• measuring coax cable loss
• the Giza beam
 coreless balun

homebrew a coffee-can cavity antenna
Tempo was the first with a synthesized hand held for amateur use, first with a 220 MHz synthesized hand held, first with a 5 watt output synthesized hand held...and once again first in the 440 MHz range with the S-4, a fully synthesized hand held radio. Not only does Tempo offer the broadest line of synthesized hand helds, but its standards of reliability are unsurpassed...reliability proven through millions of hours of operation. No other hand held has been so thoroughly field tested, is so simple to operate or offers so much value. The Tempo S-4 offers the opportunity to get on 440 MHz from where ever you may be. With the addition of a touch tone pad and matching power amplifier its versatility is also unsurpassed.

The S-4... $349.00
With 12 button touch tone pad...$399.00
With 16 button touch tone pad...$419.00
S-40 matching 40 watt output... $399.00
standard reliability... $419.00
With 16 button touch tone pad... $399.00
S-40 matching 40 watt output... $399.00
The S-1 is the most simple radio to operate and is built to provide years of dependable service. Despite its light weight and small size it is built to withstand rough handling and hard use. Its heavy duty battery pack allows more operating time between charges and its new lower price makes it even more affordable.

Tempo S-5
Offers the same field proven reliability, features and specifications as the S-1 except that the S-5 provides a big 5 watt output (or 1 watt low power operation). They both have external microphone capability and can be operated with matching solid state power amplifiers (30 watt or 80 watt output). Allows your hand held to double as a powerful mobile or base radio.

S-30...$89.00
S-80...$149.00
*For use with S-1 and S-5

Tempo S-2
With an S-2 in your car or pocket you can use 220 MHz repeaters throughout the U.S. It offers all the advanced engineering, premium quality components and features of the S-1 and S-5. The S-2 offers 1000 channels in an extremely lightweight but rugged case. If you're not on 220 this is the perfect way to get started. With the addition of the S-20 Tempo solid state amplifier it becomes a powerful mobile or base station. If you have a 220 MHz station, the S-2 will add tremendous versatility.

Price...$349.00 (With touch tone pad installed...$399.00)
S-20...$89.00

Specifications:
Frequency Coverage: 440 to 449.995 MHz
Channel Spacing: 25 KHz minimum
Power Requirements: 9.6 VDC
Current Draw: 17 ma-standby 400 ma-transmit (1 amp high power)
Antenna Impedance: 50 ohms
Sensitivity: Better than .5 microvolts nominal for 20 db

Supplied Accessories: Rubberflex antenna, 450 ma ni-cad battery pack, charger and earphone
RF output Power: Nominal 3 watts high or 1 watt low power
Repeater Offset: + 5 MHz

Optional Accessories for all models
12 button touch tone pad (not installed): $39 16 button touch tone pad (not installed): $48 Tone burst generator: $29.95
CTCSS sub-audible tone control: $29.95 Leather holster: $20 Cigarette lighter plug mobile charging unit: $8

TEMPO VHF & UHF SOLID STATE POWER AMPLIFIERS
Boost your signal... give it the range and clarity of a high powered base station. VHF (135 to 175 MHz)

<table>
<thead>
<tr>
<th>Drive Power</th>
<th>Output</th>
<th>Model No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>130W</td>
<td>130A02</td>
<td>$209</td>
</tr>
<tr>
<td>10W</td>
<td>130A10</td>
<td>$189</td>
<td></td>
</tr>
<tr>
<td>30W</td>
<td>130A30</td>
<td>$199</td>
<td></td>
</tr>
<tr>
<td>2W</td>
<td>80W</td>
<td>80A02</td>
<td>$169</td>
</tr>
<tr>
<td>10W</td>
<td>80A10</td>
<td>$149</td>
<td></td>
</tr>
<tr>
<td>30W</td>
<td>80A30</td>
<td>$159</td>
<td></td>
</tr>
<tr>
<td>2W</td>
<td>50W</td>
<td>50A02</td>
<td>$129</td>
</tr>
<tr>
<td>2W</td>
<td>30W</td>
<td>30A02</td>
<td>$89</td>
</tr>
</tbody>
</table>

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.

Henry Radio
2060 S. Bundy Dr., Los Angeles, CA 90025 (213) 820-1234
931 N. Euclid, Anaheim, CA 92801 (714) 772-9200
Butler, Missouri 64730 (816) 679-3127

TOLL FREE ORDER NUMBER: (800) 421-8631
For all states except California.
Calif. residents please call collect on our regular numbers.
Prices subject to change without notice.
Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we’re a stickler for 1-day delivery with a full 1 year warranty.

- Output level flat to within 1.5db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

TE-12PA

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>TE-12PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>85.4 YA</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>88.5 YB</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>91.5 ZZ</td>
</tr>
<tr>
<td>77.0 XB</td>
<td>94.8 ZA</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>97.4 ZB</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>100.0 Z</td>
</tr>
<tr>
<td>85.2 YA</td>
<td>103.5 1A</td>
</tr>
<tr>
<td>88.5 YB</td>
<td>107.2 1B</td>
</tr>
<tr>
<td>91.5 ZZ</td>
<td>110.9 2A</td>
</tr>
<tr>
<td>94.8 ZA</td>
<td>114.8 2B</td>
</tr>
<tr>
<td>97.4 ZB</td>
<td>118.8 3B</td>
</tr>
<tr>
<td>100.0 Z</td>
<td>123.0 32</td>
</tr>
<tr>
<td>103.5 1A</td>
<td>127.3 3A</td>
</tr>
<tr>
<td>107.2 1B</td>
<td>131.8 3B</td>
</tr>
<tr>
<td>110.9 2A</td>
<td>136.5 42</td>
</tr>
<tr>
<td>114.8 2B</td>
<td>141.3 4A</td>
</tr>
<tr>
<td>118.8 3B</td>
<td>146.2 4B</td>
</tr>
<tr>
<td>123.0 32</td>
<td>151.4 52</td>
</tr>
<tr>
<td>127.3 3A</td>
<td>156.7 5A</td>
</tr>
<tr>
<td>131.8 3B</td>
<td>162.2 5B</td>
</tr>
<tr>
<td>136.5 42</td>
<td>167.9 6Z</td>
</tr>
<tr>
<td>141.3 4A</td>
<td>173.8 6A</td>
</tr>
<tr>
<td>146.2 4B</td>
<td>179.9 6B</td>
</tr>
<tr>
<td>151.4 52</td>
<td>186.2 7Z</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ±1 Hz maximum – 40°C to +85°C
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>TEST-TONES:</th>
<th>TOUCH-TONES:</th>
<th>BURST-TONES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697</td>
<td>1209</td>
<td>1600</td>
</tr>
<tr>
<td>1000</td>
<td>770</td>
<td>1336</td>
<td>1650</td>
</tr>
<tr>
<td>1500</td>
<td>852</td>
<td>1477</td>
<td>1700</td>
</tr>
<tr>
<td>2175</td>
<td>941</td>
<td>1633</td>
<td>1750</td>
</tr>
<tr>
<td>2805</td>
<td>1000</td>
<td>2100</td>
<td>1800</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ±1 Hz maximum – 40°C to +85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

$89.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547/California: (714) 998-3021
The CT2100 Communications Terminal

To be shown first at the Dayton Hamvention

SPECIFICATIONS:
- Two cabinets - basic CT2100 plus separate KB2100 keyboard.
- RTTY and Morse demodulators and video circuits included in CT2100.
- Small keyboard size: connects with one "coll-ord" for popular "lap operation".
- Streamlined CT2100 cabinet is attractive and small - may also be rack mounted.
- Satin finish black vinyl front panel with multicolor graphics.
- 26 control switches; red for "primary" and blue for "secondary" controls.
- 16 rear panel connectors - standard phone connectors.
- On-screen tuning indicator, LED indicators, and external scope connections.
- LED indicators for mark, space, cw tune, RTTY tune, audio overload, and KOS.
- CT2100 demodulates, decodes, and displays received Morse and Baudot or ASCII RTTY.
- CT2100 with KB2100 transmits and receives Morse, Baudot, or ASCII.
- Morse receive circuit tracks speed and minor frequency variations; 5 to 100 wpm.
- Morse transmit 5 to 100 wpm; key negative or positive key lines.
- Baudot or ASCII data rates of 45, 50, 57, 74, 100, 110, 150, 300, 600 or 1200 baud.
- Internal RTTY demodulator for both "high" and "low" RTTY tones plus two sets of modem tones (1070/1270 Hz or 1200/2200 Hz). Narrow shift CW ID included.
- All three RTTY shifts (170/425/850 Hz) for both "high" and "low" tones.

* Input/output connections for audio, tape recorder, RTTY loop, or RTTY RS-232 data.
* RTTY mark-hold autostart, normal/reverse, full or half duplex, KOS transmit control.
* Large character (36 per line) or standard display (72 characters per line).
* White characters on black screen or reverse video.
* Two pages of receive display.
* Split screen for transmit buffer - pretype WHILE receiving.
* Two user-programmable 32 character HERE IS messages.
* Eight non-volatile 250 character EPROM stored brag-tape and HERE IS messages.
* Serial printer output prints all received text, Morse, Baudot, or ASCII.
* Built-in 120/220 50/60 Hz power supply.
* Receive-only users need only the CT2100 - add the KB2100 for transmitting later.

* LOW COST!
CT2100 Receive Only Communications Terminal $845.00
KB2100 Transmit Option Keyboard $175.00
ESM914TR930 TV Monitor - 9" $169.00

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373
26 Jim
John C. Flippin, W4VT

30 butterfly beam
James Gray, W1XU

34 measuring coax cable loss
with an SWR meter
John W. Frank, WB9TQG

40 pattern calculation for
phased vertical arrays
Patrick McGuire, WB5HGR

46 ham radio techniques
Bill Orr, W6SAI

50 plumber’s delight coax connector
James R. Yost, N4LI

52 the K2GNC Giza beam
William Pfaff, K2GNC

62 a coreless balun
Roy N. Lehner, WA2SON

65 10-60 MHz preamp
Geoff Krauss, WA2GFP

70 rf power meter
Ralph H. Fowler, N6YC

118 advertisers index

76 DX forecaster

85 flea market

110 ham mart

92 ham notes

7 letters

105 new products

4 observation and opinion

8 presstop

58 questions and answers

118 reader service

50 weekender

May 1981
Observation & Opinion

Here it is — our annual antenna issue. A great deal of care and planning has gone into this issue. We think the selection of articles is sufficiently well balanced to please everyone interested in antennas. And since it’s hard to get on the air without an antenna, that should be just about all of our readers.

Our feature article describes a resonant reentrant cavity antenna, designed and patented by Bill Tucker, W4FXE. A thorough treatment of the theory of this antenna is given, followed by a discussion on how to build an experimental, basic cavity whose enclosure, of all things, is an ordinary coffee can. This antenna appears to furnish the answer to the problem of VHF-UHF receiver desense and intermod distortion, which is caused by out-of-band signals.

You’ll also find in this issue articles on how to build two simple but very effective beam antennas from easy-to-find materials. They are so simple that just about anyone can put them together in a day or two at most — surely a pleasant way to spend a spring weekend.

And there’s a surprise in this issue. It’s something that has never been attempted in ham radio. Maybe I’m sticking my neck out, but somehow I have a feeling that the story of “Jim” will be a welcome change of pace. Let me know how you like it. If your response is positive, we’ll have some more stories by old-timer John Flippin, W4VT.

A good barometer of how readers like ham radio was the ARRL National Convention at Orlando, Florida. Our booth at the convention was virtually besieged by Amateurs. Orlando was my first such show experience as editor, and it gave me the opportunity to meet a cross section of our readership. I want to thank everyone who took the time to offer comments. A great many expressed their compliments on the new ham radio. Of course there were some complaints too, but the number of positive remarks was greater than the complaints by an order of magnitude. I was greatly impressed by the enthusiasm of the crowd, which must have numbered in the thousands. I had a chance to meet some authors in person and exchange ideas for new articles. I wanted to circulate and take in some of the technical presentations, but business was so brisk at the ham radio booth that I didn’t have a chance. Perhaps at Dayton!

The people at a large convention are most interesting. Young hams with 2-meter handhelds talking to each other across the room through the local repeaters; handicapped fellows in wheelchairs trying to see through the crowd; proud dads and their sons wearing identical T-shirts with their call signs displayed on the back; the fellow from a southern ham club wearing a red vest festooned with ribbons, badges, embroidered patches, Civil War medals, and his call sign spelled out in ¼-watt resistors. Then there was the fellow sporting a huge stovepipe hat with a miniature three-element Yagi beam on top, powered by a small electric motor. And last but not least, there was the youngster who bent my ear for a half hour asking for help in selecting study material for his Novice license (I fixed him up with some).

All in all, it was a rewarding experience and I wouldn’t have missed it for anything. Those who forecast the demise of Amateur Radio should come out of their shells and take in one of the large conventions. Our future certainly looks healthy and hearty to me.

Alf Wilson, W6NIF
Editor
Imagine IC-22S performance and simplicity... plus 800 channels...

Easy to Operate.
- Convenient pushbutton frequency selection
- Monitor repeater inputs at the flip of a switch
- Hi/Low power pushbutton selectable
- Touch Tone® available with optional HM8 microphone
- Convenient hookup points for subaudible tone encoder or continuous tone controlled squelch system
- 5 KHz step (800 T/R channels standard)
- Covers the complete 144-147.995 MHz ham band

ICOM Performance.
- 5 helical resonators for outstanding selectivity
- Continuous duty rated 10 watt transmitter — rugged performance
- Excellent receiver sensitivity
- Patterned after ICOM's extremely successful and reliable IC-22S.
- APC circuit for protection of finals

Versatile.
- Easily set up for CAP/MARS use
- 8 pin mic connector
- 9 pin undedicated accessory socket
- Removable frequency selection option
- Compact size [6.2 in (W) x 2.3 in (H) x 8.6 in (D)]
Revolutionary
Instant Access Digital
Shortwave Scanner

- Continuous Scanning of LW, MW, SW, & FM Bands
- Instant Fingertip Tuning—No More Knobs!
- 6 Memories for Any Mode (AM, SSBICW, & FM)
- Dual PLL Frequency Synthesized—No Drift!

A WHOLE NEW BREED OF RADIO IS HERE NOW! No other shortwave receiver combines so many advanced features for both operating convenience and high performance as does the new Sony ICF-2001. Once you have operated this exciting new radio, you'll be spoiled forever! Direct access tuning eliminates conventional tuning knobs and dials with a convenient digital keyboard and Liquid Crystal Display (LCD) for accurate frequency readout to within 1 KHz. Instant fingertip tuning, up to 8 memory presets, and continuous scanning features make the ICF-2001 the ultimate in convenience.

Compare the following features against any receiver currently available and you will have to agree that the Sony ICF 2001 is the best value in shortwave receivers today:

DUAL PLL SYNTHESIZER CIRCUITRY covers entire 150 KHz to 29.999 MHz band. PLL1 circuit has 100 KHz step while PLL2 handles 1 KHz step, both of which are controlled by separate quartz crystal oscillators for precise, no-drift tuning. DUAL CONVERSION SUPERHETERODYNE circuitry assures superior AM reception and high image rejection characteristics. The 10.7 MHz IF of the FM band is utilized as the 2nd IF of the AM band. A new type of crystal filter made especially for this purpose realizes clearer reception than commonly used ceramic filters. ALL FET FRONT END for high sensitivity and interference rejection. Intermodulation, cross modulation, and spurious interference are effectively rejected. FET RF AMP contributes to superior image rejection, high sensitivity, and good signal to noise ratio. Both strong and weak stations are received with minimal distortion.

OPERATIONAL FEATURES
INSTANT FINGERTIP TUNING with the calculator-type key board enables the operator to have instant access to any frequency in the LW, MW, SW, and FM bands. And the LCD digital frequency display confirms the exact, drift-free signal being received. AUTOMATIC SCANNING of the above bands. Continuous scanning of any desired portion of the band is achieved by setting the "L1" and "L2" keys to define the range to be scanned. The scanner can stop automatically on strong signals, or it can be done manually. MANUAL SEARCH is similar to the manual scan mode and is useful for quick signal searching. The "UP" and "DOWN" keys let the tuner search for you. The "FAST" key increases the search rate for faster signal detection. MEMORY PRESETS. Six memory keys hold desired stations for instant one-key tuning in any mode (AM, SSBICW, and FM), and also, the "L1" and "L2" keys can give you two more memory slots when not used for scanning. OTHER FEATURES: Local, normal, DX sensitivity selector for AM; SSBICW compensator; 90 min. sleep timer; AM Ant. Adjust.

SPECIFICATIONS
CIRCUIT SYSTEM: FM Superheterodyne; AM Dual conversion superheterodyne. SIGNAL CIRCUITRY: 4 IC's, 11 FET's, 23 Transistors, 16 Diodes. AUXILIARY CIRCUITRY: 5 IC's, 1 LSI, 5 LED's, 25 Transistors, 9 Diodes. FREQUENCY RANGE: FM 76-108 MHz; AM 150-29,999 KHz. INTERMEDIATE FREQUENCY: FM 10.7 MHz.; AM 1st 66.35 MHz., 2nd 10.7 MHz. ANTENNAS: FM telescopic, ext. ant. terminal; AM telescopic, built-in ferrite bar, ext. ant. terminal. POWER: 4.5 VDC/120 VAC DIMENSIONS: 12¼ (W) X 2⅛ (H) X 6¼ (D). WEIGHT: 3 lb. 15 oz. (1.8 kg)

Tell 'em you saw it in HAM RADIO!
Dear HR:

Responding to your editorial in *ham radio*, December, 1980: The Bash situation is distasteful to many of us, but the practicalities of the situation remain. Memory plays a considerable part in all FCC exams, particularly Novice and Tech/General. There is no way to rationalize the FCC’s rules and regulations — one must memorize them.

Let’s face it, the majority of hams will not contribute to the technical advancement of Amateur Radio. (This is not to say that many non-technical do not contribute greatly to the advancement of ham communications, emergency and otherwise.) For years, FCC-type exam questions were published and answers given out, even by the ARRL. So why not give the answers? One could not very well memorize them all, and, indeed, if anyone did, he would have quite a knowledge of radio and electronics.

Harry A. Lord, K4QJ
Palmetto, Florida

Dear HR:

Congratulations on your editorial in the December issue on the West Coast publisher who solicits and sells FCC exam information.

Since June, I have written to the FCC, to *Worldradio*, and, most recently, to Senator Goldwater on this very topic, which I, too, consider to be a serious threat to Amateur Radio as we know and esteem it. I feel, however, that there has already been too much time wasted in discussion of this problem in ham publications. The time has come for action.

I therefore encourage all hams who share our concern to write to Senator Barry M. Goldwater, Senate Office Building, Washington, D.C. 20510 and to their own representatives in Washington, urging legislation which would prohibit solicitation and divulgence of federal exam information, and provide specific penalties for such activities.

Paul Ellis, KN6D
Santa Cruz, California

Dear HR:

I read with interest your editorial of December, 1980, concerning FCC exams. The publisher of the exams questions and answers is doing little more than what the ARRL has done for years. I recall in the late 1950s, when I was in high school, my friend and I studied for and passed the exams for Novice and General licenses by using flashcards prepared from the ARRL License Manual. We memorized the answers and passed the tests, and we learned in the process.

Since then, I’ve passed the exams for Amateur Extra Class, 2nd Class Radiotelegraph, and 1st Class Radiotelephone. I have built transmitters and test equipment and am working on a high-frequency synthesizer. Electronics is a complex and difficult science, and people who are trained in it often seem to forget the energy and time they devoted to their training. For those of us with no training, it is impossible to thoroughly study basic electronics in the hope that we will learn what we need to pass the test. FCC exams should be designed so that, through memorization, those who take the tests will learn what they need to know to competently operate a station and to have an idea how to fix one. Most Amateurs learn more after the ticket comes, by operating a station and maintaining it. Only a few Amateurs (usually with formal training) will make a contribution to the art. Amateur Radio is more effective in allowing thousands of untrained hams an opportunity to learn through experience. Your magazine is excellent. I understand only half of the articles, but I'm learning!

Dave Moorman, K9SW
Downers Grove, Illinois

Dear HR:

Reading your latest Observation and Opinion, I immediately thought of the licensing system in West Germany. You may complain about an individual Amateur. We over here should complain about the communications administration in this country, as they publish a brochure containing questions and answers concerning the Amateur license exams. These booklets were originally meant to provide a certain help to the examining committee (most of them usually non-Amateurs) but are available to the public as well. Making it even worse, most of the time the questions used in exams are exactly the same as those in this official publication. In some cases, even the values of voltage and current in some basic Ohm’s-law calculations were not even changed.

This leads to an entirely new type of Radio Amateur, which we could better call a “person licensed to participate on Amateur frequencies.” The majority of these people can be found on 2-meter VHF (mainly fm), as this band requires no code test. Also, quite a lot of them are ex-CBers (from an absolutely saturated 12-channel CB band).

Although the situation in the U.S. is much different from the one over here, I agree with your opinion that memorizing questions and answers is definitely not the right way to get a license. I could list enough examples of the outcome of that type of preparation to fill another letter, but I should say you should be aware about the aftermath. It seems much better to stop things like that right in the beginning than to try to teach people after they receive their license.

Gerhard Petri, DF7BL
West Germany
SPREAD SPECTRUM HAS BEEN OK'ed for experimental use on a number of Amateur bands. An FCC Special Temporary Authorization agreeing to a proposal by AMRAD (the Amateur Radio Research and Development Corporation), was handed to W4RI and WB3KDU on Thursday, March 6. It grants them and 23 other members of AMRAD permission to conduct experiments using the revolutionary broadband modulation technique for a one-year period on both HF and UHF frequencies.

Four Different Experiments were proposed in the AMRAD request, and all were authorized in the FCC's STA. The first is for HF "frequency hopping," with the band determined by propagation at a given time. Frequencies authorized are 3675-3775 kHz, 7050-7150 kHz, or 14100-14200 kHz. "Service frequencies," where pre-test CW or SSB announcements and other conventional-mode traffic will be handled will be 3725, 7100, and 14150 kHz. 10 Meters Will Be Used for the second experiment, also using frequency hopping between 29.3 MHz. The third experiment is a UHF "direct sequence" operation, utilizing 420-431 and 438-442 MHz to avoid possible conflicts with weak signal, OSCAR or FM users. Coordinated experiments with area ATV'ers and the Metrovision ATV group are planned. An E-M-E spread-spectrum experiment is also planned, operating on 432 MHz with bandwidths of from 16 kHz up to a megahertz.

Prior Warning Of The HF spread-spectrum operations is planned via WIAW and HR Report.

DIRE CONSEQUENCES FROM FCC budget cuts were spelled out by Acting Chairman Bob Lee in Capitol Hill testimony March 10. For private radio he noted the rules updating program (Plain Language Amateur Rules) would see serious delays, and that Amateur (and CB) license turn-around could slip from present 14-41 days to over two months. Rules enforcement efforts would also be reduced.

Field Offices Would Be Closed in Beaumont, Texas; Savannah, Georgia; Cincinnati; and Pittsburgh. Also closed will be the Anchorage Monitoring Station and the two Special Enforcement Teams that operate in Powder Springs, Georgia, and in Detroit. Finally, Lee predicted that the traveling exam program, now covering 77 cities monthly, quarterly, or annually, would become entirely annual.

A RAISE IN DUES TO $25 and League General Manager Dick Baldwin's announcement that he plans to retire next year were two of the highlights of the ARRL Board meeting in Orlando March 11-12. Though the League has operated in the black the past two years, rising costs and projections for the near future convinced the directors that the increase in dues was necessary. It's to become effective July 1, and until then annual members can extend their memberships at the present $18 rate. Members over 65 will get a break after July 1, a 20% discount on their dues.

The Ad Hoc Committee On Ethics presented an extensive report on suggested conduct in Future League elections, which was adopted by the board. They also agreed on a new bylaw establishing a procedure for recalling a League director. Expansion of General-class 75-meter phone privileges down to 3825 was proposed, but referred to the Plans and Programs Committee for study.

The Board also voted to discourage contest and awards use of the new 10.1-10.15 MHz band while it remains shared, and to petition the FCC to reinstitute issuance of the club station licenses.

MICROWAVE RADIATION KILLED a New York telephone company supervisor, the state's Workers' Compensation Board ruled recently in a decision believed to be the first official finding of its kind. The supervisor, who worked with TV relay equipment on the Empire State Building's 87th floor, died of "abnormal, premature aging" according to Dr. Milton Zaret, radiation specialist and professor at NYU Medical School. The supervisor, who lost his sight, hair, and coordination before dying at 58, had worked at the Empire State installation for eight years.

NEW REPEATERS NEAR THE NATIONAL Radio Astronomy Observatory and Naval Research Laboratory facilities must coordinate with the observatory and lab authorities, the Commission agreed recently. The action, which extends existing sanctions to Amateur repeaters in the quiet zone straddling the Virginia/West Virginia border and surrounding Green Bank and Sugar Grove, Virginia, applies only to new repeaters or modifications of existing machines. No already operating repeater, individual Amateur station, or mobile passing through the area is affected.

NEW CLUB STATION LICENSES are still a dead issue following the FCC agenda meeting March 26. A Petition For Reconsideration of Docket 21135, asking for new club station licenses and filed by the Capitol Hill ARS, was dismissed at the meeting without discussion or comment.

Any Club Whose Amateur License has been lost since the ban on new club licenses began in 1977 should contact Perry Williams at ARRL. He plans to discuss such cases with the Commission shortly.

MICROWAVE RADIATION KILLED a New York telephone company supervisor, the state's Workers' Compensation Board ruled recently in a decision believed to be the first official finding of its kind. The supervisor, who worked with TV relay equipment on the Empire State Building's 87th floor, died of "abnormal, premature aging" according to Dr. Milton Zaret, radiation specialist and professor at NYU Medical School. The supervisor, who lost his sight, hair, and coordination before dying at 58, had worked at the Empire State installation for eight years.

NEW REPEATERS NEAR THE NATIONAL Radio Astronomy Observatory and Naval Research Laboratory facilities must coordinate with the observatory and lab authorities, the Commission agreed recently. The action, which extends existing sanctions to Amateur repeaters in the quiet zone straddling the Virginia/West Virginia border and surrounding Green Bank and Sugar Grove, Virginia, applies only to new repeaters or modifications of existing machines. No already operating repeater, individual Amateur station, or mobile passing through the area is affected.

NEW CLUB STATION LICENSES are still a dead issue following the FCC agenda meeting March 26. A Petition For Reconsideration of Docket 21135, asking for new club station licenses and filed by the Capitol Hill ARS, was dismissed at the meeting without discussion or comment.

Any Club Whose Amateur License has been lost since the ban on new club licenses began in 1977 should contact Perry Williams at ARRL. He plans to discuss such cases with the Commission shortly.

MICROWAVE RADIATION KILLED a New York telephone company supervisor, the state's Workers' Compensation Board ruled recently in a decision believed to be the first official finding of its kind. The supervisor, who worked with TV relay equipment on the Empire State Building's 87th floor, died of "abnormal, premature aging" according to Dr. Milton Zaret, radiation specialist and professor at NYU Medical School. The supervisor, who lost his sight, hair, and coordination before dying at 58, had worked at the Empire State installation for eight years.

NEW REPEATERS NEAR THE NATIONAL Radio Astronomy Observatory and Naval Research Laboratory facilities must coordinate with the observatory and lab authorities, the Commission agreed recently. The action, which extends existing sanctions to Amateur repeaters in the quiet zone straddling the Virginia/West Virginia border and surrounding Green Bank and Sugar Grove, Virginia, applies only to new repeaters or modifications of existing machines. No already operating repeater, individual Amateur station, or mobile passing through the area is affected.

NEW CLUB STATION LICENSES are still a dead issue following the FCC agenda meeting March 26. A Petition For Reconsideration of Docket 21135, asking for new club station licenses and filed by the Capitol Hill ARS, was dismissed at the meeting without discussion or comment.

Any Club Whose Amateur License has been lost since the ban on new club licenses began in 1977 should contact Perry Williams at ARRL. He plans to discuss such cases with the Commission shortly.
MFJ-941C 300 Watt Versa Tuner II

Has SWR/Wattmeter, Antenna Switch, Balun. Matches everything 1.8-30 MHz: dipoles, vees, random wires, verticals, mobile whips, beams, balanced and coax lines.

MFJ-990 VERSA TUNER

Matches coax, random wires 1.8-30 MHz. Handles up to 200 watts output; efficient air-wound inductor gives more watts out. 5x2x6". Use any transceiver, solid-state or tube. Operate all bands with one antenna.

2 OTHER 200W MODELS:
- MFJ-901, $54.95 (+ $4), like 900 but includes 4.1 balun for use with balanced lines.
- MFJ-16010, $34.95 (+ $4), for random wires only. Great for apartment, motel, camping, operation. Tunes 1.8-30 MHz.

MFJ-984 VERSA TUNER IV

Up to 3 KW PEP and it matches any feedline. 1.8-30 MHz, coax, balanced or random. 10 amp RF ammeter assures max. power at min. SWR. SWR/Wattmeter, for rel. 2000/200W. 18 position dual inductor, ceramic switch. 7 pos. ant. switch. 250 pf 6KV cap. 5x14x14". 300 watt dummy load. 4:1 ferrite balun. 3 MORE 3 KW MODELS: MFJ-981, $209.95 (+ $10), like 984 less ant. switch, ammeter. MFJ-982, $209.95 (+ $10), like 984 less ammeter. SWR/Wattmeter. MFJ-983, $179.95 (+ $10), like 982 less ant. switch.

MFJ-949B VERSA TUNER II

MFJ’s best 300 watt Versa Tuner II. Matches everything from 1.8-30 MHz coax, randoms, balanced lines, up to 300W output, solid-state or tubes. Tunes out SWR on dipoles, vees, long wires, verticals, whips, beams, quads. Built-in 4:1 balun. 300W, 50-ohm dummy load. SWR meter and 2-range wattmeter (300W & 30W). 6 position antenna switch on front panel. 12 position air-wound inductor, coax connectors, binding posts, black and beige case 10x3x7".

MFJ-989 VERSA TUNER V

Ham Radio's most popular antenna tuner. Improved, too.

S0-239 connectors, 5-way binding posts, finished in eggshell white with walnut-grained sides.

4 Other 300W Models: MFJ-940B, $79.95 (+ $4), like 941C less balun. MFJ-945, $79.95 (+ $4), like 941C less antenna switch. MFJ-944, $79.95 (+ $4), like 945, less SWR/Wattmeter. MFJ-943, $69.95 (+ $4), like 944, less antenna switch. Optional mobile bracket for 941C, 940B, 945, 944, $3.00.

MFJ-962 VERSA TUNER III

Run up to 1.5 KW PEP, match any feed line from 1.8-30 MHz. Built-in SWR/Wattmeter has 2000 and 200 watt ranges, forward and reflected. 6 position antenna switch handles 2 coax lines, direct or through tuner, plus wire and balanced lines. 4:1 balun. 250 pf 6KV cap. 12 pos. inductor. Ceramic switches. Black cabinet, panel.

ANOTHER 1.5 KW MODEL: MFJ-961, $179.95 (+ $10), similar but less SWR/Wattmeter.

To order or for your nearest dealer CALL TOLL FREE 800-647-1800

For tech info., order or repair status, or calls outside continental U.S. and inside Miss., call 601-323-5869.

All MFJ products unconditionally guaranteed for one year (except as noted).

Products ordered from MFJ are returnable within 30 days for full refund (less shipping).

Add shipping & handling charges in amounts shown in parentheses.

Write for FREE catalog, over 80 products
WV-1A $64.95
FACTORY DIRECT
4 BAND
TRAP VERTICAL
(10 - 40 METERS)
No bandswitching necessary with this vertical. An excellent low cost DX antenna with an electrical quarter wavelength on each band and low angle radiation. Advanced design provides low SWR and exceptionally flat response across the full width of each band.

Featured is the Wilson large diameter High-Q Traps which will maintain resonant points with varying temperatures and humidity.

Easily assembled, the WV-1A is supplied with a mast mount bracket to attach to your favorite beam. A trap loaded antenna that performs like a mono-bander! That's the characteristic of this six element three band beam. Through the use of wide spacing and interlacing of elements, the following is possible: three active elements on 15 and four active elements on 10 meters. No need to run separate coax feed lines for each band, as the bandswitching is automatically made via the High-Q Wilson traps. Designed to handle the maximum legal power, the traps are capped at each end to provide a weatherproof seal against rain and dust. The special High-Q traps are the strongest available in the industry today.

SPECS
- 18' total height
- Self supporting - no guys required
- Weight - 14 lbs
- Input impedance: 50 Ω
- Power handling capability:
 - High Limit
 - Two High-Q traps with large diameter coils
 - Low angle radiation
 - Omnidirectional performance
 - Taper swaged aluminum tubing
 - Automatic bandswitching
 - Mast bracket furnished
 - SWR: 1.1 or less on all bands

ORDER FACTORY DIRECT
1-800-634-6898

GR-1 $14.95
The GR-1 is the complete ground radial kit for the WV-1A. It consists of 150' of 7/14 stranded aluminum wire and heavy duty egg insulators, instructions. The GR-1 will increase the efficiency of the WV-1A by providing the correct counterpoise.

33-6 MK $64.95
Now you can have the capabilities of 40-meter operation on the SYSTEM 36 and SYSTEM 33. Using the same type high quality traps, the 40-meter addition will offer 150 KHZ of bandwidth at less than 2:1 SWR. The new 33-6 MK will fit your present SY36, SY33 or SY3 and use the same single feed line. The 33-6 MK adds approximately 15' to the driven element of your tri-banders, increasing the tuning radius by 5 to 6 feet. This addition will offer an effective rotatable dipole at the same height of your beam.

SY-40 $349.95
3 MONOBANDERS
- on 1 Boom
- 4 elements on 20 mtrs
- FULL SIZE
- 4 elements on 15 mtrs
- 5 elements on 10 mtrs

The System 40 is the answer to the DXer who does not have space to stack monobanders yet wants the advantages they offer. Through the use of our split beta matching method, only one feed line is required and complete coverage of both the phone and cw bands are available with only one setting.

SPECIFICATIONS
- Matching Method: Split Beta
- Band Switching: Automatic
- Mast bracket furnished
- Self supporting - no guys required
- SWR: 1.1
- Weight: 75 lbs
- Shipping Weight: 97 lbs

SY-36 $209.95

A trap loaded antenna that performs like a mono-bander! That's the characteristic of this six element three band beam. Through the use of wide spacing and interlacing of elements, the following is possible: three active elements on 15 and four active elements on 10 meters. No need to run separate coax feed lines for each band, as the bandswitching is automatically made via the High-Q Wilson traps. Designed to handle the maximum legal power, the traps are capped at each end to provide a weatherproof seal against rain and dust. The special High-Q traps are the strongest available in the industry today.

SPECIFICATIONS
- Wind Loading @ 80 mph: 309 lbs
- Assem. Weight: 75 lbs
- Shipping Weight (approx.): 97 lbs

SY-33 $159.95

A boom-to-element mount consists of two 1/8" thick formed aluminum plates that provide more clamping and holding strength to prevent element misalignment. Superior clamping power is obtained with the use of a rugged 1/4" thick aluminum plate for boom to mast mounting. The use of large diameter High-Q traps in the SYSTEM 33 makes it a high performance tri-band and at a very economical price. A complete step-by-step illustrated instruction manual guides you to easy assembly and the lightweight antenna makes installation of the SYSTEM 33 quick and simple.

SPECIFICATIONS
- Wind Loading @ 80 mph: 114 lbs
- Assem. Weight (approx.): 37 lbs
- Shipping Weight (approx.): 42 lbs
- Direct 50 ohm feed: No Balun Required
- Maximum Wind Survival: 100 mph

ORDER FACTORY DIRECT
1-800-634-6898

WILSON SYSTEMS, INC. 4286 S. Polaris Ave., Las Vegas, Nevada 89103

Prices and specifications subject to change without notice.
MORE KEYER FEATURES FOR LESS COST

AEA Invites You to Compare the AEA Keyer Features to Other Popular Keyers on the Market.

MM-1
[Image of MM-1 Keyer]

MorseMatic™
Keyer Trainer

<table>
<thead>
<tr>
<th>IMPORTANT KEYER AND/OR TRAINER FEATURES</th>
<th>AEA MM-1</th>
<th>AEA KT-1</th>
<th>AEA MT-1</th>
<th>AEA CK-1</th>
<th>AEA MK-1</th>
<th>COMPEITITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Range (WPM)</td>
<td>2-99</td>
<td>1-99</td>
<td>1-99</td>
<td>1-99</td>
<td>2-99</td>
<td>8-50</td>
</tr>
<tr>
<td>Memory Capacity (Total Characters)</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>100/400</td>
</tr>
<tr>
<td>Message Partitioning</td>
<td>Soft</td>
<td>Soft</td>
<td>Hard</td>
<td>Hard</td>
<td>Hard</td>
<td></td>
</tr>
<tr>
<td>Automatic Contest Serial Number</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Selectable Dot and Dash Memory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Independent Dot & Dash (Full) Weighting</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Calibrated Speed, 1 WPM Resolution</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Calibrated Beacon Mode</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Repeat Message Mode</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Front Panel Variable Monitor Frequency</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Message Resume After Paddle Interrupt</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Semi-Automatic (Bug) Mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Real-Time Memory Loading Mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Automatic Word Space Memory Load</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Instant Start From Memory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Message Editing</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Automatic Stepped Variable Speed</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2 Presettable Speeds, Instant Recall</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Automatic Trainer Speed Increase</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Five Letter or Random Word Length</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Test Mode With Answers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Random Practice Mode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Standard Letters, Numbers, Punctuation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>All Morse Characters</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Advertised Price</td>
<td>$199.95</td>
<td>$129.95</td>
<td>$99.95</td>
<td>$129.95</td>
<td>$79.95</td>
<td>$139.95</td>
</tr>
</tbody>
</table>

OPTIONS:

 MT-1P (portable version of MT-1) with batteries, charger, earphone $139.95
 ME-1 2000 character plug-in memory expansion for MM-1 $59.95
 AC-1 600 Ma. 12 Volt wall adaptor for MM-1 with ME-1 $14.95
 AC-2 350 Ma. 12 Volt wall adaptor for all AEA keyers and trainers except MM-1 with ME-1 $9.95
 DC-1 Cigarette lighter cord for all AEA keyers and trainers except MT-1P $5.95
 MT-1K Factory conversion of MT-1 to KT-1 $40.00

All our keyers (except the MT-1) will operate with any popular single lever or lamplastic squeezer paddle and will key any type of modern amateur transmitter with no external circuitry required. AEA keyers are as easy to operate as a four function calculator. The internal AEA computers are all pre-programmed for the features shown above. Each AEA product is fully RF protected and receives a complete elevated temperature burn-in and test before it is shipped from the factory.

