRESS: 3131 4TH AVENUE SOUTH BIRMINGHAM, AL 35233

Tell ’em you saw it in HAM RADIO!
YAESU FT-102 high performance transceiver

Deluxe HF transceiver at tremendous savings! The FT-102 covers 160-10 meters, including the WARC bands and delivers 240W DC on SSB and CW. Its commercial grade transmitter uses three 6184B final tubes for greater signal purity. Plus, the audio may be tailored prior to being sent to the built-in RF speech processor. A highly sensitive front end provides exceptional dynamic range and there's an IF shift/width system for superb selectivity. Adjustable noise blanker, AGC, plus ALC width hold switch and built-in AC power supply.

$889 List Price 1149.00 Item No. YEAFT102
Add 9.00 shipping & handling

MFJ 1224 computer interface
Join the action on RTTY, ASCII and high speed CW with your personal computer, amateur transceiver and this impressive new unit from MFJ! Operates at all popular RTTY/ASCII speeds and shifts, plus offers CW send/receive at 5-99 WPM. Uses Kantronics or similar software. Requires 12V DC for operation.

89.95 List Price 99.95 Item No. MFJ1224
Add 2.18 shipping & handling

KANTRONICS Hamtext 20 software package
A new and expanded software package for use with the VIC-20 computer. Features split-screen display, status display, 1024 character type-ahead buffer and CW ID during RTTY/ASCII operations. Ten message ports with 256 characters each which may be "dumped" for cassette storage. For the ultimate in RTTY, ASCII and CW!

89.95 List Price 99.95 Item No. KANC20
Add 1.40 shipping & handling

Call Toll Free 1-800-633-3410
IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY
vertical phased arrays: part 3

Array impedances, measurements, and calculations

In Part 2, various types of arrays were examined and relative power (in dB) plots were shown. We saw how specific physical arrangements of elements, current amplitude ratios, and phase displacements formed beams. By varying current amplitude ratios and phases, the forward beam width or the rejection characteristics of a given physical array were modified. The question now is how can these drive conditions be created in a real array? To do this we need information about element impedances in order to design the feed network.

Knowledge of self-impedance and mutual impedances, as well as factors that influence them, is essential because everything will be either directly or indirectly affected by these parameters.

self-impedance

The self-impedance of an antenna at any frequency is a function of the element length, its radius, ground plane loss, and coupling with other nearby antennas. Strictly speaking, the last two items are not components of self-impedance. However, when measuring self-impedance, both may be present in the reading of apparent self-impedance.

Although resonant elements are not required for an array, their use simplifies calculations and provides the following advantages:

1. An open-circuited 1/4-wavelength element presents virtually no coupling. This simplifies measurement procedure and ensures best conditions for accuracy of self- and mutual impedance readings.

2. The resistive component of self-impedance is normally higher than ground loss resistance which results in reasonable efficiency.

3. Ground plane evaluations and comparisons are easier to make because more information is available about the 1/4-wavelength resonant antenna than about other types of vertical antennas.

element length and radius

An article on Yagi design by James Lawson, W2PV1 provides data on the relationship between an element’s resonant length and its radius. (When using this source, be sure to refer to error corrections?) It’s important to use a full wavelength when calculating length-to-radius ratio, \(K \), for W2PV’s equations. For determining parameters of a resonant grounded 1/4-wavelength element, I have revised W2PV’s chart as shown in fig. 1. In the Yagi antenna

By Forrest Gehrke, K2BT, 75 Crestview Road, Mountain Lakes, New Jersey 07046
design, emphasis was placed on the reactance com-
ponent of self-impedance, ignoring the effect that
radius has upon the resistive component. In an all-
elements-driven array as compared to a parasitic
array, it is more important to know this effect. A re-
view of the Amateur literature yields a range of
values for a 1/4-wavelength vertical resistive compo-
nent of impedance; these values are probably all cor-
rect. Any disparity is probably due to the different
antenna element diameters that are used. The theo-
retical self-impedance of a physical 1/4-wavelength
high vertical is $36.5 + j21\sqrt{\frac{1}{4}}$ which assumes the use of
an infinitely conducting ground plane and an infinite-
ly thin element. Obviously neither of these conditions
is physically realizable. However, even if an infinitely
thin element could be used, it still would have to be
shortened to achieve resonance — and in so doing
the resistive component would decrease. A real ele-
ment, having real thickness, would reduce resistance
some more since it requires a further reduction in
length in order to achieve resonance. Kraus5 shows
that l/r ratios in the range of 60 to 1000 are equal to a
resistance variation from 34 to 36 ohms, with 35
ohms as an average value. He uses an element’s
actual length when calculating l/r. The comparable
data for reactance change compiled by W2PV would
show a variation for K from 240 to 4000. When resis-
tance is plotted against the logarithm of K, we see a
virtually straight line, showing a slow reduction in re-
sistance as the element diameter is varied from 1.5 to
24 inches.

ground planes

Considerable controversy surrounds the subject of
required ground plane size and its influence on anten-
tenna performance. The ground plane essentially
establishes an image antenna to represent the other
half of a dipole. The better that image, the lower the
ground loss and the lower the radiation angle. How
large the ground plane should be is answered by
examining the near field (within the first 1/2 wave-
length), and far field (to at least 6 wavelengths) com-
ponents. The near field requirements for proper pat-
tern formation is satisfied by a ground system com-
posed of wire radials; a sufficient quantity allows us
to get quite close to the theoretical resistance. At the
lower frequencies the far field usually must be left to
nature, since it would be prohibitively expensive to
provide so large a radial wire or mesh ground system.
Even the large a-m broadcast antennas are located in
salt marshes whenever available to take advantage of
the high conductivity of earth for many wavelengths
beyond the reach of the radials.

My experience correlates closely with the work re-
ported by Jerry Sevick, W2FM15,7 His graph of resis-
tance versus number of radials used on 40 meters is
applicable for 80 meters as well. I used radials aver-
aging 0.3 wavelength in length, composd of PVC No.
24 hookup wire, and laid them on the ground. The
only difference noted is that resistance did not de-
crease as rapidly as his graph shows. For instance, I
never found resistance below 40 ohms with 40 radia-
tals, but at 60 radials and greater the data correlated
more closely. This discrepancy is probably attribu-
table to the differences in soil conductivity; the land
under my array is part of a moraine, and consequent-
ly represents very low conductivity earth. All indica-
tions are that with 120 1/4-wavelength radials, resis-
tance of a resonant 1/4-wavelength vertical is within
a half ohm of the theoretical value regardless of the
underlying soil conductivity. Another effect I noticed
which W2FM1 did not comment upon was that as
radials were added, the element length had to be
slightly but continually adjusted upward to maintain
resonance.

coupling with other antennas

The attempt to approach the theoretical self-impe-
dance value can be frustrated by inadvertent coup-
lng of the antenna under test to another antenna. As
will be seen when discussing mutual impedance, the
effects are subtle and can be easily mistaken for
ground plane differences. These effects can go in
both directions — you may think you are achieving
theoretical self-impedance with a 30-radial ground
plane, or conversely that a 120-radial ground plane
has several ohms loss. If you encounter either of
New Para-Sleeve Design
The Explorer 14 is a new antenna design we call PARA-SLEEVE which uses an "open-sleeve" dipole optimized for maximum bandwidth and directivity. Here is the concept: a central dipole, driven directly by the transmission line, has a 1/2 wave resonance on the lowest operating frequency. Two shorter sleeve elements, tightly coupled to the central dipole, modify its impedance to create a 1/2 wave resonance to the highest operating frequency. This para-sleeve system is expanded by the addition of 15 meter traps and 20 meter element tips. A revolutionary new concept for HF tribanders: So unique, we've applied for a patent.

Broadband Performance
The Explorer 14 will load solid state transceivers to maximum output with VSWR below 2:1, eliminating the need for an antenna tuner. You'll have edge to edge broadband performance on 20, 15 and 10 meters with gain and front-to-back ratio competitive to giant tribanders that cost twice as much or more. You'll be able to work stations you cannot even hear with a dipole antenna. And, the Explorer 14 handles maximum continuous legal power with respectability and safety margin.

Short Boom Save Space and Money
If your space or budget was too limited for a long boom tribander, chances are the Explorer 14 will fit both. The boom is only 14' (4.3 m) long and the turning radius requires only 17'3" (5.3 m). The compactness of the Explorer 14 reduces its overall weight and windload surface so you can mount it on a roof tripod, a mast or a tower. For Example, the Hy-Gain CD-450 rotator and HG52 tower are a perfect match for the Explorer 14. This saves you the cost of an extra heavy duty rotator and tower.

Superior Construction
The Explorer 14 includes passivated stainless steel hardware and heavy gauge, pre-formed element and mast brackets. High grade 6063-T632 thick wall swaged aluminum tubing is used throughout. A BN66 balun is included and a new Beta Multi-Match provides DC ground to reduce lightning hazard and precipitation static. It's a rugged, easily assembled antenna that survives winds to 100 mph (160 km/h).

Quad Band Option
You can add a fourth band, either 30 meters or 40 meters to the Explorer 14 with the CX-710 kit. A kit that attaches to the central dipole and is easily adjusted for either 30 meters (WARC) or 40 meters at minimal extra cost.
these indications, suspect coupling with another antenna (or something acting like one even if you don’t “see” it). Another indication of this problem is a significant departure (at 80 meters — several inches) in element length for resonance. I had a tower guy wire (adequately broken up with insulators, I thought) whose lowest section ran to an anchor at the base of a tree. This section was approximately 1/4 wavelength and it found sufficient ground conductivity in the tree roots to present lossy coupling to one of my array elements. Though I knew that element wasn’t right, I could not see anything that would act as a resonant antenna around it. That guy wire didn’t look as if it had a ground plane! The solution was to insulate it at the anchor, thus decoupling the section of guy wire.

I am sure many Amateurs will identify with this frustrating experience: the first element of a multi-element array is erected and adjusted for resonance. The length is carefully recorded and the second erected. Then, letting the first element remain connected to its feed cable, the second element is checked for resonance, found too long, and is readjusted downward. Reconnecting the second element to its feeder, the first element is now found too long. And so it continues; the result is that the elements end up considerably shortened below their uncoupled resonant length. This is mutual coupling at work and the error was in failing to open-circuit other elements when making self-impedance measurements. Other elements, at or near resonance and within about 0.35 wavelength of the antenna being measured, will manifest inductive coupling. Unless you’re aware of what is happening, you may diagnose this inductive reactance to be due to the element’s being too long. Shortening it will bring it to “resonance” and this may be accompanied by a satisfactory reduction in resistance (perhaps even below theoretical), but all these changes when the second element is open-circuited. It is well to remember that this situation can also occur inadvertently with a conductor not recognized as acting as an antenna. However, as we shall soon see, this same effect — mutual coupling — is the very same process used to advantage to create field enhancement and cancellation in arrays.

mutual impedance

Coupling between elements is a function of element lengths, distance between elements, relative attitudes of elements (e.g., parallel, co-linear, echeleon), and ground plane losses. Ground losses are not actually a component of theoretical mutual impedance but in a practical situation they become a part of the apparent mutual impedance. (Mutual impedance is a term that relates to the interaction of two or more antennas which are close enough to each other to cause their driving impedances to be different from their self-impedances.) The unit of measurement — ohms — may be, like any impedance, resistive or reactive, or both. Such antennas are coupled by an impedance which appears to be in common with all elements. (Driving point impedance calculations only require the mutual impedance between pairs — that is, two elements at a time be measured.) Mutual impedance between antennas is similar to mutual inductance between coupled coils; the impedance relationship can be both depicted and its value measured in the same way. In fig. 2 the driving point impedance Z_1 or Z_2 of each vertical as measured at either set of terminals reacts to the presence of the other vertical as though its self-impedance Z_{11} or Z_{22} had a common impedance Z_{12} in series with it. Z_{12} is, by definition:

$$Z_{12} = -\frac{E_s}{I_1}$$

Although useful mathematically, it doesn’t provide a practical basis for measurement. The voltage and current relationships existing in a system of antenna elements, each mutually coupled to one another, have the same form as the voltage and current in a general network. Writing their mesh equations produces:

$$E_1 = I_1 Z_{11} + I_1 Z_{12} + \ldots + I_n Z_{1n}$$

$$E_2 = I_1 Z_{21} + I_2 Z_{22} + \ldots + I_n Z_{2n}$$

$$\vdots$$

$$E_n = I_1 Z_{n1} + I_2 Z_{n2} + \ldots + I_n Z_{nn}$$

where E_1, E_2, \ldots, E_n are voltages applied to elements 1,2,..,N

I_1, I_2, \ldots, I_n are element drive currents

$Z_{11}, Z_{22}, \ldots, Z_{nn}$ are element self-impedances
$Z_{12}, Z_{21}, \ldots, Z_{1n}, Z_{2n}$ are mutual impedances and are denoted by dual subscripts which are always different. As in general networks, mutual impedances with the same subscripts but with reversed positions, (e.g., Z_{12} and Z_{21}), describe the identical impedance (from the Reciprocity Theorem).

If the equation for each drive voltage is divided by that element's drive current, the following driving point impedance terms are obtained:

$$Z_1 = E_1/I_1 = Z_{11} + I_2Z_{12}/I_1 + \ldots + I_nZ_{1n}/I_1$$

(1)

$$Z_n = E_n/I_n = I_1Z_{n1}/I_n + I_2Z_{n2}/I_n + \ldots + Z_{nn}$$

Notice that each element’s driving point impedance consists of its self-impedance and includes terms for the mutual impedances between it and each of the other elements. The influence of the mutual impedances upon the driving point impedance is a function of the drive currents (amplitude and phase) to other elements. Although at first glance these equations appear quite formidable and look like there are too many unknowns for solution, this is not the case. Having selected an array configuration and the driving current ratios and displacements for the field plot, we already know what the currents need to be.\footnote{If we could find a way to reduce the complexity and consequently the number of unknowns, a means for deriving mutual impedances might be devised. Fortunately there is one. Since each mutual impedance we need to know exists between only two elements, we can write a simpler set of equations:

$$E_1 = I_1Z_{11} + I_2Z_{12}$$

$$E_2 = I_1Z_{12} + I_2Z_{22}$$

If the terminal of element 2 is connected to its ground plane, the drive voltage E_2 becomes zero and:

$$E_1 = I_1Z_{11} + I_2Z_{12}$$

(2)

$$O = I_1Z_{12} + I_2Z_{22}$$

Solving for the driving point impedance yields:

$$Z_1 = E_1/I_1 = Z_{11} - (Z_{12})^2/Z_{22}$$

and solving for the mutual impedance Z_{12} gives

$$Z_{12} = \pm \sqrt{Z_{22}(Z_{11} - Z_1)}$$

(3)

Note that all references to voltages and currents have been eliminated. We are now in a position to find all the remaining unknowns.

mutual impedance measurement

Provided the elements are $1/4$ wavelength or less, the procedure is: open-circuit all elements; measure the self-impedance of element 1; connect element 2 terminal to its ground plane; measure the driving point impedance of element 1; and open-circuit element 2.

If there are additional elements, connect element 3 terminal to its ground plane; measure the driving point impedance of element 1; and open-circuit element 3.

Following the same sequence, all remaining elements are measured from element 1. When completed, a similar set of measurements are taken from element 2, starting with self-impedance and then measuring the various pairs of driving point impedances, and so on with each remaining element. This procedure allows each element to be individually treated as the reference element of each pair of elements for mutual impedance measurements. When completed, the same mutual impedance will have been read from each side of every pair. This provides a check on previously determined calculations. I am continually amazed (even though I know it is supposed to happen) by the close coincidence of the resulting value for mutual impedance as determined from either element of a pair! This occurs, as it should, even when the two self-impedances are quite different.

using 1/2-wavelength elements

What if the elements are significantly longer than $1/4$ wavelength, specifically a $1/2$ wavelength? Open-circuiting these elements from the ground plane will not decouple them (in all likelihood, coupling will be found to increase if the length is exactly a $1/2$-wavelength). Means for temporarily sectioning other elements into two electrically separate halves must be provided so that self-impedances are measured with the temporary sectioning reconnected and that element connected to its ground plane. I have no experience with this situation but I believe the array can be driven properly, provided the high impedance at the bases of the elements can be handled.

In antenna texts, mutuals are always referred to current loops (maximum current points). Mutuals derived from measurements as above are referred to the base of the elements. These are quite different values, just as self-impedances differ according to whether they are measured at a voltage or current loop.

mutual impedance calculations

Data is taken from a 40-meter 4-square array with elements spaced 0.272 wavelength at 7.0 MHz. The elements are not alike, not resonant, and the ground plane is quite lossy. Data are shown for two elements and mutual coupling was measured from each.
Table 1. List of mutual resistance and reactance between two physical 1/4-wavelength verticals separated by 0 through 1.5 wavelength spacings.

<table>
<thead>
<tr>
<th>Spacing</th>
<th>R</th>
<th>X</th>
<th>Spacing</th>
<th>R</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+36.57</td>
<td>+21.27</td>
<td>0.80</td>
<td>-9.25</td>
<td>+6.13</td>
</tr>
<tr>
<td>0.05</td>
<td>+35.83</td>
<td>+12.14</td>
<td>0.85</td>
<td>-6.66</td>
<td>+8.15</td>
</tr>
<tr>
<td>0.10</td>
<td>+33.67</td>
<td>+3.77</td>
<td>0.90</td>
<td>-3.75</td>
<td>-9.28</td>
</tr>
<tr>
<td>0.15</td>
<td>+30.22</td>
<td>-3.55</td>
<td>0.95</td>
<td>-7.86</td>
<td>+9.50</td>
</tr>
<tr>
<td>0.20</td>
<td>+25.70</td>
<td>-9.59</td>
<td>1.00</td>
<td>+2.00</td>
<td>+8.67</td>
</tr>
<tr>
<td>0.25</td>
<td>+20.40</td>
<td>-14.18</td>
<td>1.05</td>
<td>+4.38</td>
<td>+7.52</td>
</tr>
<tr>
<td>0.30</td>
<td>+14.63</td>
<td>-17.22</td>
<td>1.10</td>
<td>+6.16</td>
<td>+5.61</td>
</tr>
<tr>
<td>0.35</td>
<td>+8.75</td>
<td>-18.71</td>
<td>1.15</td>
<td>+7.26</td>
<td>+3.36</td>
</tr>
<tr>
<td>0.40</td>
<td>+3.11</td>
<td>-18.72</td>
<td>1.20</td>
<td>+7.63</td>
<td>+0.97</td>
</tr>
<tr>
<td>0.45</td>
<td>-1.99</td>
<td>-17.39</td>
<td>1.25</td>
<td>+7.28</td>
<td>-1.33</td>
</tr>
<tr>
<td>0.50</td>
<td>-6.27</td>
<td>-14.97</td>
<td>1.30</td>
<td>+6.30</td>
<td>-3.35</td>
</tr>
<tr>
<td>0.55</td>
<td>-9.53</td>
<td>-11.71</td>
<td>1.35</td>
<td>+4.81</td>
<td>-4.92</td>
</tr>
<tr>
<td>0.60</td>
<td>-11.66</td>
<td>-7.94</td>
<td>1.40</td>
<td>+2.99</td>
<td>-5.94</td>
</tr>
<tr>
<td>0.65</td>
<td>-12.61</td>
<td>-3.97</td>
<td>1.45</td>
<td>+1.00</td>
<td>-6.35</td>
</tr>
<tr>
<td>0.70</td>
<td>-12.43</td>
<td>-0.13</td>
<td>1.50</td>
<td>-.94</td>
<td>-6.15</td>
</tr>
<tr>
<td>0.75</td>
<td>-11.25</td>
<td>+3.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equation 3 is used to calculate the mutual impedance.

Measurements from Element A (referenced as Element #1)

Element A \(Z_{ll} = 45.73 + j 8.19 \) Self-impedance of A

Element B \(Z_{22} = 42.53 + j 5.72 \) Self-impedance of B

Element A \(Z_{11} = 46.98 + j15.66 \) Driving point impedance of A with B grounded

\[Z_{12} = 12.53 - j12.95 \] Calculated mutual impedance

Measurements from Element B (referenced as Element #1)

Element B \(Z_{11} = 42.53 + j 5.72 \) Self-impedance of B

Element A \(Z_{22} = 45.73 + j 8.19 \) Self-impedance of A

Element B \(Z_{11} = 44.20 + j12.79 \) Driving point impedance of B with A grounded

\[Z_{12} = 12.63 - j13.34 \] Calculated mutual impedance

Note the following:

1. There is a nomenclature interchange for the self-impedances of the elements, denoting the change in reference element for the measurement of mutual coupling.

2. There is only a small increase in resistive component when measuring the effect of coupling, requiring a highly accurate impedance bridge.

3. At this spacing, the effect of coupling is decidedly inductive on the measured element.

4. There is reasonably good correspondence in the mutual impedance calculation from either side of the pair of elements, despite the differences in the individual elements.

5. The measured mutual impedance is quite different from theoretical values. (See table 2.)

As a further verification of measurements and calculations, this test is useful and instructive: With element 2 connected to its ground plane, drive element 1 from a 50 to 100 watt source while measuring current at the terminals of each element. The ratio of the current flowing in element 2 to element 1 is equal to the ratio of the mutual impedance to element 2 self-impedance:

\[\frac{I_2}{I_1} = -\frac{Z_{12}}{Z_{22}} \]

(This identity is a rearrangement of eq. 2.)

Since ratios are involved, the only restraint on the current measuring device is that it be linear. Although phase angles are difficult to measure when the reference points are located at some distance, current amplitudes can be measured and this identity is useful as a verification of impedance measurements and calculations, even if only the magnitude of the mutual impedance vector can be obtained. When performing this test, if there are more elements, open circuit them. If driving with more than 50 watts be careful of those open-circuited elements; don’t provide a ground return through your body. You may be surprised to find how much energy is being coupled.

The calculations for mutual impedances require a square root extraction. Which sign to use? As general guidance, the polar vector angle of the root is always lagging except at spacings less than about 0.15 wavelengths. For a specific calculation the pattern of sign changes seen in published sources is an aid. Mutual resistance and reactance vary with element separation in the nature of a damped sine wave, starting with both signs positive at zero separation and proceeding through cyclic sign variations.
thereafter. For example, suppose at 1/4-wavelength separation with 1/4-wavelength elements your calculator or computer produces the square root extraction \(-13.7 + j15.1\) (polar notation 20.4° + 132.2°).

The polar angle shows lead and it should be lagging. Looking at published sources we see confirmation for this. Subtracting 180° from the polar vector angle will produce the correct signs for resistance and reactance. To aid in determining signs I have converted the table of mutual resistances and reactances shown by W2PV, to grounded physical 1/4 wavelength values in Table 1.

The question arises: "Why bother measuring mutual impedances? Why not use published values from antenna texts?" The best answer is another question: "Why not also use textbook values for self-impedance?" Most Amateurs measure self-impedance because they want to be sure the element length is resonant at the frequency of interest or because they know from experience that the actual self-impedance can differ considerably from the theoretical value. Theoretical mutual impedance derivations are quite complex and solutions often use different simplifying assumptions. The result is that few textbook sources — except those which obtained data from a common origin — agree exactly. Regardless of source, the following assumptions apply: infinitely conducting ground plane; infinitely thin element; and element lengths measured in physical wavelengths. Element radius has a relatively small effect on mutuals. The element length assumption can be determined from the values for zero separation between elements (see first line in Table 1). This is the self-impedance of a single element and may be recognized as identical with theoretical self-impedance. (Applies to equal length element data only.) For example, the value 36.5 + j21 means that physical 1/4-wavelength elements had been assumed. The length difference (over resonant length) will not seriously affect driving point impedance calculations, but the assumption of lossless self-impedances will. Table 2 lists mutual impedance between 1/4 wavelength high elements from several sources compared to an average of 16 measurements I have made.

The resistive component differs most. Despite these differences, if no means of measurement is available, there is something to be said for using theoretical values; at least there is recognition they exist rather than ignoring them entirely. However, as I have previously emphasized, the significance of deviation from optimum drive conditions increases with the complexity of the array. When I first became aware of the need to take mutual impedances into account for the feed network, I used theoretical values. There was improvement in F/B, but it was still far from what is achievable.

You may have wondered if an element driving-point impedance could have a negative resistive component, and if so, what that means. This is entirely possible with arrays of more than two elements, particularly with close spaced arrays or arrays employing non-unity current ratios. Elements exhibiting this condition are being driven by energy coupled from other elements; instead of receiving any drive from its feeder, this element is sending drive back into the feed network. This is still a coupled passive system, in equilibrium, merely observing the law of conservation of energy.

Calculations of driving-point impedances

Using equation 1, I have calculated and listed in Table 3 the driving-point impedances of several arrays discussed in Part 2 using measured mutuals. (For smaller spacings, values were estimated based on extrapolations of my data). For a comparison, the 4-square array driven impedances are also calculated using mutual impedances from Table 1.

Data common to all calculations:

- Element effective radius = 0.7 inch
- Element height = 62.7 feet
- Self-impedance = 36.4 + j0 ohms
- Frequency = 3.8 MHz

Notes and comments

1. The 3 element in-line and the 1/8-wavelength 4-square have elements which exhibit substantial negative resistance components in their driving point impedances.
2. Nearly all driving point impedances show substantial reactance, requiring some care in establishing correct phasing.
3. All arrays except one exhibit unlike driving impedances, ruling out equal power distribution networks where equal current amplitude is intended.
4. Note the difference in driving point impedances in

Table 2. Values of mutual impedance between two quarter-wavelength high verticals. Data from five different sources. (Gehrke's entry represents measured data for a real vertical over a real ground.)

