Tempo was the first synthesized hand held for amateur use, first with a 220 MHz synthesized hand held, first with a 5 watt output synthesized hand held...and once again first in the 440 MHz range with the S-4, a fully synthesized hand held radio. Not only does Tempo offer the broadest line of synthesized hand helds, but its standards of reliability are unsurpassed...reliability proven through millions of hours of operation. No other hand held has been so thoroughly field tested, is so simple to operate or offers so much value. The Tempo S-4 offers the opportunity to get on 440 MHz from where ever you may be. With the addition of a touch tone pad and matching power amplifier, its versatility is also unsurpassed.

The S-4...$349.00
With 12 button touch tone pad...$398.00
With 16 button touch tone pad...$419.00
S-40 matching 40 watt output $138 VDC power amplifier...$149.00

Tempo S-1
The first and most thoroughly field tested hand held synthesized radio available today. Many thousands are now in use and the letters of praise still pour in. The S-1 is the most simple radio to operate and is built to provide years of dependable service. Despite its lightweight and small size it is built to withstand rough handling and hard use. Its heavy duty battery pack allows more operating time between charges and its new lower price makes it even more affordable.

Tempo S-5
Offers the same field proven reliability, features and specifications as the S-1 except that the S-5 provides a big 5 watt output (or 1 watt low power operation). They both have external microphone capability and can be operated with matching solid state power amplifiers (30 watt or 80 watt output). Allows your hand held to double as a powerful mobile or base radio.
S-30...$89.00*
S-80...$149.00*
*For use with S-1 and S-5

Tempo S-2
With an S-2 in your car or pocket you can use 220 MHz repeaters throughout the U.S. It offers all the advanced engineering, premium quality components and features of the S-1 and S-5. The S-2 offers 1000 channels in an extremely lightweight but rugged case. If you're not on 220 this is the perfect way to get started. With the addition of the S-20 Tempo solid state amplifier it becomes a powerful mobile or base station. If you have a 220 MHz station, the S-2 will add tremendous versatility.
Price...$349.00 (With touch tone pad installed)...$399.00
S-20...$89.00

Specifications:
- Frequency Coverage: 440 to 449.995 MHz
- Channel Spacing: 30 KHz minimum
- Power Requirements: 9.6 VDC
- Current Drain: 17 ma-standby 400 ma-transmit (1 amp high power)
- Antenna Impedance: 50 ohms
- Sensitivity: Better than .5 microvolts nominal for 20 db
- RF output Power: Nominal 3 watts high or 1 watt low power
- Repeater Offset: ± 5 MHz

Optional Accessories for all models
- 12 button touch tone pad (not installed): $39
- 16 button touch tone pad (not installed): $48
- Tone burst generator: $29.95
- CTCSS sub-audible tone control: $29.95
- Leather holster: $20
- Cigarette lighter plug mobile charging unit: $6

TEMPO VHF & UHF SOLID STATE POWER AMPLIFIERS
Boost your signal... give it the range and clarity of a high powered base station. VHF (135 to 175 MHz)

<table>
<thead>
<tr>
<th>Drive Power</th>
<th>Output</th>
<th>Model No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>103W</td>
<td>130A10</td>
<td>$189</td>
</tr>
<tr>
<td>10W</td>
<td>130W</td>
<td>130A10</td>
<td>$199</td>
</tr>
<tr>
<td>30W</td>
<td>150W</td>
<td>130A30</td>
<td>$199</td>
</tr>
<tr>
<td>2W</td>
<td>80W</td>
<td>80A02</td>
<td>$169</td>
</tr>
<tr>
<td>10W</td>
<td>80W</td>
<td>80A10</td>
<td>$149</td>
</tr>
<tr>
<td>30W</td>
<td>80W</td>
<td>80A30</td>
<td>$159</td>
</tr>
<tr>
<td>2W</td>
<td>50W</td>
<td>50A02</td>
<td>$129</td>
</tr>
<tr>
<td>30W</td>
<td>30A02</td>
<td>$8</td>
<td></td>
</tr>
</tbody>
</table>

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.

Henry Radio
2050 S. Bundy Dr., Los Angeles, CA 90025
(213) 820-1234
931 N. Euclid, Anaheim, CA 92801
(714) 772-9200
Butler, Missouri 64730
(816) 679-3127

TOLL FREE ORDER NUMBER: (800) 421-9631
For all states except California.
Calif. residents please call collect on our regular numbers.

Prices subject to change without notice.
There are those who will only be satisfied with the finest. For these perfectionists HAL Communications is pleased to offer the DS 3100 Automatic Send-Receive ASCII, Baudot and Morse Terminal. We cordially invite you to request our catalog.
NEW MFJ-102 24/12 Hour Digital Clock/ID Timer

MFJ-102 $32.95 (+$4)

The latest in time keeping convenience. Now you can switch to either 24 hour GMT time or 12 hour format! Double usefulness—great for your operating position and great for other family members to use. Switch to “seconds” readout. For the times when you need the utmost accuracy. Switch to ID timer. Alerts every 9 minutes after you tap the button (also functions as a snooze alarm). Switch to “observed” timing. Just start clock from zero and note end time of event; counts up to 24 hours and repeats. (requires resetting clock time after use). Switch to regular alarm. For skeds reminder or wake-up (has alarm-on indicator).

Synchronize with WWV. Now you can adjust the MFJ clock to WWV accuracy. Fast/Slow set buttons for easy setting of time and alarm. Big, bright, blue digits are 0.6" for easy-on-the-eyes, across-the-room viewing. Lock function prevents missetting. Solid-state circuitry for long life. Operates on 110VAC, 60 Hz (50 Hz with simple modification). UL approved. Handsome styling with rugged black plastic case with brushed aluminum top and front. Front has sloping surface for easy viewing. Cabinet measures 6 x 2 x 3". Put this new improved MFJ digital clock to work in your shack.

NEW PRODUCTS

exciting new ideas from the world’s leading manufacturer of amateur radio accessories

NEW MFJ VHF SWR/ Wattmeter/Field Strength Meters

MFJ-812 $29.95 (+$4)

New low cost VHF operating aids. MFJ-812: Reads SWR from 14-170 MHz to keep you informed about antenna/ feedlines, SO-239 coax conn. Reads forward & reflected power at 2 meters (144-148 MHz) 2 scales (30 & 300W). Reads field strength levels from 1-170 MHz. Binding posts provided for antenna. Easy push-button switch operation. MFJ-810, similar less field strength function.

NEW MFJ DXer’s Communications Filter

MFJ-732 $69.95 (+$4)

MFJ-732 Puts more presence in SSB/ AM/FM voice communications, brings more signals out of the "mud. Easy to use, just push up to 4 buttons. 10-stage (5-stage) circuit with Chebyshev superfast roll-off (up to 58 db/octave). First button: On/Off-Bypass, response 300-3000 Hz; second; 200 Hz lower cutoff; third: 2200 Hz upper cutoff; fourth: 1500 Hz upper cutoff. Built-in speaker, 2 watt amplifier, LED, 9-18 VDC or 110VAC with optional AC adapter ($7.95 +$2), 5x6x1 3/8".

TO ORDER PRODUCTS, CALL TOLL FREE 800-647-1800

For tech. info., order or repair status, or calls outside continental U.S. and outside Miss., call 601-323-5869.

- All MFJ products unconditionally guaranteed for one year (except as noted)
- Products ordered from MFJ are returnable within 30 days for full refund (less shipping)
- Add shipping & handling charges in amounts shown in parentheses

Write for FREE catalog, over 60 products

MFJ ENTERPRISES INCORPORATED
Box 494; Mississippi State, MS 39762

More Details? CHECK — OFF Page 126
12 multipurpose voltage-tuned UHF oscillator
Norman J. Foot, WA9HUV

22 conversion versatility using the F-237/GRC surplus cavity filter
William Tucker, W4FXE

30 Yagi antennas: practical designs
James L. Lawson, W2PV

43 mobile kilowatt for DX
Donald P. Winfield, K5DUT

48 amplitude compandored sideband
James Eagleson, WB6JNN

52 first building blocks for microwave systems
Geoffrey H. Krauss, WA2GFP

66 inrush current protection for the SB-220 linear
F.T. Marcellino, W3BYM

71 transceiver diplexer: an alternative to relays
Terry A. Conboy, N6RY

106 *ham radio* cumulative index, 1971-1980
Observation & Opinion

It seems that a West Coast Amateur has decided to make some easy money by publishing material to aid prospective licensees in passing FCC Amateur examinations. His material is crafted so that mere memorization of answers to FCC exam questions practically guarantees a passing grade. His product apparently is derived from FCC exam materials. Such material is gleaned by a well-organized effort to collect questions verbatim from the various exams when they are administered by FCC representatives. Very often this has happened at Radio Amateur conclaves and conventions. We at ham radio magazine deplore such tactics. Amateur Radio has flourished because of its many established traditions. "In today, out tomorrow" publications, such as that referred to above, defeat the entire purpose of the Amateur Radio tradition, which has made our hobby one of the greatest in the nation for over 60 years.

