designer's challenge:
RECEIVER OF THE FUTURE
Tempo was the first with a synthesized hand held for amateur use, first with a 220 MHz synthesized hand held, first with a 5 watt output synthesized hand held...and once again first in the 440 MHz range with the S-4, a fully synthesized hand held radio. Not only does Tempo offer the broadest line of synthesized hand helds, but its standards of reliability are unsurpassed...reliability proven through millions of hours of operation. No other hand held has been so thoroughly field tested, is so simple to operate or offers so much value. The Tempo S-4 offers the opportunity to get on 440 MHz from where ever you may be. With the addition of a touch tone pad and matching power amplifier its versatility is also unsurpassed.

The S-4...$349.00
With 12 button touch tone pad...$399.00
With 16 button touch tone pad...$419.00
S-40 matching 40 watt output
13.8 VDC power amplifier...$149.00

Specifications:
Frequency Coverage: 440 to 449.995 MHz
Channel Spacing: 25 KHz minimum
Power Requirements: 9.5 VDC
Current Drain: 17 ma-standby 400 ma-transmit (1 amp high power)
Antenna Impedance: 50 ohms
Sensitivity: Better than 5 microvolts nominal for 20 db
Supplied Accessories: Rubber flex antenna 450 ma ni-cad battery pack, charger and earphone
RF output Power: Nominal 3 watts high or 1 watt low power
Repeater Offset: ± 5 MHz

Optional Accessories for all models
12 button touch tone pad (not installed): $39 • 16 button touch tone pad (not installed): $48 • Tone burst generator: $29.95 • CTCSS sub-audible tone control: $29.95 • Leather holster: $20 • Cigarette lighter plug mobile charging unit: $8

TEMPO VHF & UHF SOLID STATE POWER AMPLIFIERS

Boost your signal... give it the range and clarity of a high powered base station. VHF (135 to 175 MHz)

<table>
<thead>
<tr>
<th>Drive Power</th>
<th>Output</th>
<th>Model No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>130W</td>
<td>130A02</td>
<td>$296</td>
</tr>
<tr>
<td>10W</td>
<td>130W</td>
<td>130A10</td>
<td>$189</td>
</tr>
<tr>
<td>30W</td>
<td>130W</td>
<td>130A30</td>
<td>$199</td>
</tr>
<tr>
<td>2W</td>
<td>80W</td>
<td>80A02</td>
<td>$169</td>
</tr>
<tr>
<td>10W</td>
<td>80W</td>
<td>80A10</td>
<td>$149</td>
</tr>
<tr>
<td>30W</td>
<td>80W</td>
<td>80A30</td>
<td>$159</td>
</tr>
<tr>
<td>2W</td>
<td>50W</td>
<td>50A02</td>
<td>$199</td>
</tr>
<tr>
<td>2W</td>
<td>30W</td>
<td>30A02</td>
<td>$83</td>
</tr>
</tbody>
</table>

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.
Introducing the first fully programmable keyer

Store commands, as well as text, for automatic execution

The Heathkit μMatic Memory Keyer's custom microprocessor stores up to 240 characters of text or commands. Variable-length buffers eliminate wasted memory space. "Command strings" allow text to be stored in several buffers, then strung-together in any sequence for most efficient use of memory. Command strings can also select speed, weight, spacing and auto-repeat count.

No external key to buy

Integral capacitive "touch" paddles unplug and store in their own compartment inside the Keyer when not in use. Left handed? A touch of the keypad and the paddles are reversed. Choose any speed between 1 and 99 words per minute, and any of 11 weight settings. Special rear-panel jack connects mechanical paddle.

Great code practice machine, too

A "practice" mode sends random code groups of random length and selectable types for a total of 6,400 different practice sessions. Each sequence sends approximately 3,000 characters before repeating.

Other features:

Built-in sidetone oscillator and speaker have pitch and volume controls. Phone jack and earphone are included for private listening. Complete details on the great new μMatic Memory Keyer are in the latest Heathkit Catalog. Or see it at your nearby Heathkit Electronic Center.

Send for free catalog

Write to Heath Company, Dept. 122-834, Benton Harbor, MI

In Canada, contact Heath Company, 1480 Dundas Street E., Mississauga, ONT L4X 2R7.

Visit your Heathkit Store
Where Heathkit products are displayed, sold and serviced.

*Units of Veritechology Electronics Corporation in the U.S.
R-1000

The R-1000 is an amazingly easy-to-operate, high-performance, communications receiver, covering 200 kHz to 30 MHz in 30 bands. This PLL synthesized receiver features a digital frequency display and analog dial, plus a quartz digital clock and timer. Its easy-single-knob tuning and high sensitivity, selectivity, and stability make the R-1000 a favorite amongst Radio Amateurs, shortwave listeners, engineers, maritime communications, and others who demand high quality in a general-coverage communications receiver.

R-1000 FEATURES:

- **Continuous frequency coverage from 200 kHz to 30 MHz**
- Receives shortwave, medium-wave, and long-wave bands.
- **30 bands, each 1 MHz wide**
 - Easy-to-use band switch with large knob.
- **Five-digit frequency display and analog dial**
 - Accurate digital display with 1-kHz resolution and illuminated analog dial with precise gear dial mechanism.
- **Built-in quartz digital clock with timer**
 - Precise 12-hour clock with AM and PM indicators. Timer turns on radio for scheduled listening, and even controls a recorder through remote terminal.
- **Up-conversion PLL, wideband RF circuits**
 - Provide exceptional performance and easy operation without the need for bandspread, preselector, or antenna tuning. Excellent sensitivity, selectivity, and stability.
- **Step attenuator**
 - 0-60 dB in 20-dB steps. Prevents overload.

- **Three IF filters for optimum AM, SSB, CW**
 - 12-kHz and 6-kHz (adaptable to 6-kHz and 2.7-kHz) filters for AM wide and narrow, and 2.7-kHz filter for high-quality SSB (USB and LSB) and CW reception.
- **Communications-type noise blanker**
 - Eliminates ignition and other pulse-type noise. Superior to noise limiter.
- **Recording terminal**
 - For external tape recorder.
- **Tone control**
 - For desired audio response.
- **Built-in 4-inch speaker**
 - For quality sound reproduction.
- **Dimmer switch**
 - Controls S-meter and other panel lights and digital-display intensity.
- **Three antenna terminals**
 - Wire terminals for 200 kHz to 2 MHz and 2 MHz to 30 MHz. Coax (SO-239) terminal for 2 MHz to 30 MHz.
- **Selectable operating voltage**
 - AC voltage selector for 100, 120, 220 and 240 VAC. Also adaptable to operate on 13.8 VDC (with optional DCK-1 kit).

More information on the R-1000 is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street, Compton, California 90220.

Matching accessories:
- **SP-100 external speaker**
- **HS-5 deluxe headphones**

Other accessories not shown:
- **HS-4 Headphones**
- DCK-1 easy-to-install modification kit for 12-VDC operation

**Specifications and prices are subject to change without notice or obligation.
November 1981
volume 14, number 11

T. H. Tenney, Jr., W1NLB
publisher and editor-in-chief
Alfred Wilson, WENIF
director

editorial staff
Martin Hart, WB1CHG
production editor
Joseph J. Schroeder, WJUV
Leonard H. Anderson
associate editors
W. E. Scarborough, Jr., KA1DGO
graphic production manager
Irene Hollingsworth
editorial assistant
W. E. Scarborough, Jr., KA1DGO
cover

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher and advertising manager
Susan Shorrock

ham radio magazine is published monthly by Communications Technology, Inc., Greenville, New Hampshire 03048-0586
Telephone: 603-878-1441

subscription rates
United States, one year: $16.50
two years: $33.00
three years: $49.50
Canada and other countries via surface mail:
one year: $21.50
two years: $43.00
three years: $64.00
Europe, Japan, Africa via air:
one year: $28.00
All subscription orders payable in United States funds

foreign subscription agents
Foreign subscription agents are listed on page 87

Microfilm copies are available from
University MICROfilms, Inc., 300 North Zeeb Road, Ann Arbor, Michigan 48106
Order publication number 30186

Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped
from Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19130

Copyright 1981 by Communications Technology, Inc.
The title is registered at the U.S. Patent Office
Second class postage paid at Greenville, N.H., 03048-0586
and at additional mailing offices

Postmaster send Form 3579 to ham radio
Greenville, New Hampshire 03048-0586

contents
12 communications receivers for the year 2000
Ulrich L. Rohde, DJ2LR

30 understanding performance data of hf receivers
Jan K. Møller, K6FM

34 ham radio techniques
Bill Orr, W6SAI

41 add-on selectivity for communications receivers
Dr. D.A. Tong, G4GMQ

54 up-conversion receiver for the hf bands: part 1
George Cutsogeorge, K2VJN

66 hr owners' survey: the TR7
Martin Hanft, WB1CHG

102 advertisers index
6 comments
76 DX forecaster
87 flea market
91 ham calendar
94 ham mart
50 ham notes
81 new products
4 observation and opinion
10 prestop
102 reader service
84 short circuits
Now is your chance to make a real contribution to Amateur Radio. The FCC has authorized the operation of an experimental beacon on the new WARC bands of 10.100-10.150, 18.068-18.168 and 24.890-24.990 MHz. As you read this, the beacon will have been in operation about a month, and quantitative information is needed regarding the reception of signals.

The experiment is intended to permit Amateurs to become familiar with the characteristics of these bands, which will help to simplify the scheduled future change-over to full Amateur use. The experiment will improve Amateur use of these new parts of the spectrum and will provide data on sharing between different services. An important element is obtaining data on propagation under weak-signal conditions, typical of natural disaster situations. It should be remembered that this use is one of the major reasons for these new authorizations, the first in many years.

The experiments will include two types of emission, three operating modes and two time phases. Basic emission is unmodulated carrier (A01), which will be interrupted each ten minutes for an SSB (2.8A3J) identification and announcement. The voice announcement will occur at 2, 12, 22 . . . minutes past the hour. The announcement will be of the form, "This is FCC-authorized experimental station KK2XJM, Daytona Beach, Florida. QSL via W4MB. Next operation will be repeated on ______ MHz starting on ______," and will be repeated. The announcement will be made by a woman, as the timbre of the female voice makes speech easier to recognize under unfavorable conditions.

Initial operations will commence about the first of October, using 3 watts ERP on the 10-MHz band. Depending on results, the operating schedule will include the 18- and 24-MHz bands. Later phases will include operation at 30 watts ERP, with sequencing from band to band, sometimes weekly and sometimes daily, as needed to make optimum use of the bands for propagation experiments both worldwide and to specific areas.

The licensee for the experiment is Bob Haviland, W4MB. Bob is well qualified for this important task. He has been an Amateur for 50 years and has participated in numerous CCIR and ITU conferences and preparatory work. He was chairman of the 28-1215-MHz allocation subcommittee of the FCC’s WARC Advisory Committee for Amateur Radio, project engineer of the program that placed the first radio transmitter beyond the ionosphere, and has worked extensively on communications and broadcast satellites. Bob published the first known proposal for an Amateur Radio experiment on a satellite. Additionally, he has been on a number of DXpeditions, having operated from four continents. And, not incidentally, Bob has been a prolific contributor to *ham radio*, having published some nine articles over the years.

The success of the experiment will depend on participation by Amateurs and shortwave listeners, and on their reports. Information needed is the date, time and location of reception, strength of the beacon signal and other signals on the band, and the type of receiving installation including, of course, the antenna. All reports will be acknowledged by a QSL card.

In addition to reception reports, proposals for special tests will be welcomed, subject to the limitations imposed by the license and by regulations for experimental stations. KK2XJM is not authorized to communicate with Amateur stations; however, reports, requests for schedules and proposals for experiments may be sent to W4MB’s *Callbook* address.

This venture is a fine opportunity for everyone to contribute to the advancement of Amateur Radio. A QSL card from W4MB acknowledging participation in the experiment certainly should become a valuable reminder of an important phase of Amateur-Radio development.

Alf Wilson, W6NIF
editor
Multi mode operation includes CW/AM/SSB/RTTY — Normally used side band selected automatically.

Continuously variable power from 10W to full power — speech processor — LDA channeling module included provides auto band changing capability when increasing your power using the IC-2KL broadband solid state linear.

General coverage receiver from a 0.1KHz to 29.9999MHz — Split VFO operation — Frequency memorized in standby VFO.

Simple to use Dual VFO's standard Data transfer button for marking a frequency of interest and storing it in unused VFO.

Broadbanded solid state transceiver operation on the 9 amateur HF bands — Readout of mode in use and VFO — Status LEDs for push button functions.

Use of RF/ALC switch in conjunction with the internal top hatch cover switches allows monitoring relative RF Out, SWR, collector current and ALC.

The ICOM HF System. We Have You Covered.
work the Pacific

Dear HR:

I would like to inform your readers of the basic Work The Pacific award, which is issued for thirty confirmed contacts on the VTP country list. It's available to any licensed Amateur Radio operator and to SWLs.

Mode, band, power level, and other endorsements will be made upon request with the original application only. The award is printed in four colors on a beautiful parchtone bond.

For more information, please contact me at the address below.

Award Manager, C.H.C.
Scott R. Douglas, Jr., KB7SB
P.O. Box 46032
Los Angeles, California 90046

zero beat

Dear HR:

The July, 1981, issue of ham radio arrived today. Naturally, the point of first reading was the "Observation and Opinion" page relative to transceivers and zero beating. Oddly, the timing was in itself a true zero beat for a project completed several weeks ago on a unique (and modified) circuit by Jerry Assard, KA1EVW, which appeared in the March, 1979, issue of Electronic Design News, entitled "Lamps Monitor Beat Frequency."

I built the device with modifications stemming directly from my totally home-brewed rig, which demanded some strange and totally unique approaches both to transceive and shift-band transmissions that many of the rare DXers employ.

The basic capability of the Assard system may well be adapted to any number of other uses related to and stemming from the article. I will be happy to supply the complete circuitry (with full credit to Jerry Assard for his original and fine thinking) to any ham interested in applying this useful tool. Please send a self-addressed, stamped envelope to P.O. Box 6175.

Gene Shapiro, WBQDLQ
Leawood, Kansas 66206

more free inductors

Dear HR:

In my recent CW filter articles (QST, December, 1980, and ham radio, April, 1981), I stated that I was serving as liaison between the Chesapeake and Potomac Telephone Company of Maryland and the Amateur fraternity, assisting in the distribution of surplus telephone line 88-mH loading coils. These inductors are being given to Radio Amateurs free (except for my shipping expenses) as a public service by the C & P Telephone Company.

I've processed more than fifty requests for inductors so far, but now the initial response to these two articles is quieting down. I would appreciate it if you would mention in your magazine that I still have inductors (88-mH inductors in a five-inductor stack form). They are available to anyone interested in applying them to Amateur Radio filtering applications. Write to me at my Callbook address explaining your need and proposed application. A stamped, self-addressed envelope must be included for my reply with further instructions.

Ed Wetherhold, W3NQN
Annapolis, Maryland

antenna restrictions

Dear HR:

Most people worry only about the zoning ordinances and building permits that may be needed for the installation of ham antenna systems. But it's necessary to check your deed and the title to your land to see whether there are any protective covenants that prohibit the placing of any tower, pole, or similar structure on your own property. These restrictions will also appear in the title search of your property when you buy a home.

You may not be aware that you waived your rights (or you may not have been aware of your rights) when you made settlement on your house and land, legally binding yourself to these protective covenants. These covenants were originally designed to protect all the homeowners in your housing development for esthetic reasons, to enhance the neighborhood's appearance and to keep property values from declining. These covenants may be part of the land and deed for as long as 10 to 25 years, and, at that time, they may be automatically renewed for another 10 to 25 years unless changed by the members of your housing development. Violation of any one or more of these covenants could result in litigation against you by a neighbor or neighbors, and much time and money spent in the courtroom.

These covenants are another blow against the ham radio operator, who may not even be able to use his own land for the installation of his dream antenna farm. It appears that more and more single-home housing developments, townhouses, twin homes, duplexes, condominiums, and apartments are placing more and more antenna restrictions on their buildings for esthetic reasons, and in turn these restrictions are slowly taking away your rights.

Take it from one who has been that route and knows from first-hand experience. Check the agreement of sale and deed before you sign on that dotted line. Don't spend hundreds, or thousands, of dollars in the courtroom, or be forced by a judicial court order to dismantle your antenna system.

Robert N. Wilderman, K3SRO
Lansdale, Pennsylvania

6 November 1981
SAVE $13.50* with home delivery

*(One year newsstand cost $30.00)
Here's my address label, enter my subscription.
☐ 1 Year 12 issues $16.50 ☐ Payment enclosed
☐ 2 Years 24 issues $28.50 ☐ Bill me later
☐ 3 Years 36 issues $38.50 U.S. prices

Name __________________________

Address __________________________ State ______ Zip ______

City __________________________

☐ Check here if this is your renewal (attach label)

Subscribe to Ham Radio

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $21.50 for one year by surface mail. Please allow 4-6 weeks for delivery of first issues.
MFJ KEYERS
Uses Curtiss 8044 IC, lamiac operation, dot-dash memories, weight control, solid state keying. RF proof.

$79.95

The MFJ-408 Deluxe Electronic Keyer sends lamiac, automatic, semi-automatic, manual. Use squeeze, single lever or straight key.

Speedometer lets you read speed to 100 WPM. Socket for external Curtis memory, random code generator, keyboard. Optional cable, $4.95.

Dot-dash memory, self-completing dots and dashes, jam-proof spacing, instant start. RF proof. Solid state keying: select black, solid state vars. Front panel controls: linear speed, weight, tone, volume, function switch. 8 to 50 WPM.

Weight control adjusts dot-dash space ratio; makes your signal distinctive to penetrate ORM. Tone control. Speaker. Ideal for classroom.

Function switches: select off, on, semi-automatic/manual, tune. Tune keys transmitter for tuning. Uses 4 C-cells, 2.5 mm jack for power (6-9 VDC). Optional AC adapter MFJ-1305, $9.95.

Eggshell white, walnut sides. 8x2x6 inches. MFJ-406, $69.95, like 408 less speedometer.

$49.95

New MFJ-401 Econo Keyer II gives you a reliable, full feature economy keyer for squeeze, single lever or straight key.

Has sidetone, speaker, volume, speed, internal weight and tone controls. Sends lamiac, automatic, semi-automatic, manual. Tune function. Dot-dash memories. 8-50 WPM. "On" LED. Use 9V battery, 6-9 VDC, or 110 VAC with optional AC adapter, MFJ-1305, $9.95. 4x2x3½". Reliable solid state keying. Keys virtually all solid state or tube type transmitters.

$64.95

MFJ-405 Econo Keyer II. Same as MFJ-401 but has built-in single paddle with adjustable travel. Also jack for external paddle. 4x2x3½".

Optional: Bencher lamiac Paddle, $42.95.

110VAC adapter, MFJ-1305, $9.95. Free catalog.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping).

One year unconditional guarantee.

Order yours today. Call toll free 800-647-1800. Charge VISA, MC, Or mail check, money order. Add $4.00 each for shipping and handling.

CALL TOLL FREE... 800-647-1800

Call 601-323-5869 for technical information, or/diagrepair status. Also call 601-323-5869 outside continental USA and in Mississippi.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

MFJ VLF CONVERTER
Receive 10-500 KHz on Ham rig or SWL receiver.

$79.95

Plug this MFJ VLF Converter between your antenna and Ham transceiver or SWL receiver and tune the VLF 10-500 KHz band. Hear weather, ship-to-shore CW traffic, RTTY, W1WVB, navigation beacons, 1750 meter no license band, European broadcast, and more.

MFJ-332 Ham version converts 10-500 KHz to 28.610 to 28.500 MHz. Also adds standard broadcast band on 28.5 to 29.7 MHz. MFJ-331 SWL version converts to 4.010 to 4.500 MHz.

Read frequency directly on your receiver (ignore MHz).

Low noise amplifier, 6 pole lowpass filter, double balanced mixer, crystal oscillator gives very sensitive and stable, BCB interference free signals.

On/off-Bypass switch. LED for power. SO 239 coax connectors, 3x4x1 inches. Black, eggshell white aluminum cabinet. 9-18 VDC or 110 VAC with optional AC adapter, MFJ-1312, $9.95.

VLF/MW/SWL Antenna Tuner Greatly improves 10KHz to 30 MHz reception.

$69.95

This MFJ-955 VLF/MW/SWL preselecting antenna tuner greatly improves reception of 10KHz thru 30 MHz signals, especially those below 2 MHz.

Lets you peak desired signals while rejecting interference. Reduces overload, background noise, crossmodulation, and intermodulation. VLF signals come roaring in.

Switch between two antennas and two receivers. Bypass preselector connects antenna directly to receiver. 5½x2x3 inches. Black, eggshell white aluminum cabinet.

$79.95

MFJ-1020 Tuned Indoor Active Antenna. Can often exceed reception of outside longwire. Covers 300 KHz to 30 MHz. Has telescoping antenna. Minimizes intermod, provides RF selectivity, reduces noise. Also use as preselector.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.

Enjoy VLF. Order yours today. See dealer or call MFJ toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $4.00 each for shipping and handling.

CALL TOLL FREE... 800-647-1800

Call toll free 601-323-5869 for technical information, or/diagrepair status. Also call 601-323-5869 outside continental USA and in Mississippi.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

MFJ SWR/WATTMETERS
MFJ HF SWR/Wattmeter reads SWR, forward, reflected power from 1.8-30 MHz.

$49.95

New low cost in-line HF SWR/Wattmeter. MFJ-814 lets you monitor SWR, forward, reflected average power in 6 ranges from 1.8 to 30 MHz. Read 200/200 watts forward, 20/200 watts reflected power. SWR, 1-1/6.

Easy push-button switch operation: has power SWR, high/low range, forward/reflected push-button switches. SWR sensitivity control.

Lighted meter (requires 12V). Rugged aluminum eggshell white, black cabinet, 6¼x3¼x4¼". SO 239 coax connectors. 2 color meter scale.

MFJ VHF SWR/Wattmeter/Field Strength Meters

$29.95

New low cost VHF operating aids. MFJ-812, $29.95. Read SWR from 14 to 170 MHz to monitor antenna and feedlines.

Read forward and reflected power at 2 meters (144-148 MHz). 2 scales (30 and 300 watts).

Read relative field strength from 1 to 170 MHz. Binding post for field strength antenna.

Easy push-button operation: has forward/reflected and SWR/field strength push buttons. Aluminum eggshell white, black cabinet.

4½x2½x2¼". SO 239. 2 color meter scale.

MFJ-810, $24.95: similar to MFJ-812 less field strength function.

MFJ "Dry" 300 W and 1 KW Dummy Loads.

$64.95

MFJ-252

Air-cooled, non-inductive 50 ohm resistor in paralleled metal housing with SO 239 connectors. Full load for 30 seconds, de-rating curves to 5 minutes. MFJ-260 (300 W). SWR: 1:1 to 30 MHz. 1:5.1 for 30-160 MHz. 2½x2½x1¾".

MFJ-262 (1KW). SWR 1:1.5-30 MHz. 3x3x13".

MFJ-10, 3 foot coax with connectors, $4.95.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.

Order yours today. Call toll free 800-647-1800. Charge VISA, MC, Or mail check, money order. Add $4.00 each for shipping and handling.

CALL TOLL FREE... 800-647-1800

Call toll free 601-323-5869 for technical information, or/diagrepair status. Also call 601-323-5869 outside continental USA and in Mississippi.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

November 1981
THE ARRL DIRECTORS CONSIDERED organizational changes proposed by the Long Range Planning Committee, the Central Division Recall, changes in subbands and bandplans, a new ARRL periodical, its Washington representation, and a host of other topics when it met in Newington September 9-10.

The Long Range Planning Committee proposed an extensive reorganization of the League at the state and local level, with a newly created post of Section Manager for each of the various sections. Creation of division steering committees, and redesign of the Advisory Committees with a representative from each division serving on each AC. This program was endorsed by the board, which asked for specific plans, cost information, and implementation timetables for consideration at the next board meeting.

The Central Division Recall and Bylaw 20 were both considered at length, but no action was taken on various proposed changes in the recall bylaw because of the pending recall vote. However, the board did vote to permit Director Metzger to include a statement in his own behalf with the recall ballot (along with statements by the ARRL and the Indiana Radio Club Council), an addition that was agreed to by the Executive Committee.

The Proposed 160 Meter Bandplan (August QST) was adopted unanimously based on the very favorable reaction to the article in QST, but the previously passed motion to expand 40-meter Extra phone privileges was withdrawn. The board also voted unanimously to petition the FCC to expand General-class phone on 75 down to 3860, and to permit the "automatic control" of beacons. It also adopted 20-kHz channel spacing for the 144.5-145.5 repeater subband, and requested completion of bandplans for both 6 meters and 23 cm in time for the 1982 annual meeting of the board.

A New Beginner/Novice Periodical may be in the offing. The General Manager, Membership Affairs Committee, and Plans and Programs Committee were directed to study the feasibility of such a publication with a report due at the first 1982 board meeting. The board also voted to establish a separate ARRL publications price list for members buying them from Headquarters, to go into effect no later than January, 1983.

Improved Washington Liaison efforts, the tightening of the regulations for single-mode DXCC awards, the extension of all current Advisory Committee appointments pending further consideration of the Long Range Planning Committee's recommendations on AC makeup, and even a review of the usefulness of the "T" in RST CW reports were also voted on in this far ranging session.

OBSCENE LANGUAGE ON THE AIR should no longer be an FCC problem, the Commissioners voted September 17 in a wide-ranging recommendation to Congress for changes in the Communications Act. Although most of the Commissioners' proposals dealt with the regulation of broadcasting, proposals pertaining to the question of obscenity will affect the Amateur service (and other services) as well.

The Commissioners voted unanimously to drop their right to revoke a station license for violation of obscenity statutes, and voted 4 to 2 in favor of amending Section 326 to strip the Commission of "any power of censorship over the content of communications." With obscene or other objectionable language no longer a concern of the Commission, any prosecution of foul-mouthed Amateurs would then go to the Justice Department.

A NEW RFI SOURCE is beginning to cause problems to Amateurs, particularly in rural areas. The troublesome device is the CMH, a multiplexer that provides eight multiplexed voice channels over a conventional phone line. The problem is in its switching-type power supply, which operates at 79 kHz and generates harmonics well into the VHF spectrum. These harmonics are radiated through the phone lines it is tied into. CMH-Generated Interference shows up on the bands as slightly unstable signals that appear every 79 kHz.

THE "PLAIN LANGUAGE" AMATEUR RULES rewrite may be turning out to be a dead issue. In a letter to a Lincoln, Nebraska, Novice (KAVJSY), Senator Barry Goldwater, K7UGA, stated that, "The rules changes in language have been stopped for the time being, and I think when we get acquainted with the new head of the FCC we can forget all about them."

With The ARRL And Many Individual Amateurs lukewarm or even opposed to the rewrite as it is now proposed, the Goldwater opposition may very well be the signal of the demise of the rewritten Amateur rules.

BOB STANKUS (KE5XV) pleaded not guilty to 22 counts of mail fraud at his first appearance before the judge on July 6. After some discussion between the lawyers, however, he decided to change his plea to guilty on 11 of the 22 counts in return for having the other 11 charges dropped. The court is now awaiting a probation report on Stankus, and after it is received he will be sentenced for his part in the "bargain" TS-520S mail-order sale scheme.

1981 WINNERS OF THE EIGHT SCHOLARSHIPS that were administered by the Foundation for Amateur Radio are KAI2D8T, W77RIF, WAINWA, WAC2CUN, K78VBC, KAI8BMI, and KAI2D8C. Congratulations to all.
Introducing incredible tuning accuracy at an incredibly affordable price: The Command Series RF-3100 31-band AM/FM/SW receiver.* No other shortwave receiver brings in PLL quartz synthesized tuning and all-band digital readout for as low a price. The tuner tracks and "locks" onto your signal, and the 5-digit display shows exactly what frequency you're on.

There are other ways the RF-3100 commands the airways: It can travel the full length of the shortwave band (that's 1.6 to 30 MHz). It eliminates interference when stations overlap by narrowing the broadcast band. It improves reception in strong signal areas with RF Gain Control. And the RF-3100 catches Morse communications accurately with BFO Pitch Control.

Want to bring in your favorite programs without lifting a finger? Then consider the Panasonic RF-6300 8-band AM/FM/SW receiver (1.6 to 30 MHz) has microcomputerized preset pushbutton tuning, for programming 12 different broadcasts, or the same broadcast 12 days in a row. Automatically. It even has a quartz alarm clock that turns the radio on and off to play your favorite broadcasts.