<table>
<thead>
<tr>
<th>source</th>
<th>mutual impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.272 spacing)</td>
</tr>
<tr>
<td>Brown</td>
<td>17.49 - j17.01</td>
</tr>
<tr>
<td>Jasik</td>
<td>17.47 - j16.01</td>
</tr>
<tr>
<td>Jordan</td>
<td>17.55 - j16.37</td>
</tr>
<tr>
<td>Mushiake</td>
<td>17.51 - j15.70</td>
</tr>
<tr>
<td>Gehrke</td>
<td>13.20 - j16.24</td>
</tr>
</tbody>
</table>
the 1/4 wavelength spaced 4-square using actual mutual impedances as compared to the use of theoretical values. Current and phases in the latter case will not occur as intended in a real array.

5. Note the 2 element 1/2 wavelength spaced array (not shown in Part 2). Because of the equal driving impedances, here is one of the few instances of an array which operates as intended regardless of feeder length, as long as they are equal and a 1/2 wavelength delay line is inserted in series with one of them. Except for VSWR, Zo of coax is not important. The antenna pattern in this case is not a function of the coaxial cables Zo (characteristic impedance) though the VSWR still is.

We tend to become accustomed to thinking of an antenna, just as any discrete component, as having a fixed impedance at any frequency. The concept that elements within an array present impedances that are determined by other element drive currents (amplitude and phase) is, at first, difficult to appreciate. That these impedances may have negative components of resistance also can be a bit unsettling. Yet when an array is looked at mathematically as a general network which includes the impedance branches represented by mutual impedances, these seemingly unusual effects can be seen to be physical realities. Consequently, the rest of this coupled system, the feed network, must be designed for these driving impedances as the terminations.

If we expect to switch directions with this array, then we need to be sure that each physical element presents the same driving point impedance appropriate to the electrical position in the array it is assuming. I have found that equalizing self-impedances is the best means for doing this. Each element is adjusted for length to present the identical reactance (if resonance is the objective, then this is zero reactance). Assuming all elements have the same radius, radials are added to those elements showing higher resistive components. At the 100 radial level, it is not unusual for a spread of +20 radials to occur among the ground planes of the elements in this effort at equalization.

Table 3. Mutual and driving point impedance values for some popular vertical phased arrays.

<table>
<thead>
<tr>
<th>array</th>
<th>current ratio</th>
<th>mutual impedances</th>
<th>driving point impedances</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-element, λ/4 spacing*</td>
<td>1/1; 0°, -90°</td>
<td>(Z_{12} = 15 - j15)</td>
<td>(Z_1 = 21.4 - j15)</td>
</tr>
<tr>
<td>3-element in-line, λ/4 spacing</td>
<td>1/2/1; 0°, -90°, -180°</td>
<td>(Z_{12} = Z_{23} = 15 - j15) (Z_{13} = -9 - j13)</td>
<td>(Z_1 = -6.6 - j21) (Z_2 = 51.4 + j0) (Z_3 = 79.4 - j39)</td>
</tr>
<tr>
<td>2-element, λ/2 spacing</td>
<td>1/1; 0°, -180°</td>
<td>(Z_{12} = -9 - j13)</td>
<td>(Z_1 = 45.4 + j13) (Z_2 = 45.4 + j13)</td>
</tr>
<tr>
<td>triangular array, 0.289λ spacing</td>
<td>1/0.5/0.5; 0°, -90°, 90°</td>
<td>(Z_{12} = Z_{23} = Z_{13} = 10 - j16)</td>
<td>(Z_1 = 28.4 - j10) (Z_2 = 78.4 + j4) (Z_3 = 78.4 + j4)</td>
</tr>
<tr>
<td>4-square array, λ/4 spacing</td>
<td>1/1/1/1; 0°, -90°, -90°, -180°</td>
<td>(Z_{12} = Z_{13} = Z_{24} = Z_{34} = 15 - j15)</td>
<td>(Z_1 = 3.4 - j12.5) (Z_2 = 39.4 - j17.5) (Z_3 = 39.4 - j17.5) (Z_4 = 63.4 + j47.5)</td>
</tr>
<tr>
<td>4-square array, λ/4 spacing using table 1 mutual impedance data</td>
<td>1/1/1/1; 0°, -90°, -90°, -180°</td>
<td>(Z_{12} = Z_{13} = Z_{24} = Z_{34} = 20.4 - j14.18) (Z_{14} = Z_{23} = 8.41 - j18.72)</td>
<td>(Z_1 = -0.37 - j22.08) (Z_2 = 44.81 - j18.72) (Z_3 = 56.35 + j59.52)</td>
</tr>
<tr>
<td>2×2 array of arrays, λ/4 spacing</td>
<td>1/1/1/1; 0°, 0°, -90°, -90°</td>
<td>(Z_{12} = Z_{13} = Z_{24} = Z_{34} = 18.9 - j33) (Z_{14} = Z_{23} = 3 - j17.5) (Z_1 = 18.9 - j33) (Z_2 = 83.9 + j3) (Z_3 = 83.9 + j3)</td>
<td></td>
</tr>
</tbody>
</table>

*This 2-element, 1/4-wavelength spaced array is probably the most common phased array configuration used by Amateurs today. Please note that the driving point impedances are different.

Editor.
Anyway you look at it.... ADM has your antenna

ADM 11, ADM 13, ADM 16, ADM 20
Sturdy Aluminum & Steel
Construction
Easy Assembly & Installation

ANTENNA DEVELOPMENT & MANUFACTURING, INC.
P.O. Box 1178, Hwy. 67 South
Poplar Bluff, MO 63901
(314) 785-5988 686-1484

summary

We have worked our way through the design of vertical phased array antennas. A number of typical arrays were examined, as well as the current requirements of each element and the driving point impedances that must exist to cause the array to operate as designed. What remains is to design the feed network which will create conditions as they must appear, not at the element terminals, but at the end of the feed lines coming from those terminals. By now you are aware, if you weren't already, that feed lines are an integral part of the feed network.

There is no unique network which achieves the necessary current amplitude ratios and phase displacements. We can get to that objective in a number of different ways. In the next article the design task will be of use A,B,C,D parameters in single matrices as a tool. If this technique is new to you, I believe you will find this approach most interesting.

You will see that this is a powerful and versatile means of network design, useful not just for antenna arrays, but for other network applications as well.

references

In commenting on vertical phased arrays, several writers have cautioned against placing arrays near trees. The apparent assumption is that trees represent resonant loss elements or somehow disturb the field so that the radiated pattern will be changed. I remain unconvinced. At wavelengths 40 meters and longer, I have measured self- and mutual impedances of elements, among trees, at all seasons of the year without seeing any significant changes that are not also seen on a pair of 40-meter elements completely away from trees. Small variations (0.3 to 0.5 ohms) are seen in self-impedances, depending upon soil moisture conditions, which are reflected in mutual impedance measurements. Since all elements are affected in the same way, these small changes cannot significantly affect radiation patterns. Examination of published mutual impedance data indicates that the presence of conductive elements, resonant or not, within about 0.1 wavelength of an element will significantly affect mutual impedance in unanticipated ways. Prudence would therefore dictate that nothing conductive, or even partially so, which could act as an antenna be allowed within that distance. If despite this precaution array patterns are indeed disturbed, my advice is to look for something that may be acting as a real conductive antenna in the immediate area of the array, or to re-evaluate the feed network. - K2BT
When it comes to
QSL’s...

it’s the
ONLY BOOK!
US or Foreign Listings

1983 Callbooks

Here they are! The latest editions of the world-famous Radio Amateur Callbook are available now. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists calls and the address information you need to send QSL’s. Special features include call changes, census of amateur licenses, world-wide QSL bureaus, prefixes of the world, international postal rates, and much more. Place your order for the new 1983 Radio Amateur Callbooks, available now.

Each Shipping Total
- US Callbook $19.95 $3.05 $23.00
- Foreign Callbook $18.95 $3.05 $22.00

Order both books at the same time for $41.95 including shipping.

Order from your dealer or directly from the publisher. All direct orders add shipping charge, Foreign residents add $4.55 for shipping. Illinois residents add 5% sales tax.

SPECIAL OFFER!
Amateur Radio Emblem Patch
only $2.50 postpaid

Pegasus on blue field, red lettering, 3” wide x 3” high. Great on Jackets and caps.

ORDER TODAY!

RADIO AMATEUR CALLBOOK INC.
Dept. F
925 Sherwood Drive
Lake Bluff, IL 60044, USA

Proven Success
Our best salesmen don’t even work for Kantronics

Dear Sirs,

I am writing first of all to say how much I enjoy my
Kantronics Interface and the software that I bought for my
VIC-20 microcomputer. For a very reasonable price I now
had a whole new world of amateur radio - not to mention
some commerical transmissions I have been able to copy - opened to me.

P.S. Am tricked out with this setup and having
a ball. Thanks for a nice product!

Dear Miss,

I recently purchased a VIC-20 computer and your company's
"Interface" and software for RTTY and CW and I must say it does a
magnificent job. I have worked over twenty countries on RTTY on
15 and 20 meters in one month. The setup on CW is indescribably
excellent, adding a new dimension to amateur radio for me. I feel
done good, as we say here in Tennessee.

I must tell you, I have the
equipment in operation and it works
super good! I think it is an outstanding
piece of electronics.

Sawyer
It’s nice to find someone like you that responds to user
suggestions - keep up the good work.

The interface is available with software for six popular computers. Hamsoft is our original program for the Apple II, II+ or IIe; Atari 400 or 800; Radio Shack Color Computer, VIC-20, or Texas Instruments TI-99/4A. Hamtext, our advanced program, works with the Apple II, II+ or IIe; VIC-20, or Commodore 64.

The interface and Hamsoft or Hamtext combination has put computerized communications at a reasonable price. Contact your local Kantronics dealer or write us for more information.

Kantronics

(913) 842-7745
1202 E. 23rd Street
Lawrence, Kansas 66044

More Details? CHECK—OFF Page 92
RTTY and the Atari™ computer

Turn your Atari home computer into an RTTY terminal for either Baudot or ASCII.

If there’s one area in Amateur Radio that is becoming dominated by microprocessors, it’s certainly RTTY. It’s now common to find an RTTY operator using either a home computer or a piece of commercial gear fully dedicated to RTTY. RTTY is basically a digital form of communications, and as such it lends itself well to the use of computers. Applying a computer to RTTY requires that some basic problems first be solved. This article describes those problems and shows how they are solved in the process of making an Atari computer into an RTTY terminal (fig. 1).

basic problems: receiving and transmitting

When you tune your receiver to a ham RTTY station, you hear an alternation of two tones, called a low tone pair, which consist of a 1275-Hz “mark” and a 1445-Hz “space.” The duration of these tones determines the character speed, measured in words per minute. A device called a terminal unit receives the two tones and generates a voltage-on state when mark is present and a voltage-off state when space is present (see fig. 2).

It’s here that the serial interface to the computer comes into play. The serial interface detects the start of the pulse string, all on/off voltage transitions, and the end of the pulse string coming from the terminal unit. A pulse string represents a single character, and is stored as a binary number in a holding register in the interface. The computer reads this binary number and processes it before the next character appears in the serial interface. Processing usually means printing the character on a CRT, TV screen, or LED display.

The terminal unit designed for this application is shown in fig. 3. It is a receive-only device whose operation is controlled by the XR2211 chip. The resis-

By David W. King, K5VUV, 743 Rodney Drive, Baton Rouge, Louisiana 70808
A. AF SK TONES COME FROM PIN 1; GROUND IS PIN 3; USE DIN PLUG ON SIDE OF ATARI COMPUTER.

8. "RS232" INPUT TO PIN 4; PTT CONTROL TO PIN 1; GROUND TO PIN 5; USE PORT 3 ON ATARI 850 SERIAL INTERFACE.

C. USE 2 CONDUCTOR, SHIELDED CABLE FOR ALL CONNECTIONS. GROUND ALL SHIELDS AT TERMINAL UNIT ONLY - LEAVE SHIELDS DISCONNECTED AT SERIAL INTERFACE AND COMPUTER.

fig. 1. Cabling arrangement between the Atari computer, transceiver, and terminal unit.

tors and capacitors connected to this chip are used to change its frequency response characteristics. This circuit provides digital pulse strings when either low tone pairs or high tone pairs with a frequency difference of 170, 425, or 850 Hz are received.

All parts except the XR2211 chip come from Radio Shack; the XR2211 is available from Jameco.* Application note AN-01 from Exar Integrated Systems† explains chip operation. The serial interface used in this application is the Atari™ 850. With this interface, it is possible, under program control, to receive Baudot or ASCII at rates from 60 to 960 WPM. Although this interface is billed as an RS232-level device, it works fine with the 0 to 12 volt signal generated by the terminal unit described.

To transmit RTTY, there must be some way of choosing the character or number you wish to send. This is normally done via a keyboard. Pressing a keyboard button closes a switch which is detected by the computer program and decoded into a unique binary number. This number is normally converted into a pulse string, which is subsequently converted to either mark or space tones, depending on the voltage level of the pulses. These audio frequency tones must be held for the appropriate time (approximately 22 milliseconds for 60 WPM) and fed to the microphone input circuit of the transmitter.

detailed solutions

The audio tones sent to the microphone jack need to be fairly precise in frequency and duration. In this application, advantage may be taken of a feature in the Atari computer itself. The Atari has a set of internally programmable sound generators (they are used to simulate explosions, battle tanks, and so forth in game programs). These sound chips happen to generate the audio frequencies for mark and space at all frequencies and shifts needed. Although these tones are neither precisely those specified for RTTY (plus/minus 10 Hz) nor perfectly sinusoidal, they work flawlessly.

This feature makes it unnecessary to build an external tone generator — thus the receive-only terminal unit. To control the time duration of the tones a small assembly-language program was used. The BASIC language that composes most of the program is not fast enough to turn the tones on and off at the required speed.

The same assembly language program is used for all of the different tone duration times. The main BASIC program modifies the timing constants in this assembly-language program whenever you change from one WPM rate to another.

FCC regulations require that Amateur Radio operators provide CW identification at the end of their RTTY transmissions. This is accomplished using the same method as the tone pair generation. The program transmits the CW ID at approximately 20 WPM at a single pure tone that is between the mark and

*Jameco Electronics, 1355 Shoreway Road, Belmont, California 94002.
†Exar Integrated Systems, Inc., 750 Palomar Avenue, P.O. Box 62229, Sunnyvale, California 94088.
space frequencies. This enables the receiving station to hear your CW ID without retuning the receiver.

Baudot computer program options

The program allows you to select any of several options, which include receiving RTTY; transmitting at 60 WPM using the low tone frequency pair, 170-Hz shift; transmitting at 60 WPM using the high tones frequency pair, 170-Hz shift (for VHF); transmitting at 100 WPM-low tones, 170-Hz shift; transmitting at 100 WPM-high tones, 170-Hz shift; printing using a hardcopy device; and “go to ASCII program.”

Other options included in the program are:

A. Automatic transmitter turn-on/tum-off using the PTT feature, accomplished by using a spare pin on the Atari 850 serial interface. One of the signals available at the output of this interface is called Data Terminal Ready. This pin supplies either +12 or −12 volts and is switchable under program control. It is therefore ideal for driving a transistor switch to activate PTT when transmitting and deactivate the PTT when receiving (see fig. 4).

B. Brag tapes (pre-recorded messages) are nice to have, so there is a feature in the program that allows you to call up and transmit any one or all of seven Brag tapes stored on the disk. When you are transmitting, a Control A will read Brag tape 1 from the disk and send it. Control B sets Brag tape 2, and so on up to Control G. Control H is reserved for the CW ID To Follow announcement and automatically sends your CW ID. A separate program is used to build the Brag tapes.

C. Hard copy on a printer is possible. The program stores all received characters in memory and after the QSO allows you to list it to the printer. This application is programmed to store 4000 characters. It can be increased or decreased depending on memory availability.

D. Some systems permit transmission of date and time. Control T will do this if you enter the correct time and date into the program when it first runs. (This piece of coding is not smart enough to change the month if you transmit past midnight on the last day of the month — a good thing for you to modify!)

E. Sometimes a reception error occurs and you go into the Numbers printing mode erroneously. Pressing Start forces you back to Letters mode immediately.

F. Pressing Select clears the screen and printer storage buffer, and reprograms the serial interface to change the expected reception baud rate (WPM). You can cycle the WPM reception rate from 60 to 66 to 75 to 100 back to 60 with four pressings of the Select key. This is handy for copying commercial RTTY broadcasts.

G. The Option key aborts the receive portion of the program and allows you to begin transmission, begin printing, select a different WPM transmit rate, or go back to receiving.

H. Control I aborts the transmit section of the program and goes to the Option section without sending a CW ID.

I. Control H sends CW ID To Follow-DE (Your Call), in RTTY, then sends your call in CW and immediately

fig. 3. Schematic diagram of the terminal unit.
switches to receive at the same baud rate you were using in transmission.

differences in the ASCII program

The ASCII program is similar to the Baudot program just described. Its option section permits: receiving ASCII; transmitting at 110 Baud, 170-Hz shift, low tones; transmitting at 300 Baud, 425-Hz shift, high tones (for VHF); transmitting at 600 Baud, 425-Hz shift, high tones; transmitting at 1200 Baud, 850-Hz shift, high tones; printing to a hardcopy device; "Go to Baudot" program. (Receiving and transmitting at Baud rates above 300 have not been tested extensively to date.)

All of the options described above except Control T and the Letters-mode-forcing exist in the ASCII program. All of the equipment remains the same as for the Baudot program.

future possibilities

Some additional attractions you may want to add to the program could be: split-screen viewing of both typing and reception simultaneously; buffering your input so it’s not sent immediately upon entry, but in fast strings to impress your contact with how smoothly and fast you type; automatic logging to the disk of time, date, call, and other QSO information; and CW reception — hint: This could be done through the joystick input port using the terminal unit described and an assembly language program.

getting started

Copies of the three BASIC program listings and the assembly language program listing described above are available from *ham radio*.

For those of you who don’t want to type all of these program listings into your computers, I’ll be happy to send them to you on a 5¼ inch floppy diskette. I’ll customize your diskette with your name and call. (Sorry, I can’t send cassettes — just disks.)

terminal unit construction adjustments

The circuit was built on perfboard and wire wrapped. No printed circuit board is available. Layout is not critical. I would advise using a metal box enclosure and shielded cable. Open Jumper J1 as shown in fig. 2.

Use an ohmmeter to measure the resistance from pin 12 of the XR2211 chip to ground. As you change the six-position switch’s location, adjust R1 to R6 to give the following ohm readings:

<table>
<thead>
<tr>
<th>ohm reading</th>
<th>adjust</th>
<th>switch position</th>
</tr>
</thead>
<tbody>
<tr>
<td>17925</td>
<td>R1</td>
<td>850-Hz-shift high tones</td>
</tr>
<tr>
<td>19445</td>
<td>R2</td>
<td>425-Hz-shift high tones</td>
</tr>
<tr>
<td>20568</td>
<td>R3</td>
<td>170-Hz-shift high tones</td>
</tr>
<tr>
<td>26738</td>
<td>R4</td>
<td>170-Hz-shift low tones</td>
</tr>
<tr>
<td>30558</td>
<td>R5</td>
<td>425-Hz-shift low tones</td>
</tr>
<tr>
<td>33422</td>
<td>R6</td>
<td>850-Hz-shift low tones</td>
</tr>
</tbody>
</table>

Replace J1. The application notes from Exar give a more elaborate tune-up method, but mine worked fine with the above procedure. My settings were ±2 percent of the above values. These resistances are theoretically calculated from Exar’s design information.

conclusion

The programs and equipment described in this article have been in use since November of 1982. They have resulted in numerous RTTY QSOs on both the hf and VHF bands. If you have an Atari computer, try it on RTTY! Please feel free to write if you have questions or run into problems with the programs. Include an SASE; I’ll do what I can to help.

acknowledgments

My thanks to N51B, Jim Giammanco, who put me onto the XR2211 chip and to my daughters, Wendy and Melanie, who let me onto their computer long enough to develop these programs.

*For copies of the program listings, send a stamped (37c), self-addressed #10 envelope to PROGRAM LISTINGS, *ham radio* magazine, Greenville, N. H. 03048.

†To order a program diskette, send $10.88 directly to the author, David W. King, K5VUV, 743 Rodny Drive, Baton Rouge, LA 70808. The price includes diskette, postage, and service fee.
New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily returned to nearby freq.

NEW LOW-NOISE PREAMPS

Models LNA-1, P30, and P432 shown

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq Range</th>
<th>Noise Figure</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA 28</td>
<td>20-40</td>
<td>0.9 dB</td>
<td>20 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 50</td>
<td>40-70</td>
<td>0.9 dB</td>
<td>20 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 144</td>
<td>120-180</td>
<td>1.0 dB</td>
<td>15 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 220</td>
<td>180-250</td>
<td>1.0 dB</td>
<td>17 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 432</td>
<td>380-470</td>
<td>1.0 dB</td>
<td>18 dB</td>
<td>$44.95</td>
</tr>
</tbody>
</table>

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq, band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UHF units available 300 to 650 MHz.

- P30K, VHF Kit less case $14.95
- P30C, VHF Kit with case $20.95
- P30W, VHF Wired/Tested $29.95
- P432K, UHF Kit less case $18.95
- P432C, UHF Kit with case $24.95
- P432W, UHF Wired/Tested $33.95

P432 also available in broadband version to cover 20-650 MHz without tuning. Same price as P432; add "B" to model #.

REPEAT OF A SELLOUT!

While supply lasts, get $59.95 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only $159.95?

SCANNER CONVERTERS

Copy 72-76, 135-144, 240-270, 400-420, or 806-894 MHz bands --- on any scanner. Wired/tested Only $79.95.

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

FM-5 PC Board Kit – ONLY $159.95 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 6M, 2M, or 220 MHz.

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $59.95

LOOK AT THESE ATTRACTIVE CURVES!

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 watts output.

FREE OFFER

For limited time, buy a transmit converter above with 40-45W PA ($129.95) and get $39.95 cabinet FREE.

KEEP 'EM IN STYLE!

LOOK AT THESE ATTRACTIVE CURVES!

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 watts output.

FREE OFFER

For limited time, buy a transmit converter above with 40-45W PA ($129.95) and get $39.95 cabinet FREE.
For years, Hamtronics® Modules have been used by individual hams and manufacturers to make repeaters. Now, in the Hamtronics tradition of top quality and superb value, we are proud to offer a complete repeater package.

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M, 2M, 220</td>
<td>$595</td>
<td>$745</td>
</tr>
<tr>
<td>440</td>
<td>$645</td>
<td>$795</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.

Also available for remote site linking/crossband & 10M.

FEATURES:
- SENSITIVITY SECOND TO NONE, TYPICALLY 0.15 uV on VHF, 0.3 uV on UHF.
- SELECTIVITY THAT CAN’T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ±12 KHz. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY-TUNE TRANSMITTER; UP TO 20 WATTS OUT.

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

INTRODUCING — NEW 1983 RECEIVERS

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R144/R220 FM RCVRS for 2M or 220 MHz</td>
<td>0.15uV sens.; 8 pole xtal filter & ceramic filter in IF, helical resonator front end for exceptional selectivity (curves at left), AFC incl., xtal oven avail. Kit only $119.95</td>
</tr>
<tr>
<td>R451 FM RCVR</td>
<td>Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $119.95.</td>
</tr>
<tr>
<td>R76 FM RCVR for 10M, 6M, 2M, 220, or commercial bands</td>
<td>As above, but w/o AFC or hel. res. Kits only $109.95. Also avail w/4 pole filter, only $94.95/kit.</td>
</tr>
</tbody>
</table>

- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only $84.95.
- R110 UHF AM RECEIVER for UHF uses, including special 259 MHz model to hear SPACE SHUTTLE. Kit $94.95.

- HRF-144 for 143-150 MHz $34.95
- HRF-220 for 213-233 MHz $34.95
- HRF-432 for 420-450 MHz $44.95

(Cor KITS With audio mixer and speaker amplifier. Only $29.95.)

- CDWID KITS 158 bits, field programmable, clean audio. Only $59.95.
- DTMF DECODER/CONTROL KITS. Control 2 separate on/off functions with touchtones®, e.g., repeater and autopatch. Use with main or aux. receiver or with AutoPatch. Only $89.95.
- A16 RTIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Only $18.00.

- T51 VHF FM EXCITER for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous. Kits only $59.95.
- T451 UHF FM EXCITER for 10M or adjacent bands 2 Watts continuous. Kits only $69.95.

- VHUF & UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Kits from $69.95.

More Details? CHECK-OFF Page 92

July 1983
Now that we have temporary operating privileges for the 10 MHz band, we can look forward to the opening of the 18 and 24 MHz Amateur bands, another outcome of the 1979 World Administrative Radio Conference; the bands encompass 18.068 to 18.169 MHz and 24.890 to 24.990 MHz. As this column is being written (late February), it looks as if these bands are far away indeed for U.S. Amateurs, unless somebody pulls a rabbit out of the hat.