Ask a friend how he likes his AEA keyer compared to anything else he has ever tried, then JUDGE FOR YOURSELF. See the AEA keyer and trainer family at your favorite dealer.

Advanced Electronic Applications, Inc., P.O. Box 2160, Lynnwood, WA 98036. Call 206/775-7373

AEA Brings you the Breakthrough!

May 1981
re-entrant cavity antenna
for the VHF bands

Ideas for the experimenter interested in mobile antennas

This article introduces the Radio Amateur to a recently patented UHF-VHF mobile whip antenna* of unique design, the answer to the "intermod alley" problem that has plagued 2-meter mobile operation. While not precisely a construction article, this paper provides sufficient background for experimentation and construction.

Amateur Radio operators have had to contend with the steadily increasing problem of interference ever since the early days of radio communications. New designs and inventions have been steadily introduced to reduce or eliminate the various types of interference that have appeared.

With the greatly increased use of 2-meter mobile operation in recent years, intermod and desensitization have been major problems, especially because of the closeness in frequency of neighboring commercial bands. The problem is not, by any means, unique to Amateur Radio; it's just as troublesome to commercial two-way radio.

Because the frequencies most widely used by Radio Amateurs for mobile operations are in the 2-meter band, all references and discussions relate to this band unless otherwise indicated. However, the principles and practices may be applied to all VHF-UHF bands, both Amateur and commercial.

interference

Critical voltage and current levels exist in the front end stages of the receiver section of the typical mobile transceiver. A strong local signal, even far removed in frequency, can get into the front end and upset those critical levels, causing considerable degradation in receiver sensitivity. This phenomenon is known as overloading or blocking and is referred to as desensitization, or desense. It is very common in VHF mobiles operating in metropolitan and industrial areas.

Another serious type of interference that plagues VHF mobile radio is intermodulation distortion, or intermod. This problem occurs when two or more strong local signals of different frequencies invade the front end of the transceiver receiver section, which is a nonlinear device capable of mixing, producing one or more new signals. If one of the new signals falls on or near the frequency being received, interference will result in the form of crosstalk or peculiar noises and, in many cases, will completely obliterate the desired signal.

A major source of intermod and desense in the 2-meter band is from the 150-170 MHz band, which is used extensively by commercial and governmental services. This problem is especially acute in the business areas of large cities, where certain sections have been dubbed "intermod alley."

Image frequency is sometimes a problem where the Radio Amateur is operating mobile in the vicinity of an airport. It's apparent that, with a 10.7-MHz i-f and a local oscillator that can be varied between 133.3 and 137.3 MHz, air traffic on frequencies between 122.6 and 126.6 MHz could get into the receiver front end and cause interference in the 2-meter band.

Often, interference may result when the mobile radio is in the strong-signal area of high-powered TV and fm broadcast stations whose frequencies are far removed from the 2-meter band. This interference occurs when the sum or difference frequencies of the two broadcast stations fall on or near the received frequency in the 2-meter band. Example: The mobile antenna receives both the video signal of TV channel 2 (55.25 MHz) and the audio signal of an fm station (91.3 MHz). Both signals mix in the receiver front end and produce an interfering signal on 146.55 MHz in the form of a broad, garbled audio mixed with video hash.

The examples mentioned above represent only a few of the many interference-causing combinations that might exist. All have one thing in common:

*U.S. Patent 4,128,840. December 5, 1978. For those wishing copies of the patent, I will supply eight-page copies for $1.00 postpaid in the U.S.A.

By William Tucker, W4FXE, 1965 South Ocean Drive, Apt. 15G, Hallandale, Florida 33009
they're caused by unwanted out-of-band signals received by an antenna and fed to a vulnerable receiver front end.

countermeasures

The majority of transmitting and receiving antennas used in UHF-VHF mobile service are broadband. Although resonant at one frequency or band of frequencies, the antenna will receive signals far removed in frequency and feed them through the coax line to the receiver. The method of keeping such signals out of the receiver front end is to use highly selective bandpass filters. Not much can be done to keep unwanted in-band signals out, as the bandpass filter and the receiver front end are usually designed to accommodate the entire desired band.

At VHF or UHF, to obtain the high Q necessary for effective bandpass filtering, conventional lumped-constant components, such as coils and capacitors, will not suffice. The designer must resort to cavity resonant circuits (discussed later).

Manufacturers of Amateur Radio equipment have recognized the severity of the interference problem and have incorporated into their transceivers a hybrid cavity bandpass filter known as the helical resonator. This filter has helped the situation. However, in many cases, manufacturing engineering compromises leave something to be desired.

Helical resonators have gained wide acceptance because of their small size and the fact that they can be mounted directly onto the PC board close to the receiver front end. While this bandpass filter is effective in attenuating out-of-band signals that arrive through the antenna, very strong signals may still find their way into a vulnerable front end because of the closeness of the resonators to sensitive circuitry.

resonant re-entrant cavity

A resonant cavity is an enclosure, or partial enclosure, of any size or shape with conducting walls or surfaces that can support oscillating electromagnetic fields within it. It will have certain resonant frequencies when excited by radio-frequency currents. The basic paper on cavity resonators was written by Hansen in 1938. When such an enclosure includes a re-entrant section, the electrical and magnetic fields tend to concentrate in different parts of the cavity, thereby relating to a circuit with lumped constants. The magnetic field is concentrated around the re-entrant section base, and the electric field is at a maximum at the open end, fig. 1.

Quarter-wavelength cavity. A quarter wavelength of coaxial cable or concentric transmission line short-circuited at one end has properties similar to those of a parallel-resonant circuit. The resonant re-entrant cavity can be considered a wide-diameter section of concentric transmission line short-circuited at one end with air as the dielectric, fig. 2. This type of cavity has been used as a very high Q coaxial tank circuit in VHF-UHF transmitters and has been widely used as a bandpass filter.

At the short-circuited end of a re-entrant cavity, rf current is maximum, requiring very high conductivity surfaces and a very low rf resistance connection.
between inner and outer conductors. Because of the prevalence of skin-effect at VHF and UHF, a surface plating of copper or silver is often used to ensure high conductivity, resulting in high Q throughout the cavity interior surfaces. In all discussions relating to re-entrant cavities, references to the outer conductor or housing indicates the interior surface only; references to the inner conductor indicates outer surface only. The housing exterior and the inner-conductor interior (if tubing is used) are cold insofar as rf is concerned and are at ground potential.

A very high impedance exists at the open end of the re-entrant cavity and is an area of high rf voltage. Where insulation is required in this area, great care must be used in the choice of low-loss material to prevent degradation of the very high Q. It’s desirable, from an optimum-Q standpoint, to make the center conductor of a resonant re-entrant cavity a full quarter wavelength. The frequency may then be adjusted by varying the conductor length within the cavity housing. In cases where the center conductor and its housing must be made shorter than a quarter wavelength, both will present an inductive reactance and will require the addition of capacitive reactance to achieve resonance.

In practice, this is readily accomplished by adding a capacitor across the open end of the cavity. Of course, using a variable capacitor makes it convenient to adjust this shortened length to the desired frequency, fig. 3. Actually, the physical length of a quarter wavelength center conductor is less than its electrical length because of the shunting effect of the stray capacitance that exists due to the proximity of the housing to the open end of the center conductor. It is axiomatic that, as frequency is increased, the optimum length of the cavity can be decreased.

While the cavity length and its inner conductor determine frequency, the outer-conductor diameter and its ratio to the inner conductor are important in determining optimum Q. According to Terman, a ratio of 3.6 is considered optimum and, while maintaining that ratio, a further increase in Q is directly proportional to an increase in outer-conductor diameter within practical limits.

Half-wavelength cavity. The resonant re-entrant cavity may also be designed as a half-wavelength device, which also can be shortened by capacitive loading, fig. 4. In this design, which becomes practical as frequency is increased into the UHF range, the principles and practices are similar to those regarding...
the quarter-wavelength cavity. In the half-wavelength version, the two short-circuited ends are high current areas, while the center is the point of high voltage, where a variable capacitor is used to tune the cavity to resonance. Note that a 3/4-wavelength cavity has characteristics similar to those of the more widely used 1/4-wavelength cavity.

Helical resonator. The helical resonator (fig. 5) is a hybrid re-entrant cavity in which the center conductor has been shortened into the form of a helix placed inside a small cavity housing. While the Q of this hybrid is less than that of the conventional larger-size cavity, two or more can be cascaded in a small space to provide increased skirt selectivity with a broader bandpass characteristic. The design of helical resonators has been fully covered in another article.3 For those who wish to investigate further, an original paper was presented by Macalpine and Schildknecht,4 followed by several other important papers.5,6 The RSGB VHF-UHF Manual also covers the subject quite well.

Re-entrant cavities and their many hybrids have been designed in many different shapes and sizes. They are referred to as coaxial filters, cavity bandpass filters, trough-lines, striplines, microstriplines, combines, interdigitals, and helicals. They have one thing in common: all are in the re-entrant cavity family.

coupling

The manner and magnitude in which rf energy is coupled into and out of a resonant re-entrant cavity plays an important role in determining the selectivity, insertion loss, and impedance; all are interrelated.

Coupling may be accomplished by three basic methods; electromagnetic coupling using pickup loops, electrostatic coupling using capacity probes, and by direct connection to the inner conductor. A combination of these may be used, depending on the specific application.

When dealing with low impedances such as encountered with coaxial-cable transmission lines,
pickup loops are usually used. In some cases, direct connection to low-impedance positions on the inner conductor is used, especially where cavities are connected in cascade. Capacitive probes provide a convenient method of feeding energy to or from high-impedance circuits. Some coupling configurations are shown in fig. 6.

Insertion loss. The insertion loss in a resonant re-entrant cavity depends on several factors, which include the cavity size, type of materials used in the construction, and the type and degree of coupling. Close coupling will decrease the insertion loss but will adversely affect selectivity; conversely, loose coupling will have the opposite effect.

Pickup loops are usually placed in the area of the high electromagnetic field, which exists at the short-

fig. 6. Some coupling configurations. (A) and (B) space coupling; (C) and (D) capacitive-probe coupling; (E) link coupling.

fig. 7. Re-entrant cavities connected in cascade. (A) and (B) aperture coupling; (C) and (D) capacitive-probe coupling; (E) link coupling.
circuited end of a resonant re-entrant cavity. Coupling is increased as the loop is positioned closer to the center conductor, as the enclosed area of the loop is increased, and as the plane of the loop is oriented to enclose a maximum of magnetic flux. The opposite of this action will reduce coupling. Capacitive probes are used to couple into and out of the electrostatic field, which exists at the open, high-impedance, end of the cavity. Coupling is increased as the probe is positioned closer to the center conductor.

Impedance matching. Impedance matching with loops isn’t critical and is usually determined experimentally to obtain empirical guidelines inasmuch as the size, shape, and positioning will affect results. More precise design calculations are possible when direct connection is made to the center conductor when that method is called for. In most cases, an engineering compromise must be made in a particular application to obtain the desired selectivity, insertion loss, and impedance match.

Cascade coupling. Where more than one cavity is to be used in cascade, several coupling methods may be used, as shown in fig. 7. The degree of coupling is determined by the size of the window in aperture coupling, the interconnecting loops in loop coupling, and the proximity of the capacitive probes in capacitive coupling. In all cases, critical coupling will provide a greater usable bandwidth with steeper skirt selectivity, as shown in fig. 8.

The discussion above only scratches the surface with regard to resonant re-entrant cavity principles and practices. More detailed technical and construction information will be found in the literature listed in the bibliography.

A worthwhile project — basic cavity

For readers who wish to acquire a working acquaintance with re-entrant cavities, I strongly suggest the building of a simple, basic cavity. All that’s required is a coffee can and a few parts usually found in the average junk box. Parts required are a 1- or 2-pound coffee can, a 50-pF variable air dielectric capacitor with a knob shaft, two coaxial-cable sockets, a center conductor made of copper or brass tubing anywhere from 1/4 to 1 inch (6.5-24.4 mm) OD, and a short length of No. 12 (2.1-mm) copper wire for the pickup loops.

Construction. Using fig. 9 as a guide, make an opening in the center of the bottom of the can to provide a tight fit to the center conductor and solder securely in place. An alternative method is to solder the center conductor to a coax connector hood such as the UG-177/U or UG-106/U, then attach the assembly to the bottom plate with four machine screws and/or solder, fig. 10. Mount the variable capacitor close to the top of the can. Solder the stator to the center conductor using as short a lead as possible.

Make certain that the rotor wiper is clean. Ground it directly to the inside of the can. Mount the two sockets diametrically opposite each other about 3 inches (76 mm) above the base. Solder pickup loops
By experimenting with this simple re-entrant cavity, you should become familiar with its capabilities and also find it to be a useful piece of equipment in your 2-meter work.

five-eighth wavelength mobile whip antenna

For mobile operation in the 2-meter band, the 5/8-wavelength whip antenna has gained considerable popularity because of its widely publicized 3-dB gain over a 1/4-wave ground plane antenna. Gain figures for vertical antennas can be very confusing and not too meaningful unless referred to a particular vertical angle of radiation. For example, when compared with a 5/8-wavelength vertical, the 1/4-wavelength vertical may provide more gain at high angles and as shown. Other loop configurations that can be used are shown in fig. 11.

Checkout. Insert the re-entrant cavity into the transmission line as shown in fig. 12. Select a weak signal in the 2-meter band and tune the variable capacitor for maximum response; don’t be surprised at the very sharp tuning. On low-power transmit, readjust the capacitor slightly for the lowest SWR reading. Without disturbing the cavity tuning, change the transmit frequency about 1 MHz up, then down, and observe the change in SWR. This will give you a good idea of the selectivity of this re-entrant cavity. If you use a dummy-load and wattmeter instead of an antenna to make this test, you can correlate the SWR change with power-output change.

Try bending the pickup loops with long-nose pliers so that they extend closer to the center conductor. Your measurements should show a bandwidth increase, as evidenced by less change in SWR and power output as you repeat the first test. Then try bending the loops toward the housing; you should then notice a narrowing of the bandwidth, fig. 13.
less gain at very low angles. A direct comparison without reference to the vertical angle is like comparing apples to oranges.

In 2-meter mobile operation, where in most areas a low vertical radiation angle is highly beneficial, the 5/8-wavelength vertical outperforms the 1/4-wavelength vertical by about 3 dB. The chart in fig. 14 shows a theoretical comparison between verticals of various lengths. An excellent discussion on this subject is presented by Lee and Schultz.

The 5/8-wavelength vertical antenna exhibits a radiation resistance of well under 100 ohms, which makes for convenient matching to a low-impedance transmission line, fig. 15. Because 5/8-wavelength is a nonresonant length, it appears highly capacitive in reactance (fig. 16) and requires the addition of sufficient inductive reactance to achieve resonance. As shown clearly in both figs. 15 and 16, the ratio of length to diameter, A/D, has a decided effect on the radiation resistance and reactance of a 5/8-wavelength vertical antenna.

Inductive reactance may be obtained for a 5/8-wavelength vertical antenna simply by using a small resonator coil at the antenna base. A section of coaxial cable, shorted at one end and less than a quarter-wavelength long, is equivalent to an inductive reactance and also can be used. Various combinations of coils, with or without capacitors, may be used to resonate a 5/8-wavelength whip antenna, as shown in fig. 17.

When measuring the length of a 5/8-wavelength vertical antenna, the physical length of the resonator assembly should be included unless it’s shielded and at ground potential so that it doesn’t radiate. (Note that there is a small insertion loss in the use of any type of resonator.)

Resonant Re-entrant Cavity Whip Antenna

The resonant re-entrant cavity whip antenna evolved as the result of an attempt to provide a means of eliminating the chronic interference problem that plagues 2-meter operation throughout the “intermod alleys” of our country.

fig. 15. Terminal resistance as a function of antenna length. A/D is the ratio of antenna length to diameter. 10

fig. 16. Terminal reactance as a function of antenna length. A/D is the length/diameter ratio. 10

A re-entrant cavity is used to replace the usual base resonator used in the 5/8-wavelength whip antenna to provide much-needed bandpass filtering right at the antenna itself where it is most effective. In this manner, unwanted out-of-band signals will be attenuated before they enter the transmission line and ultimately reach a vulnerable receiver front-end.

At this point, you might question the need for this type of antenna for use with your latest-model transceiver with built-in helical resonators. The answer is self-evident in the fact that the proximity of these resonators to the receiver front end on the PC board still allows very strong unwanted signals to leak through and excite highly sensitive circuitry. Also, in many cases, due to space limitation and cost considerations, engineering compromises result in barely adequate helical resonator assemblies. Therefore, the use of this type of antenna will provide the additional bandpass filtering needed to enhance the ability of the receiver to reject unwanted signals.

Of course, in transceivers that don’t have built-in helical resonators, the use of this type of antenna will be dramatically effective. In either case, because this antenna will be used in transmit as well as receive mode, bandpass filtering will attenuate spurious emissions, re-radiated intermod, and white noise.

As in all resonators, the re-entrant cavity used in
this antenna has a small insertion loss at resonance, which is about the same as the loss in the usual resonator that it replaces. However, there are bandwidth limitations under certain conditions which will be discussed later.

Coffee-can cavity. For those who wish to do a little experimental work to get the feel of this type of antenna, it's a simple matter to attach a 5/8-wavelength whip (about 48 inches or 122 cm) to a coffee-can type of re-entrant cavity as shown in fig. 18.

Construction and adjustment. Two strips of aluminum foil 45 inches (114 cm) long and about 4-5 inches (10-13 cm) wide placed under the can and grounded to it on any flat surface will provide an adequate ground plane. With an SWR meter in the feedline, tune the cavity for the lowest reading, which

fig. 20. Example of other workable re-entrant cavity designs.
fig. 23. Other workable 2-meter 5/8-wavelength resonant re-entrant cavity whip antennas using cascaded cavity resonators.
may be too high. Adjust the antenna feed pickup loop until the SWR is very low at resonance; the whip has now been resonated. The input loop may now be repositioned and reshaped for the desired degree of selectivity versus insertion loss. Keep in mind that all adjustments are interdependent.

Fig. 19 shows two views and a schematic diagram of a resonant re-entrant cavity whip antenna in a more sophisticated configuration that has an external appearance similar to that of the usual 5/8-wave-length whip antenna. The cavity section is about 7 inches (18 cm) long and 1 1/2 inches (3.8 cm) in diameter.

To provide this concentric configuration, the input pickup loop, A, is fed through an opening in the center conductor, B. The insulation, C, and the lead wire passing through it actually extend the coaxial cable feedline to the loop opening. The antenna pickup loop, D, enters an opening very close to the top of the center conductor and feeds through the Teflon insulator, E, to the set screw adapter, F. The cavity is tuned to resonance by the variable air-dielectric capacitor, G, with a screwdriver adjustment at H.

The entire interior assembly is self-supporting and is held together by center conductor B, insulator E, top plate J, bottom plate K, and the variable capacitor, G. This allows the outer conductor to be removed for internal adjustments.

This antenna may be installed and grounded to the vehicle, N, using the coaxial connector, P, and its nut and lockwasher. The rubber gasket, R, provides a weatherproof seal to the vehicle body.

This model is just one example of how a 5/8-wave-length resonant re-entrant cavity antenna can be built. A sampling of other workable configurations in semi-schematic form for the 2-meter band is shown in fig. 20. Additional configurations, which are practical only for the higher-frequency bands, are shown

![Diagram of a resonant re-entrant cavity whip antenna with labels for each component.]

fig. 24. Designs for use on 220 MHz and higher bands. One-half wavelength resonant re-entrant cascaded cavities are shown in (A). One-quarter wavelength cascaded cavities are shown in (B).
Unfortunately, to obtain fairly high rejection of out-of-band signals 3-6 MHz away in frequency, such as encountered with interference from the 150-170 MHz commercial band, the usable bandwidth of a single-section cavity antenna is limited to less than 1 MHz. By using very tight coupling, the bandwidth can be increased considerably but at the expense of selectivity. Where the interference is from fm and TV broadcast stations, tight coupling will still provide sufficient selectivity. The solution to this problem is to use two re-entrant cavities fed in cascade which will, when critically coupled, provide a wider bandwidth with steeper selectivity skirts, as previously discussed.

another model — the helical resonator

Fig. 22 shows two views and a schematic diagram of a resonant re-entrant cavity whip antenna using two helical resonators aperture-coupled to each other. The input coaxial cable is fed to a low-impedance tap, A, on the input coil, B. This coil is tuned to resonance by a variable piston-type capacitor formed by C and piston D and is tuned by screwdriver adjustment, E. The tap on the antenna coil is fed through the Teflon insulator, F, and is attached to the set-screw whip adapter, G. The aperture in the center-shield partition provides the magnetic coupling between the resonators.

The entire assembly is self-supporting so that the outer conductor, H, can be removed for adjustment. This antenna may be installed and grounded to the vehicle in the same manner as the antenna previously described.

With the helical resonator, the aperture size is increased experimentally until critical coupling is noted by increased bandwidth and steeper selectivity skirts. The taps on the coil are determined to match the coaxial-cable impedance to that of the antenna. Tuning adjustment of the antenna coil will automatically resonate the 5/8-wavelength whip section. As in the other model, the resonator is tuned for minimum SWR.

This cascaded model is just one example of a dual-cavity whip antenna. Fig. 23 shows other workable configurations for the 2-meter band, and fig. 24 shows additional models for the higher-frequency bands.

microstripline antenna

A 5/8-wavelength whip antenna can also be built using another hybrid variety of the re-entrant cavity known as the microstripline, which consists of a two-sided PC board etched on one side only.

One side is the groundplane, and the other side is etched into strips, as shown in fig. 25. In this dual-section design, coupling is usually accomplished between sections at the high-impedance end with a small variable trimmer capacitor. The Q of this type of resonator is less than that of a helical resonator and has more restrictive power-handling capabilities. However, it should provide some interesting possibilities for the experimenter. The late Jim Fisk wrote a comprehensive article on microstripline design in 1978. Also several articles by Shuch in recent years cover the subject quite well.

conclusion

The resonant re-entrant cavity whip antenna, within its limitations, would provide Amateur Radio experimenters with a lot of new territory. I welcome comments from those who delve into it.
references

bibliography

Jim

A Tug at Your Memory

By John C. Flippin, W4VT*

It was 1935 and the Great Depression was upon the land: people out of work, no money to pay the grocer, lines of men outside the Salvation Army building waiting for a cup of soup, men on street corners selling apples for a nickel. Walking down the boulevard, one was approached by ragged-looking souls, always with the same question: "Brother, can you spare a dime?" Yes, the country had fallen onto bad times. But, paradoxically, Amateur Radio grew at a phenomenal rate during this era. Perhaps the following story might contain a clue. Thanks to Laird Campbell of QST for allowing us to reprint the story of Jim. Editor

The fire in the shack of the university radio station burned low and conversation lagged. Every now and then someone yawned lustily. The hands of the old clock pointed to five minutes after two, yet half a dozen seniors lingered, for the fire was magnetic, the walk back to the dormitory and fraternity houses long; and the night was cold. Lazy, feathery flakes, beginning to drift down at midnight, had changed to a fine, peppery mist swirling in from the north, and the wind moaned down the chimney in icy cadences.

Jug Southgate stood up and stretched.
"See you mugs in church," he grunted, looking around for his overcoat.
"Wait a minute. I will let you walk with me. Hey! get your big feet off me!"
"Freshman, where are the earmuffs?"

"Right here, sir."
"Put them on at once. Anybody would think you had no modesty at all."
"Get up! Get up!"
"Coming, Ivy?"
"Let's go."

Exiled in a shadowy corner, a group of freshmen had been listening in respectful silence. Now they rose, after a discreet interval, and removing their sky blue caps from their hip pockets placed them carefully on the backs of their heads. Beside them stood a little fellow who was busily engaged in wrapping a rather frayed scarf around his small neck. Judging from his stature he could not have been much older than fourteen, and he looked very small and out of place beside them. The shadows from the fire treated mercifully the worn places on the elbows of the coat which was so obviously designed for a larger occupant; they shielded understandingly the worn, cracked shoes with the scuffed toes.

His name was Jim. Nobody knew much about him except that he lived up in town somewhere, and that every Saturday night he appeared at the shack, slipping quietly into a seat amid the shadows in the corner, and listened with rapt attention to every word that anyone uttered. He always stayed until the group of fellows broke up. Jim replied feebly and shyly to those who would talk to him,
apparently embarrassed at the attention. His face and hands were very thin and his eyes were very bright. He was a small outsider looking in on a gathering with which he could join only in spirit. College would never be for Jim.

The wind whined savagely. A flurry of snow beat a faint tattoo on the window.

"Ouch!" muttered Ivy. "Listen to that!"

Jug cast his gaze around as he pulled on his gloves. The staccato clatter of the keying relay in the adjoining room reminded him to caution Parkes about playing the end of the band too closely since the multivibrator was down for revamping. Turning back, his glance rested for an instant on Jim stretching his hands out to give them a last warming. Something about the little fellow's appearance arrested Jug's attention. Maybe it was the tattered edge of that scarf about Jim's ears.

"What do you say over there, sport?"

Jim didn't notice.

"You over there by the fire! Got a way to get in?"

Jim looked up, and saw Jug looking at him. He straightened up quickly and thrust his hands into his coat pockets.

"Sir?"

"Got a ride into town with somebody?"

"No."

"What are you going to do — walk?"

"Yes," answered Jim.

"Pretty long way, isn't it?"

A pause.

"Not so much."

Jug embarrassed Jim a great deal, because Jug was the chief operator and wore sterling crossed bars of chain lightning on the shoulder of the navy blue jersey. There was no greater this side of Heaven, save perhaps the three comprising the transmitting staff.

Jug shoved his pipe in his mouth and turned the bowl down. He squinted up at the clock.

"Hold on, frosh!"

He pulled off his gloves and searched in his hip pocket, producing nothing but a handkerchief and a crumpled pack of cigarettes.

"Can't find 'em. Listen! You know where the Sigma House is? OK — you go over there and look around in the back. My iron ought to be there, but if it isn't, get any of them that will start. You know mine?"

"Yes, sir."

"Look around in the front seat and find you a hairpin or something and short around the switch under the dash. You know?"

"Yes, sir."

"And hurry up, frosh!"

Rather bewildered, Jim listened.

"I can get there all right," he said finally.

Jug grunted and sat down.

"Where do you live in town?"

"Er — down by the depot. The third house from the corner."

"Guess you know all the trains."

"I guess so. The freights make an awful lot of QRM when I'm trying to listen."

Jug stuffed his pipe slowly and extracted an ember from the hearth.

"YOU one of these amateurs, too?"

"Yes, that is — I mean, I have a station, but it's not much good, I guess."

A flicker of surprise crossed Jug's persistently sunburned countenance.

"Didn't know there was another station within fifty miles of here," he admitted. "What do you use? Never heard you."

"A 201-A," answered Jim.

The rectifiers down below howled faintly.

"Any DX?" asked Jug, quizzically, glancing at the little chap out of the corner of his eye.

"No, I — you see, I never worked anybody."

"What's the trouble?"

Jim stopped the nervous movements of his small hands and wiggled his thumb, just to see if it would wiggle.

"I don't know."

"Just don't come back, eh?"

"No."

"Call many of them?"

"Yes, I — well, I call a lot of fives and nines and fours."

"Sure you're in the band?"

"Yes."

"How do you know?"

"I cover up my receiver with a cracker box and then I can hear the transmitter. After I take off my receiving aerial," he added.

Jug looked at Jim for an instant, and then gazed again into the fire. There was a pause while Jim twisted
his small, thin hands nervously.

"I know it’s putting out," said Jim, faintly, "because I get a burn."

"Burn, eh?"

"Yes."

"Just don’t come back."

"No."

The pity of it.

"Much of a burn?"

"Well, I can feel it on the back of my finger." Jim held up the radio frequency detector.

"How long have you been trying to raise them?"

"Since about May — I mean, April."

"Nine months."

"Yes," answered Jim, after a pause.

Jug exhaled a cloud of smoke through his nose and regarded the fire. Some game, this! Nine months and never a break.

There was a droll rattle of contactors down below, followed by a volley of clicks in the adjoining room.

"What made that?"

"Sounds like he switched in the ‘7’ — the forty-meter rig."

"You mean he’s using another set, now?"

"Just the amplifier. Switched over the exciter from the 80-meter to the 40-meter amplifier."

"Oh!"

"Sit down! Sit down! Make yourself comfortable. Guess it’ll be about fifteen minutes, yet."

Jim slid cautiously into the nearest chair. Suddenly he turned and regarded Jug inquiringly.

"Would you mind — I mean, would it be all right if I looked in there?" he asked, pointing to the transmitter room.

"Sure! Go ahead. Help yourself. Wouldn’t get too close, though, to the one nearest this side."

Jim opened the door cautiously and craned his small neck. He stood transfixed for long minutes.

"Gee!" he whispered.

"Look all right?" Jug asked, pulling his pipe apart and blowing through it with two short snorts.

"Gee!" said Jim again.

Five minutes passed with only the wind, the old clock, and the keying relay breaking the silence.

Jug looked at the swirl of smoke ascending the broad black throat of the chimney, and his thoughts travelled back to a day — so long ago, it seemed — when that UV-202, its plate glowing brightly, brought the antenna ammeter to life. As he recalled, the pointer moved over about a thirty-second of an inch, but at the time, it looked like a foot!

And then that red-letter day. He had just called CQ. It was just one of many scores of CQ’s. There was nothing to distinguish it from all the others except that on this occasion 9EKY in St. Louis came back. The wild shout that brought the gardener, the chauffeur, and both maids breathless to the sanctum over the garage was not, as they feared, Mr. Edward Southgate III getting a mortal shock from his peculiar conglomeration of wires and sparkling Mason fruit jars, but merely the result of Mrs. Southgate’s youngest son making contact number one with his trusty bottle!

Jug looked at Jim standing in the door. The frayed scarf. The worn old overcoat hanging awkwardly from his small body.

"Know the code pretty well?" Jug asked, rising slowly, and returning the tobacco pouch to his pocket.

"Sir?

"Can you copy pretty well?"

"Yes — well, I guess I can copy ten words a minute, I guess."

"Want to go upstairs?"

"Upstairs?"

"Want to see the operating room?"

"Oh! Yes!"

Jug led the way with Jim following at his heels. A series of coughs escaped Jim at the top of the flight, and alarm possessed him that he would disturb the operator. He tiptoed in behind Jug, his small face radiant with excited expectation.

"What say, Jug?"

"‘Lo, Bohunk. How goes it?’"

"Fair."

"Where you working now?"

"Using 7005. Don’t worry, it’s inside."

"Did you check it with the oven?"

"Yes, it’s right on the line."

Jim was all eyes. He looked at the Single-Signal receiver, at the type-writer, at the 100-kc. secondary frequency standard, at the steel front control panel alongside the operating desk. The shiny brass handwheel on it. The meters. All the relays in the back. The lacing on the cable runs. Resistors standing upright in groups. Jim’s excited inspection saw it all!

"Anything coming through?"

"Few. Good many VK’s and ZL’s. Heard J2GX a minute ago. May be pretty fair later on."

Jug rested his elbows on the operating table and said something to Collier Parkes. Jim didn’t hear. Jim was busy. He was looking intently at a Kleinschmidt perforator partially disassembled, wondering what manner of thing it was.

Parkes grinned.

"Sure! Sure!"

Jug’s voice dropped lower.

"No," said Collier, "I got one with K6BAZ in fifteen minutes. Plenty of time for that, though. You go ahead while I go out here and look up another pad of message blanks — or something,” he added.

He disappeared, clattering down the stairs.

"Want to listen in?" Jug asked, motioning to the receiver.

Jim came over to the operating desk and looked at Jug, then looked at the receiver. A great fear came over him. It was too beautiful to get close to; the baffling controls marked "R.F. Gain," "Selectivity," "A V C," "Voice — C.W.,” and "Crystal Filter" were formidable. It was only to be looked upon from a distance.

Jug pulled the swivel chair up with his foot.

"Sit down. Sit down."

Jim let himself down slowly and looked around at the control panel. His elbow touched the shiny handwheel, and he hastily pulled it back, and then let it slide down again. This
was real. It was not a dream.

Jug tripped one of the switches up with his thumb and motioned to the knob in the center.

"Turn that one."

Jim looked up at him inquiringly and touched the knob timidly. The shadow scale above it moved slightly. How easily it turned! Encouraged, he moved it a little more. A faint hiss which had begun to evidence itself in the dynamic speaker was at that instant ripped asunder by a kaledoscope of crisp, bell-like signals which caused the moving coil of the speaker to wiggle perceptibly. Jim looked at it quickly. The sound seemed to hit him in the stomach, like when the bass drum passed in a parade. Just listen! A procession of grunts, drones and crystal ringing notes shrilled slowly by.

"Slow! Slow! Back this way."

Jim turned the knob back. Gee! It turned so easily, just seemed to glide! Entranced, he watched the shadowy divisions and numbers slip across the sloping, ground glass window. Was this real? His elbow slid back against the handwheel inquiringly. Yes, it was real, all right.

Slowly the dial moved back toward the 7000-kc. end. The terrific honk of W6's tore through. A myriad of faint signals in between that a touch of Jug's finger on the gain transformed into ear-splitting intensity.

"Whoa!"

A faint lisping note. Jug brought it up to a good level. It seemed to stand out on top of all the rest, miraculously. The lisp increased in intensity. It signed.

"Hear that?"

Jim nodded.

"Japanese."

Jim's heart skipped a beat.

"Go on."

The dial crept back up the scale. A terrific shot of 100-cycle r.a.c. A fluttering rattle.

"Alaskan."

A hollow ringing crystal note with a peculiar wavering undertone.

"Get this one."

It was a long, slow CQ DX.
butterfly beam

This interesting little 15-meter antenna, which is called the butterfly beam, is small, light, and easily made from ordinary hardware store materials. It's also inexpensive. The butterfly beam weighs less than 10 pounds (4.5 kg), it's less than 12 feet (4 meters) square, and cost me less than $20 to build. But despite its small size and low cost, this antenna has given me excellent results on both CW and SSB.

The heart of my butterfly beam is the Lexan spider hub sold by Van Gorden Engineering, P.O. Box 21305, So. Euclid, Ohio 44121. The hub is solidly put together and rugged, and the first time I saw one I thought: antenna. The central hole is perfect for the supporting mast. Tubing can be easily attached, and there's even a molded-in socket suitable for an SO-239 chassis connector.

construction details

Four 8-foot (2.5-meter) lengths of 1-inch (25.4 mm) diameter aluminum tubing are needed, along with a 50-foot (15-meter) roll of soft aluminum ground wire and four 1-inch (25.4 mm) hose clamps.

It was necessary for me first to calculate the appropriate lengths for the wire elements, based on the 8-foot (2.5-meter) tubing I intended using to build the X frame. Not having a capacitor for tuning the director, I reasoned that a close-enough approximation to the desired lengths could be made on a cut-and-try basis, using the starting points calculated (see table 1). Figs. 1 and 2 show the schematic and general arrangement.

I used some light nylon line to tie the ends of the wire together. It's a good insulating material, and also offers the springy support needed to put the elements under slight tension. The socket connector bolts right into the spider hub, and an extra pair of

By James Gray, W1XU, 28 East Street, Peterborough, New Hampshire 03458
fig. 2. General arrangement of the "butterfly" beam as constructed by the author (A). B shows the SO-239 chassis connector with a wire from the center terminal to one leg of the driven element, and a wire from the shell to the other leg of the driven element. Make the connecting wires short, and use self-tapping screws and radio hardware. Solder connections, where possible. C shows bridge of wire between legs of the director. Variable capacitor could be substituted at this point (see text). Special molded hub available from Van Gorden Engineering (see text).

hose clamps can be used to couple the hub to the mast.

I used a short length of wire to bridge the inner ends of the director element. It's possible to use a tunable capacitor here, the rotor affixed to one leg of the director and stator to the other, because the Lexan hub makes a good insulator. Variable capacitor values would be 250 pF (for 20 meters); 175 pF (for 15 meters); and 125 pF (for 10 meters). The overall size of each side of the antenna is approximately 11 feet 6 inches (3.5 meters) on 15 meters, 17 feet (5 meters) on 20 meters, and 8 feet 6 inches (2.6 meters) on 10 meters. The feed point is connected to the SO-239 chassis connector by means of some lengths of copper wire, the center terminal to one leg of the driven element and the ground, or surrounding part of the connector, to the other. The coax is attached to the connector and then waterproofed with a liberal coating of bathtub caulk.* A quarter-wave matching section is shown in fig. 3.

When mounting the butterfly beam on its mast, remember that the side wires, not the X-frame tubing, should be aligned with the direction of fire. The proper direction is a bisector of each X angle at the hub.

SWR has been 1.5:1 or less across the 15-meter band, and I've received excellent reports from all sorts of DX, both CW and SSB. When compared with my 14AVQ on the same signals, the butterfly has resulted in a reported average improvement of two S-units, with some reports running as high as 3. Assuming 3.33 dB per S-unit, my butterfly beam

* A better alternative is COAX-SEAL, available from Universal Electronics, Inc., 1280 Aida Drive, Reynoldsburg, Ohio 43068.
Reach Out!
just like adding a 10-watt amp to your 2-meter hand-held...

- True ¼ wave gain antenna
- Dramatically boosts reception as well as transmit range
- Individually tuned matching network
- Base spring/tuned coil protects radio as well as antenna from accidents
- Extends to 47", telescopes to only 8"
- BNC connector fits most current handheld and portable radios
- Better than 1.5:1 VSWR across the entire 144-148 MHz band
- Only $24.95 from your dealer or postpaid from VoCom

(Illinois residents please include 6% sales tax)

Ask about our 25, 50 and 100 watt amplifiers for hand-holds

VoCom PRODUCTS CORPORATION
65 E. Palatine Rd., Suite 111
Prospect Heights, IL 60070
(312) 459-3680
Dealer Inquiries Invited

FAST SCAN ATV
WHY GET ON FAST SCAN ATV?
- You can broadcast quality video of home movies, video tapes, computer games, etc., at a cost that is less than slowscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles.

