15th Anniversary Issue

- 15-meter SSB transceiver
- precision noise bridge
- bobtail curtain follow-up
- capacitively coupled hybrids
- GaAs FET evaluation

focus on communications technology

fifteen years of focusing on communications technology
The ICOM IC-740 offers features found only on the best amateur equipment and performance second to none.

Dynamic Range.
The IC-740 is built to withstand strong adjacent signals and still maintain sensitivity and distortion-free output of the desired signal in its passband. With a dynamic range of over 100 dBm and an intercept point of +18 dBm, the IC-740 receiver is a true performer. The IC-740 receiver is also crush proof, and unlike many receivers that have good receiver specifications, it does not collapse under the presence of an RF field.

Other outstanding features that are a must for a modern, high-performance amateur receiver are included in the IC-740:

Passband Tuning, adding an additional filtering element to the receiver passband plus giving control of the actual width of the IF stages of the receiver variable from 2.4 kHz to 700 kHz in SSB, CW or RTTY.

Variable AGC, a two speed AGC with an OFF position allows proper selection of AGC speed regardless of mode, VOX or CW break-in. The OFF position makes the IC-740 easily adaptable to frequency converters.

A Noise Blanker that really works with both wide and narrow pulse widths and a threshold control to give optimum blanking with minimum of signal distortion.

And... the IC-740 has an optional Internal Power Supply giving 160-10 meter transceiver coverage in one package.

These and other fine features plus ICOM's renowned transmitter audio make the IC-740 the finest amateur transceiver around today.

$50 Cash Rebate
$50.00 for the purchase of an IC-740.
Expires Dec 31, 1983

ICOM America Inc. 2112-116th Ave NE, Bellevue, WA 98004 (206) 454-5155 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234 (214) 620-2780

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
ANNOUNCING

PRIVATE PATCH II

TONE TO PULSE SIMPLEX INTERCONNECT

AT LAST...Professional quality interconnect at an affordable price! Imagine the convenience of having your own private, commercial quality mobile telephone in your car. And without the hassles of shared systems. Put your base FM transceiver to work while on the road. Our ultra state of the art digitally processed audio scheme (Patent pending) totally eliminates the continuous train of squelch tails which has kept you away from sampling interconnects. Our nonsampling approach has additional benefits: 1. Interface to your transceiver is the MOST SIMPLE EVER. Connects only to microphone and speaker jacks! NO INTERNAL CONNECTIONS OR MODIFICATIONS REQUIRED! 15 minutes typical installation time. 2. Works with ANY FM transceiver. (T/R speed is not critical.) 3. Operates through any repeater or simplex without use of tone equipment. Imagine having TOTAL access to your own home phone from 100 miles away! Our busy channel ringback inhibit logic prevents "accidental" interference to a QSO in progress when a phone call is received. This feature will keep you out of hot water with co-channel users! Discover for yourself what high quality simplex interconnect sounds like. Call us, and listen to actual “on the air” tapes of this incomparable interconnect product.

STANDARD FEATURES

- Compatible with either rotary or tone exchanges
- 16 Digit buffer memory — dial as fast as you want
- 3201 tone decoder chip
- High quality glass circuit board
- CW identification

- Five digit user programmable sequential access code — 60,000 code combinations
- Sophisticated toll restrict — restricts any quantity of leading digits
- Both accessing and dialing are compatible with speed dialing equipment
- Operates superb through repeaters — no special tone equipment required
- Three/six minute “time out” timer is resettable from mobile four CW ID warnings during last minute
- Ringback (reverse patch) pages you once with CW ID — answer when convenient with your access code
- Busy channel ringback inhibit logic — prevents accidental interference to QSO in progress
- Most easily interfaced autopatch on the market
- Positive control logic
- Fully digital timing — there are no timing adjustments! assures quick easy set-up
- Touch tone™ digits and strobe pulse available on DIP socket
- Modular phone jack and cord
- Self contained 115 VAC supply (230 VAC 50/60 cycle export model available)

PRIVATE PATCH II $475

NOW REDUCED

PRIVATE PATCH I $399

HAS MOST OPERATIONAL FEATURES OF PRIVATE PATCH II — BUT IS FOR USE ONLY ON DTMF EXCHANGES

AND OF COURSE:

ONE YEAR WARRANTY
14 DAY RETURN PRIVILEGE
UNMATCHED CUSTOMER SERVICE

SEND OR CALL FOR BROCHURES
INQUIRE ABOUT COMMERCIAL MODELS
DEALERSHIPS INVITED

Connect Systems
Formerly Auto Connect
P.O. BOX 4155
TORRANCE, CA 90510
PHONE (213) 540-1053
TS-830S

"Top-notch"...VBT, notch, IF shift, wide dynamic range

The TS-830S has every conceivable operating feature built-in for 160-10 meters (including the three new bands). It combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the 455-kHz second IF.

TS-830S FEATURES:
- LSB, USB, and CW on 160-10 meters, including the new 10, 18, and 24 MHz bands. Receives WWV on 10 MHz.
- Wide receiver dynamic range. Junction FETs in the balanced mixer, MOSFET RF amplifier at low level, and dual resonator for each band.
- Variable bandwidth tuning (VBT). Varies IF filter passband width.
- Notch filter high-Q active circuit in 455-kHz second IF.
- IF shift (passband tuning).
- Noise-blanker threshold level control.
- Built-in digital display, (fluorescent tube), with analog dial.
- 6146B final with RF negative feedback. Runs 220 W PEP (SSB/180 W DC) input on all bands.
- Built-in RF speech processor. Narrow/wide filter selection on CW.
- SSR monitor circuit.
- RIT and XIT (transmitter incremental tuning).

Optional accessories:
- SP-230 external speaker.
- VFO-230 external digital VFO with five memories, digital display.
- VFO-240 external analog VFO.
- AT-230 antenna tuner.
- YG-455C (500 Hz) or YG-455CN (250 Hz) CW filter for 455 kHz IF.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter for 8.83 MHz IF.
- KB-1 deluxe heavy weight knob.

TS-530S

"Centsational"...IF shift, digital display, narrow-wide filter switch

The TS-530S SSB/CW transceiver covers 160-10 meters using the latest, most advanced circuit technology, yet at an affordable price.

TS-530S FEATURES:
- 160-10 meters, LSB, USB, CW, all amateur frequencies, including new 10, 18, and 24 MHz bands. Receives WWV on 10 MHz.
- IF shift tunes out interfering signals.
- Built-in digital display (six digits, fluorescent tube), with analog dial.
- Narrow/wide filter selector switch for CW and/or SSB.
- Built-in speech processor, for increased talk power.
- Wide receiver dynamic range, with greater immunity to overload.
- Two 6146B's in final, allows 220W PEP/180W DC input on all bands.
- Advanced single-conversion PLL, for better stability, improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- Built-in speech processor.
- Variable bandwidth tuning (VBT). Varies IF filter passband width.
- Notch filter high-Q active circuit in 455-kHz second IF.
- IF shift (passband tuning).
- Noise-blanker threshold level control.
- RIT/XIT front panel control allows independent fine-tuning of receive or transmit frequencies.

Optional accessories:
- SP-230 external speaker.
- VFO-230 external digital VFO.
- Dual digital VFO's.
- Digital display.
- IF shift built-in.
- 5 memories with memory scan.
- UP/DOWN microphone.
- All-mode squelch.
- Noise blanker.
- CW semi break-in/sidetone.
- 10 W on SSB, CW, FM; 4 W on AM.

Optional accessories:
- PS-20 power supply.
- VOX-4 speech processor/VOX.
- SP-120 External speaker.
- MB-100 Mobile mount.
- YK-88C, YK-88CN CW filters.
- YK-88A AM filter.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
SAVE $10.50* with home delivery

*(One year newsstand cost $30.00)
Here’s my address label, enter my subscription.

☐ 1 Year 12 issues $19.50 ☐ Payment enclosed
☐ 2 Years 24 issues $32.50 ☐ Bill me later
☐ 3 Years 36 issues $42.50 U.S. prices only

Name ..
Address
City ...
State ..
Zip ...

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $21.50 for one year by surface mail.
12 15-meter sideband transceiver
Douglas Glenn, WA4ZXF

28 Bobtail curtain follow-up: practical DX signal gain
Woodrow Smith, W6BCX

32 dual voltage power supply
Fred Hurteau, WD4SKH

38 GaAs FET performance evaluation and preamplifier application
Dennis Mitchell, K8UR

47 ham radio techniques
Bill Orr, W6SAl

50 a modern noise bridge
Forrest Gehrke, K2BT

62 solid-state CW T-R system
L.B. Cebik, W4RNL

70 capacitively coupled hybrids
Ernie Franke, WA2EWT

88 CW zero-beat indicator for transceivers
Glen Carlson, W6KVD

96 new products

10 presstop

121 reader service

105 flea market

44 technical forum

88 weekender
This issue, on our fifteenth anniversary, marks the completion of fifteen continuous years of providing the Amateur community with important technical information. We have attempted, and we hope succeeded, in bringing you a consistent flow of data: past techniques, still useful and important today; present techniques for solving today’s problems; and looks into the future technologies that so rapidly are becoming a part of today.

This issue also signals the start of our sixteenth year of publishing in the same tradition, with articles that clearly emphasize the Ham’s true investigative spirit: always improving on existing techniques, making gear smaller, better, and less expensive. This month, that is best brought out by the articles by WA4ZXF and K2BT. Douglas Glenn (WA4ZXF) provides more than just another detailed design (and construction information) on an 15-meter transceiver. He shows, for example, how different operating functions can ingeniously be combined in the same circuit, thereby economizing on the number of components. A typical example is the use of the first mixer as a converter in the receive mode and as a balanced modulator during transmit.

Just because you’re working with inexpensive components from the junkbox doesn’t mean you have to put up with limited performance. Doug designs around them, taking full advantage of their characteristics. And the best part is that even if you don’t build this unit, an understanding of a complete SSB transceiver is yours just for the reading.

Forrest Gehrie, K2BT, closely examines rf bridge operation — its inherent inaccuracies and limitations — in his article “Precision Noise Bridge.” He shows, in his design, how real world impedances can be confidently and accurately measured. Forrest has used the noise bridge in building one of the most competitive 75-meter directional arrays in the world: the “4 square” (much more about that in several upcoming issues). With his bridge, he is able to accurately determine self and mutual impedances that unfortunately don’t always come close to a resistive 50 ohms.

On a separate tack, Woody Smith, W6BCX, continues where he left off (in his Part 1, last month) with construction details for the half-square and Bobtail curtain. He closely examines feeding methods and locations, showing their influences on pattern and on the frequency bands that are usable with the Bobtail.

Douglas Glenn, WA4ZXF, explores capacitively coupled hybrids, devices useful at any power level. A little bit of thinking shows several applications where a continuously variable phase shift at rf could be very useful, be it in the laboratory or out on the range (antenna range, that is).

These, as well as the other articles in this issue, are but a sampling of what we at Ham Radio have in store for you in 1983. Consider what you would like to see in the following issues; it will probably be there. Our crystal ball has recently been calibrated to accurately focus in on your needs. Nevertheless, we still welcome all of your communications. Let us know your views!

We especially wish to thank our charter advertisers — see the list below — identified with the symbol on their ads throughout the magazine. Readers who have the complete collection of ham radio magazines (doesn’t everyone?) will recognize these companies as having been with us in the beginning.

Without further ado, as my British friends are wont to say: “Let’s get on with it.”

Rich Rosen, K2RR
associate publisher/technical editor

Charter Advertisers

A-5 MAGAZINE
AMIDON ASSOCIATES
ANTENNA SPECIALISTS
(Their 30th Year)
BARRY ELECTRONICS
BUDWG MANUFACTURING CO.
CW ELECTRONICS SALES
CECO COMMUNICATIONS, INC.
R. L. DRAKE COMPANY
HARRISON RADIO
HENRY RADIO
JOHN J. MESHNA, JR., INC.
PALOMAR ENGINEERS
RADIO AMATEUR CALLBOOK, INC.
SLEP ELECTRONICS COMPANY
TELEX COMMUNICATIONS/HYGAH
TRI-EX TOWER
VANGUARD LABS
VARIAN/EIMAC
WESTCOM ENGINEERING

Happy Birthday ham radio!
Wabash means quality products that you can depend on. Wabash diskettes are individually tested and is 100% certified to insure premium performance. Why Wabash is Special
The quality of Wabash diskettes is stressed throughout the entire manufacturing process. After coating, all Wabash diskettes go through a unique burnishing process that gives each diskette a mirror-smooth appearance. Wabash then carefully applies a lubricant that is specially formulated to increase diskette life. This saves you money, since your discs may last longer. It also assists your disk drives in maintaining constant speed which can reduce read and write errors.

Special Seal...Helps Prevent Contamination
To keep out foreign particles, a unique heat seal bonds the jacket and liner together. A special thermal seal which avoids contamination from adhesives, is then used to fold and seal the jacket. This results in outstanding performance and true reliability. Wabash then packages each diskette, (except bulk pack) in a super strong and tear resistant Tyvek® envelope. The final Wabash product is then shrink-wrapped to insure cleanliness and reduce contamination during shipment.

Each Diskette is 100% Critically Tested
Since each step in the Wabash diskette manufacturing process is subject to strict quality control procedures, you can be sure Wabash diskettes will perform for you. And every Wabash diskette meets the ultra-high standards of ANSI, ECMA, IBM and ISO in addition to the many critical quality control tests performed by Wabash. Wabash does all of this testing to provide you with consistently high quality diskettes. Reliability and data integrity – that's what Wabash quality is all about.

Flexible Disc Quantity Discounts Available
Wabash diskettes are packed 10 discs to a carton and 10 cartons to a case. The economy bulk pack is packaged 100 discs to a case without envelopes or labels. Please order only in increments of 100 units for quantity 100 pricing. With the exception of bulk pack, we are also willing to accommodate your smaller orders. Quantities less than 100 units are available in increments of 10 units at a 10% surcharge. Quantity discounts are also available. Order 500 or more discs at the same time and deduct 1%; 1,000 or more saves you 2%; 2,000 or more saves you 3%; 5,000 or more saves you 4%; 10,000 or more saves you 5%; 25,000 or more saves you 6%; 50,000 or more saves you 7% and 100,000 or more disc earns you an 8% discount off our super low quantity 100 price. Almost all Wabash diskettes are immediately available from CE. Our warehouse facilities are equipped to help us get you the quality product you need, when you need it. If you need further assistance to find the flexible disc that's right for you, call the Wabash diskette compatibility hotline. Dial toll-free 800-323-9868 and ask for your compatibility representative. In Illinois or outside the United States dial 312-593-6363 between 9 AM to 4 PM Central Time.

More Details? CHECK — OFF Page 121

Now...Get High Quality at a Low Price
Wabash means quality products that you can depend on. For over 16 years, Wabash has been making high quality computer products. Wabash diskettes are made to provide error-free performance on your computer system. Every Wabash diskette is individually tested and is 100% certified to insure premium performance.
debunking myths

Dear HR:

The vertical versus dipole comparison by Bill Orr in "Ham Radio Techniques" (Ham Radio, October, 1982) should help debunk the myth that a quarter-wave vertical over a good radial system is automatically a low-angle radiator. An earlier article by John Belrose (Ham Radio, September, 1981, page 36) first got me wondering whether verticals are automatic guarantees of a DX edge over dipoles, inverted vees, and other simple antennas. Belrose showed that a quarter-wave vertical over very poor ground but with an excellent ground system has a radiation angle of 30-35 degrees, about the same as a half-wave dipole erected a half wave above ground. This has apparently been confirmed by Orr in his extensive 10 MHz listening comparisons.

What makes or breaks a typical vertical's low angle of radiation is the conductivity of the ground, out to 50 or more wave lengths from the antenna. (This factor has a much smaller influence on the take-off angle of a dipole of a half-wavelength or more above ground.)

Where does this leave the vertical which has become so popular for high frequency communications? I'd say that for 160 meters, 80 meter, and 40 meter long-haul QSO's, the vertical is still the best of the simple antennas for the average ham. A dipole must be a half wavelength above ground to give the 30 degree take-off angle the vertical will give at ground level. Most city-dweller hams can't easily get a dipole that high. However, as Bill Orr demonstrates, the dipole probably becomes the better simple antenna from 30 meters on up. Exceptions would be the ham on a boat, in a salt-marsh, or possibly in an agricultural setting where continual use of fertilizers has given the soil superior conductivity out to 50-100 wavelengths from the antenna. Verticals in these settings will have take-off angles of 10-15 degrees. For Amateurs fortunate to be operating in these settings, the vertical still reigns supreme among the simple antennas for DXing from 30 meters on up.

Mark Bacon, WB9VWA
Decatur, Illinois

the 432 Yagi is alive and well

Dear HR:

The excellent article, "Requirements and Recommendations for 70-cm EME," by Joe Reisert (Ham Radio, June, 1982) mistakenly notes that "the K2RIW (432 Yagi) has gone out of production."

The K2RIW Yagi, the original RIW 432-19, is still in production by RIW Products. In fact, to assist the homebrewer, kits for the 432-19 are also available that include all the hard-to-get parts at a modest price.

George A. Flanagan, W2KRM
RIW Products
Box 191
Babylon, New York
Hear Police/Fire Weather
on 2 Meter Handhelds with this MFJ VHF Converter.

New MFJ VHF converter turns your synthesized scanning 2 meter handheld into a hot Police/Fire/weather band scanner.

MFJ-313
$39.95

MFJ DUMMY LOADS

Tune up fast into 50 ohm resistive load. Extend life of finals.

Includes high quality transformer oil.

New MFJ-250 VERSALOAD Kilowatt Dummy Load lets you tune up fast. Extends life of transmitter finals. Reduces on-the-air GRM.

Run 1 KW CW or 2 KW PEP for 10 minutes, 1/2 KW CW or 1 KW PEP for 20 minutes. Continuous duty with 200 watt CW or 400 watts PEP. Complete with derating curve.

Quality 50 ohm non-inductive resistor.

Oil cooled. Includes high quality, industrial grade transformer oil (contains no PCB).

Low VSWR to 400 MHz: Under 1.2:1, 0-30 MHz, 1.5:1, 30-300 MHz. 2:1, 300-400 MHz.

Ideal for testing HF and VHF transmitters.

MFJ “Dry” 300 W and 1 KW Dummy Loads.

MFJ-262 $64.95
MFJ-260 $26.95

MFJ 24 HOUR CLOCKS

Your choice: dual 24 hour LCD display, or 24/12 hour with ID timer, or 12 inch quartz analog.

Two independent 24 hour LCD displays! Read both GMT and local times at a glance.

Six digit main display has seconds readout.

Quartz timing. Synchronized to WVT.

Flip-top cover serves as stand.

Night light. Forward/reverse, fast/slow set buttons. Lock function prevents mis-setting. Display main time only, main/auxiliary or main/alarm time. Includes battery. 4x2x1/2 inches.

$39.95 DUAL 24 HOUR LCD
MFJ-104

Switchable 24 hour GMT or 12 hour format. ID timer sounds every 9 minutes after reset.

Switchable seconds readout. Observed timer. Just start clock from zero and note time of event up to 24 hours.

Bright blue 0.6” vacuum fluorescent digits. Alarm with snooze function. Synchronized with WVT. Fast/slow set buttons. Lock function prevents mis-setting. Power out, alarm “ON” indicators. 110 VAC, 60 Hz (50 Hz with simple modification). UL approved.

Black, brushed aluminum top/front. 6x2x3 1/2”.

$49.95 24 HOUR QUARTZ
MFJ-105

True 24 hour quartz wall clock has huge 12 inch diameter face. Gives excellent visibility across computer/radio room.

Single “AA” battery provides over one year operation, immunity from power line failure and eliminates power cord.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping).

One year unconditional guarantee.

Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $4.00 each for shipping and handling.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

ORDER TOLL FREE 800-647-1800

Order now. MFJ-260, MFJ-262 800-647-1800.
BOTH THE "NO-CODE" LICENSE AND AMATEUR EXAM ADMINISTRATION PROPOSALS are out, after the Commissioners voted to adopt the appropriate Notices of Proposed Rule Making on January 20. The "No-Code" is PR Docket 83-28, and the exam proposal is PR Docket 83-27. Both will have comment due dates of April 29. While the texts of both these crucial NPRMs had still not been released at press time, much of their content was already available.

The "No-Code" Proposal Is Very Much As Predicted in last month's Prestop. It offers two alternatives. The first is simply removing the Element 1A (CW) requirement from the present Technician Class exam, granting the successful applicant full privileges above 50 MHz. If such a licensee later wished to operate below 50 MHz, he could then be granted access to Novice frequencies after successfully demonstrating his CW ability to a higher-class licensee. A record of that "certification" would have to be kept in his station records, but there would be no notification to the Commission.

The Second Alternative Would Be The Establishment of a new "Digital Operator" class of license. As proposed, the "Digital Operator" would have full access to all Amateur bands above 144 MHz. Commissioner Dawson expressed a great deal of concern that restricting the frequencies available for the license would make it too unattractive. A new exam, "Element 5," perhaps incorporating present exam elements, would be written for the "Digital Class."

The FCC's Decision To Go Ahead On The "No-Code" License was made in spite of heavy opposition by the ARRL, and the Icet currently received relatively little discussion at the agenda meeting. League President Vic Clark, W4KFC, had urged the Commissioners, both in personal letters and visits, to hold off on no-code for at least 18 months to give the Amateur-administered exam program a chance to get rolling, but the Commissioners have been quite interested in seeing a no-code license established and were not receptive to seeing it delayed at this time. It's likely the League's position is not set in stone, either.

In a Westlink interview, League Counsel Chris Imlay, N3AKD, noted that neither membership nor director opposition to no-code was unanimous and that the League position would certainly be up for review at the April Directors' meeting. In view of the strong sentiment in favor of no-code apparent within the Commission, it seems likely the League's final position could be one of tempering the no-code license to make it more acceptable to the majority of its members rather than continuing to oppose no-code outright.

The Proposal To Set Up A Volunteer-Administered Licensing Program generated much more discussion among the Commissioners and staff than did no-code. A good deal of the NPRM came from the ARRL's Petition for Rule Making, but with many changes from both within the Commission and from comments filed by the QCWA and others. One concern was that there must be more than only one Volunteer Examination Coordinator group; QCWA, IEEE, and OMICK (a national group of black Amateurs) were all mentioned as other possibilities along with the League. Another concern was that membership in a given group should not be required for examiner certification.

Specifics Of The Exam Proposal include the use of three-person exam teams, with the team chief being an Extra Class Amateur and team members either Advanced or Extra. CW exams for General or above would be administered by an Extra Class, and exams for the Extra Class license would require an all-Extra team. Exam questions would be drawn from lists made up by the FCC from submissions by individuals or groups. Teams could issue Interim Permits, just as Field Offices do now. Team members would have to be over 18, and could not be related to the applicant. No one working for a manufacturer or distributor of Amateur equipment, or for a publisher of training material, could serve as an examiner.

Though The ARRL Had Pushed Hard To Have The Novice Exam Included in this new exam proposal, the Commissioners elected to leave it as proposed late last year in PR Docket 82-727. Under the simpler procedure proposed in that NPRM, a Novice applicant could receive his license a few weeks after taking the exam. Under the more cumbersome procedures of the proposed higher-class exam program, Novice license processing would be considerably slower.

THE "AMTOR" DIGITAL SYSTEM WAS APPROVED for general Amateur use on 80 through 10 meters by the FCC on January 27. AMTOR is a synchronous RTTY technique, similar to the marine service's SITOR, which verifies message content and accuracy, thus permitting communications with much lower signal levels than RTTY otherwise requires. A number of Amateur stations have been using AMTOR under FCC Special Temporary Authority, and W1AW should begin using it within a few weeks.

GE'S PROPOSAL FOR A NEW 900-MHZ PERSONAL RADIO SERVICE WAS ADOPTED as an NPRM by the FCC on January 20. Located just below 900 and above 917 MHz, it would use self-identifying transmitters, and have automatic access to telephone service via the user's own base station or commercially operated repeaters. A similar service, though without repeaters, has just begun operation in Japan at 903-905 MHz (Region 3 did not get the 902-928 MHz Amateur band). This proposal is of particular service for several reasons. First, a much more useful version of CB it's very likely to attract the interest of sophisticated would-be users who would otherwise be good candidates for Amateur Radio, with or without a no-code license. Second, the technology that such a service could support would spill over into Amateur Radio, particularly for the new 902-928 MHz band.

Comments On The Proposed New Service Will Also Be Due at the FCC on April 29. It has been assigned General Docket 83-26 by the FCC.
HAM OPERATORS KNOW THAT EIMAC STARTED IN POWER TUBE DEVELOPMENT WITH THE 150T IN 1934. WHILE THE 150T IS NOW A COLLECTOR'S ITEM, EIMAC, A DIVISION OF VARIAN, STILL HOLDS LEADERSHIP IN POWER TUBE DESIGN WITH ITS 4CX250B, 8874, 3-500Z, 8877 AND 3CX400U7; MODERN EXAMPLES OF EIMAC'S CONTINUING, INNOVATIVE SOLUTIONS TO TOUGH COMMUNICATION REQUIREMENTS.

EIMAC'S PROVEN POWER TUBES ARE USED IN AMATEUR SERVICE FOR HEAVY-DUTY, RELIABLE PERFORMANCE IN TRAFFIC; RTTY; SSTV; DX OPERATION; VHF/UHF WORK; MOONBOUNCE, AND EXPLORATION OF THE OUTER LIMITS OF COMMUNICATION TECHNIQUES ACROSS THE SPECTRUM.

HIGH QUALITY AND LONG LIFE MAKE EIMAC TUBES THE FAVORITE CHOICE OF OPERATOR AND EQUIPMENT BUILDER, AMATEUR AND PROFESSIONAL ALIKE.

FOR COMMUNICATION AND RESEARCH WORLDWIDE, CHOOSE EIMAC. FOR INFORMATION ON VARIAN EIMAC POWER TUBES, CALL OR WRITE TODAY. OR CONTACT THE NEAREST VARIAN ELECTRON DEVICE GROUP SALES OFFICE.

VARIAN EIMAC
301 Industrial Way
San Carlos, California 94070
415-592-1221

VARIAN EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
801-972-5000

VARIAN AG
Grienbachstrasse 17
Postfach
CH-6300 Zug, Switzerland
Tel: (042) 31 66 55
Telex: 845-78789

VARIAN

HF,
VHF,
UHF, ACROSS THE SPECTRUM.
VARIAN EIMAC.
15-meter sideband transceiver

A construction project of solid design with step-by-step explanations of each circuit function

With some careful shopping, it's possible to build a 15-meter sideband transceiver for less than $100. The design presented here is for a basic rig at minimum cost, but with excellent features:

Receiver: 0.5 µV sensitivity; 1.0 µV agc threshold; 0.5-watt audio output; 2000-Hz selectivity; agc; 80 dB compressed to 4 dB; CW audio filter.
Transmitter: 10 watts PEP; fully adjustable output; CW break-in keying; 50-dB carrier and LSB suppression.

I designed this rig for 15-meters because propagation conditions on this band put low-power operators at less of a disadvantage than on the other bands. If you prefer, the rig could be built for the 20-meter band by using a different offset crystal frequency and by adjusting several tuned circuits. With an output that is fully adjustable from a pot, it makes a good exciter for a linear amplifier.

theory of operation

Some of the circuit details may appear unfamiliar or unusual, but I will provide enough of an explanation for you to understand how the circuit operates. Component substitutions may be made to hold the cost down.

Let's start by reviewing the receiver signal path, beginning at the antenna jack (see figs. 1 and 7). No antenna relay is used. Instead, the input signal is coupled from the antenna low-pass filter to the receiver rf amplifier through a series-resonant circuit, C1-L1. This series-resonant circuit is used both as a T-R switch during transmit and as an rf attenuator during receive.

A series L-C circuit presents a low impedance at resonance, while the center junction is at a high impedance. If you put a variable resistor from this junction to ground, you create a variable attenuator. But instead of a resistor, use the collector impedance of a transistor. The transistor looks like a small capacitor (junction capacitance) in parallel with a variable resistance. The resistance value is controlled by the dc base current, as shown in fig. 2, as long as the signal amplitude doesn't forward-bias the transistor junctions. A typical value is less than 10 ohms with 1 mA of base current, and it increases to nearly infinity as base current reduces to zero. The effect of the junction capacitance must be compensated for, so avoid transistors with large capacitance. A diode across the transistor protects the receiver's front-end from other transmitters feeding antennas on the same tower. The circuit can also be used for filtering if desired, but it doesn't have to be. In this case, filtering was not a concern.

There is a trade-off that must be made. As the L/C ratio gets larger, you get higher Q and more attenuation range. But as the capacitor value approaches the value of the shunt capacitance from the transistor and diode, the capacitive voltage-divider effect significantly attenuates the input signal. The L1-C1 values were chosen for a good compromise, and they have low Q so that fixed components with normal tolerances can be used.

The input signal from the rf attenuator is coupled to an rf amplifier, Q2, with about 20 dB of gain. Tuned transformers are used at the input and output of this stage to prevent image and i-f feedthrough. The transistor that I used was an inexpensive general-purpose type, the 2N3904. This transistor's input impedance is about 50 ohms, so the transformer has unity impe-

By Douglas Glenn, WA4ZXF, 715 Fairlane Drive, Lewisburg, Tennessee 37091
dance ratio from input to base. The circuit Q is not allowed to get too high, which would hurt sensitivity at the band edges. Diodes across the high impedance winding give extra protection from high-level signals.

The output of the rf amplifier is coupled to the first mixer by a capacitor, C7. This same mixer is used as the balanced modulator during transmit. The mixer is a double-balanced, diode-ring-type, selected because it provides good performance, is inexpensive, and is easy to build. The output transformer is wound to provide the impedance needed by the crystal filter instead of the usual 50 ohms. Good carrier suppression requires matching of the diodes. But this is easy, as explained later.

The mixer input that is used for the signal from the receiver's rf amplifier is also used as the audio input during transmit. To avoid the need for a switch of some kind at this mixer input, the high frequency signal in receive is coupled through capacitor C7, blocking the low-frequency audio during transmit. Similarly, coil L3 in series with the audio blocks the rf.

During receive, the local oscillator input to the mixer is from the high frequency VFO, but in transmit this same input is from a lower-frequency crystal oscillator. Two transistors (Q3 and Q4) provide the mixer input switching function. A relay could be used but it would probably cost more, take up more board space, and draw more power-supply current. This analog switch doesn't provide the high isolation of a relay, so you may notice a birdie 30 kHz above the top edge of the band (6 x 3.58 MHz) in receive. To minimize this, a diode is placed in series with the base of Q4, increasing the turn-on threshold.

fig. 1. The heart of the rig is a homebrew balanced mixer and crystal filter. Schottky diodes in the balanced mixer would be good substitutes.
color-burst crystals all come at the same frequency, small capacitors are inserted in series with the crystals on opposite corners of the lattice to provide the needed frequency difference. The value of the capacitors establishes the filter's bandwidth. I used capacitor values of 10 pF, which results in about a 2-kHz bandwidth. Smaller capacitor values will give wider bandwidth. You should not try to make it too

fig. 3. Crystal filter response with 1000 ohm source and load. Insertion loss is 5 dB.

fig. 2. Resistive part of small-signal collector impedance versus dc base current. At high frequencies, the collector junction capacitance will appear in parallel with the resistance.

crystal filter

An inexpensive crystal filter requires inexpensive crystals. At present, the most readily available and inexpensive crystals are TV color-burst crystals at 3.58 MHz, which are used here. The circuit is a standard four-crystal lattice. This requires two sets of two crystals with a small frequency difference. Since

fig. 4. The audio circuit provides a lot of the receiver's gain. The input to the detector at the compression threshold is about -55 dBm.

fig. 4. Resistive part of small-signal collector impedance versus dc base current. At high frequencies, the collector junction capacitance will appear in parallel with the resistance.
much wider or you will have trouble adjusting the 3.58-MHz oscillator later. I used the small, round, axial-leaded, titanium-dioxide capacitors found in many TVs and fm tuners, but only because I had some handy; other ceramic or mica 5-percent-tolerance types will work. Fig. 3 shows the shape of the filter. The shape obviously dictates use for the lower sideband. Since the upper sideband is commonly used on 15-meters, high side injection must be used in a mixer to invert the sidebands.

The filter's output is terminated by a buffer amplifier, Q8. The 1000-ohm filter load is supplied by the base bias resistors in parallel with the transistor's input impedance. Part of the amplifier's emitter resistance is un-bypassed to keep the transistor's impedance high. This sacrifices some gain, but allows for accurate control of the filter's termination impedance by the fixed resistors.

The output of the buffer amplifier is coupled to an i-f amplifier, Q10, in receive, or to the second conversion mixer in transmit. Transistors Q9 and Q31 are again used as analog switches. In receive, the i-f signal is amplified and sent to the receiver's detector. The receiver i-f amplifier is turned off during transmit to prevent the possibility that the oscillator signal might bypass the crystal filter.

receiver audio circuits

The receiver's detector (see fig. 4) is a single transistor, Q11, configured as a mixer for product detection. Signals feed the base while the local oscillator is injected at the emitter. The collector load of the detector is bypassed for rf, leaving only the recovered audio.

The audio is coupled to an active unity gain bandpass filter, Q12, centered at 800 Hz. Since neither high gain nor high Q is needed, I couldn't justify using an op-amp when a single transistor would do. The formulas that you would use with an op-amp don't work with the low-input impedance of the transistor. The filter Q and center frequency will be less than predicted. As shown, the filter is centered at 800 Hz with a 300-Hz bandwidth. There's no need for precision components in the filter because the filter's performance can be easily adjusted using the two voltage divider resistors at the input (R43 and R44). The small resistor to ground, R44, will vary the center frequency (less resistance for higher frequency) and the large resistor in series with the input, R43, is then changed to set the gain again to unity. A SPDT switch bypasses the audio filter for phone reception.

The wide or narrow audio from the bandwidth switch is coupled to the receiver's audio amplifier/compressor. This circuit is configured as a current-controlled attenuator followed by a 40-dB gain amplifier. I used 741-type op-amps because they are inexpensive and readily available. The op-amp is not being used near its maximum gain or slew rate, so you can get by with a 10-volt supply. The attenuator is ahead of, not inside, the feedback loop and consequently loop gain remains high at all input levels. This arrangement provides tight control of the audio level. You'll never have to dive for the gain control or claw at your headphones when a strong signal comes on frequency.

The attenuator is a voltage divider that consists of a fixed resistor, R49, and the variable impedance of Q15, which has the characteristic shown in fig. 2. This controls the signal level at the op-amp input. A transistor peak detector, Q13, at the amplifier's output provides drive to the attenuator in the form of base current to Q15. The compression threshold occurs when the peak-to-peak output of the amplifier exceeds the base-emitter diode drop of Q13. This corresponds to 210 mV rms for a silicon transistor, or 2 mV at the compressor input. The circuit features a fast-attack, slow-decay characteristic compatible with speech signals. The circuit also limits sharp noise pulses. A small resistor, R55, is placed between the emitter of the peak detector transistor and the large storage capacitor, C46. Short noise pulses are coupled directly to the attenuator, but only slightly affect the charge on the storage capacitor. A smaller capacitor, C47, is placed across the base-input of the attenuator transistor; it serves only to eliminate the audible pop that would occur when the input signal crosses the compression threshold. Once in compression, the voltage across this capacitor is fixed at the potential of a base-emitter diode drop and will not limit the response to the noise pulses or the fast attack characteristic. During transmit, the receiver's audio gain is killed by forcing the attenuator transistor to saturate. This doesn't charge the storage capacitor, so the receiver is at full gain and ready to go as soon as the transmit bias is removed.

The voltage on the storage capacitor is fed to the receiver's front-end attenuator as rf agc. An emitter follower, Q14, is used to reduce the loading on the storage capacitor and a diode is placed in series with the emitter follower output to protect it from reverse bias damage during transmit. The result is that the rf agc voltage is reduced by two diode drops. This provides delay in the activation of the rf attenuator so that the input is not attenuated until the signal is well above the noise.

The voltage on the storage capacitor is also used to operate the receiver's S-meter. The S-meter current helps to control the decay time of the receiver agc and it ensures that the capacitor discharges completely when there is no signal received. If you don't use a meter, replace it with a short; don't omit the discharge resistor. I used a surplus meter that I
picked up at a hamfest for half a dollar. I painted over the face and drew a new scale. The meter doesn’t read until the received signal is above the agc threshold at 1 microvolt. This corresponds to an S-level of about 3.5, so the first mark on the meter is S-4. You can add capacitance across the meter’s terminals to increase the damping of your meter if you want. You’ll have to experiment to find the right value.

The audio output amplifier uses an op-amp followed by a high current buffer. The buffer transistors are not biased into the linear range, but they are included inside the feedback loop. The slight amount of crossover distortion won’t be noticed under normal conditions, and it’s a small price to pay for circuit simplicity and the saving in quiescent bias current. A capacitor was found to be necessary across the output to bypass rf pickup that had the effect of making the audio amplifier squeal during transmit, especially when I was using an external speaker.

The output amplifier is operated directly from the external 13.6-volt supply. Power supply hum is not a problem because of the op-amp’s good power supply rejection ratio and a heavily bypassed reference (non-inverting) input. Operating from a higher supply voltage also increases the maximum output power available. In addition, stability of the audio circuits is improved because the supply voltage for this high level circuit is isolated from the supply for the low-level circuits.

One interesting effect of this circuit is that a linear volume control gives a non-linear response to the cir-
cuit. The shape is not the true logarithmic curve of audio controls, but the overall effect is similar. Part of the pot’s resistance adds to the resistance in series with the op-amp input and so changes the circuit’s gain slope as the pot is rotated (see fig. 5). The effect is more pronounced for pots with larger resistance values. If you use a pot that is significantly more than 20 kilohms, you may want to proportionately increase the input and feedback resistors.

transmitter circuits

Transmitter circuit review begins at the microphone input. (see fig. 1) The microphone amplifier uses a compressor amplifier (U1, Q5, Q6, etc.) nearly identical to that used in the receiver. By using a compressor that maintains a constant audio level, the other circuits can be optimized for this level. The only circuit difference (from the receiver’s compressor) is one missing resistor. The resistor is omitted since the microphone amplifier doesn’t have to contend with receiver impulse noise.