Operation on the new bands is authorized in many European and South American countries, although to date activity has been sparse except on weekends. Most stations congregate around 18.07 MHz and 24.9 MHz. In California, European signals came through very well on both bands in the morning hours during the winter.

The Federal Communications Commission has adopted Docket 80-739 NPRM of December 30, 1982, and the planned action (for “action” you may read “inaction”) includes use of these frequencies by the fixed services until July 1, 1989. There is no indication of any plan for implementation of the WARC Resolution 640, and no indication that any interim action is contemplated.

So here we sit, as the sunspot count slowly sinks toward the next minimum, due to arrive in a few years. If the FCC follows its present policy of inaction, by the time the bands are opened for Amateur Radio they will be useless for long-distance communications. The next sunspot minimum is predicted to cover the period 1985 through 1990, so if we do achieve operating privileges in these bands in 1989, they will be of little use to us until about 1992. That’s nine years from now! If the FCC really wishes to aid Amateur Radio, they should amend Part 97 of the Rules to permit operation on these bands on a noninterfering basis now.

As far as Amateur interference to existing fixed stations is concerned, both bands are a wilderness. Despite the FCC count of stations authorized to operate on these frequencies, few do. Six months of listening has logged very few fixed-service stations, far fewer in fact than the number noted on the 10-MHz band before it was authorized for Amateur operation.

I hope this frustrating hang-up can be solved, if possible before the end of this year.

the Kenwood R-600 communications receiver

This is not a product review but rather two ideas for improving this interesting receiver.

My general-coverage Collins 51J-4 receiver seems to grow more massive as the years roll by. It is an invaluable adjunct to my station, as it provides a-m/CW and SSB reception over the range of about 480 kHz to 30 MHz. With multiple mechanical filters, it serves in a pinch as a good Amateur receiver, backing up my regular ham-band-only receiver. I’d had my eye on the Kenwood R-600 receiver (which weighs less than 10 pounds!) for some time, and I finally bought one as a tentative substitute for the 51J-4, which, in its steel cabinet, is a real boat anchor.

I was really pleased with the Kenwood: excellent sensitivity, readout to 1 kHz, and excellent audio quality for listening to shortwave broadcast, regular broadcast, or long-wave reception of local aircraft weather reports. The little receiver exhibited two characteristics, however, that I found improvements for.

First, when I used a random-length wire antenna, cross-talk and birdie problems were evident in the broadcast and the long-wave bands. I found that a 70-pF variable compression mica capacitor placed at the antenna terminal, in series with the wire antenna, proved to be the cure. The capacitor is simply adjusted for minimum cross-talk; it does not hinder shortwave reception at all.

Second, I noticed a peculiar buzz-
ing on the high-frequency bands, particularly around 20 MHz. The high-pitched buzzing noise grew loudest when I brought my hand near either the receiver’s tuning dial or the digital frequency readout immediately above it.

It only took a moment to ascertain that the receiver was listening to the counting pulses that drove the digital frequency display. Moving the antenna about in the room alleviated the problem somewhat; and the use of an elevated dipole fed with coax a distance from the receiver completely eliminated the noise. But the dipole is useless for general coverage reception. What to do?

Using a short test lead as a probe connected to the antenna input terminal of the R-600, I found that the counter noise was coming from the glass dial of the frequency readout. Removing the top and bottom covers of the receiver enabled me to see that the readout was well shielded from the rear; but the shield was open to the front to make the readout visible.

My cure was quick, inexpensive, and simple. I removed the knobs and front panel (the panel is held in place by top and bottom bolts, plus two bolts under the tuning dial). At the hardware store I bought an envelope of “screen door patches,” which are little squares of aluminum screening. I cut one of these squares down so that it was about 2 inches long and 1 inch high, just big enough to place behind the glass window. When the glass was replaced, it pressed the screen against the metal chassis, making a good ground connection.

Before reassembly I sprayed both sides of the screen with flat black enamel to remove any reflection, leaving the edges of the screen clear of paint to make a good ground.

That did the trick! It bottled up the counter noise so well that it cannot be heard on any band.

Most modern ham equipment has some kind of frequency display. Does yours generate noise that can get into the front-end of the receiver? Perhaps some of those funny noises you’ve noticed from time to time are caused by this problem. You can make a quick check by disconnecting your regular station antenna and using a short pickup wire as a substitute antenna. Place the free end near the digital display and check it on all ham bands. If you hear any high pitched birdies, reconnect your station antenna and see if you can still hear them. If not, you probably have nothing to worry about. But if you do notice any counter noise, try a small piece of screening to bottle it up — provided the manufacturer shielded the readout assembly on the inside of your receiver.

wire antennas for 10 and 6

It’s fun to build antennas! And you don’t need an advanced degree in computer engineering to do it. There are plenty of simple wire antennas that you can build in a few hours, antennas that will outperform the popular ground plane or dipole. This is especially true on 6 and 10 meters, where high-gain antennas become a manageable size.

Shown in this section are two wire beam antennas for these bands. The first is a stack of dipoles and the second is a simple V-beam. Both designs were popular years ago but have been obscured by the rotary Yagi and quad.

Even if you don’t have room or money for a rotary, you can build one of these simple beams for just a few dollars. They have a bi-directional (figure 8) pattern, like the dipole, and they provide worthwhile gain on both transmit and receive.

The dipole stack beam is shown in fig. 1. The array consists of two dipoles, one above the other, the lower dipole fed from a coaxial transmission line. The dipoles are cross-connected by an open wire line, as shown in the illustration. Power gain is about 4 dB or more over a dipole when the bottom of the antenna is at least one-half wavelength above ground. Dimensions for the two bands are given in the illustration. The two-wire interconnecting line is made of No. 16
enamel wires, spaced 3 inches apart. The spacers are made of Lucite® or plastic rods about 4 inches long. They are drilled to pass the wires, which are tied to the insulators with short sections of scrap wire. A half-twist is given to the line to reverse the connections at the opposite ends.

The stack beam is fed at points F-F with either a 50 or 75 ohm coaxial line. Feedpoint impedance at resonance is about 60 ohms so the SWR at antenna resonance should be well below 1.5-to-1 using either cable. The antenna is hung in the vertical plane, broadside to the direction or radiation. The coaxial line is wrapped into a four-turn coil directly below the feedpoint, to decouple the outside of the line from antenna currents. Keep the decoupling coil at right angles to the antenna wires.

The bottom of the antenna should be at least as high above ground as dimension B — the higher the better.

The V-beam is shown in fig. 2. The wires are parallel to the ground and their length (2-1/4 wavelengths) plus the selection of the included angle between the wires provides a bidirectional array which shows a power gain over a dipole of about 4.5 dBi. Feedpoint resistance of the antenna is matched by the use of a 50-ohm transmission line and a 75-ohm quarter-wave impedance-transforming section, as shown in the illustration.

The beam is constructed of No. 16 enamal wire. Either hard-drawn wire or prestrretched softdrawn wire is recommended. The coaxial transformer section of the line is wrapped into a four-turn coil directly at the feedpoint to decouple the outside of the line from antenna currents. At the design frequency, the measured SWR on the line should be below 1.5-to-1. For best results the V-beam should be mounted at least one-half wavelength above ground.

One nice fact about both of these beam antennas is that they are virtually invisible once they are up in the air. That’s a plus if you live in a neighborhood that has an anti-ham bias!
I CALL FOR SPECIAL PRICES ON —

Kenwood TS-830S HF Radio
TS-430 S — new Kenwood mobile HF w/gen.
coverage receiver

CALL TOLL FREE
1-800-433-3203

IN TEXAS CALL 817-496-9000
P.O. BOX 50155
FT. WORTH, TEXAS 76105

Homebrew Headquarters

PROJECT PACKS*
DIRECT from ENGLAND

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Meter Converter</td>
<td>$37.50</td>
</tr>
<tr>
<td>Low noise 144-146 to 28-30 MHz</td>
<td></td>
</tr>
<tr>
<td>MOSFET Converter</td>
<td>$37.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Meter Pre-Amp.</td>
<td>$38.50</td>
</tr>
<tr>
<td>R & EW 4/82</td>
<td></td>
</tr>
<tr>
<td>Gain 22 db, BW 6 MHz, NF < 1.5 db</td>
<td></td>
</tr>
<tr>
<td>Z_o/Z_o 50 Ω</td>
<td>$6.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Meter GaAs Pre-Amp.</td>
<td>$38.50</td>
</tr>
<tr>
<td>(Mast Head Mount w R/T relay)</td>
<td></td>
</tr>
<tr>
<td>R & EW 10/82</td>
<td></td>
</tr>
<tr>
<td>Gain 17 db, BW 6 MHz, NF < 1.0 db</td>
<td></td>
</tr>
<tr>
<td>Z_o/Z_o 50 Ω</td>
<td>$123.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF (70 CM) Converter</td>
<td>$43.50</td>
</tr>
<tr>
<td>R & EW 11/1/81</td>
<td></td>
</tr>
<tr>
<td>Low noise 432-434 to 28-30 MHz</td>
<td></td>
</tr>
<tr>
<td>MOSFET Converter</td>
<td>$38.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF (70 CM) Pre-Amp.</td>
<td>$43.50</td>
</tr>
<tr>
<td>R & EW 3/82</td>
<td></td>
</tr>
<tr>
<td>Gain 13 db, BW 20 MHz, NF < 2 db</td>
<td></td>
</tr>
<tr>
<td>Z_o/Z_o 50 Ω</td>
<td>$8.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 CM Converter</td>
<td>$43.50</td>
</tr>
<tr>
<td>R & EW 3/82</td>
<td></td>
</tr>
<tr>
<td>Low Noise 1240-1325 MHz to 2 or 10</td>
<td></td>
</tr>
<tr>
<td>Meter Converter</td>
<td>$43.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Band Receiver</td>
<td>$162.50</td>
</tr>
<tr>
<td>R & EW 9-10/82</td>
<td></td>
</tr>
<tr>
<td>108-136 MHz, 720 Channel Synthesized</td>
<td></td>
</tr>
<tr>
<td>VHF AM Receiver</td>
<td>$162.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FET Dip Oscillator</td>
<td>$52.50</td>
</tr>
<tr>
<td>Rad Com 11/81</td>
<td></td>
</tr>
<tr>
<td>1.6-215 MHz (includes tone dip feature)</td>
<td></td>
</tr>
</tbody>
</table>

*US Distributor for RADIO & ELECTRONIC WORLD

Catalog 50 cents

RADIO KIT
Box 411H, Greenville, NH 03048
(603) 878-1033

1982-1983 AMATEUR RADIO CALL DIRECTORY
THE BARGAIN AT $14.95

A no frills directory of over 411,000 U.S. Radio Amateurs. 8½ x 11, easy to read format. Completely updated.

Also available for the first time ever—
(Alphabetically arranged—Sold separately)
Geographical Index
by State, City and Street No. and Call
Name Index
by Name and Call

Ordering Information:
- Directory—$14.95
- Geographical Index—$25.00
- Name Index—$25.00
Add $3.00 Shipping to all orders.

Dealers/Clubs inquiries welcome
Send your order—enclosing check or money order in U.S. dollars to:

Buckmaster Publishing
70-B Florida Hill Road
Ridgewood, NJ 07450

PERFECT ANTENNA?

R3 may be the perfect antenna for condominiums, apartments, small lots or any limited space situation. It is a great antenna for hams who are concerned about neat appearance and maximum performance.

R3's self supporting radiator is only 21ft-6.4m high x 1ft .304m wide at the base. Assembly is quick and easy for portable, marine, field day, DX-peditions, or fixed installations. It is complete with remote tuner.

AVAILABLE THROUGH DEALERS WORLDWIDE

Cushcraft Corporation
THE ANTENNA COMPANY
P.O. Box 4680
Manchester, NH 03108 USA
T: 908 983-9350

July 1983
LSI comes to AMATEUR RADIO
Digital MicrosystemsTM Chips Now Available

REPEATER CONTROL

- Complete repeater control incorporating ID, tail and timeout timers, audio generator, local control and PL enable
- Perfect as main controller or as backup for your present system
- Master enable input for non-override local control
- Switchable PL input for access security
- ID on start-up can be selected
- Non volatile ID memory
- Selectable timeout length
- Automatically powers up and runs; ideal for remote applications
- Selectable ID transmission rate
- Adjusts tail timer length
- Force ID input for manual trigger of ID sequence
- Latched COR for ID holdoff and timing control
- Two separate Morse outputs for interfacing to audio and/ or logic. One is direct audio, the other can be used as a keying line
- Crystal controlled timers
- Any number of selectable messages can be transmitted using MCMG chip
- Test input for automatic transmission of CW test message following ID

Digital Microsystems™ SCR Chip

$89.95

ASCII to MORSE CODE CONVERTER

- Turns any ASCII terminal or computer into a Morse code keyboard
- When used with a computer, reduces system overhead and allows system time for disk access
- When used with Morse to ASCII chip, any ASCII terminal or computer is transformed into a Morse code system
- 1 to 90 words per minute transmission rate keyboard selectable
- 1-30 wpm in 1 wpm increments, 32-90 wpm in 2 wpm increments
- Master enable output for compatibility with Morse to ASCII converter chip
- Two separate Morse outputs for easy interface to your transmitter; one high one low
- Logically perfect Morse code generation
- 110 and 300 baud
- Automatic line feed insertion selectable by user
- Selectable automatic echo back of ASCII characters
- Internal 32 byte type-ahead buffer
- Supports modem control type handshaking with UARTS
- Compatible with personal computer RTTY software packages
- PARALLEL ASCII TO MORSE CODE CONVERTER
- Similar to SATOM chip but for parallel strobed ASCII keyboards
- 16 letter buffer for ID
- Automatic test and GO message generation

Digital Microsystems™ SATOM Chip

$34.95

Digital Microsystems™ PATOM Chip

$24.95

DTMF DIGITAL CONTROL

- Provides digital input and output capability under the control of a DTMF decoder
- Perfect for repeater, remote base, and other homebrew control applications
- 21 separate I/O pins which can be set high or low by a four digit custom sequence. Each bit may be checked by entering a digit code. The chip will respond with a Morse code 1 or 0 depending upon the logic state
- Direct interface with the Mostek 5102 DTMF decoder chip
- Anti-jamming mode automatically activates to prevent tampering
- Five second timer for proper control sequencing and grouping
- May be purchased in two different versions — version "A" for 12 digit decoding; "B" for 16 digit decoding
- One chip is different — the codes for each chip are randomly selected by computer, but custom codes are available at extra cost

Digital Microsystems™ DCC Chip

$34.95

MORSE CODE to ASCII CONVERTER

- Advanced adaptive algorithm converts most hands text and machine sent Morse code to ASCII
- 110 and 300 baud
- Automatic line feed insertion selectable by user
- Automatic carriage return insertion selectable by user
- Selectable number of characters per line before insertion of carriage return or line feed (if selected)
- Master enable input for compatibility with ASCII to Morse converter chip (SATOM)
- Two separate ASCII outputs for easy interface to RS232 or RS422 drivers
- Designed to work with any ASCII compatible terminal or computer
- Internal inverter may be selected to invert incoming Morse waveform before decoding

Digital Microsystems™ MTOA Chip

$39.95

MORSE CODE MESSAGE GENERATOR

- Up to 6 separate user definable messages
- Completely non-volatile memory
- Will not forget your messages when power is shut off
- Supports manual, continuous automatic, and timed automatic modes
- User selectable transmission rate
- Individual messages, or groups of messages may be transmitted
- Can be wired as a beacon controller, automatically repeating any selected messages
- Can be wired as a repeater/remote base ID controller
- Can be wired as a repeater/remote base ID controller
- One chip is different — the codes for each chip are randomly selected by computer, but custom codes are available at extra cost

Digital Microsystems™ MCMG Chip

$49.95

GENERAL SPECIFICATIONS

- All circuitry contained on a single chip
- Crystal controlled for accuracy
- Requires 5 volts DC
- TTL/CMOS compatible I/O pins
- Chips designed with the experimenter/homebrew specialist in mind
- Manual for each chip available for $5 postpaid
- Deductible w/ order

ACCESSORIES

CRYSTALS

one required per chip $5.00 ea.

DIGITAL MICROSYSTEMS, Inc.
607 SUDBURY STREET
MARLBORO, MA 01752

Tell 'em you saw it in HAM RADIO!
Find the Right Crystal Source
by ordering
1983-84 QUARTZ CRYSTAL INDUSTRY GUIDE & DIRECTORY

Published each May, this Directory lists quartz crystal manufacturers worldwide and details each company's products, services and frequency ranges.

Order Yours Today!
A Good Investment at $35.00
Plus $1.95 postage & handling

GSM, inc.
p. o. box 10277 • Ft. Lauderdale, Fl 33334
(305) 563-1338

ANNOUNCING
HAM-PAK™
The Multi-Purpose Program for Computer-Equipped Ham Shacks

Throw away your dog-eared beam heading chart (if you can find it.) Stop tearing through your old logbooks to see if you verified that VU7. And what was that coil-winding formula again? HAM-PAK puts the answers at your fingertips with:

- Instant, accurate beam headings from your OTH to 300 countries
- Instant retrieval of past DX confirmations
- Instant prefix identification
- Math formulas for radio use

Minimum System: TRS-80 III, 32K, 1 disk

ONLY $29.95 and we pay the postage!
(Check or money order, please. No C.O.D.'s)

HAM-PAK is a trademark of Sunderland Software
Inquire about HAM-PAK for Apple, Atari, & VIC

SU N DERL AND SOW ARE T
39256 Sunderland Drive
Mt. Clemens, MI 48044

THE UHF COMPENDIUM
by K. Weiner, DJ9HO

First published in German in 1980 — this book was an instant European best seller. Now available in English — only from Ham Radio Magazine. This hefty, 413 page book is an absolute must for every VHF and UHF enthusiast. The UHF Compendium has been divided into 7 sections to fully cover theory and practical building instructions. Special emphasis has been placed on state-of-the-art techniques such as GaAs Fet preamplifiers and converters. Author Weiner also fully describes all of the test equipment, alignment tools, power measuring equipment and other handy gadgets that will be of use to the UHF/VHF Amateur. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega-element arrays. Noted VHF enthusiast, Joe Reisert, W1JR, tells us that every ham interested in UHF/VHF should have a copy of this book. Get yours today — only from Ham Radio Magazine.

KW-UHF
Reg. $24.95
Special $19.95
(expires July 31, 1983)

Please add $2.50 shipping and handling
Ham Radio's Bookstore
GREENVILLE, NH 03048

More Details? CHECK — OFF Page 92

BASE
RINGO RANGER II
7dB GAIN
HIGHEST GAIN
2 METER OMNI
OUTPERFORMS CONE AND DOUBLE ZEPPEL
WORK MORE STATIONS
ELIMINATE NOISE
LIGHTNING PROTECTED
ACCESS MORE REPEATERS
ASSEMBLE EASILY
INSTALL QUICKLY
A COMPLETE ANTENNA
ALL PARTS INCLUDED
600,000 HAPPY USERS
BECOME ONE TODAY

ARX-2B 134-144 MHz
ARX-220B 220-2225 MHz
ARX-450B 425-450 MHz

TERRIFIC 2 METER RANGERS

MOBILE RANGERS
MORE RANGE
3 dB GAIN
5/8 A STAINLESS WHIP
GRIP TIGHT 90LB MAGNET
CHROME PLATED BASE
NEAT APPEARANCE
THUMB LOCK ADJUSTMENT
NO WHIP CUTTING
LOW PRICE

THE ANTENNA COMPANY
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108
Telex - 953050

BUY FROM YOUR DEALER
BIG SIGNAL......LITTLE EFFORT.....

INTRODUCING.......THE HJ-SERIES COAXIAL DIPOLES AND PHASING KIT.......

Specifications: 5.0 DBD 10-22DB F/B
Example
Antenna Tested ON 7.2mc, ¼ wave spacing at 18’ at APEX
ENDS AVERAGE HGT. 6’
SWR-FLAT or BELOW 1.5 to 1 over Phone Band

- When Testing just one of
 - 2 Antennas - SWR was Flat
 - or Below 1.5 to 1 over Entire Band...
 - 7.0 to 7.3 MHZ

- **BROADBANDED**
- **PORTABLE**
- **REQUIRES ONLY ONE SUPPORT**
- **CAN WORK INDOORS**

"The Coaxial Dipole is a very quiet antenna with slightly stronger signal punch than a conventional dipole." This quote is from the Giant Book of Electronic Projects by the Editors of 73 Magazine.

- THE SINGLE HJ-DIPOLE CAN BE UPGRADED TO A PHASED ANTENNA SYSTEM AT A LATER DATE...NO TUNER REQUIRED, HOWEVER, WITH A TUNER ANTENNA CAN BE LOADED UP ON A HIGHER FREQUENCY...

FOR THE HAM WHO WANTS A BETTER SIGNAL ON THE BAND, BUT IS LIMITED BY SPACE OR ZONING....

HJ-DIPOLE

- Strong Weather-Proof
- Tuned Short
- "In Field Test, has shown more signal than normal Dipole at same Hgt. and Position"

- **PL-259**

THE HJ-PHASING KIT...CONTAINS EVERYTHING YOU NEED, BUT A PLACE TO HANG THEM....

Contents:
- 9-PL-259
- 2-Coax Ties
- 1-Barrel Connector
- 5-Female Connectors
- 2-Male Phono Plugs
- 2-Female Phono Sockets
- 1-Cabinet
- 1-Power Pack
- 4-Short Covers
- 2-Center Insulators
- 5-Stainless Steel ¼" Screws
- 5-Stainless Steel ¼" Nuts
- 1-Relay
- 3-Sets of ¼ wave coax lines
- 2-100' lengths of coax feedline
- 2-Antennas Cut and Tuned

- **ALL ANTENNAS ARE ASSEMBLED-PHASING LINES CUT AND HAVE PL-259S INSTALLED...LEAD-IN CABLES PL-259 ARE INCLUDED BUT NOT ATTACHED FOR USER CONVENIENCE...PHASING BOX IS ALSO ASSEMBLED AND READY TO USE...**

PRO-SEARCH™ has designed quality into simplest of antennas...Center insulator is made up of high quality material that is virtually unaffected by heat, cold or impact...will withstand rugged use and extreme environments...RG-8X has 93% shield...Antennas are very flexible and very portable...good for vacation or field day...apartment dwelling...Tuned shorts are weather-proofed with gripping covers which also add strength to this area of the antenna...Stainless steel hardware, of course...Antennas can be made for any frequency...The most important part, we stand behind our products...That's a Promise...

FREQUENCY	**SINGLE ANTENNA**	**TUNED PAIR OF ANTENNAS**	**PHASING KIT**	**TOTAL**
1.8 | $139.95 | $251.91 | $110.95 | $362.36
3.5 | 96.95 | 174.51 | 110.95 | 285.46
7.0 | 73.95 | 133.11 | 110.95 | 244.06
10.0 | 68.95 | 124.11 | 110.95 | 235.06
14.0 | 64.95 | 115.91 | 110.95 | 227.86
18.0 | 61.95 | 111.51 | 110.95 | 224.46
21.0 | 59.95 | 107.91 | 110.95 | 216.86
24.0 | 57.95 | 105.91 | 110.95 | 216.85
28.0 | 56.95 | 102.51 | 110.95 | 213.46

U.S. and Foreign Patents Pending

Prices and specifications subject to change without notice or obligation.

For more information on this and other products Write or Call Pro-Search Electronics Co. Suite 305 10411 Clayton Rd. St. Louis, Mo. 63131 1-314-994-7672 (Missouri) 1-800-325-4016
MORE FROM PRO-SEARCH™ ELECTRONICS

NOW THREE MODELS OF OUR
DIGITAL ANTENNA CONTROL
Your Choice Of Center, North Or South

GOOD
PSE-1A, 3A

BETTER
PSE-1A, PSE-3

BEST
PSE-2, PSE-4

The "CONTESTER" provides the least expensive DIGITAL CONTROL UNIT WITH COMPLETE COM-PUTERIZED CONTROL, BUT WITH LESS FEATURES, than the "DXER" and "DELUX". This unit gives you the current position of your antenna, usually in 5 steps. It has 2 memories and the command mode, plus single button operation. The PSE-1A, "CONTESTER" comes with a 7.0 amp continuous duty motor supply. PSE-3A has a 12 amp power pack. It is not capable of being modified to talk or accept the computer interface or remote interface. It is completely shielded and made of the same quality components as the other models. The warranty on our unit is one year on materials and labor, and ninety days on parts.

This unit is a very inexpensive way to have the best of both worlds. A real time saver during contests. Hands off operation will save many hours of hanging on the rotor. Just a few dollars more than the manual control box, but worlds apart in state-of-the-art and operation. Price $229.95

The "DXER" is the top of the line of the non-voice synthesized units, and is for the ham who is in need of more features on their controller. It has "2" digital readouts, one to show the antenna's current position, plus a storage readout which holds a heading or digitally displays your last position. This is valuable for switching between long path or short path, or checking front to back, or working between two different stations...a real time saver and just a nice convenience. The "DXER" also has "9" scan functions: 090, 90-180, 180-270, 270-360, and 360. This is a real aid in looking for that dogleg opening or peaking a weak signal. It can be expanded to talk, and does have the hardware necessary to use with the computer interface. It can be remotely keyed, where verbal confirmation isn't required. Price $362.95

This is the ultimate in rotor controls. Nothing tops this one. It has all the features of the other models, plus it talks...Yes, it talks. The "DELUX" has a voice synthesizer which confirms your entries, plus tells you your heading as you enter it and when your antenna arrives. All commands are spoken, plus as your antenna turns you hear a 400HZ tone going in one direction and a 800HZ tone in the other. This gives you positive verification of movement. This unit, as the others, will combine with the HAM IV, T2X, and HDR-300, giving you the best antenna rotor combination you could ever want at any price.

