- log-Yagis simplified
- 20-meter linear array
- inexpensive hardline connectors
- 20-meter mobile vertical
- stagger-tuned dipoles
The ICOM IC-740 provides competition grade receiver performance with superb dynamic range in excess of 400dB and an intercept point of +18dBm. It features a pass band tuner, variable AGC, and a noise blanker that works, all standard.

The IC-740PS AC power supply installs in under 30 minutes, making the IC-740 the ideal self contained rig for both summer vacation portable operation, as well as your main home rig. The benefits of 12VDC and AC operation in one compact package.

For the ham who appreciates quality, get a competition grade receiver, rock solid solidstate transmitter, internal AC/DC power supply with cooling fan, and a microphone all for the price of the transceiver. Get extra savings while getting an ICOM IC-740... simply the best ham transceiver in the world today.

Offer subject to equipment availability at your authorized ICOM dealer.
The Commercial Grade Communications Receiver that everyone has been asking for...... at a price you can afford!

GENERAL COVERAGE RECEPTION AT ITS BEST

Listen to the world of HF with the R70, a 100KHz to 30MHz commercial grade receiver designed by ICOM Incorporated, the leader in advanced receiver design. Built from knowledge gained by designing receivers for commercial, marine, and amateur use, the R70 surpasses other receivers on the market...even receivers costing more than twice as much.

Utilizing ICOM's DFM (Direct Feed Mixer), the R70 is a receiver which in normal usage is virtually immune to intermodulation distortion or cross modulation, yet still maintains superior sensitivity. Whether you are a SWL (short wave listener), Ham (amateur radio operator), maritime operator or commercial user, the R70 provides the features you need.

DESIGN

The R70 incorporates an UP conversion system, utilizing a direct feed mixer proven to be the best design for minimizing interference from strong adjacent signals. A preamp is provided for making the weakest of signals readable. High grade filters in conjunction with the built-in PBT (pass band tuning) system and notch filter, provide the ultimate in interference rejection. Selectable AGC (fast/slow/off), noise blanker (wide or narrow), and tone control improve readability under the worst conditions. An AGC derived squelch, operative in all modes, adds to operating ease.

Dual VFO's with three tuning rates provide quick QSY (frequency change), memory for an important station, or by equalizing the VFO's (A=B), a digital RIT. 13.8 VDC operation is provided as an option. 117 VAC is standard.

HAM'ING

The R70 is an ideal general coverage receiver to complement any ham shack. Use it with your existing transmitter or transceiver to provide dual receiver capability. The R70's built-in monitor system lets you listen to your own transmitted audio and a mute input automatically protects the R70's receiver from your signal.

An option for FM allows listening to the 10 meter FM activity.

As an additional plus to ICOM IC-720A owners, the R70 has an optional interface that will allow the R70 to control the transmit frequency of the 720A for the ultimate in hamming versatility.

SWL'ING

For the short wave listener, the readout section of the R70 gives all the information for logging a station to be returned to at a later time. Frequency, mode, VFO, signal strength are all displayed. A dial lock prevents accidental loss of a signal.

A front mounted speaker provides 3 watts of crisp clear audio. A record jack allows easy attachment of a tape recorder.

ICOM SYSTEM

Like all ICOM HF products, the R70 fits into the ICOM system concept of accessories allowing you to use previously purchased accessories such as the HPI headphone, SP3 external speaker, and AH1 auto bandswitching antenna.

PRICE

Check with your local ICOM dealer for pricing on the R70. You will be amazed.
TS-930S

“DX-traordinary”... superior dynamic range, auto. antenna tuner, QSK, dual NB, 2 VFO's, general coverage receiver.

A superlative, high-performance, all solid-state HF transceiver, that covers all Amateur HF bands, and incorporates a 150 kHz to 30 MHz general coverage receiver having an excellent dynamic range.

TS-930S Features:
- 160-10 Meters, with 150 kHz 30 MHz general coverage receiver. Covers all Amateur frequencies, plus WARC. On SSB, CW, FSK, and AM. UP-convolution digital PLL circuit.
- Excellent receiver dynamic range. Typical two-tone dynamic range, 100 dB (20 meters, 50-kHz spacing, 500 Hz CW bandwidth).
- All solid-state 28 volt operated final amplifier. Lowest IM distortion. Power input 250 W on SSB/CW/FSK, 80 W on AM, SWR/P power meter.
- Available with AT-930 automatic antenna tuner built-in, or as an option. Covers 80-10 meters, including WARC bands.
- CW full break-in. CMOS logic IC, plus reed relay. Switchable to select break-in frequency. D-17 digital VFO's, 10-Hz steps, includes band information.
- Eight memory channels. Stores frequency, band, and select internal battery memory back-up, est. 1 yr. life. (Battery not Kenwood supplied.)
- Dual mode noise blanker. NB-1, with threshold control, for "pulselike" noise. NB-2 for "woodpecker." SSB IF slope tuning, allows independent adjustment of the low and/or high frequency slopes of the IF passband.
- CW VBT and pitch control. VBT tunes out interfering signals. CW pitch control shifts IF pass-band and beat frequency. "Narrow-Wide" filter switch.
- Tuneable, peak-type audio filter for CW.
- AC power supply built-in.
- Fluorescent tube digital display (100 Hz resolution, modifiable to 10 Hz) with digital sub-scale, in 20-kHz steps.
- RF speech processor. One year limited warranty.

Optional Accessories:
- AT-930 Auto. antenna tuner.
- SP-930 External speaker with selectable audio filters.
- YG-455C-1 (500 Hz) or YG-455CN-1 (250 Hz) plug-in CW filters for 455 kHz IF.
- YK-88C-1 (500 Hz) CW plug-in filter for 883 MHz IF.
- YK-88A-1 (6 kHz) AM plug-in filter for 8.83 MHz IF.
- 50-cm commercial grade TCXO.
- MC-60A deluxe desktop microphone, 8-pin, with pre-amplifier, UP/DOWN switch.

TS-430S

“Digital DX-terity”... General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch, COMPACT!

Combines compact styling with state-of-the-art circuit design and performance.

TS-430S Features:
- 160-10 meters, with 150 kHz 30 MHz general coverage receiver. Covers all Amateur frequencies, plus WARC. UP-convolution digital PLL circuit.
- USB, LSB, CW, AM, and FM (optional) all mode.
- Compact lightweight design. Only 10-5/8” (270 W x 3-3/4” (96) H x 10-7/8” (275) D, inches (mm); only 14.3 lbs. (6.5 kg).
- Superior receiver dynamic range with Dyna-Mix high sensitivity direct conversion mixer.
- 10-Hz step digital VFO’s. Operate independently. Include band and mode information. Dial torque adjustable. Step switch for 10-Hz or 100-Hz steps. A-B switch shifts "B" VFO to "A" VFO frequency and mode, or vice versa. VFO LOCK switch. Rit for VFO or memory. UP/DOWN manual scan with internal UP/DOWN microphone.
- Eight memories store frequency, mode, and band data. 8th memory stores RX/TX frequencies independently.
- Lithium battery memory back-up. (Est. 5 yr. life.)
- Memory Scan.
- Programmable automatic band scan width.
- IF shift circuit for minimum QRM.
- Tuneable notch filter, built-in.
- Narrow-band filter selection on SSB, CW, AM filter optional.
- Speech processor, built-in.
- All solid state. Input rated 250 W PEP on SSB, 200 W DC on CW, 120 W on FM (optional), 60 W on AM. Operates on 12 VDC or on 120 VAC, or 220/240 VAC with optional PS-430 AC power supply.
- Fluorescent tube digital display indicates frequency to 100 Hz (10 Hz modifiable). All-mode squelch circuit, built-in.

Optional Accessories:
- PS-430 compact AC power supply.
- PS-30 or KPS-21 AC supplies.
- SP-430 external speaker.
- MB-430 mobile mounting bracket.
- AT-130 compact antenna tuner, 80-10 m, incl. WARC.
- AT-230 base antenna tuner, 160-10 m, incl. WARC.
- FM-430 FM unit.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filters.
- YK-88SNN (1.8 kHz) narrow SSB filter.
- YK-88A (6 kHz) AM filter.
- MC-42S UP/DOWN hand microphone.
- MC-60A deluxe desktop microphone, UP/DOWN switch.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
SAVE $10.50* with home delivery

*(One year newsstand cost $30.00)

Here's my address label, enter my subscription.

☐ 1 Year 12 issues $19.50 ☐ Payment enclosed
☐ 2 Years 24 issues $32.50 ☐ Bill me later
☐ 3 Years 36 issues $42.50 U.S. prices only

Name ____________________________

Address ____________________________

City ____________________________ State ______ Zip ______

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $21.50 for one year by surface mail.
Please enter my subscription

BUSINESS REPLY CARD
First Class
Permit No 1
Greenville, NH

Postage Will Be Paid By Addressee

Greenville, NH 03048

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
contents

18 vertical phased arrays: part one
Forrest Gehrke, K2BT

22 stagger-tuned dipoles increase bandwidth
Mason A. Logan, K4MT

26 20-meter mobile vertical
Gary E. Myers, K9CZB

29 repeater antenna beam tilting
Lee Barrett, K7NM

36 short verticals for the low bands: part one
W. J. Byron, W7HD

42 handi-antennas
Paul A. Zander, AA6PZ

48 achieving the perfect VHF antenna null
John J. Duda, K3ED

52 ham radio techniques
Bill Orr, WB5AI

57 20-meter array
Jim Gabrieli, WA8DXB

62 inexpensive hardline connectors
James A. Sanford, WB4GCS

78 log-Yagis simplified
Leo D. Johnson, W3EB

87 the grounded monopole with elevated feed
John S. Belrose, VE2CV

132 advertisers index
98 new products

14 book reviews
8 presstop

74 DX forecaster
132 reader service

124 flea market
6 reflections

130 ham mart
16 short circuits

94 ham notes
73 technical forum

May 1983
Antennas ... Antennas ... Antennas

Our May issue has historically been our antenna issue and this year will be no exception. Within the pages of this, our fattest issue in a long time, are twelve articles on antennas of all sizes, shapes, and applications. Let me, if I may, be your guide through the next 136 pages or so and provide you with a summary of the various articles contained within.

We start with part one in a series of articles on phased vertical antennas by Forrest Gehlke, K2BT. Forrest, you may recall, provided us with “A Precision Noise Bridge” in the March, 1983, issue of ham radio. He, like so many of us, is not satisfied with copying previous designs and letting it go at that. He must look into things, carefully examining the technical reasons for the correct operation of devices. It is with that approach that he examined the interrelated properties of phased vertical arrays — perhaps more closely than has ever before been done in the pages of a ham journal.

Part one of the series explores incorrect assumptions accepted by many (and unfortunately used by many) in their designs of antenna systems. Foremost among these incorrect assumptions is the concept that mutual coupling between elements can be ignored. Following close behind is the argument that, if an array requires equal current drive, then driving each element with equal power will always satisfy that requirement. Forrest leads us from the theoretical design to actual drive-network hardware, and shows us how a repeater can be achieved.

This issue of ham radio has ever before been done in the pages of a ham journal. It is with that approach that he examined the interrelated properties of phased vertical arrays — perhaps more closely than has ever before been done in the pages of a ham journal.

Part one of the series explores incorrect assumptions accepted by many (and unfortunately used by many) in their designs of antenna systems. Foremost among these incorrect assumptions is the concept that mutual coupling between elements can be ignored. Following close behind is the argument that, if an array requires equal current drive, then driving each element with equal power will always satisfy that requirement. Forrest leads us from the theoretical design to actual drive-network hardware, and shows us how a repeater can be achieved.

Forrest calls on his discussion on the various shapes and gains associated with loop antennas. He provides, in “Ham Radio Techniques”, design data for two-element quads for the 10, 15, 20, and 40 meter bands.

As a change of pace, a few shorter articles by K9CZB, AA6PZ, W6SAI, and WA8DXB illustrate interesting ways of providing superior performance with little expenditure of time or money. K9CZB shows how an auto replacement antenna and a CB whip can combine to give broadband, durable mobile capability on the 20-meter band. AA6PZ illustrates three different 2-meter antennas or improvements that are lightweight and easy to build. His last design is a 10-dB-gain collapsible four-element Yagi. This weekend project will help you raise those distant repeaters that your handheld previously struggled to access. W6SAI brings back to basics with his discussion on the various shapes and gains associated with loop antennas. He provides, in “Ham Radio Techniques,” design data for two-element quads for the 10, 15, 20, and 40 meter bands. WA8DXB, in order to increase his station performance to Asia, reproduces a four-element 20-meter collinear that holds its own against some impressive high-gain Yagis — without going above 16 feet.

W7DHD brings us back to verticals with his examination of five different 1/16-wavelength-high shortened verticals. He compares top loading, top and base loading, center loading, and base-only loading. He quantitatively shows us how to compute the relative field strength of each antenna with respect to a reference quarter-wave, without actually erecting any antennas. An eye-opener is his calculation showing a difference of over 20 dB in performance between a base-loaded vertical and its full-sized quarter-wave counterpart.

Also on the subject of repeaters, K7NM shows how a low-signal condition known as shadowing can be reduced by judicious choice of the high site antenna. His rugged four-pole collinear uses progressive phase delay sections to tilt the beam pattern downward. This reduces over-shooting the desired coverage area and cuts back on wasted higher-angle radiation from the same array. The article “Repeater Antenna Beam Tilting” is worthwhile reading for all clubs considering new or improved repeater site constructions.

Rounding out this issue is an article by WB4GCS entitled “Inexpensive Connectors for Hardline.” With $2.00 worth of plumbing materials and ten minutes of labor you can build extremely low-loss homemade connectors to use with the surplus 1-inch (2.54-cm) CATV hardline cable now becoming available to hams at low cost. VHF and UHF enthusiasts can now use this high-quality, low-loss cable for repeaters or home stations, without the cost of expensive connectors.

Marty Hanft, KA1ZM, the editor of ham radio, is taking his leave, after five years with the magazine, to spend some time overseas. He joined the staff as administrative editor in 1978, working closely with the late Jim Fisk, and has continued providing us with his inimitable editing and organizational talents. We wish him all the best in his new endeavors.

Welcome aboard is extended to Dorothy Leeds, our new assistant editor. Dorothy brings with her technical-magazine editorial and production skills that will be constantly called upon for our rapidly growing amateur technical magazine.

Keep those letters coming. Our technical forum and correspondence departments are growing as a direct consequence of the interest shown in the past few months. Please be patient with us — the flood of mail has created a little backlog — but we love it.

Rich Rosen, K2RR
Editor-in-Chief
MFJ-941C 300 Watt Versa Tuner II

Has SWR/Wattmeter, Antenna Switch, Balun. Matches everything 1.8-30 MHz: dipoles, vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

Far selling MFJ tuner . . . because it has the most wanted features at the best price.

Matches everything from 1.8-30 MHz: dipoles, vees, random wires, verticals, mobile whips, beams, balanced and coax lines.

Run up to 300 watts RF power output.

SWR and dual range wattmeter (300 & 30 watts full scale, forward/reflected power). Sensitivity meter measures SWR to 5 watts.

MFJ-900 VERSA TUNER

$49.95 (+ $4)

Matches coax, random wires 1.8-30 MHz. Handles up to 200 watts output; efficient airwound inductor gives more watts out. 5x2"6". Use any transistor, solid-state or tube. Operate all bands with one antenna.

2 OTHER 200W MODELS:

MFJ-901, $59.95 (+ $4), like 900 but includes 4.1 balun for use with balanced lines.

MFJ-905, $69.95 (+ $4), for random wires only. Great for apartment, motel, camping, operation. Tunes 1.8-30 MHz.

MFJ-949B VERSA TUNER II

$139.95 (+ $4)

MFJ's best 300 watt Versa Tuner II. Matches everything from 1.8-30 MHz, coax, randoms, balanced lines, up to 300W output, solid-state or tubes.

Tunes out SWR on dipoles, vees, long wires, verticals, whips, beams, quads.

Built-in 4:1 balun; 300W, 50 ohm dummy load, SWR meter and 2 range wattmeter (300W & 30W).

6 position antenna switch on front panel, 12 position air wound inductor; coax connectors, binding posts, black and beige case 10x3x7".

MFJ-949B VERSA TUNER II

$139.95 (+ $4)

MFJ's best 300 watt Versa Tuner II. Matches everything from 1.8-30 MHz, coax, randoms, balanced lines, up to 300W output, solid-state or tubes.

Tunes out SWR on dipoles, vees, long wires, verticals, whips, beams, quads.

Built-in 4:1 balun; 300W, 50 ohm dummy load, SWR meter and 2 range wattmeter (300W & 30W).

6 position antenna switch on front panel, 12 position air wound inductor; coax connectors, binding posts, black and beige case 10x3x7".

MFJ-962 VERSA TUNER III

$229.95 (+ $10)

Run up to 1.5 KW PEP, match any feed line from 1.8-30 MHz.

Built-in SWR/Wattmeter has 2000 and 300 watt ranges, forward and reflected.

6 position antenna switch handles 2 coax lines (direct or through tuner), wire and balanced lines.

4.1 balun, 250 pf 6KV cap. 12 pos. inductor, Ceramic switches. Black cabinet, panel.

ANOTHER 1.5 KW MODEL: MFJ-961, $189.95 (+ $10), similar but less SWR/Wattmeter.

MFJ-10, 3 foot coax with connectors, $4.95.

To order or for your nearest dealer CALL TOLL FREE 800-647-1800

For tech info., order or repair status, or calls outside continental U.S. and inside Miss., call 601 323 5869.

All MFJ products unconditionally guaranteed for one year (except as noted).

Products ordered from MFJ are returnable within 30 days for full refund (less shipping).

Add shipping & handling charges in amounts shown in parentheses.

Write for FREE catalog, over 80 products

MFJ ENTERPRISES, INCORPORATED

Box 494, Mississippi State, MS 37962

May 1983
20 METER U.S. PHONE EXPANSION WAS APPROVED BY THE FCC at its March 31 Agenda Meeting. The new bottom edge will be 14150, with an exclusive Extra slot from 14150 to 14175. The Advanced Class lower edge moves to 14175, while the General portion now starts at 14225.

Expansion Of The Other HP Amateur Bands Was Held Off by the Commissioners, to be considered in a later NPRM. When the new 20-meter frequencies will actually be available for use hadn't been settled at press time, but should be about the time you read this.

The 10-Year Amateur License Was Also Discussed at that same meeting. A Notice of Proposed Rulemaking was the result, and though it was not yet ready for release at press time it's expected to be quite straightforward. The comment due date had not been set as we went to press, but the comment period should be short as little controversy is likely to be raised by this proposal.

COMMENT DUE DATE ON THE FCC'S "NO-CODE" LICENSE proposal has been extended to June 28. The FCC agreed to a 60-day extension of the Comment deadline on the request of the ARRL, whose next Board of Directors' meeting is set for late April. The League's final position on that bitterly contested issue won't be set until that meeting, and the original April 29 Comment due date would not have allowed the League enough time after the meeting to prepare and submit its comments.

ARGUED OPPOSITION To A "No-Code" License has been developing in several areas. "Grass-roots" anti-"No-Code" groups are reported active on both coasts, and one is seeking a spot on the Dayton Hamvention program to rally sentiment against the proposed new license.

THE PHASE 3B SATELLITE LAUNCH IS STILL SET FOR MID MAY, and the European Space Agency is still confident that the trouble-plagued Ariane rocket's problems have now been solved. Don't Expect To Be Able To Use Phase 3B Right Away, even if the launch is on schedule and trouble free. Checkout and stabilization of the new bird could take several weeks or more, before Amateurs will be able to enjoy the benefits of its elliptical orbit.

AMATEUR OUTRAGE OVER N6BHU'S LICENSE REINSTATEMENT after it had been lifted by the FCC for "profane and indecent" language has now reached Congress. Sen. Barry Goldwater, R/UA, challenged FCC Chairman Fowler about the FCC Review Board decision to return the violator's license at a recent Senate Communications Subcommittee meeting, and was promised the controversial action would be reviewed by the Commissioners at an early date.

N6BHU Has Promised To Take The Fight Into Federal Court if the Commission decides again to suspend his license. In a conversation with Westlink's WAGITF, N6BHU said he'd go all the way to the Supreme Court if necessary to keep his Amateur license.

ARRL Has Also Formally Intervened In The N6BHU Case, concerned that the Review Board set an "unlawful and intolerable" precedent in its decision that the language N6BHU had used on the air was acceptable in the Amateur service.

ARTHUR GODFREY, K4LIB, PASSED AWAY MARCH 16 in a New York hospital from pneumonia. He was one of the nation's best known Amateurs, having been a top rated broadcast entertainer for many decades. Arthur, who was 79, narrated "The Ham's Wide World" in 1969 and had been co-narrator of "The World of Amateur Radio" in 1979.

STANDARDS FOR RF RADIATION SHOULDN'T BE THE FCC'S PROVINCE, an all-industry group agreed at a meeting with key Commission people March 16, but the FCC will have to fill a void until the Environmental Protection Agency can complete its RF studies and take on the responsibility. That's still probably two years off, and until then the FCC is expected to use the 10 mW/square centimeter 1982 ANSI standard (with reductions at frequencies to which the body is most susceptible) as meeting the requirement of the EPA. A major benefit will be federal preemption of proliferating state and local RF exposure regulations.

K5FLF's 2-METER OPERATION FROM THE SPACE SHUTTLE is now almost certain, following NASA's OK of the proposal. The only approval still required is from the European Space Agency, whose space lab will be the Shuttle's cargo for that late September launch.

A NEW 220-MHZ DX RECORD WAS SET MARCH 9 when KP4EOR worked LU7DJZ, a 3670 mile QSO. KP4EOR used both SSB and CW for the record-breaking trans-equatorial-propagation contact, while LU7DJZ used CW only. The previous 220 Hz record was 2540 miles between W6NLZ and KH6UK, set back in June, 1959.

CABLE TV CHANNEL E WON'T BECOME A PROBLEM TO 2-METER users in some parts of Chicago. Several of the successful bidders for the multi-area Chicago cable TV franchise, including Continental Cablevision, voluntarily agreed as part of their proposals to give up service on either channel E (2 meters) or K (220 MHz).

A $1000 FINE HAS BEEN LEVIED AGAINST A BURBANK (ILLINOIS) Amateur who recently erected a new 34-foot tower. The Amateur, a minister and former missionary in Nigeria, was anxious to resume contact with former colleagues. Court action on Burbank is still hanging fire.
MORE FROM PRO-SEARCH™ ELECTRONICS

NOW THREE MODELS OF OUR
DIGITAL ANTENNA CONTROL
Your Choice Of Center, North Or South

GOOD
PSE-1A
The "CONTESTER" provides the least expensive DIGITAL CONTROL UNIT WITH COMPLETE COMPUTERIZED CONTROL, BUT WITH LESS FEATURES, than the "DXER" and "DELUX". This unit gives you the current position of your antenna digitally. It has 10 memories and command modes, plus single button operation. The "CONTESTER" comes with a 7.0 amp continuous duty motor supply.

Better
PSE-1, PSE-3
The "DXER" is the top of the line of the non-voice synthesized units, and is for the ham who is in need of more features on their controller. It has "2" digital readouts to show the antenna's current position, plus a storage readout which holds a heading or digitally displays your last position. This is valuable for switching between long path or short path, or checking front to back or working between two different stations...a real time saver and just a nice convenience. The "DXER" also has "5" scan functions: 0.90, 90-180, 180-270, 270-360, and 0-360. This is a real aid in looking for that dogleg opening or peaking a weak signal. It can be expanded to talk, and does have the hardware necessary to use with the computer interface. It can be remotely keyed, where verbal confirmation isn't required. Price $362.95.

Best
PSE-2, PSE-4
This is the ultimate in rotor controls. Nothing tops this one. It has all the features of the other models, plus it talks...Yes, it talks. The "DELUX" has a voice synthesizer which confirms your entries, plus tells you your heading as you enter it and when your antenna arrives. All commands are spoken, plus as your antenna turns you hear a 400Hz tone going in one direction and a 80Hz tone in the other. This gives you positive verification of movement. This unit, as the others, will combine with the HAM IV, T2X and HDR-300, giving you the best antenna rotor combination you could ever want at any price. Price $469.00.

INTRODUCING THE ULTIMATE PACKAGE...FROM PRO-SEARCH™ NINE COMBINATIONS OF OUR CONTROL UNIT AND THE TELEX/HYGAIN® ROTOR MOTORS...FOR JUST A FEW DOLLARS MORE YOU CAN HAVE THE CONTROLLER OF THE FUTURE TODAY!

Package #1 PSE-1A
#1 The "Contest" Package...try one of these TELEX/HYGAIN rotors with our PSE-1A/3A. A system which is low in cost, high in performance.

Package Special
PSE-1A + HAM IV $369.95
PSE-1A + T2X $415.95
PSE-1A + HDR-300 $544.95

Package #2 PSE-1/PSE-3
The "DXER" Package...Couple this unit with a rotor and you have the best non-talking control we make. Expandable, plus has 5 scan functions, 2 DIGITAL displays and REC/LAST to check long path or short path. Has all internal hardware to plug into our computer interface, can be remotely controlled from accessory jack. Try this with any of the TELEX/HYGAIN® Rotors! This will give you the broadest of functions with a mid-range price.

Package Special
PSE-1,3 + HAM IV $508.95
PSE-1,3 + T2X $548.95
PSE-1,3 + HDR-300 $677.95

Package #3 PSE-2/PSE-4
The "DELUX" is the most sophisticated antenna control unit ever made. With the "DELUX" you have all the functions of our other units, plus it talks...Yes, it talks. Not only do you have your headings digitally displayed, but is also said as your antenna stops. All commands are spoken, plus as your antenna turns you hear a 400Hz tone in one direction and an 80Hz in the other, giving you positive verification of movement. This unit, when combined with the HAM IV, T2X or HDR-300 gives you the best buy anywhere at any price...

Package Special
PSE-2,4 + HAM IV $608.95
PSE-2,4 + T2X $659.00
PSE-2,4 + HDR-300 $764.00

Controllers also available for other rotors.
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents

Write or Call for our Catalog • Pro-Search Electronics Co. Suite 305 10411 Clayton Rd. St. Louis, Mo. 63131 1-314-994-7872 (Missouri) 1-800-325-4016

PRO-SEARCH
Reaching The World

*Printed with permission of TELEX/HYGAIN
Telex Communications, Inc.
All Bands
- General Coverage
- 200 Watts

Bands
- Dual VFO’s
- 8 Memories

ICOM IC-740
- 1.8 to 30 MHz
- Super Receiver
- 200 Watts
- Selectable IF / PBT Tuning

YAESU - NEW FT-77
- Extremely Compact
- 3.5 to 30 MHz
- Inexpensive

ANTENNA SALE
- **CUSHCRAFT**
 - A-3 $175
 - A-4 $226
 - R-3 $226
 - AV-5 $90
 - 214-FB $69
 - 32-19 $82
 - 40-2CD $260
- **HYGAIN TOWERS**
 - HC37SS $649
 - HC52SS $258
 - HC70HO $919
 - HCS4HD $1429
 - HC70HD $2359
 - HG50MTS $749
 - HG5HHD $1429
 - HG54HD $1429
 - HG50MTS $749
 - LARSEN $260
- **BUTTERNUT**
 - KLM $109
 - TH5MK2S $318
 - TH70XS $378
 - TH3MK2S $218
 - TH5JRS $158
 - TH2MKS $458
 - 18AVT/WS $9 4
 - 18HTS $335
 - V2S $37

BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

HOBBY KITS®

BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

ADD 2nd SHIPPING & HANDLING

MORNING DISTRIBUTING CO.

P.O. BOX 717, HIALEAH, FLA. 33011
Champagne RTTY/CW on a Beer Budget

CP-1 Computer Patch™ Interface

The AEA Model CP-1 Computer Patch™ interface will let you discover the fastest growing segment of Amateur Radio: computerized RTTY and CW operation.

When used with the appropriate software package (see your dealer), the CP-1 will patch most of the popular personal computers to your transceiver for a complete full-feature RTTY/CW station. No computer programming skills are necessary. The CP-1 was designed with the RTTY neophyte in mind, but its sophisticated circuitry and features will appeal to the most experienced RTTY operator.

The CP-1 offers variable shift capability in addition to fixed 170 Hz dual channel filtering. Auto threshold plus pre and post limiter filters allow for good copy under fading and weak signal conditions.

Transmitter AFSK tones are generated by a clean, stable function generator. Plus (+) and minus (-) output jacks are also provided for CW keying of your transmitter. An optional low cost RS-232 port is also available. The CP-1 is powered with 16 VAC which is supplied by a 117 VAC wall adaptor included with the CP-1.
YAESU FT-102
high performance HF transceiver
Top of the line from Yaesu at reasonable cost! Covers 160-10 meters including the new WARC bands. Six-digit digital readout, variable bandwidth plus IF shift, variable noise blanker and separate ALC meter with peak hold switch. Built-in speech processor. Built-in power supply for 100, 117, 200 or 234V AC @ 50/60 Hz.

$260 OFF!

List Price $1149.00 Item No. YAEFT102
Add 8.96 shipping & handling

COMMODORE 64
home computer
Commodore's latest home computer now features 64K of RAM at unheard of low cost! Use it for home calculations and budget management, playing TV games or add Kantronics new Hamtext for outstanding RTTY/ASCII/CW operations. Features built-in BASIC language, full size typewriter keyboard and 16 color, high resolution graphics capability. Compatible with VIC-20 accessories.

$200 OFF!

395.00
List Price 595.00 Item No. COMC64
Add 3.50 shipping & handling

CLIPPERTON QR07
full power linear HF amplifier
Value packed, this hefty amplifier offers the best watts-per-dollar buy in amateur radio! Covers 160 through 15 meters and most MARS frequencies adjacent to the ham bands. Features 2000 watts PEP input on SSB, adjustable ALC and hi/low power switching. Bypass switch also included. Built-in power supply with forced air cooling. Works on 117V or 234V, AC. Uses four 5728 triodes (packed separately).

$200 OFF!

599.00
List Price 799.00 Item No. DENOR07
Add 9.94 shipping & handling

KENWOOD TR-8400 UHF mobile FM transceiver
The TR-8400 offers excellent UHF performance with maximum convenience. It covers 440.000-449.975 MHz and features two VFO's, synthesized tuning and LED frequency display. You can scan up or down with the supplied hand mic. A bonus for TR-7730 owners: the TR-8400 uses the same size mounting bracket. RF power: 10 watts. Requires 13.8V DC.

$200 OFF!

349.00
List Price 499.00 Item No. KENTR8400
Add 2.14 shipping & handling

Mail Orders: P.O. Box 11347 Birmingham, AL 35202 • Street Address: 3131 4th Avenue South Birmingham, AL 35233
Build a Personal Earth Station for Worldwide Satellite TV Reception

At last! A complete guide to satellite TV including how to build a system from scratch. You'll find that you can literally "tune in the world" for less than you thought. Selecting the right ready-made system is also covered as well as in installation and dish alignment. Well organized, this book takes you from the fundamentals of TV broadcasting to satellite broadcast systems.

9.95 List Price $21.95

Save up to $60!

The World of Satellite Television

Everything you'll need to know about satellite TV, including selection, installation and trouble shooting. Covers what's up there to see and how to find it. The book's simple, down home approach, along with maps, charts and satellite "footprints" makes this a valuable reference guide for the accomplished video enthusiast as well as newcomers.

8.95 List Price $21.95

Call Toll Free 1-800-633-3410

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

More Details? CHECK -- OFF Page 132
At last! The answer to operating freedom!
The Palomar Engineers SWR & Power Meter

- Automatically computes SWR.
- Easy to read light bar display.
- Expanded SWR scale.
- Frequency range 1-30 MHz.

Automatic. No “set” or “sensitivity” control. Computer sets full scale so SWR reading is always right. Complete hands-off operation.

Light bar display. Gives instant response so you can see SSB power peaks. Much faster than old-fashioned meters.

Easy to read. No more squinting at old-fashioned cross pointer meters. You can read the bright red SWR and power light bars across the room!

Model M-827 Automatic SWR & Power Meter only $1 19.95 in the U.S. and Canada. Add $3 shipping and handling. California residents add sales tax.

ORDER YOURS NOW!
Send for FREE catalog describing the SWR & Power Meter and our complete line of Noise Bridges, Pre-amplifiers, Toroids, Baluns, Tuners, VLF Converters, Loop Antennas and Keyers.

Palomar Engineers
1924-F West Mission Rd.
Escondido, CA 92025
Phone: (619) 747-3343

ham radio magazine takes pleasure in providing the following reviews of books pertinent to Amateur Radio.

rf circuit design

The first word that comes to mind in reviewing the book rf circuit design by Chris Bowick, WB4UHY, is practical. The author has accomplished in this book what many more-expensive volumes have not been able to—he has provided in one 176-page volume a useful collection of material on rf techniques.

Most rf designers will probably agree that their knowledge took years to acquire and sometimes required access to many different volumes to understand even a single concept. Chris gets right into the essential aspects of each subject, using clearly defined terms, charts, and examples. An elementary example of this is seen on the first page of chapter one, Components. A chart on wire sizes shows how one can quickly determine unknown wire diameters if it’s remembered that No. 50 AWG is 1 mil and doubles for each six wire sizes. No. 44 AWG has a 2 x 1, or 2 mil, diameter.

This book, useful to hams who are interested in designing their own equipment, provides numerous examples for guidance each step of the way. There are seven chapters, labelled: Components, Resonant Circuits, Filter Design, Impedance Matching, The Transistor at Radio Frequencies, Small Signal RF Amplifier Design, and RF Power Amplifiers.

There are also three additional sections: Appendix A, use of complex numbers, recommended for those who are not familiar with complex number arithmetic; Appendix B, noise calculations, a systems approach to low-noise design; and Appendix C, bibliography of technical papers and books related to rf circuit design. These additional sections complement this already useful book with material that enables the interested reader to continue his research.

Published by Howard W. Sams, this book is available soft cover (8½ x 11” from Ham Radio’s Bookstore, Greenville, New Hampshire 03048, for $21.95 plus $1.00 shipping and handling.

directional antenna patterns

To this reviewer’s knowledge, there is not another book around like Directional Antenna Patterns by Carl E. Smith, president of the Cleveland Institute of Radio Electronics. It provides under one cover a collection of 15,160 directional antenna patterns, and has become the bible for a-m broadcast antenna design engineers. With the current increase in interest in phased vertical arrays the Radio Amateur will find this material pertinent in several ways.

Part one contains the theory behind the determination of the size and shape of directional-antenna patterns, starting with the standard reference antennas (uniform hemispherical radiator, vertical current element, quarter-wave verticals) and developing into the generalized equation for a directional n-antenna array.

Part two, entitled “Systemization of Two Tower Patterns,” provides 568 patterns available from a two-element array, examined at electrical and phase separation steps of 15 de-
degrees and 45 degrees. It is worthwhile pointing out that commonly used 90 degree space/90 degree phase, that is, quarter-wave separated, quarter-wave-phase difference verticals are just one of the 568 cases considered. Amateurs who don’t have the space to separate their verticals by a quarter-wave can still obtain a cardioid switchable pattern by choosing a different set of parameters.

Part three, Systemization of Three Tower Patterns, furnishes 14,592 field plots with 45 degree incremented spacings out to one wavelength for both antenna 2 and antenna 3. The guide to all these different patterns is provided by a systemization placement chart illustrated on each page of 64 patterns.

Directional Antenna Patterns is available hard bound (8½ x 11) by Carl E. Smith for $22.00, postpaid. Contact Smith Electronics, Inc., 8200 Snowville Road, Cleveland, Ohio 44141.

digital PLL frequency synthesizers — theory and design

Dr. Ulrich Rohde, a name familiar to many of us, has borrowed from his years of knowledge and experience with synthesizers and produced under one cover a collection of data on this complex yet increasingly important subject: Digital PLL Frequency Synthesizers — Theory And Design. As stated by Dr. Rohde, the objective of the book is "to provide as much practical circuit information as possible while presenting only the necessary mathematical background and formulas."

This is accomplished in six chapters starting with Loop Fundamentals. Here he introduces the basic linear and digital loops with formulation provided for type 1 and type 2 — first through third order loops. As an example, in the discussion of a type 2, third-order loop, the transfer function is defined along with its application to the suppression of fm noise in a VCO.

Chapter 2, Noise and Spurious Response of Loops, considers an extremely pertinent and limiting factor in any system that uses a synthesizer — sideband noise. The noise sources indicated are leakage from the reference device in phase-locked loops, incomplete suppression of the unwanted component of the mixer output, and inherent noise from the oscillator.

Chapter 3 deals with special loops, that are basically one-loop synthesizers. Techniques are discussed that simultaneously solve the two major requirements of loop operation: resolution and speed. This leads us to a more sophisticated development

radio communications receivers

Radio Communications Receivers by Cornell Drentea is a new 280-page paperback book available from TAB Books, Inc. The book is billed as a comprehensive guide to radio receiver design and technology, and includes the history of radio technology as it has affected receiver design over the years.

Mr. Drentea attacks the subject of radio receivers systematically, introducing each aspect of a receiver, the design theory, and construction. He also presents an explanation and alternative routes for reaching the same result. State-of-the-art technology is traced from its more primitive beginnings, and future design trends are introduced.

The book is a blend of theory and application, and is meant as a reference for the design and construction of receivers. Design considerations for modern receivers are thoroughly covered, and include the use of computers. The book should prove to be a handy tool to have in your library.

Radio Communications Receivers is available from Ham Radio’s Bookstore, Greenville, NH 03048 for $13.95 plus $1.00 shipping and handling.

R3 may be the perfect antenna for condominiums, apartments, small lots or any limited space situation. It is a great antenna for hams who are concerned about neat appearance and maximum performance.

R3's self supporting radiator is only 21ft 6.4m high x 1ft 304m wide at the base. Assembly is quick and easy for portable, marine, field day, DX-epiditions, or fixed installations. It is complete with remote tuner.

AVAILABLE THROUGH DEALERS WORLDWIDE

THE ANTENNA COMPANY
P.O. Box 4680
Manchester, N.H. 03108 USA
TELEX 953050

128

May 1983
Yes, now you can take it with you! The new HAL CWR-6850 Telereader is the smallest RTTY and CW terminal available, complete with CRT display screen. Stay active with your RTTY and CW friends even while traveling. Some of the outstanding features of the CWR-6850 are:

- Send and receive ASCII, Baudot, and Morse code
- RTTY and Morse demodulators are built-in
- RTTY speeds of 45, 50, 57, 74, 110, and 300 baud
- High or Low RTTY tones
- Send and receive CW at 3 to 40 wpm
- Built-in 5 inch green CRT display
- Four page video screen display
- Six programmable HERE IS messages
- Pretype up to 15 lines of text
- External keyboard included
- Runs on +12 VDC @ 1.7 Amperes
- Small size (12.75" x 5" x 11.5")

Write or call for more details. See the CWR-6850 at your favorite HAL dealer.

HAL COMMUNICATIONS CORP.
BOX 365
URBANA, ILLINOIS 61801 217-367-7373

short circuits

Bobtail curtain
The March, 1983, article by Woody Smith, "Bobtail Curtain Follow-Up," indicates that the half-power beamwidth of the Bobtail is 50 degrees. However, using a Sharp PC1500 and assuming a 1:2:1 current ratio, that calculates out to approximately 100 degrees. Note that only half the azimuth plot is shown in fig. 1; this symmetrical field pattern has a mirror image to its left.

Ed. note: Woody says he took only half of the 3-dB beamwidth numbers for both the Bobtail and half-square. The half-power beamwidths are 100 degrees and 120 degrees, respectively.
Look to Mosley's TA and CL series of tri-banders for outstanding performance on 10, 15 and 20 meters. Mosley's trap design provides resonant frequency stability under all weather conditions. Easily handles full KW. Stainless steel hardware as on all Mosley antennas. Heavy aluminum construction.

For those with limited space and/or budget who want tri-band performance look to Mosley for rotating dipoles, wire dipoles and verticals. All are rated for full legal power.

See your dealer or write factory for catalog of complete Mosley line.

Mosley Electronics, Inc.
4610 Lindbergh Blvd.
Bridgeton, MO 63044
(314) 731-3036
vertical phased arrays:
part one

Rotatable arrays
for the low bands

Even if it were practical to rotate that low inverted-V or dipole, it would remain a sad fact that most of the signal is radiated at very high angles with virtually no azimuthal directivity. The result is that the impression easily might be gained that the low bands are good for 500 to 1000 mile contacts but no real DX — that is, until the newcomer happens to eavesdrop on one side of a real DX contact. Then he is amazed to hear a Q5 report given, and at the turnover hear nothing except noise. The old adage "You can't work 'em if you can't hear 'em" is particularly apt on the low bands, where atmospheric static as well as manmade noise is very high.

restricting noise pickup

How is it possible to get a low radiation angle and still beat the noise problem? Perhaps this question seems a contradiction because, as the radiation angle is lowered, the paths over which the antenna receives major noise sources are lengthened, whether the noise is manmade or natural. We may not be able to restrict noise pickup in the paths of interest, but we can at least reduce it from undesired paths with a directional array. On the low bands atmospheric noise is very often quite markedly directional, and it is not unusual to find noise levels differing by 30 dB or more between various quadrants of the horizon. Experience shows that high F/B ratio, that is, superior rejection of signals from undesired directions, has far more importance than gain on the low bands for this reason.

It is well known that for reliable DX work a horizontally polarized antenna array had best be one-half to

By Forrest Gehrke, K2BT, 75 Crestview, Mountain Lakes, New Jersey 07046
two wavelengths above the ground for optimum radiation angle. At 20 meters and shorter this is not too difficult, nor is rotating the antenna, but for 80 or 160 meters such heights become impractical — and rotation is virtually impossible.

One obvious alternative is a vertical antenna with electronic directional control. If such an antenna is combined with a good ground plane, one can get radiation angles as low as those possible with a horizontal antenna two wavelengths above ground. But doesn’t a vertical "radiate equally poorly in all directions?" And isn’t it said to be noisy? After all, everyone knows that, for some mysterious reason, man-made noise sources are supposed to radiate with vertical polarization. That a vertical’s very low radiation angle may have something to do with this is seldom considered.

Widespread misinformation on the vertical antenna in Amateur publications is a serious problem. Recently I researched respected Amateur publications printed since 1970, looking for articles on the vertical that contained definitive technical data. I found only two, one quoting the typical dissimilar and reactive driving impedances of the elements of a two-vertical array, and the other calling attention to the need for maintaining unity current ratio despite this dissimilarity. No quantitative data was available for arrays with more than two elements. A few writers included qualitative comments on the vertical array, indicating awareness of the complexity of the matching situation, but most did not. Perhaps this is because, unlike many horizontal arrays, vertical arrays are often designed with all elements driven, thus making the job of satisfying drive current and phase conditions more complicated.

mutual coupling

At this point it may be useful to review the gain mechanism of a Yagi. The Yagi creates gain in the favored direction as a result of the driving currents and phase currents induced in the parasitic elements by means of mutual coupling between the driven and parasitic elements. With appropriate spacings and lengths chosen for the design frequency, current and phase are caused to exist in each element such that the signal is reinforced in the forward direction and partially cancelled in the other directions. The single driven element will present a significantly lower impedance than it would as a lone dipole, because of the loads coupled to it from the parasitic elements. If a low VSWR is not a goal, this element may be driven directly without affecting the gain pattern of the array. The presence or lack of an impedance transformer (such as a Gamma match) has nothing to do with the gain pattern — only with the match to the feedline. A comparison of the current and phase at the midpoint of each element with respect to the driven element, shows that the current magnitude ratio is below unity (about 0.2 to 0.5), generally rising or falling in each succeeding parasitic element. The phase angle will lead in the reflector (because this element is longer than a half-wavelength); it will lag at the directors (because they are shorter than a half-wavelength), the angle lagging more in each director as we move toward the front of the array. The interaction is quite complex, since there is mutual coupling among the parasitic elements as well as with the driven element. Nevertheless, it is this phenomenon of mutual coupling that permits us to produce directionality in multi-element arrays.