The Command Series RF-3100 and RF-6300. Two more ways to roam the globe at the speed of sound. Only from Panasonic.

*Shortwave reception will vary with antenna, weather conditions, operator's geographic location and other factors. An outside antenna may be required for maximum shortwave reception.

Based on a comparison of suggested retail prices.

This Panasonic Command Series shortwave receiver brings the state of the art closer to the state of your pocketbook.

With PLL Quartz Synthesized Tuning and Digital Frequency Readout.

Panasonic. just slightly ahead of our time.
for the year 2000

Part 1: New designs, microprocessors, input filters, and mixers

Some changes have occurred since my paper appeared on optimum design for high-frequency communications receivers:

1. The sunspot cycle has given better propagation conditions.
2. Manually operated receivers have become “intelligent” with the advent of built-in microprocessors.
3. Receiver dynamic range has been increased with better amplifiers and mixers.
4. Blocking problems have diminished with better synthesizers.
5. Better dynamic performance of filters has improved reception on crowded frequencies (note that dynamic selectivity is not the same as static selectivity, which is discussed later).
6. Frequency resolution and acquisition have increased dramatically.
7. Up conversion avoids gaps in frequency coverage. Many new receiver designs use an LO and intermediate frequency higher than the highest frequency of reception.
8. Lowpass filters in the receiver front end, combined with suboctave filters, tunable circuits, or both, obtain constant image and i-f suppression. Such design guarantees image-response suppression and substantially reduces LO re-radiation.

9. As the output oscillator in a synthesizer has a range of less than 2:1, design of these oscillators has become simpler.

In retrospect I find that my earlier predictions have been substantially correct and that advances in technology, specifically in digital techniques and microprocessor design, have been much faster than in rf-circuit design.

What can we expect in the future? Let’s look at today’s communications-receiver technology in terms of the year 2000.

receiver specifications

Communications receivers are best described by their specifications. Table 1 shows data for a communications receiver covering 10 kHz-30 MHz, and Table 2 shows specifications for a communications receiver covering 20 MHz-1000 MHz. These are clearly general-coverage receivers, and one may ask, What does this have to do with ham radio?

Most engineers working on Amateur receivers have had experience in commercial design, and while I’ve always said that the crowded ham bands are a greater challenge to the receiver designer (this holds true only for the shortwave area), general-coverage

By Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458
receivers monitor all frequencies and, therefore, must be able to survive this hostile environment — a real design challenge.

In terms of energy, there is now really more energy available for injection into the antenna of a VHF/UHF receiver than at the input of a VLF/HF receiver; and the dynamic range requirements for VHF/UHF receivers are now even higher because the noise floor is substantially lower than in receivers for the short-wave bands.

new approaches in design

Fig. 1 is a block diagram of a VLF/HF receiver with microprocessor control and other features. It's not very likely that this receiver will be smaller or better designed in coming years.

As we shall see later, dynamic range is determined by a) the mixer and the LO drive (a question of drive power and therefore power consumption), or by b) the dynamic range of the amplifiers (again, it becomes a question of power consumption versus dynamic range).

Let's look at the block diagram. As the receiver must handle extremely large signals at times (to the point where the input circuit can be burned out), an input attenuator is a good protective device.

Modern receivers should have a self-test circuit and, therefore, we find in the block diagram (from the Rohde & Schwarz EK070 receiver) a built-in noise generator that allows one to monitor the signal over the entire receiver.

One of the ten input filters may be automatically selected and determined by the synthesizer. The incoming frequency is up converted to a first i-f of 81.4 MHz, where a crystal filter (12 kHz) narrows the number of frequencies fed to the second mixer. The two mixers use several filters and amplifiers. The output is taken at the second mixer and is available for a panoramic adapter.

As in all modern receivers, independent sideband detection is required. Two complete i-f strips and two filters are included, one for upper and one for lower sideband. For all other modes, only one channel of the i-f is used.

The AGC must be individually determined for each channel. To be able to have passband tuning and to select different combinations of bandwidths and BFO frequencies, the BFO must be synthesized. Note that the synthesizer for the first and second LO, as well as that for the BFO, are fairly complex. This is a result of the requirement for extreme high dynamic range, low-noise sideband performance, fast switching speed, and spectral purity (high reference-signal suppression and no other unwanted frequencies).

In addition to the familiar modulation schemes, there are a number of digital modes such as ASCII, Baudot, and pulse-code modulation (both a-m and fm). (In many cases, these signals are scrambled and are not available for immediate detection.)

A clever scheme allows a 12.5-kHz output that can be connected to a tape recorder — unidentified signals can be recorded and stored for later detection. In addition to these features is a built-in RTTY demodulator, including an indication of center frequency for the RTTY demodulator that eliminates the need of an oscilloscope for tuning.

microwaverials and receivers

We have heard much about microprocessor applications in receivers, and many of us use 2-meter transceivers or other equipment that incorporates microprocessors. What does the microprocessor actually do for us? The microprocessor handles certain routines such as scanning of frequencies written into memory. After the microprocessor has put these frequencies into the receiver's memory, one can determine the field strength from the AGC line, compute this into absolute microvolts, dB above 1 microvolt, or dBm, as required. Also, the microprocessor can control the synthesizer and take care of all the arithmetic. The synthesizer frequency and the frequency on the display of the receiver are not the same; this offset can be taken into consideration by the microprocessor.

The built-in self-check of a shortwave receiver will allow monitoring of certain functions to make sure the receiver is operating properly. This brings up several important questions:

1. Are we not trading flexibility and reliability for automation?
2. Is the microprocessor now such an important part that, once it fails, nothing will work anymore?
3. Can we repair microprocessor-based communications receivers?

There is no question that test instruments required to service microprocessor-based instruments are more expensive and demand more training for repair technicians, and the price for the components of the computer system are not low enough to justify discarding questionable integrated circuits.

I believe that there are still two extremes that will remain for a while at least. The Rohde & Schwarz EK070 receiver (photo), is designed for the future; and, as mentioned earlier, even in the year 2000 we will not be able to make the rf portion much better, insofar as improvements over the last five years have been much less dramatic than those from 1960 through 1975.
Another photo shows the Model HF1030 VLF/HF communications receiver (formerly from Communications Products Corporation — now being manufactured and sold by Cubic Communications Corporation). This receiver is in the $6,000 price range, while the Rohde & Schwarz EK070, depending upon the options, costs between $14,000 and $20,000.

RF characteristics such as intercept point, image suppression, blocking, and switching speed for both receivers are comparable — only housekeeping and utility functions such as memory, built-in RTTY demodulator, and self-check are different. It is therefore the decision of the user how much he wants to spend and what type of receiver he wants.

The frequency range of 20-1000 MHz requires higher dynamic performance and more scanning and searching capabilities. The absolute bandwidth of this frequency range is much wider; and for frequency searching or frequency hopping, more requirements are demanded of the frequency synthesizer. The fm capability requires more bandwidth choices. A typical example is the Rohde & Schwarz ESM500 receiver. Its performance characteristics are listed in Table 2.

We have heard so much about increased performance capability that we will want to look at several circuits and see how these improvements are achieved. But, one note of caution: microprocessors have become a national obsession, and a device not having a built-in microprocessor is not considered modern — a misleading notion! The microprocessor is nothing more than a device that can execute instructions sequentially and at fast speed.

Standard circuits with normal gate decoding do everything in parallel; for practical purposes there is no execution delay. As the microprocessor becomes overloaded speed and flexibility are lost. To write extremely long programs for microprocessors in assembly language requires substantial knowledge in programming and debugging. As a result, the present tendency is to break up the tasks by using a central microprocessor; for reasons of speed, a 16-bit unit such as the Motorola 68000 is used, as well as several independent processors in slave mode — the most popular are the 8085 or, for smaller tasks, the 8748 or 8749.

The microprocessor is not always a necessity, and the tradeoff between cost and speed introduces another hazard. Every microprocessor requires an internal clock. Sometimes these clocks are at frequencies that cannot be generated from the master standard and, therefore, additional frequencies occur, generating radio interference and spikes inside the receiver. It becomes a major task to shield and insulate one or more microprocessors and their switching noise from the outside.

The HF1030 receiver is a good example where flexibility is obtained by a parallel BCD bus that controls the entire receiver and does not require a microprocessor. Even the LED display is not multiplexed. A receiver that can go down to 10 kHz will probably pick up this switching noise, then the additional shielding required can be more expensive than the reduction in cost by using a microprocessor over conventional logic. Some companies offer programmable logic-array ICs, which would take an intermediate position between the logic and the microprocessor system.

Input Filters

Current receiver designs generally use a high-pass/lowpass filter combination. Typically, a 1.6-MHz highpass is used to suppress incoming signals, and a 30-MHz lowpass filter is used to provide image rejection and prevent oscillator re-radiation. We therefore have a window almost 30 MHz wide that can lead to several second-order intermodulation distortion products.
<table>
<thead>
<tr>
<th>frequency range</th>
<th>10 kHz to 30 MHz</th>
</tr>
</thead>
</table>
| **frequency setting** | a. quasi-continuously by rotary switch in increments of 10 Hz/100 Hz/1 kHz
| | b. digital entry via keyboard
| | c. remote control via data interface (setting time 50 ms) |
| **readout resolution** | 7-digit liquid crystal display |
| **frequency drift** | after 10 minute warmup: $<3 \times 10^{-7}$ at $+25^\circ C$
| | within one day: $<3 \times 10^{-8}$
| | caused by aging: $<1 \times 10^{-6}$/year
| | in rated temperature range: $<3 \times 10^{-7}$ |
| **types of emission** | A1 (CW, A2 (MCW), A3 (a-m))
| | A2H, A3H (AME)
| | A2A, A3A
| | A2J, A3J
| | A3B, (ISB), F1 (FSK), F4 (facsimile)
| | F6 |
| **antenna input** | $Z_i = 50$ ohms, BNC female connector |
| **VSWR** | <3 |
| **permissible input voltage** | ≤ 10 V EMF |
| **oscillator reradiation** | $<10 \mu V$ at antenna input with 50-ohm termination |
| **sensitivity** | for 10 dB (S + N)/N, $0.2 = 30$ MHz:
| with A1, B = 300 Hz | $<3 \mu V$ EMF
| with A3, B = 6 kHz, m = 60% | $<2.0 \mu V$ EMF
| with A3J, B = 3.1 kHz | $<0.75 \mu V$ EMF |
| **preselection** | 0 to 0.5 MHz; lowpass filter
| | 0.5 to 1.5 MHz; bandpass filter — 8 suboctave filters between 1.5 and 30 MHz |
| **intermediate frequencies** | 81.4 MHz, B = 12 kHz
| | 1.4 MHz |
| **i-f selectivity** | 3dB bandwidth
| | (minimum)
| | ± 75 Hz
| | ± 150 Hz
| | ± 300 Hz
| | ± 750 Hz
| | ± 1.5 kHz
| | ± 3 kHz
| | ± 6 kHz
| | $+0.3$ to $+3.4$ kHz
| | -0.3 to -3.4 kHz
| | (maximum)
| | ± 225 Hz
| | ± 375 Hz
| | ± 750 Hz
| | ± 1.75 Hz
| | ± 7.5 kHz
| | ± 50 kHz
| | -0.3 to $+4.0$ kHz
| | $+0.3$ to -4.0 kHz |
| **interference immunity, nonlinearities** |
| **intermodulation** | d_2, within A3J sideband:
| | >46 dB down, wanted signals 2×10 mV EMF
| | >70 dB down, unwanted signals 2×100 mV EMF
| | >70 dB down, unwanted signals
| | 2×100 mV EMF
| **blocking** | <3 dB signal attenuation, wanted signal 1 mV EMF, $m = 30\%/1$ kHz; unwanted signal 1 mV EMF, $\Delta f \geq 30$ kHz |

Note: All values are approximate and subject to the specified conditions.
<table>
<thead>
<tr>
<th>Table 1. Specifications of a modern VLF/HF receiver (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-modulation*</td>
</tr>
<tr>
<td>Desensitization*</td>
</tr>
<tr>
<td>Inherent spurious signals</td>
</tr>
<tr>
<td>Spurious responses</td>
</tr>
<tr>
<td>Image frequency rejection</td>
</tr>
<tr>
<td>I-f rejection</td>
</tr>
<tr>
<td>Rf gain control, switchable</td>
</tr>
<tr>
<td>Control range</td>
</tr>
<tr>
<td>AGC error</td>
</tr>
<tr>
<td>Attack time</td>
</tr>
<tr>
<td>Decay time (switchable)</td>
</tr>
<tr>
<td>BFO</td>
</tr>
<tr>
<td>Attenuation at i-f output</td>
</tr>
<tr>
<td>F1 demodulator</td>
</tr>
<tr>
<td>Limiting factor</td>
</tr>
<tr>
<td>Line spacing</td>
</tr>
<tr>
<td>Signal distortion</td>
</tr>
<tr>
<td>Single current</td>
</tr>
<tr>
<td>Double current</td>
</tr>
<tr>
<td>Outputs</td>
</tr>
<tr>
<td>1st oscillator 81.4 to 111.4 MHz</td>
</tr>
<tr>
<td>2nd oscillator 80 MHz</td>
</tr>
<tr>
<td>1-MHz output switchable to 1-MHz</td>
</tr>
<tr>
<td>External reference input</td>
</tr>
<tr>
<td>2nd i-f 1.4 MHz</td>
</tr>
<tr>
<td>Recording output 12.5 kHz</td>
</tr>
<tr>
<td>Panoramic output 1.4 MHz</td>
</tr>
<tr>
<td>Af line outputs 600 ohms</td>
</tr>
<tr>
<td>Output level</td>
</tr>
<tr>
<td>Distortion</td>
</tr>
<tr>
<td>Af output 5 ohms (headphones output 100 ohms)</td>
</tr>
<tr>
<td>Output level</td>
</tr>
<tr>
<td>Signal characteristics</td>
</tr>
<tr>
<td>Af response (overall)</td>
</tr>
<tr>
<td>Af S/N ratio</td>
</tr>
<tr>
<td>Phase noise ratio with A3J</td>
</tr>
<tr>
<td>Remote control</td>
</tr>
<tr>
<td>IEC bus</td>
</tr>
<tr>
<td>Or (depending on order number)</td>
</tr>
<tr>
<td>Rs232C</td>
</tr>
<tr>
<td>Code</td>
</tr>
</tbody>
</table>

*without 20 dB attenuator pad
Fig. 1. Block diagram of the Rohde & Schwarz EK-070 VLF/HF receiver.
fig. 1-3. Block diagram of the Rohde & Schwarz EK070 VLF/HF receiver (continued).
The second-order intermodulation distortion, defined as \(F_1 \pm F_2 \) or \(F_2 \pm F_1 \), can be filtered with suboctave bandpass filters. The third-order intermodulation distortion products generated from \(2 \times F_1 \pm F_2 \) and/or \(2 \times F_2 \pm F_1 \) for close spacing, such as 10 kHz or closer, cannot be filtered. However, since there are so many signals present at the same time, the input bandwidth should be as narrow as possible.

Fig. 2 shows a solution that combines bandpass filters from 1.5-10 MHz and two input tracking filters from 10-30 MHz. Note the large number of tuning diodes in parallel. This is because no diodes are available that have the required high capacitance. In addition, intermodulation distortion products are reduced if the energy is distributed over more capacitance. Four-to-one stepdown transformers are used.

Because the tuned circuit operates at low impedance, both sides of the tuned circuit operate at 50 ohms. This input filter, despite the tuning diodes, does not degrade the 30-dBm intercept point of the following stage. Therefore this preselector is transparent as far as intermodulation distortion of any kind is concerned. Relays are necessary to avoid distortion from the switching diodes.
Similar input tracking filters are possible in the VHF/UHF range. The general finding is that PIN-diode attenuators, as sometimes used, limit the dynamic range to about +10 or +15 dBm. In transceiver application, it's possible to use the lowpass sections of the transmitter, and one has only to add highpass filter sections to obtain bandpass characteristics. The highpass sections must be calculated so that they operate together with the lowpass section (see reference 2).

input mixers

We now find a major struggle between semiconductor manufacturers and rf engineers regarding the
best mixer design. There is no question that we must use a double-balanced mixer to minimize the number of unwanted frequencies at the mixer output. Four solutions are currently available. These include the use of:

1. Bipolar active mixers.

2. Diode mixers.

3. FET active mixers.

4. Passive FET mixers in the switching mode.

Plessey has recently introduced the first really high-level double-balanced mixer, and several attempts
have been made to use it. (Probably the best summary is published in the January, 1981, issue of *QST* by Doug DeMaw.) It appears that, while the Plessey SL6440C is suitable for synthesizer or other application, its use in high-performance receivers is limited. The reason for this is discussed in the following paragraphs.

Mixer noise figure. Let's assume that the manufacturer's specifications for this Plessey device are valid: noise figure 10 dB, gain 4 dB, and intercept point +30 dBm. The mixer must operate into a stage that has a noise figure of less than, say, 3 dB. If a crystal filter or other device is inserted between the two stages, the mixer will have unity gain, as the filter losses will compensate for the mixer gain. We therefore can add the two noise figures and obtain a noise figure of 13 dB. This is done under the assumption that the stage following the first amplifier after the mixer does not contribute to the noise figure.

Let's do the same with a diode mixer, such as that developed for the HF1030 receiver, which contains two diode bridges, as shown in fig. 3. This mixer has an intercept point of +30 dBm, and with two signals of zero dBm applied to the input it generates two intermodulation distortion products of more than 60 dB, attenuated relative to the input signal. The mixer requires +17 dBm LO drive and has 6-dB insertion loss. The following amplifier again will have 3-dB noise figure, and, to make absolutely sure that the mixer is always terminated precisely with 50 ohms, no filters are inserted between the two devices.

As shown in my previous papers, a field-effect

fig. 3. Schematic diagram of double-balanced mixer with two diode bridges, Model CPC106, developed for the HF1030 receiver.

table 2. Specifications of a modern VHF/UHF receiver.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency range</td>
<td>20 to 1000 MHz</td>
</tr>
<tr>
<td>frequency setting</td>
<td>a. quasi-continuous with rotary knob; the tuning speed increases with the speed of rotation.</td>
</tr>
<tr>
<td>resolution</td>
<td>b. from keyboard on front panel</td>
</tr>
<tr>
<td>readout, digital</td>
<td>c. entered from internal memory</td>
</tr>
<tr>
<td>(can be shifted by 3 digits in SSB)</td>
<td>d. entered from external computer</td>
</tr>
<tr>
<td>error of frequency setting</td>
<td>1 kHz/10 Hz (SSB)</td>
</tr>
<tr>
<td>antenna input</td>
<td>6-digit display for receive frequency, 6-digit display for frequency entered from keyboard or stored frequency value, 2-digit display for storage location</td>
</tr>
<tr>
<td>oscillator reradiation</td>
<td>± 1 x 10⁻⁸ (or external standard frequency, 10 MHz)</td>
</tr>
<tr>
<td>with 50-ohm termination</td>
<td>50-ohm, type-N socket</td>
</tr>
<tr>
<td>input filters</td>
<td>< 1μV corresponding to -107 dBm</td>
</tr>
<tr>
<td>frequency setting storage capacity</td>
<td>tracking filters</td>
</tr>
<tr>
<td>loading of storage</td>
<td>99 frequencies and their respective type of demodulation and i-f bandwidth</td>
</tr>
<tr>
<td>scanning operation</td>
<td>frequency entered from keyboard or current receive frequency, including type of demodulation and i-f bandwidth</td>
</tr>
<tr>
<td>scanning time</td>
<td>up to 99 stored frequencies can be completely scanned; if frequency is occupied, scanning operation continued after preselected period of time at the push of a button</td>
</tr>
<tr>
<td>S/N ratio</td>
<td>Typically 90 ms per stored frequency</td>
</tr>
<tr>
<td>(</td>
<td>V_{in} = 1μV, f_{mod} = 1 kHz, i-f bandwidth 30 kHz, af filter on)</td>
</tr>
</tbody>
</table>
Synthesized Hand-Held Scanner!

Chances are the police, fire and weather emergencies you'll read about in tomorrow's paper are coming through on a scanner right now. All scanners sold by Communications Electronics bring the real live excitement of action news into your home or car. With your scanner, you can monitor the exciting two-way radio conversations of police and fire departments, intelligence agencies, mobile telephones, energy/oil exploration crews, drug enforcement agencies and more.

We give you excellent service because CE distributes more scanners worldwide than anyone else. Our warehouse facilities are equipped to process thousands of scanner orders every week. We also export scanners to over 300 countries and military installations. Almost all items are in stock for quick shipment, so you're a person who prefers fact to fantasy and who needs to know what's really happening around you, order your scanner today from CE!

NEW! Bearcat® 350
The Ultimate Synthesized Scanner!

30 days for delivery after receipt of order due to the high demand for this product. List price $599.95/CE price $419.00

- 7 Band, 60 Channel Service - No crystal scanner - can even monitor aircraft transmissions!
- High sensitivity - Crystalless - Bearcat Scan Speeds, Lockout, Scan Delay and more.
- A listing of crystal Scanners.
- Priority Channel - Crystalless - Digital Clock - Direct Channel Access - Memory.
- Bears the world's first no-crystal handheld scanner has
- A scanner with built-in tracking tuning and more.
- All sales are net 30 days. Delivery 30 days for delivery after receipt of order due to the high demand for this product. List price $599.95/CE price $419.00

NEW! Bearcat® 100
The first no-crystal programmable handheld scanner. Allow 60-120 days for delivery after receipt of order due to the high demand for this product. List price $449.95/CE price $299.00

- 8 Band, 16 Channel - Liquid Crystal Display - Direct Channel Access - Memory.
- Crystalless - Low power consumption.
- All sales are net 30 days. Delivery about 2 months.

NEW! Bearcat® 500
List price $549.95/CE price $339.00

- 7-Band, 50 Channel - Service - No crystal scanner - can even monitor aircraft transmissions!
- Priority Channel - Crystalless - Digital Clock - Direct Channel Access - Memory.
- Bears the world's first no-crystal handheld scanner has
- A scanner with built-in tracking tuning and more.
- All sales are net 30 days. Delivery 30 days for delivery after receipt of order due to the high demand for this product. List price $599.95/CE price $419.00

NEW! Bearcat® 350
More Details? CHECK — OFF Page 102

Fonon Slimline 6-HLU
List price $156.95/CE price $106.00

Low cost - 8-channel - 4-band scanner - Bearcat Slimline 6-HLU is designed for the professional - at the price - that first-time buyer can afford. Individual lockout switches. Order one crystal certificate for each.

Fonon Slimline 6-HLU
List price $134.95/CE price $94.00

- Band. 6 Channel - Crystalless - Angled Display - Direct Channel Access - Memory.
-熊cat Scan Speeds, Lockout, Scan Delay and more.
- All sales are net 30 days. Delivery about 2 months.

Bearcat® Four-Six ThinScan™
List price $189.95/CE price $124.00

Frequency coverage 30-50, 145-174, 450-508 MHz.

The incredible, Bearcat Four-Six ThinScan™ is line having an information center in your pocket. This four band, 6 channel scanner is the best choice for your ultimate thin scan. It is a 3" x 7" x 1" scanner with built-in tracking tuning and more.

TEST ANY SCANNER

Test any scanner purchased from Communications Electronics, 313-994-4446. Keep it! If any reason you are not completely satisfied, return it in original condition within 30 days, for a prompt refund (less shipping/handling charges and rebate credit).
Table 2: Specifications of a modern VHF/UHF receiver (cont.).

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-m ((m = 0.5))</td>
<td>≥ 10 dB</td>
</tr>
<tr>
<td>fm (deviation 10 kHz)</td>
<td>≥ 20 dB</td>
</tr>
<tr>
<td>Total noise figure (including af section)</td>
<td>9 dB typical</td>
</tr>
<tr>
<td>Oscillator phase noise (at 20 kHz from the carrier)</td>
<td>120 dB/Hz typical</td>
</tr>
<tr>
<td>FM noise suppression</td>
<td>50 dB typical</td>
</tr>
<tr>
<td>(3-kHz deviation, (f_{\text{mod}} = 1 \text{kHz}, V_{\text{in}} = 1 \text{mV}))</td>
<td></td>
</tr>
<tr>
<td>Intercept point 2nd order</td>
<td>50 dBm typical</td>
</tr>
<tr>
<td>3rd order</td>
<td>12 dBm typical</td>
</tr>
<tr>
<td>Image frequency rejection</td>
<td>> 90 dB</td>
</tr>
<tr>
<td>IF rejection</td>
<td>> 90 dB</td>
</tr>
<tr>
<td>IF bandwidth (3 \text{dB})</td>
<td>2.3 kHz, 8 kHz, 15 kHz, 30 kHz, 100 kHz, 300 kHz, 2 MHz</td>
</tr>
<tr>
<td>Demodulation</td>
<td>a-m, fm, SSB</td>
</tr>
<tr>
<td>Squelch</td>
<td>S/N ratio and adjustable carrier squelch circuits (both can be switched off)</td>
</tr>
<tr>
<td>AF filter</td>
<td>300 Hz to 3.3 kHz; can be switched out</td>
</tr>
<tr>
<td>Gain control AGC</td>
<td>i-f control for (V_{\text{in}} < 80 \text{dB} (\mu \text{V}))</td>
</tr>
<tr>
<td>MGC</td>
<td>i-f control for (V_{\text{in}} < 120 \text{dB} (\mu \text{V}))</td>
</tr>
<tr>
<td>AFC</td>
<td>i-f control 80 dB</td>
</tr>
<tr>
<td>i-f bandwidth (3 \text{dB})</td>
<td>rf 40 dB; can be switch selected</td>
</tr>
<tr>
<td>Indication</td>
<td>Digital tracking of signals of unstable frequency (can be switch off)</td>
</tr>
<tr>
<td>Level</td>
<td>on moving-coil meter in dB (\mu \text{V})</td>
</tr>
<tr>
<td>Frequency offset</td>
<td>on moving-coil meter; sensitivity of offset meter matched to bandwidth</td>
</tr>
<tr>
<td>Panoramic display</td>
<td>200 kHz</td>
</tr>
<tr>
<td>IF panoramic display sweep width</td>
<td>4.5 kHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>Logarithmic approximately 80 dB</td>
</tr>
<tr>
<td>Amplitude display</td>
<td>4 cm × 3 cm</td>
</tr>
<tr>
<td>Screen area</td>
<td>IF panoramic display and broadband IF display</td>
</tr>
<tr>
<td>RF Panoramic display and broadband IF display</td>
<td>Entire reception range (500 MHz, maximum) and/or a particular section of it; superposition of frequency marker for receiver tuning</td>
</tr>
<tr>
<td>RF sweep width</td>
<td>2 MHz maximum</td>
</tr>
<tr>
<td>IF sweep width</td>
<td>Linear or logarithmic 80 dB (10 dB/cm)</td>
</tr>
<tr>
<td>Amplitude display</td>
<td>Monitoring of subassemblies; error signaled with code number</td>
</tr>
<tr>
<td>Internal testing facilities</td>
<td>Triggered by pressing a button; automatic testing of complete receive section including the AF section and all LED displays</td>
</tr>
<tr>
<td>Continual test</td>
<td>Level, offset, AF (600 ohms); a-m video, fm video, IF (10.7 MHz, 2-MHz broadband, 50 ohms, 10 dB above input level, without AFC) i-f (10.7 MHz, narrowband, with AFC, 50 ohms, 10 mV); inputs/outputs for panoramic adapter EZP, COR (Carrier Operated Relay): coupled with squelch; dropout time internally adjustable</td>
</tr>
<tr>
<td>Loop test</td>
<td>External control voltage, squelch response threshold</td>
</tr>
<tr>
<td>Outputs</td>
<td>All important functions, input and output</td>
</tr>
<tr>
<td>Inputs</td>
<td>Remote control (via IEC bus or RS232C interface)</td>
</tr>
</tbody>
</table>

26 November 1981
“all other gear gave us trouble... the TEN-TECs just kept working great.”

1981-82
Trans Pacific DX Expedition
used TEN-TEC OMNI-C transceivers.

KINGMAN REEF, PALMYRA, TOKELAU —
33,000 contacts without a miss.

As George Carleton (AD0S ex KH5K) said in a letter to TEN-TEC... “12,100 QSO’s from Kingman, 8100 for me, 3100 in the first sitting with the rig on a continuous 33 hours except for 2 minute gas breaks... all other gear gave us trouble due to salt spray - the TEN-TECs just kept working great.