Where do these questions and answers come from? From Radio Amateurs. The publisher in question solicits FCC test questions from those who have recently taken the exam, then publishes these questions along with the proper answers. Pretty neat. All one has to do is memorize the questions and answers, and the exam is a comparative cinch.

The publisher probably is making lots of money publishing the exam questions and answers without apparent legal sanctions (at least to date). But what about the long-range impact on the Amateur Radio Service and U.S. taxpayers at large? We lose.

An interesting sidelight is that the publisher justifies his action in the interest of "socially motivated" hams. His rationale for this rather obtuse reasoning is Part 97.1 (a) of the FCC rules and regulations, Basis and Purpose: "Recognition and enhancement of the value of the amateur service to the public as a voluntary noncommercial communication service, particularly with respect to providing emergency communications." (Italics mine.)

The publisher, however, conveniently overlooks Part 97.1 (b), which states: "Continuation and extension of the amateur's proven ability to contribute to the advancement of the radio art." (Italics mine.)

How can anyone in the Amateur Service comply with regulation 97.1 (b) if a license is obtained by memorizing answers to FCC questions? It is the purpose of this magazine to encourage Amateurs, by publishing articles on current technology, to "contribute to the advancement of the radio art." We believe that, for the most part, Amateurs who obtain their license using only the memorization technique are rarely in a position to contribute to part 97.1 (b) on a technical basis. There are exceptions, of course, but the method of preparing for exams to which we object seems to augur an increasingly less proficient operator in the midst of a rapidly increasing technical operating environment.

What can we Amateurs do to promote the technical integrity of Amateur Radio? Let's learn as much electronic theory as possible before taking the examination. It requires some effort, true, but when we pass the FCC exams based on knowledge rather than memorization we achieve a more significant accomplishment. After all, that's what ham radio is all about. Consider part three of "The Amateur's Code" by Paul Segal: "The Amateur is Progressive... He keeps his station abreast of science. It is well-built and efficient. His operating practice is above reproach."

ham radio continues to endorse this philosophy. The Amateur Radio Service cannot survive if licenses are obtained without due regard to technical knowledge: that is, passing FCC exams by learning the questions and answers by rote.

All prospective Amateurs should take a closer look at this problem. We licensed Amateurs who organize training classes and other tutorial endeavors have a special responsibility in this regard. Obtaining an Amateur license requires some effort. It is usually a difficult, time-consuming process. The successful license applicant will find the process rewarding for years to come.

What can the FCC do at this point to promote the technical integrity of Amateur Radio? We have some ideas, but we would like to hear from our readers on this point. Should the FCC look the other way while the abuse of Amateur exams continues? Should the FCC adopt an Amateur exam question series broadly similar to the FAA's several-hundred-question series for the Private Pilot license? More basically, why should newly updated exams be negated by one of us at the expense of us all? Consider this issue carefully, then discuss it among your Amateur Radio associates. Your views on the subject will be welcome at ham radio.

Alf Wilson, W6NIF
Editor
Simply... the Best

ICOM IC-255A
Features that have made the field proven and tested IC-255A the most popular 2 meter FM rig on the air today.

★ 25 W / 1 W battery saving output
★ Scanning (memory and programmable limit band scan), now with automatic scan resume
★ Programmable splits - Flexibility for new repeater offsets
★ Dual speed tuning - 15 KHz Steps, 5 KHz Steps with TS Switch depressed
★ 5 memory channels - For easy access to your favorite repeaters
★ Dual VFO's built in, lockable mobile mount, dynamic mic standard, RIT fine tuning.
★ Simple, easy to use single knob tuning system for mobile operation.

ICOM AMERICA, INCORPORATED
2112 116th Avenue N.E., Bellevue WA 98004, (206) 454-8155
3331 Towerwood Dr., Suite 307, Dallas, TX 75234, (214) 620-2780

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
RST feedback

Dear HR:

I read your comments on DL7DO’s letter in “Observations and Comments,” September, 1980, with some interest and a bit of confusion.

When I was running a ‘45 with 135 (not 90) volts on the plate, a signal report of S7 would have been somewhat meaningless: it did not gain significance until adoption of the RST system in the late thirties. The proper report prior to that would have been QSA (1-5), R (1-9). At the time of the adoption of the RST system most had converted to non-chirpy crystal control, and a-c on the plate supply brought an immediate citation from the newly formed FCC.

There is a definite need for accurate signal reporting, but if a report on tone is no longer needed (I for one disagree strongly with this reasoning), then let us not go the route of “inventing” a new system when the need is clearly covered in the international Q signals.

My personal feeling is that the RST system is performing admirably, with the exception of some contesters, and a change of the system would not change that. In other words, if it ain’t broke, don’t fix it!

Rue O’Neill, W6NN
St. Louis, Missouri

Dear HR:

I applaud the idea of junking the RST signal reporting system. But do we really need a new system? Why not simply make use of the existing QSA system which (with “copy” notes added) is as follows:

QSA 1 Scarcely perceptible — no copy
2 Weak — very little copy
3 Fairly good — partial copy
4 Good — almost full copy
5 Very good — full copy

Reports would simply be Q1, 2, 3, 4, or 5. Where the situation permits, an operator should do the other station the favor of reporting technical signal defects such as distortion, overdriving, VOX clipping, key clicks, poor tone, etc.

The difference between a signal received off the end of a dipole and the same signal received by a properly oriented high-gain beam is tremendous. The signal strength measured in the receiver depends almost entirely upon the character and orientation of the receiving antenna. A signal reported as S5 by a station with a mediocre antenna might easily be reported S9 or more by the station right next door having a superior antenna. So the popular “S” reports are all but meaningless anyhow!

J.W. Kennicott, W40VO
Lexington, Tennessee

“circuit figure of merit”

Dear HR:

In reference to “Observations and Comments” in the September, 1980, issue of ham radio, I thought you might be interested in the “Circuit Figure of Merit” used by the State of New York in police two-way fm radio communications in the vhf and uhf ranges.

In writing specifications we usually ask the bidder to guarantee a Circuit Figure of Merit of 3 or better in a defined area of coverage from defined sites and with defined equipment parameters.

Byron H. Kretzman, W2JTP
Huntington, New York

The performance of a two-way radio circuit can be defined by grading the circuit in terms of a “Circuit Figure of Merit” using a scale of 1 to 5 under the following conditions:

<table>
<thead>
<tr>
<th>circuit figure of merit</th>
<th>grade of circuit performance</th>
<th>voice frequency signal-to-noise ratio</th>
<th>typical receiver quieting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unusable. Presence of speech barely discernible.</td>
<td>Below 8 dB</td>
<td>0 to 6 dB</td>
</tr>
<tr>
<td>2</td>
<td>Readable with difficulty. Requires frequent repeats. (Noncommercial)</td>
<td>8 to 16 dB</td>
<td>14 dB</td>
</tr>
<tr>
<td>3</td>
<td>Readable with only a few syllables missing. Requires occasional repeats. (Commercial)</td>
<td>14 to 22 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>4</td>
<td>Perfectly readable but with noticeable noise.</td>
<td>20 to 30 dB</td>
<td>25 dB</td>
</tr>
<tr>
<td>5</td>
<td>Perfectly readable; negligible noise.</td>
<td>Above 30 dB</td>
<td>Above 25 dB</td>
</tr>
</tbody>
</table>
INTRODUCING SONY'S NEW DIGITAL DIRECT ACCESS RECEIVER!

A Whole New Breed Of Radio

Innovative design. Advanced technology. Digital key-touch tuning: The ICF-2001. It's a whole new breed of radio. A receiver that supplants the conventional multi-band concept, receiving a wide amplitude-modulated frequency range - shortwave, mediumwave and most longwave broadcasts. Plus FM, SSB and CW. Even more important, the 2001 replaces the ordinary tuning knob and dial with a direct-access tuning keyboard and a Liquid Crystal Display (LCD) for digital frequency readout. Which make the unit as easy to use as a pocket calculator. Instant, direct-access tuning modes and six memory-station presets assure maximum ease of use. And the quartz-crystal, frequency-synthesized circuitry behind them assures outstanding reception. Reception of local broadcasts and exciting news, music, sports, entertainment and information from around the world. You'll get the inside, local news stories from foreign countries - exclusive coverage of world sports events ... plus everything from informal "ham" to marine communications. All at your fingertips.

Key-Touch Tuning

To tune a station manually, you simply punch in the station frequency numerals on the direct-access, digital tuning keyboard. Press the "Execute" key and the command is entered. The station is received and LCD readout confirms tuning. If you punch in an incorrect frequency by mistake, the ICF-2001 tells you to "Try Again" by flashing those words on the display. The instant, fingertip tuning provides total accuracy and convenience. And the LCD digital frequency display confirms the exact, drift-free signal reception.

Automatic Scanning

In auto-scan mode, the tuner can be set for continuous scanning of a given frequency range. You set by means of upper and lower limit keys designated "L1" and "L2." You may want to scan an entire frequency range. For instance, the 76 to 108 MHz FM spectrum. If you want scanning to stop at any strong signal—one that reads "4" or "5" on the LED signal-strength indicator--switch on "Scan Auto Stop." For continuous scanning, leave the switch off, and just press the "Start/Stop" key to listen to a station or resume scanning.