While it’s true that driving each element provides an additional controllable variable, this does not mean that no other drive source is acting on the elements. The same mutual coupling that occurs in the Yagi is present here and must be taken into account as part of the total drive to each element. To illustrate, suppose you want to drive an element of an array with 1 ampere at 90 degrees lagging angle. Assume that, at the same termination impedance of this element, mutual coupling from other elements is inducing 0.8 ampere at 90 degrees lagging. An additional drive current of only 0.2 ampere at 90 degrees lag would be all that’s needed. In practice, of course, mutual coupling and this additional drive from the feed network may not add arithmetically. Phase angles probably will be different, resulting in vectorial addition. There’s another real life complication: The added drive changes the mutually coupled drive! In fact, changing anything at all changes all the other variables because the mutually coupled elements and feed network are all part of one coupled system. This is why the element driven impedances are referred to as driving-point impedances; they exist only while connected to the feed network. We cannot disconnect any element and verify its value with an impedance bridge.

The assumption that mutual coupling doesn’t occur (or isn’t important) is a mistake found in many articles on phased arrays, vertical or horizontal, in the Amateur publications. This error is almost invariably compounded by a second and more erroneous one: Electrical length of the delay line is equated to current delay in all circumstances, (for example, a quarter-wavelength line is assumed to produce a 90-degree delay regardless of its termination). But equating electrical length to current delay holds true only under certain conditions.*

1. For any length if terminated by a pure resistance equal to the characteristic impedance of the line.

*Except when specifically noted, only the lossless cases will be considered. At low-band frequencies, losses normally are negligible. Calculations including them add greatly to complexity while resulting in insignificant benefit.
2. For an odd number of quarter-wavelengths if terminated by a pure resistance of any value.

3. For any number of half-wavelengths regardless of termination impedance.

4. In some special cases (normally of no concern in these applications).†

Disregarding mutual coupling leads to inaccurate results, particularly as regards front-to-back ratio. The designer who makes this error is also typically led to some or all of the following subsidiary assumptions:

1. That the driven impedances of each element always are equal.

2. That if the elements are resonant, the driven impedance of each element is resistive.

3. That if array feedlines are quarter-wavelength, a 90 degree phase change in current is produced in each line.

4. That if the array requires equal current drive, driving each element with equal power will always satisfy the requirement.

5. That a current phase angle displacement of 90 degrees between array elements will occur by insertion of a quarter-wavelength line in the feedline of one of the elements.

Every one of these assumptions is wrong, because the premise on which they are based is not true.

Some writers suggest that great liberties may be taken with element feedline lengths. Without considering the effects upon phasing, they would use element feedlines of any length as long as they were equal. Except in very specific circumstances (when all driving impedances are equal), there is no way to justify taking these liberties with most multi-element array configurations.

array impedances and power distribution

It may be illuminating to examine a typical set of dynamic driven impedances for the quarter-wave resonant elements of a 4-square vertical phased array (fed with equal-magnitude currents of the proper phases to produce the main lobe along a diagonal). This will demonstrate the profound effects of mutual coupling.

\[
\begin{align*}
\text{element 1} & : Z_1 = 7.9 - j7.8 \\
\text{element 2 or 3} & : Z_2 = Z_3 = 35.7 - j12.7 \\
\text{element 4} & : Z_4 = 59.2 + j42.6
\end{align*}
\]

The first impedance is the reference, or zero-degree phased element; the next is the impedance of each of the two –90 degree phased middle elements; the last is the –180 degree phased element. That these impedances are quite dissimilar and reactive is obvious. Since drive power is a linear function of the real component of these impedances (being fed with currents of equal magnitude), it is clear that power division among these elements is far from equal. Assuming 1-ampere drive to each element, the drive power supplied to each is:

- element 1: 7.9 watts
- element 2: 35.7 watts
- element 3: 35.7 watts
- element 4: 59.2 watts

which, on a percentage basis, is 5.7 percent, 25.8 percent, 25.8 percent, and 42.7 percent, respectively. Thus a feed network aimed at supplying equal power to this array, such as a Wilkinson power divider, will be at cross purposes with the requirement. (Incidentally, a Wilkinson divider will not supply equal power to unequal terminations.) Also, since the 90-degree phased elements are not resistive, simply inserting a quarter-wavelength of delay line in their feeders won’t do. Clearly, only a feed system designed for the array elements’ driving-point impedances will carry out this unequal power division while producing the proper element phase displacements.

It is possible to devise a feed network which performs these functions while also matching the array to the transmitter feedline. Doing so is not even unduly complex, but calculating the driven impedances does require a knowledge of the self and mutual impedances of the elements. Methods for doing this will be detailed in a future article. The greatest benefit of a good match in multi-element arrays is the warning it provides when loss of continuity to an element occurs because of faulty switching relays or the like.

30 to 40 dB F/B are achievable

My interest in low-band DX began just as described in the beginning of this article. I started with a dipole 30 feet high, then progressed to a vertical, and then to in-line arrays of two and three verticals. With some cut-and-try, the arrays were made to work quite well.

Then came the articles by W1CF on the 4-square
array\(^4\) which inspired me, as they have many others, to duplicate his pathfinding work in building pattern controlled low-band arrays. For me at least, having achieved excellent F/B with simpler arrays (but without bothering to find out precisely why), the F/B results were disappointing. Cut-and-try led nowhere, this array's having too many variables for such blind stabs, and so I had to go back to basics for a more fundamental understanding. Thanks to the advice, encouragement, ideas, and boundless resource of mathematical tools contributed by my friend WB6SXY, as well as many information exchanges with W7EL and W2PV\(^5\) I believe I now know how the 4-square should work.

Achieving theoretical F/B in practice ultimately becomes an exercise in achieving electrical symmetry of the array. This is not easy, but efforts continue to reach that goal. Fortunately, like Yagis, these arrays want to work. Less than optimum drive conditions for forward gain find them as tolerant as Yagis, but also as intolerant for high front-to-back ratio. Despite large departures from design drive currents and delay angles, forward gain is not affected much. But seemingly insignificant differences in drive currents or delay angles drastically reduce the maximum F/B capabilities. A 10 percent change in drive current of one element in a 4-square can bring the array from a really excellent 30 to 40 dB F/B down to an average 15 to 20 dB. Another way of looking at this is that excellent F/B ratios hold over a small frequency range, while gain holds over a relatively much larger range, as W2PV showed for the Yagi.\(^3\)

Although the principles for correctly feeding a multiple driven element array have been known since the 1930s,\(^6,7\) their primary application has been by the long-wave a-m broadcast industry, and relatively little has been published in Amateur Radio literature. Perhaps editors may have felt the subject too complex, or that it lacked broad reader interest. Another possible reason is that few modern antenna texts discuss feed methods for such arrays. Typically, many field plots are shown, but means for achieving them are left to the reader.

areas to be addressed

It is the purpose of this series of articles to attempt to fill this gap. Over the next few months I shall try to address the following considerations:

I. Theoretical Array Design
 - Element spacing
 - Drive requirements — magnitude and phase
 - Field plotting — how to calculate

II. Self and Mutual Impedance
 - Measurements and calculations
 - Ground planes
 - Element driven impedances

III. Drive Network Design
 - Four-terminal network matrices
 - Pi and T coax equivalents
 - Directional switching
 - Adjustment and measurement

Topics of this nature cannot be adequately discussed without presenting voltages, currents, and impedances in complex algebraic form, such as $R + jX$ for impedance. Those readers who understand them will have no difficulty in following the presentation; for those who do not, I am assuming that they have a good enough general understanding of the concepts (of resistance and reactance) to be able to understand the implications of the conclusions I present.

In general, I shall try to address myself to general solutions, without restriction to specific designs. Where particular designs are examined, these will be by way of illustration, not for the sake of presenting any one proposal. Rather, it is my hope that readers will find their own solutions to their particular problems within the space they have available. There is nothing writ in stone, for example, which requires the elements of an array to be resonant, to be spaced at 1/4 wavelength, to be phased in multiples of 90 degrees, or to have radials measured to some exact length. Neither do all arrays operate best with equal current magnitude to all elements. A few hours of mathematical experimentation will allow you to run through more designs than you could ever hope to build.

Building vertical phased arrays is not a black art; with accurate measurements of self and mutual impedances and with reasonably good electrical symmetry, theoretical design goals can be closely approximated in practice. Most of the explanation for the large gap between theory and practice which so many builders encounter lies in the many invalid assumptions discussed earlier.

references

ham radio
A broadband antenna can be constructed by using a pair of stagger-tuned dipoles, either horizontal or inverted Vs, mounted at right angles to each other and connected in parallel. (See fig. 1.) A single 50-ohm coaxial cable is used for the transmission line. The dipoles are of different lengths, with the longer tuned to a frequency near the lower edge of the band and the shorter to a frequency near the upper edge of the band. Because the dipoles are at right angles, no cancellation or nulls occur in the combined radiated field. Near mid-band, the antenna is omni-directional.

The purpose of this article is to derive the basic equations which apply to the standing wave ratio curve for this antenna. These equations are then used to determine the fundamental relationship between the bandwidth and the SWR.

80-meter measurements

The entire 80-meter band is described by a W-shaped SWR curve with a maximum of about 2 (both at the middle and at the band edges). The measured curve of an experimental model is shown in fig. 2.

The 80-meter band, having the greatest percentage bandwidth of all the Amateur bands, is covered by the stagger-tuned antenna without exceeding an SWR of 2. As used here, the term percent bandwidth of a circuit is defined as the bandwidth divided by the mid-band frequency, multiplied by 100. The four Amateur bands considered here, 160, 80, 40, and 10 meters, have bandwidths of 10.5, 13.3, 4.2, and 5.9 percent respectively.

dipole impedance

The stagger-tuned antenna impedance is determined by the impedances of the parallel dipoles. An equivalent schematic for a single center-fed dipole, near its series resonant frequency, is shown in fig. 3.
The equation for the impedance of a dipole given in this figure curvature has been derived by fitting to dipole impedance curves. It is convenient to use normalized impedances, obtained by dividing by 50 ohms, a commonly used coaxial cable characteristic resistance (R_o). At resonance, the normalized radiation resistance of a dipole is 66/50, or 1.32, * numerically equal to its SWR.

For comparison, note that the calculated bandwidth of a horizontal dipole is 7.1 percent at an SWR extreme of 3.0:1. The reactance part of the dipole impedance is about equal to the resistance and the phase angle is approximately 45 degrees. This 7.1-percent bandwidth for a dipole is the basic building block of the stagger-tuned antenna.

impedance of parallel stagger-tuned dipoles

Fig. 4 shows the equivalent circuit for the parallel dipoles, with impedance Z_1 tuned to the lower frequency F_1, and Z_2 tuned to the upper frequency F_2. With F_1 and F_2 fixed, the equation in fig. 3 first is used for each dipole in turn, to determine the two dipole impedances. From these, and at each frequency, the usual parallel impedance equation of fig. 4 then gives the stagger-tuned antenna impedance. Finally, the SWR over the entire band is calculated.

For frequencies between the two dipole resonances, the lower F_1 and the higher F_2, an interesting and useful effect exists, which leads to wideband operation. Between F_1 and F_2, the F_1 dipole has a positive reactance while the F_2 dipole exhibits a negative reactance, each being in series with its own radiation (real) resistance. The network acts like a lossy anti-resonant circuit. It is the impedance of this anti-resonant circuit which produces the SWR maximum in the center of the band and limits the attainable bandwidth.

At the center, the two reactances always are equal in magnitude and opposite in sign. The two resistances differ somewhat because of the radiation resistance frequency dependency, that for F_1 being higher than the resistance at its resonance and that for F_2 being an equivalent amount lower. With a further increase in frequency separation (greater than 7.1 percent) the reactances increase faster than the resistances, causing an increasing anti-resonant resistance and SWR.

calculations

Two W-shaped SWR curves have been prepared, fig. 5 for an antenna which turned out to be not quite wide enough for the 80-meter band, and fig. 6 for an antenna not quite wide enough for the 160-meter band. The calculated curves have an appearance remarkably similar to the measured curve of fig. 2 and confirm that an SWR of less than 2 can be expected for the entire 80-meter band. Using these trial curves, a very good estimate of the needed increase in stagger spacing can be made.

80 meters

The SWR curves of the individual dipoles F_1 and F_2 are drawn in to show that, even when they are far...
apart, they still interact to produce an acceptable SWR in the center. Further, the two frequencies where the stagger-tuned SWR curve is lowest, are lower than for individual dipoles.

For the 80-meter band, the stagger should be increased to 10 percent instead of 9.3 percent used in the computations, to fully cover the band. The SWR at the ends and the central maximum is about 2.

160 meters

For the narrower 160-meter band, the stagger should be increased to 9 percent, instead of the 7.9 percent used in the computations. The SWR is about 1.7, less than for the 80-meter band.

10 and 40 meters

The much narrower antenna bandwidths for the 10- and 40-meter bands do not exhibit a center frequency SWR maximum. Instead, a different consideration controls the dipole stagger. The computed SWR curve is shown in fig. 7 for this condition. As the dipole stagger is reduced to fit these bands, the central maximum disappears and a broad minimum appears. This change occurs at a dipole bandwidth spacing of 7 percent. However, as the minimum is further reduced, the outside edge SWR begins to increase. A choice of 6 percent relative dipole stagger for both the 10- and 40-meter bands appears to be a reasonable compromise.

There is a low overall SWR. This places the dipoles at the edge of the 10-meter band but outside the edges of the 40-meter band! For 10 meters, the maximum SWR is about 1.5, and for 40 meters about 1.3.

summary

Equations which apply to the stagger-tuned crossed dipole antenna have been specified. The 80-meter Amateur band is, relatively, the widest. Measurements and calculations confirm that this entire band can be covered with a SWR of about 2.

A tabulation of the calculated (required) resonant frequencies for the two dipoles, and the calculated maximum SWR for the 160-, 80-, 40-, and 10-meter bands, are given in table 1, below:

<table>
<thead>
<tr>
<th>Band</th>
<th>Resonant Frequencies MHz</th>
<th>Calculated Maximum SWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>1.81 1.98</td>
<td>1.7</td>
</tr>
<tr>
<td>80</td>
<td>3.56 3.94</td>
<td>2.1</td>
</tr>
<tr>
<td>40</td>
<td>6.93 7.36</td>
<td>1.3</td>
</tr>
<tr>
<td>10</td>
<td>28.00 29.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note that, for the 40-meter band, the dipole resonant frequencies lie outside the Amateur band. Using only the formula for length is satisfactory, without a direct measurement of the resonant frequency, because the 40-meter band uses only the central 4.2 percent of the antenna's basic 6 percent width.

All the data presented in this article, except the measured curve of fig. 2, have been calculated using representative impedances for a dipole. Calculations have insured that the results are comparable throughout, and help determine effects that might not be noticed using only measurements.

A dipole's impedance depends in part on nearby objects and the height above ground. Inverted Vs add even more variables. However, the calculated results show that the stagger-tuned antenna can be adjusted to develop the required wideband characteristic.

references

2. Allen B. Harbach, WA4DRU, "Broad Band 80-Meter Antenna," QST, December, 1980, pages 36 and 37. Note that the k equation on page 37 should have the square root radical sign placed over the fraction.
The Problem Solvers

R.F. Power Monitoring
IM Suppression Panels

Receiver Multicoupling

Duplexers & Preselectors

Bandpass, Pass-Reject and Notch Cavity Filters

Transmitter Combining
150 – 900 MHz

COMPLETE SYSTEM ENGINEERING ASSISTANCE

TELEWAVE, INC.
2166 OLD MIDDLEFIELD WAY, MOUNTAIN VIEW, CA 94043
(415) 968-4400 • TWX 910-379-5055

More Details? CHECK—OFF Page 132
20-meter mobile vertical

CB plus replacement auto antenna combine to make a durable performer with good bandwidth

It's unusual to find a homebrew mobile high-frequency antenna, partly because it's rather difficult to construct one which will withstand the 100-plus mph winds antennas encounter from time to time. However, it is relatively easy to convert a Radio Shack mobile CB antenna to 20 meters, and the resulting antenna is a surprisingly good performer.

The basis for the antenna is a Radio Shack 4-foot Fiberglass Whip, #21-934 (fig. 1). The whip is helically wound near the top and fits a standard 3/8 × 24 threaded mount. When mirror-mounted on my van using a Radio Shack #21-937 mount, the unmodified whip shows an impedance of 25-j1000 ohms at 14.3 MHz. It can be resonated at this frequency by adding, at the top, about 27 inches of straight whip, made from a replacement auto antenna.

Most replacement auto antennas are designed to attach to the broken stub with a set screw. To provide a stub attachment point at the top of the CB whip, carefully scrape away the outer fiber glass material to expose about 1/4-inch of the embedded wire. It appears to be 22-gauge enamel-coated wire. Bare the wire and tin it. Cut the head off a 1/4-inch diameter, 1 1/2-inch brass bolt, and tin the butt (thicker portion) of the threaded end. Solder this end to the wire.

This stub attachment will be secured to the CB whip with glass cloth and epoxy (fig. 2). First, however, it's necessary to fasten the bolt to the CB whip to prevent the fine wire from breaking during handling. Lay the CB whip horizontally and block it up so that the auto whip is aligned. Attach the auto whip to the bolt by tightening the set screw, and block it level with the CB whip. Put a dab of 5-minute epoxy on the end of the CB whip, press the two sections together, and visually align them.

After the epoxy has thoroughly hardened, remove the auto whip and sand the top 2 inches or so of the CB whip and bolt with fine sandpaper. This provides a clean surface for the fiber glass reinforcement. Glass cloth/epoxy repair kits are available at most

By Gary E. Myers, K9CZB, 28W135 Hillview Drive, Naperville, Illinois 60565
hardware stores. Cut three strips of cloth about 12 inches long and 1 inch wide and saturate them with mixed epoxy resin. Starting about 2 inches below the

![Diagram](image)

joint, wind each strip in overlapping fashion, like tape, to cover the joint and 1/2 to 3/4 inch of the bolt. Three layers of cloth will provide ample strength. Be sure to follow all instructions provided with the kit, including the safety precautions.

The joint will be messy at this point, but it can be smoothed out by sanding after the epoxy has cured completely. It probably will be necessary to scrape or sand the exposed portion of the bolt to remove epoxy that has formed on it. Attach the replacement auto whip securely, and you will be ready for tune-up.

matching to the whips

Each mobile installation differs by vehicle, the type of mount, and the position of the antenna on the vehicle. The 27-inch whip length mentioned earlier may not be correct in any installation but mine, but it should be close. Make adjustments as necessary for your situation.

A few hints may make the tune-up process a little less frustrating: 1) use a feedline that is a multiple of one-half wavelength (don’t forget the velocity factor) to avoid transformer action in the feedline; 2) park the vehicle well away from objects, such as trees and overhead wires, to prevent detuning; and 3) shorten the whip a little at a time — no more than 1/8 inch per cut when you’re near resonance. The *ARRL Antenna Book*¹ details other methods for resonating a mobile antenna.

At resonance, the antenna shows a resistive impedance of 30 to 35 ohms. The resulting SWR is adequately low for many purposes, but the bandwidth may be improved by better matching. Trim the whip to be inductive (too long), and then add the appropriate value of shunt capacitance from the base of the antenna to ground, forming an L-network which transforms the impedance to 50 ohms. I found that merely attaching a 200-pF, 500-volt mica capacitor to the base of the antenna and ground with spring clips, then shortening the straight whip until the antenna resonated, provided a feedpoint impedance that was very close to 50 ohms.

When tuned in the above fashion, the antenna showed a 2:1 SWR bandwidth of about 50 kHz for my installation. Consistently good signal reports have come from all areas of the U.S.; I’ve been running 100 watts PEP (no DX has been attempted). The small-gauge wire used in the CB whip probably has more ohmic loss than desirable, but the performance is not harmed noticeably.

reference

SURPLUS ELECTRONIC MATERIAL

19 Allerton St. P. O. Box 62 East Lynn, Ma. 01904

PDR-27 NAVY RADIATION METER
Just released by the US Navy. They appear to be excellent condition and include the fitted aluminum transit case. Batteries not furnished but are available in most electronic supply houses. 4 ranges 0.5 to 500 mrv/hr. Removeable hand probe, detection of Beta and Gamma radiation. With todays world conditions and perhaps proximity to a nuke power station, it might provide a little insurance to own one of these instruments. With no facilities to check or test, we offer AS IS, visually OK Schematic provided with each. We have some accessories and offer as an option although not required for operation.

Shipping wt 22 lb PDR-27 Rad Meter $50.00
PDR-27 phones $7.00 Approx 100 page Instr. Book $10.00
Hi Sensitivity GM tube $10.00 Low Sensitivity GM tube $5.00
The above listed tubes already are installed in the meter.
We are offering these 2 tubes should you wish spares.

9 Inch monitor runs off of 115 VAC by Motorola in handsome styled case. This monitor accepts composite video thru a BNC connector mounted on rear of cabinet. Great monitor for surveillance, VCR playback, or computer use. These are used, but are in operational condition, each one checked out prior to shipment. Shpg. wt. approx. 20 lb.
Stock # MOT-8 $40.00

KLH SPEAKER STANDS
Difficult to find and for some reason normally high priced & out of reach. Usually over $100 the pair. Floor base 18 inches diameter. Speaker base 7 inch square. As set up, speaker will be 13 inches off the floor. The speaker may be swiveled at will when mounted. Holds over 200 lbs. Jet black, in original KLH cartons. Price per pair.
Ship wt pair 17 lb KLH $25

COLLINS
PTO-VFO

$12.50

High priced VFO removed from Collins Military T-195 radio. Comes with matched pair of tubes 5749. One is Osc & one is Buffer. Freq. range 1.5 to 3 Mhz Requires 150 volts DC, 28 volts for heater on oven, and 12 volts heater on tubes. Xint cond, tenderly removed from exptmt. With schematic.
Shipping wt. 5 lbs. SP1-4B $12.50

This is the basic CB 40 channel synthesized PC board assembly. A value for the many parts such as "IF" cans, caps, resistors, "IF" crystal, phase lock loop IC, RF & modulation transistors, etc. We furnish a typical schematic. Spots on the board at first glance appear to be missing parts. Not so, the board was upgraded by adding more components for the higher priced more sophisticated sets. These boards were written up in "73" magazine Fall of 1978 for 10 meter conversion. Find a use for one lone part, and you have your full purchase price realized.

SP-126A $8.00

Two different writings for 10 Meters in "73 MAGAZINE" Aug and Sept 1980

Phone orders accepted (617) 595-2275 No COD's
Shipping extra on above.
Send for free 72 page catalogue jam packed with bargains.

Tell 'em you saw it in HAM RADIO!
repeater antenna beam tilting

A four-pole collinear reduces a shadowing effect common to mountainous areas.

During recent years I've helped design and construct several commercial and Amateur repeaters. Most of these repeaters are located on high mountains where large elevation differences exist between mobile stations and the machine. From such sites, conventional antennas may overshoot the intended coverage area. I wish to introduce a method of electrical beam-tilting which will optimize the use of the antenna radiation pattern.

shadowing and overshoot

Western Montana and the Rocky Mountain region in general have similar topography. In these areas mountains rise from the prairie and valleys to form natural towers for prospective repeaters. Many exceed 10,000 feet (3049 meters) in elevation. From the early years of two-meter repeatering, Montana Amateurs have made use of these sites. In situations like this where very high repeater sites are used, a problem called shadowing can exist.

Fig. 1 is an example of a spot where a repeater site is 3000 feet (914 meters) higher in elevation than the desired coverage area. Additionally, the rise in elevation takes place over the relatively short, horizontal distance of five miles (eight kilometers). Eq. 1 is used to calculate a depression angle of −6.5 degrees from the repeater to the coverage area. (The angle is approximate because curvature of the earth was not included.)

\[\theta = \tan^{-1} \frac{C - R}{D} \] \hspace{1cm} (1)

where: \(\theta \) = The depression angle (degrees)

\(R \) = The repeater elevation (feet or meters)

By Lee Barrett, K7NM, 214 East 1800 South, Apt. 0, Clearfield, Utah 84015
The first is the familiar 24 foot (7.3 meters) high, fiberglass encased collinear, which is easy to mount and performs well. Also, some manufacturers will provide an electrical downtilt to your specifications for an additional charge and a shipping delay. For a repeater group working on a shoe-string budget, however, this antenna is not the most economical. Furthermore, if your site is subjected to icing and frequent high winds, the fiberglass collinear may not survive very well. Any small, internal fracture caused by flexing in the wind may cause an rf diode to form and introduce horrid screeches and howls into the repeater. Such slight defects are magnified where the receiver and transmitter of the repeater are closely spaced in frequency. In such cases, the unusable collinear for repeater applications may oftentimes be retired to satisfactory base station service.

I favor a second type of collinear antenna comprising four dipoles fed in phase. This array, illustrated in fig. 3, is commonly called the Four Pole antenna. It is derived from linear array theory and can be used for electrical beam tilting. Some commercial Four Poles use folded dipoles with matching baluns as elements, while others use common dipoles with gamma matching or straight feeds. In any case, the antenna feed impedance should be 50 ohms.

Each 72-ohm cable section with a length equal to an odd multiple of a quarter-wave transforms a 50-ohm termination to 100 ohms at the driving end. The resulting 100-ohm impedances are combined in parallel through tee connectors to produce 50-ohm results. The 72-ohm coax harness shown in fig. 3 is used to combine the element impedances to a common 50-ohm feedpoint. Also, since the signal must travel an equal distance from the feedpoint to each element, the elements are fed in phase.

All cable length calculations are multiplied by the cable velocity factor to obtain actual lengths. The antenna considerations

Through experimentation, the collinear type of antenna seems to be a superior antenna choice for tall, mountain-top applications. Consequently, the discussion is limited to two types of collinear antennas.

the solution

Commercial fm and television transmitters are often located on mountain-top sites. If necessary, beam tilting is used to direct the radiated energy downward from the transmitter site to the intended area of coverage. Beam tilting may be required at lower elevations than one might expect. With consideration given to the curvature of the earth, for example, a transmitter site only 1000 feet (305 meters) above the earth requires a 0.5 degree downtilt for the center of the main antenna radiation pattern to intersect the horizon! Obviously, the repeater described earlier could be a serious candidate for beam tilting.

antenna considerations

Through experimentation, the collinear type of antenna seems to be a superior antenna choice for tall, mountain-top applications. Consequently, the discussion is limited to two types of collinear antennas.
Pole elements are first considered as a vertical stack of four isotropic radiators (small radiating spheres), each spaced one wavelength above the next. The normalized far field pattern for this linear antenna array is given by eq. 2

$$E_a = \frac{\sin n (180^\circ s) \cos \theta + \frac{d}{2}}{n \sin (180^\circ s) \cos \theta + \frac{d}{2}}$$ \hspace{1cm} (2)

where: $E_a = \text{Field strength of the array (normalized to unity)}$

$n = \text{The number of antenna elements}$

$s = \text{The antenna spacing from center to center (wavelengths)}$

$d = \text{The progressive difference in phase shift between antennas. The top element considered at 0 degrees for reference (degrees)}$

$\theta = \text{The counterclockwise angle off vertical formed by a line from the array center to the desired field point (degrees)}$

(There are a few values that when substituted in eq. 2 produce an indeterminate form, e.g., zero divided by zero. This problem is overcome by use of the mathematical technique known as L'Hospital's rule* or by recalculating eq. 2 using a slightly greater angle, e.g., $\theta + 1$.)

*Differentiate both the numerator and denominator and substitute 0 for θ if eq. 2 is still indeterminate, repeat process. Ed.
Once the array pattern is solved the isotropic sources are replaced by vertical dipoles. This is accomplished mathematically by multiplying the linear array pattern by the dipole pattern given in eq. 3. The same method of overcoming indeterminates may be used here as was suggested for eq. 2.) The dipole calculations and pattern multiplication results are also shown in table 1. The resulting Four Pole pattern is plotted in fig. 4.

\[E_d = \frac{\cos(90\degree \cos \theta)}{\sin \theta} \]

where:

- \(E_d \) = Field strength of the dipole (normalized to unity)
- \(\theta \) = The counterclockwise angle off vertical formed by a line from the center of the dipole to the desired field point (degrees)

Since the dipole pattern is a constant, the only hope of creating a downtilt is by modifying some parameter in the linear array pattern. In examining a

<table>
<thead>
<tr>
<th>Angle (\theta) (Degrees)</th>
<th>(E_{\text{E}})</th>
<th>(E_{\text{d}})</th>
<th>(E_{\text{Four Pole}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 181</td>
<td>1.000</td>
<td>.014</td>
<td>.014</td>
</tr>
<tr>
<td>11, 191</td>
<td>.992</td>
<td>.151</td>
<td>.150</td>
</tr>
<tr>
<td>21, 201</td>
<td>.894</td>
<td>.291</td>
<td>.260</td>
</tr>
<tr>
<td>31, 211</td>
<td>.562</td>
<td>.432</td>
<td>.243</td>
</tr>
<tr>
<td>41, 221</td>
<td>.021</td>
<td>.573</td>
<td>.012</td>
</tr>
<tr>
<td>51, 231</td>
<td>.272</td>
<td>.708</td>
<td>.193</td>
</tr>
<tr>
<td>61, 241</td>
<td>.048</td>
<td>.828</td>
<td>.040</td>
</tr>
<tr>
<td>71, 251</td>
<td>.238</td>
<td>.922</td>
<td>.291</td>
</tr>
<tr>
<td>81, 261</td>
<td>.489</td>
<td>.982</td>
<td>.480</td>
</tr>
<tr>
<td>33.5, 263.5</td>
<td>.710</td>
<td>.991</td>
<td>.704</td>
</tr>
<tr>
<td>91, 271</td>
<td>.993</td>
<td>1.000</td>
<td>.993</td>
</tr>
<tr>
<td>96.5, 276.5</td>
<td>.710</td>
<td>.991</td>
<td>.704</td>
</tr>
<tr>
<td>101, 281</td>
<td>.300</td>
<td>.973</td>
<td>.292</td>
</tr>
<tr>
<td>111, 291</td>
<td>.271</td>
<td>.906</td>
<td>.246</td>
</tr>
<tr>
<td>121, 301</td>
<td>.047</td>
<td>.805</td>
<td>.038</td>
</tr>
<tr>
<td>131, 311</td>
<td>.262</td>
<td>.682</td>
<td>.179</td>
</tr>
<tr>
<td>141, 321</td>
<td>.130</td>
<td>.545</td>
<td>.071</td>
</tr>
<tr>
<td>151, 331</td>
<td>.651</td>
<td>.404</td>
<td>.263</td>
</tr>
<tr>
<td>161, 341</td>
<td>.928</td>
<td>.263</td>
<td>.244</td>
</tr>
<tr>
<td>171, 351</td>
<td>.996</td>
<td>.124</td>
<td>.120</td>
</tr>
</tbody>
</table>

![fig. 5](image1.jpg)

fig. 5. By inserting 50-ohm coaxial delay sections between the dipole feed points and the 72-ohm feed sections, a progressive phase shift is introduced. Selection of the proper phase shift causes the antenna pattern to electrically tilt downward.

![fig. 6](image2.jpg)

fig. 6. By selecting the proper beam tilt through the information presented in the text, shadowing may be eliminated through maximum utilization of the repeater antenna pattern. The curvature of the earth and the angle from the repeater to the horizon must also be considered.
table of linear array patterns, I discovered that a progressive phase delay of the lower Four Pole elements would, in theory, tilt the beam downward. In practice, the phase delay is accomplished by placing appropriate lengths of 50-ohm coax cable between the antenna element feed points and the 72-ohm phasing harness, as illustrated in fig. 5. Although it is not necessary to add any length to the top element, doing so overcomes any phase errors caused by the addition of connectors used in the lower element phasing sections.

determining downtilt

The first step in formulating a downtilt is to determine two depression angles. The first is the angle of the horizon and the second is the deepest angle where repeater shadowing is not to be allowed. Eqs. 4 and 5 may be used for these angles respectively. 7

\[A_h = \frac{0.0108P}{D} \]
\[A = \frac{0.0109H}{D} \]

where:
\(A_h \) = The depression angle to horizon (degrees)
\(P \) = The elevation difference of the repeater site over the average terrain elevation (feet — multiply meters by 3.28)
\(A \) = The depression angle (degrees)
\(H \) = The elevation difference of the repeater site over the nearest point of shadowing concern (feet — multiply meters by 3.28)
\(D \) = The horizontal distance from the repeater to the nearest point of shadowing concern (miles — multiply kilometers by .62)

Once these angles are known, the half-power beamwidth of the Four Pole may be fitted to these angles to provide optimum coverage.

For example, assume a repeater is located on an 8500 foot (2591 meter) peak overlooking a valley with an elevation of 4000 feet (1220 meters) and the difference in elevation occurs over a distance of five miles (eight kilometers). Because the area is fairly mountainous, the average terrain height to the horizon could be estimated at 6000 feet (1829 meters). From eq. 4 and 5, the two depression angles are \(A_h = 0.76 \) degrees and \(A = 9.8 \) degrees.

Fig. 4 and table 1 show the half-power beamwidth of the Four Pole to be very close to 13 degrees or 6.5

![Figure 5: The program presented is compatible with the TRS-80 microcomputer and may be used to speed and simplify the downtilt design calculations.](image-url)
degrees from the beam center to either side. If necessary, the half-power beamwidth may be widened by placing the elements closer together (this can be done by substituting proper value of s less than one in eq. 2).

At this point, a decision must be made as to where the energy is to be distributed. I decided to use one wavelength spacing and to place the lower, half-power point at a depression angle of 9.8 degrees. As illustrated in fig. 6, the beam must be tilted downward 3.3 degrees. The upper half-power point then occurs at an elevation angle of 3.2 degrees which allows some of the signal to bend over the horizon to the DX stations.

Although the calculations may be done by hand using eq. 2 and 3, I used a computer program for the TRS-80 which is listed in fig. 7. As illustrated in fig. 8, the program results indicate that a three-degree depression angle can be achieved with a fifteen-degree progressive phase delay to the lower Four Pole elements. The fifteen-degree phase delay coax length is calculated using eq. 6.

\[
L = \frac{C \times P}{f \times 360} \times 100V
\]

where:

- \(L = \) The phase delay coax length (centimeters — divide by 2.54 for the length in inches)
- \(C = \) Velocity of a wave in free space (300,000,000 meters/second)
- \(f = \) The operating frequency (Hertz)
- \(P = \) The phase delay required (degrees)
- \(V = \) The velocity factor of the coax to be used

The phase delay length for 146.88 MHz will be 2.25 inches (5.72 cm), assuming the velocity factor of the coax to be 0.677. Referring to fig. 5, the phase delay coax lengths from top to bottom will be 2.25 inches (5.72 cm), 4.5 inches (11.43 cm), 6.75 inches (17.15 cm), and 9 inches (22.86 cm), respectively.

mechanical considerations

If the Four Pole is to remain free-standing in a high wind and ice environment, the antenna should be guyed at the top. A nonconducting guy cable such as Phillystran® may be used with standard-size cable clamps. The bottom three to four feet (.914 to 1.22 meters) should be steel guy cable to prevent rodent damage.

Having worked on some pretty tough sites, I put quite a lot of thought into a Four Pole that would survive. Fig. 9 details such an antenna, which I intend to test in the near future. A nonconductive support structure such as a wooden pole is ideal. However, with the antenna spaced a wavelength from the support structure, even a metal tower should not greatly degrade the pattern.

The antenna is constructed of alternate sections of the insulating guy material previously mentioned and no. 10 solid copper. Sections of PVC pipe are used to protect the horizontal runs of the phasing harness coax from ice damage. Since the tensile strength of the cable antenna is large, the antenna is used to support one end of the PVC sections. The opposite PVC section ends are clamped to the support structure.

A turnbuckle is used to tighten the antenna. The cross-sectional area of the antenna is small and presents a very low wind resistance. Any vibration in the cable antenna tends to clear itself of ice. Finally, the antenna is omnidirectional because the elements are truly collinear.

conclusion

Antennas and mousetraps seem to fit the same category — someone is always after a better one. At present, one downtilt system has been tested. From this initial experience, the downtilt seems to reduce the amount of mobile chopping usually experienced in the canyons and gullies. Only one comparative test has been made, and in that test the downtilt was generally better than the standard Four Pole in both transmitting and receiving.

This is an early stage in my experimentation with downtilt antennas and I would appreciate receiving
any test results others might gather using these antennas.

acknowledgments

Thanks go to Dennis Nord, WB7UOI, for his aid and assistance with computing and testing of antennas.

references

4. Ibid, page 78.
5. Ibid, page 142.
8. Philystran® a product of Philadelphia Resins Corporation, P.O. Box 454, 20 Commerce Drive, Montgomeryville, PA 18936.

ham radio

ADM 11, ADM 13, ADM 16, ADM 20
Sturdy Aluminum & Steel Construction
Easy Assembly & Installation
ANTENNA DEVELOPMENT & MANUFACTURING, INC.
P.O. Box 1178, Hwy. 67 South
Poplar Bluff, MO 63901
(314) 785-5988 686-1484
short vertical antennas for the low bands: part 1

Relative performance of 5 different shortened verticals is compared to full quarter-wave radiator

The increasing popularity of the 160-meter band and recent FCC regulatory actions opening the lower 100 kHz to normal Amateur operations have attracted Radio Amateurs to the top band. Many are discovering that wire antennas normally used on the higher frequencies require difficult to achieve heights and lengths for effective operation, especially 160 meters.

The decision to investigate verticals rather than doublets or other horizontal antennas resulted from space limitations and performance requirements. (A maximum height of 35 feet, one of the constraints, equates to 1/8 wavelength on 75 meters and 1/16 wavelength on 160 meters. Most horizontal antennas at this height above ground provide only high-angle radiation.) A two-band trapped vertical is described that uses the same radiating element for both bands.

By W.J. Byron, W7DHD, 5 Lambert Lane, Robbinsville, New Jersey 08691
and isolates the top-loading capacity hats with a trap. A short vertical can be nearly as efficient as a full-size quarter-wave vertical if it is top-loaded, and has an extensive ground system.

design considerations

A quarter-wave vertical has a radiation resistance of approximately thirty-six ohms. In quarter-wave (or shorter) systems, over non-ideal ground, a total resistance \(R_T \) would be:

\[
R_T = R_r + R_\Omega + R_g
\]

where
- \(R_r \) = radiation resistance
- \(R_\Omega \) = circuit resistance
- \(R_g \) = ground resistance

Fig. 1 illustrates the calculated current distribution for three verticals. Fig. 1(A) is a plot of the current in the perfect quarter-wave, Fig. 1(B) for a 23-degree high, top-loaded vertical, and Fig. 1(C) for a 23-degree high, base-loaded system. Figs. 2 and 3 show the values for helical, center-loaded, and 50/50 top- and base-loaded verticals, all 23 degrees in electrical height. The calculations show that short verticals can be nearly as efficient as full-size antennas. (The 23 degree electrical length is related to my height restriction.)

Short antennas have current distributions that can be approximated by triangular or trapezoidal shapes. The set of curves illustrated in Fig. 4, extrapolated from a standard reference volume on antenna design are used to determine the radiation resistance of short verticals for defined current distributions.

The curves worked very well for the 160-meter version of my antenna. I departed from the specific domain of the curves in the evaluation of the radiation resistance of the 75-meter system. The 19-ohm resistance for a top-loaded 48.9-degree-high vertical (determined from Fig. 4) is very close to the measured value and to the value derived by original methods. Figs. 5 and 6 resulted from my not knowing how far (or whether) to extrapolate the curves in Fig. 4. Fig. 5 has been modified to fit two well-measured resistances, but it is within three to five percent on the curve as derived. As modified, it is probably within one percent anywhere for \(\theta \) between 3 and 90 degrees. Fig. 6 presents the radiation resistances of base-loaded verticals ranging from 6 degrees to 90 degrees in height. Other combinations of base-loading and top-loading result in radiation resistances somewhere between these curves.

Free-space wavelengths were used to calculate antenna heights. No attention was given to the element length-to-diameter ratio, or to end-effects. For most systems the length-to-diameter ratio is high, and the differences between, say 20 degrees and 21 degrees in terms of radiation resistance is negligible.

Once the calculations were made for the radiation resistances, the feedpoint resistances were defined, and the final evaluation proceeded.
In all calculations a lossless quarter-wave vertical was used as reference. Field strength is directly proportional to the product of the length of radiating element, and the current in that element in ampere-degrees or ampere-radians. The areas under the profiles of currents in figs. 1 through 3 are equal to one ampere-radian for 36-watts of input power. The one exception, the helical antenna, was calculated at six ohms rf-resistance in the helicoid, and the integration was done graphically, since current varies linearly along its length.

evaluation

In order to compare the vertical antennas, a ground system consisting of 40 1/8-wave radials was used.

A quarter-wave vertical working against this ground system (12 ohms at 1.8 MHz) exhibits a 75-percent efficiency. This ground system is now used with the shortened verticals.

Since the calculated radiation resistance for a λ/16 base-loaded vertical is 1.5 ohms (see fig. 6 with θ = 23 degrees), the efficiency is

\[\eta = \frac{1.5}{7.5 + 12 + 2} = 9.7\% \]

where the 2 in the denominator is the rf resistance of the wire in the base-loading coil. Consequently a base-loaded antenna over the same ground system is one-tenth as efficient as a lossless quarter-wave antenna.

Since efficiencies are indicative of radiated field strengths, signal levels, referred to the quarter-wave standard, would be:

\[20 \log_{10}(\text{relative efficiency}) = \text{dB} \]

In the case of the base-loaded vertical, this becomes:

\[20 \log_{10}(0.097) = -20.26 \text{ dB} \]

Table 1 lists the expected performance of seven vertical antennas:

All the calculations are the same, with the exception of the helical vertical. It was evaluated by making some assumptions: it requires λ/2 of wire to achieve λ/4 resonance; wire size is No. 12, 250 feet; overall height is 35 feet, or 23 degrees; very small (< 1 degree) top-hat (the pie tin); the current decreases linearly over the helix.

The current distribution is triangular with an area equal to 1/2 θ ampere-degrees. It ranks seventh out of seven verticals, and was not further considered. It is a poor choice, especially when the amount of material and the difficulty of construction are considered.

actual design

Two-band operation would be achieved with the same radiator if a method of switching top hats could be engineered. This was accomplished by use of two separate top hats and a parallel-resonant trap.
Table 1. Relative ranking of several vertical systems by field strength, constant 23 degrees aperture and constant power input.

<table>
<thead>
<tr>
<th>Antenna System</th>
<th>Description</th>
<th>Conditions</th>
<th>Relative Field Strength, dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Full-sized λ/4 vertical</td>
<td>Zero losses</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Full-sized λ/4 vertical</td>
<td>12 ohm ground</td>
<td>-2.5</td>
</tr>
<tr>
<td>C</td>
<td>λ/16 top-loaded</td>
<td>12 ohm ground, 1 ohm coil</td>
<td>-10.0</td>
</tr>
<tr>
<td>D</td>
<td>λ/16 top and base loaded</td>
<td>12 ohm ground, 2 ohm coil</td>
<td>-12.4</td>
</tr>
<tr>
<td>E</td>
<td>λ/16 center-loaded</td>
<td>12 ohm ground, 2 ohm coil</td>
<td>-19.25</td>
</tr>
<tr>
<td>F</td>
<td>λ/16 base-loaded</td>
<td>12 ohm ground, 6 ohm coil</td>
<td>-20.26</td>
</tr>
<tr>
<td>G</td>
<td>λ/16 helical</td>
<td>12 ohm ground, 6 ohm coil</td>
<td>-20.28</td>
</tr>
</tbody>
</table>

The T-200-2 (red core) powdered-iron toroids were wound with No. 12 solid copper wire and resonated with 400 pF at 3.8 MHz. The fundamental wave shape was observed at the kilowatt level for signs of distortion and for ticks in the reflected power on the Bird wattmeter. This was done to determine whether the trap core saturates. No calculation was performed during design — an oversight.