The amplifier input is terminated for a dynamic microphone. This is because the inexpensive, readily available microphones for citizen band sets are usually of this type. A filter consisting of a coil and capacitor keeps rf pickup out of the radio. A higher input impedance, for another type of microphone, would require some redesign of the input.

The output of the microphone amplifier is coupled to the balanced mixer. The carrier signal is suppressed at least 30 dB by the balanced mixer. The signal then passes through the crystal filter, which removes the upper sideband and suppresses the carrier another 20 dB. When keyed for CW, the mixer balance is upset intentionally and the carrier comes up to full level. A transistor switch, Q7, supplies current to the dc-coupled input of the mixer to unbalance the mixer. At the same time, this switch sends current to the current-controlled attenuator of the microphone amplifier. This kills the gain of the microphone amplifier and prevents audio from being superimposed on the CW signal.

6.25 (159MM)

Main circuit board PC layout.
carrier oscillator

The carrier oscillator (see fig. 6) also uses a 3.58-MHz color-burst crystal. The oscillator circuit configuration was selected for its very good frequency stability. The phase inversion, from collector to base of the transistor, is provided by a transformer rather than some form of resonant circuit. This helps stability by removing all frequency-sensitive components except the crystal and a small capacitor. The capacitor shifts the series resonance of the crystal-capacitor combination to the desired frequency. The transformer is constructed by winding magnet wire on a ferrite bead. The capacitor can be a fixed type that's selected for the proper frequency, or a variable if it's a stable type.

The capacitance is located in the ground leg of the series circuit so that another capacitor can be switched in parallel to shift the frequency. This is done when the rig is keyed for CW. The purpose is to shift the frequency by 800 Hz. When properly adjusted, the output in transmit will be the same frequency as a received signal centered in the CW audio filter passband. A transistor is used as the switch. A low capacitance transistor is absolutely necessary in this location.

The output of the oscillator is coupled to a buffer stage, Q29, through a low-pass R-C section. The R-C section filters the signal providing a sine-wave output, and the signal is adjusted for optimum drive to the mixer. The value of the series resistor, R66, or shunt capacitor, C57, can be changed, if necessary, for more or less mixer drive. The best drive level would be +7 dBm (a 0.5 V rms). However, this level is too high for the transistor analog switch. I set the drive level to approximately 0.35 V rms (+4 dBm) with satisfactory performance. A voltage divider across the output of the buffer sets the proper drive level for the receiver's detector, about 60 mV. This level is not critical. Any value from 40 to 220 mV will work, but you should keep it toward the low end of the range. At the higher drive levels, the receiver's detector is more susceptible to stray signals such as the ever-present 60 Hz hum.

variable frequency oscillator

The high-frequency VFO that tunes the transceiver is critical to the rig's performance. It should be stable and not change frequency when the transmitter is
fig. 8. The voltage regulator and T/R control provide dc power to the various parts of the circuit.

keyed. The design uses a low-frequency variable oscillator which is mixed with a high-frequency crystal oscillator to arrive at the needed injection frequency.

High-side injection is necessary to invert the sideband, as explained above. To cover 15 meters, the injection frequency is 24.58-25.03 MHz. The least expensive and most readily available crystals, after color-burst crystals, are 27 MHz units intended for multichannel citizen band HTs. One of these is used for the offset oscillator. They are usually sold in T-R pairs for less than $5. I used a channel 21 transmit (27.215 MHz) crystal. The exact frequency is not very important since the VFO is aligned to set the final frequency. If you have a choice, use a higher channel crystal since this will improve spurious responses. The output of the crystal oscillator is coupled to the offset mixer by a capacitive voltage divider that couples the proper level to the mixer.

The low frequency variable oscillator, Q22, is a standard Seiler type that tunes 2.19-2.64 MHz to cover 15-meters. Silver mica capacitors are used in the frequency determining circuit for improved stability. The variable capacitor used is from the oscillator stage of a two-section unit salvaged from a five-tube ac-dc broadcast receiver. If you use a variable capacitor that is significantly different, you may have to size some of the fixed capacitors proportionately. This is particularly true if your variable has more capacitance, because the oscillator quits if the L/C ratio gets too low. Increasing the value of C71 usually cures this problem. A 5-volt, three-terminal regulator, U5, operated from the regulated 10-volt supply, provides a stable, doubly regulated supply that is also used by the offset crystal oscillator. Frequency stability is good. Don't use just a zener diode; use the IC regulator. The variable oscillator output is coupled to the offset mixer through an R-C section and emitter follower, Q23, that isolates the oscillator, reduces signal harmonics, and sets the signal to the proper level for the mixer.

The mixer is a doubly balanced, diode-ring type with a two-pole, series-resonant type filter at its output. By using a balanced mixer, the oscillator feedthrough at 27 MHz is suppressed reducing the following filter requirements. The mixer design is for a nominal 50 ohms at each port, and a commercial mixer can be substituted here. The spurious responses that result from the undesired mixer outputs, as well as the transceiver image, are above the 15-meter band so that the antenna low-pass filter aids the resonant circuits of the transceiver in minimizing spurious signals. A buffer amplifier, Q24, follows the filter that provides +3 to +4 dBm drive level to the mixers.

transmitter rf circuits

The rf circuits of the transmitter (fig. 7) are activated by the microphone PTT or key. The modulated 3.58-MHz signal is applied to a balanced mixer where it mixes with the variable frequency oscillator injected signal. The balanced mixer is the same type as the one that mixes the two oscillator signals and is at the normal 50-ohm impedance level. A commercial mixer could be used instead.) The mixer output is passed through three poles of series-resonant filtering. This is the same type of series-resonant circuit used elsewhere. A shunt transistor, Q33, is used at the second pole. The base bias of this transistor is controlled by a pot and it becomes the transmitter power control. The fixed resistor in series with the transistor's collector determines the maximum power reduction. The control can vary the transmitter output at least 30 dB (10 watts to 10 milliwatts). The
"Mobile antenna mounting and cable routing on today's cars are a nightmare"

"We just can't find a high performance antenna that doesn't need a ground plane"

Avanti. The on-glass, halfwave, 15-minute solution from the antenna specialists co.

- Co-inductive coupling establishes highly tuned circuit through glass or any non-conductive material up to 3/4" thick, with no measurable signal loss.
- No ground plane: full electrical halfwave design provides omnidirectional performance equal to practical 5/8 wave installations.
- New DUO-BOND mounting system for firm, resilient, waterproof bonding in minutes—yet removable without damage to car or antenna.
- No holes to drill, no damage to vehicle... easy, fast cable routing.
- Four gain models to cover the 2 meter, 220MHz, and UHF amateur bands.

the antenna specialists co.

Don't advertise your mobile rig! Try our disguise antennas for both 6 and 2 meters... any vehicle!

Need more portable performance? Try our PVC coated music wire spring models... they fit most 2 and 1 1/2 meter radios.

the antenna specialists co.

Prepared by McKinney/Mid America • ANT.3204-1
attenuator is placed after all of the mixing stages to attenuate the low level spurious signals along with the desired output.

The mixer output, after filtering, is amplified in turn by a class A stage and a push-pull driver stage running class AB, prior to the final. The final amplifier, also running class AB push-pull, uses a pair of transistors intended for the output stages of 5 watt citizen band transmitters (2SC1909 from Radio Shack). Base bias current is controlled by transistor Q39 connected as a current mirror. The bias transistor is a general purpose TO-220 type that is attached to the same heatsink as the finals for temperature compensation. The input and output transformers of the final are wound on the two-hole ferrite balun cores that are found at the VHF input of many TV sets. The ones I used were salvaged from the coupler of a TV game. The final output is passed through a low-pass filter. The filter was designed to put a notch at the mixer image frequency, which is helpful in
both transmit and receive. A diode detector at the antenna output supplies a readout of transmitter power on the front panel S-meter.

power and control circuits

The dc power for all circuits, except the transmitter final and the receiver audio output (fig. 8), is supplied by a 10-volt regulator. The design, which was adapted from one in a Fairchild Semiconductor application note, provides good regulation even when the input voltage drops close to the regulated level. The schematic shows an 8.2-volt zener diode, but a 7.5-volt or 9.1-volt diode also works if R96 is adjusted to compensate. Don’t use R97 to adjust the voltage; its purpose is to set the zener current. The circuit also has a coarse form of current limiting. This occurs when Q29 saturates and the pass transistor, Q30, gets no more base drive. The point of current limiting can be set by adjusting the value of R94.

The dc power is switched to the various sections of the transceiver by a T-R control circuit. When activated by the PTT switch or CW key, power is applied to the transmitter circuits and removed from some receiver circuits. Current is also supplied to the several transistors that act as variable impedances throughout the transceiver. Most of the receiver circuits do not have the dc power removed in transmit. This enables quick recovery of the receiver for break-in keying.

construction

All of the circuits are contained on two doubled-sided printed circuit boards. The transmitter’s mixer and amplifier chain are on one board, and everything else is on the second. This separates the high-level transmitter circuits from the other low-level circuits. You’ll notice from the board layouts that the top (component) side is devoted to ground plane. Jumper wires are used where necessary rather than disturb the continuity of the ground plane. If, like me, you don’t have the capability of plated-through holes on circuit boards, solder a number of component leads on top and bottom to link the ground plane. I usually did this only on resistor leads and the few Z-wires where access to the top of the lead is easy. This is particularly important on the transmitter board and especially for the emitter leads of the P.A. output transistors which need a good solid ground.

The transceiver was housed in a cabinet (Radio Shack #270-270) that provides plenty of space. The main PC board is mounted on the bottom of the cabinet using metal standoffs, which grounds the circuit.
Now! A 60 MHz Tektronix scope built for your bench.

In 30 years of Tektronix oscilloscope leadership, no other scopes have recorded the immediate popular appeal of the Tek 2200 Series. The Tek 2213 and 2215 are unapproachable for the performance and reliability they offer at a surprisingly affordable price.

There's no compromise with Tektronix quality: The low cost is the result of a new design concept that cut mechanical parts by 65%. Cut cabling by 90%. Virtually eliminated board electrical connectors. And eliminated the need for a cooling fan.

Yet performance is written all over the front panels. There's the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements.

The cost: $1200* for the 2213. $1450* for the dual time base 2215. You can order, or obtain more information, through the Tektronix National Marketing Center, where technical personnel can answer your questions and expedite delivery. Your direct order includes probes, operating manuals, 15-day return policy and full Tektronix warranty.

For quantity purchases, please contact your local Tektronix sales representative.

Order toll free: 1-800-426-2200 Extension 79

In Oregon call collect: (503) 627-9000 Ext. 79

*Price F.O.B. Beaverton, OR. Price subject to change.

Tektronix
COMMITTED TO EXCELLENCE
to the cabinet. The transmitter board is mounted on the rear wall the same way. The layout of the transmitter board includes provisions for four PC mount phono jacks, that are used for the rf connections. This was done to simplify removal of the board, but a soldered connection is the obvious way to go if you can’t find PC phono jacks. The heatsink for the transmitter’s final is a 2.5 × 4 inch (60 × 100 mm) piece of 1/8-inch (3-mm) aluminum plate that is secured to and insulated from the three power transistors that stand in a line across the PC board. The heatsink is not grounded and not supported in any other way. The speaker is mounted on a bracket behind perforations in the cover since the cover has to slide on when installed. The material that forms the front panel of the cabinet is soft aluminum, but it is secured at all four corners when the cover is in place. To increase the rigidity of the front panel, I used a piece of 0.062-inch (1.6-mm) aluminum cut to fit the front panel. It is held in place by the bushings of the various panel mounted components. It is also easier to paint and letter this flat plate and it covers four holes in the cabinet’s panel intended for handles.

Because of the wide variations in tuning capacitors that might be used, mine wasn’t mounted on the circuit board. Instead, it was mounted on the front panel of the cabinet and connected to the PC board with a short length of shielded wire. The details of the tuning mechanism are shown in fig. 9. This design evolved during my search for a simple slow-motion drive that is easy to duplicate. I salvaged the panel bushing and shaft from an open-style, rotary-wafer switch that had a standard 1/4-inch (6-mm) shaft. The detent mechanism and switch sections are removed, leaving only the bushing and shaft. The rear end of the shaft is then turned down to a diameter of 0.11 inch (2.8 mm). Notice the angled bevel where the shaft is turned down just behind the bushing. A 3-inch (76-mm) diameter disk is fashioned from 0.062-inch (1.6-mm) aluminum and secured to a collar which can be mounted on the tuning capacitor’s shaft and held in place with a setscrew. Slide

COIL WINDING CHART

<table>
<thead>
<tr>
<th>REF</th>
<th>BOTTOM VIEW</th>
<th>WINDING INFORMATION</th>
</tr>
</thead>
</table>
| T1 | | PRI - 16 TURNS NO 40, TAP AT ONE TURN, 1.5 - 4.5 μH
SEC - 1 TURN NO 40 |
| T2 | | PRI - 16 TURNS NO 40, TAP AT TWO TURNS, 1.5 - 4.5 μH
SEC - 2 TURNS NO 40 |
| T3, T9 | | SEE TEXT |
| T4 | | SEE TEXT |
| T5, T8 | | PRI - 36 TURNS NO 34, TAP AT 6 TURNS, 10 - 30 μH
SEC - 3 TURNS NO 34 |
| T6 | | PRI - 36 TURNS NO 34, TAP AT 6 TURNS, 10 - 30 μH
SEC - 3 TURNS NO 34 |
| T7 | | PRI - 7 TURNS NO 34
SEC - 1 TURN NO 34
CORE - FERRITE BEAD
AMITON FB-45 (10);
FERRITOCUBE 4500038, ETC. |
| T11 | | PRI - 16 TURNS NO 40, TAP AT TWO TURNS, 1.5 - 4.5 μH
SEC - 2 TURNS NO 40 |

<table>
<thead>
<tr>
<th>REF</th>
<th>BOTTOM VIEW</th>
<th>WINDING INFORMATION</th>
</tr>
</thead>
</table>
| T4 | | PRI - 8 TURNS NO 34, 0.4 - 1.2 μH
SEC - 2 TURNS, CENTER TAP |
| T8 | | PRI - 8 TURNS NO 26, CENTER TAP
SEC - 2 TURNS NO 26, CENTER TAP
FERRITE BALUN CORE |
| T16 | | PRI - 4 TURNS NO 28, CENTER TAP
SEC - 1 TURNS NO 28
FERRITE BALUN CORE |
| L4 | | 36 TURNS NO 34, CENTER TAP, 10 - 30 μH |
| L6 | | 36 TURNS NO 34, 10 - 30 μH
CUT OFF UNUSED PINS |
| L7, L8 | | 18 TURNS NO 34, 3 - 7 μH
CUT OFF UNUSED PINS |
| L12, L13 | | 3 TURNS NO 26, CORE - 2 FERRITE BEADS END TO END
AMITON FB-45 (10);
FERRITOCUBE 4500038, ETC. |
the disk forward in contact with the beveled part of the shaft and tighten the setscrew. This creates a friction drive with a tuning rate of about 35 kHz per revolution and no backlash. The exact tuning rate depends on the distance from the shaft's center where contact is made with the disk. The hole for mounting the bushing is a little oversized, to allow for some adjustment. Frequency markings are applied to the disk and viewed through a window cut in the front panel. You can use a commercial vernier drive, if you have one, or as a last resort, use a small trimmer capacitor in parallel with a main tuning capacitor as a bandspread control.

component selection

There is little about the circuit that is critical. You can use substitutes for many of the components with little change in performance. I made an effort to minimize the number of component values used. Where possible, resistors and capacitors were selected from decade values in 1-3.3-10 sequence. The idea was to make it easier for those who had to buy what they didn’t have. Most hams will resort to the junk box first. For resistors, watch ratios and keep the dc bias conditions for active devices from varying too much. For coupling and bypass capacitors, check the reactance at the frequency of interest and keep the leads especially short in rf circuits. If you use the circuit board layout provided, all resistors, except the bias resistor for the final, are quarter watt size. I used 1/4-inch (6.3-mm) disc ceramic and radial electrolytic capacitors throughout to minimize board size.

![fig. 10. Use this circuit to match diodes if you don't have an accurate digital voltmeter. The reference diode is not to be one of the matched set unless you can reverse the positions of the diodes and still get a null.](image)

You will have to wind a number of coils and transformers, the details of which are shown in the table. The variable inductances use 10-mm i-f cans that I rewound. They were originally 4.5-MHz and 10.7-MHz transformers in a selection from Poly-Paks. These higher frequency units have a plastic bobbin which makes them easy to rewind. This is not true of lower-frequency (455-kHz) transformers that use a threaded cup rather than a slug. Many of them have internal capacitors, and in some cases, I retained the internal capacitor and added enough capacitance externally to get near the value on the schematic.

Inexpensive, general-purpose transistors are used everywhere except in the final. The device that I used most was a 2N3904 (and its PNP complement, 2N3906) since it met my criteria of good performance, cost, and availability. It has the popular E-B-C lead configuration and there are a lot of substitutes that you can use without sacrificing performance, except possibly in the receiver front-end and transmitter driver. Remember to use transistors with low-output capacitance for Q1 and Q19. I was conservative with transistor ratings and used power-type transistors if there was a possibility of exceeding half the rating of a 2N3904.

The printed circuit layout provided accommodates the mini-dip package version of a 741 op-amp. The same layout can be used with the round metal can version if the leads are spread. Since a lot of op-amps are supplied with the same popular pinout as a 741, there are many substitutes that will work here, but make sure you use an internally compensated op-amp.

balanced mixers

The transceiver uses three double-balanced mixers. There’s nothing hard about rolling your own. To get good carrier suppression, you simply have to maintain good balance. The two places where balance is important are the transformers and the diodes. Transformer balance is achieved by using transmission line techniques. Diode balance relies on matched diodes.

All of the diodes used in the transceiver, except one zener, are the same type, 1N4148 (1N914, 1N4454, etc.). You can get these diodes in quantities from mail-order houses for a nickel or less apiece.
Since you will need a total of twenty-seven for the rig, you’ll have enough to find three matched sets of four. Because the highest frequency of interest is only 27 MHz, don’t bother matching the reverse capacitance. Just use the same type from the same manufacturer, so the capacitance is close, and match the diodes’ forward characteristic as outlined here. Measure and match the forward voltage drop across the diode with about 1 mA of bias current. A 10 K resistor in series with a stable 9 to 12 volt supply works fine. A high-impedance, accurate VTVM should be used (a digital meter is best), but don’t despair if you don’t have one. The bridge circuit shown in Fig. 10 works with any meter that can distinguish a change of a few microamperes.

The transformers for the transmitter and oscillator offset mixers (T9, T10, T12, T13) are the same. Using small enamel magnet wire, about AWG 34 (0.16 mm), twist three strands together uniformly to make trifilar wire. Wind two turns of the trifilar wire on a ferrite bead (Ferroxcube K500100/3B, Ind. Gen. F1650-1-H, Amidon FB-43-101, etc.). Two of the strands are series connected to form the center-tap of the balanced winding (see Fig. 11). The input transformer of the i-f mixer (T3) is constructed the same way except that two beads, stacked end-to-end, are used for the core. The output transformer of the i-f mixer (T4) is different because it matches the high impedance of the crystal filter. For this transformer, twist six strands of magnet wire together, and use two turns on a two-bead stack. Connect two strands to make the center-tapped winding, as before, then series connect the other four strands to make the high-impedance winding that connects to the crystal filter.

toolcheck and adjustment

Using these instructions and the theory of operation, you should have no trouble getting the rig up and running if you have had any experience with building. The first part of the circuit you want to check out is the 10-volt regulator, since this affects almost everything else. Connect the external 13.6-volt supply and monitor the input current, which should be about 1 mA. Connect the other four strands to make the high-impedance winding that connects to the crystal filter. Monitor the input current, which should be about 1 mA of bias current. A 10 K resistor in series with a stable 9 to 12 volt supply works fine. A high-impedance, accurate VTVM should be used (a digital meter is best), but don’t despair if you don’t have one. The bridge circuit shown in Fig. 10 works with any meter that can distinguish a change of a few microamperes.

The transformers for the transmitter and oscillator offset mixers (T9, T10, T12, T13) are the same. Using small enamel magnet wire, about AWG 34 (0.16 mm), twist three strands together uniformly to make trifilar wire. Wind two turns of the trifilar wire on a ferrite bead (Ferroxcube K500100/3B, Ind. Gen. F1650-1-H, Amidon FB-43-101, etc.). Two of the strands are series connected to form the center-tap of the balanced winding (see Fig. 11). The input transformer of the i-f mixer (T3) is constructed the same way except that two beads, stacked end-to-end, are used for the core. The output transformer of the i-f mixer (T4) is different because it matches the high impedance of the crystal filter. For this transformer, twist six strands of magnet wire together, and use two turns on a two-bead stack. Connect two strands to make the center-tapped winding, as before, then series connect the other four strands to make the high-impedance winding that connects to the crystal filter.

The adjustment of the crystal filter and low-frequency crystal oscillator are interdependent. This is best done using a sweep generator. It’s a slow, tedious job with an ordinary signal generator, but here’s the procedure if a sweeper isn’t available: Disable the AGC (lift one end of C45) and monitor the audio output, in the SSB mode, with an ac voltmeter. Start with L5 set to minimum inductance. Tune across the passband and you’ll find nearly equal audio peaks at 500 and 2000 Hz with a big dip in between. Adjust the tuning of the 3.58 MHz crystal oscillator if necessary to get the frequencies near these values. Increase the inductance of L4 until the variation of audio across the passband is less than about 1 dB from 350 to 2200 Hz and there is a sharp roll-off of the audio at 300 Hz. Don’t confuse the low-frequency roll-off of the audio circuits for the filter’s corner. To be sure, you can tune the crystal oscillator up a little higher than normal, which will shift the audio frequencies up, so that the filter’s corner frequency can be identified, then reset C54 so the corner is at 300 Hz. Set the bandwidth switch to CW and center the signal at the peak of the audio filter. Temporarily short the collector of Q19 to ground and adjust C53 for a zero-beat by watching the voltage at the collector of Q11 with a scope.

If you have trouble getting the 3.58 MHz oscillator adjusted properly, the problem is probably a transistor with too much junction capacitance. One possible solution is to bias the junction of Q19 by connecting a high-value resistor (10 K to 100 K) from the collector to +10 volts. You can check the operating frequency of each crystal in the circuit and use the one with the highest frequency in the oscillator.

The other adjustments consist of tuning for maximum output at the center of the band.

On-the-air reports with the rig running barefoot are favorable. A number of operators have commented on the good sounding audio quality that comes through in spite of QRP signal levels. I get questions about what kind of processor I’m using. The passband may be only 2 kHz, but only once did I get a comment about the lack of highs in the signal. My voice tends to be on the low side anyway. I’ve had no trouble working stations all over North and Central America from my home in Tennessee. Pile-ups on DX stations are another matter however. Of course, a linear amplifier is next on the want list.

ham radio
Bobtail curtain follow-up:
practical DX signal gain

The second part
of a two-part series
on this remarkable antenna

The actual DX signal gain of any one type of antenna over another, at distances beyond about 2500 miles, does not always correlate well with the theoretical “free space gain over isotropic.” After all, antennas do not operate in free space. Surrounding objects, especially ground, are a part of the antenna system.

For distances beyond 2500 miles, angles of signal departure below about 15 degrees are almost always the most effective. This is true regardless of propagation path, whether it’s one acute geometric bend near midpoint or a chordal or ducting mode. And it’s true regardless of ionospheric tilt. Although it’s most noticeable on 10 and 15 meters, it still applies to long-haul 40- and 75/80-meter propagation.

To get the angle of radiation down while still keeping the antenna height acceptable on 40 and 75/80 meters, vertical antennas have long been used. Some verticals do a good job. A few, such as a full-size half-wave vertical, can do an excellent job in all directions. Others seem to radiate “equally poorly in all directions.” I’ll not take time to go into all the reasons why short vertical radiators that are current fed near ground level are often ineffective.

As noted in Part I of this article, simply turning the antenna upside-down greatly reduces the ground loss problems. For one thing, it minimizes the conduction current flowing to ground at the feed point when the antenna is ground mounted. It also minimizes the losses caused by displacement currents in the near field fighting their way through lossy dirt trying to find a “mirror image” that, in this case, is more theoretical than real. In addition, getting the high-current portion up in the air allows the antenna to radiate somewhat more effectively, and it lowers the angle of radiation slightly.

Users of the Bobtail antenna often report gain improvements on long-haul DX of from 10 to 20 dB over their previous antenna. But only a little of that improvement results from the azimuthal directivity. The sometimes startling effectiveness of the Bobtail for 40- and 75/80-meter DX is the result of its inverted configuration. This is ordinarily more noticeable in a built-up, residential area than in an open field.

The gain attributable to the horizontal directivity of a two-element Bobtail, or half square, is about 4 dB over that of an inverted groundplane using two resonant radials. The half-power beamwidth of each lobe of the bi-directional figure-8 pattern is about 60 de-

By Woodrow Smith, W6BCX, 2117 Eiden Avenue, Apt. 20, Costa Mesa, California 92627
degrees — wide enough to cover some worthwhile geography while still providing useful gain.

The full-size Bobtail (for those that have the room) has a directivity gain of slightly over 5 dB (compared with the same reference). The half-power beamwidth is about 50 degrees. Four or five dB doesn't sound like much, but if your signal is marginal it can make the difference between copy and no copy. On receive, the discrimination you get from the azimuthal directivity can be worth more than the 4 or 5 dB when it comes to what you can copy through noise and QRM.

The slight extra gain of the full-size Bobtail over the two-element should be considered a bonus. The main advantage of the full-size version is that spurious lobes are reduced in amplitude, and therefore end-fire, high-angle pickup on receive is reduced. There is no point in being able to deliver a readable signal 6000 miles away on 40 if you can't hear the other station because of bad off-axis QRM from a station 600 miles away.

direct coax feed
versus voltage feed

As noted in Part I, if certain precautions are taken, direct coax feed can be used with a half-square version of the Bobtail. The disadvantage of doing so is that it limits the antenna to one band. Voltage feeding one end of a half square permits use on high frequency, as sort of a drooping, half-wave dipole. At twice the frequency it functions as a combination of two co-phased vertical dipoles a wavelength apart, with the resultant cloverleaf end-fire and broadside pattern having its nulls filled in fairly well by the pattern produced by the horizontal full-wave portion. Voltage feeding the half square at three times frequency produces an interesting multiple lobe pattern that results in unpredictable results. Voltage feeding one end of a half square cut for 40 meters will thus provide a low-angle, "far DX" figure-8 pattern on 40 while also doing a good general-coverage short- and medium-haul job on 80.

On 20 meters the composite pattern obtained results in a good, general-coverage "long" DX antenna that in addition is effective in the 750- to 1500-mile range. Voltage feeding it on 15 meters produces an interesting multiple lobe pattern that will sometimes, as noted above, produce results that often are surprising — and occasionally amazing.

On 10 meters it should be considered simply a random long wire that is capable of providing lots of good clean fun when the band is hot. Unfortunately there is no really good way to feed a three-element Bobtail directly with coax, even for one-band operation. No matter how the coax is brought down from the center element there is going to be objectionable unbalanced coupling to the coax from radiating portions of the antenna. Using a balun does not cure the problem.

Connecting the coax to an end radiator junction as described for the half square does reduce the unbalanced coupling, but the current distribution in the three elements no longer is symmetrical. Current will be greatest in the fed element, thereby skewing the pattern and reducing the gain.

"Here's the best place to feed a Bobtail curtain..."

The only really good way to feed a three tailer is to voltage feed the bottom of the center element. This permits multi-band operation in pretty much the same fashion as with the half square, though the lobe pattern on bands other than the fundamental will be slightly different. The main difference is that on half frequency the three-tail version makes a much better end-fire "medium DX" antenna than a half square. However, this is at the expense of high angle (short haul) effectiveness, particularly broadside.

"Zepp" voltage feed

Way back in the 1930s, PA0ZN came up with an antenna resembling a two-tail Bobtail (or half square) in appearance except for feed method. It was fed at the center of the horizontal section (a high impedance point) via Zepp feeders. The antenna obviously belongs to the "inverted ground plane" family, with the attendant advantages over a right-side-up arrangement.

However, the mutual impedance between the Zepp feed line and the rest of the antenna is such that strong in-phase currents are induced in the line, thus producing considerable "antenna effect" on the feed line. This is strong enough to produce sufficient distortion of the pattern to "dirty up the nulls" a bit without providing a significant increase in gain. The pattern is cleaner when the Zepp feed line is attached to one end of the radiator. While both radiator and
feed line are unbalanced slightly with such an asymmetrical arrangement, the resulting imbalance is not enough to cause serious mischief.

If you want a dual band (say, 40 and 20 meters) omnidirectional DX antenna and would like to use Zepp feeders all the way to the shack, I would suggest an inverted ground plane with two radials, with the vertical element of the I.G.P. fed at the bottom with one side of the open wire line.

If you would like to Zepp feed a three-element Bobtail, be sure to feed the center element. But remember that the main reason for using a three-element Bobtail instead of a half square is the cleaner pattern, and while Zepp feeding the center element will not unbalance the antenna itself, the inherent unbalance in the Zepp feed line will cause some pick-up by the line when receiving, even if the open line is brought off at right angles out of the near field.

Considerable voltage will be built up across an open feed line at the high impedance points when the line is used as a Zepp feed line on transmit, so be sure to use sufficient spacing if you are running power.

ground screens and grounding

No antenna that is fed via an unsymmetrical feed system can be 100 percent ground-independent. However, if the impedance between antenna feed point and ground is over about 1000 ohms there will be very little current flowing to ground. In this case not much of an earth ground will be needed at that point for the antenna. A small ground screen, laid on the ground or a flat roof, or suspended or supported near the network matching 50-ohm coaxial line to the high impedance Bobtail antenna feed point, makes an effective rf ground. Such a screen will make a better rf ground than a lightning stake, or stakes driven in the soil. If one of the latter, properly installed, is advisable for lightning protection in your area, it still is a good idea to use a small ground screen as an rf ground.

One ready-made ground screen widely available is a 3 x 5 foot (0.9 x 1.5 m) piece of galvanized hardware cloth, packaged by Sears under the catalog number 44531 and available off-the-shelf at some Sears retail stores. Current catalog price is about $7.00 a roll.

To see if the ground screen is doing its job, simply touch the “rf ground” while running low power to see if the VSWR or field strength changes significantly. If it does, either shorten the connecting wire between screen and matching network or series resonate the wire with a mica capacitor. The value will not be especially critical. Possibly on 75/80 more screen will be required. Ordinarily if the antenna di-

10-MHz Bobtail dimensions

Because adding 10 MHz to a typical tribander is not the easiest thing in the world to accomplish, there is bound to be interest in 10-MHz Bobtails and half squares. Dimensions are not extremely critical. Except for direct coax feed of a half square, slight deviations from optimum can be compensated for in the tuner or matcher at the antenna end of the coax line.

Assuming No. 12 or 14 wire (M2.1 or 1.6) and typical insulators, the following dimensions will be found satisfactory for 10.1 to 10.15 MHz:

- spacing of vertical elements: 48 feet 9 inches (14.86 m)
- length of vertical elements: 23 feet 7 inches (7.19 m)

For the sake of convenience the voltage fed element can be made up to 5 percent shorter or 8 percent longer if fed by a resonant tank or L network. For Zepp feed, the fed element should be cut to the exact length shown.

dimensions are near optimum, not much screen will be required in order to do the job properly.

guys and metal masts

When using wooden masts to support a Bobtail the usual precautions apply to breaking up adjacent guy wires to avoid resonance. There is nothing wrong with using metal masts of EMT or aluminum tubing as the outside vertical elements to save lot space. This requires a strong base insulator of low loss material, preferably having low shunt capacity. Nonmetallic guys do a better job electrically than guy wires, even if the latter are well broken up. The tubing should be of no greater diameter than what is required for adequate mechanical strength. A tubing element will be slightly shorter physically than a wire element for the same electrical length. Also, the shunt capacity of the base insulator will require shortening the element a bit more. However, if you merely make them 3 percent shorter than a wire element of optimum electrical length, and try to keep the base shunt capacity low, it should be close enough. Tubing joints should make good electrical contact or be jumpered.

Unless a piece of thick-walled fiberglass tubing or the like is used as the base insulator, it should be used only to support the weight of the mast, and not to hold the bottom rigidly vertical. This probably means an extra set of guys.

Keep in mind when planning your installation that the bottoms of the tails are quite hot with rf and can cause a bad burn if you are running much power. One way to avoid this is to slip some small-diameter clear plastic (such as fuel line) tubing over the ends of wire tails closer than 7 feet (2.5 m) from ground. If you decide to use metal tubing for the end elements, slit or saw lengthwise a few feet of PVC plastic pipe and tape it over the bottom of each mast.

ham radio
the tempo S-15

...a no nonsense radio that provides more power, broader frequency range and simplicity of operation

The S-15 is the kind of hand held most people want. Simple, rugged, reliable, easy to use...it's the hand held for today and tomorrow. The S-15 offers a full 5 watts of power...power that extends your range and improves your talk power. The S-15 operates from 140 to 150 mHz (and 150 to 160 on export models). Compare that to the others. Its state-of-the-art integrated circuitry provides far more reliability and ease of maintenance than conventional circuitry...just one more indication of the kind of quality that goes into the S-15.

Consider all of these features before you decide on any hand held:

- 5 watt output (1 watt low power switchable)
- 10 MHz frequency coverage: 140-150 MHz (150-160 for export)
- Electrically tuned stages. Receiving sensitivity and output power are constant over entire operating range.
- Three channel memory. (1 channel permits non-standard repeater offsets. 200 micro amp memory maintenance (standby)).
- A new "easy remove" battery pack
- One hour quick charge battery supplied (450 ma/HR)
- Plug for direct 13.8 volt operation

- Speaker/microphone connector
- BNC antenna connector and flex antenna
- Extremely small and light weight (only 17 ounces).
- Ample space for programmable encoder.
- Fully synthesized
- Extremely easy to operate
- Its low price includes a rubber antenna, standard charger, 450 ma/HR battery (quick charge type) and instruction manual.

OPTIONAL ACCESSORIES: 1 hour quick charger (ACH 15) • 16 button touch tone pad (S-15T) • DC cord • Solid state power amplifier (S-30 & S-80) • Holster (CC 15) • Speaker/mike (HM 15)

Available at your local Tempo dealer or from....

Henry Radio

54 YEARS OF SERVICE

2050 S. Bundy Dr., Los Angeles, CA 90025 (213) 820-1234
931 N. Euclid, Anaheim, CA 92801 (714) 772-9200
4000 W. Higgins Rd., Chicago, Ill. 60643 (312) 853-1800
Butler, Missouri 64730 (816) 679-3127

TOLL FREE ORDER NUMBER: (800) 421-6531
For all states except California

Calif. residents please call collect on our regular numbers.
A simple, automatic negative voltage tracking system

dual voltage power supply

Anyone who tinkers with integrated-circuit projects will eventually have to provide a negative voltage supply for op amps (operational amplifiers — see fig. 1). Batteries may seem a simple solution, however, after purchasing several quality 9-volt alkaline batteries at $2 each, you soon see the false economy in that.

Deciding my money could be better spent on parts for a power supply, I set out to find a good schematic design. After my initial search it seemed I would have to purchase two voltage regulators, one for positive and one for negative, to obtain a regulated positive/negative supply. I wasn’t willing to spend at least $4 each for voltage regulators and have the hassle of adjusting two knobs to set both voltages. Neither was I excited about watching two meters to be sure both voltages remained equal under changing load conditions. After extensive research, I found a small diagram in a Radio Shack semiconductor guide under the 78XX series voltage regulators using op amps.

A 741 op amp is much cheaper than a monolithic negative voltage regulator, such as the LM337T. A 741 op amp costs 79¢ at Radio Shack (part #276-007). Even if you add the cost of Q3 to the op amp, it is still three dollars cheaper than the negative regulator, plus the 5-kilohm potentiometer required to control it. And, only a single control is needed to set both voltages simultaneously.

operation

Automatic negative voltage regulation for a fixed-voltage supply is provided by the circuit illustrated by fig. 2. It uses a 741 op amp in an inverting configuration. The op amp compares the voltage between pins 2 and 3. It supplies an equal but opposite voltage at its output, pin 6, by sensing the difference between the two input voltages and inverting that voltage at its output. This in turn biases the pass transistor into conduction providing the power supply negative voltage output.

Fig. 3A shows how this basic idea is used to build a positive/negative variable voltage supply. R11 and R12 are current-limiting resistors connecting the negative and positive power supply outputs. Since these resistors are of equal value, they will have equal voltage drops with equal applied voltages.

When the negative supply voltage is exactly equal and opposite the positive supply voltage (–10 volts and +10 volts, respectively) the two voltage drops across R11 and R12 are equal. They cancel each other and provide zero volts at pin 2 of the op amp, U1, which compares the zero volts on pin 2 with the ground on pin 3 (also zero volts) and finds they are equal. U1 therefore gives no output on pin 6.

By Fred Hurteau, WD4SKH, Rt. 5, Box 23-T, Whiteville, North Carolina 28472
When adjusting the positive voltage regulator (U2) for a desired positive supply voltage, that voltage drops across R11, raising the voltage sensed by pin 2 of U1. U1 supplies an equal but opposite voltage to the base of Q3, biasing Q3 into conduction. Q3 drives Q2 into conduction, providing a negative voltage at the supply output. There it drops across R12, lowering the voltage sensed by pin 2. When the negative supply voltage lowers to the exact opposite of the positive supply voltage, they cancel each other at pin 2, completing the cycle. The op amp continuously and instantaneously controls the negative supply voltage, keeping it exactly equal but opposite the positive supply voltage.

circuit description

R13 is a balance control to adjust for differences in the values of R11 and R12. A 1 kilohm potentiometer should be sufficient for R13, since the difference between two 4.7K, 10 percent tolerance resistors shouldn’t exceed 940 ohms, even in an extreme case. I used a circuit-board-mounted pot since this should be a one-time only adjustment (when you first calibrate the supply). Simply adjust R13 so the negative voltage is exactly equal to (and of opposite sign to) the positive regulated voltage. No further adjustment should be required. I suggest calibrating R13 in the VOM range, that covers the full power supply voltage range. This will eliminate the need for switching ranges when checking your calibration. Switching from one range to another could give you slightly different readings at the same voltage setting.