Manual Tuning

Like the auto-scanning mode, manual tuning is useful for quick signal searching when you don't know particular station frequencies within a given range. You simply press the "Up" or "Down" key and the tuner does the searching for you. And if you press the "Fast" key at the same time, the scanning rate increases for especially rapid station location. When you hear a broadcast you want to receive, just release the keys for instant reception, pressing the "Up" or "Down" key again if necessary for exact tuning.

Memory Presets

After you've tuned a station using punch-in, key-touch tuning or either scanning mode, you can enter it in the 2001's memory for instant, one-touch preset reception. Which means no retuning hard-to-find foreign broadcasts. Plus instant access to your favorite local stations for music and news. Six preset buttons allow up to six stations--in any wave range--to be memorized. And there's LCD digital readout of the memory buttons being used on each band. What's more, the upper and lower limit keys can be used as memory presets when they're not being used for scanning, allowing a total of eight frequencies to be memorized for instant, one-touch reception.

Frequency Synthesis

The 2001's direct-access tuning and outstanding reception quality are made possible by the unit's all-band quartz-crystal, PLL, frequency synthesis. Instead of the conventional analog tuning system, with its variable tuning capacitor, the 2001 incorporates an LSI and a quartz-crystal reference oscillator. Which means that the local-oscillator frequencies used in superheterodyning are locked to the "synthesized" quartz reference frequencies. The result is the utmost in tuning stability, without a trace of tuning drift. In addition, dual-conversion superheterodyning for AM assures exceptionally clean, clear reception across the entire 150- to 29.99kHz spectrum.

Features

FM/AM/SSB/CW/wide spectrum coverage

Dual-conversion superheterodyne circuitry of AM assures high sensitivity and interference rejection. Quartz-crystal, phase-locked-loop frequency synthesis for all bands assures the utmost tuning stability, without a trace of tuning drift.

Direct-access, digital tuning keyboard and LCD digital frequency readout for quick, key-touch station selection--maximum accuracy and ease of use.

Manual tuning and automatic scanning for effortless signal searching, easy DXing. 6-station presets, plus 2 auxiliary presets, for instant reception of memorized stations on any band--plus LCD memory indication.

5-step LED signal-strength indicator.

Local/Normal/DX sensitivity selector for AM.

SSB/CW compensator for low-distortion reception.

Telescopic antenna, plus external antenna included.

4" speaker for full, rich sound.

Slide-bar bass and treble controls.

Sleep timer--with LCD readout--can be set in 10-minute increments for up to 90 minutes of play before automatic radio shut-off.

Only $299.95

Plus $5.00 S&H (Cont'l U.S.A. Only)

PHONE: (312) 848-6777

SPECTRONOICS, INC. — 1009 GARFIELD ST., OAK PARK, ILL.-60304

More Details? CHECK — OFF Page 126
AN IMPORTANT ANTENNA VICTORY has not only restored the right of a Placentia, California, Amateur to use the antenna system of his choice, but has also reimbursed him his attorney's fees for defending that right. W6QOL, represented by attorney K6JAN, won his decision by taking the offensive and suing the city of Placentia in federal court for violating his civil rights by passing legislation aimed at his installation.

W6QOL's Tower, A 71-foot Crankup with several beams on it, had been constructed in 1977 with the approval of the city's planning commission, but prodding by an unhappy councilman who lived nearby led the city council to pass an emergency ordinance making such installations illegal and ordering W6QOL to take it down. His response was to file a suit charging civil rights violation in the Federal District Court for the Central District of California.

On May 2, 1978, Judge Robert M. Takasugi granted a preliminary injunction that prohibited Placentia from enforcing its ordinance but limiting the antenna to 50 feet. On December 11, 1978, the preliminary injunction was made permanent, noting that the ordinance had infringed W6QOL's right to free speech and ordering the city to review and revise its ordinance to conform with the Constitution. On June 3, 1980, the court awarded W6QOL his attorney's fees as "prevailing plaintiff in the Paraphraph 1983 action pursuant to the Civil Rights Attorney's Fees Act."

W6QOL's Antenna Was Still Limited to 50 feet, however, until a September 26 ruling by Judge Takasugi that modified his permanent injunction by removing the height restrictions. Placentia has 30 days in which to appeal, but it's considered unlikely that it will. The city has already spent a great deal of money on this case, and an appeal would cost it a good deal more, with at best a marginal chance of success.

Details On This Unusual antenna case will be available from both the Personal Communications Foundation, which assisted K6JAN during the proceedings, and the ARRL.

THE COMMUNICATIONS ACT REWRITE IS DEAD for this session of Congress. The House Judiciary Subcommittee has voted unanimously to recommend delaying further Congressional consideration of the often stalled and controversial legislation until Congress's next term, essentially ensuring it's a dead issue for now. Biggest current problem with the rewrite was the possible effect its proposed restructuring of AT&T would have on the government's antitrust case against Bell Telephone.

Meanwhile, another Rewrite effort can surely be expected in the next Congress, there's a serious question as to just what it is likely to contain. Each rewrite attempt has some significant shifts in emphasis, and the next one should be no exception. One addition that can be expected, however, is a provision, similar to Rep. Preyer's bill and the current California legislation, to control or restrict unscramblers and other equipment designed to intercept pay TV signals.

Rep. Preyer's Bill has been modified by Congressmen Smith (Washington) and Waxman (California) in attempts to further strengthen protection for the subscription TV industry. Their new version is directed specifically at the "commercial piracy" firms, a move that apparently will resolve the potential threat to Amateurs who wish to work on homemade gear and their suppliers.

That California Bill Has Finally been signed by Governor Jerry Brown, making it illegal in California to manufacture, distribute or sell "any device or plan or part for the knowing purpose of facilitating an unauthorized interception or decoding of subscription TV signals." This bill is so broad in its scope that it's sure to be challenged in court—even one of the subscription TV firms is thinking of going after it.

ATTEMPTS BY RC MODELLERS TO GET 6 meters for non-Amateur RC use was to come up for hearing before the FCC on Thursday, November 6. Unhappy with an earlier staff opinion that only licensed Amateurs could operate RC equipment in the 6-meter band, the Academy of Model Aeronautics petitioned for a formal review before the Commissioners and staff.

They'd like to bring about a rules change to permit anyone to operate 6-meter RC transmitters under the supervision of "a licensed Amateur." However, Part 97 still requires an Amateur license to operate an Amateur transmitter, though a "third party" may communicate through an Amateur station with a "control operator" standing by. Since Radio Control is a one-way transmission the rules pertaining to third party communications should not apply, so any decision to permit someone not holding an Amateur license to operate a transmitter on Amateur frequencies—even under "supervision"—would be a departure.

COST OF AMATEUR GEAR IN CANADA should be dropping sharply, following the long hoped-for elimination of import duty on Amateur Radio equipment. New Tariff Item 44535-2, passed on October 28 and effective October 29, removed the 15 per cent tariff formerly charged Canadians on "Amateur transmitters, receivers, transceivers, transverters, assembled or in kit form, designed for use only on Amateur bands of the radio frequency as defined by regulations made pursuant to the Radio Act; linear amplifiers, VFOs and power supplies designed for use with the foregoing, parts of all the foregoing." The federal sales tax of 9 per cent still pertains, however, and equipment not specifically made for Amateur use—for example, general coverage receivers—is still subject to the 15 per cent bite.
DELTA—symbol of change—and the first HF transceiver with all nine bands—offers more of the features you need for these changing times.

Tennessee Technology Leads The Way.

Today's operating demands the changes a DELTA station offers. All nine HF bands in all solid-state design with optimized receiver sensitivity and selectivity, 200 watt, 100% duty cycle no-tune transmitter, QSK, VOX, PTT, ALC, Notch, Offset, and more. All in a compact, ready-to-go-anywhere functional design that offers light weight, thorough shielding, and operating ease. And a price that permits affording the full complement of accessories. TEN-TEC put it all together—in DELTA—for you.

For The Change in Bands.

DELTA with all nine bands—another TEN-TEC “first.” 160 through 10 meters, including the new 10, 18 and 24.5 MHz bands. (Crytals optional for 18 & 24.5 MHz). DELTA is ready.

For The Change in Band Conditions.

Optimized design for the ideal balance between sensitivity (0.3 μV for 10 dB S+N/N) and dynamic range (85 dB or better) plus switchable 20 dB attenuator that puts you in control of even extreme situations. No matter where you live or what power your neighbor is running, DELTA can handle it. Super selectivity permits narrowing the DELTA bandpass to suit the crowds. The four-position switch selects the standard 2.4 kHz SSB filter, adds a section of the 4-stage active audio filter, and cascades both filters with 4 stages of audio filters to give you the passband window you need with the virtually ultimate skirt selectivity required to knife through strong adjacent signals.