ALL IN ONE BOX
TC-1 Transmitter/Converter $89 ppd
Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R sw, 4 Modules below $399 ppd

PUT YOUR OWN SYSTEM TOGETHER
TXA5 ATV Exciter contains video modulator and xtal on 434 or 439.25 MHz. All modules wired and tested $89 ppd
PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc $79 ppd
TVC-2 Downconverter tunes 420 to 450 MHz. Outputs TV ch 2 or 3. Contains low noise MRF901 preamp $55 ppd

PACKAGE SPECIAL all four modules $239 ppd

FM5 Audio Subcarrier adds standard TV sound to the picture $29 ppd

SEND SELF-ADDRESSED STAMPED ENVELOPE FOR OUR LATEST CATALOG INCLUDING:
Info on how to best get on ATV, modules for the builder, complete units, b&w and color cameras, antennas, monitors, etc. and more. 20 years experience in ATV.

Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

VoCom PRODUCTS CORPORATION
65 E. Palatine Rd., Suite 111
Prospect Heights, IL 60070
(312) 459-3680
Dealer Inquiries Invited

P.C. ELECTRONICS
Maryann 2522 PAXSON
WB8YSS ARCADIA, CA 91006 Tom W6EORG

fig. 3. Typical means of constructing a quarter-wave matching section from coax. The feedpoint impedance of the beam (about 30 ohms) is transformed to the feedline impedance (72 ohms) by means of a quarter-wave transformer of 50-ohm coaxial cable. Accompanying table and notes show dimensions for various bands. Center connector consists of two male connectors joined by a female (barrel) connector, for convenience. Joint should be taped and waterproofed after completion.

represents a gain of 6 to 7 dB, and sometimes as much as 10 dB!

The front-to-back ratio runs only 10 to 15 dB, although the front-to-side ratio is considerably better, running about 30-40 dB. There seems to be a very deep notch in the position between side and back of the beam, although I have not made any pattern plots to verify this. A considerable improvement in front-to-back ratio might possibly be made by director tuning. Another interesting possibility is that of using a coaxial capacitor as a director tuning capacitor.

bibliography

Ham radio
7 DIGITS 525 MHz $99.95

SPECIFICATIONS:
- **Range:** 20 Hz to 525 MHz
- **Sensitivity:** Less than 50 MV to 150 MHz
- **Resolution:** 10 Hz (60 MHz range)
- **Display:** 8 digits 0.4” LED
- **Time base:** 2.0 ppm 20-40°C
- **Power:** 12 VA @ 250 ma

PRICES:
- **MINI-100 wired, 1 year warranty:** $79.95
- **MINI-100 Kit, 90 day parts warranty:** 59.95
- **AC-2 AC adapter for MINI-100:** 3.95
- **BP-2 Nicad pack and AC adapter/charger:** 12.95

More Details? CHECK-OFF Page 118
measuring coax cable loss

with an SWR meter

One solution to the high cost of exotic test equipment for measuring transmission-line losses

Have you ever wondered how much loss a piece of coaxial cable has at a particular frequency? You could consult a chart or graph in a reference book. However, that would only tell you the approximate loss for coax from the manufacturer who supplied data to the editor of the book. Age and environment affect cable loss. Does the chart in the book include an age factor? The easiest way to determine loss in a piece of coax is by measuring it. You don't need expensive test equipment to do this. All you need is a) an SWR meter or a bidirectional wattmeter, b) a transmitter, and c) the desire to perform a few simple calculations.

determining cable loss

The loss in coaxial cable can be determined by connecting it to a source of rf (the transmitter) and measuring the SWR at the transmitter when the far end of the line is an open circuit. At first this method may sound too simple to work, but it does, and here's why.

Transmission line theory tells us that the SWR will be:

\[\text{SWR} = \frac{R}{Z} \quad (1) \]

where \(R \) is the load resistance, and \(Z \) is the line impedance. An open circuit would present an infinite load resistance and therefore an infinite SWR. Trans-

By John W. Frank, WB9TQG, P.O. Box 5113, Madison, Wisconsin 53705
mission line theory also tells us that the reflection coefficient \(K \) will be:

\[
K = \frac{SWR - 1}{SWR + 1}
\]

Since the SWR of an open circuit will be infinite, the reflection coefficient will be, for all practical purposes, unity (100 per cent). Therefore, all the power reaching the end of the line will be reflected to the source.

However, not all the power from the source reaches the end of the line; some is lost along the way. And not all the reflected power returns to the source; some of it is also lost along the way.

The reflected power measured at the source represents twice the loss of the coax: the loss forward and loss reflected. The standard formula for calculating the dB loss or gain is:

\[
dB = 10 \log \frac{P_1}{P_2}
\]

In this application, eq. 3 would tell us the loss for the round trip. Since we are interested in the loss in only one direction, and since the loss forward should be the same as the loss reflected, eq. 3 becomes:

\[
dB = 5 \log \frac{\text{reflected}}{\text{forward}}
\]

Eq. 4 is fine if you have a bidirectional wattmeter. Since many low-priced SWR meters measure SWR without indicating actual power in watts, and since SWR is a function of forward and reflected power, eq. 4 can be transposed:

\[
dB = 5 \log \left(\frac{SWR - 1}{SWR + 1} \right)^2
\]

Eq. 4 is shown graphically in fig. 1. Eq. 5 is shown in fig. 2.

examples

Before going any further, let's consider two simple hypothetical examples. A transmitter feeds 100 watts of rf power into a length of RG-58 cable. A bidirectional wattmeter at the transmitter indicates a reflected power of 25 watts. From eq. 4 we can calculate
ANTENNA COMPONENTS

- **Antenna wire, stranded #14 copperweld** $0.08 ft.
 75, 100, 130, 150, 300, or 1,000 ft. rolls
- **Antenna Wire, stranded #15 copperweld** $0.06 ft.
 75, 100, 130, 150, 300, or 300 ft. rolls
- **Antenna wire, stranded #16 copperweld** $0.05 ft.
 75, 100, 130, 150, 300, or 300 ft. rolls
- **Van Gordon Hi-Q Baluns, 1:1 or 4:1** $10.95 ea.
- **Amphenol Ceramic "Dogbone" end insulators** $98 ea.
- **Unadilla/Reyco plastic end insulators, pair** $4.95 ea.
- **Belden Foam Coax** $4.50 per 60' roll
- **Belden RG-58/U foam coax** $2.50 per 50' roll
- **Amphenol PL-259 center feed connectors** $1.07 ea.
- **Amphenol UG-175/U adapters (RG-58)** $25 ea.
- **Amphenol UG-176/U adapters (RG-8X, RG-59)** $25 ea.

ALSO IN STOCK

- Larsen Mobile Antennas • Hustler Mobile Antennas • Palomar Engineers • Centurion International Rubber Duck Antennas

WRITE FOR A FREE COPY OF OUR CATALOG

VISA

G & C Communications

730 Cottonwood Lincoln, Nebraska 68510

The minus sign indicates a loss. To further verify eq. 4, let’s consider what happened to the rf as it made its round trip through the coax. If the coax really did have 3 dB of loss, approximately 50 watts would reach the open end. When that 50 watts was reflected, the same 3 dB loss would result in 25 watts being lost in the coax. Thus, only 25 watts would be measured as reflected power at the source.

For our second hypothetical case, let’s assume the use of an SWR meter that doesn’t indicate forward power; the meter scale reads directly in SWR. A transmitter of unknown output is connected to a length of RG-8/U cable, and the SWR at the transmitter is 6:1. We can use eq. 5 to calculate the loss:

\[
5 \log \frac{25}{100} = 5 \log 0.25 = 5 (-0.602) = -3.01 \text{ dB}
\]

Again, the minus sign indicates a loss.

system accuracy

This will depend on the accuracy of the SWR meter or wattmeter used to make the measurement. Several precautions must be observed:

1. Some lengths of coax at some frequencies could act as resonant circuits and cause inaccurate measurements.
2. Short lengths of good-quality coax will show a very high SWR. Make sure the transmitter used as a source of rf can withstand a high SWR.
3. The transmitter impedance must match that of the coax.
4. Measurements should be made at the frequency at which the coax will be used.

One more item must be taken into account. This system for measuring loss in coaxial cable assumes that the load will be perfectly matched to the line. Any mismatch will create standing waves that will cause additional loss.^

references

4. Electronics Data Book, ARRL, pages 82-84.
Continuous Frequency Coverage—The TR7 provides continuous coverage in receive from 1.5 to 30 MHz. Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.

Synthesized/PTO Frequency Control—A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design—The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning—The TR7 employs the famous Drake full passband tuning instead of the limited range “i-f shift” found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband, through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by allowing the operator to move interfering signals out of the passband, and it is so flexible that you can even transmit on one sideband and listen on the other.

Unique Independent Receiver Selectivity—Space is provided in the TR7 for up to 3 optional crystal filters. These filters are selected, along with the standard 2.3 kHz filter, by front panel pushbutton control, independent of the mode control. This permits the receive response to be optimized for various operating conditions in any operational situation. Optional filter bandwidths include 6 kHz for a-m, 1.8 kHz for narrow ssb or RTTY, and 500 Hz and 300 Hz for cw.

Broadband, Solid State Design—100% solid state throughout. All circuits are broadbanded, eliminating the need for tuning adjustments of any kind. Merely select the correct band, dial up the desired frequency, and you're ready to operate.

Rugged, Solid State Power Amplifier—The power amplifier is internally mounted, with nothing outboard subject to physical damage. A Drake designed custom heat sink makes this possible. The unique air ducting design of this heat sink allows an optional rear-mounted fan, the FA7, to provide continuous, full power transmit on SSTV/RTTY. The fan is not required for ssb/cw operation, since normal convection cooling allows continuous transmit in these modes.

Effective Noise Blanker—The optional NB7 Noise Blanker plugs into the TR7 to provide true impulse-type noise blanking performance. This unit is carefully designed to maximize both blanking and dynamic range in order to preserve the excellent strong-signal handling characteristics of the TR7.

 Specifications, availability and prices subject to change without notice or obligation.

R.L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342, USA
Phone: (513) 866-2421 • Telex: 288-017

May 1981

More Details? CHECK — OFF Page 118
All New!

2 and 3 el. 40 meter monobanders

2 meter hi-performance vertical

Available NOW!

UHF/VHF Power Amplifiers

(Open April 24)

Broadband 2 meter 4 el.

Also featuring:
Select KLM performance-oriented UHF/VHF Power Amplifiers, and antennas, 1.8 to 520 MHz: monobanders, tribanders, log-periodics, verticals, dipoles, circulars and stacked arrays.

KLM P.O. Box 816, Morgan Hill, CA 95037 (408) 779-7363

Tell ‘em you saw it in HAM RADIO!
The *KLM* Spotlight on:

PERFORMANCE

- The new pacesetter for tribander performance
 - KT-34XA

- For the new age of satellite DX
 - 420-450-18C

- Handie Power!
 - 35W, Charger, Preamp
 - MA-35BL

- Maximum gain, across the whole band

- Broadbanded hi-performance Verticals
 - SSV 80-40-15
 - 40-10V

- The ultimate H.F. monobanders
 - KLM's "BIG STICKERS"

Plus much, much more! Write for a complete catalog

KLM
P. O. Box 816, Morgan Hill, CA 95037
(408) 779-7363

More Details? CHECK—OFF Page 118
Solving pattern equations using a programmable calculator

The vertical, quarter-wave ground-plane or ground-mounted antenna is a popular choice. Much interest has been shown recently for vertical arrays in the Amateur literature. The vertical array can give good results in directivity for less investment than a rotatable antenna such as the Yagi or quad beam.

This article examines the procedures for pattern calculation of phased vertical arrays having arbitrary layout, antenna height, phasing, and power division among array members.

Several classic vertical arrays have been implemented and described in the Amateur literature. Many amateurs have obtained good performance with such antennas. However, several problems arise when constructing vertical arrays. Lack of appropriate real estate is foremost: the pattern of the classic array may not fit your location. You don't need to depend on a classic layout if one or more of the following is available:

1. A scientific calculator and a lot of time.
2. A programmable calculator and moderate amount of time.
3. A microcomputer and very little time.

All three depend on mathematical relationships, and these are shown for arrays of an arbitrary nature. Computation procedures are outlined.

A Hewlett-Packard HP-67/97 programmable calculator program is given, followed by the BASIC source code listing for a Radio Shack TRS-80 microcomputer. The latter will run on a Level-II machine with as little as 4k of memory. Both programs are adaptable to other machines, especially the computer program.

pattern equations

The directivity pattern of any antenna or array is three-dimensional in nature. Convention gives a plot of relative field strength at various angles, θ, above the horizon. Azimuth is fixed, and the pattern is defined relative to an array axis.

Conversely, patterns may be given in the horizon-

By Patrick McGuire, WB5HGR, 102 Duncan Circle, Lafayette, Louisiana 70503
tal plane with θ fixed and azimuth angle, ϕ, varying 0 to 360 degrees. Fig. 1 is a pictorial description of both patterns.

Relative field strength of a single vertical antenna having sinusoidal current distribution and a current node at the top is given by:

$$f(\theta) = \frac{\cos(G \sin \theta) - \cos G}{(\cos \theta)(1 - \cos G)}$$ \hspace{1cm} (1)

where: $f(\theta)$ = Relative vertical field strength (N.D.)
G = Electrical height of antenna (degrees).
θ = Angle above horizon (degrees).

As an example, solution of eq. 1 for a quarter-wavelength antenna requires G equal to 90 degrees. A zero value of θ (on the horizon) yields an $f(\theta)$ of unity; $f(\theta)$ will be zero for $\theta = 90$ degrees (straight up). All other angles of θ will yield a result between zero and one.

The field-strength pattern for a single vertical antenna in the horizontal (ϕ) plane is a circle. The composite field strength of an array of antennas in the ϕ plane is given by:

$$E = \sum_{k=1}^{n} E_k f_k(\theta) \angle B_k$$ \hspace{1cm} (2)

$$B_k = S_k (\cos \theta) (\cos (\phi_k - \phi)) + Y_k$$ \hspace{1cm} (3)

where E = Total relative field strength of all antennas in ϕ plane (N.D.)
E_k = Component of total field strength due to k^{th} antenna alone (N.D.)
$f_k(\theta)$ = Vertical field strength of the k^{th} antenna for the θ chosen for pattern calculation (N.D.)
B_k = Phase angle relationship of the field vector from the k^{th} antenna with respect to the reference (degrees)
S_k = Physical spacing of the k^{th} antenna with respect to the reference antenna (electrical degrees)
θ = Vertical angle chosen for the pattern and held constant for all ϕ angles (degrees)
Y_k = Relative drive phase of antenna k at its feed point with respect to the reference (degrees)
ϕ_k = Azimuth bearing from the array reference point to the k^{th} antenna (degrees)
ϕ = Azimuth bearing from the reference point in direction of interest (degrees)
n = Number of antennas in the array

Eqs. 2 and 3 are explained with the aid of a three-antenna array shown in fig. 2. An elevation angle, θ, is chosen for all horizontal angles, ϕ. Eq. 1 is solved for each array antenna to yield $f(\theta)$; it may be considered constant for all values of ϕ. The array geometry will define S_k and ϕ_k.

One antenna must be a reference. Values of S_k, ϕ_k, Y_k, and B_k for this antenna will be zero; E_k value will be one. E_k values of the other antennas will be the ratio of drive power of the reference versus the other antennas. The value of other antenna drive-phase angles will be positive for lead, negative for lag.

The summation in eq. 2 requires that eq. 3 be solved first. The polar form of $(E_k f_k (\phi) \angle B_k)$ is then converted to rectangular form, summing the real and im-

<table>
<thead>
<tr>
<th>STEP</th>
<th>KEY ENTRY</th>
<th>KEY CODE</th>
<th>STEP</th>
<th>KEY ENTRY</th>
<th>KEY CODE</th>
<th>STEP</th>
<th>KEY ENTRY</th>
<th>KEY CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>f LBL A</td>
<td>31 25 11</td>
<td>041</td>
<td>0</td>
<td>00</td>
<td>081</td>
<td>CHS</td>
<td>42</td>
</tr>
<tr>
<td>002</td>
<td>0</td>
<td>00</td>
<td>042</td>
<td>STO 2</td>
<td>33 02</td>
<td>082</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>003</td>
<td>STO 2</td>
<td>33 02</td>
<td>043</td>
<td>STO 3</td>
<td>33 03</td>
<td>083</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>004</td>
<td>STO 3</td>
<td>33 03</td>
<td>044</td>
<td>f GSB 1</td>
<td>31 22 01</td>
<td>084</td>
<td>RCL 0</td>
<td>34 00</td>
</tr>
<tr>
<td>005</td>
<td>STO 1</td>
<td>33 01</td>
<td>045</td>
<td>RCL 3</td>
<td>34 03</td>
<td>085</td>
<td>f Cos</td>
<td>31 63</td>
</tr>
<tr>
<td>006</td>
<td>f LBL 2</td>
<td>31 25 02</td>
<td>046</td>
<td>RCL 2</td>
<td>34 02</td>
<td>086</td>
<td>x</td>
<td>71</td>
</tr>
<tr>
<td>007</td>
<td>f GSB 1</td>
<td>31 22 01</td>
<td>047</td>
<td>g R → P</td>
<td>32 72</td>
<td>087</td>
<td>h 1/x</td>
<td>35 62</td>
</tr>
<tr>
<td>008</td>
<td>RCL 1</td>
<td>34 01</td>
<td>048</td>
<td>h RTN</td>
<td>35 22</td>
<td>088</td>
<td>RCL (i)</td>
<td>34 24</td>
</tr>
<tr>
<td>009</td>
<td>h PAUSE</td>
<td>35 72</td>
<td>049</td>
<td>f LBL D</td>
<td>31 25 14</td>
<td>089</td>
<td>f Cos</td>
<td>31 63</td>
</tr>
<tr>
<td>010</td>
<td>RCL 3</td>
<td>34 03</td>
<td>050</td>
<td>STO 0</td>
<td>33 00</td>
<td>090</td>
<td>CHS</td>
<td>42</td>
</tr>
<tr>
<td>011</td>
<td>RCL 2</td>
<td>34 02</td>
<td>051</td>
<td>0</td>
<td>00</td>
<td>091</td>
<td>RCL 0</td>
<td>34 00</td>
</tr>
<tr>
<td>012</td>
<td>g R → P</td>
<td>32 72</td>
<td>052</td>
<td>STO 2</td>
<td>33 02</td>
<td>092</td>
<td>f Sin</td>
<td>31 62</td>
</tr>
<tr>
<td>013</td>
<td>R/S</td>
<td>84</td>
<td>053</td>
<td>STO 3</td>
<td>33 03</td>
<td>093</td>
<td>RCL (i)</td>
<td>34 24</td>
</tr>
<tr>
<td>014</td>
<td>RCL 4</td>
<td>34 04</td>
<td>054</td>
<td>f GSB 1</td>
<td>31 22 01</td>
<td>094</td>
<td>f DSZ</td>
<td>31 33</td>
</tr>
<tr>
<td>015</td>
<td>STO + 1</td>
<td>33 61 01</td>
<td>055</td>
<td>RCL 3</td>
<td>34 03</td>
<td>095</td>
<td>x</td>
<td>71</td>
</tr>
<tr>
<td>016</td>
<td>0</td>
<td>00</td>
<td>056</td>
<td>RCL 2</td>
<td>34 02</td>
<td>096</td>
<td>f Cos</td>
<td>31 63</td>
</tr>
<tr>
<td>017</td>
<td>STO 2</td>
<td>33 02</td>
<td>057</td>
<td>g R → P</td>
<td>32 72</td>
<td>097</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>018</td>
<td>STO 3</td>
<td>33 03</td>
<td>058</td>
<td>h RTN</td>
<td>35 22</td>
<td>098</td>
<td>x</td>
<td>71</td>
</tr>
<tr>
<td>019</td>
<td>GTO 2</td>
<td>32 22 02</td>
<td>059</td>
<td>f LBL 1</td>
<td>31 25 01</td>
<td>099</td>
<td>RCL (i)</td>
<td>34 24</td>
</tr>
<tr>
<td>020</td>
<td>f LBL B</td>
<td>31 25 12</td>
<td>060</td>
<td>9</td>
<td>09</td>
<td>100</td>
<td>f DSZ</td>
<td>31 33</td>
</tr>
<tr>
<td>021</td>
<td>0</td>
<td>00</td>
<td>061</td>
<td>h STi</td>
<td>35 33</td>
<td>101</td>
<td>x</td>
<td>71</td>
</tr>
<tr>
<td>022</td>
<td>STO 2</td>
<td>33 02</td>
<td>062</td>
<td>f GSB 0</td>
<td>31 22 00</td>
<td>102</td>
<td>RCL (i)</td>
<td>34 24</td>
</tr>
<tr>
<td>023</td>
<td>STO 3</td>
<td>33 03</td>
<td>063</td>
<td>1</td>
<td>01</td>
<td>103</td>
<td>f DSZ</td>
<td>31 33</td>
</tr>
<tr>
<td>024</td>
<td>STO 0</td>
<td>33 00</td>
<td>064</td>
<td>4</td>
<td>04</td>
<td>104</td>
<td>RCL 1</td>
<td>34 04</td>
</tr>
<tr>
<td>025</td>
<td>f LBL 3</td>
<td>31 25 03</td>
<td>065</td>
<td>h STi</td>
<td>35 33</td>
<td>105</td>
<td>-</td>
<td>61</td>
</tr>
<tr>
<td>026</td>
<td>f GSB 1</td>
<td>31 22 01</td>
<td>066</td>
<td>f GSB 0</td>
<td>31 22 00</td>
<td>106</td>
<td>f Cos</td>
<td>31 63</td>
</tr>
<tr>
<td>027</td>
<td>RCL 0</td>
<td>34 00</td>
<td>067</td>
<td>1</td>
<td>01</td>
<td>107</td>
<td>RCL 0</td>
<td>34 00</td>
</tr>
<tr>
<td>028</td>
<td>h PAUSE</td>
<td>35 72</td>
<td>068</td>
<td>9</td>
<td>09</td>
<td>108</td>
<td>f Cos</td>
<td>31 63</td>
</tr>
<tr>
<td>029</td>
<td>RCL 3</td>
<td>34 03</td>
<td>069</td>
<td>h STi</td>
<td>35 33</td>
<td>109</td>
<td>x</td>
<td>71</td>
</tr>
<tr>
<td>030</td>
<td>RCL 2</td>
<td>34 02</td>
<td>070</td>
<td>f GSB 0</td>
<td>31 22 00</td>
<td>110</td>
<td>RCL (i)</td>
<td>34 24</td>
</tr>
<tr>
<td>031</td>
<td>g R → P</td>
<td>32 72</td>
<td>071</td>
<td>2</td>
<td>02</td>
<td>111</td>
<td>f DSZ</td>
<td>31 33</td>
</tr>
<tr>
<td>032</td>
<td>R/S</td>
<td>84</td>
<td>072</td>
<td>4</td>
<td>04</td>
<td>112</td>
<td>x</td>
<td>71</td>
</tr>
<tr>
<td>033</td>
<td>RCL 4</td>
<td>34 04</td>
<td>073</td>
<td>h STi</td>
<td>35 33</td>
<td>113</td>
<td>RCL (i)</td>
<td>34 24</td>
</tr>
<tr>
<td>034</td>
<td>STO + 0</td>
<td>33 61 00</td>
<td>074</td>
<td>f GSB 0</td>
<td>31 22 00</td>
<td>114</td>
<td>+</td>
<td>61</td>
</tr>
<tr>
<td>035</td>
<td>0</td>
<td>00</td>
<td>075</td>
<td>h RTN</td>
<td>35 22</td>
<td>115</td>
<td>x y</td>
<td>35 52</td>
</tr>
<tr>
<td>036</td>
<td>STO 2</td>
<td>33 02</td>
<td>076</td>
<td>f LBL 0</td>
<td>31 25 00</td>
<td>116</td>
<td>f P → R</td>
<td>31 72</td>
</tr>
<tr>
<td>037</td>
<td>STO 3</td>
<td>33 03</td>
<td>077</td>
<td>RCL (i)</td>
<td>34 24</td>
<td>117</td>
<td>STO + 2</td>
<td>33 61 02</td>
</tr>
<tr>
<td>038</td>
<td>GTO 3</td>
<td>22 03</td>
<td>078</td>
<td>f X=0 ?</td>
<td>31 51</td>
<td>118</td>
<td>h x y</td>
<td>35 52</td>
</tr>
<tr>
<td>039</td>
<td>f LBL C</td>
<td>31 25 13</td>
<td>079</td>
<td>h RTN</td>
<td>35 22</td>
<td>119</td>
<td>STO + 3</td>
<td>33 61 03</td>
</tr>
<tr>
<td>040</td>
<td>STO 1</td>
<td>33 01</td>
<td>080</td>
<td>f Cos</td>
<td>31 63</td>
<td>120</td>
<td>h RTN</td>
<td>35 22</td>
</tr>
</tbody>
</table>

aginary parts separately, then converting the final summation back to polar form.*

The result at any given \(\phi \) is in the form \(E \angle B \) with \(E \) being the magnitude of relative field strength at azimuth \(\phi \). Resultant angle \(B \) is unimportant at far distances, but all \(B_k \) angles must be calculated as indicated for solution of eq. 2.

example

To illustrate, consider a simple array of two quarter-wave vertical antennas spaced 120 electrical degrees on a north-south bearing. With the south antenna as the reference, the north antenna is fed with equal power but at a phase lead of 60 degrees. Initial data is then (numbers in electrical degrees):

<table>
<thead>
<tr>
<th>(\text{antenna})</th>
<th>(G)</th>
<th>(\phi)</th>
<th>(S)</th>
<th>(E)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (reference)</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>0</td>
<td>120</td>
<td>1</td>
<td>60</td>
</tr>
</tbody>
</table>

Set \(\theta \) equal to zero. Since \(G_1 = G_2 \), eq. 1 solutions are identical and:

\[
f_{1}(0) = f_{2}(0) = \frac{\cos(90^\circ \times \sin 0^\circ) - \cos 90^\circ}{(\cos 0^\circ)/(1 - \cos 90^\circ)} = \frac{\cos 0^\circ - \cos 90^\circ}{I(I - 0)} = \frac{1 - 0}{I} = 1
\]

*The Greek letter sigma in eq. 1 means the summing of all individual \(k \)-subscript terms calculated separately in the form to the right of sigma. The fig. 2 example would have \(k \) values of 1, 2, and 3, since \(n = 3 \). Editor.
Choose the first azimuth of interest to be 15 degrees.

Eq. 3 values are then

\[
B_1 = \cos(0^\circ) \times \cos(0^\circ - 15^\circ) + 0^\circ = 0^\circ \\
B_2 = 2 \times (\cos(0^\circ) \times \cos(0^\circ - 15^\circ)) + 60^\circ \\
= 120 \times 1 \times \cos(15^\circ) + 60^\circ \\
= 120 \times 0.966 + 60 = 175.92^\circ \\
\]

Equal power magnitude is at each feedpoint, so

\[
E_1 = E_2 = 1. \text{ From eq. 2} \\
E = |E_1 f(1) \angle B_1| + |E_2 f(0) \angle B_2| \\
= [1 \times 1 \angle 0^\circ] + [1 \times 1 \angle 175.92^\circ] \\
= (1 + j0) + (0.997 + j0.071) \\
= (1 - 0.997) + j(0 + 0.071) \\
= 0.003 + j0.071 \\
= 0.0711 \angle 87.58^\circ \\
\]

Maximum relative magnitude of a double, equal size and power antenna array is 2. The low magnitude at 15 degrees east of north indicates a null in the north-south direction.

Calculations may be carried out for all azimuths of interest or in a series from zero to 360 degrees for pattern plotting. For example, this array has a field strength of 1.732 – 29.9° at φ = 180°; gain exists toward the south. Numerical solution steps are left as an exercise.

Keeping a constant elevation angle, θ, requires only one solution of eq. 1. Eq. 3 must still be solved at each azimuth.

using a programmable calculator

Computations are greatly simplified through the use of a programmable calculator such as the Hewlett-Packard HP-67 or HP-97. Table 1 is a flexible program for the HP-67.* This program can handle up to four antennas in an arbitrary array and can be used in four modes.

Mode A operates with a fixed elevation angle, θ. Azimuth increment is stored in register 4 after loading required data in registers indicated in step 1. Initial computation is begun by pressing function key A. The first stop indicates field strength magnitude at zero azimuth. Pressing the R/S key causes the working-φ to be incremented by the amount in register 4; next stop will show field strength magnitude at the next azimuth. This may be repeated by pressing the R/S key for each azimuth increment until the entire pattern is described.

Mode B is similar except azimuth is held constant, and the output describes the vertical plane pattern. The value in register 4 is the incremental elevation angle, θ. Initial calculation is zero elevation after pressing function key B.

Mode C calculates field strength at any azimuth manually entered before pressing function key C. Mode D is similar except the calculation is made on entered elevation angles.

Program instructions are given in Table 2. Preloading of all registers except 2 and 3 is required for each array. Zero is loaded into registers designated for unused antennas.

a basic computer program

Ultimate ease of calculation is with a computer. Table 3 is a program written in BASIC for the Radio Shack TRS-80, Level II microcomputer. The program requires only 4k of RAM, the minimum configuration for this machine. It will run on other BASIC language computers with minimal alteration.

The program is largely self-prompting, given an understanding of the terms in this article. It allows initial entry of all antenna data, an increment value for φ, and elevation angle θ. Subsequent runs do not require full data re-entry; the user may branch to a data alteration routine for specific changes, then re-run.

Coding and formatting is for CRT monitor output. Printer tabulation is possible by changing PRINT to PRINT in lines 250, 251, 255, 256, 1020, and 1022. A sample output at azimuth increments of 15 degrees is given in Table 4 for the previous two-antenna array.

* A few simple changes allow operation on the HP-97. Consult the owner’s manual for 87/97 differences.
WHY PAY
FULL PRICE FOR AN 80-10 METER VERTICAL

Only Butternut's new HF5V-III lets you use the entire 26-foot radiator on
80, 40, 20 and 10 meters (plus a full unloaded quarter-wavelength on 15) for
higher radiation resistance, better efficiency and greater VSWR bandwidth
than conventional multi-trap designs of comparable size. The HF5V-III uses only two
high-Q L-C circuits (not traps!) and one practically lossless linear decoupler
for completely automatic and low VSWR resonance (typically below 1.5:1) on 80
through 10 meters, inclusive. For further information, including complete
specifications on the HF5V-III and other Butternut antenna products, ask for our
latest free catalog. If you've already "gone vertical," ask
for one anyway. There's a lot of information about vertical antennas in general,
and ground and radial systems, plus helpful tips on installing verticals on rooftops,
on mobile homes, etc.

BUTTERNUT ELECTRONICS CO.
P.O. Box #1411
San Marcos, Texas 78666
Phone: (512) 396-4111

|
| table 3. BASIC program listing for the Radio Shack TRS-80. This may be used for
| other BASIC interpreters with appropriate language alteration.
| 10 CLS:PRINT TAB(21):"VERTICAL ANTENNA ARRAYS":PRINT
| 20 PRINT TAB(16):"DIRECTIONAL PATTERN COMPUTATION":PRINT
| 30 INPUT "ENTER THE NUMBER OF ANTENNAS IN THE ARRAY":AR
| 40 PRINT TAB(20):"DATA ENTRY INSTRUCTIONS":PRINT
| 50 PRINT TAB(4):"CHOOSE A REFERENCE POINT FOR THE ARRAY TO BE"
| 60 PRINT "ONE OF THE ANTENNAS THEREIN, THEN THE POSITION AND"
| 70 PRINT "EXCITATION DATA FOR ALL OTHER MEMBERS OF THE ARRAY"
| 80 PRINT "ARE TO BE SPECIFIED WITH RESPECT TO THIS REFERENCE."
| 90 PRINT TAB(6):"FOR EACH ANTENNA THE COMBS IF ENGINEERING FROM THE"
| 100 PRINT "REFERENCE TO IT (THE AZIMUTH) MUST BE ENTERED, NEXT."
| 110 PRINT "THE DISTANCE TO THE REFERENCE IN ELECTRICAL DEGREES"
| 120 PRINT "IS ENTERED. FINALLY ENTER THE DRIVE PHASE LEAD OR LAG"
| 130 PRINT "RELATIVE DRIVE AND ELECTRICAL HEIGHT."
| 135 PRINT TAB(6):"THE AZIMUTH, PHASE, AND SPACING MUST BE 0."
| 136 PRINT "AND RELATIVE DRIVE POWER 1 FOR THE REFERENCE.":PRINT
| 138 IF I=360 THEN 1000
| 140 GOSUB 700
| 150 GOSUB 999
| 160 PRINT
| 170 FOR I=1 TO NANT
| 180 GOTO 704:PRINT:190:PRINT:
| 200 INPUT "AZIMUTH, DEGREES":AZ
| 210 PRINT TAB(16):"SPACING, DEGREES":SP
| 220 PRINT TAB(16):"PHASE, DEGREES":PH
| 230 PRINT TAB(16):"RELATIVE POWER INPUT, DIMENSIONLESS":RI
| 240 PRINT TAB(26):"ELECTRICAL HEIGHT, DEGREES":EH
| 250 GOTO 100:PRINT:"RELATIVE FIELD STRENGTH CALCULATION RESULTS"
| 260 FOR I=1 TO NANT
| 270 GOSUB 700
| 280 NEXT I
| 290 PRINT:300 PRINT TAB(20):"ELEVATION ANGLE = ATAN2(AZ, SP)"
| 310 PRINT TAB(20):"VERTICAL ELECTRICAL ANGLE, DEGREES":HTH
| 320 PRINT TAB(20):"RELATIVE FIELD STRENGTH CALCULATION RESULTS"
| 330 FOR I=1 TO NANT
| 340 GOSUB 700
| 350 NEXT I
| 360 PRINT:370 REM "ENTER 0 TO COMPLETELY-run"
| 380 PRINT:390 PRINT TAB(20):"DATA ENTRY":400 PRINT:410 PRINT:
| 420 IF I=1 THEN 220:IF I=3 THEN 360
| 430 NEXT I
| 440 FOR I=1 TO NANT
| 450 GOSUB 700
| 460 NEXT I
| 470 PRINT:480 REM "DATA OK? ENTER 1. ENTER 2 TO CHANGE DATA":490
| 500 ON X GOTO 540,550
| 510 GOSUB 700
| 520 GOTO 800
| 530 GOTO 800
| 540 RETURN
| 550 RETURN
| 560 GOSUB 999
| 570 GOSUB 700
| 580 GOSUB 700
| 590 RETURN
| 600 INPUT "ENTER ANTIENNA #: COLUMN #: REVISED DATA":X,Y,Z
| 610 ON X GOTO 540,550
| 620 GOSUB 700
| 630 GOTO 800
| 640 RETURN
| 650 RETURN
| 660 GOSUB 999
| 670 GOSUB 700
| 680 GOSUB 700
| 690 RETURN
| 700 INPUT "ENTER ANTIENNA #":C:"COLUMN #: REVISED DATA":X,Y,Z
| 710 INPUT "AZIMUTH":AZ:"SPACING":SP:"PHASE":PH:"RELATIVE":RI:"ELECTRICAL":EH:"HEIGHT":HTH
| 720 PRINT TAB(20):"RELATIVE FIELD STRENGTH CALCULATION RESULTS"
| 730 FOR I=1 TO NANT
| 740 GOSUB 700
| 750 NEXT I
| 760 PRINT:770 PRINT TAB(20):"DATA ENTRY":780 PRINT:790 PRINT:
| 800 IF I=1 THEN 220:IF I=3 THEN 360
| 810 NEXT I
| 820 FOR I=1 TO NANT
| 830 GOSUB 700
| 840 NEXT I
| 850 PRINT:860 REM "DATA OK? ENTER 1. ENTER 2 TO CHANGE DATA":870
| 880 ON X GOTO 540,550
| 890 GOSUB 700
| 900 GOTO 800
| 910 RETURN
| 920 RETURN
| 930 RETURN
| 940 RETURN
| 950 RETURN
| 960 RETURN
| 970 RETURN
| 980 RETURN
| 990 RETURN

44 May 1981
construction cautions

Inadequate ground radial installation will reduce any vertical antenna performance. Improper radials will change both field strength and pattern depending on local ground conductivity.

Hardware implementation must match the calculation model. Antenna spacings should reflect the center of the band of interest. Phasing lines should be cut for both center of band and for the velocity of propagation of the line. Band-edge patterns can be checked by recalculation. Calculation spacings and length will change inversely proportional to frequency.

Each antenna must be matched to its own feedline. A good power divider must be used at the common feedpoint. Broadband division should be used to reduce phase unbalance on phasing lines. Simply connecting phasing lines in parallel at the common point will cause an impedance mismatch.

Table 4. Example tabulation of computer program of the two-antenna array described in text.

<table>
<thead>
<tr>
<th>AZ. = RFS</th>
<th>AZ. = RFS</th>
<th>AZ. = RFS</th>
<th>AZ. = RFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>15</td>
<td>0.07</td>
</tr>
<tr>
<td>60</td>
<td>1.00</td>
<td>75</td>
<td>1.40</td>
</tr>
<tr>
<td>120</td>
<td>2.00</td>
<td>135</td>
<td>1.95</td>
</tr>
<tr>
<td>180</td>
<td>1.73</td>
<td>195</td>
<td>1.77</td>
</tr>
<tr>
<td>240</td>
<td>2.00</td>
<td>255</td>
<td>1.94</td>
</tr>
<tr>
<td>300</td>
<td>1.00</td>
<td>315</td>
<td>0.60</td>
</tr>
<tr>
<td>360</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Close spacings will cause a slight individual antenna impedance change due to mutual coupling. This can be checked with a noise bridge for each antenna, all other antennas loaded. Amateur literature contains information on all of these factors and a bit of study is recommended.

Recognizing the factors beforehand should show any problems. The reference gives a complete discussion of the vertical array. This was the mathematical basis for this article.

reference

Carl E. Smith, Theory and Design of Directional Antennas, Smith Electronics, Inc., 8200 Snowville Rd., Cleveland, Ohio 44141, approximately $6.00 plus postage.

bibliography

ham radio

Kitty says
We Will Not
Be Under-
sold On
Hand-Held
Radios!
The outstanding Yaesu FT-707, FT-902 DM, FT-107 M or the FT-1012DZ

FT-720 RVH, 25 watts. 2 meter transceiver. FT-720 RU. UHF transceiver. FT-480, 2 meter, all mode, 30 watts. FT-780R, all mode 430-440 MHz.