R10 is a current-limiting resistor intended to keep U1 from burning itself out should it try to supply too much current to Q3. When testing the circuit, I tried to bias Q2 directly with U1. But Q2 required too much base current and U1 self-destructed. Any small current PNP can be used in the place of the Radio Shack 2025 I used for Q3, as long as it will withstand the required driving current to Q2. I measured 19 µA on the base of Q2, under no load, and 17 mA (nearly 900 times more current) at a 2.4 ampere load at 15 volts output.

The op amp requires a positive/negative voltage supply for its own operation. The regulated supply voltages to run the op amp are obtained by employing 18-volt zener diodes D1 and D2. Since the op amp draws very little current, R3 and R4 are mainly used to limit current through the zeners. Half-watt or one-watt zeners provide a sufficient power rating.

a new approach

I believe the manner in which I have employed the regulator U2 in biasing the pass transistor Q1 is a novel approach. Other designs using 3-pin adjustable or 3-pin fixed voltage 78XX series regulators use a PNP pass transistor with its base connected to the emitter through a resistor or its base tied to the regulator input, as in fig. 4. The regulator output and pass transistor collector are tied together at the output. My approach uses an LM317T 3-pin adjustable positive voltage regulator (U2). It can be used alone for up to 1.5 amperes current, or with a pass transistor to increase the available current. I used this type regulator alone for the 1.2 to 25-volt supply, as shown in fig. 3B. This extra supply was built into the same cabinet as the positive/negative supply. U3 is shown in a standard application of the LM317-type regulator. I used 0.47 µF electrolytics for C5, C6, C9, and C10. The recommended capacitors are 0.33 µF tantalums for C5 and C9, and 0.1 µF tantalums for C6 and C10. (See final comments.)

In fig. 3A you see that the output of U2 is used to bias the base of the NPN pass transistor directly, as opposed to the bias coming from the same line as the PNP emitter (fig. 4). R5 and R6 are used as current dividers. R5 is half the ohmic value of R6, allowing twice as much current through pass transistor Q1 as passes through regulator U2. Therefore, if the regulator is passing its maximum current of 1.5 amperes, the transistor can pass twice that, or 3 amperes, the-
oretically providing up to 4.5 amperes of current at the output.

The LM317-type regulator has internally controlled automatic shutdown for overheating and overcurrent protection. Should the regulator reach its safe limit, it will automatically shut down. In this configuration, if U2 shuts down, there is no bias for Q1. This shuts off Q1, and consequently, turns off the negative supply. Q1 is a 115-watt transistor rated at 15 amperes collector current, so it is not likely to overheat while passing only 3 amperes of current. In fact, it should never get past warm to the touch if it is properly heatsinked. Even if the regulator is operating at its extreme limitations, it will always shut down in an overload situation before Q1 can overheat, because Q1 is operating at only one-fifth its rated capacity in that same extreme case. Overdesign was mostly a function of junk box availability.

D4 is used to isolate the Q1 emitter from its base. If D4 shorts out, it shuts down Q1, again preventing any possibility of thermal runaway. Be sure D4 is rated higher than your expected 1.5 ampere current through the regulator, or you may be constantly replacing D4. A 2.5 ampere diode should provide a sufficient safety margin.

As shown in figs. 3A and 3B, I used fused outputs on both power supplies as an additional safety factor.

additional features

M1 and M2 are two halves of a dual VU meter modified for use as voltmeters. R14 and R15 are actually 100-kilohm resistors in series with 25-kilohm circuit-board-type potentiometers, used to calibrate the meters. I added some LED indicators (D3, D6, and D7). D6 and D7 indicate (fig. 3B) to which voltage scale I have the meter set. I use a 0-10-volt scale for better resolution at low voltages, and a 0-30-volt scale for higher voltages. A microammeter would be preferred over the milliammeter used for M3, but again, I used what was available in my junk box. R20 through R23 are calibrating resistors for M3.

D3 tells me when the output is turned on by switch 2. Since the LM317 regulator can be turned down to no lower than 1.2 volts, such a switch is handy. With S2 open, U2 has no input and, therefore, no output. Likewise, Q1 and Q2 are turned off when U2 has no output, so there is no need for a switch on the negative side.

My design has partially taken care of the minimum voltage problem, even without S2. Due to the voltage drop across D4, and a similar drop across the Q1 base, the minimum output is reduced from 1.2 to about 0.6 to 0.8 volts. That low a voltage forces very little current through anything but a dead short. However, you can program the minimum voltage up to 1.2 volts, or any higher voltage, by adding a fixed resistor between R8 (or R18) and ground. The formula for calculating the needed resistance is covered in the applications data sheet supplied with the regulators.

a limitation

The idea of using an op amp as the negative voltage regulator has one limitation: the supply voltages for the op amp. The operating voltage limits for op amps are generally from 16 to 18 volts. The op amp has internal voltage drops. With the extra voltage drops across R10, Q3, and Q2, I can get only up to 15.5 volts at the negative supply output (depending on the load). This is quite sufficient for operating op amp test circuits.

The 741 op amp I used was rated at 16 volts maximum supply voltage and I am presently operating at
18 volts. No damage has occurred thus far, but I would not be surprised if the op amp fails one day. Since this is a learning experience for me, I'm willing to chance a 79-cent op amp. But if you want to be safe, use the recommended supply voltages when choosing your zeners.

Performance

My original intent was to operate small experimental circuits which draw no more than 500 mA in extreme cases. The power supplies outlined here are more than adequate for that purpose. I built them to

fig. 3. (A) Positive/negative variable voltage supply. (B) An LM317T three-pin adjustable positive voltage regulator is used in the 1.2 to 25-volt supply.
fig. 4. This is the basic circuit popularly used for providing extended current capability with a 3-pin voltage regulator. R3 is used in some design variations.

give everything the transformers would provide, and they do.

Voltage and ohmic measurements were made using a Fluke 8024A Digital Multimeter. Ripple measurements were made with a Hewlett Packard 180A 50-MHz scope, with the Hewlett Packard 1801A Dual Channel Vertical Amp and 1821A Timebase.

I overestimated the capacity of T1, a transformer I salvaged from an old TV set. I guessed it would supply 3 amperes, which was about 0.5 ampere too much. T2 was salvaged from a junked receiver and rewound to suit my needs.

The positive supply in fig. 3A showed 17.4 volts into a 6.3-ohm load, with less than 10-mV ripple. However, between 17.4 and 17.8-volts output the ripple rose sharply to 900 \text{mV}. That gives 2.76 and 2.82 amperes at 17.4 and 17.8-volts respectively. So, a rating of 2.5 amperes for T1 would have been quite reasonable, instead of my estimated 3 amperes.

The negative voltage side of fig. 3A delivered 14.6 volts into the same load with less than 10-mV ripple also. Since the negative voltage is limited by the op amp supply voltages, it would not adjust any higher.

Positive and negative outputs were tested simultaneously into 12-ohm loads, and yielded the same performance as their individual ratings into 6.3 ohms. Additionally, the negative voltage tracked positive within ±0.05 volt throughout the range 1.2 to 15 volts.

The positive supply was further tested using a 3-ohm load, which put a 4.5-ampere current through the supply. The regulator circuit was monitored with one meter while the total output was monitored on another. The regulator circuit provided 1.6 amperes of the total 4.5-ampere output, with 2.9 amperes flowing through the pass transistor. This is very close to the designed current distribution ratio. The supply was run for a full fifteen minutes at the 4.5-ampere output, which is 2 amperes higher than its rated capacity. My intent was to force the regulator to overheat and shut down. However, the supply performed flawlessly, and ran the whole time with no signs of cutting back or shutting down. The regulator heat-sink was too hot to touch but the pass transistor was not excessively hot. No doubt forcing the issue would eventually cause the regulator to shut down. Since the unit had already performed far above expectation, I decided to let it go at that.

The supply in fig. 3B works equally well. It supplies 24 volts into an 18.3-ohm load with less than 10-mV ripple. At 24 and 25-volts output, with the same load, the ripple sharply rises to 900 \text{mV}. The 1 ampere rating for T2 is therefore a fair rating. This supply was also tested with a 31-ohm load and yielded 27.2 volts at less than 10-mV ripple. This is surprising since that is above the transformer voltage of 26.5 volts.

final comments

A technician friend reviewed my test data and recommended changes in C5, C6, C9, and C10, which should improve the ripple rejection. Due to the internal reactances of electrolytic capacitors, as compared to tantalum capacitors, the desired frequency response can be approximated by using 0.1-\text{pF} ceramics for C5 and C9, and by using 10-\text{pF} electrolytics for C6 and C10. You might try this change when building yours.

Except for the LM317 regulators, all parts for these two power supplies were obtained from the proverbial junk box. I present these ideas as building blocks for others to improve upon. I am certainly no expert, but I will try to answer any questions you may have if you will enclose an SASE. I suggest some type of overvoltage protection circuit if you plan to use this or any other power supply with expensive or sensitive equipment.¹

I wish to thank N4BGU for assisting with final testing and test data, and without whose patience I would probably not have learned much of anything about electronics except that required to pass my Novice exam.

reference

[1] Ham Radio
$79.95 Look to Sinclair for the only $79.95 computer and the first Serious Games Package. A special limited time offer. Call toll free today.

What could be more challenging than creating your own games on a personal computer? Or being intellectually challenged by serious games where you match wits with a computer or another opponent in a fierce trial of skills?

The Timex/Sinclair 1000** is a fully programmable computer with a powerful BASIC language and complete instruction manual, all for only $79.95. The moment you sit down with the TS1000 you can learn how to program your own games. Maybe you want to create a stock market game, a word game, a mathematical game. The challenges are endless.

For this one low price, the TS1000 comes with everything you need for connecting the computer to your color or black-and-white TV.

Of course, you might also want pre-programmed software cassettes for your $79.95 computer. You'll have a wide choice with our free software catalog which comes with the TS1000. And the software cassettes play in any cassette recorder.

The 16K Memory Module. More power to you.

Let's say you want to go one step further. The 16K Memory Module allows you and your family to be challenged by even more sophisticated games. Not mindless arcade games, but serious, intellectually stimulating games which are both fun and educational.

The Memory Module costs only $49.95 and plugs onto the back of the TS1000 for 8 times more memory capacity. A whole new world of software is available to those with the 16K Memory Module.

The Serious Games Package. A $75 value for only $50.

For those who want a lot of serious 16K games, Sinclair announces a special software offering with a $25 savings! Now, for the first time, you can receive all five games shown above at the reduced price of only $50.

Chess: You can play with another opponent or you can match wits with the computer.

Flight Simulato: Maneuver and land a light aircraft with full cockpit controls, instrumentation and navigational aids. You have to allow for wind velocity and direction, rate of descent and mountainous terrain.

Cub Game: Every bit as mind-baffling as Rubik's Cube.

Backgammon: Everyone's favorite. Against you can play against another opponent or against the computer. Complete with a doubling cube.

Mixed Game Bag: A series of memory and concentration tests including Robot Wars, a version of "Master Mind".

There's never been a better value on a serious games package. And to think it all starts on a $79.95 computer!

Why order today?

In addition to saving $25 on software, there are other reasons to buy your TS1000 today. Computers costing hundreds and even thousands of dollars rarely offer you games this serious or challenging.

Another reason to order today is convenience, by toll-free phone. No crowds, no waiting lines, no parking worries. It's never been easier to get started in the world of computers. Or more worthwhile.

How to order today!

Just call our toll-free number and use your MasterCard or VISA. Or send the coupon with a check or money order. Then try out the Timex/Sinclair 1000 for 10 days at no risk. If you're not entirely satisfied, we will refund your money. It's as easy as that. (Sorry, no refunds on software.)

Call toll-free: 800-543-3000. Ask for operator 599. In Ohio call: 800-382-1364. Ask for operator 599. In Canada call: 513-729-4300, operator 509. Have your MasterCard or VISA ready when calling. Phones open 24 hours a day, 7 days a week. These numbers are for orders only.

If you simply want information, please don't call, write Sinclair Research, Ltd., 2 Sinclair Plaza, Nashua, NH 03061.

Call toll free 800-543-3000 (operator 599)

<table>
<thead>
<tr>
<th>Ad code</th>
<th>Mail to: Sinclair Research, Ltd. One Sinclair Plaza, Nashua, NH 03061</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Check or Money Order enclosed</td>
</tr>
<tr>
<td>-</td>
<td>Price** Qty. Amount</td>
</tr>
<tr>
<td>TS1000</td>
<td>$79.95</td>
</tr>
<tr>
<td>16K Memory Module</td>
<td>$49.96</td>
</tr>
<tr>
<td>16K Cassettes</td>
<td>$15.00 each</td>
</tr>
<tr>
<td>Special Serious Games Package (5 games valued at $75.00)</td>
<td>$50.00</td>
</tr>
<tr>
<td>Shipping/Handling</td>
<td>$5.00</td>
</tr>
<tr>
<td>** U.S. Dollars</td>
<td>Total:</td>
</tr>
<tr>
<td>Cassettes for 16K Memory Module: $15.00 each. Check the boxes of all the cassettes you want.</td>
<td></td>
</tr>
<tr>
<td>[] Flight Simulator #6</td>
<td>[] Mixed Game Bag #26</td>
</tr>
<tr>
<td>[] Chess #7</td>
<td>[] I'll take all 5 cassettes included in Sinclair's Special Serious Games Package.</td>
</tr>
<tr>
<td>[] Backgammon #8</td>
<td></td>
</tr>
<tr>
<td>[] Cube Game #9</td>
<td></td>
</tr>
</tbody>
</table>

Name
Street
City
State Zip

*Sinclair technology is the heart of both theZX81 and the Timex/Sinclair 1000 computer.

March 1983
ham radio magazine presents this latest examination of GaAs FET low-noise operation at lower than normal frequencies.

GaAs FET performance evaluation and preamplifier application

A look at some popular devices for UHF and VHF

The performance of GaAs FETs in terms of noise figure, gain, and overload capabilities at VHF and above is well known. A new device, the ALF1023 by Alpha Industries, makes it possible to obtain good performance at low cost ($12 in small quantities). These new GaAs FETs are particularly useful in improving two-meter receivers where front-end overload is a problem.

I tested seven popular GaAs FET devices at 144 MHz for noise figure, gain, 1-dB compression point, and third-order output intercepts. The results are shown in Table 1. All the devices have essentially the same characteristics at 144 MHz.

The third-order output-intercept point was measured under slightly different bias conditions than for low-noise biasing, as was the 1-dB compression-point measurement. A higher drain current (approximately 50 percent higher) was used for these measurements. The third-order output intercept was substantially improved by this bias condition.

This improvement in third-order intercept indicates one of the design trade-offs that one must consider. A sacrifice of noise figure to obtain a higher intercept point is typical. However, when biased for lowest noise, the GaAs FET is already superior to the bipolar device it is to replace.

The improvement in freedom from overload and intermod obtained by using a GaAs FET device to replace a bipolar transistor is pronounced. Fig. 1 shows the schematic of the test circuit used at 144 MHz.

Similar circuits for 220 and 432 MHz are popular and give similar results. At 432 MHz and above, however, some devices start to show slightly higher noise figures than others, even though they are essentially identical at 144 MHz.

The accuracy of noise-figure measurement must be mentioned here, for I have encountered advertisements stating "'0.2 dB" noise figure. Noise-figure measurements are relatively easy to make — noise-figure accuracies are inherently uncertain. This uncertainty will not be explored here except to state that the major elements of this error are:

1. Instrumentation error (meter, electronics accuracy)
2. ENR uncertainty (noise-source accuracies)

By Dennis Mitchell, K8UR, 35 Mt. Pleasant Street, Marlboro, Massachusetts 01752
Race car communications demand the best from an antenna under some of the worst conditions. Split second decisions require reliable signals at exceptionally high speeds. That's why Larsen Antennas are used on race cars at the Indy 500. Because Larsen Antennas are designed to take high speed with minimal signal distortion. Proving they can travel in the fast lane without putting a drag on their performance. Larsen's precision tapered stainless steel whip provides maximum flexibility while minimizing radiation pattern distortion, giving you a clear consistent signal. And Larsen's exclusive Kürodr® plating, gives your antenna high conductivity to assure that maximum power goes into communicating — not heat. That full measure of performance goes into our product integrity too. With a no nonsense warranty that won't slow you down. So, whether you're following the racing circuit or a local rescue effort, you'll find Larsen Antennas will keep you ahead of the situation with dependable performance. Ask your favorite Amateur dealer to demonstrate how you can hear the difference with Larsen Antennas. Write for our free Amateur catalog.
3. Mismatch uncertainties (VSWR between source and device)

4. Second-stage uncertainties

I did not verify the noise-figure claims for many Amateur-band preamplifiers tested.

The system used for the gain and noise-figure measurements listed in table 1 was an HP 346B Noise source and HP 8970A Noise-Figure Meter with a typical root-sum-of-squares uncertainty of 0.23 dB at 144 MHz.

Fig. 2 shows a plot of the S_{11} and S_{22} characteristics of the ALF1023 GaAs FET from 100 to 8000 MHz. Fig. 3 clearly depicts the ALF1023 dc and rf performance. Fig. 3a is a curve trace showing I_{ds} versus V_{gs} with an I_{dss} of 50 mA. Fig. 3b illustrates the trade-off possible between noise figure and intercept point for given values of drain current.

Table 1. A listing of test results of some popular devices for VHF and UHF preamplifiers, including the new Alpha Industries ALF1023.

<table>
<thead>
<tr>
<th>Device</th>
<th>Noise Figure dB</th>
<th>Gain dB</th>
<th>1-dB Compression Point dBm</th>
<th>3rd-order Intercept dBm</th>
<th>Drain Bias V, mA</th>
<th>Approximate $1-100$ Cost, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avantek AT-8110</td>
<td>0.6</td>
<td>19.0</td>
<td>+18</td>
<td>+28</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>NEC NE21889</td>
<td>0.6</td>
<td>19.9</td>
<td>+17</td>
<td>+27</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>NEC NE2089</td>
<td>0.6</td>
<td>19.8</td>
<td>+17</td>
<td>+27</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>MGF 1402</td>
<td>0.8</td>
<td>19.8</td>
<td>+15</td>
<td>+29</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>MGF 1400</td>
<td>0.6</td>
<td>19.7</td>
<td>+17</td>
<td>+29</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>MGF 1200</td>
<td>0.8</td>
<td>19.8</td>
<td>+15</td>
<td>+30</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>ALF 1023</td>
<td>0.6</td>
<td>19.8</td>
<td>+19</td>
<td>+30</td>
<td>3.5</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig. 2. Plots of the S_{11} and S_{22} characteristics of the ALF1023 GaAs FET.

Fig. 3A. DC curve trace showing drain current versus gate voltage for the ALF1023. **Fig. 3B.** Tradeoff between noise figure and intercept point versus drain current.
MAIL THIS CARD TODAY
for your FREE Heathkit® Catalogs

The new full-color Computer Catalog describes our complete line—including the new, 16-bit/8-bit Z-100 computer! The latest Heathkit Catalog has over 400 easy-to-build kit products for home, car and hobby uses.

☐ 307-999
COMPUTER CATALOG
Hardware and software

☐ 122-999
HEATHKIT CATALOG
Over 400 electronic kits

Name _________________________________
Address _______________________________
City _________________________________ State __ Zip ______
Ham Radio ____________________________
Heath Company
Benton Harbor, MI 49022
More kit quality

A triumph of price and performance - Heath's new HW-5400 Synthesized HF SSB Transceiver kit makes high technology affordable. With more versatile, far-reaching capabilities, it puts the original skill and adventure back into Amateur Radio...

Heath breaks the price barrier on sophisticated transceivers, offering the highest value for your hamshack dollar. The slim, new HW-5400 is a marvel of kit-form engineering that performs like a dream on 80-10 meters.

MORE ADVANCED IDEAS
Solid state and broadbanded, the HW-5400 incorporates more performance-improving features at a lower price than any comparable transceiver. It's fully synthesized for crystal stability and accuracy. Operating in USB, LSB and CW with automatic sideband selection, it has full break-in (QSK) for proficient keyers, two memories per band, power supply activation at the Transceiver, defeatable amplifier relay, reverse and over voltage protection as well as high VSWR forward power cut-back circuitry for the finals.

A custom microprocessor yields flexible, fingertip control over all phases of T/R operation.

MORE CONVENIENCE
This perfection-packed kit has many benefits. A unique dual-speed tuning system can extract new QSOs or fly through a band in 1 kHz increments with 50 Hz resolution! Split-Memory Access lets you review and change the transmit frequency while in receive, without missing a single word or fragment of code. With it, you can beat the QRM every time. Essential vox and sidetone controls are located behind the front panel nameplate. Seven mode and function symbols confirm transceiver status at a glance.

The HW-5400's Frequency Entry Keypad option allows directly-synthesized QSY to any point in the band, and permits fast DX control when used with the Split Memory function. The matching HWA-5400-1 Power Supply/Speaker & Digital Clock (not shown) provides a double-fused source of 13.8 VDC from 120 or 240 VAC.

MORE ENJOYMENT
Novice or active pro, the HW-5400 is perfect for operators who want a Transceiver that's second to none, plus the pride, knowledge and satisfaction that come from building it yourself with our world famous step-by-step manuals. You may find it to be the first microprocessor-controlled rig with enough potential to match the level of professionalism in every radio amateur!

MORE DETAILS IN CATALOG
FREE! For complete details and specs, get a copy of the latest Heathkit catalog. Remove and mail the coupon today or write: Heath Company, Dept. 122-994, Benton Harbor, MI 49022. Visit your local Heathkit Electronic Center for an exciting hands-on tryout.

There's more for the Ham at Heath

Also see our state-of-the-art SS-9000 Deluxe HF Synthesized Transceiver (pictured below), which can be controlled by a computer or ASCII terminal.

*Units of Veritechology Electronics Corporation in the U.S., a subsidiary of Zenith Radio Corp.
technical forum

Welcome to the ham radio Technical Forum. The purpose of this feature is to help you, the reader, find answers to your questions, and to give you a chance to answer the questions of your fellow Radio Amateurs. Do you have a question? Send it in!

In this month's Technical Forum, we are going to begin presenting questions for our readers to answer. Our readers are encouraged both to send in questions of their own relating to Amateur Radio, and to answer the questions of other Amateurs as they appear in this column. The best and most complete answer to each question will be published in a future issue, and the reader who provides the answer will be awarded a prize in the form of a book from Ham Radio's Bookstore. Send all Technical Forum correspondence to Technical Forum, Ham Radio Magazine, Greenville, NH 03048. Now for the first question:

I am building an eight-turn helical antenna for the 432-MHz band. Every article I have read indicates a 740-ohm input impedance (or something close to that value). My feed line is TV coax cable: 70-ohm solid aluminum outer jacket with solid, copper-coated steel wire for the center conductor and foam insulation. Can anyone tell me the most efficient way to couple the antenna to the 70-ohm line? And can anyone tell me the best way to couple the 70-ohm line to the 50-ohm input of the convertor?

Joseph Czerniak, W8NWU

At the Dominion Radio Astrophysical Observatory, British Columbia, Canada, we have built a synthesis radio telescope, using surplus 28- and 30-foot reflectors (see below). Aperture synthesis is a technique for making big radio telescopes out of little ones, and we have four small dishes spaced along a 2000-foot baseline. This gives our synthesis telescope a beam of 1 minute of arc (one sixtieth of a degree) at 21 cm wavelength (1420 MHz). It is a powerful radio telescope, which produces world-class astronomical research.

The four dishes we are using were obtained from surplus. Two 28-foot Kennedy Model 717 antennas came from the Canadian Defense Research Board. Two 30-foot Radiation Systems dishes were found in a scrap metal yard in California.

We are looking for more dishes of these two types, so that we can extend our telescope and make it more sensitive. Can any of ham radio's readers help us locate used dishes which might be for sale?

Tom Landecker
Dominion Radio Astrophysical Observatory
P.O. Box 248
Penticton, B.C. V2A 6K3 Canada
Hy-Gain V Series antennas focus the omnidirectional pattern evenly at the horizon, without high angle lobes or horizontally polarized content. By concentrating the power at the horizon you get cleaner transmissions over longer distances, improved communications in valleys and reduced picket fencing of the signal between tall structures. A Hy-Gain V antenna is like adding an amplifier and receiver pre amp. And, because antennas which “talk” louder, also “hear” better, a V Series antenna is also ideal for your home QTH.

Extended double zepp V Series antennas consist of two stacked .64 wave vertical sections in phase. Two sets of 1/4 wave radials decouple the antenna from the mast and feed line so all RF goes into the antenna and is not radiated by the coax. The feed line connects through the lower section to the center matching coil. This not only provides weather protection for the connector (SO-239 connectors for V2, V3. Type N connector for V4) but also places the entire antenna at dc ground to reduce lightning hazard and QRN.

V Series antennas are easily assembled in one hour or less. Rugged and maintenance free, they’re made of seamless, corrosion resistant 6063-T832 aluminum and all critical hardware is of passivated stainless steel. They’ll withstand winds of 100 mph (160 km/h). V models accept mast diameters up to 2" (50 mm) so you can readily mount a V above your HF antenna.

Since a Hy-Gain V Series antenna costs only a fraction of a re-tuned landmobile antenna, you can now realize the full potential of your communications with the repeater or your home station, economically.

For unbiased information ask any of several thousand V2 users or read the product review in QST May ’82 or Amateur Radio Profiles Vol. 2, No. 3.

*Effective Radiated Power
Message processing is now available for radio communications systems. The MPT3100 is a complete up-date of the popular HAL DS3100 RTTY terminal, adding the ability to store RTTY messages, edit them, and retransmit them singly or in preset groups. ALL of the previous features of the DS3100 and MSO3100 are retained and new mailbox commands are included. The editor may be used with any file that is stored. The MPT3100 includes ASR (Auto Send-Receive), MSO (Message Storage Option - “mailbox”), and TRO (Traffic Relay Option) modes. The MPT3100 is a new software package that works in ANY DS3100 with MSO3100 circuit board. Some of the features of the MPT3100 are:

NEW FEATURES OF MPT3100:
- Automatic storage of all received text in files separated by the standard “NNNN” terminator (TRO-REC mode)
- Full editing capability of all files stored by mailbox (MSO) or by TRO storage
- Editor allows insertion or deletion of text in any part of a stored message - 15 keyboard edit commands
- Editor may be used even while receiving, transmitting, or storing messages - even when MSO mailbox is in use
- Files may be renamed, created in the editor, cut into smaller files, and deleted with keyboard commands
- Message files may be transmitted singly or in batches
- Transmitted messages may be serial-numbered automatically
- The full format requirements for NAV MAR COR MARS NTP-8(A) are supported
- New TRO commands include: RXON, RXOFF, DIR, SEND, STOP, RESUME, RESTART, EDIT, CUT, CREATE, QUIT, RENAME, DELETE
- On-screen status indicators show: TRO mode; bytes of memory remaining; file names being recorded, transmitted, and edited
- MSO mailbox .SDIR directory command revised to shorten time required for transmission
- New .DIR [filematch] and .SDIR [filematch] mailbox commands give listing of only file names that include [filematch]
- Programmable "header ID" for each mailbox transmission

MSO Mailbox Features:
- Programmable MSO call-up command
- Mailbox may be controlled by external station to store message files, read files, delete files, and list the file directory
- DS3100 operator may perform all MSO operations on the keyboard without transmitting
- Mailbox transmissions include user-prompting and automatic CW and RTTY indentification
- HELP messages are provided to assist the new user in operation of the mailbox
- All mailbox messages stored may also be edited, renamed, and transmitted using TRO commands
- MSO commands are: .DELETE, .DIR, .DIR [filematch], .ENDFILE, .FILEHELP, .HELP, .KY1ON/OFF, .KY2ON/OFF, .PRINTOFF/ON, .QBF, .READ, .RYS, .SDIR, .SDIR [filematch], .WRITE

DS3100ASR Terminal Features:
- Send and receive ASCII, Baudot, Morse codes
- ASCII or Baudot at 45, 50, 57, 74, 100, 110, 134, 150, 300, 600, 1200, 2400, 4800, and 9600 baud; full or half duplex
- Morse code at 1 to 175 wpm
- Full length 72 character line / 24 line screen display.
- 50 line pre-type on-screen transmit buffer
- True “ASR” operation - pretype transmit text while receiving
- 150 line receive display buffer
- MSO 3100 adds 32K bytes of additional storage
- 12 inch, P31 green display built-in
- Control functions are clearly marked on keyboard
- On-screen status indicators with real-time indication
- Upper-lower case ASCII with ALL control codes
- Current loop or RS232 RTTY input/output
- Positive and negative Morse key outputs
- ASCII printer output prints Baudot, Morse, or ASCII text
- Operates on 105-130 / 210-250 VAC 50-400 Hz power

WHEN OUR CUSTOMERS TALK, WE LISTEN — and we have been listening. Rather than making a proven product obsolete — a product that is well known and respected for its reliability and capabilities — HAL has completely rewritten the software of the DS3100 to offer the features that our communications customers have been asking for. A full year in the preparation, these are features that could only be designed by people who know and operate RTTY. Best of all, ANY DS3100 can be modified at the factory to include the MPT3100! In marked comparison to other radio equipment that is made obsolete by new models every 6 to 12 months, the DS3100 lives on — a full 4 years after its announcement.

HAL COMMUNICATIONS CORP.
BOX 365
URBANA, ILLINOIS 61801

If you are really serious about your RTTY, look to HAL, your REAL RTTY company.
Please write for even more details about the MPT3100 Message Processor Terminal. Call your dealer or HAL for prices and how to get a new MPT3100 or to arrange for modification of your present DS3100.
RFI revisited

In my September, 1982, column I discussed some of the problems I encountered with severe radio and TV interference generated by my microwave oven. I also told of the subsequent runaround I received from the dealer and the manufacturer's service department. I've received a lot of mail about microwave oven RFI, and I think you might be interested in some of the remarks:

Art Nichols, W6EVL — "I returned my first Montgomery Ward microwave oven because it was 40 dB over S9 on 80 meters. The second one I got was better — it was only 20 dB over. I used an external filter until the warranty period was over, then put a pair of 0.1-μF, 600-volt capacitors from each side of the line to the case. That did the job fine. Montgomery Ward told me they didn't supply a filter."

David Cornell, K9BO — "I live in a medium-signal-strength area outside of St. Louis, Missouri, and own a General Electric Model J-ET015-OY1 oven. The TV shows no interference from the oven, and all I hear is a slight noise on the broadcast band when the radio's tuned to a quiet spot. This contrasts with your Amana report, suggesting that perhaps some microwave ovens are less objectionable than others in terms of RFI."

Jim Ford, N6JF — "I was more successful than you in getting a filter for my microwave oven, but it took a letter to the Bureau of Appliance Repairs in Sacramento, California. The filter they installed helped but was no cure. A friend's Sharp microwave oven is clean of RFI. There is no interference to any channel of a nearby TV set that uses a set of rabbit-ears for an antenna." (Note: Jim's oven is an Amana. The form letters he received from the Customer Specialist at Amana seemed to indicate that they either don't understand the problem or else prefer to pretend it doesn't exist.)

Francis Stifter, President, Electronic Specialists, Inc. — "We have had many calls from people with microwave oven interference problems. One of our line-cord filters usually takes care of it. Occasionally it is necessary to fold the oven power cord into a small bank to eliminate the last traces of TVI." (Note: The catalogue of filters and other interference-control devices can be obtained from Electronic Specialists, Inc., 171 South Main St., Natick, Massachusetts 01760.)

Curt Powell, WB4WAA — "I had a similar RFI problem with my Montgomery Ward microwave oven Model KSA-8192A." Curt describes a frustrating experience he had with the company. He wrote the FCC about the problem, and received a reply by telephone. The FCC told him that the pulsed power supply energy was creating interference that was radiating down the power cable and being conducted back into the line by the con-

"He finally wrote the FCC about the problem, and received a reply by telephone."

Curt Powell, WB4WAA — "I had a similar RFI problem with my Montgomery Ward microwave oven Model KSA-8192A." Curt describes a frustrating experience he had with the company. He wrote the FCC about the problem, and received a reply by telephone. The FCC told him that the pulsed power supply energy was creating interference that was radiating down the power cable and being conducted back into the line by the con-
“The FCC may have received brickbats from hams, but here they are strongly on the side of the consumer!”

connection. They informed Curt that the oven had been built by Sharp, and that Sharp was sending “a new transformer.” Eventually the replacement part arrived, was placed in the oven by the Montgomery Ward Service Department, and the problem was solved. As Curt says, “The squeaking former.” Eventually the replacement oven had been built by Sharp, and the letter from the FCC

slosion, Office of Science and Technology, Box 429, Columbia, Maryland 21045. The letter said, in part:

“Were you interested in the outcome of cases similar to yours. However, at the time of Type Approval of the model oven you have purchased, a line-conducted specification was not in effect for miscellaneous equipment, as microwave ovens are defined by our rules.

“In an effort to alleviate the problem, we are writing to the manufacturer of your oven and asking them to contact you directly and report to us their solution and specific action they used to bring the oven into a proper operating condition. Please inform us if nothing has been done within a reasonable time.” (signed) Charles M. Cobbs

hurray for the FCC

The FCC may have received brickbats in the past from hams, but here’s an instance in which they are strongly on the side of the consumer! And the Goldwater RFI bill should make the situation a lot better in the future than it has been in the past.

I suggest that if you contact the FCC regarding RFI from your microwave oven or other home equipment, you specify the name, model, and serial number of the equipment and the manufacturer and purchase date. It seems that when the FCC contacts some of these manufacturers, something happens.

the ground plane versus the dipole

In my October column I commented that tests I’d run comparing a ground plane antenna and a dipole seemed to show that the dipole outperformed the vertical both for transmission and reception. That conclusion brought some interesting comments from the readers:

Harry Hyder, W7IV — “In the late ‘60s I had both a ground plane vertical and an inverted-V. I was thus able to make direct comparisons. The vertical was a Hustler 4BTV, roof mounted, with four resonant radials, drooping slightly. The inverted-V was 35 feet at the apex and about 20 feet off the ground at the ends.

“At that time, I worked ZS1A frequently on 40-meter CW. I always heard him better on the inverted-V because of the lower noise level. On transmit it was a different story. He always heard me on the vertical (conditions permitting) but when I switched to the dipole my signal was always much weaker and I frequently dropped out completely...

“A friend of mine, W7IR, made the first 160-meter WAC from W7-land. He has a 90-foot vertical and a 160-meter inverted-V with the apex at 65 feet. The dipole is better for reception but is useless for DX transmission; the vertical outperforms the V by a large margin.”

Warren Amthar, WØWL — “From this writer’s experience, when the ZLs are coming through on 80 meters during the early hours and a switchable vertical-to-horizontal antenna is used, the horizontal works better. Why? Because the signal is usually coming via multiple-hop, high-angle propagation.”

Alan Bloom, N1AL — “Aren’t you comparing apples and oranges? The radials on a ground plane 12 feet above ground do not act like an infinite ground. This antenna has a vertical radiation pattern similar to that of a dipole unless it has an ”infinite” high-conduction ground at its base. Also, could the greater noise on the ground plane have something to do with its location nearby to house wiring? My own pet antenna is a high and long end-fed wire with lots of counterpoise wires. I used to have fun working Europe on 80 CW with my HW-16 with my “invisible” (No. 28 wire) 200-foot end-fed wire.”

Roy Lewallen, W7EL — “In an experiment similar to yours, comparing a ground plane antenna with its bottom at 35 feet to an inverted-V dipole at about 40 feet, I found no direction or distance for which the ground plane did as well as the inverted-V on 20 meters.

“On 40 meters, a ground-mounted vertical with a good radial system approximately equals an inverted-V with its apex at 40 feet for signals beyond 500 to 1000 miles; closer stations are better on the inverted-V.

“When comparing vertical and horizontal antennas, signals must be monitored for some time to get accurate results. The antennas may in fact take turns being better than each other by 30 dB, because of polarization rotation of the received signals. On 40 meters, a typical period of rotation is from about one-half minute to a few minutes. The frequently heard question, ‘Now I’m trying antenna number one. Now I’m using antenna number two. Which is better?’ can
lead to results 30 dB in favor of one antenna at one moment, and equally in favor of the other a minute later!

"The effect of trees on vertically polarized signals can be significant. I measured a 10-dB loss through a small stand of fir, pine, and cedar trees which were roughly a quarter-wavelength high. A number of experiments left me convinced that the trees were indeed the culprit.

"In a few years the 24-MHz band will be dead... Let's use the band before this happens."

"The absorption of low-angle, vertically polarized signals is well known. One of the best illustrations appears in the Canadian Department of Communications CRC Report 1255 (unfortunately out of print). It clearly shows that absorption is a function of ground conductivity for some distance from the antenna, and it is not affected by the ground radial system as commonly thought (unless, perhaps, the radials extend for many wavelengths from the antenna). Since ground conductivity improves as frequency decreases, because of greater skin depth there is less absorption at lower frequencies. I suspect but haven't confirmed that a vertical is superior at and below 3.5 MHz. When compared with dipoles at heights at which the average Amateur is liable to put them, the vertical is almost certainly superior at the lower frequencies."

W.B. Pretcht, W3KO — "I must take issue with the statement that it is difficult to devise a better antenna than a simple dipole. Putting aside the usual trials and tribulations accompanying a new antenna, I ended up with a rectangular loop, 40 feet on top and bottom and 27 feet on each side. The bottom is 7 feet above ground level and center-fed with a 4-to-1 balun and 50-ohm line. The VSWR on 40, 20, and 10 meters is better than 1.2:1. Its performance far exceeds expectations."

W3KQ and N5C1E (XYL) point out that the loop functions well with low SWR on three bands. This is certainly a simple triband antenna that doesn't require tuning and costs very little.

So there you are! It seems that the jury is still out as far as a meaningful decision between the horizontal dipole and ground plane vertical goes. I am interested in readers' comments on their comparison of the two antennas. Join in the fun!