“This is the most QSO’s ever from Kingman and all were barefoot. A few times generators ran out of gas during rainstorms with rigs operating on TX... no problem with voltage drop, and no damage. No tuners were used... only your rigs and (antennas). The wind blew continuously from 20 knots to 50-60 knots and we literally had to open the tent to let the rain out, salt water and spray everywhere, watches quit, keyers and linear (other brands) quit after the first QSO — arcing due to salt spray, but the TEN-TECs never even got warm when the tent was around 100°F.

“...American gear is best.”

The TEN-TEC OMNI-Cs went on to serve on Palmyra and Tokelau with equally impressive results and we thank the group for their letters—we couldn’t have said it better.

See your TEN-TEC dealer for the great All-American transceiver — TEN-TEC OMNI-C.

More Details? CHECK — OFF Page 102
transistor such as the CP643 operated at 20-30 mA will have about 50 ohms input impedance and will have no reactive components. This combination results in a total noise figure of 8 dB; and as the double-balanced mixer has some insertion loss, the intermodulation distortion products are now determined by mixer performance — not by the following amplifier.

In the case of the active mixer with the Plessey IC, even if we remove the filter and allow no noise contribution from the amplifier following the mixer, the noise figure is 10 dB, or 2 dB worse; and as the device has gain (zero dB gain is more than a 6-dB loss), we now must look at the intermodulation distortion products generated in the amplifier, which was not necessary in the previous case. Altogether, it becomes apparent that the passive double-balanced mixer, from a systems approach, is a better choice.

IMD. Let’s consider the active Plessey mixer or the active FET mixer — using four FETs either in a quad package such as the U350 (apparently discontinued by Siliconix) or a dual-FET version and measure the intermodulation distortion as a function of frequency offset between the two carriers. We may be able to verify the intercept point between +20 and +30 dBm over a narrow range, but as the filter bandwidth is reached, and the input impedance of the filter following the active mixer changes, other changes also occur.

Most elliptical filters become high-impedance devices (unless simple tuned circuits are used); and as the impedance rises at the output of the active mixer, so does the intermodulation distortion product. In effect, we must sweep the mixer over the range of interest to make sure that intermodulation distortion does not occur or is at an acceptable level.

The use of a passive mixer terminated by a grounded-gate field-effect transistor, or an amplifier using the “noiseless feedback” approach, ensures intermodulation distortion products independent of frequency offset. The design of the Rohde & Schwarz ESH2 laboratory receiver combines these requirements. Fig. 4 shows the input rf section of the ESH2, which offers this superior performance.

FET mixers. The current trend is to use field-effect transistors in the passive mode, or as switching devices in the mixer. Fig. 5 shows a possible configuration. The FET acts as a fast switch. It has a much more defined square-law characteristic than any other device. The diode ring mixer generates its intermodulation distortion when it is about to open or close and has a high-order, nonlinear transfer characteristic; the FET does not suffer from this occurrence.

fig. 4. Input rf section of the Rohde & Schwarz ESH2 receiver.
With suitable bias applied, the intercept point can be as high as +40 dBm with little difficulty in reproduction. This technique is currently used by the Racial RA6790 receiver and by the AGC Telefunken E1700 receiver.

The disadvantage of this circuit is cost, as the LO-drive level must be as high as 23 dBm, and the matching of the device is fairly critical.

VMOS transistors have been used lately in mixers. It appears that these devices are slightly unstable. I had Doug DeMaw’s mixer on loan and had some difficulties with it. Unfortunately, the ARRL wanted it for other projects, and I couldn’t finish my testing; but I understand that it was tested by an independent source and they confirmed the instability if the mixer is not terminated with a pure resistance. In addition, the VMOS device, being an enhancement field-effect transistor, is slightly more noisy than the junction field-effect transistor. We are now beginning to try new circuits, including a combination of power field-effect transistors, such as the U320 or the CP640, which should give promising results.

In the second part of this article, we will look at feedback amplifiers, including the noiseless feedback circuit; i-f filters; i-f detectors; and frequency synthesizers including the fractional-N design.

references

ham radio

fig. 5. Passive FET mixer for extremely high intercept point.
understanding performance data of high-frequency receivers

Check over these definitions before you buy a new receiver

When reading manufacturer's data sheets or product reviews for receiving equipment, one encounters terms such as dynamic range and intermodulation distortion, covering essential features of high-frequency receivers but not generally known to Amateurs. Let's go through an example of high-frequency transceiver or receiver specifications and see what the terms really mean.

sensitivity
First we read that the "receiver sensitivity is 0.25 μV at 10-dB S/N," where S/N stands for signal-to-noise ratio. This information tells us that we need a 0.25-μV signal at the receiver antenna input to obtain an audio-output signal, S, of 10 times (10 dB) the audio-output power of the internally generated receiver noise, N. This value (0.25 μV) is typical for the sensitivity of a good receiver; much lower figures (higher sensitivity) are rare except in commercial grade equipment.

noise floor
The internally generated circuit noise in the receiver is usually represented as the rf input signal level that produces the same audio output power as the noise. This level is, for practical purposes, the minimum-discernible signal that can be detected in a receiver. This signal level is called the noise floor and is generally expressed in decibels below one milliwatt power, or −dBm. Since 0.25 μV from a 50-ohm antenna into a receiver whose input is matched to 50 ohms impedance equals −119 dBm, the noise-floor level in the example case is about −129 dBm, a common value for a manufactured Amateur high-frequency receiver. Homebuilt equipment can sometimes improve on this figure, and values below −140 dBm have been measured.

receiver noise
Receiver noise is a function of, among other things, receiver bandwidth. If we assume that the sensitivity of 0.25 μV was specified for a bandwidth (passband) of 2.5 kHz as used for SSB work, the

By Jan K. Moller, K6FM, 3653 Texas Avenue, Simi Valley, California 93063
reduction of the bandwidth with a filter for CW to, say, 500 Hz, will improve the receiver's apparent sensitivity. The reason is that, by reducing the bandwidth five times, you reduce the amount of noise coming through the receiver and effectively lower the noise floor 7 dB. The new level, in our example -136 dBm, makes it possible for you to receive a correspondingly weaker CW signal, about 0.1 µV, with the same 10-dB signal-to-noise ratio as the SSB signal first mentioned. Anyone who has operated such a narrow bandwidth receiver will remember how quiet it seems and how you can pick out really weak ones.

IMD and desensitization

The ability of a receiver to handle a wanted signal in the presence of strong adjacent signals is of greatest importance in today's crowded Amateur bands. Two phenomena are most significant, intermodulation distortion, or IMD, and blocking, or desensitization, of the receiver. IMD is caused by the mixing, because of imperfections in the receiver front end, of wanted with unwanted signals outside but near the receiver passband. The result is interfering signals in the passband; most dominantly they are the third-order mixing product of two unwanted signals. (Example: two unwanted signals with frequencies \(f_1 \) and \(f_2 \), mixing product \(f_i = 2f_1 - f_2 \); if \(f_1 = 14,060 \) kHz and \(f_2 = 14,040 \) kHz, then \(f_i = 14,080 \) kHz. The same is true for \(f_i = 2f_2 - f_1 \) = 14,020 kHz.)

IMD dynamic range

Returning to the sample specs — they state that "third order IMD is better than -36 dBm." According to definition, this says that, if the receiver is tuned to frequency \(f_1 \), a resulting signal of this frequency will be audible 3 dB above the receiver's noise level when incoming signals \(f_1 \) and \(f_2 \) are at the -36 dBm level (about 50 dB over S9). Such a weak \(f_1 \) signal is just barely recognizable in the noise. This information permits the calculation of IMD dynamic range, the difference between the noise-floor level and the IMD measured level; here it is 93 dB for an SSB bandwidth.

This number is one of the most important characteristics of a receiver in that it specifies the range of signals that can be handled with essentially no undesired spurious responses. Other effects, such as blocking and crossmodulation, occur mainly outside this range of signals, see fig. 1. A good receiver is expected to have an IMD dynamic range of at least 80-85 dB, and slightly better for a CW bandwidth.

The IMD effect is basically caused by the mixer, and one measure of receiver performance is obtained in the following manner. If the mixer i-f output of the desired signals, as well as the IMD product, are plotted against rf input, the two lines will intersect at a certain output level, fig. 2. Note that the two straight lines will have to be extrapolated to intersect, as this usually occurs at such high rf input levels that mixer gain compression (see below) takes place. The intersection level of output is called the third-order or IMD intercept (point), and is expressed in dBm. This point defines essentially the intermodulation performance of the receiver front end for all signal levels and thus becomes a figure of merit. Typical IMD intercept values range between -5 and 25 dBm — the higher numbers indicating better performance.

gain compression and blocking

Blocking, or desensitization, is the result of a very
strong signal outside the receiver’s i-f passband causing loss of gain; that is, gain compression. The blocking signal level is defined as the rf input voltage 20 kHz off frequency that causes the audio output of a weak desired signal (S5 or so) to drop by 1 dB. Typical signal levels are 20-25 dB above the third-order IMD level but this quantity is rarely stated in receiver specifications. Sometimes the expression “blocking dynamic range” is used. This is the difference between the noise floor level and blocking signal level. In the example case, this value typically would be 113-118 dB (related bandwidth should be stated).

cross modulation

Cross modulation occurs when the modulation of an adjacent strong signal appears on a desired strong signal in the millivolt range. The effect is rarely measured for Amateur receivers, where the interest is centered on small-signal performance. Also, IMD products would probably have been encountered in the receiver during such operating conditions. Many modern receivers contain a switchable front-end attenuator to minimize the unwanted effects of strong-signal reception.*

SSB selectivity

The sample receiver specs state that the receiver SSB selectivity is “2.4 kHz at –6 dB and 3.6 kHz at –60 dB.” These numbers show a) the width of the receiver passband at 6 dB below the peak of the i-f curve (2.4 kHz) and 60 dB down from the peak (3.6 kHz) and b) the depth and the shape or form factor of the gate through which your desired signals can pass, fig. 3. The shape factor is defined as the ratio between the receiver bandwidth at –60 dB and –6 dB; in this case it is 1.5.

Receiver selectivity is largely established in the i-f circuits and, depending upon the characteristics of the i-f filters and signal leakage, the passband curve can be quite narrow and have steep sides down to 80 or 90 dB below the peak. A steep curve with sides going as low as possible before flattening out is desirable in that adjacent i-f signals are better suppressed, causing less interference and background hash. A receiver with a square-shaped passband curve down to –90 dB will appear much quieter than one that begins to flatten out at –60 dB.

CW selectivity

For CW operation, most high-quality receivers offer a number of narrow passband options, which are achieved by installing additional i-f filters. One of the example receiver options provides a selectivity of 500 Hz at –6 dB and 820 Hz at –60 dB. These values are average narrowband figures, and an experienced CW operator may even choose a higher selectivity such as 250 Hz at –6 dB and 500 Hz at –60 dB. Similar options exist for SSB operation by i-f filter replacement, but the bandwidth is rarely reduced below 1.8 kHz at –6 dB because of loss of voice quality. Instead, efforts are made to make the i-f passband steeper and improve out-of-band i-f signal suppression with more complex filters, possibly cascading several units.

image suppression

Because most Amateur communications receivers are superhets, two specifications relate directly to their conversion design. In the mixer, the undesired sum (or difference) of incoming-signal and local-oscillator frequencies, the image signal, is suppressed by the combined action of a high first i-f, the tuned circuits preceding the mixer, and good shielding. The sample specs state, “Image ratio better than 60 dB,” which is entirely sufficient for Amateur use, in which most antennas are tuned to the operating frequency or a harmonic thereof.

i-f rejection

The receiver i-f is also susceptible to false signal pickup. The i-f circuit shielding and the tuned circuits before the mixer (tuned to the desired signal frequency) prevent outside signals at the intermediate frequency from entering the receiver. According to the sample specs, “I-f rejection better than 80 dB,” a very satisfactory value, as the i-f is not a harmonic of, nor does it fall on, any Amateur band.

frequency stability

One essential quality is frequency stability. Modern solid-state oscillators have largely overcome stability
problems in Amateur equipment. The example receiver specifies frequency stability as, "Within 100 Hz during any 30-minute period after 1 hour of warm-up." This magnitude of drift would, at most, appear as a very, very slow change of tone pitch, barely noticeable on CW, and would be entirely satisfactory.

summing up

Of all these performance characteristics, which are the most important? Well, I live near Los Angeles, where a lot of strong local signals seem to fill every DX band.

After I determined that the transceivers I was interested in comparing had the desired bands, digital frequency readout, and other general features, the first special consideration I looked for became the receiver's blocking characteristics and IMD dynamic range. Fortunately, this matter has recently been given a great deal of attention by two competing manufacturers of high-frequency transceivers, as well as the ARRL product review team. Consequently, the data were readily available in *QST* and from the manufacturers and their data sheets.

My second special consideration was receiver selectivity. A basic SSB passband curve with a shape factor of 1.5 or less and straight sides down to -90 dB or lower would be most desirable. Additionally, a front-panel, switchable, narrowband CW filter with narrow bandwidth is a must. Should the receiver also have variable i-f bandwidth control, so much the better. The third special consideration is mechanical rigidity and front-panel layout.

I gave items such as sensitivity, image and i-f rejection secondary consideration, mostly because, in today's competitive market, solid-state circuits have almost universally forced to the fore good designs. The better high-frequency transceivers all seem to have more than enough sensitivity and, instead, become limited by atmospheric and manmade noise when in actual use.

bibliography

One of the nicest aspects of writing for *ham radio* is the interesting mail I receive. There's always something new in antennas, and this column is partially devoted to unusual antenna designs sent to me by other Amateurs. Let's start with an interesting 2-meter antenna from "down under."

the SLY beam

The SLY (Suspended Long Yagi) beam for 2 meters was developed by VK4ALE (now a Silent Key) and described in a recent issue of *Amateur Radio*, the excellent journal of the Wireless Institute of Australia.Briefly, the SLY beam is an inexpensive, portable Yagi antenna for Field Day operation. A plan view of the SLY antenna is shown in fig. 1. The supporting structure is made of two spreaders between which lengths of Dacron line are strung. (Nylon line should not be used because it stretches and causes the antenna to sag. It is also expensive.)

The Yagi elements are spaced along the two lines as shown and are held in position by small elastic rings cut from neoprene tubing (or similar dielectric material). The elements can be slipped into position and adjusted, as the rings provide a positive grip to the line yet permit easy movement of the element if required.

The two lines are attached to wooden spreaders, which are suspended in position with rope halters. The beam is pulled up into position between two fixed points and the halter ropes tied off.

Number of elements and feed system? Well, VK4ALE used 20, 25, and 30 elements at various times and even tried 32 elements—the overall length of the Yagi being about 75 feet (23 meters). Measurements on the 32-element job indicated a power gain of about 21 dB over a dipole, and the measured beam pattern at a distance of 200 miles was 35 miles wide (322 and 56 meters respectively). Not bad performance for an inexpensive, portable antenna.

One-eighth-inch (3-mm) aluminum tubing is suggested for the elements, or aluminum clothesline wire can be used. Element lengths and spacings used by VK4ALE are given in fig. 1, or Yagi dimensions provided in the various publications can be used. Any of the common feed systems are applicable.

VK4ALE suggests that the completed beam be rolled up on a lightweight drum or cylinder for ease of transport, otherwise problems may be encountered in unravelling the assembly.

help for the beginner?
Revolutionary
Instant Access Digital
Shortwave Scanner

- Continuous Scanning of LW, MW, SW, & FM Bands
- Instant Fingertip Tuning—No More Knobs!
- 6 Memories for Any Mode (AM, SSB/CW, & FM)
- Dual PLL Frequency Synthesized—No Drift!

A WHOLE NEW BREED OF RADIO IS HERE NOW! No other short wave receiver combines so many advanced features for both operating convenience and high performance as does the new Sony ICF-2001. Once you have operated this exciting new radio, you’ll be spoiled forever! Direct access tuning eliminates conventional tuning knobs and dials with a convenient digital keyboard and Liquid Crystal Display (LCD) for accurate frequency readout to within 1 KHz. Instant fingertip tuning, up to 8 memory presets, and continuous scanning features make the ICF-2001 the ultimate in convenience.

Compare the following features against any receiver currently available and you will have to agree that the Sony ICF-2001 is the best value in shortwave receivers today:

DUAL PLL SYNTHESIZER CIRCUITRY covers entire 150 KHz to 29.999 MHz band. PLL1 circuit has 100 KHz step while PLL2 handles 1 KHz step, both of which are controlled by separate quartz crystal oscillators for precise, no-drift tuning. DUAL CONVERSION SUPERHETERODYNE circuitry assures superior AM reception and high image rejection characteristics. The 10.7 MHz IF of the FM band is utilized as the 2nd IF of the AM band. A new type of crystal filter made especially for this purpose realizes clearer reception than commonly used ceramic filters. ALL FET FRONT END for high sensitivity and interference rejection. Intermodulation, cross modulation, and spurious interference are effectively rejected. FET RF AMP contributes to superior image rejection, high sensitivity, and good signal to noise ratio. Both strong and weak stations are received with minimal distortion.

OPERATIONAL FEATURES
INSTANT FINGERTIP TUNING with the calculator-type key board enables the operator to have instant access to any frequency in the LW, MW, SW, and FM bands. And the LCD digital frequency display confirms the exact, drift-free signal being received. AUTOMATIC SCANNING of the above bands. Continuous scanning of any desired portion of the band is achieved by setting the "L1" and "L2" keys to define the range to be scanned. The scanner can stop automatically on strong signals, or it can be done manually. MANUAL SEARCH is similar to the manual scan mode and is useful for quick signal searching. The "UP" and "DOWN" keys let the tuner search for you. The "FAST" key increases the search rate for faster signal detection. MEMORY PRESETS. Six memory keys hold desired stations for instant one-key tuning in any mode (AM, SSB/CW, and FM), and also, the "L1" and "L2" keys can give you two more memory slots when not used for scanning. OTHER FEATURES: Local, normal, DX sensitivity selector for AM; SSB/CW compensator; 90 min. sleep timer; AM Ant. Adjust.

SPECIFICATIONS
CIRCUIT SYSTEM: FM Superheterodyne; AM Dual conversion superheterodyne. SIGNAL CIRCUITRY: 4 IC's, 11 FET's, 23 Transistors, 16 Diodes. AUXILIARY CIRCUITRY: 5 IC's, 1 LSI, 5 LED's, 25 Transistors, 9 Diodes. FREQUENCY RANGE: FM 76-108 MHz; AM 150-29.999 KHz. INTERMEDIATE FREQUENCY: FM 10.7 MHz, AM 1st 66.35 MHz, 2nd 10.7 MHz. ANTENNAS: FM telescopic, ext. ant. terminal; AM telescopic, built-in ferrite bar, ext. ant. terminal. POWER: 4.5 VDC/120 VAC DIMENSIONS: 12½ (W) X 2½ (H) X 6¼ (D). WEIGHT: 3 lb. 15 oz. (1.8 kg)
Alas, life grows more complex, even against our best intentions. VK5EK brings our attention to that particular folly in his letter to the editor published in a recent issue of *Amateur Radio*. Al speaks about a low-power, solid-state transmitter design, similar to the one shown in chapter 6 of *ARRL Handbook*.

Al says, "If we are trying to overcome the 'black box' syndrome by inducing people to build their own equipment, then we will maximize our chances of success by presenting simple, cheap projects.

"Good applied engineering is concerned primarily with securing a stipulated design objective in the simplest and cheapest manner."

"Your 5-watt CW transmitter fails dismally in this regard, and is a stunning example of solid-state technology gone berserk."

"I present an alternative circuit which will do the same job (fig. 2). Your circuit has about 100 components, mine has fewer than 25. Most of your components would be purchased new; most of mine can be salvaged from old, defunct television receivers, are readily available at flea markets. In fact, *QST* magazine has run several articles in the past on TV components salvaged to build ham gear. And it is also true that some circuits can be built more inexpensively and quickly using tubes.

However, VK5EK misses one important fact of life that cannot be denied, and that is that the great majority of today's Amateurs have been brought up in a solid-state world and vacuum-tube technology is alien to them. It may seem simple to old timers, but tube technology can be puzzling and obscure to many of today's younger Amateurs. Vacuum-tube technology is no longer taught in colleges, and information on tubes is rapidly disappearing from Amateur magazines and handbooks. So while VK5EK has a valid point in extolling vacuum-tube simplicity, he is talking to an audience that, sadly, is deaf to his plea.

While I am on the soap-box, I might as well discuss another fete noire of Amateur Radio: amplitude modulation. A-m, or "ancient modulation" as it is derisively called by some, has largely disappeared from the Amateur bands. That allows a great improvement in spectrum conservation, and the loss of heterodyne interference between phone carriers is a tremendous step forward in improved communications ability.

But an unwanted effect of sideband use is that amplitude-modulation techniques are largely unknown by today's Amateurs. How many recently licensed Amateurs have knowledge of a class-B plate modulation system? Or the more recently developed pulse-duration modulation technique? Or the various high-efficiency amplitude-modulation systems including grid modulation? Or the famous Doherty-modulated amplifier?

Like it or not, a large percentage of

![Diagram](image-url)
fig. 1. The SLY (Suspended Long Yagi) array of VK4ALE has been built with as many as 32 elements. This compact, flexible 2-meter beam is suspended from two Dacron* lines run between wooden spreaders. Directivity is to the right. All elements are held in position along the lines by rings cut from flexible Neoprene tubing. VK4ALE's dimensions are shown, but other reliable beam dimensions may be used. The driven element, DE, is fed by conventional means.

*Any non-stretch line may be used. Editor
communication in today's world is carried on by amplitude modulation. You don't believe me? Then just tune across the broadcast band or the many shortwave broadcast bands. All of these signals are amplitude modulated.

Banning amplitude-modulated signals from the Amateur bands might be a movement toward spectrum conservation, but it would further restrict the Amateur's knowledge in an important technology that forms a large portion of today's communication world. Plenty of space exists on 160, 10, and 6 meters for amplitude-modulation equipment, and it would be unwise to ban this basic form of intelligence transmission from the world of Amateur Radio.

a 5-band sloper antenna

Here's an antenna that works well on all bands. It was shown in *The Canadian Amateur* magazine\(^3\) and designed by VE3CPU (fig. 3). Basically, it is one-half of a regular trap dipole antenna. A metal tower is used as a ground counterpoise. Only one trap is required, so a trap kit can be split with a friend who also wants to build this simple antenna. The antenna is fed with a coaxial line, the shield of which is grounded to the tower and the inner conductor is attached to the sloper wire.

VE3CPU points out that the antenna is quite directive on the higher-frequency bands, and swinging the bottom of the antenna about 90 degrees makes a big difference in signal strength at a distant location. He estimates the power gain over a dipole to be about 2.5 to 3.0 dB on 20, 15, or 10 meters.

As with all slopers and multi-band antennas, adjustment of the length of the tip section may be required to resonate the antenna at the design frequency on 80 meters.

radio-frequency interference (RFI)

RFI! It's hell if you have it. It can ruin your enjoyment of Amateur Radio by interfering with television and radio reception, disrupting communication circuits, causing false beats in electronic heart pacers, and by causing all other manner of equipment malfunction. Radio Amateurs are at once the cause and victim of RFI, as are CBers and all other users of electronic equipment.

Look at these numbers. In the United States in 1980 there were more than:

- 8,200 broadcast and fm stations
- 970 television stations
- 15,000,000 CB transmitters
- 360,000 Amateur Radio stations
- 210,000 aviation transmitters
- 7,800 radar transmitters
- 300,000 industrial radio transmitters
- 115,000 police and fire department radio transmitters
- 36,000,000 two-way portable radio transceivers plus millions of microwave ovens, X-ray machines, electric motors, light flashers and dimmers, welding machines, neon signs, diathermy machines, plastic formers, industrial welders, and so on.

And that's not all. Radio and television receivers themselves can cause objectionable RFI! The problem is that all radio receivers, transmitters, and pieces of electronic equipment are potential sources and victims of RFI. Anything run by electricity can cause RFI.

No wonder that electronic bedlam surrounds us, and it is a wonder that anybody can hear anything on the radio or see anything on television.
considering the vast number of interference-generating devices in our environment.

the sources of RFI and the victim

Remember, all cases of RFI involve two things: the source of the interference and the victim of the interference. For a complete cure of RFI, the interference must be suppressed at the source and the victim (the receiver, stereo equipment, or whatever) must be protected, or otherwise modified in such a way as to reject the interference. This is a large order, and little is being done to solve the growing problem. Information about RFI and its cures is hard to come by, RFI sources are obscure, and a lot of misinformation compounds an otherwise complex problem.

the RFI investigator

In recent years a whole new industry has grown up, largely unknown to most Radio Amateurs: the investigation and suppression of RFI. Electromagnetic compatibility studies and control standards have been created, largely by the military, to safeguard their communications circuits. Courses are available on electromagnetic compatibility and a new career opportunity — that of RFI investigator — has opened up for select, knowledgeable individuals. The job of the investigator is to investigate RFI complaints, track the interference to its source and resolve the problem. Only a handful of RFI investigators are at work in the United States today.

One of the pioneers in this field is a Radio Amateur, Bill Nelson, WA6FQG, who is well known nationwide for his extensive work in RFI investigation, encompassing over two decades of experience. During his long career, WA6FQG has tracked down countless sources of RFI and has lectured to Amateur and CB clubs and conventions on the causes and cures of RFI. Bill is now a consultant to power utilities on RFI problems, including RFI suppression and training of RFI investigators.

Just recently Bill completed an all-inclusive handbook on RFI, which covers the subject in detail.* It is an indispensable reference for all Radio Amateurs, CBers, and the everyday citizen troubled by RFI.

I've personally known WA6FQG for many years and have been greatly interested in his career in this unique work. And I have helped him arrange his handbook and get it published. It's now ready — over 240 pages of valuable information dealing with all facts of RFI.

An advance copy of the Interference Handbook was sent to Barry Goldwater, K7UGA, (U.S. Senator from Arizona and Chairman, Senate Communications Subcommittee). After reading the book, Barry said, "This informative handbook covers the entire field of RFI from A to Z. It will be a tremendous help to me and my staff as we work on communications legislation in Congress. Thanks for your help in this matter."

Another accolade for the new Interference Handbook came from David Fogarty, Senior Vice President of Southern California Edison Company. He said, "Written by a power-company investigator with 33 years of experience, this book is a reliable guide to the causes and cures of power line interference . . . contains absorbing case histories."

So there you are. Perhaps this new handbook will help you with your RFI problems. As I said before, RFI is hell if you have it. And if you don't have it today, chances are you will have it tomorrow!

references

3. The Canadian Amateur, Box 356, Kingston, Ontario K7L 4VQ, Canada.

ham radio

38 November 1981
ANOTHER AEA BREAKTHROUGH!
PRICES 20% LOWER FOR ISOPOLE™ ANTENNAS

The IsoPole antenna has the reputation for high quality, unique design and superior performance. IsoPoles have become the "standard of performance" in VHF/UHF base station antennas.

The demand for IsoPole antennas has grown steadily since their introduction. To meet the demand, AEA has installed an automated production line. We've actually improved the quality of construction but most importantly we have lowered production costs. This lower cost is now passed on to you with the price of IsoPole antennas 20% lower.

The IsoPole is designed for ease of installation. You can customize your mounting by using low cost TV mast ing up to 1 1/4" diameter. (Mast not supplied) More than ever, the IsoPole is the logical choice for a VHF/UHF base station or repeater antenna.

The IsoPole antenna gives you exceptionally broad frequency coverage. You obtain maximum gain attributable to the antenna's length, plus a zero angle of radiated power. The unique cone design (pat. pend.) assures superior resistance to icing and wind. IsoPole antennas are weather proofed and made of top quality components. They use stainless steel hardware, Amphenol connectors, corrosion resistant aluminum alloys and a dielectric material with excellent mechanical and electrical properties.

Note the typical SWR plots for the IsoPole-144 and the new IsoPole-440.

There is an IsoPole antenna for 220 MHz also. See these fine antennas at your favorite dealer, or contact Advanced Electronic Applications, Inc.
P.O. Box 2160, Lynnwood, WA 98036
Call 206/775-7373

Brings you the Breakthrough!

More Details? CHECK—OFF Page 102

November 1981 39
The best gets even better! Each year the RADIO AMATEUR'S HANDBOOK is updated to reflect changes in the state-of-the-art. The 1982 edition is no exception. More emphasis is placed on digital communications techniques than ever before. Also making an appearance for the first time are tables and charts covering the new "WARC" Amateur Radio Bands.