The trap is subjected continuously to the same abuse as is a tank circuit of a kilowatt linear which is unloaded, dipped to resonance, and driven by an exciter. Any trap must be designed to withstand that treatment. Consequently, any trap in any system should be built from the same size and quality components used in the amplifier that drives them — preferably better quality.

Power dissipated in the trap

With a trap-resonating capacitance of 400 pF, and a trap-inductance of 4.5 μH, both exhibit 108 ohms at 3.8 MHz, while the ten feet of No. 12 wire has an rf resistance of 0.25 ohms. This calculates to 31 watts of power, dissipated by the trap. This would prove very significant if the antenna were subjected to five or ten minutes of RTTY or a-m operation.

These considerations must be balanced by other factors. If the trap Q is increased, the loss is reduced; but so is the system bandpass. These are engineering trade-offs. The trap in this system effectively limits the 75-meter bandpass (between 2:1 VSWR points) to 86 kHz. Other methods are used to circumvent that limitation.

Another characteristic of short antennas is their very low feedpoint impedance — so low that it is sometimes hard to measure. In highly efficient systems the inclusion of even one ohm of non-radiating resistance will make a significant change in the feedpoint resistance. The equivalent series-input resistance \(R_n \) of the trap resistance, calculated above,
ham radio

may be estimated very closely if the as-built base current is known:

Given \(P_D = 30.9 \text{ watts (dissipation in trap)} \)
and \(I_B = 7.14 \text{ amperes} \)

then \(R_{eq} = \frac{30.9}{(7.14)^2} = \frac{30.9}{51} = 0.61 \text{ ohms} \)

So it is known already that the trap with its 0.25-ohm coil resistance will be reflected at the antenna base as 0.61 ohm in series with the other intrinsic resistances.

The calculated radiation resistance for the 75-meter system is 19 ohms. The measured feedpoint resistance is 19.6 ohms. It is highly probable that the 0.6-ohm discrepancy can be explained by the rf resistance of the trap, calculated in the preceding paragraphs.

The construction, measurements, and performance characteristics of verticals in general, and of a two-band trapped vertical antenna in particular, will be described in Part 2, the conclusion of this article.

references

HUSTLER ANTENNAS

SF2 - “Buck Buster” 5/8” Wave
2 Meter Antenna
w/3/8 x 24” Threaded Base - 3dB gain
HOT - EASY ON/OFF TRUNK MOUNT
with 3/8 x 24” Swivel Ball
for CG144 & SF-2

$8.95

CG144
5.2dB gain Collinear
w/3/8 x 24”
Threaded Base

$23.95

G6144 - 6dB
Base Antenna

$68.50

G7144 - 7dB
Commercial Grade
Base Antenna

$98.00

And many other Hustler Antennas & Mounts

BBL144 25.95
BBLT144 35.00
BBLT440 24.75
HLM 13.95

MRK-1 13.75
SFM 24.25
THF 13.75
UHT-1 8.5

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF & COMMERCIAL LINE
DEALER INQUIRIES INVITED

TC1109 MONITOR
$140.00

TC1501 CAMERA
$140.00

SLOW/FAST SCAN SPECIAL
- TC1109
- TC1501
- 16mm F1.6 Lens
- EEM1 Wallmount for Camera

$298.00

WAHL SOLDER STATION
7 Watt DC
with Adjustable Temperature Control

$35.00

WAHL CORDLESS 7700
Quick Charge Cordless Iron
with Charger

$25.00

TOP BRAND Popular Receiving Tube Types FACTORY BOXED 75/80% OFF LIST

<table>
<thead>
<tr>
<th>SEMI-CONDUCTORS</th>
<th>TUBES</th>
<th>RF CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF 245/5D1416</td>
<td>$30.00</td>
<td></td>
</tr>
<tr>
<td>MRF 454</td>
<td>$18.95</td>
<td></td>
</tr>
<tr>
<td>MRF 455</td>
<td>$12.50</td>
<td></td>
</tr>
<tr>
<td>MRF 644/5D1088</td>
<td>$19.95</td>
<td></td>
</tr>
<tr>
<td>2N3055</td>
<td>$9.25</td>
<td></td>
</tr>
<tr>
<td>2N6084</td>
<td>$12.50</td>
<td></td>
</tr>
<tr>
<td>3-400Z</td>
<td>$65.00</td>
<td></td>
</tr>
<tr>
<td>3-500Z</td>
<td>$85.00</td>
<td></td>
</tr>
<tr>
<td>4-400A</td>
<td>$80.00</td>
<td></td>
</tr>
<tr>
<td>4X250B</td>
<td>$50.00</td>
<td></td>
</tr>
<tr>
<td>572B</td>
<td>$39.50</td>
<td></td>
</tr>
<tr>
<td>811A</td>
<td>$12.00</td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>$35.00</td>
<td></td>
</tr>
<tr>
<td>6146B</td>
<td>$6.50</td>
<td></td>
</tr>
<tr>
<td>6360</td>
<td>$4.25</td>
<td></td>
</tr>
<tr>
<td>6833B</td>
<td>$6.75</td>
<td></td>
</tr>
<tr>
<td>7390</td>
<td>$9.15</td>
<td></td>
</tr>
<tr>
<td>7735A</td>
<td>$29.50</td>
<td></td>
</tr>
<tr>
<td>8122</td>
<td>$98.00</td>
<td></td>
</tr>
<tr>
<td>8156</td>
<td>$10.95</td>
<td></td>
</tr>
<tr>
<td>8844</td>
<td>$29.50</td>
<td></td>
</tr>
<tr>
<td>8873</td>
<td>$175.00</td>
<td></td>
</tr>
<tr>
<td>8874</td>
<td>$160.00</td>
<td></td>
</tr>
<tr>
<td>8877</td>
<td>$450.00</td>
<td></td>
</tr>
<tr>
<td>8908</td>
<td>$10.50</td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM ORDER $25.00
ALLOW $3.00 MINIMUM FOR UPS CHARGES

DEALER INQUIRIES INVITED

CeCo
COMMUNICATIONS, INC.

2115 AVENUE X, BROOKLYN, N.Y. 11235
800-221-0860 212-646-6300 TWX235125
handi-antennas

Three antenna improvements for 2-meter hand-helds — including a backpack beam!

No Amateur Radio station is better than its antenna. Most antenna articles seem to be for DXers or big-gun contesters, but this article discusses antennas for use with HT’s that you can literally hold in your hand. The first is a mechanical improvement in attaching the rubber duckie to an HT; the second is an antenna with significant gain over the rubber duckie; the third is a backpack beam...

a mechanical improvement

One day I had a QSO with WD6FMG who had just finished replacing the output connector on his HT. He remarked that he had been in the habit of removing the rubber duckie every time he put the HT in his briefcase or connected the mobile whip. After removing and replacing the antenna many times, the connector had worn down and would not make a reliable contact. It was a difficult job to disassemble the transceiver and replace the output connector.

This started me thinking. Wanting to avoid the same problem, I looked for a sacrificial connector, an adapter that could take the wear and then be replaced easily. My first approach was to use a straight male-to-male adapter and a straight female-to-female adapter. This served the purpose, but seemed cumbersome.

Then I discovered that a BNC 90-degree elbow had one male and one female end. This could be used as a sacrificial connector, but made it necessary to hold the HT on its side, which is awkward.

It’s best to use two right-angle adapters. This arrangement has several benefits in addition to the sacrificial adapter. It is not necessary to remove the rubber duckie to put the HT in a briefcase, because it folds down compactly. For mobile or other use with an external antenna, the two adapters act as a swivel. This allows the antenna connector to bend and rotate when the HT is picked up or set down.

a performance improvement

Despite the convenience of the rubber duckie, there are many times when an antenna with more punch is needed. This is particularly true when operating simplex, or in populous areas where repeater sensitivity must be restricted so that high-power stations do not bring up several machines at the same time.

Rubber duckie antennas are not particularly efficient; a quarter-wave whip can achieve 3 to 6 dB more radiated signal than the rubber duckie. Considering the threshold effect of fm, 3 dB can make all the difference between good copy and no copy at all. Several more dB can be achieved over the quarter-wave whip by paying attention to the image or ground side of the antenna. There have been several articles describing the importance of a proper ground structure in achieving a low angle of radiation. After all, low angle radiation is the name of the game to increase your coverage on 20 meters or 2 meters.

The easiest way to provide the ground side of the antenna is to use another quarter-wave whip positioned down from the antenna feed point. The result is really a center-fed vertical dipole. I made this type of antenna as an experiment, and was very pleased with the improvement in signal strength for such a simple design. I have since used the dipole antenna...

By Paul A. Zander, AA6PZ, 86 Pine Lane, Los Altos, California 94022
The station, ready to be assembled. The longer antenna parts are in a plastic bag. The smaller pieces and a length of coaxial cable are in the smaller pouch. (Photo courtesy N6ST.)

to make contacts that would have been impossible with only a quarter-wave antenna. The half-wave dipole seems to be competitive with a five-eighths whip without the problem of damaging the ceiling. Of course, you can reduce the half-wave to a quarter-wave when signals are strong enough.

The half-wave antenna is basically two quarter-wave whips and a BNC tee adapter. The only trick is that the two whips must be fed out of phase: one whip connects in the normal fashion to the center conductor; the other whip is electrically connected to the outside of the connector. This is just like an 80-meter dipole connected to coax cable, where one side of the antenna is connected to the cable shield.

One way to make the required connection is to modify the tee fitting so the center conductor on one end connects to the outside of the connector instead of the other center conductors. This procedure should take only a few minutes. Carefully drill a small hole, about 1/8-inch (0.32-cm) diameter, slightly closer to one end than the other. Drill through the center conductor close to where it joins the center conductor from the side arm. If you are uncertain precisely where to drill, it may be preferable to enlarge the hole in the connector shell. Then use a pointed knife blade to cut away the plastic and expose the three center conductors where they join. Next drill through the center connector going to one end. Be sure to leave the remaining two center conductors joined.

The next step is to remove the piece of center conductor from the connector. If you are lucky the piece may drop out, but the drill probably will have created enough of a burr to hold the piece in place. Insert a short length of 18-gauge wire into the center contact. This will allow a pair of tweezers to grasp the contact without damaging the contact fingers. Gently pull the cut center conductor out of the end of the connector.

The piece of 18-gauge wire can serve as a handle while you perform the next steps on the piece you just removed. Trim this piece a little bit shorter so there will be a gap when it is re-installed. Solder a short piece of flexible wire to the end of the cut piece.

You are now ready to reassemble the connector. Thread the wire and attached piece of center conductor back into the connector. Solder the end of the wire to the outside of the connector. Use an ohmmeter to verify that the rewired center conductor is connected to the outside of the connector and not to the other center conductors. Fill the hole with epoxy to provide mechanical support for the rewired center conductor. When the glue hardens you are ready to try it out.

A completely different approach is to use a standard tee fitting, one standard whip and one modified whip. The connector of the modified whip has its center pin and insulating spacer removed. The insulator is replaced by a solid metal piece so the whip connects directly to the shell of its connector.

still more gain

My next design objective was to design and build a 2-meter antenna with 10-dB gain which could be folded or disassembled into a size not more than 16 inches (40 cm) long: small enough to fit into a backpack. But what kind?

<table>
<thead>
<tr>
<th>number of elements</th>
<th>possible gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 dB (reference)</td>
</tr>
<tr>
<td>2</td>
<td>3 dB</td>
</tr>
<tr>
<td>4</td>
<td>6 dB</td>
</tr>
<tr>
<td>8</td>
<td>9 dB</td>
</tr>
<tr>
<td>16</td>
<td>12 dB</td>
</tr>
</tbody>
</table>
How much gain can you achieve with a driven array of dipoles? Adding a second dipole to the reference antenna can add up to 3 dB to the gain figure. Another 3 dB is achieved by adding two more dipoles to the array, for a total of four elements. Table 1 summarizes the number of elements required for a driven array of given gain, and shows why a driven array of dipoles is not attractive for use as a portable antenna.

This brings us to another category of antennas, parasitic arrays. Table 2 shows the gain you can expect from a properly designed Yagi or quad using a reasonable number of elements. From this, we can expect to get 10-dB gain over a dipole from either a four-element Yagi or a three-element quad. This is much more promising than a ten-element driven array. In fairness, it should be pointed out that driven arrays can generally be made to work over a broader range of frequencies than parasitic antennas. Also, a quad or Yagi will require rotation toward the station, while a colinear antenna, having an omni-directional pattern, does not.

Quads are great antennas. I used a full-size quad on 20 meters for many years. Quads can also be mechanical marvels (or monsters depending on your point of view). The challenge is to build a bigger antenna that packs smaller! Quad antennas usually have mechanical spreaders which support the elements. In contrast, Yagi antennas usually have self-supporting elements. These observations led me to expect that a cleverly designed Yagi antenna was the way to proceed.

construction details

This antenna design represents a compromise between locally available materials, package size, and antenna performance. I decided to build a four-element Yagi which is assembled something like a custom ErectorTM Set. The boom and mast are each made from pieces of aluminum angle-stock. This allows the pieces to nest together when the antenna is packed. The elements are made of pieces of small diameter aluminum tubing. By making the individual boom pieces 16 inches (406 mm) long, three pieces can make a 48-inch (1220-mm) boom. This is a reasonable size for a four-element Yagi on 2 meters. Also, by making the element spacings 16 inches (40 cm), the centers of the driven element and first director will be at joints in the boom, leaving fewer places where parts have to be joined.

Having established the element spacings and diameters for mechanical reasons, I next needed to calculate the element lengths. Fortunately, I have a computer program for Yagi antennas. It includes an optimizer routine, which allows the computer to systematically try many combinations of antenna dimensions to find those that would give good performance.

<table>
<thead>
<tr>
<th>number of elements</th>
<th>Yagi gain</th>
<th>quad gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 dB (reference)</td>
<td>2 dB</td>
</tr>
<tr>
<td>2</td>
<td>5-6 dB</td>
<td>7-8 dB</td>
</tr>
<tr>
<td>3</td>
<td>8-9 dB</td>
<td>10-11 dB</td>
</tr>
<tr>
<td>4</td>
<td>10-11 dB</td>
<td>12-13 dB</td>
</tr>
<tr>
<td>5</td>
<td>11-12 dB</td>
<td>13-14 dB</td>
</tr>
</tbody>
</table>

For this particular antenna, I was most interested in achieving gain over the entire 2-meter band. Front-to-back ratio was not considered important. There are many combinations of element spacings and lengths which could be expected to give similar performance. However, the spacings were chosen for mechanical reasons. Furthermore, by making the two directors identical in length, the possibility for errors when assembling the antenna is eliminated. These compromises probably cost a dB or so over an antenna intended for maximum gain at one frequency, but were considered worthwhile.

As mentioned, aluminum angle-stock is used for the boom and mast. The boom is made from three pieces of 1/2 x 1/2-inch (13 x 13-mm) angle. Each piece is 16 inches (406 mm) long. Hence, the assembled boom is 48 inches (1220 mm) long. Similarly, the mast is made from three pieces of 1/2 x 1-1/2-inch (13 x 38-mm) angle. The pieces of the mast and boom are joined by small aluminum blocks and 8-32...
The thread size was chosen to be compatible with the tubing-wall thickness and inside diameter. You may well find that a slightly larger or smaller size is better suited to your tubing.

Assembly is begun by lining up the boom pieces and tightening the screws. Then the mast is assembled and connected to the boom. Next, the center sections of the elements are screwed into the sides of the same blocks which join the boom pieces. Finally, the element tips are put in place.

The antenna can be easily assembled or disassembled in under five minutes. At current prices, all of the material costs about $10 at the local metal supplier. The whole thing weighs under two pounds, which is certainly less than an amplifier and power supply.

cap screws. Slots in the ends of the aluminum angle allow the pieces to slide apart when the screws are loosened, without being completely removed. Keeping the screws in the blocks reduces the effort needed to reassemble the antenna. The cap screws can be hand-tightened adequately for temporary use. I carry a small hex-wrench to tighten them more securely for longer operating periods.

The elements are made of 1/4-inch (6-mm) aluminum tubing. The eight tip sections are each 16 inches (406 mm) long. The center sections are 2 inches (50.1 mm) long for the directors, 3 inches (76.2 mm) for the driven element, and 4 inches (101.6 mm) for the reflector. Making the center sections different lengths makes it very easy to put them in the correct place on the boom. The correct tip section is always the top piece on the pile.

On each of the sixteen element-pieces, the end towards the boom has a permanently attached 8-32 thread. This was done by first tapping a screw thread inside the tubing. Next the end of a 0.5-inch (12-mm) headless set-screw was dipped in epoxy. Then the set screw was threaded into the end of the element piece until about 0.25 inch (6 mm) was exposed. After the epoxy set, the screw was permanently fixed.

The outer end of each of the center sections has an internal 8-32 thread to receive the screw from the tip section. This thread is installed by reaming the inside of the tubing to the correct diameter and putting a steel-threaded insert in the tube. These inserts are commonly sold to repair threads which have been stripped. Here the insert protects the aluminum from wear as the antenna is assembled and disassembled.

<table>
<thead>
<tr>
<th>Table 3. Final element lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director 1</td>
</tr>
<tr>
<td>Director 2</td>
</tr>
<tr>
<td>Driven Element</td>
</tr>
<tr>
<td>Reflector</td>
</tr>
</tbody>
</table>

feedline matching

Nothing has yet been said about connecting the feedline. The center of the driven element is a Plexiglas™ block instead of the aluminum blocks used elsewhere. The driven element is fed as a center-fed dipole. With no matching circuit, the SWR is about 6:1.

The original plan was to make a small circuit board with a suitable impedance-matching circuit. This
approach was expected to be smaller and lighter than a gamma match or some of the other impedance-matching methods. After some experimenting with different matching circuits, it turned out that a simple capacitor is all that is needed. Without matching the driven element would present an impedance consisting of a small resistance and inductance. The addition of a 10-pF capacitor across the antenna terminals provides a VSWR of 1.5 to 1 to the feedline (over the entire band).

Experiments were made with the center conductor of the coax connected to the top side and the bottom side of the driven element. The antenna seemed to work better with the top side connected to the center conductor. Possibly there is some interaction with the metal mast which is on the bottom of the antenna. Experiments were also made with and without a balun. The balun does not seem to offer any improvement, and so is not included in the final design.

performance measurements

Antenna gain was checked in two ways. The first way was to switch between a dipole and the beam while asking the receiving station for a comparison. This yielded reports as high as 20 dB.

More reliable measurements can be made comparing the received signal strength. A switchable attenuator should be put in the feedline. A moderately strong signal is then tuned in, and the attenuator adjusted until the signal just breaks the receiver squelch. Next, the beam antenna should be connected and the attenuator readjusted until the signal breaks the squelch. The difference (in attenuator readings) is antenna gain. For tests in clear locations, the gain measures about 10 dB, as expected.

Under conditions of multi-path propagation, results are less consistent. Small changes in the position of the reference dipole make a big difference in the received signal strength.

However, since multi-path propagation is a common occurrence on 2 meters, let's consider it for a moment. In multi-path propagation, obstacles and reflecting objects cause the signal to reach the receiving antenna from two or more different directions. For simplicity, consider the extreme case where there are two signals of equal strength. At some antenna locations, the signals are out of phase and cancel. In this case no net signal will be picked up by the antenna. At other locations the signals will be in-phase and add. The antenna will pick up a total signal which is 6 dB stronger than if the antenna only picked up one of the signals. Under these conditions, a carefully placed vertical dipole could equal the performance of a directional antenna with 6-dB gain.

This is the type of effect which I have observed with the portable beam. Under conditions of severe multi-path propagation, it does not have the 10-dB gain over a dipole. However, the beam does have a different advantage: it is much less sensitive to position than the dipole. In trying to raise a distant repeater, aiming the beam in the right direction and making one transmission is all that is necessary. With the dipole, several attempts may be needed to find a good spot. Even then, a 10-dB beam still has an advantage in signal strength.

alternative construction ideas

I would like to suggest two other ways to build a portable beam. First, instead of tubing the elements could be made from pieces of metal measuring tape. The tape would be strong enough to hold itself up when the antenna is in use. The elements could then be coiled up for carrying.

A more exotic scheme would be to build the antenna on a sheet of Mylar plastic with elements made of strips of aluminum foil. Such an antenna could be folded up and put in your shirt pocket. The difficulty with this design is finding a way to hold the antenna up when you wish to operate, and keeping it from blowing away in a breeze.

conclusion

I am sure that any of these three ideas will make your 2-meter portable operations more enjoyable.
AMTOR is the system of error correcting RTTY which has been rapidly overtaking conventional RTTY in Europe, just as its marine equivalent, SITOR, has been taking over in ship to shore communications.

It was originated by Peter Martinez, G3PLX (see June 1981 QST, p. 25). He first interpreted the international marine CCIR 476-1 specification for amateur use. Virtually all of the 400+ stations presently on AMTOR world wide are using software/hardware designs originated by Peter. The AMT-1 is a proven product which represents his latest and most highly refined design. It represents the culmination of over three years of development and on the air testing, and sets the standard against which all future AMTOR implementations will be judged.

Not only does it incorporate the latest AMTOR specification, but it gives superlative performance on normal RTTY, ASCII and CW (transmit only). As well as some fairly incredible real time microprocessor software, the AMT-1 boasts a four pole active receive filter, a discriminator type demodulator, a crystal controlled transmit tone generator, and a 16 LED frequency analyzer type tuning indicator, which is very easy to use.

Driven from a 12 volt supply, the AMT-1 connects to the speaker, microphone and PTT lines of an HF transceiver and to the RS-232 serial interface of a personal computer or ASCII terminal. All mode control is via ESCAPE and CONTROL codes from the keyboard (or computer program).

It used to be that C.W. was the ultimate mode for "getting through" when QRM and fading were at their worst. That's no longer true — AMTOR will get through with perfect error-free copy when all other conventional transmission modes become useless.
achieving the perfect VHF antenna null

Principles borrowed from a-m broadcasters permit steerable nulls with theoretically infinite attenuation.

With fixed-location VHF stations, such as repeaters, a situation sometimes occurs where more than one station is received on a given channel, and one of them must be rejected. A common solution has been to use a directional antenna such as a Yagi. However, a single antenna may not provide the required signal rejection.

For years, standard a-m broadcast stations have used directional antenna systems to solve interference problems. The principles involved are applicable not only to the standard a-m broadcast band, but also to VHF antenna systems. Many problems can and have been solved using only two antennas.\(^1\)\(^2\)\(^3\)\(^4\)

design considerations

Several factors are important in the design of an antenna system capable of peaking signals from one direction while nulling those from another. For peaking, two signals must be in phase. For signal nulling, the basic requirement is having two signals that are equal in amplitude and have a phase difference of 180 degrees.\(^*\)

\(^*\)Theoretically, any number of signals can add up to a zero amplitude result (signal). However, it rapidly becomes more difficult to null increasing numbers of independent, time-varying signals.

A two-antenna system that provides a peak in one direction and a null in another is shown in fig. 1. Signals from direction A arrive at both dipoles (horizontal or vertical) at the same time. The spacing between the two antennas cause signals from direction B to arrive at antenna 2 with a time difference equal to one-half wavelength, equivalent to a 180-degree phase shift. If both antennas are fed in phase (equal length feedlines), signals from direction A add while those from B cancel.

The equation for determining required spacing is:

\[
S = \frac{5904}{f \cdot \sin \alpha}
\]

where \(\alpha\) is the angle between the desired signal and the undesired signal directions; \(f\) is the frequency in MHz; and \(S\) is the antenna separation in inches.

The nulling arrangement works well with practically any antenna — horizontal dipole, vertical dipole, and Yagi, etc. The angular displacement between the directions of the two signal sources may be anything from 0 to 360 degrees. Since the same absolute value of the sine function occurs four times over a complete rotation, any pattern is symmetrical and exhibits four separate nulls. Consequently, the required spacing for an angular displacement between signal sources of 45 degrees is the same as that required for one of 135 degrees, 225 degrees, or 315 degrees. Other antenna separations, such as odd multiples of \(S\), can provide the same results. However, there is a limit to practical applications of this system. The spacing required for angular displacements around 0 degrees and 180 degrees becomes too large to implement.

By John J. Duda, K3ED, 4311 Sunset Blvd., Erie, Pennsylvania 16504
more practical nulling methods

Required mechanical tolerances for antenna placement can be relaxed if additional techniques, such as electronic control of phase-shift and amplitude, are employed. The exact 180-degree phase shift for the undesired signal may be set by feedline length, and variable gain preamplifiers may be used to provide two signals of equal amplitude. An adjustable feedline design that provides a continuous phase shift is illustrated in fig. 2.

Construction of this is not a simple task. However, a small amount of error is tolerable; fig. 3 is indicative of a practical feedline design. Many hobby stores stock, or can obtain, brass tubing with a wall thickness of 1/64 inch and diameters at 1/32-inch gradations. Adjacent sections telescope together, and by proper selection of tubing size for the inner and outer conductors, the characteristic impedance of each section can be set to approximate either 50 ohms or 75 ohms at a unity velocity factor. As it works out, type F and BNC connectors are well-suited for mounting into the ends of these. For some of the smaller diameter units, however, it is necessary to file down the end of the connector for best fit.

To assure a solid assembly, the flange of each connector should be spot-soldered to the tubing. A string is clamped to each end, slightly shorter than the maximum extended length of the section, to prevent the section from separating into two pieces during adjustment. Table 1 lists practical combinations of tubing for use with type F and BNC connectors.

Amplitude match, the second condition, is obtained using the preamplifier shown in fig. 4. The preamplifier uses an untuned input circuit to reduce gain variations prior to signal combining. Any preamplifier instability can be reduced by placing a low-value resistor (10-27 ohms), or ferrite bead, in the drain lead of each J310.

A complete system that uses Yagi antennas in the array appears in fig. 5. The phase section and preamplifier unit were adjusted using signals in the fm broadcast band. In many cases signals could be null-

![Fig. 1](image1.png)

fig. 1. Example of simultaneous peaking (from direction A) and nulling (from direction B) using a two-element array.

![Fig. 2](image2.png)

fig. 2. Adjustable-length coaxial line section with constant impedance.

Table 1. Brass tubing combinations for practical adjustable-length sections using 75-ohm and 50-ohm coaxial cable.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Section A (OD)</th>
<th>Impedance (ohms)</th>
<th>Section B (OD)</th>
<th>Impedance (ohms)</th>
<th>Average Impedance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer</td>
<td>13/32</td>
<td>65.9</td>
<td>12/32</td>
<td>77.9</td>
<td>71.9</td>
</tr>
<tr>
<td>Inner</td>
<td>4/32</td>
<td></td>
<td>3/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer</td>
<td>14/32</td>
<td>70.6</td>
<td>13/32</td>
<td>83.1</td>
<td>76.9</td>
</tr>
<tr>
<td>Inner</td>
<td>4/32</td>
<td></td>
<td>3/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer</td>
<td>10/32</td>
<td>65.8</td>
<td>9/32</td>
<td>83.1</td>
<td>74.4</td>
</tr>
<tr>
<td>Inner</td>
<td>3/32</td>
<td></td>
<td>2/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer</td>
<td>14/32</td>
<td>46.3</td>
<td>13/32</td>
<td>52.4</td>
<td>49.3</td>
</tr>
<tr>
<td>Inner</td>
<td>6/32</td>
<td></td>
<td>5/32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ed down to noise level. In some cases nulling one station revealed another station on the same channel.

system limitations

The system is not totally effective in cases of multipath, where the undesired signal arrives from more than one direction. Nor is the system totally effective if the antennas are not rigidly mounted. It takes very little physical displacement to upset a perfect null setting; this means antenna rotators cannot be used as they provide too much variability in setting, as well as backlash.

Although the antennas are electronically fine-tuned for nulling the undesired signal, such care, as mentioned before, is not required for peaking. An error of as much as 10 electrical degrees from boresight reduces the gain by only about 0.3 dB.

special case:

180-degree displacement

If the signal to be rejected is coming from the direction opposite the desired signal, another configuration can be used. Fig. 6 shows two antennas, a quarter-wavelength apart and fed 90 degrees out-of-phase. Signals from A hit antenna one 90 electrical degrees before they hit antenna two. Since the feedline from antenna one is 90 electrical degrees longer than that from antenna two, signals from direction A arrive in-phase. On the other hand, signals from B hit antenna one 90 electrical degrees after they hit antenna two. They are further delayed another 90 degrees by the long feedline to antenna one, giving a total phase shift of 180 degrees. Spacings at any odd multiple of a quarter-wave also provide nulling.

Fig. 7 shows how Yagis may be used in a system exhibiting infinite front-to-back ratio. Again, the peaking criteria need only be approximated, while the system is electronically fine-tuned to give total nulling of the signal off the back. Slight shifts in spacing and/or feedline length may be used to generate nulls in the vicinity of 180 degrees. The null can be slewed off the 180-degree direction by changing...
antenna spacing, feedline length, or both. Another method is to maintain the 180-degree null point and to aim the back of the array toward the undesired signal.

the first system, or at some odd multiples of a quarter-wave in the second system, has value. The closer together two antennas are placed, the more they interact. Wide spacing effectively reduces this interaction.

transmitting arrays

Null principles can be applied to transmitting systems as well. Fig. 8 shows how two power amplifiers and an adjustable-length line section can be used to secure a perfect null in a transmission pattern. Feedline length from each amplifier to the antenna should be equal. Amplifier input lines, as measured from their common junction, should be equal in length, or have a difference of one-quarter wavelength, depending on the system used.

temperature changes influence pattern

Another factor to consider is the effect of temperature on feedline length. This has been a problem in broadcast applications. The effect may be minimized by making the outdoor portion of each feedline section equal in length. The adjustable-length line section and preamplifier unit are best located indoors near the receiver, protected from the elements. Here they can also be adjusted by observing a local field-strength meter. There should be minimal signal pick-up by the feedlines, as any direct signal pick-up by a feedline serves to mask the true antenna pattern. It has been reported that military RG cable provides about 35 dB shielding, whereas less expensive cable may provide only 20 dB. Full braid, duofoil, or double-shielded coaxial feedline may be necessary in difficult situations.

Finally, the nulling criteria holds only for a single frequency. However, attenuation remains high around the set frequency. For example, if the null is set for the carrier of an FM broadcast station, which has a channel of +/−100 kHz, the calculated attenuation decreases from infinity at the carrier frequency to about 80 dB at the channel limits.

The systems described here can solve many problems. If there is another signal on a desired repeater's frequency, it can be nulled out. Setting a null in a transmitting pattern may offer a solution to an RFI problem. Then too, the systems may be used to reduce interference in FM broadcast or TV station reception. An interesting application is nulling one of the desired signals in a multipath distortion problem. By adding two coaxial relays it is possible to expand the system to the capability of switching the null from one direction to another. For example, the addition of a half-wave section in either feedline may be used to reverse null and peak directions. The adjustable-length line section and preamplifier are also effective with circularly polarized antenna systems, since they permit total nulling of signals of one sense or the other.

references

Antenna experimentation is one of the few fields in which an Amateur can participate armed only with enthusiasm, a tape measure, an SWR meter and inexpensive tools. No Ph.D. degree in higher mathematics or computer technology is required.

One of the best candidates for home experimentation is the quad antenna (fig. 1). The quad loop can be built in many configurations. The support structure can be as uncomplicated as a set of bamboo poles and the whole arrangement can be built for only a few dollars. A single loop parasitic element added to the driven loop makes a two-element quad beam. In many areas of the world where aluminum tubing is hard to find, or prohibitively expensive, the quad antenna is the best answer to the need for a high-gain, high-frequency antenna.

the single-element loop antenna

While the loop antenna has been known since the early days of radio, the use of a large loop for hf transmission was not seriously investigated until 1938 when Clarence Moore, ex-W9LZX, developed a two-element loop antenna for shortwave broadcasting. The Moore design was an instant success and the so-called quad antenna has been popular with Amateurs worldwide for the past four decades.

The simplest quad is a single loop which provides horizontal polarization when fed as shown in fig. 1. The loop has a bi-directional pattern similar to that of the dipole. Loop gain and feedpoint impedance are a function of the shape of the loop. The loop having the highest gain and feedpoint resistance is the circular model. This provides a power gain of about 1.13 dB over a dipole with a feedpoint impedance of 135 ohms. The square design has a gain of about 0.85 dB over a dipole and a feedpoint impedance of 120 ohms. The triangular, or “delta,” loop provides a gain of about 0.55 dB over a dipole and a feedpoint impedance of 105 ohms.

An intermediate-design loop which provides a power gain of 1.5 dB over a dipole and a feedpoint impedance of 50 ohms is shown in fig. 2. This quad loop (while a bit unwieldy for the lower frequencies) is an excellent antenna for the higher bands, as it provides bi-directional gain and can be fed directly with a 50-ohm coaxial line. A similar design, to match a 75-ohm line, is also shown.

![Diagram of an antenna](image)

fig. 1. (A) The simple transmitting loop. Directivity is in and out of page. The triangular loop may be inverted, with apex at bottom and feedpoint at apex. (B) Quarter-wave transformer for use with quad loop antennas.
The delta loop and the circular loops have a feedpoint impedance somewhat different from that of the square, but all of these designs can be nicely matched to a 50-ohm transmission line by the use of a quarter-wavelength, 75-ohm transformer between the line and the loop. Data for such a transformer is given in fig. 1.

The loop antenna is balanced to ground at the feedpoint and it is a good idea to isolate the outer shield of the coaxial feedline from antenna current. This can easily be done by winding the line into a four-turn coil about 8 inches in diameter directly below the loop. The plane of the coil should be at right angles to the plane of the loop.

One of the advantages of the loop antenna is that it can be supported at the midpoint by a single pole. Properly built, the loop is not obtrusive and can be used in areas where more conspicuous ham antennas are frowned upon.

The 50-ohm or 75-ohm loop can be turned on a side to provide a vertically polarized array for low-frequency operation. For 40 meters, for example, loop height is only about 22 feet, and the extensive radial system that is required for a ground plane antenna is not as necessary (see fig. 3).

The crossarms for the quad should be made of insulating material. Many quad assemblers have run into problems when metal arms are used for the array. It is possible to insert insulating sections in metal crossarms, but the builder is advised to stay away from this complicated technique. Fiber glass poles, bamboo, and PVC pipe have been used successfully for quad arms.

Most homemade quads use a section of 2- or 3-inch diameter aluminum tubing for the boom. The two-element quad usually requires 2-inch tubing, but a quad for 6 or 10 meters can use a smaller diameter boom.

Boom-to-crossarm clamps are available from several manufacturers, but many builders have made their own out of a plywood sheet and galvanized-iron angle brackets. If you take this approach, make sure that the edges of the plywood are sealed against moisture penetration. Two or three coats of outdoor house paint will do the job.

A more exotic design makes use of a “spider” arrangement which employs multiple crossarms supported from a central point on the mast, at the middle of the array.

How high the quad?

Experience has proven that the quad antenna will perform well even though mounted close to the earth. As an example, the main lobe of a quad antenna mounted one-quarter
RFI revisited — 18 MHz

The 18-MHz band (18.068-18.168 MHz) has not been opened for general use in the United States, although Amateurs in several other countries are already using it on a non-interference basis. Use of the band in the U.S. poses some interesting problems so far as RFI goes. The third harmonic of the band (54.2-54.5 MHz) falls extremely close to the video (picture carrier) frequency of television channel 2 (55.25 MHz).

This situation is unique; I can’t think of another circumstance where the harmonic frequency of an Amateur band falls so close to a television video channel.

My experimental license (KM2-XDW) permits restricted operation in the 18-MHz band, and this provided the incentive to explore the question of TVI on this new ham band. One of the first experiments I ran on 18 MHz was to determine the degree of TVI that I would encounter when operating on this band. I used my regular station equipment, which included TVI suppression techniques such as a lowpass filter in the transmission line, bypassed power lines, and good equipment grounding. This sufficed to provide adequate TVI protection on all Amateur bands when the TV receiver was reasonably clear during 18-MHz operation, even at a kilowatt input level. I was transmitting into an antenna only about 18 feet away from the TV antenna.

It was interesting to note that some TVI measures actually degraded the TV picture. One brand of TV filter, for example, when placed in the ribbon line, seemed to upset the TV tuner, as it produced “sound bars” on the picture which wiggled about with the audio signal. Removing the TVI filter and replacing it with the one specified cleaned up the wiggly lines.

Grounding the TV receiver chassis (through a 0.01-µF, 1.6-kV disc capacitor for protection) increased the TVI level, possibly because the ground lead was long enough to act as an antenna at 18 MHz.

In summary, it is possible to clean up TVI at 18 MHz, but it takes special care to make sure the transmitter is “clean” for channel 2 reception. In addition, the television receiver has to have a good highpass filter in front of it to provide maximum overload protection from the transmitter.

references
1. For comprehensive data on all types of quad antennas, read: “All About Cubical Quad Antennas,” available for $5.95 plus $1.00 shipping from Ham Radio’s Bookstore, Greenville, New Hampshire 03048.
2. For additional information on TVI and RFI, read: “Interference Handbook,” available for $8.95 plus $1.00 shipping from Ham Radio’s Bookstore, Greenville, New Hampshire 03048.

ham radio
ICOM-2AT
ENCOM/SANTEC
ST-144/µP

ICOM-730

BENCHER
BY-1 Paddle.............$36.00
BY-2 Chrome Paddle....45.00

BUTTERNUT
HFAV 80-10 Meter Vertical........$119.00
RM Kit Roof Mount whirlwinds...39.00
STR Stub Tuned Radials.........23.00
TBR 160 Meter Coil Kit...........46.00

CUSHCRAFT
A3 Tribander 3 EL.............$179.00
A4 Tribander 4 EL.............$229.00
A742/44 40 Meter Add-on......69.00
R3 Motor Tuned Vertical......229.00
AVS 80-10 Meter Vertical....95.00
214B Booster 14 EL 2M........69.00
214FB Booster 14 EL FM.....69.00
22FB Power Pack 28 EL 2M FM..189.00
32.19 Super Booster 19 EL 2M.83.00
220B Booster 1/EL 220 MHz..75.00
ARK-28 Ringo Ranger II 2M...36.00

DAIWA
CNA-1001 0.5KW Antenna Tuner...$299.00
CN 520 1.8-40 MHz SWR/Pwr Mtr..63.00
CN-620B 1.8-150 MHz SWR/Pwr Mtr.110.00
CN-630 140-450 MHz SWR/Pwr Mtr.129.00
CS-302 2-position switch....22.00
CS-401 4-position switch....62.00

DRAKE
TR7A Xcvr..................$1,435.00
R7A Receiver..............1,990.00
TR9 Xcvr..................695.00

ENCOM (SANTEC)
ST-144/µP The Hand Held Offering the Most Features
(call for your discount price)
HAL
DS3100/MTU/STN600.............$2,825.00
CT2100/6200..................529.00
RS2100 Scope.................269.00

HY-GAIN
76.17 DX5 7EL Tribander.......$369.00
TH5 MX25 5EL Tribander......319.00
TH3 MX5 3 EL Tribander......219.00
402BAS 2EL 40 Meter Beam....196.00
60BS 6EL 6 Meter Beam......106.00
18HIS 80-10 Meter Vertical...339.00
V85 2 Meter Vertical........38.00
5W8 2M Mag Mt..............20.00
CD45 5.5 sq ft. Rotator......105.00
Ham IV 15 sq. ft. Rotator...185.00
T2X 20 sq. ft. Rotator......249.00
H8100 25 sq. ft. Rotator....435.00

ICOM
We Have All the Great ICOM Transceivers in Stock
IC-740 with internal power supply Now Only $545!
IC-745.......................New Only $2151

KANTRONICS INTERFACE
506 EM Xcvr..................395.00
R70 Paddle Receiver.........599.00

KLM
KT34A 4EL Triband Beam......$299.00
KT34A4 6EL Triband Beam....459.00
14-140 14-140 2M Oscar Antilm.85.00

KRONANTS
The Fantastic Interface for CW, RTTY, ASCII Only $150!

LARGE
NLA-150-MM 5/8 Wave 2M Mag, Ml. $39.00

MFJ
989 3KW Roller Inductor Tuner...$290.00
940B Tuner..................125.00
941C Tuner..................81.00
9408 Tuner..................72.00
901 Tuner...................54.00
900 Tuner...................45.00
401 Ecomkeyer.................45.00
496 Super Keyboard..........269.00
422 Keyer/BP0000 Paddle combo..89.00
722 Filter wintorch...........63.00
250 Dummy Load w/coil......32.00
812 VHF Meter...............29.00
816 HF Meter................29.00
1040 Deluxe Preselector.......89.00
104 New Dual 24hr Clock.......29.00
312 VHF Comp for HT...8.00

MIRAGE
B23 230 Amp................$80.00
B301.................155.00
B1016....................239.00
B3016....................205.00
B314....................270.00
MP1/MP2 Watt Meters.........100.00
C100 220 MHz..............169.00
C102 220 MHz..............189.00

ROHN
250........................$42.00
25G.......................$42.00
25H.......................$42.00
SHURE
4440 Desk Mic...$50.00
414A Hand Mic.............36.00

TEN-TEC
Corserf.....................$999!
525 Argosy.............$469.00
227 Antenna Tuner........50.00
229 2KW Tuner.............250.00

TOKYO HY-POWER
HL30V 30 Watt............$63.00
HL150V 160W............289.00
HC2000 2KW Tuner........289.00

UNADILLA
W2A2 Balun..............$16.50
150' 14 gauge stranded wire.10.00

VOCOM
Amplifiers/Antennas......call

Prices and Availability Subject to Change
Shipping FOB Evansville
UHF and VHF RECEIVE CONVERTERS
FOR 2 - METER Synthesized Handie -Talkies

THE ORIGINAL -
HANDI - CON Series

Each one of these easy to use converters will turn an average 2-meter, fully synthesized H.T. into an extended coverage receiver. Choose either UHF or VHF PUBLIC SERVICE coverage, or 220Mhz AMATEUR coverage.

A micro-processor controlled H.T. can be a hand-held, programmable scanner, thus avoid the expense and bulk of a second receiver for emergency “traffic” and general pleasure monitoring.

* SIMPLE CONNECTION TO RADIO & ANTENNA.
* LOW LOSS TO A NOMINAL 2METER ANT. IN "OFF" MODE.
* LIGHT WEIGHT.
* ACCIDENTAL TRANSMIT PROTECTED.
* LOW CONVERSION LOSS.

* SINGLE SWITCH CONTROL.
* EFFICIENT DESIGN USES 1 AAA CELL.
* CASE IS BLACK, BRUSH ANODIZE FINISH.
* LOW COST.