Built-ins to quiet the world. A variable notch filter is standard on DELTA. Vary from 200 to 3500 Hz to notch out interfering carriers or CW signals to a depth of 50 dB or more. Offset tuning for moving the receiver frequency ± 1 kHz to reach that DX or to fine tune. "Hang" AGC to give you smoother receiver operation.

For The Change in Operating Styles.

Variety is the word for today, and DELTA offers it. For a rag-chew with an old friend, 200 watts of SSB to the proven solid-state amplifier (designed by the leader, TEN-TEC) with built-in VOX and PTT. For the fun of operating 200 watts CW with QSK—full, fast break-in that makes CW a conversation, saves time, and opens a window on DX.

Power up or down. Adjustable threshold ALC and drive let you choose power levels with full ALC control. DELTA accepts what you have, what you want... from separate antennas to linear transverters, remote VFO, 12 VDC, keyers and more—just plug in.

For The Change In Lifestyles.

DELTA moves with you. "At home" anywhere—on your operating desk, in the field, on a boat, plane, camper, wherever. Its neat small size (4 3/4" h x 11 1/4" w x 15" d) and light weight (12 lbs) make it a good traveling companion. Yet compact as it is, DELTA panel size and knob spacing make it comfortable to use hour after hour in your home station.

For The Change In Economics.

These days, everyone wants more value for his money. And DELTA offers it. More features and performance per dollar. Quality that's American-made. Service you can count on. A solid warranty—one year on the transceiver plus an extra five year pro-rata warranty on the amplifier transistors. And low prices!

The DELTA Rig

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 580 DELTA Transceiver</td>
<td>$849.00</td>
</tr>
<tr>
<td>Model 283 DELTA Remote VFO</td>
<td>179.00</td>
</tr>
<tr>
<td>Model 280 DELTA Power Supply</td>
<td>149.00</td>
</tr>
<tr>
<td>Model 282, 250 Hz CW Filter</td>
<td>50.00</td>
</tr>
<tr>
<td>Model 285, 500 Hz CW Filter</td>
<td>45.00</td>
</tr>
<tr>
<td>Model 234 RF Speech Processor</td>
<td>124.00</td>
</tr>
<tr>
<td>Model 214 Electret Microphone</td>
<td>39.00</td>
</tr>
<tr>
<td>Model 645 Dual Paddle Keyer</td>
<td>85.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Optional Accessories</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 670 Single Paddle Keyer</td>
<td>34.50</td>
</tr>
<tr>
<td>Model 227 Antenna Tuner</td>
<td>79.00</td>
</tr>
</tbody>
</table>

Isn't it time for you to change? Check the DELTA rig at your dealer or write for full details.
Food for thought.

Our new Universal Tone Encoder lends it's versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency-just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

<table>
<thead>
<tr>
<th>Tone</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>91.5 ZZ</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>94.8 ZA</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>97.4 ZB</td>
</tr>
<tr>
<td>77.0 XB</td>
<td>100.0 1Z</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>103.5 1A</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>107.2 1B</td>
</tr>
<tr>
<td>85.4 YA</td>
<td>110.9 2Z</td>
</tr>
<tr>
<td>88.5 YB</td>
<td>114.8 2A</td>
</tr>
</tbody>
</table>

Group B

<table>
<thead>
<tr>
<th>Group</th>
<th>TEST-TONES</th>
<th>TOUCH-TONES</th>
<th>BURST TONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697 1209</td>
<td>118 1850</td>
<td>1600 2500</td>
</tr>
<tr>
<td>1000</td>
<td>707 1336</td>
<td>123 1850</td>
<td>1650 2500</td>
</tr>
<tr>
<td>1500</td>
<td>852 1477</td>
<td>127 1950</td>
<td>1700 2550</td>
</tr>
<tr>
<td>2175</td>
<td>941 1633</td>
<td>131 1950</td>
<td>1750 2550</td>
</tr>
<tr>
<td>2805</td>
<td>118 2150</td>
<td>136 2200</td>
<td>1800 2550</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

Wired and tested: $79.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547/ California: (714) 998-3021
This easy-to-build oscillator features multiple-band application, remote tuning, and phase-lock capability.

**This uhf oscillator** is the result of much experimentation. It has an outstanding record of utility and performance. Despite the opinion of many Amateurs, a good uhf oscillator can be built without a shop full of machine tools, expensive test equipment, and a high degree of manual dexterity. The PC boards that have been developed for the circuit described here will allow anyone to build a voltage-tuned uhf oscillator.

**general description**

This oscillator has many applications. It was originally intended for use as the local oscillator in a 1215-1300 MHz TV converter. Later, the board was modified so that the operating-frequency band could be moved up or down to satisfy various other applications. Finally, provisions were made to add either a doubler or tripler circuit to extend the useful output frequency range into the microwave region.

**features**

The fundamental tuning range of the circuit covers = 1120-1300 MHz. However, by changing the lengths and locations of the frequency-determining circuit elements on the PC board, the operating-frequency range can be adjusted to about 900 MHz and 1400 MHz, giving coverage between 900-4200 MHz with the help of the multiplier circuits.

A varactor provides continuous tuning from a remotely located potentiometer. This feature may be important if you're interested in weak-signal detection, because it allows the entire converter, including the uhf local oscillator, to be located where it belongs — at the antenna.

For television applications, the oscillator may be operated either in the free-running mode or phase locked to a stable reference signal.

The addition of phase-lock capability is easy, because the basic oscillator already includes a tuning varactor. Remote tuning can be used with or without the phase-lock feature. The uhf oscillator is simple. No need for a crystal multiplier chain; therefore no need to struggle with unwanted crystal-oscillator harmonics. Also, if your interest lies in ATV, where crystal control may not be necessary, the design is a natural because of its simplicity.

A divide-by-40 prescaler is mounted on the PC board with the oscillator. The prescaler drives an external frequency counter to monitor the oscillator frequency. Not only is the counter useful as a frequency indicator, it’s needed for setting and adjusting the oscillator. The prescaler also provides a signal for the phase detector.

Numerous techniques can be used to phase lock the uhf oscillator to a crystal reference to achieve a high degree of frequency stability; many articles have been written to describe them. In this article, attention is placed on a simple technique that uses a crystal clock as the phase-locked loop (PLL) reference and manual tuning to select the desired lock point. By the proper choice of crystal frequency and divider chains, the uhf oscillator may be locked to any one of a number of desired frequencies. Tuning is done with a ten-turn pot.

**applications**

Fig. 1 illustrates a typical ATV application that employs the uhf oscillator in the free-running mode as the local oscillator for the mixer. No phase-locked loop is associated with this circuit. A single shielded wire connecting the operating position with the converter serves for tuning, and the converter output is fed over a length of inexpensive transmission line to the receiver. This arrangement avoids the usual degradation in signal-to-noise ratio that generally results from transmitting the rf signal over a long transmission line.

By Norman J. Foot, WA9HUV, 293 East Madison Avenue, Elmhurst, Illinois 60126
fig. 1. Functional block diagram showing the uhf oscillator in a typical ATV application (free-running mode).

In applications where frequency stability is important, or where a click-stop form of tuning is desired, the basic oscillator can be locked to a stable reference. A block diagram of such a scheme is illustrated in fig. 2. The i-f output from the mixer feeds a bandpass filter wide enough to pass the entire band of frequencies of interest, while a wideband fm or television receiver provides the necessary tuning and selectivity. A preselector may be needed between the low-noise preamplifier and the mixer, depending on the application and choice of intermediate frequency.

In both of these arrangements, a frequency scaler drives a frequency counter to permit measurement and continuous monitoring of the uhf oscillator frequency. It's convenient to have this capability, whether the phase-lock feature is used or not. If a programmable counter is available, the readout can display the signal frequency rather than the oscillator frequency.

The advantages to be gained by use of the uhf oscillator described here are now apparent. In some applications the basic oscillator and prescaler alone may do the job, and continuous tuning from a remote location can be used; or a simple PLL may be added for bandswitching, with tuning and selectivity provided by an fm or tv receiver. In either case, a counter can monitor the oscillator (or the equivalent signal) frequency. Other applications can be accommodated using the same PC board with minor modifications, and frequency multiplication can be added for application up into the microwave region.

**The uhf oscillator**

The transistor selected for the uhf oscillator (fig. 3) is the HP-35821B. It has an ft of 4.5 GHz. In the commonbase configuration it's ideally suited for oscillator service. The 35821 has been around for over ten years and is inexpensive. As an oscillator, it can provide 50 mW or more of useful output power with good efficiency.

The base terminals of the 35821 are soldered di-
This is convenient, because it allows a simple means from subsequently, the collector current is primarily determined by the amount of feedback from emitter to collector.

Bending the shim to position it closer or further away 0.010-inch (0.25 mm) range 1120-1320 MHz. The rf ground pad on the PC board was made long intentionally to provide a wide range up and down in frequency. The distance between the oscillator ground to accommodate tuning and automatic phase control. The location of C1 sets the effective length of L1. Moving it back and forth adjusts the tuning range up and down in frequency. The distance between the transistor collector and the tuning varactor should be about 1-1/2 inches (38 mm) to tune the range 1120-1320 MHz. The rf ground pad on the PC board was made long intentionally to provide a wide choice of operating range.