- Amateur Radio
- Electrical Laws and Circuits
- Radio Design Technique and Language
- Solid State Fundamentals
- AC-Operated Power Supplies
- HF Transmitting
- VHF and UHF Transmitting
- Receiving Systems
- VHF and UHF Receiving Techniques
- Mobile, Portable and Emergency Equipment
- Code Transmission
- Single Sideband
- Frequency Modulation and Repeaters
- Specialized Communications Systems
- Interference with Other Services
- Test Equipment and Measurements
- Construction Practices and Data Tables
- Wave Propagation
- Transmission Lines
- Antennas for High Frequency

New projects added to the new Handbook include:
- Code Practice Oscillator
- QSK kw HF Linear Amplifier
- 250-Watt Linear Amplifier Covering 30-M Band
- Two-Tone Generator
- High-Performance SSB Speech Processor
- Simple Switching Regulator
- General-Purpose RTTY Demodulator
- 50-MHz Transmitting Converter
- 8-Band Communications Receiver

New topics included in the 59th edition include:
- 10-MHz Info Added to Several Construction Projects
- Introduction to Packet Radio and Spread Spectrum
- New RFI Chart Showing Frequency Relationships Between Amateur Bands (including WARC) and Other Services (including CATV)
- 10-GHz Gunnplexer, Communications
- New Antennas for VHF FM
- Updated Parts Supplier List

ORDER TODAY!
NO INCREASE IN PRICE SINCE LAST YEAR'S EDITION

ARRL
225 Main Street
Newington, CT 06111

Signature
Printed name
Address
City
State or Province
Zip or Postal Code
Charge account number
Expiration Date

My 1982 Handbook will be shipped to me once copies are off the press in November. HR

Tell 'em you saw it in HAM RADIO!
add-on selectivity
for communications receivers

A new audio filter design featuring sharper cutoff for SSB and better skirt selectivity for CW

The message of this article is that really effective audio filtering can work wonders to improve the performance of today's high-frequency receivers. First, however, we must consider just what the problems are that have to be solved.

A fact of life in high-frequency communications today, especially on the Amateur bands, is congestion. The problem is probably most acute for Amateur SSB transmissions. For a number of reasons, ranging from changing propagation conditions to sheer congestion, it’s rare for an SSB station to have an undisturbed channel for long.

SSB interference

Normally, one SSB signal overlaps to a greater or lesser extent with others. The overlap can vary all the way from two stations being on identical frequencies to a medium overlap, where the off-tune interfering station causes characteristic high-pitched “monkey chatter.” This can be either in the background or the foreground, depending on the relative strengths of the desired and undesired signals. Off-tune interference on the other side of the passband similarly causes a low-pitched version of monkey chatter. Other interference frequently encountered during SSB operation includes overlap with out-of-band intermodulation products (splatter) from over-driven and hence nonlinear SSB power amplifiers, single heterodyne whistles, CW and RTTY transmission, and broadcast stations operating in Amateur bands (particularly on the 40-meter band). Other kinds of strange noises come and go, ranging from the notorious Russian woodpecker to common interference from local electrical equipment.

CW interference

The effect of congestion on CW Morse code transmissions is similar in the sense that all the same interference sources are common. A difference is that CW transmissions don’t actually overlap each other to any noticeable extent (sending speeds are low enough that sideband spread is very slight). On the

By Dr. D. A. Tong, G4GMQ, Datong Electronics Limited, Spence Mills, Mill Lane, Bramley, Leeds LS13 3HE, England

November 1981
from the discussion above we can distinguish the following separate interference situations:

1. Broadband interference affecting a broadband transmission.

2. Narrowband interference affecting a broadband transmission.

3. Broadband interference affecting a narrowband transmission.

4. Narrowband interference affecting a narrowband transmission.

Each of these four cases requires different countermeasures if the receiver is to give the best possible separation of desired from undesired signals. Let's now consider these requirements in turn.

case 1 — broadband signals, broadband interference

This situation presents the most difficult problem and is typified by an SSB speech signal with other off-tune SSB signals superimposed. The situation can be represented as in fig. 1, in which the solid curve shows the typical frequency band occupied by the wanted signal, while the dashed line shows that of an interfering signal. Clearly, the amount of interference experienced will depend on the receiver bandwidth. The distance from A to C represents the normal receiver bandwidth (typically 2.1 kHz). If the bandwidth were reduced to AB, then all the interference would be eliminated with only slight effect on the desired signal.

To obtain maximum benefit from a bandwidth reduction under these conditions, it's essential that the cutoff at the edge of the passband be very sharp. A slow cutoff would give a greater reduction in the wanted signal for a given reduction in the interfering signal. A cutoff at least as sharp as that of a multiple crystal filter is desirable.

An alternative to merely shifting the upper cutoff frequency of the filter passband (that is, C to B as above) is to shift the whole filter passband. This is the so-called i-f shift, or passband tuning technique. Then, if the upper cutoff point moves from C to B, the lower cutoff would move an identical distance (that is, A to A' in fig. 1). This will remove the interfering signal; but it will also allow signals on the other side of the desired signal to enter the passband. Since the desired signal will normally have interference on both sides, i-f shift is only a partial solution.

We conclude, therefore, that for receiving broadband signals in the presence of broadband noise we need:

1. Independently adjustable upper and lower cutoff frequencies.

2. Very steep sides to the overall response curve — at least as steep as those in SSB-type crystal filters and preferably steeper.

case 2 — broadband signals, narrowband interference

Here the typical example is SSB reception in the presence of a loud whistle. If the frequency of the whistle is near the edge of the desired audio frequency response, a filter of the type discussed in the previous section can be used. However, if the whistle is near the middle of the audio band, decreasing the upper cutoff frequency (or increasing the lower one) will remove the whistle — but will also eliminate too much of the desired signal.

A better solution here is to use a notch filter. This is a filter that passes all frequencies except a narrow range centered on the notch frequency. By moving the notch until it coincides with the undesired whistle, the latter can be removed without significantly affecting the desired signal.

other hand, congestion causes the separate CW transmissions to be very close together and spacings of 200 Hz and less are not uncommon.

Users of other less-common transmission modes, such as radioteletype (RTTY) and slow-scan television (SSTV), are also affected by the same interference sources and are possibly even more vulnerable since the raw data is not prefiltered by the human brain before its message content is processed.

Another important source of interference is pulse noise, typically from car ignition systems, but this will not be considered further here since noise-blanking systems handle this kind of interference very effectively.

We conclude, therefore, that for receiving broadband signals in the presence of broadband noise we need:
The conclusion is, therefore, that we need a narrow-bandwidth notch filter whose center frequency can be tuned over the full receiver bandwidth. A self-tuning notch filter designed especially for this purpose, the Datong Model FL1, has been described (reference 1).

case 3 — narrowband signal, broadband interference

The narrower the desired signal, the easier it is to filter it from broadband interference. Consider, for example, two transmissions with equal peak power. One is a CW signal; the other a SSB speech signal. The energy in the latter is, on average, spread over a bandwidth of typically 2.4 kHz (the so-called speech bandwidth), while that in the former is concentrated on one frequency (assuming normal sending speeds). If the CW signal is passed through a filter of 200-Hz bandwidth, all of the CW signal will pass through, but only 200/2400, or one twelfth, of the SSB signal will emerge.

Now, if the bandwidth is then narrowed to only 50 Hz, the ratio becomes 1:48. The point is that, provided the bandwidth reduction does not encroach on the frequency components in the desired signal, a continuous improvement in signal-to-noise ratio will result as the bandwidth is reduced.

In the case of CW signals, the minimum usable bandwidth depends on the sending speed. Reducing the bandwidth increases the rise and fall times of the dots and dashes. When these rise and fall times become comparable to the duration of a dot, the dots merge into each other and the signal becomes a blur. At typical sending speeds this blurring effect does not cause problems until the bandwidth is below 50 Hz, so that, compared with a receiver using a SSB-width filter (say, 2.4 kHz), an improvement approaching 50 to 1 is practicable through bandwidth reduction. This is why a good CW filter can easily retrieve a CW signal that’s almost buried in a SSB signal when listening using only the SSB filter.

case 4 — narrowband signal, narrowband interference

The most common example of this condition is two closely spaced CW signals. Any of the filtering methods described so far are suitable in principle. For example, a wide passband could be used but positioned to just cut off the undesired signal; or a notch filter could be used to remove it. However, conditions seldom remain constant for more than a few seconds, and one interfering signal can soon be joined by many others. Because of this problem, it’s convenient to use a narrowband filter centered on the signal of interest. Some operators prefer to use a passband with a pointed top, while others may prefer a more rectangular shape. The latter can be useful in net operations where not every station is exactly on the correct frequency.

Also subject to personal preference is the question of skirt selectivity. Some operators prefer to hear only the signal of interest (that is, single-signal reception); others prefer to have some indication of what is present on adjacent frequencies.

Before summarizing the requirements for a CW filter, we must consider the question of how the filter is controlled. For SSB reception, separate adjustment of the upper and lower cutoff frequency is desirable. For CW reception, this is not ideal. It’s much better if the center frequency of the passband and the passband width can be separately and smoothly varied and in such a way that the two controls do not interact. Thus one should be able to select a particular bandwidth and move this constant-width window to any point in the overall receiver passband. Because of the very wide range of conditions that are likely to be encountered, CW filters having continuous adjustment are far more effective and pleasant to use than those with a limited number of switched settings.

In summary, for CW reception the following features are desirable:

1. The receiver bandwidth should be continuously and independently adjustable in width and center frequency.

2. The filter pass-band shape should be selectable between flat and peaked.

selectivity at i-f or af?

Conventionally, most of the selectivity in a receiver is concentrated at the intermediate frequency (i-f). This is a matter of practical convenience. It’s easier to make an effective high-frequency filter if its frequency is fixed, and this is why the superheterodyne receiver rapidly superseded the tuned-radio-frequency (TRF) type.

Provided a receiver is linear throughout, the overall selectivity is the product of all the separate sections in the system. Thus, in a SSB/CW receiver all stages, including the final detector are, in theory at least, linear; and the selectivity could be located in the rf, i-f, or audio sections with equal effect. In practice, however, it’s desirable to have as much selectivity as possible as near to the input as possible. This is because real circuits, especially mixers, are not perfectly linear, and strong unwanted signals can combine to form mixing products that can interfere or obscure the desired signals.

In most modern receivers, a good filter is used at the i-f, and an automatic gain control system is used to control the gain ahead of the main filter to avoid
overload effects. This means that extra selectivity can be placed at any point in the receiver system after the main filter without running into problems caused by overload. Thus, by taking advantage of the protection afforded by a good SSB crystal filter and good AGC, an audio filter can be used very successfully at the output of a receiver. If the audio filter's bandwidth is less than that of the main filter, the overall receiver bandwidth will then be controllable by the audio filter.

is audio filtering really as effective as i-f filtering?

The short answer to this question is yes, whenever a product detector is in use (for example, for CW, SSB, RTTY, or a-m received as SSB). When a linear detector is used (that is, a product detector), selectivity after the detector is exactly equivalent to selectivity before the detector. So that, for example, if you wish to separate two signals of slightly different frequency you could do it equally well before or after such a detector. On the other hand, when the same signals are processed by an envelope detector (as for normal a-m), the two signals emerge mixed with sum and difference products. Thus, although very useful results are obtained, a complete separation is not possible using filtering after an envelope detector.

One other difference between pre- and post-detector filtering is that in the latter case the bandwidth of the receiver as presented to the AGC circuit is wider than the overall bandwidth. This means, for example, that if you are selecting one CW signal from the receiver's output using a narrow audio filter, another stronger signal inside the receiver's i-f passband could cause the apparent strength of the desired signal to vary due to AGC action. The effect causes no particular problem, however, since even when it does occur it sounds very similar to fading caused by normal propagation effects.

a new audio filter design for communications receivers

We have discussed the basic filtering requirements for communications receivers and have established that conventional SSB crystal filters by no means represent the last word in performance capability. We have also established that extra selectivity can be conveniently and effectively added to a receiver in its audio output circuit.

We now discuss a new audio filter design, Model FL2, which has recently been introduced by Datong Electronics Limited specifically to improve existing communications receivers in the ways already outlined. Model FL2 contains three quite complex and independent active audio filters. Each is tuned by a control voltage, and the linear frequency versus voltage curves are accurately matched to allow ganged operation. The filters comprise:

1. A five-pole elliptic-function lowpass filter.
2. A five-pole elliptic-function highpass filter.
3. A two-pole filter with independent peak and notch (that is, band-pass and band-reject) outputs.
Five pushbutton switches select any of the various operating modes previously discussed. The switches connect the three filters in the correct combinations and also determine how the three filter control voltages are to be derived from the three panel controls.

Each filter is built from state-variable multiple op amp subsections using 1 percent metal-film resistors and polystyrene capacitors. Such filters have excellent immunity to variations in the active elements. This, and the precision passive components, give good tracking capability and long-term stability. A total of twenty-two op amps are involved in the filter sections, and an additional six op amps are involved in the control functions.

The nominal over-all gain of the filter is unity, and a 2-watt audio power stage is included. This means that the complete filter can be easily installed between the loudspeaker and audio output stage of existing receivers. Altogether, the system uses twenty-one integrated circuits, most of which contain multiple functions.

performance details

The five-pole elliptic-function low and highpass filters were designed to have a minimum stop-band rejection of 40 dB. Each filter has two frequencies of infinite attenuation in the stop-band. If the filter cutoff frequency (that is, the −1 dB point) is given by \(f_C \), then for the lowpass filter the infinite attenuation frequencies are at \(1.29 f_C \) and \(1.85 f_C \); and for the highpass filter they are at \(0.55 f_C \) and \(0.78 f_C \). Similarly the −40 dB points on the filter responses are reached at \(1.25 f_C \) for the lowpass and \(0.8 f_C \) for the highpass.

These filter responses are illustrated in fig. 2A, which shows the calculated response for high and lowpass filters in cascade, with cutoff frequencies at 500 Hz and 2500 Hz respectively. In both cases it is clear how the closeness of the first null response to the cutoff frequency gives a high rate of cutoff.

At a cutoff frequency of 2 kHz, for example, the rate of cutoff is 40 dB in 500 Hz for the lowpass filter. Similarly, if the highpass filter is set to a cutoff frequency of 500 Hz, the rate of cutoff below 500 Hz is 40 dB in only 100 Hz. For comparison, commercial SSB crystal filters tailored to good-quality Amateur-band communications receivers have typical rates of cutoff of 40 dB in 600 Hz. Model FL2 therefore has an appreciably sharper cutoff than typical SSB crystal filters.

application to SSB reception

When the SSB button is pressed, the high and low-pass filters are connected into the circuit and their cutoff frequencies are independently controlled by the center and right-hand knobs respectively.

(photograph). The tuning range for each filter is 200 to 3500 Hz, so that any desired bandpass characteristic can be obtained with the same general shape as that of fig. 2A.
When the SSB + NOTCH button is pressed, the high and lowpass filters behave in the same way; but in addition, the notch filter is connected in series and can itself be independently tuned by the left-hand knob over the same range of 200 to 3500 Hz. The notch width is fixed at 200 Hz at the −6 dB point and remains constant as the notch frequency is varied. An example of this mode is shown in fig. 2B.

Tuning a notch to a weak heterodyne can be difficult, and in such cases SSB + PEAK can be selected. In this mode, the peak output from the notch/peak filter is selected, and the filter can then easily be tuned onto the unwanted whistle. The 6-dB bandwidth in this mode is 200 Hz. After tuning onto the whistle, SSB + NOTCH would be reselected. The SSB + PEAK response corresponding to fig. 3B is shown in fig. 2C.

fig. 3. Three examples of the response in the CW mode. In this mode the response is a superimposition of two curves, one as in fig. 2A and the other as in fig. 2C. Note the center response and extremely good skirt rejection.

fig. 4. Three examples of the response in the CW(2) mode. The control settings correspond to those in fig. 3; and, in fact, the responses in fig. 3 are those of fig. 4 combined with the response of a two-pole peaking filter (as in fig. 2C). Note the relatively square passband. These curves are also typical of those obtainable in the SSB mode (but of course using different knob settings). Note also the two-notch stop-band responses characteristic of the five-pole elliptic function filters.
The SSB mode would also normally be the correct choice for a-m and fm reception and possibly also for SSTV. It could, of course, also be used for any other mode such as CW and RTTY, but a more convenient tuning method is provided for these modes as described in the next section.

application to CW and RTTY reception

Two CW modes are provided. They differ primarily in the shape of the response curves. Common to the two CW modes is that the high and lowpass cutoff frequencies are controlled by analog circuitry to simulate a composite bandpass filter whose center frequency and bandwidth are independently controllable. In these modes the center knob controls the center frequency from 200 to 3500 Hz, and the right-hand knob controls the bandwidth from 100 to 1750 Hz. As the center frequency is varied, the bandwidth remains constant; and similarly, the center frequency is independent of the bandwidth (subject always to the condition that the lower cutoff frequency can never go lower than 200 Hz and the upper cutoff frequency cannot exceed 3500 Hz).

To prevent confusion in panel markings, those which apply only to tuning of the type just described are printed in yellow, while those referring to SSB-type tuning or to both are in white.

The main CW mode is selected by pressing the CW button. This connects the two-pole peaking filter in series with the high and lowpass filters. The bandwidth of the peaking filter is ganged with the separation between the high and lowpass cutoff frequencies, and both are controlled by the bandwidth control (right-hand knob).

Composite response curves are illustrated in fig. 3, which shows the overall responses at skirt bandwidths of 100, 500, and 1750 Hz. In all cases a domed center response is combined with extremely good far-out stop-band rejection. The domed center response makes it easy to tune a CW signal to the center of the filter passband, since one merely tunes for maximum signal. The bandwidth can then be widened or narrowed symmetrically about the signal as desired without the need to retune. The 6-dB bandwidth varies from 70-700 Hz as the skirt bandwidth moves between its extreme values of 100 and 1750 Hz.

This passband shape is considered optimum for most CW reception, but an alternative, CW(2), is provided by simultaneously pressing the two buttons CW and SSB. The high and low filters are then controlled as in CW, but the peaking filter is disconnected. The result is a rectangular response shape exactly as obtained in the SSB mode; but since it is a “yellow” mode, the filters are still controlled by the center frequency and bandwidth controls. This effect is shown in fig. 4 for the same control settings as for the CW curves. The CW(2) mode is especially suitable for use with CW nets or for RTTY reception.

A third “yellow”-mode RTTY is obtained by pressing both CW and SSB + NOTCH buttons. Here the filters are controlled in the same way as for the CW mode, but the two-pole filter is now used as a notch filter, and the notch width is ganged with the bandwidth function. The result is the passband shape shown in fig. 5. This is suitable for wide-deviation

Fig. 5. Responses obtained by selecting the RTTY mode but with the same knob settings as in fig. 4. The center notch width varies in sympathy with the overall bandwidth setting.
RTTY signals — the central notch giving increased immunity to interference.

other features

When using Model FL2 it is interesting to be able to determine the improvement due to the filter by comparing the signal before and after filtering. Once a desired filter mode is selected, by simultaneously pressing the two buttons SSB + PEAK and SSB, only the high and lowpass filters are left in circuit, and their cutoff frequencies are held at their lower and upper limits respectively. In other words, the bandwidth is expanded to maximum, and the effect is virtually equivalent to no filtering when used with normal communications receivers. Alternatively, when the OFF button is pressed the input signal is connected straight through to the output terminal, and power is removed from the filter. Since the overall gain is unity, no changes to volume level will be required.

A front panel headphone jack is included on the FL2; the loudspeaker output terminal is disconnected when phones are used. A second output connector is also included to allow a tape-recorder connection.

closing remarks

It is traditional that most passband shaping in communications receivers be carried out by the i-f filter. However, now that virtually all communications receivers feature good basic selectivity, effective AGC, and linear product detectors, it makes good sense to perform final bandwidth shaping in the receiver’s audio section. Model FL2 was designed to take full advantage of this situation and offers a versatility of performance that would be very difficult to achieve at i-f. Yet, since it is an audio filter, it can be retrofitted to any existing receiver without any internal connections required.

Compared with previous audio filters, Model FL2 gives far sharper cutoff for SSB and better skirt selectivity for CW. This results from the comparatively large number of filter sections — twelve — all of which track precisely together to maintain the desired elliptic function response. Previous filters approaching this level of complexity have not been freely tunable, while previous tunable filters have been restricted to only relatively few sections.

references

Call Or Stop-In And See HAL Equipment At Your Favorite Amateur Dealer.

Write today for HAL's latest RTTY catalog.
CT2100
HAL Puts MORE Behind The Buttons

CT2100 System:
- CT2100 Communications Terminal
- KB2100 Keyboard
- Video Monitor
- Printer (300Bd Serial ASCII-MPI-88G)

- 24 Line Display
- 2 Pages of 72 Character Lines
 - or -
- 4 Pages of 36 Character Lines
- Split Screen (with KB2100)

- RM2100 Rack Adapter
- MSG2100 2000 Character "Brig Tape" ROM

NOW! HAL Equipment is in stock at leading Amateur Dealers.
interesting preamplifier for 144 MHz

What's so interesting about this 2-meter preamp? It doesn't have the lowest noise figure of any of the 2-meter preamps I've tested. It doesn't have the highest gain, although it has more than enough gain for any practical application. And it doesn't have the sharpest bandpass characteristic, although it's better than many other low-noise preamplifiers.

The interesting feature of this preamp is that it combines low noise figure, reasonable gain, and good bandpass characteristics with low cost. The NE73437 bipolar transistor (Q1, fig. 1) sells for only $1.75 (in 1-9 quantities), and the entire preamp can be built for under $10.

performance

The schematic is shown in fig. 1; the layout in fig. 2. Specifications, when tuned for minimum noise figure, are:

1. Noise figure, 1.0 dB.
2. Forward gain, 22 dB.
3. Reverse gain, 40 dB, with a gain margin (reverse gain minus forward gain, a measure of stability) of 18 dB.

The gain response (bandwidth) is shown in fig. 3. Note the expanded plot showing the region between 140 and 150 MHz. Overload and intermodulation characteristics are shown in fig. 4.

My experience has been that the first stage of a receiver is almost never overloaded (except in very special and rare situations, which most
of us never have to worry about), and that a \(-1\) dB point, \(P_{-1}\), of \(-20\) dBm of input power, with a third-order intercept point at \(I_3\) of 18 dBm is, at least, adequate for most stations. The gain and noise figure of this preamplifier are good enough for all but moonbounce work, in which situation this unit makes an excellent second stage. You can use several feet of coaxial cable between first and second stages, and at least 100 feet of RG-8/U between this preamp as a second stage and a receiving converter without concern over insufficient gain or second-stage degradation of system noise.

construction

A single-sided PC board layout is shown in fig. 2. Use good vhf wiring practices (short leads) and make sure a shield is used as shown; a shield box should also be used around the unit.

The NE73437 is built in a plastic package, having a collector lead longer than the pair of emitter leads to either side of it, or the base lead opposite it. Make sure to solder both of the emitter leads to ground and to place the shield over the emitter leads, but only after soldering the rest of the components in place. No other special precautions were found to be necessary.

tune up

Connect a 12 Vdc source to the preamp and set the bias pot (R1) for a total preamp current of about 4 mA. Adjust C1, C2, C3 and C4, in any order, for maximum gain. If you have access to a noise generator setup, tweak C1 and C2 for lowest noise figure. The weak-signal reception method can also be used to tweak for best noise figure. The preamp can be modified for use at 220 and 432 MHz.

The device is available from California Eastern Labs, 3005 Democracy Way, Santa Clara, California 95050 (CEL supplied much appreciated data and samples for the prototype of this preamplifier). I will answer all questions upon receipt of a self-addressed, stamped envelope.

Geoffrey H. Krauss, WA2GFP
TR-7730

Miniaturized, 5 memories, memory/ band scan
The TR-7730 is a very compact 25 watt, 2-meter FM mobile transceiver, reasonably priced.
TR-7730 FEATURES:
- Dimensions: 5-3/4 W x 2 H x 7-3/4 D, inches. Weighs 3.8 lbs.
- Extended frequency coverage, 143.900-148.995 MHz, in 5 or 10 KHz steps.
- 25 watts HF output power, with HI/LOW power switch.
- 5 memories for operation in simplex or repeater modes.
- Memory scan, plus automatic band scan.
- UP/DOWN manual scan on microphone (supplied).
- Four digit LED frequency display.
- S/RF bar meter. LED indicators for BUSY, ON-AIR.
- Transmit offset switch for Li f 5 MHz Non-standard offset uses fifth memory.
- Low power switch selects 10 or 1 watt RF output.
- Similar to TR-7730 in other features, including five memories, memory scan, automatic band scan, and some optional accessories.

TR-9000

"New 2-meter direction"...compact rig with FM/SSB/CW, scan, five memories
The TR-9000 combines the convenience of FM with the long distance SSB and CW. It is extremely compact...perfect for mobile operation. Matching accessories are available for optimum fixed-station operation.
TR-9000 FEATURES:
- FM, USB, LSB, and CW.
- Only 6-11/16 inches wide, 2-21/32 inches high, 9-7/32 inches deep.
- Two digital VFOs, with selectable tuning steps of 100 Hz, 5 kHz, and 10 KHz.
- Digital frequency display. Five, four, or three digits, depending on selected tuning step.
- Covers 143.900-148.999 MHz.
- Band scan... automatic busy stop and free scan.
- SSB/CW search of selective 9.9-KHz bandwidth segments.
- Five memories...four for simplex or ±600 kHz repeater offsets and the fifth for a non-standard offset (memorizes transmit and receive frequency independently).
- UP/DOWN microphone (standard) for manual band scan.
- Noise blanker for SSB and CW.
- RIT (receiver incremental tuning) for SSB and CW.
- RF gain control.
- CW sidetone.
- Selectable RF power outputs...10 W (HI)/1 W (LO).
- Mobile mounting bracket with quick-release levers.
- LED indicators...ON AIR, BUSY, and VFO.

TR-8400

Synthesized 70-cm FM mobile rig
- Covers 440-450 MHz, in 25 KHz steps, with two VFOs.
- Transmit offset switch for ±5 MHz. Non-standard offset uses fifth memory.
- HI/LOW power switch selects 10 or 1 watt RF output.
- Similar to TR-7730 in other features, including five memories, memory scan, automatic band scan, and some optional accessories.

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
"Comm-packed."

BIG performance... small size... smaller price!!!

TR-2500

The TR-2500 is a compact 2 meter FM handheld transceiver featuring an LCD readout, 10 channel memory, lithium battery memory back-up, memory scan, programmable automatic band scan, Hi/Lo power switch and built-in sub-tone encoder.

TR-2500 FEATURES:

- Extremely compact size and light weight
- LCD digital frequency readout
 Easy to read in direct sunlight or dark (with lamp switch). Low current drain. Shows frequencies and memory channels, plus four "Arrow" mode indicators.
- Ten channel memory
 Nine memories for simplex or ±600 KHz offset. "M0" memory for non-standard split frequency repeaters.
- Lithium battery memory back-up
 Built-in Lithium battery (estimated 5 year life) maintains memory when Ni-Cd pack is fully discharged or removed.

CONVENIENT TOP CONTROLS

- HI/LO power output selection
 Allows operation at 2.5 watts or 300 mw RF output.

- Memory scan
 Scans only channels in which frequency data is stored. Stops on busy channel, resumes scan approximately 2 seconds after signal ceases.
- Programmable automatic band scan
 Upper and lower frequency limits and scan steps of 5 KHz and larger (5, 10, 15, 20, 30 KHz, etc.) may be programmed. Scan locks on busy channel, resumes approximately 2 seconds after signal ceases.
- UP/DOWN manual scan
 Up/Down manual scan in 5 KHz steps.
- Built-in tuneable sub-tone encoder
 Sub-tone encoder, with active switch, tuneable (variable resistor) to desired CTCSS tone. Optional TU-1 programmable (DFP-switch) encoder accessory available.
- Built-in 16 key autopatch encoder
 16 keys provide telephone dual tone modulation.
- "SLIDE-LOC" battery pack
 Slides into position, locks into place.
- Reverse operation
 Shifts receiver to transmit frequency, and transmitter to receive frequency.
- Keyboard frequency selection
 Sets operation frequency across full range.
- Extended frequency coverage
 Covers 143.900 to 148.995 MHz in 5 KHz steps.
- Optional power source
 Using optional MS-1 mobile or ST-2 AC charger/power supply, radio may be operated while charging. (Automatic drop-in connections.)
- High impact plastic case
 Provides extra strength to resist damage.
- Battery status indicator
 Flash to indicate low battery charge level.
- Two lock switches
 Prevent accidental frequency change and accidental transmission.

Standard accessories included:
- Flexible rubberized antenna with BNC connector
- 400 mAH heavy-duty Ni-Cd battery pack
- AC charger
- Plugs for external microphone and speaker

More information on the TR-2500 is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street, Compton, California 90220.