#1 The "Contester" Package...try one of these TELEHYGAIN rotors with our PSE-1A/3A. A system which is low in cost, high in performance.

The "DXER" Package...Couple this unit with a rotor and you have the best non talking control we make. Expandable, plus has 5 scan functions, 2 DIGITAL displays and REC/LAST to check long path or short path. Has all internal hardware to plug into our computer interface. Can be remotely controlled from accessory jack. Try this with any of the TELEHYGAIN rotors! This will give you the broadest of functions with a mid-range price.

The "Delux" is the most sophisticated antenna control unit ever made. With the "Delux" you have all the functions of our other units, plus it talks...Yes it talks. Not only do you have your headings digitally displayed, but is also said as your antenna stops. All commands are spoken, plus as your antenna turns you hear a 400HZ tone in one direction and an 800HZ in the other, giving you positive verification of movement. This unit, when combined with the HAM IV, T2X or HDR-300, gives you the best buy anywhere at any price.

INTRODUCING THE ULTIMATE PACKAGE...FROM PRO-SEARCH™ NINE COMBINATIONS OF OUR CONTROL UNIT AND THE TELEHYGAIN® ROTOR MOTORS...FOR JUST A FEW DOLLARS MORE YOU CAN HAVE THE CONTROLLER OF THE FUTURE TODAY!

HAM IV* PSE-1A will save you lots of time in your favorite contests. No more hanging on the rotor control...Gives you positive control with DIGITAL readout plus 10 memories, command positioning, and single button manual movement.

PSE-1A + HAM IV $369.95
PSE-1A + T2X 415.95
PSE-3A + HDR-300 544.95

NOTE: Printed with permission of TELEHYGAIN Telex Communications, Inc.

T2X* PSE-1A and PSE-3A are designed to control the T2X...Has all the features of the other models, plus...Price $489.95

HDR-300* Has all the features of the other models, plus...Price $689.95

PSE-1A + T2X 415.95
PSE-3A + HDR-300 544.95

Package Special
PSE-1 + HAM IV $508.95
PSE-1 + T2X 548.95
PSE-3 + HDR-300 677.95

Package Special
PSE-2 + HAM IV $606.95
PSE-2 + T2X 655.00
PSE-4 + HDR-300 784.00

Controllers also available for other rotors.
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents

© Copyright 1983

Write or Call for our Catalog • Pro-Search Electronics Co. Suite 305 10411 Clayton Rd. St. Louis, Mo. 63131 1-314-994-7872 (Missouri) 1-800-325-4016

171
DUAL DRIVE TRIBANDERS

- 20, 15 and 10 meters * Wideband. Low SWR. No tuner needed
- Exclusive phased dual drive gives higher gain * Exclusive coaxial capacitors have lower losses, higher Q * Transmitter power is radiated not lost in the traps * Full power low loss balun. Gives improved beam pattern

TET Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with HB9CV and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner.

Only the highest quality materials are used throughout. All aluminum tubing is 6061-T6 alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut and predrilled to precision tolerances for easy one afternoon assembly. Light weight and low wind area designs permit use of simpler support structures.

All models feature full 3 Kw PEP power handling, VSWR typical 1.5 or less across all of 20, 15 and, on 10 meters, from 28.0 to 29.2 MHz. Drive impedance is 50 ohms and maximum element length 27’. They accommodate masts from 1 ½ to 2” diameter, withstand winds to 100 mph and are furnished complete with a low loss balun that easily withstands full rated power. For gain and front-to-back ratio specifications write or call the factory.

<table>
<thead>
<tr>
<th>Model</th>
<th>Boom Length</th>
<th>Turn Radius</th>
<th>Wind Area Ft²</th>
<th>Wind load lbs. @ 80 mph</th>
<th>Boom Dia.</th>
<th>Weight, lbs</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB35T</td>
<td>24’ 7”</td>
<td>18’ 10”</td>
<td>7.9</td>
<td>160</td>
<td>2”</td>
<td>50</td>
<td>$349.95</td>
</tr>
<tr>
<td>HB43SP</td>
<td>19’ 8”</td>
<td>16’ 9”</td>
<td>6.6</td>
<td>132</td>
<td>2”</td>
<td>38</td>
<td>$239.95</td>
</tr>
<tr>
<td>HB33SP</td>
<td>13’ 2”</td>
<td></td>
<td>4.7</td>
<td>102</td>
<td>1-5/8”</td>
<td>27</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

Send for free catalog describing these dual drive beams, our VHF Swiss quads, roofmount towers, elevation rotators and more.

BY MAIL:
LUNAR electronics
2775 Kurtz St., Suite 11
San Diego, CA 92110-3171

BY PHONE: 619-299-9740

TET ANTENNA SYSTEMS

SATELLITE TELEVISION SYSTEMS

WE WILL NOT BE UNDERSOLD!!
Complete Systems, Antennas, Receivers, LNA's & Accessories
CALL US TODAY!
812-238-1456

hoosier electronics

"Nation's Largest Total Communications Distributor"
P.O. BOX 3300 • TERRE HAUTE, INDIANA 47803

HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

ORR BOOKS

BEAM ANTENNA HANDBOOK
by Bill Orr, W6SAI
Softbound $5.95

SIMPLE LOW-COST WIRE ANTENNAS
by Bill Orr, W6SAI
Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagramed. 192 pages. ©1972.
Softbound $6.95

THE RADIO AMATEUR ANTENNA HANDBOOK
by William L. Orr, W6SAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Slaper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference. 190 pages. ©1978.
Softbound $6.95

ALL ABOUT CUBICAL QUAD ANTENNAS
by Bill Orr, W6SAI
The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the simple element to the multi-element monster quad, plus a new, higher gain expanded quad (X-0) design. There is a wealth of supplementary data on construction, feeding, tuning, and mounting quad antennas. 112 pages. ©1977.
Softbound $5.95

Please add $1.00 to cover shipping and handling.

HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

Tell 'em you saw it in HAM RADIO!
New!
AZDEN® PCS-4000

Small—yet so Sophisticated.... so Advanced—there is No Comparison!

FEATURES SO UNIQUE AND OF SUCH SUPERIOR COMMERCIAL-GRADE QUALITY, THAT...

IT CARRIES A 1 YEAR LIMITED WARRANTY!

- 8 MHz COVERAGE, CAP/MARS BUILT IN: 142.000-149.995 MHz in selectable steps of 5 or 10 kHz. COMPARE!
- TINY SIZE: Only 2.6" H x 5.5" W x 6.8" D! COMPARE!
- MICROCOMPUTER CONTROL: At the forefront of technology! COMPARE!
- UP TO 8 NON-STANDARD SPLITS: Ultimate versatility for CAP/MARS. COMPARE!
- 16-CHANNEL MEMORY IN TWO 8-CHANNEL BANKS: Retains frequency and standard offset. COMPARE!
- DUAL MEMORY SCAN: Scan memory banks either separately or together. COMPARE!
- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel. Vacant scanning stops on unoccupied frequencies. COMPARE!
- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency. COMPARE!
- TWO PRIORITY MEMORIES: Either may be instantly recalled at any time. COMPARE!
- NICAD MEMORY BACKUP: Never lose the programmed channels! COMPARE!
- FREQUENCY REVERSE: The touch of a single button inverts the transmit and receive frequencies, no matter what the offset. COMPARE!
- ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Unparalleled ease of operation. COMPARE!
- BRIGHT GREEN LED FREQUENCY DISPLAY: Easily visible, even in direct sunlight.
- DIGITAL S/RF METER: Shows incoming signal strength and relative output. COMPARE!
- BUSY-CHANNEL AND TRANSMIT INDICATORS: Bright LEDs show when a channel is busy and when you are transmitting.
- FULL 16-KEY TOUCHTONE® PAD: Keyboard functions as autopatch when transmitting.
- PL TONE: Optional PL tone unit allows access to PL repeaters. COMPARE!
- TRUE FM: Not phase modulation. Unsurpassed intelligibility and fidelity. COMPARE!
- 25 WATTS OUTPUT: Also 5 watts low power for short-range communication and battery conservation. (Transmitter power is fully adjustable) COMPARE!
- SUPERIOR RECEIVER: Sensitivity is 0.2 uV for 20-dB quieting. Audio circuits are designed to rigorous specifications for exceptional performance. Second to none. COMPARE!
- REMOTE-CONTROL MICROPHONE: Memory A-1 call, up/down manual scan, and memory address functions may be performed without touching the front panel. COMPARE!
- OTHER FEATURES: Dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.
- ACCESSORIES: CS-6R 6-amp ac power supply, CS-AS remote speaker, and Communications Specialists SS-32 PL tone module. COMPARE!
- ONE-YEAR LIMITED WARRANTY!
ANTENNA SALE

CUSHCRAFT
- A-3: $175
- A-4: $226
- R-3: $226
- AV-5: $90
- 214-FB: $69
- 32-19: $82
- 40-2CD: $260

HYGAIN TOWERS
- HG37SS: $649
- HG52SS: $919
- HG54HD: $1429
- HG70HD: $2359
- HG50MTS: $749

BUTTERNUT
- HF6V: $109
- KT34A: $299
- KT34X: $449
- 144-148LBA: $69

HYGAIN
- TH5MK2S: $318
- TH7DX: $378
- TH5MK3S: $218
- TH3JRS: $158
- TH2MKS: $138
- 18AV1WS: $94
- V25: $37

CALL "TOLL FREE" FOR ALL ANTENNAS & ACCESSORIES
CALL FOR HYGAIN TOWER PACKAGES.

2900 N.W. VIVION RD. / KANSAS CITY, MISSOURI 64150 / 816-741-8118

APPLIED INVENTION

GaAs FETS by MITSUBISHI
- CM - Ku Band: Very low noise and medium power: 11
- NEW
 - MG1440: Guaranteed 0.6 dBm @ 432, 1.1 dBm @ 430: $66.00
 - MG1442: Guaranteed 0.8 dBm @ 432, 1.1 dBm @ 430: $14.00
- MG1472: Guaranteed 6.9 0.8 dBm @ 432, 1.1 dBm @ 430: $34.75
- AIRS: MG1422, MG1490, MG1493: Medium power MG1490

MICROWAVE MODULES
- MITSUBISHI X BAND Hybrid Integrated Circuits with Tailec Resonating IFR Limiter, GaAs FET Outputs:
 - PD-10110: 10.4 GHz, 150 mW, 11000 Flange: $129.37
 - PD-12110: 12.1 GHz, 1000 Flange: $72.37
 - PD-101P11: Complete Hybrid Resonator, 10.4 GHz Flange: $66.21
 - Use with 2 Flange, 12 GHz Substrate: $90.00
 - PD-1307 Diplexer Module: 10.4 12.1 GHz Flange: $43.05
 - X Band 15 dB de de corendor antenna (EIRP<100): $17.85
 - X Band FET Preamp 10.4 GHz, 2.0-3.5 GHz, 0 dBm: $49.99

COMPONENTS
- ALL THE SOURCES FOR NTE/NUTEC Active Filters
- NEW
- MG51A Substitution C5: $0.16
- MG450 direct replacement: Siemens LBF: $9.66
- LEAKLESS DECAP C5: $0.16
- MG51A Substitution C5: $0.16
- MG3453 direct replacement: Siemens LBF: $9.66
- LEAKLESS DECAP C5: $0.16
- MG51A Substitution C5: $0.16
- MG450 direct replacement: Siemens LBF: $9.66
- LEAKLESS DECAP C5: $0.16
- MG51A Substitution C5: $0.16
- MG450 direct replacement: Siemens LBF: $9.66
- LEAKLESS DECAP C5: $0.16

SYNTHESIZED SIGNAL GENERATOR
- MODEL S1000: $349.95

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (212) 486-2720

July 30 thru August 12, 1983

Our 24th year

Learn why the answers are what they are. Upgrade with electronics professionals.

OAK HILL ACADEMY RADIO SESSION

in the Blue Ridge Mountains of Virginia

Theory and code together.
- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors — Friendly Surroundings — Excellent Accommodations.

Ham Lab set up for all to use.

"A Vacation with a Purpose"

C. L. PETERS, K4DNJ, Director
Oak Hill Academy Amateur Radio Session
Box 43
Mouth of Wilson, VA 24363

Name _____________________________
Address ___________________________
City/State/Zip _______________________

Tell 'em you saw it in HAM RADIO!
Three different versions of the receiver, two of which have been expanded into transceivers. The one on the left is the original which was built in modules. It uses a cabinet available from Radio Shack, and a homemade front panel. On the top right is the basic receiver described in this article. It uses an inverted chassis with cover plate. Wooden rails have been added to both sides and an aluminum trim strip adds a finishing touch to the front panel. A bar graph display has been used here instead of an S-meter. It is mounted just above the digital readout. On the bottom right is a unit built by Bob Kirby, WA3DYF. His version includes an antenna tuner, so that a random length wire can be used as an antenna.

modular two-band receiver

State-of-the-art circuitry with digital frequency readout

I have often been impressed by the many excellent articles which have been published about my favorite subject — communications receivers. A problem I have found with most of the articles, however, is that duplicating some of the circuits is often difficult. Some receivers use surplus or discontinued parts, or parts not readily available. In some cases extremely expensive, custom-made components are used.

There is no reason why a top-quality, high-performance receiver should cost a small fortune to build — or require a bench full of sophisticated test equipment to adjust. You can build a receiver for less money than you would have to spend to purchase one of similar performance.

This article describes my answer to these problems. Here is a reliable, high-performance Amateur communications receiver that will perform as well as some of the best receivers available to Amateurs today. The basic two-band design can be expanded to cover the other bands, and, with the addition of two boards, can operate as a transceiver on CW and SSB.

the evolution of the design

The typical receiver should be able to handle strong signals (both on and off frequency), such as

By Jim Forkin, WA3TFS. 3210 Shadyway Drive, Pittsburgh, Pennsylvania 15227
With emergency and portable operation in mind, small size and minimum weight are nice features to consider. One weight- and time-saving method involves eliminating the mechanical dial drive, readout, and tuning capacitor. I used a Jackson Brothers 6:1 reduction drive, which turns a ten-turn potentiometer, giving sixty turns to cover a 500-kHz band. The regulated voltage from this control is used to tune the VFO. Since the varactor diodes in the VFO require only a dc voltage, the packaging of the various boards needs not be influenced by any mechanical considerations. This packaging flexibility opens up a few new possibilities.

If mobile operation is contemplated, a remote-mount type of packaging could be used. The main receiver board, along with the VFO and BFO, could be in one box. The digital readout, tuning control, volume control, and S-meter, in a small box mounted under the dash, would complete the receiver. This idea is especially attractive for use in the small cars which are becoming so popular.

Finally, and of major importance, any circuit used in a receiver should be entirely reliable. By this I mean that only readily available, well-proven, solid-state devices should be used in circuits which are easy to duplicate without problems of instability. No changes or critical adjustments should be required to get the receiver working the first time.

In this design, I have relied heavily on the use of integrated circuits. This cuts size, complexity, and cost. The design has shown itself to be reliable and trouble-free. I know of no better way to put two pounds of circuitry into a one pound box.

the design

The two-band receiver consists of six printed circuit boards (see block diagram in fig. 1). The main receiver board contains the mixer, i-f filter and amplifier, product detector, AGC circuitry, active audio filter, and audio power amplifier. Other boards include the VFO, BFO, the voltage regulator and S-meter board, and the digital-readout board. Both of the bandpass filters are on one board.

![Block diagram of the SSB/CW receiver.](image)

table 1. Specifications for the KVG XF-9B filter.

<table>
<thead>
<tr>
<th>Specification</th>
<th>SSB/RX</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>SSB/RX</td>
</tr>
<tr>
<td>number of filter crystals</td>
<td>8</td>
</tr>
<tr>
<td>bandwidth (6 dB down)</td>
<td>2.4 kHz</td>
</tr>
<tr>
<td>passband ripple</td>
<td><2 dB</td>
</tr>
<tr>
<td>insertion loss</td>
<td><3.5 dB</td>
</tr>
<tr>
<td>input-output termination</td>
<td>R_i</td>
</tr>
<tr>
<td>termination</td>
<td>500 ohms</td>
</tr>
<tr>
<td>shape factor</td>
<td>(6:60 dB) 1.8</td>
</tr>
<tr>
<td>stop band attenuation</td>
<td>(6:80 dB) 2.2</td>
</tr>
<tr>
<td></td>
<td>>100 dB</td>
</tr>
</tbody>
</table>
bandpass filters

Each band has its own double-tuned bandpass filter (fig. 2). This filter design has good rejection of unwanted signals both above and below the band of interest.² The two coils for each band are wound on ferrite cores and tuned with ceramic or mica trimmer capacitors.³ (See table 2.) Once initially adjusted at the center of each band, the filters require no other tuning or adjustments.

One drawback of this type of front-end filter is the fact that the antenna must present a 50-ohm load.

Two more versions of the receiver, both of which have been expanded in function. The one on top has been designed for mobile use. It is built in a compact package measuring only $4 \times 7 \times 11$ inches. The cabinet is formed by using two chassis fastened together with a top and bottom cover. A separate front panel hides the seam where the two chassis join together. The bottom unit is the dual-diversity unit mentioned in the article. Note the two dot displays to the left of the digital readout. These give a direct comparison of signal strength on each channel.

Severe mismatch at the antenna will detune the filter and cause a loss in sensitivity. It is not possible to just hang a wire on the antenna input and obtain good results. With a matched antenna, the filters are excellent.

table 2. Component values for the bandpass filters.

<table>
<thead>
<tr>
<th>Filter</th>
<th>C1</th>
<th>C3</th>
<th>C5</th>
<th>C2-C4</th>
<th>L1-L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 meters</td>
<td>80 pF</td>
<td>12 pF</td>
<td>100 pF</td>
<td>27 turns on</td>
<td>T37-6 core (yellow)</td>
</tr>
<tr>
<td>20 meters</td>
<td>15 pF</td>
<td>2 pF</td>
<td>25 pF</td>
<td>35 turns on</td>
<td>T37-2 core (red)</td>
</tr>
</tbody>
</table>

the mixer

Initial experiments with the mixer stage involved double-balanced diode mixers, but these were rejected in favor of a dual-gate mosfet stage, as shown in the receiver-board schematic (fig. 3).

In theory, the diode double-balanced mixer is, perhaps, the ultimate design. However, in practice, the maximum capabilities of this device are rarely achieved in a home-built receiver.

The diode mixer, in order to work properly, must be terminated at all frequencies present — not just the i-f. This requires a circuit called a diplexer. This circuit can be very difficult to get working properly.

fig. 2. Schematic diagram (A) of the bandpass filters, and parts location (B). All coils are wound on a toroidal core as shown by (C); see table 2 for values. The tabs on trimmer capacitors are bent outward and soldered to the circuit board as in (D). All parts are on foil side of board.
with simple test equipment. This type of mixer exhibits a loss and also requires a high-level local-oscillator signal. This not only consumes extra power, but makes interstage coupling of the local oscillator signal a problem.

A dual-gate mosfet mixer, on the other hand, is not in the least bit temperamental, and good performance can be obtained without any adjustments. The drain is terminated in the eight-pole crystal filter. Impedance matching is handled by a 510-ohm resistor in the drain circuit of the mixer, which approximates the 500-ohm input impedance of the KVG filter.

the intermediate frequency amplifier

The local-oscillator signal and the desired incoming signal are mixed (heterodyned) to produce an output signal at the i-f center frequency of 9.0 MHz. This signal is then passed through the eight-pole crystal filter with a -6 dB bandwidth of 2.4 kHz. The outstanding skirt selectivity of this filter (1.8 shape factor) rejects off-frequency signals very well. It is this selectivity which allows you to separate the closely spaced signals which are common on the Amateur bands.

The signals at the output of the crystal filter must be amplified, of course, and this is handled by an integrated circuit which provides about 50 dB of gain and a bit more than 60 dB AGC control.

Although this eight-pin chip appears quite simple, the MC 1350 is really quite sophisticated. It is also inexpensive. The gain of this stage is controlled by applying a voltage of 5 volts or greater to pin 5. An increase in voltage on this pin causes a decrease in gain in the chip.

fig. 3. Schematic diagram of the receiver board of the modular receiver. S1 A and B is a miniature dpdt toggle switch. Capacitors in audio filter must be polystyrene or mica. Capacitors marked + can be either tantalum or other electrolytic. T3 primary is twenty-five turns No. 28 enameled wire on T37-6 core; secondary is five turns No. 28 wound over primary.
CQ CQ HAMS
- SPECIAL OFFER TO LICENSED HAMS -

Do you think *Ham Radio* is the number 1 Amateur Publication?
Are you interested in Satellite Television?
Then why not read *Satellite TV Magazine*?
Believe me – this is the number 1 Satellite TV Publication!

Now ... as a special offer to licensed amateurs only – we will send you a sample copy of *Satellite TV Magazine* for only $1.00* (Reg. $2.95) and offer you an annual subscription for only $24.95* (Reg. $29.95).

If you’re still not convinced - QSO the Satellite TV Net each Sunday at 2:00 pm Eastern Time on 14,310 MHz and hear what the other HAMS are saying about *Satellite TV Magazine*.
Chris J. Schultheiss VE-2FRJ
Editor & Publisher

Just give us your name and QTH

Name ____________________________
Address __________________________
State __________ Zip __________

Please Enclose Check or Money Order or if you prefer we accept Visa® & Mastercard®.

Card Number __________ Exp. Date __________

Satellite TV Magazine
P.O. Box 2384
Shelby, North Carolina

*All Prices in US Funds.

Call Toll Free 1-800-438-2020

NEW DESIGN

Model P101

- VU meter for line level and null readings
- Separate receiver, transmitter, & null controls
- Either PTT or Vox operation
- Pi-filters to eliminate RF feedback
- Simple phone line hook up
- Attractive blue panel, woodgrain cabinet
- Dimensions 8” wide x 5¼” deep x 2¼” high

PRICE $95.00 Plus $2.50 Shipping and Handling

ALL OUR PRODUCTS MADE IN USA

BARKER & WILLIAMSON
Quality Communication Products Since 1932
At your Distributors, write or call
10 Canal Street, Bristol, Pa. 19007
(215) 788-5581

PROGRAMMABLE CTCSS ENCODER/DECODER

ALL 37 EIA TONES

QUARTZ ACCURATE

VERSATILE

IMMEDIATE DELIVERY AVAILABLE FROM NEW YORK AND CALIFORNIA DISTRIBUTION CENTERS

For more information call TOLL-FREE
NY: (800) 462-7242
CANADA: (416) 884-3180

FERRITRONICS
3319 PINE AVE
NIAGARA FALLS NY 14391

More Details? CHECK-OFF Page 92

fig. 4. Component placement guide for the receiver board, viewed from the component side of the board with the printed circuit board in the background.
RADIO COMMUNICATIONS RECEIVERS
by Cornell Drentea
Complete and detailed history of receivers covering the
crystal receiver, Galena crystals, and modern
receiver designs and the tuned frequency receiver.
It also includes single, multiple, and direct conversion
receivers. You get helpful hints and tips on how to solve
image problems, selectivity, and crystal filters. A
complete directory of ceramic filters and
much, much more. System design, lasers, and
synthesizers — all in one complete volume.
□ 1982, 1st edition
□ T-1393
Softbound $13.95

GUIDE TO RTTY FREQUENCIES
by Oliver P. Ferrell
Fully revised to reflect latest information available.
Includes many shortwave military, commercial, press
aeronautical, and weather broadcasting RTTY
stations. You also get shift speed, power, schedules,
formats, appendix D is much more. Author Ferrell
also helps you the benefit of his years of experience in
helpful hints and tips that will simplify your listening.
□ 1982
□ GL-RF
Softbound $9.95

HAM RADIO LOGBOOK
A real Ham Radio bestseller. Lies flat just like the
other one. But uses both sides of each page to
give you twice as many entries per book. Plenty of
x-t-a features make this the Logbook for you. 8½ x 11
□ 1982
□ HR-LB
Spiralbound $2.50 ea.
SPECIAL 3 Logs for $4.95

ARRL ANTENNA BOOK
14th Edition
The Amateur Antenna bible. Includes almost every bit
of information you'll ever want to know about anten-
da design, construction and theory. Starts with
wave propagation, antenna fundamentals and trans-
mision line theory, progresses through coupling
transmitter and antenna to the feedline to big, inclu-
sive chapters on how to build different antennas. New
large magazine style. □ 1982, 14th edition, 200
pages.
□ AR-AM
Softbound $8.00

HOW TO BUILD HIDDEN, LIMITED
SPACE ANTENNAS THAT WORK
by R. J. Troester
Space problems limiting your signal? It doesn't have
to be that way. How to book complete with plenty of
projects on antennas for that big signal. Projects in-
clude a suspended multi-band vertical, window anten-
a, attic dipole, 20m indoor antenna, two meter coax-
□ T-1254
□ 10.00
SOFTBOUND $6.95

NO MORE BAD CASSETTE LOADS
with
THE Z-DUBBER

The frustration of trying to load a cassette program into your Sinclair
ZX80/81 or Timex 1000, is this what you really bought your computer
for? Why put up with it? Now you don't have to. The Z-Dubber is a
small device which connects between your computer and cassette player,
improving your loading ease 100%.