Inductor L2 is a four-turn coil wound with No. 18 (1.0 mm) tinned copper busbar with a 1/8 inch (3 mm) inside diameter. The exact inductance of this coil isn’t critical.

Capacitor C2 is a feedback capacitor made from 0.010-inch (0.25 mm) shim brass stock 1/2 inch (13 mm) long and 1/8 inch (3 mm) wide. It is soldered to the emitter and extends over the top of the transistor, parallel with the collector inductance, L1. The feedback capacitor is insulated from L1 with 0.001 inch (0.03 mm) Mylar tape. Feedback is controlled by bending the shim to position it closer or further away from L1. Note that the fixed bias divider consisting of R1 and R2 provides very little forward base bias; consequently, the collector current is primarily determined by the amount of feedback from emitter to collector. This is convenient, because it allows a simple means for properly adjusting the feedback. The correct feedback corresponds to the spacing that produces 30-40 mA collector current. Capacitor C3 is a printed-base bypass capacitor. Capacitor C4, which is the rf bypass for the series L1-C1 circuit, is also printed on the oscillator board.

The rf choke is an eight-turn solenoid wound with No. 24 (0.5 mm) enamel copper with a 1/8 inch (3 mm) ID. The junction of the rf choke and the 10-ohm resistor is supported by the terminal of a push-in Teflon standoff insulator.

**power output**

Overall converter performance can be degraded because of lack of sufficient local oscillator power. Many Amateurs don’t have facilities to measure rf power accurately, in which case the adequacy of their local oscillator is unknown. Mixer noise figures less than 5 dB can be realized with 10 milliwatts of LO power. However, as the LO power is reduced below a few milliwatts, noise figure generally increases dramatically. If the mixer in your system needs the help of more than one low-noise preamplifier, chances are that the mixer noise figure is abnormally high. This is most likely the result of inadequate local-oscillator power. It’s possible to reduce the mixer’s appetite for LO power by various schemes, including applying dc forward bias to the diodes; but for most practical applications, a good design goal for mixer LO power is 10 milliwatts. This point was kept in mind during the design of the uhf oscillator.

The available power from the uhf oscillator described here is, fortunately, quite high, which allows the output to be loosely coupled; in turn this promotes good free-running stability. When the uhf oscillator is used to drive a doubler, power levels well above 10 milliwatts are easily obtained, with the doubler circuit providing the isolation. Power output from a fixed-tuned tripler was measured at +7 dBm minimum when used with an appropriate idler circuit.
the phase-locked loop

To provide design flexibility, the oscillator is on one PC board and the phase detector on another. Input signals required by the phase detector are the prescaled signal from the uhf oscillator and the tuning voltage. A single output feeds the VTO (varactor-tuned oscillator) varactor diode for frequency control. Fig. 5 is a wiring diagram showing a) how these two boards interface, and b) the external signal and power requirements.

The circuit on the phase detector PC board is identical in most respects to the parametric phase detector described in reference 1. This circuit provides considerable design flexibility. In the application here, it operates at about 30 MHz. The circuit (fig. 6) also includes provisions for the reference generator, consisting of a quartz crystal and a CD4060B oscillator and divider chain.

Fig. 6 shows the parametric phase detector. This board includes most of the PLL key components, which are the reference generator, spectrum generator, phase detector, and loop filter and dc amplifier. Fig. 7 shows the phase detector foil and parts layout.

reference signal

The lock points for the uhf VTO are specified in terms of the reference-signal frequency and the prescaling factor. For example, assume the VTO is to be used as the local oscillator in a 23-cm ATV converter and 6-MHz lock-point separation is desired. If a 45-MHz i-f is to be used, the local oscillator frequencies will be 1206, 1212, 1218, and 1224 MHz, corresponding to signal frequencies of 1251, 1257, 1263, and 1269 MHz.

The lock points are 6 MHz apart at the oscillator frequency, but only 150 kHz apart at the phase detector because of the prescaler. The reference needed by the phase detector is therefore 150 kHz. Note that the 202nd harmonic of 150 kHz is 30.3 MHz, which is the spectral line recognized by the phase detector for the 1218-MHz phase lock. Thus, in this type of phase detector, the reference signal must be rich in harmonics. To accomplish this, the phase detector board includes a spectrum generator. On the other hand, if you’re interested in a single operating frequency (1257 MHz for example), a crystal-controlled signal at 30.3 MHz is all that’s needed. There are, of course, many other schemes that may be used depending on the application.

Tuning and locking to a particular point is easily accomplished by watching the counter. When unlocked, the units and tenths of kilohertz digits will fluctuate due to jitter. When locked, all counter digits will remain steady, and it will be possible to rock the tuning knob back and forth within the hold-in range with no apparent change in the counter status. The final setting should be near the center of the hold-in range.

The pull-in range of the PLL should be less than half the lock point separation; otherwise, if power is momentarily lost, the oscillator may end up locked to the wrong channel. Pull-in range can be controlled

---

Fig. 6. Parametric phase-detector circuit. This circuit includes most of the PLL key components, such as the reference generator, phase detector, and loop filter and dc amplifier.
by adjusting the power level of the prescaled uhf oscillator signal at the input of the phase detector.

**prescaler**

The Plessey SP-8610 is a 1-GHz divide-by-four prescaler that works well considerably above 1 GHz, even when mounted in a DIP socket. This chip, together with the Plessey 8636 decade divider, provides outputs in the 27-33 MHz frequency range. The circuit is simple and straightforward. One important consideration is that prescalers used at these frequencies require leadless bypass capacitors. Chip capacitors used initially performed satisfactorily from an electrical standpoint, but PC-board flexing caused them to work loose. To solve this problem, leadless capacitors were made by modifying dipped mica capacitors. The insulation was removed with a file, uncovering two metal clamps that hold the stack together. Connections were made directly to the clamps by soldering. This arrangement is entirely satisfactory and considerably less expensive.

The output from the SP-8636 drives a 2N5179 NPN transistor amplifier, which, in turn drives a 2N918 splitter to provide dual low-impedance outputs. One of these is intended to drive the phase detector, while the other can be used to operate the frequency counter. I suggest that an external divide-by-25 circuit be added to increase the overall division factor to 1,000 for the counter. This circuit adds a convenience that relates counter kilohertz to oscillator megahertz. For example, the counter will display 1200 kHz when the uhf oscillator frequency is 1200 MHz.

A schematic of the prescaler is shown in fig. 8. An input signal is coupled to the SP8610 by a small probe bent in an L shape and soldered to pin 4. The bent part of the probe is approximately 1/4 inch (6 mm) long and spaced 3/32 inch (2.4 mm) from L1. The probe should be carefully insulated with Mylar tape to prevent it from coming into contact with +12 volts on L1. Also, to prevent damage, do not overcouple the 8610. The proper procedure is to tune the oscillator to the high end of its range and couple the probe sufficiently for the counter to operate properly.

---

**fig. 7. Phase detector board foil side, top, and component layout, bottom. Assembled board, lower right.**
At 1200 MHz, a very small coupling capacitance is sufficient.

**construction details**

The task of duplicating the performance of the original uhf oscillator is relatively simple when PC boards designed specifically for this project are used. If you don't have the facilities to etch your own boards, they can be obtained from Rock Engineering Supply Company, Inc., 1769 Armitage Ct., Addison, Illinois 60101.

**Construction sequence.** For the most part, the uhf oscillator assembly is simple except that there is a certain sequence that makes the task easier if followed. I suggest that the feedthrough capacitors be mounted on the board first, followed by the DIP sockets, then all discrete parts not directly associated with the oscillator. Fig. 9 is a drilling template to be used to locate the feedthrough holes, shoulder washers, and Teflon standoff. If the oscillator is to be used at its fundamental frequency, holes should be drilled for the SMA connector. The coupling loop dimensions and assembly are shown in fig. 10 if an SMA fitting is not available, a BNC type may be substituted.

Connection is made to the rf ground-return pad of the varactor diode by inserting a 2-56 (M2) screw in hole A, using a fiber washer to insulate it from the ground plane on the component side of the board. This is the terminal used to bring the tuning and control voltage to the varactor diode.

**Varactor diode.** The varactor tuning diode should be mounted with special care. Locate it on the rf pad with the cathode side up and solder the anode to the pad. Use a toothpick or pointed object to hold the diode in place during the soldering operation. Apply the soldering iron to the pad, not the diode, and only long enough for the solder to flow. Then tin the diode cathode terminal using a fine soldering iron tip. Apply as little solder as possible.

Before proceeding further, cement the two phenolic shoulder washers in the base bypass pad holes with two-part epoxy cement. Use the quick-setting (5-minute) variety to avoid a 12-hour cure cycle.

**Collector line.** The collector line, L1, should be mounted next. Tin the bottom side of the line where contact will be made with the varactor diode. Insert the pointed end of L1 into the collector shoulder washer hole and solder the line to the varactor diode. Also, to take the stress off the varactor diode, a fiberglass shim should be cemented in place under the line near the rf choke. Trim the shim with a file so that it slides under the line without forcing, then ap-

---

**fig. 8.** Prescaler schematic. An input signal is coupled to the SP610 by a small L-shaped probe, which is soldered to pin 4. See text for correct coupling adjustment.