See a dealer near you:

DEALERS

ACK RADIO SUPPLY, 3101 4th Ave., Birmimgton, AL 36233 (256)728-0588
AES COMMUNICATIONS, 404 Arrawood St., Colorado Springs, CO 80909 (719)634-7530
ARP SYSTEMS, 447 Pine Lake Ave., LaPorte, IN 46350 (219)326-6471
AMATEUR RADIO SUPPLY OF SAN ANTONIO, 4635 kittyhawk Rd., San Antonio, TX 78216 (210)479-1985
ARTI ELECTRONIC, 303 Wyoming Ave., Wheeling, IL 60090
BARRY ELECTRONICS CORP., 627 Broadway, New York, NY 10012 (212)877-7090
C. & E. CARL ELECRONICS, 11228 Claire Ave., Northridge, CA 91326 (213)393-1226
BETTERTON ELECTRONICS, 6355 Avenida Encinas, Carlsbad, CA 92008
BRITTS TWO WAY RADIO, 2906 N. Atlanta Rd., Seaville, GA 31630 (404)472-8706
BROOK ELECTRONIC, Co. 1923 Edgewood Dr., Moore, OK 73160 (405)744-0496
BOUGARD AMATEUR CENTER, 208 East Kemp Ave., Watertown, SD 57201 (605)886-4534
C. & E. CARL ELECTRONICS, 11228 Claire Ave., Northridge, CA 91326 (213)393-1226
COOKER AMATEUR SUPPLY, Co., Inc., 301 Mills Ave., Hopkinsville, KY 42240 (210)488-4534
EGE INC., 240 Drexel St., Wheeling, VA 22192 (703)342-1063
ELECTRONICS INTERNATIONAL SERVICE CORP., 1380 Elks St., Wheaton, MD 20901 (301)945-1088
FLYnn ELECTRONICS, 2113 Vandewa Rd., Galtville, IL 60034
G & B AMATEUR SUPPLY, 2920 E. 9th St, Des Moines, IA 50316
HAM RADIO OUTLET, 2630 W. La Palma, Anaheim, CA 92801 (714)765-1093
HAM RADIO WIDE, INC., Owells City Airport, Terminal Bldg., Owells, NY 11424
HAMLAM, 800 N. Main St., Evansville, IN 47711 (812)462-0213
H & C INC., 1401 Avenue D, Council Bluffs, IA 51501 (712)353-0143
J. E. FIELDS, 18 Paradise Court, Pine Bluff, AR 71605
J. R. S. DISTRIBUTORS, 116 W. Market St., York, PA 17404 (717)854-8924
JUNS ELECTRONICS, 3619 Sepulveda Blvd., Culver City, CA 90230 (213)390-8003
7355 University, La Jolla, CA 92122 (714)434-3556
460 E. Plumb Lane, Reno, NV 89502 (702)878-5752
KENG ELECTRONICS, 605 Montgomery St., Napa, CA 94558 (707)226-4493
LEX SHAW, INC., 213 N. Main, Independence, MO 64050
LONG'S ELECTRONICS, 2808 7th Avenue South, Birmingham, AL 35233 (205)252-7589
MIC.COM ELECTRONICS, 8516 Manchester Rd., Brentwood, MO 63144 (314)961-9990
MIC STATE COMMUNICATIONS, 3238 72nd St. E., St. Paul, MN 55117
MISSOURI COMMUNICATIONS SYS., 1970 N.W. Vivian Rd., Kansas City, MO 64106 (816)741-0119
MOONWRY ELECTRONICS, 620 S. Maple Ave., Monrovia, CA 91016 (213)336-2946
OMAR ELECTRONICS, 11389 East Lexing Rd., Durand, MI 48429 (213)798-2769
PORTLAND RADIO SUPPLY, 2124 S.W. Stark St., Portland, OR 97205 (503)229-3457
QUIN M. ELECTRONICS, 1000 S. Bascom Ave., San Jose, CA 95126
RADIO KING, 23226 J. Crenshaw Blvd., Torrance, CA 90505
RADIO MASTERS, 3 Tenafly Rd., Englewood, NJ 07631 (201)365-0280
THI RADIO PLANT, 2984 Freeway, Sacramento, CA 95838 (916)441-7345
RADIO UNLIMITED, 1060 Easton Rd., West Orange, NJ 07052 (973)575-7545
SATELITE COMMUNICATIONS, 3805 S. 16th Ave., Winter Park, FL 32701
UNIVERSAL AMATEUR RADIO, 1280 Aida Dr., Reynoldsburg, OH 43068 (614)336-4267

DISTRIBUTORS

BCG RADIO PARTS, P.O. Box 119, Richardson, TX 75081
INTEGRATED SYSTEMS, 8701 McAlpine Garden, Grove City, CA 92664 (714)356-6555

above prices subject to local sales tax. CAL res. add 6.5%.
An effective DX antenna that’s easy to put up — and that stays up

four-vertical collinear element
20-meter array

fig. 1. 20-meter phased array.

I had never been impressed with vertical antennas until I phased a pair of 40-meter quarter-wave verticals a few years ago. Since the two worked so well, it seemed reasonable that four should work even better. I constructed a phasing box for four in-line vertical antennas. However, not having the time to erect this system, I stored the relay box away.

A job change some time later brought me to a small ranch duplex adjacent to an open field. I erected a single 20-meter quarter-wave vertical in the middle of the field using a ground system consisting of eight 16-foot-long three-conductor radials.

four-element array
construction begins

Soon after this I started gathering parts for the four 20-meter verticals. Using pieces of 1-inch (25.4-mm), 7/8-inch (22.23-mm), and 3/4-inch (19.05-mm) aluminum tubing with 0.068-inch (1.45-mm) walls, I constructed four 16-foot 6-inch radiators using stainless steel automotive hose clamps and a slit tubing.

By Jim Gabriel, WA8DXB, 15 Cambrian, Tallmadge, Ohio 44278
The ground buss consists of surplus copper disks from a junk yard. A 1-1/8-inch (28.56-mm) hole was cut in the center of the disk and a series of holes drilled around the perimeter with radials attached to them by brass nuts and bolts (fig. 2). The radials were number 16 insulated ac house wire. Finally, each disk, as well as the antenna connections was given two coats of clear Krylon® to retard corrosion after radial wires were attached.

The verticals were laid out in line from northwest to southeast, the switchable end-fire directions. When the two broadside lobes were switched in, two squashed figure-eight lobes resulted, one on southern Europe and the other on the South Pacific. Since I was mostly interested in working into Asia, I considered this the best compromise.

The verticals were spaced 16-feet 6-inches (5.03 m) apart and each was fed by equal three-quarter wavelength RG-8X coaxial lines. The main feeder, power divider, and three phasing lines used RG-8. The ground systems consisted of four single-conductor quarter-wavelength wires under each antenna, making it difficult to work into Asia. The small ground system adversely affected the array performance. After adding eight three-conductor 16-foot 6-inch (5.03-m) radials to the original four wires, (a total of twelve radials) I noticed 4 to 6 dB difference in transmission and a bit better front-to-back ratio on receive. Knowing the importance of a good ground system and with a future 40-meter installation in mind, I laid an additional thirty 33-foot-long radials under the two outer (NW) verticals, in about the 120-degree sector. A total of forty-two radials were now connected to the outer antennas.

The VSWR using only twelve radials was NW - 1.2:1; SE - 1.4:1; broadside - 2.4:1. With the addition of thirty 33-foot-long radials under the two outer antennas, the VSWR was reduced to NW - 1.05; SE - 1.15:1; broadside - 2.01:1.

The relay phasing box, fig. 3, is wired as shown in fig. 4. Internal leads should be kept as short as possible. When constructing the relay lines, phasing harnesses, and power dividers, remember that the velocity factor of coax can be 0.66, 0.77, and sometimes 0.81. It pays to check what the VF is before you start cutting the coax. The electrical length of the phasing lines is \(\frac{246 \times VF}{freq. \ in \ MHz} \) for a 90-degree or one-quarter wavelength line.* For the 180-degree or 270-degree lines, just multiply by a factor of two and three respectively. I used type-N connectors and a type-N female T-connector for the power divider since they are waterproof and constant impedance devices. I found the rubber boots for the phasing box connectors at a hamfest. The RG-8 coax and relay wire (inexpensive doorbell wire) was placed along a neighbor’s fence. I used surplus 50-cycle 120-Vac large-contact relays that actuate at 35 Vdc.

The vertical array is easy to access (phasing box and antenna connections) and maintain. If a 16-foot radiator falls down as a result of heavy winds or ice loading, it can be rebuilt easily.

Performance

I worked two VK stations, both running little Heathkit HW-8 QRP transceivers! On checks with UA0WAY and UA9OH running just the 100-watt

See assumption 5 on page 20.
You can DX and receive weather charts from around the world.

Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!

You've heard those curious facsimile sounds while tuning through the bands—now capture these signals on paper!

Assemble ALDEN’s new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble—Backed by the ALDEN name.

For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!

You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Easy to order.

Only $995 for the complete ALDEN Weather Chart Recorder Kit. To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $995. Add $5 for shipping and handling in the U.S. and Canada (for Massachusetts delivery, add $49.75 sales tax). To use your MasterCard or Visa by phone, call (617) 366-8851.

ALDEN ELECTRONICS
Washington Street, Westborough, MA 01581

NAME:
CALLSIGN:
ADDRESS:
STATE: ZIP:
CITY:
ACCOUNT # (ALL DIGITS)
EXPIRATION DATE
SIGNATURE REQUIRED IF USING CREDIT CARD
STRIPLINE POWER AMPLIFIER KITS 50, 144, 220 AND 432 MHz.

Perfect for EME, aurora, meteor and tropo scatter, and other specialized communications modes.

These high performance state-of-the-art amplifiers come in two basic models: 500 watts output using either the 4CX250 family or 8730 tetrode tubes. 1000 watts output using 8874 triode tubes. The amplifier is 12" x 8" x 6" and weighs just 14 lbs. excluding cooling blower.

Power supply kits for both triode and tetrode models available in kit form. Rated outputs are 2,000 VDC @ 500 ma; 7.6 VAC @ 6A for filament voltages; for tetrode models 300 VDC regulated at 40 mA screen and - 120 VDC bias supply voltage. Power supply is 12" x 8" x 6" and weighs 37 lbs. Full line of accessories, rack or cabinet mounts, manufactured and kit options available. Contact factory for details.

Each kit comes with fully illustrated, easy-to-read instructions. Factory back-up assistance is available from trained technicians.

CALL FOR PRICING
2775 Kurtz St., Suite 11
San Diego, CA 92110
(619) 299-9740

INEXPENSIVE DOWNLINK
fixed or mobile

Meet the “Next Generation” satellite antenna with its many unique design features:

- Low Cost*
- Protected electronics (from weather AND people)
- Lightweight
- Mesh surface to reduce wind load
- Styled appearance
- Superb pictures
- Install permanently, on trailer or roof-top.

For teleconferencing, commercial downlinking or personal use. Designed to perform with the best and look better than any. Contact us for more details.

*To avoid consumer misunderstanding, we do not publish trade prices in magazines.

17537 N. Umpqua Highway
Roseburg, Oregon 97470 (503) 496-3583

Transceiver on SSB, front-to-back was in excess of 30 dB and sometimes as high as 40 dB. This is helpful when you’re trying to reject southern QRN and looking for a weak 9V1 or 9M2 station over the North Pole.

reference
inexpensive connectors for hardline

Hams combine ingenuity and plumbing fittings to solve costly interface problems

A great deal of surplus hardline has recently become available from CATV companies at very low cost. The hardline has a solid aluminum outer shield with either a solid copper or copper-clad aluminum center-conductor. This high quality, low loss, VHF/UHF cable is great for repeater or home stations. There is only one problem — connectors are expensive, if they can be found. Once again, ham ingenuity and homebrew construction are necessary.

I needed a connector (for 1-inch cable) which would be simple and cheap to manufacture. Designing one required some thought and many hours' rummaging through local plumbing suppliers' stock. It takes only about 10 minutes to make each connector. The cost per connector is about $2.00 — far less than they could be bought new. Construction is not hard, and you may use considerable latitude choosing materials.

First check out your local plumbing stores to see what is available. The fittings I used were (1) a 3/8-inch threaded to 3/16-inch tubing (nipple) adapter (this may be called a barb); (2) a 3/4-inch threaded female to 1/2-inch copper tubing adapter; (3) an SO-239 coaxial connector. These are shown in fig. 1, along with a section of the 1-inch line.

construction

Some machining is required to make the center of the adapter. I have a Shopsmith Mark V that I used as a lathe. It is possible to do the same thing using a

fig. 1. The 1-inch hardline, coax connector, and the plumbing fittings used to make a connector for the hardline.

By James A. Sanford, WB4GCS, 509 Forest Drive, Casselberry, Florida 32707
standard 1/4-inch drill mounted in a vise or stand. There is no high torque or stress involved, so either method is fine.

The first step is to chuck up the nipple adapter with the nipple end in the chuck. Make sure it is centered in the chuck! This step is shown in fig. 2. Start the lathe (drill) at a moderate speed. First, using a coarse and then medium file, machine away the flat surfaces. Then file down the threaded section. After a single cylinder is obtained, use a fine file to smooth the assembly. The final outside diameter should be 5/16-inch (7.94 mm). Then, very carefully, use a rat-tail file to taper out the inside of the fitting. The reason for this taper is to ensure a good press fit against the center conductor when the completed connector is placed on the line.

Now stop the lathe and reverse the fitting in the chuck. Fig. 3 shows this step. You can see how the large end has been machined. Again, the adapter must be placed squarely in the chuck. Using a medium and then a fine file, smooth out this piece and round off the shoulder slightly.

The next step requires some dexterity. A small vise and some clamps help. Fit the small end of the machined adapter into or over (depending upon the exact fitting and connector you use) the center connection of the SO-239. Solder the two pieces together, making sure the fitting fits squarely on the SO-239 (fig. 4).

Now use some fine sandpaper to clean the small end of the large reducing-fitting and the SO-239. Apply a small amount of soldering flux to the SO-239 body and the large reducer. Remember that these are plumbing fittings and not wires you’re soldering; if you omit this step you’ll find out why plumbers always use flux. Press the SO-239 into the adapter. This should be a close fit, requiring only hand force to assemble. Now, carefully solder the two pieces together. I expected to need a torch, but a 56-watt soldering iron worked nicely. After a smooth bead is applied around the outside, apply a little solder to the inside of the adapter. This will result in a strong, waterproof joint. Now allow this assembly to cool. After it cools, remove any flux residue to prevent corrosion.

The next step is preparation of the cable itself. Use a tubing cutter and a hacksaw to square off the end.
Use the tubing cutter to remove 1 inch (25.4 mm) of the outer insulation. File down the aluminum shield to an outside diameter of 15/16 inch (23.81 mm). Cut the entire cable so that 5/8 inch (15.88 mm) of the cable extends beyond the outer insulation. Carefully square off the center conductor with a fine file. Use the tubing cutter to remove 1/8 inch (3.18 mm) of the shield. Using a sharp knife, cut away the insulation. Do this carefully to avoid nicking the center conductor. This careful order of steps prevents any aluminum filings from contaminating the dielectric. You will now have 1/2 inch (12.7 mm) of the shield extending beyond the outer jacket, and a center conductor extending 1/8 inch (3.18 mm) beyond that. Fig. 5 shows the completed connector and the prepared cable, ready for assembly.

To place the connector on the cable, carefully start threading the fitting onto the cable. Make sure the fitting goes on square. (A pipe die of the proper size will make this easier, if you can obtain one.) Once the threads are started, you can use a pipe wrench to hold the cable, and an open-end wrench or channel-lock pliers to turn the connector. Do this carefully to make sure you don’t kink or bend the cable. Continue screwing the connector on until you feel an increase in resistance. This will indicate that the center fitting has mated. Now carefully remove the connector. Check for stray aluminum filings and any other problems. Fig. 6 shows the completed connector placed on the cable.

Since there are two dissimilar metals in close contact (aluminum and copper), some steps must be taken to prevent corrosion. Liberally coat the cable shield and the inside threads of the connector with Penetrox or some similar anti-corrosion compound. Now reassemble the connector to the cable. (The Penetrox will act like a lubricant.) Use an ohmmeter to verify continuity from one end of the cable to the other and make sure no shorts exist between conductors. If this test is satisfactory, tape over the connector and the line is ready for use.

results

The best check of a connector and line assembly is to measure the rf loss through the cable. I tested a 100-foot (30.48-meter) section at 2 meters. The loss measured as 0.8 dB — exactly what the reference tables call for. In other words, the homebrew connectors did not add any significant loss to the system.

I have described an economical way to make connectors for 1-inch (25.4-mm) CATV hardline. They are not hard to make, and the materials and procedure can be varied to suit local supplies. Being able to use this high-quality, low-cost cable will make a significant improvement in any station.

acknowledgments

Special thanks go to Mel, W4MJJ, and George, WD4ORM, for their assistance in this project.

ham radio
POWER UP!

DRAKE L7
2kW Linear Amplifier
- 2kW PEP, 1kW cw, RTTY, SSTV operation — all modes full-rated input, continuous duty cycle
- 160-15 meter amateur band coverage, plus expanded ranges for any future hf band expansions or additions within FCC rules. These ranges also include increased coverage for MARS, embassy, government, or other such services.
- The Drake L7 utilizes a pair of 3-500 Z triodes for rugged use, and lower replacement cost compared to equivalent ceramic types.
- Accurate built-in rf watt-meter, with forward/reverse readings, switch selected. Calibrated 300/3000 watt scales.
- Temperature controlled two-speed fan is a high volume, low noise type and offers optimum cooling.
- Adjustable exciter agc feedback circuitry permits drive power to be automatically controlled at proper levels to prevent peak clipping and cw overdrive.
- Front panel control. By-pass switching is included for straight through, low power operation without having to turn off amplifier.
- Bandpass tuned input circuitry for low distortion and 50 ohm input impedance.
- Amplifier is comprised of two units - rf deck for desk top, and separate power supply.
- Operates from 120/240 V-ac, 50/60 Hz primary line voltage. Manufactured in U.S.A.

DRAKE L75
1.2kW Linear Amplifier
- 1.2kW PEP, ssb continuous, 1kW cw 50% duty cycle.
- 160-15 meter band coverage, plus expanded ranges for any future hf band expansions or additions within FCC rules. These ranges also include increased coverage for MARS, embassy, government, or other such services.
- The Drake L75 utilizes a 3-500 Z triode for rugged use, and lower replacement cost compared to equivalent ceramic types.
- Built-in relative power reading for output indication.
- Temperature controlled two-speed fan is a high volume, low noise type and offers optimum cooling.
- Adjustable exciter agc feedback circuitry permits drive power to be automatically controlled at proper levels to prevent peak clipping and cw overdrive.
- Front panel control. By-pass switching is included for straight through, low power operation without having to turn off amplifier.
- Bandpass tuned input circuitry for low distortion and 50 ohm input impedance.
- Built-in power supply.
- Operates from 120/240 V-ac, 50/60 Hz primary line voltage. Manufactured in U.S.A.

*Export model includes coverage of the 10-meter Ham Band.

DRAKE. Let us take you there!

R.L. DRAKE COMPANY

For more information, write or call:
540 Richard St., Miamisburg, Ohio 45342, USA
Phone: (513) 866-2421
Telex: 268-017
A COMPLETE PICTURE OF A SUPER DMM
SOAR CORP. MODEL 8050

PRICE: 89.95*

- LARGE 3-1/2 DIGIT LCD READOUT
- EIGHT FUNCTION 30 RANGE SELECTOR SWITCH PROVIDES COMPLETE CONTACT WIPING ACTION WITH EVERY ROTATION
- PNP/NPN TRANSISTOR HFE TEST SOCKET
- FAST BLOW FUSE FOR CURRENT RANGE PROTECTION (VOLTAGE AND RESISTANCE ELECTRONICALLY PROTECTED)
- RUBBER PADS PREVENT SLIDING OR SCRATCHING WHEN LAID DOWN
- EASY ACCESS 9V BATTERY/FUSE COMPARTMENT
- CONTINUITY BEEPER WITH <0.4 SEC. RESPONSE
- INSIDE CASE RF/EMI SHIELDED
- CONVENIENTLY LOCATED CALIBRATION POTS
- BUILT-IN 10 AMPERE AC/DC CURRENT MEASUREMENT SHUNT
- RUGGED GLASS EPOXY PCB BOARDS
- TOUGH ABS PLASTIC CASE SIZE 6-1/4"x3-1/3"x1"

MODEL 8050 SUPPLIED WITH 9V BATTERY, TEST LEADS AND SPARE FUSE

*Price shown is for 1 through 3 units, lower prices available for higher quantities

NORTH AMERICAN SOAR CORP.
1126 CORNELL AVENUE
CHERRY HILL, N.J. 08002
(609) 488-1060

NORTH AMERICAN

SOAR CORPORATION
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ±.1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021

SS-32 $29.95, TS-32 $59.95
Introducing the
hy-gain® EXPLORER 14

Remarkably Compact, High Performance Broadband
Tribander with Quad-Band Option

New Para-Sleeve Design
The Explorer 14 is a new antenna design we call PARA-SLEEVE which uses an "open-sleeve" dipole optimized for maximum bandwidth and directivity. Here is the concept. A central dipole, driven directly by the transmission line, has a 1/2 wave resonance on the lowest operating frequency. Two shorter sleeve elements, tightly coupled to the central dipole, modify its impedance to create a 1/2 wave resonance on the highest operating frequency. This para-sleeve system is expanded by the addition of 15 meter traps and 20 meter element tips. A revolutionary new concept for HF tribanders. So unique, we've applied for a patent.

Broadband Performance
The Explorer 14 will load solid state transceivers to maximum output with VSWR below 2:1, eliminating the need for an antenna tuner. You'll have edge to edge broadband performance on 20, 15 and 10 meters with gain and front-to-back ratio competitive to giant tribanders that cost twice as much or more. You'll be able to work stations you cannot even hear with a dipole antenna. And the Explorer 14 handles maximum continuous legal power with a respectable safety margin.

Short Boom Save Space and Money
If your space or budget was too limited for a long boom tribander, chances are the Explorer 14 will fit both. The boom is only 14' (4.3 m) long and the turning radius requires only 17' 3" (5.3 m). The compactness of the Explorer 14 reduces its overall weight and windload surface so you can mount it on a roof tripod, a mast or a tower. For example, the Hy-Gain CD-4511 rotator and HG52 tower are a perfect match for the Explorer 14. This saves you the cost of an extra heavy-duty rotator or tower.

Superior Construction
The Explorer 14 includes passivated stainless steel hardware and heavy gauge, pre-formed element and mast brackets. High grade 6063-T832 thick wall swaged aluminum tubing is used throughout. A BN86 balun is included and a new Beta Multi-Match provides DC ground to reduce lightning hazard and precipitation static. It's a rugged, easily assembled antenna that survives winds to 100 mph (160 km/h).

Quad Band Option
You can add a fourth band, either 30 meters or 40 meters to the Explorer 14 with the OK-710 kit. A kit that attaches to the central dipole and is easily adjusted for either 30 meters (WARC) or 40 meters at minimal extra cost.

Lew McCoy, W1TCP is among the most authoritative writers in amateur radio. For over 30 years he served on the ARRL technical staff with his last position as assistant technical editor. Presently he is the technical editor for CO magazine. Here is what he had to say about the Explorer 14:

"In my opinion, with Explorer 14, Hy-Gain produced a truly high gain, high performance antenna in a small package. The "para-sleeve" design provides the amateur a whole new ball game, particularly in the area of broadbanding. I was really surprised when I actually verified the gain, front-to-back and bandwidth during my recent visit to the Hy-Gain labs and antenna range in Lincoln, Nebraska. The Explorer 14 is a winner."
SPECIAL INTRODUCTORY OFFER

SAVE $472.40

Complete Antenna Rotator & Tower System

PLUS FREE DELIVERY.

Ham Net Price

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explorer 14 Tribander Antenna Ham net Price</td>
<td>$399.95</td>
</tr>
<tr>
<td>Includes BN-86 Balun and Beta Multi-Match</td>
<td></td>
</tr>
<tr>
<td>Hy-Gain CO-45II Rotator</td>
<td>$164.95</td>
</tr>
<tr>
<td>Hy-Gain 52 foot (15.8 m) Crank-Up Tower Model HG52SS</td>
<td>$1,095.00</td>
</tr>
<tr>
<td>Antenna Mast, 10 feet (3.5 m)</td>
<td>68.50</td>
</tr>
<tr>
<td>Three Coax Arms</td>
<td>39.00</td>
</tr>
</tbody>
</table>

Total Ham Net Value $1,767.40

Special Introductory System $1,295.00

YOU SAVE $472.40

*Any other Hy-Gain antenna, rotator or tower may be substituted at regular Ham net. Free Delivery is offered for shipping points within contiguous 48 United States only. Offer is extended through participating Telex/Hy-Gain Amateur products distributors only.

ACT NOW!

Offer Expires

June 30, 1983.
At Ungar, we’ve designed the ultimate heat gun for the hardworking pro. Feature for feature, no other heat gun can make your job quicker, easier or safer.

To begin with, our new 6977 is the lightest heat gun of its kind (28 ounces). You can use it for hours on end with maximum control and minimum fatigue. The contoured handle provides a firm grip and remains cool at all times. The 6977 is a high-temp, high air volume heat gun with power for the heaviest jobs. It delivers 975°F to the nozzle in seconds and is perfect for curing adhesives, forming plastics, shrinking tubing, peeling paint and just about any other tough job you’ll ever run across.

And the 6977 can take it in the real world. The body is made of rugged, impact-resistant Valox® 855. It features a proven, reliable high-rpm motor, low noise operation, long-life heating element and a 6-foot, 3-conductor ground cord. A wide range of optional attachments can provide additional versatility. The new Ungar 6977 heat gun... light years ahead of the competition, is Underwriter’s Laboratory, Inc. listed. For more information, contact your local Ungar distributor or call Ungar in California 1-213-774-5950.

UNGAR®
Division of Eldon Industries, Inc.
Compton, California 90220
CLEANLINESS...

a unique CORSAIR virtue

Cleanliness in the TEN-TEC CORSAIR means unusual spectral purity of both received and transmitted signals.

In Receive mode, even with the r.f. preamp in operation, the 3rd order intercept (at 20 kHz tone spacing) is +5 dBm. With the preamplifier off, the 3rd order intercept rises to a superlative +18 dBm and remains constant even at 3 to 6 kHz away from the pass-band.

In Transmit mode, if you look at the output of the CORSAIR on a spectrum analyzer, you note an almost complete absence of phase noise—a phenomenon which plagues most PLL transceivers. At 20 kHz from the carrier, the generated phase noise in the CORSAIR is a spectacular -148 dBc/Hz, and at 1 kHz it is -132 dBc/Hz.*

This breakthrough in circuit design, using proven crystal mixed oscillators with the latest USA solid state technology, is setting new standards of cleanliness and purity of signals. All of which means enhanced reception with less fatigue, lower noise floor, no overloading and more DX worked. And your signal will be a bit easier to read under adverse conditions. Compare.

Other virtues of the CORSAIR include:

- All solid state, broadband design
- All 9 hf bands
- Triple conversion receiver with 0.25 μV sensitivity on all bands and better than 90 dB dynamic range
- Variable bandwidth plus Passband tuning
- Dual range, Triple mode
- Offset tuning
- Variable Notch filter
- Built-in Speech Processor
- Built-in Noise Blanker
- 200 W input, 100% duty cycle
- Dual-speed QSK (full or semi)
- Many operating conveniences including headphone attenuator, cw signal spotter, 5-function meter, WWV reception, adjustable ALC threshold, lighted status indicators, selectable AGC, adjustable pitch and volume of sidetone, complete interfacing.
- Full accessory line including remote VFO, keyers, microphones, power supplies, antenna tuners, ssb and cw filters.
- Reliable American manufacture and service, fully warranted.

See CORSAIR at your TEN-TEC dealer, or write for full details.

TEN-TEC, Inc., Sevierville, TN 37862

*Specifications measured by independent laboratory
The **KLM** Spotlight on:

PERFORMANCE

The new pacesetter for tribander performance

KT-34XA

For the new age of satellite DX

420-450-18C

See your KLM dealer

Why wait?

Get on 30 meters (10 MHz) Now!

30M—2 (2 element)
30M—3 (3 element)

See your KLM dealer for details.

Maximum gain, across the whole band

144-148-13LB

Broadbanded hi-performance Verticals

SSV
80-40-15

40-10V

The ultimate H.F. monobanders

KLM's **"BIG STICKERS"**

Plus much, much more!

Write for a complete catalog

KLM
P. O. Box 816, Morgan Hill, CA 95037
(408) 779-7363

Tell 'em you saw it in HAM RADIO!
Each month, our editors will select the best answer received to a question posed in the Technical Forum. We will send the writer a book from our Bookstore as a way of saying thanks.

helical antenna matching

In the March, 1983, Technical Forum, a question was raised as to a method of matching a 140-ohm helical antenna to a lower impedance line. A similar problem was covered in the *IEEE Transactions on Antennas and Propagation*, Vol. AP-25, No. 6, November, 1977, Page 913. The antenna design note covers the method of lowering the impedance of the helical to 50 ohms. The method described would appear to be usable at 70 ohms or any other impedance through 140 ohms. — John Belliveau.

Ed note: Most technical libraries probably have files on *Transactions on Antennas and Propagation*.

ham radio thanks Alfred Resnick, K9PXR/9, for his similar solution to the matching problem. In addition he illustrates how series section transformers can be used to transform 70 ohms to 50 ohms. Articles have appeared on that subject in many magazines. Here are some of the sources:

mysterious spur on 160

A local (0.67-mile-distant) 1500-kHz, 50-kW, a-m broadcast station recently installed a new transmitter that uses asymmetrical modulation (95 percent down, 125 percent up). In addition to increasing an already strong rf field, the new transmitter introduced a low-level, broad spurious signal in the 160-meter band that is present on three different receivers. On a sideband receiver the signal is a broad splatter in sync with the station program. On an a-m receiver the signal is intelligible audio.

The transmitter has been cleared by the FCC in response to telephone-equipment-interference complaints. I've estimated the 160-meter "spur" at my location to be about 100 dB down from the 1500-kHz signal. The station engineer was unable to detect it three miles from the transmitting antenna. The spur is difficult to detect closer to the station, but at my location, with a quarter-wave inverted-L, an antenna tuner, and two 1500-kHz traps in the input of the Omni-D receiver, it is an interfering signal of approximately 80 microvolts.

For the first few months the spur seemed to drift randomly in the lower 25 kHz of the 160-meter band over periods of hours and days. When really cold weather occurred in January, I realized that the frequency drift was related to outdoor temperature. Since then I have been correlating the frequency of the spur and the outdoor temperature. A plot of these readings shows that as the temperature rises during the day the spur frequency decreases. The frequency in the early morning is related inversely to the low temperature reached during the night.

Has anyone experienced a similar situation, or does anyone know what is causing this effect? — Jack Geist, N3BEK.
last-minute forecast

The higher frequency bands (10-30 meters) are favored for the best DX the first half of the month. The solar flux is expected to be highest at that time and lowest about the 20th. Look to the lower frequency bands (40-160 meters) for the best DX the last half of the month. Short-duration disturbed conditions (geomagnetic- ionospheric storms) are expected around the 4th, 12th, and 30th, with a longer-duration event just prior to the 20th. Hearing and working DX will be more difficult during the disturbances, but DX from unusual locations may appear in the form of weak fading signals.

The lunar perigee and full moon, of interest to moonbounce DXers, occurs on the 16th and 26th of this month. An Aquarid meteor shower of interest to meteor-scatter and meteor-burst DXers peaks between May 4th and 6th with rates of 10 and 25 per hour for the Northern and Southern Hemispheres, respectively.

sporadic-E propagation

One of the major paths for excellent DX signals in the summer is short skip, or multiple short skips, on the higher frequency bands. In order to best use sporadic-E (Es) short-skip propagation, which intensifies toward the end of May and ends in mid-September, a short review is in order: Es is a thin layer of intense ionization about 60 miles (100 km) above the earth. It gives rise to strong, mirror-like signal reflections over the short-skip distances of 600 to 1200 miles (1000 to 2000 km). Signals remain strong for from a half-hour up to a couple of hours, on the average; they're generally stronger than long-skip. Station location also determines how strongly the present sunspot number (SSN-75) affects sporadic-E propagation, with mid-latitudes the least affected and equatorial and polar paths the most. The highest frequency propagated by Es occurs at local noon, since it follows the sun across the sky. However, the highest probability of occurrence is near sunrise and again around sunset. These two characteristics of Es affect short-skip openings differently. Openings on the higher-frequency bands occur near local noontime; the lower bands tend to have openings near sunrise and sunset.

Let's look at the best locations for these Es openings: Since Es is related to the summer sun, the effect is in the Northern Hemisphere from June through September and in the Southern Hemisphere during their summer, December through March. The best Es is on either side of the geomagnetic equator; it's especially good where the geomagnetic equator is furthest from the geographic equator. These special areas are Southeast Asia in the Northern Hemisphere and South America in the Southern Hemisphere. The first is the better of the two.

To look for Es openings on the higher-frequency bands, monitor beacons on 6 and 10 meters and CB channel 19. Also check TV channels 2 through 5 for 6- and 2-meter openings. The lower bands don't need beacon monitoring since Es openings (sunrise and sunset) are available most nights.

band-by-band summary

Six meters will provide occasional openings to South Africa and South America around local noontime by short-skip Es. Monitor TV, an unused channel (2 through 5) for clues.

Ten and fifteen meters will have a few short-skip Es openings, and long skip during high solar flux to most areas of the world during daylight. Some trans-equatorial openings associated with disturbed ionospheric conditions may occur in the evening hours.

Twenty and thirty meters will have DX from most areas of the world during daylight and into evening almost every day, either long skip to 2500 miles (4000 km) or short-skip Es to 1250 miles (2000 km) per hop. The length of daylight is now approaching maximum, providing many hours of good DXing.

Thirty, forty, eighty, and one-sixty meters are the night DXer's bands. On many nights 30 and 40 meters will be the only usable bands because of thunderstorm QRN, but signal strengths via short-skip Es may overcome the static when Es is available. Although Es is scarce in May, it should be plentiful next month.

ham radio
<table>
<thead>
<tr>
<th>MAY</th>
<th>0000</th>
<th>0300</th>
<th>0600</th>
<th>0900</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA FAR EAST</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>EUROPE</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>OCEANIA AUSTRALIA</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>JAPAN</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

*Look at next higher band for possible openings.
Microcomputers, VTR, Hi-Fi, Lasers, Spectrometers are often damaged or disrupted due to Power Pollution. High Tech components may interact! Our patented ISOLATORS eliminate equipment interaction, curb damaging Power Line Spikes, Tame Lightning bursts & clean up interference.

Isolated 3-prong sockets; integral Spike/Lightning Suppressor. 125 V, 15 A, 1875 W Total, 1 kW per socket.

ISO-1 ISOLATOR. 3 Isolated Sockets; Quality Spike Suppression; Basic Protection $76.95

ISO-3 SUPER-ISOLATOR. 3 Dual Isolated Sockets; Suppressor; Commercial Protection $115.95

ISO-17 MAGNUN ISOLATOR. 4 QUAD Isolated Sockets; Suppressor; Laboratory Grade Protection $200.95

Master Charge, Visa, American Express

TOLL FREE ORDER DESK 1-800-225-4876 (except AK, HI, MA, PR & Canada)

Satisfaction Guaranteed!

Electronic Specialists, Inc.
171 South Main Street, Natick, MA 01760
Technical & Non 800 1-817-885-1532

Check These Prices On Factory Prime Parts

* AUTHORIZED MAIL ORDER DISTRIBUTORS
* MOTOROLA MRO DISTRIBUTOR

CALL OR WRITE TODAY FOR FREE CATALOG

All Parts Fully Guaranteed

MDS COMPLETE COMMERCIAL UNIT $169.95
MDS SLOTTED ARRAY ANTENNA KIT $25.00
MDS DOWN CONVERTER KIT $28.50
MDS COMPLETE POWER SUPPLY $35.00
*SPECIAL NE64535 TRANSISTORS $6.50

UHF DECODERS: FV 3 INSTRUCTIONS $5.00
FV 3 BOARD $30.00 FV 3 IC CHIP KIT $50.00
ZENITH 9-151-03 TUNER $79.95
BOX $19.95 DELUXE BOX $24.95
POWER SUPPLY KIT $24.95
EDGE CONNECTORS $2.95

SATELLITE T.V. SYSTEMS: PRODELIN DISHES, DEXCEL RECEIVERS, LNA'S & CHAPARRAL POLAROTORS. SEND $1.00 FOR MORE INFORMATION.

INFORMATION CALL 817-460-7071
ORDERS ONLY CALL 800-433-5169

PB RADIO
1950 E. Park Row Arlington, Texas 76010

P.S. RESEARCH
1945 E. Park Row Arlington, Texas 76010

1-800-225-4876

MDS COMPLETE COMMERCIAL UNIT $169.95
MDS SLOTTED ARRAY ANTENNA KIT $25.00
MDS DOWN CONVERTER KIT $28.50
MDS COMPLETE POWER SUPPLY $35.00
*SPECIAL NE64535 TRANSISTORS $6.50

UHF DECODERS: FV 3 INSTRUCTIONS $5.00
FV 3 BOARD $30.00 FV 3 IC CHIP KIT $50.00
ZENITH 9-151-03 TUNER $79.95
BOX $19.95 DELUXE BOX $24.95
POWER SUPPLY KIT $24.95
EDGE CONNECTORS $2.95

SATELLITE T.V. SYSTEMS: PRODELIN DISHES, DEXCEL RECEIVERS, LNA'S & CHAPARRAL POLAROTORS. SEND $1.00 FOR MORE INFORMATION.

INFORMATION CALL 817-460-7071
ORDERS ONLY CALL 800-433-5169

PB RADIO
1950 E. Park Row Arlington, Texas 76010

P.S. RESEARCH
1945 E. Park Row Arlington, Texas 76010

1-800-225-4876
The CT-90 is the most versatile, feature-packed counter available for less than $300.00! Advanced design features include: three selectable gate times, nine digital gates and indicators and a unique display hold function which holds the displayed count after the input signal is removed. Also, a 10mHz TCXO time base is used which enables easy zero beat calibration checks against WWV. Optionally, an internal nicad battery pack, external time base input and Micro-power high stability crystal oven time base are available. The CT-90, you can perform count!

SPECIFICATIONS:
- **Range:** 20 Hz to 600 MHz
- **Sensitivity:** Less than 10 mV to 150 MHz
- **Frequency:** Less than 50 mV to 500 MHz
- **Resolution:** 0.1 Hz (10 MHz range)
- **Display:** 7 digits 0.4" LED
- **Time Base:** 1.0 ppm TCXO 20-40°C
- **Power:** 12 VAC 250 ma

PRICES:
- CT-90 wired, 1 year warranty $99.95
- CT-90 Kit, 90 day parts warranty $84.95
- AC-1 AC adapter $3.95
- BP-1 Nicad pack + AC adapter/charger $12.95

NEW RECEIVER FREQUENCY

The CT-70 breaks the price barrier on lab quality frequency counters. Deluxe features such as three frequency ranges: each with pre-amplification, dual selectable gate times, and gate activity indication makes measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy - that's 0.001% The CT-70 is the answer to all your measurements needs, in the field, lab or ham shack.

SPECIFICATIONS:
- **Range:** 20 Hz to 525 MHz
- **Sensitivity:** Less than 50 mV to 150 MHz
- **Frequency:** Less than 150 mV to 500 MHz
- **Resolution:** 1.0 Hz (5 MHz range)
- **Display:** 7 digits 0.4" LED
- **Time Base:** 1.0 ppm TCXO 20-40°C
- **Power:** 12 VAC 250 ma

PRICES:
- CT-70 wired, 1 year warranty $99.95
- CT-70 Kit, 90 day parts warranty $84.95
- AC-1 AC adapter $3.95
- BP-1 Nicad pack + AC adapter/charger $12.95

8 DIGITS 600 MHz $159.95 WIRED

SPECIFICATIONS:
- **Range:** 20 Hz to 600 MHz
- **Sensitivity:** Less than 25 mV to 150 MHz
- **Frequency:** Less than 150 mV to 600 MHz
- **Resolution:** 1.0 Hz (60 MHz range)
- **Display:** 7 digits 0.4" LED
- **Time Base:** 2.0 ppm 20-40°C
- **Power:** 110 VAC 12 VDC

PRICES:
- DM-700 wired, 1 year warranty $99.95
- DM-700 Kit, 90 day parts warranty $79.95
- AC-1 AC adapter $3.95
- BP-3, Nicad pack + AC adapter/charger $19.95
- MF-1, Probe kit $2.95

DIGITAL MULTIMETER $99.95 WIRED

The DM-700 offers professional quality performance at a hobbyist price. Features include: 26 different ranges and 5 functions, all arranged in a convenient, easy-to-use format. Measurements are displayed on a large 3½ digit, ½ inch LCD readout with automatic decimal placement, automatic polarity, range indication and overload protection up to 1250 volts on all ranges, making it virtually goof-proof. The DM-700 looks good, a handsome, jet-black, rugged ABS case with convenient retractable tilt base makes it an ideal addition to any shop.

SPECIFICATIONS:
- **DC/AC volts:** 100V to 1 KV, 5 ranges
- **DC/AC current:** 0.1 uA to 20 Amps, 5 ranges
- **Resistance:** 0.1 ohms to 20 Megohms, 6 ranges
- **Input Impedance:** 10 Megohms, DC/AC volts
- **Accuracy:** 0.1% basic DC volts
- **Power:** 4 C cells

ACCESSORIES:
- Telescopic whip antenna - BNC plug $7.95
- High impedance probe, light loading $1.95
- Low pass probe, for audio measurements $15.95
- Direct probe, general purpose usage $12.95
- Tilt bar, for CT-70, 50, MINI-100 $3.95
- Color burst calibration unit, calibrates counter against color TV signal $14.95

COUNTER PREAMP

For measuring extremely weak signals from 10 to 1,000 MHz. Small size, powered by plug transformer included.
- Flat 25 db gain $7.95
- BNC Connectors $1.95
- Great for shifting RF with pick-up loop $34.95

TECHS

Satisfaction guaranteed, refunds for 30 days, if displeased return in original form for refund. Add 5% for shipping insurance to a maximum if $100.00 added 15% COD add 12. All orders under $5.00 add 5% Ontario residents add 7% tax.
A 12-foot (boom) antenna achieves 11-dB gain on 10 meters

Several articles on the design of log-periodic dipole and Log-Yagi antennas have made the Amateur fraternity quite conscious of their excellence for long-haul DXing. Their virtues are high gain, exceptional bandwidth, and a large capture area. In order to understand the mathematical concepts, rather than just copying a design, a series of simple functions have been derived that permits any interested Amateur to design his own Log-Yagi.

reflector considerations

Relatively close spacing is employed in these Log-Yagis. Purists may be dismayed by this approach, since approximately 0.5 dB would be lost in a Yagi of similar size. In the case of Log-Yagis, however, if such a loss exists it is dwarfed in importance by achievement of front to back ratios of up to 30 to 45 dB. Experimenters who have tried both the wide and close-spaced reflectors report that the close-spaced reflector shows no apparent loss in gain, but that the front-to-back is terrific. Interlacing Log-Yagis does show the loss of about 5 dB F/B when compared with monobanders.

Since I could find no published curves or data for using close-spaced reflectors, I decided to provide my own data at three spacings under 0.15 wavelength. The spacings were chosen to provide easily measured intervals of inches and fractions and result in 0.0765, 0.0854, and 0.1 wavelength. Efficient reflectors are made progressively longer as they are moved closer to the driven element or cell. Simple formulas can then be used to calculate reflector lengths based on the indicated spacing. Finally, the frequencies used for computation are based on the lower band-edge where wavelength is determined by $11808 / f$ MHz, with the result in inches.

Reflector spacing versus required reflector length is as follows:

<table>
<thead>
<tr>
<th>spacing</th>
<th>reflector length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0765A</td>
<td>6190 - f MHz</td>
</tr>
<tr>
<td>0.0854A</td>
<td>6115.2 - f MHz</td>
</tr>
<tr>
<td>0.10A</td>
<td>6050 - f MHz</td>
</tr>
</tbody>
</table>

director considerations

In addition to the reflector design needed to produce the best F/B ratio, the best broadband characteristics with constant gain were also considered. Because of perturbations within the log cell, it has been found that with spacings less than 0.12 wavelength the gain is not constant over the entire band. Spacings between 0.125 and 0.150 wavelength exhibit a relatively flat response if the director is adjusted to 95 percent of the longest cell element. The use of spacings of less than 0.125 require pruning or adjusting

By Leo D. Johnson, W3EB, Route 1, Box 448, Hollywood, Maryland 20636
the director for best results in the portion of the band of interest.

average Yagi gain

Tests conducted using two Yagi parasitic elements with log-cell radiators show 4.3 to 4.6 dB gain over the cell alone. Reference in the text to average Yagi gain is based on a 4.5 dB average.

Second directors provide between 1 and 1.5 dB additional gain when spaced 0.15 to 0.2 wavelength from the first director. A third director seldom adds more than 0.5 dB gain.

the cell function

There are as many combinations of Log-Yagi configurations as imagination will allow. As this article is not a treatise on the construction of a single design, working examples are used to lead the builder through the simple design steps.