Optional accessories:
- ST-2 Base station power supply and quick charger (approx. 1 hr)
- MS-1 Mobile stand/charger/supply
- TU-1 Programmable sub-tone (CTCSS) encoder
- SMC-25 Speaker microphone
- LH-2 Deluxe top grain cowhide leather case
- PB-25 Extra Ni-Cd battery pack, 400 mAH, heavy duty
- BH-2 Belt hook
- WS-1 Wrist strap
- EP-1 Earphone
- RF power amplifier (To be announced later.)

Specifications and prices are subject to change without notice or obligation.
up-conversion receiver
for the
high-frequency bands: part one

Build it — try it out.
Does it set a new standard
for performance?
You be the judge

author's note
The object of this two-part construction project is strictly educational. I wanted to see if it was possible to produce a fairly good unit with readily available parts and, if so, to go on to design and construct a transceiver. Because of this, the module construction was done in breadboard fashion. There are no board layouts available, but some of the photos show typical construction techniques used throughout.

After a ten-year hiatus of little Amateur Radio activity, my S-line equipment started to look old when compared with the transceiver ads in the magazines. Surely, radios that looked this good must outperform my 20-year-old units. But which one to buy? With a well-equipped lab at my disposal, I decided to check out some available units. The results were generally disappointing, in my opinion. Except for third-order intermod performance, my old box full of tubes ran rings around the new solid-state units.

One of the new units I checked out had a strong front end but lacked sensitivity, very poor AGC characteristics, and produced a lot of hum and noise if an external audio filter wasn't used.

Another unit had excellent sensitivity, adequate overload characteristics, and good AGC; but synthesizer phase noise was excessive.

A third unit had an excellent operating "feel" and sound for DXing and contesting but had a soft front end.

A fourth unit wasn't considered for testing because of its poor reliability, as reported by a number of owners. Little testing was performed on the transmitters, although two of the units had key clicks and one had a slight chirp on CW; also its ALC characteristic was poor.

The digital readout and no-tuning features sold me on the solid-state rigs, but I couldn't decide on which compromise to make. So I constructed this receiver as a breadboard project to see if a full-blown transceiver effort was feasible. By constructing this receiver, I could concentrate on the basic performance characteristics and leave the frills for later, or leave them out completely.

design
The basic configuration is shown in fig. 1. Up conversion eliminates the need for tunable filters at the front end. With this conversion method, adequate image rejection can be obtained with a simple low-

By George Cutso, W2VJN, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08544
pass filter. The input filters are followed by an rf stage. This stage may be switched in when high sensitivity is required, or it may be switched out when maximum resistance to overload is needed. The high sensitivity is useful on a quiet 10-meter band or when an inefficient antenna is used.

An electronically variable attenuator between the rf amplifier and first mixer reduces the signal level for high-amplitude signals. The first mixer uses 17-dBm injection and provides a third-order intercept of 25 dBm. The first i-f is at 45 MHz. A small amount of gain is inserted to maintain an adequate front-end noise figure.

A monolithic crystal filter at 45 MHz protects the

fig. 1. Block diagram of the up-conversion receiver. Breadboard construction techniques were used to allow changes in circuitry as the design developed.
SANTEC technology breaks into the 440 band with style! The new ST-7/T synthesizes the entire band in 5 kHz steps, works both up and down repeater splits and does it all right from your hand, with versatile power options of 3 watts, 1 watt or even 50 milliwatts (all nominal), to reach out to where you want. The high power mode of 3 watts radiates on 440 like 5 watts on 2 meters ... and that's a handful!

Tones? This one has them ... tones and subtones! The 16 button tone pad is a SANTEC Standard at no extra cost, and the ST-7/T's optional synthesized subtone encoder is controlled by the radio's front panel switch.

All the regular SANTEC accessories used with your HT-1200 fit the ST-7/T as well, meaning that you can enjoy both bands fully with a smaller cash investment. Grab the new SANTEC ST-7/T and join the fun on 440 MHz. See your SANTEC Dealer for delivery details.

SANTEC's popular HT-1200 is the incomparable 2 meter leader. This little rig is handling over quality, power and features that you'd expect from something nearer the size of a bread box. SANTEC packs a 2 meter ham shack into the palm of your hand!

You can carry scan, search, 10 memories and fully synthesized key pad control around with you and still get out with a big 3.5 watts (nominal). Compare them apples to anything you want, and settle for nothing less.

SANTEC radios exceed FCC regulations limiting spurious emissions.

SANTEC
Both the SANTEC ST-7/T and the SANTEC HT-1200 are certified under FCC Part 15.

© 1981, Encomm, Inc.
2000 Avenue G, Suite 800, Plano, Texas 75074
Phone (214) 423-0024 • INTL TLX 203920 ENCOM UR
second mixer from out-of-band signals. If good SSB and CW filters were available for 45 MHz, a second mixer wouldn't be necessary. This is not the case, however, so the main receiver selectivity is obtained at 3.18 MHz in the second i-f. The second mixer is also a high-level mixer and is driven at 13 dBm. Crystal filters are readily available for many different bandwidths at 3.18 MHz. A pair of MC1590s provide more than enough i-f gain and AGC range.

A 7-dBm drive-level, double-balanced mixer is used for the product detector. An audio amplifier completes the signal-path circuit. AGC voltage is derived from the audio signal and controls the second i-f amplifier gain and the front-end attenuator. A hang-type circuit is used.

Main receiver tuning is accomplished with a 5-MHz VFO. A 45- to 75-MHz VCO is phase-locked to the VFO in one-half megahertz bands. The VFO is heterodyned with a crystal oscillator operating 5.05 MHz below the minimum injection frequency required for the selected band.

For example, to cover the 7.0- to 7.5-MHz band the injection frequency must be 45.0 MHz higher, or 52.0 to 52.5 MHz. The crystal frequency required

![Top view of receiver removed from its cabinet. The front and rear panels may be swung away from the main assembly for maintenance. Most modules above the deck are built in miniboxes. The large box houses the VFO, VCO, and phase detector board. On the left is the front panel showing the display module and the various controls. On the right is the rear panel holding the 45-MHz crystal filter, the first mixer and the BFO modules. At the top center are the second mixer, 48.18-MHz oscillator and 3.18-MHz amplifier modules.](image)
would be 46.95 MHz. The second-mixer injection is provided by a 48.12-MHz crystal oscillator signal. Switching is incorporated to move the frequency to either 1.2 kHz or -1.2 kHz for upper- or lower-sideband selection. The BFO provides 3.18 MHz ± 1.2 kHz for the product detector, and the switching is ganged with the 48.12-MHz crystal oscillator. A digital counter that subtracts 450,000 from the measured frequency monitors the VCO and provides a digital readout. The display may also be used externally as a test frequency counter.

performance characteristics

Table 1 shows the receiver's measured performance. Noise-floor measurements indicate a noise figure of 8 dB with the preamplifier in. While this is adequate for normal high-frequency operation, it could be reduced by minimizing the losses ahead of the first mixer.

The blocking performance is very good, and a rather large desired signal level was used to eliminate the effects of phase noise on the measurement. The third-order intercept was measured at two-tone spreads to show the effect of the 45-MHz crystal filter. The second-order intercept varies, depending on the front-end filter attenuation, but the number shown is typical.

The receiver's phase-noise degradation is substantially less than that of other modern synthesized receivers I tested. This is due to this receiver's wide loop bandwidth in the synthesizer and the high-Q components in the 5-MHz VFO.

Image and i-f rejection are quite good although not as high as the filter alone should provide. Better shielding of the front-end modules and the use of miniature hardline to couple them would bring the rejection to greater than 100 dB.

front end

Front-end filters minimize out-of-band interference. See fig. 2. A 30-MHz Cauer lowpass filter is in line at all times. It is designed to provide 80-dB image rejection by itself and has a notch at the first i-f of 45 MHz.

A highpass, lowpass filter combination is switched in for frequencies below 1.75 and 4.7 MHz. This filter has 0.5-dB attenuation from 1.8 to 4.5 MHz and is down 50 dB below 1.1 MHz and above 7.4 MHz. A

![Typical board construction as shown on the filter board. Terminal strips are soldered to PC material directly. Components are supported on strips and groundplane. Breadboard rf circuitry may be constructed rapidly with this technique.](image)
second set of highpass, lowpass filters covers 5.9 MHz to 11.8 MHz with 0.6-dB attenuation from 6.5 MHz to 11 MHz. This set is more than 50 dB down below 2.5 MHz and above 21 MHz. Finally, a highpass filter is used for frequencies above 12.8 MHz. The filter has less than 0.4-dB attenuation above 14 MHz and more than 50 dB below 7.5 MHz.

These filters are constructed on double-sided copper-clad board using Amidon coil forms. Reed relays are used to select filters and are controlled by the band switch. Relay drivers are VNIOKM FETs (fig. 2).

The MRF517 amplifier, fig. 3, uses transformer-coupled negative feedback. It has a gain of 10 dB and is flat beyond 100 MHz. Reed relays switch the amplifier in and out.

AGC is applied with a Mini-Circuits PAS-3 PIN diode attenuator following the rf amplifier. This unit is not activated unless the signal level exceeds a threshold set on the audio-AGC board. It is adjusted to start attenuating if the input signal exceeds 100 µV. This attenuation reduces the signal level in the stages ahead of the 3.18-MHz i-f filters.

first mixer

The first-mixer-module schematic is shown in fig. 4. It contains a Mini-Circuits SRA3H mixer and two 2N5109 feedback amplifiers. One is used as an i-f post amplifier, and the other increases the synthesizer injection signal to 17 dBm. These 2N5109 amplifiers operate at 55 mA collector current. Clip-on heat-sinks keep the transistor operating temperature down. Amplifier gain is about 14 dB, and the output compression point is 23 dBm. Input and output impedances are approximately 50 ohms. Frequency response is very flat, being down about 0.5 dB at 110 MHz, the upper limit of my test equipment. Third-order intercept measurements on this module indicate a level of 24 dBm. This is to be expected for this mixer amplifier combination. No degradation is apparent when the 45-MHz crystal filter is introduced. I had some concern that the feedback amplifier would
reflect an improper load for the mixer, out of the filter passband; however, the amplifier input impedance does not vary enough from 50 ohms to degrade the intercept point.

first i-f filter

The first i-f was placed at 45 MHz to enable the use of a standard Piezo Technology, Inc., monolithic filter. Their model 4371 is a four-pole unit in an HC-18 case. It has an advertised 3-dB bandwidth of 15 kHz with 1-dB ripple in the passband and a 3-dB loss. Aside from some sharp spurious responses, its ultimate rejection exceeds 50 dB. This filter has 7000-ohm input and output impedances, so networks are required to make it usable. See fig. 5. Considerable experimenting showed that achieving low insertion loss and good ultimate rejection at 45 MHz is not easy.

The insertion loss is important to minimize the receiver noise figure while maintaining large signal capabilities. If the filter loss is excessive, the gain preceding the filter must be high enough to give a good noise figure, but that would reduce the large signal-handling capabilities of the receiver.

Pi matching networks were used at the filter input and output. Coils and capacitors of very high Q must be used to minimize insertion loss. B&W miniductors were used with small air trimmers and Dur Mica capacitors. Over-all loss, input to output, was held to

![Diagram of the first i-f filter (M2 module).](image)

fig. 5. 45-MHz filter schematic (M2 module). The first i-f filter uses a standard Piezo Technology, Inc., monolithic 4-pole unit in an HC-18 case. The 3-dB bandwidth is 15 kHz with 1-dB ripple in the passband and a 3-dB loss.

![Diagram of the second mixer and 3.18-MHz crystal filter schematic (M3 module).](image)

fig. 6. Second mixer and 3.18-MHz crystal filter schematic (M3 module). This high-level unit preserves good high-amplitude performance for frequencies within the 45-MHz filter passband.
less than 2 dB by this method. To achieve good out-of-band rejection, it was necessary to mount the 4371 directly under a solid copper shield that separates the input and output circuits. After considerable adjustment of component position, ultimate rejection of 70 dB was obtained.

second mixer

To preserve the good high-amplitude signal performance for frequencies within the 45-MHz filter passband, a high-level unit was used as the second mixer. A 2N5109 feedback amplifier follows the mixer and is designed to provide a 500-ohm drive signal for the XF-30 SSB crystal filter. A subminiature relay selects SSB or CW. When CW is selected, a 300-Hz crystal filter and a gain-equalizing amplifier are inserted into the signal line. The equalizer gain is adjusted to offset the CW-filter loss. After filtering, an MC1590 provides more i-f gain and AGC voltage. Fig. 6 shows the schematic.

A second MC1590 and a 2N5179 feedback amplifier complete the i-f chain. They are mounted in a separate module to hold down the over-all gain-per-module. The schematic is shown in fig. 7. The maximum drive level to the product detector is held to -10 dBm by the AGC system. The MC1590 cannot drive the mixer directly while maintaining low two-tone intermodulation. The feedback amplifier can produce -10 dBm with very low distortion and allows the MC1590 to operate at less than -20 dBm. This combination has third-order IMD products that are greater than 65 dB down at an output level of -10 dBm per tone output. This amplifier is set to 26-dB gain but has a maximum of 32-dB gain available.

![Diagram](image-url)
fig. 7. 3.18-MHz amplifier schematic (M5 module). A second MC1590 and a 2N5179 feedback amplifier complete the i-f chain. They are mounted in a separate module to hold down the over-all gain per module.

![Diagram](image-url)
fig. 8. 48.18-MHz oscillator schematic (M4 module). Second-mixer injection is provided by this crystal oscillator. Output frequency may be shifted by a combination of a small capacitor and inductance in series with the crystal and by a second capacitor, which can be switched in with a PIN diode.
second mixer injection

The second mixer injection is from a crystal oscillator operating at a nominal frequency of 48.18 MHz. See fig. 8. An offset equal to the BFO offset must be applied to this oscillator for USB/LSB selection to keep the signal frequency constant. By placing a small inductor and capacitor in series with the crystal the output frequency can be shifted 1.2 kHz. A second capacitor switched in with a PIN diode can then pull the frequency to 48,180-1.2 kHz. A buffer amplifier provides the power output to drive the second mixer.

BFO and product detector

An SRA-3 double-balanced mixer is used as the product detector. Unit gives excellent results when driven with a square-wave carrier.

The BFO consists of two crystal oscillators, as shown in fig. 9, one for LSB and one for USB/CW. Low-power Shottky two-input gates are used for the active elements. One input is biased into the linear region. The crystal is connected from gate output to input with a series frequency-adjusting capacitor. The two 300-pF mica capacitors complete the Colpitts configuration. The other gate input is used in the normal manner, to select the BFO frequency.

These oscillators run at twice the desired output rate so that a divider can be used to obtain a good square wave. A 74S112 flip-flop is used because of its small difference in propagation delay for positive- and negative-going edges. This unit drives the LO port on the SRA-3 through a dc blocking capacitor and a 150-ohm resistor. This is a simple but effective way to drive a mixer from a logic signal. A good square wave is necessary to minimize harmonic distortion. The third-order intercept of the mixer is increased somewhat by this technique.

Next month, in the second half of this two-part article, I will describe the construction of the audio and AGC board, the synthesizer, and power supply.
KVG announces a new series of 9 MHz crystal filters complementing the standard FX-9xx series. The new XFM-9xx series are Monolithic Crystal Filters with characteristics equivalent to the classical discrete crystal filters with corresponding part numbers.

<table>
<thead>
<tr>
<th>Discrete model</th>
<th>Application</th>
<th>Monolithic Part No.</th>
<th>Termination ohms</th>
<th>pF</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFM-9A</td>
<td>SSB</td>
<td>XFM-9A</td>
<td>500</td>
<td>30</td>
<td>2.4</td>
</tr>
<tr>
<td>XFM-9B</td>
<td>AM</td>
<td>XFM-9B</td>
<td>500</td>
<td>30</td>
<td>3.76</td>
</tr>
<tr>
<td>XFM-9C</td>
<td>FM</td>
<td>XFM-9C</td>
<td>500</td>
<td>30</td>
<td>5.0</td>
</tr>
<tr>
<td>XFM-9D</td>
<td>FM</td>
<td>XFM-9D</td>
<td>500</td>
<td>30</td>
<td>5.0</td>
</tr>
<tr>
<td>XFM-9E</td>
<td>FM</td>
<td>XFM-9E</td>
<td>1200</td>
<td>30</td>
<td>12.0</td>
</tr>
<tr>
<td>XFM-9B-01</td>
<td>AM</td>
<td>XFM-9B-01</td>
<td>500</td>
<td>30</td>
<td>2.4</td>
</tr>
<tr>
<td>XFM-9B-02</td>
<td>SSB</td>
<td>XFM-9B-02</td>
<td>500</td>
<td>30</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Also new standard filters:
- A 10 pole SSB filter, model XFM-9B-10
- A new 9 pole SSB filter, model XFM-9P 250 Hz BW

Shape factor 1.5 1.6 1.7

KVG announces a new series of 9 MHz crystal filters featuring:
- Low noise
- Narrow band
- High selectivity
- Discrete

Each transverter contains both a TX up converter and a RX down converter.

Write for Data Sheets. Price & Delivery.

1296 MHz EQUIPMENT

Anouncing the new 1296 MHz units by Microwave Modules.

Transverters by Microwave Modules and other manufacturers can convert your existing VHF equipment to operate on the 1296 MHz band. Models also available for 2M to 70cm and for ATV equipment from 140 to 148 MHz. Each transverter contains both a TX up converter and a RX down converter.

Write for details of the largest selection available.

Prices start at $189.95 plus $5.00 shipping.

SPECIFICATIONS

Output Power 10W

Receiver N.F. 3dB

Receiver Gain 30dB typ.

Prime Power 12V DC

Attention owners of the original MM-1432-28 models. Update your transverter to operate OSCAR 8 & PHASE 3 by adding the 433 to 436 MHz range. Model includes full instructions $26.50 plus $1.50 shipping. Each transverter contains both a TX up converter and a RX down converter.

ANTENNAS

(FOB CONCORD, VIA UPS)

144-148 MHz J-SLOTS
8 OVER 8 HORIZONTAL POL. + 12.3 dBd

B8/2M

63.40

1296-1300 MHz

1296-LY

6 fl. boom $47.90

1296-1300 MHz

1296-LY

6 fl. boom $70.90

Send $2.00 (2 stamps) for full details of KVG crystal products and all your VHF & UHF equipment requirements.

Pre-Selector Filters

Varactor Triplers

Decade Pre-Scalers

AMplifiers

Crystal Filters

Frequency Filters

SSB Transmitters

FM Transmitters

VHF Converters

UHF Converters

THE RADIO AMATEUR ANTENNA HANDBOOK

by William R. Nelson, WA6FOQ

This book contains lots of well illustrated construction projects for vertical, long wire and HF/VHF beam antennas. KVG will also get information not usually found in antenna books. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on bands and how to use them, and new information on the popular S11 and Beta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference 190 pages.

1979

INTERFERENCE HANDBOOK

by William R. Nelson, WA6FOQ

RFi is a very sticky problem. It can ruin your operating fun and worse. This brand new book covers every type of RF interference that you are likely to encounter. Emphasis is placed on Amateur Radio, CB and power line problems. The author has spent over 33 years investigating RFi difficulties. The most popular power line interference — how to locate it, cure it, safety precautions and more. He also gives you valuable steps on how to eliminate TV and stereo problems. To help you understand this perplexing problem even more, this new book gives you interesting RFi case histories, filters to buy or build, mobile telephone, CATV and computer problems and ideas on how to solve them. Profusely illustrated and packed with practical, authoritative information. ©1981. 247 pages. First edition

1979

Please add $1.00 to cover shipping and handling.

HAM RADIO'S BOOKSTORE

GREENVILLE, N. H. 03048

Tell 'em you saw it in HAM RADIO!
THE BIG SIGNAL® BALUN

- 160-6 meter spectrum coverage
- First with built-in lightning arrester
- Unconditionally guaranteed
- More efficient coverage than any competitive balun
- Can withstand 600 lb. pull
- Handles 2,000 watts
- Weatherproofed

NY/Hawaii/Alaska/Canada
Collect: 1-315-437-3953
Toll Free 1-800-448-1666

6743 Kinne Street, East Syracuse, NY 13057

MAXI TUNER
SOLVES ANTENNA PROBLEMS

THE FINEST ANTENNA TUNER AVAILABLE
Dual: Random Wire and Balanced Antennas
- Presents 50-75 Ohm Resistive Load to Your
 Transmitter Using Virtually Any Antenna
 System (Balun Optional. $19.95)
- Continuous 1.7-30 MHz Coverage
- Rotary Inductor (28 Ohm)
- Rugged Cast Aluminum Turns Counter
- Handles 3 KW PEP 2 KW with Balun
- Velvet Smooth 6 to 1 Verner Tuning
- 0-100 Logging Scale or 500 pf Capacitors

continental FREE SHIPMENT U.S.
Maxi without SWR — $259.95
Maxi with SWR — $299.95
Welcome residents and 4% State Tax

FOR COLOR BROCHURE
OPERATING HINTS
CALL OR WRITE
RF COMPONENTS
1249 Garfield St.
Niagara, WIS. 54151
(715) 251-4118

VAL-DUCKIE™
Portable Communications Antennas
For amateur and commercial services,
the Val-Duckie communication antena
boasts 48 different models, from
144 to 512 MHz. Encapsulated in high
gloss PVC plastic for weather re-
sistance, all Val-Duckie antennas are
100% factory tuned for minimum
VSWR and have a power rating of 35
watts at 50 ohms.

1/4 Wave
Mobile Antennas
A quality 2-meter antenna, with 200
watts of power, can be cut for 220 and
450 MHz. Valor's 1/4 wave mobile
antennas are equipped with stainless
steel whip, 12 ft. RGF8 Valor-Flex™
cable, and PL-259 connector. 3 models
available with surface mount, magnet
mount, and magnet mount with BNC
c connector.

185 W. Hamilton St., West Milton OH 45383, PH: (513) 698-4194, Outside Ohio: 1-800-543-2197

November 1981
owners' survey — TR7

A survey of owners’ opinions of the Drake TR7

This month, the *ham radio* readers’ survey deals with the popular Drake TR7, certainly one of the most desirable high-frequency transceivers in recent years. One hundred and ninety-five completed and usable questionnaires were returned by our readers.

The Drake TR7 is a synthesized transceiver that provides continuous receive coverage from 1.5 to 30 MHz, and transmits on all Amateur frequencies currently assigned within this range. The circuit combines a frequency synthesizer with a PTO, and there is a 1-kHz dial and 100-Hz digital readout resolution. The receiver has full passband tuning, with a first i-f of 48.05 MHz. The radio features solid-state, no tune-up operation.

the good features of the TR7 . . .

In response to the question, What is the rig’s best feature?, the most frequent answer was the general coverage aspect of the radio. Thirty-six percent of the respondents mentioned this capability and the high quality of the TR7 receiver, which was praised for both its sensitivity and selectivity. (Note that, with the optional Range Program Board, the TR7 will tune 0 through 30 MHz, and programmable, out-of-band transmit capability is available for other frequencies such as MARS, Embassy, Government, and the new WARC bands.) Several Amateurs said how much they enjoy being able to use the TR7 for SWLing.

Thirty-one percent of the respondents mentioned the broadband characteristics of the radio as among its best features (many — in fact, most, respondents listed more than one “best feature.”) Because the radio is solid-state, there is no need for preselection tuning or transmitter adjustments. Many of the respondents to the questionnaire who had been accustomed to operating only tube-type radios were appreciative of this aspect of the TR7.

Other “best features” frequently mentioned were ease of operation (16 percent), flexibility (9 percent), good audio (9 percent), portability (8 percent), and the digital readout (7 percent). Here are some representative replies to the question, What is the rig’s best feature?:

“Flexibility — it does everything! A-m is clear, and accessories all plug in together and work well.” — AK0U

“General coverage receiver, ease of operation, passband tuning.” — WD8JUB

“Hard-hitting, pleasing, clean CW receive note; ease of alignment.” — KL7T

“Continuous coverage from 0 to 30 MHz.” — AG8T

“Receiver is excellent, especially filters and passband tuning. Good physical layout, and easy to manipulate the controls. I like the full frequency ability — I do SWLing. Most flexible receiver to use: it’s a real pleasure!” — AE2J

“The 0-30 MHz receiver. The receiver has excellent sensitivity and dynamic range. I often get solid copy after other stations give up. The no-tune QSY feature of the transmitter is excellent. Also very rugged output. My transceiver was once key down (at reduced power) for 20 hours with no detectable change to either the TR7 or its power supply.” — AF4B

“Digitally programmed frequency selection. The rig will never be obsolete.” — WB6QDS

“Flexibility: the ability to use many modes of oper-
fig. 1. How the TR7 was rated, from 1 (poor) to 10 (perfect).

"Good read-out, good passband tuning, and easy to work on or modify. Good general coverage performance; very stable; no warm-up or drift. Runs very cool with fan, which is very quiet." — W7UC

"It’s hard to say which is best, it’s got so many great features. Easy to operate; can be quickly disconnected from home station and put in car; great audio on transmit and receive. Easy to operate mobile: Very stable VFO on rough roads." — KA7AWS

table 1. Best feature. The percentage refers to the number of respondents who listed that feature as best. Note that many respondents listed more than one "best feature."

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>General coverage receiver</td>
<td>36</td>
</tr>
<tr>
<td>Broadband qualities</td>
<td>31</td>
</tr>
<tr>
<td>Ease of operation</td>
<td>16</td>
</tr>
<tr>
<td>Good audio</td>
<td>9</td>
</tr>
<tr>
<td>Flexibility</td>
<td>9</td>
</tr>
<tr>
<td>No tune-up</td>
<td>8</td>
</tr>
<tr>
<td>Battery operation and portability</td>
<td>8</td>
</tr>
<tr>
<td>Digital readout</td>
<td>7</td>
</tr>
<tr>
<td>Stability</td>
<td>6</td>
</tr>
<tr>
<td>Built-in frequency counter</td>
<td>6</td>
</tr>
<tr>
<td>Clean CW</td>
<td>5</td>
</tr>
<tr>
<td>Power output</td>
<td>4</td>
</tr>
<tr>
<td>Good accessory connections</td>
<td>4</td>
</tr>
</tbody>
</table>
"Versatility — it works MARS on many out-of-band frequencies. The TR7’s ability to reach anything from 1.5-30 MHz with no need for transmitter adjustments or receiver preselection makes it a great pleasure to operate.” — WA4SHP

"Extremely accurate frequency readout — can operate with confidence, knowing I’m on frequency. Passband tuning operates just great! Comes in handy most of the time I’m operating. General coverage receiver adds to the enjoyment.” — VE3LIQ

"Wide frequency range. The XYL enjoys SW broadcasts and I like to copy ship-to-shore CW on hf and hf. Very convenient for use in our travel trailer.” — W8BH

... and the bad

In response to the question, What is the rig’s worst feature?, the highest percentage of respondents, 10 percent, reported drift in the PTO. Nine percent complained about the metering on the rig — being not calibrated well or being ineffective — and about 7 percent did not like the STORE (frequency display) capability, finding no use for it. Other votes for the worst feature of the TR7 went to the service manual (for providing too little information), the looks of the front panel, the small size of the pushbuttons, and the price.