SWAN SWR Field Strength Meters — $17.50

MAY FEATURES, Best Price Around

COLLINS KWM 380, New Shipment just received.

ASTRO 103 • BIRD WATTMETERS

MIRAGE 2M amplifiers • MURCH UT 2000B

It's Barry's for the Drake TR-DR/7 and R-7

CW Ops — we've got NYE keys, Vibroplex

Bencher paddles and electronic keyers

ICOM IC-720A, IC-730, and IC-22U. All-Band HF.

MAY IS ANTENNA MONTH
Slinky Dipoles, HyGain Antennas, 2 m beams & mobile, 18AVT/WB, KLM, Cushcraft and Rotators

BARRY'S HAS HAND-HELDs

NEW Yaesu FT-404 R (UHF)

Yaesu FT-207R
Santec HT-1200

VOCOM ANTENNAS AND AMPLIFIERS FOR YOUR HANDHELD.

BARRY now carries the ALPHA 76GA

with three 8874 tubes, 2000W PEP

and hypersil transformer

Triyron 0-600 MHz counters — $159.95

• Complete selection of radio books including 1981

Handbook and Repeater Directory

Our lines include:

• AEA

• ALLIANCE

• ASTRON

• AVANTI

• B&B

• BIRD

• COLLINS

• COMMUNICATIONS

• HY-GAIN

• SPECIALISTS

• ICOM

• CUSHCRAFT

• DENTRON

• DRAKE

• ETO

• EMAG

• ENCOM

• HUSTLER

• HY-GAIN

• STANDARD

• SWAN/CUBIC

TEMPO

KLM

KANTRONICS

MEU

MURCH

WAUCOM

TR/DR

VOCOM

ROBOT

SOUSA

AND MORE...

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!

Amateur Radio License Classes:

Wednesday & Thursday: 7-9 pm Saturday 10 am-Noon

We Ship Worldwide

BARRY ELECTRONICS
512 BROADWAY, NEW YORK, N.Y. 10012

TELEPHONE (212) 925-7000

TELEX 12-7670
160 meters today

Have you looked closely at some of the beautiful full-color advertisements of the new generation of Amateur transceivers? Very interesting. And they are advertising nine high-frequency bands. I'm sure you are aware by now of the forthcoming 10, 18, and 24.5 MHz bands that are a result of the last WARC Conference. These bands are on the bandswitch of the newer transceivers. And look! They also have a switch position for 1.8 MHz. That's the 160-meter band.

A quick look-see across the 160-meter band by the proud owner of the "all-band" transceiver usually proves to be a disappointment. Perhaps one or two weak signals, some shot-type interference (Loran navigation signals) and plenty of rough QRM from the sweep oscillators of nearby TV receivers. And if the listener is unlucky, he'll get a blast of nasty noise from a light dimmer or two. Seems hopeless, doesn't it?

"top band"

Once the backbone of Amateur Radio, the 160-meter band has languished since World War II. During that distressing period, the Long Range Navigation System (LORAN) was placed in this region and the band has never been the same since.

Now, with the coming demise of LORAN in this frequency range, and the expansion of the band in the United States and overseas, 160 meters has a bright and promising future.

The casual tuner across 160 meters, unfortunately, gets an inaccurate impression of the band, particularly if he is listening on a non-descript antenna. Hook a good antenna on the receiver and, given a break in sweep oscillator QRM, an observant Amateur will find the band full of interesting signals at certain seasons and times of the day. A lot of activity takes place on 160, and there will be more in the future!

At the dawn of Amateur Radio, some years before World War I, Radio Amateurs — a few hundred of them — started out with crude spark transmitters and coherer receivers. It was difficult to tell what frequencies were in use; the spark transmitter took up a good chunk of the spectrum. Wavelength of operation was moot until the Radio Act of 1912, which removed Amateurs from the long wavelengths and restricted them to the "useless waves" below 200 meters.

Finally, as a result of heroic efforts of the American Radio Relay League, Amateur Radio became less chaotic and, after the war was over, Amateur Radio grew rapidly, with hundreds of stations operating in the 150 to 200 meter region. By 1922, worldwide...
fig. 2. The 1930 phone transmitter of L.B. Robbins, W1AFG. The 210 oscillator runs about 20 watts input from a 500-volt supply. The 250 tube modulator provides about 60-percent modulation. The tuned circuit consists of a copper tubing coil, 20 turns of 1/4-inch tubing, four inches in diameter and spaced out the tubing diameter. The capacitor is 500 pF. The coil is adjusted so that operation at the desired frequency occurs with the capacitor nearly fully meshed. The bias resistor of the modulator (R7) is adjusted until the no-signal plate dissipation of the 250 tube is about 24 watts. Believe it or not, a modern version of this antique transmitter is on the air today and it sounds quite good! (The drawing is from the August - September, 1931 issue of Short Wave Craft magazine, published by Popular Book Corporation.)

Amateur communications was possible, and it was noted that as wavelengths grew shorter, DX improved. The exodus from the 200-meter region seemed to be certain.

In 1924, the Department of Commerce assigned new bands for American Radio Amateurs centered about 80, 40, 20, and 5 meters. Development of the shorter waves was underway! An assigned 160-meter band was largely forgotten in the rush to high-frequency DX.

the 160-meter doldrums

Between 1924 and 1930 there was little interest in 160 meters, as exciting things were happening elsewhere. But the years between 1929 and 1934 were boom years for Amateur Radio. And there was a great and growing interest in telephony. Up to this date, there was little information and little interest in phone transmission. It was the exclusive domain of those few Amateur-engineers who knew their onions. And besides, voice transmission was very expensive.

About 1930, the collapse of the broadcast-receiver building boom turned many experimenters into the more interesting field of shortwave broadcasting. In a year or so, hundreds of thousands of “shortwave listeners” sprang up, and many of those switched to Amateur Radio. Amateur phone, especially for the beginner, was extremely restricted: no phone on the 40-meter band and a class-A license requirement for phone on 80 and 20 meters. And, of course everybody knew that 10 and 5 meters were useless: short-range bands on which it was almost impossible to get equipment working! So that left 160 meters for the beginning phone ham.

the rebirth of 160 meters

Amateur Radio really took off in 1932-33. In 1931 there were about 23,000 U.S. Amateurs. In 1932 there were about 30,000 and in 1933 about 42,000. By early 1934 the Amateur population of the U.S. had doubled the 1931 figure!

The boom in phone operation first started on 160 meters, to be followed in a year or so by practical use of the 5-meter band. But the 160-meter band was the beginner’s phone band for a few Golden Years.

It was relatively easy to get going. The famous “constant current” (Heising plate modulation) circuit would do the job, and the modulated oscillator of 1921 (fig. 1) could be modernized for 160 meters (fig. 2). This simple circuit was very popular until the famous “46 job” came along in mid-1932 (fig. 3). The “46 job” was the ultimate phone transmitter, that brought about the explosion of 160-meter activity from 1933 to 1940. For well under a hundred dollars the lowly Class B Amateur could go on phone and enjoy himself!

what 160 meters was like

What was 160 meters like during the winter months of 1934? During the day there wasn’t much activity until late in the afternoon when the high-school crowd got home. And
then from about 3 to 6 pm the band was full of low-power phone operators. In the New York area there were literally hundreds of phones, running from 10 to 50 watts — and most of them were licensed. In truth, there was a good amount of bootlegging — enthusiasts who hadn’t gotten around to making a trip to the FCC for the ham exam. They just “borrowed” a call and went on the air. Next higher in social acceptability were the unlicensed operators who borrowed a ham friend’s call. And finally, the “kings of the band,” the “old timers” with their 100- and 250-watt phone transmitters gradually fell asleep. Only the Old Timers remembered what a phone band sounded like when it was loaded with a-m phones. Newer hams can get the idea by listening to the CB channels. It was the survival of the fittest. You could judge your transmitter’s ability by the DX you worked. From New York City, most low-power phones could work up into Canada. Given a little luck, they could work into Florida late at night when the bedlam had died down. And the real DXers — the sturdy fellows who stayed up into the early morning hours — could prove themselves by working into California if conditions were just right!

But the majority of young Amateurs enjoyed 160 meters during the daylight hours and were content to work their friends in the immediate area. Since most stations were crystal controlled (the modulated oscillator quickly dying out as the band population grew), you knew the fellows who operated near your frequency. Stations on the other end of the band were a mystery, known only to those fortunates who owned two crystals!

It was rumored that transatlantic contacts were possible, and some of the better stations got listener cards from “across the pond.” And almost everyone on 160-meter phone got SWL (shortwave listener) cards from local would-be hams. The old a-m transmitters were easy to tune in, even with the most rudimentary receiver.

All this beehive of activity came to a close on December 7, 1941.

the post-war band

After the war, the 160-meter band was revived, but it was divided up into segments based on proximity of Loran networks. A bewildering set of restrictions and regulations crippled the band, and 160-meter operation was not licensed in many countries. This stalemate continued for many years and only a few hardy souls operated on the band. True, it would come to life a bit during a DX contest, but since most ham gear didn’t cover the band, it became lifeless during the fifties as the interest in SSB grew.

fig. 3. The famous “46 job.” This 40-watt transmitter was popular on 160 meters in the prewar period. The class-B modulator and driver also used type 46 tubes. Many builders substituted a crystal oscillator in place of the self-excited oscillator (tube at right). Illustration from QST, August, 1932.
160 meters today

Interest is again growing in this old-time band. Most new transceivers cover the band, and the Loran networks are being rapidly phased out. And it looks as if the band will be expanded to near its pre-war dimensions in a few months. As a result of the recent WARC Conference, Amateurs in many foreign countries who never had this band can now enjoy operation in certain selected segments. During DX contests, the band is jumping, and more and more Amateurs look to 160 meters for reliable, short-range daylight communications.

During the week the band is relatively quiet through the daylight hours. At night, things pick up a bit. Most CW operation falls between 1800 and 1910 kHz. Sideband occupies the region immediately above this segment. (In some areas of the country operation is permitted at the high-frequency end of the band, and certain power-input restrictions apply. See the current edition of the ARRL Handbook for details.)

On contest weekends the band is alive with plenty of overseas DX coming through. A handful of WACs have been made on 160, along with a few prized DXCC awards. But it is not the typical station that achieves these results!

More and more Amateurs are experiencing the fun of working 160. It is entirely different from the other bands. All you need to get in the action is a good antenna.

a practical antenna for 160 meters

Any antenna design capable of working on the other high-frequency bands will operate on 160 meters. Size is the problem. A half-wave length at 1850 kHz is 253 feet (77 meters) and at 1950 kHz it is 240 feet (73 meters). That rules out a coaxial-fed dipole for most Amateurs. Those lucky enough to have the room would be well advised to erect a dipole for 160 meters as high as possible.

The next best bet is an end-fed quarter-wave Marconi antenna (fig. 4). The antenna shown will operate at any frequency in the band when properly adjusted for the lowest SWR reading. The antenna uses ground as the return circuit and one of the chief problems of obtaining good performance is that of getting a good ground connection.

If the residential water system is made of copper tubing, it may be used for a radio ground. Connection should be made by a short, heavy lead to a nearby cold-water pipe. Flexible braid removed from a defunct length of old RG-8/U coaxial cable makes a good ground lead.

Not all piping systems make a good ground, and it may be necessary to drive several rods into the ground and connect them to the water pipes. You’ll have to experiment with this.

Another idea used on 160 meters is the radial ground. This is an insulated wire a quarter-wavelength long (about 126 feet for operation at the low end of the band). One end of the wire is attached to the common ground point of the transmitter, and the wire is run along near (but not touching) the ground. I use a radial ground wire in conjunction with a water pipe ground for 160-meter work, and it seems to be a good combination.

The radial ground wire can run through bushes or along a fence. The far end of the wire should be covered with tape because it can be “hot” with rf during transmission.

Once you get on the band and make contact with a few stations, you’ll find out a lot more about 160-meter antenna systems. Some of the better stations have quite exotic antennas. The vertical antenna is much prized; a station with a good vertical antenna and a fine ground system can really place a big signal on the band. But for everyday operation and a lot of fun, a simpler antenna will do the job.

When operating this band it’s interesting to think that these frequencies are the oldest operating range for Amateur Radio and that you are following in the footsteps of a lot of famous Amateurs and experimenters. And no doubt a lot of interesting experimental work is going on in this band right now. Some Amateurs are experimenting with loop antennas for low-noise reception as well as large Beverage antennas. And there are some experimental beam antennas on 160 meters, too.

But why spoil your fun? Get on this re-born Amateur band yourself and take part in the interesting work going on today!

fig. 4. Simple Marconi antenna for 160 meters. Variable capacitor (C) is 400 pF. Inductor (L) is airwound coil, 2 inches in diameter, 8 turns per inch, 4 inches long (32 turns). Inductor is adjusted for lowest SWR when capacitor is adjusted to provide 50-ohm load. Both devices may be simply adjusted for lowest SWR on the meter. Antenna wire should be as high as possible. See text for information on ground connection. Note that the antenna may be made shorter, but more inductance is required in the coil.

160-
plumber's delight coax connector

About three years ago while looking over flea-market offerings at a ham convention, surplus TV hardline coax cable caught my eye. The coax line was quite inexpensive, but the connectors were expensive and difficult to obtain. To make a long story short, the line I brought home ended up in my already cluttered garage. For the next year or so I wondered just why I had bought it and what I was going to do with it. One day, while sorting some copper-plumbing fittings, I had an idea. I have a plumber's delight beam, so why not a plumber's delight connector?

The result was a successful connector for which I make the following claims:

1. Low cost (approximately $1.50 each).
2. Long life.
3. Waterproof.
5. Material readily available.
6. No great skill needed.
7. Can be removed and disassembled for inspection.

Only one possible problem was noted: a ½-inch pipe die is required. This is really not too difficult. A pipe die may be obtained by purchase or rental.

The following material covers only 3/4-inch coax hardline. Copper fittings for other sizes, 1/2 and 1 inch, I believe, are also obtainable. So if you have coax other than 3/4 inch, check with plumbing-supply houses.

First off, 1/2-inch iron or steel pipe has an outside diameter of 3/4 inch. Only two parts are needed to make the new connector, (1) a copper-plumbing connector to join 1/2-inch OD copper tubing to 1/2-inch threaded pipe (3/4-inch OD), and (2) a double female coax connector, PL-258.

By James R. Yost, N4LI, Box 94, Route 1, Polkton, North Carolina 28135

step-by-step instructions

1. Using a hacksaw or tubing cutter, cut off 5/8 inch of the outer conductor of the hardline. Do not cut the foam insulation or center conductor. The half-inch pipe die is now used to cut 5/8 inch of threads on this end of the line. Trim off the exposed foam insulation. The center conductor of the hardline is copper-plated aluminum. When removing the insulation be careful not to cut or scratch the copper plating.

2. The inner conductor and the two plastic insulators must be removed from the PL-258 connector. This is necessary because the high heat required in the next step would melt the insulators. You'll find a retaining ring just on the inside of one end of the connector. Remove this ring with a sharp pointed pick. It takes a little patience but it can be done. After the retaining
ring has been removed, the center conductor and two insulators will easily slide out of the shell.

3. Solder the PL-258 shell or body to the copper fitting. The PL-258 has a shoulder in the center that makes a good fit to the inside of the copper fitting. This shoulder should have about 1/32 inch showing outside the copper fitting when correctly positioned. Be sure the end of the PL-258 that does not have the retaining ring groove is inserted into the copper fitting. Use a heavy soldering iron, or preferably a propane torch, to solder the two together.

4. The inner conductor of the hardline is larger than that of a PL-259 connector, which is usually used to "connect with a PL-258. It will be necessary to complete the following:
 a. Using a 1/4-inch drill bit, ream out one of the PL-258 plastic insulators.
 b. Spread the prongs of one end of the PL-258 center conductor so that it will make a snug fit with the center conductor of the hard line. Do not change the other end, as it will later mate with a PL-259 connector.

5. You're now ready to reassemble the PL-258 connector.
 a. Insert the small end of the reamed insulator first, followed by the spread prongs of the center conductor. This is followed by the large end of the other insulator.
 b. Re-install the retaining ring.

Your connector is now complete.

final remarks

Before installing it on the coax line, here's a suggestion. To prevent chemical reaction of the copper and aluminum use a small amount of joint compound on the threads of the aluminum tubing. Electrical-supply houses carry several brands, as aluminum wire is used in industrial and house wiring. Two brands are listed below:

These or similar compounds are also recommended for use on mating aluminum tubing as used in beam antennas to ensure electrical connection and to prevent seizing.

ham radio
the K2GNC Giza beam

A novel approach to directional antennas

If you happen to be looking for something simple and inexpensive in a beam antenna, take a look at this one. I haven't determined if this is a new concept, but it may be some time before anyone comes up with a design that performs better. What is it? The Giza beam — a lightweight, low-cost, rugged, directional array that almost anyone can make in an evening from junk-box parts.

I've tried just about every beam over the past 45 years. The design shown in fig. 1 is easy to build and erect and provides plenty of punch. It's a modification of the conventional delta-loop wire beam (fig. 2).

In the Giza design, I removed the upper boom (fig. 2) and brought the apexes of the two loops together, which I fastened to the top of the supporting mast. There was no obvious difference in the antenna's operation. Front-to-back ratio seemed the same, it tuned up just as well, and the signal reports remained good. One major structural member had been removed and a more rigid, lighter-weight array with a lower center-of-gravity resulted. Its pyramidal shape and firm, solid construction reminded me of the great pyramids of Giza in Egypt, so it seemed appropriate to name it the K2GNC Giza beam.

A practical 15-meter beam

A bit of shopping brought together all the parts for a functional 15-meter Giza beam. I bought two straight, knot-free, furring strips for about $1.00. I used some No. 18 (1.0-mm) stranded, plastic-covered hookup wire for the elements. Lightweight TV mast sections provided the main supporting member. A few hose clamps, a scrap piece of plywood, and a few miscellaneous small items rounded out the bill of materials.

construction

Fig. 1 shows construction details with dimensions given for 10-, 15-, and 20-meter beams. Making the four wooden spreaders, the main structural members, requires the most consideration. These were ripped from the two furring strips as shown in fig. 3. Painting or varnishing the wood will help preserve its shape and give it a professional appearance. The spreaders may be made of many

By William Pfaff, K2GNC, Box 41, Moriches, New York 11955
materials, including bamboo, fiberglass, metal tubing, or thin plastic pipe.

The mounting plate (fig. 4) for the spreaders was made from exterior-grade plywood. It can be any convenient size, or you can use dimensions shown (fig. 4). Drill or saw a hole into the center slightly larger than the mast you’re using, then drill some holes through it at the proper places for the spreader hinge wires. Any stiff, strong wire may be used for the hinges; there are no strong mechanical forces on them. (A heavy wire coat-hanger is a good choice.)

To assemble, lay the parts out flat. Run short lengths of the hinge wire into the spreader holes, bend them, run them through the holes in the mounting plate, then twist the ends together to hold them in place.

Mount the four corner braces on the top and bottom of the spreader mounting plate using bolts, lock washers, and nuts. Space the braces so that the vertical mast fits snugly between them.

Wrap lengths of stiff, insulated wire around the tip of each spreader and twist together tightly, leaving the ends pointing upward. These wires will hold the corners of the triangular loops.

The spacer cords (fig. 1) are lengths of nylon cord or fish line tied securely between the spreader tips. They should separate the lower sides of the loops by the distance shown. To form the loops, cut two lengths of plastic-covered, stranded hookup wire to the length shown in the table of dimensions in fig. 1.

You don’t have to use insulated wire for the loops. Bare wire, if used, need only be insulated at the spreader tips where the voltage is high. I used plastic-covered hookup wire because it’s readily available, quite strong, and doesn’t kink during assembly. Mark the exact center of both loops.

matching section

The gamma match (fig. 5) can be made from a length of 450-ohm line or two lengths of bare No. 16 wire. A variable capacitor is usually used for adjusting the match to the feed line. However, there’s an old trick of using a length of RG-58/U or RG-59/U coax in its place because it’s convenient and doesn’t require a waterproof housing. These cables provide capacitances of about 30 pF and 20 pF per foot respectively. They will withstand full legal power at this low-voltage point. In fact, for low-power use, it may be more convenient to use two- or three-wire shielded microphone cable, which has a greater capacitance.

Connect the inner conductors together at the end and use them for one side of the capacitor. The shield is the other side.

Remove a length of wire from the end of one loop and replace it with the gamma match section of that

fig. 1. Design of the Giza beam with dimensions for the three high-frequency bands. Simplicity and readily available parts make this antenna a definite candidate for the homebrewer.

fig. 2. The conventional delta-loop wire beam. The top boom is eliminated in the Giza design, which results in a more rigid structure.
length. Attach the loop ends to the appropriate plastic insulator of the gamma match and the tuning stub. Secure the lower sides of the two loops loosely to the spreader tips with the stiff wires on each tip. Meanwhile keep the insulators centered and the two lengths equal. Pull the wires taut so that no slack exists in the spacer cords, then firmly twist the stiff wire so that the loop wires will not slip through.

final assembly

Secure the midpoint of each loop to the mast top with a hose clamp and place the mast in the center hole of the mounting plate. It doesn’t matter whether the wire is actually grounded to the mast or not. Allow the spreader assembly to fall into a place on the mast where the spreaders are horizontal. Use hose clamps around the corner braces and tighten the mounting plate to the mast. Your Giza beam is now assembled.

tune up

The array is tuned in the conventional manner. However, I suggest that it be tuned to the low-frequency end of the band first for reasons to be explained.

First, adjust the reflector stub for best front-to-back ratio using your receiver and a strong, distant signal. Then position the gamma match slider to a point that provides lowest SWR. Once this point is found, adjust the gamma coax capacitor by snipping off short lengths from its end. At the same time, re-adjust the gamma match slider. An SWR near 1:1 should be easily obtained.

To prevent the coax from shorting at the end, remove a very short length of the outer insulation and the shield; then seal both ends of the coax with rubber cement, or tape them tightly to prevent water from creeping into the shield. Attach your coax feed line and you’re ready to go on the air at the low end of the band.

a new twist

When it comes to peaking the antenna at a specific frequency in the band, the K2GNC Giza beam has no equal. This operation was discovered by mistake: Once, while making some adjustments, the resonant frequency mysteriously shifted a considerable amount. After some investigation I observed that the spreader section had twisted around the mast while the mast stood still. This action caused the wire at the top of both loops to wrap around the mast. The loop lengths had shortened, thus increasing the resonant frequency. The SWR held at 1:1.

Wrap the wires around the pole by twisting the spreader assembly under controlled conditions. I tried it and got just what I wanted — an antenna that can be set mechanically to any desired frequency in the band.

Loosen the hose clamps on the spreader mounting plate and, with the transmitter on the desired frequency, rotate the spreader assembly until you get 1:1 SWR.
Once you’ve made one of these little giants and tried it out, you’ll want to try some variations. A number of them are obvious. Wrapping the apex of the loops around the pole is only one way of accomplishing a resonant-frequency shift. The loop wires could be pulled down into the mast pole by a wire going up through the pole. They could be fastened to a yoke and pulled through a ring at the top of the mast down the outside of the mast. Combining these ideas with flexible spreaders or ones that are hinged at the central mounting plate could bring about some broad frequency variations. You may even encompass another band, especially one of the newly acquired bands.

A tri-band Giza would give many pluses. Using the usual feed methods for three-band quads, a few additional loops going from the mast to appropriate places on the spreaders would result in a more rigid structure than a single bander. A two-band model, already constructed, has proved this to be true.

A super lightweight, 20-meter Giza has been built using element-size aluminum for the mast and thin-walled, small-diameter aluminum tubing for the spreaders. These spreaders were tipped with lengths of plastic rod and insulated from each other. The mast, in this case, extended far enough below the spreader mounting plate for thin nylon rope guys to be run between it and the tips of the spreaders. This design resulted in an extra strong array that has withstood some pretty heavy winds. Mounting the antenna on the rotor was easy.

For portable operation or Field Day, what else but a Giza, pre-assembled, folded up umbrella-fashion, and stowed in the trunk or on the car roof? Be watchful that the loop wires don’t get tangled with each other. (Perhaps it will help to first check with your nearest skydiver friend on how he packs a parachute.)

The small size and light construction should encourage more beams for 40, 80, and who knows, 160 meters. The same is true regarding the new bands when they become available.

Those who shy away from mounting a big Yagi on the roof because of the wife or the neighbors, or who otherwise want to be inconspicuous as hams, can use No. 22 electric fence wire for the loops. With almost invisible wires, the Giza looks like an fm ground plane to the untrained eye. (Don’t ask me who ever saw a ground plane with a rotor on it.)

does it work?

So far, the simple construction and light weight of the antenna have been extolled. Now, what happens when rf goes into it? How does it work? There is an inclination to reply, “Try it, you’ll like it.” However, that answer will not satisfy many.

Without an accurate means of measuring forward gain, one way to determine performance is to get front-to-back readings. So, with the 20-meter array at a height of only 30 feet (9 meters), readings were gathered from many sources both in the U.S. and foreign countries. The readings averaged around 30 dB. Some readings went as high as 35 dB. Off the sides the reports were about 35 dB lower than off the front. One report said the signal disappeared off both the side and the back when it was 35 dB on the front.
This all compares favorably with most other good, normal-sized beams. It is probably better than other beams when they are operating off their resonant frequency.

Performance off the front made my heart leap many times. Signal reports rarely, if ever, have any real technical merit, so to say that RST 599 or 599FB was a common report from DX stations is insignificant. However, using the Giza on 20 meter phone has, for the first time, given me 100 percent contacts one time after another, and 20 meters is where you separate the men beams from the boy beams.

Running barefoot with a beam at 30 feet (9 meters) just cannot, of course, compare with the real professional, uppercrust gang and their five elements at 150 feet (46 meters). But when this antenna gets its dander up in the air, fully charged with a linear, it should hold its own with any array of comparable size.

Conclusion

There is still much work to be done. What happens when you change the spacing between elements? What is optimum? Can a third or fourth element be added? This remains to be seen. But at this station it is very unlikely that I will ever go back to making a quad, Yagi, or conventional delta loop again. This one does the job so much more easily.

Thanks to my ever-loving wife, Roz, who has put up with a yard full of wires and poles these many years of our happy married life. Also, thanks to all those hams who gave reports at various headings, and my daughter, Lee, who so willingly typed this article.

ham radio
The Warranty and Beyond
or How You Get the Back-Up That Doesn’t Back Down in 91 Days.

ENCOREM, INC. LIMITED WARRANTY

Encorem, Inc. warrants this product against defects in material and workmanship for a period of 90 days from the date of purchase by the original purchaser. Encorem, Inc. will at its option repair or replace any and all defective parts, assemblies or entire units as it deems proper, free of charge for both the parts and the labor necessary to correct any defect in material or workmanship for the 90 day period.

The purchaser is responsible for the transportation costs of returning the equipment to and from Encorem, Inc. or its designated repair center for purposes of obtaining the warranty service described in this form.

EXTENDED SERVICE PERIOD

FOR A PERIOD OF TWO (2) YEARS FROM THE DATE OF PURCHASE.
THE ORIGINAL PURCHASER MAY OBTAIN EXTENDED SERVICE ON ALL THE SEMICONDUCTOR COMPONENTS USED IN THIS UNIT NOT INCLUDING FINAL TRANSISTORS. Failures caused by improper installation, static discharge, abuse, or unauthorized alignment are not included. Maximum charge for this service will be one hour at the then current ENCOMM, INC. shop rate.

The above warranty does not include incidental or consequential damages and Encorem, Inc. disclaims any liability for any such damages. All implied warranties, if any, are limited in duration to the above-stated 90 day warranty period. Some states do not allow the exclusion of limitations on incidental or consequential damages or on how long an implied warranty lasts, so the above limitations may not apply to you.

The completion and return of the enclosed registration form is a condition precedent to the warranty coverage and the above undertaking to repair. This warranty gives you specific legal rights and you may also have other rights which may vary from state to state.

Fax 1987 ENCOMM, INC. 2000 Avenue G, Suite 300, Plano, Texas 75074 (214) 423-0024 INTL TLX 203020 ENCOMM LTR

Please send me more information about the SANTIC HT-1200 and a list of Authorized SANTIC Dealers.

NAME

ADDRESS

CITY

STATE

ZIP

CALL

YOU MAY SEND A DUPLICATE OF THIS FORM.
Entries must be by letter or post card only. No telephone requests will be accepted. All entries will be acknowledged when received. Those judged to be most informative to the most Amateurs will be published. Questions must relate to Amateur Radio.

Readers are invited to send a card with the question they feel is most useful that appears in each issue. Each month's winner will receive a prize. We will give a prize for the most popular question of the year. In the case of two or more questions on the same subject, the one arriving the earliest will be used.

power supply regulation

I need some insight on why the output of the regulator shown in the schematic diagram does not function properly. John R. Pape, KA2FJA.

The regulator circuit looks OK, but you may be asking too much from the power transformer. According to your schematic diagram, it is rated at 17 volts at 6 amperes (102 watts) input, but it is asked to deliver 5 amperes at 35 volts (175 watts) output. To overcome this problem, change the rectifier circuit from bridge to full-wave. This will provide you with 17.5 volts at 5 amps (87.5 watts) output. Of this, 69 watts will be delivered to the load, while 18.5 watts will be dissipated as heat. The load on the transformer will now be within its rating. Of course, you will need a transformer with a center-tapped secondary.

soldering RG-8 to a PL-259

How do you get a decent solder connection to RG-8 braid when installing a PL-259? James T. Petersen, WD0GYD.

There is a step-by-step procedure for assembling PL-259 fittings to RG-8 cable on page 17-11 of the 1981 edition of the ARRL Handbook. Note that soldering of the braid to the plug, or tinning, is the last step in the procedure; even though the dielectric material may soften, it should not run out or be deformed because it is held in place by the body of the assembly.

current flow

Could you explain how it is possible that electrons flow from negative to positive but conventional current flow is from positive to negative? Fred Nordstrom, KA4IZK.
As a matter of convention, when we discuss electric current flow, we always show the direction in which a positive charge would flow. Electrons always flow in the opposite direction. For example, in a vacuum tube circuit, as shown here, electrons are boiled out of the cathode and are attracted to the positive plate. By convention, however, we indicate the direction of current flow with an arrow which points in the direction opposite to the flow of electrons.

![Diagram of electron flow](image)

It is interesting to note that in an electrolytic cell or battery, electrons accumulate on the negative terminal because of a chemical reaction. If then, an external conducting circuit connects the negative with the positive terminal, electrons will flow from the negative to the positive terminal over the external circuit. By convention, we indicate this "current" flow by an arrow pointing from the positive to the negative battery terminals. Confusing, isn't it?

PEP input and output

What is the easiest, most appropriate and least expensive method for determining input and output power in dc or PEP watts? David Ruscitti, WA1FRC.

To determine dc input power, all you need do is multiply the PA plate current by the plate voltage with key down or while whistling into the microphone. Determining input and output PEP is not quite so simple. Peak envelope power cannot be measured directly with meters, since meters respond to the average amplitude of the modulation envelope. It has been generally agreed that peak-to-average input power ratios during a modulation peak will be about 2:1 with the average human voice. The FCC allows 2-kW PEP input maximum, assuming the average dc input power (as indicated by the meters) does not exceed 1 kW. Thus, if your voice characteristics are such that the peak-to-average dc input power ratio is more than 2:1, you must run less than 1-kW dc input, as measured by the meters, to comply with the FCC regulation.

About the same things can be said for average and PEP output powers. If you have access to a well-calibrated rf power meter, you can determine the key-down power output (or average voice output power) of your transmitter in the usual manner, but the PEP output remains as elusive as ever.

If your rig employs ALC or speech processing, the chances are very good that the peak-to-average output power ratio is about 2:1.

two-tone test

Heathkit mentions the two-tone test to check my linear's linearity. My text books mention this test but fail to explain how these tones are generated or what frequencies are used. Would you tell me how this test is performed? George A. Brooks, WA1BUJ.

The 1981 edition of the ARRL Handbook includes information on page 12-18 for two-tone testing of SSB transmitters. An audio oscillator provides one of the two tones, while a small amount of carrier unbalance (purposely developed) provides the other tone. Or you can null out the carrier and feed two audio signals into the microphone jack. A two-tone generator is described for this purpose in *ham radio*, April, 1972.*

There are no specific tone frequencies that need to be used, but they should be within the audio passband of the exciter’s microphone amplifier circuit. Generally, one tone is adjusted to 800 Hz while the other is set to about 2000 Hz.

*Hank Olson, W6GKX, "Low Distortion Two Tone Oscillator for SSB Testing," *ham radio*, April, 1972, page 11.

rules of thumb for coils

Is there a general rule of thumb about the number of turns per inch and total number of turns to yield a given inductance? Don Richardson, WBSUIA.

A useful formula for determining the inductance of single-layer solenoids, which is sufficiently accurate for use in the Amateur high-frequency bands, is:

\[
L = \frac{r^2 n^2}{9r + 10\ell}
\]

where \(L\) = inductance (\(\mu\)H)

\(r\) = coil radius (inches)

\(\ell\) = coil length (inches)

\(n\) = number of turns

Solving for \(n\) will give the number of turns:

\[
n = \frac{\sqrt{L(9r + 10\ell)}}{r}
\]

Once the number of turns is determined for a coil of a given inductance, merely divide \(n\) by coil length, \(\ell\), to obtain the number of turns per inch.

At VHF the formula becomes inaccurate because conductor thickness becomes an appreciable part of the size of the coil and cannot be neglected. The 1981 edition of the ARRL Handbook contains a handy graph for determining the inductance of coils wound with no. 12 (2.1 mm) bare wire, 8 turns per inch.

ham radio

May 1981
The TS-530S SSB/CW transceiver is designed with Kenwood's latest, most advanced circuit technology, providing wide dynamic range, high sensitivity, very sharp selectivity with selectable filters and IF shift, built-in digital display, speech processor, and other features for optimum, yet economical, operation on 160 through 10 meters.

TS-530S FEATURES:

- **160-10 meter coverage, including three new bands**
 Transmits and receives (LSB, USB, and CW) on all Amateur frequencies between 1.8 and 29.7 MHz, including the new 10, 18, and 24 MHz bands. Receives WWV on 10 MHz.

- **Built-in digital display**
 Large, six-digit, fluorescent-tube display shows actual receive and transmit frequencies on all modes. Backed up by analog subdial.

- **Narrow/wide filter combinations**
 Any one or two of three optional filters . . . YK-88SN (1.8 kHz) SSB, YK-88C (500 Hz) CW, YK-88CN (270 Hz) CW . . . may be installed for selecting (with "N-W" switch) wide and narrow bandwidths on CW and/or SSB.

- **IF shift**
 Moves IF passband around received signal and away from interfering signals and sideband splatter.

- **Built-in speech processor**
 Combines an audio compression amplifier with change of ALC time constant for extra audio punch and increased average SSB output power, with suppressed sideband splatter.

- **Wide receiver dynamic range**
 Greater immunity to strong-signal overload, with MOSFET RF amplifier operating at low level for improved IMD characteristics, junction FETs in balanced mixer with low noise figure, and dual resonator for each band.

- **Two 6146B's in final**
 Runs 220 W PEP/180 W DC input on all bands.

- **Advanced single-conversion PLL system**
 Improved overall stability and improved transmit and receive spurious characteristics.

- **Adjustable noise-blanker level**
 Pulse-type (such as ignition) noise is eliminated by built-in noise blanker, with front-panel threshold level control.

- **RF attenuator**
 The 20-dB RF attenuator may be switched in for rejecting IMD from extremely strong signals.
Optional VFOs for flexibility
VFO-240 allows split-frequency operation and other applications. VFO-230 digital VFO operates in 20-Hz steps and includes five memories and a digital display.

RIT/XIT
Front-panel RIT (receiver incremental tuning) shifts only the receiver frequency, for tuning in stations slightly off frequency. XIT (transmitter incremental tuning) shifts only the transmitter frequency, for calling a DX station listening off frequency.

More information on the TS-530S is available from all authorized dealers of Trio-Kenwood Communications, Inc., 1111 West Walnut Street, Compton, California 90220.

Matching accessories for fixed-station operation:
- SP-230 external speaker with selectable audio filters
- VFO-240 remote VFO
- AT-230 antenna tuner / SWR and power meter
- MC-50 desk microphone

Other accessories not shown:
- TL-922A linear amplifier
- SM-220 Station Monitor

- VFO-230 remote digital VFO with 20-Hz steps, five memories, digital display
- KB-1 deluxe VFO knob
- PC-1 phone patch
- HS-5 and HS-4 headphones
- HC-10 digital world clock
- YK-88C (500 Hz) and YK-88CN (270 Hz) CW filters and YK-88SN (1.8 kHz) SSB narrow filter
- MC-30S and MC-35S noise-canceling hand microphones

Specifications and prices are subject to change without notice or obligation.
What's a balun? What good is it? Why use it? These are questions often heard among Amateurs. Balun is an acronym for balanced-to-unbalanced transformer. The balun is used predominantly in rf transmission lines. A balun placed between an unbalanced feedline (such as coax transmission line) and a balanced antenna (such as a dipole or Yagi-antenna driven element) will eliminate or reduce antenna currents on the transmission line, which could cause radio-frequency interference (TVI, BCI).

Much controversy exists in Amateur circles concerning the usefulness of the balun. Some Amateurs swear by it. Others swear at it, claiming that the balun is an unnecessary nuisance and expense. Be that as it may, good engineering practice says that a transition between an unbalanced transmission line and a balanced load is, indeed, necessary. We therefore present this article by Roy Lehner, WA2SON, on a coreless balun for Amateur transmission lines.

In pursuit of a balun for my new triband Yagi antenna, I found Badger's article informative and encouraging. Attempting to adapt the design principles outlined in his article into a finished transformer was somewhat difficult for several reasons. The RG-141/U (Teflon dielectric) coaxial cable is extremely difficult to obtain and its cost is more than $3.00 per foot. How do I make the connections to the antenna and feedline that are waterproof and electrically sound? How can the finished unit be mounted on a Yagi-antenna boom in a neat and orderly manner? The following article discloses my resolution to these problems.