**fig. 9.** Top view of uhf oscillator board showing mounting-hole locations.
fig. 11. Top: Uhf oscillator board, rear side. Bottom left: Component-side of oscillator board showing parts placement. Voltage control is a 5k Piheri pot. Bottom right: Uhf oscillator assembly, bottom view.
ply a small amount of epoxy cement and secure the assembly in place. Finally, apply a very small amount of epoxy cement into the collector shoulder washer hole to secure L1.

Emitter coil. The emitter coil should be mounted next, and epoxy cement should be applied to the shoulder washer hole to secure it in place. Mount the transistor on the base pad and solder the base leads to the pad. Solder the emitter and collector leads to the emitter coil and L1 respectively, as shown in fig. 10. Solder the feedback shim to the emitter end of L2 (not shown) and insulate the shim with Mylar tape. Space it about 1/8 inch (3 mm) above the collector line.

Before mounting the rf choke and the 10-ohm resistor, check out the 723 regulator and set its output voltage to +12 volts by adjusting the trimpot.

There are five 1/10-watt resistors and three special mica capacitors that are soldered to the foil side of the board (see fig. 10). The parts layout on the component side of the uhf oscillator board is shown in fig. 11.

Connect a shielded wire from one of the buffered prescaler outputs to a frequency counter and confirm that the counter displays frequencies between 27-33 MHz as the tuning control is adjusted.

oscillator enclosure
The mechanical details of the aluminum shield cover that encloses the uhf oscillator are shown in fig. 12. The 2-56 (M) screws used to mount the shield cover on the board also interconnect the groundplane foils on opposite sides of the board. Since initial tests will be made without the enclosure, it will be necessary to insert the screws and temporarily secure them with nuts to simulate the grounding condition.

initial oscillator tests
The uhf oscillator should be checked out first, without the aid of the phase detector board. Temporarily connect a 10k ten-turn potentiometer between +12 volts and ground and connect the arm of the pot to the varactor terminal. Use the regulated voltage from the 723 post regulator. Set the tuning voltage to about 5 volts and monitor the current from the 20-volt source with a milliammeter. When power is applied, the current should be approximately 25 mA. Gradually increase the feedback capacitance until the collector current is approximately 35 mA, but do not exceed 40 mA.

Finally, the phase detector board is integrated into the system as illustrated in fig. 5, and the PLL is then checked out.

classification
The uhf oscillator described here has many potential applications, depending on your interests. In my case, the performance of an existing 1296 TV converter was considerably improved when the basic uhf oscillator operating in the PLL mode was substituted for the original crystal-oscillator-multiplier chain. A similar uhf oscillator equipped with a doubler circuit was used as the local oscillator in a converter originally designed for use at 2304 MHz. Excellent MDS and ITFS TV pictures were received. Note that the uhf oscillator is not recommended for use in a narrowband receiver intended for CW, am, or SSB service because of its relatively high phase noise.

I’ve also used the uhf oscillator with a tripler as the local oscillator in a TVRO receiver. In this case, the PLL was built with 20-MHz lock point spacing corresponding to the channel spacing of this class of service. In a future article I’ll describe frequency multipliers designed for use with the uhf oscillator.

Some of the parts required to build this uhf oscillator probably won’t be found in Amateur parts boxes. These include the prescalers, oscillator transistor, and the tuning varactor. I may be able to suggest sources for some of these parts or help you with other problems. In either case, please send an SASE with your inquiry.

reference

ham radio
conversion versatility

using the F-237/GRC surplus cavity filter

In two recent articles,1,2 I described the conversion of several obscure surplus cavity bandpass filters for use in the vhf and uhf Amateur bands. Since then I've found another very interesting surplus cavity bandpass filter* that I've converted for use in the 50-54 MHz, 144-148 MHz, and 220-225 MHz Amateur bands.

The theory and operation of resonant-cavity bandpass filters have been fully covered in the literature3 and in my two previous articles. Therefore I'll go right into a description of this surplus "sleeper" and the conversions.

the F-237/GRC-10 bandpass filter

This filter was designed for use with the receiver section of Army radio set AN/GRC-10 and consists of three individual coaxial resonant re-entrant cavities connected in cascade, each tuned with its own variable capacitor ganged for single-dial control.

Good news for VHF/UHF experimenters — this surplus filter can be easily converted for use on 6, 2, and 1-1/4 meters

By William Tucker, W4FXE, 1965 South Ocean Drive, 15-C, Hallandale, Florida 33009

*Fair Radio Co., Post Office Box 1106, Lima, Ohio 45802
fig. 1. The F-237/GRC-10 bandpass filter showing the zig-zag configuration to compress 22 inches (55.9 cm) of coax cavity into a compact package. Note that the pickup loops are close to the open end.

Each cavity is about 20 inches (51 cm) long but compressed into a compact package by using a snake-like configuration as shown in fig. 1. The cavities are of sturdy copper, and the center conductor is silver plated for high conductivity.

Normally, rf pickup loops are located near the shorted high-current end of coaxial type re-entrant resonant cavities where the electromagnetic field is at a maximum. Note that in this cavity, however, the pickup loops are located closer to the open end, evidently to provide looser coupling. This will provide greater selectivity at the expense of a higher insertion loss, which becomes a little over 2 dB per cavity.

The three cavities are similar electrically and physically except that the input and output pickup loops L1 and L6, (fig. 2) are a little larger than the others. Also the coaxial cable connection to each cavity varies slightly.

Receiver and antenna jacks on the front panel are made to accommodate a type-C UG-573 connector, which is a jumbo type BNC that’s not in general use. If you wish, an N type or uhf type socket can be used in its place by removing the existing socket. Some filing of the socket flange may be necessary to fit into the recessed opening on the front panel.

The F-237 has an input and output impedance of 50 ohms and covers 54-70.9 MHz with continuous tuning. The bandwidth at the 3-dB points is 250 kHz. The attenuation is 40 dB at 4.5 MHz. Insertion loss is 7 dB at resonance. The complete assembly in its cabinet weighs about 16 pounds (7.3 kg) and is approximately 6 × 11 × 11 inches (15 × 28 × 28 cm).

**Simple conversion to the 6-meter band**

Fortunately, the three air-dielectric trimmers C1002-3-4, which are mounted directly on the three-gang variable capacitor C1001 A-B-C, fig. 3, have sufficient spare capacitance so they can be adjusted to cover the 50-54 MHz band. After adjustment, the range is 49.5-60 MHz.

Because of the high selectivity, the following procedure is suggested. Set the tuning dial at the lowest frequency position, 54 MHz, and feed a 53-MHz signal into the antenna terminal from any convenient source, such as a grid-dip meter or signal generator. Adjust the three trimmers for maximum output as measured at the receiver terminal using an rf meter or receiver S-meter. A simple rf meter can be made using a germanium diode such as the 1N34 in series with a microammeter.

Repeat the above procedure in small steps until 49.5 MHz is reached; the trimmers should now be at almost maximum capacitance with some to spare for final adjustment. If this filter is to be used with a receiver only, it can be inserted into the transmission line and, with a weak signal around 52 MHz, the filter tuning dial can be tuned for maximum output. The trimmers can then be re-peaked for maximum output.

If the filter is to be used with a transmitter or transceiver, an SWR indicator should be used between transmitter and filter. The trimmers should be adjusted for minimum SWR at 52 MHz. The tuning dial can then be calibrated in any manner you choose.

**Lowering the insertion loss**

For general Amateur use, 7 dB is quite a large bite to take out of the received or transmitted signal. The F-237 filter assembly can be modified to provide less insertion loss at the expense of a little selectivity by using only one or two of the original cavities instead of all three. Even with a single cavity, selectivity is adequate for most Amateur applications.

To lift out the cavity assembly and its ganged capacitors in one piece, remove all the screws from...
the underside and unsolder the two coaxial cable leads leading to the front panel. To eliminate a cavity section, remove the Phillips-head screw and unsolder the ground strap. Unsolder the cavity center conductor from the variable-capacitor stator plates and the cavity will unplug from its adjacent cavity (fig. 4).

If only one section is to be used, any of the cavities will do. If two sections are to be used, then eliminate the center cavity and interconnect the remaining two with a short length of RG-58/U coaxial cable. This arrangement is necessary to ensure proper tracking. Adjustment follows the original procedure.

even less insertion loss

The insertion loss can be reduced to under 1 dB per cavity section by rearranging the cavity so that the pickup loops are placed in the high-current end of the cavity. This can be done by reversing the cavity sections as shown in fig. 5.

Unsolder the closed end plate at A and resolder it to the other end, B. Make certain that very good electrical contact is made between the center conductor and the housing at this high current end, B. Unsolder the ground strap and relocate as shown. Cut a short length of copper or brass rod and insert it into the center conductor at A so that it will reach the tuning-capacitor stator. Finally, unsolder the mounting bracket and replace it at the other end as shown.