18 and 24 MHz

Isn't the 10-MHz band wonderful? Plenty of stations to work, no contests to jar the nerves, and lots of good DX showing up every day. Now it's time to turn our attention to the 18-MHz and 24-MHz bands. I have monitored these bands and noticed plenty of European Amateur activity, plus a few signals from South America and the Republic of South Africa. As of this writing (late November), no signals from "down under" or Asia have appeared.

Both bands seem nearly empty in comparison to other services. A few RTTY signals, one or two commercial CW stations — and that's all! The spectrum space seems wasted and I suggest it could be put to better use by permitting the U.S. hams temporary authority to use the bands before they become useless. Remember, the sunspot cycle is declining and in a few years the 24-MHz band will be dead for long-distance communications. It would be nice to use the band before that happens.
Multiple-line transformers improve accuracy making possible realistic phased-array impedance measurements

a precision noise bridge

An rf impedance bridge is an important tool for anyone with more than a casual interest in measuring complex impedances. One typical application for such a bridge is in the design of a phased-array antenna.

Solid-state technology has made it possible to move the rf impedance bridge out of the laboratory and into the average ham shack, but, unfortunately, laboratory accuracy cannot usually be achieved with most of the available units. Although readings within 10 percent are acceptable for most Amateur applications, much better accuracy and discrimination are necessary when taking measurements of antenna-array mutual impedances. We must in fact be able to accurately determine resistive components of impedances which may change as little as only 3 or 4 ohms when a nearby antenna element is mutually coupled. Obviously, most noise bridges can't do the job.

This article explains how it is possible to achieve the needed accuracy in the range of the hf Amateur bands. A multiple-line, distributed-impedance transformer is the critical bridge component. It is not very susceptible to fabrication variations, and it maintains a single calibration over a wide frequency range. With care in adjustment and good construction practice, it is possible to achieve an accuracy of 3 percent over most of the range — with even better results at 14 MHz and lower.

background

In an excellent article on noise bridges, W6BXI and W6NKU contributed two major innovations for improving noise bridge accuracy: compensating for bridge circuit strays by adjusting inductance in one of the bridge secondary arms; and equalizing primary-to-secondary interactive effects by the addition of a dummy primary wire.

The first idea is one of those insights that seem so obvious after someone else has pointed it out: One wonders why the C_p calibration "rotation" problem at high frequency ever seemed so difficult. The second suggestion is logical, but I could confirm it only empirically. After winding a dozen different kinds of

By Forrest Gehrke, K2BT, 75 Crestview Road, Mtn. Lakes, New Jersey 07046
three-wire and four-wire toroid transformers and comparing results, I leaned toward the four-wire version. I became convinced that control of interactive effects between the primary and secondary was a key factor in achieving the accuracy I wanted.

I used the improvements and suggestions in the referenced article in three of my own bridges, with good results similar to those achieved by the authors: a spread of 2 to 3 ohms (resistance and/or reactance) for a range of accurately known impedances. But further improvement in accuracy was still needed.

W6BXI, in private correspondence, told me that he’d had no particular difficulties with the bridge transformer, either in reproducing it or with circuit adjustment. I wasn’t as lucky. But he did discuss a method of matching and balancing the bridge transformer to the noise source. I tried an emitter follower that provided a low-impedance source for the noise amplifier. I also tried a balun toroid transformer, to take advantage of balanced drive to the double-ended bridge circuit from the single-ended noise source. Neither approach worked.

I have probably wound a hundred or more different configurations of the toroid transformer used in this bridge, in an effort to get a better understanding of this key component in the bridge. One possible solution lay in trying to get maximum inductive coupling with minimum capacitance between primary and secondary. So I wound a more classic type of transformer, with the primary on one side of the toroid and a single-wire, center-tapped secondary on the other. Capacitive coupling between windings was very low — 3 pF — but the transformer behaved poorly in the bridge. Calibration barely held over a single Amateur band, and there was no correspondence to the real values of the reference arm of the bridge. Next I wound a second transformer, also with the windings on opposite sides of the toroid, except that now the secondary was a bifilar winding. The bridge worked, and calibration held from 1.8 to 30 MHz. But the noise signal was too low at the high-frequency end, indicating insufficient primary-to-secondary coupling, resulting in poorly defined nulls. Different core materials did not help. This experiment showed me that the required bridge coupler was no ordinary transformer, but something akin to a distributed impedance transmission line.

Most of the trifilar and quadrafilar toroid transformers I tried had been wound with the three or four wires kept carefully parallel. I wound some with the wires twisted together at two or three turns per inch. A stranded bundle of approximately 9 inches (23 cm) was wound on the core. I decided to try connecting up a strand in the usual way, but as a large single-turn loop, without winding it on a toroid core. This worked excellently, without any of the puzzling anomalies of the toroid versions. Noise signal was as high as with a toroid, and calibration held constant from 1.8 to 30 MHz. Also, the reference potentiometer settings closely coincided with the value being measured. With this approach there was no question about the four-wire line being superior for holding calibration over a wide range, and my results were reproducible: Reproductions of these lines always produced the same results. I concluded that the toroid core had been contributing most of the anomalies — and that it was not at all essential to this bridge component.

Having eliminated the toroid, I next worked on optimizing line length, wire size(s), and insulation thickness, and on a method of combining the individual wires into a line. The matter of whether adjacent or alternate wires of a single twisted line should be used in connecting up the primary and secondary circuits was also investigated. I tried dozens of variations: No. 24 (0.5 mm) hookup wire with PVC insulation, enameled wire sizes from No. 18 (1.0 mm) to No. 32 (0.2 mm), including mixed sizes, lengths from 4 inches (10 cm) to 16 inches (40 cm), single twisted and compound twisted, and so on. This is what I learned:

1. Close coupling between primary and secondary is absolutely required. This means using enameled wire, twisted as tight as possible.

2. Line lengths between 10 and 12 inches (20 and 30 cm) are best: If too short, noise signal is too low; if too long, a large amount of compensation is required on one secondary half for R_p adjustment, which is accompanied by a pronounced C_p calibration shift between 21 and 30 MHz.

3. Compound twist gives the most consistent results (primary and secondary wires are first twisted independently, then these are twisted into a single strand). All four wires can be twisted simultaneously, but they would then have to be interconnected with attention to whether alternate or adjacent wires are being used as the respective primary and secondary. See fig. 1 for winding interconnection detail.

4. Enameled wire size No. 20 (0.8 mm) seems best. Smaller wire sizes are more difficult to connect,
adjust, and compensate because of their fragility. Heavier wire, though effective, resulted in a line that became too stiff to work with. I found a good compromise to be No. 20 (0.8 mm) for the secondary and No. 24 (0.5 mm) for the primary. These lines can be looped into multi-turn coils, to conserve space, with no effect on calibration. In the single-turn calibration no ill effects occur unless the loop is tightly collapsed on itself, and then the most noticeable effect is a resistance calibration shift at low frequencies.

These coupling devices act like distributed-impedance transmission lines. The circuit impedance appears to be low, as it is virtually immune to stray capacitances. As with transmission-line baluns, however, the device displays sensitivity to lead dress of the ends of the lines. Unfortunately, it is not physically possible to keep these ends apart. One end of each pair has to be connected to each other, and the ends connected to the bridge arms must be as short as possible. If, indeed, this is a multiple-wire transmission line, theoretical calculations would point toward a low characteristic impedance. The effect of the re-entrant connection is difficult to assess. I would welcome letters from readers who are able to show the mathematics. The most puzzling aspect, to me, is that a line so short (in terms of wavelength) should be effective at very low frequencies. I have used a bridge calibrated for frequencies between 3.5 and 30 MHz to as low as 150 kHz. The calibration was unchanged and the noise signal level was as high as at 3.5 MHz.

scale extensions/expansion

The article by W6BXI and W6NKU and subsequently published letter gives a technique for measuring impedances beyond the basic range of the bridge by using series or parallel resistances inserted at the Unknown terminal. Though this approach is quite effective, the user is warned that, as with any scale multiplier, inaccuracies in the basic range calibrations are also multiplied. Improvement of the base range accuracy should make these range extenders more trustworthy — and using the minimum multiplier possible. For antenna measurements the series extender finds the greatest use; I have several, ranging from 10 to 100 ohms.

For some applications, like mine, there is a need to expand the resistance scale to be able to discriminate between small changes. Since the R_p range of interest was between 27 and 77 ohms, a 50-ohm potentiometer in series with a 27-ohm fixed resistor was used in the reference side of one of my bridge models. This affords nearly 270 degrees of scale rotation for a translated 50-ohm range. To minimize strays, the potentiometer connections should be as shown in fig. 2.

transformation equations

A series combination of resistance and reactance can always be found that exhibits the same equivalent impedance as any given parallel combination of resistance and reactance.

The transformations give the relationship between the elements of the series and parallel networks (shown below) when the driving-point impedances are equal. The equations for the respective impedances are:

$$Z_p = \frac{R_p}{R_p + jX_p}$$

$$Z_c = \frac{R_c}{jX_c}$$

Equating the real and imaginary parts of both expressions for network equivalency yields:

$$R_s = \frac{R_p X_c^2}{R_p^2 + X_c^2}$$

$$X_s = \frac{R_p^2 X_c}{R_p^2 + X_c^2}$$

Transforming from series to parallel:

$$R_p = R_s + X_s^2/R_s$$

$$X_p = X_s + R_s^2 - X_s$$

other modifications

The other major changes from prior circuits were to go to a fixed capacitor in the reference arm of the bridge and to place the variable capacitor, C_p, across the Unknown terminal. Operation of the bridge remains the same, except that the meanings of the direction of rotation from "0" on the calibration scale become reversed. That is, an indicated null which increased the capacitance above its value at "0", means the measured impedance has an inductive reactance component. Conversely, a decrease in capacitance from "0" indicates a capacitive reactance. This change ensures that the reactive component being measured is in direct correspondence with that of the unknown impedance. The difference is a subtle one but, in effect, at nulled conditions the reference arm is always "seeing" the identical situation, the fixed capacitance across the potentiometer.

adjustment

Two adjustment procedures are necessary, both requiring a bit of care and patience. One is done at low frequency to enable the unknown load resistance to track with the reference potentiometer's nulled resistance. The second adjustment is done at the high frequency end of the range to enable the load resistance to continue to track with the potentiometer and to reduce the C_p calibration shift. The adjustments are performed in the order given and must be iterated since they are interdependent. They are best done with a good commercial load termination (of minimum reactance), though 50 to 100 ohm quarter-
watt carbon resistors connected by short leads are a second best alternative. These adjustments ensure that the calibration remains constant over the bandwidth and provides an accurate R_p readout. I have found multi-tester DWM's to be remarkably accurate ohmmeters and useful in measuring the calibration load resistances and the nulled potentiometer resistance.

The low-frequency adjustment is better described than explained. The adjustment cancels inductive and capacitive strays, and after building six bridge units, only two with identical layouts, I am confident of the procedure:

low-frequency adjustment

1. Set the null-detecting receiver to a low frequency (I used 3.5 MHz) and null the bridge with a known resistive load of 50 to 100 ohms. The R_p and C_p controls are interdependent; repeat for best possible null.

2. Turn off the noise source and remove the load and detector from their terminals. Measure the potentiometer resistance without disturbing its setting (measure the resistance seen at either the Unknown or Detector terminals). Measure the load resistance.

3. If there is agreement to within 0.1 ohm go to the high-frequency adjustment procedure. More likely, the agreement will be close but not good enough. With the bridge returned to operation as in step 1, gently bend the bridge line to a new position in any direction by a few degrees. The potentiometer null will change; renull and note whether the potentiometer resistance more closely agrees with the load. If it does not, bend the line in another direction, possibly opposite to the direction of the first trial. If after a few trials it is found that no direction of movement will cause good enough correspondence of readings, go on to the high-frequency compensation procedure. The two procedures are interdependent and several iterations will be necessary.

high-frequency adjustment

This adjustment equalizes any residual imbalance of inductance that may exist in the bridge. The adjustment is made at the high-frequency end of the range because this is where the influence of an imbalance is most noticeable. It consists of adding inductance (offset) to the secondary arm found to require compensation. Which arm this is depends upon the direction the R_p null must be shifted. I have found it always to be required in the reference arm connection if the noise signal is inserted to the primary connection at the same end of the line.

1. Using the same pure resistance load as in the low-frequency adjustment, null the bridge carefully at 30 MHz. Turn off the bridge, remove the load and detector, and compare the potentiometer resistance with that of the load. If this is the same you had at 3.5 MHz you’re done. More likely, compensation will be necessary.

2. Add an inch (2.5 cm) of the same size wire used for the secondary to the secondary connection at the reference bridge arm. Returning the bridge to operation, if the R_p null resistance is higher than the resistance being measured and now goes higher still, remove the wire and add it in on the other secondary arm of the coupler. If it now goes lower, reduce the amount of added wire until the R_p null resistance matches the termination.

3. In making this adjustment be careful not to disturb the position of the line found for the low-frequency adjustment. In any case, recheck the low-frequency adjustment after completing this procedure. Several repetitions of the two adjustment procedures may be necessary. If more than an inch of secondary-size is required, you may encounter an unacceptable C_p calibration shift at 30 MHz, although R_p tracks over the whole range.

March 1983
These two adjustment procedures force tracking of R_p at widely separate frequencies. But this does not guarantee flat tracking at frequencies in between, so after completing these adjustments check the calibration in the middle of the range, such as 14 MHz. R_p calibration should remain well aligned and C_p shift, compared with the 3.5-MHz position (the center, or “0” of this scale), minimal (less than 1 pF). If all is well, now check with other values of resistance. If you cannot obtain commercial terminations, quarter-watt carbon resistors of the deposited type are quite good, but connect them to the unknown terminal with as short a lead length as possible. In spite of all your best efforts, you will see more C_p inductive shift at 30 MHz with these. If you used a 250-ohm potentiometer, expect to see more absolute R_p shift at 30 MHz than found at 3.5 MHz for resistance at the upper end of this range. My bridge reads 1 ohm low with a 237-ohm load at 30 MHz. At the low end of the range, using a 6-ohm resistor, the R_p reading is within 0.1 to 0.2 ohm over the whole frequency range, with one bridge reading on the high side at 30 MHz and the other on the low side. A DVM checked against a laboratory standard was used for a resistance calibration standard.

If the potentiometer is not tracking well with frequency, the circuit has layout problems. Here are three general areas to review:

1. Ground loops in the circuitry (multiple connections to ground for the same circuit path).

2. Too much inductance has been allowed to creep into the connections in known or unknown arms of the bridge. One clue is a continuous shift of C_p center as you step up in frequency bands from 3.5 to 30 MHz.

3. The noise source ground connection to the bridge has too much impedance. This is indicated by a pronounced shift in C_p center position at 30 MHz, with little or none at 21 MHz. The effect is very different from the prior case, in which there is gradual shift. Note that this same effect also arises from a requirement for a large amount of compensation at high frequency. Still, this is related; the amount of compensation is an indicator of stray reactance in the circuit.

circuit hints

Avoid creating ground loops. Have all ground returns going to a common point; this point is best located at some point midway between the circuit connections for the known and unknown bridge arms. Calibration accuracy to 30 MHz requires extreme care here. For example, in the last two units I built the detector coax terminal is isolated from the chassis. Coax (RG-174) is used to continue this line directly to the bridge connections, including ground. The bridge circuit and components are mounted on a printed-circuit board using copper foil on the circuit side. The chassis screw mountings for this board are insulated from the foil. The only connection with the chassis and the copper foil occurs via the SO-239 Unknown coax terminal.

Any stray reactance in this bridge creates calibration shift problems, particularly at 30 MHz, and if severe, even at 14 MHz. I found that liberal use of flat, braided shield (such as is used on RG-58/59 coax) for all bridge connections is indicated. In this regard, the miniature 365-pF variable capacitor recommended in the referenced article has too much internal inductance. The small Japanese air variable capacitors built on heavy aluminum frames have been found to be excellent and quite linear.

As a general rule disproportionate shifts in calibration with increasing frequency are indicative of stray capacitance problems, while linear shifts are due to unwanted inductance.

As for the potentiometers, Mil. Spec. linear-resistance carbon pots are recommended. I found Clarostat Type 53C1, S-taper to be best. These are available in resistances as low as 50 ohms and are very linear.

As for the noise source, obtain several samples of the zener diode for the noise amplifier. Select the one with the highest noise output over the frequency range, emphasizing 30 MHz. Some diodes are so quiet there will be difficulty obtaining enough signal. Isolate the noise amplifier and its batteries from all grounds except the connection to the common ground at the bridge circuit. In one of my units, flat braid for this ground return solved a stubborn residual C_p shift problem at 30 MHz.

Unless you have a compelling need to carry a bridge in your hip pocket, don’t try to crowd this device into a snuff box. My units are housed in a standard aluminum two-piece box 5 x 4 x 3 inches (13 x 10 x 8 cm). This is small enough, gives you space to work in, and keeps down strays. With the extra...
space available another 9-volt transistor battery can be paralleled for extended operation.

Cp dial calibration

With Rp calibration done, you are ready for calibration of the Cp dial. Assuming you have found minimal or no Cp shift of the “0” position with a 50-ohm termination at 30 MHz, I recommend that 3.5 MHz be used for this calibration, since it minimizes the effect of lead inductance errors.

In the referenced article¹ the authors suggest the following procedures: Calibrate the variable capacitor against a standard before connecting it to the bridge circuit. Or calibrate the capacitor, with bridge operating, using known values of capacitors in parallel with a resistance at the unknown terminal (50 ohms suggested). After completing the capacitive portion of the dial, temporarily disconnect the 180-pF bridge centering capacitor and work backward toward “0” for the inductive portion of the dial.

The first method is the preferred one. But since I had no capacitor standard available, I used a variation of the second method: After calibrating the capacitive portion of the dial, connect a 50-ohm quarter-wavelength coax cable cut for 3.8 MHz to the Unknown terminal. At the far end connect a 39 or 68 ohm resistance with minimum lead length. Find the frequency which nulls this resistance while the Cp dial is set at “0.” Note the frequency and remove the resistor. This is the exact frequency at which your cable is a quarter-wavelength. Now use the same known capacitors in parallel with 50 ohms at the end of this cable to calibrate the inductive side of the dial. The quarter-wavelength coax causes these capacitors to look “negative,” that is, inductive by a nearly equal amount. Since these are parallel circuits in series with the coax, a small correction is necessary which increases with increasing capacitance. Assuming a 50-ohm coax with a 50-ohm termination at 3.8 MHz, use table 1 correction points (interpolating for intermediate calibration points).

upper frequency limitations

Frequencies higher than about 20 MHz begin to present problems for any circuit measurement device. This is why it is not easy to achieve a constant calibration with good accuracy as we go up in frequency. Here we enter a realm in which a resistor, a capacitor, or a coil can no longer be thought of as discrete elements; indeed, each can be a combination of all three. Since this also applies to the bridge circuit, calibration correction and circuit adjustment schemes become necessary. Reactance is involved, and so these compensations are frequency dependent. This means calibration is meaningful over relatively small frequency ranges. I have checked my noise bridge as high as 100 MHz and found that, while deep nulls can still be detected, the calibration shifts considerably.

low resistance limitations

Measurement of very low Rp circuits (below 5 ohms) poses two problems for this bridge: The low Rp, coming quite close to a short circuit, reduces the Cp null sensitivity, making it more difficult to determine balance. At the same time, any accompanying reactance, since we are measuring the parallel equivalent of the circuit, results in large excursions of the Cp dial for relatively small reactances.

As Rp approaches zero, bridge circuit strays become more significant. Do not depend upon any measurements made with this type of bridge with the Rp dial setting near zero, since many potentiometers do not actually reach zero resistance at their mechanical stop. I have heard of attempting to determine a quarter-wavelength of coax this way. This bridge can do that and more, but not in this way. If measurement of very low impedances is an objective, use a series extender, or consider a series-type bridge.

detector considerations

One of the reasons the noise bridge is a relatively simple circuit is that no null detector is included. For this an ordinary receiver is used. This can be the station receiver, and, in these days of accurate receiver frequency readout, it can be a frequency standard as well. For purposes of bridge calibration an Amateur-band-only receiver is adequate, but for most measurement needs a general-coverage receiver is better. The presence of an S-meter is helpful but not necessary.

When making measurements on antennas, a battery-operated receiver is convenient. I use an inexpensive all-band portable and a transistor crystal oscillator for marker frequencies. Since the noise signal is considerable, (S9 + 20dB, off null), receiver sensitivity is no great consideration; too much can lead to difficulty in finding a null because of receiver

Table 1. Parallel-series-parallel correction for use in calibration of inductive side of Cp dial.

<table>
<thead>
<tr>
<th>Capacitance (pF)</th>
<th>at end of coax</th>
<th>at terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>49.82</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>69.51</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>98.60</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>117.59</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>126.94</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>136.20</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>145.34</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>154.37</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>163.28</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>172.06</td>
<td></td>
</tr>
</tbody>
</table>
antenna measurements

An obvious application for this bridge is the measurement of self and mutual impedances of antenna elements and matching adjustments. Measurement of mutual impedances must be done indirectly and involves fairly complex calculations. (This will be discussed at greater length in forthcoming articles.)

Self-impedance measurement is straightforward: Simply connect the antenna leads to the bridge and adjust for null. Remember to keep lead length the same as in the actual installation, and remember too that the values being read are the parallel-circuit equivalents.

A very nice application for an accurate bridge is measuring the impedance of antennas right in the shack, having previously obtained an accurate measurement of the feedline length and its characteristic impedance. Using a Smith chart or programmable calculator to rotate the measurement back to the antenna saves a lot of legwork.

One point particularly applicable to antenna measurements is, make doubly sure of all connections and joints. This bridge operates with noise power measured in microwatts. Poor connections, which do not show up in normal operations, even when driven QRP, will become evident. A few watts may temporarily “weld” poor connections; the bridge hasn’t enough power to do that.

impedance transformers and networks

Another useful application for this bridge is measurement of the input and output impedances of transformers and networks. Remember that the readings are in parallel circuit form, and that the terminations may be in either form. It’s sometimes easier to arrive at one than the other with available components.

references

bibliography

ham radio
You can DX and receive weather charts from around the world.

Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!

You've heard those curious facsimile sounds while tuning through the bands — now capture these signals on paper!

Assemble ALDEN's new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble — Backed by the ALDEN name.

For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!

You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.
DC to 400-Hz ac converter

There are many inexpensive transceivers on the market that require 400 Hz. After I bought an ARC 38A, I was confronted with the problem of how to obtain 400 Hz for the servos.

![fig. 1. DC to 400-Hz ac converter.](image)

Self-oscillating transformer circuits exist, however they need special transformer ratios to work and if loaded they like to change frequency or stop oscillating. A 555-oscillator chip with a driver and a push-pull output is another choice, but I wanted something simpler.

The circuit shown works well and is not too elaborate (fig. 1). It depends on inherent unbalance to start. Any small SCR will do.

In the oscillator the voltage divider starts charging the capacitor until one SCR breaks down, initiating oscillation. The driver transistors (2N3055 or equivalent) drive the transformer with a square wave. Little power is dissipated in the transistors since they are mostly on or cut off. Diodes from collector to ground prevent a negative kickback voltage from appearing. 27 ohms and 0.1 μF are used to dampen spikes.

reference
Kurt A. Bittmann, WB2YVV

screen protection for the 5CX1500A

If anyone is considering building a linear amplifier around the 5CX1500A tube, he should not neglect to include screen protection circuitry. Because of the preponderance of grounded-grid triode amplifiers in the last few years, this important point is now only superficially mentioned in the Amateur literature, and I have not seen it incorporated in published circuits. It is all too easy, however, to exceed the screen rating if there is instability during testing, or by resonating the tank with light loading.

During the construction of a 4CX1000A amplifier I came across an article on tetrode screen current in an old *QST* (David D. Meacham, W6EMD, "Understanding Tetrode Screen Current," July, 1961). It convinced me of the importance of the screen overcurrent relay, and I designed an appropriate circuit based on the author's ideas (see fig. 2.)

![fig. 2. Screen current relay.](image)

I selected a relay sensitive enough to pull in if the current exceeded 60 mA, and yet with resistance low enough not to impair screen regulation. In my case, this was a Japanese-made subminiature relay with a 6 volt, 80-ohm coil, but ITT also makes a line of similar relays. R1 must draw enough current to hold the relay on with the supply voltage in use. A relay requires far less current to hold it on than to pull it in.

During testing and tune-up, this relay has paid for itself many times over. Thanks to its quick action, my final has avoided the fate of irreversibly turning into a low-mu triode.

Vic Mozarowski, VE3AIA
HUSTLER ANTENNAS

SF2 - "Buck Buster" 5/8" Wave
2 Meter Antenna
w/3/8 x 24" Threaded Base - 3dB gain
HOT - EASY ON/OFF TRUNK MOUNT
with 3/8 x 24" Swivel Ball for CG144 & SF-2

CG144
5.2dB gain Collinear
w/3/8 x 24" Threaded Base

G6144 - 6dB
Base Antenna

G7144 - 7dB -
Commercial Grade
Base Antenna

$8.95

$14.95

$23.95

$68.50

$98.00

And many other Hustler Antennas & Mounts

BBL144 .. 25.95
BBLT144 35.90
BBLT440 24.75
HLM ... 13.95

MRK-1 .. 13.75
SFM ... 24.25
THF 13.95
UHT-1 .. 8.95

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF & COMMERCIAL LINE
DEALER INQUIRIES INVITED

TC1109 MONITOR

$140.00

TC1501 CAMERA

$140.00

SLOW/FAST SCAN SPECIAL

- TC1109
- 16mm F1.6 Lens
- TC1501
- EEM1 Wallmount for Camera

$298.00

WAHL SOLDER STATION
7 Watt DC
with Adjustable Temperature Control

$35.00

WAHL CORDLESS 7700
Quick Charge Cordless Iron
with Charger

$25.00

TOP BRAND Popular Receiving Tube Types FACTORY BOXED 75/80% OFF LIST

SEMI-CONDUCTORS

MRF 245/501416	$30.00
MRF 454	$18.95
MRF 455	$12.50
MRF 644/5D1088	$19.95
2N3055	$9.50
2N6084	$12.50

TUBES

6146B	$6.50
6360	$4.25
6683B	$6.75
7360	$9.15
7735A	$29.50
8122	$98.00

MINIMUM ORDER $25.00
ALLOW $3.00 MINIMUM FOR UPS CHARGES

DEALER INQUIRIES INVITED

CeCo
COMMUNICATIONS, INC.

2115 AVENUE X • BROOKLYN, N.Y. 11235
800-221-0860 212-646-6300 TWX235125

More Details? CHECK — OFF Page 121
American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

- 5 year warranty • prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE
B23 2W in = 30W out $89.95
(useable in: 100 mW-5W)
B108 10W in = 80W out $179.95
(1W = 15W, 2W = 30W) RX preamp
B1016 10W in = 160W out $279.95
(1W = 35W, 2W = 90W) RX preamp
B3016 30W in = 160W out $239.95
(useable in: 15-45W) RX preamp
(10W = 100W)

220 MHz ALL MODE
C106 10W in = 60W out $199.95
(1W = 15W, 2W = 30W) RX preamp
C1012 10W in = 120W out $289.95
(2W = 45W, 5W = 90W) RX preamp
C22 2W in = 20W out $89.95
(useable in: 200mW-5W)

RC-1 AMPLIFIER
REMOTE CONTROL $24.95
Duplicates all switches, 18' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading
MP-1 (HF) 1.8-30 MHz $119.95
MP-2 (VHF) 50-200 MHz
430-450 MHz ALL MODE
D24 2W in = 40W out $199.95
(1W = 25W)
D1010 10W in = 100W out $319.95
(1W = 25W, 2W = 50W)

Available at local dealers throughout the world.

P.O. Box 1393, Gilroy, CA 95020 (408) 847-1857
PDR-27 NAVY RADIATION METER

Just released by the US Navy. They appear to be excellent condition and include the fitted aluminum transit case. Batteries not furnished but are available in most electronic supply houses. 4 ranges 0.5 to 500 mR/hr. Removeable hand probe, detection of Beta and Gamma radiation. With today's world conditions and perhaps proximity to a nuclear power station, it might provide a little insurance to own one of these instruments. With no facilities to check or test, we offer AS IS, visually OK Schematic provided with each. We have some accessories and offer as an option although not required for operation. Shipping wt 22 lb PDR-27 Rad Meter $50.00

PDR-27 phones $7.00 Approx 100 page Instr. Book $10.00
Hi Sensitivity GM tube $10.00 Low Sensitivity GM tube $5.00

The above listed tubes already are installed in the meter. We are offering these 2 tubes should you wish spares.

9 Inch monitor runs off of 115 VAC by Motorola in handsome styled case. This monitor accepts composite video thru a BNC connector mounted on rear of cabinet. Great monitor for surveillance, VCR playback, or computer use. These are used, but are in operational condition, each one checked out prior to shipment. Shpg. wt. approx. 20 lb.
Stock # MOT-8 $40.00

KLH SPEAKER STANDS

Difficult to find and for some reason normally high priced & out of reach. Usually over $100 the pair. Floor base 18 inches diameter. Speaker base 7 inch square. As set up, speaker will be 13 inches off the floor. The speaker may be swiveled at will when mounted. Holds over 200 lbs. Jet black, in original KLH cartons. Price per pair

Ship wgt pair 17 lb. KLH $25

COLLINS
PTO-VFO
$12.50

High priced VFO removed from Collins Military T-195 radio. Comes with matched pair of tubes 5749. One is Osc & one is buffer. Freq. range 1.5 to 3 Mhz Requires 150 volts DC, 28 volts for heater on oven, and 12 volts heater on tubes. Xint cond, tenderly removed from eqpmnt. With schematic

Shipping wt. 5 lbs. SPL-48 $12.50

This is the basic CB 40 channel synthesized PC board assembly. A value for the many parts such as "IF" cans, caps, resistors, "IF" crystal, phase lock loop IC, RF & modulation transistors, etc. We furnish a typical schematic. Spots on the board at first glance appear to be missing parts. Not so, the board was upgraded by adding more components for the higher priced more sophisticated sets. These boards were written up in "73" magazine Fall of 1978 for 10 meter conversion. Find a use for one lone part, and you have your full purchase price realized.

SP-126A $8.00

Two different writeups for 10 Meters in "73 MAGAZINE" Aug and Sept 1980

Phone orders accepted (617) 595-2275 No COD's
Shipping extra on above.
Send for free 72 page catalogue jam packed with bargains.
solid-state CW T-R system

A changeover system suited for older equipment

For the Novice operator and the CW fan, there are many older transmitters and receivers that will still perform with the best of the modern transceivers. And, for many of us, the price is right. They take up a bit more room, and we may have to work on them to hold down the drift and keep the performance up. But that is part of the challenge we accept when we decide to use such classics as the Heath DXs, the Globes, the Hammerlund HQs, or the National NCs.

Perhaps one of the greatest inconveniences inherent to most of these otherwise fine designs, however, is the lack of an automatic or semi-automatic transmit-receive system. In fact, most of these rigs lack an antenna change-over relay: switching is done manually. It's necessary to turn the transmitter from standby to operate and mute the receiver as well. In some cases, you must also turn on the VFO. All this switching can get in the way of smooth operating.

CWX: tube style

Hams solved the basic problem of system switching long ago with a system called CWX, CW-operated relay. A CWX automatically switches all rig functions from receive to transmit with the first tap.

The front panel of SSCWX is simplicity itself. The top row consists of the ac power LED indicator, the timing potentiometer, and the transmitter-on LED indicator. In the bottom are the ac toggle switch and the key jack.

By L.B. Cebik, W4RNL, 5105 Holston Hills Road, Knoxville, Tennessee 37914
of the key. In most units, a delay circuit holds the rig in transmit mode between dots, letters, and words, but after a second or so the relay returns everything to receive.

Most of the good CWX circuits used tubes and plate relays. Fig. 1 shows a typical circuit, used at W4RNL for many years in conjunction with a DX-60A transmitter and a 2-B receiver. It is a modified version of a circuit that originally appeared in QST in February of 1966. The modification consists of eliminating one relay and tube section (which followed the keying) and replacing it with the pair of diodes near the key jack. With blocked-grid keying, this system is effective.

This old circuit will still work well with almost any miniature triode, and it has some advantages that are worth preserving. Note that the key line to the transmitter goes through spare contacts on the antenna relay (a Dow Key rf relay, in this case) so that the transmitter cannot generate rf until the antenna changes over. Spare contacts on the plate relay control the grid-block voltage to the VFO, holding the unit on during the entire transmit cycle. This feature eliminates chirp when the VFO frequency is multiplied to 20, 15, and 10 meters (a problem common to many inexpensive VFOs). The potentiometer permits adjustment of the delay time to suit varying code speeds. And finally, the unit is compact and self-powered, making it easy to fit either on the table or in a spare corner of transmitter or receiver.

The unit does use tubes, however, which have grown expensive in this silicon age. And plate relays are growing harder to find, although 12-volt relays are still plentiful. As a result, when one of the students in my license-upgrade class asked about an antenna change-over device for his DX-60, I wondered if I could preserve all the good qualities of the old CW in a solid-state device using easily obtainable components. SSCWX is the result.

CWX: solid state

The solid-state version of CWX is designed for blocked-grid keying and a variety of auxiliary func-
tions, such as receiver muting, VFO control, and rf generation control. Given the variety of receivers available, each with a different muting system, control by relay offers more versatility than does solid-state switching. (Notes on customizing the design and expanding its use to other relay-switching applications appear at the end of this article.)

In older transmitters keying is usually either cathode (positive voltage, heavy current) or blocked grid (negative voltage, low current). In general, you should stay away from cathode keying, because the current will eventually wear key contacts or cause damage to the switching circuits of many keyers. Cathode-keyed transmitters can be modified to a blocked-grid system, but notes on altering SSCWX for positive keying also appear at the end of the article.

circuit operation

The SSCWX circuit performs in the following sequence (see fig. 2). The TIL-116 is an opto-isolator used to separate the key line from the switching circuits. The diode is lit with negative voltage, corresponding to the grid block voltage on the key line. Key down turns off the diode and the transistor stops conducting, sending the collector voltage to the plus terminal of the LM311 voltage comparator and to the 5μF timing capacitor. The IN914 diode in this line keeps the capacitor from discharging through the opto-isolator when the key goes up, and the TIL-116 once more conducts.

Between the opto-isolator and the voltage comparator is the timing circuit. The electrolytic capacitor charges quickly but discharges slowly through the 1-MΩ timing potentiometer and the 39k fixed resistor. The fixed resistor controls the shortest time delay. The combination of the 47k resistor and 100k pot in the minus comparator input line controls the longest delay time, because the LM311 will change state whenever the voltages at its inputs pass each other. About 7 volts to pin 3 of the LM311 yields al-
most 3 seconds of delay — more than enough for most purposes.

The turn-on time is a function of the timing capacitor and the 2.2k collector resistor of the TIL-116. A single short dit will not yield the full delay time, without the supplementary charging circuit composed of the 10k pot and the second diode. By holding the timing capacitor at a level about 1 volt less than the comparator negative input line, the delay time is consistent for single key taps and actual CW transmissions.

The voltage comparator provides a full output swing whenever the capacitor voltage moves above or below the negative input level, going high when the plus line exceeds the minus and low otherwise. This swing triggers the two-transistor switch to the relay, keying it with definite action. The definiteness of the wave shape controlling the relay is the primary reason for using the comparator to isolate the timing circuit from the relay. Timing circuits tied directly to the 2N2222 base drive both transistors through the linear range, and the relay closes and opens as the voltage and current pass the threshold level for its coil. Neither of these phenomena is desirable. Since transistors draw base current (while the older tube circuit did not draw grid current), the devices are easily overloaded during long delay periods. In addition, many inexpensive low-voltage relays do not open cleanly as the voltage drops slowly, creating some sparking and consequent contact damage. Clean switching to the relay and to the controlling transistors is necessary, and the LM311 (or any similar voltage comparator having a fairly high input impedance and able to work from a single 12-volt line) performs admirably.

The 12-volt relay controls four circuits: receiver mute, VFO, antenna relay, and (possibly) the key line. Since Dow Key relays have grown very expensive, most hams have turned to ordinary heavy-duty contact relays for antenna switching. If the internal contact lines are fairly short, and if the relay is well shielded in a metal box with short leads to the three jacks (antenna, transmitter, and receiver), ordinary units perform well and do not increase SWR. If you have such a relay, however, do not use the extra contacts for key lines, muting or other such purposes, as they will be in a heavy rf field. Use a different relay. The circuit compromise in the SSCWX design does not guarantee that no rf will emerge from the transmitter until the antenna relay has changed over, but it does guarantee that malfunctions in the CWX unit itself will not permit you to pump rf into the receiver. Fig. 3 shows the relay circuit for use with Dow Key and similar rf-shielded relays.

Note that the VFO line shows the grid block voltage being controlled by the CWX relay. This represents a line from the VFO to the CWX to ensure that the grid blocking voltage is off for the entire transmit cycle. Modification for other schemes that help control VFO stability is simple. Some hams prefer to add voltage-controlled diodes to VFOs to shift them off frequency when the key is up, in which case the relay can handle the control voltage instead of the grid block voltage. Whatever the system, I do recommend that you use something to hold a tube-type VFO on for at least the entire transmit period, since the transition from cut-off to full plate current adversely affects short-term VFO stability, and signal quality as well.

Power for the SSCWX comes from a very small supply. The 7812 positive voltage regulator needs no heatsink in this application, but adding one cannot hurt, especially if the unit provides power to other accessories. If so, increase the transformer rating as well, since the entire unit, with two 75-mA relays, requires over two-thirds of the rated 300 mA from the secondary. The requirements for negative voltage are small, and the Zener may not even be required, although it does make the voltage predictable.

construction and adjustment

The entire SSCWX unit fits on a small piece of perf board, cut to fit a standard 5-1/4 x 3 x 5-7/8 inch (13.3 x 7.6 x 14.9 cm) box, with room to spare. The relay and the power transformer are the largest components, as the photograph clearly shows. Layout is not critical. Only the timing potentiometer (1 megohm) goes to the front panel; the other two are PC-board types. IC sockets are handy, and I even mounted the switching transistors in a single eight-pin socket.

fig. 3. Modification of SSCWX for use of a Dow Key or similar rf relay.
The most critical components may be the 0.01-μF bypass capacitors. Voltage ratings for these capacitors are indicated, because some lines may carry fairly high voltages. This is true of the ac line and the key line at both its input and output points. All control lines running from the CWX relay are shielded and bypassed. The object is to be as certain as possible that rf cannot enter the CWX and disrupt any of the circuits.