The coax I chose is the newly introduced RG-8X, a 52-ohm cable that's inexpensive (about 25 cents a
foot) and capable of handling one kW. It is also easy

to work with and coils neatly into a 4-inch (100-mm)
diameter coil. (The coil diameter should be 15 to 20
times the coax diameter.)\(^1\)

RG-8X cable can’t withstand the same electrical
stress as RG-141/U, because of its lower power
rating. Using a badly mismatched antenna could ruin
the RG-8X coax in the same way that coaxial feed-
lines may be ruined under high SWR conditions. In
terms of balun efficiency and performance, both
cables are equal and do a superb job — much better
than the popular ferrite or air-wound enameled wire
baluns on today’s market.

construction

The balun consists of two equal windings of RG-
8X coax, each 42 to 48 inches (1.07 to 1.22 meters)
closewound into a single-layer coil (fig. 1). Although
the exact length isn’t critical, it’s important that the
two windings be equal in length to preserve electrical
balance. Termination points A-E can be neatly made
through use of No. 10 (M5) machine screws and eye-
type wire terminals. Keep the connections as short
and direct as possible. By keeping jumper B-E on the
outside of the housing, the shield side of the input
may be readily identified without having to remove
the top cover once it is cemented in place (after, of
course, the U-bolt is tightened to the supporting
antenna boom).

The balun enclosure (fig. 2) should not be made of
metal because of possible detuning effects on the
resonant transformer. A functional and inexpensive
container may be fashioned from a 4-inch (100 mm)
PVC pipe coupling cut down to 2-1/2 inches (65 mm)
long. Alternatively, a short length of acrylic tubing,
or even some plastic freezer containers, may be used.
In any case, be certain that the housing is watertight
and that the top and bottom covers have no gaps,
one cemented into place.

Placing the tube on a piece of sandpaper and slow-
ly rotating it will help ensure a flat and even edge.
Two 1/8-inch (3-mm) drain holes should be drilled
into the housing bottom.

Similar baluns may be constructed for the 160-40
meter bands; however, a longer winding of coax will
be required. (See reference 1 for details.) With a little
mechanical ingenuity, there’s no reason why this
type of balun couldn’t be used for flat-top wire
dipoles, so long as the enclosure is capable of with-
standing the stresses imposed.

What more can be said — good balun, good price,
good luck! See you in the pileups.

references

1. George Badger, W6TC, "New Class of Coaxial-Line Transformers," *ham

ham radio
The right design — for all the right reasons. In setting forth design parameters for ARGOSY, Ten-Tec engineers pursued the goal of giving amateurs a rig with the right features at a price that stops the amateur radio price spiral.

The result is a unique new transceiver with selectable Dower Other cw and ssb filters are available as options, see below. I-f frequency is 9 MHz, i-f rejection 60 dB. Offset tuning is ± 3 kHz with a detent “off” position in the center. Built-in notch filter has a better than 50 dB rejection notch, tunable from 200 Hz to 3.5 kHz. An optional noise blanker of

Other cw and ssb filters are available as options, see below. I-f frequency is 9 MHz, i-f rejection 60 dB. Offset tuning is ± 3 kHz with a detent “off” position in the center. Built-in notch filter has a better than 50 dB rejection notch, tunable from 200 Hz to 3.5 kHz. An optional noise blanker of

The result is a unique new transceiver with selectable power levels (convertible from 10 watts to 100 watts at the flick of a switch), a rig with the right bands (80 through 10 meters including the new 30 meter band), a rig with the right operational features plus the right options, and the right price for today’s economy—just $549.

Low power or high power. ARGOSY has the answer. Now you can enjoy the sport and challenge of QRP operating, and, when you need it, the power to stand up to the crowds in QRM and poor band conditions. Just flip a switch to move from true QRP power with the correct bias voltages to a full 100 watt input.

New analog readout design. Fast, easy, reliable, and efficient. The modern new readout on the ARGOSY is a mechanical design that instantly gives you all significant figures of any frequency. Right down to five figures (± 2 kHz). The band switch indicates the first two figures (MHz), the linear scale with lighted red bar-pointer indicates the third figure (hundreds) and the tuning knob skirt gives you the fourth and fifth figures (tens and units). Easy. And efficient—so battery operation is easily achieved.

The right receiver features. Sensitivity of 0.3 µV for 10 dB S+N/N. Selectivity: the standard 4-pole crystal filter has 2.5 kHz bandwidth and a 1.7:1 shape factor at 6/50 dB.

the i-f type has 50 dB blanking range. Built-in speaker is powered by low-distortion audio (less than 2% THD)

The right transmitter features. Frequency coverage from 80 through 10 meters, including the new 30 meter band, in nine 500 kHz segments (four segments for 10 meters), with approximately 40 kHz VFO overrun on each band edge. Convertible power: 100 or 10 watts input with 100% duty cycle for up to 20 minutes on all bands. 3-function meter shows forward or reverse peak power on transmit, SWR, and received signal strength. PTT on ssb, full break-in on cw. PIN diode antenna switch. Built-in cw sidetone with variable pitch and volume. ALC control on “high” power only where needed, with LED indicator.

Automatic normal sideband selection plus reverse. Normal 12-14V dc operation plus ac operation with optional power supply.

The right styling, the right size. Easy-to-use controls, fast-action push buttons, all located on raised front panel sections. New meter with lighted, easy-to-read scales. Rigid steel chassis, dark-painted molded front panel with matching aluminum top, bottom and back. Stainless steel tilt-up bail. And it’s only 4” high by 9½” wide by 12” deep (bail not extended) to go anywhere, fit anywhere at home, in the field, car, plane or boat.

The right accessories—all front-panel switchable. Model 220 2.4 kHz 8-pole ssb filter $55; Model 218 1.8 kHz 8 pole ssb filter $55; Model 219 $55; Model 217 500 Hz cw filter $55; Model 219 250 Hz cw filter $55; Model 224 Audio cw filter $34; Model 223 Noise blanker $34; Model 226 internal Calibrator $39; Model 1125 Dc circuit breaker $10; Model 225 117/230V ac power supply $129.

Model 525 ARGOSY — $549. Make the right choice, ARGOSY—for the right reasons and low price. See your TEN-TEC dealer or write for full details.
Amateur bands above 21 MHz offer a challenge for those who like to experiment and build their own equipment. The vhf-to-microwave frequencies allocated to the Amateur service are not overly populated, and this poses a problem. If these bands are not used, we stand a good chance of losing them to other services. Remember what happened to the 11-meter band — we didn’t use it, so now it’s dominated by Citizen Band users. It’s possible that our vhf-microwave bands could suffer the same type of FCC regulation. If we don’t use them, we lose them.
The preamps described below have either a narrow bandwidth, for single-band units, or a relatively broad bandwidth, which covers 10-60 MHz. The broadband circuit is particularly attractive for a Gunnplexer® i-f preamp because a very-low-noise figure and reasonable gain are obtainable over a bandwidth allowing relatively widely separated i-fs (such as 10.7 and 30 MHz) to be used, with a single preamp attached to a single microwave front end. In fact, the bandwidth-limiting factor appears to be the output-impedance matching circuit — a core rated for a wider frequency range will broaden the bandwidth range even further.

results?

If you’re at all like I am, this is the first question you ask and the first information you look for (table 1).

table 1. Comparison of test results for narrowband and broadband preamps.

<table>
<thead>
<tr>
<th></th>
<th>narrowband</th>
<th>broadband</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50-ohm Z_S/Z_L</td>
<td>200-ohm Z_S/Z_L</td>
</tr>
<tr>
<td>10.7 MHz NF</td>
<td>1.07 dB</td>
<td>1.07 dB</td>
</tr>
<tr>
<td>G_r</td>
<td>1.25 dB</td>
<td>1.25 dB</td>
</tr>
<tr>
<td>G_f</td>
<td>4.10 dB</td>
<td>4.10 dB</td>
</tr>
<tr>
<td>(31 dB max G_f)</td>
<td>4.10 dB</td>
<td>4.10 dB</td>
</tr>
<tr>
<td>G_r</td>
<td>34.00 dB</td>
<td>34.00 dB</td>
</tr>
<tr>
<td>BW 10.20 MHz</td>
<td>5.00 MHz</td>
<td>5.00 MHz</td>
</tr>
<tr>
<td>30 MHz NF</td>
<td>1.07 dB</td>
<td>1.07 dB</td>
</tr>
<tr>
<td>G_r</td>
<td>1.25 dB</td>
<td>1.25 dB</td>
</tr>
<tr>
<td>G_f</td>
<td>4.10 dB</td>
<td>4.10 dB</td>
</tr>
<tr>
<td>(31 dB max G_f)</td>
<td>4.10 dB</td>
<td>4.10 dB</td>
</tr>
<tr>
<td>G_r</td>
<td>34.00 dB</td>
<td>34.00 dB</td>
</tr>
<tr>
<td>BW 10.20 MHz</td>
<td>5.00 MHz</td>
<td>5.00 MHz</td>
</tr>
</tbody>
</table>

Note: NF is noise figure, G_r is associated forward gain at the listed NF. G_r is reverse gain. BW is bandwidth, and max G_f is maximum forward gain if tuned without regard for NF.

circuit design

Both narrow and wideband preamps use the common-emitter configuration and an identical bias network (figs. 1 and 2). Note that both circuits use some common components (see parts lists). The device emitter is connected to ground through a 100-ohm resistor, R2, bypassed with a 0.01 μF disc cap, C5. A bypassed variable resistor, R1 (1-k pot), is connected to a bypassed 5.1-volt zener, 3-k resistor series circuit. The junction of the pot and zener is dc connected to the device base, while the end of the 3-k resistor is dc connected to the device collector.

An “idiot” diode, 1N914, 1N4148, or any other small-signal diode rated for at least 15 volts, is in series with a current-limiting resistor, R4. If a 3-k resistor isn’t available for R3, a 2.7 k will work as well, although slightly more preamplifier current will be drawn from the B + supply.

Resistor R1 sets device collector current for minimum noise figure (or for maximum gain, depending on the desired use). All of the preamplifiers were built on a “universal” single-sided PC board (see fig. 8, reference 2).

construction

The preamps were built in general accordance with the schematics of fig. 1 (narrowband) and fig. 2 (broadband), with exceptions as noted below.

Narrowband preamp. These units were built according to fig. 1 except that I didn’t use variable caps C2 and C7; instead I used two variable inductors (0.68 μH nominal inductance) for L1 and L2. (For the 50-MHz preamp, fig. 2, I used C2 and C7 with toroidal inductors for L1, L2.) This difference in tuned circuits was made because of the parts I had on hand at the time.

The 30-MHz preamp can be built with the toroidal inductor-variable capacitor circuits used in the 50-MHz unit. The adjustment range of C2 and C7 (fig. 1) is sufficient for tuning the preamp to either band.

Tuning is accomplished by first adjusting R1 (1-k pot) for about 4 mA of total preamplifier input current from a 10-12 volt dc source. (See figs. 1 and 2). If a signal generator isn’t available, connect the unit in series with the receiver and tune in a moderately weak signal.

Adjust C1, C2, C7, and C9 (or C1, L1, L2, and C9 if
fig. 2. Schematic of wideband preamplifier. Connections also shown for use as a microwave mixer i-f amplifier.

variable inductors are used) to peak the signal on the receiver S meter. Try to use a signal that, even when tuning is complete, doesn't come close to pinning the S meter.

It's advisable to finely tune the preamp by repeating the adjustments several times as they interact somewhat. If a signal generator is available, the signal amplitude can be decreased as the preamplifier is tuned to maintain the receiver S meter at a point approximately midway on its scale. Tuning for minimum noise figure can be accomplished by the method of adjusting C1 (and either C2 or L1) for best

signal-to-noise ratio on a weak signal. (A noise-figure test setup is preferable, although many can't obtain such equipment.)

Broadband preamp. No tuning components are used. Set R1 for minimum noise figure (about 4 mA total current) or maximum gain, as desired. As shown in fig. 2, the unit is designed for a 200-ohm source impedance, which may be provided by the output of a microwave mixer. Fig. 3 illustrates the input test setup, in which a 4:1 impedance transformer can be used to increase the 50-ohm source impedance of a signal generator, or noise source, to 200 ohms. (I use a Minicircuits Labs T4-1 transformer, but another homebrew transformer can be used instead.) If used in a system requiring a 50-ohm source impedance, permanently connect the second toroidal transformer into the input circuit.

Gunnplexer adaptation

Fig. 4 illustrates one way to mount the i-f preamp to the mixer block, A, of a Gunnplexer® microwave front end. Hold block A so that you can see into waveguide opening B. Note that ferrite circulator rod C is to the right, and mixer diode D is to the left, of local oscillator injection screw E, which runs from the top center of the block in front of the Gunn oscillator iris, F.

On the top surface of block A are: injection screw E (front center), which is held from turning by a nut I; the mixer-output post, G, to the left and behind
screw E; and a ground stud, H, almost directly behind screw E.

Start with the preamp, built on a piece of PC board 1. (The preamplifier shown is for the universal board of reference 2. The large arrow is the base lead on the board.) This PC board is slightly wider than width W of block A (fig. 4).

Carefully unsolder the leads of the 1-k resistor and zener, which come with the Gunnplexer®, from ground stud H; then remove mixer output post G (still soldered to the resistor and zener) by pulling gently straight up. This post fits over a smaller-diameter pin, which protrudes from the mixer insulator — be careful not to damage this pin.

Referring to fig. 4, drill a small hole, 1a, into the board at the solder pad at the input end of C1. Align this hole over the mixer pin, now present at location G, and mark the PC board with the location for the head of screw E and ground stud H.

Remove the PC board, and drill hole 1b to completely clear screw E and nut I. Drill another hole, 1c, to clear the head of ground stud H. A safe method is to use increasingly greater-diameter drills and check the hole match often by placing the PC board over the top of block A. Do not touch the setting of, or otherwise attempt to adjust, screw E or nut I, while fitting the board.

Preamplifier PC board 1 can be mounted directly on top of the block, with mixer output-post G soldered through hole 1a to the C1 pad, and the preamp ground soldered to ground stud H. (However, I prefer to place a shield box completely around the preamp.)

I used a piece of unetched PC board, 2, (single or double sided), which is slightly larger than preamplifier PC board 1 — and drilled three holes: 2a, 2b, and 2c to clear the respective mixer output insulator (a plastic "button" surrounding the mixer pin); nut I; and stud H. Unetched board 2 is placed right on the top of block A and soldered to stud H.

A pair of end walls, 3 and 4, and side walls, 5 and 6, are soldered to bottom piece 2 to make an open-top box, which will receive preamplifier PC board 1. Mixer-contact terminal G is permanently soldered in hole 1a at the input pad of preamplifier PC board 1.

The PC board is now moved down through the open top of the box, with mixer contact terminal G being placed over and surrounding the mixer pin. Screw E passes through hole 1b, and stud H passes through hole 1c. The ground portion of preamp PC board 1 is soldered to stud H and is tack-soldered to the inside surfaces of the box side and end walls 3-6. An rf output connector and B + feedthrough capacitor may be soldered through the box walls.

The box is then covered, and the shielded enclosure is complete. This mounting scheme has several important advantages:

1. Full shielding is achieved to minimize i-f interference.
2. Minimum input lead length, between the mixer output and the preamplifier input, is achieved to maintain minimum i-f preamp noise figure.
3. Injection-screw E is enclosed and made more tamper proof but is still accessible by removing the preamplifier box top if adjustment should ever be required.
4. Preamplifiers can be changed by untacking the soldered connections of the PC board 1 from the box walls and from ground stud H and lifting the preamplifier board out of the box.

I've found that, to provide even greater mechanical stability, large ground lugs J can be fitted under the screws holding block A to Gunn oscillator C or to the horn antenna flange, and the lug end(s) can be soldered to the preamplifier shield box.

By connecting the original 1-k resistor and zener (1N758) to the preamp input through RFC2, as shown by the broken-line connection in fig. 2, the dc protection of the mixer diode is maintained, and mixer diode current can be read by placing a 1-mA (full scale) meter from the feedthrough to ground. If a meter is not used, merely ground the feedthrough center pin (on the outside of the preamp shield box). Capacitor C11 (fig. 2) helps prevent injection of noise from the zener into the preamplifier input.

Conclusion

Low-noise preamps may be built for the 10-60 MHz region at low cost, using the NE41632E-2 device. The selection of narrow or broad bandwidth is determined by individual requirements. Similar preamps of either type have been illustrated. I'll be happy to answer any questions if a self-addressed, stamped envelope is enclosed.

Thanks to Jerry Arden, Vice President, Marketing and Sales, at California Electronics Labs* (the NE41632E-2 sales agents in the U.S.) for his interest in providing samples and data.

References

*3005 Democracy Way, Santa Clara, California 95050.
Homebrewing Amateur gear can be an enormously satisfying experience. There’s no reward like being able to say “I built it myself.” Homebrew gear generally falls into one of two categories: it’s either foolproof in construction and can be assembled with a reasonably good chance of having it work the first time you turn it on, or it’s complex and needs test instrumentation for calibration and adjustment, which is simply not available to the average ham. This article is devoted to helping satisfy the need for good, accurate measurement instrumentation. This instrument ranks right along with your VOM, scope, and frequency counter in utility.

types of measurements

Frequency and amplitude of rf signals are, fundamentally, the two measurements made. Others are simply variations. Giant strides have been made with the introduction of simple and relatively inexpensive frequency counters priced within the Amateur’s budget. Rf power measurements, however, have traditionally been limited to measuring voltage with an rf probe and VOM or a scope. In many cases this simply is not satisfactory due to the limited sensitivity of the instrumentation, or because the measurement is not easily adaptable to this technique.

This article describes an rf power meter that measures absolute power in dBm, 50 ohms, over a frequency range of 3.5-30 MHz. Measurement range, across a 50-ohm load, is between -60 and 20 dBm with an accuracy of ±1dB.* Armed with a frequency counter and the power meter and accessories described in this article, you can make a variety of scalar network measurements not ordinarily possible without access to sophisticated lab equipment. Best of all, the instrument isn’t difficult to build or calibrate. Here are some of the things you can do, just to tickle your imagination, with the power meter and accessories. I have done most of these myself.

1. Evaluate oscillators, QRP transmitters, and small-signal amplifiers with respect to power output, flatness, harmonic distortion, and input return loss (VSWR).

2. Evaluate mixers for flatness, LO and rf suppression and conversion loss or gain.

3. Accurately measure your antenna VSWR down to 1.02 with an uncertainty of ±0.02. It’s virtually impossible to get that kind of accuracy and resolution with a simple SWR meter.

*Verified with an HP-8640B signal generator.

By Ralph H. Fowler, N6YC, Route 1, Box 254, Pearl River, Louisiana 70452
4. Simplify filter construction. Synthesis of a 50-ohm LC preselector filter or other bandpass filters, for example, can be a ticklish job. Actual component values can depart considerably from theoretical values due to parts substitutions, tolerance unknowns, and stray capacitances. The power meter, combined with a counter and tunable source, enables alignment and evaluation of LC filters with respect to insertion loss, passband shape (ripple), shape factor, and skirt attenuation (up to 80 dB with a 20-dBm tunable source). If your source is stable enough you can even characterize crystal filters.

5. Adjust interstage and output matching networks (50 ohms). Even your transmatch can be adjusted with the power meter and a directional bridge.

6. Make similar measurements on your kilowatt rock-crusher by adding a simple in-line directional coupler (not described here) to your transmission line. You can, naturally, calibrate the coupler with the power meter.

As an academic exercise you can even measure a-m percentages between 25 and 100 per cent to within a few per cent accuracy. Some of these measurements, plus a few provocative ideas, will be discussed in part 2 of this article.

The power meter consists of three basic parts: a biased Schottky diode broadband detector (note the broadband emphasis — this becomes extremely important in the measurements described in part 2), a 37-dB broadband preamp, and a relay-switched 0-70 dB attenuator. These three elements are cascaded as shown in fig. 1. Each element is described in turn.

Operation is simple. The step attenuator and preamp set the level of the signal being measured to the proper amplitude for the square-law detector. This is essential since the square-law amplitude range of the detector is relatively limited, typically to between -40 and -10 dBm. Square-law, you may recall, means that the output voltage of the detector is proportional to the input power. Outside of this -40 to -10 dBm range, the detector does not follow the square-law relationship and will be uncalibrated. Even if the square-law range were greater than 30 dB, it would not be useful in this simple scheme since the meter itself can display only 10 dB of range with acceptable resolution (1 dB) without a logging amplifier included in the circuit. With these complicating factors in mind, I chose to accept a 10-dB measurement range per step of the input attenuator. The only inconvenience is that you have to switch the attenuator to bring the reading within the 10-dB display range of the meter. The meter, incidentally, has a 0 to -10 dB calibration scale. If you can’t find a meter calibrated in dB (10 \log_{10}) it’s easy to add your own calibration marks. A calibration table is shown in fig. 2.

The Detector

The heart of the power meter is the broadband square-law detector. The original circuit design was described by Wes Hayward, W7ZOI, in *Solid State Design for the Radio Amateur*, and the reader is encouraged to consult this excellent reference for more details. This detector is shown in fig. 3.

Construction is not particularly critical but should be done on PC or copper-clad Vector board to permit operation above 30 MHz, as described later. Leads up to and including the diodes should be kept short. The detector assembly should then be housed inside a compartment or BUD™ box.

The diodes are Schottkys, which are inherently better matched than conventional types and are essential. In addition, these diodes have a better sensitivity than ordinary silicon diodes, thus providing up to -40 dBm sensitivity with careful biasing.

A variety of op-amps were tried in this circuit with good results, including the 741, LM301A, and LM312. Doubtless there are others which would work equally well.

With this design and a little attention paid to short leads at the front end, my unit had a perfect square-law response between -23 dBm and -13 dBm and was virtually flat up to approximately 500 MHz. An extra 10 dB of sensitivity could have been achieved by calibrating the detector for the -33 dBm to -23 dBm range, but op-amp drift effects began to show up here. Operation between -23 dBm and -13 dBm is drift free.

With this kind of frequency response, it would pay to provide a jumpered detector input on the back panel of the power meter to allow power measurements at vhf and above using the detector alone.

To access the detector (thus bypassing the switched attenuator and preamp, which are much more frequency limited) you could simply remove the jumper coax and plug right into the detector. I don’t operate above 30 MHz so I did not include this in my set.

Compared to a Hewlett-Packard 8640B signal generator as a reference.
Calibration

Calibration of the detector is an intermediate step that should be accomplished to ensure that the detector is working properly and to provide a means of measuring the gain of the preamp once it is built. When the power meter is completed, it will then require only minor readjustment to bring it into absolute calibration.

Since the ultimate accuracy of the power meter depends on the reference used to calibrate it, it is crucial that care be taken in its selection. The ideal reference is an accurately calibrated signal generator that can be tuned over the full operating band. Usually this is impractical, so the next best alternative is to simply build a fixed frequency, high-frequency oscillator with an output of about 13 dBm into 50 ohms, corresponding to 1 Vrms. This level is easily measurable with a rf probe and VOM. This oscillator will be used to calibrate the detector and the preamp. Fig. 4 shows a simple oscillator that will deliver 13 dBm. The relationship between output voltage and power in dBm (50 ohms) is given so that you should be able to compute the exact power output of your oscillator once the rf voltage is measured. Just remember that you must measure the voltage with the output terminated into 50 ohms (a 50-ohm noninductive resistor will do nicely as a temporary load).

The 13-dBm signal must now be attenuated to bring it into the range of the detector. Fig. 5 shows component values used for constructing the attenuators. Small adjustments to the oscillator collector voltage can also be made for small corrections to output level.

With no input connected to the detector, the zero adjustment should first be set to bring the meter reading to zero. Next connect the −13 dBm refer-

Fig. 2. Data for calibrating the dB meter.

<table>
<thead>
<tr>
<th>dB</th>
<th>percent full scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>−1</td>
<td>79</td>
</tr>
<tr>
<td>−2</td>
<td>63</td>
</tr>
<tr>
<td>−3</td>
<td>50</td>
</tr>
<tr>
<td>−4</td>
<td>40</td>
</tr>
<tr>
<td>−5</td>
<td>32</td>
</tr>
<tr>
<td>−6</td>
<td>25</td>
</tr>
<tr>
<td>−7</td>
<td>20</td>
</tr>
<tr>
<td>−8</td>
<td>16</td>
</tr>
<tr>
<td>−9</td>
<td>13</td>
</tr>
<tr>
<td>−10</td>
<td>10</td>
</tr>
<tr>
<td>−20</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 3. Biased detector schematic. CR1, CR2 are Schottky diodes. Meter is 0-100 microamps or higher. Original circuit was described by Wes Hayward, W7ZOI.

Fig. 4. Oscillator for calibrating the detector and preamp. Circuit delivers 13 dBm.

Fig. 5. Symmetrical pi attenuator for bringing the 13-dBm oscillator signal into the range of the detector. Z = 50 ohms resistive.
ence signal to the detector and adjust the calibration trimpot to set a full-scale reading. The meter multiplier pot will also have to be adjusted to accommodate your particular meter sensitivity. Disconnect the input signal and reset the zero adjustment. Continue alternating between the zero and calibration pots to complete the initial detector calibration.

To verify square-law operation of the detector, simply add a 3-dB attenuator between the -13 dBm reference signal and the detector input. The meter should indicate half scale, corresponding to 3 dB below full scale or -16 dBm absolute power. Replacing the 3-dB attenuator with a 10-dB attenuator should bring the meter indication to 0.1 of full scale, corresponding to 10-dB below full scale, or -23 dBm. The detector is now absolutely calibrated over the -23 dBm to -13 dBm range and will be used subsequently (along with the attenuators) to calibrate the preamp.

preamplifier

The preamp used ahead of the detector supplies 37 dB of amplification using two 2N5179A transistors in a broadband configuration (fig. 6). Construction is not critical, and the amplifier should be stable with the emitter and shunt feedback. The feedback also provides a good input impedance match to 50 ohms. Measured input VSWR was better than 1.2. This is important to provide a good match to the step attenuator, which precedes the preamp. If you use another preamp circuit remember not to compromise this parameter.

The broadband transformers should be wound on high-permeability ferrite toroids to ensure the full bandwidth. Using the values shown, the 3-dB bandwidths were 3.0 and 77 MHz, and the 1 dB bandwidths were 3.5 and 37 MHz. Adding a few extra turns should increase the lower 3-dB frequency to allow coverage of the 1.8 MHz band if desired.

Once completed, the preamp should be tested to ensure that 37-dB gain is achieved. More or less gain will require reaccomplishing the detector initial calibration so that the preamp and detector combination have the required -50 dBm full-scale sensitivity. Assuming that the gain is measured to be 37 dB, ± a few dB, this final adjustment can be deferred until the power meter is completed.

To measure preamp gain, construct a 40-dB fixed attenuator and connect it to the -13 dBm reference output. This -53 dBm signal is now applied to the preamp input and the preamp output connected to

fig. 6. This 37-dB broadband preamplifier is stable, with emitter and shunt feedback. Measured input VSWR is less than 1.2.

fig. 7. Input attenuator consists of cascaded pi networks. Relays are used here. A better alternative would be the slide-switch circuit in the 1980 *Radio Amateur's Handbook*.

May 1981
the calibrated detector and meter. The meter should indicate \(-16\) dBm (half scale, assuming full scale is \(-13\) dBm), corresponding to 37 dB of preamp gain.

Input Attenuator

The switched input attenuator was unquestionably the most difficult part of the project. Fig. 7 shows the completed unit. A number of prototypes were built with varying degrees of success. The problems encountered most often were (1) flatness variations (a few dB greater than the 1-dB design goal) at the high frequency end of the range, and (2) degraded input-to-output isolation at attenuation levels above 70 dB despite my attempts at shielding. This limits operation of the power meter to 20 dBm (where 70-dB attenuation is used).

As an alternative, you might consider building the attenuator using small slide or toggle switches, perhaps even external to the power meter. Such a unit would have other applications as well as being useful in calibration of the detector and preamp. The 1980 edition of the *Radio Amateur's Handbook* shows construction of a shielded 147-dB step attenuator using simple slide switches; it looks like a good prospect. Using this proven design, you could probably remedy the isolation problems I encountered and increase the measurement range to 30 dBm or higher.

If building the relay-switched attenuator still appeals to you, a couple of construction points are worth remembering:

1. A single-side PC or Vector™ board layout is desirable for minimizing isolation problems and frequency response resulting from impedance mismatches. While the 50-ohm environment of a transmission line is certainly not preserved, I found that by using small PC-mount relays on a Vector board and a physically small layout, an input VSWR less than 1.4 and \(\pm 1\) dB flatness up to 30 MHz was attainable, even at the 0 dB attenuation setting (all attenuators switched out). Although not shown in my unit, shielding between attenuator sections would still be good insurance against isolation problems despite my experience.

The resistors used to build the attenuator sections are film type, 1 per cent tolerance, 1/4-watt units mounted close to the relay contacts. Physically small, low-wattage resistors reduce the capacitance to ground and help keep the flatness variations reasonable.

2. The attenuator sections consist of 10-, 10-, 20-, and 40-dB sections switched in as required to provide 0-70 dB of attenuation in 10-dB steps. A 10-dB section is used as the input section and remains switched in at all times except at the highest sensitivity setting of the power meter, \(-50\) dBm. This helps establish the good input VSWR and is important when characterizing devices such as 50-ohm LC filters, which require a good 50-ohm termination.

Considering the isolation problems mentioned earlier, measurements at levels above 20 dBm should be done with fixed attenuation ahead of the power meter. Of course, this requires mentally adjusting the readings for the extra attenuation. Remember to construct the external attenuators with higher wattage resistors to dissipate the increased power.

To provide switching the input-attenuator relays, a 4p8t switch or sp8t switch (both make before break) with a diode switching matrix can be used. Since 4p8t switches are not too common, I chose the latter technique. The diode switching matrix is shown in fig. 8. The diodes used should be germanium or other low barrier diodes to minimize voltage drops and maintain switching reliability, especially if 5-volt relays are used. If 12-volt or higher relays are used, silicon diodes should be ok.

![fig. 8. Diode matrix for switching input-attenuator relays. Single pole, 8-throw switch was used.](image)

Putting It All Together

Once the detector, preamp, and attenuator modules have been constructed, they should be cascaded and the final calibration can be performed. If all goes well, the last step is to mount it all in a suitable box.

Final calibration of the power meter requires simply connecting the \(-13\) dBm reference signal to the input, setting the input attenuator to the \(-10\) dBm full-scale range (corresponding to 40-dB attenuation if an external switched attenuator is used), and tweaking the detector calibration pot to set the meter indication to \(-13\) dBm, or half scale. Power-meter switching accuracy can be verified by using fixed at-
Fig. 9. Power-meter step gain accuracy relative to 0 dBm (A) and relative frequency response (B). In-band flatness is less than ±0.1 dB on all bands.

attenuators to attenuate the reference signal and comparing this known level to the power-meter reading. Fig. 9 shows the flatness and step accuracy that I achieved with my power meter.

Performance testing was done using a Hewlett-Packard 8640B signal generator and fixed attenuators accurate to better than 0.1 dB. Keep in mind that, while you probably won't be able to perform such quantitative performance tests on your power meter, the in band flatness could be expected to be no worse than a few tenths of a dB, and the absolute accuracy could reasonably be less than a few dB, assuming the rf probe and VOM used in the detector calibration were accurate to within 10 per cent. Relative amplitude accuracy over the full -60 dBm to 20 dBm range at a fixed frequency should be even better and depends primarily on the precision of the attenuator sections used in the input attenuator. Not bad at all.

The second part of this article will deal with some of the measurements you can make using the power meter. Details of the construction of a return loss bridge, useful for making accurate measurement of low VSWR, and other measurement accessories will be given. We will look at some important measurement considerations aimed at improving the accuracy of your measurements.
last-minute forecast

The first of the month is expected to favor the lower frequencies over the higher bands for nighttime DX activities. DX conditions for the upper-frequency bands should improve during the third week, then round off and drop during the last week. Solar radio flux is expected to be high during that time. Propagation disturbances from solar-flare activity of 2 to 3 days’ duration are possible around the 10th and 21st. Conditions will generally be poorer for hearing and working DX during these disturbances, but look for unusual DX locations to appear with weak, fading signals.

The lunar perigee, of interest to moonbounce DXers, will occur on the 4th of this month. An Aquarid meteor shower, of interest to meteor-scatter DXers, will show a maximum between May 4th and 6th, with a rate of 10 and 25 per hour for the North and South Hemispheres respectively.

sporadic-E propagation

One of the major paths for excellent DX signals is short skip, or multiple short skips, in the summer on the higher-frequency bands. The end of May heralds the beginning of the sporadic-E (Es) propagation season. Es is a thin layer of intense ionization about 60 miles (100 km) above the earth. It gives rise to strong, mirror-like signal reflections over the short-hop distance of 600 to 1200 miles (1000 to 2000 km). Signals remain strong from a half hour to a couple of hours on the average, as the name “sporadic” suggests, rather than all day or night as with other high-frequency propagation.

The maximum high frequency propagated by Es follows the sun across the sky; the highest probability of occurrence, however, is near sunrise and again around sunset. These two facets of Es affect short-hop openings differently. Openings on the higher-frequency bands occur near noontime, and the lower bands tend to have openings near sunrise and sunset.

Now look at the best locations for these Es openings: since Es is related to the summer sun, the effect is in the Northern Hemisphere from June on into September and in the Southern Hemisphere during their summer, December through March. The best Es is on either side of the geomagnetic equator; it's especially good where the geomagnetic equator has greatest separation from the geographic equator. These special areas are Southeast Asia in the Northern Hemisphere and South America in the Southern Hemisphere. The first is the best of the two because the E region ionospheric electric currents are strongest there.

To look for Es openings on the higher-frequency bands, monitor beacons on 6, 10, and 15 meters, WWV frequencies, and CB channel 19. Also check TV channels 2 through 5 for 6- and 2-meter openings. The lower bands don’t need beacon monitoring, since Es openings (sunrise and sunset) are available most nights. Remember: couple your antenna to the ionosphere with takeoff angles of 20-30 degrees (see the January, 1981, DX Forecaster).

band by band summary

Six meters will provide very good openings during high solar flux to South Africa, Australia, and New Zealand around local noontime. Look for possible Es short-hop by monitoring TV.

Ten, fifteen and twenty meters will have DX from most areas of the world during daylight and into the evening almost every day, either long skip to 2500 miles (4000 km) or Es short skip to 1200 miles (1920 km) per hop. The length of daylight is now approaching maximum, providing hours of good DXing.

Forty, eighty, and one-sixty meters are the night DXer’s band. On many nights 40 meters will be the only usable band because of thunderstorm QRN, but signal strengths via Es short skip may overcome the static when Es is available. Es is not that available in May, although it should be better next month.

Choose the band that will give the best DXing for you at your and their operating times and locations.
MEMORY

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708 1K x 8 Eeprom</td>
<td>$3.00</td>
</tr>
<tr>
<td>2716/2516 2K x 8 5V single supply</td>
<td>7.50</td>
</tr>
<tr>
<td>2114/1114 1K x 4 Static</td>
<td>3.00</td>
</tr>
<tr>
<td>4027 4K x 1 Dynamic Ram</td>
<td>1.00</td>
</tr>
<tr>
<td>2117/116 16K x 1 Dynamic Ram</td>
<td>3.00</td>
</tr>
<tr>
<td>2732 32K Eprom</td>
<td>39.95</td>
</tr>
</tbody>
</table>

C.P.U.'s, Etc.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC68000P - Microprocessor</td>
<td>9.99</td>
</tr>
<tr>
<td>MC68B21P - PIA</td>
<td>6.99</td>
</tr>
<tr>
<td>MC6845P - CRT Controller</td>
<td>25.00</td>
</tr>
<tr>
<td>MC6850P - AGIA</td>
<td>4.99</td>
</tr>
<tr>
<td>MC6852P - SSDA</td>
<td>5.00</td>
</tr>
<tr>
<td>8086-1 - Microprocessor</td>
<td>5.00</td>
</tr>
<tr>
<td>8080A - Microprocessor</td>
<td>10.99</td>
</tr>
<tr>
<td>Z80A - Microprocessor</td>
<td>8.99</td>
</tr>
<tr>
<td>Z80A - PIO</td>
<td>9.99</td>
</tr>
<tr>
<td>Z80 - S10/0</td>
<td>22.50</td>
</tr>
<tr>
<td>Z80 - S10/1</td>
<td>22.50</td>
</tr>
<tr>
<td>8212 - 8 Bit input/output part</td>
<td>3.99</td>
</tr>
<tr>
<td>8251 - Communication Interface</td>
<td>6.99</td>
</tr>
<tr>
<td>TR1620/AYS-1013 - UART</td>
<td>6.99</td>
</tr>
<tr>
<td>TMS1000NL - Four Bit Microprocessor</td>
<td>4.99</td>
</tr>
<tr>
<td>PT1428B - PSAT</td>
<td>5.99</td>
</tr>
<tr>
<td>8257 - DAMA Controller</td>
<td>8.99</td>
</tr>
<tr>
<td>8334 - A x 4 FIFO</td>
<td>3.00</td>
</tr>
<tr>
<td>MM5316/F3817 - Clock with alarm</td>
<td>5.99</td>
</tr>
<tr>
<td>8741</td>
<td>60.00</td>
</tr>
<tr>
<td>8748 - 8 Bit Microcomputer with program memory/erasable Eprom</td>
<td>60.00</td>
</tr>
<tr>
<td>MC1408L/6 - 6 Bit D/A</td>
<td>3.25</td>
</tr>
<tr>
<td>COM2502</td>
<td>9.99</td>
</tr>
<tr>
<td>COM2601</td>
<td>9.99</td>
</tr>
</tbody>
</table>

CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>Tyco 001-19860</th>
<th>Same as 2194F</th>
<th>$10.7 MHz narrow band</th>
<th>3 dB bandwidth 15 kHz min.</th>
<th>20 dB bandwidth 60 kHz min.</th>
<th>40 dB bandwidth 150 kHz min.</th>
<th>Ultimate 60 dB insertion loss 1 dB max.</th>
<th>Ripple 1 dB max.</th>
<th>CTR 0+/-5</th>
<th>P F 3600 ohms</th>
<th>$3.99 each</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF454 Same as MRF458 12.5 VDC, 3-30 MHz 80 watts output, 12 dB gain</td>
<td>$17.95 each</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRF472 12.5 VDC, 27 MHz 4 watts output, 10 dB gain</td>
<td>$1.99 each</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CARBIDE Circuit Board Drill Bits for PCB Boards

| Mix for | $5.00 |

MURATA CERAMIC FILTERS

SFD455D	455 kHz	$2.00
SFB455D	455 kHz	1.60
CPF455E	455 kHz	5.50
SFE10.7m	10.7 MHz	2.99

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.52 - 2.7B</td>
<td>YOUR CHOICE $12.99 each</td>
</tr>
<tr>
<td>5.645 - 2.7B</td>
<td>12.99 each</td>
</tr>
<tr>
<td>5.595 - 2.7 US B</td>
<td>YOUR CHOICE $12.99 each</td>
</tr>
<tr>
<td>5.595 - 2.7S B</td>
<td>12.99 each</td>
</tr>
</tbody>
</table>

HIGH VOLTAGE CAPS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mfd @ 500 VDC</td>
<td>$1.69</td>
</tr>
<tr>
<td>22 mfd @ 500 VDC</td>
<td>1.69</td>
</tr>
<tr>
<td>100 mfd @ 450 VDC</td>
<td>2.29</td>
</tr>
<tr>
<td>150 mfd @ 450 VDC</td>
<td>3.29</td>
</tr>
<tr>
<td>225 mfd @ 450 VDC</td>
<td>4.29</td>
</tr>
<tr>
<td>.001/1000 pF @ 10 KV</td>
<td>89c</td>
</tr>
<tr>
<td>.01 @ 4 KV</td>
<td>79c</td>
</tr>
<tr>
<td>.02 @ 8 KV</td>
<td>2.00</td>
</tr>
<tr>
<td>.01 @ 1 KV</td>
<td>61.00</td>
</tr>
</tbody>
</table>

NO ORDERS UNDER $10

Toll free 800-956-9423 2822 North 32nd Street, #1 Phoenix, Arizona 85008 Phone 602-956-9423
NEW BOGNER DOWNCONVERTER
Industrial version. 1 year guarantee — $225.00

86 PIN MOTOROLA BUS
EDGE CONNECTORS
Gold plated contacts
Dual 43/86 pin. 156 spacing
Soldertail for PCB
$3.00 each

CONTINUOUS TONE BUZZERS
12VDC $2.00 each

110 VAC MUFFIN FANS
New $11.95 Used $5.95

PL259 TERMINATION 50 Ohm, 5 Watts
$1.50 each

CABLE TIES
#IT-16R 100 per bag mil. spec #MS-33685
4" made by Tyton Corp
$2.50 per 100 — $20.00/1K

Miniature Ceramic Trimmers
CV31DS50 2 to 8 pF
HMCO-4075-03 3.5 to 11 pF
300425 3.5 to 13 pF
E5-25A 5 to 25 pF
SB-25 5.1 to 40 pF
ES-25 3.5 to 15 pF
27-A 5.2 to 40 pF
25 to 6 pF

50¢ each or 10/$4.50

WIDE BAND RF TRANSFORMERS

2.3 to 120 MHz 3 dB
.7 to 80 MHz 2 dB Insertion Loss
5 to 20 MHz 1 dB
Type T 18-1 — $6.50 each

march 1981
SEMI-CONDUCTORS SURPLUS

2822 North 32nd Street, #1 • Phoenix, Arizona 85008 • Phone 602-956-9423

TRANSISTORS/ICS

Motorola MHW 252 VHF power amplifier.
- Frequency range: 144-148 MHz.
- Output power: 25 W.
- Minimum gain: 19.2 dB.
- $29.67 each.