Here are some sample replies to the question, What is the rig’s worst feature?:

"The lack of explanation in the owners’ manual on the best ways to use the passband tuning feature. I still have not convinced myself that I am using it properly on SSB. The owners’ manual should offer more technical information on the rig. I had to purchase the service manual in order to find out what’s inside the rig.” — AI0W

"Has small, slow, frequency drift during the first hour from a cold start. After that it is very stable.” — AI0W

"Click in phones when switching from CW to SSB.” — K5AS

"Price. Doesn’t have fm mode. Doesn’t have notch filter. Doesn’t come with mike or 12-volt power plug.” — WD8PAQ

"Haven’t found any! I really can’t say anything bad about this rig.” — WA2MNG

"No break-in. No possibility of switching the AGC off.” — OZ8SO

"No notch filter. Price.” — AB6X

"SWR protection circuit is very sensitive and a really good matching network (tuner) is a must to achieve maximum output.” — KM4U

"Price: A real nice radio but I think it is priced too high now at $1495.00.” — KA2HYV

"Af gain control doesn’t quiet the receiver.” — DL7GK
“Drift during warm-up.” — N2AQS
“There are just no bad features.” — KH6JRZ
“No memories on second VFO. Poor quality dial mechanism.”
“PTO drift.”
“Counter reads out to only the nearest 100 Hz. Readout to nearest 10 Hz would be useful to meet military frequency standards (most are ±50 or ±25 Hz).” — WB2BOO
“Analog dial is hard to read.” — Ed Clabough, Birmingham, Alabama.
“No phone-patch connection. I had to have mine modified.” — K9ERO
“Low audio output.” — K5FZ
“Weak audio.” — W1OFZ
“Sensitivity to antenna SWR.”
“No built-in notch filter. No way to completely defeat the AGC circuit.” — W5AYZ
“As with all broadband solid-state no-tune radios, an antenna tuner/matchbox is required to match antenna, or rf shutdown will start about 3:1 SWR.” — WB9HBH
“Sidetone not adjustable.” — W3ODN
“Frequency creep.” — W1AY
“Volume control can’t completely cut off audio. Digital display hold button is useless. Auxiliary VFO shifts frequency when spot button is depressed.” — WB9IWN

problems
Thirty-two percent of those completing questionnaires said they’ve had no problems with the TR7. The most common problem encountered with the TR7, mentioned by 10 percent of the respondents to the questionnaire, was frequency drift. Other problems that cropped up were bad solder joints, leaky PIN diodes, problems with the tuning dial, and an occasional bad transistor. Bad solder joints were referred to by about 6 percent of those who replied. No other problems received significant attention from our respondents.

additional features
To the question, What additional features would you like to see built into a rig of this type?, the most frequent response was a notch filter, mentioned by 18 percent of the respondents. Next to the addition of a notch filter, the addition of a speech processor ranked high in the estimation of Amateurs responding. About 9 percent said that they would want to see some sort of speech processing incorporated into a rig of this type.

Other additional features that were mentioned were a phone-patch jack, programmable memories, a noise blanker, fm mode capability, a sidetone volume adjustment, an SSB squelch, and a built-in power supply.

accessories and related findings
The most popular accessory among owners of the TR7 is filters, which were purchased by about a third of those replying to the survey. However, we believe that about 75 percent of TR7 owners have actually purchased filters, which indicates that most of those responding to the survey didn’t consider the filters as accessories. These include a-m, CW, and SSB filters. Next in popularity (18 percent) was a remote VFO, followed by speech processors, noise blankers, external speakers, and the service manual.

To the question, Have you had the rig serviced?, 51 percent answered yes and 49 percent no. Eighty-two percent of those whose rigs had been serviced said that the servicing was satisfactory. To the question, Have you been able to obtain all the accessories and parts you need?, 98 percent answered yes, indicating that Drake is certainly making their parts and accessories available to Amateurs. Ninety-four percent of those who purchased accessories were happy with them.

By license class, 45 percent of those responding to the questionnaire held an Advanced class ticket, 38 percent were Extras, 15 percent were Generals, and 2 percent were Technicians.

To the question, What antenna do you use most, 51 percent answered beam, 33 percent answered wire, 13 percent said vertical, and 3 percent replied other.

The following twelve categories were scored from 1 to 10 (with 1 being poorest, 4 to 6 average, and 10 perfect): Ease of Operation, Reliability, Durability, Instruction Book, Factory/Dealer Service, Quality of Workmanship, Performance, Maintenance, Parts Availability, Accessories (ease of connection), Price and Flexibility. The scores are reported in fig. 1.

would you buy one again?
That’s the big question, and over 88 percent of the Amateurs responding answered yes. That’s the highest positive response we’ve received thus far on any piece of high-frequency Amateur gear we’ve asked our readers about. Owners of the Drake TR7 are obviously very happy with their choice.

Next month, ham radio will present the results of its readers’ survey on the Kenwood 520. This is a rig many Amateurs have asked to have reviewed, and the results should be interesting. Thanks to all who have participated by sending in a completed questionnaire.

ham radio

November 1981
WHY PAY
FULL PRICE FOR
AN 80-10 METER
VERTICAL

... if you can use only 1/3 of it on 10?
... or only 1/2 of it on 20?
... or only 3/4 of it on 40?

Only Butternut's new HFSV-III lets you use the entire 26-foot radiator on 80, 40, 20 and 10 meters (plus a full unloaded quarter-wavelength on 15) for higher radiation resistance, better efficiency and greater VSWR bandwidth than conventional multi-trap designs of comparable size.

The HFSV-III uses only two high-Q L-C circuits (not traps!) and one practically lossless linear decoupler for completely automatic and low VSWR resonance (typically below 1.5:1) on 80 through 10 meters, inclusive. For further information, including complete specifications on the HFSV-III and other Butternut antenna products, ask for our latest free catalog. If you've already "gone vertical," ask for one anyway. There's a lot of information about vertical antennas in general, ground and radial systems, plus helpful tips on installing verticals on rooftops, on mobile homes, etc.

BUTTERNUT ELECTRONICS CO.
356E Route 2
San Marcos, Texas 78666
Phone: (512) 396-4111

ERICKSON
COMMUNICATIONS
Chicago, IL 60630
5456 North Milwaukee Ave.
(312) 631-5181 (within Illinois)

CALL TOLL FREE
For the best deal on...
• AEA-Alliance
• Ace-Apple
• Avanti
• Belden
• Bencher
• Bird
• CDE
• CES-Communications Specialists
• Collins
• Cushcraft
• Daiwa
• BenTron
• Drake
• Hustler
• Hy Gain
• Icom
• IRL
• KLM
• Kenwood
• Larson
• Macrotechnics
• MFJ
• Midland
• Mini-Products
• Mirage
• Mosley
• NPC-Newtonics
• Nye
• Panasonic
• Palomar
• Engineers
• Regency
• Robot
• Shure
• Standard
• Swan
• Tempo
• Ten-Tec
• Transcom
• Yaesu

Your Best Buys
for November!
TRIONYX TR-1000 600 MHz Frequency Counter $139.95
ICOM IC-730 HF Xcvr...
Now only $749.95
ICOM IC-2A 2M Hand-Held...
Limited special... $219.50
KENWOOD TR-7730, TS-830S...
In stock, immediate delivery!
YAESU’s New FT-208R...
Now delivering from stock...
ROBOT 800 ASCII, Baudot and CW Terminal... $799.95
APPLE Disk Based System...
Apple II or II Plus with 48k RAM installed, Disk II with controller, DOS 3.3... $1899
APPLE Game Paddles available
Quantities limited... all prices subject to change without notice.
We always have an excellent assortment of fine used equipment in stock... Come in or call CALL TOLL FREE (outside Illinois only)
(800) 621-5802
HOURS: 9:30-5:30 Mon., Tues., Wed. & Fri.
9:30-9:00 Thursday
9:00-3:00 Saturday

November 1981
NRI will train you at home to be an electronics professional in the growing world of communications.

Learn to service, repair, and install everything from microwave antennas to two-way radios...from radar sets to TV transmitters.

No other home-study course gives you such complete, professional training in so many fields of communication. No other gives you such advanced equipment, selected for state-of-the-art design and features. Only NRI gives you the thorough preparation and training you need to achieve professional competence in the wide world of communications.

Learn at Home in Your Spare Time

Learn at your own pace, right in your own home. There's no need to quit your job or to tie up your evenings with night classes. No time or gas wasted traveling to school. NRI brings it all to you. You learn with NRI developed fast-track training methods, a clearly and logically organized program using advanced techniques for learning at home.

Includes 2-Meter Transceiver or Bearcat Automatic Scanner

Your training is built around your choice of this high technology equipment. The synthesized two-meter transceiver represents the latest advance in portable communications. Microprocessor-based circuitry and LED digital readout mean precision operation and high efficiency. The scanner also features microprocessor based with both programmable and scanning functions covering the HF, VHF, and UHF mobile bands. Using NRI Action Audio cassette training units, you learn not only how to operate these units, but study their advanced circuitry in detail.

Also included for both training and professional use is a six function Beckman LCD digital multimeter, a Heathkit portable frequency counter, the NRI Antenna Applications Lab, and the NRI Discover Lab where you build and test the "leading-edge" circuitry found in your transceiver or scanner.

FCC License or Full Refund

In addition to all lessons, equipment, and instruments, you get special training for the FCC radio-telephone license you need to work in this exciting field. You pass your FCC examination or your tuition will be refunded in full. No ifs, ands, or buts...this money-back warranty is valid for six months after completion of your course.

Free Catalog,
No Salesman Will Call

NRI's free 160-page catalog shows all the equipment you get, describes each lesson in full, and tells about other electronic training in fields like TV/Audio/Video, Microcomputers, and Digital Electronics. Mail the coupon and see how we can make you a pro. If coupon has been removed, please write to NRI Schools, 3999 Wisconsin Ave., Washington, D. C. 20006.

Train with professional instruments and equipment that's yours to keep.

NRI Schools
McGraw Hill Continuing Education Center
3999 Wisconsin Avenue
Washington, D.C. 20006

We'll give you tomorrow

NO SALESMAN WILL CALL

Name: [Please Print] Age:

Street:

City-State-Zip

Please check one free catalog only:
\[\square \] Communications Electronics \[\square \] FCC Licenses
\[\square \] Color TV Audio \[\square \] Satellite \[\square \] Mobile \[\square \] CB \[\square \] Assembly
\[\square \] Audio Video \[\square \] System Servicing \[\square \] Electronics Design Technology
\[\square \] Computers \[\square \] Electronics \[\square \] Microcomputers
\[\square \] Digital Electronics \[\square \] Basic \[\square \] Basic Electronics
\[\square \] Small Engine Servicing \[\square \] Appliance Servicing
\[\square \] Automotive Servicing \[\square \] Air Conditioning, Heating, Refrigeration, Solar Technology
\[\square \] Building Construction

All courses approved under Adult Education
\[\square \] Check for details

20-111

November 1981

More Details? CHECK—OFF Page 102
Johnson AIR Variables
1/4 x 2 1/2" shaft
$2.50 each
193-10-6 2.2 to 34 pF
193- 1.5 to 27.5 pF
193- .6 to 4.6 pF
$1.00 each
160-107-16 .5 to 12 pF
193-10-9 2.2 to 34 pF
193-10-104 2.2 to 34 pF
193-4-5 3 to 30 pF

RF Power Device
MRF454 Same as MRF458
12.5 VDC, 3-30 MHz
80 Watts output, 12dB gain
$17.95 ea.

E.F. JOHNSON TUBE SOCKETS
#124-0311-100........6.99 each
For 8072 etc.
#124-0107-001........13.99 each
For 4CX250B/R, 4X150A etc.
#124-0111-001........4.99 each
Chimney for 4CX250B/R and
4X150
#124-0113-001 and #124-0113-021
$12.99 each
Capacitor for #124-0107-001
#123-209-33 Sockets.....6.99 each
For 811A, 572B, 866, etc.

UNELCO CAPS
6.8pF 47pF
8.2pF 62pF
10pF 100pF
12pF 160pF
13pF 180pF
14pF 200pF
20pF 240pF
24pF 380pF
33pF 470pF
36pF 1000pF
45pF 350V $1.00 each
96 Pin Motorola Bus Edge Connectors
Gold plated contacts
Dual 1/2/8 pin .156 spacing
Solder tail for PCB $3.00 each

110VAC MUFFIN FANS
New.................$11.95
Used..................$6.95

Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage</th>
<th>Current</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N360JAN</td>
<td>10.00</td>
<td>2N5645</td>
<td>10.00</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.60</td>
<td>2N5842</td>
<td>8.00</td>
</tr>
<tr>
<td>2N4427</td>
<td>1.10</td>
<td>2N5849</td>
<td>20.00</td>
</tr>
<tr>
<td>2N4429</td>
<td>7.00</td>
<td>2N5942</td>
<td>40.00</td>
</tr>
<tr>
<td>2N4877</td>
<td>1.00</td>
<td>2N5946</td>
<td>14.00</td>
</tr>
<tr>
<td>2N4959</td>
<td>2.00</td>
<td>2N5962</td>
<td>50.00</td>
</tr>
<tr>
<td>2N4976</td>
<td>15.00</td>
<td>2N6080</td>
<td>7.00</td>
</tr>
<tr>
<td>2N5070</td>
<td>8.00</td>
<td>2N6081</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5071</td>
<td>15.00</td>
<td>2N6082</td>
<td>11.00</td>
</tr>
<tr>
<td>2N508</td>
<td>12.50</td>
<td>2N6083</td>
<td>13.00</td>
</tr>
<tr>
<td>2N5096</td>
<td>14.00</td>
<td>2N6084</td>
<td>14.00</td>
</tr>
<tr>
<td>2N5537</td>
<td>5.44</td>
<td>2N6095</td>
<td>11.00</td>
</tr>
<tr>
<td>2N5540</td>
<td>4.44</td>
<td>2N6096</td>
<td>20.00</td>
</tr>
<tr>
<td>2N5541</td>
<td>2.50</td>
<td>2N6097</td>
<td>27.50</td>
</tr>
<tr>
<td>2N5542</td>
<td>2.00</td>
<td>2N6146</td>
<td>35.00</td>
</tr>
<tr>
<td>2N5543</td>
<td>1.50</td>
<td>2N6308</td>
<td>22.99</td>
</tr>
<tr>
<td>2N5544</td>
<td>1.00</td>
<td>2N6309</td>
<td>22.99</td>
</tr>
<tr>
<td>2N5545</td>
<td>0.50</td>
<td>2N6310</td>
<td>22.99</td>
</tr>
<tr>
<td>2N5546</td>
<td>0.25</td>
<td>2N6311</td>
<td>22.99</td>
</tr>
<tr>
<td>2N5547</td>
<td>0.10</td>
<td>2N6312</td>
<td>22.99</td>
</tr>
<tr>
<td>2N5548</td>
<td>0.05</td>
<td>2N6313</td>
<td>22.99</td>
</tr>
<tr>
<td>2N5549</td>
<td>0.01</td>
<td>2N6314</td>
<td>22.99</td>
</tr>
</tbody>
</table>

CRYSTALS

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.120</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.343</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.458</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.514</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.566</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.618</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.680</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.780</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.825</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.875</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.925</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
<tr>
<td>7.975</td>
<td>7.4GHz</td>
<td>$4.95 each</td>
</tr>
</tbody>
</table>

High Voltage Caps

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MFD @ 500 VDC</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>22 MFD @ 500 VDC</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>100 MFD @ 450 VDC</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>150 MFD @ 450 VDC</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>225 MFD @ 450 VDC</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>.001/1000pF @ 10 KV</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>.001 @ 3 KV</td>
<td>4/1.00</td>
<td></td>
</tr>
<tr>
<td>.0015 @ 3 KV</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>.01 @ 4 KV</td>
<td>.79</td>
<td></td>
</tr>
<tr>
<td>.01 @ 1.6KV</td>
<td>4/1.00</td>
<td></td>
</tr>
<tr>
<td>.02 @ 8 KV</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>.01 @ 1 KV</td>
<td>6/1.00</td>
<td></td>
</tr>
</tbody>
</table>

TRIMMER CAPS

Sprague. Stable Polypropylene.
.50 each or 10/4.00
not sold mixed
1.2 to 13pF
2 to 30pF
3.9 to 18pF
3.9 to 40pF
3.9 to 55pF

Carbide Circuit Board Drill Bits for PCB Boards
5 mix for $.50

J-Fet

J310 N-CHANNEL J-FET 450 MHz
Good for VHF/UHF Amplifier, Oscillator and Mixers
3/$1.00

MURATA CERAMIC FILTERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFD 455</td>
<td>455 KHz</td>
<td>2.00</td>
</tr>
<tr>
<td>SFD 455</td>
<td>455 KHz</td>
<td>1.60</td>
</tr>
<tr>
<td>CFM4557</td>
<td>455 KHz</td>
<td>5.50</td>
</tr>
<tr>
<td>CFU 455H</td>
<td>455 KHz</td>
<td>3.00</td>
</tr>
<tr>
<td>SFE 10.7MA</td>
<td>10.7 MHz</td>
<td>2.99</td>
</tr>
</tbody>
</table>

TEXAS INSTRUMENTS TTL-305P
5 x 7 array alphanumeric display
$3.85 each

Minimum Order $10.00
XZ-2 AUDIO CW FILTER

...THE COPY MACHINE

- 4 active stages, true bandpass filter
- Tunable center frequency
- 4 bandwidths—90Hz, 115Hz, 150Hz & SSB
- Simple to operate
 - Especially designed for the CW operator, useful as well on SSB

Low Q design

One-watt+ available audio output

Matches any impedance

XZ-2 Audio Filter $69.95
12V Power Supply $9.95

WRITE FOR LITERATURE

BENCHER, INC.
333 West Lake St., Chicago, IL 60606 (312) 263-1808.

DIRECTION FINDERS

If you're serious about direction finding, you want the best, most dependable and proven equipment for a fast find, whether it's for a downed aircraft or a repeater jammer.

If your needs are in the 100-300 MHz range, think of L-Tronics for ground, air, or marine DF. We also have equipment that gives dual capability, such as search & rescue/amateur radio, 146/220 amateur, and air/marine SAR.

Our units will DF on AM, FM, pulsed signals and random noise. The meter reads left-right in the DF mode for fast, accurate bearings, and left to right signal strength in the RECEIVE mode (120 dB total range with the sensitivity control). Its 3 dB antenna gain and .06 uV typical DF sensitivity allow the crystal-controlled unit to hear and positively track a weak signal at very long ranges. It has no 180° ambiguity.

Over 3,000 of our units are in the field being used to save lives, catch jammers, find instrument packages, track vehicles. Prices start at under $250 for factory-built equipment backed by warranty, money-back guarantee, and factory service and assistance. Write today for a free brochure and price list.

L-TRONICS (Attention Ham Dept.)
5546 Cathedral Oaks Rd.
Santa Barbara, CA 93111

HIGH STABILITY CRYSTALS FOR FREQUENCY OR TIME

USE THE BEST

BUY JAN CRYSTALS

- CB
- CB standard
- 2 meter
- Scanners
- Amateur Bands
- General Communication
- Industry
- Marine VHF
- Micro processor crystals

Send 10¢ for our latest catalog. Write or phone for more details.

Jan Crystals
P.O. Box 66017
Ft. Myers, Florida 33906
all phones (913) 935-2397
easy to charge
Designed for APARTMENTS — MOTELS — VACATIONS
Quick Simple Installation. Operates on 2, 6, 10, 15, 20 and 40 meters. All coils supplied. Only 22-1/2 inches long. Weighs less than 2 lbs. Supplied with 10 ft. RG 58 coax and counter poise. Whip extends to 57 inches. Handles up to 300 watts. VSWR—1:1 when tuned.

Write for more details and other B&W products
BARKER & WILLIAMSON, INC.
10 CANAL STREET
BRISTOL, PA 19007
215-788-5581

FAST SCAN ATV
WHY GET ON FAST SCAN ATV?
- You can send broadcast quality video of home movies, video tapes, computer games, etc. at a cost that is less than disk.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex — 15 to 100 miles.

ALL IN ONE BOX
TC1 Transmitter/Converter.... Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R switch, 4 Modules below. $399 ppd

PUT YOUR OWN SYSTEM TOGETHER
TXA5 ATV Exciter contains video modulator and xtal on 434 or 439 kHz. All modules wired and tested. $89 ppd
PA6 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 VDC. $89 ppd
TV-2 Downconverter tunes 420 to 450 MHz. Outputs TV ch 2 or 3. Contains low noise MF901 preamp. $55 ppd
FMA5 Audio Subcarrier adds standard TV sound to the picture. $29 ppd

PACKAGE SPECIAL all four modules $249 ppd

SEND SELF-ADDRESSED STAMPED ENVELOPE FOR OUR LATEST CATALOG INCLUDING:
Info on how to best get on ATV, modules for the builder, complete units, b&w and color cameras, antennas, monitors, etc. and more. 20 years experience in ATV.

More Details? CHECK — Off Page 102
last-minute forecast

The low-frequency bands, 160 through 40, will be the favored DX bands for the first two weeks of the month. The higher frequencies will then begin to improve and be very good for DX for the last week and a half. That means a good DX holiday, as well as the holiday of the plentiful harvest, for which we can be thankful. Disturbances, however, may develop about the 6th, 15th, and 26th. Remember: even though disturbance means signal strength and QSB problems on some paths, others may be a DX harvest of plenty. Keep looking.

November is a month of plentiful meteor showers going on from October 26 to November 22, with the shower maximum of ten per hour on the 3rd through the 10th. This shower is known as the Taurids. Lunar perigee is on the 12th, and full moon is the day before, the 11th.

November is often of special significance geophysically because of the quiet conditions of the geomagnetic field. November and December vie for being the quietest month of the year. By quietest is meant steadiness of the magnitude and direction at a point in the magnetic field as measured by a magnetometer (a very sensitive compass).

The variations of the geomagnetic field are described by the A figure on a daily basis. It is made from eight the displacement from an average diurnal curve for an observing station during the three hours. Why does the geomagnetic field become more stable in winter (November, December, January)? One reason is the solar wind pressure against the earth’s magnetic field (magnetosphere). Since the earth is closer to the sun in winter, the pressure at that time increases. This higher pressure around the magnetosphere holds it still — or tends to. In fact, the solar flux and geomagnetic field more often than not move opposite each other — except when the sun flares.

November is also the first month of the winter DX season. Although the hours of daylight in the Northern Hemisphere are quite short now, the ionospherically propagated frequencies rise rapidly with the rising sun each day. This maximum usable frequency (MUF) becomes very high, giving the 6-, 10-, and 15-meter bands a few afternoon and some evening hours of good DX.

The sunspot number (SSN) or solar flux is still high enough, now at the beginning of the decline of the SSN cycle, to produce openings on these bands. The high ionization piles up on both sides (+ 20 degrees) of the geomagnetic equator. A mound of ionosphere above Central America and northern Argentina allows trans-equatorial one-long-hop signals into the southern populated areas of South America. The late evening hours, 2000-2300 local time, are the optimum times for DX to our friends down south. A bit of geomagnetic disturbance even makes this type of propagation better.

The noise (QRN of the spring, summer, and fall thunderstorms) is about over by now. This lack of QRN now makes DXing in the lower bands of 80 and 160 meters a pleasure. So you can see why November ushers in the winter DX season, and now you have more time indoors to enjoy it.

band-by-band summary

Six meters will open occasionally for F2 long skip propagation with hops 1000 to 2500 miles long, and with many hops usable. The openings will follow the sun during the day and early evening.

Ten and fifteen meters will have openings similar to those on 6 meters, but more often and lasting longer. Worldwide DX is usual from after sunrise until well after sunset during periods of the 27-day solar flux maxima. Short skip of 1200 miles maximum distance is also possible, and will also be following the sun across the earth.

Twenty meters will be open most all days and nights to some area of the globe, with long skip, and some short skip. Distances and number of hops will be much like those on the 15-, 10-, and 6-meter bands.

Forty and eighty meters will be the most usable night-time bands for DX. Most areas of the world can be worked from dusk till just before sunrise. Hops shorten on these bands to about 2000 miles for 40 and 1500 miles for 80 meters, but the number of hops can increase since signal absorption in the ionospheric D region is low during the night. The path direction follows the darkness across the earth, similar to the higher bands following the sun. Daytime short skip can be used during the day and at night if low-height horizontal antennas (high take-off angle) are used. Vertical antennas over good ground systems give the lowest take-off angles for long skip on these bands.

One-sixty meters will be about like 80 meters and provide good stuff for the enthusiastic DXer who likes to work into the wee hours of the night and early morning hours — maybe you retired folks or swing shift workers.

DX FORECASTER

Garth Stonehocker, KØRYW
WESTERN USA

<table>
<thead>
<tr>
<th>GMT</th>
<th>PST</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>4:00</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0100</td>
<td>5:00</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0200</td>
<td>6:00</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0300</td>
<td>7:00</td>
<td>10</td>
<td>—</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>0400</td>
<td>8:00</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>0500</td>
<td>9:00</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0600</td>
<td>10:00</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0700</td>
<td>11:00</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0800</td>
<td>12:00</td>
<td>20</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>0900</td>
<td>1:00</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>1000</td>
<td>2:00</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1100</td>
<td>3:00</td>
<td>20</td>
<td>—</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1200</td>
<td>4:00</td>
<td>20</td>
<td>—</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1300</td>
<td>5:00</td>
<td>20</td>
<td>—</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>1400</td>
<td>6:00</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1500</td>
<td>7:00</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1600</td>
<td>8:00</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1700</td>
<td>9:00</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1800</td>
<td>10:00</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1900</td>
<td>11:00</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>12:00</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>2100</td>
<td>1:00</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>2200</td>
<td>2:00</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2300</td>
<td>3:00</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

MID USA

<table>
<thead>
<tr>
<th>MST</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:00</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6:00</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>7:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>8:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>9:00</td>
<td>—</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>10:00</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>11:00</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12:00</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1:00</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2:00</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

EASTERN USA

<table>
<thead>
<tr>
<th>CST</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15*</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>8:00</td>
<td>15</td>
<td>20</td>
<td>20*</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>9:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>11:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3:00</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4:00</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5:00</td>
<td>—</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Look at next higher band for possible openings.

November 1981
You can't tell the players without a scorecard!

Order today!
NEW 1982
RADIO AMATEUR CALLBOOKS
READY DECEMBER 1ST!

The latest editions will be published soon! World-famous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, world-wide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 70,000 changes from last year. The Foreign Edition has over 370,000 listings, over 60,000 changes. The new 1982 Callbooks will be available on December 1, 1981. Place your order now.

Each Shipping Total
☐ US Callbook $18.95 $3.05 $22.00
☐ Foreign Callbook $17.55 $3.05 $20.00
Order both books at the same time for $39.95 including shipping.

Order from your dealer or directly from the publisher. All direct orders add shipping charge. Foreign residents add 4.5% for shipping. Illinois residents add 5% sales tax.

SPECIAL LIMITED OFFER!
Amateur Radio Emblem Patch
only $2.50 postpaid

Pegasus on blue field, red lettering. 3" wide x 3" high. Great on Jackets and caps.

Alaska Microwave Labs
4030 E. 47th Street - Dept. HM
Anchorage, Alaska 99508
(907) 336-0340

TRANISTORS
- MRF911 FT45GHZ $3.00
- MRF111 FT65GHZ $4.00
- BFR90 FT55GHZ $3.00
- BFR91 FT52GHZ $3.50
- NEC02137 FT45GHZ $3.25
- NEC02138 FT55GHZ $5.00
- NCE6535 FT55GHZ $14.00

HOT CARRIER DIODES
- MBD101 UNI-MICRO $1.50
- ND4131 4GHZ NF 5.50DB $2.00
- HH-10GHZ NF 6.50DB $2.00

CHIP CAPACITORS
- 12.2 25 47 68 10 18
- 22 27 47 100 120 180
- 220 560 330 390 470 160
- 100K 12K 1 10K 10 100
- 39K 82K 120K 10K 100K

TEFNON CIRCUIT BOARD
APPROX. 3.25 5.0 3.25 15.0 10.0 50.0

FEED-THRU CAPACITORS
- 1000 PI SOLDER TYPE $5.00
- 3.00 SOLDER TYPE $5.00

DUAL GATE MOSFET
- RCA 4067 $1.50

GaAs FETS
- MGF100 NF 2.0DB $28.50
- MGF142 NF 4.0DB $75.00

COAX CONNECTORS
- SMA Chassis Mount Square Flange $6.75
- SMA Chassis Mount Plug Type Plug $6.75
- SMA Chassis Mount Stripline Tap $6.75
- SMA Plug for RG-58 $6.75
- SMA Plug for RG-174 $6.75
- SMA Plug for 141-termmated $3.95

X BAND COMPONENTS
- UNOSURCE 10 25 50 95 100 150 $37.00
- MPA11 SOURCE 10 25 50 100 150 250 $39.00
- W1/2 W2/4 W3/8 W5/16 $39.00
- W1/2 W2/4 W3/8 W5/16 $39.00
- W1/2 W2/4 W3/8 W5/16 $39.00
- WAVE GUIDE FLANGE WR-90 $4.00

SILVER PLATING KIT
- Will plate Copper, Brass, Bronze $30.00
- Nickel Tin Plater Gold and most $30.00
- white metal alloys

RF CABLE
- 14 FT Semicircular Cable Approx. 24 DB $4.00
- Loss per 100 ft. 40 GHZ $4.00
- x 1 inch max length is 5 ft.
- Other lengths by special order $4.00

PISTON TRIMMERS
- THC110/0-1/2/4 12g $2.00
- CHC110/0-1/2/4 12g $2.00

I WANT YOU
TO GET YOUR LICENSE

Just in time for licensing classes!!
NEW — REVISED — COMPLETELY UP-TO-DATE

TUNE IN THE WORLD
WITH HAM RADIO

by ARRL Staff

This package contains THE goodies needed by the beginner to get started in Amateur Radio. Assuming that you have no prior knowledge of radio, the reader is taught how to pass the Novice exam, both code and theory, and how to set up a station. Unique code study method makes learning the Morse code easy as 1-2-3. And it's full of illustrations to help clarify difficult technical points. 160 pages. ©1981. 3rd edition.