In the formulas presented, \(f \) is the frequency in MHz at the lower band edge, \(\tau \) is the design constant between 0.85 and 0.97, and \(\sigma \) is the spacing constant between 0.05 and 0.19 used to determine cell length and gain. Half angle \(\alpha \) is the angle formed between the boom and the taper formed by the element.

It should be noted that a \(\tau \) near 0.95 produces higher gain, with virtually any \(\sigma \), than is possible using the lower figures near 0.85, and is generally what I use. Bandwidth of the cells, even with high \(\sigma \), are sufficient through 28 MHz to ensure coverage of the entire band.

Two curves are shown in fig. 1 and fig. 2 which enable the designer to reasonably determine cell gain. One represents the \(\tau \) versus \(\sigma \) from K4EWG’s work\(^1\)\(^-\)\(^3\) and the other is from Isbell’s\(^4\) work using \(\tau \) versus half angles. The Isbell curve has been modified by extending the curves to include half angles near 3 degrees.

Both curves are based on pure log-periodic cell design and their accuracy is not questioned. For Log-Yagi work, Isbell’s curves appear to correlate closely if a correction factor of -1.3 dB is applied.

Subtraction of 2.2 dB results in dybd — or gain over a dipole. For this reason, the left-hand figures on the modified Isbell curve have been corrected by 3.5 dB and shown as dybd.

Either curve shows that cell gains over a dipole, when added to the average Yagi gain, provide a very efficient antenna on a relatively short boom.

designing the antenna

Having waded through the basics that are pertinent to Log-Yagi design, you can proceed with the development of the antenna shown in fig. 3 using simple formulas.

For the cell half-lengths in inches:

\[
\begin{align*}
\ell_1 &= \frac{2820}{f} \\
\ell_2 &= 1 \times \tau \\
\ell_3 &= 2 \times \tau
\end{align*}
\]

Spacing between the elements is calculated by first multiplying the selected \(\sigma \) by four and again multiplying that quantity by the length of \(\ell_1 \). Stated as a formula: \(\ell_1(4\sigma) = \ell_1 - \ell_2 \) spacing. To calculate the
of Fig. 3. Log-Yagi consisting of cell (i), (2), and (3) and up to three parasitic elements.

\(\ell_2 - \ell_3 \) spacing multiply the \(\ell_1 - \ell_2 \) spacing by \(\tau \).

This completes the cell design and a total Log-Yagi can be designed from the data presented so far.

For example, a 28-MHz antenna with a \(\tau \) of 0.95 and using a \(\sigma \) of 0.07 results in the following cell dimensions.

\[
\begin{align*}
\ell_1 &= 2820 \div 28 = 100.71 \\
\ell_2 &= 160.71 \times 0.95 = 95.6786 \\
\ell_3 &= 95.6786 \times 0.95 = 90.895 \\
\ell_1 - \ell_2 &= (4 \times 0.07) \times 100.71 \\
&= 0.28 \times 100.71 \\
&= 28.1988 \approx (28.2) \\
\ell_2 - \ell_3 &= 28.2 \times 0.95 \\
&= 26.79 \approx (26.8) \\
\text{cell length} &= 55\text{ inches}
\end{align*}
\]

Continuing the design for the parasitic elements using 0.0765-wavelength spacing for the reflector and 0.15-wavelength spacing for the director we find:

\[
\begin{align*}
R &= 6190 \div 28 \\
&= 221.07 \\
R - \ell_1 &= (11308 + 28) \times 0.0765 \\
&= 421.7 \times 0.0765 \\
&= 32.26 \approx (32.23) \\
d &= (2 \times 100.71) \times 0.95 \\
&= 201.42 \times 0.95 \\
&= 191.349 \approx (191.35) \\
\ell_3 - d &= 421.7 \times 0.15 \\
&= 63.25
\end{align*}
\]

The parasitic elements require 95.5 inches plus 2 inches each for mounting; when added to the cell length, this figure indicates that a boom of 154.5 inches, or 12.875 feet, is required. If the antenna was to have been designed for exactly a 12-foot boom, then this example must be changed by reworking the cell length or changing the director spacing. In the example given, reducing the director spacing to 0.125 wavelength results in a new spacing of 52.75 and the antenna fits a 12-foot long boom nicely.

The K4EWG curve indicates a cell gain of 9.2 dBi, or 7.0 dBd. To compute the half angle to check with the modified Isbell curve, we must calculate the cotangent (cot) of the half angle from the \(\tau \) and \(\sigma \) used in our design as follows:

\[
\begin{align*}
cot \alpha &= (4 \times \sigma) \div (1 - \tau) \\
cot \alpha &= (4 \times 0.07) \div (1 - 0.95) \\
&= 0.28 \div 0.05 \\
&= 5.6
\end{align*}
\]

Cot 5.6 (5.614) resolves to a half angle (\(\alpha \)) of 10.1 degrees.

The gain on the modified Isbell curve indicates 8.8 dBi, or 6.6 dBd, for the cell alone. Cell gain of 6.6 plus 4.5 average Yagi gain renders a figure of 11.1 dBd total gain for the Log-Yagi, or about 0.6 dB less than indicated by the other curve.

The two methods produce little difference in cell gain figures in the region between sigmas of 0.05 and 0.12, but even the lowest of gain figures equates to a power ratio of 12.6, which makes 100 watts as effective as 1.25 kW on a dipole.

wide-spaced cells

The previous design produced a high-gain antenna on a short boom. Surely some designers will be considering whether versions with longer booms and more directors are practical, particularly for those who have the space to erect them.

If all the constants remain the same except \(\sigma \), which is increased, only the spacing between cell elements will change. The spacing for \(\ell_1 - \ell_2 \) becomes 68.5 inches and \(\ell_2 - \ell_3 \) is 65.063 inches for a cell length of 133.5 inches using a \(\sigma \) of 0.17.

Using this cell length with 0.15-wavelength director spacing and 0.0765-wavelength reflector spacing, the boom required would be a little over 19 feet long. If, however, the reflector spacing were changed to 0.0854 wavelength, the mechanical balance would be improved and the configuration would fit nicely on a 20-foot boom.

Using the previous formulas, the \(\cot \alpha \approx 13.6 \) and the half angle is 4.2 degrees. The modified Isbell curve shows a cell gain of 8.95 dBd and a total Log-Yagi gain of 13.46 dBd. The 100 watts now looks like 2 kW on a dipole.

While striving for every dB possible, adding a second or third director could give a final figure of over 15 dBd.

tolerances

Two items left untouched by most other articles on this subject are the need for careful workmanship and the use of relatively finite measurement if the best results are to be attained. Inattention to detail or poor workmanship can cost you gain.

Tolerances should be held to 1/16 inch for element
lengths and spacings up to 1/8 inch as high as 28 MHz. For metric measurement, 1 mm is an excellent tolerance figure (for both length and spacing).

By fastening the phase lines exactly 0.5 inch from the attachment end of the radiator, and maintaining equal lengths of each wire or strap in the phasing pairs, the builder is ensured of good electrical balance and his results will be repeatable time after time. The dimensions developed from the design effort are based on center-to-center spacing of all elements.

fine tuning the design

In many combinations of the three basic factors of design, it appears that some fractions make the measurement practically impossible. Other cases are noted where attaining the tolerance figures for construction is impossible.

Changing one or more of the factors even slightly can often resolve the problems. In the following example of a 14-MHz design, the original figures and finalized computations are explained:

original computation

$$f = 14 \, MHz \quad \tau = 0.95$$

$$\sigma = 0.1791$$
$$\ell_1 = 201.42857$$
$$\ell_2 = 191.357$$
$$\ell_3 = 181.7893$$
$$\ell_1 - \ell_2 = 144.303$$
$$\ell_2 - \ell_3 = 137.088$$

final computation

$$f = 14.0037214 \, MHz \quad \tau = 0.950341403$$

$$\sigma = 0.1789265$$
$$\ell_1 = 201.375$$
$$\ell_2 = 191.375$$
$$\ell_3 = 181.875 (181.8716)$$
$$\ell_1 - \ell_2 = 144.125$$
$$\ell_2 - \ell_3 = 137.0 (136.968)$$

First, the dimensions of ℓ_1, ℓ_2, and ℓ_3 were difficult to measure. This was resolved by dividing 2820 by 201.375 for the new frequency. Although ℓ_2 and ℓ_3 could be considered within tolerance, it was desirable to see how τ would be influenced.

The figure of 191.3786 for ℓ_2 after the frequency was changed was close to 191.375, so a new τ was developed by dividing 191.375 by 201.375 for $\tau = 0.950341403$, which helped make ℓ_3 a more easily resolved figure.

Although the cell spacings were resolvable, I felt that reducing the sigma slightly would permit the use of integral inches for $\ell_2 - \ell_3$, and that the small change would not affect gain. By cut and try, I improved the dimensions and arrived at the new figure.

The results are dimensions well within the established tolerances. It is much more simple to redo the arithmetic than to try to measure uncommon fractions!

collection

I've tried various methods for mounting cell elements. Generally, the insulating material used in cell construction dictates the mounting method. When using polystyrene, Lucite, Plexiglass, or PVC tubing as insulators, strap them with stainless steel hose clamps. (If you use U-bolts, a cushioning material must be added.) With these insulators, I used 1-1/4 x 1-1/4 aluminum angle mounted to 4 x 4 plates for fastening to the boom (with muffler clamps). Most of the materials mentioned succumb to weathering of some sort in two to three years. PVC shows breakdown of insulation and the others get brittle and crack.

The best material is polycarbonate. Though this material is expensive, it has a tensile strength of 6000 psi, a breakdown characteristic of 360 volts per mil (0.001 inch), it retains its impact strength to -40 degrees F, and it has a temperature distortion point of over 260 degrees F. Polycarbonate with 1/8-inch wall can support a full-sized 14-MHz element, with two U-bolts spaced 6 inches apart, when the element is enclosed in a tube only 7 inches long with a gap between elements ends of 0.5 inch. There will be no noticeable sag at the element center.

guying

Single guy wires are satisfactory for small booms and on larger-diameter long booms with thick walls. The extra support provided by umbrella-type guying is recommended in most other cases. When the installation is close to salt water, or in areas where oxidation levels are high, stainless steel guys and turnbuckles are highly recommended. The 3/32-inch sailboat-shroud cable is adequate for most cases. For very heavy arrays, such as interlaces, 1/8-inch material is recommended. Dacron is the only rope material recommended for guys. This should be of the woven type, in diameters of 1/4 or 5/16 inch. Rope guys increase wind resistance considerably.

matching

Impedances of almost all configurations are between 35 and 48 ohms. Whether strap, rods, tubes, or wire is used for the phasing lines, their influence is small so far as matching capabilities are concerned.

K4EWS devised a matching stub for his design which is easily found by using 256 f. It is installed between ℓ_3 and a 1:1 balun. Closing up the stub spacing or adjusting 1/8 inch at a time provides the best match.

On many occasions it is difficult to make such changes easily. A preferred method is to feed the antenna through a balun and slightly shorter stub, using a transformation in the feedline. This approach uses either an odd number of quarter wavelengths of 50-ohm feedline (corrected for velocity factor) or a single 50-ohm quarter-wave section between 70-ohm
Antennas

9 MHz Crystal Filters

<table>
<thead>
<tr>
<th>Model</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-5A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$50.60</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$68.60</td>
</tr>
<tr>
<td>XF-9B-01</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$91.35</td>
</tr>
<tr>
<td>XF-9B-02</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$91.35</td>
</tr>
<tr>
<td>XF-9B-10</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>$119.65</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>3.76 kHz</td>
<td>5</td>
<td>$73.70</td>
</tr>
<tr>
<td>XF-9D</td>
<td>FM</td>
<td>5.0 kHz</td>
<td>5</td>
<td>$73.70</td>
</tr>
<tr>
<td>XF-9E</td>
<td>CW</td>
<td>12.5 kHz</td>
<td>4</td>
<td>$51.55</td>
</tr>
<tr>
<td>XF-9F</td>
<td>CW</td>
<td>500 kHz</td>
<td>5</td>
<td>$91.35</td>
</tr>
<tr>
<td>XF-9G</td>
<td>CW</td>
<td>250 Hz</td>
<td>5</td>
<td>$124.95</td>
</tr>
<tr>
<td>XF910</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>$16.35</td>
</tr>
</tbody>
</table>

10.7 MHz Crystal Filters

<table>
<thead>
<tr>
<th>Model</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>NBFM</td>
<td>12 kHz</td>
<td>8</td>
<td>$64.10</td>
</tr>
<tr>
<td>XF107-B</td>
<td>NBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>$64.10</td>
</tr>
<tr>
<td>XF107-C</td>
<td>WBFM</td>
<td>30 kHz</td>
<td>8</td>
<td>$64.10</td>
</tr>
<tr>
<td>XF107-D</td>
<td>WBFM</td>
<td>36 kHz</td>
<td>8</td>
<td>$64.10</td>
</tr>
<tr>
<td>XF107-E</td>
<td>Picocarta</td>
<td>40 kHz</td>
<td>8</td>
<td>$69.25</td>
</tr>
<tr>
<td>XF107-G04</td>
<td>FM</td>
<td>14 kHz</td>
<td>4</td>
<td>$28.70</td>
</tr>
</tbody>
</table>

Low Noise Receive Converters

<table>
<thead>
<tr>
<th>Model</th>
<th>Bandwidth</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>MM1296-144</td>
<td>$374.95</td>
</tr>
<tr>
<td>322.6 MHz</td>
<td>MM432-25S</td>
<td>$50.60</td>
</tr>
<tr>
<td>220 MHz</td>
<td>MM220-28</td>
<td>$69.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>MM144-28</td>
<td>$54.95</td>
</tr>
</tbody>
</table>

Linear Transverters

<table>
<thead>
<tr>
<th>Model</th>
<th>Bandwidth</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 MHz</td>
<td>MMI1296-10 L</td>
<td>$44.95</td>
</tr>
<tr>
<td>432/435 MHz</td>
<td>MMI432-100</td>
<td>$44.95</td>
</tr>
<tr>
<td>50 W output</td>
<td>MMI432-50S</td>
<td>$44.95</td>
</tr>
<tr>
<td>30 W output</td>
<td>MMI432-30LS</td>
<td>$209.95</td>
</tr>
<tr>
<td>144 MHz</td>
<td>MMI144-100 S</td>
<td>$293.95</td>
</tr>
<tr>
<td>50 W output</td>
<td>MMI432-144S</td>
<td>$293.95</td>
</tr>
<tr>
<td>30 W output</td>
<td>MMI432-30LS</td>
<td>$209.95</td>
</tr>
<tr>
<td>25 W output</td>
<td>MMI144-25 S</td>
<td>$114.95</td>
</tr>
</tbody>
</table>

Linear Power Amplifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>Bandwidth</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>432/435 MHz</td>
<td>MM144-28</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

Credits

Thanks goes to Peter Rhodes, K4EWG, for planting the original seed and for taking the time to discuss and verify the aspects of this new design; to WA3EL for making the first long-boom wide-spaced array; and a special thanks to the model shop-workers who manufactured the antenna hardware.

References

ASTRON POWER SUPPLIES

RS and VS SERIES

SPECIAL FEATURES
- **SOLID STATE ELECTRONICALLY REGULATED**
- **FOLD-BACK CURRENT LIMITING**
 Protects Power Supply from excessive current & continuous shorted output.
- **CROWBAR OVER VOLTAGE PROTECTION**
 on all Models except RS-4A.
- **MAINTAIN REGULATION & LOW RIPPLE**
 at low line input Voltage.
- **HEAVY DUTY HEAT SINK**
- **CHASSIS MOUNT FUSE**
- **THREE CONDUCTOR POWER CORD**
- **ONE YEAR WARRANTY**
- **MADE IN U.S.A.**

PERFORMANCE SPECIFICATIONS
- **INPUT VOLTAGE:** 105 - 125 VAC
- **OUTPUT VOLTAGE:**
 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- **RIPPLE:** Less than 5mv peak to peak (full load & low line)

INSIDE VIEW – RS-12A

MODEL RS-50A

MODEL RS-7A

MODEL RS-50M

MODEL RS-12A

MODEL RS-20A

MODEL RS-35A

MODEL RS-50A

MODEL VS-50M

MODEL RS-10A

MODEL RS-7A

MODEL RS-20A

MODEL RS-35A

MODEL RS-50A

MODEL RS-12A

MODEL VS-20M

MODEL RS-35M

MODEL VS-50M

MODEL RS-50A

MODEL RS-12A

MODEL RS-7M

MODEL RS-20A

MODEL RS-35A

MODEL RS-50M

MODEL RS-12S

MODEL RS-7B

MODEL VS-20M

MODEL VS-35M

MODEL VS-50M

MODEL RS-12S

MODEL RS-7B

MODEL RS-12S

MODEL RS-7B

MODEL RS-12S

MODEL RS-7B

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 1/2 x 3 1/2 x 10 1/2</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 1/2 x 3 1/2 x 10 1/2</td>
<td>9</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 1/2 x 10 1/2</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/2</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/2</td>
<td>18</td>
</tr>
</tbody>
</table>

VS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7 1/2 x 10 1/2</td>
<td>9</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 1/2 x 10 1/2</td>
<td>11</td>
</tr>
</tbody>
</table>

ICS—Intermittent Communication Service (50% Duty Cycle 5 min. on 5 min. off)
QUADS TOWERS. TOWERS QUADS
2.3.4 ELEMENT QUADS AND ALSO
THE "Special" 40. pretuned, with
bamboo or fiberglass spreaders. Our
references are any amateur who owns
a Skylanse. Priced at $121.00 and up.
WARC frequencies easily added. En-
close 50¢ for details and treatise on
quads.

TOWERS
Steel or Aluminum. Crank down and
lift over, from $380, less liberal dis-
count. Dollar bill for complete infor-
mation on both towers/quads.

SKYLANSE PRODUCTS
W4YM
406 Bon Aire Ave.,
Temple Terrace, Fla. 33617
Phone 1-813-988-4213

Morse Code Message Keyboard
MCMK $24.95

USA/GMT/LOCAL CLOCK
UGLC $15.95

Beacon Controller/
Morse Keyboard
BCMK $24.95

All prices include shipping. Mass. res. add
5% sales tax. Check or money order.
Prices and specifications subject to
change without notice or obligation.

DIGITAL MICROSysterMS™
SOFTWARE
VIC-20

Morse Code Message Keyboard
MCMK $24.95

USA/GMT/LOCAL CLOCK
UGLC $15.95

Beacon Controller/
Morse Keyboard
BCMK $24.95

All prices include shipping. Mass. res. add
5% sales tax. Check or money order.
Prices and specifications subject to
change without notice or obligation.

Digital Microsystems, Inc.
607 Sudbury Street
Marlboro, MA 01752
CONNECTORS — ADAPTERS

<table>
<thead>
<tr>
<th>BNC (Amphenol/Kings)</th>
<th>TYPE N (Amphenol/Kings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG 48C/U Male RG58</td>
<td>UG-21 D/U Male - RG8, 213</td>
</tr>
<tr>
<td>UG 69B/U Female RG58</td>
<td>UG-21 D/U Silver plate</td>
</tr>
<tr>
<td>UG 260B/U Male RG58</td>
<td>UG-21 D/U Flange Female - RG8</td>
</tr>
<tr>
<td>No. 214000 Q. Crimp RG58</td>
<td>UG-22 B/U Flange Female - RG8</td>
</tr>
<tr>
<td>No. 69157 Male RG174/U</td>
<td>UG-23 D/U Inline Female - RG8</td>
</tr>
<tr>
<td>UG 280/U 4 Hole MT Fem.</td>
<td>UG-55/U Chassis mt - RG17</td>
</tr>
<tr>
<td>UG 291 Cable MT Female</td>
<td>UG-204C/U Male - RG17</td>
</tr>
<tr>
<td>UG 625 Single Hole MT</td>
<td>UG-5368/U Male - RG8</td>
</tr>
<tr>
<td>UG 959 Male RG58</td>
<td>UG-5368/U Silver plate</td>
</tr>
<tr>
<td>UG 491 Double Male</td>
<td>UG-603A/U Male - RG59</td>
</tr>
<tr>
<td>UG 492 Feedthru</td>
<td>UG-603A/U Silver Plate</td>
</tr>
<tr>
<td>UG 274 "T"</td>
<td>UG-1185/U Male - Captivated</td>
</tr>
<tr>
<td>UG 208E Oval</td>
<td>Crimp Male RG 8, 213</td>
</tr>
<tr>
<td>UG 914 Double Female</td>
<td>2.00</td>
</tr>
</tbody>
</table>

TYPE "F" AND AUDIO

- **F59 w/ Sep 1/4" Ring**: 10/2.45
- **F59A w/ Built on Ring**: 10/2.15
- **F59 w/ Built on 1/2" Ring**: 36e
- **F59E w/ Built on Ring**: 10/2.25
- **F56 w/ Sep 1/4" Ring**: 10/2.55
- **F56 w/ Built on 1/2" Ring**: 36e
- **F58DB For Double Braid**: 36e
- **F11 w/ Sep Ring-G11**: 50e
- **F-61 Chassis Mount w/ Nut**: 40e
- **F-71 Double Male**: 1.65
- **F-81 Female**: 40e
- **RCA Male Bare Male**: 10/1.99
- **RCA Oural or PC Female**: 10/1.99
- **RCA Chassis MT w/ Nut**: 10/1.99
- **RCA Plastic Male/Fem**: 36e
- **Mini Plug 3.5mm Plastic**: 45e
- **1/4" Chas. Jack 2-Con**: 36e
- **3/16" Mike plug, Brass cutoff**: 1.25

INTERSERIES ADAPTERS

- **UG 225/L520 to BNC**: 3.50
- **UG 258 Amphenol**: 3.50
- **UG 273 BNC to PL29**: 3.00
- **UG 349 Type N to BNC**: 5.79
- **UG 201 BNC to Type N**: 3.75
- **UG 83 Type N to PL29**: 6.50
- **UG 146 PL29 to Type N**: 6.50
- **Type F to BNC**: 2.45
- **Type F to RCA/Phono**: 2.25
- **UHF to RCA/Phono**: 1.45

COAXIAL CABLE

CLEAR — POLYETHYLENE DIELECTRIC

- **RG-8/U 75 ohm Double Shield**: Per Foot
- **RG-8/U 96% Shield Mil. Spec.**: 31e
- **RG-11/U Mill. Spec. 75 ohm. 96% Shield**: 27e
- **RG-11A/U Mill Spec. non-contaminating, 96% Shield**: 32e
- **RG-58/U Dual Shield 50 ohm (RG58 Size)**: 50e
- **RG-58/6 96% Shield Mill. Spec**: 11e
- **RG-58A/U Mill. Spec. Stranded, 96% Shield**: 12e
- **RG-58C/U Mill Spec. non-contaminating, 96% Shield**: 18e
- **RG-58U/U Mill Spec. 96% Shield**: 12e
- **RG-58 B/U Mill Spec. non-contaminating, 96% Shield**: 17e
- **RG-83A/U Mill. Spec. 93 ohm. 98% Shield**: 36e
- **RG-214/U Double Shield 50 ohm (RG58 Size)**: 1.25
- **RG-217/U 5/8" O.D. Double Shield 50 ohm**: 1.00
- **RG-222/U Double Shield Silver Shield 50 ohm**: 50e

LOW LOSS FOAM DIELECTRIC

- **RG-8/U 75 ohm 100% Foil**: 12e
- **RG-8/58% Shield**: 19e
- **RG-8/97% Shield 11 Ga. (Eqvl. Belden 8214)**: 31e
- **RG-8X 95% Shield (mini 8)**: 17e
- **RG-11/97% Shield 14 GA**: 36e
- **RG-55/60% Shield**: 50e
- **RG-58/95% Shield**: 11e
- **RG-58/U Belden No. 9201 (100 Ft. Rolls)**: 11.95 per Roll
- **RG-58/U 100% Foil**: 12e
- **RG-59/6 100% Foil 18 Ga. Gray**: 12e

GROUND STRAP

- **3/16" Tinned Copper Braid**: 10e/Fl.
- **3/16" Silver Plated Braid**: 15e/Fl.
- **3/8" Tinned Copper Braid**: 30e/Fl.

ROTOR/MULTICONDUCTOR CABLES

- **8 Conductor (Standard) 2.18 gu, 6-22 gu**: 19e
- **8 Conductor (Heavy) 2.18 gu, 6-18 gu**: 36e
- **2 Conductor 18 gu**: 10e
- **4 Conductor 18 gu**: 10e
- **4 Conductor 20 gu**: 10e
- **Shielded Hook-up Cable Stranded**: 10e
- **Shielded Hook-up Cable Solid**: 10e

GROUNDING BLOCK

- **For TV Antenna Lead-In Inline double "F" female with lug for grounding wire**: $1.89

SIGNAL SPLITTERS

- **UHFM/VHF**: Passive 2 WAY $2.79
- **4 WAY $4.39**

WEATHER BOOT

- **For RG - 59 Coax**: WB - 59 39e ea.

WALLPLATE

- **Type F Feed Thru Ivory $1.29**
- **75 OHM ATTENUATOR Female - Male Type F**
 - 5 db
 - 10 db
 - 20 db $2.89 Each
 - $8.95 ea.

2 - WAY COAXIAL SWITCH

- 2 Models Available
 - Model CSR (Game Type) $4.95
 - Model CSR (Heavy Duty Model CSR with unused input Terminated) $8.95 ea.

SHIPPING CHARGES

- Connectors 10% ($3.00 minimum)
- Cable TV Products 10% ($3.00 minimum)
- Cables $3.00 1st 100 ft. $2.50 each
- Add 100'
- Orders Under $20.00 Please Add $2 Extra
- Truck Shipments Freight Collect
- C.O.D. Add $1.50
- ADDITIONAL CHARGE FOR ALL SHIPMENTS OUTSIDE THE CONTINENTAL U.S.

NEMAL ELECTRONICS INTL. INC.

- 1325 N.E. 119th Street
- North Miami, Florida 33161
- ORDER HOTLINE (305) 893-3924

May 1983
MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NY 10012.

New York City's LARGEST STOCKING HAM DEALER COMPLETE REPAIR LAB ON PREMISES

"Aquí Se Habla Espanol"

BARRY INTERNATIONAL TELEX 12-7670
TOP TRADES GIVEN ON YOUR USED EQUIPMENT
STORE HOURS: Monday-Friday 9 to 6:30 PM
($1.50 parking across the street)
Saturday & Sunday 10 to 4 PM (Free Parking)
AUTHORIZED DISTS. MCKAY DYMKE FOR
SHORTWAVE ANTENNAS & RECEIVERS.

We NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS DEALER INQUIRIES INVITED. PHONE IN YOUR ORDER & BE REIMBURSED

COMMERCIAL RADIOS stocked & serviced on premises.

Amateur Radio & Computer Courses Given On Our Premises, Call Export Orders Shipped Immediately. TELEX 12-7670
the grounded monopole
with elevated feed

Low-takeoff-angle vertical
for 10 through 80 meters

A popular multiband antenna in the 1930s was the off-center-fed or Windom. It consisted of a half-wave horizontal dipole, at its fundamental frequency, fed off-center by a single wire feeder, at a distance of about 0.36 times its length measured from one end. A later version of the off-center-fed antenna (1940s) used 300-ohm twin lead instead of a single wire feeder, fed at a point one-third of its length, measured from one end. This antenna operates satisfactorily on the fundamental frequency and on harmonics, permitting operation on the 80-, 40-, 20-, 15-, and 10-meter bands.

If this off-center-fed antenna is turned up on end and grounded at the end closest to the feed point, we now have a vertically-polarized antenna with impedance and radiation characteristics that change with frequency in such a way that this antenna can be successfully employed for multiband (multi-frequency) operation. However, it has not been used, to my knowledge, at high frequency for radio communications. The antenna is in effect a grounded vertical monopole with elevated feed. Its main lobe, which is directed toward the horizon, does not break up into a high angle lobe for heights between 3/4 and 1 wavelength.

The transfer of the feedpoint from the base upwards has been used for a different purpose, in the sleeve antenna, originally designed for VHF, but recently adapted for use at high frequency. The half-sloper is also a type of elevated feed antenna. In the present design, the antenna is earthed at its base, and sectioned at a height of one-third its total height. The coaxial feeder cable is brought up along or inside the earthed lower section. Its sheath is connected to the top of the lower section, and the inner conductor is connected through a 4:1 step-up transformer to the insulated upper section. This is shown in fig. 1A.

An antenna of this design was described by Hatch et al. who analyzed it by approximation, treating the antenna as a lossless transmission line of constant characteristic impedance. Since the standing wave component of the antenna current is much larger than the progressive wave component, corresponding to radiation, for thin monopoles, this treatment is a good first approximation.

On this assumption, the authors computed the current distribution on the radiator for \(h = \frac{\lambda}{4}, \frac{\lambda}{2}, \frac{3}{4}\lambda \) and \(\lambda \), (fig. 2). Note the elevated feed has a pronounced effect on the current distribution on the radiator, an effect which improves the radiation pattern of the antenna for \(h > \frac{\lambda}{2} \), since for \(h = \frac{3}{4}\lambda \) and \(\lambda \) the current distribution is essentially in phase, a desirable feature for maximum gain.

radiation patterns

The radiation patterns of the monopole were also computed, and are reproduced in fig. 3, for \(h = \frac{\lambda}{2}, \frac{3}{4}\lambda \) and \(\lambda \). Patterns for the elevated feed differ little from those for base feed for heights up to \(h = \frac{\lambda}{2} \), but there is a substantial improvement in low angle patterns.

By John S. Belrose, VE2CV, 3 Tadoussac Drive, Aylmer (Lucerne), Quebec, J9J 1G1 Canada
radiation for $h = 3/4\lambda$ and λ. In the case $h = \lambda$, the base-fed antenna has only a high angle lobe, whereas with an elevated feed, there is no high angle lobe, and the radiation is dominantly low angle (less than 10 degrees above the horizon). Such an antenna would be a good DX antenna since it will have gain at these frequencies. The patterns are significantly modified by the finite conductivity of the earth, and a radial ground system must be employed to reduce losses due to currents returning to the base of the antenna through the ground. This is no different from any ground plane antenna.

antenna reactance

The reactance to the source was computed, and calculated curves are reproduced in fig. 4. The rate of change of reactance with frequency is smaller for the elevated feed antenna, and the SWR (actually X/Z_o, where Z_o = the characteristic impedance of the antenna if considered to be an open-circuit transmission line) is particularly small at $\lambda/4$ and $3\lambda/4$. The SWR at $\lambda/2$ and λ is acceptable if an antenna tuner is used to match the antenna to the transmitter. If the antenna height is such that it is approximately quarter-wave resonant at 80 meters (3.75 MHz), it could be used on 80-, 40-, 20-, 16-meters (18 MHz) and 15 meters ($h = 3\lambda/2$).

antenna modeling

The antenna reactance versus frequency curve shown in fig. 4 represents the ideal case, since the antenna was analyzed as a lossless transmission line, whereas a practical antenna has resistance (radiation and loss resistance) as well as reactance. The impedance $(Z, \theta$ and $\Gamma)$ was measured between the lower end of the coaxial feeder wire and ground. I' is the voltage reflection coefficient, with reference to 50 ohms:

$$\Gamma = \frac{SWR - I}{SWR + I}$$

If at full scale 3.5 MHz corresponds to 100 MHz, the scale factor equals 28.57, and at full scale the monopole is 56.24 feet (17.14 meters) high, and 7.4 inches (18.14 cm) in diameter. For this scale factor, the band edges for the 80, 40, 30, 20, 15, and 10 meter bands are marked. Except at 20 and 40 meters the $SWR < 4:1$.

sectioning the monopole

A tower is physically sectioned by proper placement of insulating sections. This is not very practical, especially if a grounded tower is available. Broadcasters have used grounded towers for particular applications that require the tower to be sectioned, and they have devised a method to effectively achieve this without physically doing so. The method is sketched in fig. 1B.

The tower is screened using insulated outriggers which support a surrounding cage of vertical wires. Six or eight wires are required, although four wires, as sketched, might be satisfactory. The wires are joined together by a peripheral wire at the top of the...
tower, at the bottom of the top section, at the top of the bottom section, and at the base of the tower. The sketch shows a physical separation at the place where the tower is sectioned. In practical applications, a series strain insulator would be inserted in the vertical dropwire at that point. This arrangement effectively screens the grounded tower, sections it, and since the electrical diameter is increased, the intrinsic bandwidth of the radiator will be greater.

performance

A temporary test antenna was constructed using a 37-foot free-standing whip mounted on an 18-foot lattice tower. This antenna was erected at the author's QTH (fig. 5). The SWR was measured at a number of frequencies in 3-30 MHz band. These results are plotted in fig. 6, where the abscissa is h/λ rather than frequency.

Since the antenna is not resonant and matched at any frequency in this band, the SWR depends upon the length of the feeder transmission line, and its characteristic impedance. The SWR for lengths 30 feet and 100 feet of RG8-U (50-ohm coax) was measured, and measurements were made with 72-ohm coax. Rice and Winacott, following the Marconi work, employed a 7.5 μH coil across the 4:1 step-up transformer, (fig. 1), which was supposed to improve the SWR at the higher frequencies. The author found that this coil increased the SWR at these frequencies, and so this inductor was not used. While there were differences in the SWR at particular frequencies for the different lengths and impedances of the feeder cable, an optimum length or impedance was not found. The results in fig. 6 were for a 100-foot length of RG8-U. The SWR for the various present and proposed Amateur bands are in table 1.

The SWR was highest at 10.1 MHz, where $h/\lambda = 0.57$, it was 5.5. This is, however, of no consequence, provided the antenna can be matched employing an antenna tuning unit. Since the normal loss for $SWR = 1$ for RG8-U cable at 10 MHz is 0.45 dB,
The additional loss due to $SWR = 5.5$ is about 0.6 dB, for a total loss of about 1 dB. This is hardly worth worrying about. A more important consideration is radiation from the transmission line, which should be buried, and the run above ground into the shack should be as short as possible.

Table 1 includes dial setting and bandswitch positions to tune the antenna at the various frequencies for an $SWR = 1.1$, employing a Drake MN-4 antenna tuner. Also shown are the antenna impedances inferred from these dial settings. That is, the transmitter input port was terminated in 50 ohms and with the tuner controls reset to the indicated value, the conjugate impedance was measured at the tuner output port. This measurement gives the correct magnitude of the antenna impedance, but the opposite sign of the phase angle. These settings and impedances would not apply to other installations, since it is hardly likely that this temporary antenna would be copied identically. They are given to indicate that the antenna can be tuned at all frequencies using an antenna tuner. A table such as this facilitates band change, the controls can be preset and require only trimming for minimum SWR.

While I had no doubt that the antenna would perform as predicted, my concern was that losses in the ferrite balun (which was used for the 4:1 step-up transformer) might be high for high SWR. I do not have a Drake B-1000 balun which is supposed to be designed for such applications. For outdoor use, this balun must be mounted in a weatherproof box, with feedthrough insulators.

The first test was to measure the SWR at different power levels. It was measured at 10 watts of forward power and 100 watts of forward power. No difference was detected.

The operational performance of an antenna is difficult to measure quantitatively. The following account describes some communications tests conducted over several days in October, 1980.

Starting with 20 meters, I measured the relative gain with respect to an elevated ground plane (a Hy-Gain 14AVQ trap vertical with 16 radials, four for 40, 20, 15, and 10 meters) on the roof of my garage. A gain of 0 to 1 S units was measured (0 to 5 dB). The measured gain was obviously dependent on the distance of the station being received and the propagating mode (angle of elevation of signal received).

On 40 meters during early evening hours, I worked UK2PCR, and GW4BWK, whom I chatted with for half an hour or so. He was using a full-wave delta loop apex up, lower corner feed (vertical polarization). I was using a Yaesu FT101 (100-watt transceiver).

On 75 meters, during the same two evenings, I worked Y21UJC, EA1UU, FT7DG, and G2PU. I had not previously worked DX from my QTH on 75 meters, since my fixed antenna system is quite inadequate for working DX. If you can't hear DX, you can't work it.

I QSY'd with VE8MA from 20 meters to 15 meters late one evening. I thought the 15 meter band might be dead. My received signal report came up by an S-unit, his remained the same. He was using a tri-band beam.

On 10 meters, my brief experience is that if you can hear the station you can work him.

Table 1

<table>
<thead>
<tr>
<th>frequency MHz</th>
<th>initial SWR</th>
<th>antenna tuner dial R/X bandswitch</th>
<th>antenna impedance magnitude (ohms)</th>
<th>and phase (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.70</td>
<td>3.3</td>
<td>9.1</td>
<td>20</td>
<td>26 / 30</td>
</tr>
<tr>
<td>7.10</td>
<td>4.5</td>
<td>2.1</td>
<td>30</td>
<td>98 / 46</td>
</tr>
<tr>
<td>10.10</td>
<td>5.5</td>
<td>5.6</td>
<td>7.8</td>
<td>100 / 59</td>
</tr>
<tr>
<td>14.15</td>
<td>3.3</td>
<td>4.6</td>
<td>4.1</td>
<td>4.7 / 34</td>
</tr>
<tr>
<td>18.10</td>
<td>2.0</td>
<td>4.3</td>
<td>8.6</td>
<td>85 / 34</td>
</tr>
<tr>
<td>21.20</td>
<td>2.8</td>
<td>4.6</td>
<td>5.3</td>
<td>19 / 16</td>
</tr>
<tr>
<td>24.50</td>
<td>2.5</td>
<td>4.1</td>
<td>10.1</td>
<td>83 / 15</td>
</tr>
<tr>
<td>28.50</td>
<td>3.1</td>
<td>3.9</td>
<td>7.9</td>
<td>19 / 50</td>
</tr>
</tbody>
</table>

fig. 5. Photograph of a simply-constructed monopole with elevated feed (employing a free-standing Fiberglass whip for the top section).
conclusions

The antenna appears to perform well. It is not a gain antenna, and beam antennas usually, but not always, outperform it. The lack of a directional pattern means that QRM can be high. However, the grounded monopole antenna with elevated feed has a pattern and impedance that changes with frequency in such a manner that the antenna can be used for DX, and it can be used on any frequency in the high-frequency band (3 to 30 MHz).

appendix

Radio Amateurs nowadays are accustomed to employing matched antennas, and some might find it difficult to match their transceiver to a reactive load. As an aid:

1. Calibrate the dial settings for your transceiver using an SWR bridge and a 50-ohm load;
2. when tuning a reactive antenna (high SWR) don’t tune the transmitter PA for maximum forward power to the mismatched antenna, you will only mistune your transmitter. Set the plate tank and load capacitors to the place where the transmitter delivers maximum power at an \(SWR = 1:1 \) into the 50-ohm load;
3. with low rf drive (sufficient to measure SWR or reflected power), tune the resistance and reactance dials of the antenna tuner together for low SWR (or reflected power). Only when the antenna is matched, and the SWR seen by the transmitter is 1:1, should you tune the transmitter for maximum forward power.

references

New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily retuned to nearby freq.

Models to cover every practical if & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less.

 kullanılan antenlerin çıkışları ve makul fiyatlar şunlardır:

- **VHF MODELS**
 - Model: 28-30, Price: $39.95
 - Model: 50-54, Price: $39.95
 - Model: 144-148, Price: $39.95
 - Model: 220-233, Price: $39.95
 - Model: 432-438, Price: $39.95

- **UHF MODELS**
 - Model: 432-434, Price: $49.95
 - Model: 435-437, Price: $49.95
 - Model: 438-440, Price: $49.95

- **Less Case**
 - Model: 432-434, Price: $49.95
 - Model: 435-437, Price: $49.95
 - Model: 438-440, Price: $49.95

- **Wired**
 - Model: 432-434, Price: $59.95
 - Model: 435-437, Price: $59.95
 - Model: 438-440, Price: $59.95

- **Antenna Output**
 - Model: 28-30, Price: $39.95
 - Model: 50-54, Price: $39.95
 - Model: 144-148, Price: $39.95
 - Model: 220-233, Price: $39.95
 - Model: 432-438, Price: $39.95

LOOK AT THESE ATTRACTIVE CURVES!

- **Typical Selectivity Curves of Receivers and Herical Resonators**
- **HRA-432, HRF-432**

FREE OFFER

For limited time, buy a transmit converter above with 40-45W PA ($129.95) and get $39.95 cabinet FREE.

NEW LOW-NOISE PREAMPS

- **ECONOMY PREAMPS**
 - Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UHF units available 270 to 650 MHz.

SAVE A BUNDLE ON VHF FM TRANSCIEVERS!

- FM-5 PC Board Kit – ONLY $159.95 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 6M, 2M, or 220

REPEAT OF A SELLOUT!

While supply lasts, get $59.95 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only $159.95?

FREE OFFER

For limited time, buy a transmit converter above with 40-45W PA ($129.95) and get $39.95 cabinet FREE.

NEW LOW-NOISE PREAMPS

- **HELICAL RESONATOR PREAMPS**
 - Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure = 1 to 1.2 dB. Gain = 12 to 15 dB.

NEW LOW-NOISE PREAMPS

- **P30K, VHF Kit less case** $14.95
- **P30C, VHF Kit with case** $20.95
- **P30W, VHF Wired/Tested** $29.95
- **P432K, UHF Kit less case** $18.95
- **P432C, UHF Kit with case** $24.95
- **P432W, UHF Wired/Tested** $33.95

P432 also available in broadband version to cover 20-650 MHz without tuning. Same price as P432; add "B" to model #.

NEW LOW-NOISE PREAMPS

- **Call or Write for FREE CATALOG** (Send $1.00 or 4 IRC's for overseas mailing)
- **Order by phone or mail** Add $2 S & H per order (Electronic answering service 7 days a week)
 - Use VISA, MASTERCARD, Check, or UPS COD.

NEW LOW-NOISE PREAMPS

- **Call or Write for FREE CATALOG** (Send $1.00 or 4 IRC's for overseas mailing)
- **Order by phone or mail** Add $2 S & H per order (Electronic answering service 7 days a week)
 - Use VISA, MASTERCARD, Check, or UPS COD.
For years, Hamtronics modules have been used by individual hams and manufacturers to make repeaters. Now, in the Hamtronics tradition of top quality and superb value, we are proud to offer a complete repeater package.

FEATURES:

- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF; 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ± 12KHZ. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY-TUNE TRANSMITTER; UP TO 20 WATTS OUT.

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M,2M,220</td>
<td>$595</td>
<td>$745</td>
</tr>
<tr>
<td>440</td>
<td>$645</td>
<td>$795</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.

Also available for remote site linking/crossband & 10M.

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

INTRODUCING — NEW 1983 RECEIVERS

- **R144/R220 FM RCVRS** for 2M or 220 MHz. 0.16uV sens.; 8 pole xtal filter & ceramic filter in H, helical resonator front end for exceptional selectivity (curves at left). AFC incl., xtal oven avail. Kit only $119.95.
- **R451 FM RCVR** Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $119.95.
- **R76 FM RCVR** for 10M, 6M, 2M, 220, or commercial bands. As above, w/o AFC or hel. res. Kits only $109.95. Also avail w/4 pole filter, only $94.95/kit.
- **R110 VHF AM RECEIVER** kit for VHF aircraft band or ham bands. Only $84.95.
- **R110 UHF AM RECEIVER** for UHF uses, including special 259 MHz model to hear SPACE SHUTTLE. Kit $94.95

HEXICAL RESONATOR FILTERS available separately on pcb w/connectors.

- HRF-144 for 143-150 MHz $34.95
- HRF-220 for 213-233 MHz $34.95
- HRF-432 for 420-450 MHz $44.95

(See selectivity curves at left.)

- **COR KITS** With audio mixer and speaker amplifier. Only $29.95.
- **CWID KITS** 158 bits, field programmable, clean audio. Only $59.95.
- **DTMF DECODER/CONTROLLER KITS.** Control 2 separate on/off functions with touchtones, e.g., repeater and autopatch. Use with main or aux. receiver or with Auto patch. Only $89.95.
- **AUTOPATCH KITS**. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $89.95. Requires DTMF Module.
- **A16 RF TIGHT BOX** Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Only $18.00.