The power supply diodes are 1N4002 100-PIV units. 1N914s work well in the timing circuit. The key line requires diodes with a PIV rating twice that of the anticipated transmitter key line voltage. 1N4004 (400-PIV) is specified, but anything with a higher voltage rating will work as well. Finally, be sure not to omit the reverse diode across the relay coil; it prevents reverse voltages generated by the collapsing relay coil field from reaching the switching transistor.

Besides the timing potentiometer, the front panel contains only the ac switch, the key jack, and two LEDs, one to indicate that power is on, the other to show that the relay is closed. Although it is possible to use a timing pot with an ac switch, the separate power switch permits you to retain your timing setting from one day to the next. In addition, you might want to consider adding a SPST toggle switch from the +12 volt line to the relay in the collector circuit of the 2N2907; this would provide manual relay switching. The photo shows a phono jack used for the key, but any type will do.

The perf-board construction technique used for this project is good for one-of-a-kind projects in which lead length is no problem. As a group or club project, though, the circuit lends itself to printed-circuit-board fabrication. Build the circuit one step at a time, starting with the power supplies. If you build the remaining circuitry as a unit, at the very least test it progressively by plugging in only one solid-state device between checks. The 1k resistor in the TIL-116 diode line should work for most opto-isolators. The desired value is the highest that will just move the collector voltage (pin 5) from full to zero to full again under keying.

Next, add the LM311 and set the voltage comparator's minus input voltage to about 7 volts. Check the maximum time delay by measuring the output voltage swing. If the time is too long for your taste, increase the negative line reference voltage; if too short, decrease it. Perform these tests by holding the key down for at least one second per test to ensure the timing capacitor is fully charged, then release and time the delay. Be sure also that the supplementary charging voltage is at least a volt below the reference voltage. Once the long time delay is set, you can set the 10k pot so that the supplementary charging voltage is between a half and a full volt less than the reference voltage.

Now check the delay at the minimum end of the line. If the timing pot allows the relay to open and close with every dit for more than 10 degrees of pot adjustment, then increase the series fixed resistor above the 39k value shown. If the relay does not come close enough to following your keying at minimum pot setting, then decrease the value of the fixed resistor. Finally, recheck the timing at the maximum end of the scale and do any final tweaking necessary.

Add the switching transistors, one at a time, and check their operation by measuring the collector voltages. When all is well, plug in the relay. If it operates well, mount the unit in the case. In the model shown in the photo, I set the perf board on 1-inch threaded pillars to keep the relay socket contacts well clear of the case. The only solder connection needed was for the key jack, since all other leads, indicators, and controls pass through the front panel from the rear.

The final test is with your transmitter and receiver.
Plug your key into the SSCWX unit. Be sure that the transmitter key jack is empty initially. Check the receiver mute line to be certain that the relay quiets the unit with the key down. Next, check the antenna relay for correct operation. The VFO control line is next. Finally, with a dummy load, plug the key line into the transmitter key jack. Only after you have tested the unit in this sequence should you put it on the air. In fact, you might want to unplug the key line from the transmitter (or shut the transmitter off) and get the feel of operating with the SSCWX, using only your receiver. It takes a little while to overcome the urge to grab a switch when going from transmit to receive and back again.

Modifications and Other Uses

Listed below are some optional modifications that make the basic circuit a more versatile tool around the shack, and applicable to many projects.

Fig. 4A shows a revision to the input circuit for positive keying voltages. Simply reverse the leads to the diode section of the TIL-116 and change the supply voltage to +12 volts. As shown in **Fig. 4B**, a 4PDT non-shorting rotary switch permits easy conversion from negative to positive line keying. You may want to add indicator lights to this circuit.

The basic circuitry of SSCWX lends itself to almost any timed relay control application. Where isolation is unnecessary, a common NPN switching transistor can replace the opto-isolator. At the other end of the line, small relays with light coil-current demands do not require a double transistor switch. Placing the relay in the collector circuit of the 2N2222 provides reliable service for up to about 50 mA of coil current. This arrangement provides excellent relay switching for CMOS controlled circuits, and the scheme is easily converted to TTL 5-volt levels.

To provide manual relay starting with automatic dropout, we can add a small SCR to the circuit, as shown in **Fig. 5**. Any small plastic (TO-92) or metal (TO-5 to TO-18) case SCR, such as the 2N877 (rated at 30 volts and 0.5 amp) will work well in the circuit;
MODELS TO YOU

NOVAX interfaces your standard 2 meter; 220, 450; etc. Bare station and telephone using a high speed scan switching technique so that you can direct dial from your automobile or with your HT from the backyard or poolside — Automatically. Easy installation transceivers, featuring solid state switching, offer best results. Available interfaced with an ICOM 22U.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>NOVAX I</th>
<th>NOVAX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3 min. Call duration timer</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Up to 45 sec. activity timer</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Single digit Access Control</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>DTMF (Touch Tone) phone connection</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>4 digit Access Control</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Toll Restrict</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>LED Digital Display</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Vinyl covered alum. caset size</td>
<td>5" x 6" x 2"</td>
<td>10" x 6" x 1/2"</td>
</tr>
<tr>
<td>Directly interface with Register</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Rotary Dial System (incl. last digit dial)</td>
<td>NO</td>
<td>YES — "Option" — $48.95</td>
</tr>
<tr>
<td>Ring Back (reverse autopath) "Option"</td>
<td>YES — $39.95; Kit $29.95</td>
<td>YES — Wired $39.95</td>
</tr>
<tr>
<td>Price</td>
<td>Kit $169.95/kit $279.95</td>
<td>Wired only $279.95</td>
</tr>
</tbody>
</table>

N.Y. Set. add approx. Sales Tax

SHIPPING ADD $5.00 in U.S.A.

To order, send check, money order to:

DEVELOPMENT CORPORATION
Box 162 - Tudman Rd.
Westmoreland, N.Y. 11460
or Phone 315-629-2785

Write for information.

THERE IS A DIFFERENCE IN QUARTZ CRYSTALS

International's leadership in crystal design and production is synonymous with quality quartz crystals from 70 KHz to 160 MHz. Accurately controlled calibration and a long list of tests are made on the finished crystal prior to shipment.

That is why we guarantee International crystals against defects, material and workmanship for an unlimited time when used in equipment for which they were specifically made.

Orders may be placed by Phone: 405-236-3741.

Write for information.

The SCR gate circuitry provides a low voltage and current to trigger the gate. For more rapid gate voltage decay after release of S1, parallel a 100 kilohm, 1/4-watt resistor across the 0.1-pF capacitor. Although all circuit values have worked well for several unmarked SCRs in TO-92 cases, adjust the voltage divider and series gate resistor values to suit the devices you have on hand.

The circuit in fig. 5 has numerous uses. Without the SCR, a train of digital pulses will key and hold the relay until a specified time after the last one. With the SCR, the relay pulls in upon manual starting with S1, a handy feature with very narrow passband CW audio filters. The use of an LED indicator in the filter, to indicate visually when the signal is locked, permits switch-over to the filter with no loss of copy while trying to tune the filter to the signal (or vice versa). A similar system can eliminate readout garbage in RTTY systems.

The SSCWX switching system provides a sound basis for designing time-controlled relay switching systems for many applications. Apart from the relay, which may range in size from DIP scale to one inch square and two high, the circuit requires a couple of square inches of perf or etched board space, plus the panel pot and any toggle switches. The solid state CWX unit is small enough (including power supply) to mount inside the cabinet of most older transmitters and receivers. There is room on most front panels for the few controls required. On the DX-60, for example, the audio gain control is convertible to CWX duty if the a-m feature is dispensable. A little rewiring of the key jack finishes the job, since the indicator lights are no longer needed. The only precaution is to be sure that the SSCWX is well shielded and bypassed from the DX-60’s rf.

Hidden or in the open, the SSCWX makes a good addition to any shack using separate units to transmit and receive. The ease my old CWX gave to my CW operations back in the '60s made it deserving of an update. SSCWX is that update. The basic circuit and its variations can solve relay switching problems for most any ham or experimenter.
DESIGN MATE™ 2B LOW COST, HAND HELD FUNCTION GENERATOR

SPECIFICATIONS

Frequency Range: 10 Hz to 100 KHz in four ranges; 50 increment 10/1 calibrated dial calibrated within ± 5% of setting at 10 Hz, 1 kHz and 100 KHz, 10 KHz.

Waveforms: Sine Wave: 2% THD over Frequency Range (Typical 1%); Triangle Wave: linearity better than 1% over frequency range; Square Wave: rise and fall times 200 nsec (Typical 100 nsec).

Outputs: Sine/Triangle — switch selectable; amplitude 0.1V to 10V peak to peak, impedance 600 Ohms; Square Wave — amplitude 0.1V to 10V peak to peak, impedance 600 Ohms.

Power Req.: 105 - 125 VAC, 50/60 Hz, 2.5 Watts

Size: 6.25" x 3.75" x 2"

MODEL NO. DM-2B
STOCK NO. 15-0102

INCLUDES ALBIA'S FULL SATISFACTION WARRANTY

$99.99

LOW COST FREQUENCY METER MODULE DM-11 “5Hz to 100MHz”

Measure frequencies from 5Hz to 100MHz on your digital Voltmeter with a resolution of 3½ digits — easy to use — perfect for field service — lab testing — home hobbyists! Connect the DM-11 to your DVM, set the DVM to the 2VDC range, connect a signal to the DM-11 via a BNC cable (not included) and measure the frequency of any source. Hi Lo Range LEDs ensure fast, accurate readings.

SPECIFICATIONS

- Frequency Range: 5Hz to 100MHz
- Input Impedance 1 MegOhm
- Input Sensitivity: 100Hz 80MV, 100KHz 30MV, 600Hz 70MV
- Size: 6.25" x 3.75" x 2"
- External 9V DC power supply included
- BNC input cable accessory Model PSA-2

Stock No: 110027 add $14.99

MODEL NO. DM-11
STOCK NO. 15-0011

$69.00

LOW COST DM-8 CAPACITANCE METER MODULE

Connect this high quality low cost Capacitance Meter Module, DM-8 to your digital Volt Meter and turn it into a Digital Capacitance Meter — the Low Cost Way!

SPECIFICATIONS

- 2V output
- Accuracy better than 5%
- Push to read range (button) from 1 pF to 20,000 F
- Zero Calibration control
- In one easy to use, self-contained package
- Battery powered, with “push to read” battery saver circuit (9V batteries not included)
- Size: 6.25" x 3.75" x 2"
- Includes Model 336 Test Clips

MODEL NO. DM-8
STOCK NO. 15-0008

Includes Albia's Satisfaction Warranty

$79.99

CALL TOLL FREE 1-800-243-6953

9 AM 5 PM EST

More Details? CHECK—OFF Page 121

March 1983
capacitively coupled hybrids

These devices can be used to divide, combine, or phase-shift power for Amateur applications.

Do you need a device that can split or combine power? How about a phase shifter or a circular polarizer? Power can be divided, combined, sampled, or phase-shifted in any increment by using a hybrid. A capacitively coupled hybrid is easily constructed and very compact.

The capacitively coupled hybrid is a four-port device consisting of two transmission lines. Output power at one port of the coupled transmission line is dependent on the direction of propagation in the main transmission line. In fig. 1, a wave traveling from port 1 (input) to port 2 is coupled to port 4. Ideally, no power appears at the isolation port 3. A wave traveling in the opposite direction, from port 2 to port 1, is coupled to port 3, indicating any mismatch at port 4. The coupling factor determines the amount of power coupled from the main line to the power output at the coupled-line output port, assuming matched loads present at all ports.

General expression

$$\text{Coupling} = 10 \log_{10} (P_1/P_4) \text{dB} \quad (1)$$

Coupling factor for the capacitively coupled hybrid

$$\text{Coupling (dB)} = 20 \log_{10} \cos \theta \quad (2)$$

where θ is the electrical length of the transmission line. The capacitive reactance of the coupling capacitor is:

$$X_c = Z_o \cdot \tan \theta \quad (3)$$

where Z_o is the impedance of the transmission line. The line impedance is equal to the termination impedance at each port. The value of capacitance is:

$$C_c = \frac{1}{2\pi f X_c} = \frac{1}{2\pi f Z_o \tan \theta} \quad (4)$$

Because the device is reciprocal, a wave incident at port 2 is coupled to port 3 by the same coupling factor.

The hybrid described here is smaller than the Wilkinson hybrid (described in an earlier article), easy to construct, and displays improved amplifier performance. The principal disadvantage of this hybrid is its limited bandwidth of 10 percent. This, however, is still adequate for most Amateur use.

coupler operation

A wave traveling to the right (port 1 to port 2) on the main transmission line will have a portion of its energy coupled to the second transmission line at each end by capacitors. It is assumed that there is no inductive coupling. The two signals arriving from both paths at port 4 are in phase and combine. The signals at port 3 are also equal (fig. 1B) but 180 degrees out-of-phase and cancel. The longer path always has 180 degrees more phase shift because of the transmission lines. (The phase shifts that result

By Ernie Franke, WA2EWT, 63 Hunting Lane, Goode, Virginia 24556

70 March 1983
from the coupling capacitors cancel out because they are present in both paths.)

In case of a wave traveling in the reverse direction (port 2 to port 1), the coupled energy combines at port 3 and cancels at port 4, with the capacitively coupled transmission lines acting as a directional coupler. A sample of the energy from a forward wave appears at port 4. A sample of the reflected wave appears at port 3. The ratio of power at port 3 to power at port 4 yields the return loss.

\[
\text{return loss} = -10 \log_{10}\left(\frac{P_3}{P_4}\right) = -10 \log_{10}\left(\text{reflected power/forward power}\right)
\]

directional coupler

One's first thought would probably be to use the hybrid for measuring standing wave ratios. A detector placed at port 4 would indicate forward power, while a detector at port 3 would indicate reflected power. But how isolated are the two readings? How well is port 3 isolated from port 4?

Directivity is a measure of how well port 3 is isolated from port 4 with respect to power entering at terminal 1. Directivity is defined as:

\[
directivity = 10 \log_{10}\left(\frac{P_4}{P_3}\right)
\]

fig. 1. The capacitively coupled hybrid functions because of phased combining of signals from different paths. See text.

fig. 2. The theoretical response of the hybrid shows that, for reasonable performance, it has about a 10 percent bandwidth.
Backed by over 54 years of experience, Harvey continues to offer the broadest selection and finest service available for the amateur radio community. This experience has taught us that the ham needs special treatment and that is why Harvey has established a special division dedicated to the needs of the U.S. and foreign ham alike.

One thing is for certain. A ham will never get the run around from Harvey. If we don’t have something in stock, we say so and will order it for you—or—tell you where to get it. However, we are sincerely dedicated to the ham community and, as a result, our expansive inventory means that, more than likely, we will have what you are looking for in stock.

The theoretical response of the capacitively coupled hybrid is shown in fig. 2. The input return loss and directivity are better than 20 dB (VSWR ≤ 1.2:1) over a 10 percent bandwidth. The deviation from its nominal coupling is plotted for coupling from port 1.

fig. 3. Models constructed using semi-rigid coax perform close to theoretical at VHF.
Micro strip hybrid.

Transmission line hybrid.

Lumped-constant hybrid.

Artwork for 435-MHz 3 dB coupler.
Table 1. Design equations for transmission line and pi lumped-constant hybrids.

\[\theta = \cos^{-1} 10^{-\frac{k}{20}} \]
\[C_c = \frac{1}{2\pi f Z_o \tan \theta} \]

Transmission-line hybrid

\[L = \left(\frac{Z_o}{2\pi f} \right) \sqrt{1 - 10^{-\frac{k}{10}}} \]
\[C_s = \left(\frac{1}{2\pi f Z_o} \right) \sqrt{\frac{10^{k/20} - 1}{10^{k/20} + 1}} \]
\[C_c = \left(\frac{1}{2\pi f Z_o} \right) \sqrt{\frac{1}{10^{k/10} - 1}} \]

Pi lumped-constant hybrid

where \(K = 10 \log_{10} \frac{P_i}{P_o} \) absolute coupling

\(Z_o \) = termination impedances

\(\theta \) = electrical transmission line length

Fig. 4. (A) The hybrid may be formed by using the T or pi section artificial lines. (B) A complete hybrid.

Fig. 5. The theoretical response of the lumped-constant version of the hybrid is not as good as that of the transmission-line model.
microstrip hybrids. The artwork for a 435-MHz, 3-dB coupler is also shown for use on 1/16-inch, one-ounce Teflon-glass printed-wire board.

lumped constant coupler

The capacitively coupled hybrid may be formed with lumped constants in place of the coaxial cables. An artificial transmission line may be formed using lumped constants configured as a T section or a pi section, as shown in fig. 4A. The pi section is usually chosen to simulate the transmission line because it involves only one inductor and acts as a lowpass filter. The lowpass filter decreases harmonic energy, and inductors are more difficult to measure exactly than capacitors.

The values for the T artificial line are given as:

$$L_T = Z (1 - \cos \theta)/2\pi f \sin \theta$$ \hspace{1cm} (7)

$$C_T = \sin \theta/Z/2\pi f$$ \hspace{1cm} (8)

where Z refers to the input and output impedances and θ is the phase delay through the network.

For a pi network the needed inductance and capacitance are calculated from:

$$L_p = Z \sin \theta/2\pi f$$ \hspace{1cm} (9)

$$C_p = (1 - \cos \theta)/Z/2\pi f \sin \theta$$ \hspace{1cm} (10)

table 2. Component values for transmission-line and pi lumped-constant hybrids.

<table>
<thead>
<tr>
<th>coupling (dB)</th>
<th>line length θ (deg.)</th>
<th>fractional wavelength (λ/λ_0)</th>
<th>coupling capacitance $(1 + f$ in MHz) (pF)</th>
<th>series inductance $(1 + f$ in MHz) (nH)</th>
<th>shunt capacitance $(1 + f$ in MHz) (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>45.0</td>
<td>0.125</td>
<td>3183</td>
<td>5,627</td>
<td>1,318</td>
</tr>
<tr>
<td>4</td>
<td>50.9</td>
<td>0.141</td>
<td>2589</td>
<td>6,174</td>
<td>1,514</td>
</tr>
<tr>
<td>5</td>
<td>55.8</td>
<td>0.155</td>
<td>2165</td>
<td>6,580</td>
<td>1,685</td>
</tr>
<tr>
<td>6</td>
<td>60.0</td>
<td>0.167</td>
<td>1638</td>
<td>6,886</td>
<td>1,835</td>
</tr>
<tr>
<td>10</td>
<td>71.6</td>
<td>0.199</td>
<td>1061</td>
<td>7,549</td>
<td>2,294</td>
</tr>
<tr>
<td>15</td>
<td>79.8</td>
<td>0.222</td>
<td>575.2</td>
<td>7,831</td>
<td>2,659</td>
</tr>
<tr>
<td>20</td>
<td>84.3</td>
<td>0.234</td>
<td>320</td>
<td>7,918</td>
<td>2,879</td>
</tr>
<tr>
<td>25</td>
<td>86.8</td>
<td>0.241</td>
<td>179.3</td>
<td>7,945</td>
<td>3,007</td>
</tr>
<tr>
<td>30</td>
<td>88.2</td>
<td>0.245</td>
<td>100.7</td>
<td>7,954</td>
<td>3,084</td>
</tr>
</tbody>
</table>

table 3. Component values for Amateur band transmission-line and pi lumped-constant hybrids.

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>coupling (dB)</th>
<th>coupling capacitance (pF)</th>
<th>series inductance (nH)</th>
<th>shunt capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.750</td>
<td>3</td>
<td>849</td>
<td>1,500</td>
<td>352</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>85.3</td>
<td>2,112</td>
<td>768</td>
</tr>
<tr>
<td>7.150</td>
<td>3</td>
<td>445</td>
<td>787</td>
<td>184</td>
</tr>
<tr>
<td>14.175</td>
<td>3</td>
<td>225</td>
<td>397</td>
<td>930</td>
</tr>
<tr>
<td>21.225</td>
<td>3</td>
<td>150</td>
<td>265</td>
<td>62.1</td>
</tr>
<tr>
<td>28.850</td>
<td>3</td>
<td>110</td>
<td>195</td>
<td>45.7</td>
</tr>
<tr>
<td>52</td>
<td>3</td>
<td>61.2</td>
<td>108</td>
<td>25.4</td>
</tr>
<tr>
<td>146</td>
<td>3</td>
<td>6.15</td>
<td>152</td>
<td>55.4</td>
</tr>
<tr>
<td>222</td>
<td>3</td>
<td>21.80</td>
<td>38.50</td>
<td>9.03</td>
</tr>
<tr>
<td>435</td>
<td>3</td>
<td>14.3</td>
<td>54.20</td>
<td>19.7</td>
</tr>
<tr>
<td>1296</td>
<td>3</td>
<td>7.37</td>
<td>12.90</td>
<td>3.03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.74</td>
<td>18.20</td>
<td>6.62</td>
</tr>
</tbody>
</table>

March 1983
Several equal-split hybrids were constructed using lumped constants. The graph of the input return loss shows that the lumped constant version has slightly less bandwidth than the lightly coupled transmission line version (≈ 10 dB). At frequencies below 100 MHz the length of transmission line is too great for compact implementation. Values for the construction of transmission-line or lumped-constant, capacitively coupled hybrids are catalogued in Table 2. Values for each of the Amateur bands are given in Table 3.

Lumped-constant models were constructed for several Amateur bands. The results for 3-dB and 20-dB couplers are shown in Figs. 6 and 7. The 3-dB hybrid is commonly used for power splitting/combining, while the 20-dB hybrid is normally used as a

\[\cos \theta = 10 - K/20 \]

where K is the coupling between port 1 and port 4 in decibels, into the above equations for the pi network and using a few trigonometry identities, we arrive at the design equations for the lumped-constant, capacitively coupled hybrid given in Table 1.

A capacitively coupled hybrid is shown in Fig. 4B. The predicted response of the lumped constant version is shown in Fig. 5. The graph of the input return loss shows that the lumped constant version has slightly less bandwidth than the lightly coupled transmission line version (≈ 10 dB). At frequencies below 100 MHz the length of transmission line is too great for compact implementation. Values for the construction of transmission-line or lumped-constant, capacitively coupled hybrids are catalogued in Table 2. Values for each of the Amateur bands are given in Table 3.

Lumped-constant models were constructed for several Amateur bands. The results for 3-dB and 20-dB couplers are shown in Figs. 6 and 7. The 3-dB hybrid is commonly used for power splitting/combining, while the 20-dB hybrid is normally used as a

\[\cos \theta = 10 - K/20 \]

where K is the coupling between port 1 and port 4 in decibels, into the above equations for the pi network and using a few trigonometry identities, we arrive at the design equations for the lumped-constant, capacitively coupled hybrid given in Table 1.

A capacitively coupled hybrid is shown in Fig. 4B. The predicted response of the lumped constant version is shown in Fig. 5. The graph of the input return loss shows that the lumped constant version has slightly less bandwidth than the lightly coupled transmission line version (≈ 10 dB). At frequencies below 100 MHz the length of transmission line is too great for compact implementation. Values for the construction of transmission-line or lumped-constant, capacitively coupled hybrids are catalogued in Table 2. Values for each of the Amateur bands are given in Table 3.

Lumped-constant models were constructed for several Amateur bands. The results for 3-dB and 20-dB couplers are shown in Figs. 6 and 7. The 3-dB hybrid is commonly used for power splitting/combining, while the 20-dB hybrid is normally used as a
directional coupler. The results agree quite well with the theoretical values shown as a solid line. The responses could be adjusted for perfect agreement if one used greater precision in component selection. Capacitors with marked values close to the calculated values were used in these hybrids. With matched terminations on each port, the inductor closest to the input port is adjusted for best return loss. The input was then applied to port 4 with all the other ports terminated and the match adjusted using the other inductor. Spreading or squeezing of the inductor is determined using a “diddle” stick. This stick is constructed by gluing a piece of brass to one end of a plastic stick and a piece of ferrite to the other end. If the performance improves with the proximity of brass, the coil needs to be spread for less inductance. The coupling between transmission lines is mainly a factor of the coupling capacitance. The capacitance is easily measured using a digital capacitance meter.

The most popular use for the capacitively coupled hybrid is splitting the input and combining the output power from two transistors in a power amplifier, see fig. 8. The transistors remain isolated from each other. Isolation is a measure of how much of the power incident at port 1 appears at the isolation port 3. It is also the same as the reflected power at port 4 appearing at port 2, because the device is reciprocal. Isolation is equal to the coupling (port 1 to port 4) plus the directivity. For this hybrid the isolation between ports 1 and 3 or between ports 2 and 4 is the same as the input return loss. Thus one can expect the mismatched power at the input to one transistor to be reduced by 20 dB (X100) before appearing at the input to the other transistor. This isolation improves stability by decreasing interaction. Any mismatch difference at the input to the two transistors appears at the isolation port. If the mismatch is identical the hybrid still provides a good input match, and no power appears at the isolator port. Power at the isolation port of the output hybrid indicates gain differences of the transistors.

intermodulation performance

With respect to a signal applied to input port 1, the output signals at ports 2 and 4 on a 3-dB hybrid are 90 degrees out of phase. One advantage that the 90-degree hybrid has over the Wilkinson combiner is the improvement in amplifier output intermodulation performance. A signal (F1) from a nearby interfering transmitter coupled through the transmitting antennas mixes with the second harmonic of the amplifier (2F0) at the collector in a power amplifier to form an intermodulation product (2F0 ± F1). This mixing product is typically close to the desired carrier frequency and thus very difficult to filter. Examination of the 90-degree hybrid shows that the intermodulation products (F1M) from the amplifier shown...
in fig. 8 combine at the output port 180 degrees out of phase to cancel out, fig. 9. The round trip path of one interference-intermodulation signal is 180 degrees longer than the round trip path to the other transistor.

![Diagram of phase shifter, SWR meter, circular polarizer, and mixer](image)

fig. 10. The capacitively coupled hybrid may be used as an (A) phase shifter, (B) SWR meter, (C) circular polarizer, and (D) mixer.

As long as each collector provides identical terminations to the combiner hybrid, the level of the intermodulation signal at the output port should be reduced by the value of the input return loss, graphed for each hybrid.

other uses

The 3-dB coupler may be used as a phase shifter for varying the phase in one leg of a phased array. See fig. 10A. These antenna systems typically cover a single Amateur band. By varying the purely reactive load at ports 2 and 4 the phase may be adjusted over 180 degrees. The standing wave ratio coupler shown in fig. 10B uses a 20-dB hybrid. The measured return loss is given as

\[\text{return loss (dB)} = -20 \log_{10} \frac{V_2}{V_1} \tag{12} \]

if peak detector diodes are used. A 3-dB quadrature hybrid may be used to induce circular polarization in a pair of crossed dipoles, fig. 10C. By using a 3-dB hybrid to establish a 90-degree phase shift, a receiver mixer \(^4\) can be formed, fig. 10D. The input signal and local oscillator are isolated typically by 30 dB over a 4 percent bandwidth. The additional quarter-wave line at port 2 is used to establish an additional 90-degree phase shift with respect to port 4. Thus the mixer diodes are driven 180 degrees out of phase with respect to each other and the local oscillator signal is balanced at the i-f port.

references

Ham Radio
The TR7A and R7A offer performance and versatility for those who demand the ultimate!

TR7A Transceiver
- CONTINUOUS FREQUENCY COVERAGE — 1.5 to 30 MHz full receive coverage. The optional AUX7 provides 0 to 1.5 MHz receive plus transmit coverage of 1.8 to 30 MHz, for future Amateur bands. MARS, Embassy, Government or Commercial frequencies (proper authorization required).
- Full Passband Tuning (PBT) enhances use of high rejection 8-pole crystal filters.
- New! Both 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity are standard, plus provisions for two additional filters. These 8-pole crystal filters in conjunction with careful mechanical/electrical design result in realizable ultimate rejection in excess of 100 dB.
- New! The very effective NB7 Noise Blanker is now standard.
- New! Built in lightning protection avoids damage to solid-state components from lightning induced transients.
- New! Mic audio available on rear panel to facilitate phone patch connection.
- State-of-the-art design combining solid-state PA, up-conversion, high-level double balanced 1st mixer and frequency synthesis provided a no tune-up, broadband, high dynamic range transceiver.

R7A Receiver
- CONTINUOUS NO COMPROMISE 0 to 30 MHz frequency coverage.
- Full passband tuning (PBT).
- New! NB7A Noise Blanker supplied as standard.
- State-of-the-Art features of the TR7A, plus added flexibility with a low noise 10 dB rf amplifier.
- New! Standard ultimate selectivity choices include the supplied 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity. Capability for three accessory crystal filters plus the two supplied, including 300 Hz, 1.8 kHz, 4 kHz, and 6 kHz. The 4 kHz filter, when used with the R7A's Synchro-Phase a-m detector, provides a-m reception with greater frequency response within a narrower bandwidth than conventional a-m detection, and sideband selection to minimize interference potential.
- Front panel pushbutton control of rf preamp, a-m/ssb detector, speaker ON/OFF switch, i-f notch filter, reference-derived calibrator signal, three agc release times (plus AGC OFF), integral 150 MHz frequency counter/digital readout for external use, and Receiver Incremental Tuning (RIT).

The “Twins” System
- FREQUENCY FLEXIBILITY. The TR7A/R7A combination offers the operator, particularly the DX'er or Contestor, frequency control agility not available in any other system. The “Twins” offer the only system capable of no-compromise DSR (Dual Simultaneous Receive). Most transceivers allow some external receiver control, but the “Twins” provide instant transfer of transmit frequency control to the R7A VFO. The operator can listen to either or both receiver’s audio, and instantly determine his transmitting frequency by appropriate use of the TR7A’s RCT control (Receiver Controlled Transmit). DSR is implemented by mixing the two audio signals in the R7A.
- ALTERNATE ANTENNA CAPABILITY. The R7A’s Antenna Power Splitter enhances the DSR feature by allowing the use of an additional antenna (ALTERNATE) besides the MAIN antenna connected to the TR7A (the transmitting antenna). All possible splits between the two antennas and the two system receivers are possible.

Specifications, availability and prices subject to change without notice or obligation.

See your Drake dealer or write for additional information.

COMING SOON: New RV75 Synthesized VFO
Compatible with TR5 and 7-Line Xcvrs/RCvr
- Frequency Synthesized for crystal-controlled selectivity
- VRT0 (Variable Rate Tuning Oscillator*)
- Resolution to 10 Hz
- Three programmable fixed frequencies for MARS, etc.
- Split or Transceive operation with main transceiver PTO or RV75

R. L. DRAKE COMPANY • 540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017

* Patent pending
SPECIAL FACTORY PURCHASE!
Hurry, limited quantities! Call today!

DENTRON Clipperton QRO linear amplifier
This full power linear features 2000 watts PEP input on SSB and 1000 watts DC input on CW, RTTY or SSTV. Covers 160 thru 15 meters including most MARS frequencies. High/low power switching with bypass switch for "barefoot" operation. Continuous duty power supply. Operates from 117V or 234V AC, 50-60 Hz. 50 ohms impedance.

599.50 List Price 799.50 Item No. DENG/RO7
Add 9.94 shipping & handling

DENTRON Clipperton V linear amplifier
A super special buy on this linear! Covers from 144-148 MHz, RF actuated or hard wire keying. Features plate current/plate voltage monitor, adjustable bias and adjustable VOX for SSB, CW, FM and AM. 500 watts PEP, 400 on CW, FM, AM. Power requirements switchable from 117V AC to 234V AC.

199.95 List Price 599.50 Item No. DENCLIPV
Add 9.55 shipping & handling

DENTRON all band doubler
Ideal for use with your antenna tuner. Covers 160 through 10 meters, with maximum power handling capacity of 2 KW PEP. Center fed with PVC covered 470 ohm balanced feedline. Trapless design for maximum efficiency. Erect in any configuration desired: inverted V, flat top, or sloper. Completely factory assembled. Direct your signal with this quality antenna from Dentrtron!

29.50 Item No. DENDOUBLET
Add 2.14 shipping & handling

DENTRON Big Dummy antenna load
Handles up to 1 KW continuous carrier for 10 minutes or 2 KW PEP for 20 minutes. Duty cycle: 50%. Frequency coverage: 1.8 to 30 MHz with VSWR or 1.05 or better. Uses high grade industrial cooling oil. Standard SO-239 connector. Impedance: 50 ohms. Fully assembled and warranted. Complete with 1 gallon of transformer oil. Order today by mail or phone!

29.50 Item No. DENBIGDUMMY
Add 3.31 shipping & handling

CUBIC COMMUNICATIONS
WM-2000A peak reading SWR/wattmeter
Precision, in-line wattmeter reads PEP or RMS power. Covers 1.8 to 30 MHz and indicates power in ranges of 0 to 200, 1000 and 2000 watts. SWR range: 1:1 to 3.1. Large, easy to read meter with accuracy of ± 2% on power and ± 3% on SWR. For directional coupler. Impedance: 50 ohms. Requires 117V AC. A "must" for your station!

69.00 List Price 100.00 Item No. SWAWM2000A
Add 1.94 shipping & handling

Long's Electronics

MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM, AL 35202 • STREET ADDRESS: 3131 4TH AVENUE SOUTH BIRMINGHAM, AL 35233

Tell 'em you saw it in HAM RADIO!
Complete satellite TV system $1795!

10 FT. PARABOLIC DISH

List Price 3985.00
Item No. MISSY83
Shipped Freight Collect

What the system will do:
You can receive up to 60 channels of TV direct from satellites to your home receiver. Movies, sporting events, religious programs, other TV stations and much more.

What the system includes:
1. 10 ft. fiberglass dish made of reflective metal bonded with fiberglass. Weather resistant and virtually maintenance free. Comes in 4 sections for easy assembly.
2. Single-pole polar mount complete with azimuth and elevation adjustments for easy satellite-to-satellite tracking.
3. LNA mount complete with rotor for adjusting horizontal and vertical polarity of LNA. Extension poles not included.
4. KLM-32 receiver consists of two parts: receiver and downconverter. The receiver can be placed indoors and linked to the downconverter by remote cable. Features scan, video inversion, LED signal strength indicator, fine tuning and audio level control.
5. Amplica ADC306305 120° low noise amplifier. Takes the weak signals reflected by the dish and amplifies them so that they can be converted to a TV picture. Uses GaAs FET transistors and is powered via coax feed line. Urethane coated for weather resistance.
6. Chaparral feed horn. Provides 0.5 dB gain improvement over conventional rectangular horns for superior picture and sound quality. Virtually eliminates system noise.

Note: Customer provides all cables. Approximate cost $800. Customer must feed audio and video through VCR or use RF modulator ($59).

Read all about Satellite TV!

9.95

Add 1.36 shipping & handling
Item No. BOOTA1409

At last! A complete guide to satellite TV!
"Build a Personal Earth Station for Worldwide Satellite TV Reception"
A complete guide to gaining access to the large amount of TV programming available from satellite transmissions. You can choose to build your own system or purchase one ready-to-operate, and both ways are thoroughly covered in this book. It begins with a review of basic television fundamentals and satellite transmission and reception. Building your own system is covered and the complicated task of installing the antenna and aiming it to pick up the signals you want is simplified. There's even a complete list of available satellite programming.

Call Toll Free 1-800-633-3410

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

More Details? CHECK — OFF Page 121
March 1983
81
Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for 1 day delivery with a full 1 year warranty.

- Output level flat to within 1.5db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

TE-12PA

67.0 XZ	85.4 YA	103.5 YA	127.33 A	156.75 A	192.67 A
71.9 XA	86.5 YB	107.21 B	131.83 B	162.25 B	203.5 M1
74.4 WA	91.5 ZZ	110.92 Z	136.54 Z	167.96 Z	
77.0 XB	94.8 ZA	114.82 A	141.34 A	173.86 A	
79.7 SP	97.4 ZB	118.82 B	146.24 B	179.96 B	
82.5 YZ	100.0 12	123.03 Z	151.45 Z	186.27 Z	

- Frequency accuracy, ± .1 Hz maximum - 40°C to +85°C
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB

TEST-TONES:	TOUCH-TONES:	BURST TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805	1800	2100	2350			

- Frequency accuracy, ± 1 Hz maximum - 40°C to +85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

$89.95
TWO NEW HITS from KENWOOD!

TS-930S

DX-traordinary
The TS-930S is a solid state HF transceiver that covers all Amateur bands from 160-10 meters and incorporates a 150 kHz to 30 MHz general coverage receiver. The TS-930S has SSB slope tuning, CW VBT, IF notch filter, CW pitch control, dual digital VFO’s, full QSK and optional built-in antenna tuner. Eight memory channels, dual mode (pulse or woodpecker) noise blanker, IF notch filter and RF speech processor are just a few of the additional features. Full line of accessories too.

Call Pete today to find out exactly what it will cost you to own this state-of-the-art transceiver.

Scan The World
The R-2000 is an all solid state 150 kHz-30 MHz receiver. It has: Digital VFO, 10 memories, band scan, dual 24 hour clocks, 50 Hz, 500 Hz or 5 kHz scan rates, programmable memory or band scan. The R-2000 also has three IF filters with narrow/wide switch and has an effective noise blanker built in. All this and more at a price you can afford.

Call Pete today for your price.

CW has the complete line of Kenwood radios from HF through UHF in stock.
CW also stocks a complete line of accessories and options.

Call Pete today for your very special CW price. 1-800-525-6147
In Colorado call: 832-1111

CW ELECTRONIC SALES CO. 800 LINCOLN STREET DENVER, CO 80203
YOUR ONE STOP SHOP FOR COMMUNICATION EQUIPMENT

More Details? CHECK-OFF Page 121

March 1983 83
last minute forecast

DX conditions on 10, 15, and 20 meters are expected to peak during the second and third weeks of this month because of high MUFs resulting from increased solar activity. Disturbed conditions, because of solar flare emissions, are expected on the 10th and 18th. Other periods of geomagnetic and ionospheric (recurrent) disturbances are likely the 1st and 27th because of enhanced solar wind from coronal holes. Nighttime DX on the lower bands should continue to be good during the entire month, with best performance during the first and last weeks.