AR-HR $8.50
plus $1 shipping

INSTRUCTORS —
Call about ISP Program

HAM RADIO'S
BOOKSTORE
Greenville, NH
03048
(603) 878-1441

Insist on callbooks with pride.

Callbooks are the work of the ARRL.
The publisher is a proud member.

Tell 'em you saw it in HAM RADIO!
CRYSTALS & KITS/OSCILLATORS • RF MIXERS • RF AMPLIFIER • POWER AMPLIFIER

OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, Ox-Lo, Cat. No. 035100. 20 to 80 MHz, Ox-Hi, Cat. No. 035101.
Specify when ordering. $6.31 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the Ox or Ox-1 oscillator are used for injection in the 60 to 170 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106.
Specify when ordering. $7.02 ea.

OF-1 OSCILLATOR
Resistor/capacitor circuit provides oscc after a range of freq with the desired crystal. 2 to 22 MHz, Ox-1 Lo, Cat. No. 03108, 18 to 60 MHz, Ox-1 Hi, Cat. No. 03109.
Specify when ordering. $5.42 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the Ox oscillator. Outputs up to 200 mw, depending on frequency and voltage. Amplifier can be amplitude modulated at 3 to 30 MHz, Cat. No. 035104.
Specify when ordering. $7.34 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 03512. 20 to 170 MHz, Hi Kit, Cat. No. 035103.
Specify when ordering. $7.02 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.
Specify when ordering. $7.34 ea.

0.2% Calibration Tolerance

EXPERIMENTER CRYSTALS (HC 6/1 Holder)

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Specifications</th>
<th>Ox Osc Lo</th>
<th>Ox Osc Hi</th>
<th>Ft-1 Osc Lo</th>
<th>Ft-1 Osc Hi</th>
<th>Ft-1 Osc Med</th>
</tr>
</thead>
<tbody>
<tr>
<td>031080</td>
<td>3 to 20 MHz</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
</tr>
<tr>
<td>031081</td>
<td>20 to 60 MHz</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
</tr>
<tr>
<td>031300</td>
<td>3 to 20 MHz</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
</tr>
<tr>
<td>031310</td>
<td>20 to 60 MHz</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
<td>$6.88 ea.</td>
</tr>
</tbody>
</table>

Specify when ordering.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request.

INTERNATIONAL CRYSTAL MFG. CO., INC.

10 North Lee · Oklahoma City, Okla. 73102

More Details? CHECK-OFF Page 102

November 1981
NOW IN STOCK...
FULL LINE OF AEA KEYERS
SUPER EFFICIENT ISOPOLE ANTENNAS

CALL TOLL FREE 1-800-325-3609
MID-COM ELECTRONICS • 8516 MANCHESTER ROAD • BRENTWOOD, MO 63144

NEW!

FROM

H-TRONIKS

DC-2 DOWNCONVERTER
SUPER PERFORMANCE AT A FAIR PRICE
BOASTING:
• 22 dB FRONT END • 2 dB NF
• 2 STAGE CAVITIES • 50 dB SYSTEM GAIN

Unit comes complete and ready to install. Nothing else to buy to get on 2.15-2.3 GHz.
Rugged gold chrome conversion coated for years of trouble free operation.
Guaranteed for 1 full year. Satisfaction or your money back.
There is no better performing unit on the market. Our quality is second to none. Compare before you buy! Beware of bargain priced units.
Additional specifications: 100 kHz/degree cent. drift, temperature compensated. Outputs to standard TV channels 2 through 6.

$179.95 postpaid. Free call on orders ($1.50 refund)

H-TRONIKS
2710 COLLEY AVE.
NORFOLK, VA 23517
(804) 622-8358

CHRISTMAS SPECIAL. BUY ONE AT $179.95 AND GET THE SECOND UNIT FOR $149.95. YOU SAVE $30!

CODE PRACTICE TAPES FROM HRPG — Practice copying Morse Code anytime, anywhere. Whether you're upgrading your present license or just trying to up your code speed, a large assortment allows you to choose exactly the kind of practice you need.

<table>
<thead>
<tr>
<th>Code Practice Tape</th>
<th>Each Tape $4.95</th>
<th>2/$8.95</th>
<th>3/$12.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-STC1</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-STC2</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-STC3</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-HLC1</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-HLC2</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-HLC3</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-HLC4</td>
<td>$4.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HI/LO SERIES — Code Study Tapes
In this unique series, characters are sent at high speeds with long pauses between each character. For example, HL4C (15/2 5 wpm) consists of characters sent at a 15 wpm rate, but with 2.5 wpm spacing between each character. These tapes are excellent for the beginner who wants to practice copying higher speed code without the frustration of constantly getting behind.

Please add $1 for shipping.

Ham Radio's Bookstore
Greenville, NH 03048

Tell 'em you saw it in HAM RADIO!
New Products

Portable two meter quad

A new collapsible antenna has been introduced by Palomar Engineers. It extends the range of low power 2-meter transceivers by providing the gain and front-to-back discrimination of a two-element quad. It is ideal for boating, backpacking, mountaintopping and other portable applications, since it gives the gain of a linear amplifier but does not require additional battery power.

The entire beam assembly is housed in an 18-inch carrying case that will fit in a suitcase. For use, it unfolds to form a two-element full size quad complete with stabilized mounting stand. The portable two-meter quad sells for $67.50. For further information write Palomar Engineers, 1520-G Industrial Avenue, Escondido, California 92025.

Communications accessories brochure

A new four-page brochure describing communication accessories that are essential to operating excellence are now available from the J.W. Miller Division of Bell Industries in Compton, California. Antenna tuners Model AT 2500 with 2500 watts PEP power capability and Model CNA-1001 for 500-watts PEP cover a frequency range of 3-30 MHz including the WARC bands. Direct-reading meters provide forward and reflected power indications and SWR. Models CN-720-B and CN-620-B cover 1.8-150 MHz, and Model CN-630 covers 140-450 MHz. Rf clipping that ensures low distortion is provided by the Model RF-440 speech processor. Adjacent-channel isolation of better than 50 dB at 300 MHz and 45 dB at 450 MHz is provided by the CS-201 two-position and CS-401 four-position coaxial switches.

Additional information may be obtained from Joe Johnson, J.W. Miller Division, Bell Industries, P.O. Box 5825, Compton, California 90224.

Portable power systems

Heath Company announces the Heathkit GU-1820 portable power system. This lightweight alternator can produce up to 2200 watts of 120 Vac, 60-Hz power enough to operate a ham station, an electric chain saw, or a refrigerator-freezer during a blackout. The GU-1820 is designed for ham radio clubs, home owners, civil defense, police and fire departments. It can also provide on-location power for construction and logging crews, campers, hunters, wood cutters, and others.

Mail order price is $479.95. Voltage is regulated to within ±5 percent, and frequency variations are limited to ±4 Hz, from no load to full load at 3600 RPM. Radio-frequency interference is eliminated by a resistive spark plug.

The five horsepower Briggs and Stratton gas engine can run up to 1-3/4 hours, at half load, on a tankful of regular gas, unleaded gas or gasohol. Noise is controlled by a low-tone muffler; to reduce sparking to a minimum, the optional GUA-1820-1 spark-arresting muffler ($3.95 mail order; required in California) is available.

For more information, contact Heath Company, Dept. 350-056, Benton Harbor, Michigan 49022.

High-isolation coaxial relay

The Dow-Key Division of Kilovac Corporation has released for sale a new high-isolation SPDT coaxial relay. The model 66-23732 was developed primarily for use with cable television head-end equipment, and features the 75-ohm "F" female connectors, which provide a minimum of -100 dB isolation dc to 500 MHz. The relay comes equipped with 26.5-Vdc actuating coil and DPDT auxiliary contacts. Power capacity is 20 watts CW.

The relay is designed for video source switching, using the auxiliary contacts for audio follow-on. It has excellent rf characteristics for i-f switching, and the auxiliary contacts may be used for remote indication of the relay position. The same relay is ideal for rf switching to 500 MHz, and for use in remotely actuated or programmable switching modules. The model 66 is also available with a 12-Vdc coil, with or without auxiliary contacts. For further information contact: Kilovac Corporation, P.O. Box 4422, Santa Barbara, California 93103.
heavy duty portable DMM

The new rugged HD-100 from Beckman Instruments, Inc., is made waterproof and dustproof to resist the elements. It can withstand the physical impact of accidental drops and has the kind of built-in input protections never before found in other DMMs.

Voltage inputs are protected to 1500 Vdc or 1000 volts RMS. Current ranges are protected to 2 amps/250 volts while resistance changes are protected to 500 Vdc. The O-ring sealed ABS plastic case is fire retardant with ribbed side walls that are twice as thick as in other meters. The bright NATO-yellow case is highly visible — easy to spot in a tool box or on a ledge before leaving a job.

For further information and complete specifications, contact your local electronics or meter distributor, electronics retail outlet or Beckman Instruments, Inc., Advanced Electro-Products Division, 2500 Harbor Blvd., Fullerton, California 92634.

catalog for power grid tubes

A quick-reference catalog for power grid tubes is available free from Varian/Eimac. The catalog lists tubes manufactured at Eimac’s San Carlos and Salt Lake City sites. The San Carlos plant produces large ceramic/metal power grid tubes, cavities, and accessories. Glass power tubes, smaller ceramic/metal tubes, and a wide line of planar triode and X-ray tubes are manufactured in Salt Lake City.

Included in the catalog is an applications-oriented power grid tube se-
lection guide for ease in making type selections. To receive the free, quick-reference catalog of Eimac power grid tubes, contact the nearest Varian Electron Device sales office or Varian/Eimac, 301 Industrial Way, San Carlos, California 94070.

station clock

The heart of the Zulu 3TZ is a microprocessor chip and memory that gives it greatly expanded capabilities. Besides the one local 12-hour time zone and two alternate 24-hour world time zones, the unit has a reminder I.D. timer that gives different tones at 8, 9, or 10 minute intervals. The I.Der is resettable and accurate to plus or minus 0.1 second. Other features include large, orange 0.6 inch LED readouts for easy readability; quartz crystal timebase battery backup; ac or dc operation on 12 volts or 117 Vac with the wallplug transformer that is included.

Also useful is an appliance timer output that is synchronized with the local (12-hour) time that allows one on and one off shiftpoint per day. The manual explains how to connect the appliance-timer output to a relay or triac (not included) to control any external device. The unit can be made to display remote temperature using a silicon linear thermistor probe and a highly stable voltage-to-frequency circuit. The additional parts are available for $9.95. Contact Bullet Electronics, P.O. Box 401244, Garland, Texas 75040.

MBA reader-only

AEA, Inc., announces the introduction of a reader for Morse, Baudot, and ASCII operation. Designated the MBA-RO (reader only), it is a state-of-the-art device using a 32-character vacuum fluorescent alphanumeric display. The 32-character display allows for up to five words to be displayed at one time. This extended display is especially useful during high-speed copy.

The reader can copy up to 99 WPM for CW, 60-70-75 and 100 WPM for

More Details? CHECK-OFF Page 102
Baudot and ASCII at 110 and hand-typed 300 baud. The MBA incorporates automatic speed tracking, ensuring no loss of copy from rapid speed changes in signal reception. It uses a 12-Vdc external power supply, making it ideal for portable, mobile, or fixed operation. The MBA is compact and can be used with a hand key, bug, or electronic keyer.

short circuits
wideband sweep generator
The following correction should be made to fig. 2 in the article "Stable Wideband Sweep Generator," which appeared in the June, 1981, issue: The 100k resistor between R3 and pin 2 of the 741 IC should be connected between pins 2 and 6. The side of R3 that is shown connected to the 100k resistor should be connected to pin 6.

antenna bridge calculations
The following errors appeared in the program listed in K6KG's article in the March, 1981, issue (page 85).
Line 160 is missing an end bracket. Line 640 should have no bracket. Line 350 should read +1 +2, not = 1 + 1. Line 400 should read (A2*B1) not (A2 + B1). Line 610 should read -I4, not I4.
Line 390 is an overlooked "garbage" term and can be scratched. The program "just growed" and can be shortened a bit, but it was submitted as is in the hope that it would stimulate interest in this approach.

G3LDO wire beam
Please note that in fig. 7 of Bill Orr's article, "Ham Radio Techniques," in the January, 1981, issue, the dimension D should have been indicated on the drawing as the distance from the top of the vertical mast to the point at which the support rods cross.

Tell 'em you saw it in HAM RADIO!
SUPERVERTER I.......................... $99.95
The ultimate in converter technology! Dual stage selective preamp, mixer, i.f. amplifier and no-drift crystal controlled oscillator. We recommend this kit for the experienced kit builder.

12 V. Stationary Power Supply $24.95
SELECTIVE PREAMP $44.50
This new unit is not like other wide band preamps.

COMING NEXT MONTH. Our own 2300 MHz Transmitter. 1691 MHz Crystal Controlled Weather Satellite Downconverter (with preamp).

2300 MHz Downconverter $35.00
PC Board, all components and instructions for a working unit.

VARIABLE POWER SUPPLY $24.95
Complete kit includes all components for working unit including deluxe box and overlays.

DISH YAGI ANTENNA $25.00
Complete kit with PVC and mounting brackets. Stronger than loop yagi, equal in gain.

4 ft. Dish Antenna $49.95
Overall 25 db gain. Partial assembly required. Shipped UPS ground only.

Our product may be copied, but the performance is never equaled.
QRZ W1's, W2's and W3's...
LOOKING FOR AEA PRODUCTS
IN THE NORTHEAST?

LOOK TO RADIOS UNLIMITED...
NEW JERSEY'S FASTEST GROWING
HAM STORE!

Get your hands on AEA's great keyers and isopole antennas at Radios Unlimited. You can reach us easily via the Jersey Turnpike, and when you get here you can TRY BEFORE YOU BUY at our in-store operating position. Yes! Pick out any AEA keyer, or any other equipment from our huge stock of ham gear, and try before you buy! We don't mean a little off the air diddling with the keyer... we let you PUT IT ON THE AIR AND HAVE A QSO... really check it out under YOUR kind of operating conditions... then decide. We know AEA and we know you'll select one of these:

CK-1 Contest Keyer with 500 character memory, soft message partitioning, automatic serial number, and much, much more. call for super-low price!

MK-1 Morse Keyer with selectable dot & dash memory, full weighting, calibrated speed, bug mode and more. call for super-low price!

KT-1 Keyer Trainer with all the features of the MK-1 above and the MT-1 below. call for super-low price!

MT-1 Morse Trainer for pulling up that code speed the easy way with automatic speed memory plus virtually every capability of all the other keyers & trainers listed below. call for super-low price!

Plus THE EXCITING ISOPOLES THAT ARE BOOMING OUT THOSE INCREDIBLE VHF SIGNALS WITH MAXIMUM GAIN ATTAINABLE, ZERO DEGREE RADIATION ANGLE AND 1.4:1 SWR ACROSS THE ENTIRE BAND!

Find them all at Radios Unlimited, plus a huge collection of new gear from all major manufacturers... a big selection of used equipment bargains, all you'll ever need in books, accessories, operating aids, coax, connectors and parts plus a modern service department dedicated to keeping you on the air. It's like a perpetual flea market! For directions, call (201) 469-4599.

FIND AEA AT
1760 EASTON AVENUE, SOMERSET, NJ 08873 • (201) 469-4599

* Quality Microwave Systems

2100 to 2600 MHz Antennas 34 db Gain or Greater

Send Check, Cash, Money Order To:

Philips-Tech Electronics
P. O. Box 33205
Phoenix, Arizona 85067

For Special Quantity Pricing, C.O.D.'s, MasterCard or Visa Call: (602) 274-2885

Tell 'em you saw it in HAM RADIO!
flea market

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAM FESTIVAL Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typed or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

QSL's — BE PLEASANTLY SURPRISED! Order our three colored QSL's in all varieties for $8.00 per 100 or $13.00 for 200. Satisfaction guaranteed. Samples $1.00 (refundable). Constantine Press, 1219 W. 41st St., Kansas City, MO 64111.

QSL'S & RUBBER STAMPS — Top Quality! Card Samples and Stamp Info — 50c — Ebbett Graphics 5R, Box 70, Westerville, Ohio 43081.

QSL'S: No stock designs! Your art or ours! photos, originals, 50¢ for samples & details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.

DISTINCTIVE QSL's — Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu K2HFP Print. P.O. Box 412, Rocky Point, NY 11718 (516) 744-6260.

CADDILLAC OF QSL CARDS, 3 to 4 colors, send $1 for samples (Refundable). Mac's Shack, P.O. Box 43175, Seven Points, TX 75143.

AMPLIFIER: Parts — Info. — Sources. Find it in THE AMP-LETTER, an upcoming newsletter devoted to Ham amplifiers. Write for details. Andy Thompyn, KB9WY, RR2, Box 39A, Thompsonville, IL 62890.

APARTMENT DX — Get out like a bandit from apartment or condo — Handbook of Apartment Operation by Dan Fox, W2OGD. Only $8.95 + $1.00 postage and handling. Money back guarantee. Send check, VISA, or MasterCard to Wessex Publishing Co., Dept. A5, P.O. Box 175, N. Chelmsford, MA 01863.

MOBILE OPERATORS: Anteck's Mobile Antennas cover 3.2 to 30 MHz inclusive, with no coil changing. 50 Ohms input. Two models, the MT-1 MANUAL, MT-1TR REMOTE-TUNED from the operator position. Uses two Hyd. Pumps and Motors. MT-1 $129.95, MT-1TR $240.00 plus UPS & postage. Check your local dealer or write for Dealer List and Brochure. ANTECK, INC., Route One, Box 415, Hansen, ID 83334. 208-423-4100.

RTTY JOURNAL—EXCLUSIVELY AMATEUR RADIO TELETYPE TYPE, one year subscription $7.00. RTTY Handbook $5.00, RTTY Index $1.50. P.O. Box 89 Y, Cardiff, CA 92007.

BUSINESS WANTED: Entrepreneurs/hams interested in buying an active electronics manufacturing business, preferably ham-related. Reply to J. Smallwood, Box 242, Bluffs, Blacklick, VA 24500. 703-951-9030.

PHOTO ENLARGING: 8 x 10 color enlargement of your ham shack, or any other favorite negative, only $3.50. Photo Enlarging, Vista, CA 92083.

FOR SALE: Regency HR-6 Transceiver, FM. 343 MHz. 400 watts input. Two models, the MT-1 MANUAL, MT-1TR REMOTE-TUNED from the operator position. Uses two Hyd. Pumps and Motors. MT-1 $129.95, MT-1TR $240.00 plus UPS & postage. Check your local dealer or write for Dealer List and Brochure. ANTECK, INC., Route One, Box 415, Hansen, ID 83334. 208-423-4100.

WANTED: Help in completing the largest collection of Hallcraft equipment in the world. Urgently needed are receivers with aluminum colored panels, back lighted plastic dials with "airplane" hands, early transmitters, unusual accessories, etc. Chuck Dachs, WDEOG, "The Hallcraft Collector," 4500 Russell Dr., Austin, Texas 78745.

WANT JOHNSON COIL 1000QCS40 for push-pull amplifier. Paul, K8PY, 9645 Oakdale, Chatsworth, CA 91311. (213) 993-8459.

RECIPIROCATING DETECTOR Construction Handbook. ANTECK. 4500 Russell Dr., Austin, Texas 78745.

SATELLITE TELEVISION: Information on building or buying your earth station. Six pages of what's needed, where to get it, costs, etc. $4.00 to Satellite Television, PO Box 67, NY 11850. Build your own parabolic antenna. Book also available. Send SASE for details.

WANTED: Help in completing the largest collection of Hallcraft equipment in the world. Urgently needed are receivers with aluminum colored panels, back lighted plastic dials with "airplane" hands, early transmitters, unusual accessories, etc. Chuck Dachs, WDEOG, "The Hallcraft Collector," 4500 Russell Dr., Austin, Texas 78745.

Marpin L Jones & Assoc. P.O. Box 12685 Lake Forest, IL 60034 (301) 848-8236

SOTRON ANTENNAS THE BEST THINGS come in little packages...

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

WANTED: Government Surplus radar equipment, microwave equipment and "old" General Radio test equipment. P. J. Flshner, 2 Lake Avenue Extension, Danbury, CT 06810 WALU.

TUBES: TUBES wanted for cash or trade: 340TL, 4CX1000, SCX1500. Any high power or special purpose tubes of Eimac/Variian, DCO, 10 Schuyler Avenue, No. Arlington, MA 02669. (508) 528-1270.

PET-101E, fan, three filters SSB, 600, 250 installed. Includes spare tubes (origiales ok), free UPS shipping. $675 firm. John Skubick, 791 - 106 Ave., Naples, FL 33940.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method — No darkroom required. All the supplies for making your own boards, direct from magazine articles in less than 2 hours. Only $24.95, S.A.S.E. for details: Excel Circuit Co., 4412 Fernlie, Royal Oak, MI 48073.

MIRROR-IN-THE-LID, and other pre-1946 television set wanted. Paying $100 + for any complete RCA "TRK" series, or General Electric "HM" series set. Also looking for 12APA, MV-31-3 picture tubes, part, literature on post-war television. Arnold chase, WA 9867, 9 Rushleigh Road, West Hartford, Conn. (203) 512-5280.

MUSEUM for radio historians and collectors now open. Free admission. Old amateur (W2AN) and commercial station exhibits, 1925 store and telegraph displays. 15,000 items. Write for details. Antique Wireless Assn., Holcomb, NY 14469.

HAM RADIO REPAIR, experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94122. W6WSS, (408) 292-6000.

WANTED: Micor and Master II base stations, 406-420 MHz. Any solid state 2 and 6 MHz microwave equipment, AKTR, 4 Ajax Place, Berkeley, CA 94706.

SATELLITE TELEVISION...HOWARD/COLEMAN boards to build your own receiver. For more information write: Robert Coleman, Rt. 3, Box 58-4HR, Travelers Rest, SC 29680.

MAKE HAM RADIO FUN! Supplement your learning programs with a motivational hypnotic cassette. Tape #3, Learning the Code; Tape #4, Breaking the Speed Barrier; Tape #5, Electronic Theory. Free catalog. For tapes, $15.95 each to Gem Publishing, 3306 North 6th St., Coeur d'Alene, ID 83814.

VARY Inter-rest-ing! Next 5 issues $2, Ham Trader "Yellow Sheets", POB536, Wheaton, IL 60187.

CB TO 10 METER PROFESSIONALS: Your rig or buy outs — AM/SSBCGW. Certified Communications, 4136 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

NEED HELP for your Novice or General ticket? Recorded audio-visual theory instruction. No electronic background required. Free information. Amateur License, P.O. Box 6015, Norfolk, VA 23508.

HAMS FOR CHRIST — Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, W1BNE, 1570 N. Albright, Upland, CA 91786.

FREE SAMPLE Ham Radio Insider Newsletter! Send large S.A.S.E., W5YI, Box 10101-H, Dallas, Texas 75207.

BUY-SELL-TRADE Send $1.00 for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Catalog for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204, (913) 361-5900.

Organize your shack with a
CLUTTERFREE MODULAR CONSOLE $203.35
Large, 42" X 57" W x 29" D
Strong groove-construction
Mar-resistant wood grain finish
Options, drawers & face plate
For ham or home computer
Visa and Master Charge

CLUTTERFREE MODULAR CONSOLES
P.O. Box 5103 Tacoma, WA 98405 (206) 759-1611

S-LINE OWNERS ENHANCE YOUR INVESTMENT
with TUBESTERS™
Plug-in, solid state tube replacements
S-line performance—solid state!
Heat dissipation reduced 60%
Goodbye hard-to-find tubes
Unlimited equipment life
TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC
Box 535
Talmage, CA 95481
(707) 462-6882

PC BOARD BARGAINS
GIO FR 1/16" 1 OZ COPPER
1 SIDE 12" x 12" Pkg of 5 $31.25
1 SIDE 5 1/2" x 11 1/2" Pkg of 5 $18.75
2 SIDE 12" x 12" Pkg of 5 $35.25
2 SIDE 5 1/2" x 11 1/2" Pkg of 5 $21.25

MARCO
P.O. BOX 2310, WEIRTON, WV 26062

SAY YOU SAW IT IN HAM RADIO
Tell 'em you saw it in HAM RADIO!
Coming Events

ACTIVITIES

"Places to go..."

INDIANA: The Allen County Amateur Radio Technical Club's 9th annual Hamfest, November 8, 8 AM to 4 PM, Allen County Memorial Coliseum, Ft. Wayne. Admission: $2.50 advance, $3.00 door. Children 11 years and under free. Large flea market, forums, door prizes. Take 146 28/88. Tables $6.00 each. Premiums available. For information or pre-registration: Allen County ARTS, P.O. Box 10342, Ft. Wayne, IN 46881. Att. Hamfest Committee.

MICHIGAN: The 16th annual Hazel Park Amateur Radio Club's Swap Shop & Swapshop, November 13, Hazel Park High School, 9 Mile Road, 1 mile east of I-75. Hazel Park. Tickets $2.00. Tables $7.50 per foot. Doors open 8 AM. Main prize drawing 2 PM plus hourly prizes. Grand prizes include admission ticket. Talk-in on 146.52. For information: SASE to Jack Fried, WAUBUP, 1444 E. Evelyn, Hazel Park, MI 48030.

MICHIGAN: The Oak Park High School Electronics Club's 12th annual Swap and Shop, Thanksgiving Sunday, November 29, Oak Park High School, Oak Park. Admission: $1.50 advance or $2.00 door. 8 ft. tables $5.00 advance, $6.00 door. Door prizes and refreshments. For tickets and reservations: SASE to Herman Gardner, Oak Park High School, 13701 Oak Park Blvd., Oak Park, MI 48237. Or call (313) 968-2675.

OPERATING EVENTS

"Things to do..."

DECEMBER 4, 5, 7. The Pike County Amateur Radio Club of Winnsboro and the Old Post Amateur Radio Society of Vincennes will operate a special events station from Santa Claus, Indiana. Call sign W9GCH. Time 0000 Z on December 4 through 2300 Z December 6. Frequencies: 21.410, 14.305, 7.270, 3.925. All SSB, 14.090-14.100 RTTY and 146.52 FM. A special DX/KSM card postmarked from Santa Claus post office sent upon receipt of SASE to Santa Claus, P.O. Box 111, Indiana, IN 47545.

TEXAS TOWERS

A DIVISION OF TEXAS COMMUNICATIONS PRODUCTS

1108 Summit Ave., Suite 4
Plano, Texas 75074

November 1981

89

More Details? CHECK — OFF Page 102
Sized and priced to suit all pockets

AR-22 DIGITALLY SYNTHESIZED VHF FM RECEIVER

STANDARD FREQUENCIES
- 141.000-149.995 MHz (AR-22 Type-A)
- 146.000-154.995 MHz (AR-22 Type-B)
- 151.000-159.995 MHz (AR-22 Type-C)
- 156.000-164.995 MHz (AR-22 Type-D)
- 161.000-169.995 MHz (AR-22 Type-E)

Marked with (*) are subject to available supply

TECHNICAL DATA
- FREQUENCY COVERAGE: 131.000MHz to 179.995MHz
- MAXIMUM FREQUENCY COVERAGE: 8.996MHz
- MAXIMUM FREQUENCY COVERAGE: 8.996MHz
- RECEPTION RANGE: 100mW to 100W
- RECEIVER SYSTEM: PLL Frequency-synthesized dual conversion superheterodyne
- RECEIVER MODULATION: 0.2µV at 100mW
- SELECTIVITY: Better than 50dB
- RECEPTION FREQUENCY: 5kHz
- OUTPUT FREQUENCY: 100mW
- POWER CONSUMPTION: 0.1W/mA
- OPERATING TEMPERATURE RANGE: -10°C to +60°C
- BATTERY: Rechargeable NiCd battery pack, 4.9 volts and 22Ah
- PHYSICAL SIZE: 5¼" (H) x 2½" (W) x 1½" (D) without knob
- WEIGHT: 7.1 oz. (200 grams) with battery pack
- FREQUENCY SELECTION: 3 digits of digital push switches and slide switch
- PCB: Double sided glass-epoxy printed circuit board

Order today your AR-22, if you are not completely satisfied, return it within 15 days for your refund (less shipping charges), all $2.00 for shipping charge. California residents add 6% sales tax.