TRANSMITTERS AND ACCESSORIES

- **T51 VHF FM EXCITER** for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous. Kits only $59.95.
- **T451 UHF FM EXCITER** 2 to 3 Watts on 450 ham band or adjacent. Kits only $69.95.
- **VHF & UHF LINEAR AMPLIFIERS.** Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Kits from $69.95.

More Details? CHECK-OFF Page 132
another antenna tuner

One type of antenna tuner that has not seen much use is one half of the Johnson Match Box circuit (see fig. 1A). The advantage of this circuit over some of the more popular transmatch tuners is that it is a resonant circuit that rejects harmonics. It is very easy to adjust for either a long wire or coax-to-coax feed systems. It will not work for open-wire line because it is only half of the original circuit.

The reason it has not been used is probably the difficulty in obtaining a duo-differential capacitor. This capacitor has two stator sections and one combined rotor section. As the rotor increases in one section the other decreases. It forms a capacitance tap for the antenna across the coil in place of sliding the antenna tap around for a match. A duo-differential capacitor can be made by soldering two capacitors together or by mechanically linking two capacitors. The two capacitors are joined by removing the shaft of one, cutting across the middle of the hole, and enlarging the hole to fit on top of the other capacitor (see fig. 1B). After fitting, solder as shown in fig. 1C.

I built my tuner in a box with a five-prong ceramic tube socket mounted on insulators by punching a hole in the top of the box. The coil, manufactured by Bud, was mounted using the five-prong socket. The small BDC type handles several hundred watts and makes a nice small tuner. The tuner controls are adjusted for minimum SWR.

sources
Fair Radio Sales Co.
P.O. Box 1105
Lima, Ohio 45802
(Bud coils, capacitors)

latching relay control

The great virtue of a latching relay is that it draws current only while it is changing states. The latching relay’s built-in magnet holds the contacts in their last position until they are changed by a current flow through the relay winding. This makes the latching relay ideal for use with battery-powered or remote equipment.

When the circuit in fig. 2 is completed through the switch, electrons flow through R1 to the negative terminal of C1, which was in a discharged state (both plates of the same polarity); the capacitor looks momentarily like a conductor. Thus the voltage appearing at the junction of C1/R1 rises to near the supply value, and this surge of electrons flows to Q1’s base, causing Q1 to conduct and energize the relay, changing its state.

As C1 becomes fully charged, the electron flow ceases. Therefore Q1 no longer conducts.

The schematic diagram of fig. 3 uses a similar principle to control a latching relay. CR1’s forward resistance guarantees that Q1 will not be...
LSI comes to AMATEUR RADIO
Digital Microsystems™ Chips Now Available

REPEATER CONTROL
- Complete repeater control incorporating ID, tail and timeout timers, audio generator, local control and PL enable • Perfect as main controller or as backup for your present system • Master enable input for non-override local control • Switchable PL input for access security • ID on start-up can be selected • Non volatile ID memory • Selectable timeout length • Automatically powers up and runs; ideal for remote applications • Selectable ID transmission rate • Adjustable tail timer length • Force ID input for manual trigger of ID sequence • Latched COR for ID holdoff and timing control • Two separate Morse outputs for interfacing to audio and/or logic. One is direct audio, the other can be used as a keying line • Crystal controlled timers • Any number of selectable messages can be transmitted using MCMG chip • Test input for automatic transmission of CW test message following ID

Digital Microsystems™
SCRC Chip $89.95

ASCII to MORSE CODE CONVERTER
- Turns any ASCII terminal or computer into a Morse code keyboard • When used with a computer, reduces system overhead and allows system time for disk access • When used with Morse to ASCII chip, any ASCII terminal or computer is transformed into a Morse code system • 1 to 90 words per minute transmission rate keyboard selectable, 1-30 wpm in 1 wpm increments, 32-90 wpm in 2 wpm increments • Master enable output for compatibility with Morse to ASCII converter chip • Two separate Morse outputs for easy interface to your transmitter, one high one low • Logically perfect Morse code generation • 110 and 300 baud • Automatic line feed insertion selectable by user • Automatic carriage return insertion selectable by user • Selectable number of characters per line before insertion of carriage return or line feed (if selected) • Master enable input for compatibility with ASCII to Morse converter chip (SATOM) • Two separate ASCII outputs for easy interface to RS232 or RS422 drivers • Designed to work with any ASCII compatible terminal or computer • Internal inverter may be selected to invert incoming Morse waveform before decoding

Digital Microsystems™
SATOM Chip $34.95

MORSE CODE to ASCII CONVERTER
- Advanced adaptive algorithm converts most hand sent and machine sent Morse code to ASCII • 110 and 300 baud • Automatic line feed insertion selectable by user • Automatic carriage return insertion selectable by user • Selectable number of characters per line before insertion of carriage return or line feed (if selected) • Master enable input for compatibility with ASCII to Morse converter chip (SATOM) • Two separate ASCII outputs for easy interface to RS232 or RS422 drivers • Designed to work with any ASCII compatible terminal or computer • Crystal controlled, automatically repeating any selected messages • Can be wired as a beacon controller, automatically repeating any selected messages • Can be wired as a repeater/remote base ID controller: a. Automatic repeat of any selected message(s) at selectable intervals, b. Latched COR input for trigger of ID mode, c. ID holdoff mode selectable for repeater ID mode • Two separate Morse outputs available — direct audio or digital logic • Two message in-progress signals available on one high, the other low • Crystal controlled, 1, 5, 6, 7, 8, 9, and 10 minute timers, useful for repeater ID mode • Perfect companion to your RTTY, ATV, or SSTV station

Digital Microsystems™
MCMG Chip $94.95

ORDERING INFORMATION
- All prices include shipping. Massachusetts residents please add 5% sales tax. Check or Money Order for payment. Prices and specifications subject to change without notice or obligation.

DIGITAL MICROSYSTEMS, Inc.
607 SUDbury Street
MARLBORO, MA 01752

May 1983
fig. 3. Schematic diagram of the latching-relay controller.

turned on by a voltage of less than 0.6 volt. The contacts automatically complete the circuit to Q2 so that the next closing of the switch will cause the relay to again change state in the manner described.

Latching relays in the 12-volt range are hard to find, but surplus relays rated from 24 volts to 28 volts are common. They will work down to about 11 volts. Surplus relays are usually of the "crystal can" size. The RCA/Gould relay listed has a 12-volt coil and four poles, and it is larger than the others. It is a specialty item that might be obtainable only through RCA suppliers.

An ideal use for this control is an on-off power switch for a battery-operated repeater. A low-current receiver with a decoder IC connected to the control line of this circuit will allow the repeater to be turned on or off on command.

Charles G. Bird, K6HTM
Chico, California
Hundreds of time- and money-saving ideas for hobbyists, experimenters and technicians!

Select 5 fact-filled volumes for only $2.95 (total value up to $98.75)

7 very good reasons to try Electronics Book Club
Blue Ridge Summit, PA 17214

- Reduced Member Prices. Save 20% to 75% on books sure to increase your know-how
- Satisfaction Guaranteed. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections—mainly, alternates, extras—plus bonus offers. Comes 13 times a year with dozens of up-to-the-minute titles you can pick from
- "Automatic Order." Do nothing, and the Main Selection will be shipped automatically! But...if you want an Alternate Selection—or no books at all—we'll follow the instructions you give on the reply form provided with every News Bulletin
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling membership obligation, and qualify for discounts on many other volumes
- Bonus Specials. Take advantage of sales, events, and added-value promotions
- Exceptional Quality. All books are first-rate publisher's editions, filled with useful, up-to-the-minute information

More Details? CHECK OFF Page 132
Vibroplex electronic keyer

When you think of speed keys, one of the first that comes to mind is the Vibroplex “Bug.” Years before the advent of electronic keys, they were the only alternative to the “cootie key” for sending semi-automatic code. In those days, you could actually tell who was sending well before signing of calls by the sender’s fist. Dahs were drawn out longer than dits came in a rapid-fire “bruuuu.” Now, however, with keyboards and other forms of electronic keys, everyone sounds somewhat the same.

Vibroplex has introduced a new lambic key and keyer that will be of great interest. Their new Brass Racer, based on the FYO design, is attractively built and is rock solid. The Vibroplex treatment of this design does not use springs to adjust paddle tension. A clever use of magnets controls the paddle tension.

Another twist is that Vibroplex took the Brass Racer base, hollowed out the center and inserted an electronic keyer that uses the Curtis 8044 chip. This makes for a very nice, compact, self contained keyer (a big plus for field day and other portable operations).

There are no power cords to clutter up the operating desk. Power comes from a self-contained 7.5-volt battery. The EK-1 is limited in that it does not have a memory like so many of the newer electronic keys. But not everyone feels that this is necessary and many will find the EK-1 a nice, simple package.

For more information, contact Vibroplex Company, Attention Bruce Palmer, P.O. Box 7230, Portland, Maine 04112; Reader Service Number 301.

tri-band vertical

Hustler, Incorporated, has announced a three-band vertical antenna for 10, 15, and 20 meter operation. A unique two-in-one trap design allows excellent bandwidth while maintaining an overall height of only twelve feet.

The antenna, 3-BTV, is designed for permanent ground mounting or for portable use on travel trailers, condo balcony railings, or anywhere exhibiting a sufficient groundplane.

The antenna is made of high quality aluminum with stainless steel hardware, supplied with a heavy duty bracket for pipe or bulkhead mounting.

For additional information, contact Hustler, Incorporated, 3275 North B Avenue, Kissimmee, Florida 32741. Reader Service Number 302.

photovoltaic panel kit

Encon announces solar panel kits for the Amateur that enable you to build your own solar electric panel for less than $6.00/watt.

Molded high-strength plastic base has forty 4-inch recesses and thirty-six 4-inch diameter cells. One panel should produce approximately 17-volts, between 1.2 and 2 amps. Cover glass, silicone potting, wire, and solder, not included.

These kits are ideal for demonstrators and schools seminars. Good working panels have been constructed in less than two hours each. Instructions are included; it is recommended that you have basic soldering skills.

For more information, contact Encon Corporation, 27584 Schoolcraft Road, Livonia, Michigan 48150; Reader Service Number 303.

TH5Mk2 tribander

The TH5Mk2 is a five-element broadband tribander for 20, 15, and 10 meters. The TH5Mk2 will load tube-type or solid state auto-tuned rigs from band edge to band edge on 20 and 15 meters. On 10 meters there is a choice of 28.0 to 29.4 or 29.3 to 29.7 MHz, all below 2:1 VSWR. The Hy-Q traps for each band are the most efficient technique for multibanding a Yagi antenna. Factory assembled and pre-tuned traps are mechanically superior, and provide reliable all-weather performance. With four active elements on each band, the average forward gain is an impressive 8.5 dB, and average front-to-back ratio is 20 dB.

The antenna assembles on a 19 foot (5.8 meter) boom. With a maximum element length of 31.5 feet (9.6 meters), the tuning radius is only 18.4 feet (5.6 meters). The assembled antenna weighs 59 pounds (26.8 kg).

The antenna includes stainless steel hardware, the BN86 balun and a sophisticated matching dual-driven element feed system as also used in the larger TH7DX. The antenna provides dc grounding for lightning protection. The suggested price is $1459.95. For more information, contact Hy-Gain, 9600 Aldrich Avenue, South, Minneapolis, Minnesota 55420.

BNC adapters

Centurion International, Inc., has introduced a new line of BNC adapters designed for antenna connection to two-way portable radios that require threaded connectors.

The adapters are available in nine different styles and feature a grounding strap for use with portable gain antennas that require ground potential. The adapters may also be used with mobile antennas, mobile amplifier chargers, and a variety of other applications.
HAL Communications Corp. announces the new CWR6750 receive-only RTTY/CW terminal. The CWR6750 is the ideal companion to a shortwave receiver for printing Amateur and commercial Morse code and RTTY transmissions. Its small size, the built-in green video monitor screen and its 12-volt operation make the CWR6750 truly portable. The CWR6750 will receive all standard radioteleprinter speeds from 60 words per minute (45 baud) to 300 wpm (300 baud). Both the standard press "Baudot" RTTY code and the computer ASCII RTTY code can be received.

Stations using Morse code can be received at speeds from 4 to 50 wpm. A computer-style ASCII printer may be connected to the CWR6750 to provide a full printed copy of all received text.

The CWR6750 measures only 10 1/4 x 6 1/2 x 11 inches, and weighs only 9 pounds. It operates from any 11 to 14.5 Vdc source, drawing 1.6 amperes. The CWR6750 is easily installed in a camper, boat, or home station.

For more information, contact Hal Communications Corp., Box 365, Urbana, Illinois 61801; Reader Service Number 305.

Boomer antenna

The 424B is the newest Cushcraft Boomer antenna. It is a twenty-four element, 70 cm Yagi, exhibiting 18.2 dB forward gain. A 424B

MULTIBEAMS have a quad configuration of directors on a single boom, together with a slot dipole and slot reflector. This unique design delivers exceptionally high gain across the entire 430-450 MHz band with very low vswr.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>MMB28</th>
<th>MMB48</th>
<th>MMB88</th>
</tr>
</thead>
<tbody>
<tr>
<td>430-450</td>
<td>430-450</td>
<td>430-450</td>
<td></td>
</tr>
<tr>
<td>GAIN (dBi)</td>
<td>11.5</td>
<td>14.0</td>
<td>16.3</td>
</tr>
<tr>
<td>FRONT TO BACK RATIO</td>
<td>18dB</td>
<td>20dB</td>
<td>24dB</td>
</tr>
<tr>
<td>3 dB BEAMWIDTH</td>
<td>44°</td>
<td>49°</td>
<td>55°</td>
</tr>
<tr>
<td>BOOM LENGTH</td>
<td>41°</td>
<td>6°</td>
<td>13°</td>
</tr>
<tr>
<td>LONGEST ELEMENT</td>
<td>16.5°</td>
<td>16.5°</td>
<td>16.5°</td>
</tr>
<tr>
<td>TURNING RADIUS</td>
<td>41°</td>
<td>3.28°</td>
<td>6.56°</td>
</tr>
<tr>
<td>DESIGN IMPEDANCE</td>
<td>50 Ohms</td>
<td>50 Ohms</td>
<td>50 Ohms</td>
</tr>
<tr>
<td>POWER RATING (PEAK)</td>
<td>1 kwp</td>
<td>1 kwp</td>
<td>1 kwp</td>
</tr>
<tr>
<td>WINDLOADING AT 80 MPH</td>
<td>14.1 lbs</td>
<td>25.1 lbs</td>
<td>47.2 lbs</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>4 lbs</td>
<td>6 lbs</td>
<td>10.4 lbs</td>
</tr>
</tbody>
</table>

JASCO INTERNATIONAL INC.

P.O. Box 29184
Lincoln, Nebraska 68529

Contact one of the authorized dealers listed below.

G.I.S.N.O. COMM. INC.
1-800-999-4873
Lincoln, NE

AL'S ELECTRONICS
(305) 997-5394
Boca Raton, FL

CRYSTALS 2 meter

for these Radios

CRYSTALS ARE $3.65 EA.

Any two meter frequency or radio not listed can be special ordered for_$5.00_.

We also supply micro-processor crystals.

A TO Z CRYSTAL CO.
P.O. Box 454H
PEMBROKE, MA 02359

PHONES ORDERS ACCEPTED

(617) 294-1553

MON. - FRI. 9:00 A.M. - 5:00 P.M.

We can ship C.O.D. first class mail. Orders can be paid by check, money order, Master Charge, or Visa. Orders prepaid are shipped postage paid. Crystals are guaranteed for life.
Amateur Radio Today
Mini-Magazine offering timely material on a professional basis for all active Radio Amateurs. A.R.T. is six full-size pages, produced bi-weekly on high quality stock using magazine production techniques. Money back guarantee for your $26/yr. subscription or a quarterly trial (six issues) for $5. Check what we've covered recently:

- 10.1 MHz opens for Amateurs
- How low should your transmitted wave angle be?
- CQWW phone and cw contests
- Sweepstakes
- Cobble telephone
- FCC ideas on 1500 watts output
- Manufacturer responses to 10.1 MHz equip. mods.
- Six-meter openings
- How to calculate your system noise figure
- Worldwide network of 20-meter beacons
- 900 MHz ssb
- 160-meter DXing
- Big antennas at K2GL
- Antenna heading calculations
- Interview with Madison Electronics
- and much, much more!

Amateur Radio Today 106
Post Office Box 6243H, Woloct, CT 06716

NEW NEW NEW
COMPUTER SAVER
Do you have 8 or more interface cards you use occasionally but hate to keep tearing into your computer to get at them and risk damaging them?

Then Switch-A-Slot is for you!
Switch-A-Slot lets you select up to 4 cards for each port. Select the card to run with the turn of a switch. No new programming tricks to learn.

Switch-A-Slot
SAVES wear and tear on cards and computer
SAVES power (only the card that's on draws power)
PROTECTS cards from being damaged by static electricity and scratches
Switch-A-Slot works with most cards:
light pen printers
modems disk cards, etc.

Models available for:
Apple II
Apple IIe
Franklin

INTRODUCTORY PRICE $155
(includes shipping)

Please send orders with payment to:
BIT "O" BYTE
PO Box 60972, Sunnyvale, CA 94088

NEW

BASIC PROGRAM MANUAL FOR AMATEURS
Programs Design: Antennas, Op-amps, Smith-charts, R.F., Coils, Pads, Filters, Striplines, Microwave and more.

All FOR $9.95 (INCLUDES SHIPPING AND HANDING)

ATTENTION YAESU FT-207R OWNERS
AUTOMATIC SCAN MODULE
15 minutes to install; scan restarts when carrier drops off; busy switch controls automatic scan on/off; includes module and instructions.
Model AS-1 $25.00

NEW BATTERY SAVER KIT
Model BS-1 $14.95

- No more dead batteries due to memory backup
- 30% less power drain when squelched
- Simple to install, step-by-step instructions and parts included
- 4 mA memory backup reduced to 500 µA
- 45 mA receiver drain reduced to 30 mA
- Improved audio fidelity and loudness

ENGINEERING CONSULTING
P.O. BOX 216 DEPT. H
BREA, CALIFORNIA 92621

NEW products

wideband antenna preamplifier

The PRE-1 Signal Amp masthead preamplifier is designed to provide high gain, low-noise amplification for received VHF and UHF signals. The PRE-1 has a midband gain of at least 15 dB with a noise figure of only 1.8 dB. The Signal Amp consists of a lightweight antenna-mounted preamplifier module and an indoor control unit. Selectable high and low gain allows the user to customize his signal enhancing needs.

Guaranteed to outperform competitive indoor preamplifiers, the PRE-1 Signal Amp comes with all necessary hardware, connectors, and instructions. PRE-1 costs only $69.00 plus $2.00 UPS shipping, from Grove Enterprises, 140 Dog Branch Road, Brasstown, North Carolina 28902; Reader Service Number 307.

circum satellite technology

The new KLM 143-150-14C circularly polarized antenna not only provides optimum reception of OSCAR satellite signals but can also dramatically improve 2-meter terrestrial communications. Linearly polarized signals (any mode, fixed or mobile) are frequently affected by buildings, mountains, and movement and, as a result, circular wavefronts develop. Reception with the 14C reduces flutter, fading, and multipath distortion, and often improves

highway mobile radio systems. Reflector and director elements are 3/8-inch diameter aluminum rods welded to the boom, reducing the risk of damage and misalignment. The antenna clamp allows easy orientation for either vertical or horizontal polarization. A higher gain can be achieved by using dual (SRL-307-2) or quad (SRL-307-4) arrays with gains of 12.5 dBi and 15 dBi respectively.

For further information, contact Mr. Dan Roszelle, Sales Manager, Sinclair Radio Laboratories Inc., 14614 Grover Street, Suite 210, Omaha, Nebraska 68144; Reader Service Number 308.

highway mobile radio systems. Reflector and director elements are 3/8-inch diameter aluminum rods welded to the boom, reducing the risk of damage and misalignment. The antenna clamp allows easy orientation for either vertical or horizontal polarization. A higher gain can be achieved by using dual (SRL-307-2) or quad (SRL-307-4) arrays with gains of 12.5 dBi and 15 dBi respectively.

For further information, contact Mr. Dan Roszelle, Sales Manager, Sinclair Radio Laboratories Inc., 14614 Grover Street, Suite 210, Omaha, Nebraska 68144; Reader Service Number 308.

heavy-duty SRL-307 UHF Yagi antenna

Sinclair Radio Laboratories' rugged seven-element 10 dB gain antenna will shrug off 113 mph (181 km/h) winds while carrying a 1/2-inch radial ice load, or 187 mph (301 km/h) winds without ice. This unit is useful for point-to-point links or for repeater applications in
S/N ratios. Benefits of circular polarity on transmit are similar, regardless of the polarization of the receiving antenna.

Since circularity may have a right-hand or left-hand twist, the 14C antenna kit includes feedpoint mounted switcher, keyed by +9 to +15 Vdc. For a single feedline convenience, a special matching harness is included. If desired, the 14C can also function as two separately fed antennas, one vertical and one horizontal. Each set of feedpoints is equipped with a 2-kW balun ready for direct coax feed.

With seven elements in each plane, the 14C produces 11-dB gain at better than 1.5:1 VSWR. Circularity is maintained within 3 dB. Virtually unbreakable 3/16 inch rod parasitic elements, anchored through the 1-1/2 inch boom, help reduce weight to 7-1/2 pounds, and windload to 1.2 square feet.

For more information, contact KLM Electronics, Inc., P.O. Box 816, Morgan Hill, California 95037; Reader Service Number 309.

R-2000 communications receiver

Trio-Kenwood has just introduced the R-2000, a highly sophisticated, all-mode communications receiver that covers 150 kHz-30 MHz in thirty bands. Designed to answer the needs of the short-wave listener as well as the Radio Amateur, this new radio is capable of receiving signals on a-m, USB, LSB, CW, and fm. Among the more interesting features to be found on this model are digital VFOs, ten memories that store frequency, band, and mode data, memory scan, programmable band scan, and off on a pre-selected schedule.

Additional features include a built-in lithium battery memory back-up (estimated 5-year life), fluorescent tube digital display, three built-in i-f filters with switch, manual UP/DOWN band scan, squelch, S-meter, noise blanker, and rf step attenuator. The R-2000 operates on 100/120/220/240 Vac or it may be operated on 13.8 Vdc using an optional DCK-1 cable kit. Suggested retail price is $599.95.

For additional information, write Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220. Reader Service Number 310.
vertical mobile antennas

dB-Gain Antennas announces its new line of antenna products with the introduction of its dB-Gain vertical mobile antenna.

The antennas are available for 450 MHz, 220 MHz, 2, 6, 10, 15, 20, and 40 meters with a power rating of 250 watts. Although these antennas were designed primarily for mobile use, they can be used for a fixed station.

Antenna whips and set screws are made of 17-7 stainless steel for longer life and extra protection. Heavy-gauge fiberglass coil housings (0.031 wall/spiral finish) add extra strength and durability in extreme weather conditions. Each coil is wound with No. 16 copper and remaining hardware is chrome-plated brass. A standard mounting ferrule is compatible with most mobile mounts.

For more information, contact Tom Adams, W4MTW, dB-Gain Antennas, 2308 NE 20th Avenue, Ft. Lauderdale, Florida 33305; Reader Service Number 311.

smallest manual encoder

The Model 340 Thin-Coder, by CES, measures 2-1/2 x 3-1/8 x 3/4 inches. It effectively dials the user into private networks, computer access, or dimension systems. Its rugged white case features a brown faceplate and white digit blocks. A convenient normal/high switch allows flexible volume control. Up to 10,000 long distance calls are possible with the Thin-Coder's long-life 9-volt battery. CES encoders use single-contact tactile keyboards for extra reliability.

For more information on the Thin-Coder Model 340 Encoder, contact Ron Hankins, CES, Inc., P.O. Box 507, Winter Park, Florida 32790; Reader Service Number 312.

160-10 m transceiver

The FT-980 is a full-featured 160-10 meter transceiver which includes a general-coverage receiver section. Providing a nominal 100-watts rf output from a low-distortion, high-voltage final amplifier, the FT-980 is set up for full QSK with silent solid-state switching. The receiver section is designed for wide dynamic range and versatility in filter selection. An audio peak filter, i-f notch filter, variable pulse width noise blanker, variable i-f bandwidth with i-f shift (passband tuning), and an audio shaping control round out the receiver features.

The FT-980 is controlled by an 8-bit microprocessor, which allows storage of frequency and mode in memory, and programming sub-band limits for Novice, Technician, General, or Advanced Class operators. Direct keyboard entry of frequencies provides instant QSY without the need to rotate the main tuning dial.

For more information, contact Yaesu Electronics Corp., P.O. Box 49, Paramount, California 90723. Reader Service Number 313.

indoor antenna

Contemporary Electronic Products announces the new NXL-1000 indoor shortwave antenna. Unlike other active indoor antennas, the NXL-1000 employs a Faraday shield for maximum rejection of manmade noise, so often a problem. In addition, the NXL-1000 has a built-in crystal calibrator with selectable 1-MHz and 100-kHz markers. This is a great help with uncalibrated or poorly calibrated receivers.

The NXL-1000 covers the range 1.5 through 30 MHz in three ranges. A high-Q selective circuit provides excellent rejection of unwanted frequencies, valuable for receivers with poor front-end selectivity or marginal image rejection. Internally generated noise, a problem with some active antennas, has been substantially reduced in the NXL-1000.
The DX-1000 can provide performance comparable to that of a long-wire antenna, and makes possible even better reception than an outdoor antenna in high-noise environments. By adjusting the orientation of the loop via the AZ EL mount, local signals and noise can be almost totally nullled out.

The DX-1000 can be conveniently placed on a desktop. The cabinet measures just $3 \times 5-1/4 \times 5-7/8$ inches, and the loop is only 12 inches in diameter. The DX-1000 indoor antenna is available from Contempoary Electronics Products, P.O. Box 570549, Miami, Florida 33157; Reader Service Number 314.

satellite TV antenna

A new satellite television antenna has been announced by Total Television, Inc., of Roseburg, Oregon. Designed for rapid assembly and installation, this 12-foot-diameter dish is suitable for every part of the U.S.A.

Special attention has been given to the appearance of the antenna. The Newtonian feed permits housing the receiving/amplifying electronics in the waterproof hub at the center of the dish. This also helps prevent theft and vandalism of these components. Featuring a true polar mount, the dish is balanced to make satellite changing easy. The reflective surface of...
the antenna is made from heavy-duty expanded aluminum screen or optional solid aluminum panels.

Named "Next Generation," this model is constructed with aircraft-style riveted aluminum framework and a single steel support for strength and light weight. It comes with a fully illustrated, step-by-step installation manual. Compatible with all popular brands of supporting electronics, the antenna is also available in colors to match the predominant local background.

For more information, contact Total Television, 17537 N. Umpqua Highway, Roseburg, Oregon 97470. Reader Service Number 315.

Eurocard racks

Designed specially for the growing interest in Eurocard-based systems, a new high-capacity rack allows placement of both single- and double-size VME-bus compatible boards in the same enclosure. The Model CCKE2, from Vector Electronic Company, also has abundant space in the rear for mounting large power supplies.

The VME bus was developed by Motorola, Mostek, Signetics, and its parent, N.V. Philips, to provide a combined sixteen-bit and thirty-two-bit standard. It employs the Eurocard format of 6.30 inches by 3.94 inches (160 mm by 100 mm) for the single card and 6.30 inches by 9.19 inches (160 mm by 233.4 mm) for the double card. Bus interconnections are made with one ninety-six-position connector on the single card and two connectors on the double card.

The CCKE2 takes advantage of the 1.3-inch (33.4-mm) difference between two single-size Eurocards and one double-size card. A simple fixture places groups of single boards one on top of another, adjacent to double boards. Appropriate system partitioning permits access to signals on either of the two VME-bus connectors.

The 19-inch (482.6-mm) EIA Std. cage holds up to twenty-seven double-size Eurocards or up to fifty-four single-size cards on 0.6-inch (15.24-mm) centers. Alternatively, the CCKE2 may be configured as a combination of Eurocard sizes; twenty-six single and thirteen double, for example.

Card-guide and connector-mounting holes are spaced on 0.20-inch (5.08-mm) centers, so cards with varying component and lead heights may be installed in any position. Snap-in card guides are made of Underwriter-Laboratories-rated flame retardant grey nylon. Connectors are mounted on the pre-drilled struts with 3-48 machine screws and nuts.

At the rear of the rack, a space 10.5 inches by 16.8 inches by 5.5 inches (259.1 mm by 426.7 mm by 140 mm) is available for power supplies with 1-inch (25.4-mm) clearance for backplane wiring.

In single quantities, the fully assembled CCKE2 is priced at $68.18 each. An unassembled version, CCKE2U, is priced at $56.82 each. For more information, contact Vector Electronic Company, 12460 Gladstone Avenue, Sylmar, California 91342. Reader Service Number 316.

RTTY/CW computer interface

The new MFJ-1220 RTTY/CW computer interface is a terminal unit that provides TTL/CMOS and RS-232 levels for computer inter-
mark and space channel filters, CW filter, and post detection lowpass filter for excellent weak-signal and high-interface RTTY/CW performance.

The MFJ-1220 takes received RTTY/CW audio from your transceiver, demodulates it, and provides TTL/CMOS and RS-232 levels for interfacing with nearly any computer. A program (not included) is used to provide RTTY/CW text.

For RTTY transmission, your computer drives the AFSK generator to provide FSK transmission using the microphone or phone patch input of your SSB transmitter, or it can directly key the FSK input of your transmitter. For CW transmission, your computer drives the high-voltage keying currents of the MFJ-1220, which then provides grid block or direct keying for your transmitter.

The RTTY/CW interface transmits and receives all standard RTTY shifts of 170, 425, and 850 Hz to cover all Amateur, commercial, and military traffic to over 100 WPM. It uses the standard space tone of 2125 Hz and marks tones of 2295, 2250, and 2975 Hz.

The MFJ-1220 RTTY/CW Computer Interface is available from MFJ Enterprises, Inc., for $179.95 plus $4.00 for shipping and handling. For more information, contact MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, Mississippi 39762. Reader Service Number 317.

receiving converter kits

Lunar Electronics announces a new line of high-performance receiving converter kits. The initial line-up of available kits includes crystal controlled models for VHF frequencies and ultra-stable tunable oscillator models for UHF. The crystal-controlled UHF models are due out in the spring of 1983.

Easy-to-read illustrated instructions with each kit ensure the builder will achieve maximum performance from his unit. Complete factory back-up assistance, if needed, is also available. Typical specs for complete unit: input frequency 144 MHz; crystal frequency 144 MHz; image rejection -65 dB; noise figure (tune max. gain 18 dB); LO specs -7-10 dBm output; output frequency 28 MHz; conversion gain 15 dB; noise figure (tune min. NF 1.75 dB) 2.4 dB; and harmonics - 50 dBc.

The highest quality components are used throughout, including double-sided, plated-through-hole PCB, gold alodined box for greatest circuit integrity, provisions for crystal networking, DBM for best performance.
When it comes to QSL's...

it's the ONLY BOOK!

US or Foreign Listings

1983 Callbooks

Here they are! The latest editions of the world-famous Radio Amateur Callbook are available now. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists all the address information you need to send QSL's. Special features include call changes, census of amateur licenses, world-wide QSL bureaus, prefixes of the world, international postal rates, and much more. Place your order for the new 1983 Radio Amateur Callbooks, available now.

RADIO AMATEUR

Emccm, announces two antenna tuners from Tokyo Hy-Power Labs, the 2000 watt HC-200 and the 200 watt HC-200. The HC-200 is a 2000 watt PEP (500 watts max on 1.9 MHz) hf antenna coupler with a power/SWR meter and a versatile twelve-position antenna switch (six through the tuner and six bypass). It will tune coaxial fed antennas, balanced line antennas (balun included), or end fed wires. It is band switched for 1.9, 3.5, 7, 10, 14, 18, 21, 24.5 and 28 MHz (all VOR) bands, so you don't have to experiment to find your inductor setting, plus it has 6:1 vernier dials on the capacitors for easy fine tuning. Scales on the dual meters include SWR, watts, PEP and watts max on 1.9 MHz. The HC-200 is $329.95.

The HC-200 is a combined 200-watt hf antenna coupler with a power/SWR meter and a six-position antenna switch (three coaxial/wire positions through the tuner and three bypass). It will tune end-fed wires, coax, or balanced line antennas (with optional balun). The HC-200 is band switched for 3.5, 7, 10, 14, 18, 21, 24.5, and 28 MHz (includes new VOR) bands. Scales on the meter include SWR, watts, and watts max on 1.9 MHz. The HC-200 is $329.95 and Johnson terminals. Suggested retail for the HC-200 is $329.95.

For more information, contact Lunar Electronics, 2775 Kurtz Street, Suite 11, San Diego, California 92110; Reader Service Number 318.

two antenna tuners

S.E.I. Inc.

912 West Touhy Avenue
Park Ridge, Illinois, 60068

Out of State Call 1-800-323-1327
In State Call 312-564-0104
C.D.D. Accepted • Special Quantity Pricing

ORDER TODAY!
TIDBITS

MORSE CODE, BREAKING THE BARRIER
by Phil Anderson, W6X!

Learning the Morse Code does not have to be the painful experience many folks make it out to be. This little booklet is checkfull of helpful and highly recommended hints and tips on how to learn the Morse Code. Uses the high/low method to eliminate the dreaded 10 wpm plateau. © 1982, 1st edition.

PA-MC Softbound $1.50 each

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

80-MHz multifunction counter

A new 80-MHz, eight-digit multifunction counter that provides frequency, period, and totalize measurements has been introduced by the B&K Precision Test Instrument Product Group of Dynascan Corporation. Designated Model 1805, this lightweight unit measures frequencies from 5 Hz to 80 MHz. Resolution may be selected from 0.1 Hz for frequencies below 10 MHz to 1 Hz for frequencies above 10 MHz. The period mode can be used to measure low frequencies from 5 Hz to 2 MHz more accurately. The totalize mode counts individual events from 0 to 9,999,999 with an overload LED. This model is helpful in applications where a specific number of cycles occurs, such as gated tone bursts.

The B&K-Precision Model 1805 utilizes a 10-MHz time base generated by a crystal-controlled oscillator for good stability with regard to temperature (<0.01 percent ± 10 ppm at 0 degrees C - 50 degrees) and line voltage variations (<1 ppm with ±10 percent line voltage regulation). For lessened susceptibility to noise and undesirable high-frequency components, a front-panel-switchable 100-kHz low-pass filter is incorporated in the counter. All operating modes, resolution ranges, and functions are front-panel selectable. The Model 1805 incorporates a switchable X10 attenuator, HOLD switch to freeze the display at the present reading, and a RESET switch to clear the display and initiate a new measurement.

The Model 1805 is available from B&K-Precision Electronic distributors. Suggested price is $290.00. For further information, contact B&K-Precision Test Instrument Product Group, Dynascan Corporation, 6460 W. Cortland Street, Chicago, Illinois 60635. Reader Service Number 320.

Presenting the Revolutionary
MONGOOSE 2000

$279.95

200 CHANNEL 10 METER ALL MODE TRANSCEIVER

Specifications

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency display</td>
<td>PLX Synthesizer</td>
</tr>
<tr>
<td>Frequency range</td>
<td>28.00 MHz to 30.00 MHz</td>
</tr>
<tr>
<td>Channels</td>
<td>200</td>
</tr>
<tr>
<td>Frequency space</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Transmission</td>
<td>AM/FM/USB/LSB/CW</td>
</tr>
<tr>
<td>Power source</td>
<td>13.8 V DC</td>
</tr>
<tr>
<td>Receiver sensitivity</td>
<td>AM = 1 micro-V @ 10 dB S/N</td>
</tr>
<tr>
<td></td>
<td>FM = 1 micro-V @ 20 dB S/N</td>
</tr>
<tr>
<td></td>
<td>SSB/CW = 0.5 micro-V @ 20 dB S/N</td>
</tr>
<tr>
<td>Selectivity</td>
<td>60 dB</td>
</tr>
<tr>
<td>Audio Output</td>
<td>2 W or 8 Ohm</td>
</tr>
<tr>
<td>Fine Tune range</td>
<td>±10 kHz</td>
</tr>
<tr>
<td>Course Tune range</td>
<td>±5 kHz</td>
</tr>
<tr>
<td>Squelch range</td>
<td>0.5 to 300 micro-V</td>
</tr>
<tr>
<td>Intermediate freq</td>
<td>AM FM = 10 - 695 kHz</td>
</tr>
<tr>
<td></td>
<td>SSB/CW = 10 - 695 kHz</td>
</tr>
<tr>
<td>Transmitter</td>
<td>SSB/CW</td>
</tr>
<tr>
<td>All power output</td>
<td>High Mid Low</td>
</tr>
<tr>
<td></td>
<td>12 W 9 W 7 W</td>
</tr>
<tr>
<td></td>
<td>10 W 7 W 2 W</td>
</tr>
<tr>
<td>SSB generation</td>
<td>Variable balanced modulator with crystal lattice filter</td>
</tr>
<tr>
<td>Course Tune range</td>
<td>±5 kHz</td>
</tr>
</tbody>
</table>

Make Check or Money Order payable to: COIN INT'L., INC.
2305 N. W. 107th Avenue, Miami Free Trade Zone Miami, FL 33172 • (305) 593-9300
VISA & MASTER CARD ACCEPTED.

For more information, contact THL Sales Dept., 2305 N. W. 107th Avenue, Miami Free Trade Zone Miami, FL 33172. Reader Service Number 125.

TS430S FILTER DEAL

For superior performance at lower cost, use top-rated 8-pole Fox Tango crystal filters to fill the optional spots in your rig. For example, our 1800 Hz FT2108 equivalent of the YK88SN has a 60-dB shape factor of 1.7 compared with 2.0, a price of $55 vs $63, and square shoulders at the top with steeper skirts all the way down to more than 80 dB!

For more pleasant SSB audio use our 2100 Hz FT2109 instead of the YK88SN. It is 10 MHz to 1 Hz for frequencies below 10 MHz. Box 1805, this lightweight unit measures frequencies from 5 Hz to 80 MHz. Resolution may be selected from 0.1 Hz for frequencies below 10 MHz to 1 Hz for frequencies above 10 MHz. The period mode can be used to measure low frequencies from 5 Hz to 2 MHz more accurately. The totalize mode counts individual events from 0 to 9,999,999 with an overload LED. This model is helpful in applications where a specific number of cycles occurs, such as gated tone bursts.

The B&K-Precision Model 1805 utilizes a 10-MHz time base generated by a crystalcontrolled oscillator for good stability with regard to temperature (<0.01 percent ± 10 ppm at 0 degrees C - 50 degrees) and line voltage variations (<1 ppm with ±10 percent line voltage regulation). For lessened susceptibility to noise and undesirable high-frequency components, a front-panel-switchable 100-kHz low-pass filter is incorporated in the counter. All operating modes, resolution ranges, and functions are front-panel selectable. The Model 1805 incorporates a switchable X10 attenuator, HOLD switch to freeze the display at the present reading, and a RESET switch to clear the display and initiate a new measurement.

The Model 1805 is available from B&K-Precision Electronic distributors. Suggested price is $290.00. For further information, contact B&K-Precision Test Instrument Product Group, Dynascan Corporation, 6460 W. Cortland Street, Chicago, Illinois 60635. Reader Service Number 320.

TIDBITS

MORSE CODE, BREAKING THE BARRIER
by Phil Anderson, W6X!

Learning the Morse Code does not have to be the painful experience many folks make it out to be. This little booklet is checkfull of helpful and highly recommended hints and tips on how to learn the Morse Code. Uses the high/low method to eliminate the dreaded 10 wpm plateau. © 1982, 1st edition.

PA-MC Softbound $1.50 each

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

Butternut Electronics

May 1983

107
NCG WORLD BAND COMMUNICATIONS

Tested and Proven 15 Meter Mobile Transceiver USB and CW
Power-High 10 watts, Low 2 watts
VFO Tuning, Noise Blanker
Fine Tune ± 1 kHz
Digital Frequency Counter
13.8 VDC @ 3A Neg. Ground
9.5" L x 9" W x 2.5" H
All this PLUS the freedom of DXing
Regular Price: $305.00
SPECIAL PRICE: NOW $279.00

160/10M
ALL NEW, with the features you have been waiting for
HF 160-10 meters SOLID STATE Transceiver 200 watt PEP
All 9 HF Bands ready to go
AC/DC Power supply built in
3-Step Tuning 1 kHz/100Hz/25Hz
4 memories, Auto Scan
Automatic Up/Down Tuning Advanced Systems
Dual VFO, Solid State-Adjustment Free, IF Tuning, IF Offset
Noise Blanker, Mic. Compressor
VOX, CW Side tone, AC 120V DC 13.8 RTTY-Fax operation
USB-LSB CW (Narrow CW filter optional).
Regular Price: $1075.00
SPECIAL PRICE: NOW $949.50

1275 North Grove Street
Anaheim, CA 92806
(714) 630-4541

Mail Order COD
Visa Master Charge
Cable: NAT COLGLZ

Prices and specifications subject to change without notice or obligation
Calif. Res. add Sales Tax

Tell 'em you saw it in HAM RADIO!
"A STATION IS ONLY AS EFFECTIVE AS ITS ANTENNA SYSTEM"

THE ARRL ANTENNA BOOK
The best and most up-to-date antenna information around. The just revised 14th Edition contains in its 328 pages propagation, transmission line and antenna fundamentals. You can update your present antenna system with practical construction details of antennas for all amateur bands - 160 meters through microwaves. There are also antennas described for mobile and restricted space use. Tells how to use the Smith chart for making antenna calculations and covers test equipment for antenna and transmission line measurements. Over 600,000 copies of previous editions sold. Paperbound. Copyright 1982. $8.00 in the U.S., $8.50 elsewhere.

HF ANTENNAS FOR ALL LOCATIONS by L.A. Moxon, G4XN.
An RSGB publication. Contains 264 pages of practical antenna information. This book is concerned primarily with small wire arrays, although construction information is also given on a small number of aluminum antennas. Chapters include: Taking a New Look at hf Antennas; Waves and Fields; Gains and Losses; Feeding the Antenna; Close-spaced beams; Arrays, Long Wires, and Ground Reflections; Multi-Band Antennas, Bandwidth; Antenna Design for Reception; The Antenna and Its Environment; Single Element Antennas, Horizontal Arrays, Large Arrays, Invisible Antennas; Mobile and Portable Antennas; What Kind of Antenna: Making the Antenna Work; Antenna Construction and Erection. Copyright 1982, 1st Edition. Hardbound $12.00.

ANTENNA ANTHOLOGY

Enclosed in U.S. funds drawn on a U.S. bank or an international money order is $ _______ for the books marked below:

() ARRL Antenna Book $8 U.S. $8.50 elsewhere
() HF Antennas $12.00
() Antenna Anthology $4 U.S. $4.50 elsewhere

NAME

ADDRESS

CITY, STATE OR PROVINCE, ZIP OR POSTAL CODE

Charge to my □ Master Charge □ Visa

Account number expires Bank number (MC)
MN9102 NON-VOLATILE QUAD LATCH

The Plessey MN9102 is a non-volatile 4-bit data latch which uses MNOS transistors as memory elements to retain stored data in the absence of applied power. The data that is applied to the four inputs is written into the memory when the SAVE control is taken to a logic '0' level and the data subsequently appears on the four outputs. The stored data is also automatically restored to the outputs whenever power is re-applied to the device.

An OUTPUT ENABLE is also available, which when taken to logic '0' level presents a high impedance state on each data output line, permitting multiplexed operation.

The high voltage usually associated with MNOS memory devices is generated internally, requiring only a single external capacitor to act as a charge reservoir for supplying current when writing into the memory. The device therefore operates from standard voltage rails and requires no additional drive circuitry.