With the advent of the vernal equinox this month (21st), gray-line DXing should occur during both local sunrise and sunset. North/south paths over the polar regions should be useful, during lulls in geomagnetic storm activity. Geomagnetic disturbances, which are more evident as the equinox approaches, cause considerable signal attenuation and fading on polar paths. (Gray-line operation is explained in *ham radio*, September, 1982, page 56, and *CQ Magazine*, September, 1975, page 27).

band-by-band summary

Ten, fifteen, and twenty meters will be open from morning to early evening almost every day, and to most areas of the world. The openings will be shorter on the higher bands and occur more frequently at local noon. Trans-equatorial propagation will be more likely on these bands during conditions of high solar flux and a disturbed geomagnetic field.

Thirty meters will be useful almost twenty-four hours a day. Daytime conditions will resemble those on 20 meters, except that signal strengths may decrease during midday on some days, those days coinciding with high solar flux values. Nighttime use will be good except following days of very high MUF conditions. Generally, the usable distance is expected to be greater than achieved on 80 at night but less than that on 20 meters during the day.

Forty, eighty, and one-sixty meters are the night DXer’s bands. The bands are open just before sunset and last until sunrise, local time. Except for daytime short-skip signal strengths, high solar flux values won’t greatly affect these bands.
Look at next higher band for possible openings.

<table>
<thead>
<tr>
<th>March 1983</th>
<th>85</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EASTERN USA</th>
<th>MID USA</th>
<th>WESTERN USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPAN</td>
<td>OCEANIA</td>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>FAR EAST</td>
<td>ANTARCTICA</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUTH AMERICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Diagram includes world map with various time zones labeled.
INTRODUCING the
UNIVERSAL COMMUNICATION’S DL2000
SATELLITE TV RECEIVER
The LATEST in state-of-the-art
TVRO Equipment List Price $749.95 each

FEATURES:
- Built in modulator
- Built in scan to aid in satellite tracking
- Built in metering
- True wide band threshold extension
- Video polarity shift
- Variable sound tuning
- Active clamping circuit, true clamp not diode
- Atmospheric tested down to – 50F
- Local oscillator leakage minimized by special mixer design
- Add-on remote control

Our product may be copied, but the performance is never equalled.

Universal Communications
P.O. Box 339
Arlington, Texas 76004-0339 (817) 860-1641

CODE PRACTICE TAPES FROM
HRPG — Practice copying Morse Code anytime, anywhere. Whether you're upgrading your present license or just trying to up your code speed, a large assortment allows you to choose exactly the kind of practice you need.

each tape $4.95 2/$8.95 3/$12.95

CODE PRACTICE TAPES

HI/LO SERIES — Code Study Tapes

In this unique series, characters are sent at high speeds with long pauses between each character. For example, HLC4 (15/2.5 wpm) consists of characters sent at a 15 wpm rate, but with 2.5 wpm spacing between each character. These tapes are excellent for the beginner who wants to practice copying higher-speed code without the frustration of constantly getting behind.

each tape $4.95 2/$9.95 3/$14.95

3 STUDY TAPES

Quality Communication Products Since 1952

At your Distributors wire or call

10 Canal Street, Bristol PA 19007
(215) 788-5581

Ham Radio's Bookstore

Greenville, NH 03048

Tell 'em you saw it in HAM RADIO!
IT PAYS TO TALK TO "UNCLE BEN"

SEE THE NEW YAESU FT 77 AND FT 980

Earliest delivery...great trades...big discounts... and all with my old-time reliable, friendly service.

NEW!
COMPUTER DIVISION
Call us toll free for lowest discount prices on:
TEXAS INSTRUMENTS
ATARI
COMMODORE
FRANKLIN
KANTRONICS INTERFACE
HAMSOFT ... and more.

CALL ME...
Toll Free 1-(800) 645-9187
New York 1-(516) 293-7995

Toll Free (800) 645-9187
New York (516) 293-7995

SEE ME...
At one of the world's largest Ham Supply Centers!
We ship anywhere!

"Uncle Ben" Snyder, W2SOH
the head man of

HARRISON RADIO

"HAM HEADQUARTERS, USA"
...Since 1925!

FT-77

FT-980

FT-102

FT-208R

FT-ONE
CW zero-beat indicator for transceivers

For many CW operators who use transceivers, zero beating the station they are working is very difficult. I, too, had this problem, and after several years of searching for an answer I devised the circuit illustrated in fig. 1. It puts me within 50 Hz of the frequency of the station I am working.

Terminal A (see fig. 1) is connected to the audio output line of my transceiver. When I am zero beat with the CW station I'm working, the LED lights when the other operator keys his transmitter. If the LED does not light, my rig is not zero beat.

The LM567 (U1) contains an oscillator, with output frequency controlled by the value of R1 and C1. The value of R1 is adjusted so the LM567 oscillator frequency is equal to the offset frequency of your transceiver. The LM567 output is brought out at pin 8 and is an open collector. As you examine fig. 1, you will see that the collector load for the output transistor is the LED and R3, which are connected to +5 volts. When the input frequency to terminal A is equal to the LM567 oscillator frequency, the transistor is turned on and the LED lights up to provide an indication that the audio frequency entering terminal A is equal to the oscillator frequency.

The amplitude of the audio signal fed to terminal A will effect the bandwidth (the band of frequencies that will cause the LED to light). If the LM567 oscillator is one kHz, and the input signal at pin 3 is 300 mVp-p, the bandwidth of this circuit will be approximately 350 Hz. Under this condition, you will get a zero beat indication when the audio input signal is at any frequency between 825 and 1175 Hz. So, you may be off-frequency by 175 Hz and still get a zero beat indication. We can do much better than this, however. A 25 mVp-p signal on pin 3 will provide a 100 Hz bandwidth and the most that you will be off is 50 Hz.

The lower the amplitude of the audio signal arriving at pin 3 the more accurate you will be in zero beating the station you are working. However, you will still want to hear the audio signal, so R2, CR1 and CR2 function to limit the maximum amplitude of the audio signal at pin 3 of the LM567 to a usable level while maintaining adequate volume from the speaker or headphones. My HW-101 has an 8-ohm audio output, and I find the 100-ohm resistor value for R2 adequate. However, 100 ohms may be too high for use with a 4-ohm audio output stage. Therefore, it may be desirable to install a 500-ohm potentiometer, and set the resistance of R2 to suit your own taste.

The capacitance of C1 must be temperature stable. I had the sad experience of using a capacitor for C1 with capacitance that changed with temperature, and the oscillator frequency of the LM567 changed

By Glen Carlson, W6KVD, 2588 Hermosa Street, Pinole, California 94564
Switch to Bambi™

Electronically

Bambi Electronic Video Switch ... makes switching of your VCR/VT, Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV, Antennae and Microcomputer as easy as pushing buttons.

The Bambi Electronic Video Switch is an electronic switching network which can accept up to six different sources of video signals and provide the flexibility of directing the inputs to any or all of the three outputs. Now you can eliminate the drudgery of disconnecting and reconnecting your video equipment each time you use it ... the tangled mess of cables which are impossible to trace out ... not being able to use more than one function at a time.

Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push of a button.

Model BEVS-1 Completely Wired and Assembled, Includes Comprehensive Instruction/Operation Manual and Decal Set for customizing your Video Switch installation.

$129.95

FREE Bambi Poster with any purchase

7+11 PWD PARTS KITS

INTRODUCING OUR 7+11 PWD PARTS KITS

<table>
<thead>
<tr>
<th>PART</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>712P-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>1205-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>1765-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>2025-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>2495-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>2965-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>3545-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>4125-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>4715-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>5295-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>5875-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>6465-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>7045-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>7625-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>8205-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>8785-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>9365-5PWO</td>
<td>1.5W</td>
</tr>
<tr>
<td>9945-5PWO</td>
<td>1.5W</td>
</tr>
</tbody>
</table>

All 7+11 Kits 10% off

CUSTOMER NOTICE: BUY WITH CONFIDENCE - BEWARE OF LOW QUALITY IMITATORS.
All of our kit sets consist of New, 1st Class, RF Quality, Parts Engineered for Optimum Operation, not factory seconds or stock close-outs. We service your completed kits that you've purchased and built. You will never get stuck with a BAG OF PARTS when ordering from Simple Simon.

SIMPLE SIMON ELECTRONIC KITS™ INC.

3871 S. Valley View, Suite 12, Dept. H, Las Vegas, NV 89103

More Details? CHECK — OFF Page 121

March 1983
with the temperature of my rig. The capacitor type listed for \(C_1 \) in the parts list works well for me.

Owners of solid-state rigs having a +5 Vdc supply will need only the circuit illustrated in fig. 1. Owners of tube type rigs may need to build a 5 volt supply, illustrated in fig. 2.

construction

I built the circuits illustrated in figs. 1 and 2 on a Radio Shack™ 276-024 printed circuit board. These boards are inexpensive and are made to accept a 16-pin IC. They provide pads at the edge of the board connected to the 16 IC pins. I recommend installing an 8-pin IC socket for IC1. Tin the traces on the board before drilling small holes in the pads.

I drilled a hole in the front panel of my HW-101 and installed a grommet to hold the LED in place. I used single-conductor shielded audio cable for running power to the LED. The shield must be isolated from the chassis as it will be used as one of the conductors to the LED.* Find a place for installing the PC-board, and then construct a small U-bracket for mounting the board while maintaining isolation from the chassis.

Tie terminal A to a point in your transceiver where this circuit will operate when using either the speaker or headphones. If you tie terminal A to a point where there is a dc voltage, CR1 or CR2 will be biased into conduction. In this case, use a suitable blocking capacitor between terminal A and the point you pick up the audio signal. A capacitor value between 0.01 \(\mu F \) and 0.1 \(\mu F \) should suffice. Adjust the value of R3 for suitable brilliance of the LED.

alignment

Alignment consists of setting the LM567 oscillator frequency equal to the offset frequency of your transceiver. There may be several ways to accomplish this adjustment. You will set the oscillator frequency by adjusting R1.

If you have a ham friend who can zero beat your transmit frequency, adjust R1 while listening to his signal. As you adjust R1, keep reducing the volume to narrow the bandpass for the best adjustment of the oscillator frequency. Then practice zero beating your friend’s frequency, and have him check the accuracy of your adjustment.

A more accurate method uses a frequency counter. Measure the frequencies of the oscillators which determine the frequency difference between your transmit and receive frequencies. Subtract the smaller frequency from the larger frequency, and you will have your offset frequency. Using a low capacity probe, connect the frequency counter to pin 5 of the LM567, and adjust R1 until the counter reads your offset frequency.

When using the frequency counter method, you may be surprised to find that your offset frequency is not exactly as listed by the transceiver manufacturer. In my case, the offset frequency was off by 70 Hz.

If enough Amateurs build this circuit, we may find room in the CW bands for more QSOs.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.1 (\mu F) 200 V (see text)</td>
<td>RS 272-1053</td>
</tr>
<tr>
<td>C2</td>
<td>0.1 (\mu F) 10 V</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>3.3 (\mu F) 10 V tantalum</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>0.01 (\mu F) 10 V</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>10 (\mu F) 10 V (tantalum)</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>500 (\mu F) 20 V</td>
<td></td>
</tr>
<tr>
<td>CR1 & CR2</td>
<td>small signal germanium diodes</td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>rectifier diode 1N4001</td>
<td>RS 276-1101</td>
</tr>
<tr>
<td>CR4</td>
<td>5 V 1/2 watt zener diode 1N4733</td>
<td>RS 276-565</td>
</tr>
<tr>
<td>R1</td>
<td>25 K 1/4 watt potentiometer (RS 271-336)</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>100 ohm 1/4 watt (see text)</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>510 ohm 1/4 watt</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>510 ohm 1/4 watt</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td>RS 276-032</td>
</tr>
<tr>
<td>printed circuit board (RS 276-024)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM567</td>
<td>phase-locked loop (RS 176-1721)</td>
<td>(XR-567 is identical and usable)</td>
</tr>
</tbody>
</table>

* A twisted pair made from No. 24 insulated hookup wire would work just as well and is easier to handle. Editor
FILAMENT TRANSFORMERS

<table>
<thead>
<tr>
<th>Pri V</th>
<th>Sec V</th>
<th>Size</th>
<th>WT</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>5 @ 9.75 A</td>
<td>6x5x8</td>
<td>10</td>
<td>$29.95</td>
</tr>
<tr>
<td>115</td>
<td>6.6 @ 25 A</td>
<td>4x5x6</td>
<td>15</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>6.6 @ 18 A</td>
<td>4x5x6</td>
<td>12</td>
<td>$13.95</td>
</tr>
<tr>
<td>115</td>
<td>6.6 @ 10 A</td>
<td>3x4x6</td>
<td>8</td>
<td>$ 9.95</td>
</tr>
<tr>
<td>230</td>
<td>6.3 @ 30 A</td>
<td>4x4x6</td>
<td>10</td>
<td>$15.95</td>
</tr>
</tbody>
</table>

PLATE TRANSFORMERS

<table>
<thead>
<tr>
<th>Pri V</th>
<th>Sec V</th>
<th>Size</th>
<th>WT</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1510 @ 382 Ma</td>
<td>11/8x11 1/2x13</td>
<td>100</td>
<td>$175.00</td>
</tr>
<tr>
<td>208</td>
<td>3 phase with taps to allow sec. to be varied from 5900 to 7700 VDC @ 600 Ma out of rect.</td>
<td>11/8x11 1/2x13</td>
<td>100</td>
<td>$175.00</td>
</tr>
<tr>
<td>115</td>
<td>#1-600 CT @ 450 Ma</td>
<td>5x4x3/4</td>
<td>12</td>
<td>$19.95</td>
</tr>
<tr>
<td>208/250</td>
<td>5700 @ 1.2 A</td>
<td>9x3/2x13</td>
<td>75</td>
<td>$175.00</td>
</tr>
</tbody>
</table>

POWER TRANSFORMERS

<table>
<thead>
<tr>
<th>Pri V</th>
<th>Sec V</th>
<th>Size</th>
<th>WT</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>#1-1,000 CT @ 220 Ma</td>
<td>4x5x6</td>
<td>15</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#2-5.1 @ 2 A</td>
<td>4x5x6</td>
<td>15</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#3-5.1 @ 4 A</td>
<td>4x5x6</td>
<td>15</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#1-640 CT @ 230 Ma</td>
<td>5x6x7</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>#2-620 CT @ 25 Ma</td>
<td>5x6x7</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>#3-5 @ 2 A</td>
<td>5x6x7</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>#4-6.3 @ 6.5 A</td>
<td>5x6x7</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>#5-6.3 @ 5 A</td>
<td>5x6x7</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>#6-6.3 @ 5 A</td>
<td>5x6x7</td>
<td>10</td>
<td>$19.95</td>
</tr>
<tr>
<td>115</td>
<td>#7-45 @ 50 Ma</td>
<td>7x6x6</td>
<td>43</td>
<td>$24.50</td>
</tr>
<tr>
<td>115</td>
<td>#2-68 @ 3 A</td>
<td>7x6x6</td>
<td>43</td>
<td>$24.50</td>
</tr>
<tr>
<td>115</td>
<td>#3-34 CT @ 25 A</td>
<td>7x6x6</td>
<td>43</td>
<td>$24.50</td>
</tr>
<tr>
<td>115</td>
<td>#4-20 CT @ 2 A</td>
<td>7x6x6</td>
<td>43</td>
<td>$24.50</td>
</tr>
<tr>
<td>115</td>
<td>#1-105 @ 75 Ma</td>
<td>4x5x3</td>
<td>7</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#2-475 @ 200 Ma</td>
<td>4x5x3</td>
<td>7</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#3-6.5 @ 9 A</td>
<td>4x5x3</td>
<td>7</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#4-6.3 @ 3.3 A</td>
<td>4x5x3</td>
<td>7</td>
<td>$9.95</td>
</tr>
<tr>
<td>115</td>
<td>#5-6.3 @ 2A</td>
<td>4x5x3</td>
<td>7</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>MFD</th>
<th>W</th>
<th>Size</th>
<th>WT</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25,000</td>
<td>7x14x26</td>
<td>165</td>
<td>$175.00</td>
</tr>
<tr>
<td>45</td>
<td>1500</td>
<td>4x5x7</td>
<td>5</td>
<td>$29.95</td>
</tr>
<tr>
<td>10</td>
<td>2000</td>
<td>4x4x4</td>
<td>3</td>
<td>$19.95</td>
</tr>
<tr>
<td>10</td>
<td>660 AC</td>
<td>2x3x4</td>
<td>1</td>
<td>$ 6.95</td>
</tr>
<tr>
<td>45</td>
<td>330 AC</td>
<td>2x3 1/2x7</td>
<td>2</td>
<td>$ 5.95</td>
</tr>
<tr>
<td>4</td>
<td>4000</td>
<td>4x4x11</td>
<td>6</td>
<td>$29.95</td>
</tr>
<tr>
<td>2</td>
<td>10,000</td>
<td>13x4x17 1/2</td>
<td>40</td>
<td>$29.00</td>
</tr>
</tbody>
</table>

VARIABLE VACUUM CAPACITORS

- Jennings UCSF-1000, 3 KV, 3" diam., extends 7" behind panel $39.00
- Jennings UCSF-1200, 10 KV, 5" diam., 9" long $375.00
- Jennings UCSF-1200, 10 KV, 5" diam., 9" long $375.00

- Energy Labs 7-200 pf, 7.5 KV, ¼ inch shaft, 3" diam., extends 5½" behind panel. Equivalent to Jennings CW1. (Production quantities in stock) $159.00

MISCELLANEOUS

- KNOBS, 1¼" diam., for 2¼" shaft, with spinner handle $2.00
- KNOBS, 2½" diam., for 2½" shaft, with spinner handle $4.00
- Squirrel-cage blower, 115 V, 50/60 Hz, 3150 RPM, with 4 MFD capacitor. Eastern Air Devices, 10" diam x 5" $39.95
- Adjust-a-volt variable trans. 120 V input, 0-140 V out @ 5.5 A $29.95
- Daven fixed attenuator, 6db, with type N connectors, 50 ohms in and out, 1x1x3/8 $5.95
- Isolation transformer, 120 V to 120 V @ 2500 W, 7x12x8, 125 lbs. $89.00
- Auto-transformer, 115/120/125 V to 230 V @ 3,000 W, 8x8x11, 86 lbs $149.00
- C-111 telephone repeat coil, 600/600 ohms $25.00

ATTENTION INDUSTRIAL PLANTS, UNIVERSITIES AND RESEARCH LABS:

We are specialists in custom design and fabrication of power oscillators for induction heating, crystal growing, etc. Contact us with your requirements.

J.S. BETTS COMPANY

P. O. BOX 426 - Phone: (404) 964-3764
FAIRBURN, GEORGIA 30213

More Details? CHECK-OFF Page 121

March 1983
NEW LOW-NOISE PREAMPS

New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily retuned to nearby freq.

Models LNA P30, and P432 shown

<table>
<thead>
<tr>
<th>Product</th>
<th>Frequency Range</th>
<th>Noise Figure</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA 28</td>
<td>20-40 MHz</td>
<td>0.9 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 50</td>
<td>40-70 MHz</td>
<td>0.9 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 144</td>
<td>120-180 MHz</td>
<td>1.0 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 220</td>
<td>180-250 MHz</td>
<td>1.0 dB</td>
<td>$39.95</td>
</tr>
<tr>
<td>LNA 432</td>
<td>380-470 MHz</td>
<td>1.0 dB</td>
<td>$44.95</td>
</tr>
</tbody>
</table>

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tunable over narrow range. Specify exact freq. band needed. Gain 18-20 dB. NF = 2 dB or less.

VHF MODELS
- P30K, VHF Kit less case $14.95
- P30C, VHF Kit with case $20.95
- P30W, VHF Wired/Tested $29.95
- P432K, UHF Kit less case $18.95
- P432C, UHF Kit with case $24.95
- P432W, UHF Wired/Tested $33.95

UHF MODELS
- Kit $44.95
- Less Case $39.95
- Wired $59.95

SCANNER CONVERTERS Copy 72-76, 135-144, 240-270, 400-420, or 806-894 MHz bands on any scanner. Wired/tested Only $79.95.

SPECIAL FREQUENCY CONVERTERS made to custom order $119.95. Call for details.

HEXURAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure = 1 to 1.2 dB. Gain = 12 to 15 dB.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tuning Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRA-144</td>
<td>143-150 MHz</td>
<td>$49.95</td>
</tr>
<tr>
<td>HRA-220</td>
<td>213-233 MHz</td>
<td>$49.95</td>
</tr>
<tr>
<td>HRA-432</td>
<td>420-450 MHz</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

FM-5 PC Board Kit - ONLY $159.95 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 6M, 2M, or 220

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $69.95

LOOK AT THESE ATTRACTIVE CURVES!
For years, Hamtronics®
Modules have been used by
individual hams and manufac-
turers to make repeaters. Now, in
the Hamtronics tradition of top
quality and superb value, we are proud
to offer a complete repeater package.

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M, 2M, 220</td>
<td>$595</td>
<td>$745</td>
</tr>
<tr>
<td>440</td>
<td>$645</td>
<td>$795</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking/crossband & 10M.

FEATURES:
- SENSITIVITY SECOND TO NONE; TYPICALLY
 0.15 uV ON VHF, 0.2 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH
 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR
 GREATER THAN 100 dB AT ± 12KHZ. HELICAL
 RESONATOR FRONT ENDS. SEE R144, R220,
 AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-
 PROOF SQUELCH, AFC TO COMPENSATE FOR
 OFF-FREQ TRANSMITTERS, SEPARATE LOCAL
 SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY-TUNE TRANSMITTER; UP TO 20 WATTS OUT.

HIGH QUALITY MODULES FOR
REPEATERS, LINKS, TELEMETRY, ETC.

INTRODUCING —
NEW 1983 RECEIVERS

- R144/R220 FM RCVRS for 2M or 220 MHz.
 0.15 uV sens.; 8 pole xtal & ceramic filter
 in H, helical resonator front end for exceptional
 selectivity (curves at left). AFC incl., xtal oven
 avail. Kit only $119.95.
- R451 FM RCVR Same but for uhf. Tuned line
 front end, 0.2 uV sens. Kit only $119.95.
- R76 FM RCVR for 10M, 6M, 2M, 220, or
 commercial bands. As above, but w/o AFC or
 hel. res. Kits only $109.95. Also avail w/4 pole filter, only $94.95/kit.
- R110 VHF AM RECEIVER kit for VHF aircraft
 band or ham bands. Only $84.95.
- R110 UHF AM RECEIVER for UHF uses,
 including special 296 MHz model to hear
 SPACE SHUTTLE. Kit $94.95.

- HELICAL RESONATOR FILTERS available
 separately on pcb w/ connectors.
 HRF-144 for 143-150 MHz $34.95
 HRF-220 for 213-233 MHz $34.95
 HRF-432 for 420-450 MHz $44.95
 (See selectivity curves at left.)

- COR KITS. With audio mixer and speaker
 amplifier. Only $29.95.
- CWID KITS 158 bits, field programmable,
 clean audio. Only $59.95.

- T51 VHF FM EXCITER for 10M, 6M, 2M,
 220 MHz or adjacent bands. 2 Watts contin-
 uous. Kits only $59.95.

- T451 UHF FM EXCITER 2 to 3 Watts on 450
 ham band or adjacent. Kits only $69.95.

- VHF & UHF LINEAR AMPLIFIERS. Use on
 either FM or SSB. Power levels from 10 to 45
 Watts to go with exciters & xmtg converters.
 Kits from $69.95.
How come you're not on 30 meters?
There's no excuse with KLM's
New 30M-2 and 30M-3 Antennas!

Two new antennas from KLM using their low loss linearly loaded elements. Small physical size with full size performance. Exclusive “Maxi-Match” for direct 50Ω coaxial feed.

30M-2 (2 element Yagi)
Gain 4.5 dBd
F/B 12 dB
SWR less than 1.5-1 across band
Boom Length 12'
Max. Elem. Length 34'
Wind Load 4 sq. ft.

30M-3 (3 element Yagi)
Gain 7 dBd
F/B 20 dB
SWR less than 1.5-1 across band
Boom Length 24'
Max. Elem. Length 34'
Wind Load 7 sq. ft.

Available now. Stop by your local dealer for more information.
Maximize your performance today with a 10 MHz KLM Beam Antenna!

KLM
PO Box 816 • Morgan Hill, CA 95037 • (408) 779-7363

Iron Powder and Ferrite
TOROIDAL CORES
Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.
Small Orders Welcome
Free ‘Tech-Data’ Flyer

Communications Design, Inc.
1504 E. Thompson St. • West Memphis, AR 72301
501-735-4568

Morse One Keyer

DIPOLE ANTENNA CONNECTOR

BUDWIG MFG. CO. • PO Box 829 • Ramona, CA 92065

Call Or Write For Free Catalog Of Other CDI Products

Moving?
Keep Ham Radio Coming...
If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we will take care of the rest.

Ham Radio
Magazine
Greenville, NH 03048

Thanks for helping us to serve you better.

Here's my new address:

NAME
AFFIX
LABEL
HERE

Call
State
City
Zip

FREE! FREE! FREE! FREE! FREE! FREE!
SEND FOR OUR NEW
1983 PARTS CATALOG
THOUSANDS OF
SURPLUS
ELECTRONIC
PARTS, SUPPLIES
AND DEVICES.

ALL ELECTRONICS CORP
205 S. Vermont Ave.
P.O. Box 20466
Los Angeles, Ca 90006

FREE! FREE! FREE! FREE! FREE!

DIPOLE ANTENNA CONNECTOR

NUTS & VOLTS

THE BEST PLACE TO BUY, SELL or TRADE NEW or USED EQUIPMENT
NUTS & VOLTS MAGAZINE
BOX 11111 • PLACENTIA, CA 92670
(714) 632-7771

ONE YEAR U.S. SUBSCRIPTIONS
$35.00 • 1st Class
$39.95 • 2nd Class
$35.00 • Lifetime • 1st Class

Tell 'em you saw it in HAM RADIO!
We Will Not Be Undersold Call: 212-925-7000

BARBAR ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, N.Y. 10012.

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, N.Y. 10012.

BARRY INTERNATIONAL TELEX 12-7670
TOP TRADES GIVEN ON YOUR USED EQUIPMENT
STORE HOURS: Monday-Friday 9 to 6:30 PM
($1.50 parking across the street)
Saturday & Sunday 10 to 4 PM (Free Parking)
AUTHORIZED DISTS: MCKAY DYMKE FOR SHORTWAVE ANTENNAS & RECEIVERS.
IRLTEX-"Spring St. Station"
Subways: BMT-"Prince St. Station"
IND-"F" Train-Bry. Station
Bus: Broadway #6 to Spring St.

"Aquil Se Habla Espanol!"
Clearance on our WAS II surplus inventory on Washington's Birthday
WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS
DEALER INQUIRIES INVITED PHONE IN YOUR ORDER & BE REIMBURSED

SATURDAY & SUNDAY 10 TO 4 PM
MONDAY-FRIDAY 9 TO 6:30 PM
COME TO BARRY'S FOR THE BEST BUYS IN TOWN. FOR
ORDERS ONLY PLEASE CALL: 1-800-221-2683.

COMMERCIAL RADIOS
STOCKED & SERVICED ON
PREMISES.

FT-ONE, FT-980R FT-102, FT-1012D, FT-707, FT-230R, FT-77,
FT-728 FT-480R, FT-720RU, FT-290R, FRG-7700, FT-625RD

SUPER SALE ON ROBOT, CALL!

“MARCHing into your Corral
with Super Savings for Spring!!!

ROBOT Slow Scan TV 400 & 800

Color Conversion Kit
for Robot 400 . . . $450

POWER PACKET
VoCom Power
Amplifier &
5/8 HT Gain
Antennas IN STOCK

EIMAC
3-500Z
572B, 6JS6C
12BY7A &
4-400A

Transmitter Chief SSTV Model for
KANTRONICS
Mini-Reader, Interface,
Software & Code Tapes

EIMAC
3-500Z
572B, 6JS6C
12BY7A &
4-400A

BIRD
Wattmeters &
Elements In Stock

AE A 144 MHz
AEA 440 MHz
ANTENNAS

NEW IMPROVED
MURCH Model
UT2000B

AMES B-24, B-1016, B-108,
B-3016, C-22, C-106, D-24, D-101O

MFJ-494, MFJ-496
DIGITAL FREQUENCY COUNTER
Triyonyx-
Model TR-100
0-600 MHz
Digimax Model D-510 50 Hz-1 GHz

Communications Specialists
Encoders in Stock!

SMALLEST WIRELESS
TELEPHONE AVAILABLE
600 ft. range wiencorder $135.00

BENCHEO PADDLES &
Vibroplex Keys In Stock!!

Larry, Teme, Ten-Tec,
Tokyo Hi Power, Trionyx TUBES, W2AU, Weber, Wilson, Yaesu Ham and
Commercial Radios_Vomoc, Vibroplex, Curtis, Tri-Ex, Wacom Duplexers,
Repeaters, Phelps Dodge, Fanon Intercoms, Scanners, Crystals.
WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS
DEALER INQUIRIES INVITED. PHONE IN YOUR ORDER & BE REIMBURSED

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, N.Y. 10012.
monitor antenna increases scanner performance

The Antenna Specialists Co. has introduced the Mon-64 Discan™, a lightweight monitor antenna that can increase base station reception by as much as 100 percent.

The Mon-64 Discan provides excellent reception on the popular low band, VHF, UHF, and T-band frequencies, from 25-512 MHz. The Mon-64 significantly improves reception of distant stations or low-powered portables. Weighing less than two pounds, the Discan antenna is easy to install, and comes complete with SO-239 connector and double U-clamp bracket; cable is not provided. The antenna mounts easily on any pipe or tubing up to 1 inch in diameter.

Suggested list price is $19.95. For complete specifications, contact The Antenna Specialists Co., 12435 Euclid Avenue, Cleveland, Ohio 44106. Reader Service Number 301.

TS-430S HF transceiver

The TS-430S, a recent addition to Kenwood’s line of high-frequency transceivers, is an all-solid-state SSB, CW, and AM transceiver, with FM optional. Designed to cover the 160-10 meter Amateur bands, including the new WARC bands, it also incorporates a 150 kHz-30 MHz general coverage receiver having an exceptionally wide dynamic range.

Other features include dual digital VFOs, eight memories, memory scan, programmable band scan, fluorescent tube digital display, all-mode squelch, VOX, speech processor, i-f shift, notch, and a narrow-wide filter selector switch for use with various optional filter combinations. The TS-430S carries a factory suggested retail price of $899.95.

For additional information, contact your local Kenwood Amateur Radio dealer, or write to Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220. Reader Service Number 302.

C22 and B23 HT power amplifiers upgrade

Mirage Communications’ pocket-size B23 (2 watts) and C22 (220 MHz) power amplifiers have been upgraded for greater versatility. A new power switch permits selection of full amplifier power or a non-energized bypass mode when only HT power is desired. The fm/SSB switch controls choice of rapid or delayed relay action. Power amplification is linear in either mode. The B23 produces 30 watts (minimum) for 2 watts in, 15 watts for 1 watt, etc. The C22 produces 20 watts (minimum) for 2 watts in, 10 watts for 1 watt, etc. The duty cycle of both amplifiers is continuous. The B23 and C22 are made in the U.S., and carry a five-year general warranty with one year for rf power transistors.

For more information, contact Everett L. Gracey, Director of Marketing, KLM Electronics, Inc., P.O. Box 816, Morgan Hill, California 95037. Reader Service Number 303.

noise bridge with built-in range extender

MFJ Enterprises, Inc.’s MFJ-202B noise bridge allows quick adjustment for maximum performance of any antenna — single, multi-band, dipole, inverted vee, beam, vertical whip, or random systems. You can measure resonant frequency, radiation resistance and reactance. It tells you whether to lengthen or shorten your antenna for minimum SWR over any portion of the band.

The MFJ-202B will measure resistance to 250 ohms and has a wide capacitance range of ±150 pF. It includes a built-in range extender that shunts large unknown impedances down to its measuring range. You can tune transmatches, adjust tuned circuits, measure inductance, rf impedance of amplifiers, baluns, transformers and other rf circuits. It can also be used to determine electrical length, velocity factor and impedance of coax cable. With a transmatch and dummy load, it can synthesize rf impedances.

The MFJ-202B measures 4 1/2 × 2 × 4 1/2 inches and is housed in a rugged black aluminum cabinet with eggshell white front. It is available from MFJ Enterprises for $59.95, plus automatic antenna coupler

A new automatic antenna coupler, the Model H-402CU, has been introduced by Hull Electronics Company, Inc., of San Diego, California. The coupler employs a microcomputer to exactly match the ship’s antenna system to any SSB radiotelephone in the frequency range of 2-22 MHz. The H-402CU initially tunes itself each time a new channel is selected and also fine tunes the antenna as necessary whenever the transmitter is on the air.

Rated at 250 watts power, the coupler combines an L network with high-eficiency toroid inductors to provide maximum transfer of the transmitter energy to the antenna. Initial tune-up time is typically ½ to 2 seconds. A unique test panel is included to allow the technician to observe operation of the coupler and to test the various digital circuits.

Installation is simple and requires no preliminary adjustment to the coupler. The H-402CU operates with antennas from 8 to 80 feet in length. Two antennas may be used with the system as an optional feature.

Model H-402CU is housed in a rugged, weather-tight enclosure 16½ inches high × 11¼ inches wide × 5⅞ inches deep and weighs only 9½ pounds. Operating voltage of 12 Vdc is supplied via the SSB transceiver.

For more information, contact Hull Electronics Company, Inc., 7563 Convoy Court, San Diego, California 92111. Reader Service Number 304.
handheld counter-timer

The 5000 Counter-Timer combines all the important features and performance capabilities of a benchtop unit with the convenience of a fully portable, battery operated instrument. It is priced at $349.95, and measures 7.6 x 3.75 x 1.7 inches, and weighs 14 ounces (without batteries).

The 5000 is designed to measure frequency, period and pulse width with extreme accuracy and exceptional reliability. It features full signal conditioning, including attenuator (X1, X10, X100); slope selection (+ or - edge for pulse width measurement); ac or dc coupling and variable-trigger level.

A high contrast 0.43-inch LCD display offers eight-digit precision for fast and accurate readings. LCD annunciators indicate overflow, gate open, and low battery conditions. A switch allows the display storage mode to maintain the last reading in the display indefinitely.

The 5000 has automatic master reset logic, which instantly clears the display and initiates a new measurement cycle, eliminating erroneous partial measurement. A self-diagnostic function performs analysis of internal logic and provides instant assurance of accurate operation.

The 5000 has three modes of operation: frequency, period and pulse width. Signal input is via BNC connector — input impedance is 1 megohm at 25 pF for all modes. In the frequency mode, the 5000 can handle inputs from 0.1 Hz to 50 MHz. Gate times of 0.01, 0.1, 1.0, or 10 seconds can be selected. Frequency will be displayed in kilohertz on the LCD screen. The 5000 will measure any periods from 25 ns to 10 seconds and deliver a single cycle measurement or an average of 10, 100, or 1000 cycles. Time will be displayed in ms. Pulse width measurement from 25 ns to 10 seconds can be made. Either the high or low portion of the input signal can be selected.

The 5000 is powered by six AA NiCd or alkaline batteries or an optional ac adapter/charger. Optional accessories are available for the 5000.
When it comes to QSL’s...

it’s the ONLY BOOK! US or Foreign Listings

1983 callbooks

Here they are! The latest editions of the world-famous Radio Amateur Callbook are available now. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists calls and the address information you need to send QSL’s. Special features include call changes, census of amateur licenses, world-wide QSL bureaus, prefixes of the world, international postal rates, and much more. Place your order for the new 1983 Radio Amateur Callbooks, available now.

<table>
<thead>
<tr>
<th></th>
<th>Each</th>
<th>Shipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Call</td>
<td>$19.95</td>
<td>$3.05</td>
<td>$23.00</td>
</tr>
<tr>
<td>Foreign Call</td>
<td>$18.95</td>
<td>$3.05</td>
<td>$22.00</td>
</tr>
</tbody>
</table>

Order both books at the same time for $41.95 including shipping.

Order from your dealer or directly from the publisher. All direct orders add shipping charge. Foreign residents add $4.55 for shipping. Illinois residents add 5% sales tax.

SPECIAL OFFER! Amateur Radio Emblem Patch only $2.50 postpaid

Pegasus on blue field, red lettering. 3” wide x 3” high. Great on Jackets and caps.

ORDER TODAY!

Radio Amateur Callbook INC.
Dept. F
925 Sherwood Drive
Lake Bluff, IL 60044, USA

NEW

For more information, contact Global Specialties Corporation, 79 Fulton Terrace, P.O. Box 1942, New Haven, Connecticut 06509-1942. Reader Service Number 307.

the IC-R70

ICOM’s professional general coverage receiver, the IC-R70, is a generation later and features more functions than other less sophisticated general coverage receivers on the market, such as squelch on sidetone, adjustable with noise blanker, adjustable speed AGC, passband tuning as standard, and adjustable notch filter as standard.

Other features are high stability, synthesized tuning and three tuning speeds, optional am/fm mode, variable CW filter widths, dial lock, two VFOs with data transfer, plus many others. The IC-R70 will operate transceive with the IC-720A, making an ideal combination for the serious DXer or CW buff.

Moscow Muffler™ woodpecker noise blanker

The AEA model WB-1 Moscow Muffler Woodpecker Blanker offers effective blanking of the Russian Woodpecker signal with no modification to the receiver required. The WB-1 is designed to be connected in the antenna feedline between the antenna and the receiver. The WB-1 blanks the interfering pulses before they have been stretched out by receiver-tuned circuits, thereby causing the least amount of distortion possible.