Motorola MC 1316P
- House no. same as HEP C8073 & EC814.
- 2-W audio amplifier.
- $1.29 ea., 10 for $9.50.

Fairchild 007-03 IC.
- ECG no. 707 Chroma demodulator.
- $1.99 ea., 10 for $12.50.

Motorola rf transistors.
- 43 pgs.
- $1.99 ea.

RCA Triacs.
- Type T2310A.
- TO-5 Case with heat sinks.
- $1.00 each.

Motorola rf amplifier.
- 544-4001-002, similar to type MHW 401-2.
- 1.5 watts output.
- 440-512 MHz.
- 15 dB gain min. $19.99 each.

DIODES

Texas Ins. TIL-305P
- 557 Array Alpha Numeric Display
- $3.85 ea.

- D61005.
 - 1.5 A, 1000 PIV.
 - 15¢ ea., 100 for $12.00.

- HVK 1153.
 - 25 mA, 20,000 PIV.
 - $1.00 ea., 10 for $8.00.

- SCMS 10K.
 - 15 mA, 10,000 PIV.
 - $1.69 ea., 10 for $12.50.

- Motorola MA 752 Rectifier.
 - 6 Amps, 200 PIV, 4/$1.29.

ACCESSORIES

Wakefield Thermal Compound 120-8.
- 8-oz. jar, $5.35.

- TY-Raps 08470.
 - 7 in., 50/$2.00.

- RCA Triacs.
 - Type T4121/40799.
 - 200 VDC 10 Amps.
 - Stud Type.
 - $3.69.

- RCA Triacs.
 - Type 40805/16421D.
 - 30 Amps, 400 VDC.
 - $5.00 each.

- Motorola rf amplifier.
 - 544-4001-002, similar to type MHW 401-2.
 - 1.5 watts output.
 - 440-512 MHz.
 - 15 dB gain min. $19.99 each.

- Litronix DL-4509.
 - 4-digit readout.
 - $2.99 ea.

- Vu Meters, 50 µA.
 - 1-1/2" x 1-1/2" x 1/2".
 - $1.99 ea.

- New Simpson 260-7 VOM.

- 12 VDC lamps, 60 mA.
 - 1/8" round x 1/2" long w/12"-long leads.
 - 39¢ ea., 10 for $2.50.

- Heat Sink.
 - (Great for rf power amplifiers.)
 - 3/4"x4" x 3/4" high x 7" long.
 - Flat one side only.
 - $4.99 ea.

- 5-pin DIN Jack & Plug Set.
 - $1.29 per set.

- Grain-of-wheat lamps.
 - 6.3 VDC, 50 mA.
 - $8.00 ea.

- Cooling fans — 12VDC
 - 2" round x 3" long.
 - $5.95 ea.

- Ten-turn pot w/ten-turn knob.
 - 2000 ohms.
 - $6.95.

- Motorcraft F70276A1.
 - 2.7 µH, 250 mA.
 - 69¢ ea., 25 for $15.00.

- Water pump, multi-purpose.
 - 6 VDC, 0.33 gpm.
 - $2.99 ea.

- Switch, dpdt, push on/push off.
 - Microswitch no. 92PB19 T2.
 - 5 A, 250 VAC.
 - $1.29 ea.

- New Sylvania Pathmaker.
 - CATV amplifier.
 - Hybrid IC ampl. Model 152.
 - No data. Has two rf transistors and 1 rf amplifier plus many other parts.
 - $29.99 ea.

- New big rf connectors, type 1.
 - Prodelin, no. 78-880-1.
 - $12.99 ea.

- Type 2
 - Cablewave System, Inc.
 - 735201/FX38-50NF/16733.
 - Taperlock.
 - $12.99 each.

- 12VDC Plug Set.
 - $5.35.

- 3-M Company Bumpons.
 - $1.00 each.

- WABCO 91630301-10.
 - 26 VDC.
 - $4.99 each.

- RF coax relay.
 - Transco 11100.
 - SPDT. Type N Connectors.
 - $29.99 each.
 - (Only 12 in stock.)

- 4 each RCA 7651 tube with socket $200.00 per set.
 - One tube and one socket:Søcket only $100.00.

- Photor bicuit fan.
 - LIT VAC Part BTA1.
 - $12.99 each.

- 3-M Company Bumpons.
 - 2 types:
 - Type 1, SF-5012, black.
 - 0.5" dia. x 0.14" high (12.7 x 3.55 mm).
 - 70-0700-1813-3 sheet of 4
 - $3.00.

- Type 2.
 - SJ-5519 0.78" x 0.35" rect.
 - x 0.2" high.
 - (19.8 x 8.9 x 5.08 mm).
 - Brown: 70-0700-2982-5.
 - Sheet of 64, $4.29 self adhesive.

- Joy Sticks.
 - JVC-40 40kn.
 - (2) video controllers, $4.99.

- Power one.
 - model CP-198 power supply.
 - Input 105-125VAC; output 5 VDC, 6 Amps.
 - $19.99 each.
ORDERING INSTRUCTIONS

Check, money order, or credit cards welcome. (Master Charge and VISA only)

No personal checks or certified personal checks for foreign countries accepted.

Money order or cashier's check in U.S. funds only. Letters of credit are not acceptable.

Minimum shipping by UPS is $2.35 with insurance. Please allow extra shipping charges for heavy or long items.

All parts returned due to customer error will be subject to a 15% restock charge.

If we are out of an item ordered, we will try to replace it with an equal or better part unless you specify not to, or we will back order the item, or refund your money.

Prices are subject to change without notice. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale.

Minimum shipping by UPS is $2.35 with insurance. Please allow extra shipping charges for heavy or long items.

All parts returned due to customer error will be subject to a 15% restock charge.

If we are out of an item ordered, we will try to replace it with an equal or better part unless you specify not to, or we will back order the item, or refund your money.

Prices are subject to change without notice. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale.

We now have a toll free number but we ask that it be used for charge orders only. If you have any questions please use our other number. We are open from 8:00 a.m. - 5:00 p.m. Monday thru Saturday. Our toll free number is 800-528-3611.

<table>
<thead>
<tr>
<th>PARTS LIST</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE555V TIMERS</td>
<td></td>
<td>$2.95</td>
</tr>
<tr>
<td>NEW DUAL COLON LED</td>
<td></td>
<td>$2.95</td>
</tr>
<tr>
<td>HEP170 1000 PIV</td>
<td></td>
<td>$2.95</td>
</tr>
<tr>
<td>NEW SIMPSON 260-7 VOM</td>
<td></td>
<td>$9.99</td>
</tr>
<tr>
<td>TORIN TA700 FANS NEW</td>
<td>Model A30340</td>
<td></td>
</tr>
<tr>
<td>230 VAC @ .73 Amps</td>
<td>$29.99 each</td>
<td></td>
</tr>
<tr>
<td>DOOR KNOB CAPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>470 pf @ 15 KV</td>
<td>$3.99 each</td>
<td></td>
</tr>
<tr>
<td>Dual 500 pf @ 15 KV</td>
<td>$5.99 each</td>
<td></td>
</tr>
<tr>
<td>630 pf @ 6 KV</td>
<td>$3.99 each</td>
<td></td>
</tr>
<tr>
<td>800 pf @ 15 KV</td>
<td>$3.99 each</td>
<td></td>
</tr>
<tr>
<td>2700 pf @ 40 KV</td>
<td>$5.99 each</td>
<td></td>
</tr>
<tr>
<td>NEW & USED BCD SWITCHES</td>
<td>3 switch with end plates</td>
<td>$8.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6.95</td>
</tr>
<tr>
<td>NEW GE OPTO COUPLERS</td>
<td>4N26</td>
<td>$2.95</td>
</tr>
<tr>
<td>69¢ each or 10/$5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICRO-MINI WATCH CRYSTALS</td>
<td>32.768 Hz</td>
<td>$3.00</td>
</tr>
<tr>
<td>NEW 2" ROUND SPEAKERS</td>
<td>100 Ohm coil</td>
<td>$99¢</td>
</tr>
<tr>
<td>PLASTIC TO-3 SOCKETS</td>
<td>4/$1.00</td>
<td></td>
</tr>
</tbody>
</table>

More Details? CHECK-OFF Page 114
the Ultimate LAMBIc PADDLE

WRITE FOR LITERATURE
BENCHER, INC.
333 W. Lake Street, Dept. A
Chicago, Illinois 60606 • (312) 263-1808
At selected dealers or add $2.00 handling. Quotation for overseas postage on request.

• Full range of adjustment in tension and contact spacing.
• Self-adjusting nylon and steel needle bearings.
• Gold plated solid silver contact points.
• Polished lucite paddles.
• Precision-machined, chrome plated brass frames.
• Standard model has black, textured finish base; deluxe model is chrome plated.
• Heavy steel base; non-skid feet.

For overseas shipping, please call for current rates.

For full details, write for literature.

G.I.S.M.O.
2305 CHERRY ROAD
ROCK HILL, S.C. 29730

Order Toll Free:
800-845-6183
The famous Palomar Engineers' preamplifier has been updated and packaged in an attractive new cabinet.

For the SWL there is the P-305 (9-v DC powered) and the P-308 (115-v AC powered) featuring full shortwave coverage, selection of two antennas, 20 db attenuator, 15 db gain control and on-off bypass switch.

For transceivers, the P-310X features automatic bypass on transmit, adjustable delay for return to receive, and 350 watt transmit capability.

All models have these features:
- Up to 20 db gain.
- Covers 1.8 to 54 MHz in four bands.
- Low noise figure.
- Reduces image and spurious response.
- 8" x 5" x 3". Brushed aluminum control panel. Black vinyl cover.
- SO-239 connectors.
- LED pilot.

Don't wait any longer to pull out weak, rare DX.
BLACKCAT Monitor Scope $209.95 ppd.

Blackcat JB-4001S—for continuous monitoring of your transmitting quality at low cost. The dedicated monitor. Leave it in the line and you’ll always know what’s happening with your rig. Operates from 160-10 meters.

Versatile. With familiarity, you’ll be able to interpret the scope patterns to determine power output, distortion, audio noise, ALC action, carrier suppression, SWR effects, linearity, spurious signals, flat topping, plus AM modulation characteristics. Provides both sine and trapezoid patterns. Built-in audio generator for modulation and transmitter testing purposes.

3" green phosphor scope tube with printed reference graticule (useful for calculating percentages). Black vinyl-clad steel case with black anodized aluminum panel with white nomenclature. Size: 10½" W x 6½" H x 11¼" D.

2 KW Coax Antenna Switch Model JB-1007SW, only $24.95 ppd.

MICROWAVE DESIGN ENGINEERS & TECHNICIANS
Watch Your Career Take Off At Frequency Sources

If you feel grounded as a Microwave Design Engineer or Technician in your present position, consider a career where the sky’s the limit. As a leader in microwave hardware, we’re soaring to new heights. And you can fly with us. With us you’ll have a package for future growth not to be found elsewhere.

Consider:
Our financial and incentive policies for Engineers are probably equal to a manager’s compensation in your company. And as for employment, we believe we have the best. But if it takes more to do the job, we’ll get it for you.

Since our experience in components and supercomponents depends on your efforts as a Design Engineer or Technician, your future is assured. Ready to discuss your new career flight plan?

Call Frank Uva at (617) 256-4113, or send resume to: Frequency Sources, Inc., 16 Maple Road, Chelmsford, MA 01824. We are an Equal Opportunity Employer M/F.

GEM-QUAD FIBRE-GLASS ANTENNA FOR 10, 15, and 20 METERS

Two Elements $182.00
Extra Elements $130.00
Price is F.O.B. Transcona
INCLUDES U.S. Customs Duty

KIT COMPLETE WITH
*SPIDER
*ARMS
*WIRE
*BALUN KIT
*BOOM WHERE NEEDED

WINNER OF MANITOBA DESIGN INSTITUTE AWARD OF EXCELLENCE
Buy two elements now—a third and fourth may be added later with little effort.
Enjoy up to 8 db forward gain on DX, with a 25 db back to front ratio and excellent side discrimination.
Get maximum structural strength with low weight, using our "Tridetic" arms. Please inquire directly to:

GEM QUAD PRODUCTS LTD.
Box 53
Transcona Manitoba
Canada R2C 2V5
Tel. (204) 866-3338

Tell ’em you saw it in HAM RADIO!
RATES: Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS: Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE: 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

DIGITAL RADIO NETWORK — Terminal Node Controller card allows interconnection of machines using ASCII, BAUDI, etc. Modulated with 16 to 256 bit memory space. PCB and documentation $30 U.S. Bicentennial newsletter 100. 120 baud modem; and Network Controller boards available soon. VADCO, 818 Rondeau.

COMPLETE LINE OF MICROWAVE Television Converters and accessories to suit your needs. Converters have a one year warranty backed by a 3 year reputation. $30 U.S. Bicentennial newsletter 100. 120 baud modem; and Network Controller boards available soon. VADCO, 818 Rondeau.

PRINTED CIRCUIT BOARDS. Especially for the beginner. Make them yourself. See cover story, VOVAL, Dep. H56, 2706 Kirby, Champaign, Ill. 61820.

BROADBAND COAX ANTENNA can be built for any band, with low SWR 1.5 to 1 across the bands. Plans $2.00, plus S.A.S.E. to Box 2100 M, W6WGF, 5101 S 59th Street, Sacramento, CA 95820.

SATELLITE TELEVISION: Information on building or buying your earth station. Six pages of what’s needed, where to get it, costs etc. $4.00 to Satellite Television, RD #3, Oxford, NY 13830.

DFI FREQUENCY COUNTER REPAIR: Factory trained personnel, extensive parts inventory, fast turnaround. Write or call for free information package. Bright Electronics Corporation, P.O. Box 76972, Atlanta, GA 30328 (404) 952-0969.

ATLAS DSQ-C and 350XL Digital/8-Frequency Counters. $175.00 plus $3.00 UPS. AFI/Stop VFO drift. See June 79 HR. $65.00 plus $3.00 UPS. Mical Devices, P.O. Box 243, Vista, CA 92083.

490T ANTENNA TUNING UNIT WANTED for cash or trade. DCO, 10 Schuyler Avenue, No. Arlington, N.J. 07032 (800) 526-1270.

WANTED: Help in completing the largest collection of Hallicrafters equipment in the world. Urgently needed are receivers with aluminum colored panels, back lighted plastic dial with “airplane” hands, early transmitters, unusual accessories, etc. Chuck Dachis, WSEQO, “The Hallicrafter Collector,” 4500 Russell Drive, Austin, Texas 78745.

TUBES, TUBES: wanted for cash or trade. 340TL, 4SC1000, 5SC1500. Any high power or special purpose tubes of Elmac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, N.J. 07032 (800) 526-1270.

GIANT REDUCTIONS on all remaining test equipment & books on my Feb. list. Still many good items, will go low at giveaway prices. Small S.A.S.E. for final list. Joe Cohen, 200 Woodside Ave., Winthrop, MA 02152.

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog, ETCO.012, Box 782, Cleveland, OH 44111.

GLOSSY OSJ’s: Distinctive! With or without your photograph. Stamps bring samples. A. Zanella, P.O. Box 4337, San Francisco CA 94101.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Litel Electronics Engineering, 930 Marine Dr., Port Angeles, WA 98362.

SATELLITE — M.D.S. Signal Generators 1.8-4.2 MHz. Clean, checked out with book, shipping case, cables $245. H.F. Signal Generators, 10 kHz-50 MHz with crystal-cal. Checked $150. Stuart Landau K8YAZ, 23452 Justice St., Canoga Park, CA 91340 (213) 887-9144.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method — No darkroom required. All the supplies for making your own boards. From Simplicity magazine article in less than 2 hours. Only $24.95, S.A.S.E. for details: Excel Circuits Co., 4412 Fernell, Royal Oak, MI 48073.

HAM RADIO REPAIR — Professional lab, personal service. “Grid” Gridiey. 10 Schuyler Avenue, No. Arlington, N.J. 07032 (800) 526-1270.

BUY-SELL-TRADE Send 1.00 for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-9500.

HAMMARLUND HQ-190 General Coverage Receiver. Very clean wimmelman $195. Scott G. Turner, K2ST, 9407 Colleen, Houston, TX 77080. (713) 460-4514.

MIRROR-IN-THE-LID. and other pre-1940 television set wanted. Paying 50¢ for any complete RCA “TRK” series, or Hi-Fi “HM” series set. Also looking for 12AP4, MW-31 picture tubes, parts, literature on pre-war television. Arnold Chase, WAWZ, 9 Rusheingham, West Hartford, Conn. 06117 (203) 521-5280.

FROM BEVERAGES THRU OSCAR — A BIBLIOGRAPHY by Rich Rosen

From Beverages thru Oscar — A Bibliography is a complete list of every article that would be of interest to a Radio Amateur or professional that has been published over the last 65 years. References are from CQ, Ham Radio, 73, QST, Proceedings of both the IRE and IEEE and Wireless Engineer, to name just a few. In fact, over 292 Magazines have been listed in this book with 92 different subject areas referenced. If you can't find it in this wonderfully complete bibliography, chances are, it was never published. Never before has a book like this been put together. Don't wait another minute to get this invaluable reference tool. It costs $29.95 but is well worth much, much more. ©1979

Please add $1.00 for shipping

Ham Radio's Bookstore
Greenville, N. H. 03048

More Details? CHECK — OFF Page 118
AMATEUR REPAIR: Professional service, reasonable rates, ALL brands. USA KDK repair center. Amateur Radio Repair Center, 10202 Brookstown Ave., #9, Winston-Salem, NC 27101 (919) 725-7500.

GSL’s — BE PLEASURABLY SURPRISED! Order our three colored GSL’s in all varieties for $8.00 per 100 or $13.00 for 200. Satisfaction guaranteed. Sampes $1.00 (refundable) Constantine Press, 1219 Ellington, Myrtle Beach, SC 29577.

FOR SALE: Tempo One Transceiver, perfect condition, $150.00; Heath HG-10B VFO, $60.00; Homebrew CW transmitter 80-10 meters with VFO, 240 watts, $50.00. I will pay shipping. William Harris, Route 1, Guthrie, Kentucky 42234.

QSL’S & RUBBER STAMPS — Top Quality! Card Samples and Stamp Info — $5.00 — Ebbert Graphics 5R, Box 70, Westerville, Ohio 43081.

WANTED: AN-33, AN-33L, AN-36 etc. Will ex- port. MacFarlane Electronics, Battersea, Ontario, Canada K0H 1J9.

WEST COAST BULLETIN, 1st and 3rd Mondays monthly 8PM PST (0040 UTC), 3540 KCS, A-1, 22WPM.

CRYSTALS FM 2 METERS STILL AVAILABLE! Crystals for equipment on our parts list, $4.50 each. For equipment list, send self addressed stamped envelope. SAVOY ELECTRONICS, P.O. Box 5727, Ft. Lauderdale, FL 33310 — (Tel. 305) 563-1333.

WANTED: Long of length of thickness (approx) 3- inch x 3/8-3/2 thread bushings with hex head, nickel plated brass. For thickness dial drive components. Jim Chsoraks, Box 541, Ashutaba, Oregon 44004.

SUPER QRP with Direct Conversion’s 5 watt transmitter kits. Write Direct Conversion Technique, Box 1001, Dept. 5FM, 535 N. Michigan Ave., Chicago, Illinois 60611.

WANTED: Motorola mic base stations. 400-420 MHz. AK7B, 4 Ajax Pl., Berkeley, CA 94708.

S.A.S.E. RIDER manuals, tubes, vintage radio repair. Will barter to support my hobby. Maury Zivitz, Ph.D., 11503 Atwell Dr., Houston, Texas 77013.

TETLIVAL TELEVISION — HOWARD COALEMANS to build your own receiver. For more information write: Robert Coleman, Rt. 3, Box 58-4HR, Travelers Rest, SC 29690.

PAIR 4XC1000A’s with sockets. $150.00; 4XC500A, $150.00; HP 3408B noise figure meter w/o source, $395.00; TEC 17 self-supporting aluminum tower, $125.00; ASR-33, $250.00; Hamtronics 220/228 MHz transistor, $110.00; Lunar Helix 220 yagi, $400.00; Lunar PAE-432-3 prepaint, $30.00; SI 1296 loop yagi, $450.00. BAW FC-30, $20.00. WANTED: 867X, 4XC1500B’s, 3-10002’s, 3C9P’s, UHF coax relays, monobanders, AZEL muntlcompone nts, rack cabinets, RG 174 UL, HF cabinets, UHF and VHF dipole's, LPX-6, ART-42, Jim Sitt, WABONQ, (516) 475-4444.

500 QSL’s, $1.00. Catalogue, 743 Harvard, St. Louis, Mo 63130.

SOLD

CALLBOOKS NOW READY!

Here they are! The latest editions. World-famous Amateur Radio Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, worldwide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 100,000 changes from last year. The Foreign Edition has over 300,000 listings, over 90,000 changes. Place your order for the new 1981 Radio Amateur Callbooks, available now.

AMATEUR RADIO QSL's . . .

Each Shipping Total

US Callbook $17.95 $22.50 $20.60

Foreign Callbook $16.95 $22.50 $19.50

Order both books at the same time for $37.45 including shipping.

Order from your dealer or directly from the publisher. All direct orders add $2.50 to each. ORDER TODAY!
Published by the experts in Amateur Radio, The American Radio Relay League, *Understanding Amateur Radio* is just the book for the newcomer. There are over 210 pages of text with chapters on: electronic fundamentals, semiconductors and tube operation, how code and phone (AM, SSB, and FM) transmitters and receivers work, all about antennas, how code and phone transceivers, and power supplies, making measurements, and how to set up a station. If you are interested in radio communication and basic radio fundamentals then order a copy of *Understanding Amateur Radio* today!

TELEVISION 89/100 KHZ MODULATOR, SMALL PORTABLE TYPE $285.00

SG-13U VOR/ILS MILITARY SIG GEN 108-135 MHZ AND 329.9 TO 335.0 MHZ OUTPUT SIGNALS INCLUDE: VOR, LOC, GLIDESLOPE, AND 1000 CPS OPERATES FROM 28 VDC AT 3.5 AMPS, PORTABLE, BENCH OR AIRCRAFT POWER SOURCE. SET UP TO COLLINS 479-T. IDEAL FOR AIRCRAFT RADIO REPAIR. $260.00

OS-121/CUS-140 OSCILLOSCOPE WITH MX078/USM, HORIZ CHANNEL PLUG-IN AND MX2390A DOUBLE TRACE PLUG-IN. 5” CRT. INTERNAL SWEEPS, 24 WAVEFORMS, CALIBRATED OUTPUT, PERFECT FOR MICROFACST WORK. $345.00

URM-26 MILITARY SIG GEN 4 MHZ THRU 400 MHZ AM/DW CALIBRATED ATTENUATOR 400/1000 HZ MODULATOR, SMALL PORTABLE TYPE $285.00

SG-13U VOR/ILS MILITARY SIG GEN 108-135 MHZ AND 329.9 TO 335.0 MHZ OUTPUT SIGNALS INCLUDE: VOR, LOC, GLIDESLOPE, AND 1000 CPS OPERATES FROM 28 VDC AT 3.5 AMPS, PORTABLE, BENCH OR AIRCRAFT POWER SOURCE. SET UP TO COLLINS 479-T. IDEAL FOR AIRCRAFT RADIO REPAIR. $260.00

OS-121/CUS-140 OSCILLOSCOPE WITH MX078/USM, HORIZ CHANNEL PLUG-IN AND MX2390A DOUBLE Trace PLUG-IN. 5” CRT. INTERNAL SWEEPS, 24 WAVEFORMS, CALIBRATED OUTPUT, PERFECT FOR MICROFACST WORK. $345.00

URM-26 MILITARY SIG GEN 4 MHZ THRU 400 MHZ AM/DW CALIBRATED ATTENUATOR 400/1000 HZ MODULATOR, SMALL PORTABLE TYPE $285.00

SG-13U VOR/ILS MILITARY SIG GEN 108-135 MHZ AND 329.9 TO 335.0 MHZ OUTPUT SIGNALS INCLUDE: VOR, LOC, GLIDESLOPE, AND 1000 CPS OPERATES FROM 28 VDC AT 3.5 AMPS, PORTABLE, BENCH OR AIRCRAFT POWER SOURCE. SET UP TO COLLINS 479-T. IDEAL FOR AIRCRAFT RADIO REPAIR. $260.00

OS-121/CUS-140 OSCILLOSCOPE WITH MX078/USM, HORIZ CHANNEL PLUG-IN AND MX2390A DOUBLE Trace PLUG-IN. 5” CRT. INTERNAL SWEEPS, 24 WAVEFORMS, CALIBRATED OUTPUT, PERFECT FOR MICROFACST WORK. $345.00

URM-26 MILITARY SIG GEN 4 MHZ THRU 400 MHZ AM/DW CALIBRATED ATTENUATOR 400/1000 HZ MODULATOR, SMALL PORTABLE TYPE $285.00

SG-13U VOR/ILS MILITARY SIG GEN 108-135 MHZ AND 329.9 TO 335.0 MHZ OUTPUT SIGNALS INCLUDE: VOR, LOC, GLIDESLOPE, AND 1000 CPS OPERATES FROM 28 VDC AT 3.5 AMPS, PORTABLE, BENCH OR AIRCRAFT POWER SOURCE. SET UP TO COLLINS 479-T. IDEAL FOR AIRCRAFT RADIO REPAIR. $260.00

OS-121/CUS-140 OSCILLOSCOPE WITH MX078/USM, HORIZ CHANNEL PLUG-IN AND MX2390A DOUBLE Trace PLUG-IN. 5” CRT. INTERNAL SWEEPS, 24 WAVEFORMS, CALIBRATED OUTPUT, PERFECT FOR MICROFACST WORK. $345.00

URM-26 MILITARY SIG GEN 4 MHZ THRU 400 MHZ AM/DW CALIBRATED ATTENUATOR 400/1000 HZ MODULATOR, SMALL PORTABLE TYPE $285.00

SG-13U VOR/ILS MILITARY SIG GEN 108-135 MHZ AND 329.9 TO 335.0 MHZ OUTPUT SIGNALS INCLUDE: VOR, LOC, GLIDESLOPE, AND 1000 CPS OPERATES FROM 28 VDC AT 3.5 AMPS, PORTABLE, BENCH OR AIRCRAFT POWER SOURCE. SET UP TO COLLINS 479-T. IDEAL FOR AIRCRAFT RADIO REPAIR. $260.00

OS-121/CUS-140 OSCILLOSCOPE WITH MX078/USM, HORIZ CHANNEL PLUG-IN AND MX2390A DOUBLE Trace PLUG-IN. 5” CRT. INTERNAL SWEEPS, 24 WAVEFORMS, CALIBRATED OUTPUT, PERFECT FOR MICROFACST WORK. $345.00

URM-26 MILITARY SIG GEN 4 MHZ THRU 400 MHZ AM/DW CALIBRATED ATTENUATOR 400/1000 HZ MODULATOR, SMALL PORTABLE TYPE $285.00
MASSACHUSETTS: The 7th annual Eastern VHJ/UFHF Conference on May 15th - 17th at the Sheraton Inn Conference Center, 1-405 and 1-95 in Boston, technical talks, and many interesting to visit for serious VHJ experimenters. Pre-registration is $13.00 for KLOGY, 3 Pryor Rd, Natick, Massachusetts 01760 before May 10th. Registration at the door is $20.00.

MICHIGAN: Annual Monroe County Radio Communications Hamfest on June 14th at the Monroe Community College on Ransdell Rd. Monroe, Tickets: $2.00 at the gate and $1.50 in advance. XYL’s and children free. Contest, prizes, food and more. Talk-in 148.133 and 52 at the gate. More Info or Advanced tickets: Fred Lux W6BZ, P.O. Box 982, Monroe, Michigan 48161 or call (313) 243-1069 Hot Line.

NEW JERSEY: The Raritan Valley Amateur Radio Club will hold its 10th Annual Hamfest and Flea Market on June 26th starting at 8:00 at Columbia Park, Kenna, N.J. Price, food and more. Talk-in 146.050 or 147.855 on 100.00 for 147.855 simplex. $2.00. Call for $3.00 or info. TRCA, Box 412, Scotch Pines, N.J. 07076 or call Herb Klawunn, W2CHA (at) (201) 647-3481.

NEW JERSEY: The Raritan Valley Amateur Radio Club will hold its 10th Annual Hamfest and Flea Market on June 26th starting at 8:00 at Columbia Park, Kenna, N.J. Price, food and more. Talk-in 146.050 or 147.855 on 100.00 for 147.855 simplex. $2.00. Call for $3.00 or info. TRCA, Box 412, Scotch Pines, N.J. 07076 or call Herb Klawunn, W2CHA (at) (201) 647-3481.

NEW YORK: The Atlantic Division/New York State Convention is scheduled for May 15th and 16th at the Monroe County Fairgrounds, Route 15A in Rochester. Commercial exhibitors, huge outdoor displays. Talk-in 146.52 on Saturday, forums, ladies programs, the second annual Memorial Code Contest, prizes, annual banquet, and much more. Registration: $2.00 in advance and $3.00 at the gate. Tickets: Rochester Hamfest, tickets 737 Latta Rd., Rochester, NY 14612. More Info: P.O. Box 1386, Rochester, NY 14603 or call (716) 424-1100.

NEW YORK: The Lancaster and Fairfield County A.R.C.’s annual Hamfest on June 21st at the F & R Park Barn, four miles west of Lancaster off Route 188. Food, refreshments, Flea Market, Stilt Tandem, and much more. Contact: Box 3, Lancaster, Ohio 45130.

NEW YORK: The Clinton County Radio Club’s annual Hamfest and Flea Market on June 14th at the Clinton County Fairgrounds on S.R. 22 in Wilmington, from 1200 to 2100 UTC. Admission: $3.00. Flea Market space free with admission ticket, food, auction, prizes, and more. Talk-in 147.421, 148.211, and 148.521 simplex. More Info: Bob Lewis KEBE, 192 Northwood Rd., Cincinnati, Ohio 45107 or (716) 783-2740.

PENNSYLVANIA: The Breese Radio Club’s 11th annual Hamfest on May 17th from 9:00 to 5:00 at the White Swan Park, on Route 60 (Parkway West) near the Greater Pittsburgh International Airport. Large Flea Market, prizes, contests, amusement park, and more. Admission: $2.00 or $3.00. Talk-in 28.88 repeater or 29.000 MHZ.
If you've been "reading the mail" on recent transmissions from the hams listed above, you've heard the kind of solid copy that rates a Q5. One reason is that they've recently switched to Shure's new 444D SSB/FM Base Station Microphone. We've been getting glowing reports on the 444D's switch-selectable dual impedance feature which makes for compatibility and changeability from rig to rig; improved million-cycle PTT control bar (with vox/norm switch and continuous-on capability); and its comprehensive all-new wiring guide. The cable leads are arranged to permit immediate hook-up to transmitters with either isolated or grounded switching. Ask the hams who own one!

FREE! Amateur Radio Microphone Selector Folder, ask for AL645.

444D SSB/FM Base Station Microphone

Shure Brothers Inc., 222 Hartley Ave., Evanston, Ill. 60204
In Canada: A. C. Simmonds & Sons Limited
Manufacturers of high fidelity components, microphones, sound systems and related circuitry.
These Low Cost SSB TRANSMITTING CONVERTERS
Let you use inexpensive recycled 10M or 2M SSB exciters on UHF & VHF!
- Linear Converters for SSB, CW, FM, etc.
- A fraction of the price of other units; no need to spend $300 - $400!
- With any exciter; works with input levels as low as 1 mW.
- Use low power tap on exciter or simple resistor attenuator pad (instructions included).
- Link with RX converter for transceive.

XV4 UHF KIT — ONLY $99.95
28-30 MHz in, 435-437 MHz out; 1 W p.e.p. on ssb, up to 1 kW on CW or FM. Has second oscillator for other ranges. Attenu. supplied for 1 to 500 mW input, use external attenuator for higher levels.

XV2 VHF KIT — ONLY $69.95
2W p.e.p. output with as little as 1 mW input. Use simple external attenuator. Many freq. ranges available.

NEW COMPLETE TRANSMITTING CONVERTER
Far less than the cost of many 10W units!
Now the popular Hamtronics Transmitting Converters and heavy duty Linear Power Amplifiers are available as complete units in attractive, shielded cabinets with BNC receptacles for exciter and antenna connections. Perfect setup for versatile terrestrial and OSCAR operational! Just right for phases! You save $30 when you buy complete unit with cabinet under cost of individual items. Run 40-45 Watts on VHF or 30-40 Watts on UHF with one integrated unit! Call for more details.

NEW LOW-NOISE DESIGN
- Less than 2 dB noise figure, 20 dB gain
- Case only 2 inches square
- Specify operating frequency when ordering

MODELP-30 VHF PREAMP, available in many versions to cover bands 28-300 MHz.

MODEL P432 UHF PREAMP, available in versions to cover bands 300-650 MHz.

NEW LOW-NOISE DESIGN
- Kit less case $12.95 $16.95
- Kit with case $18.95 $26.95
- Wired/Tested in Case $27.95 $32.95

FAMOUS HAMTRONICS PREAMPS
Let you hear the weak ones too! Great for OSCAR, SSB, FM, ATV. Over 14,000 in use throughout the world on all types of receivers.

NEW VHF/UHF FM RCVRs
Offer Unprecedented Range of Selectivity Options
- New generation
- More sensitive
- More selective
- Low cross mod
- Uses crystal filters
- Smaller
- Easy to align

R75A VHF Kit for monitor or weather satellite service. Uses wide L-C filter. -60dB at ± 30 kHz $69.95
R75B VHF Kit for normal 2m service. Equivalent to most transceivers. -60dB at ± 17 kHz, -100dB at ± 25 kHz $74.95
R75C VHF Kit for repeater service or high density area. -40dB at ± 14 kHz, -60dB at ± 22 kHz, -100dB at ± 30 kHz $84.95
R75D VHF Kit for split channel operation or repeater in high density area. Uses 8-pole crystal filter, -60dB at ± 9 kHz, -100dB at ± 15 kHz. The ultimate receiver! $99.95
- Specify band: 10M, 6M, 2M, or 220 MHz

NEW COMPLETE TRANSMITTING CONVERTER
T4M 450 MHz, 3/4W Kit $54.95
- High density area. Uses 8-pole crystal filter.

NEW R110 VHF AM RCVR
AM monitor receiver kit similar to R75A, but AM. Available for 10-11M, 6M, 2M, 220 MHz, and 110-130 MHz aircraft band $74.95. (Also available in UHF version.)
using a 2-meter quarter-wave whip on 450 MHz

Many Amateurs who enjoy operating 2-meter fm also use a local 450-MHz repeater. One problem facing the dual-band mobile aspirant is placing two separate antennas on the car without jeopardizing its resale value.