The Z-Dubber also allows you to connect two tape recorders together, to
create perfect duplicates of your favorite cassette programs. The Z-Dubber
can be yours for $31.95 postage paid within the U.S. Canada & Mexico
Add $2.50 additional for other postal areas. Visa & Mastercard welcome.

FOR CHARGE AND C.O.D. ORDERS

For additional information or service, call or write:

BYTESIZE MICRO TECHNOLOGY
PO BOX 21123 - DEPT.AO - SEATTLE, WA 98111
(206) 236-BYTE

Dealer Inquiries Welcome.

July 1983
PREVENT HI-TECH HEADACHES

Our Isolators eliminate equipment interaction, clean up interference, curb damaging power line spikes and lightning bursts.

ISO-1 Isolator
3 isolated sockets; quality spike suppression; basic protection...$76.95

ISO-3 Super-Isolator
3 dual isolated sockets; suppressor; commercial protection...$115.95

ISO-17 Magnum Isolator
4 quad isolated sockets; suppressor; laboratory grade protection...$200.95

Electronic Specialists, Inc.
171 S. Main St., Box 386, Natick, MA 01760
Toll Free Order Desk 1-800-225-4876
MasterCard, VISA, American Express

Tell 'em you saw it in HAM RADIO!
The printed circuit board (fig. 4) is designed so that the entire i-f amplifier stage, along with the crystal filter, can be diode or relay switched whenever this receiver is modified for use as a transceiver.

Although it was not included in the original design, a two-pole crystal filter was added at the output of the i-f amplifier. This was not necessary to realize excellent performance in the receiver, but it does produce a quieter receiver by eliminating most of the noise generated in the i-f amplifier. The use of the filter is especially noticed and appreciated when copying extremely weak signals near the noise floor of the receiver.

The low cost involved by adding the two-pole filter is justified by the increased performance. The filter can be added without modification to the printed circuit board.

the product detector

I have experimented extensively over the past several years with direct conversion receivers (synchrodyne) and have found that the RCA CA3028-A integrated circuit works very well as a product detector. I have, therefore, used this device in this receiver. It exhibits good gain, low noise, excellent stability, low distortion, and a reasonable level of recovered audio. BFO level requirements are reasonable and non-critical. This chip also handles strong signals very well and this ability simplifies the design of the AGC system.

the audio stages

Detected signals from the product detector are coupled through an audio interstage transformer to the following stages. If more selectivity is desired for the reception of CW signals, the audio is routed through an audio filter.

Operational amplifiers have made filtering for selectivity at audio frequencies a practical method to use in the design of a new receiver or to improve an older receiver. This receiver uses a design based on an MC1458 dual-operational-amplifier integrated circuit. No critical parts are required, as experiments have shown that excellent performance can be obtained using typical 5 percent resistors and polystyrene capacitors. When it comes right down to it, it is
The main receiver board. Note the shielded wiring used on all audio and rf connections. From left to right are the mixer, crystal filter, i-f amplifier, product detector, AGC circuit, audio filter, and audio amplifier.

Incidentally, the audio chip has two input pins. One is used here, the other left floating. If the receiver is used as part of a transceiver, the other pin can be connected to the sidetone oscillator.

Three of the assembled boards. From left to right they are the digital readout board, the VFO, and the bandpass-filter board for 80 and 20 meters. A shielded control line goes to the VFO.

Not important whether the center frequency is at 1.0 kHz or 1.1 kHz, or that the bandwidth at –6 dB is 200 Hz or 210 Hz. The design specifications call for a bandwidth of about 200 Hz at –6 dB, and a center frequency of 1.0 kHz. This is wide enough to eliminate any ringing tendency, yet narrow enough to cut through some of the worst interference.

One of my most basic concepts of receiver design is that simple is usually best. This idea is carried to the extreme when you consider the audio output stage. Only three parts are needed. The LM380-N integrated circuit will provide about 2 watts output in this configuration. It has low distortion, good gain, and is even thermally protected so you don’t have to be concerned if the speaker becomes disconnected. I have used this receiver mobile and have found the audio output to be more than adequate when connected to an external speaker of good quality. The output stage will drive any load between 3 and 16 ohms. Don’t ruin the excellent audio quality of this receiver by using an inferior speaker. Any of the many CB-type mobile speakers should be a good choice.

Incidentally, the audio chip has two input pins. One is used here, the other left floating. If the receiver is used as part of a transceiver, the other pin can be connected to the sidetone oscillator.

The AGC system

After weeks of experimenting with both audio- and rf-derived AGC systems, it became apparent that an audio-derived, full-hang AGC system worked best under signal conditions ranging from casual rag-chews to weak-signal CW work, DX pileups, and Field Day QRM.

Perhaps you have used a receiver and noticed that the S-meter (actually an indicator of AGC action in the receiver) would deflect up scale on signals not even detected in the audio output. This is typical of receivers using rf derived or i-f derived AGC systems that do not have sufficient selectivity ahead of the detectors for the AGC.

Because of this problem, the desired signal completely disappears or appears to become very weak because of the AGC action. Obviously, this is not an ideal situation. The receiver sensitivity should be totally controlled by the signal you wish to detect, not by QRM.

fig. 7. Schematic diagram of the VFO (local oscillator). T1 primary is thirty-five turns No. 28 enameled wire on T37-6 core; secondary is eight turns No. 28 over primary. T2 is ten turns No. 28 enameled wire wound bi-filar on FT37-43 core. L1 is two turns No. 28 enameled wire on ferrite bead.
IN THE GOOD OLD SUMMERTIME

The publishers of The Final Exam offer you books to while away those lazy summer days!

* Teaching Novice classes? Your students will thank you for using the Novice Class edition of The Final Exam. Not a Q & A manual, but a straightforward book that tells your students what you want them to know while keeping them amused. Your students will finally enjoy learning! Used in classes all over the country. Only $4.95 plus $2.25 Shipping & Handling (S & H) for a single copy. Quantity discounts usually available through your local dealer.

* Want to keep up with changes in the FCC rules? For only $9.95 per year we offer you a subscription to Part 97 of the FCC Rules & Regs with verbatim updates mailed 1st Class every 2 months. There's no better service anywhere!

* The Complete Idiot's Guide to DX by Stu Gregg is just what beginning DXer's need. With a sense of humor, Stu teaches the basic ins and outs of DX. Only $9.95 (plus $2.50 S & H).

* Got an Apple II, III, or III Plus and like DX? The DX-Pediter will help you tremendously with your record keeping while you work on DXCC! On 5 ¼” floppy with good documentation for $29.95 (plus $2.00 S & H).

* Can't remember where you saw an important formula or table with ham data? Look in Band-Aids! This is an encyclopedia of miscellaneous info for hams for just $9.95 (plus $2.25 S & H).

* Here's the newest book by Bob Shrader - W6BN: Amateur Radio Theory & Practice. If you really want to understand ham radio theory, then this book is a must! Available for $19.95 (plus $3.50 S & H).

* Antenna enthusiasts! You need Antennas by John Kraus - W6UK. This IS loaded with calculus and trig but is the "Bible" of antenna books. Only $44.95 (plus $4.00 S & H).

* Do you want antenna applications? Order Antenna Engineering Handbook. This 1,013 page book by H. Jasik has more info than you'll use in three lifetimes. Just $74.95 plus ($4.00 S & H).

* Ready to learn solid state? Get Electronic Principles by Malvino. This is the book to read after Electronic Communication. Put it on your bookshelf for $26.95 (plus $4.00 S & H).

* California orders must include 6 ½% sales tax (no tax on S & H). Visa & MasterCard accepted. All of the above items are in stock at this time. Prices valid until September 1, 1983. Free shipping via UPS or Parcel Post on orders over $75.

In The Works

The Ham Radio Instructor's Guide (Vol. 1) will instruct you how to teach ham classes. The first volume discusses the psychology of learning, lesson plans, course development, etc. What's more, an organization is being developed to certify ham radio instructors. Dick Bash - KL7HP is almost finished with the book and plans to have it available in September. Price will be $14.95 (tentative) plus $2.50 S & H.

- Attention Authors -

We are seeking authors for books on RTTY, satellites (Phase III-B or later), antennas, and VHF/UHF theory. Please send for our information sheet and get your book published now!

Orders should be mailed to:

Bash Educational Services, Inc.
P.O. Box 2115 • San Leandro, CA 94577 • 415-352-5420
Telephone orders accepted Monday - Friday, 10 AM - 6 PM (California time)
NEW FROM RSGB!

VHF-UHF Manual by G. R. Jessop, G6JP. You will find the new fourth edition of VHF-UHF Manual jam-packed with practical theory and construction projects for the region above 30 MHz to 24 GHz. The microwave chapter has been expanded to 83 pages; and includes information on: converters, cavity amplifiers, Gunn diodes, waveguides, directional couplers, and antennas. Receivers and transmitters for these bands are covered in 181 pages. The balance of this 512-page book contains chapters on propagation, tuned circuits space communications, filters, test equipment, antennas, and a handy data section. (Since this is a British publication, there is little coverage of the 6-meter band, but many of the 4-meter band projects can be adapted by the experienced amateur for use on 6-meters.) Copyright 1983 Hardbound $17.50.

THE AMERICAN RADIO RELAY LEAGUE, INC.
225 MAIN STREET
NEWINGTON, CT 06111

AMATEUR MICROWAVE TV ANTENNA'S
1.9 to 2.5 GHz Frequency Range
50 db System Gain

Complete System (Rod Style as pictured, 25 db Gain)
PS-3 ... $69.95
Complete System (Dish Style as pictured, 50 db Gain)
PS-5 ... $109.95

All systems come complete with Accessory package of
- Control Box
- 60' Coax Cable
- Mounting Hardware
- Matching Transformer
- Instructions
- 90 Day Warranty

S.E.I. Inc.
912 West Touhy Avenue
Park Ridge, Illinois 60068
Out of State Call 1-800-323-1327
In State Call 312-564-0104
C.O.D.'s Accepted • Special Quantity Pricing • Dealers Wanted

WARNING
SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10' or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers’ catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

UNR-Rohn
Division of UNR, Inc.
6718 West Plank Road
Pierre, Illinois 61001
USA

Paid for by the following:

Tell 'em you saw it in HAM RADIO!
In practice, this is nearly impossible to do. But, through the use of selective filters and an audio-derived AGC system (as used in this receiver), this ideal comes closer to reality than you find in many commercial receivers.

A signal, first of all, must be detected and be present in the product-detector output to produce any AGC action. The strength of this signal determines how much AGC voltage will be applied to the i-f amplifier stage. When the need for a control voltage no longer exists, an FET switch is turned on, thereby shunting this voltage to ground, which brings the receiver back to maximum gain within a period of time determined by the time constants. The type or strength of the signals received does not affect this hold-in time. This type of circuit is discussed in greater detail in an ARRL publication.¹

Two AGC time constants are available. The slower one is excellent for general SSB and CW use and the faster one allows good copy under adverse conditions.

the BFO

The beat-frequency oscillator is crystal controlled for stability. The circuit consists of two oscillators which share a common output tuned circuit (see figs. 5 and 6). The upper and lower sideband crystals are selected by grounding the appropriate control line. This board, like all the others, can be placed anywhere in the cabinet. Since only dc is being switched, it is not necessary to keep the control wires very short.

Each crystal has a trimmer capacitor so it can be set exactly on frequency. Another trimmer capacitor peaks the output tuned circuit at 9.0 MHz.

the VFO

Readers who are familiar with synthesized 2-meter equipment will probably recognize the MC1648 integrated circuit used in the VFO (figs. 7 and 8). It has become fairly common in VHF equipment but has not been used before, as far as I know, in a high-frequency receiver. It operates very well in this configuration.

One problem which may occur when using this integrated circuit is that it can oscillate above 250 MHz. The high-frequency oscillation is prevented by link coupling the tuned circuit to the IC through an rf choke. This low value inductance, as well as short lead length, proper pc board layout, and proper bypassing, prevents instability.
Two varactor diodes are biased by a regulated dc voltage which is controlled by a panel-mounted ten-turn potentiometer. A Jackson Brothers 6:1 vernier drive gives good bandspread.

VFO output is amplified and buffered by a Class-A 2N3866 stage. Output from the buffer is applied to the mixer stage in the receiver. Output to the digital readout is taken via a capacitor from the collector of this stage. This eliminates the need to add pulse shaping in the digital counter.

The regulated voltage, which is used to tune the VFO, is derived from a 6-volt, three-terminal integrated-circuit regulator which is mounted on the S-meter/voltage-regulator board.

Temperature compensation was found to be unnecessary for base-station applications. After a short warm-up period the drift is low enough to allow me to copy the ARRL RTTY bulletins without retuning. If you wish to use your receiver under adverse conditions, such as might be encountered during mobile operation, it may be necessary to add some sort of temperature compensation. Several schemes have been published and just about any of them will work. One simple method I suggest is to wire a 120-pF N750 ceramic capacitor in series with a low-value piston trimmer (approximately 2.5 pF) across the two varactor diodes. The trimmer should be adjusted to mid-range with a cold receiver. Hook a frequency counter to the VFO output and turn on the receiver. Plot the drift over about an hour's time. If drift is excessive, adjust the trimmer slightly, allow the receiver to cool and try the test again. This takes quite a bit of time, but once the magic combination is found, no further adjustment is needed.

digital readout

From the initial planning stages of this receiver, I decided to use a digital frequency display, but did not want the high current consumption, heat, or complexity of the usual designs. An Intersil LSI counter chip, along with three other integrated circuits, provides a four-digit readout with an accuracy of ±100 Hz (fig. 9) with a components layout and printed circuit board shown in fig. 10.

The counter counts the VFO output and displays the last four digits. This corresponds to the frequency of the received signal. For example, a received frequency of 14,230.6 kHz is displayed as 230.6. On 80 meters, the counter counts down so that a received frequency of 3,976.8 kHz is displayed as 976.8.

CHASSIS and cabinet kits. SASE K3HMK.

EXCELLENT looking HV-101, needs alignment — $190. Drake 2A; accessories $120. Mint HW86 p.s. and key, phones $145. D-104 $45. Write KA9KAN.

ELECTRON TUBES: Receiving, transmitting, microphone ... all types available. Large stock. Next day delivery most cases. Daily Electronics, 14125 Willow Lane, West- minster, CA 92683. (714) 894-1368.

WANTED: Cash paid for used speed radar equipment. Write or call: Brian R. Esterman, 735 Laramie Ave., Wilmette, Illinois 60091. (312) 251-8901.

DIL AWARDS are back. Full size certificates for those not so good operators. Radio's biggest egotist. Nothing ever works. Four different egotists. Be the first to give them. $6.00 PP; Interlake, 29 Parker Pl., Saddle River, NJ 07458.

WANTED: SBE-34 Coaxial Model SB2-CW, Hy-Gain 1081T Hy-Tower. HKKTZ, 2255 Alexander, Los Osos, CA 93402.

BUY SELL TRADE — Next 6 issues $2.00. WA4OSR's Rigs & Stuff, Box 973-H, Mobile, AL 36601.

BEAM HEADINGS. The best for less. Great new beam heading listings are computerized, include all the islands, all the prefixes. No more confusion. Accurate and up-to-date listings for all countries and islands, by prefix, plus all 50 states. Two printouts, large and easy to read. Only $8.65. Box ZTH, check, MO, VISA/. MC (number, expiration) to Foundation Publishing, Box 865, Merrickam, NY 11354.

PRE-1946 TELEVISION SETS wanted for substantial cash. Finder's fee paid for leads. Also interested in spinning disc, mirror-in-the-lid, early color sets, 9x8 photo tubes. Arnold Chase, 9 Rushleigh Road, West Hartford, Conn. 06117 (203) 521-8920.

PLASTIC CARTON Sealing tape, 2.6" rolls, 2.4" rolls, .76"; 1.34"; $.50, $1.16", $1.76; each one $.50. Add $1 shipping. Three or more orders shipped free. Satisfaction guaranteed. Lissaius, 116 Orton, Caldwell, NJ 07006.

MULTIBAND ANTENNA "KTSB" — 160m thru 10m, ready to use! Only $29.95 pp USA. Catalog available. Kilo PC, Box 1001, Oak View, CA, (805) 646-9645.

FREE ad when you subscribe! Get "The Radio Exchange" — the speedy and inexpensive newsletter for buy/sell/trade of radio & computer equipment. 24 issues (1 year $8.00). The Radio Exchange, P.O. Box 486, Dept. C, Forest Lake, MN 55025.

WANTED: Highest prices paid for Harris RF 301 and associated equipment. Call collect (212) 925-6048.

ROHN TOWERS — Wholesale direct to users. All products available. Write or call for price list. Also we are wholesale distributors for Antenna Specialists, Regency, H-Gain and Wilson. Hill Radio, P.O. Box 1405, 2503 G.E. Road, Bloomington, IL 61701-0867. (309) 663-2141.

MOBILE IGNITION SHIELDING: Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

SPANISH FOR HAMS, Booklet cassette $6.50. K3GWI, 15625 Mayfield, Huntsville, OH 43406.

CABLE CONVERTERS, decoders. Free catalog. APS, POB 263 HR, Newport, RI 02840.

HAM HOLIDAY Sri Lanka, Write to Spangles Travels, 84 Templers Road, Mount Lavinia, Sri Lanka. Enclose 5 IRC's.

RTTY EXCLUSIVELY for the Amateur Teleprinter. One year $7.00. Beginners RTTY Handbook $8.00 includes journal index. PO Box RY, Cťfford, PA 29077.

HALLICRAFTERS $55 Serious collector needs Hallicraft- er and other Ham equipment manufactured before 1940.
Current consumption with this design is very low, and no noise from the counter can be heard in the audio output. The time base for the counter is a 5.24288 MHz crystal.

S-meter/voltage regulator

A meter amplifier designed to drive a low-current meter is included on this board (see figs. 11 and 12). The meters are readily available as CB surplus. Their current ranges are between 50 and 250 μA, and their cost is very low. A trim pot is used to set the meter to zero under no-signal conditions. Sensitivity of the amplifier is adjusted by changing the input resistor.

The board also holds a 6-volt, three-terminal integrated circuit and trim pots to set the upper and lower tuning range of the VFO. The trim pots should be set to allow a tuning range of about 4990 kHz to 5510 kHz. This range could be extended slightly to allow tuning in MARS or CAP frequencies.

tuneup

Tuneup is a breeze!

1. Set BFO to frequency on either upper or lower sideband.
2. Peak i-f amplifier for maximum signal strength.
3. Peak bandpass filters for maximum at the center of each band.
4. Set AGC level at +5 volts with no signal on the input.
5. Set the timebase for the display on the digital display board so that the displayed frequency is accurate.
6. Set trim pots on the VR/S-meter board for the proper tuning range.
7. Set the zero adjust for the meter with no signal input.
8. Repeat as needed.

This receiver has been compared with some of the best available to Amateurs; in all cases it’s held its own. The receiver sounds much quieter than any of the other receivers. Signals seem to pop out of the background. There is no roar of noise in the speaker when no signal is being received.

Single-tone dynamic range tests at 14.2 MHz work out to about 124 dB (table 3). This is with a signal

table 3. Specifications for the two-band receiver.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning range</td>
<td>3.5 to 4.0 MHz</td>
</tr>
<tr>
<td></td>
<td>14.0 to 14.5 MHz</td>
</tr>
<tr>
<td>VFO frequency</td>
<td>5.0 to 5.5 MHz (remotely tuned via dc)</td>
</tr>
<tr>
<td>i-f</td>
<td>9.0 MHz center frequency</td>
</tr>
<tr>
<td>BFO</td>
<td>USB: 8998.5 MHz</td>
</tr>
<tr>
<td></td>
<td>LSB: 9001.5 MHz</td>
</tr>
<tr>
<td>Digital readout</td>
<td>5.24288 MHz crystal</td>
</tr>
<tr>
<td>Time base</td>
<td>+ 100 Hz</td>
</tr>
<tr>
<td>Tuning resolution</td>
<td>+ 12 Vdc; on-board regulation</td>
</tr>
<tr>
<td>Requirements</td>
<td>supplied as needed</td>
</tr>
<tr>
<td>Current requirements</td>
<td>approximately 100 mA at medium</td>
</tr>
<tr>
<td>Volume setting</td>
<td></td>
</tr>
<tr>
<td>Selectivity</td>
<td>SSB: 2.4 kHz (6 dB down)</td>
</tr>
<tr>
<td></td>
<td>1.8 shape factor (6.60 dB)</td>
</tr>
<tr>
<td></td>
<td>2.2 shape factor (6.80 dB)</td>
</tr>
<tr>
<td>CW</td>
<td>peak type audio filtering; approximately 1-kHz center frequency with 6-dB bandwidth of 200 Hz</td>
</tr>
<tr>
<td>Blocking</td>
<td>Better than 120 dB. (20-kHz spacing, 1-uV received signal strength at 14.2 MHz)</td>
</tr>
</tbody>
</table>
COMMUNICATIONS PROCESSOR

- 7TH ORDER CW FILTER 00Hz WIDE AT 750Hz
- TONE-TAG AT BINAURAL CROSS-OVER ON CW
- VOICE FILTER - SUPPLIES FILTER BANDS AT 300 TO 400Hz AND 1300 TO 2500Hz FOR SUPERB SELECTIVITY ON VOICE.
- BINAURAL SYNTHESIS THAT SUPPLIES TWO OUT-PUT CHANNELS WITH CROSS-OVER AT 750Hz - OPERATIONAL WITH ALL FUNCTIONS
- AUDIO WHITE-NOISE GENERATOR - SEE JAN.80 HR ARTICLE OR SEND SASE FOR COPY
- BROCHURES ON CAP AND OTHER PRODUCTS --

Hildreth Engineering
P.O. Box 60003 Sunnyside, CA 94088

Inexpensive kit and assembled units for use with Hand-Held, Mobile, or Base Station.
100 to 260 MHz or 200 to 550 MHz with scanner or transceiver.
No attenuator or US "S" meter needed.
Can DF signals below 100 kHz.

WANTED: Schematics-Rider, Sam's or other early publications. Scaramella, P.O. Box 1, Woonsocket, RI 02895-0001.

Sold by the year only.
$12.00 per year postpaid.
Bill DuHart, W4YM5, 3846 Winona, Pensacola, FL 32504.

WANTED: Early Hallicrafters "Skyriders" and "Super Skyriders" with silver panels, also "Skyrider Commercial".
early transmitters such as HT-1, HT-2, HT-4, and other Hallicrafters gear, parts, accessories, manuals.
Chuck Dachis, WDSEOG, The Hallicraftier Collector, 4500 Russell Drive, Austin, Texas 78745.

WANTED: 2C39 tubes for local repeater. Must be good.
Ken Booth, 1421 Williamsburg Rd., Flint, MI 48507, (313) 238-8827.

RUBBER STAMPS: 3 lines $4.50 PP.
Send check or MO to G. L. Pierce, 5521 Birkdale Way, San Diego, CA 92117.
SASE brings information.

I AM INTERESTED in setting up a regular sked with other hams who are interested in working the Historical Processes of Photography such as Carbon, Bromoil, Oil Transfer, etc. Please contact W2QOG, Tracy Diens, 56-14 84th St., Elmhurst, NY 11373.

RADIO WEST! High quality coverage communications receivers with Collins filters and other DX modifications Catalog 50ete (refundable).
Radio West, 3417 Purer Rd., Dept HR, Escondido, CA 92025 (619) 741-2891.

GROUND RADIALS WORK. Solve your vertical antenna radial problems with the fantastic ground plane one (GP-1). A 10" diameter, 24-point cast aluminum bus that fits any 2" diameter or smaller mast. Radial problems solved for only $24.95. Send an SASE for photos and brochure. Lance Johnson Engineering, P.O. Box 7903, Kansas City, MO 64116.

VERY in-ter-est-ing! Next 5 issues $2. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60189.

SIGNAL/ONE transceiver, model CX-11A. Solid state 1.5 to 30 MHz, full GSK cw, 150 watt model. Very clean, little use. Contact Mike Russell, at 8668 Celestine Ave., San Diego, CA 92123, or call (619) 278-9333 for details.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours — AM/FM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (516) 924-4651.

SIGNAL/ONE transceiver, model CX-7B. One tube in transmitter. Carefully modified power supply, all production updates, receiver RT, and more. Unit includes spare PA tubes and power supply components. Contact Mike Russell, WC5CFO, at 8668 Celestine Avenue, San Diego, CA 92123, or call (619) 278-9333 for details.

HAMS FOR CHRIST — Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WAB6EG, 15760 N. Albright, Upland, CA 91786.

VARIABLE VOLTAGE SUPPLY, 0-25V, 3A. Kit $50. Assembled $65. (+ $3 shipping) to: Bob Howard, 13512 Highland Drive, Austin, TX 78747.

LOW VOLTAGE MEMORY ADAPTER for your present Voltmeter. $25.00 + $1 shipping to: Bob Howard, 13512 Highland Drive, Austin, TX 78747.

CUSTOM PIC BOARDS. Send schematic for quotes. 1-4 transistors and/or ICs, $15 single board. Orders of 1-6 please enclose payment. Bob Howard, P.O. Box 13826, Austin, TX 78760.