Because the WB-1 is a synchronous blanker, it simply does not overload from strong adjacent channel signals. In addition to the superior blanking features, the WB-1 offers an effective low noise, broadband 6 dB preamp with +13 dBm intercept point. The preamplifier may be switched in or out whether or not the WB-1 is in the blanking mode. The WB-1 features a pulse blanking width control for reduc-

NEW

BASIC PROGRAM MANUAL FOR AMATEURS

Programs Design: Antennas, Dp-amps, Smith-charts, R.F. Cables, Pads, Filters, Striplines, Microstrip and more.

All FOR $9.95 INCLUDES SHIPPIIING AND HANDLING

ATTENTION YAESU FT-207R OWNERS

AUTOMATIC SCAN MODULE

15 minutes to install; scan re-starts when carrier drops off; busy switch controls automatic scan on-off, includes module and instructions.

Model AS-1 $25.00

BATTERY SAVER KIT

Model BS-1 $14.95

CB TO TEN METER CONVERSION KITS

KITS for AM—SSB—FM 40 Channel PLL chassis conversions

DETAILED INSTRUCTIONS for easy installation with minimum time and equipment

BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.

PRICES Low cost prices range from $8.00 to $50.00

All kits are in stock including several different FM kits.

FREE CATALOG Write or call today.

INDEPENDENT CRYSTAL SUPPLY COMPANY
P.O. Box 183
Sandwich, Ma. 02563-0183
(617) 888-4302

VOICE OF AMERICA

HAS OPPORTUNITIES IN WASH. D.C. FOR QUALIFIED RADIO BROADCAST TECHNICIANS

These positions require technical experience in professional radio, or the audio portion of television broadcasting.

Applicants must qualify in two of the following areas:

- Studio Control
- Tape Recording
- Field Operations
- Broadcast Equipment Maintenance

Starting salary: $11.93 per hour

U.S. Citizenship Required

Submit Standard Federal Application Form SF-171 or resume to:

VOICE OF AMERICA
Rm. 1341, 330 Independence Ave., S.W.
Washington, D.C. 20547
Attention: RBT-91-1

Equal Opportunity Employer.

Tell 'em you saw it in HAM RADIO!
Nampa Satellite Systems

IDAHO'S LARGEST DEALER

DXR 1100 Stereo Receiver, LNC and remote control 10’ Prodelin fiberglass dish with Polarmount • Polatron II Electronic Polarizer and Cables With Motor Drive $2550

Universal Communications Package $1999

Universal Communications DL-2000 • 10’ Prodelin fiberglass dish with Polarmount • Polatron II Electronic Polarizer, Dexcel 100° LNA and 100' Cables With Motor Drive $2199

THE VHF PROPAGATION HANDBOOK

by Jim Stewart, WA4MVI

Theory and practical application in VHF. Chapters on Scatter - Tropo - EME. Available through THE LUNAR LETTER MAGAZINE.

$3.95 + $1.50 postage.

THE LUNAR LETTER Magazine

Up to the minute news of VHF/UHF Propagation. EME - Tropo - Scatter.

1 year ... $12.00

312 12th Ave. So. • Nampa, ID 83651

Motor Drives from . . . $300

"All systems are complete, nothing else to buy".

Electronics shipped UPS prepaid - Dish and Polarmount freight collect.

"HAMS SERVING HAMS"

24 Hour Phone Line for orders 7 days a week

(208) 466-6727

WB6TOC

312 12th Ave. So. • Nampa, ID 83651

KI7D
CALL FOR SPECIAL PRICES ON——

Kenwood TS-830S HF Radio
TS-430 S — new Kenwood mobile HF w/gen.
coverage receiver

CALL TOLL FREE
1-800-433-3203

IN TEXAS CALL 817-496-9000
P.O. BOX 50155
FT. WORTH, TEXAS 76105

DIRECTION FINDING?

* Doppler Direction Finding
* No Receiver Mods
* Mobile or Fixed
* Kits or Assembled Units
* 135-155 MHz
* Standard Range

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from $270. Assembled units and antennas also available. Call or write for full details and prices.

DOPPLER SYSTEMS,
5540 E. Charter Oak,
Scottsdale, AZ 85254
(602) 998-1151

1296 & PHASE III

MAKI UTV 1200 - $399.95
2M or 6M I.F. / 5 WATTS
* 4 TRANSVERTER MODELS
* TX/RX CONVERTERS
* PRE-AMPS, AMPS, FILTERS
* LG. SASE FOR CATALOG
SEE US AT DAYTON 83

ALL BAND TRAP ANTENNAS!

PRETUNED ASSEMBLED
ONLY ONE NEAT SMALL ANTENA FOR ALL BANDS; EXCELLENT FOR APARTMENTS! PROVED DESIGN!

COMPLETE with 90 ft. RG58U-52 ohm feedline, and PL-259 connectors, insulated 30 gauge COB, BNC test probes and supports, center insulated shielded wire, and 12 volt battery holder. To solder the parts together, wrap the solder strip lightly around them and apply a flame. Move the flame slowly back and forth until the solder flows into the splice. For larger wires, wrap two layers around the splice and use a candle to apply the flame for sustained heat. Insulating tape or sleeving should be used after soldering electrical wires.

To solder sheet metal, the solder should be placed between or on the metal parts to be connected. Hold the parts together while applying heat from a candle flame or soldering iron and then let cool.

Multicore Emergency Solder is suitable for any solderable metal; it is not suitable for aluminum.

Multicore Emergency Solder costs 99 cents each. For more information, contact Multicore Solder, 8380 Cantiague Rock Road, Westbury, New York 11590. Reader Service Number 310.

learning code in stereo

Radio School® stereo code cassettes are a new approach to learning the International Morse code. One stereo channel contains the computer-generated code which meets the latest FCC tape-speed specifications. The second channel contains the voice. Separating the
code and voice channels lets the student practice the code with or without voice help. Turning down the code channel lets students practice code letters and words in unison with the tape with their own code oscillators. Playing both channels simultaneously in a car allows students to practice the code without having to write down any letters.

The Radio School beginning/Novice code course contains four 1-1/2 hour stereo tape cassettes. All instructions are given on the cassette. By the end of the fourth cassette, students will be able to send and receive code at 6 WPM and pass a Novice class Amateur Radio code examination. They will know enough code for shortwave listening as well.

Radio School also offers code courses for upgrading to FCC General class, and to Extra class. Code test cassettes for instructors are also available. Theory cassettes are available for students wishing to pass any grade of Amateur Radio license.

The Radio School Novice stereo code course sells for $39.95. Add $3.00 for shipping. For more information, write to Radio School, 2414 College Drive, Costa Mesa, California 92626. Reader Service Number 311.

Happy 30th
ANTENNA SPECIALISTS CELEBRATES ITS 30TH ANNIVERSARY

The Antenna Specialists Company got its start in 1953 by producing land mobile antennas for the Motorola and Zenith companies. Today, the Cleveland-based company is a member of the Allen Group, and it is the world’s largest and most diversified manufacturer of communications antennas and accessories for professional land mobile services. It is also an antenna supplier for Amateur Radio, aviation, marine, personal communications, and monitor receivers.

Examples of A/S leadership are the recent introduction of the first completely concealed trunk-mounted mobile antenna for police work and the introduction of the first commercially available line of high performance base and mobile antennas for the new 800-MHz land mobile services.

In 1979, the company’s Professional Division embarked on its first major departure from the antenna business with its RESCU division, which manufactures emergency electronic devices for the public safety and industrial markets. Two years later, the firm introduced the LIFEGARD™ personal distress-alarming device for firefighters and industrial personnel working in hazardous conditions.

In 1981, A/S acquired Avanti Communications, a Chicago-based manufacturer of specialty antennas for land mobile, Amateur, auto-sound, and CB communications. Under the Avanti brand name, A/S has continued marketing a variety of products including CB base station antennas and an on-glass, no-groundplane CB and land mobile antenna. The unique Avanti on-glass concept also led A/S to the development of a new mobile pager antenna system in 1982, the “Beeper Booster™.”

Throughout its thirty-year history, A/S has enjoyed a reputation for product quality and reliability. Its Gold Seal Warranty on base station antennas, for example, is the only one in the industry providing reimbursement for reinstallation as well as replacement of a failed antenna.

Speedcall’s new DTMF commercial-grade kit lets you take control!

Now it’s possible for individuals and repeater groups to have a personal (or emergency) commercial-quality DTMF system, at very low cost. Speedcall’s new 312K decoder kit easily assembles into a compact, high-performance unit. Features include a virtually unfalsable “Wrong Digit Lockout” circuit which permits only correct signals to be accepted as valid. And the 312K decodes all sixteen digits, permitting expanded flexibility and special control applications.

Commercial versions of the 312K are used to perform selective calling of mobile fleet operations, on/off control of remote facilities (such as power, valves, pumps, etc.), and to receive the status of single functions (repeater site failure or intrusion, equipment vandalism, power failure, valve or compressor function change, etc.) Speedcall Corporation manufactures a complete line of DTMF signaling and control systems. For more information write or call Speedcall at 415/783-5611.

To order, send check or money order to:

DEPARTMENT "K"

SPEEDCALL CORPORATION

2020 National Avenue • Hayward, California 94545

415-783-5611

(California Residents add 6% Sales Tax)

March 1983
Irene March 1983

SATellite TELEVISION SYSTEMS

WE WILL NOT BE UNDERSOLD!!
Complete Systems, Antennas, Receivers, LNA's & Accessories

CALL US TODAY!
812-238-1456

hoosier electronics

"Nation's Largest Total Communications Distributor"
P.O. BOX 3300 • TERRE HAUTE, INDIANA 47803

WARNING
SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10' tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchor, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failure. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erection would be very inexpensive insurance.

IFT BY THE ATV BUG?
Let P.C. put you on the air and SAVE!

Complete System Price
$249.00 SAVE $13.00

TXAS-4 Exciter/Modulator . . . $89.00 p.d.

SATELLITE SYSTEMS

P.O. BOX 3300 • TERRE HAUTE, INDIANA 47803

P.C. ELECTRONICS
2522 Paxson Lane,
Tom W6OR Maryann WB6YSS
Arcadia, California 91006

AMP-LETTER
All new publication, new owner KK5XX
The AMP-LETTER is devoted to the design, building, and modification of amplifiers.
The AMP-LETTER will help you lower your building cost, pro-

ducemore parts and information, keep abreast of latest techni-
ques and solid state designs.

Subscription cost $100.00/yr. 12 issues. Sample issue $10.00 VISA/ Master Charge.

BOTTUM Publishing
70 Florida Hill Rd., Ridgefield, CT 06877

Custom Mailing Lists on Labels!
Amateur Radio Operator NAMES
Custom lists compiled to your specifications
Geographic by ZIP and/or State; by Age or
Birthdate; by License Issue or Expiration
Date—on labels of your choice.
Total List: 411,000 Price: $25/Thousand

Call 203: 438-3433 for more information
NCG WORLD BAND COMMUNICATIONS

Just Slightly Ahead

15M
Tested and Proven 15 Meter Mobile Transceiver USB and CW
Power-High 10 watts, Low 2 watts
VFO Tuning, Noise Blanker
Fine Tune ± 1 kHz
Digital Frequency Counter
"13.8 VCD@3A Neg. Ground
9.5" L x 9" W x 2.5" H
All this PLUS the freedom of DXing
Regular Price: $305.00
SPECIAL PRICE: NOW $279.00
FREE 15 Meter Antenna with factory direct purchase from this ad
Order Direct — or from your local dealer

1275 North Grove Street
Anaheim, CA 92806
(714) 630-4541

Prices and specifications subject to change without notice or obligation

TERMINALL is a hardware and software system which converts your Personal Computer into a state of the art communications terminal.
- TERMINALL is easy to use. Plug into your receiver headphone jack and copy Morse code or radiotelephone. Plug into your CW key jack and send Morse code. Attach a Microphone connector and send voice to ASCII RTTY using audio tones (JAS). That's all there is to hooking it up.
- Fantastic Morse reception. No adjustments are necessary to receive Morse code. It's fully automatic. Six stage active filter and auto adaptive controller copes with the weak and strong signals.
- Separate RTTY and CW demodulation. Built in crystal controlled JAS. CW and RTTY keying. 900 millisecond connector. RS-232C and COM, hand key input and side tone output.
- Built in parallel printer driver software allows harattack copy in all modes.
- Hardware clock maintains accurate time.

To Order
(209) 667-8888 or 634-8888

FERRITRONICS
MOBILE DATA SYSTEMS
1319 PINE AVE
NIAGARA FALLS NY 14301
(716) 282-7470
TLX 64-6303

March 1983
Quality works at Kollsman

After more than 50 years, quality remains an effective commitment at Kollsman. It’s brought us ever-growing success in electronics, electrophysics and instrumentation for nationwide commercial markets. And a prominent position in the nation's defense industry — the ultra-precise radar sensors for the Harpoon and Cruise missiles are just a recent example. The result is true challenge for Kollsman people, in a project team environment providing excellent salaries and benefits, superb advancement opportunities, industry recognition and more. All in tax-friendly southern New Hampshire, one of America’s most desirable locations. Quality, in your life and career. Improve them both at Kollsman.

MICROWAVE TECHNOLOGY OPENINGS INCLUDE:

- DESIGN ENGINEERS
- MANUFACTURING ENGINEERS
- QUALITY ENGINEERS
- TECHNICIANS

For more information about these opportunities at Kollsman, write to Roger Dillon, Employment Manager, Department HR-3, Kollsman Instrument Company, Division of Sun Chemical Corporation, Daniel Webster Highway South, Merrimack, NH 03054.

Your Ham Tube Headquarters!

TOLL 800-221-0860 FREE TUBES

<table>
<thead>
<tr>
<th>TUBE</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.300</td>
<td>$20.00</td>
<td>95/638</td>
</tr>
<tr>
<td>3.500</td>
<td>$25.00</td>
<td>736</td>
</tr>
<tr>
<td>4.400A</td>
<td>$20.00</td>
<td>75/638</td>
</tr>
<tr>
<td>4CX250B</td>
<td>$15.00</td>
<td>61/22</td>
</tr>
<tr>
<td>5T2B</td>
<td>$12.50</td>
<td>13/14</td>
</tr>
<tr>
<td>811A</td>
<td>$12.00</td>
<td>86/44</td>
</tr>
<tr>
<td>813</td>
<td>$12.00</td>
<td>86/1</td>
</tr>
<tr>
<td>6A6B</td>
<td>$5.50</td>
<td>68/14</td>
</tr>
<tr>
<td>6060</td>
<td>$2.50</td>
<td>86/7</td>
</tr>
<tr>
<td>E.F. JOHNSON Sockets for 4CX250B & 4A400A $5.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Satisfaction Guaranteed!

Top Brand Popular Receiving Tube Types
FACTORY BOXED 75/80% OFF LIST
FREE LIST AVAILABLE
Includes full line of RF Power Transistors.
Minimum Order $25.
Allow $3.00 Minimum for UPS Charges
Write or phone for free catalog.

Premium Prices
Paid For EIMAC Tubes

CeCo Communications, Inc.
2115 Avenue X
Brooklyn, NY 11235
Ph (212) 646-6300

WARNING!
Electric Power Pollution, Spikes, Interference & Lightning HAZARDOUS HIGH TECH EQUIPMENT!!

MicroComputers, VTR, Hi-Fi, Lasers, Spectrometers are often damaged or disrupted due to Power Pollution.
High Tech components may interact!
Our patented ISOLATORS eliminate equipment interaction, curb damaging Power Line Spikes, Lightning bursts & clean up interference.

- Isolated 3-prong sockets; integral Spike/ Lightning Suppressor. 125 V, 15 A, 1875 W
Total, 1 KW per socket.
- ISO-1 ISOLATOR. 3 Isolated Sockets; Quality Spike Suppression; Basic Protection $76.95
- ISO-3 SUPER-ISOLATOR. 3 Dual Isolated Sockets; Suppressor; Commercial Protection $115.95
- ISO-17MAGNUS ISOLATOR, 4 QUAD Isolated Sockets; Suppressor; Laboratory Grade Protection $200.95
- Master-Charge, Visa, American Express

TOLL FREE ORDER DESK 1-800-225-4876
(except AK, HI, MA, PR & Canada)

Tell 'em you saw it in HAM RADIO!
flea market

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of organizations receive one free Flea Market insert. Written or clearly printed (not all capitals) announcements available. Material should be type-written or written in ink. Non-commercial ads pay the non-commercial rate. Material is limited to 25 words and 25¢ per word. Send one copy only. DEADLINE 15th of second preceding month. SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

QSL CARDS

QSL’s & RUBBER STAMPS — Top Quality! Card Samples and Stamp Info — 50¢ — Ebbert Graphics 5R, Box 70, Westerville, Ohio 43081.

TRAVEL-PAK QSL KIT — Converts post cards, photos to QSLs. Stamp brings circular. Samco, Box 203-C, Wyantafel, New York 12198.

QSL SAMPLES: 25c, Samcards, 48 Monte Carlo Drive, Pittsburgh, PA 15239.

DISTINCTIVE QSL’s — Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL’s truly unique at the same cost as a standard card. Send return address and get a better return rate! Free samples! Catalogue. Stamps appreciated. Stu K2RZF Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744-6260. TRAVEL-PAK QSL KIT — Converts post cards, photos to QSLs. Stamp brings circular. Samco, Box 203-C, Wyantafel, New York 12198.

QSL’S: NO STOCK DESIGNS! Your art or ours, photos, originals, 50¢ for samples & details (refundable). Certif- ied Communications, 4138 So. Ferris, Fremont, Michi- gan 49412.

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Australia
F. B. M. 266 Laubachtal
Austrian 42A Bennet Street
Australia

Ham Radio Belgium
Sterrewacht
Boulevardlouisenoy 416
B-3014 Gans
Belgium

Ham Radio Canada
Box 900, Guelph, Ont., N1G 4C7

Ham Radio Europe
Bea.48-5,Krausweg 6
5-1040 Utzenstorf Zürich
Switzerland

Ham Radio France
200A, Avenue de l'Europe
F-92000 Neuilly
France

Ham Radio Nederland
P.O. Box 45. 3200 MD Rotterdam
Netherlands

Ham Radio Nederland
Karn Leffler
P.O. Box 83
Holland

Ham Radio Radio Nederland
164 Greenbriar
Greensboro, North Carolina
Republic of South Africa

QSLING

Flea Market is a service of Ham Radio Magazine. The Flea Market section is available in both color and black and white. The Flea Market is open to all amateurs and dealers for the price of a $25.00 subscription to Ham Radio Magazine. The Flea Market is a valuable resource for hams who are looking for new or used equipment, QSL cards, and other ham radio related items. The Flea Market is open to all, and is a great way to connect with other hams from around the world.
I NEW!
FROM
KENWOOD

TS430S
Solid State Transceiver

R2000
Rcvr. W/ memories

TS930S

Laurel Plaza
Route 198
Laurel, Md.
20810
INC.

MD.: 301-792-0600
OPEN MON. THROUGH SAT.

CALL TOLL FREE
1-800-638-4486

EMBROIDERED EMBLEMS, ENAMELED PINS, your design, low minimum. Information booklet. Emblems, Dept. 65, Littleton, New Hampshire 03561. (603) 444-3423.

ANTENNA — 5 band dipole/inverted V, ready to install. Send SASE for ME.5 brochure. Myrad Electronics, RD1, Box 138, Linwood, NJ 08221.

SATellite TELEVISION INFORMATION. Build or buy your own earth station. $4.00 to Satellite Television, RD #3, Oxford, NY 13830. Parabolic antenna construction book also available. Send SASE for details.

ICOM IC-290A 2-meter synthesized all-mode transceiver. PMR/CSW/SSB 10 watts out. With microphone and mobile mount. Excellent condition. $325. WB8IKJ. Call 616-372-3116 nights and weekends.

MOBILE IGNITION SHIELDING. Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

RTTY-EXCLUSIVELY for the Amateur Telegrapher. One year $7.00. Beginners RTTY Handbook $8.00 includes journal index. PO Box NY, Cardington, CA 92007.

WANTED: Early production run Kenwood R-1000 (preferable early 1980 or before). Victor Barz, PO Box 3305. Cross-Bailes II, Ann Arbor, MI 48109. (313) 763-2857 between 1100-1400 and 0400-0600 GMT.

MK330 Motorola factory touch tone pad with mother board and daughter board, all interconnecting wiring, Nothing to cut or glue. Complete $100. N6GFE, 980 Wildcat Canyon Road, Berkeley, CA 94708. (415) 843-5253.

FASTRAK MODULAR BUILDING SYSTEM is the state-of-the-art in homeownerling. Build attractive, practical equipment for less. Send $1.00 refundable for info and product catalog. Proham Electronics, Inc., 34620 Lake- land Blvd., Eastlake, Ohio 44094.

MANUALS for most ham gear made 1931-1970. Send $1.00 for 16 page "Manual List", postpaid. HI-MANUALS, Box F802, Council Bluffs, Iowa 51502.

SLEEP SPECIALS, HP-608FR late model signal generator 10 MHz thru 455 MHz, 15" panel with bluegray cabinet, excellent for precision laboratory work $375.00; HP-614 signal generator 900 MHz thru 2100 MHz $345.00; SG-557/URM-52 signal generator 3.8 GHz thru 7.8 GHz $345.00; Motorola T-1034 FM signal generator, all FM bands $475.00; URM-25 signal generator 10 kHz thru 50 MHz $285.00; Tektronix IL30 spectrum analyzer plug-in 925 MHz thru 10.5 GHz $495.00; Jennings UCSL-1000 vacuum variable capacitors 5000 KV with gear drive train and mounting bracket $59.50. All lab tested excellent condition. We accept MC, Visa or check. phone 704-524-7519, Slep Electronics Co., HWY 441, Otto, N.C. 28763.

SATELLITE TELEVISION — Howard/Cooley boards to build your own receiver. For more information write: Robert Coleman, RT 3, Box 58-AHR, Travelers Rest, SC 29690.

WANTED: Schematics/Rider, Sams or other early publications. Scaramella, P.O. Box 1, Woosocket, RI 02899-0001.

WANTED: Early Hallicrafters "Skyriders" and "Super Sky- riders" with silver panels, also "Skyrider Commercial", early transmitters such as HT-1, HT-7, HT-15, and other Hallicrafters gear, parts, accessories, manuals. Chuck Dachis, W5DSCG, The Hallicraftler Collector, 4500 Russell Drive, Austin, Texas 78755.
SATELLITE TELEVISION: Discount prices on all major TV/RD items. Communications Consultants. (501) 452-3149.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Birthway Way, San Diego, CA 92117. SASE brings information.

WANTED: New or used MS and coaxial connectors, syncros, tubes, components, military surplus equipment. Bill Williams, PO #2057, Norfolk, VA 23509.

VERY INTERESTING! Next 5 issues $2. Ham Trader “Yellow Sheets”. PO Box 856, Wheaton, IL 60189.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours. — AM/FM/SSB/CW. Certified Communications. 4138 So. Ferriss, Fremont, Michigan 49412. (616) 924-4561.

HAM FOR CHRIST — Reach other Hams with a Gospel Tract. To please. Clyde Stanfield, WA6HEG, 1570 N. Albright, Upland, CA 91786.

“WEST COAST 180 METER BULLETIN” devoted to, for and by top band operators. Edited and published 6 times a year by NT7CD. Subscriptions $7.00 U.S. and U.S. Possessions. Canada and Mexico $7.00 U.S. Overseas rate $8.50 U.S. dollars. To 4248 “A” St. S.E., Box 609, Auburn, WA 98002.

Coming Events

ACTIVITIES

“Places to go...”

ILLINOIS: The 1983 LAMARFEST, Sunday, March 27, Lake County Fairgrounds, Routes 45 and 120, Grayslake. Public admitted 8 AM. Tickets $2.00 advance, $3.00 door. 9’ table rental $10 each. Free refreshments. Talk shows and table reservations available. Talk in on 147.69-100 or 146.94 simplex. For tickets, table reservations, exhibitor information SASE to LAMARFEST, PO Box 751, Libertyville, IL 60048.

INDIANA: The Martinsville Hamfest, March 13, sponsored by the Morgan County Amateur Radio Club, Morgan County 4 H Building and Fairgrounds. Admission: $4.00 at door, $3.00 advance, children 11 and under free. Flea market with table $5.00; without table $3.00, premium table $20.00. Free parking. Doors open to public 8 AM. Vendor setup starts 5 AM. Talk in on 147.60-06. For tickets, table reservations and information SASE to Aileen Scales, KASS, 3142 Market Place, Bloomington, Indiana 47401.

MARYLAND: The Baltimore Amateur Radio Club’s 1983 Greater Baltimore Hamoree and Computerfest, March 27, Maryland State Fairgrounds Exhibition Complex, Timonium. Gates open 8 AM. Admission $3.00, children under 12 free. Large indoor dealer and flea market area. Large outdoor tailgate area. Refreshments, free parking. Guest speakers include Vic Clark, President ARRL. For information and table reservations: 3 G H L, PO Box 95, Timonium, MD 21093-0005. (301) 561-1282.

MINNESOTA: The 6th annual Rochester Area Hamfest, Saturday, April 9, 8:30 AM, John Adams Junior High School, 1525 NW 31 Street, Rochester. Large indoor flea market, refreshments, free parking. Talk in on 146.22182. For further information: RARC, c/o W9BYE, 2532 Nordic Ct., N.W., Rochester, MN 55901.

MISSOURI: The J.B.A.R.C.’s Amateur Radio Auction, March 11, Carousel at Sunday Morning Athletic Club, 1012 Loughborough, St. Louis, Open 6 PM; auction 7:30 PM. Call in on 146.52-07.

NEW HAMPSHIRE: The 3rd annual Hamfest/Flea Market sponsored by the Great Bay Radio Association, Saturday, April 9, Somersworth Armory, Somersworth, 9 AM to 3 PM. Entrance fee $1.00 per person. Refreshments available. Free parking. For advance registrations and further information: Great Bay Radio Association, PO Box 911, Dover, NH 03820.

NEW JERSEY: The Delaware Valley Radio Association’s 12th annual flea market, Sunday, March 13, 8 AM to 4 PM, New Jersey National Guard 112th Field Artillery Armory, Eggberts Crossing Road, Lawrence Township. Advance registration $2.50, $3.00 door. Indoort/outdoor flea market area. Refreshments. Sponsors bring own tables. Talk in on 146.52 and 146.67-67. For information: D.V.R.A., PO Box 7024, West Trenton, NJ 08628. (SASE please.)

At $79.95, new Alpha Delta MACC is very low cost “insurance” on your total investment

Modern solid-state circuitry is even more vulnerable to that old bugaboo, lightning. Strikes miles away can cause damage. So transient currents from such common things as electric motors and fluorescent lights. But Alpha Delta Master AC Control Console’s 3-stage automatic restorable circuitry clips off the power surges and spikes to provide clean AC power. Its resettable circuit breaker adds further protection.

MACC gives you control convenience, too. It provides 8 plug-in “U” ground outlets for your components—including one “hot” for a continuously powered application such as your clock. Seven “on/off” rocker switches let you control individual components. And you can turn your entire system on or off with a single master rocker switch.

All switches light up when “on” to confirm system condition. MACC is tested to IEEE pulse standards and rated at 15A, 125VAC, 60 Hz. $1875 watts continuous-duty total for console. See label for surge protection limitations.

Get MACC protection. Whatever the price, it can be the most important buy you make.

ALPHA DELTA Model MACC Master AC Control Console 579.95 (U.S.)

At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order. At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order.

ALPHA DELTA Model MACC Master AC Control Console 579.95 (U.S.)

At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order. At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order.

ALPHA DELTA Model MACC Master AC Control Console 579.95 (U.S.)

At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order.

ALPHA DELTA Model MACC Master AC Control Console 579.95 (U.S.)

At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order.
OHIO: The TEAYS ARC will hold its sixth annual "King of the Pumpkin Hamfest," Sunday, March 20, 8 AM to 4 PM, Pickaway County Fairgrounds Coliseum. Tickets $2.00 advance, $3.00 door, 8" tables $4.00 advance, $5.00 door. Talk-in 58-52 and 147.78-16. Open for setup Saturday 4 PM. Overnight security provided. For information SASE to Dan Grant, WULRF, 22150 Hulse Road, Circleville, Ohio 43113. (614) 674-6025.

OHIO: The Lake County Amateur Radio Association’s fifth annual hamfair and craft fair, Friday, Saturday, and Sunday, March 27, Madison High School, Madison, All indoors. 8 AM to 4 PM. Admission: $2.00 Advance and $3.50 Door. Table fee $35.00 Advance and $40.00 at the gate. Talk-in on 147.15. For information SASE to Lake County Hamfest, 3778 Lake Shore Blvd., Eastlake, Ohio 44094. (216) 953-3974.

OHIO: The 14th annual ARA-S:TH Friday night of Dayton Hamvention, April 29, Convention Center, Main and Fifth Streets. Adjacent parking. Free admission. Refreshments and entertainment. Two exciting top awards and more. For further information contact the Miami Valley FM Association, PO Box 263, Dayton, Ohio 45401.

Pennsylvania: The Penn Wireless Association’s Tradestaf 863, Sunday, March 27, National Guard Armory, Southampton Road and Roosevelt Blvd., Philadelphia. Seller’s license $50.00. Bring tables, limited number of power connections. $3.00. General admission $3.00. Refreshments, displays, and prizes. Talk-in on 146.125 and 715 and 52. Contact: Mark Piersen, KB3NE, 1257 Nanton Drive, Philadelphia, PA 19154.

Pennsylvania: The Conemaugh Valley Amateur Radio Club’s annual hamfest, March 20, 8 AM to 4 PM, Jefferson County Fairgrounds, Jefferson. No price increase! Tickets $2.50 advance. $3.00 door. Tables $2.50 advance, $3.50 door. Free parking and plenty of food and refreshments available. Check in on the 146.347/4 repeat.

Wisconsin: The Tri-County Amateur Radio Club’s annual hamfest, March 20, 8 AM to 3 PM, Jefferson County Fairgrounds, Jefferson. No price increase! Tickets $2.50 advance. $3.00 door. Tables $2.50 advance, $3.50 door. Free parking and plenty of food and refreshments. Talk-in on 146.52, 146.282 and 144.89/45. For information, tickets and tables SASE to Horace Hiler, KB3LM, PO Box 204, 261 E. High Street, Milton, WI 53563.

Operating Events

March 10: The 4th annual Spring VHFI/FHQ QSO Party, sponsored by the Ramapo Mountain Amateur Radio Club, from 2100 UTC Saturday, March 26, to 0400 UTC Sunday, March 27. The grid square and range scoring system is being used. SASE to RMARC, PO Box 364, Oakland, NJ 07436 for logentry forms and other information.

FCC Lowers Requirements—Get Your Radio Telephone License

FCC changes make obtaining a high-level Radio Telephone License much easier now. Eliminate unnecessary study with our short-cuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement. A small investment for a high-paying career in electronics.

$19.95 ppd. Satisfaction Guaranteed

Spir-ri-Distributing

P.O. Box 1538
Hendersonville, N.C. 28793
JE215 Adjustable Dual Power Supply

General Description: The JE215 is a Dual Power Supply with independent regulation of positive and negative output voltages. A separate adjustment for each of the supplies provides the user unlimited applications for dual supply power requirements. The supplies may also be used as a general all-purpose variable power supply.

- **Adjustable regulated power supplies.**
- **Positive Output:** 0-25VDC, 0-2.5A
- **Negative Output:** 0-20VDC, 0-2.5A
- **Input:** 120VAC, 208VAC, 240VAC, 250VAC
- **Power Output:** 250W
- **Terminal connections:** Screw type, 11 terminal config. for different power connections
- **Performance:**
 - **Input filter:** RC type, 1/2 octave input filter
 - **Output filter:** 1/4 octave output filter
- **LED indicator:**
 - **On-Off:** Green LED
 - **Overload:** Red LED

Key Features:

- **Input:** 120VAC or 240VAC, 50/60Hz
- **Output:** 0-25VDC, 0-2.5A positive, 0-20VDC, 0-2.5A negative
- **Protection:** Overload, short circuit, overvoltage
- **Isolation:** 2.5M ohm, 250VAC input to output
- **Dimensions:** 12" W x 6" H x 13.5" D
- **Weight:** 26 lbs

Part No.: A220 / A221

Digital Diode Kit:

- **Digital Diode:** For use as a diode in any practical circuit, can be extended to 100 diodes.
- **Components:**
 - **Diodes:** 1N4001, 1N4002, 1N4003, 1N4004, 1N4007, 1N4009, 1N4017, 1N4148, 1N5817, 1N5825, 1N5819, 1N5821
 - **Resistors:** 1/4W, 5% 1/8W
 - **Capacitors:** 0.1µF

Part No.: D240

EXPAND YOUR MEMORY:

TRS-80 to 16K, 32K, or 48K

- **Model 1:** 8-bit processor, 16KB (4KB ROM and 8KB RAM) or 32KB (8KB ROM and 16KB RAM) or 48KB (16KB ROM and 32KB RAM)
- **Model 2:** 8-bit processor, 32KB (16KB ROM and 16KB RAM) or 48KB (32KB ROM and 32KB RAM)
- **Model 3:** 8-bit processor, 48KB (32KB ROM and 16KB RAM) or 48KB (32KB ROM and 32KB RAM)

Part No.: TRS-80K2 16KB for Color & Model III

Part No.: TRS-80K2B 32KB for Model IV

Part No.: TRS-80K2C 48KB for Model V

Price: $199.95

Spare Parts:

- **For TRS-80 Model III:**
 - **Electric Board:** $179.95
 - **Cables:** $99.95

Joystick Module:

- **Joystick:**
 - **Type:** 4-axis
 - **Input:** 5VDC

Part No.: J160 (2/6)

Jameco Radio Equipment:

- **JE664 EPROM PROGRAMMER:**
 - **8K to 64K EPROMS:**
 - **32K and 38 PIN Packets**

Part No.: FD1010-8

UV-EPROM Eraser:

- **8 Chips — 51 Pins**
 - **Price:** $13.95

Spirette Fan:

- **36Vdc free air delivery:**
 - **10 yrs. cont. duty at 23°C**

Part No.: PW62107U

Muffin Fan:

- **905dc free air delivery:**
 - **10° deflection:**
 - **10 yrs. cont. duty at 23°C**

Part No.: PW62107S

More Details? CHECK OFF Page 121

March 1983
And speakers are easy to make—and very difficult to design. **Speaker Builder**, a new quarterly from the publishers of *Audio Amateur*, has all the design answers you need. From novice to experts, *Speaker Builder* provides ideas and articles to help you build your own home stereo system. The drivers are relatively cheap and the speakers come in all shapes and sizes. As an experienced ham, you probably know your way around your audio system already. Here's an easy way to make what you have sound a whole lot better at minimum cost. **Speaker Builder** is written by the best in the business, bringing it all together in an assortment of articles that are comprehensive and a mix of both simple and advanced projects to help you choose and build the best type for your listening room.

SPEAKER QUALITY IS THE PRIMARY KEY TO YOUR STEREO SYSTEM'S SOUND

- **Bass Reflex**
- **Horns**
- **Electrostatics**
- **Transmission Lines**
- **Infinite Baffle**
- **Specials: Ribbon, Air motion transformers**
- **Basic data on passive and electronic crossovers.**

There will be reports on building the many kits speakers and enclosures now available, and a roundup of supplies for drivers, parts, and kits. Articles range from the ultimate (650 lbs. each to tiny plastic pipe extension speakers. From time delayed multi-satellites to horn loaded subwoofers, as well as modifications to many stock designs.

- **SPEAKER BUILDER, P.O. Box 494H, Peterborough NH 03458 USA**
- **Phone Orders (603) 924-6526**
- **Name**
- **Street & No.**
- **City**
- **State ZIP**
- **Phone**

Understand that the unexpired portion of your subscription will be refunded after my first issue if the magazine is unsatisfactory for any reason. Make checks or money orders payable to Speaker Builder. Rates above are for USA only. Outside USA add $2.00 per year for postage. Non-U.S. checks must be drawn in U.S. currency only.

ANTECK, INC.

Route 1, Box 415
Hansen, Idaho 83334 208-423-4100

SYNTHESIZED SIGNAL GENERATOR

- **MODEL S1000D $349.95 plus shipping**
- **Covers 100 to 185 MHz in 1 kHz steps with thumbwheel dial**
- **Accuracy ±1 part per 10 million at all frequencies**
- **Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate**
- **Spurs and noise at least 60 dB below carrier**
- **RF output adjustable from 5-500 mV at 50 ohms**
- **Operates on 12 Vdc or 1/2 Amp**
- **Available for immediate delivery**
- **Add-on Accessories available to extend freq range, add infinite resolution, voice and sub-audible tones, AM, precision 120 dB calibrated attenuator**
- **Call for details**

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423
Phone: (212) 468-2720

SAY YOU SAW IT IN ham radio!

RF TRANSISTORS

FRESH STOCK - NOT SURPLUS

- **MRF412 $18.00**
- **MRF421 27.00**
- **MRF450 12.50**
- **MRF453 15.00**
- **MRF455A 15.00**
- **MRF456A 16.00**
- **MRF456IV 17.00**
- **MRF455 14.00**
- **MRF455A 13.50**
- **MRF458 18.00**
- **MRF492 20.00**
- **MRF412 $18.00**
- **MRF421 27.00**
- **MRF450 12.50**
- **MRF453 15.00**
- **MRF455A 15.00**
- **MRF456A 16.00**
- **MRF456IV 17.00**
- **MRF455 14.00**
- **MRF455A 13.50**
- **MRF458 18.00**
- **MRF492 20.00**

PREMIUM MATCHED QUADS AVAILABLE

- **MRF421**
- **MRF450**
- **MRF453**
- **MRF455A**
- **MRF456**
- **MRF456IV**
- **MRF455**
- **MRF455A**
- **MRF458**
- **MRF492**

DEALER INQUIRIES INVITED

WESTCOM

1320 Grand Ave. San Marcos California 92069 (619) 744-0728

Tell 'em you saw it in HAM RADIO!
ROHN Foldover Towers
ROHN “fold-over” Towers offer unbeatable value. These towers let you work completely on the ground for antenna and rotator installation and servicing eliminating the need of climbing the tower. Send $2.00 for complete catalog.