Reassemble the cavities to the ganged capacitors and you now have a bandpass filter with an insertion loss of less than 1-dB per cavity section. The selectivity is still adequate even if you use only one cavity to do the job. The adjustment and tuning is as previously described.

for use with higher power

The F-237 bandpass filter is tuned to resonance by a three-gang variable capacitor of excellent quality with 0.06-inch (1.5-mm) spacing between plates. It should withstand power levels in the order of several hundred watts. The weak point in the filter is the very small air dielectric trimmers, which will probably arc over with rf power in excess of 30-40 watts. To overcome this limitation, the trimmers can be removed and replaced with the APC type of trimmer, 20 pF or more, and with a plate spacing of at least 0.03 inch (0.76 mm). The larger trimmer will also extend the low range a few MHz below 49.5 MHz.

conversion to the 2-meter band

This conversion can be made from either left-over cavities from the 50-54 MHz conversion or from another F-237. A length of 22 inches (56 cm) of coaxial re-entrant cavity is too long for 144-148 MHz and must be shortened to allow for variable capacitance loading.

Fig. 6 shows a convenient method of obtaining a workable length, while at the same time placing the pickup loops very close to the shorted high-current end of the cavity. In addition, the open end is terminated in a handy housing for the variable capacitor.

As shown in fig. 7, carefully eliminate the shaded portion with a sharp hacksaw; this will leave about 11 inches (28 cm) of cavity for the 2-meter band. File all rough edges to a flat and smooth finish and tin thoroughly at both ends for soldering. Unsolder the
fig. 5. Reversal of cavity to place pickup loops in the high-current area for lower insertion loss. Sketches (A) and (B) show before and after mods.

right-angle portion of the inner conductor as shown.
The two pickup loops will now be visible and accessible from the short open end. Using a screwdriver, bend the center of each loop toward the housing away from the center conductor as shown by the dotted line in fig. 8. Try to make the loops as symmetrical as possible.

To close up the end near the pickup loops, unsolder the end plate on the cut-off portion or cut a piece of flashing copper to 1-1/2 inch (3.8 cm) diameter with a 1/4-inch (0.6-cm) opening in the center. Solder either one securely to ensure good electrical contact at this high-current area.

Select an APC air dielectric trimmer capacitor and install in the cubical housing as shown in fig. 9. A capacitance of about 25 pF with an air gap spacing of at least 0.03-inch (0.76-mm) should fit into the available space and provide adequate tuning range. Solder the stator plates to a heavy lead and attach to the center conductor. The rotor wiper arm should be soldered directly to the housing wall. Try to obtain an APC trimmer with a standard 1/4-inch (0.6-cm) shaft so

fig. 6. Modified cavity section for the 2-meter band. A workable length is obtained, and pickup loops are close to the shorted high-current end of the cavity.

fig. 7. Shaded portions are removed with a hacksaw to leave about 11 inches (28 cm) of cavity for the 2-meter band.
that a knob can be used instead of the inconvenient screwdriver adjustment.

To test the unit for frequency coverage, attach a 3/4-inch (1.9-cm) loop to either coaxial terminal and couple a grid-dip meter to it. A sharp dip will indicate resonance, which should occur about midrange with plenty of spare capacitance on either side of resonance. The open end of the cavity can then be closed with flashing copper or left open as you wish.

**Conversion to 220-225 MHz**

This modification is identical to the 144-148-MHz conversion except for the tuning capacitor. At this frequency, even the minimum capacitance of the APC trimmer is too high; therefore, a simple very low capacitance trimmer can be built using two copper pennies. Solder one penny to the inner conductor and the other to a brass machine screw as shown in fig. 10. Solder a brass hex nut to the outside of the housing and use a second hex nut to lock in the frequency adjustment. A grid-dip meter can be used to check the frequency range, which should be between approximately 180-240 MHz.

**An experimenter's delight**

The several conversions discussed in this article are just a small sampling of what can be done with the F-237. One assembly will supply three cavities; one for each band, or all three for one band.

For those who wish to experiment, a length of cavity somewhat shorter than the 11 inches (28 cm)

used for the 144-MHz band can be used with a 50-pF air trimmer to provide coverage of both the 144- and 220-MHz bands with one cavity. Also, by using a shorter length of about 3-5 inches (7.6-12.7 cm), this cavity section can be made to resonate in the 440-MHz band.

The size of the pickup loops, which serve an important role in impedance matching and determining cavity selectivity, can be changed by unsoldering the elongated mounting strip for easy access. Also, for convenient cable connection, small sockets such as the BNC, F, or RCA type can be used as they are small enough to be mounted into the strip.

Another suggestion: You can attach three modified cavities, each for a different band, to the stators of the three-gang tuning capacitor. Separate sets of coaxial cables can be run to sets of separate terminals on the front panel, or a three-position switch can be used to select the cavity to be used. Depending on the length of each cavity, the individual capacitor sections can be used to tune the desired band. If the capacitance is too high, rotor plates can be easily removed to lower capacitance to fit the application. The main tuning dial can be calibrated with three separate scales, as required.

**Summary**

With 66 inches (167.6 cm) of good-quality coaxial cavity available, a three-gang variable capacitor, three shielded miniature air dielectric trimmers, a precision tuning assembly, and a sturdy metal cabinet, vhf and uhf experimenters can really have a field day with the F-237/GRC-10.

**References**


*Ham Radio*
For more than a quarter century, International Crystal Mfg. Co., Inc. has earned a reputation for design and capability in manufacturing and marketing precision electronic products.

The market for International crystals is worldwide. With a full range of types and frequencies available, International is a major supplier to the commercial and industrial crystal market.

International's leadership in crystal design and production is synonymous with quality quartz crystals from 70 KHz to 160 MHz. Accurately controlled calibration and a long list of tests are made on the finished crystal prior to shipment.

That is why we guarantee International crystals against defects, material and workmanship for an unlimited time when used in equipment for which they were specifically made.

Orders may be placed by Phone: 405/236-3741 • TELEX: 747-147 • CABLE: Incrystal • TWX: 910-831-3177 • Mail: International Crystal Mfg. Co., Inc., 10 North Lee, Oklahoma City, Oklahoma 73102.

Write for information.
A pacesetter since 1943, Drake led in 1963 with 9 MHz i-f transceiving, and now with 48 MHz i-f "Up Conversion"... Drake brings you tomorrow's state of the art today.

Continuous Frequency Coverage—The TR7 provides continuous coverage in receive from 1.5 to 30 MHz. Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.

Synthesized/PTO Frequency Control—A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design—The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level, double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning—The TR7 employs the famous Drake full passband tuning instead of the limited range "i-f shift" found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband, through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by allowing the operator to move interfering signals out of the passband, and it is so flexible that you can even transmit on one sideband and listen on the other.

Unique Independent Receiver Selectivity—Space is provided in the TR7 for up to 3 optional crystal filters. These filters are selected, along with the standard 2.3 kHz filter, by front panel pushbutton control, independent of the mode control. This permits the receive response to be optimized for various operating conditions in any operational situation. Optional filter bandwidths include 6 kHz for a-m, 1.8 kHz for narrow ssb or RTTY, and 500 Hz and 300 Hz for cw.

Broadband, Solid State Design—100% solid state throughout. All circuits are broadbanded, eliminating the need for tuning adjustments of any kind. Merely select the correct band, dial up the desired frequency, and you're ready to operate.

Rugged, Solid State Power Amplifier—The power amplifier is internally mounted, with nothing outboard subject to physical damage. A Drake designed custom heat sink makes this possible. The unique air ducting design of this heat sink allows an optional rear-mounted fan, the FA7, to provide continuous, full power transmit on SSTV/RTTY. The fan is not required for ssb/cw operation, since normal convection cooling allows continuous transmit in these modes.

Effective Noise Blanker—The optional NB7 Noise Blanker plugs into the TR7 to provide true impulse-type noise blanking performance. This unit is carefully designed to maximize both blanking and dynamic range in order to preserve the excellent strong-signal handling characteristics of the TR7.

* NOTE: Transmitter coverage for MARS, Government, and future WARC bands is available only in ranges authorized by the FCC, Military, or other government agency for a specific service. Proof of license for that service must be submitted to the R. L. Drake Company, including the 500 kHz range to be covered. Upon approval, and at the discretion of the R. L. Drake Company, a special range IC will be supplied for use with the Aux7 Range Program Board. Prices quoted from the factory. See Operator's Manual for details. (Not available for services requiring type acceptance.)

TR7
solid state
continuous coverage
synthesized hf system

Model 1336
**TR7 ACCESSORIES**

**Aux7** must be used with either Model 1546 RRM-7 Range Receive Module, or Model 1547 RTM-7 Range Transceiver Module. Use one module per 500 kHz range. Modules plug directly into **Aux7**.