July 1983

PHOTOVATT

Best Performance
Best Price

SEND $2.00 FOR CATALOG OF PHOTOVATTICS,
WIND AND WATER EQUIPMENT,
INVERTERS, D.C. POWERED LIGHTS,
STEREO'S, and MUCH MORE.

ALTERNATIVE ENERGY
ENGINEERING
P.O. BOX 339 DEPT. HR
REDWAY, CA 95560 (707) 932-2277

PHOTOVATT

PHOTOVATTICS

Best Performance
Best Price

SEND $2.00 FOR CATALOG OF PHOTOVATTICS,
WIND AND WATER EQUIPMENT,
INVERTERS, D.C. POWERED LIGHTS,
STEREO'S, and MUCH MORE.

ALTERNATIVE ENERGY
ENGINEERING
P.O. BOX 339 DEPT. HR
REDWAY, CA 95560 (707) 932-2277

RADIO

DIRECTION FINDER

The SuperDF

Inexpensive kit and assembled units for use
with Hand-Held, Mobile, or Base Station.
100 to 260 MHz or 200 to 550 MHz with
one antenna.
Non-ambiguous. No
overloading. Use with unmodified HT,
scanner, or transceiver. No attenuator or
"S" meter needed. Can DF signals below
the noise. Averages out local reflections
while mobile-in-motion.
Used by FCC, US Army, State of California, Coast Guard Aux.
Prices start at $125. For details send SASE to: BMG Engineering, 9935 Garibaldi Ave, Temple City, Cal. 91780

WANTED: Single shift RTTY terminal unit.
Low cost, AFSK, active-filters.
$149.95
(Kit only)

SALES ONLY

1-800-HAM-RTTY

Flesher Electronics
P.O. BOX 976
TOPEKA, KS 66601

TU-740

- Full featured RTTY to 300 baud
- CW terminal unit
- 3 Shifts, active filters, remote control
- xtal AFSK, FSK, plus much more

Suggested retail price...$499.95
Introductory offer suggestion...$429.95
Offer Expires 9-1-83

kit $289.95
wired $399.95

TU-300

- RTTY terminal unit to 300 baud.
- 3 Shifts, active-filters, xtal AFSK, FSK, plus more.

kit $189.95
wired $289.95

TU-170A

- Single shift RTTY terminal unit.

TU-170

- Single shift RTTY terminal unit.
- Low cost, AFSK, active-filters.

$149.95
(Kit only)

DM-170

- Single shift RTTY demodulator.
- Low cost, active-filters, autostart.

$47.95
(Kit only)

135

More Details? CHECK — OFF Page 92
spacing of 20 kHz. A CW signal of 0.2 μV is very easily copied.

At the time of this writing, the receiver which I have described has been duplicated several times with consistent results. The receiver design has since been expanded to include two other boards which give it transceive capability on SSB and CW. This combination has been used to work forty-six states and several countries. Output power is four watts.

I have also designed a heterodyne-oscillator board that allows the receiver to be used on 160 through 10 meters.

packaging

The photographs show a few ideas for packaging your receiver. One uses a cabinet available from Radio Shack and other similar stores. Other versions are built into aluminum chassis which are used as cabinets. Surplus cabinets salvaged from old test equipment can be found for a minimal price. One of the receivers shown makes use of two standard Bud chassis (AC402 – 7 x 5 x 2 inches) assembled top-to-top with a front panel.

A very economic approach is to strip out an old low-cost receiver or transmitter. This will provide you with not only the chassis and cabinet, but also all the hardware you may need. Because of the design of the receiver, you need not worry about the mechanical arrangement of the various controls, as everything is switched with voltages. An old CB receiver is another possibility. A new paint job and some rub-on letters will give a modern appearance. The only limit to the project is your imagination.

conclusion

Experiments have been performed using this design in a dual-diversity configuration, with excellent results. Basically, the design consists of one VFO board, one BFO, a digital frequency readout, two receiver boards, one audio stage, and a logic board to complete the hook-up.

This entire project has been approached from the viewpoint of an Amateur Radio operator, rather than as an engineer. It is relatively inexpensive and provides maximum performance at minimum cost, compared to receivers of similar performance. The design is easy to build, adjust, and package. None of the circuits are unstable, nor do they require any tinkering to achieve best performance. Best of all, the very nature of the design project promotes experimenting in the fascinating field of communication receivers.

As I have done with several of my projects, I have assembled several kits of parts for this two-band receiver. The kit includes all six pc boards and all parts needed to assemble them. A four-digit, ½-inch display and a Jackson Brothers vernier drive are also included. Documentation includes schematics, parts lists and layouts, block diagrams, and instructions. Drilling templates are provided for the version using a 2 x 7 x 11 inch (5 x 17.8 x 27.9 cm) chassis as a cabinet, fig. 13. The builder must supply the hardware, wiring, and cabinet. The cost of the kit is $320 here in the United States. Please send an SASE to the author with any inquiry.

references

ham radio
Coming Events

ACTIVITIES

"Places to go..."

ILLINOIS: The Hamfesters Radio Club is having its 49th annual Hamfest and Picnic, Sunday, August 14, Santa Fe Park, 91st and Wolf Road, Willow Springs, southwest of Chicago. Exhibits for QMs and YLs. Famous Swappers Row. Tickets $3.00 at gate; $2.00 advance. For tickets send check or MO with SASE to: Hamfesters, P.O. Box 42792, Chicago, IL 60642.

ILLINOIS: The annual Beivudere Hamfest, Sunday, July 31, Boone County Fairgrounds, Highway 76, Belvidere. Tickets $2.00 advance, $2.50 at gate. Tables $2.00 each. Saturday night camping. Talk in on 52 simplex. For information: Bob Anderson, K9DCG, 910 Locust Street, Belvidere, Illinois 61008.

ILLINOIS: The DuPage Amateur Radio Club's Hamfest/Computers Fest, Sunday, July 10, 9 AM to 4 PM, Downers Grove Airport Hamfest Post grounds. Tickets $2.00 at gate only. Large outdoor flea market. Plenty of parking. Refreshments available. Talk in on 144.891.45. For information SASE to: W9DUP, P.O. Box 71, Clarendon Hills, IL 60514. (312) 971-1156.

ILLINOIS: The Quad Co. Amateur Radio Club's 26th annual Hamfest of the "Breakfast Club", July 16 and 17, Terry Park, just east of Palm Bay. Saturday night dancing and movies. Bring your basket lunch. Games, contests, golf and fishing. Bring your swap gear. Talk in on 3973 kHz from noon Saturday to 11 AM Sunday. Camping facilities from Friday afternoon to Monday AM. Registration by July 7, $1.50. $2.00 at gate. Write Hamfest, c/o Quad Co. ARC, 602-D East Walnut, Chatham, IL 62629.

ILLINOIS: The Fox River Radio League Hamfest, the oldest in Illinois, Sunday, August 21, Kane County Fairgrounds, St. Charles. Exhibits, contests, demos and part of the flea market outdoors. Additional outdoor flea market area. Tickets $3.00 advance, $3.50 at gate. Overnight parking Saturday, August 20, for campers and motor homes only $3.00. Talk in on 146.94 simplex or 147.2162 (Aurora). Campers, exhibitors, flea market space: George R. Isely, WD9IG, 736 Fellows Street, St. Charles, IL 60174. Advance tickets: Business SASE to: Gerald Frieders, W9ZUP, 1591 Maltz Road, Aurora, IL 60505.

INDIANA: The combined LaPorte-Michigan City Amateur Radio Clubs will sponsor their Summer Hamfest, Sunday, July 17, LaPorte County Fairgrounds, State Road 2, 8 AM to 2 PM, Donation $1.00 at gate. For information/tickets: Edward B. Bono, WA4ONE, P.O. Box 4411, Lexington, KY 40504.

KENTUCKY: The Bluegrass Amateur Radio Society will sponsor the Central Kentucky ARRL Hamfest, Sunday, 8 AM to 5 PM, August 14, Scott County High School, Longlick Road and US 25, Georgetown. Tech forums, awards, exhibits. Free outdoor flea market space. Tickets $3.50 advance, $4.00 at gate. For information/tickets: Edward B. Bono, WA4ONE, P.O. Box 4411, Lexington, KY 40504.

LOUISIANA: The Central Louisiana Amateur Radio Club will sponsor a Hamfest, Saturday and Sunday, July 30 and 31, Bolton Avenue Community Center, Alexandria. Swap tables available. Information: KASHCJ, Central Louisiana ARC, P.O. Box 68, Alexandria, LA 71309.

MARYLAND: BRATS, the Baltimore Radio Amateurs Television Society's famous Maryland Hamfest, Sunday, July 31, Howard County Fairgrounds, West Friendship, 15 miles west of Baltimore. Fairgrounds available for setup Saturday, July 30 at 2 PM. Overnight RV facilities. Talk in on 147.2162 (-600), 146.76 (-600), 146.52 and 29.5484. For table reservations and information: Mayer Zimmerman, W5GKK (301) 655-7812.

MICHIGAN: The Hiawatha Amateur Radio Association is celebrating its Golden Anniversary by sponsoring the 35th annual Upper Peninsula Hamfest, July 23, 9 AM to 5 PM, Michigan National Guard Armory, Ishpeming. Registration $1.00. Tables available at $3.00 each. Talk in on 146.76 (-600). Come and help us celebrate! For information: George Lehrman, WB8OC, 100 N. R2, Ishpeming, MI 49849. (906) 485-5038.

Model HFE6: Completely automatic handwashing 80% through 130% of 30 meters. QSL cards are 4th and 5th band trap verticals of comparable size. Thousands in use worldwide since December 8111 100 meter option available now. Refurbished kits for remaining WARC bands coming soon. Height: 20 ft. 7.8 meters, grunting not required in most installations.

Model 2MCV "Trombone" — omnidirectional colinear gain vertical for 2 meters having the same gain as double-taper hybrids, but the patented "trombone" phasing section allows the radiator to remain unbroken by insulators for maximum strength in high winds. No costs "plumber's delight" construction and adjustable gamma match for complete D.C. grounding and lowest possible SWR. Height: 9 ft. 7.8 additional meters.

Model 2MCV 5 "Super-Trombone" — Same advanced features as the basic 2MCV but a full wavelength taller with additional "Trombone" phasing section for additional gain. Height: 11 ft. 7.9 additional meters.

All BUTTERNUT ANTENNAS use stainless steel hardware and are guaranteed for a full year. For further information on these and other BUTTERNUT products write for our FREE CATALOG.

BUTTERNUT ELECTRONICS GARY AIRPORT BOX 356 E. ITE, SAN MARCOS, TEXAS 78666
THE LJM2R decoder kit converts your receiver into a special receiver or controller. When a user-selected time and tone combination is received, the output provides a relay control for activating speakers or other devices. OUTPUT: Audio from transceiver, scanner, etc. INPUT: SPST (N.O.) relay

FEATURES: Single or dual tones adjustable over the 16 digit Touch Tone range - Adjustable response time - Relay output - Manual or auto reset - Single tone ON latch with different single tone reset OFF - Operates on 12VDC - Interfacing of multiple boards for multi-digit sequential activation and reset.

APPLICATIONS: Call-up system • Repeater or controller - Etc. Limited only to your imagination

THE METHENY CORPORATION
204 Sunrise Drive, Madison, NJ 07940

808 N. Main Street • Evansville, IN 47711

$15 DTMF DECODER $15

NEW FROM ICOM

Full featured, all solid state Competition Grade Transceiver. Transmitter covers all ham bands plus three new WARC bands. Receiver covers 100 kHz through 30 MHz too!

Receiver: Sensitivity - 25uV for 10 dB S/N. J-FET DIM. 105 dB dynamic range, 70 kHz 1st IF eliminates spurs, 60 MHz 2nd IF features high gain and PBT, IF notch, adjustable AGC and noise blanker (for woodpecker eye) are just a few of the features.

Transmitter: 200 watts PEP input SSB/CW, 25S2C970 transistors feature high reliability in low MD: - 32 dB @100W internal cooling fan standard. XT and high performance speech processor and much more.

And there's even more: True VFO's, 32 memories with lithium battery for seven year memory retention, scanning, FM board, wide selection of filters.

This is a vaced priced unit. Call or write today for more information.

For Discount Prices on icom radios or accessories call Dan or Rick Mon. 9-6 PM, Sat. 9-3 PM (812) 422-0231

872 July 1983

TEXAS: The Austin ARC and the Austin Repeater Organization will sponsor Summerfest '83, August 12, 13 and 14, Austin Marriott Hotel, 1-35 at Highway 290. Exhibits, raffles, etc. Free admission to all. For information: PSW, PO Box 13473, Austin, TX 78717

WISCONSIN: The Tri-state Radio Amateur Club will present its 5th annual Wheeling, WV Hamfest at Wheeling Park on Sunday, July 24, from 9 AM to 4 PM. Dealers, crafts, Silent QSO Contest, ARRL, SWOT booths, etc. Admission $2.00, children's under 12 free. Indoor display, tables available, price of $40.00 for table, $10.00 for table only. For information: Wheeling Park Box 240, RD 2, Adena, OH 45610. Phone (614) 546-3930

WEST VIRGINIA: The Washington County DX Club, WFTY, hosts the 31st annual NW DX Convention, Friday, Saturday and Sunday, July 29, 30 and 31. Double Tree Plaza Hotel, North Central Shopping Mall and Seattle Tacoma Airport. Saturday night banquet. Sunday morning breakfast. Speakers, slides, symposium and more. For registration: Ruth Bennett, WA7RVA, 6729 Beach Drive S.W., Seattle, WA 98116 (206) 932-1335

WYOMING: The 1983 ARL Rocky Mountain Division Convention in conjunction with the 51st W.I.M.U. Hamfest, August 5-6, and 7 Virginios Motel, Jackson. Talk in on 146.22/82 and 3923 kHz. For more information: R.L. "Peter" Stull, WB7TMP, (307) 362-9023 or Dave Gregory, NTOCA, (307) 875-5524

Radio Expo: Sponsored by the Chicago FM Club, Saturday and Sunday, September 24 and 25, Lake County Fairgrounds, Antioch, IL. For information: NVAC, PO Box 9, Round Lake Heights, IL 60073. Flea market opens 8 AM. Exhibits open 9 AM. Indoor flea market tables available at $5.00 per day. Tickets $3.00 advance or at gate, $5.00 both days. Seminars, tech talks, ladies' programs in Talk in on 146.22/66 and 222.524/10. For information: SASE to Radio Expo 83, Box 1532, Evanston, IL 60204 or (312) 562-1269

OPERATING EVENTS

“Things to do...”

JULY 3 AND 4: The Hannibal ARC will issue a third annual certificate to operate K7YPT at the Tom Sawyer Days celebration in Mark Twain's boyhood home town, Hannibal, Missouri. Hours: 900-2100 UTC both days. For information phone: 1-301/777-7770, CW 7.125 and 21.125 MHz. To receive the certificate send large SASE and personal QSL card confirming contact to Hannibal ARC, PO Box 2108, Hannibal, MO 63401. For further information: Tony McB, 2108 Orchard Avenue, Hannibal, MO 63401. (314) 221-6199

JULY 4: High Plains ARC will operate K7YPT at the historic Fort Laramie from 0000Z July 4 to 0000Z July 5. For information: Phoebe, 1424-26, 1424-30, 2130-2140, 2120-2130, 2130-2140. Certificate for large SASE to K7YPT, RT 2, Box 303, Torrington, WY 83070

QUALITY MICROWAVE TV SYSTEMS

Complete Systems From $69.95

1.9 to 2.5 GHz Antennas

Galaxy Electronics
6007 N 61st Ave.
Glendale, Az.
85301
1-602-247-1115
1-800-247-1115

COO’s / Dealers Wanted

GOLD STAR

TELE-STAR

SILVER STAR

GOLD STAR

STAR II

AMATEUR TELEVISION MAGAZINE™

"OUR 16TH YEAR — SINCE 1967"

July 1983

JULY 9 AND 10: The Cascades ARS (CARS) in conjunction with the Michigan Space Center in Jackson, is offering a Space Day certificate to all stations who work WB9CCG on 3,990, 7,235, 14,285, 21,360 and 28,510 kHz during 0000 GMT July 9 through 1700 GMT July 10. Mail log information and a $1.00 contribution for postage and materials to: CARP, Space Day 83, P.O. Box 512, Jackson, MI 49204.

JULY 16 AND 17: Wapakoneta, Ohio. Reservoir ARA will operate K6QYL from 1400Z July 16 to 0400Z from 1400-1900Z. July 17 from the home town of astronaut Neil Armstrong. Frequencies: Phone 7,260 and 14,285 kHz. For QSL, Certificate for QSL and large SASE to: K6QYL, P.O. Box 269, Celina, Ohio 45822.

JULY 16 AND 17: The Eastern Michigan Amateur Radio Club, K6EPW, will commemorate the annual Port Huron to Mackinaw Island Yacht Race. Operation begins 10 AM EST (1500Z) through 10 PM EST (0000Z) on Saturday and Sunday. Frequencies: 3910, 7235 and 14285 kHz. Phone: 3710, 71110 and 21190. For an attractive certificate send legal size SASE to: K6EPW, 654 Georgia, Marysville, MI 48040, or C.B.A.

JULY 23: The Miami County ARC of Peru, Indiana, will operate K9EVZ in celebration of the 24th annual July 4th Circus City Festival. Operation primarily in the General class SSB portion of 40 meters from 1400 to 2300 UTC. Check on 20, 15 and 10 meters as conditions permit. For a special commemorative QSL card send SASE to: Les Cattin, K9FMZ, 163 W. Third Street, Peru, IN 46970.

JULY 30: The Tuscarora Amateur Radio Association will operate K3ID from 1200Z to 2400Z, from the National Historic Site of Tuscarora Academy, established 1835, the site of the Tuscarora Indian nation's defense plant and the US Army Tank-Automotive Command. Frequencies: Phone 7,250-7,274, 21,395 and 146.9 kHz. CW 7,055 from 1500-1700Z. Send 9 x 12 SASE for a certificate to: W6JPW, US Army Communications Command, ATTN: CNDNCTAC-M, 28251 Van Dyke, Warren, MI 48090.

JULY 30 AND 31: The Pike County ARC will operate W9GCH from the Lincoln Boyhood Memorial, Lincoln City, Indiana, from 1700Z July 30 to 1700Z July 31. Frequencies: 3925, 7,265, 14,305, 21,395 kHz, 14,090 kHz, RTTY 144.52, FM 7,133 kHz. For a special QSL, send legal size SASE to: K0V1H, Box 311, R1, Winfield, IN 47588.

JULY 30: Reservoir ARA will operate KR8M from 1300-1900Z from the Courthouse steps during the Celina, Ohio, Lake Festival. Frequency: 7,260 kHz. For QSL and large SASE to: KR8M, P.O. Box 266, Celina, Ohio 45822.

AUGUST 6 AND 7: The 21st annual Illinois QSO Party sponsored by the Radio Amateur Megacycle Society (RAMS) from 1800Z August 6 to 2300Z August 7, rest period 0600Z to 1200Z August 7, frequency: CW 45 kHz from low end. Phone 3890, 7230, 14280, 21375 and 29675. Novice — 25 kHz from low end. Exchange RST and number of states, RST and state, province or country by others. For filing and further information: RAMS, K9GJU, 3620 N. Eisenhower Avenue, Chicago, IL 60634.

AUGUST 13, 14 AND 15: The 24th annual New Jersey QSO Party sponsored by the Englewood ARA. From 0000 UTC Saturday August 13 to 0700 UTC Sunday August 14 and 1300 UTC Sunday August 14 to 0000 UTC Monday August 15. Phone and CW same contest. A station may be contacted once on each band — phone and CW are considered separate bands. No CW contacts in phone band segments. General call "CO New Jersey" or "CO NJ." Suggested frequencies: 1810, 3535, 3900, 7035, 7135, 7235, 14035, 21100, 21355, 29100, 29610, 50,60,35, and 144.16. For filing or further information; Englewood Amateur Radio Association, P.O. Box 528, Englewood, NJ 07631.

AUGUST TO DECEMBER 1983: Jamaica Amateur Radio Association Award commemorating Jamaica’s 21st year of independence, August 6, 1983. This award is available to all licensed amateurs for CW, phone or mixed modes. Rules: Contact 5 different HRV stations, any band. August to December. Submit 6 QSL cards written proof with time, date, band, mode and 6Y5 stations worked and fee of $3.00 U.S. or 10 IRCs and 8 x 10 SASE to: Awards Chairman, Gerald Burton, 6Y5AG, Box 214, Kingston 20, Jamaica W.I.

PACKET RADIO

The Vancouver TNC board used by hundreds of "packeters" in the U.S., Canada, and Australia is now available for only $19.95. This high-quality, double-sided, plated-through board previously sold for $30.00. See photo in October 1981 QST. A large assortment of public domain software is available for these boards on CP/M 8 diskettes. A limited PROM — programming service is also available. Write for details. (Include donation for postage.)

- TNC board and documentation $19.95
- Parts kits for TNC board with 4k of blank EPROMS (2K RAM) $117.00
- VADCG 1200 BPS Radio modem board and documentation $15.00
- A&T TNC’s limited number available $169.95

VADCG
29 Shamokin Drive
Don Mills, Ontario CANADA M3A 3H7
(416) 441-2417 eves.
VADCG is a non-profit Amateur Radio Club.
In single-sideband and CW communications, the received audio signals are simple frequency-translated versions of the rf signal received at the antenna. This translation is accomplished by one or more mixer stages. The receiver block diagram usually includes an intermediate-frequency (i-f) stage that does most of the filtering to obtain selectivity. That is, this stage passes the desired signal through but rejects any unwanted signals.

Fig. 1 is a block diagram of a simple receiver, which consists of a mixer and variable oscillator, i-f amplifier/filter, product detector, oscillator, and audio amplifier. The mixer and its variable oscillator translate the incoming signal from its original frequency to the i-f frequency. The i-f amplifier is also labeled as a filter since it has a bandpass frequency response and performs most of a receiver's filtering for selectivity. The output of the i-f stage is translated by the product detector to audio frequencies which are then fed to the audio amplifier and speaker. Since the signal present at the audio amplifier is a frequency-translated version of the signal at the i-f stage, filtering at the audio stage is equivalent to filtering at the i-f stage. Thus, receiver selectivity can be improved by adding an audio filter between the output of the receiver and the speaker or headphones.

In practice, audio filtering has a few disadvantages when compared with i-f filtering. Any automatic gain control (AGC) action that takes place in the i-f because of a strong interfering signal may wipe out the desired signal, regardless of how good the audio filtering may be. Also, any distortion introduced in the i-f system due to interfering signals cannot be completely eliminated by audio filtering. However, audio filtering does improve reception and, since it can be added externally, no receiver modifications are necessary.

building blocks

Here are some basic building blocks which can be used either individually or in cascade to produce a filter which meets your needs. These filters will all have unity gain (0 dB) in the passband to simplify their interconnection. All of the op-amps have been designed to use a single 12-volt supply. The circuits draw little current (typically 10-20 mA), so any simple power supply or battery can be used.

cw filter

A very simple active audio filter for CW can be made using a state-variable filter (see fig. 2). This filter has a bandpass characteristic which can be of

By Bob Witte, KBØCY, 2227 114th Drive, N.E., Lake Stevens, Washington 98258
fairly high Q (very selective), and the center frequency of the filter can be varied using one variable resistor. The bandpass can also be varied, but two resistance values must be changed to keep the bandpass gain constant. The values shown give a 3-dB bandwidth of 100 Hz and 400 Hz, although other bandwidths can be produced by changing R_0 and R_O, which must remain equal to preserve unity gain. The design equations for the filter are given in table 1. Also, be aware that decreasing the bandwidth much beyond 100 Hz is likely to result in an oscillator instead of a filter because of the less-than-ideal nature of op-amps. The LF356 op-amp (which is a fairly wideband device) was used to minimize these effects. With a lesser op-amp, the filter will have a more peaked response at higher center frequencies and the bandwidth will not be constant as the center frequency is varied. As with all high-gain, wide-bandwidth devices, be sure to keep the power supply well bypassed (a 0.1-pF ceramic capacitor near each IC).

This particular configuration can be adapted to a notch filter by adding just one op-amp. This op-amp is configured as a summing amplifier which adds together the output of the bandpass filter and the input to the system. Since the bandpass-filter output is inverted (180-degrees phase shift) relative to the input, the net result is that the bandpass output is subtracted from the input. This results in a notch filter, since the signals in the passband of the bandpass filter cancel when the inverted and non-inverted signals combine.

The depth of this notch is limited by the matching of the gain-setting resistors in the summing amplifier and also in the bandpass filter. Therefore, the 10-kilohm variable resistor was included to allow some compensation for gain errors. The notch depth can be adjusted by tuning in a carrier or crystal calibrator on a receiver, adjusting the tune control to notch out the carrier, and then adjusting the 10-kilohm variable resistor for minimum audio signal. The minimum notch will probably not occur at the same setting for both bandwidths, but tuning with one bandwidth should result in an adequate notch on the other.

SSB filter

An audio filter for use with single sideband can be built using only two op-amps. One op-amp is configured as a highpass filter with cutoff frequency around 300 Hz, and the other is configured as a lowpass filter with a cutoff frequency of about 3 kHz. This results in a bandpass characteristic encompassing the standard audio frequency range for voice transmission.