UNR-Rohn
Division of UNR, Inc.
P.O. Box 2000
8718 West Plank Road
Prairie, Illinois 61856
Phone 819-897-4400
USA

FREE! CABLE LOSS CHART
IN WINTER CATALOG

NEMAL ELECTRONICS
COAXIAL CABLE SALE

POLYETHYLENE DIELECTRIC
RG11U double shield 50 ohm $1.35/lf
RG59/U double shield 50 ohm $1.35/lf
RG58/U shield 50 ohm mil spec 2.08/lb
RG59/U double shield w/Mil Spec 2.08/lb

LOW LOSS FOAM DIELECTRIC
RG-11F MIL Spec 2.05/lb
RG-11U MIL Spec 2.05/lb
RG-58/U MIL Spec 2.05/lb

CONNECTORS MADE IN USA
Amphenol PL-25 $0.75
PL-259 push-on adapter $0.89
PL-259 and PL-2539 $0.89
Double Male Connector $0.79
PL-258 Double Female Connector $0.89
1 ft. patch cord w/RCA type plugs each end $1.00
Reducer RG-175 or 175 $0.99
1/4 wave TM-395/1500 and/or $1.99
1/2 wave TM-395/1500 $1.79
1/2 wave TM-395/1500 $1.99
1/4 wave TM-395/1500 $1.25
1/4 wave TM-395/1500 $1.25

PB RADIO
1950 E. Park Row Arlington, Texas 76010

SPECIALIZING IN:
MDS Receivers & UHF Decoders

MDS COMPLETE COMMERCIAL UNIT $169.95
MDS SLOTTED ARRAY ANTENNA KIT $25.00
MDS DOWN CONVERTER KIT $28.50
MDS COMPLETE POWER SUPPLY $35.00
*SPECIAL NE64535 TRANSISTORS $6.50

UHF DECODERS: FV 3 INSTRUCTIONS $5.00
FV 3 BOARD $30.00 FV 3 IC CHIP KIT $50.00
ZENITH 9-151-03 TUNER $79.95
BOX $19.95 DELUXE BOX $24.95
POWER SUPPLY KIT $24.95
EDGE CONNECTORS $2.95

SATELLITE T.V. SYSTEMS: PRODELIN DISHES, DEXCEL RECEIVERS, LNA'S & CHAPARRAL POLAROTORS. SEND $1.00 FOR MORE INFORMATION.

INFORMATION CALL 817-460-7071
ORDERS ONLY CALL 800-433-5169

March 1983
ANTENNAS FOR HF, VHF, UHF

Two Meter

"The Big John"** 13 Element Quad 22' Boom 16.5 dBd gain F/B 30 dB Mast Size Up to 2" Bandwidth 144-145 MHz $129.95

"The Little John"*** 11 Element Quad 18' Boom 15.5 dBd gain F/B 30 dB Mast Size 2" Bandwidth 144-145 MHz $109.95

"PTG Special"**** 9 Element Quad 13' Boom 14.8 dBd F/B 30 dB Bandwidth 144-146 MHz $89.95

Featuring The Wondermatch Driven Element

Six Meter

"6-PTG-4" 4 Element Yagi 13' Boom 12 dBd Mast Size 2"
Longest Element 115" 50-51 MHz $89.95

You've Heard About Us On The Air, So Call Collect Between 8AM-10PM Or Write For Details

* Measured at JWL Laboratories
** First Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).
*** Second Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).

NEW TS830S for $150?

Yes indeed! Just add a Matched Pair of top-quality 2.1 kHz BW filters. Here are a few quotes from users:

"... makes a new rig out of my old TS305!!"
"... the filter now works the way I dreamed it should!!"
"... spectacular improvement in SSB selectivity!!"
"... completely eliminates my need for a CW filter!!"
"... simple installation ~ excellent instructions!!"

The Fox Tango filters are notably superior to both original 2.7 kHz BW filters but especially to the mod-est ceramic 2nd IF, our substitutes are 8-pole discrete-crystal construction. The comparative FT vs Kenwood results? VFT OFF — FX BW: 2.0 vs 2.4; Shape Factor: 1.19 vs 1.34; 80 dB BW: 2.48 vs 3.41; Ultimate Rejection: 110 dB vs 80. VFT SET for CW at 300 Hz BW: 2.9 vs 3.33. Insert Loss: 1 dB vs 10 dB.

AND NOW A NEW TS830S! Tests prove that the same filters improve the '930 even more than the '830. Don't buy CW filters — not even ours. You probably won't need them!

INTRODUCTORY PRICE: (Complete Kit) ... $150
Includes Matched Pair of Fox Tango Filters, all needed cables, parts, detailed instructions
Specify kit desired: FTK-830 or FTK-930
Shipping $3 (Air $5). FL Sales Tax 5%.

ONE YEAR WARRANTY
GO FOX-TANGO ~ TO BE SURE!

Order by Mail or Telephone! AUTHORIZED EUROPEAN AGENTS

Scandlnavia: MICROTEC (Norway)
Other: INGOMPEX (W Germany)

FOX TANGO CORPORATION
Box 150444 W. Palm Beach, FL 33406
Phone (305) 863-9587

NEW CATALOG
FREE CATALOG

HARD-TO-FIND PRECISION TOOLS
Lists more than 2000 items: pliers, tweezers, wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Send for your free copy today.

JENSEN TOOLS INC.
3761 S. 40TH STREET PHOENIX AZ 85040

COLLINS RECEIVER
R-388/COLLINS 513J RECEIVER - 0.5-30.5 MHz AM-CW. 30 bands. 1 MHz per band. Bandwidth 0.2-6 KHz. 500 Hz IF. 5-Step crystal selectivity. S meter and 100 kHz calibration points. Requires 115/230 VAC 60 Hz. 10/15x19x13". 56 lbs. Used rebuildable. $325. $255.

RF TUNER - from 400 watt transmitter. Has Jennings UC8X-1200 2.7 KV vacuum variable capacitor and 0.5-50 uH variable inductor. 24 VDC required for capacitor and inductor drives. Schematic included. 24"x10"x5 1/2" Tall. 24 lbs. $250. Repro $125. $195.

Prices F.O.B. Lima. O. VISA. MASTERCARD Accepted. Allow for Shipping. Write for Free CATALOG Address Dept. HR. Phone: 419/227-6573.

FACSIMILE

COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS!
The Faks Are Clear — On Our Full Size (18-1/2")
word recorders, Free Fax Guide

TELETEYP

RTTY MACHINES, PARTS, SUPPLIES
ATLANTIC SURPLUS SALES
3130 MAUPTUS AVE. BROOKLYN, N.Y. 11204

FAIR RADIO SALES
1016 E. ELMIRA RD. ROCK SPRING, OHIO 45676

COPYRIGHT 1982

(713) 464-7720 Dick-WB5JWUL
Gordy-KD5NQ

WL ELECTRONICS
9138 Western Drive
Houston, TX 77080

* Printed in Full Color
* Imprint in Red Ink
* Size 3 1/2" x 5 1/2"
* 12 Point Glossy Stock
* Standard Report Form
* Back Side

200 Cards $20.00
(Only $5.00 per additional 100)
Order No. 412
Credit Card Order Hotline:
1-800-531-7373

More Details? CHECK — OFF Page 121
Ham Radio's Guide to Help You Find Your Local Amateur Radio Dealer

California

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C & A Electronic Enterprises</td>
<td>22010 S. WILMINGTON AVE. SUITE 105 CARSON, CA 90745 213-834-5888</td>
<td>Not the biggest, but the best — Since 1962.</td>
<td></td>
</tr>
<tr>
<td>Fontana Electronics</td>
<td>8618 SERRA AVENUE FONTANA, CA 92335 714-822-7710 714-822-7725</td>
<td>The largest electronics dealer in San Bernardino County.</td>
<td></td>
</tr>
<tr>
<td>Ray's Amateur Radio</td>
<td>15900 US HIGHWAY 19 SO. CLEARWATER, FL 33516 813-535-1416</td>
<td>Your complete amateur radio and computer store.</td>
<td></td>
</tr>
</tbody>
</table>

Connecticut

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatry Electronics</td>
<td>500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881</td>
<td>Call today. Friendly one-stop shopping at prices you can afford.</td>
<td></td>
</tr>
</tbody>
</table>

Delaware

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware Amateur Supply</td>
<td>71 MEADOW ROAD NEW CASTLE, DE 19720 302-328-7728 800-441-7008</td>
<td>Icom, Ten-Tec, DenTron, Yaesu, Azden, Santec, KDK, and more. One mile off I-95, no sales tax.</td>
<td></td>
</tr>
</tbody>
</table>

Florida

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateur Electronic Supply</td>
<td>1898 DREW STREET CLEARWATER, FL 33515 813-461-HAMS</td>
<td>Clearwater Branch, west coast's only full service amateur radio store.</td>
<td></td>
</tr>
</tbody>
</table>

Massachusetts

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel-Com, Inc.</td>
<td>675 GREAT ROAD, RTE. 119 LITTLETON, MA 01460 617-486-3040 617-486-3400 (this is new)</td>
<td>The ham store of New England. You can rely on.</td>
<td></td>
</tr>
</tbody>
</table>

Minnesota

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest Amateur Radio Supply</td>
<td>3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612-521-4662</td>
<td>It's service after the sale that counts.</td>
<td></td>
</tr>
</tbody>
</table>

Nevada

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun's Electronics</td>
<td>460 E. PLUMB LANE — 107 RENO, NV 89502 702-527-5732</td>
<td>Outside Nev: 1 (800) 648-3962 Icom — Yaesu dealer</td>
<td></td>
</tr>
</tbody>
</table>

New Hampshire

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tufts Electronics</td>
<td>61 LOWELL ROAD HUDSON, NH 03051 603-863-5005</td>
<td>New England's friendliest ham store.</td>
<td></td>
</tr>
</tbody>
</table>

New Jersey

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radios Unlimited</td>
<td>P. O. BOX 347 1760 EASTON AVENUE SOMERSET, NJ 08873 201-469-4599 800-526-0903</td>
<td>New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.</td>
<td></td>
</tr>
<tr>
<td>Route Electronics 46</td>
<td>225 ROUTE 46 WEST TOTOWA, NJ 07512 201-256-8555</td>
<td>Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke & Beckman instruments, etc.</td>
<td></td>
</tr>
</tbody>
</table>

New York

<table>
<thead>
<tr>
<th>Business Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amateur Electronic Supply</td>
<td>621 COMMONWEALTH AVE. ORLANDO, FL 32803 305-594-3238</td>
<td>Fia. Wats: 1 (800) 432-9424 Outside Fia: 1 (800) 327-1917</td>
<td></td>
</tr>
<tr>
<td>Amateur Radio Center, Inc.</td>
<td>2805 N. E. 2ND AVENUE MIAMI, FL 33137 305-573-8383</td>
<td>The place for great dependable names in Ham Radio.</td>
<td></td>
</tr>
<tr>
<td>Ray's Amateur Radio</td>
<td>1590 US HIGHWAY 19 SO. CLEARWATER, FL 33516 813-535-1416</td>
<td>Your complete amateur radio and computer store.</td>
<td></td>
</tr>
</tbody>
</table>

Dealers: You Should Be Here Too!

Contact Ham Radio now for complete details.

114 March 1983
New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Ten-Tec, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer - ALL major Amateur Brands. We service everything we sell!
Warren K2IXN or Bob WA2MSH.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LARUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Texas

MADISON ELECTRONICS SUPPLY
1508 McKinney
HOUSTON, TX 77010
713-658-0268
Christmas?? Now?? See ad index page.

Virginia

AMATEUR ELECTRONIC SUPPLY
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411

SAY YOU SAW IT IN ham radio!
Lunar's GaAS FET Preamps on your repeater makes your customers' handheld as powerful as though they were using a 40 watt amp and 30 pound battery.

Typical circuit improvements reported by our customers using Lunar's GaAS FET Preamps indicate a 6 to 9 dB improvement. In other words, by installing a Lunar GaAS FET Preamp at your repeater, your customers' signal from a 5 watt handheld is equivalent to his using a 40 watt amp and 30 pound battery.

Users state that areas which were formerly considered fringe reception areas are now rock solid. Increase your competitive position by installing a Lunar GaAS FET Preamp in your repeater now.

Qualities Specials

MONSTER-SIZED MULTI-PAKS $10.95 EACH

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

MONSTER JR. MULTI-PAKS $2.95 EACH

Any of the Multi-Paks were available with the above counts on your own.

Sophisticated I.C.'s

Data Sheet and Application Notes Available Free with All Integrated Circuit Listings Below

CAPACITORS

Goldsmith Scientific Corporation

P.O. Box 318 COMMACK, NY 11725

Phone Orders Welcome — (212) 897-7944

Minimum Order $100.00 — U.S. Funds Only

New York State Residents Add Sales Tax

Postage & Handling Charge: 12% of Order

Credit Card Orders: American Express, MasterCard, Visa

Availability of Certain Items May Be Limited

Hamvention

April 29, 30, May 1, 1983

Hara Arena and Exhibition Center — Dayton, Ohio

Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION.

Seating will be limited for Grand Banquet and Entertainment on Saturday evening so please make reservations early. Banquet speaker is Bill Leonard, W2SKE, former president of CBS News.

If you have registered within the last 3 years you will receive a brochure in late February. If not write Box 44, Dayton, OH 45401.

Nominations are requested for Radio Amateur of the Year and Special Achievement Awards. Nomination forms are available from Awards Chairman, Box 44, Dayton, OH 45401.

For special motel rates and reservations write to Hamvention Housing, 1406 Third National Bldg., Dayton, OH 45402.

NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.

All other inquiries write Box 44, Dayton, OH 45401 or phone (513) 849-1720.

Admission: $7.00 in advance, $9.00 at door. (Valid for all 3 days)

Banquet: $14 in advance, $16 at door.

Flea Market Space: $15 in advance. (Valid for both days)

Make checks payable to Dayton HAMVENTION, Box 2205, Dayton, OH 45401.

Bring your family and enjoy a great weekend in Dayton. Sponsored by the Dayton Amateur Radio Association, Inc.
THE ARRL ANTENNA BOOK The best and most up-to-date antenna information around. The just revised 14th Edition contains in its 328 pages propagation, transmission line and antenna fundamentals. You can update your present antenna system with practical construction details of antennas for all amateur bands - 160 meters through microwaves. There are also antennas described for mobile and restricted space use. Tells how to use the Smith chart for making antenna calculations and covers test equipment for antenna and transmission line measurements. Over 600,000 copies of previous editions sold. Paperbound. Copyright 1982. $8.00 in the U.S., $8.50 elsewhere.

HF ANTENNAS FOR ALL LOCATIONS by L.A. Moxon, G6XN. An RSGB publication. Contains 264 pages of practical antenna information. This book is concerned primarily with small wire arrays, although construction information is also given on a small number of aluminum antennas. Chapters include: Taking a New Look at hf Antennas; Waves and Fields; Gains and Losses; Feeding the Antenna; Crossed Arrays; Feeding Arrays; Long Wires, and Ground Reflections; Multiband Antennas; Bandwidth; Antenna Design for Reception; The Antenna and Its Environment; Single-element Antennas; Horizontal Beams; Vertical Beams; Large Arrays; Invisible Antennas; Mobile and Portable Antennas; What Kind of Antenna: Making the Antenna Work; Antenna Construction and Erection. Copyright 1982, 1st Edition, Hardbound $12.00.

Enclosed in U.S. funds drawn on a U.S. bank or an international money order is $ for the books marked below:

() ARRL Antenna Book $8 U.S. $8.50 elsewhere
() HF Antennas $12.00
() Antenna Anthology $4 U.S. $4.50 elsewhere

NAME

ADDRESS

CITY, STATE OR PROVINCE, ZIP OR POSTAL CODE

Charge to my □ Master Charge □ Visa

Account number expires

Bank number (MC)

A.R.R.L.
225 Main Street
Newington, CT 06111

March 1983
Alaska Microwave Labs
P.O. BOX 2049 PALMER, ALASKA 99645
(907) 756-3098

DEPT HR

GaAs FETS

MGF-1400 NF 20DB @ 4GHZ MAG 15DB $14.00
MGF-1412 NF 0DB @ 4GHZ MAG 10DB $52.00
MGD-1400 NF 1DB @ 14GHZ NF 2.7DB & MAG 1406 @ 4GHz $11.00

VSWI

VSWI 1-2.7GHZ TO 2-3.5GHZ MIN POWER & 15 MHZ
TUNING VOLTAGE 0 TO 25V DC @ 6MA. $98.00
VSWI 2-3.5GHz TO 3GHz BEST SAMI AS VSWI $98.00
VSWI 3-5.5GHz TO 5.7GHz BEST SAMI AS VSWI $98.00
VSWI 5.5-7GHz TO 6GHz BEST SAMI AS VSWI $98.00

CHIP CAPACITORS

-2.2, 2.2, 3.3, 4.7, 8.0, 18, 22, 47, 100, 120, 330, 470, 1K, 10K. $0.60
-10, 100, 1K. $0.75
-22, 470, 1K. $0.85

TEFLON CIRCUIT BOARD DRL. SIZED 1 OZ

ADAPRED 1.0 OZ. $1.00
ADAPRED 1.0 OZ. $1.25
ADAPRED 3.0 OZ. $1.50

MIXERS

2.7GHz TO 4.7GHz MIXER. LO 7GHz TO 9GHz
IF 9GHz TO 15GHz CONVERSION LOSS @ 500 MAX.
500 TO 15GHz MIXER $50.00
500 TO 15GHz MIXER $55.00
500 TO 15GHz MIXER $60.00

CHIP RESISTORS

50 OHM. 1% $0.75
50 OHM 307 $0.95
50 OHM 307 $1.00

OPEN AT 1PM EST CLOSED 8PM PST
ORDERS ARE POSTAGE PAID
COD - VISA - MASTERCHARGE

NEEDS NO RADIALS OR MATCHING DEVICES

FOR 80-40-20-15 METERS

*NEW LOCATION

ISOTRON 90 ISOTRON 40 ISOTRON 20
54 INCH 311 INCH 17 INCH

BIG ON PERFORMANCE

SMALL ON SPACE

BILAL COMPANY

WAL S Det... ATAME

STAR ROUTE 2

EUCHA. OK 74342

Tell 'em you saw it in HAM RADIO!
... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio √ 234

<table>
<thead>
<tr>
<th>Name</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEA</td>
<td>309</td>
</tr>
<tr>
<td>Alaska Microwaves</td>
<td>191</td>
</tr>
<tr>
<td>Alpha</td>
<td>117</td>
</tr>
<tr>
<td>Alden Elec</td>
<td>113</td>
</tr>
<tr>
<td>All Elec</td>
<td>133</td>
</tr>
<tr>
<td>Alpha Delta</td>
<td>165</td>
</tr>
<tr>
<td>Antenna Today</td>
<td>138</td>
</tr>
<tr>
<td>ARRl</td>
<td>186</td>
</tr>
<tr>
<td>Armoni</td>
<td>132</td>
</tr>
<tr>
<td>Amer Supply</td>
<td>151, 163</td>
</tr>
<tr>
<td>Antenna Spec</td>
<td>106, 301</td>
</tr>
<tr>
<td>Antec</td>
<td>173</td>
</tr>
<tr>
<td>Appliance & Equipment</td>
<td>137</td>
</tr>
<tr>
<td>Applied Fm</td>
<td>112</td>
</tr>
<tr>
<td>Atlantic Surplus *</td>
<td></td>
</tr>
<tr>
<td>ATV Magazine</td>
<td>164</td>
</tr>
<tr>
<td>A Z Crystal</td>
<td>192</td>
</tr>
<tr>
<td>Barker Electronics</td>
<td>124</td>
</tr>
<tr>
<td>Barry</td>
<td>128</td>
</tr>
<tr>
<td>Betts</td>
<td>128</td>
</tr>
<tr>
<td>Bill</td>
<td>193</td>
</tr>
<tr>
<td>Buckmaster Building</td>
<td>135</td>
</tr>
<tr>
<td>Butternut *</td>
<td></td>
</tr>
<tr>
<td>CV Elec</td>
<td>122</td>
</tr>
<tr>
<td>Caddell Co.</td>
<td>152</td>
</tr>
<tr>
<td>Ceco</td>
<td>114, 156</td>
</tr>
<tr>
<td>Comm. Design</td>
<td>134</td>
</tr>
<tr>
<td>Comm Elec</td>
<td>103</td>
</tr>
<tr>
<td>Comm Spec</td>
<td>121</td>
</tr>
<tr>
<td>Connect Systems</td>
<td>162</td>
</tr>
<tr>
<td>C D C</td>
<td>118</td>
</tr>
<tr>
<td>Dayton *</td>
<td></td>
</tr>
<tr>
<td>Delcraft</td>
<td>190</td>
</tr>
<tr>
<td>Doper</td>
<td>144</td>
</tr>
<tr>
<td>Drake *</td>
<td></td>
</tr>
<tr>
<td>Elec. Specialists</td>
<td>157</td>
</tr>
<tr>
<td>Eng. Consulting</td>
<td>141</td>
</tr>
<tr>
<td>Epsilon</td>
<td>162</td>
</tr>
<tr>
<td>Farr Radio</td>
<td>166</td>
</tr>
<tr>
<td>Ferrantronics</td>
<td>156</td>
</tr>
<tr>
<td>Fox Radio</td>
<td>163</td>
</tr>
<tr>
<td>Galaxy</td>
<td>167</td>
</tr>
<tr>
<td>Giffen Assoc.</td>
<td></td>
</tr>
<tr>
<td>Global Spec</td>
<td>307</td>
</tr>
<tr>
<td>Goldsmith Scientific</td>
<td>188</td>
</tr>
<tr>
<td>Grand Systems</td>
<td>159, 169</td>
</tr>
<tr>
<td>HalComm</td>
<td>110</td>
</tr>
<tr>
<td>H. R. B.</td>
<td>125, 175, 181</td>
</tr>
<tr>
<td>Hamtronics, N.Y.</td>
<td>129</td>
</tr>
<tr>
<td>Ham Radio</td>
<td>126</td>
</tr>
<tr>
<td>Harvey Radio</td>
<td>116</td>
</tr>
<tr>
<td>Heath</td>
<td>109</td>
</tr>
<tr>
<td>Henry</td>
<td>107</td>
</tr>
<tr>
<td>Howerler</td>
<td>148</td>
</tr>
<tr>
<td>Hull</td>
<td>304</td>
</tr>
<tr>
<td>Icom</td>
<td>161, 308</td>
</tr>
<tr>
<td>Irid Crystal</td>
<td>142</td>
</tr>
<tr>
<td>Int Crystal</td>
<td>119</td>
</tr>
<tr>
<td>Jagers</td>
<td>182</td>
</tr>
<tr>
<td>Jennings</td>
<td>166</td>
</tr>
<tr>
<td>Kenwood *</td>
<td>302</td>
</tr>
<tr>
<td>Kitsman *</td>
<td></td>
</tr>
<tr>
<td>Larsen</td>
<td>106</td>
</tr>
<tr>
<td>Long's</td>
<td>120</td>
</tr>
<tr>
<td>Lunar</td>
<td>137</td>
</tr>
<tr>
<td>MFJ</td>
<td>104, 305</td>
</tr>
<tr>
<td>Mactronics</td>
<td>154</td>
</tr>
<tr>
<td>Meadina</td>
<td>115</td>
</tr>
<tr>
<td>Miraje</td>
<td>199</td>
</tr>
<tr>
<td>Multicom Systems</td>
<td>310</td>
</tr>
<tr>
<td>NCG</td>
<td>153</td>
</tr>
<tr>
<td>Nampa Satellite</td>
<td>143</td>
</tr>
<tr>
<td>Nemanl</td>
<td>177</td>
</tr>
<tr>
<td>N. American Solar</td>
<td>194</td>
</tr>
<tr>
<td>Nuts & Volts</td>
<td>136</td>
</tr>
<tr>
<td>Oak Hill Academy for R. S. *</td>
<td></td>
</tr>
<tr>
<td>P B Radio</td>
<td>178</td>
</tr>
<tr>
<td>P C *</td>
<td></td>
</tr>
<tr>
<td>Palmar Eng *</td>
<td></td>
</tr>
<tr>
<td>Peterson Elec</td>
<td>158</td>
</tr>
<tr>
<td>RF Products</td>
<td>170, 306</td>
</tr>
<tr>
<td>Callbook</td>
<td>140</td>
</tr>
<tr>
<td>Radiobug</td>
<td>166</td>
</tr>
<tr>
<td>Radio School</td>
<td>301</td>
</tr>
<tr>
<td>Radio Warehouse</td>
<td></td>
</tr>
<tr>
<td>Ruisprint</td>
<td>194</td>
</tr>
<tr>
<td>Simple Simon</td>
<td>127</td>
</tr>
<tr>
<td>Sinclair *</td>
<td></td>
</tr>
<tr>
<td>Speaker Builder</td>
<td>172</td>
</tr>
<tr>
<td>Speed Call</td>
<td>147</td>
</tr>
<tr>
<td>Spectronics *</td>
<td></td>
</tr>
<tr>
<td>Spectrum Int</td>
<td>178</td>
</tr>
<tr>
<td>Spectrum West</td>
<td>145</td>
</tr>
<tr>
<td>Spot Ro</td>
<td>168</td>
</tr>
<tr>
<td>Telex *</td>
<td></td>
</tr>
<tr>
<td>Tenna. *</td>
<td></td>
</tr>
<tr>
<td>Tri Ex</td>
<td>190</td>
</tr>
<tr>
<td>Universal Comm.</td>
<td>123</td>
</tr>
<tr>
<td>UNIR Rohn</td>
<td>149, 176</td>
</tr>
<tr>
<td>Vanguard Labs</td>
<td>174</td>
</tr>
<tr>
<td>Vanan</td>
<td>195</td>
</tr>
<tr>
<td>Voice of America *</td>
<td></td>
</tr>
<tr>
<td>Westcom *</td>
<td></td>
</tr>
<tr>
<td>Western Elec</td>
<td>146</td>
</tr>
<tr>
<td>Zenith</td>
<td>195</td>
</tr>
</tbody>
</table>

* Please contact this advertiser directly.

Limit 15 inquiries per request.

NAME ____________ CALL ____________

ADDRESS ____________ STATE ____________ ZIP ____________

CITY ________________________________

Please use before April 30, 1983

March, 1983
Advertisers

check-off

...for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 234

March 1983

Please use before April 30, 1983

Tear-off and mail to
HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048-0498

Preamplifiers

The famous Palomar Engineers preamplifier has been updated and packaged in an attractive new cabinet.

For the SWL there is the P-305 (9-v DC powered) and the P-306 (115-v AC powered) featuring full shortwave coverage, selection of two antennas, 20 db attenuator, 15 db gain control and on-off bypass switch.

All models have these features:
- Up to 20 db gain.
- Covers 1.8 to 54 MHz in four bands.
- Low noise figure.
- Reduces image and spurious response.
- 8” x 5” x 3”. Brushed aluminum control panel. Black vinyl cover.
- SO-239 connectors.
- LED pilot.

Don't wait any longer to pull out weak, rare DX.

Send for FREE catalog describing the Preamplifiers and our complete line of Noise Bridges, SWR Meters, Toroids, Baluns, Tuners, VLF Converters, Loop Antennas and Keyers.

Palomar Engineers

2924-F West Mission Rd.
Escondido, CA 92025
Phone: (619) 747-3343

Advertisers

Check-off

VISA

Mastercharge

American Express

Index

Alaska Microwave Labs 118
Alba Electronics 69
Alden Elect 117
All Elec. Corp. 94
Beta 107
Amateur Radio Today 97
American Radio Relay League 117
Amon Associates 94
Amp Supply 102, 106
The Antenna Specialists Co. 71
Anteck, Inc. 110
Appliance Equipment Company, Inc. 97
Applied Invention 49
Atlantic Surplus Sales 113
ATV Magazine 106
AV Crystal Co. 86
Barber & Williamson, Inc. 85
Barry Electronics 95
J. S. Bets Company 91
Bilal Company 118
Buckmaster Publishing 49, 102
Budweiser Mutual Corporation 94
Buttermilk Electronics 115
CW Electronics 68
Caddell Corp. 102
Cico 59, 104
Communications Design, Inc. 94
Communications Electronics 82
Connect Systems 1
Current Development Corp. 79
Dayton Hammer 116
Decaf 116
Doppler Systems 100
Drake, R. L., Co. 71
Electronic Specialists, Inc. 104
Engineering Consulting 98
Epsilon Records 113
Fair Radio Sales 87
Fernettix 47
Hearst Company 43
Henry Radio 31
Houser Electronics 87
ICOM America, Inc. 108
Independent Crystal Supply Company 46
International Crystal 68
JWL Electronics 113
Jameco Electronics 97, 109
Jensen Tools, Inc. 113
KLM Electronics, Inc. 94
Keno Communications, Inc. 2, Cover II
Kollman Instrument Co. 104
Larsen Electonics 39
Long’s Electronics 82
Lunar Electronics 116
MJE Enterprises 75
Macromics 103
Martin, J. M. 61
Mirage 122
Nordvick & Vols Magazine 94
Oak Hill Company 65
Palomar Engineering Amateur Radio Session 104
P. B. Radio 111
P. C. Electronics 103
Palomar Engineers 121
Petersen Electronics 108
PF Electronics 102
Radio Amateur Claims 98
Radio 103
Radio Warehouse 100
Rusprint 113
Simple Simon Electronic Kits, Inc. 89
Sinclair Research Ltd. 37
Speaker Builder 110
Speed Call 101
Spectronics 118
Spectrum International, Inc 118
Spectrum West 100
Sprint Distributing 108
Tektronix 24
Telcom Communications 44, 45
Tennelec Electronics 118
The Gotham Company 106
Tri-Ex Tower Corp. 112
Universal Communications 98
UNR Rohn 102, 111
Vanguard Labs 110
Voces of America 98
Western 86
Western Electronics 100
Yaesu Electronics Corp. 100

March 1983
10 Reasons Why Your Next Hand Held DMM Should Be... SOAR CORP. MODEL 8050

1. The 8050 has eight separate functions (30 ranges) including diode and transistor check, 10 ampere ranges for both AC and DC current, and a continuity test beeper that reacts as fast as you can move the test probe from one point to another.

2. Single rotary switch for all function/range selections with only ONE moving part that provides full contact wiping action for long term trouble free reliability and accuracy. The one year basic DCV accuracy starts at 0.5%.

3. The glass epoxy PCB, low parts count, low mass switch assembly, and plastic lens LCD cover make the 8050 tough inside; yet all critical components and calibration controls have been positioned so they are easy and quick to “get at” if ever there’s a need to calibrate or repair.

4. The case interior is fully RFI/EMI shielded so you can make accurate measurements even in the presence of other “turned on” equipment.

5. The 8050’s physical size (6½” x 3½” x 1½”) was optimized to allow fast sure function/range selection and firm one hand holdability; its small enough to fit in your shirt pocket; ideally sized for your attache or tool case.

6. All functions and ranges are overload protected, just in case — and we provide a spare fuse, standard 9V battery, test leads, and a “no nonsense” one year parts and labor warranty.

7. Our LCD readout has big bold “eye pleasing” ¾ digits with automatic low battery indicator and minus sign, it’s readable with one fast glance.

8. Its superbly styled in ⅛” thick rugged ABS plastic, the perfect combination of beauty and strength.

9. The 8050 is made by SOAR CORP., one of the largest (if not THE LARGEST) manufacturer of hand held DMM’s in the world. We are private branding DMM’s for companies throughout the world, many here in the U.S.A. A company with over twenty years of design and manufacturing experience now making and selling DMM’s, Oscilloscopes, Power Supplies, Frequency Counters, Digital Thermometers, Pulse Generators, AC Clamp Testers, VOM’s, Electrical Energy Monitors, and Automatic Board Test Systems.

10. PRICE! That’s right, the last reason is price — The 8050 at $89.95 represents one heck of a value and proves once more that good things don’t have to cost a bundle.

SOAR products are available through selected DISTRIBUTORS in the U.S.A., Canada and Mexico.
ORDER YOURS NOW.

NORTH AMERICAN SOAR CORP.
1126 CORNELL AVENUE
CHERRY HILL, N.J. 08002
(609) 488-1060
The FT-102 is factory equipped for operation on all present and proposed Amateur HF bands. An extra AUX band position is available for special applications. Equipped for SSB, CW, and AM (RX), the FT-102 may be activated on FM and AM (TX) via the optional AM/FM-102 Module.

The all-new receiver front end utilizes a low-distortion RF preamplifier that may be bypassed via a front panel switch when not needed. Maximum receiver performance is yours with this impressive lineup of standard features: IF Notch Filter, Audio Peak Filter, Variable IF Bandwidth Control, IF Shift, Variable Pulse Width Noise Blanker, Independent SSB and CW Audio Channels with Optimized Audio Bandwidth, and Front Panel Audio Tone Control. Wide/Narrow filter selection is independent of the Mode switch.

The celebrated transmitter section is powered by three 6146B final tubes, for more consistent power output and very low distortion. An RF Speech Processor, Mic Amp Audio Tone Control, VOX, and an IF Monitor round out the transmitter lineup. Futuristic panel design and careful human engineering are the hallmarks of the FT-102. Convenient pop-out controls below the meters may be retracted when not in use, thus avoiding inadvertant mistuning. Abundant relay contacts, rear panel phono jacks for PTT, microphone/patch input, and other essential interface connections make the FT-102 extremely simple to incorporate into your station.

SPECIFICATIONS

TRANSMITTER

Power Input: (1.8-25 MHz) (28-29.9 MHz)
- SSB, CW 240W DC 160W DC
- AM 80W DC 80W DC
- FM 160W DC

RECEIVER

Image Rejection:
- Better than 70dB from 1.8-21.5 MHz
- Better than 50dB from 24.5-29.9 MHz

IF rejection:
- Better than 70 dB

Selectivity (-6 dB/ -60 dB):
- SSB, CW, AM; 2.7/4.8 kHz (with no optional filters)
- Width adjusts continuously from 2.7 kHz to 500 Hz (-6 dB)
- Spurious Radiation: Better than -40 dB

The SP-102 External Speaker/Audio Filter features a large, high-fidelity speaker with selectable low- and high-cut audio filters. The front panel A-B switch allows selection of two receiver inputs for maximum versatility. Also available is the SP-102P Speaker/Patch.

See your Authorized Yaesu Dealer today for a hands-on demonstration of the rig that everybody's talking about. It's the FT-102, The Transceiver of Champions!

Price And Specifications Subject To Change Without Notice or Obligation

1082

ELECTRONICS CORP. 6851 Walthall Way, Paramount, CA 90723 • (213) 633-4007
Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246 • (513) 874-3100
Scan the World.

SSB, CW, AM, FM, digital VFO’s, 10 memories, memory and band scan, dual 24-hour clocks...

R-2000

The R-2000 is an all mode SSB, CW, AM, FM receiver that covers 150 kHz-30 MHz in 30 bands. New microprocessor controlled operating features and an UP conversion PLL circuit provide maximum flexibility and ease of operation to enhance the excitement of listening to stations around the world. Key features include digital VFO’s, ten memories that store frequency, band, and mode information, memory scan, programmable band scan, fluorescent tube digital display, and dual 24-hour clock with timer.

R-2000 FEATURES:

- Covers 150 kHz-30 MHz in 30 bands. Uses innovative UP-conversion digitally controlled PLL circuit. UP/DOWN band switches (1-MHz step). VFO continuously tuneable across 150 kHz-30 MHz.
- All mode: USB, LSB, CW, AM, FM. Provides expanded flexibility in receiving various signal types. Front panel mode selector keys, with LED indicators.
- Digital VFO’s for best stability. 50-Hz step, switchable to 500-Hz or 5-kHz, using front panel pushbutton switches. F-Lock switch provided.
- Ten memories store frequency, band, and mode data. Complete information on frequency, band, and mode is stored in memory, assuring maximum ease of operation. Each memory may be tuned as a VFO. Original memory frequency may be recalled. AUTO M switch for automatic storage of current operating data, or, when off, selective storage of data using M IN switch.
- Lithium battery memory back-up. (Est. 5 yr. life.)
- Memory scan. Scans all memories, or may be programmed to scan specific memories. HOLD switch interrupts scanning. Frequency, band, and mode are automatically selected in accordance with the memory channel being scanned. The scanning time is approximately 2 seconds per channel.
- Programmable band scan. Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish upper and lower scan limits. HOLD switch interrupts scanning. Frequency may be adjusted, using the tuning control, during scan HOLD.
- Fluorescent tube digital display (100-Hz resolution). Built-in 7 digit fluorescent tube digital display indicates frequency or time, plus memory channel number. DIM switch provided. The display may be switched to indicate CLOCK-2, FREQUENCY, CLOCK-1, and timer ON or OFF by the front panel FUNCTION switch.
- Dual 24-hour quartz clocks, with timer. Permits programming two different time zones. Timer for ON and OFF programming. Timer REMOTE output on rear panel (not for AC power).
- Three built-in IF filters with NARROW/ WIDE selector switch. (CW filter optional.) 6 kHz wide or 2.7 kHz narrow on AM, 2.7 kHz automatic on SSB. 2.7 kHz wide on CW, or, with optional YG-455C filter installed, 500 Hz narrow, 15 kHz automatic on FM.
- Squelch circuit, all mode, built-in, with BUSY indicator.
- Noise blanker built-in. Eliminates pulse-type noise on SSB, CW, and AM.
- Large front mounted speaker.
- Tone control.
- RF step attenuator. (0-10-20-30 dB.) Four step attenuator, plus antenna fuse.
- AGC switch. (Slow-Fast.)
- “S” meter, with SINDPO “S” scale.
- High and low impedance antenna terminals.
- A high impedance (500 ohm) terminal, and a low impedance (50 ohm) coaxial connector are provided.
- 100/120/220/240 VAC, or 13.8 VDC operation. (Optional DAC-1 cable kit required for 13.8 VDC.)

Other features:
- RECORD output jack.
- Audible “beeper” (through speaker).
- Carrying handle.
- Headphone jack.
- External speaker jack.

Optional accessories:
- HS-4, HS-5, HS-6 headphones.
- DAC-1 DC cable kit.
- YG-455C 500-Hz CW filter.
- HC-10 World digital quartz clock.

More information on the R-2000 is available from all authorized dealers of Trio-Kenwood Communications 311 West Walnut Street Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.