Because the best location is the center of the roof and two antennas can’t occupy the same place at the same time, I propose the use of a single antenna for both bands. Fortunately, because of the direct third-harmonic relationship between the popular 146-148 MHz and 442-450 MHz repeater sub-bands, a conventional 1/4-wave, 2-meter whip will perform admirably on both bands. At 450 MHz, the whip performs as a 3/4-wave antenna with a 50-ohm impedance. Although the 3/4-wave antenna has a higher angle of radiation than a 5/8 or 1/4 wave, this effect is negligible.

It has been pointed out in the past that a roof-mounted 1/4-wave whip on 2 meters will often outperform a 5/8-wavelength antenna at highway driving speeds because of the way the 5/8 flexes in the wind.

Note that, for best results, the whip should be pruned for best VSWR at the 450-MHz operating frequency.

Peter J. Bertini, K1ZJH

aligning Yagi beam elements

Assembling beam elements so that they are in line with each other and also parallel to the ground can be a frustrating experience when eyeball or ground-assembly methods are used. The scheme shown in the drawing provides a neat installation in a few minutes and doesn’t require any special tools other than a small level. The steps below refer to the numbers in fig. 1.

1. Lay boom on concrete blocks or other suitable support.
2. A dummy mast stabilizes the boom structure by virtue of its offset, downward weight and does not permit boom to rotate while performing step 3. Alignment of mast must be perfectly vertical (see detail A-A), and can be accomplished by sliding mast up or down relative to the boom-to-mast plate. Be sure that this mast rests on firm ground and can’t slip through the clamps.
3. Again, using the small level, align the individual elements so they are parallel to the ground. Place the level on top of each element and as close to the boom as possible. A slight downward indication may be noticed due to the weight of the element; in this case, adjust for an equal declination on both sides of the boom.

Roy Lehner, WA2SON
modification of K9LHA
2-meter synthesizer for 144-148 MHz coverage

The 2-meter CMOS frequency synthesizer described in *ham radio* for December, 1979, can be modified for full 2-meter band coverage by making the following modifications:

1. Remove the jumpers on pins 8 and 9 of U1 (CD4059).
2. Change the two high-frequency crystals (Y1 and Y2) to $47.333 - \frac{i}{3}$ MHz and 47.3333 MHz respectively.
3. Provide a modified switch code for the MHz range switch as shown below.
4. Increase the VCO tuning range as required by increasing the size of the padding capacitor (C12).

MHz switch code (revised)

A new switch code is needed for the MHz switch for the increased frequency coverage. In addition to pin 10, which is programmed in the existing design, this switch code must be applied to pins 8 and 9, which were previously fixed in programming. A three-pole rotary switch can be used for each MHz range switch, or additional toggle switches can be used to select two coverage ranges: 144-146 and 146-148 MHz. This latter method is probably the simplest and cheapest, although it lacks the simplicity of directly reading frequency that the rotary switches would provide. The new MHz code is as follows:

<table>
<thead>
<tr>
<th>MHz</th>
<th>pin 8</th>
<th>pin 9</th>
<th>pin 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>145</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>146</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>147</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tom Cornell, K9LHA

CW memory modification

The November, 1980, issue of *ham radio* had a fine article on a CW memory circuit by Ray Megirian, K4DHC. I assembled the circuit on a perf board and installed it in a 7 x 5 x 4 inch (17.8 by 12.7 by 10 cm) cabinet with an internal power supply.

After I'd become familiar with the unit, I realized that the LED indication of one-half memory remaining during any keyed-in message left something to be desired, since it was too difficult to estimate remaining storage time while keying. Once the balance of memory was overridden, the additional data could not be stored.

Circuit

A simple and easy add-on solution was made using the familiar NE555 in the dual 556 package (fig. 2). I assembled the circuit on a 2 by 1½ inch (5 by 3.8 cm) piece of perf board.

The one-half LED ON time came to about 20 seconds, as timed by the sweep second hand of my watch. I arbitrarily elected to use a flashing LED display to be set for five flashes and off, after which 5 seconds of storage remained for final keying.

The storage LED will remain ON for the remaining 5 seconds of storage time.

You can make your own adjustments as to start and number of flashes with R1, R2. I first considered using only three flashes, in which case the 820k series resistor on R2 should be increased to 1 meg. However, I react only to the halting of the flashing during input keying, so I selected five flashes.

Operation

Since the trigger input to the first 556 section is taken directly from pin 8 of IC4 in Merigian's article, timing begins as soon as that LED fires. The new timing (flasher) LED also fires and repeats for four additional flashes, equaling the passing of 15 seconds, after which it extinguishes.

The storage LED will remain ON for the remaining 5 seconds of storage time.

You can make your own adjustments as to start and number of flashes with R1, R2. I first considered using only three flashes, in which case the 820k series resistor on R2 should be increased to 1 meg. However, I react only to the halting of the flashing during input keying, so I selected five flashes.

Reference

Gene Shapiro, W0DLQ
HAMS - call for our free catalog PC-80

DEALERS - join over 400 dealers worldwide. Call us today for no-risk deal.

HAMFEST MANAGERS - UNADILLA cooperates!
Call us.

US - TOLL-FREE 1-800-448-1666
NY/Hawaii/Alaska/Canada - COLLECT 1-315-437-3953
TWX - 710-541-0493
Ask for Bonnie, or Emily.

UNADILLA / REYCO Division Microwave Filter Co., Inc., E. Syracuse, NY 13057

RED HOT SPECIALS
AZDEN PGS-3000, 2 meters 315.00
ICOM 260A, All Mode, 2m 425.00
KANTRONICS CODE READER F.D. II 360.00
SANTEC HT1200 HANDHELD 315.00
ICOM DK1, Linear Amp 1599.00
ICOM IC256A, w TT Mike 325.00
BEARCAT 220 or 250 SCANNER 269.00
ICOM IC251A, 2m All Mode 615.00
JANEL QSA 5, 2m Pre Amp 36.50
ICOM IC2A HANDHELD w Mic 215.00
with Touch Tone Pad 235.00
ICOM 551, 6 meters 408.00
ALL MFJ PRODUCTS 15% - 40%

Prices subject to change without notice.

Write for our Large Specials and Used Equipment Lists.

BEN FRANKLIN ELECTRONICS
115 ½ N. Main, Hillsboro, KS 67063
316-947-2269

Ham Radio
SUBSCRIPTION PRICES
GOING UP
June 1, 1981
See page 82
Yesterday you could admire all-band digital tuning in a short wave receiver.* Today you can afford it.

Tune in the Panasonic Command Series™ top-of-the-line RF-4900. Everything you want in short wave at a surprisingly affordable price. Like fluorescent all-band readout with a five-digit frequency display. It's so accurate (within 1 kHz, to be exact), you can tune in a station even before it's broadcasting. And with the RF-4900's eight short wave bands, you can choose any broadcast between 1.6 and 31 MHz. That's all short wave bands. That's Panasonic.

And what you see on the outside is just a small part of what Panasonic gives you inside. There's a double superheterodyne system for sharp reception stability and selectivity as well as image rejection. An input-tuned RF amplifier with a 3-ganged variable tuning capacitor for excellent sensitivity and frequency linearity. Ladder-type ceramic filters to reduce frequency interference. And even an antenna trimmer that changes the front-end capacitance for reception of weak broadcast signals.

To help you control all that sophisticated circuitry, Panasonic's RF-4900 gives you all these sophisticated controls. Like an all-gear-drive tuning control to prevent "backlash." Separate wide/narrow bandwidth selectors for crisp reception even in crowded conditions. Adjustable calibration for easy tuning to exact frequencies. A BFO pitch control. RF-gain control for improved reception in strong signal areas. An ANL switch. Even separate bass and treble controls.

And if all that short wave isn't enough. There's more. Like SSB (single sideband) ham radio. All 40 CB channels. Ship to shore. Even Morse communications. AC/DC operation. And with Panasonic's 4" full-range speaker, the big sound of AM and FM will really sound big. There's also the Panasonic RF-2900. It has most of the features of the RF-4900, but it costs a lot less.

The Command Series from Panasonic. If you had short wave receivers as good. You wouldn't still be reading. You'd be listening.

*Short wave reception will vary with antenna, weather conditions, operator's geographic location and other factors. An outside antenna may be required for maximum short wave reception.
This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e.) making the IF range approximately 54 to 88 mc (Channels 2 to 7).

PC BOARD WITH DATA ... $19.99
PC BOARD WITH CHIP CAPACITORS 13 $44.99
PC BOARD WITH ALL PARTS FOR ASSEMBLY $69.99
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS 2N6603 ... $89.99
PC BOARD ASSEMBLED AND TESTED $99.99
PC BOARD WITH ALL PARTS FOR ASSEMBLY, POWER SUPPLY AND ANTENNA .. $159.99
POWER SUPPLY ASSEMBLED AND TESTED $49.99
YAGI ANTENNA 4' LONG APPROX. 20 TO 23 DB GAIN $59.99
YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector) $64.99

2300 MHZ DOWN CONVERTER
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY ... $259.99

OPTION #1 MRF902 in front end. (7 dB noise figure) $399.99
OPTION #2 2N6603 in front end. (5 dB noise figure) $359.99

2300 MHZ DOWN CONVERTER ONLY
10 dB Noise Figure 23 dB gain In box with N conn. Input F conn. Output ... $149.99
7 dB Noise Figure 23 dB gain In box with N conn. Input F conn. Output ... $169.99
5 dB Noise Figure 23 dB gain In box with SMA conn. Input F conn. Output ... $189.99

DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY .. $15.00

Shipping and Handling Cost:
Receiver Kits add $1.50, Power Supply add $2.00, Antenna add $5.00, Option 1/2 add $3.00, For complete system add $7.50.

INTRODUCING THE HOWARD/COLEMAN TVRO CIRCUIT BOARDS
(Satellite Receiver Boards)

DUAL CONVERSION BOARD .. $25.00
This board provides conversion from the 3.7-4.2 band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz. The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the use of Hybrid IC amplifiers for the gain stages.

47 pF CHIP CAPACITORS .. $6.00
For use with dual conversion board. Consists of 6 — 47 pF.

70 MHZ IF BOARD ... $25.00
This circuit provides about 43 dB gain with 50 ohm input and output impedance. It is designed to drive the HOWARD/COLEMAN TVRO Demodulator. The on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than 1/2 dB. Hybrid ICs are used for the gain stages.

.01 pF CHIP CAPACITORS ... $7.00
For use with 70 MHz IF Board. Consists of 7 — .01 pF.

DEMODULATOR BOARD ... 40.00
This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 millivolt range, detects them using a phase locked loop, de-emphasizes and filters the result and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DC voltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC.

SINGLE AUDIO ... 15.00
This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and the Miller 9052 coil for recovery of the audio.

DUAL AUDIO ... 25.00
Duplicate of the above.

DC CONTROL ... 15.00
This circuit controls the VTO's, AFC and the S Meter.

TERMS:
WE REGRET WE NO LONGER ACCEPT BANK CARDS.
PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER.
Pricing subject to change without notice. All return orders subject to prior approval by management.
ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY.
ALL ORDERS SENT FIRST CLASS OR UPS.
ALL PARTS PRIME AND GUARANTEED.
WE WILL ACCEPT COD ORDERS FOR $25.00 OR OVER, ADD $2.50 FOR COD CHARGE.
PLEASE INCLUDE $2.50 MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
WE ALSO ARE LOOKING FOR NEW AND USED TUBES,
TEST EQUIPMENT, COMPONENTS, ETC.
WE ALSO SWAP OR TRADE.

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!

(602) 242-8916
2111 W. Camelback
Phoenix, Arizona 85015
FAIRCHILD VHF AND UHF PRESCALER CHIPS
9H91DC 350 MHz Prescaler Divide by 10/11 $9.50
9H91DC 350 MHz Prescaler Divide by 5/6 9.50
11C01DC 650 MHz Prescaler Divide by 12/11 16.50
11C01DC 650 MHz Prescaler Divide by 5/6 16.50
11C03DC 1 GHz Divide by 24/25 Prescaler 29.90
11C07DC 600 MHz Flip/Flop with reset 12.30
11C56DC ECL VCM 4.53
11C44DC/MC4044 Phase Frequency Detector 3.82
11C42DC/MC4024 Dual TTL VCM 3.82
11C06DC UHF Prescaler 750 MHz D Type Flip/Flop 12.30
11C05DC 1 GHz Counter Divide by 4 50.00
11C01FC High Speed Dual 4-4 input NO/NOR Gate 15.40

TRW BROADBAND AMPLIFIER MODEL CA815B
Frequency response 40 MHz to 300 MHz
Gain: 300 MHz 16 dB Min. 17.5 dB Max.
50 MHz to 1 dB from 300 MHz
Voltage: 24 volts dc at 220 ma max. $19.99

CARBIDE — CIRCUIT BOARD DRILL BITS FOR PC BOARDS:
Size 35, 42, 47, 51, 52 $2.15
Size: 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65 1.85
Size: 66 1.90
Size: 1.25 mm, 1.45 mm 2.00
Size: 3.20 mm 3.58

CRYSTAL FILTERS: TYCO 001-19880 same as
10.7 MHz Narrow Band Crystal Filter
2 db bandwidth 15 kHz min. 20 dB bandwidth 60 kHz min. 40 dB bandwidth 150 kHz min.
Ultimate 50 dB: Insertion loss 1.0 db max. Ripple 1.0 db max. CT. 0 +/- 5 pf 3600 ohms
$5.95

MURATA CERAMIC FILTERS:
Models: SFD-455D 455 kHz $3.00
SFD-455D 455 kHz 2.00
CFM-455E 455 kHz 7.95
SPE 10.7 MHz 5.95

TEST EQUIPMENT — HEWLETT PACKARD — TEKTRONIX — ETC.

RF TRANSISTORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1581</td>
<td>$15.00</td>
</tr>
<tr>
<td>2N1590</td>
<td>$8.15</td>
</tr>
<tr>
<td>2N1562</td>
<td>$11.85</td>
</tr>
<tr>
<td>2N1692</td>
<td>$22.15</td>
</tr>
<tr>
<td>2N1693</td>
<td>$6.00</td>
</tr>
<tr>
<td>2N4562</td>
<td>$10.25</td>
</tr>
<tr>
<td>2N2857/AN</td>
<td>$15.82</td>
</tr>
<tr>
<td>2N2876</td>
<td>$12.35</td>
</tr>
<tr>
<td>2N2960</td>
<td>$25.00</td>
</tr>
<tr>
<td>2N2927</td>
<td>$7.00</td>
</tr>
<tr>
<td>2N2947</td>
<td>$18.35</td>
</tr>
<tr>
<td>2N2948</td>
<td>$15.50</td>
</tr>
<tr>
<td>2N2949</td>
<td>$3.90</td>
</tr>
<tr>
<td>2N2950</td>
<td>$5.00</td>
</tr>
<tr>
<td>2N2975</td>
<td>$4.30</td>
</tr>
<tr>
<td>2N2994</td>
<td>$1.15</td>
</tr>
<tr>
<td>2N3032</td>
<td>$1.04</td>
</tr>
<tr>
<td>2N3033</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N3034</td>
<td>$1.48</td>
</tr>
<tr>
<td>2N3037</td>
<td>$12.90</td>
</tr>
<tr>
<td>2N3039</td>
<td>$3.90</td>
</tr>
<tr>
<td>2N3375</td>
<td>$7.20</td>
</tr>
<tr>
<td>2N3618</td>
<td>$6.00</td>
</tr>
<tr>
<td>2N3686</td>
<td>$1.00</td>
</tr>
<tr>
<td>2N3865/AN</td>
<td>$2.80</td>
</tr>
<tr>
<td>2N3866JXT</td>
<td>$4.49</td>
</tr>
<tr>
<td>2N3924</td>
<td>$3.34</td>
</tr>
<tr>
<td>2N3927</td>
<td>$12.10</td>
</tr>
<tr>
<td>2N3950</td>
<td>$26.86</td>
</tr>
<tr>
<td>2N4072</td>
<td>$1.80</td>
</tr>
<tr>
<td>2N4125</td>
<td>$2.00</td>
</tr>
<tr>
<td>2N4261</td>
<td>$14.90</td>
</tr>
<tr>
<td>2N4427</td>
<td>$1.20</td>
</tr>
<tr>
<td>2N4657</td>
<td>$3.62</td>
</tr>
<tr>
<td>2N4959</td>
<td>$2.92</td>
</tr>
<tr>
<td>2N4959</td>
<td>$2.23</td>
</tr>
<tr>
<td>2N4976</td>
<td>$19.00</td>
</tr>
<tr>
<td>2N5090</td>
<td>$12.31</td>
</tr>
<tr>
<td>2N5108</td>
<td>$4.03</td>
</tr>
<tr>
<td>2N5109</td>
<td>$1.68</td>
</tr>
<tr>
<td>2N5117</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N5139</td>
<td>$3.08</td>
</tr>
<tr>
<td>2N5218</td>
<td>$47.50</td>
</tr>
<tr>
<td>2N5853</td>
<td>$4.55</td>
</tr>
<tr>
<td>2N5859</td>
<td>$6.82</td>
</tr>
<tr>
<td>2N5876</td>
<td>$12.31</td>
</tr>
<tr>
<td>2N5880</td>
<td>$4.03</td>
</tr>
<tr>
<td>2N5888</td>
<td>$1.68</td>
</tr>
<tr>
<td>2N5890</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N5891</td>
<td>$3.08</td>
</tr>
<tr>
<td>2N5892</td>
<td>$47.50</td>
</tr>
<tr>
<td>2N5893</td>
<td>$4.55</td>
</tr>
<tr>
<td>2N5894</td>
<td>$6.82</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N439</td>
<td>45.77</td>
</tr>
<tr>
<td>2N8439</td>
<td>5.77</td>
</tr>
<tr>
<td>2N5459/PT7995</td>
<td>18.00</td>
</tr>
<tr>
<td>2N603</td>
<td>12.00</td>
</tr>
<tr>
<td>2N604</td>
<td>12.00</td>
</tr>
<tr>
<td>2N605</td>
<td>25.00</td>
</tr>
<tr>
<td>2N588C</td>
<td>25.00</td>
</tr>
<tr>
<td>2N682</td>
<td>15.00</td>
</tr>
<tr>
<td>2N697</td>
<td>29.54</td>
</tr>
<tr>
<td>2N7990</td>
<td>21.37</td>
</tr>
<tr>
<td>2N8003</td>
<td>9.50</td>
</tr>
</tbody>
</table>

CHIP CAPACITORS

<table>
<thead>
<tr>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>2.00</td>
</tr>
<tr>
<td>2.00</td>
</tr>
<tr>
<td>2.00</td>
</tr>
</tbody>
</table>

VALUE CHIP CAPACITORS

<table>
<thead>
<tr>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.33</td>
</tr>
<tr>
<td>3.33</td>
</tr>
<tr>
<td>3.33</td>
</tr>
<tr>
<td>3.33</td>
</tr>
</tbody>
</table>

PRICES

1 to 10	$1.49
11 - 50	1.29
51 - 100	0.89
101 - 1000	0.89
1,001 up	0.49

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
NPN SILICON RF POWER TRANSISTOR

- Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 30 MHz.
- Specified 12.5 Volt, 30 MHz Characteristics –
 - Output Power = 80 Watts
 - Minimum Gain = 12 dB
 - Efficiency = 50%

NPN SILICON RF POWER TRANSISTOR

- Designed primarily for use in high signal output amplifier stages. Intended for use in Citizens Band communications equipment operating at 27 MHz. High breakdown voltages allow a high percentage of up-modulation in AM circuits.
- Specified 12.5 V, 27 MHz Characteristics –
 - Power Output = 4.0 Watts
 - Power Gain = 10 dB Minimum
 - Efficiency = 55%
 - Common Collector Characterization

Tektronix Test Equipment

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 MHz High-Frequency Generator</td>
<td>$62.95</td>
</tr>
<tr>
<td>Digital pulse Generator</td>
<td>$63.00</td>
</tr>
<tr>
<td>Function Generator</td>
<td>$200.00</td>
</tr>
<tr>
<td>AC Coupled Function Generator</td>
<td>$225.00</td>
</tr>
<tr>
<td>Oscillograph</td>
<td>$255.00</td>
</tr>
<tr>
<td>Dual Trace Oscilloscope</td>
<td>$250.00</td>
</tr>
<tr>
<td>Triple Trace Oscilloscope</td>
<td>$300.00</td>
</tr>
<tr>
<td>DC to 100 MHz Single-Trace Oscilloscope</td>
<td>$250.00</td>
</tr>
<tr>
<td>DC to 100 MHz Dual-Trace Oscilloscope</td>
<td>$350.00</td>
</tr>
<tr>
<td>DC to 100 MHz Double-Trace Oscilloscope</td>
<td>$454.00</td>
</tr>
</tbody>
</table>

Scopes with Plug-ins

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>60F2 AC to 100 MHz Scope with a 578 Dual Trace DC to 370 MHz Sampling Plug-in and a 5788 Sweep Plug-in</td>
<td>$60.00</td>
</tr>
<tr>
<td>60F4 DC to 100 MHz Dual Trace Scope with a 2617 DIP and a 2617 DIP, 50 to 70 MHz</td>
<td>$75.00</td>
</tr>
<tr>
<td>576 DC to 1000 MHz Scope with a 5747 Dual Trace High Level Plug-in</td>
<td>$150.00</td>
</tr>
</tbody>
</table>

Tubes

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6F6</td>
<td>$62.95</td>
</tr>
<tr>
<td>6F6D</td>
<td>$39.00</td>
</tr>
<tr>
<td>6F6Q</td>
<td>$59.00</td>
</tr>
<tr>
<td>6F6Q5</td>
<td>$69.00</td>
</tr>
<tr>
<td>6F6Q6</td>
<td>$79.00</td>
</tr>
<tr>
<td>6F6Q7</td>
<td>$89.00</td>
</tr>
<tr>
<td>6F6Q8</td>
<td>$99.00</td>
</tr>
<tr>
<td>6F6Q9</td>
<td>$119.00</td>
</tr>
<tr>
<td>6F6Q10</td>
<td>$129.00</td>
</tr>
</tbody>
</table>

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
MICROWAVE COMPONENTS

<table>
<thead>
<tr>
<th>ARR</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2416</td>
<td>Variable Attenuator</td>
<td>$50.00</td>
</tr>
<tr>
<td>2004-60</td>
<td>Variable Attenuator 0 to 60 dB</td>
<td>$100.00</td>
</tr>
<tr>
<td>KU520A</td>
<td>Variable Attenuator 18 to 26.5 GHz</td>
<td>$100.00</td>
</tr>
<tr>
<td>4984-23C</td>
<td>Variable Attenuator 0 to 180 dB</td>
<td>$100.00</td>
</tr>
<tr>
<td>4984-29F</td>
<td>Variable Attenuator 0 to 180 dB</td>
<td>$100.00</td>
</tr>
<tr>
<td>3043-1</td>
<td>Waveguide 2 to 4 GHz Type N</td>
<td>$75.00</td>
</tr>
</tbody>
</table>

Hewlett Packard

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>H487B</td>
<td>100 ohms Neg. Thermistor Mount (NEW)</td>
<td>$150.00</td>
</tr>
<tr>
<td>H487B</td>
<td>100 ohms Neg. Thermistor Mount (USED)</td>
<td>$100.00</td>
</tr>
<tr>
<td>X478A</td>
<td>100 ohms Neg. Thermistor Mount (USED)</td>
<td>$100.00</td>
</tr>
<tr>
<td>J478A</td>
<td>100 ohms Neg. Thermistor Mount (USED)</td>
<td>$100.00</td>
</tr>
<tr>
<td>J478B</td>
<td>100 ohms Neg. Thermistor Mount (USED)</td>
<td>$100.00</td>
</tr>
<tr>
<td>X382A</td>
<td>5.85 to 8.2 GHz Variable Attenuator 0 to 50 dB</td>
<td>$250.00</td>
</tr>
<tr>
<td>X382A</td>
<td>8.2 to 12.4 GHz Variable Attenuator 0 to 50 dB</td>
<td>$250.00</td>
</tr>
<tr>
<td>X382A</td>
<td>Waveguide Adapter</td>
<td>$250.00</td>
</tr>
<tr>
<td>8436A</td>
<td>Bandpass Filter 8 to 12.4 GHz</td>
<td>$75.00</td>
</tr>
<tr>
<td>X382A</td>
<td>RFDB</td>
<td>$50.00</td>
</tr>
<tr>
<td>X382A</td>
<td>7.06 to 10 GHz Frequency Meter</td>
<td>$300.00</td>
</tr>
<tr>
<td>X382A</td>
<td>5.85 to 8.2 GHz Frequency Meter</td>
<td>$300.00</td>
</tr>
<tr>
<td>X382A</td>
<td>Carriage with a 444A Slotted Line Uninsulated Probe and 509B Coaxial Scanned Section 2 to 18 GHz</td>
<td>$175.00</td>
</tr>
<tr>
<td>X382A</td>
<td>8.2 to 12.4 GHz Noise Source</td>
<td>$500.00</td>
</tr>
<tr>
<td>S37A</td>
<td>2.6 to 3.95 GHz Noise Source</td>
<td>$500.00</td>
</tr>
<tr>
<td>G37A</td>
<td>3.95 to 5.85 GHz Noise Source</td>
<td>$500.00</td>
</tr>
<tr>
<td>J37A</td>
<td>5.85 to 8.2 GHz Noise Source</td>
<td>$500.00</td>
</tr>
<tr>
<td>H37A</td>
<td>7.06 to 10 GHz Noise Source</td>
<td>$500.00</td>
</tr>
<tr>
<td>X382A</td>
<td>55 to 4000 MHz Noise Source</td>
<td>$310.00</td>
</tr>
<tr>
<td>X382A</td>
<td>12.4 to 18 GHz Noise Source</td>
<td>$400.00</td>
</tr>
<tr>
<td>X382A</td>
<td>Frequency Meter</td>
<td>$500.00</td>
</tr>
<tr>
<td>X382A</td>
<td>0.5 to 20 dB Attenuator</td>
<td>$500.00</td>
</tr>
<tr>
<td>385C</td>
<td>5 Watts, 50 Ohm DC to 1000 MC Attenuator</td>
<td>$132.50</td>
</tr>
<tr>
<td>NK292A</td>
<td>Adapter</td>
<td>$100.00</td>
</tr>
<tr>
<td>3001C</td>
<td>Microwave Switch</td>
<td>$100.00</td>
</tr>
<tr>
<td>3001C</td>
<td>Pin Absorption Modulator</td>
<td>$205.00</td>
</tr>
<tr>
<td>1166A</td>
<td>Tracking Generator Shunt</td>
<td>$50.00</td>
</tr>
<tr>
<td>1140C</td>
<td>Feed-through Termination</td>
<td>$25.00</td>
</tr>
<tr>
<td>1011C</td>
<td>Termination</td>
<td>$25.00</td>
</tr>
<tr>
<td>H421A</td>
<td>7.05 to 10 GHz Crystal Detector</td>
<td>$75.00</td>
</tr>
<tr>
<td>H421A</td>
<td>7.05 to 10 GHz Crystal Detector</td>
<td>$200.00</td>
</tr>
</tbody>
</table>

Merrimac

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU-26A</td>
<td>801182 Variable Attenuator</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

Microlab/FXR

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>X839</td>
<td>Horn 8.2 to 12.4 GHz</td>
<td>$60.00</td>
</tr>
<tr>
<td>X818</td>
<td>X to Adapter 8.2 to 12.4 GHz</td>
<td>$35.00</td>
</tr>
<tr>
<td>Y6100</td>
<td>Coupler</td>
<td>$75.00</td>
</tr>
</tbody>
</table>

Narda

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4015C-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$90.00</td>
</tr>
<tr>
<td>4014-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$90.00</td>
</tr>
<tr>
<td>4014-90</td>
<td>Directional Coupler 2 to 4 GHz 90 dB Type SMA</td>
<td>$90.00</td>
</tr>
<tr>
<td>4015-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$90.00</td>
</tr>
<tr>
<td>3040-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$90.00</td>
</tr>
<tr>
<td>3040-20</td>
<td>Directional Coupler 2 to 4 GHz 20 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3043-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$125.00</td>
</tr>
<tr>
<td>3043-20</td>
<td>Directional Coupler 2 to 4 GHz 20 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3043-30</td>
<td>Directional Coupler 2 to 4 GHz 30 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3043-40</td>
<td>Directional Coupler 2 to 4 GHz 40 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3043-50</td>
<td>Directional Coupler 2 to 4 GHz 50 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3050-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$125.00</td>
</tr>
<tr>
<td>3050-20</td>
<td>Directional Coupler 2 to 4 GHz 20 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3053-10</td>
<td>Directional Coupler 2 to 4 GHz 10 dB Type SMA</td>
<td>$125.00</td>
</tr>
<tr>
<td>3053-20</td>
<td>Directional Coupler 2 to 4 GHz 20 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3053-30</td>
<td>Directional Coupler 2 to 4 GHz 30 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3053-40</td>
<td>Directional Coupler 2 to 4 GHz 40 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3053-50</td>
<td>Directional Coupler 2 to 4 GHz 50 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>3032</td>
<td>Coaxial Hybrid 2 to 4 GHz 3 dB Type N</td>
<td>$125.00</td>
</tr>
<tr>
<td>784</td>
<td>Coaxial Hybrid 950 to 2 GHz 3 dB Type N</td>
<td>$125.00</td>
</tr>
</tbody>
</table>

NEW

- **TOLL-FREE NO. 800-528-0180** — please, orders only!

More Details? CHECK — OFF Page 118

May 1981 99
Bencher 1:1 BALUN

- Lets your antenna radiate—not your coax
- Helps fight TVI—no ferite core to saturate or reradiate
- Rated 5 KW peak—accepts substantial mismatch at legal limit
- DC grounded—helps protect against lightning
- Amphenol® connector; Rubber ring to stop water leakage

NEW Improved

New Rugged custom Cycolac® case, UV resistant formulation
New Heavy threaded brass contact posts

Model ZA-1A 3.5-30 MHz $17.95
Model ZA-2A optimized 14-30 MHz includes hardware for 2" boom $21.95

Available at selected dealers, add $2.00 postage and handling in U.S.A.
WRITE FOR LITERATURE

GUNNPLEXER & ACCESSORIES

ARR is proud to offer the complete Microwave Associates Gunnplexer and accessory line. Two of the Gunnplexer transceivers shown here (the MA87141-1, at only $239.95 per pair) can form the heart of a 10 GHz communications system for voice, cw, video or data transmission, not to mention mountaintop DXing! ARR sells a line of necessary support equipment such as power supply/modulator and receiver boards. Write or call for additional information.

Advanced Receiver Research

Box 1242, Burlington, CT 06013 (203) 584-0776

TOWERS by ALUMA

HIGHEST QUALITY ALUMINUM & STEEL

- 60 Ft. Alum. Crank-Up
- Model T-50
- 40 Steel Crank-Up
- Model SH-40

TELESCOPING (CRANK UP)
GUYED (STACK-UP)
TILT-OVER MODELS

Easy to install. Low Prices.
Crank-ups to 100 ft.

EXCELLENT FOR AMATEUR COMMUNICATIONS

SPECIAL Four Section 50 Ft.
Van Mounted Crank-Up
Aluma Tower

Over 36 types aluminum and steel towers made—
specials designed and made—write for details

ALUMA TOWER COMPANY
BOX 2806HR
VERO BEACH, FLA. 32960
(305) 567-3423 TELEX 80-3405

Just 25¢ Gets You Started In Shortwave

NEWEST EDITION—ONE-STOP SHOPPING FOR SWLS
- RECEIVERS • CONVERTERS • ANTENNAS
- PRESELECTORS • CLOCKS • FILTERS
- HEADPHONES • HANDBOOKS • LISTS

GILFER SHORTWAVE
Dept. HR-5, Box 239, Park Ridge NJ 07656

AZDEN only 315 oo FREE

Azden PCS 3000 (2 meter FM)
Set of memory batteries 7.50

Order 24 hours a day (215) 884-6010
FREE UPS: N.P.S. Inc. WA2IFQ
1138 Boxwood Rd., Jenkintown, Pa. 19046

NEW GUNNPLEXER COOKBOOK

See Page 104

Tell 'em you saw it in HAM RADIO!
MAY'S
BEST BUYS!

STANDARD C7800 synthesized 440-450 MHz Xcvr with memory/scan intro $399.95

COLLINS KWM-380... call for Erickson's superb cash price!

DRAKE TR-7/DR-7... call for great spring price

TENTEC Delta 580 9-band super transceiver... only $759.95

ICOM's new IC-730 compact 9-band HF Xcvr with dual VFOs and memory... call for price

APPLE Disk Based System: Apple II or II Plus with 48k RAM installed and DOS 3.3, only $1849

APPLE Game Paddles available

Call Toll Free (outside Illinois only)

(800) 621-5802

HOURS: 9:30-5:30 Mon., Tues., Wed. & Fri.
9:30-9:00 Thursday
8:00-3:00 Saturday

ERICKSON COMMUNICATIONS
Chicago, IL 60630

More Details? CHECK — OFF Page 118
STEP UP TO TELREX
Professionally Engineered Antenna Systems
Single transmission line “TRI-BAND® ARRAY”

By the only test that means anything... on the air comparison... this array continues to outperform all competition... and has for two decades. Here's why... Telrex uses a unique trap design employing 20 HiQ 7500V ceramic condensers per antenna. Telrex uses 3 optimum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL7.

July 25 thru August 7, 1981
Our 22nd year
Have trouble finding time to study for Upgrading? Do it on your vacation at the OAK HILL ACADEMY RADIO SESSION in the Blue Ridge Mountains of Virginia
Two weeks of intensive Code and Theory Study starting at your level.
- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors — Friendly Surroundings — Excellent Accommodations.
Ham Lab set up for all to use.
“An Vacation with a Purpose”

ARRL ATLANTIC DIVISION & NY STATE CONVENTION
combined with
Rochester HAMFEST
Bigger than ever
May 15-16
Better than ever
Monroe County Fairgrounds and Marriott Inn, near NY Thruway exit 46

For information write:
Hamfest, Box 1388, Rochester, NY 14603
Phone: 716-424-1100

Ham Radio
Subscription Prices Going Up
June 1, 1981
See page 82
NOW IN STOCK...
FULL LINE OF AEA KEYERS
SUPER EFFICIENT ISOPOLE ANTENNAS

CALL TOLL FREE 1-800-325-3609 IN MISSOURI
MID-COM ELECTRONICS • 8516 MANCHESTER ROAD • BRENTWOOD, MO 63144

S-LINE OWNERS ENHANCE YOUR INVESTMENT with TUBESTERS™
Plug-in, solid state tube replacements
- S-line performance—solid state!
- Heat dissipation reduced 60%
- Goodbye hard-to-find tubes
- Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC Write or phone for specs and prices.
Box 535 (707) 462 6882
Talmage, CA 95481

Microcraft's New Morse-A-Word
Eight character moving display.
Built-in code practice oscillator.
Excellent for learning Morse Code.
Complete — no CRT or expensive extras needed.
Decodes audio CW signals from your receiver's speaker and displays letters, numbers, punctuation and special Morse characters as the code is received.

MORSE-A-WORD Kit with 4 character readout MAWK-4 $149.95
MORSE-A-WORD Kit with 8 character readout MAWK-8 $169.95
MORSE-A-WORD wired & tested with 8 character readout .. MAWF $249.95

Send check or money order. Use your VISA or Master Charge. Add $3.50 shipping and handling for continental U.S. Wisconsin residents add 4% State Sales Tax.

KITS
SPLIT-BAND SPEECH PROCESSOR KIT (hr 9/79)
Punch thru pile-ups • Up to ten times more talk power • High performance • Low distortion • Maintain your natural voice
$69.95#
Spring/Summer Catalog
25 cents

MICROPROCESSOR-based CONTEST KEYER KIT (hr 1/81)
Iamac keyer with dot-dash memory • Optional forced-letter space • Loads memory directly in code from keyer • Automatic QSO Number & RST generation • Simple to use — flexible for any contest
$249.95# (partial kit available)
#Please include $2.50 for shipping & handling

R-X NOISE BRIDGE KIT (hr 2/77)
Set up antenna tuner without radiating • Find antenna's resonant frequency • Adjust linear amp, input network • Extensive network designs • Measure BOTH resistance & reactance
$31.95#

COMPONENTS

MADISON ELECTRONICS’ NEW TOLL-FREE Night-Time Order Line 1-800-231-3057 6-10 PM CST M.W.F Day Phone 713-658-0268

More Details? CHECK — OFF Page 118
The Cubic 103. If you're looking for DX, the Cubic 103 is the rig you should be looking at. Because it's all solid state, state-of-the-art design and construction, with all bands, 160-10 Meters (including the WARC bands) installed and operating. With Dual PTO's dual 8-pole filters (1.4:1 shape factor), true passband tuning, speech processor, 235 watts input and RF/IF gain controls, the 103 has the performance that's necessary for exceptional operation under the high cross modulation conditions found on today's crowded bands.

If you're lookin for DX, look no further. DX is the new Cubic 103. The suggest retail price of the Cubic 103 is $1395.00. But a lower quote is just a phone call away.

BRAND NEW!

The Gunnplexer Cookbook

by

Robert M. Richardson, W4UCH/2

Ever wanted to take a good look at 10 GHz operation? Well, here's your chance. Starting with the basic theory of the Microwave Associate’s Gunnplexer transceiver, author Richardson describes in 10 building-block chapters, how to put a functioning Gunnplexer system into operation.

Chapters include: Frequency and Power Measurements, Power Supplies, Proportional Temperature Control, I-f Amplifiers, Antennas, Television and Computer Data Links and more.

The Gunnplexer Cookbook has been written for the Radio Amateur or electronic student who has at least modest experience assembling vhf converter or receiver kits. Only very basic test equipment is required.

You've waited a long time for this book. Don't wait any longer. Order your copy today!

© 1981 Softbound HR-GP $9.95 plus $1.00 for shipping.

Ham Radio Publishing Group
Greenville, New Hampshire 03048

Tell 'em you saw it in HAM RADIO!
Curtis 8044M adds speedmeter output

An enhancement of the popular 8044 CMOS keyer has been introduced by Curtis Electro Devices. Called the 8044M, this new integrated circuit adds an output designed to drive an analog meter for speed indication. Speed indication from 6 WPM to as high as 100 WPM can be accomplished by simply adding two capacitors, a resistor, and a 100-μA meter. The meter indication can be calibrated to be well within a 5 percent tolerance. The reading is stable, even at the lowest speeds.