The design equations are given so that other highpass and lowpass cutoff frequencies can be used. A Q of 1 was chosen so that the peaking in the passband is limited to about 10 percent. For simplicity, all capacitors are of equal value in the lowpass filter. The design equations for these filters are given in table 2. The op-amps in this case can be one like the LM307, since the gain-bandwidth demands of the circuit are not excessive.

These two filters can, of course, be used separately. The highpass would be useful for filtering out 60-Hz hum from an older tube-type rig, and the lowpass alone will help most any sideband rig in reducing the high-frequency adjacent-channel interference.

table 1. Equations for bandpass filter.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>V_{in}</td>
</tr>
<tr>
<td>Bandwidth (Hz)</td>
<td>$\frac{1}{2\pi R_O C_2}$</td>
</tr>
<tr>
<td>Center frequency (Hz)</td>
<td>$\frac{R_0}{2\pi R_O C_2}$</td>
</tr>
<tr>
<td>Passband gain</td>
<td>$\frac{R_O}{R_0}$</td>
</tr>
</tbody>
</table>

table 2. Equations for SSB filter.

Equations for highpass section.

$$\frac{V_{out}}{V_{in}} = \frac{1}{R_2 C_2} \left(\frac{S^2 + S \left(\frac{1}{R_2 C_1} \right) + \frac{1}{R_2 C_2} }{ } \right)$$

when $R_2 = 10R_1$ and $Q = 1$

$F_{3dB} = 0.77 \frac{1}{6\pi R_1 C_1}$

Equations for lowpass section.

$$\frac{V_{out}}{V_{in}} = \frac{1}{R_2 C_1 C_2} \left(\frac{S^2 + S \left(\frac{1}{R_1 C_1} \right) + \frac{1}{R_2 C_1 C_2} }{ } \right)$$

when $C_1 = 10C_2$ and $Q = 1$

$F_{3dB} = 1.3 \frac{1}{6\pi R_2 C_2}$

July 1983
driving headphones

All of these circuits can be used to drive headphones without an additional amplifier stage. Fig. 4 shows a circuit to be used for connecting virtually any headphone to the output of an op-amp. The capacitor blocks the dc voltage that is present at the output of the op-amp, and the two resistors act as a voltage divider to reduce the level into the headphones. Most headphones are so sensitive that they need very little drive, so the signal is attenuated by these resistors.

Fig. 5 shows a simple audio amplifier which uses one-half an LM1877 stereo-amplifier IC. The output of any of the filter sections can be used to drive the input of this amplifier. This is one of many audio-amplifier ICs that are ideal for this sort of application. This circuit was taken directly from the manufacturer’s data book and care should be taken in adjusting any of the values since the device is not necessarily stable at unity gain. Care should also be taken in by-
GO MOBILE WITH YOUR H.T.!

Model K-1 iscom 3AT. Etc.
Model K-1 for TR-2500
— slides on bottom of radio
Guaranteed!

Model K—TR-2400;
— powered thru battery plug
Model N—FT-208R

Model T—Simple mod for Tempo
and all Sanpec

NOW FOR FT-208R & TR-2500

Model Y—FT-207R, Wilson
— fits into battery compartment
* "A unique battery eliminator" HANOID-TEK Regulator allows constant hand held operation from auto DC or base supply with no nicad drain and WITHOUT RADIO MODIFICATION! $24.95 PPD in USA. Calif. add $1.50 Sales Tax.

HANOID-TEK
P.O. BOX 2205, LA PUENTE, CA 91746

RELIABLE MICROWAVE TV ANTENNAS.

2.1 to 2.6 GHz Frequency Range
34db System Gain or Greater

Complete System (as pictured) $119.95
Down Converter Probe Style
(Assembled and Tested) $49.95
Power Supply (12V to 16V DC+)
(Assembled and Tested) $39.95

PETE ERSON
ELECTRONICS
4558 Auburn Blvd.
Sacramento, CA 95841
(916) 486-9071

C.O.D.'s
SPECIAL QUANTITY
PRICING
Dealers Wanted

1 YEAR WARRANTY
PARTS & LABOR

— 168 —

CB TO TEN METER
CONVERSION KITS

KITS for AM—SSB—FM 40 Channel PLL chassis conversions.
DETAILED INSTRUCTIONS for easy installation with minimum time and equipment.
BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.
PRICES Low cost prices range from $8.00 to $50.00.
All kits are in stock including several different FM kits.
FREE CATALOG Write or call today.

INDEPENDENT
CRYSTAL SUPPLY COMPANY
P.O. Box 183
Sandwich, Ma. 02563-0183
(617) 888-4302

— 149 —

More Details? CHECK—OFF Page 92

The Interface
Software Available for Six Computers

The versatility of the personal computer gives you a whole new world with the Kantronics Interface and Hamsoft or Hamtext. The Interface connects to any of six popular computers with Hamsoft or Hamtext giving you the ability to send and receive CW/RTTY/ASCII. An active filter and ten segment LED bargraph make tuning fast and easy. All programs, except Apple, are on program boards that plug directly into the computer.

Hamsoft Features
Split Screen Display
1026 Character Type Ahead Buffer
10 Message Ports-255 Characters each
Status Display
CW-ID from Keyboard
Centronics Type Printer Compatibility
CW send/receive 60, 67, 75, 100 WPM
RTTY send/receive 60, 67, 75, 100 WPM
ASCII send/receive 110, 300 Baud

Hamsoft Prices
Apple Diskette $29.00
Atari Board $49.95
VIC-20 Board $49.95
TRS-80C Board $59.95
TI-99 Board $99.95

Hamtext Prices
VIC-20 Board $99.95
Commodore 64 Board $99.95

Suggested Retail $169.95
For more information contact your local Kantronics Dealer or:
Kantronics 1202 E. 23rd Street Lawrence, KS 66044

— 154 —

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free ‘Tech-Data’ Flyer

AMIDON
Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany Elektronikladen, Wilhelm — Melies Str. 88. 4930 Detmold 18. West Germany
In Japan Toyomura Electronics Company, Ltd. 7-9-2 Chome Sota Kanda Chiyoda Ku Tokyo, Japan

— 107 —

July 1983
State of the Art

9 MHz Crystal Filters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9D</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9F</td>
<td>CW</td>
<td>500 kHz</td>
<td>4</td>
<td>54.10</td>
</tr>
<tr>
<td>XF-9G</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9H</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>1</td>
<td>17.15</td>
</tr>
</tbody>
</table>

10.7 MHz Crystal Filters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>NBFM</td>
<td>12 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF107-B</td>
<td>NBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF107-C</td>
<td>WBFM</td>
<td>30 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF107-D</td>
<td>WBFM</td>
<td>50 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF107-E</td>
<td>Pix/Date</td>
<td>40 kHz</td>
<td>8</td>
<td>67.33</td>
</tr>
<tr>
<td>XF107-F</td>
<td>FM</td>
<td>14 kHz</td>
<td>4</td>
<td>30.15</td>
</tr>
</tbody>
</table>

LOW NOISE RECEIVE CONVERTERS

- 1691 MHz: MM1691-137, $224.95
- 1296 MHz: MM1296-144, $119.95
- 432 MHz: MMc432-28(S), $74.95
- 439 MHz: MMc439-Ch, $84.95
- 220 MHz: MM1296-28, $69.95
- 144 MHz: MMc144-28, $54.95

Options: Low NF (2.0 dB max., 1.25 dB max.), other bands & IF's available

LINEAR TRANSVERTERS

- 1296 MHz: 1/2 W output, 2 m in MM1296-144, $339.95
- 432 MHz: 10 W output, 10 m in MM1296-28, $299.95
- 144 MHz: 10 W output, 10 m in MM1296-28, $179.95

Other bands & IF's available

LINEAR POWER AMPLIFIERS

- 1296 MHz: 10 W output, 100 m in MM1296-28, $514.95
- 432 MHz: 100 W output, 100 m in MM1296-28, $214.95
- 50 W output, 100 m in MM1296-28, $199.95
- 30 W output, 100 m in MM1296-28, $189.95
- 100 W output, 100 m in MM1296-28, $254.95
- 50 W output, 100 m in MM1296-28, $214.95
- 30 W output, 100 m in MM1296-28, $199.95
- 25 W output, 100 m in MM1296-28, $99.95

Antennas

- 240-450 MHz MULTIBEAMS
 - 48 Element: 70/MBM48 15.7 dBi, $75.75
 - 88 Element: 70/MBM88 18.5 dBi, $105.50

- 144-148 MHz J-SLOTS
 - 8 over 8 Hor. pol: DB/2M, 12.3 dBi, $63.40
 - 8 by 8 Vert. pol: DB/2M, 12.3 dBi, $76.95
 - 8 + 8 Twist: 6X/2M, 9.5 dBi, ask

- **UHF LOOP YAGIS**
 - 1250-1350 MHz 29 loops 1296-LY 20 dB, $44.95
 - 1650-1750 MHz 29 loops 1511-LY 20 dB, $55.95

Order Loop/Yagi connectors extra: Type N $14.95, SMA $5.95

References

Ham Radio
I GN-58 HANDCRANK power MANU-3 g40 MHz antenna, a camera and there you are. . . Show the shack, home movies, computer games, video tapes, etc.

COMPLETE READY-TO-USE SYSTEMS

ATV TRANSMITTER/CONVERTER

$399

- High resolution and color video
- 10 watts output
- Broadcast standard sound
- Tunable downconverter and preamp

Connect to the antenna terminals of any TV set, add a good 450 MHz antenna, a camera and there you are. . . Show the shack, home movies, computer games, video tapes, etc.

ATV DOWNCONVERTER

For those who want to see the ATV action before they commit to a complete station, the TVC-4 is for you. Great for public service setups, demos, and getting a buddy interested. Just add an antenna and a TV set tuned to CH. 2, 3, or 4 and plug in to 110 volts a.c. $89.00

TVS-4

TVC-4L extra low-noise version $105 delivered in USA

MODULES

- TX5S-6 Exciter/Modulator $89.00 ppd.
- FMAS Audio Subcarrier Generator $29.00 ppd.

FAST TUNABLE DOWNCONVERTER

- 15 Watts output
- Broadcast standard sound
- High resolution and color video

P.C. ELECTRONICS

2522 Paxson Lane
Tom W6ORC Maryann WB6YSS
Arcadia, California 91006

Let P.C. put you on the aird and SAVE! All four modules — Complete System price $249.00

SAVE $13.00 over price if purchased individually

FIELD DAY TRANSCIEVERS

- RT-77/GRC-9, portable 2-12 MHz unit, 7 watts (AM), 15 W (CW) output, 11 tubes. Reg. 580 V 100 ma. 6.6 2 indications. 120 V 45 ma. 1.6 kHz. 50 ma. 5.9 V 575 ma 115x8. 35 lbs. Sh. used $39.95
- RT-671/PAC-47, 2-12 MHz, 8 watt, 40 watt. Reg. 77 all reduced outputs, 3.6 W (AM). 10 W (CW). Used $39.50
- RT-77/PAC-47, 2-12 MHz, 8 watt, 40 watt. Reg. 77 all reduced outputs, 3.6 W (AM). 10 W (CW). Used $39.50

FREE CATALOG HARD-TO-FIND PRECISION TOOLS

List more than 2000 items: planers, tweezers, wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Send for your free copy today!

Ham Radio's Bookstore

Greenville, NH 03040

603-878-1441

STUDY TAPES

CODE PRACTICE TAPES FROM HRPG — Practice copying Morse Code anytime, anywhere. Whether you're upgrading your present license or just trying to up your code speed, a large assortment allows you to choose exactly the kind of practice you need.

OSS SERIES

- each tape $4.95
- 2/$8.95
- 3/$12.95

PLAIN LANGUAGE TEXT SERIES

Now, there's an opportunity to practice copying code in plain language text, any time of the day. The PLT series is excellent for those who are learning code by the word method. These tapes can also be used to improve sending speed and accuracy by using the provided text and code practice oscillator to send in time with the tape.

- **HR-PLT1** — $4.95
- **HR-PLT2** — $4.95

15 wpm code for 20 minutes
16 wpm code for 20 minutes
22 wpm code for 20 minutes
25 wpm code for 20 minutes
30 wpm code for 20 minutes
35 wpm code for 15 minutes
40 wpm code for 15 minutes
45 wpm code for 15 minutes
50 wpm code for 15 minutes

Please add $1 for shipping.

July 1983
short circuits

do not hallucinate.

power supply

In the article “Dual Voltage Power Supply” (Ham Radio, March, 1983) there is an error on the schematic on page 35. The two outputs of power supply A are tied together at the vibrator connections. This should not be. Also, at the top of the same schematic, resistor R24 had been labeled R2H.

sideband transceiver

The following corrections should be made to the schematics and text of “15-meter Sideband Transceiver” (Ham Radio, March, 1983):

fig. 1: Change value of R26 from 100 to 10k ohms and value of R28 from 10k to 330 ohms.

fig. 6: Change component designations C66 to C60 and Q18 to Q24.

fig. 7: Add component values to R105 (100 ohms) and R106 (4700 ohms). R110 is a 2-watt resistor. Insert a resistor (R101, 330 ohms) in the collector lead of Q33.

fig. 8: Reroute emitter lead of Q25 to R88 and Q26 base junction. (It no longer goes directly to +10 volt bus.)

In the right-hand column on page 19, change component designations Q29 to Q20 and R66 to R67.

Be sure to check the artwork against the parts layout before beginning construction.

repeater antenna beam tilting

In K7NM’s article, “Repeater Antenna Beam Tilting” (May, 1983), eq. 2 should read as follows:

\[E_a = \frac{n}{\sin[(180^\circ)\cos \theta + \frac{d}{2}]} \]

Eq. 4 should read this way:

\[A_h = 0.0153 P \sqrt{P} \]
The T.E.L. Model CS-1100 Total Communication System.

AT LAST! There is a state-of-the-art CW/RTTY/ASCII communications system that meets the sophisticated operator’s demands for a quality product.

Feature
- CMOS upprocessor based
- Membranes Switch front panel
- 16 chr Intelligent LED display
- Super Narrow Filters
- Built-in 110 VAC supply
- 500 chr Buffer (all modes)
- Parallel Data Port

Benefit
- No RFI problems.
- Insures reliability.
- Readable to 12 feet.
- No tuning required.
- No extras to buy.
- Review received text. Connect to any printer or computer.

CW Operation: Send/Rcv 9-90 wpm with Automatic Speed Tracking, Four, 99 chr memories with ability to insert text, will key any rig.

RTTY/ASCII: Receive at 60, 67, 75, 100 wpm and 110, 300 Baud with One Button Speed Selection.

A 30 day unconditional guarantee and 1 year parts/labor warranty assure satisfaction. Dealer inquiries invited. Send for a free data package and comparison sheet.

Send for a free data package and comparison sheet.

HUSTLER ANTENNAS

<table>
<thead>
<tr>
<th>Model</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF2</td>
<td>5.2dB gain</td>
<td>$23.95</td>
</tr>
<tr>
<td>CG144</td>
<td>5.2dB gain</td>
<td>$23.95</td>
</tr>
<tr>
<td>G6144</td>
<td>6dB</td>
<td>$68.50</td>
</tr>
<tr>
<td>G7144</td>
<td>7dB</td>
<td>$98.00</td>
</tr>
</tbody>
</table>

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF & COMMERCIAL LINE

Random Access Inc.
P.O. Box 61117 Raleigh, N.C. 27661

CeCo COMMUNICATIONS, INC.

2145 AVENUE X BROOKLYN, N.Y. 11215
(212) 646-6300 (800) 221-0860

STAMP-IT ETCH-IT

REDUCES PRINTED CIRCUIT BOARD ART WORK FROM 2 HOURS TO 10 MIN.

Simple as A.B.C.

A. Stamp Components on P.C. Board
 B. Use Pen in Complex Lines
 C. Etch Board

SE-2 KIT CONTAINS

- Connector Fingers
- 25Pn Dual IDC Interconnects
- 15Pn IDC Interconnects
- 5P Interconnects
- 1 Wilkinson Jacks
- 1 Large Small Donut Pad
- 1 Resist Pad
- Resist Pen

ADDITIONAL STAMPS

- Resist Ink 95c per bottle
- Resist Per ea 95c
- L.Pad ea 1.15
- Etching Consumables 10 for 95c

$12.95

PLUS 1 LB POSTAGE

ELECTRONIC RAINBOW INC.

$5.00 Minimum Order
PLEASE ADD POSTAGE

July 1983
The conditions this July will probably be considerably different from last year's. The summer months — normally a season of low maximum usable frequencies (MUFs) — will bring even lower MUFs because of an advanced cycle smoothed sunspot number (SSN) as low as 60. Mid-latitude, zero-distance MUFs (f0F2-local noon) show a nearly linear variation with SSN, with 5.5 MHz, 8 MHz, and 11 MHz corresponding to SSNs of 10, 60, and 120 respectively.

July's forecast on the higher hf bands (10-30 meters) is for good long-skip conditions occurring the first and last weeks of the month and decreasing at other times. High and low latitude short-skip openings are expected to increase through sporadic E propagation during disturbed periods around the 5th, 10th, 21st, and 31st of the month. The lower bands (30-160 meters) should have the best nighttime DX during the in-between non-disturbed periods.

A full moon occurs on the 25th and perigee on the 11th of the month. The Aquarid meteor shower starts the 18th, peaks the 28th, and lasts until August 7th (all dates approximate). The radio-echo rate at maximum is about 34 per hour.

fading — QSA and QSB

Carefully observing daily DX signal levels will provide information on the state of the ionosphere and enable near future forecasting. Signal strength variations, fading, either decrease (attenuation) or increase (focusing), and possibly signal distortion will be heard. Fading is characterized by the duration of the interval between fades and the depth or decrease in amplitude of the signal during those periods. Most of the attenuation occurs as the signal travels through the D region (60-80 kilometer height) of the ionosphere. However, significant variations also occur at the area of reflection in the ionosphere, with signal levels modulated by geomagnetic field variations.

The following table lists four common types of fading conditions with the first two related to D region travel and the latter two occurring during layer reflection:

<table>
<thead>
<tr>
<th>type of "fade"</th>
<th>cause</th>
<th>when/where</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>flare-ultraviolet and X-rays</td>
<td>daylight</td>
<td>1-2 hours</td>
</tr>
<tr>
<td>PCA</td>
<td>flare-proton particles</td>
<td>polar, daylight</td>
<td>1-3 days</td>
</tr>
<tr>
<td>shortwave</td>
<td>solar wind-electrons (explained next month)</td>
<td>auroral zone (night)</td>
<td>2-5 nights</td>
</tr>
<tr>
<td>MUF failure</td>
<td>decreasing ionosphere (explained next month)</td>
<td>PM</td>
<td>½ hour</td>
</tr>
</tbody>
</table>

Solar radiation (ultraviolet and X-ray) produces D region absorption or attenuation, an attenuation that varies with the part of the sunspot cycle we're in, the time of year, and time of day. Signal level changes are slow and stable, except during solar flare induced sudden ionospheric disturbances (SID). These signal fades occur within 8 minutes on the sunlit propagation paths. The attenuation is a function of the cosine of the zenith angle to the sun. The typical time scale is a 10 to 20 minute decrease to maximum attenuation (lowest signal) and logarithmic return to the normal value within about one-half hour to two hours. The overall time (SID duration) is roughly related to flare size (importance or type) and radio flux (0.3 centimeter) burst shape and length.

Polar cap absorption (PCA) is also a D region slowly-varying attenuation effect produced inside of the auroral zone (polar cap) by protons arriving within an hour's time from certain solar flares. The attenuation is greater during daylight than at night. Therefore, the signal recovers somewhat each night then decreases during the day again, but shows improvement each day. The overall PCA attenuation duration is one to three days before normal propagation conditions are achieved again.

Both of these D region events occur mainly during the sunspot cycle peak and consequently should not bother us for a while. The shortwave fade and MUF failure are problems that can occur any time during the solar cycle and particularly during the solar cycle minimum. More about them next month.

band-by-band forecast

Ten and fifteen meters will have long-skip conditions in the afternoon during the peak times of the 27-day solar maximum. Otherwise, look to sporadic E short-skip and multihop openings around local noon for DX on these bands. Transequatorial evening openings do not usually occur in the summertime.
<table>
<thead>
<tr>
<th>JULY</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>1600</th>
<th>1800</th>
<th>2000</th>
<th>2200</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA FAR EAST</td>
<td>20</td>
</tr>
<tr>
<td>EUROPE</td>
<td>20</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>20</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>20</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>15</td>
</tr>
<tr>
<td>OCEANIA AUSTRALIA</td>
<td>20</td>
</tr>
<tr>
<td>JAPAN</td>
<td>20</td>
</tr>
</tbody>
</table>

Look at next higher band for possible openings.
HOBBY KITS®

BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

EXPERIMENT — LEARN ELECTRONICS; BUILD AND DESIGN YOUR OWN AM, FM, CW, OR SSB RECEIVERS, TRANSMITTERS AND ETC; WITH OUR MINI-LINEAR CIRCUIT KITS

All kits Come Complete With Etched and Drilled Circuit Boards and All Parts Needed To Function As Described

- **AFA-1 AUDIO AMP.** LM-380 1-2 Watts 4-16 OHM Output .. $4.95
- **AFP-1 AUDIO PREAMP.** Dual Audio Preamplifier — For Mic etc. .. $3.95
- **BMD-1 BAL. MIX.** LM 1496 Mixer — S.B. Modulator Toned Output $9.95
- **DET-1 AM DET.** AmEnvelope Detector With AGC Output .. $3.95
- **DET-2 FM DET.** LM 3065 FM Detector (455 KHz or 4-11 MHZ) .. $7.95
- **DET-3 SSB DET.** LM 1496 SSB Detector (Needs OSC-1 or OSC-4) $9.95
- **IFA-1 IF AMP.** CA 3028 30 DB Gain, Optional AGC (455 KHz or 9-11 MHZ) $6.95
- **IFA-2 IF AMP.** CA 3028 30 DB Gain 1-100 MHZ Optional AGC $6.95

YOUR SSB TRANSMITTER

Complete Catalog $3.80 Regular $6.95

FILTERS

- **MBA-1 FILTER 9 KHZ/2.1 KHZ BW with USB XLA for OSC-1** $49.95

MIXERS

- **BMD-1 MIXER** $36.00

OTHER MODULES AVAILABLE

- **VHF/SHF**
- **AFS-1 AUDIO PREAMP.** LM 380 1-2 Watts 4-16 OHM Output .. $4.95
- **IFS-1 IF AMP.** LM 3065 FM Detector (455 KHz or 4-11 MHZ) .. $7.95

COMPLETE SET OF MODULES TO BUILD A 1-WATT SSB/CW MONO-BAND TRANSCIEVER COMPLETE SET OF MODULES TO BUILD A 1-WATT SSB/CW MONO-BAND TRANSCIEVER

Less Case, Controls, PWR Supply (12 VDC), SPK and Mike $149.95 (Specify Bend)

BAND TRAP ANTENNAS

PRETUNED-ASSEMBLED ONLY ONE NEAT SMALL ANTE NNA FOR ALL BANDS EXCELLENT FOR APARTMENTS PROVED DESIGN!

Complete With Standard RGF-80-32 Antenna, and FLEX 3000, complete Antenna, 300-3500 Band Radio, Static and Static Discharge. Low SWR over all Bands. Tuners Usually NOT NEEDED. Can be used as Inverted V's — upright in attics or building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED FOR ALL BANDS! NO BALUNS NEEDED.

60-40-20-15-10 - 2 twe-tet.114 M, Model 9900BC $85.95
40-20-15-10-5 - 2 M, tet.114 M, Model 9900UB $85.95
20-15-10-5 - 2 twe-114 M. Model OTCBC $69.95

SEND FULL PRICE FOR POSTPAID INSURED DEL IN USA.
Canada is $50.00 extra for postage — customs etc. or order using VISA - Master Card - AMER. EXPRESS. Given number and c.c. dates. Ph-303-226-3333. Jan - Aug, wk. days. We ship in 2-3 days. ALL PRICES MAY INCREASE $5.00. ORDER NOW! All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition. Made in USA. FRED MYERS ONLY FROM WESTERN ELECTRONICS

Dept. AR-7 Kearney, Nebraska, 68847

CABLE TV CONVERTERS VIDEO ACCESSORIES

BUY DIRECT & SAVE

40 CHANNEL CONVERTER .. $38 Regular $69

Advanced Solid State design and circuitry allows you to receive mid & super band channels. Restores programming to Video Recorders.

36 CHANNEL REMOTE CONTROL CABLE CONVERTER .. $68.00

DIAMOND D-56 WIRELESS THE ULTIMATE CABLE T.V. CONVERTER .. $139.00

56 CHANNEL INFRARED REMOTE CONTROL .. $139.00

Send $1 for Complete Catalog

VISA - Master Card - COD

DIRECT VIDEO SALES .. PO. BOX 1329
JEFFERSONVILLE, INDIANA 47130

CALL .. 1-812-282-4766

ALL BAND TRAP ANTENNAS!

Twenty and thirty meters will be open all day and much of the night. If twenty does not stay open through the night, thirty probably will. Sporadic E short-skip is also often effective on these bands throughout the day. Propagation paths to most areas of the world are viable in a sequence that follows the sun’s journey across the sky: east in the morning, south during mid-day, and west during the evening.