SEND: Credit cards, Money order, Master charge or Visa. UPS C.O.D.

DEALER INQUIRY IS INVITED

ALL TYPES

$150.00 with accessories

Homebrew Headquarters

— IN STOCK —

B & W coils, switches, antennas
Jackson dials and drives
J. W. Miller parts
Millen components
Multimetrics roller inductors
Toroids, cores, beads, baluns
Variable capacitors:
Cardwell—E. F. Johnson Hammel—Millen

NEW

R-X Noise Bridge (hr 2/77)
Split band Speech Processor (hr 9/78)
40 Meter DRP Transceiver (hr 4/80)
Microprocessor Contest Keyer (hr 1/81)
Many Others

BUILDING A TRANSMATCH?
FIXING AN ANTENNA?
MAKING TEST GEAR?
CONSTRUCTING A KIT?

— KITS —

Improved UHF Oscillator (hr 8/81)
L-Meter (GQ 1/81)
General Coverage with Drake
R-44, B. & C (GQ 5/81)
T-R Solidstate Switch (hr 6/80)
Antenna Switch (GQ 6/81)
Modulator for 2-Meter Synthesizer (hr 4/81)

Catalog — 25 cents

ACE communications, Inc.
2832-D WALNUT AVENUE, TUSTIN, CALIFORNIA 92680 (714) 544-8261
TELEX: 655-306
<table>
<thead>
<tr>
<th>SUNDAY</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
<th>THURSDAY</th>
<th>FRIDAY</th>
<th>SATURDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMSA East Coast Net 3850 kHz</td>
<td>VIRL ANNIVERSARY PHONE CONTEST 4:35</td>
<td>ARRL SWEEPSTAKES (CW) 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMSAT East Coast Net 3850 kHz</td>
<td>ARRL SWEEPSTAKES</td>
<td>ESPERANTO (ILERA) Details from GWR 7-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WEST COAST BULLETIN - 8PM CST (0000Z)</td>
<td>WEST COAST BULLETIN</td>
<td>CO WORLDWIDE DX CONTEST ICON: 30.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMSAT East Coast Net 3850 kHz</td>
<td>ARRL SWEEPSTAKES (CWheel: 21-22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMSAT East Coast Net 3850 kHz</td>
<td>AMSAT Mid-Continent Net 3850 kHz</td>
<td>See December 04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HAM CALENDAR

8TH ANNUAL U.S. MARINE CORPS MARATHON - 8:00 AM EST. Frequency used will be 3.5-2 MHz if it is possible. W3NKF will be heard on 100 MHz. Contact 1200Z or 2000Z.

DEFIANCE COUNTY HAMFEST & FLEA MARKET - Defiance County Fairgrounds, Defiance, OH. Contact Ed Ballard Jr. WWW.1116.

R.F. HILL ARC 6TH ANNUAL HAMFEST - Sebeline National Guard Armory, Sebeline, PA. Contact 1 kHz for more information.

ALLAN COUNTY AMATEUR RADIO TECHNICAL SOCIETY ANNUAL HAMFEST - Allen County Memorial Courthouse, Ft. Wayne, IN. Contact Allen County ARTS, F.O. Box 1054.

OAK PARK HIGH SCHOOL ELECTRONICS CLUB 11TH ANNUAL SWAP & SHOP - Oak Park High School, Oak Park For more information and SASE to Herman Gardner. Oak Park H.S., 12501 Oak Park Blvd., Oak Park, IL 60327-29.
Maybe your friends were expecting *ham radio* last Christmas

Now that he has everything, why not give him something he'll really enjoy! Give *ham radio* this Christmas and your friends will thank you all year 'round. Each month they'll be introduced to the very latest technical advances in Amateur Radio, and become involved with such very special features as W9KNI's DX'ers Diary or Ham Radio Techniques by Bill Orr. Of course there will also be W6BNB's upgrade series and the many other exciting features that make *ham radio* such a special magazine for today's Amateur. So do your friends a favor and subscribe now at our very special gift price below. While you're at it, put your own name and address down — you deserve a money-saving gift too.

□ YES!
Please send my *ham radio* gift subscriptions as indicated. Also send a handsome gift acknowledgement card. (A gift card will be sent to each gift recipient if order is received by December 18, 1981.)

From:
Name______________________________Call________________
Address____________________________State______Zip_______
City_______________________________

□ Check or Money Order Enclosed
□ VISA □ Master Charge
Acct. # _______________________________MC Bank # ____________
Expires ____________________________

Foreign gift subscription prices:
Europe, Japan, Africa: Air Delivery $28.00 per year. Canada and other countries: $21.50 per year.

1st Gift — $15.00 — Save $1.50
□ NEW □ EXTEND
Name______________________________Call________________
Address____________________________State______Zip_______
City_______________________________

2nd Gift — $14.00 — Save $4.00
□ NEW □ EXTEND
Name______________________________Call________________
Address____________________________State______Zip_______
City_______________________________

3rd Gift — $14.00 — Save $6.50
□ NEW □ EXTEND
Name______________________________Call________________
Address____________________________State______Zip_______
City_______________________________

□ Bill me after January 1, 1982.
MBA READER™
A NAME YOU SHOULD KNOW

What does MBA mean? It stands for Morse-Baudot and ASCII.

What does the MBA Reader do? The RO model (reader only) uses a 32 character alphanumeric vacuum fluorescent display and takes cw or tty audio from a receiver or tape recorder and visually presents it on the display.

The copy moves from right to left across the screen, much like the Times Square reader board. Is the AEA model MBA Reader different from other readers? It certainly is! It is the first to give the user 32 characters of copy (without a CRT), up to five words at one time. It can copy cw up to 99 wpm and Baudot at 60-67-75 and 100 wpm. Speeds in the ASCII mode are 110 and hand typed 300 baud. The expanded display allows easy copy even during high speed reception.

The AEA model MBA has an exclusive automatic speed tracking feature. If you are copying a signal at 3-5 wpm and tune to a new signal at 90 wpm, the MBA catches the increased speed without loss of copy.

The MBA Reader allows a visual display of your fist and improves your code proficiency. It is compact in size, and has an easily read vacuum fluorescent display.

The Reader operates from an external 12 VDC source. This allows for portable/mobile or fixed operation.

Check the AEA model MBA Reader at your favorite dealer and see all the features in this new equipment. If your dealer cannot supply you, contact Advanced Electronic Applications, Inc.

P.O. Box 2160, Lynnwood, WA 98036 Call 206/775-7373

Prices and specifications subject to change without notice or obligation

AEA Brings you the Breakthrough!
Arizona

POWER COMMUNICATIONS CORPORATION
1640 W. CAMELBACK ROAD
PHOENIX, AZ 85015
602-242-6030 or 242-6990
Arizona's #1 "Ham" Store. Kenwood, Yaesu, Icom and more.

California

C & A ELECTRONIC ENTERPRISES
2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best — Since 1962.

JUN'S ELECTRONICS
3919 SEPULEDAD BLVD.
CULVER CITY, CA 90230
714-463-1886 San Diego
The Home of the One Year Warranty — Parts at Cost — Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-999-5900
Serving the world’s Radio Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo, Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 337515
813-461-HAMS
Clearwater Branch
West Coast's only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAYS AMATEUR RADIO
1590 US HIGHWAY 19 SQ.
CLEARWATER, FL 33716
813-535-1416

Delaware

DELWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off I-95, no sales tax.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santech and others.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio Store. Trade — Sell — Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
617-486-3400 (this is new)
The Ham Store of New England
You Can Rely On.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-490-8829
"Amateur Excellence"

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.
<table>
<thead>
<tr>
<th>State</th>
<th>AMATEUR Radio Dealer</th>
<th>Phone Number</th>
<th>Address</th>
<th>Service Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minnesota</td>
<td>MIDWEST AMATEUR RADIO SUPPLY</td>
<td>612-521-4662</td>
<td>3462 FREMONT AVE. NO. MINNEAPOLIS, MN 55412</td>
<td>It's service after the sale that counts.</td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>702-647-3114</td>
<td>1072 N. RANCHO DRIVE LAS VEGAS, NV 89106</td>
<td>Pete, WA8PZA & Squeak, AD7K</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>TUFTS ELECTRONICS</td>
<td>603-883-5005</td>
<td>61 LOWELL ROAD HUDSON, NH 03051</td>
<td>New England's friendliest ham store.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>RADIOS UNLIMITED</td>
<td>201-469-4599</td>
<td>1760 EASTON AVENUE SOMERSET, NJ 08873</td>
<td>New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.</td>
</tr>
<tr>
<td>New York</td>
<td>BARRY ELECTRONICS</td>
<td>212-925-7000</td>
<td>512 BROADWAY NEW YORK, NY 10012</td>
<td>New York City's largest full service ham and commercial radio store.</td>
</tr>
<tr>
<td>New York</td>
<td>HARRISON RADIO CORP.</td>
<td>1 (800) 337-0203</td>
<td>20 SMITH STREET FARMINGDALE, NY 11735</td>
<td>"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.</td>
</tr>
<tr>
<td>New York</td>
<td>RADIO WORLD</td>
<td>1 (800) 448-9338</td>
<td>ONEIDA COUNTY AIRPORT TERMINAL BLDG. ORISKANY, NY 13424</td>
<td>Authorized dealer — all major amateur brands. We service everything we sell! Warren K2IXN or Bob WA2MSH.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>215-357-1400</td>
<td>28940 EUCLID AVE. WICKLIFFE, OH 44092</td>
<td>Drake, Cubic, DenTone, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke & Beckman Instruments, etc.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>HAMTRONICS, DIV. OF TREVOSE ELECTRONICS</td>
<td>1 (800) 362-0290</td>
<td>4033 BROWNSVILLE ROAD TREVOSE, PA 19047</td>
<td>Single Location for 30 Years.</td>
</tr>
<tr>
<td>Virginia</td>
<td>ELECTRONIC EQUIPMENT BANK</td>
<td>703-938-3350</td>
<td>516 MILL STREET, N.E. VIENNA, VA 22180</td>
<td>Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.</td>
</tr>
<tr>
<td>Washington</td>
<td>THE RADIO STORE</td>
<td>509-246-4777</td>
<td>1505 FRUITDALE BLVD. YAKIMA, WA 98902</td>
<td>Your complete ham store for sales/service. All major brands. TRADE-SELL-BUY!</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>614-866-4267</td>
<td>26940 EUCRED AVE. WICKLiffe, OH (CLEVELAND AREA)</td>
<td>Kenwood: The biggest and best ham store in the midwest featuring quality Kenwood products with working displays. We sell only the best. Authorized Kenwood Service.</td>
</tr>
</tbody>
</table>

November 1981
DON'T WAIT
ORDER TODAY

1982 U.S. RADIO AMATEUR CALLBOOK
Radio Amateur Callbooks will be ready for shipping week of December 1, 1981. No Amateur station is complete without the very latest Callbook! The new 1982 U.S. Callbook features over 350,000 up-to-date names and addresses right where you want them — at your finger tips. Also contains many helpful operating and station aids. ©1981. Softbound.
CB-US $16.95 + $3.00 shipping (U.S.A.) = $22.00

1982 FOREIGN CALLBOOK
If DX is your "thing" then you need a copy of the 1982 Foreign Callbook. Getting a QSL card can be quite a chore without proper names and addresses. Make sure you don't miss out! ©1981. Softbound.
CB-F $17.95 + $3.05 shipping (U.S.A.) = $21.00

Get 'em both and be really prepared. You save money too!
CB-USF Only $39.95

BRAND NEW 1982 ARRL RADIO AMATEUR'S HANDBOOK
Order today for delivery by late November. Be one of the first to get your copy. Internationally recognized, universal in scope, this handbook contains all types of modern receiver circuits, and a complete bibliography of circuits which include: fundamentals of vacuum tubes; transistors, amplifier circuits, oscillator circuits, frequency multipliers, dividers and synthesizers, RF power amplifiers, and speech amplifiers. Covers SSB, FM and PM design, theory and operation. ©1980, 1238 pages. 8 1/2 x 11 80 pages. Hardbound $47.00
MH-40446

BRAND NEW 22ND EDITION OF THE FAMOUS RADIO HANDBOOK
by Bill Orr, W6SAI
The Radio Handbook has been an electronic best seller for over 45 years! This brand new edition reflects all of the latest state-of-the-art advances in a comprehensive, single source reference book. An invaluable aid for Hams, technicians, and engineers alike. Also check full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981.
21874 Hardbound $26.95

FROM BEVERAGES THRU OSCAR — A BIBLIOGRAPHY
by Rich Rosen, K2RR
Your complete guide to 65 years of Amateur Radio Publishing.
From Beverages Thru Oscar — A Bibliography is a complete list of every article that would be of interest to a Radio Amateur or professional that has been published over the last 65 years. References are from QG, Ham Radio, 73, QST, Proceedings of both the IRE and IEEE and Wireless Engineer, to name just a few. In fact, over 292 magazines have been listed in this book with 92 different subject areas referenced. If you can't find it in this wonderfully complete bibliography, chances are, it was never published. Never before has a book like this been put together. Makes your radio/marine collection infinitely more useful. It costs just $29.95 but is worth much, much more ©1979.
PR-80 Softbound $29.95

TUNE IN THE WORLD WITH HAM RADIO
by ARRL staff
This package contains THE goodies needed by the beginner to get started in Amateur Radio. Assuming that you have no prior knowledge of radio, the reader is taught how to pass the Novice exam, both code and theory, and how to set up a station. Unique code study method makes learning the Morse code easy as I-2-3. And it's full of illustrations to help clarify difficult technical points. 160 pages. ©1981, 3rd edition.
AR-HR Softbound $8.50
AR-HR-LB Spirabound $1.75
3 Logs Just $3.95

HAM RADIO LOG BOOK
Ham Radio's Log Book has room for 2100 QSO's — that's over twice as many entries as other popular log books. Room for all pertinent information, plus extra space for the name and address of each station you contact all on a convenient horizontal format. For test entries, there is a consistent 30 entries per page for easy counts. In addition, a handy frequency spectrum chart showing every band for Novice to Extra, plus a listing of all worldwide Amateur prefixes currently in use. Spiralbound to lay flat on your operating table. Unquestionably the best log book value anywhere! 8 1/2 x 11 80 pages. ©1975.

COMPLETE HANDBOOK OF RADIO TRANSMITTERS
by Joseph J. Carr, K4IPV
350 pages of easy-to-understand fundamentals and practical descriptions of circuits which include: fundamentals of vacuum tubes; transistors, amplifier circuits, oscillator circuits, frequency multipliers, dividers and synthesizers, RF power amplifiers, and speech amplifiers. Covers SSB, FM and PM design, theory and operation. Other subjects include: transmitter troubleshooting, safety, interference prevention, if; neutralization, tuning, feeding devices and antennas. ©1980, 350 pages.
T-1224 Softbound $8.95

COMPLETE HANDBOOK OF RADIO RECEIVERS
by Joseph J. Carr, K4IPV
All-in-one manual. Contains complete data on almost all receivers in use today. Written in an easy-to-read manner, this handbook includes basic receiver types; specifications for the latest ideas in parameter measurements such as sensitivity, noise figures, dynamic range, and selectivity measurements. Also covered are all types of modern receiver circuits, and a wide range of troubleshooting ideas for both solid-state and vacuum tube receiver circuits. ©1980, 300 pages.
T-1182 Softbound $8.95

Send your order to:
HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

FROM: Name ____________ Call ________
Address __________________________
City ______ State ______ Zip
☐ Check or Money Order Enclosed
☐ VISA ☐ MasterCard
Acct. # ______ MC Bank # ______
Expires ______

Catalog # Title

<table>
<thead>
<tr>
<th>Catalog #</th>
<th>Title</th>
<th>QTY</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Allow 2-4 weeks for delivery Prices subject to change without notice.

SHIPPING $2.50
TOTAL

Tell 'em you saw it in HAM RADIO!
... for literature, in a hurry — we'll rush your name to the companies whose names you print below.

It's simple to do. Simply select the advertiser's number and name from the Advertisers' Checkoff list found on the same page as the Advertisers' Index. Just print the number and the company's name and drop in the mail.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>NAME OF COMPANY</th>
<th>NUMBER</th>
<th>NAME OF COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please ☑ month ____ Sept. ____ Oct. ____ Nov. 81

Limit 14 inquiries please.

NAME ____________________________ CALL ____________________________
ADDRESS __
CITY ____________________________ STATE ______ ZIP ________
NEW LOWER PRICES
VHF through 10 GHz
MGF 1200 $13.00 MGF 1400 $19.90 MGF 1402 $33.75
MGF 1412 (200 MHz to 1 GHz) $69.00
MGF 1403 1.800 MHz to 12 GHz $108.00
All devices in stock. Complete kits. Quantity discounts available.

Microwave Modules
NEW from MITSUBISHI
X BAND very high stability
GaAs FET/Diode/Microwave oscillators
FO-1030 15w transmitter
10 GHz, 0.12MHz $37.50
FO-11XPK heterodyne receiver,
10 GHz $34.50

NEW from PLESSY
X BAND Gunn Diode oscillators and detectors
GDO-33 24.125GHz 10w transmitter
50M-1 24GHz detector (GaAs Shortkey diode)
Higher watt availability. Send for price and data.

Components
MICROWAVE CHIP CAPACITORS VITRAMON
Veem 7600 series for bypass/coupling
7000P7G0 1.1-1.7GHz 7000P7G04 1.3-2.6GHz
7000P7G01 2.5-4.2GHz
5 for $50.00 no mixing. Data provided.
SOLDER IN DISK CAPACITORS for VHF-UHF bypassing
RMC. JF series. 200, 240, 470, 820pf 10 for $2.50

Optioned electronics from stock
LO271 High efficiency infrared LED $0.75
BPW43 Fast acting photo-diode $3.00
THERMOELECTRIC COOLERS.
MELCOR Frigochip Send for Data and Price

MINIMUM ORDER:
$5.00 ADD $2.00 POSTAGE & HANDLING
NY State Residents add 6% SALES TAX
SEND S.A.S.E. FOR CATALOG

R.D.2 ROUTE 21 HILLSDALE, NY 12529
158-325-3911

The Gunnplexer Cookbook by Robert M. Richardson, W4UCH/2

Ever wanted to take a good look at 10 GHz operation? Well here's your chance. Starting with the basic theory of the Microwave Associates' Gunnplexer transceiver, author Richardson describes in 16 building-block chapters, how to put a functioning Gunnplexer system into operation.
The Gunnplexer Cookbook has been written for the Radio Amateur or electronic student who has at least modest experience assembling VHF converter or receiver kits. Only very basic test equipment is required.

Ham Radio Publishing Group
Greenville, New Hampshire 03048

More Details? CHECK — OFF Page 102

NOVEMBER SPECIALS
BONUS 2% discount for prepaid orders
(cashier's check or money order)
CALL FOR QUOTES
If You Want The Finest

Eto Alpha 77DX

- Alpha 77DX: The ultimate amplifier for those who demand the finest.
- Tube: Eimac 8877 - 1500 watts of plate dissipation
- Transformer: 4.4 KVA Hypersil, removable, plug-in
- Filter Capacitor: oil filled, 25 MFD
- Bandswitch: 20 AMP 6 KV
- Teflon - Insulated Toroid Inductors
- QSK CW: Full break-in, (2) vacuum relays
- Tuning Capacitor: Vacuum
- Cooling: Ducted air, large, quite blower, computer grade
- Price: $4945, limited warranty 24 months, tube by Eimac
- Other Alphas: 78-$3185, 78CA-$295, 76PA-$2195, 76A-$1895, 374A-$2395
- 77SX-$5935 (EXPORT ONLY)

Eto Alpha 78

- ALPHA 78: Has everything an amplifier needs.
- TUBES: 3 Eimac 8874, 1200 watts dissipation
- TRANSFORMER: 2.4 KVA Hypersil, removable plug-in
- TUNE UP: Bandpass (no tune-up) or manual
- QSK CW: Full break-in, (2) vacuum relays
- WARRANTY: 24 mos. limited warranty tubes by Eimac.
- BLOWER: Noise and vibration isolated — QUIET.
- FLAT INPUT: 2.5 kW PEP SSB, 1.5 kW CW
- NO TIME LIMIT
- PRICE: $3185, call for Special Sale Prices.

Phone Don Payne, K4ID, for a brochure, special prices, and his experience with Alpha Amplifiers

... If You Want The Finest

Personal Phone — (615) 384-2224
P.O. Box 100
Springfield, Tenn. 37172

PAYNE RADIO

Tell 'em you saw it in HAM RADIO!
Give Us Your Tired arms, Your Poor coverage, Your Huddled 2-meter band

with range-extending products from VoCom, you won't need the Cr. Statue of Liberty pose to squeeze more distance from your 2-meter hand-held radio.

- VoCom's 5/6 HT gain antenna boosts reception while giving your hand-held full quieting out of spots you're nearly dead in with a rubber duck.
- VoCom's tiny 12V power amp gives your 2-watt hand-held the talk-out range of a 25W mobile rig.
- 50 and 100 watt power amplifiers also available for use with lower power hand-held radios.

See your favorite amateur radio dealer or order direct.

VoCom
PRODUCTS CORPORATION
66 East Palatine Road
Prospect Heights, IL 60070
(312) 459-3680

FACSIMILE
COPY SATELLITE PHOTOS.
WEATHER MAPS. PRESS!

The Faxs Are Clear - on our size (18-1/2" wide) recorders. Free Fax Guide.

TELETEYPE

RTTY MACHINES, PARTS, SUPPLIES
ATLANTIC SUPPLIES SALES
315 Washington AVE BROOKLYN N.Y. 11224

RED HOT SPECIALS

AZDEN PCS 3000 2 m ... 288.00
SANTEC HT200 2m Handheld 288.00
NEW KDK 2025 MkII ... 298.00
JANDEL QSA 2m Preamp 36.50
BEARCAT 220 Scanner 269.00
KANTRONICS FDII Code Reader 360.00
All MFJ Items ... 12% off list
TEN-TEC Argory Xcvr. ... 474.00
TEN-TEC Delta Xcvr. ... 738.00
TEN-TEC Omni G Xcvr. ... 1040.00
BENCHER Black Paddle 36.00
SANTEC ST-7T 440 MHz Handheld 283.00
ICOM 2KL Linear Amp (2 only) 1399.00

Prices subject to change without notice.

Don't wait any longer to pull out weak, rare DX.

BEN FRANKLIN
ELECTRONICS
115½ N. Main Hillsboro, KS 67063
316-947-2269

Preamplifiers

The famous Palomar Engineers preamplifier has been updated and packaged in an attractive new cabinet.

For the SWL there is the P-305 (9-v DC powered) and the P-308 (115-v AC powered) featuring full shortwave coverage, selection of two antennas, 20 db attenuator, 15 db gain control and on-off/bypass switch.

For transceivers, the P-310X (115-v AC powered) and the P-312X (12-v DC powered) feature automatic bypass on transmit, adjustable delay for return to receive, and 350 watt transmit capability.

All models have these features:
- Up to 20 db gain.
- Covers 1.8 to 54 MHz in four bands.
- Low noise figure.
- Reduces image and spurious response.
- 8" x 5" x 3". Brushed aluminum control panel. Black vinyl cover.
- SO-239 connectors.
- LED pilot.

Don't wait any longer to pull out weak, rare DX.

Palomar Engineers

1924 F.W. Mission Rd., Escondido, CA 92025
Phone: (714) 747-3343

November 1981 101
R7
Synthesized General Coverage Receiver

Model 1240

- The famous Drake full electronic passband tuning system is employed, permitting the passband position to be adjusted for any selectivity filter. This is a great aid in interference rejection.
- Three agc time constants plus "Off" are switch-selected from the front panel.
- Complete transceive/separate functions when used with the Drake TR7 transceiver are included, along with separate R7 R.I.T. control.
- Special multi-function antenna selector/50 ohm splitter is switch-selected from the front panel, and provides simultaneous dual receive with the TR7. This makes possible the reception of two different frequencies at the same time. Main and alternate antennas and vhf/uhf converters may also be selected with this switching network.
- The digital readout of the R7 may be used as a 150 MHz counter, and is switched from the front panel. Access thru rear panel connector.
- The built-in power supply operates from 100, 120, 200, 240 V-ac, 50/60 Hz, or nominal 13.8 V-dc.
- The R7 includes a built-in speaker, or an external Drake MS7 speaker may be used.
- Built-in 25 kHz calibrator for calibration of analog dial.
- Low level audio output for tape recorder.
- Up to eight crystal controlled fixed channels can be selected. (With Drake Aux7 installed.)
- Optional Drake NBA7 Noise Blanker available. Provides true impulse type noise blanking performance.

Specifications, availability and prices subject to change without notice or obligation.

R.L. DRAKE COMPANY

540 Richard St. Miamisburg, Ohio 45342 USA
Phone: (513) 866-2421 • Telex: 288-017

November 1981 103

More Details? CHECK — OFF Page 102
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ± 0.1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted.

Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021

SS-32 $29.95, TS-32 $59.95
Tired of compromise in your VHF/UHF operating? Does your “compact” multimode rig leave something to be desired in the selectivity department? With the Yaesu FTV-901R VHF/UHF Transverter, the superb capabilities of your FT-901/902DM or FT-101ZD can be extended to the 50, 144 or 430 MHz bands!

Multiband Design Philosophy
The FTV-901R comes equipped for operation on the 144 MHz band, with 50 MHz and 430-440 MHz modules available as options. Power input is 20 watts on all three bands.

Duplex Satellite Operation
For satellite operators, three satellite bands are provided, allowing full duplex operation through the transverter for downlink monitoring. You can transmit on 2 meters while receiving on 10 meters or 70 cm, or transmit on 70 cm while listening on 2 meters. An external receiver is required (in addition to your FT-901/902DM or FT-101ZD) for duplex operation.

Rugged, Dependable Construction
The FTV-901R is a futuristic blend of FET, bipolar, and stripline techniques, providing high reliability, consistent power output, good noise figure, and outstanding rejection of spurious responses. And there’s attention to the details, like the Type N connector for 430 MHz operation.

Worldwide Power Capability
Equipped for operation from supply voltages of 100/110/117/200/220/234 VAC, the FTV-901R won’t become obsolete if you move to another country. The transmit drive requirement of 3V RMS at 28-30 MHz makes the FTV-901R compatible with many older Yaesu transmitters.

Repeater Split Capability
The FTV-901R comes equipped for repeater operation on the 6 and 2 meter bands. For 6 meters, 1 MHz split is provided, while 600 kHz split is provided on 2 meters. Take full advantage of the FM capability on your FT-901/902DM or FM-equipped FT-101ZD Mk III.

FT-901/902 Line of Accessories
Other high-performance accessories for your FT-901/902DM station include: the FV-901 DM Synthesized Scanning VFO; YO-901 Multiscope with Panadapter; and the FC-902 160-10 Meter Antenna Tuner. See your dealer also for details of the YR-901 Code Reader and SP-901P Speaker/Patch.

For top performance on 1.8 through 450 MHz, Yaesu has the most complete line of transceivers, receivers, and accessories in the Amateur industry. Yaesu products are backed by a nationwide dealer network and two factory service centers for your long-term service needs. So when it’s time to upgrade your station equipment, join the thousands of hams that are tired of compromise — join them by investing in Yaesu!
Compact.
Only 3.7 in (H) x 9.5 in (W) x 10.8 in (D) will fit into most mobile operations (compact car, airplane, boat, or suitcase)

Affordable.
Priced right to meet your budget as your main HF rig or as a second rig for mobile/portable operation.

Convenient.
- Unique tuning speed selection for quick and precise QSY, choice of 1 KHz, 100 Hz or 10 Hz tuning.
- Electronic dial lock, deactivates tuning knob for lock on, stay on frequency operation.
- One memory per band, for storage of your favorite frequency on each band.
- Dual VFO system built in standard at no extra cost.

Full Featured.
- 200W PEP input—powerful punch on SSB/CW (40 W on AM)
- Receiver preamp built-in • VOX built-in
- Noise blanker (selectable time constant) standard
- Large RIT knob for easy mobile operation
- Amateur band coverage 10-80M including the new WARC bands
- Speech processor—built-in, standard (no extra cost)
- IF shift slide tuning standard (pass band tuning optional)
- Fully solid state for lower current drain
- Automatic protection circuit for finals under high SWR conditions
- Digital readout • Receives WWV • Selectable AGC
- Up/down tuning from optional microphone
- Handheld microphone standard (no extra cost)
- Optional mobile mount available

ICOM
2112 116th Avenue N.E., Bellevue, WA 98004
3331 Towerwood Dr., Suite 307, Dallas TX 75234

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.