FEATURES
- Data Retention for One Year in the Absence of Applied Power
- Simple to Use
- Standard Power Supplies Only (-5V, -12V)
- CMOS/TTL Compatible
- 14-pin DIL Package
- Typically Ten Million SAVE Operations

APPLICATIONS
- Metering Systems
- Elapsed Time Indicators
- Security Code Storage
- Last Channel Memory for Digital Tuning

$5.45 each

SL162IC AGC GENERATORS

The SL162IC is an AGC generator designed specifically for use in SSB receivers in conjunction with the SL160IC, SL161IC and SL1612C RF and IF amplifiers. In common with other advanced systems it generates a suitable AGC voltage directly from the detected audio waveform, providing a 'hold' period to maintain the AGC level during pauses in speech, and is immune to noise interference. In addition it will smoothly follow the fading signal characteristics of HF communication.

When used in a receiver comprising one SL160IC and one SL1612C amplifier and a suitable detector, the SL162IC will maintain the output within a 4dB range for a 110dB range of receiver input signal.

The S160IC/VGAD (Voice Operated Gain Adjusting Device) is an AGC generator designed to work in conjunction with the SL1603C audio amplifier (particularly when the latter is used as a microphone amplifier) to maintain the amplifier output between 70mV and 87mV rms for a 25dB range of input. A one second 'hold' period is provided which prevents any increase of background noise during pauses in speech.

FEATURES
- Wide Dynamic Range
- Speech Pause Memory
- Fast Attack/Adaptive Decay
- Only 4 External Components

$4.84 each

SL1623C AM DETECTOR, AGC AMPLIFIER & SSB DEMODULATOR

The SL1623C is a silicon integrated circuit combining the functions of low level, low distortion AM detector and AGC generator with SSB demodulator. It is designed especially for use in SSB/AM receivers in conjunction with SL160IC, SL161IC and SL1612C RF and IF amplifiers. It is complementary to the SL1621C SSB AGC generator.

The AGC voltage is generated directly from the detected carrier signal and is independent of the depth of modulation used. In its response is fast enough to follow the most rapidly fading signals. When used in a receiver comprising one SL160IC and one SL1612C amplifier, the SL1623C will maintain the output within a 5dB range for a 90 dB range of receiver input signal.

The AM detector, which will work with a carrier level down to 100 mV, contributes negligible distortion up to 90% modulation. The SSB demodulator is of single balanced form. The SL1623C is designed to operate at intermediate frequencies up to 30MHz. In addition it functions at frequencies up to 120MHz with some degradation in detection efficiencies. The encapsulation is a 14 pin DIL package and the device is designed to operate from a 6 volt supply, over a temperature range of -30°C to +70°C.

FEATURES
- Low Offset Voltage and Offset Current
- Low Offset Voltage and Current Drift
- Low Input Bias Currents
- Low Input Noise Voltage
- Large Common-mode and Differential Voltage Ranges

$6.11 each

ABSOLUTE MAXIMUM RATINGS

Storage temperature: -30°C to +85°C
Ambient operating temperature: 0°C to +80°C
Supply voltage: 0.9V to +12V
SP8640A & B 200 MHz

In frequency synthesis it is desirable to start programmable dividers at high frequencies is possible, because this raises the comparison frequency and so improves the overall synthesizer performance.

The SP8640 series are UHF integrated circuits that can be logically programmed to divide by either 10 or 11, with input frequencies up to 350 MHz. The design of very fast, fully programmable dividers is therefore greatly simplified by the use of these devices and makes them particularly useful in frequency synthesizers operating in the UHF band.

All inputs and outputs are ECL-compatible throughout the temperature range, the clock inputs and programming inputs are ECL III-compatible while the two complementary outputs are ECL II-compatible to reduce power consumption in the output stage. ECL III output compatibility can be achieved very simply, however (see Operating Notes).

The division ratio is controlled by two PE inputs. The counter will divide by 10 when either PE input is in the high state and by 11 when both inputs are in the low state. Both the PE inputs and the clock inputs have nominal 4.3kΩ pull-down resistors to VEE (negative rail).

$7.12 each

FEATURES

- Military and Industrial Variants
- J50 MHz Toggle Frequency
- Low Power Consumption
- ECL Compatibility on All I/Ps & O/Ps
- Low Propagation Delay
- True and Inverse Outputs

ABSOLUTE MAXIMUM RATINGS

Supply voltage VCC = VEE: 8V
Input voltage Vin (Vcc/2, 0V) Not greater than the supply voltage in use
Output current Iout: 20mA
Max. junction temperature: +150°C
Storage temperature range: -55°C to +125°C

The SP8640A and SP8640B are part of the short range of Plessey Consumer high speed dividers which offer improved input sensitivity and higher input impedance.

The devices are intended for use in television frequency synthesis systems. They have a division ratio of 256 with a single, SP8640A or complementary, SP86451 ECL output and incorporate an on-chip preamplifier with a differential input. The input pins may be used as UHF and VHF inputs, with only a slight loss of sensitivity, if suitable drive circuitry is employed.

FEATURES

- On-chip wideband amplifier
- High input sensitivity
- High input impedance
- Low output radiation
- Single (SP8640A) or complementary (SP86451) ECL output

Gunn Effect Diode

<table>
<thead>
<tr>
<th>Type</th>
<th>Peak Power (MW)</th>
<th>Frequency Range (GHz)</th>
<th>Typical Operating Current (A)</th>
<th>Typical Operating Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 03</td>
<td>10</td>
<td>18-12</td>
<td>110</td>
<td>7.5</td>
</tr>
</tbody>
</table>

$33.00 each

SW300

VESTIGIAL SIDEBAND FILTER

The SW300 is a two-channel Vestigial Sideband Filter which uses Surface Acoustic Wave (SAW) technology and is designed for use in TV Game circuits, or other applications where it is necessary to eliminate unwanted sideband radiation. Operation is specified for U.S. TV Channels 3 and 4 (61.25MHz and 67.25MHz respectively); the filter has one input for each channel and a common output intended to drive 75Ω loads. No tuning is required, and the device is supplied in a TO-8 type metal package for ease of shielding.

$9.44 each

FEATURES

- Surface Acoustic Wave (SAW) technology
- U.S. TV Channel 3 (61.25MHz) and 4 (67.25MHz) Operation
- Low-loss at Intended FC
- High Unwanted Sideband Rejection

SL1626C

AUDIO AMPLIFIER AND VOGAD

The SL1626C is a silicon integrated circuit combining the functions of audio amplifier with voice operated gain adjusting device (VOGAD); it is designed to accept signals from a low-sensitivity microphone and provide an essentially constant output signal for a 60dB range of input.

The encapsulation is a 8-lead plastic dual-in-line package and the device is designed to operate from a 8V ±0.5V supply voltage, over a temperature range of -30°C to +70°C.

$4.04 each

More Details? CHECK — OFF Page 132

May 1983
SL6440

HIGH LEVEL MIXER

The SL6440 is a high level mixer for use in Radio Communications and in applications requiring linear mixer.

The SL6440A is packaged in 16-lead ceramic DIL (DG) and the SL6440C in 16-lead plastic DIL (DP).

FEATURES

- +20dBm Intercept Point
- Low Noise
- +15dBm Compression Point (dB)
- −55°C to +122°C Temperature Range
- Programmable Performance
- Programmable Gain

ABSOLUTE MAXIMUM RATINGS

- Supply voltage, pins 3,4 and 14 15V
- Power dissipation (package limitation) 1200mW
- Derate above 25°C 8mW/°C
- Storage temperature range −65°C to +150°C
- Programme current 50mA

FEATURES

- DC to 1GHz operation
- 0°C to 70°C operation guaranteed at maximum specified frequency and over a wide dynamic input range.
- Complementary emitter follower O/Ps, ECL compatible.

APPLICATIONS

- UHF instrumentation, including Counters and Timers
- Preceding for UHF Synthesizers

SP8616B

1 GHz +4

The SP8616 series of UHF counters are fixed ratio – 4 asynchronous emitter coupled logic counters with, in the case of the SP8616A maximum operating frequency in excess of 1GHz, over a temperature range of 0°C to +70°C. The input is normally differentially coupled to the supply source but can be DC coupled if it is required. The two complementarily emitter follower outputs are capable of driving 1000Ω lines and interfacing to ECL with the same positive supply. The SP8616 series require supplies of 1V and −7V (± 0.4V).

FEATUTRES

- DC to 1GHz operation
- 0°C to 70°C operation guaranteed at maximum specified frequency and over a wide dynamic input range.
- Complementary emitter follower O/Ps, ECL compatible.

APPLICATIONS

- UHF instrumentation, including Counters and Timers
- Preceding for UHF Synthesizers

SP8757A

1200MHz + 64

This new version gives a considerably higher performance than the 961-1. It is designed for use in narrow band (960MHz) receivers where the maximum bandwidth is around 1.2MHz. The input stage is a high level mixer for use in low power FM receivers. Each stage is a 20dBm amplifier, which means that it can be used for tone decoding. If, on the 64Ch mixer, the squelch function is not required then, with some additional circuitry, (see Fig. 6) a signal strength meter can be incorporated. $5.00 each.

General Instruments LED's

<table>
<thead>
<tr>
<th>Type</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV57124-5</td>
<td>RED</td>
<td>8/$1.00</td>
</tr>
<tr>
<td>MV5162-0/5162</td>
<td>AMBER</td>
<td>T-1, 8/$1.00</td>
</tr>
<tr>
<td>MV53154</td>
<td>CLEAR ORANGE</td>
<td>T-1 3/4, 8/$1.00</td>
</tr>
<tr>
<td>MV5262-0</td>
<td>CLEAR YELLOW</td>
<td>T-1, 10/$1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV5362-2</td>
<td>CLEAR YELLOW</td>
<td>T-1, 10/$1.00</td>
</tr>
<tr>
<td>MV5377B</td>
<td>FROST YELLOW</td>
<td>T-1, 10/$1.00</td>
</tr>
<tr>
<td>MV5069K</td>
<td>CLEAR RED</td>
<td>T-1, 10/$1.00</td>
</tr>
<tr>
<td>MV5252M</td>
<td>CLEAR GREEN</td>
<td>T-1 3/4, 10/$1.00</td>
</tr>
<tr>
<td>MV5377C</td>
<td>FROST YELLOW</td>
<td>T-1, 10/$1.00</td>
</tr>
</tbody>
</table>
HIGH VOLTAGE CAPS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4W308T</td>
<td>made by CSI, 53.3 mfd @ 3.5kVDC</td>
<td>$29.99 or 4/$75.00</td>
</tr>
<tr>
<td>#225-450</td>
<td>made by CDE</td>
<td>500 mfd @ 450VDC, Size: 3 5/8" long X 1" high x 1" round</td>
</tr>
<tr>
<td>Sprague #68D10688/53050-28</td>
<td>150 mfd @ 450VDC, Size: 3 1/8" high x 1" round</td>
<td>$5.99 each</td>
</tr>
<tr>
<td>Unicon #CE02A</td>
<td>22 mfd @ 500VDC, Size: 1 5/8" long x 7/8" round</td>
<td>99¢ each</td>
</tr>
<tr>
<td>Mallory #01069S</td>
<td>100 mfd @ 350VDC, Size: 3" long x 1 1/16" round</td>
<td>$1.99 each</td>
</tr>
<tr>
<td>Mallory #113B0919-P</td>
<td>25 mfd @ 200VDC, Size: 1 3/16" x 5/8"</td>
<td>69¢ each</td>
</tr>
<tr>
<td>Mallory #113A3243P3</td>
<td>20 mfd @ 350VDC, Size: 1 5/8" x 5/8"</td>
<td>79¢ each</td>
</tr>
<tr>
<td>Mallory #20-95455</td>
<td>550 mfd @ 175VDC, Size: 2 3/16" high x 2 1/16"</td>
<td>$1.99 each</td>
</tr>
<tr>
<td>Sprague #TVA-1627</td>
<td>250 mfd @ 350VDC, Size: 3 5/8" long x 1 3/8"</td>
<td>$4.99 each</td>
</tr>
</tbody>
</table>

HIGH VOLTAGE CAPS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprague #118P10506S4</td>
<td>1 mfd @ 600VDC, Size: 1 1/4" long x 1"</td>
<td>$1.99 each</td>
</tr>
<tr>
<td>Electrocube</td>
<td>#230D1E405, 4 mfd @ 400VDC, Size: 1 1/4" x 6/8"</td>
<td>$1.99 each</td>
</tr>
<tr>
<td>Nippon CE-04W</td>
<td>200VDC, 0.4 mfd, Size: 1 3/16" x 10/16</td>
<td>2/$1.00</td>
</tr>
<tr>
<td>Elpac CQ20A104</td>
<td>1.0 @ 2kV, Size: 3 3/16 long x 6/8" high x 5/16"</td>
<td>$2.99 each</td>
</tr>
</tbody>
</table>

RELAYS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF/Potter Brumfield R10-E4274-1</td>
<td>1.8K Ohms, 24VDC Coil, 4PDT</td>
<td>$2.99 each</td>
</tr>
<tr>
<td>Gould/Allied Control T351-CC-CC</td>
<td>24VDC, 680 Ohms, 4PDT</td>
<td>$2.99 each</td>
</tr>
<tr>
<td>Omron MHE202PG-UA</td>
<td>12VDC Coil, 200 Ohm DPDT, 5.29 each</td>
<td></td>
</tr>
<tr>
<td>RBM Controls #93-507030-13300B</td>
<td>12VDC, 100 Ohm Coil, Cont. Rating, 10 Amp, 125VAC $4.99 each</td>
<td></td>
</tr>
<tr>
<td>RBM Controls #93-599606-14628A</td>
<td>12VDC Coil, 12 Amp DC Coil, DPDT, good for RF Switching, 5 Amps, Cont. rating @ 125VAC, wet and dry relay $9.99 each</td>
<td></td>
</tr>
</tbody>
</table>

FERRITE CORES AND BEADS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T20-12</td>
<td>33¢</td>
<td>T37-6</td>
</tr>
<tr>
<td>T25-6</td>
<td>33¢</td>
<td>T37-10</td>
</tr>
<tr>
<td>T30-2</td>
<td>33¢</td>
<td>T44-6</td>
</tr>
<tr>
<td>T30-6</td>
<td>33¢</td>
<td>T50-6</td>
</tr>
<tr>
<td>T30-12</td>
<td>33¢</td>
<td>T50-10</td>
</tr>
<tr>
<td>T37-2</td>
<td>33¢</td>
<td>T106-26</td>
</tr>
<tr>
<td>#43 Shield Beads</td>
<td>4/$1.00</td>
<td></td>
</tr>
<tr>
<td>#61 Toroid</td>
<td>3/$1.00</td>
<td></td>
</tr>
<tr>
<td>#43 Balun</td>
<td>10/$1.00</td>
<td></td>
</tr>
<tr>
<td>#61 Balun</td>
<td>8/$1.00</td>
<td></td>
</tr>
<tr>
<td>#61 Balun</td>
<td>6/$1.00</td>
<td></td>
</tr>
<tr>
<td>#61 Beads</td>
<td>4/$1.00</td>
<td></td>
</tr>
<tr>
<td>Ferrite Beads 1/8"</td>
<td>12/$1.00</td>
<td></td>
</tr>
<tr>
<td>3/8" long</td>
<td>6/$1.00</td>
<td></td>
</tr>
<tr>
<td>1/16" long</td>
<td>12/$1.00</td>
<td></td>
</tr>
</tbody>
</table>

HIGH VOLTAGE DIODES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shinderger #SRMD-5H DUAL</td>
<td>5000V per diode, 350mA per diode, P.F. IC 2 Amps.</td>
<td>$6.99 each</td>
</tr>
<tr>
<td>#408C883PC01</td>
<td>1 5/8" long x 1 1/6" high, x 5/16" 10,000Volts, 1.5 Amps</td>
<td>$7.99 each</td>
</tr>
<tr>
<td>RCC #HVK 1153</td>
<td>2 1/8" long, 1 1/4", 20,000 volts, 25mA</td>
<td>$2.00 each</td>
</tr>
<tr>
<td>Semtech, #SMFR20K</td>
<td>1 1/2" long x 1", 20,000 volts, 20mA</td>
<td>$4.00 each</td>
</tr>
<tr>
<td>Varo 1 1/2" long</td>
<td>10,000 volts @ 20mA</td>
<td>$1.00 each</td>
</tr>
<tr>
<td>Varo VF5-15X</td>
<td>5mA @ 15,000Volts 2" x 1/2"</td>
<td>$1.99 each</td>
</tr>
</tbody>
</table>
DIPPED SILVER MICA CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pf</td>
<td>300V</td>
<td>$0.32</td>
</tr>
<tr>
<td>5 pf</td>
<td>500V</td>
<td>$0.32</td>
</tr>
<tr>
<td>10 pf</td>
<td>500V</td>
<td>$0.32</td>
</tr>
<tr>
<td>12 pf</td>
<td>300V</td>
<td>$0.32</td>
</tr>
<tr>
<td>12 pf</td>
<td>500V</td>
<td>$0.40</td>
</tr>
<tr>
<td>15 pf</td>
<td>500V</td>
<td>$0.34</td>
</tr>
<tr>
<td>18 pf</td>
<td>500V</td>
<td>$0.34</td>
</tr>
<tr>
<td>20 pf</td>
<td>500V</td>
<td>$0.26</td>
</tr>
<tr>
<td>22 pf</td>
<td>500V</td>
<td>$0.26</td>
</tr>
<tr>
<td>24 pf</td>
<td>500V</td>
<td>$0.26</td>
</tr>
<tr>
<td>30 pf</td>
<td>500V</td>
<td>$0.26</td>
</tr>
<tr>
<td>33 pf</td>
<td>500V</td>
<td>$0.26</td>
</tr>
<tr>
<td>39 pf</td>
<td>500V</td>
<td>$0.28</td>
</tr>
<tr>
<td>47 pf</td>
<td>500V</td>
<td>$0.28</td>
</tr>
</tbody>
</table>

HIGH VOLTAGE DOOR KNOB CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>2 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>3 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>4 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>4.5 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>5 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>6 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>7 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>8 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>9 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>10 pf</td>
<td>5KV</td>
<td>$4.99</td>
</tr>
<tr>
<td>10 pf</td>
<td>7.5KV</td>
<td>$5.99</td>
</tr>
</tbody>
</table>

GIMMICK CAPACITORS (Axial Lead Construction like a Resistor)

<table>
<thead>
<tr>
<th>Value</th>
<th>Voltage</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 pf</td>
<td>500VWDC</td>
<td>$1.24</td>
</tr>
<tr>
<td>0.16 pf</td>
<td></td>
<td>$1.56</td>
</tr>
<tr>
<td>0.22 pf</td>
<td></td>
<td>$2.46</td>
</tr>
<tr>
<td>0.33 pf</td>
<td></td>
<td>$3.36</td>
</tr>
<tr>
<td>0.68 pf</td>
<td></td>
<td>$3.67</td>
</tr>
</tbody>
</table>

MICROELECTRONICS BROADBAND AMPLIFIER, TRW CA602/CA2601BV, 15-270 MHz, 30dB gain max., 30 VDC supply voltage $39.99 each

BUSS FUSE #HB035 35 Amp $1.99 each

RF POWER TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Power</th>
<th>Frequency</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF449/A</td>
<td>30Watts</td>
<td>3-30MHz</td>
<td>$12.65</td>
</tr>
<tr>
<td>MRF450/A</td>
<td>50W</td>
<td>3-30</td>
<td>$14.37</td>
</tr>
<tr>
<td>MRF454/A</td>
<td>100W</td>
<td>3-30</td>
<td>$20.12</td>
</tr>
<tr>
<td>MRF455/A</td>
<td>80W</td>
<td>3-30</td>
<td>$16.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>3</td>
<td>175</td>
<td>$9.77</td>
</tr>
<tr>
<td>2N5590</td>
<td>10</td>
<td>175</td>
<td>$10.92</td>
</tr>
<tr>
<td>2N5591</td>
<td>25</td>
<td>175</td>
<td>$13.80</td>
</tr>
<tr>
<td>2N6081</td>
<td>15</td>
<td>175</td>
<td>$12.07</td>
</tr>
<tr>
<td>2N6084</td>
<td>4</td>
<td>175</td>
<td>$10.35</td>
</tr>
<tr>
<td>2N6085</td>
<td>25</td>
<td>175</td>
<td>$12.65</td>
</tr>
<tr>
<td>2N6086</td>
<td>25</td>
<td>175</td>
<td>$13.00</td>
</tr>
<tr>
<td>2N6087</td>
<td>40</td>
<td>175</td>
<td>$15.00</td>
</tr>
<tr>
<td>MRF901</td>
<td>Microwave RF Amp</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>BFR91</td>
<td>Microwave RF Amp</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

VARIABLE CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 pf</td>
<td>Cambion #563-7625-03</td>
<td>3.99 each</td>
</tr>
<tr>
<td>3.9 pf</td>
<td>SPRAYON #703 GENERAL PURPOSE ELECTRICAL CLEANER, 16 oz.</td>
<td>$2.99 each</td>
</tr>
<tr>
<td>10 pf</td>
<td>ALCO PROXIMITY SWITCH</td>
<td>$2.59 each</td>
</tr>
</tbody>
</table>

TELENOIC ATTENUATOR

Model TC50A, has BNC connectors for input and output, 0-1db, 50 Ohm $39.99 each

MICROWAVE ASSOCIATES, INC. MA41482 & MA41482R, 10GHz to 12GHz, similar to IN21 & IN23 series $2.99 each

50 WATT ZENERS 1N3313B 5% 14VDC $3.00 each

IN4554 10% 6-2VDC 2.50 each

BUSS FUSE #HB035 35 Amp $1.99 each

ELECTRICAL CLEANER, 16 oz. can $2.99 each

Microwave RF Amp $2.59 each

N.O. Type $2.59 each

Tell 'em you saw it in HAM RADIO!
FIELD EFFECT TRANSISTORS

2N4416 400MHz TO TPS. db. min. 4 MF/db $1.50
MPF102 100 .40
3N140 200 16 4.5 2.80
3N128 200 High power gain 18db 2.05
J-310 VHF/UHF Amplifier, mixer, & oscillator .75
40673 Dual Gate 1.40

FULL WAVE BRIDGES

W04M 1 Amp 50V $.89
SP4 2 Amp 200V .99
MDA204/3N256 2 Amp 400V 1.28
SS-4 4 Amp 600V 1.39
VH148 6 Amp 100V 1.00
75KB005 1.5 Amp 50V 1.00
MDA10UA/3N246 1 Amp 50V 1.00
MDA104A/3N249 1 Amp 400V 1.69
VJ648X 10 Amp 600V 2.69
MDA990-6 27 Amp 600V 3.50
506342 25 Amp 200V 2.69
MDA801 8 Amp 100V 2.00

Grigsby-Barton, Inc. #GB-604
12.5KVDC HIGH VOLTAGE RELAY

Contact Ratings: 12.5KVDC @ 50VA
Coil: 24VDC, 230 Ohms
SPST Contacts
High Voltage Probe Wire leads
own is 8 inches, one is 10 inches
Quick Disconnect Coil Leads
Relay Size: 3½" x 3/4" x 1 3/4" $19.95 each

LINEAR IC's

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PRICE</th>
<th>IC SOCKETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM301H Operational Amplifier</td>
<td>.25</td>
<td>Solder Tail</td>
</tr>
<tr>
<td>LM301N Quad Operational Amplifier</td>
<td>.48</td>
<td>8 pin</td>
</tr>
<tr>
<td>LM324N Timer</td>
<td>.71</td>
<td>14 pin</td>
</tr>
<tr>
<td>LM555N Quad Comparator</td>
<td>.33</td>
<td>16 pin</td>
</tr>
<tr>
<td>LM380N-14 Audio Power Amplifier</td>
<td>.90</td>
<td>20 pin</td>
</tr>
<tr>
<td>LM1889N TV Video Modulator</td>
<td>3.20</td>
<td>24 pin</td>
</tr>
<tr>
<td>CA3028/4AH Communications Amplifier</td>
<td>1.90</td>
<td>28 pin</td>
</tr>
<tr>
<td>CA3130E FET Operational Amplifier</td>
<td>1.50</td>
<td>40 pin</td>
</tr>
<tr>
<td>MC1306P Watt Audio Amplifier</td>
<td>1.30</td>
<td>Wire Wrap</td>
</tr>
<tr>
<td>MC1330P Low Level Video Detector</td>
<td>1.50</td>
<td>10 pin</td>
</tr>
<tr>
<td>MC1350P IF Amplifier</td>
<td>.98</td>
<td>14 pin</td>
</tr>
<tr>
<td>MC1358P IF Amplifier, Limiter, FM Detector, Audio Driver, Electronic Attenuator</td>
<td>1.30</td>
<td>16 pin</td>
</tr>
<tr>
<td>MC1590G RF/IF Audio Amplifier</td>
<td>6.99</td>
<td>40 pin</td>
</tr>
<tr>
<td>MC1723P Voltage Regulator</td>
<td>.62</td>
<td></td>
</tr>
<tr>
<td>MC1709P 14 pin Operational Amplifier</td>
<td>.73</td>
<td></td>
</tr>
<tr>
<td>MC1741 8 pin Operational Amplifier</td>
<td>.56</td>
<td></td>
</tr>
<tr>
<td>MC3302P Quad Comparator</td>
<td>.80</td>
<td></td>
</tr>
</tbody>
</table>

VARIABLE CAPACITORS

ARCO 423 7 to 100pF $1.00 each or 2/$1.75
ARCO PC464 25 to 280pF $1.00 each
ARCO PC402 1.5 to 20pF $1.00 each or 2/$1.50
CIO102X/10 .7 to 46pF 79c each or 2/$1.10

DUAL VARIABLE CAPACITORS

075-014 Atlas 1.2-30pF & 1.2-15pF $3.99
075-012 Atlas 1.1-175pF Dual $3.99

VARIABLE CAPACITORS

272-134T Archer 8.5-365pF $1.99
ARCO 464X 25-280pF $1.00
2222-804-20024 2-25pF 2/$1.00

DATA SHEETS AVAILABLE, price per page .25

More Details? CHECK – OFF Page 132
VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>REGULATOR</th>
<th>OUTPUT</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805/LM340T-5</td>
<td>5 Volt</td>
<td>$0.69</td>
<td></td>
</tr>
<tr>
<td>7808/LM340T-8</td>
<td>8 Volt</td>
<td>$0.69</td>
<td></td>
</tr>
<tr>
<td>7812/LM340T-12</td>
<td>12 Volt</td>
<td>$0.69</td>
<td></td>
</tr>
<tr>
<td>7815/LM340T-15</td>
<td>15 Volt</td>
<td>$0.69</td>
<td></td>
</tr>
<tr>
<td>78MO5</td>
<td>½ Amp, 5 Volt</td>
<td>$0.33</td>
<td></td>
</tr>
<tr>
<td>7912/LM320T-12</td>
<td>12 Volt</td>
<td>$0.79</td>
<td></td>
</tr>
<tr>
<td>79M05</td>
<td>½ Amp, 5 Volt</td>
<td>$0.49</td>
<td></td>
</tr>
<tr>
<td>79M15</td>
<td>½ Amp, 15 Volt</td>
<td>$0.49</td>
<td></td>
</tr>
<tr>
<td>LM317T</td>
<td>1.2 to 37 Volt</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>78H05CK</td>
<td>5 Amp, 5 Volt</td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>78H12CK</td>
<td>5 Amp, 12 Volt</td>
<td>$6.00</td>
<td></td>
</tr>
</tbody>
</table>

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>RECTIFIER</th>
<th>VOLTAGE</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4001</td>
<td>50V</td>
<td>Fairchild VHF, 300MHz Prescaler with a 2N5179</td>
<td>$5.69</td>
</tr>
<tr>
<td>1N4002</td>
<td>100V</td>
<td>Ferranti AM Receiver IC 2N414</td>
<td>$2.00</td>
</tr>
<tr>
<td>1N4003</td>
<td>200V</td>
<td>C-MOS Bit Rate Generator MC14411P</td>
<td>$10.00</td>
</tr>
<tr>
<td>1N4004</td>
<td>400V</td>
<td>New for $1.00</td>
<td></td>
</tr>
<tr>
<td>1N4005</td>
<td>500V</td>
<td>TO-3 Transistor Sockets C-MOS Touchtone Encoder MC14410P</td>
<td>$10.00</td>
</tr>
<tr>
<td>1N4006</td>
<td>800V</td>
<td>Compact Water Heater Tank 120VAC, 500 Watts, Copper Tank Size: 3 5/8" x 3" x 7/8"</td>
<td>$10.00</td>
</tr>
<tr>
<td>1N4007</td>
<td>1000V</td>
<td>BU-208 TO-3 Case Transistor Pair PNP & PNP Audio Power 2N3055 & 2N2955</td>
<td>$2.00/pair</td>
</tr>
<tr>
<td>10 for $1.00</td>
<td></td>
<td>DPDT Slid Switch</td>
<td>$5.00/pair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black Rubber Feet</td>
<td>1" round x ½" high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two Wire 18 Awg Line Cords</td>
<td>Black, 5 Feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spacer Assortment of all Types</td>
<td>25/$1.00</td>
</tr>
</tbody>
</table>

SILICON POWER TRANSISTORS

<table>
<thead>
<tr>
<th>TRANSISTOR</th>
<th>VCEO</th>
<th>AMPS</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BU208</td>
<td>VCEO 1500</td>
<td>5 Amps</td>
<td>NPN</td>
<td>$3.00</td>
</tr>
<tr>
<td>2N6307</td>
<td>VCEO 300</td>
<td>5 Amps</td>
<td>NPN</td>
<td>$2.00</td>
</tr>
<tr>
<td>MJ10005</td>
<td>VCEO 400</td>
<td>20 Amps</td>
<td>NPN</td>
<td>$6.00</td>
</tr>
<tr>
<td>MJ10006</td>
<td>VCEO 350</td>
<td>10 Amps</td>
<td>NPN</td>
<td>$4.00</td>
</tr>
<tr>
<td>2N3055</td>
<td>VCEO 60</td>
<td>15 Amps</td>
<td>NPN</td>
<td>$0.88</td>
</tr>
<tr>
<td>2N5886</td>
<td>VCEO 80</td>
<td>25 Amps</td>
<td>NPN</td>
<td>$2.00</td>
</tr>
<tr>
<td>2N6569</td>
<td>VCEO 40</td>
<td>12 Amps</td>
<td>NPN</td>
<td>$0.88</td>
</tr>
<tr>
<td>MJ2955</td>
<td>VCEO 60</td>
<td>15 Amps</td>
<td>PNP</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N5302</td>
<td>VCEO 60</td>
<td>30 Amps</td>
<td>PNP</td>
<td>$2.00</td>
</tr>
<tr>
<td>MJ15012</td>
<td>VCEO 250</td>
<td>10 Amps</td>
<td>PNP</td>
<td>$2.00</td>
</tr>
<tr>
<td>2N5880</td>
<td>VCEO 80</td>
<td>15 Amps</td>
<td>PNP</td>
<td>$2.00</td>
</tr>
<tr>
<td>MJ4000</td>
<td>VCEO 60</td>
<td>4 Amps</td>
<td>NPN</td>
<td>$2.00</td>
</tr>
<tr>
<td>2N5240</td>
<td>VCEO 350</td>
<td>6 Amps</td>
<td>NPN</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N4898</td>
<td>VCEO 40</td>
<td>4 Amps</td>
<td>PNP</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N3767</td>
<td>VCEO 80</td>
<td>4 Amps</td>
<td>PNP</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N3713</td>
<td>VCEO 80</td>
<td>10 Amps</td>
<td>NPN</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N3235</td>
<td>VCEO 60</td>
<td>7.5 Amps</td>
<td>NPN</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N3442</td>
<td>VCEO 140</td>
<td>10 Amps</td>
<td>NPN</td>
<td>$1.25</td>
</tr>
<tr>
<td>MJ4802</td>
<td>VCEO 80</td>
<td>4 Amps</td>
<td>NPN</td>
<td>$1.00</td>
</tr>
<tr>
<td>2N6487</td>
<td>VCEO 60</td>
<td>15 Amps</td>
<td>NPN</td>
<td>$2.00</td>
</tr>
<tr>
<td>*2N301</td>
<td>VCB 40</td>
<td>2 Amps</td>
<td>PNP</td>
<td>$3.99</td>
</tr>
<tr>
<td>*2N2140</td>
<td>VCB 75</td>
<td>12 Amps</td>
<td>PNP</td>
<td>$6.99</td>
</tr>
<tr>
<td>*2N1099</td>
<td>VCB 80</td>
<td>12 Amps</td>
<td>PNP</td>
<td>$1.50</td>
</tr>
<tr>
<td>*PDM10K40/2N6057</td>
<td>VCEO 60</td>
<td>8 Amps</td>
<td>NPN</td>
<td>$1.00</td>
</tr>
<tr>
<td>*PDM12K40/MJ1000</td>
<td>VCEO 60</td>
<td>10 Amps</td>
<td>NPN</td>
<td>$0.75</td>
</tr>
</tbody>
</table>

Germanium, °Darlington
CERAMIC FILTERS

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>CF260H</td>
<td>260KHz</td>
<td>$7.50</td>
</tr>
<tr>
<td></td>
<td>CFU455HZ</td>
<td>455KHz</td>
<td>$2.90</td>
</tr>
<tr>
<td></td>
<td>SFB455D</td>
<td>455KHz</td>
<td>$2.50</td>
</tr>
<tr>
<td></td>
<td>SFD455D</td>
<td>455KHz</td>
<td>$5.00</td>
</tr>
<tr>
<td></td>
<td>SFE10.7MA Orange</td>
<td>10.7MHz</td>
<td>$2.50</td>
</tr>
<tr>
<td></td>
<td>CFU455H6</td>
<td>455KHz</td>
<td>$2.90</td>
</tr>
<tr>
<td></td>
<td>SFE10.7MA Black</td>
<td>10.7MHz</td>
<td>$2.50</td>
</tr>
<tr>
<td></td>
<td>SFE10.7MA Red</td>
<td>10.7MHz</td>
<td>$2.50</td>
</tr>
<tr>
<td></td>
<td>SFE10.7MA Blue</td>
<td>10.7MHz</td>
<td>$2.50</td>
</tr>
<tr>
<td>Matsushita</td>
<td>EFC-L455K41B</td>
<td>455KHz</td>
<td>$2.50</td>
</tr>
<tr>
<td></td>
<td>EFC-L455K40B2</td>
<td>455KHz</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

SOLID CARBIDE DRILL BITS

- **New & Used in Mixed Sizes**
 - $1.25 each or 10/$9.00

HIGH CURRENT 25Amp SCR

- **Study Mount**
 - 2N687 400 Volt $2.97
 - 2N690 600 Volt $5.03

LED DISPLAYS

- **TIL 305/745-005 RED**
 - .3" 5x7 array
 - Alphanumeric Display
 - $3.85

NARROW BAND CRYSTAL FILTER 10.7MHz

- Bandwidth 13KHz
- Type 2194F
- Input & Output
- Impedance 2700 Ohms
- $4.95 each

NEW & USED FANS

- **115VAC**
 - 4" x 1" deep
 - NEW $5.00
 - USED $10.00
 - 3/4" x 3/8" x 1"
 - NEW $12.00
- **5VDC @ 300mA**
 - 21/2" x 1 3/4" x 1"
 - NEW $8.00
- USED/TESTED $5.00

SUBMINIATURE POWER SUPPLY

- **5VDC @ 300mA**
 - MICROWAVE ASSOCIATES inc.
 - #MA4815 Point Contact
 - Detector Diode
 - Test Freq. .1GHz
 - $1.00 each

10 WATT ZENERS

- **10V 36V**
 - 10V
 - 36V
- **11V 39V**
 - 11V
 - 39V
- **14V 40V**
 - 14V
 - 40V
- **20V 56V**
 - 20V
 - 56V
- **22V 62V**
 - 22V
 - 62V
- **24V 6HV**
 - 24V
 - 6HV
- **27V 69V**
 - 27V
 - 69V
- **33199V**
 - 33V
 - 99V
 - 10/$7.50

MOTOROLA SP1801 PNP POWER TRANSISTOR

- SP1801 will replace the 2N1529 thru 2N1560 in most cases.
- $4.95 each
- 8123-0210-001
- 2N1529
- 2N1560
- $4.95 each

EF JOHNSON COMPANY TUBE SOCKET

- #123-0210-001
- Used for 811A, 8005, 3B28, etc.
- $6.99 each

MINI-CIRCUIT RF TRANSFORMERS

- Model T16-1
- Ratio 16 Ohms.
- Frequency .3-120MHz
- $3.95
- Model TM05-T1
- Ratio 5 Ohms
- Frequency .3-300MHz
- $6.75

VARADYNE CHIP RESISTORS

- .05" x .05" 75MW 10Ω
- 12 Ohm
- 15 Ohm
- 27 Ohm
- 82 Ohm
- 100 Ohm
- 120 Ohm
- 150 Ohm
- 180 Ohm
- 390 Ohm
- 550 Ohm
- 79¢ each
- 99¢ each
- 99¢ each

EIMAC 4CW800F VHF/UHF POWER TUBE 800 Watts

- Plate Dissipation. Heater 26.5V
- @ 1.1Amps Tube comes with bypass capacitor $309.99

MALLORY CAPACITORS Type CGX

- 500 mfd @ 250 VDC
- 1 3/8" x 3 1/8" $3.00 each
- 740 mfd @ 250 VDC
- 1 3/8" x 4 1/8" $3.00 each

VARIABLE CAPACITORS

- Dynatronics 1.5 to 23 pf 2/$1.00
- Swallow CV05E300 2.3 to 27pf 2/$1.00

MR510 RECTIFIER

- 3 Amp @ 1000 Volt
- 10/$2.99
- 100/$20.00
- 1000/$150.00

More Details? CHECK-OFF Page 132

May 1983
THERMAL GLASS WARMING PLATE 120VAC or DC @ 120 watts 130° C to 135° C ± 3° (266° - 275°F) 10 3/8" wide x 5 3/8" deep $3.00 each

NICKEL CADMIUM 12VDC PACK, GE AA BATTERIES Pack of Ten USED, AS IS $3.99/pack

NICKEL CADMIUM 12VDC PACK, GE C CELLS Pack of Ten USED, AS IS $5.99/pack

HIGH SPEED SWITCHING DIODES 1N4148/1N914 30/$1.00 or 120/$3.00

POTTER & BRUMFIELD/AMF RELAY DPDT #KUP11D15 28VDC Coil, 1 HP @ 120VAC or 10 Amps @ 240 VAC. Size: 1/4" x 2" x 1/2" $3.99 each

SIGMA STEPPING MOTOR #20-22350-28175 (Similar to Superior MO-62 Series) 4VDC, 1.8° or 9° per step. 120oz/in. holding torque. $31.99 each

NEW AVANTEK GP0403 General Purpose Thin-Film Amplifier Modules Four pin, TO-12 package 5-400MHz, 9db gain, 7.5db noise, 20db reverse isolation, +15db power output $19.50 each

VOLTAGE REGULATORS 78L05 +5V 4/$1.00 78L09 +9V 4/$1.00 78L15 +15V 4/$1.00 7805/LM320-5 -5V @ 1Amp $0.69

STUD TRIACS T6410N 40Amps, 800V/DM Case 263-03 $8.99 each

MAC15-6 TRIAC 15Amps, 400V, TO-220 $1.29 each

2N4442 SCR Case 90-05 8Amps @ 200V $1.25

MCR3918-3 SCR STUD 20Amps, 100V Case 175-02 $3.00

MOTOROLA MOC30011 TRIAC DRIVER OUTPUT LED Trigger Current 5mA Peak Blocking Voltage 250 Volts Isolation Voltage 5000 V $1.00 each

GLOBE RECHARGEABLE GEL/CELL BATTERY #GC-280 2VDC @ 8 Amp-HR 3 3/4" high x 2" deep 2" wide NEW $5.99 each or 6/$27.00

#GC1260 12VDC @ 6 Amp-HR. 3 3/4" high x 3 1/8" deep x 6" long NEW $29.99 each

2N2894 PNP SILICON ANNUAL TRANSISTOR, designed for low-level, high speed switching, VCEO 12, VCB 12, VEB 4, IC 200mcd, 400MHz, TO-18 Case, House numbered $1.00 each

MOTOROLA MD3251 DUAL PNP SILICON ANNUAL TRANSISTOR, especially designed for low-level, differential amplifiers, VCB 50, VCEO 40, VEB 5, IC 50mcd, 250MHz, Case 32 $4.50 each

2N8554 PNP SILICON ANNUAL TRANSISTOR, designed for low-level, high speed switching, VCEO 12, VCB 12, VEB 4, IC 200mcd, 400MHz, TO-18 Case, House numbered $1.00 each

MOTOROLA MMT3960 MICRO MINIATURE NPN SILICON TRANSISTOR, high speed switching, designed for high speed current mode logic switching, 2250MHz, VCEO 8, VCB 15, VEB 3 $3.00 each

TO-3 GERMANY POWER TRANSISTOR IR TR-01A/ ECGL21, PNP, AF power output, BVCEO 65, BVCEO 45, VCEO 15, VCB 12, VCB 12, VEB 5. VCB 100mcd, 400MHz, TO-18 Case, House numbered $1.00 each

EIMAC PLATE CAPS HR Type, 1" high X 11/16" diameter, 3/8" I.D. $6.99 each or 10/$40.00

CERAMIC PLATE CAPS Type 1 for 3/8" plate cap Type 2 for 5/8" plate cap $1.99 each

NEW MONSENTO MAN4640A READOUT $1.00 each

1 WATT ZENER DIODES
1N4728 thru 1N4755 Four of same part number $1.00

TO-220 MICA INSULATOR 20/$1.00

HIGH VOLTAGE CAPACITOR Plastic Capacitors Inc. #LQ08-203YA .02 mfd @ 8000VDC Size 2 1/4" x 1" $2.99 each

CONCAVE GLASS MAGNIFYING MIRROR 19" Focal Length, 8.5" diameter 99¢ each

TEN TURN POTS removed from equipment, 1/2" shaft 1" long. Model 534 Spectrol 2K Ohm, type 8400/2053A TRW 2K Ohm, model 534 Spectrol 100K Ohm, type 8400/2053A TRW 100K Ohm $2.99 each

TURNS COUNTING DIALS FOR TEN TURN POTS $4.99 each

E.F. JOHNSON TUBE SOCKETS AND CAPS #124-0311-100 for 8072, etc. $10.99 #124-0113-001 and #124-0113-021 capacitors for sockets #124-0107-001 $12.99 each

UNDELCO CAPS 8.2pf $3.99 36pf 10pf 0.69 10pf 4gp 24pf 0.99 33pf 0.70

MOTOROLA TIP49, 1Amp NPN POWER TRANSISTOR VCEO 350, VCB 450, VEB 5, 40 Watts, TO-220 Case $1.00 each or 10/$7.50

MOTOROLA RF AMP MODULES #544-4001-002 Similar to MM4001-2. 1.5Watts output .047 Watts input 440-512MHz, 15 db gain, 7.5VDC $39.99

1.1VDC Lamps 3/16" round 10/$1.00

Tell 'em you saw it in HAM RADIO!
CRYSTALS (Odd) Each value $2.00 each

1.68960 9.565 10.180 12.6 37.650
3.579545 9.575 10.240 17.015 37.700
4.8384 9.585 10.605 17.065 37.750
7.4625 10.010 10.615 17.115 37.800
7.4725 10.020 10.625 17.165 37.850
7.4825 10.030 10.635 17.215 37.900
7.4925 10.040 10.695 17.265 37.950
7.5025 10.130 11.750 17.315 65.714286
7.8025 10.140 11.955 17.365 65.7143
9.545 10.160 12.050 24.8832
9.555 10.170 12.100 37.600

CRYSTALS (Even)

100KC $3.99
2.0MHz 3.00
4.0MHz 3.00
6.0MHz 3.00
10.0MHz 3.00
12.0MHz 3.00
16.0MHz 3.00
38.000 3.00
60.0 3.00

R.F. CONNECTORS

SO-239 UHF Female $.69
PL-259 UHF Male .69
2-330830-2 UHF Male Crimp .69
225398-9 BNC Female Crimp 1.29
UG273/U BNC Female to UHF Male 2.99
UG914/U BNC Female to BNC Female 2.99
UG1094/U BNC Female .79
UG260/U BNC Male 1.69
UG175/U ADP .39
M23329/3-05 BNC Female Crimp 1.69

M23329/3-21 BNC Female Crimp $1.69
18225 BNC Female 1.99
UG23B/U N Male 3.99
18750 N Male 3.99
UG216/U N Male 4.99
94375-301-N1800D N Male 4.99
142-0261-001 SMA Male 3.99
142-0221-001 SMA Male 3.99
142-0299-001 SMA Female 3.99
UG705/U C Female 4.99

NEW EX-CELL-O CORPORATION. Remex Division 51"
Model RDF480, DISK DRIVE, 2 3/16" Wide,
5 7/8" High, 10" Deep $299.99 each

COMMUNICATION EQUIPMENT & ENGINEERING CO.
#C-152-A1 Loading Coil, Type C656
66MHz $6.99 each

Check, money order, or MasterCard, and VISA welcome. No personal checks or certified personal checks for foreign countries accepted. Money order or cashier's checks in U.S. funds only. Letters of credit are not acceptable. Minimum shipping is $2.70 plus 35c/$100.00 for insurance. Please allow extra shipping charges for heavy or long items. C.O.D. for cash only. All parts returned due to customer error or decision will be subject to a 15% restock charge. If we are out of an item ordered, we will try to replace it with an equal or better part if you specify not to, or we will back order the item, or refund your money. PRICES SUBJECT TO CHANGE WITHOUT NOTICE. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale. USE OUR TOLL FREE NUMBER FOR CHARGE ORDERS ONLY FOR $10.00 OR MORE, NOT INCLUDING SHIPPING CHARGES. 800-528-3611. Requests for information must include a stamped, self addressed envelope. Return authorization required for exchange, credit or refund. No claims of any kind will be accepted after 60 days. MINIMUM ORDER $10.00, NOT INCLUDING SHIPPING CHARGES.