Thirty and forty meters will be the main nighttime DX bands this time of year, though long-skip distances will be shorter. Sporadic E openings are possible during more of the day into pre-sunrise and after sunset. With thunderstorm-induced static levels high in the evening, look to pre-dawn periods for best results.

Eighty and one-sixty meters are difficult DX bands this time of year. Short nights and high noise levels hamper DX operation with eighty having slightly lower noise levels. Most useful openings may occur during the pre-dawn hours. Sporadic E propagation signal strengths may exceed the static level near sunrise and sunset.
measuring inductances

In February, 1983, Technical Forum published a request from K9EBA for information on the measurement of low values of inductance.

Several years ago the San Bernardino Microwave Society addressed this problem and came up with a simple circuit for measuring small values of inductance. It was published as a NASA Tech Brief. This circuit used the parts on hand at the time. The circuit works well and has been duplicated by several experimenters. It measures inductances between 30 nH and 30 µH. This is not the only way the circuit can be implemented, nor even the best way, but it is one method that works.

The only trick in building the circuit is to minimize the stray shunt capacity across the unknown inductance. I used a 1-inch hole, with a 4-40 (M3) screw in the center and a thin sheet of plastic to support it. Fiber shoulder washers for the unknown terminal have too much stray capacity, but other than this, the circuit is straightforward and should pose no problems. — Richard B. Kolbly, K6HJ.

Ed. note: An SASE to ham radio will bring the interested reader a copy of the NASA Tech Brief and associated technical support package describing the direct-reading inductance meter.

impedance matching

I wound an rf impedance matching transformer on an iron powder toroid core (T225-2 mix) for a 50-ohm to 300-ohm transformation. I used a turns ratio of just under 2.5 to 1; that is, I wound seventy-three turns of No. 20 Formvar enamel wire next to the toroid core (300-ohm winding) and thirty turns of No. 16 Teflon-covered wire on top of it (50-ohm winding). There is more than one inch of empty core space between the ends of the high-impedance winding. The thirty turns of the low-impedance winding are centered over the middle of the seventy-three-turn winding. It is wound in the same direction and covers about half of the circumference of the toroid.

I tried to feed a few watts of rf power into a 300-ohm carbon resistor attached to the 300-ohm winding as a test on 29 MHz. It failed completely. It would not load up and had an SWR of over 10:1. I then checked the impedance of the low-impedance winding with an rf noise bridge (with the 300-ohm resistor still connected to the seventy-three-turn winding). I found that the impedance was indeed between 50 and 60 ohms resistive, but it had a very high capacitive reactive component of 60 to 70 pF.

Does anyone have any explanation of this result? — Joseph Neiman, WB2NTQ.

static mystery

Over the past thirty-seven years of shortwave listening I have observed a steady increase of that hammering and hissing noise called "rain static." I do not remember a single incident of this phenomenon while operating in Switzerland from 1946 to 1948.

The first time I encountered it was in late 1948 in the vicinity of Cleveland, Ohio. At the time I guessed that the Cleveland weather conditions might be somehow different from Swiss weather conditions.

Through 1949 and 1950 I got used to rain static in New Jersey. When I returned to Switzerland I found things quiet again no matter how heavy the rain. But by about 1955 I began to notice subtle signs of Swiss rain static which appeared, through the years, more frequently and more intensively.

At present about forty percent of all medium-strength rainfalls here cause rain static, and the amount seems to be increasing.

It is known that split water droplets can become charged, probably by a kind of tribo-electric effect. If such droplets hit antenna elements, charge compensation by the antenna could account for the observed receiver noise. So the question remains, why was the effect not observed in Switzerland before 1955, but already encountered in Ohio by 1948 and in New Jersey shortly thereafter?

Could there be some connection with air pollution caused by industry and automobile traffic, thus enhancing charge separation of water droplets?

Not knowing enough about electrostatics and electrochemistry, let me present this problem to you and your readers in the hope that someone might provide a physical model or references to published work.

Are there any effective countermeasures which could eliminate this kind of interference? — Bruno Binggeli, HB9FU.
Ham Radio's guide to help you find your loc

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best - Since 1962.

FONTANA ELECTRONICS
8826 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3519 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
619-463-1886 San Diego
800-882-1343 Trades
The Home of the One Year Warranty - Parts at Cost - Full Service.

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-694-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33751
813-535-1416
Your complete Amateur Radio and Computer Store.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed & Fri;
9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio Store. Trade — Sell — Buy.

Kentucky

L & S RADIO
307 McLEAN AVENUE
HOPKINSVILLE, KY 22420
502-685-8071
Ten-Tec, Azden, Ameritron Sales and Service.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20707
800-683-4486
Kenwood, Drake, Icom, Ten-Tec, Tempo, Microlog, AEA, Ameritron.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
617-486-3400 (this is new)
The Ham Store of New England
You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4862
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227

New Jersey

RADIOS UNLIMITED
P. O. BOX 347
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-529-0903
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-265-8555

ROUTE ELECTRONICS 17
777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8777
Drake, Cubic, Ten-Tec, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Buttercut, Fluke & Beckman Instruments, etc.

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, DenTec, Yaesu, Azden, Santec, KDK, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1698 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
Clearwater Branch
West Coast's only full service Amateur Radio Store.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.

86 July 1983
New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Ten-Tec, DenTOrn, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer — ALL major Amateur Brands. We service everything we sell! Warren K2IXN or Bob WA2MSH.

Pennsylvania

HAMTRONICS,
DIV. OF TREVORSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVORE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
BOX 349 RD 4
MOUNTAIN TOP, PA 18707
715-343-2124
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH (CLEVELAND AREA)
44092
216-565-7368
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-866-4267
Featuring Kenwood and all other Ham gear. Authorized sales and service. Shortwave headquarters. Near I-270 and airport.

Texas

MADISON ELECTRONICS SUPPLY
1508 McKinney
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.’s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, W.I 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
The ElMAC Division of Varian has announced the availability of a new ceramic/metal power triode intended for use as a cathode-driven amplifier for hf and vhf service. This compact tube (3CX800A7) is intended for high power linear amplifier service. A single tube will produce a full 2 kW PEP or 1 kW CW input power.

The rugged 3CX800A7 is rated for 800 watts plate dissipation and will deliver full power output with less than 40 watts peak drive power. Power gain is better than 15 dB. The air-cooled anode requires less than 20 cfm with a back-pressure rating of 0.35 cfm for full dissipation at sea level.

Height of the 3CX800A7 above the socket plane is only 2-1/14 inches (5.7 cm), making the tube well suited for compact linear amplifier design and compatible with modern, low-profile styling.

For further details, contact Varian, ElMAC Division, 301 Industrial Way, San Carlos, California 94070.

The SC-10 produces the correct power and drive signals to control the popular servo motor type feed systems, such as the Chaparral Polarity or the R.T.M. EFH-75. Other features of the SC-10 include independent front panel horizontal and vertical fine adjustment control and LED indicators that show which control is enabled, a mode switch for choice of either Satcom or Westar-type polarization, and a built-in regulated power supply.

The size is 4 x 5 x 2 inches (10.16 x 12.7 x 5.08 cm). Power is UL listed plug-in wall transformer. For more information, contact TEM Microwave Corporation, 22518 97th Avenue North, Corcoran, Minnesota 55374.

TEM Microwave Corporation is pleased to announce its model SC-10 polarization control interface. The SC-10 is designed to interface with satellite TVRO receivers that have odd/even channel logic output signals, such as the R.L. Drake ESR-24, or SPDT contacts, such as the Automation Techniques GLR-500 series. The SC-10 produces the correct power and drive signals to control the popular servo motor type feed systems, such as the Chaparral Polarity or the R.T.M. EFH-75. Other features of the SC-10 include independent front panel horizontal and vertical fine adjustment control and LED indicators that show which control is enabled, a mode switch for choice of either Satcom or Westar-type polarization, and a built-in regulated power supply.

1/4-wave replacement antennas

Centurion International, Inc., has introduced a new line of 1/4-wave, flexible, miniaturized replacement antennas for VHF frequencies. The new “style-S” antennas measure approximately 3 inches in length by 3/8-inch in diameter. These antennas are smaller in diameter than other 1/4-wave miniaturized antennas and are more flexible. Their reduced size makes them a good choice for use with smaller portable two-way radios and speaker microphones.

Designated the “Skinny Mini,” the antennas are encapsulated in high-gloss PVC and remain flexible from -55°C to 100°C. Style-S antennas, like style-M, are available with any of more than twenty different base connector configurations, to fit virtually any radio made.

For further details, contact Varian, ElMAC Division, 301 Industrial Way, San Carlos, California 94070.
plug-in circuit boards

Three new plug-in circuit boards from Vector Electronic Company incorporate individual solder pads and drilled, plated-through holes. The design allows complete freedom in component location and spacing while providing quick and easy solder mounting of components with solderable or wrap-post leads. The boards have 2064 holes in the component area, allowing placement of up to fifty fourteen-pin DIPS or forty sixteen-pin DIPS. One card, the Model 4610-3, is form and fit compatible with STD system cards with 28/56 card-edge contacts. The Model 3662-9 and Model 3619-6 have 22/44 and 36/72 card-edge contacts to mate with the most frequently used connectors.

All boards are 4.5 inches wide by 6.5 inches long by 0.062-inch thick (11.43 x 16.51 x 0.16 cm) and have 0.042-inch (0.107-cm) diameter plated-through holes on 0.1-inch (0.25-cm) centers.

Fabricated of FR-4 (G10) epoxy glass laminate, the pads are 2-ounce copper cladding with bright tin plating for easy soldering. Card-edge connectors are nickel plated and gold flashed to ensure long life and low resistance. Zoned-wiring locations, etched into the cladding, permit easy component identification.

In single quantities, the 22/44-contact Model 3662-9 is priced at $26.80 each; the 28/56 contact Model 4610-3 is $26.50 each; and, the 36/72 contact Model 3619-6 is $26.80 each. For more information, contact Vector Electronic Co., Inc., 12460 Gladstone Avenue, Sylmar, California 91342.
ten-meter fm transverter

A unique 2-meter to 10-meter linear translator recently introduced by Heil, Ltd., allows a 2-meter radio to receive and transmit on the ten-meter band from 28.00 to 29.70.

The Model 210 is primarily designed for use in the 29.30 to 29.70 fm band using a one-watt "handie talkie" or mobile transceiver for excitation, but is also usable on SSB, CW, a-m, and RTTY by exciting with an all-mode two-meter rig. The Model 210 has three SO-239 connectors on the rear panel, a two-meter one-watt input, a two-meter antenna, and a ten-meter antenna. With the front panel function switch in the "out" position, the two-meter antenna is connected to the two-meter transceiver or "handie talkie." Switching to the "in" position will cause the transverter to operate and produce a signal in the ten-meter band. The receiver sensitivity is 0.3 µV for 10 dB quieting. The output power is approximately 4 watts out at 29.60.

The price (subject to change) is $100.00. For further details, write Heil Sound System, Heil eration ten-meter band from 28.00 to 29.70.

emergency tone decoder

The Storm Alert LJM2RK time-dual tone emergency decoder kit from Metheny converts receivers into special-purpose receivers or controls. When a user-selected time-tone combination is received, the output provides a relay control for activating speakers or other devices.

Special features include single or dual tones adjustable over the touch tone range; adjustable time delay; relay output; manual or auto reset; single tone ON latching with different single tone reset OFF; and interfacing of multiple boards for multi-digit sequential activation and reset.

Kit LJM2RK includes a printed circuit board with components, relay, and a silk screened component identification and solder mask for ease of assembly. An optional enclosure kit, LJM2RC, includes a custom-molded case, speaker, audio input cable, and hardware for the decoder kit. Kit LJM2RK costs $15.00; the enclosure kit, LJM2RC, is priced at $5.00.

For complete details and information about specific applications, contact The Metheny Corporation, 204 Sunrise Drive, Madison, Indiana 47250. RS#306

multimode transceiver

The FT-726R — the world's first Amateur HF/VHF/UHF transceiver capable of full duplex operation for satellite work — is now available from Yaesu Electronics Corporation.

The basic unit comes equipped for 2-meter operation on SSB, CW, and fm. Optional units may be plugged in, enabling operation on 10 or 6 meters, 430 to 440 or 440 to 450 MHz on 70 cm. The optional SU-726 satellite unit allows crossband full duplex operation, for simultaneous uplink transmit and downlink receive operation on Amateur satellites.

Controlled by an eight-bit microprocessor, the FT-726R features a dual VFO and memory frequency management system, with independent frequency/mode storage on each VFO or memory; mode-inverting satellite transponders are therefore covered with ease. The transmit and receive frequencies may be varied during satellite work to allow easy zero-beat capability while following Doppler shift.

Equipped with many features found only on hf transceivers, the FT-726R includes an SSB speech processor, i-f shift, variable i-f bandwidth tuning, i-f noise blanker, RIT, multimode squelch, and a receiver audio tone control. A CW filter, DTMF encoding microphone (YM-48), desk microphone (MD-188), external speaker (SP-102), and CTCSS units are all available as options.

For further information, contact Yaesu Electronics, P.O. Box 49, Paramount, California 90723. RS#307

handheld airband transceiver

The TR-720 is a solid-state, fully synthesized, portable airband transceiver covering the 720 COM channels between 118 and 136 MHz and 200 NAV channels from 108 to 118 MHz. It measures only 6.6 × 2.6 × 1.5 inches and weighs just 19 ounces. It employs microprocessor technology, has a twist-off battery pack, comes with a complete set of accessories, is FCC type accepted, and carries a full one year warranty. It is available for $795.00 from local Avionics dealers, or directly from the manufacturer.

power bars

A new line of Hammond power bars features an attractive, contemporary, brushed-aluminum case with matte black receptacle housing. Reduced in size, (11, 14 and 17 inches in length), standard models are available in four, six, or eight-receptacle sizes with either 6 or 15 foot cords, and with or without lighted, rocker type on/off switches. Also available are 4 and 6 foot long power bars, each with eight receptacles. Appropriate for work station mounting, all power bars are CSA approved and fitted with 120 Vac, 15A circuit breaker.

For more information, contact Hammond Manufacturing Company, Inc., 1690 Waiden Avenue, Buffalo, New York 14225. RS#309
New DTMF Receiver Kit turns phones into control devices.

With Teltone’s TRK-956 kit, you get all the parts necessary to breadboard a central office quality DTMF detection system for only $22.75. That’s the lowest installed cost for a DTMF system. All you provide is 5V dc. For decoding DTMF signals from telephone lines, radios, and tape players, use the TRK-956. To order call:
(800) 227-3800
(In CA, (800) 792-0990)

The HL-45U measures $4.9 \times 2.7 \times 6.7$ inches ($124 \times 68 \times 170$ mm) and weighs 2.76 pounds (1.25 kg). The suggested retail price of the HL-45U is $199.95.

For further information contact THL Sales Department, Encomm, Inc., 2000 Ave. G, Suite 800, Plano, Texas 75074, RS#310

wall socket RFI control

Electronic Specialists’ new Direct Plug Super Filter and Suppressor features a dual-pole filter to control electrical interference. A 6000-ampere spike/surge suppressor protects equipment from damage caused by lightning or heavy machinery spikes.
For literature or more information, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td>STATE</td>
</tr>
<tr>
<td>CITY</td>
<td></td>
</tr>
</tbody>
</table>

Please use before August 31, 1983
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers’ repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

<table>
<thead>
<tr>
<th>Group A</th>
</tr>
</thead>
<tbody>
<tr>
<td>670 XZ</td>
</tr>
<tr>
<td>710 XA</td>
</tr>
<tr>
<td>744 WA</td>
</tr>
<tr>
<td>770 XB</td>
</tr>
<tr>
<td>794 SP</td>
</tr>
<tr>
<td>82 YZ</td>
</tr>
<tr>
<td>854 YA</td>
</tr>
<tr>
<td>885 YB</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

<table>
<thead>
<tr>
<th>TEST-TONES</th>
<th>TOUCH-TONES</th>
<th>BURST TONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697 1209</td>
<td>1600 1850</td>
</tr>
<tr>
<td>1000</td>
<td>770 1336</td>
<td>1650 1900</td>
</tr>
<tr>
<td>1500</td>
<td>852 1477</td>
<td>1700 2200</td>
</tr>
<tr>
<td>2175</td>
<td>941 1633</td>
<td>1750 2200</td>
</tr>
<tr>
<td>2805</td>
<td>1800 2100</td>
<td>2300 2550</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

Model TE-64 $79.95

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/ California: (714) 998-3021
TONE TO PULSE
SIMPLEX INTERCONNECT

AT LAST... Professional quality interconnect at an affordable price! Imagine the convenience of having your own private, commercial quality mobile telephone in your car. And without the hassles of shared systems. Put your base FM transceiver to work while on the road. Our ultra state of the art digitally processed audio scheme (Patent pending) totally eliminates the continuous train of squelch tails which has kept you away from sampling interconnects. Our nonsampling approach has additional benefits: 1. Interface to your transceiver is the MOST SIMPLE EVER. Connects only to microphone and speaker jacks! NO INTERNAL CONNECTIONS OR MODIFICATIONS REQUIRED! 15 minutes typical installation time. 2. Works with ANY FM transceiver. (T/R speed is not critical.) 3. Operates through any repeater or simplex without use of tone equipment. Imagine having TOTAL access to your own home phone from 100 miles away! Our busy channel ringback inhibit logic prevents “accidental” interference to a QSO in progress when a phone call is received. This feature will keep you out of hot water with co-channel users! Discover for yourself what high quality simplex interconnect sounds like. Call us, and listen to actual “on the air” tapes of this incomparable interconnect product.

STANDARD FEATURES
- Compatible with either rotary or tone exchanges
- 16 Digit buffer memory — dial as fast as you want
- 3201 tone decoder chip
- High quality glass circuit board
- CW identification
- Five digit user programmable sequential access code — 60,000 code combinations
- Sophisticated toll restrict — restricts any quantity of leading digits
- Both accessing and dialing are compatible with speed dialing equipment
- Operates superb through repeaters — no special tone equipment required
- Three/six minute “time out” timer is resettable from mobile four CW ID warnings during last minute
- Ringback (reverse patch) pages you once with CW ID — answer when convenient with your access code
- Busy channel ringback inhibit logic — prevents accidental interference to QSO in progress
- Most easily interfaced autopatch on the market
- Positive control logic
- Fully digital timing — there are no timing adjustments! assures quick easy set-up
- Touch tone™ digits and strobe pulse available on DIP socket
- Modular phone jack and cord
- Self contained 115 VAC supply (230 VAC 50/60 cycle export model available)

PRIVATE PATCH II $475

NOW REDUCED
PRIVATE PATCH I $399
HAS MOST OPERATIONAL FEATURES OF PRIVATE PATCH II — BUT IS FOR USE ONLY ON DTMF EXCHANGES

AND OF COURSE:
ONE YEAR WARRANTY
14 DAY RETURN PRIVILEGE
UNMATCHED CUSTOMER SERVICE

QUALITY AND ENGINEERING... THAT YOU CAN DEPEND ON!!

Connect Systems
Formerly Auto Connect

P.O. BOX 4155
TORRANCE, CA 90510
PHONE (213) 540-1053
The New Yaesu FT-726R Tribander is the world's first multiband, multimode Amateur transceiver capable of full duplex operation. Whether you're interested in OSCAR, moonbounce, or terrestrial repeaters, you owe yourself a look at this one-of-a-kind technological wonder!

Multiband Capability
Factory equipped for 2 meter operation, the FT-726R is a three-band unit capable of operation on 10 meters, 6 meters, and/or two segments of the 70 cm band (430-440 or 440-450 MHz), using optional modules. The appropriate repeater shift is automatically programmed for each module. Other bands pending.

Advanced Microprocessor Control
Powered by an 8-bit Central Processing Unit, the ten-channel memory of the FT-726R stores both frequency and mode, with pushbutton transfer capability to either of two VFO registers. The synthesized VFO tunes in 20 Hz steps on SSB/CW, with selectable steps on FM. Scanning of the band or memories is provided.

Full Duplex Option
The optional SU-726 module provides a second, parallel IF strip, thereby allowing full duplex crossband satellite work. Either the transmit or receive frequency may be varied during transmission, for quick zero-beat on another station or for tracking Doppler shift.

High Performance Features
Borrowing heavily from Yaesu's HF transceiver experience, the FT-726R comes equipped with a speech processor, variable receiver bandwidth, IF shift, all-mode squelch, receiver audio tone control, and an IF noise blanker. When the optional XF-455MC CW filter is installed, CW Wide/Narrow selection is provided. Convenient rear panel connections allow quick interface to your station audio, linear amplifier, and control lines.

Leading the way into the space age of Ham communications, Yaesu's FT-726R is the first VHF/UHF base station built around modern-day requirements. If you're tired of piecing together converters, transmitter strips, and relays, ask your Authorized Yaesu Dealer for a demonstration of the exciting new FT-726R, the rig that will expand your DX horizons!
FM “Dual-Bander.”

2 m & 70 cm in single compact package, LCD, 25 W, optional voice synthesizer.

TW-4000A

KENWOOD'S TW-4000A FM “Dual-Bander” provides new versatility in VHF and UHF operations, uniquely combining 2 m and 70 cm FM functions in a single compact package.

TW-4000A FEATURES:

• 2 m and 70 cm FM in a compact package. Covers the 2 m band (142.000-148.995 MHz), including certain MARS and CAP frequencies, plus the 70 cm FM band (440.000-449.995 MHz), all in a single compact package. Only 6-3/8” (161) W x 2-3/8” (60) H x 8-9/16” (217) D inches (mm) and 4.4 lbs. (2.0 kg).

• Large, easy-to-read LCD Display. A green, multi-function back-lit LCD display for better visibility. Indicates frequency, memory channel, repeater offset, “S” or “RF” level, VFO A/B, scan, busy, and “ON AIR” Dimmer switch.

• 25 Watts RF Power on 2 m/70 cm. Hi/Lo power switch.

• Optional “Voice Synthesizer Unit” installs inside the TW-4000A. Voice announces frequency, band, VFO A or B, repeater offset, and memory channel number.

• Front Panel Illumination.

• 10 Memories with Offset Recall and Lithium Battery Backup. Stores frequency, band, and repeater offset. Memory 0 stores receive and transmit frequencies independently for odd repeater offsets, or cross-band operation.

• Programmable Memory Scan. Programmable to scan all memories, or only 2 m or 70 cm memories. Also may be programmed to skip channels.

• Band Scan in Selected 1-MHz Segments. Scans within the chosen 1-MHz segments (i.e., 144.000-144.995 or 440.000-440.995, etc.). The scanning direction may be reversed by pressing either the “UP” or “DOWN” buttons on the microphone.

• Priority Watch Function. Unit switches to memory 1 for 1 second each 10 seconds, to monitor the activity on the priority channel.

• Common Channel Scan. Memory 8 and 9 are alternately scanned every 5 seconds. Either channel may be recalled instantly.

• Dual Digital VFO’s. Selectable 5-kHz or 10-kHz for 2 m, and 5-kHz or 25-kHz for 70 cm. Depress “UP” or “DOWN” key on the front panel for band change in 1-MHz steps.

• 16-Key Autopatch UP/DOWN Microphone (Supplied).

• Repeater Reverse Switch.

• High Performance Receiver/Transmitter. GaAs FET RF amplifiers on both 2 m and 70 cm, high performance MCF’s in the 1st IF section, provide high receive sensitivity and excellent dynamic range. The high reliability RF power modules assure clean and dependable transmissions on either band.

• Rugged Die-cast Chassis.

• Optional Two-Frequency CTCSS Encoder. Easily mounted inside the radio, allows DIP switch programming of different tone frequencies, for 2 m and 70 cm.

• “BEEPER” sounds through speaker.

• Easy-to-install mobile mount.

TW-4000A accessories:

• VS-1 Voice Synthesizer

• TU-4C Two-Frequency Programmable CTCSS Encoder

• RPS-7A Fixed station power supply

• SP-40 Compact mobile speaker

More information on the TW-4000A and TS-780 is available from all authorized dealers of Trio-Kenwood Communications. 1111 West Walnut Street, Compton, California 90220.

All mode “Dual-Bander”

TS-780

2 m & 70 cm all mode, dual digital VFO’s, 10 memories, scan, IF shift...

TS-780 FEATURES:

• USB, LSB, CW, FM all mode covering the 2 m band (144.000-148.995 MHz) and the middle 70 cm band (430.000-440.000 MHz). UP/DOWN band switch.

• Dual digital VFO’s with normal and split tuning. Split (cross) frequency operation possible. F. LOCK switch provided.

• 10 memories include band and frequency data, backed up by internal batteries (not supplied). Battery life exceeds one year. Memories 9 and 10 for priority recall.

• Band scan, with selectable 0.5, 1, 3.5, and 10-MHz scan bandwidth.

• Memory scan selectable for all memories, or 2 m or 70 cm only.

• IF shift circuit rejects adjacent interference.

• High sensitivity and wide dynamic range • 7-digit fluorescent tube digital display • 10 watt IF output • 2 m = 600-kHz TX offset switch with reverse switch • Tone switch for optional TU-4C two frequency tone encoder unit • VOX and semi-break-in CW built-in • FM center-tune meter • Noise blanker for SSB, CW.

Subject to FCC approval