The addition of two extra pins at the end of the package permits a pin-for-pin fit with the standard 8044. One of the pins is used for a timing capacitor and the other pin drives the meter directly. This allows retrofitting in many existing keyers with relative ease. The keyer function of the 8044M remains the same as in the 8044 design, providing dot and dash memories, iambic operation, key de-bouncing, weight control, monitor oscillator, and extremely low power dissipation.

Housed in an 18-pin plastic pack-

age, the 8044M is priced at $19.95 and is available from Curtis dealers or factory stock. Two kits are available to help in construction of a quality keyer. The 8044M-3 offers the IC, a PCB, edge connector, socket and manual for $29.95. The 8044M-4 is more complete offering all parts except chassis, knobs, jacks, switches, speaker, meter, and power supply. It is priced at $59.95. Various suitable meters are also available and are priced at $7.95. For further information, contact Curtis Electro Devices, Inc., Box 4090, Mountain View, California 94040.

“no-stretch” guys

Lightweight, noncorroding guys offered by Philadelphia Resin Corporation provide significant improvements in tension-elongation properties when compared with galvanized IPS wire strand, GRP rod and Phillystran PS29 (the manufacturer’s original flexible, dielectric guys).

The new Phillystran HPTG tower guys are smaller in diameter and lighter than earlier Phillystran guys. Hence, wind resistance has been decreased and there is significantly less surface for ice accumulation. Weather resistance has been further increased by a new extruded olefin copolymer jacket, which ensures complete protection against ultraviolet degradation.

The termination of factory-assembled, cut-to-length, dielectric guys has been upgraded with an improved potting system. However, the major improvement in Phillystran HPTG is its much lower elongation, not exceeding 0.3 per cent at normal working loads. This extremely low elongation — and the negligible creep of an assembled guying system — significantly decreases tower deflections, while providing riggers with the convenience of tension-once and walk-away installations.

The new dielectric tower guys incorporate all of the advantages provided by Phillystran guys, including the following:

- Elimination of white-noise arcing, EMI, and complaints about TV reception near radio-broadcast sites.
- Significantly fewer labor hours required to guy a new tower or to reguy an existing tower.

No insulators or painting required.

- Resistant to icing and inclement weather.
- High strength-to-weight ratio.

No problems with fire. A short, steel lead line is recommended between each ground-level turnbuckle and each flexible, dielectric guy.

Unlike conventional metal guys, Phillystran is not affected by salt-laden atmospheres or by airborne pollution from industrial plants or automobiles. It also has no internal-corrosion problems. On an installed-cost basis, the flexible, lightweight dielectric tower guys compare very favorably with insulated steel guys.

For more information, contact Rosely Stranski at Philadelphia Resins Corporation, Montgomeryville, Pennsylvania 18936.

direction/火 converter

The new MFJ police/fire converter, model MFJ-311, will convert any 2-meter synthesized or VFO rig to cover the VHF-band police and fire frequencies. If your rig covers 144-148 MHz, just insert the MFJ-311 in line with the antenna, connect power, and turn on the converter, now you can receive 154-158 MHz. If your rig covers a larger or smaller section of the band, then with the MFJ-311 you can receive a correspondingly larger or smaller section of the VHF police and fire band. The frequencies between 154 and 158 MHz contain nearly all FCC allocated VHF police/fire activity.

You have direct frequency readout from your rig. If your rig indicates that you are receiving 145.55 MHz, just turn the converter on and you are receiving 155.55 MHz. A push-button switch turns the MFJ-311 on and off. In the off position, the converter is
NEW!
GUNNPLEXER COOKBOOK
See Page 104

NEMAI ELECTRONICS

Write for FREE Catalog

Columbia Wire Coaxial Cable with PL-259 on each end.

<table>
<thead>
<tr>
<th>Length</th>
<th>RG-8/U</th>
<th>RG-58/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>100'</td>
<td>$19.95</td>
<td>$10.95</td>
</tr>
<tr>
<td>75'</td>
<td>$15.95</td>
<td>$8.95</td>
</tr>
<tr>
<td>50'</td>
<td>$10.95</td>
<td>$6.95</td>
</tr>
<tr>
<td>20'</td>
<td>$6.95</td>
<td>$3.95</td>
</tr>
<tr>
<td>3'</td>
<td>$3.25</td>
<td></td>
</tr>
</tbody>
</table>

Sloped Cable With PL-259 on one end and Spade Lugs on the other end.

<table>
<thead>
<tr>
<th>Length</th>
<th>RG-8/U</th>
<th>RG-58/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>20'</td>
<td>$4.95</td>
<td>$2.95</td>
</tr>
<tr>
<td>12'</td>
<td>$2.49</td>
<td></td>
</tr>
</tbody>
</table>

VISAMASTER CHARGE
COD add $1.50 Florida Res. add 4%

NEMAL ELECTRONICS
5685 SW 80th. Street Miami, FL 33143
Call (305) 661-5534

diode selector guide

Motorola announces its new, free RF Signal-Processing Diodes Selector Guide. The six-page manual lists all Motorola tuning diodes for frequency control, plus hot-carrier diodes for mixing and detection, and PIN diodes for switching.

Included in this handy reference are several useful design curves, package information, and reliability data. To order the RF Signal Processing Diodes Selector Guide, write to Motorola Semiconductor Group, P.O. Box 20912, Phoenix, Arizona 85036.

new Hamtronics® kits

Hamtronics, Inc., has announced a new single-channel UHF fm exciter called the model T451. Patterned after the popular T450 exciter, the new unit is rated at 2 watts continuous output and is contained on a 3 x 5 1/2 inch PC board. It is designed for the 50, 144, and 220 MHz bands and may be modified for use on adja-
cent commercial and government bands. It is ideal for control links, repeater service, telemetry, and other applications for which a small unit is required. A multichannel adapter is also available to extend operation up to five channels.

Features include low-impedance dynamic mike and high level audio inputs; crisp, clear modulation; low spurious output; pre-wound coils; adjustable output level; and built-in test points for easy alignment. A commercial-grade frequency stability option is available. The price of the T451 is only $59.95.

For further information, contact Hamtronics, Inc., 65F Maui Road, Hilton, New York 14468.

lightning protection

The new Zap Trapper, introduced by PolyPhase Corporation, significantly outperforms previous lightning protection apparatus for communications antennas, cable, and equipment. The Zap Trapper impulse suppressor utilizes controlled atmospheric technology to ensure a microsecond response to lightning impulses, plus multiple impulse suppression, which is especially critical for the protection of today's solid-state communications equipment. Specifications, type N: bandwidth, 0.1 MHz to 1000 MHz; insertion loss, 0.1 dB maximum at 1000 MHz; VSWR, 1.15:1 at 1000 MHz; impedance, 50 ohms constant.

For more information, contact PolyPhase Corporation, 1500 West Wind Boulevard, Kissimmee, Florida 32741.

antenna tuner

Designed to enhance reception throughout the 10-kHz through 30-MHz spectrum, this new shortwave/longwave antenna tuner boasts the widest frequency coverage of any tuner on the market.

The wideband tuner preselects desired signals while reducing or eliminating intermodulation, cross-modulation, and other interference. It is ideal for weak-signal tracking and can be used with any receiver or transmitter. The price is $295 for the Tuner and $150 for the Assistant Tuner.

For more information, contact PolyPhase Corporation, 1500 West Wind Boulevard, Kissimmee, Florida 32741.
transceiver preamplifier

Palomar Engineers announces a new preamplifier which is continuously tunable, and covers all Amateur bands from 160 through 6 meters. It provides 20 dB of gain with a dual-gate FET for low noise figure. The gain and noise figure greatly improve reception on most receivers, particularly on the higher frequency bands. The added selectivity reduces image and spurious response.

Gain is continuously variable to prevent overloading the receiver. An rf-sensing circuit allows the unit to be used with transceivers; the preamplifier automatically bypasses itself during transmit. The fail-safe switching circuit handles transceivers to 350 watts. Connectors are SO-239. The preamplifier measures $8 \times 5 \times 3$ inches, and features an attractive brushed-aluminum control panel.

For free descriptive brochure write Palomar Engineers, P.O. Box 455, Escondido, California 92025.
FEATURES
- Adjustable regulated power supplies, pos, line and neg 1.2VDC to 15VDC.
- Power Output (each supply): 5VDC । 500mA, 12VDC । 500mA, and 15VDC । 1.25mA.
- Two 3-terminal adjustable IC regulators.
- Heat sink regulator cooling.
- LED "on" indicator.
- Printed Circuit Board Construction.
- 120VAC input.
- Size: 3 1/2" x 5 1/16" x 2 3/16".

JE215 Adj. Dual Power Supply Kit (as shown) $24.95

DESCRIPTION
The JE215 is a Dual Power Supply with independent adjustable positive and negative voltage outputs. A separate adjustment for each of the supplies provides the user unlimited applications for IC current and voltage requirements. The supply can also be used as a general-purpose variable power supply.

JE215 Adjustable Dual Power Supply

General Description: The JE215 is a Dual Power Supply with independent adjustable positive and negative voltage outputs. A separate adjustment for each of the supplies provides the user unlimited applications for IC current and voltage requirements. The supply can also be used as a general-purpose variable power supply.

JE215 Adj. Dual Power Supply Kit (as shown) $24.95

[Note: Picture not shown but similar in construction to above.]
Ham Radio’s guide to help you find your local dealers:

Arizona
POWER COMMUNICATIONS CORPORATION 1640 W. CAMELBACK ROAD PHOENIX, AZ 85015 602-242-6030 or 242-8990 Arizona’s #1 “Ham” Store. Kenwood, Yaesu, Icom and more.

California

JUN’S ELECTRONICS 3919 SEPUVEDA BLVD. CULVER CITY, CA 90230 213-390-8003 Trades 714-483-1886 San Diego The Home of the One Year Warranty — Parts at Cost — Full Service.

QUEUMENT ELECTRONICS 1000 SO. BASCOM AVENUE SAN JOSE, CA 95128 408-998-5900 Serving the world’s Radio Amateurs since 1933.

Connecticut
HATRY ELECTRONICS 500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881 Connecticut’s Oldest Ham Radio Dealer

Delaware
DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD NEW CASTLE, DE 19720 302-329-7728 Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off I-95, no sales tax.

Florida
AGL ELECTRONICS, INC. 1898 DREW STREET CLEARWATER, FL 33515 813-461-HAMS West Coast’s only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC. 2805 N. E. 2ND AVENUE MIAMI, FL 33137 305-573-8383 The place for great dependable names in Ham Radio.

Illinois
AUREUS ELECTRONICS, INC. 1415 N. EAGLE STREET NAPERVILLE, IL 60540 312-420-8629 “Amateur Excellence”

ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE. CHICAGO, IL 60630 Chicago — 312-631-5181 Outside Illinois — 800-621-5802 Hours: 9:30-5:30 Mon, Tu, Wed & Fri.; 9:30-9:00 Thurs, 9:00-3:00 Sat.

Indiana
THE HAM SHACK 808 NORTH MAIN STREET EVANSVILLE, IN 47710 812-422-0321 Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas
ASSOCIATED RADIO 8012 CONSER, P. O. BOX 4327 OVERLAND PARK, KS 66204 913-381-5900 America’s No. 1 Real Amateur Radio Store. Trade — Sell — Buy.

Maryland

Massachusetts

TUFTS RADIO ELECTRONICS 206 MYSTIC AVENUE MEDFORD, MA 02155 617-391-3200 New England’s friendliest ham store.

Minnesota
PAL ELECTRONICS INC. 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612-521-4662 Midwest’s Fastest Growing Ham Store, Where Service Counts.

New Jersey

Dealers: YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
Amateur Radio Dealer

WITTE ELECTRONICS
384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
201-546-3000
Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY
AMATEUR RADIO SUPPLY
112 W. FIRST STREET
ROSWELL, NM 88201
505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-222-7880
Service, Parts, & Experience For Your Atlas Radio.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer — ALL major Amateur Brands.
We service everything we sell!! Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG), OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands — spacious store near I-270.

Pennsylvania

LAE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

Transistors

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF901</td>
<td>25Ghz</td>
<td>$3.00</td>
</tr>
<tr>
<td>MRF911</td>
<td>30Ghz</td>
<td>$4.00</td>
</tr>
<tr>
<td>BF390</td>
<td>40Ghz</td>
<td>$5.00</td>
</tr>
<tr>
<td>NEC0215</td>
<td>45Ghz</td>
<td>$2.25</td>
</tr>
<tr>
<td>NEC0210</td>
<td>50Ghz</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000PF</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>5600PF</td>
<td>$2.00</td>
<td></td>
</tr>
</tbody>
</table>

Circuit Board

<table>
<thead>
<tr>
<th>Board Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000PF SOLDER TYPE</td>
<td>$1.50</td>
</tr>
<tr>
<td>470PF SOLDER TYPE</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Coax Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA Chassis</td>
<td>$6.10</td>
</tr>
<tr>
<td>SMA Chassis Mount Plug w/G Flange</td>
<td>$8.50</td>
</tr>
<tr>
<td>SMA Chassis Mount Strain-Rel Tub</td>
<td>$6.75</td>
</tr>
</tbody>
</table>

Silver Plating Kit

<table>
<thead>
<tr>
<th>Plating Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 Semi-rgd</td>
<td>$3.18</td>
</tr>
</tbody>
</table>

RF Cable

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 Semi-rgd</td>
<td>$3.18</td>
</tr>
</tbody>
</table>

Piston Trimmers

<table>
<thead>
<tr>
<th>Trimmer Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIRKO 201-01M</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

Antennas

<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke & Beckman Instruments</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Radio Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunn Source</td>
<td>$7.00</td>
</tr>
<tr>
<td>Wave Guide MOUNTING</td>
<td>$3.00</td>
</tr>
</tbody>
</table>

Radio World

425 5th Street, Dept W
Anchorage, Alaska 99504
(907) 336-0340

Alaska Microwave Labs

Transistors

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF901</td>
<td>25Ghz</td>
<td>$3.00</td>
</tr>
<tr>
<td>MRF911</td>
<td>30Ghz</td>
<td>$4.00</td>
</tr>
<tr>
<td>BF390</td>
<td>40Ghz</td>
<td>$5.00</td>
</tr>
<tr>
<td>NEC0215</td>
<td>45Ghz</td>
<td>$2.25</td>
</tr>
<tr>
<td>NEC0210</td>
<td>50Ghz</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000PF</td>
<td>$1.50</td>
</tr>
<tr>
<td>5600PF</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

Circuit Board

<table>
<thead>
<tr>
<th>Board Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000PF SOLDER TYPE</td>
<td>$1.50</td>
</tr>
<tr>
<td>470PF SOLDER TYPE</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Coax Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA Chassis</td>
<td>$6.10</td>
</tr>
<tr>
<td>SMA Chassis Mount Plug w/G Flange</td>
<td>$8.50</td>
</tr>
<tr>
<td>SMA Chassis Mount Strain-Rel Tub</td>
<td>$6.75</td>
</tr>
</tbody>
</table>

Silver Plating Kit

<table>
<thead>
<tr>
<th>Plating Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 Semi-rgd</td>
<td>$3.18</td>
</tr>
</tbody>
</table>

RF Cable

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 Semi-rgd</td>
<td>$3.18</td>
</tr>
</tbody>
</table>

Piston Trimmers

<table>
<thead>
<tr>
<th>Trimmer Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIRKO 201-01M</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

Antennas

<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke & Beckman Instruments</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Radio Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunn Source</td>
<td>$7.00</td>
</tr>
<tr>
<td>Wave Guide MOUNTING</td>
<td>$3.00</td>
</tr>
</tbody>
</table>
BARKER & WILLIAMSON MULTIBAND BEAMS

Model 370-16
4 Element Tri-Band Beam
Four working elements on each band 10, 15 and 20 meters. Twenty four foot boom permits optimum spacing for maximum forward gain and front to back ratio. All traps pretuned. Will handle 1000 watts-2000 watts P.E.P.

Model 370-17
3 Element Tri-Band Beam
Three working elements on each band 10, 15 and 20 meters.

Model 370-18
2 Element Tri-Band Beam
Designed for portable and lightweight. Two working elements on each band 10, 15 and 20 meters. The 6.5 foot boom can be easily raised on an inexpensive mast and operated with a standard T.V. rotator. Will handle 1000 watts-2000 watts P.E.P.

Write for more details and other B&W products.

Barker & Williamson, Inc.
10 Canal St, Bristol, PA. 19007 215-781-5581

Radio World

Central New York's Most Complete Ham Dealer

Featuring Kenwood, Yaesu, Icom, Drake, Ten-Tec, Swan, Dentron, Alpha, Robot, MFJ, Tempo, Astron, KLM, Hy Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, Mirage, Vibroplex, Becher, Info-Tech, Universal Towers, Callbook, ARRl, Astatic, Shore. We service everything we sell!

Radio World

Central New York's Most Complete Ham Dealer

Featuring Kenwood, Yaesu, Icom, Drake, Ten-Tec, Swan, Dentron, Alpha, Robot, MFJ, Tempo, Astron, KLM, Hy Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, Mirage, Vibroplex, Becher, Info-Tech, Universal Towers, Callbook, ARRl, Astatic, Shore. We service everything we sell!

Out of State

Oneida County Airport Terminal Building

Call Toll Free

800-448-9338

Warren - K21XN

Bob - WA2MSS

AUTHORS WANTED BY NEW YORK PUBLISHER

Leading subsidy book publisher seeks manuscripts of all types: Fiction, non-fiction, poetry, scholarly and juvenile works, etc. New authors welcomed. As for free, illustrated 40-page brochure P-89 Vantage Press, 515 W. 36th St., New York, N.Y. 10018. Or call Toll Free 1-800-528-6650 Ext. 2254.

PASS FCC EXAMS

The Original FCC Tests Answers Exam Manual that prepares you to pass FCC First and Second Class Radio Telephone license. Nine years of FCC exam experience! Many questions found on the actual FCC exam. Pkt 100 Study Aid Test - $5.00 postpaid. Add $2.00 for first class Airmail. Money Back Guarantee.

COMMAND PRODUCTIONS

P.O. Box 26348
San Francisco, CA 94126
90 WATT AMPLIFIER: $89.95!

SPECIAL PACKAGE DEAL FACTORY DIRECT ONLY

That's right — 90 watts of linear power for 2 meters class AB1 for FM & SSB for only $89.95. Also offering a 15 dB gain in-line preamp with integrated T/R relay. A $29.95 value, for only $20.00 when purchased with the VJ90L Amplifier.

*ORDER TODAY TOLL FREE
(800) 231-9649

PRICING OFFER EXPIRES JUNE 1, 1981

Each VJ Product component is hand wired and individually tuned for maximum reliability and performance. VJ Products are guaranteed to be free of defects in parts or workmanship for 1 year from the date of purchase. POWER TRANSISTORS ARE EXCLUDED, BUT WARRANTED FOR 90 DAYS. Visa accepted. Immediate shipment guaranteed by VJ Products, Inc.

Please ship: □ VJ90L @ $89.95 + $2.00 shipping
□ VJ90L & Preamp @ $109.95 + $3.50 shipping

Name
Street
City
State
Zip
Exp. Date

SERVING THE ELECTRONICS INDUSTRY SINCE 1965 V-J Products, Inc. 505 E. Shaw Street, Pasadena, Texas 77506 (713) 477-0134

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free ’Tech-Data’ Flyer

AMIDON Associates
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen Wilhelm — Melies Str. 88 4930 Detmold 18 West Germany
In Japan: Toyomura Electronics Company Ltd. 3-9 2-Chome Sota Kanda, Chiyo-ku, Tokyo, Japan

Attention HAMS
UNIVERSAL a great tower

FOR RUGGED STRENGTH

lightweight easy assembly trust-free strength

Over 70 brands in stock

AMATEUR RADIO

SPECTRONICS

Specialists in Amateur Radio, Short-Wave Listening
And Contemporary
Electronic Gear.

SPECTRONICS INC
1002 GARFIELD ST., OAK PARK, IL 60304
(312) 848-6777

Tell 'em you saw it in HAM RADIO!
CALL TOLL FREE
1-800-426-7741
The Northwest’s Largest Ham Store
WASHINGTON RESIDENTS CALL 1-800-562-6818
ALASKA RESIDENTS CALL COLLECT 1-206-784-7337

AEE MORSEMATIC

- Dual Microcomputers provide many features.
- Approximately 500 character memory with unique “soft-partitioning.”
- Morse trainer mode with programmable speed-up.
- Beacon mode for VHF DX scheduling.
- Automatic serial number sequencing.
- Far too many features to describe; use it and you will believe it!

AEA ISOPOLE VHF ANTENNAS

Finally — a properly decoupled antenna with superior performance at a reasonable cost. Raise more repeaters or increase your simplex distance!
- 144 or 220 MHz bands.
- Achieve maximum attainable gain for a twin 5/8 wavelength antenna.
- Patterns independent of mounting or feedline length.
- Greater than 9 MHz bandwidth.
- Completely weather protected matching network and RF connections.
- Easiest to assemble. Mounts on standard TV mast (NOT SUPPLIED).

C-COMM
6115-15th AVE. N.W.
SEATTLE, WA. 98107
(206) 784-7337

Dealers For: AEA, ALLIANCE, ALPHA, AVANTI, BENCHER, B&W, CDE, CUSHCRAFT, DAIWA, DENTRON, DRAKE, FLUKE, HUSTLER, HYGIN, ICOM, INLINE, KLM, LARSEN, LUNAR, MFJ, NPC, NVE, ROHN, SHURE, TEMPO, TELEX, TEN-TEC, VIBROPLEX, YAESU, AND MORE.

Mon. thru Sat. 9:00 a.m. to 5:30 p.m.

Prices and specifications subject to change without notice or obligation

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95.

Now available in KIT FORM — GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95

Send for FREE 16 page catalog.

We welcome Mastercharge or VISA

GLB ELECTRONICS
1952 Clinton St., Buffalo, N.Y. 14206

More Details? CHECK — OFF Page 118

... at last... your shack organized!

A beautiful piece of furniture — your XYL will love it!

$164.50 S-F RADIO DESK

Deluxe - Ready to Assemble

Designed with angled rear shelf for your viewing comfort and ease of operation.

FINISHES: Walnut or Teak Stain.

Floor Space: 39" Wide by 30" Deep

Additional Information on Request.

Checks, Money Orders, BankAmericard and Master Charge.

F.O.B. Culver City. (In Calif. Add 6% Sales Tax.)

DEALER INQUIRIES INVITED...

4384 KEYSTONE AVENUE • CULVER CITY, CALIF. 90230 • PHONE (213) 637-4870

ALL BAND TRAP ANTENNAS!

PRETUNED - COMPLETELY ASSEMBLED — ONLY ONE NEAT SMALL ANTENNA FOR UP TO 7 BANDS! EXCELLENT FOR CONGESTED HOUSING AREAS - APARTMENTS - LIGHT - STRONG - ALMOST INVISIBLE!

COMPLETE AS SHOWN with 90 ft. RG58U-52 ohm feedline, and PL259 connector, insulators, 30 ft.

300 ft. test d.c. and supports. Center connector with built in lightning arrester and static discharge molded, sealed, weatherproof, resonant traps 1"X9", you just switch to band desired for excellent worldwide operation - transmitting and receiving! Low SWR over all bands - Tuner usually NOT NEEDED! Can be used as inverted V - steppers in attic, on building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED for ALL DESIRED BANDS — WITH ANY TRANSMITTER - NEW! EXCLUSIVE! NO BALUNS NEEDED!

MODEL 2001$79.95

MODEL 2002$89.95

FOR ALL MAKES & MODELS OF AMATEUR TRANSCEIVERS - TRANSMITTERS GUARANTEED FOR 2000 WATTS SSB 1000 WATTS CW. INPUT FOR NOVICE AND ALL CLASS AMATEURS.

COMPLETE AS SHOWN with 90 ft. RG58U-52 ohm feedline, and PL259 connector, insulators, 30 ft.

300 ft. test d.c. and supports. Center connector with built in lightning arrester and static discharge molded, sealed, weatherproof, resonant traps 1"X9", you just switch to band desired for excellent worldwide operation - transmitting and receiving! Low SWR over all bands - Tuner usually NOT NEEDED! Can be used as inverted V - steppers in attic, on building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED for ALL DESIRED BANDS — WITH ANY TRANSMITTER - NEW! EXCLUSIVE! NO BALUNS NEEDED!

MODEL 2001$79.95

MODEL 2002$89.95

SEND FULL PRICE FOR POSTPAID INSURED DEL IN USA. (Canada is $5.00 extra for postage - clerical - customs etc.) or order using VISA - MASTER CHARGE - AMEX EXPRESS. Give number and expiration date. Ph 1-206-236-5333 9AM - 6PM weekdays. We ship in 2-3 days. ALL PRICES WILL INCREASE...

SPECIAL ORDER NOW! All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition

Made in USA. FREE INFO AVAILABLE ONLY FROM WESTERN ELECTRONICS

Kearney, Nebraska, 68847

may 1981 115
The Chesapeake Instrument Division is a project oriented part of Gould Government Systems Inc. CID currently produces sonar and seismic systems, and marine instruments, for military and commercial applications. We have a strong engineering department doing research, design and development in related areas.

What we need is a design engineer to contribute to a growing ocean based communications program.

You will need experience in design and evaluation of antenna and communication systems up to 1GHz.

Ability to define problems and contribute creative solution concepts is essential. Familiarity with DOD acquisition and development standards would be a plus.

As a prime member of the system team, you will be responsible for the conceptualization, design, and development of the RF components in a multifunction system for both strategic and tactical use.

Take this opportunity to contribute to a significant defense requirement and look forward to accepting full project responsibility as work progresses from design through prototype into production. The conditions are right for you if you seek a challenge and a dedicated team with which to work. Your salary will reflect the importance of your contribution and Gould's benefit package is one of the finest, covering insurance, investments, education and retirement.

Give it some serious consideration; it could be a great move for you, and us. Send your letter of application to: Gould Government Systems Inc., Chesapeake Instrument Division, Employment Manager, Department 439-81, 6711 Baymeadow Drive, Glen Burnie, Maryland 21061

An Equal Opportunity Employer M/F

Tell 'em you saw it in HAM RADIO!
ALPHA 77DX Amplifier

- Alpha 77DX: The ultimate amplifier for those who demand the finest.
- Eimac 8877 Tube — 1500 watts of plate dissipation.
- 4.4 KVA Hypersil®, removable plug-in Transformer.
- Oil-filled, 25 mfd Filter Capacitor.
- QSK CW: Full break-in, (2) vacuum relays.
- Vacuum Tuning Capacitor.
- Ducted air cooling, large, quiet blower, computer grade.
- Warranty (limited) 24 months, tube by Eimac.
- Other ALPHA’s: 78, 76CA, 76PA, 76A, 374A, 77SX (Export Only).

CX-11-A Integrated Station

- POWER OUTPUT: 150 watts CW/SSB output all bands (2) MRF 422 Finals.
- OPTIONAL POWER OUTPUT: 200 to 225 Watts CW/SSB output.
- SYNTHESIZED FREQUENCY COVERAGE: All amateur bands 1.8-30 MHz in full 1 MHz bands, plus 4 additional 1 MHz bands for future expansion.
- TWO PTO’S: Dual receiving, transceive on either, or split operation.
- QSK CW: Full break-in, vacuum relays. 300 Hz CW Filter built-in.
- SELECTIVITY: Two 8 pole plus one 4 pole filter deliver 20 pole 1.4:1 shape factor (6dB/60dB), plus post detection 1.5, 1.0, 0.4 and .1 kHz bandwidth.
- BUILT-IN A/C supply, 115/230V, 50/400 Hz, Hypersil” transformer. IF shift, noise blanker, RF clipping, CW keyer, notch/peak filter.
- SERVICING: Self service easiest of any transceiver by using gold-plated sockets for transistor and IC replacement.
- RELIABILITY: Less than 1% failure, 99% of problems resolved in field.
- QUALITY: All military and computer grade. 100% American made.
- PRICE $5900, mfg. by Signal/one Corp., Phoenix, AZ 85021.

Phone Don Payne, K4ID, for Special Prices. Brochure, and OPERATING EXPERIENCE on the CX-11A and Alphas.

PAYNE RADIO

Personal Phone — (615) 384-2224
P. O. Box 100, Springfield, Tenn. 37172
DON & MIKE'S
SPRING HAS SPRUNG
SPECIALS

Cubic - Swam 103 $119.00
Astro 150A 849.00
 Mirage B23 1 watt-30 watt amp ... $9.95
 DSL 56000 w/Ant/Ac 185.00
 Robot 800A 749.00
 Cushcraft A3 Tribander .. 169.00
 AEA Morsematic 169.00
 Bird 43, Slugs CDE Ham-4 Rotor 199.00
 Ham-X 269.00
 BT-1 HF/VHF Rotator ... 79.95
 FDK Palm 2 Handle with BP/AC ... 149.00
 GE 572B 38.00
 Kenwood Service Manuals Stock 10.00 ea.
 Telrex TB5EM 425.00
 Telrex Monobanders Call
 Santec HT-1200 Synthesized 339.00

Order Your
KWM380 Now!
Old Pricing & Free Goods!

Rockwell Accessories in Stock
Adel Nibbling Tool 8.95
Janel QSA5 41.95
Roehn Tower 25G, 45G Sections
Balden 9405 Heavy Duty Rotor Cable 213G, 94G ... 45G/ft
Balden 8214 RG-8 Foam ... 36G/ft
Balden 9258 RG-8 Mini-coax. 19G/ft
Alliance HD73 Rotor 109.95
Amptrol Silverplate PLC4G 1.00
ICOM 255A 2M Synthesized 339.00 w/touch-tone mike (limited qty.)
ICOM 260A 2M SSB/FM CW 449.00

Late Specials:
Kenwood TS-520SE, TS-130S . Call
ICOM IC2ATTTPINICAD 249.00
Bearcat 300 399.00
Lunar 2M-40P 109.00
Call for TS30S, TS130S plus accessories

MASTER CHARGE + VISA
All prices for Houston except where indicated. Prices subject to change without notice. Items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $1.00 minimum.

MADISON
Electronics Supply, Inc.
1508 McKinney
Houston, Texas 77010
CALL TOLL FREE
(800) 231-3057
6-10 PM, COST, M.W.F
713/658-0268

NAME CALL
CITY
STATE ZIP

*Please contact this advertiser directly.
Limit 5 inquiries per request.

May, 1981
Please use before June 30, 1981

Tear off and mail to
HARD MAGAZINE "check-off"
Greenville, N. H. 03048

ACE Communications, Inc. 36
AEA, Advanced Electronic Applications 11
Advanced Receiver Research 100
Alaska Microwave Labs 111
Aluma Tower Company 100
American Radio Relay League 87
Amidon Associates 116
Applied Invention 116
Atlantic Supply & Sales 82
Barker & Williamson, Inc. 112
Barry Electronics 45
Bench, Inc 82,100
Ben Franklin Electronics 94
Bird Electronics 44
Butternut Electronics 44
C. Comm 115
Command Production 112
Communication Concepts 112
Communications Specialists 111
Cubic Communications, Inc. 89
Cushcraft Corporation 119
Digi-Key Corporation 113
Drake, R. L., Co. 37
EGE, Inc. 88
E-Z-Way 83
Electro-Thermal Operations 57
Encore, Inc. 57
Engineering Consulting Services 112
Erickson Communications 101
ETCO 82
Fair Radio Sales 108
Frequency Sources, Inc. 84
G & H Communications 84
Gem Quad 84
Gifer Associates, Inc. 100
G I S M O 92
Grande, J. J. 94
GLB Electronics 116
Gould Government Systems, Inc. 116
Hal Communications, Inc. 51
Ham Radio's Bookstore 86, 37, 90, 94, 100, 104
Ham Radio Magazine 82, 102, 106
The Ham Shack 102
Hemmnets, N. Y. 91
Hetry Electronics 98
Health Company 20
Henry Radio Stores 20
Icom America, Inc. 5, Cover IV
International Crystal 68
Jameco Electronics 19
Jen Crystals 94
Jim Palmer 109
Jenson Tools & Alloys 94
Jones, Radio P. & Associates 88
KLM Electronics, Inc. 38, 39
T o n i, Kenwood Communications, Inc. 90, 61
Laer Electronics 75
Lologic 57
L-technique 197
MFJ Enterprises 112
MHz Electronics 96, 97, 98, 99
Malladi Communications Supply 103, 104, 118
Microwave Corporation 108
Microwave Filter, Inc. 94
Microlab Communications, Inc. 103
Monroe 102
N P S , Inc. 100
Nemco 96
Oak Hill Academy Amateur Radio Session 102
P. C. Electronics 37
Palmtronics Engineers 94
Panasonic 95
Payne Radio 117
P. B. Radio 106
Poly-Paks 93
Radio Amateur Callbook 96
Radio Warehouse 94
Redwood 112
Redictor 103
Ramsey Electronics, Inc. 33
Ricker Equipment Corp. 88
S.F. Amateur Radio Services 115
Securicon 88
Semiconductor Specialists 78, 79, 80, 81
Shure 90
Skytec 103
Step 87
Spectronics, Inc. 6, 114
Spectrum International 56
Stewart Quads 112
Telrex Laboratories 102
Ten-Tec, Inc. 64
Tribale & Pratt 98
UNR-385 107
Universal Communications 90
Universal Electronics, Inc. 90
Universal Towers 114
V-J Products 114
Van Gorden Engineering 25
Vanguard Labs 108
Vantage Press 112
Vocom 84
Wattage Electronics 84
Wester Associates 94
Western Electronics 115
Wilson Systems 10
Yaesu Electronics Corp. Cover III
DX
1,500 CONTACTS
120 COUNTRIES
IN 2 DAYS

SPECTACULAR PERFORMER

Top performance, easy installation, 4 band operation, and moderate price are yours with Cushcraft's new A4, 4 element beam. A4 operates on 10-15-20 meters. A74 add-on kit expands operation to either 40 meters or the new 30 meter WARC band. New engineering gives better performance through improved trap design with fewer parts, less installed weight and greater strength. You too can experience exciting DX contacts with A4 available through dealers worldwide.

"I used your new A4 during the 1981 Phone ARRL DX contest. It was dynamite!! In 24 hours I had worked 99 countries. After 48 hours my total was 125. The A74 add-on kit allowed me to work 28 countries on 40 meters alone. It added new versatility to my 40 meter activity. By the end of 48 hours I had worked almost 1500 contacts with 285 multipliers. Thank you for making my operating more fun." ART HAMBLETON, K1LL.

THE ANTENNA COMPANY
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108
Switch it... tune it... load it... measure it... send it... with Heathkit amateur gear

No matter what you are doing to your signal, Heath has the amateur gear to help you do it better... and to save you money, too. Heath is your one-stop headquarters for accessories, antennas and complete, build-it-yourself rigs. And they're all backed by the more than 200 hams at Heath.

The new Heathkit Catalog describes one of the most complete selections of ham gear anywhere. You'll also find the latest in home computers, fine stereo components, color TV's, precision test instruments and innovative electronics for your home... all in easy-to-build, money-saving kits.

It's one catalog you don't want to be without. Write for your free copy today or pick one up at your nearest Heathkit Electronic Center.

SEND FOR FREE CATALOG

VISIT YOUR HEATHKIT STORE
In the U.S. and Canada, visit your nearby Heathkit Electronic Center where Heathkit Products are displayed, sold and serviced. See the white pages of your phone book. In the U.S., Heathkit Electronic Centers are units of Veritechology Electronics Corporation.

Heathkit®
FT-107 TRANSCEIVER SPECIFICATIONS

(Receiver Section)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.25 µV for 10dB S/N, CW/SSB, FSK
1.0 µV for 10dB S/N, AM</td>
</tr>
<tr>
<td>Image Rejection</td>
<td>60dB except 12/10 meters (50dB)</td>
</tr>
<tr>
<td>IF Rejection</td>
<td>70dB</td>
</tr>
<tr>
<td>Selectivity SSB</td>
<td>2.4 kHz at -6dB, 4.0 kHz at -60dB</td>
</tr>
<tr>
<td>AM 6 kHz at -6dB, 1.2 kHz at -60dB</td>
<td></td>
</tr>
<tr>
<td>20dB RF Attenuator</td>
<td>Peak/Notch Audio Filter</td>
</tr>
<tr>
<td>Audio Output</td>
<td>3 watts (4-16 ohms)</td>
</tr>
<tr>
<td>Accessories</td>
<td>FV-107 VFO (standard not synthesized)
FTV-107 VHF/UHF Transverter
FC-107 Antenna Tuner
SP-107 Matching Speaker
FP-107 AC Power Supply (specify internal or external)</td>
</tr>
<tr>
<td>AM/CW Filters</td>
<td>Optional</td>
</tr>
</tbody>
</table>

(Transmitter Section)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input</td>
<td>240 watts DC SSB/CW
80 watts DC AM/FSK</td>
</tr>
<tr>
<td>Opposite Sideband Suppression</td>
<td>Better than 50dB</td>
</tr>
<tr>
<td>Spurious Radiation</td>
<td>-50dB</td>
</tr>
<tr>
<td>Transmitter Bandwidth</td>
<td>350-2700 hz (-6dB)</td>
</tr>
<tr>
<td>Transmitter Stability</td>
<td>300 Hz after 10 min. warmup less than 100 Hz after 30 min.</td>
</tr>
<tr>
<td>Antenna Input Impedance</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Microphone Impedance</td>
<td>500 ohms (mic optional)</td>
</tr>
<tr>
<td>Power Required</td>
<td>13.5V DC at 20 amps</td>
</tr>
<tr>
<td></td>
<td>100, 110, 117, 200, 220, 234V AC at 650 VA *</td>
</tr>
</tbody>
</table>

*with optional power supply

The FT-107 has been created as a result of a blending of technologies — computer, solid state and RF design. By careful utilization of these disciplines and the experience gained from our FT-301 series, YAESU has achieved an HF transceiver which offers unique features (e.g. "Digital Memory Shift"), efficient operation and a level of performance that has been previously unattainable.
2A Versatility
10 Options Guaranteed to Make the Extremely Popular 2A and 2AT Even More Popular!

ICOM

IC-HM9 Speaker/Mic
Leather Case
BC-25U Wall Charger

IC-CP1 Cigarette Lighter Cord
BC-30 Battery Charger

IC-D3 DC Regulator
IC-BP1 Battery Pack
IC-BP2 Battery Pack
IC-BP3 Battery Case
IC-BP4 Battery Pack
IC-BP5 Battery Pack