SEMICONDUCTORS SURPLUS

2822 North 32nd Street/Unit #1 800-528-3611 Phoenix, Arizona 85018
602-956-9423

May 1983
Your Ham Tube
Headquarters!

WARNING

SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantling. Temporary guys should be used on the first floor or lower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower rector would be very inexpensive insurance.

Paid for by the following:

UNR-Rohn

Division of UNR Inc.

6718 West Plank Road

Peoria, Illinois 61610 USA
INTRODUCING....THE HJ-SERIES COAXIAL DIPLOES AND PHASING KIT.........

Specifications: 5.0 DBD 10-22DB F/B

Example
Antenna Tested ON 7.2mc. 1/4 wave spacing
at 18. at APEX
ENDS AVERAGE HGT. 6
SWR FLAT or BELOW 1.5 to 1 over Phone Band

* When Testing just one of
 2 Antennas SWR was Flat
 or Below 1.5 to 1 over Entire Band...
 7.0 to 7.3 MHZ

FOR THE HAM WHO WANTS
A BETTER SIGNAL ON THE BAND,
BUT IS LIMITED BY SPACE OR ZONING...

PJ-DIPOLE*

THE HJ-PHASING KIT...CONTAINS EVERYTHING YOU NEED,
BUT A PLACE TO HANG THEM...

Contents
9 PL. 259
2 Coax Tees
1 Barrel Connector
5 Female Connectors
2 Male Phone Plugs
2 Female Phone Sockets
1 Cabinet
1 Power Pack
4 Short Covers
2 Center Insulators
5 Stainless Steel 'Cu Screws
5 Stainless Steel 'Cu Nuts
1 Relay
3 Sets of 1/4 wave coax lines
2-100' lengths of coax feedline
2 Antennas Cut and Tuned

* ALL ANTENNAS ARE ASSEMBLED: PHASING LINES CUT
AND HAVE PL-259S INSTALLED. LEAD-IN CABLES PL-259
ARE INCLUDED BUT NOT ATTACHED FOR USER
CONVENIENCE. PHASING BOX IS ALSO ASSEMBLED
AND READY TO USE...

PRO-SEARCH™ has designed quality into simplest of antennas...Center insulator is made up of high quality material that is virtually unaffected by heat, cold or impact...will withstand rugged use and extreme environments...RG-8X has 93% shield...Antennas are very flexible and very portable...good for vacation or field day...apartment dwelling...Tuned shorts are weather-proofed with gripping covers which also add strength to this area of the antenna...Stainless steel hardware, of course...Antennas can be made for any frequency...The most important part, we stand behind our products...That's a Promise...

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>SINGLE ANTENNA</th>
<th>TUNED PAIR OF ANTENNAS</th>
<th>PHASING KIT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>$139.95</td>
<td>$251.91</td>
<td>$110.95</td>
<td>$362.36</td>
</tr>
<tr>
<td>3.5</td>
<td>96.95</td>
<td>174.51</td>
<td>110.95</td>
<td>385.46</td>
</tr>
<tr>
<td>7.0</td>
<td>73.95</td>
<td>133.11</td>
<td>110.95</td>
<td>344.06</td>
</tr>
<tr>
<td>10.0</td>
<td>68.95</td>
<td>124.11</td>
<td>110.95</td>
<td>325.06</td>
</tr>
<tr>
<td>14.0</td>
<td>64.95</td>
<td>116.91</td>
<td>110.95</td>
<td>287.86</td>
</tr>
<tr>
<td>18.0</td>
<td>61.95</td>
<td>111.51</td>
<td>110.95</td>
<td>232.46</td>
</tr>
<tr>
<td>21.0</td>
<td>59.95</td>
<td>107.91</td>
<td>110.95</td>
<td>221.86</td>
</tr>
<tr>
<td>24.0</td>
<td>57.95</td>
<td>105.91</td>
<td>110.95</td>
<td>216.85</td>
</tr>
<tr>
<td>28.0</td>
<td>56.95</td>
<td>102.51</td>
<td>110.95</td>
<td>213.46</td>
</tr>
</tbody>
</table>

U.S. and Foreign Patents Pending

Prices and specifications subject to change without notice or obligation

For more information on this and other products, write or Call Pro-Search Electronic Co., PO Box 21311, City of Industry, CA 91746. Call 1-800-996-1827. Make us an offer *(800) 996-1827. *
The Electronic Rainbow Receiver consists of a receiver with an external down-converter that mounts on top of the antenna, feeds the voltage to the LNA through the coax cable. The 4GHz signal is down converted to 70 MHz and is fed through the RG59/U coax to the receiver.

RECEIVER FEATURES
- Built in RF modulator
- Detent Tuning 3.7 to 4.2 GHz
- Variable Audio 5.5 to 7.5 MHz
- Invert Video
- Channel Scan
- Voltage monitoring
- Meter output
- Remote Tuning

SPECIFICATIONS:
- Single Conversion Image Rejection
- Downconverter
- Threshold 8 db
- CNR
- IF Bandwidth 24MHz
- Output
- TV Audio and Video
- IF Frequency 70MHz
- Video Bandwidth 4.5MHz
- Size 3½"Hx8½"Dx11½"W

Complete Satellite TV Receiver

KIT #1 — Contains:
- Main Board
- Tuning Board
- Downconverter Board
- Modulator Board
- All parts needed to complete receiver
- Down Converter built in case
- Cabinet, attractive black brushed anodized metal with silk screened front and back for a professional look
- 70 MHz filter is pre-wired and tested.
- Complete instruction Manual.

Complete Satellite Kit Receivers

KIT #2 — Board Kit Contains:
- Main Board
- Tuning Board
- Downconverter board
- Modulator Board
- Parts List, assembly and alignment manual
- 4GHz local oscillator and 70MHz filter is pre-wired and tested.

SYNTHESIZED SIGNAL GENERATOR

MODEL SG1000

Price $349.95 plus shipping

AMP-LETTER

Custom Mailing Lists on Labels

Amateur Radio Operator NAMES

Buckmaster Publishing

ELECTRONIC RAINBOW INC

July 30 thru August 12, 1983

Our 24th year

Learn why the answers are what they are. Upgrade with electronics professionals. OAK HILL ACADEMY RADIO SESSION in the Blue Ridge Mountains of Virginia. Theory and code together.

- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors — Friendly Surroundings — Excellent Accommodations. Ham Lab set up for all to use. "A Vacation with a Purpose!"
Dual Drive Tribanders

- 20, 15 and 10 meters • Wideband. Low SWR. No tuner needed • Exclusive phased dual drive gives higher gain • Exclusive coaxial capacitors have lower losses, higher Q • Transmitter power is radiated not lost in the traps • Full power low loss balun. Gives improved beam pattern

TET Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with HB9CV and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner.

Only the highest quality materials are used throughout. All aluminum tubing is 6061-T6 alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut and predrilled to precision tolerances for easy one afternoon assembly. Light weight and low wind area designs permit use of simpler support structures.

All models feature full 3 Kw PEP power handling. VSWR typical 1.5 or less across all of 20, 15 and, on 10 meters, from 28.0 to 29.2 MHz. Drive impedance is 50 ohms and maximum element length 27'. They accommodate masts from 1½ to 2” diameter, withstand winds to 100 mph and are furnished complete with a low loss balun that easily withstands full rated power. For gain and front-to-back ratio specifications write or call the factory.

<table>
<thead>
<tr>
<th></th>
<th>HB35T</th>
<th>HB43SP</th>
<th>HB33SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom Length</td>
<td>24' 7"</td>
<td>19' 8"</td>
<td>13' 2"</td>
</tr>
<tr>
<td>Turn Radius</td>
<td>18' 10"</td>
<td>16' 9"</td>
<td>15’</td>
</tr>
<tr>
<td>Wind Area Ft²</td>
<td>7.9</td>
<td>6.6</td>
<td>4.7</td>
</tr>
<tr>
<td>Wind load lbs @ 80 mph</td>
<td>160</td>
<td>132</td>
<td>102</td>
</tr>
<tr>
<td>Boom Dia:</td>
<td>2”</td>
<td>2”</td>
<td>1-5/8”</td>
</tr>
<tr>
<td>Weight, lbs</td>
<td>50</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>Price: + shipping</td>
<td>$349.95</td>
<td>$239.95</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

Send for free catalog describing these dual drive beams. Our VHF Swiss quads, roof mount towers, elevation rotators and more.

Sotron Antennas

The Best Things come in little packages...

FOR 80-40-20-15 METERS

NEW LOCATION

NEEDS NO RADIALS OR MATCHING DEVICES

<table>
<thead>
<tr>
<th>ISOTRON80</th>
<th>ISOTRON40</th>
<th>ISOTRON20</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 IN/HIGH</td>
<td>31 IN. HIGH</td>
<td>17 IN. HIGH</td>
</tr>
</tbody>
</table>

BIG ON PERFORMANCE

SMALL ON SPACE

- *bilal company* *(918) 253-4094*
 - STAR ROUTE 2
 - EUCHA, OK 74342

Vols.

- Authors: Communications, Scanners, VHF Antenna Test Center and more...
- Audio middle, New Products, Antenna Elec
tics, Publications, Peer Reviews...
INTRODUCING THE HAWK EYE 7.5' DISH.

I weigh only SAT-TEK modulator AUTO-TECH TONS Polomount, KLM Sky Eye All packages include 124 May 1983 mount, Polatron AUTO-TECH 312

F/D -1 piece fiberglass, 54 INTRODUCING SYSTEM SYSTEM PRICES

STEREO, upon request.

10' Dish GLR 80#.

K

Prices in 7.5' dish, $1094.

Kilo-Tec, $59.95, infra-Red Infrascan videoscan (Amateur, phone line, surveillance, teleconferencing).

- decode Morse, RTTY, ASCII. Large LEDs or contact converter. RCA. PBOX 727, WV 25801.

Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

GSL & RUBBER STAMPS — Top Quality! Card Samples and Stamp info. — 50¢ — Etnet Graphics 9F, Box 70, Westerville, Ohio 43081.

GRS’s by WATG. Prices from $16 per 1000. Send SASE to PO Box F, Gray, 30132.

TRAVEL-PAK QSL KIT — Converts post cards, photos to QSL. Stamps bring circular. Samco, Box 203-C, Wynnmark, New York 12198.

GSL SAMPLES: 25¢. Samcards, 48 Monte Carlo Drive, Pittsburgh, Pa 15235.

DISTINCTIVE GRS’s — Largest selection, lowest prices, top quality photo and completely customized cards. Make your GRS’s truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue, and prices at Samco, Box 412, Rocky Point, N.Y. 11778 (516) 744-6260.

GRLS’s NO STOCK DESIGNS! Your art or ours; photos. Quality! Send SASE to QSL Kit – Converts QSL CARDS QSL SAMPLES: 2%.

Prices from $450.00. 2 KW + center connector. BQ10.

Electronics, comics, pamphlets, small setup charge. Hal.”

Museum now open for radio historians and collectors. Free admission. Old time Amateur (W2AN) and commercial station exhibits. Shop replacement store and telegraph displays. 25,000 items. Write A.W.A. for details: Bruce Kelley, W2ICE,Holcomb, NY 11446.

WANTED: Highest priced paid for Harris RF 301 and associated equipment. Call collect (212) 925-6648.

MARCONI WIRELESS TELEGRAPH CD. Stock Certificates, authentic 1914 certificates, from the pioneering days of radio; are rare antiques and valuable investments. Suitable for framing. Only $38.95 including historical pamphlet. Satisfaction Guaranteed. For information, Tom Hickey, Box 755-M, N. Kansas City, MO 64116.

APPLE contest logging and checking package. All contests including advanced real-time SS. Disc $25. Other
WORK THE FULL-BAND®
free of narrow band antenna limitations
WITHOUT ANTENNA TUNERS

TYPICAL FULL-BAND PERFORMANCE

<table>
<thead>
<tr>
<th>SWR</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

BANDWIDTH

<table>
<thead>
<tr>
<th>MHZ</th>
<th>MODEL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.77</td>
<td>FB-160</td>
</tr>
<tr>
<td>3.5</td>
<td>FB-75/80</td>
</tr>
<tr>
<td>6.7</td>
<td>FB-40</td>
</tr>
<tr>
<td>13.2</td>
<td>FB-20</td>
</tr>
<tr>
<td>19.8</td>
<td>FB-15</td>
</tr>
<tr>
<td>26.9</td>
<td>FB-10/11</td>
</tr>
<tr>
<td>48.5</td>
<td>FB-6</td>
</tr>
</tbody>
</table>

FULL-BAND® MONOBAND DIPOLES
EXTREME BANDWIDTH WITHOUT COMPROMISE

- No Resistors, Capacitors or Power Robbing Networks.
- Linear Response Assures Maximum Efficiency from Microvolts to Full Legal Power—and Minimum Interference with Other Services.
- Ideal Antennas for Use with Automatic Power Shutdown Rigs.
- Tested and Approved By: Ham Radio Magazine

FACTORY DIRECT PRICES

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Length</th>
<th>Shipping Wt.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB-160</td>
<td>248°9"</td>
<td>11 lbs.</td>
<td>$179.95</td>
</tr>
<tr>
<td>FB-75/80</td>
<td>126°7"</td>
<td>6 lbs.</td>
<td>$134.95</td>
</tr>
<tr>
<td>FB-40</td>
<td>66°3"</td>
<td>5 lbs.</td>
<td>$109.95</td>
</tr>
<tr>
<td>FB-20</td>
<td>32"</td>
<td>4 lbs.</td>
<td>$71.95</td>
</tr>
<tr>
<td>FB-15</td>
<td>24°6"</td>
<td>3 lbs.</td>
<td>$66.95</td>
</tr>
<tr>
<td>FB-10/11</td>
<td>16°6"</td>
<td>3 lbs.</td>
<td>$61.95</td>
</tr>
<tr>
<td>FB-6</td>
<td>9"</td>
<td>3 lbs.</td>
<td>$57.95</td>
</tr>
</tbody>
</table>

Prices include shipping in continental U.S.—Canada, HI and AK add $5.00 shipping and handling. CA residents add sales tax. Write or phone for specifications and prices for antennas for other frequency bands.

SNYDER ANTENNA CORPORATION
250 East 17th Street • Costa Mesa, CA 92627

Telephone orders—24 hours a day, seven days a week: (714) 760-8882

May 1983
SATELLITE TELEVISION SYSTEMS

WE WILL NOT BE UNDERSOLD!!
Complete Systems, Antennas, Receivers, LNA's & Accessories
CALL US TODAY!
812-238-1456

hoosier electronics

“Nation’s Largest Total Communications Distributor”
P.O. BOX 3300 • TERRE HAUTE, INDIANA 47803

DIRECTIONS FINDING?
- Doppler Direction Finding
- No Receiver Mods
- Mobile or Fixed
- Kits or Assembled Units
- 135-165 MHz
- Standard Range

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver’s antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from $270. Assembled units and antennas also available. Call or write for full details and prices.

DOPPLER SYSTEMS, 5540 E. Charter Oak, Scottsdale, AZ 85254, (602) 988-1151

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free ‘Tech-Data’ Flyer

AMIDON ASSOCIATES
Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen Wilhelm, Melies Str. 88, 4930 Denmark, 18, West Germany
In Japan: ToyoMura Electronics Company, Ltd., 7-9-2 Chome Sota Kanda, Chiyoda Ku. Tokyo, Japan
MAY 21: Armed Forces Day. Hamfest, Sunday, May 21, from 9 AM to 2 PM at the Greater Pittsburgh International Airport. Free admission. Free flea market. Registration $2.00 or 3 SASE. Covered vendors tables by advance registration. Talk in on 146.268 or 29.0 MHz. Contact Don Mosley, K3CHD, 359 McMahon Road, North Huntingdon, PA 15642 (412) 663-0570.

Pennsylvania: The Warmunette Amateur Radio Club's annual Hamfest, Saturday, May 21, 9 AM, Matlidaa Shaealness, White Horse Road, New Castle, PA 16101.

MAY 14: Ling Submarine

MAY 16: 21: The Clark County Amateur Radio Club will operate a special event station, the 10th annual "Helen to the Atlantic Ocean" long distance balloon flight. The balloon will be launched from the Mount Rainier National Park on May 16 and will travel to the Atlantic Ocean. The balloon will carry a QSL card with a commemorative QSL card to NARC, PO Box 121, Arlington, Heights, IL 60006.

June 3, 4 & 5: S.P.A.R.C. The Southern Piedmont Amateur Radio Club will operate a special event station, the 10th annual "Helen to the Pacific Ocean" hot air balloon flight. The balloon will be launched from the Mount Rainier National Park on May 16 and will travel to the Pacific Ocean. The balloon will carry a QSL card with a commemorative QSL card to NARC, PO Box 121, Arlington, Heights, IL 60006.

June 10 & 11: The Wireless Institute of Northern Ohio (W.I.O.N.O.) will operate a special events station (K906) from a winery in Madison, Ohio, to commemorate Ohio Wine Week. Friday, June 10, from 2 PM to 4 PM, and Saturday, June 11, from 9 AM to 5 PM. The station will be located at the Wine Week Festival, 27200 Westview Drive, Madison, OH 44057.
California

- **C & A ELECTRONIC ENTERPRISES**
 22010 S. WILMINGTON AVE.
 SUITE 105
 CARSON, CA 90745
 213-834-5868
 Not The Biggest, But The Best — Since 1962.

- **FONTANA ELECTRONICS**
 8828 SIERRA AVENUE
 FONTANA, CA 92335
 714-822-7710
 714-822-7725
 The Largest Electronics Dealer in San Bernardino County.

- **JUN'S ELECTRONICS**
 3919 SEPULVEDA BLVD.
 CULVER CITY, CA 90230
 408-990-8153
 Habla Espanol

Connecticut

- **HATRY ELECTRONICS**
 500 LEOLYARD ST. (SOUTH)
 HARTFORD, CT 06114
 203-527-1881
 Call today. Friendly one-stop shopping at prices you can afford.

Delaware

- **DELWARE AMATEUR SUPPLY**
 71 MEADOW ROAD
 NEW CASTLE, DE 19720
 302-328-7728
 800-441-7008
 Icom, Ten-Tec, DenTrent, Yaesu, Azden, Santec, KDK, and more.
 One mile off I-95, no sales tax.

Florida

- **AMATEUR ELECTRONIC SUPPLY**
 1898 DREW STREET
 CLEARWATER, FL 33515
 813-461-HAMS
 Clearwater Branch
 West Coast’s only full service Amateur Radio Store.

Massachusetts

- **TEL-COM, INC.**
 675 GREAT ROAD, RTE. 119
 LITTLETON, MA 01460
 617-486-3040
 617-486-3400 (this is new)
 The Ham Store of New England
 You Can Rely On.

Minnesota

- **MIDWEST AMATEUR RADIO SUPPLY**
 3452 FREMONT AVE. NO.
 MINNEAPOLIS, MN 55412
 612-521-4662
 It’s service after the sale that counts.

Nevada

- **AMATEUR ELECTRONIC SUPPLY**
 1072 N. RANCHO DRIVE
 LAS VEGAS, NV 89106
 702-647-3114
 Dale Porray "Squeak," AD7K
 Outside Nev: 1 (800) 634-6227

- **JUN'S ELECTRONICS**
 460 E. PLUMB LANE — 107
 RENO, NV 89502
 702-827-5732
 Outside Nev: 1 (800) 648-3962
 Icom — Yaesu Dealer

New Hampshire

- **TUFTS ELECTRONICS**
 61 LOWELL ROAD
 HUDSON, NH 03051
 603-883-5005
 New England’s friendliest ham store.

New Jersey

- **RADIOS UNLIMITED**
 P. O. BOX 347
 1760 EASTON AVENUE
 SOMERSET, NJ 08873
 201-469-4599
 800-526-0903
 New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

- **ROUTE ELECTRONICS 46**
 225 ROUTE 46 WEST
 TOTOWA, NJ 07512
 201-256-8555

- **ROUTE ELECTRONICS 17**
 777 ROUTE 17 SOUTH
 PARAMUS, NJ 07625
 201-444-8717
 Drake, Cubic, DenTrent, Hy-Gain, Cushcraft, Hustler, Larson, MFJ, Butternut, Fluke & Beckman Instruments, etc.

Illinois

- **ERICKSON COMMUNICATIONS, INC.**
 5456 N. MILWAUKEE AVE.
 CHICAGO, IL 60630
 Chicago — 312-631-5181
 Outside Illinois — 800-621-5802
 Hours: 9:30-5:30 Mon, Tu, Wed & Fri;
 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

- **THE HAM SHACK**
 808 NORTH MAIN STREET
 EVANSVILLE, IN 47710
 812-422-0231
 Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Santronics, and others.

Kansas

- **ASSOCIATED RADIO**
 8012 CONSER, P. O. BOX 4327
 OVERLAND PARK, KS 66204
 913-381-5900
 America’s No. 1 Real Amateur Radio Store. Trade — Sell — Buy.

Maryland

- **THE COMM CENTER, INC.**
 LAUREL PLAZA, RT. 198
 LAUREL, MD 20810
 301-638-4486
 Kenwood, Drake, Icom, Ten-Tec, Tempo, DenTrent, Swan & Apple Computers.

Dealers:

YOU SHOULD BE HERE TOO!

Contact Ham Radio now for complete details.
New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu,
Ten-Tec, DenTron, Hy-Gain,
Moseley in stock.

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since
1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer - ALL major
Ham Brands. We service everything we sell!
Warren K2lXN or Bob WA2MSH.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, Beckman,
Fluke, Larsen, Hustler, Astron,
Antenna Specialists, W2AU/W2VS,
AEA, B&W, CDE, Sony, Vibroplex.

Texas

MADISON ELECTRONICS SUPPLY
1508 McKinney
HOUSTON, TX 77010
713-658-0268
Christmas??

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing
of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-041
QUALITY MICROWAVE TV SYSTEMS
2.1 to 2.6 GHz Ant.
34 db Gain or Greater
COMPLET SYSTEMS
Parabolic Dish Style (as pictured) $ 9995
Commercial Red Style
(39' overall length) $10995
COMPONENTS
Down Converters
(both types) $ 3495
Power Supplies
(12V in 15V) $ 2495
Data Ice [Pint] $ 995
REPAIRS
Down Converters $ 1995
(All types - includes parts
labor freight)

WANTED
HIGHEST PRICES PAID FOR:
HARRIS RF-301
& ASSOCIATED EQUIPMENT
CALL COLLECT:
LIBERTY ELECTRONICS, INC.
(212) 925-6048

TENNA-TAPE
$40.00
This is the best portable antenna we've
seen anywhere, and check the low price!
Fast and easy adjustment for any portion
of 10-15-20-40 meter bands. Made from 20 ft
steel tape measures coated with mylar, it can be
used indoors or outdoors as a dipole, inverted-V,
or sloper antenna. Perfect for traveling,
camping, or anywhere!
Chart included showing exact tape
measurement for each band. Tapes crank
into compact, lightweight storage.
Not a kit, ready for use with end insulators
& center fitting for 50 ohm feedline with PL
259 Money-back guarantee.

Send check or money order
for $40.00 & $3.00 postage
& handling to
SPENCER PRODUCTS
18 Reynolds Avenue
Cortland, NY 13045
Advertised check-off

...for literature, in a hurry—we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 1, 234

Alaska Microwave 101
Aiden Electronics 101
All Electronics Corp. 101
Alpha Delta Communications 128
Alternative Energy Engineering 127
Amateur Radio Today 100
American Radio Relay League 120
Amidon Associates 128
Amp Supply 122
Antenna, Inc. 94
Antenna Company of America 122
Antenna Development & Manufacturing, Inc. 26
Applied Technology 106
Aeron Corp. 83
Aeronic Sales 84
ATV Magazine 127
A to Z Crystal Co. 39
BMG Engineering 84
Barker & Williamson, Inc. 96
Barry Electronics 122
Biel Co. 123
Bill O'Neil 100
Chris Bowick's RF Circuit Design 128
Buckmaster Publishing 122
Budweiser Manufacturing Co. 123
Butternut Electronics 122
Caddle Cap Corp. 120
Ceco Communications 140
Communications Specialists 105
Cushcraft 15
dB Gain 9
Digital Microsystems 84, 95
Direct Video Sales 29
Doppler Systems 128
Ed Calkin 66
Electronic Rainbow, Inc. 122
Electronic Specialists, Inc. 76
Electronic Book Club/ITI 100
Engineering Consulting 100
Farri Radio Sales 100
Ferritronics LTD 96
Fox Tango Coop 107
Galaxy Electronics 128
Gem Quad Products 107
Golden Scientific Corp. 108
Ham Communications Corp. 107
Ham Radio's Backroom 107
Ham Radio Outlet 107
Ham Shack 55
Hamtronics, N.Y. 92, 93
Ham Radio 104
Hoofer Electronics 126
Hudson, Inc. 107
Icon America, Inc. 40
Independent Crystal Supply Company 107
Jasco International 99
Jensen Tools 76
KLM Electronics 103
KLM Electronics, Inc. 103
Klirkenwood Communications 2, Cover IV
Lauren Electronics 133
Lenktronics 131
Liberty Electronics 131
Long's Electronics 12, 13
Lunar Electronics 60
M Fax Enterprises 105
Maddison Electronics 129
John D. Madsen, Inc. 20
Missouri Radio Center 10
Moxley Electronics 17
M Squared Engineering 108
N Amp Satellite Receiver Systems 108
Nemal Electronics 85
North American Microwave 128
Nuts & Volts Magazine 123
Oak Hill Academy Amateur Radio Station 123
P.B. Radio 76
P.C. Electronics 46
Palomar Engineers 14
Palomar Products 31
Peterson Electronics 131
Philips Electronics 91
Polaris Electronics 131
Pro Search 9, 121
R.F. Products 9, 121
Radio Amateur Catalog 106
Radio Design 106
Radio Warehouse 84
Ramsey Electronics 106
Radio Shack 106
Satellite Receptor Systems, Inc. 46
Semiconductor Surplus 110, 119
Share Brothers 81
Skylane Products 84
Snyder Antennas 125
Spectrum 120
Spectrum International, Inc. 82
Spectrum West 122
Speedcall Corp. 101
Spencer Products 131
Spiral Distributing 128
Taktronix 136
Teletype, Inc. 136
Telex Communications 68, 69
Tettora Corp. 128
Telco, Inc. 71
TET Antennas 123
The Comm Center 103
Thermax Corp. 135
Total Television 104
Transistoric, Inc. 104
Tri-Ex Tower Corp. 104
Unger 70
UNR-Rohn 120, 132
Vail Enterprises 78
Vanguard Labs 122
Vicom Products Corp. 122
Western Electronics 101
Win Tennen 101
Xantek, Inc. 103
Yaezu Electronics Corp. 103

ROHN
“FOLD-OVER” TOWERS

EASE OF INSTALLATION
ROHN “Fold-Over” Towers are quickly and easily installed. The “Fold-Over” is safe and easy to service.

ADAPTABILITY
ROHN has several sizes to fit your applications or you can purchase the “Fold-Over” components to convert your ROHN tower into a “Fold-Over”.

HOT DIP GALVANIZED
All ROHN towers are hot dip galvanized after fabrication.

REPUTATION
ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.

QUALITY STEEL PRODUCTS BY
ROHN
Box 2000, Peoria, Illinois 61655
U.S.A.

May 1983

Teardrop call to and mail to
HAM RADIO MAGAZINE—check off
Greenville, N. H. 03048-0498

NAME

ADDRESS

STATE

ZIP

132 May 1983
Advertisers

check-off

Alaska Microwave 101
Alden Elec 102
Ampex 103
Alpha Delta 104
A.E.E. 105
Ame Radio Today 106
ARRL 107
Armstrong 108
Amp Supply 109
Antennas 110
Antenna Dev. 111
Appied Inv. 112
Atlantic Surplus 113
ATV Magazine 114
A to Z Crystal 115
B&K 116
Barker & Williamson 118
Barry 119
Beat 120
Bowick 200
Bushmaster 212
Butte 212
Caladon 122
Cadle 124
Candell 213
Cannon 304
Cees 313
Com 125
Comm. Design 126
Comm. Spec. 127
Contemporary Elec. 314
Coughcraft 128
City 306
chip Gain 129
Cms 311
Digital Micro 130
Direct Video 131
Doblper 132
Dra 132
Elec. Rainbow 250
Elec. Spec. 133
Elec. Book Club 134
Encom 319
Encon 303
Eng. Consulting 135
Ferr Radio 136
Ferronics 137
Fox-Tango 136
Gally 139
Goldsmith Scientific 140
Hal Comm. 142
Ham Radio’s Bookstore 143
H. R. O. 145
Hern Shank 146
Hamryonic 147
Henry Radio 148
Hoyle 149
Huater 150
Hy Gain Teles 151
Ice 152
Independent Crystal 153
Jascio 154
Jansen Tools 155
KCS Elec. 156
KLM 157
Kantronics 158
Kenwood 159
Larsen 159
Liberty Elec. 150
Long’s 151
Lumel Elec. 152
My 153
Maden Elec. 154
Mehra 155
Mosley Elec. 156
M. Squared Eng. 159
NCG 170
Nordic Satellite 171
Nenla 172
T. American Soar 173
Nuts & Vols 174
Oak Hill Academy A. R. 8. 175
P.B. Radio 175
P. C. Elec. 176
Patcom 176
Philips Tar 177
Pro Search 178
R. P. Products 180
Callbook 181
Radio 182
Radio Warehouse 183
Ramsey Elec. 184
SE 185
Semi-Surplus 186
Share Brothers 187
Sincar Radio 308
Skylane Prod. 187
Snyder 188
Spectronics 189
Spectrum Inter 189
Spectrum West 189
Speedcall 190
Tec 190
The Comm Center 191
Tet 192
Tet 193
The Comm Center 194
Thermes 195
Total 196
Television 197
Transameric 200
Tr Ex 200
U.S. Radio 203
V. A. Radio 204
Vanguard Labs 205
Vector 316
Vibrospy 301
Vocot Prod. 302
Western Elec 207
Win 219
Wils 220
Xantek 221
Yaesu 222

*Please contact this advertiser directly.

Place your check mark in the space between name and number. Ex: Ham Radio 234

Limit 15 inquiries per request.

NAME

ADDRESS

CITY

STATE

ZIP

CALL

Please use before June 30, 1983

May, 1983
SYNTHESIZED STABILITY

DRAKE RV75 Remote VFO

The RV75 Synthesized Remote VFO is designed to complement the DRAKE TR7, TR7A, R7, R7A, and the TR5. The RV75 provides a high degree of frequency control flexibility with crystal-controlled frequency stability. The RV75 output frequency is synthesized in 10 Hz increments for smooth frequency control and the weighted flywheel of the optical shaft encoder provides a smooth, solid feel.

- Synthesized Frequency Control
- Crystal-Controlled Stability (±15 ppm 0° to +50°C)
- Patented Variable Tuning Rate
- 10 Hz Resolution
- 800 KHz Tuning Range
- User Selectable Direction of Frequency Change/Dial Rotation
- Weighted Flywheel
- Shaft Encoder
- 2 Programmable Fixed Frequencies
- “RIT” Control
- Dial Lock

DRAKE. Let us take you there!

R.L. DRAKE COMPANY

NEW TS830S for $150?

Yes indeed! Just add a Matched Pair of top-quality 2.1 kHz BW (bandwidth) Fox Tango Filters. Here are a few quotes from users:

"...makes a new rig out of my old TS830S!..."
"...VBT now works the way I dreamed it should..."
"...spectacular improvement in SSB selectivity..."
"...completely eliminates my need for a CW filter..."
"...simple installation - excellent instructions..."

The Fox Tango filters are notably superior to both original 2.7 kHz BW units but especially the modest ceramic 2nd IF. Our substitutes are 8-pole discrete-crystal construction. The comparative FT vs Kenwood results? VBT OFF - RX BW: 2.0 vs 2.4; Shape Factor: 1.19 vs 1.34; 80 dB BW: 2.48 vs 3.41. Ultimate rejection: 110 dB vs 80. VBT SET FOR CW at 300 Hz BW - SF 2.9 vs 3.33, insertion Loss: 1 dB vs 10 dB.

AND NOW A NEW TS930S! Tests prove that the same filters improve the '930 even more than the '830. Don't buy CW filters - not even ours. You probably won't need them!

INTRODUCTORY PRICE: (Complete Kit) ...$150
Includes Matched Pair of Fox Tango Filters, all needed cables, parts, detailed instructions. Specifically kit designed: FTK-830 or FTK-930
Shipping $3 (Air $5). FL Sales Tax 5%

ONE YEAR WARRANTY
GO FOX-TANGO TO BE SURE!

Order by Mail or Telephone
AUTHORIZED EUROPEAN AGENTS
Scandinavia: MICROTEC Norway
Other: INGOMPIEX (W. Germany)

FOX TANGO CORPORATION
Box 15944H W Palm Beach, FL 33406
Phone (561) 693-9987

More Details? CHECK-OFF Page 132

May 1983
Now. Tektronix 60 MHz Performance is just a free phone call away!

Wide-range vertical sensitivity: Scale factors from 100 V/div. (10X probe) to 2 mV/div. (1X probe). Accurate to ±3%. AC or DC coupling.

Two high-sensitivity channels: dc to 60 MHz bandwidth from 10 V/div. to 20 mV/div. extended sensitivity of 2 mV/div. at > 50 MHz.

Sweep speeds: from 0.5 s to 50 ns. To 5 ns div. with X10 magnification.

Delayed sweep measurements: Accurate to ±3% with single time-base 2213; to ±1.5% with dual time-base 2215.

Complete trigger system: Includes TV field, normal, vertical mode, and automatic: internal, external and line sources; variable holdoff.

Probes included: High-performance, positive attachment 10-14 pF and 60 MHz at the probe tip.

These easy to order scopes are proof that it's not expensive to have advanced, 60 MHz performance from Tektronix on your bench. It's just practical! Feature for feature, the Tek 2213 and 2215 set a price/performance standard unmatched among portable scopes. And are backed by the industry's first three-year warranty on all labor and parts, including the CRT.

So advanced they cost you less: $1200* for the 2213! $1450* for the dual time base 2215!

These low costs are the result of a new design concept that utilizes fewer mechanical parts than any other scope.

Yet there's no scrimping on performance and reliability. You have the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements.

Scope. Probes. Three-year warranty and expert advice. One free call gets it all! You can order, or obtain literature, through the Tektronix National Marketing Center. Technical personnel, expert in oscilloscope applications, will answer your questions and can expedite delivery. Direct orders include probes, operating manuals, 15-day return policy, full Tektronix warranty and worldwide service back-up.

Get all the facts.
Call toll free:
1-800-426-2200
Extension 80
In Oregon, call collect:
(503) 627-9000 Ext. 80

*Price F.O.B. Beaverton, OR. Price subject to change.
MEET THE NEW YAESU FT-102

The FT-102 is factory equipped for operation on all present and proposed Amateur HF bands. An extra AUX band position is available for special applications. Equipped for SSB, CW, and AM (RX), the FT-102 may be activated on FM and AM (TX) via the optional AM/FM-102 Module.

The all-new receiver front end utilizes a low-distortion RF preamplifier that may be bypassed via a front panel switch when not needed. Maximum receiver performance is yours with this impressive lineup of standard features: IF Notch Filter, Audio Peak Filter, Variable IF Bandwidth Control, IF Shift, Variable Pulse Width Noise Blanker, Independent SSB and CW Audio Channels with Optimized Audio Bandwidth, and Front Panel Audio Tone Control. Wide/Narrow filter selection is independent of the Mode switch.

The celebrated transmitter section is powered by three 6146B final tubes, for more consistent power output and very low distortion. An RF Speech Processor, Mic Amp Audio Tone Control, VOX, and an IF Monitor round out the transmitter lineup. Futuristic panel design and careful human engineering are the hallmarks of the FT-102. Convenient pop-out controls below the meters may be retracted when not in use, thus avoiding inadvertent mistuning. Abundant relay contacts, rear panel phono jacks for PTT, microphone/patch input, and other essential interface connections make the FT-102 extremely simple to incorporate into your station.

SPECIFICATIONS

TRANSMITTER
Power Input: (1.8-25 MHz) (28-29.9 MHz)
SSB, CW 240W DC 160W DC
AM 80W DC 80W DC
FM 160W DC

RECEIVER
Image Rejection:
Better than 70dB from 1.8-21.5 MHz
Better than 50dB from 24.5-29.9 MHz

IF rejection: Better than 70 dB

Selectivity (-6 dB/ -60 dB): SSB, CW, AM; 2.7/4.8 kHz (with no optional filters)
Width adjusts continuously from 2.7 kHz to 500 Hz (-6 dB)

Spurious Radiation: Better than -40 dB

The SP-102 External Speaker/Audio Filter features a large, high-fidelity speaker with selectable low- and high-cut audio filters. The front panel A-B switch allows selection of two receiver inputs for maximum versatility. Also available is the SP-102P Speaker/Patch.

See your Authorized Yaesu Dealer today for a hands-on demonstration of the rig that everybody’s talking about. It’s the FT-102, The Transceiver of Champions!

Price And Specifications Subject To Change Without Notice or Obligation
Superior dynamic range, auto. antenna tuner, QSK, dual NB, 2 VFO’s, general coverage receiver.

TS-930S

The TS-930S is a superlative, high performance, all-solid state, HF transceiver keyed to the exacting requirements of the DX and contest operator. It covers all Amateur bands from 160 through 10 meters, and incorporates a 150 kHz to 30 MHz general coverage receiver having an excellent dynamic range.

Among its other important features are, SSB slope tuning, CW VBT, IF notch filter, CW pitch control, dual digital VFO’s, CW full break-in, automatic antenna tuner, and a higher voltage operated solid state final amplifier. It is available with or without the AT-930 automatic antenna tuner built-in.

TS-930S FEATURES:
- **160-10 Meters, with 150 kHz-30 MHz general coverage receiver.** Covers all amateur frequencies from 160-10 meters, including new WARC bands, on SSB, CW, FSK, and AM. Features 150 kHz-30 MHz general coverage receiver. Separate amateur band access keys allow speedy band selection. UP/DOWN bandswitch in 1-MHz steps. A new, innovative, quadruple "UP" conversion, digital PLL synthesized circuit provides superior frequency accuracy and stability, plus greatly enhanced selectivity.
- **Excellent receiver dynamic range.** Receiver two-tone dynamic range, 100 dB typical 120 meters, 50-kHz spacing 500 Hz CW bandwidth, at sensitivity of 0.25 µV. S/N 10 dB, provides the ultimate in rejection of IM distortion.
- **All solid state, 28 volt operated final amplifier.** The final amplifier operates on 28 VDC for lowest IM distortion. Power input rated at 250 W on SSB, CW, and FSK, and at 10 W on AM. Final amplifier protection circuits with cooling fan, SWR/Power meter built-in.
- **CW full break-in.** CW full break-in circuit uses CMOS logic IC plus reed relay for smooth, quiet operation. Switchable to semi-break-in.
- **Automatic antenna tuner, built-in.** Covers Amateur bands 80-10 meters, including the new WARC bands. Tuning range automatically pre-selected with band selection to minimize tuning time. "AUTO-THRU" switch on front panel.
- **Dual digital VFO’s.** 10-kHz step digital VFO’s include band information. Each VFO tunes continuously from band to band. A large, heavy, flywheel type knob is used for improved tuning ease. T.F. Set switch allows fast transmit frequency setting for split-frequency operations. A-B switch for equalizing one VFO frequency to the other. VFO "Lock" switch provided. RIT control for ±9.9 kHz.
- **Eight memory channels.** Stores both frequency and band information. VFO-MEMO switch allows use of each memory as an independent VFO, the original memory frequency can be recalled at will, or as a fixed frequency. Internal Battery memory back-up, estimated 1 year life. (Batteries not Kenwood supplied).
- **Dual mode noise blanker ("pulse" or "woodpecker").** NB-1, with threshold control, for pulse-type noise. NB-2 for longer duration "woodpecker" type noise.
- **SSB IF slope tuning.** Allows independent adjustment of the low or high frequency slope of the IF passband, for best interference rejection. HIGH/LOW cut control rotation not affected by selecting USB or LSB modes.
- **CW VBT and pitch controls.** CW Variable Bandwidth Tuning control tunes IF passband, and simultaneously changes the pitch of the beat frequency. A "Narrow/Wide" filter selector switch is provided.
- **IF notch filter.** 100 kHz IF notch circuit gives deep, sharp, notch, better than -40 dB.
- **Audio filter built-in.** Tuneable, peak-type audio filter for CW.
- **AC power supply built-in.** 120, 220, or 240 VAC, switch selected (operates on AC only).
- **Fluorescent tube digital display.** Six digit readout to 100 Hz (10 Hz modifiable), plus digitalized sub-scale with 20-kHz steps. Separate two digit indication of RIT frequency shift. In CW mode, display indicates the actual carrier frequency of received as well as transmitted signals.
- **RF speech processor.** RF clipper type processor provides average "talk-power", improved intelligibility.
- **One year limited warranty on parts and labor.**

Other features:
- SSB monitor circuit. 3 step RF attenuator, VOX, and 100-Hz marker.

Optional accessories:
- AP-930A automatic antenna tuner.
- SP-930 external speaker with selectable audio filters.
- YG-455C-1 [500 Hz] or YG-455N-1 [250 Hz] plug-in CW filters for 455-kHz IF.
- YK-88C-1 [500 Hz] CW plug-in filter for 8.83-MHz IF.
- SO-1 commercial stability TCXO (temperature compensated crystal oscillator). Requires modifications.
- MC-60A Deluxe desk microphone with UP/DOWN switch, pre-amplifier, 8-pin plug.
- TL-922A linear amplifier (not for CW SSB).
- SM-220 station monitor (not for pan-adapter).
- HS-6, HS-5, HS-4, headphones.

More information on the TS-930S is available from all authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.