---

**Model 1336** Drake TR7 General Coverage Digital R/O Transceiver
**Model 1538** Drake RV7 Remote VFO
**Model 1502** Drake PS7 120/240V Ac Supply for continuous duty operation (25 amps)
**Model 1570** Drake PS7 120/240V Ac supply for intermittent duty (15 amps continuous, 25amps intermittent)
**Model 1553** Drake SP75 Speech Processor
**Model 1230** Drake LA7 Line Amplifier
**Model 1537** Drake RTM-7 Range Transceiver
**Model 7077** Drake RTM-7 Range Transceiver
**Model 1533** Drake PS7 Range Transceiver
**Model 1520** Drake PS7 Range Transceiver
**Model 1536** Drake PS7 Range Program Board
**Model 1531** Drake MS7 Matching Speaker
**Model 1537** Drake NB7 Noise Blanker
**Model 1529** Drake FA7 Fan
**Model 7021** Drake SL-300 Cw Filter, 300 Hz
**Model 7022** Drake SL-500 Cw Filter, 500 Hz
**Model 7023** Drake SL-1800 A-m Filter, 1.8 kHz
**Model 7024** Drake SL-6000 A-m Filter, 6.0 kHz
**Model 1502** Drake PS7 Range Program Board
**Model 1535** Drake PS7 Range Program Board
**Model 1553** Drake PS7 Range Program Board
**Model 1335** Drake MMK-7 Mobile Mounting Kit
**Model 7037** Drake TR7 Service Kit Extender Board Set
**Model 385-0004** Drake TR7 Service Schematic Book

---

**GENERAL**

Receive
- Without **Aux7**: 1.5 to 30 MHz, continuous, no gaps.
- With **Aux7**: Same, plus 0 to 1.5 MHz at reduced performance.

Transmit
- Without **Aux7**: 1.8-2.0, 3.5-4.0, 7.0-7.5, 14.0-14.5, 21.0-21.5, 28.0-30.0 MHz.
- With **Aux7***: Above ranges, plus any eight 500 kHz segments from 1.8 to 30 MHz.

Modes of Operation
- **Usb**, **Lsb**, **Cw**, **RTTY**, **A-m equiv.** (A-3H).

Frequency Stability
- Less than 1 kHz first hour. Less than 150 Hz per hour after 1 hour warm up. Less than 100 Hz for ±10% line voltage change.

Frequency Readout Accuracy
- Analog: Better than ±1 kHz when calibrated at the nearest marker point.
- Digital: 15 ppm ±100 Hz.

External Counter Mode
- Maximum Input Freq.: 150 MHz.
- Input Level Range: 50 mV to 2 V, rms.

Power Supply Requirements

Dimensions
- Depth: 12.5 in. (31.75 cm), excluding knobs and connectors.
- Width: 13.6 in. (34.6 cm).
- Height: 4.6 in. (11.6 cm) excluding feet.
- Weight: 17.1 lb. (7.75 kg).

RECEIVER

Sensitivity
- **Ssb**, **Cw**: Less than 0.5 pV for 10 dB (S+N)/N.
- **Am** (30% Mod.): Less than 2.0 pV for 10 dB (S+N)/N.

Selectivity
- 2.3 kHz at ~6 dB and 4.4 kHz at ~60 dB (1.8:1 shape factor).

Specifications, availability and prices subject to change without notice or obligation.

R. L. DRAKE COMPANY

540 Richard St. Miamisburg Ohio 45342 USA Phone (513) 866-2421 • Telex 288-017

More Details? CHECK—OFF Page 126
Yagi antennas: practical designs

Last in the Yagi design series, with emphasis on scaling and element taper

In all the previous articles of this series the specifications for a Yagi antenna have been stated only in terms of strictly cylindrical elements. Each element is characterized by an $x$ coordinate or position along the boom, a physical length, $LE$, and a radius $RO$; each of these three quantities is expressed in terms of wavelengths, $\lambda$, at a central design frequency. Such specifications have led to a number of rather good antenna designs, and I shall shortly list a brief selection of such designs. However, when a real Yagi antenna is constructed it will rarely ever be convenient to adhere rigorously to the given cylindrical element design. To start, the element diameter is usually adjusted to fit a mechanical requirement (wind loading, etc.); moreover, the element itself is usually not a cylinder, but a series of telescoping tubes starting with a large-diameter section at the boom and tapering to a small-diameter section at the outer end of the element. In addition, the element is fastened to the boom with a clamping arrangement that may be a plate or angle bracket U-bolted to both boom and element. Some mechanical designs even put the element directly through the boom. Thus, the path from the cylindrical design to a practical antenna will involve three tasks: scaling the original design to an equivalent new design using a different (average) element radius, computing the potentially significant change in element length as a result of the chosen (telescoping) taper schedule, and making (usually minor) corrections to allow for the boom clamping system. Methods for carrying out each of these three tasks will be given following the next section on preferred antenna designs.

By James L. Lawson, W2PV, 2532 Troy Road, Schenectady, New York 12309
preferred antenna designs

In this section I shall discuss one preferred design for a two-, three-, four-, five- or six-element Yagi antenna. Recall that simplistic Yagis\(^4\) (element spacing uniform and all directors having a common length) are as good as any other design up to a boom length of one wavelength. It was shown that a good two-element beam would have a boom length of about 0.15\(\lambda\); the exact length is not critical and is a compromise between better gain and lower efficiency and bandwidth. Best parasite element length is a compromise between better forward gain and lower F/B ratio. For a three-element beam it was shown that a boom length of about one-quarter wavelength produces a naturally high F/B and similarly for four-, five-, and six-element beams a boom length of about 3/4 wavelength gives a naturally good F/B ratio.

Table 1 shows the characteristics of these good Yagi designs. These particular antenna designs are not unique; for example, the boom length can be varied somewhat. Longer booms, in general, give larger forward gain, but the frequency for highest F/B ratio drops somewhat below the center of the band, where gain remains high.

A procedure has also been described that allows fine tuning or optimization to improve the F/B ratio;\(^5\) this optimization procedure can be done for Yagi antennas having four or more elements. Optimization must be done for a specific end use. Table 2 shows optimized six-element beams first for free-space use, next for operation at 1.0\(\lambda\) over ground, and finally for operation in a two-Yagi stack at heights of 0.60\(\lambda\) and 1.5\(\lambda\). These parameters are mathematically correct. But note that approximations used in the model really do not justify complete confidence in the precise values in Table 2. Nevertheless, I suspect that practical antennas constructed from this table (for use over ground) will exhibit superior properties to the (free-space) 6-element case shown in Table 1.

**scaling**

Any of the Yagi antenna designs, such as those in Table 1, can be scaled either to other center frequencies or to elements of different diameter at the same center frequency. Because all design parameters include dimensions expressed in wavelengths at a central design frequency, the design itself is independent of frequency scaling; therefore, the behavior of the antenna will not be affected by the choice of central design frequency. However, this is true only if the design is truly unchanged; that is, all physical dimensions (including element radii) are adjusted proportional to the desired wavelength.

**Table 1. Preferred Yagi antenna designs. All elements with radius, RO, of 0.0005260 (\(\lambda_g\)), length, LE, in (\(\lambda_g\)), and boom position, X, in (\(\lambda_g\)).**

<table>
<thead>
<tr>
<th>element</th>
<th>X</th>
<th>LE</th>
<th>X</th>
<th>LE</th>
<th>X</th>
<th>LE</th>
<th>X</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.000</td>
<td>0.49366</td>
<td>0.000</td>
<td>0.49801</td>
<td>0.000</td>
<td>0.49185</td>
<td>0.000</td>
<td>0.49994</td>
</tr>
<tr>
<td>DR</td>
<td>0.150</td>
<td>0.47050</td>
<td>0.150</td>
<td>0.48963</td>
<td>0.250</td>
<td>0.47900</td>
<td>0.1875</td>
<td>0.48040</td>
</tr>
<tr>
<td>D1</td>
<td>0.300</td>
<td>0.46900</td>
<td>0.600</td>
<td>0.46319</td>
<td>0.3750</td>
<td>0.45232</td>
<td>0.300</td>
<td>0.44811</td>
</tr>
<tr>
<td>D2</td>
<td>0.750</td>
<td>0.46319</td>
<td>0.5625</td>
<td>0.45232</td>
<td>0.450</td>
<td>0.44811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>0.750</td>
<td>0.45232</td>
<td>0.600</td>
<td>0.44811</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>0.750</td>
<td>0.44811</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>number</th>
<th>elements</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>gain (dBi)</td>
<td>6.88</td>
<td>7.86</td>
<td>10.62</td>
<td>10.45</td>
<td>10.70</td>
<td></td>
</tr>
<tr>
<td>F/B (dB)</td>
<td>7.94</td>
<td>23.60</td>
<td>41.62</td>
<td>32.27</td>
<td>52.71</td>
<td></td>
</tr>
</tbody>
</table>

**Table 2. Optimized 6-element Yagi antenna, RO is 0.0005260 (\(\lambda_g\)), LE in (\(\lambda_g\)), and X in (\(\lambda_g\)).**

<table>
<thead>
<tr>
<th>element</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.0000</td>
<td>0.49528</td>
<td>0.0000</td>
</tr>
<tr>
<td>DR</td>
<td>0.1500</td>
<td>0.48071</td>
<td>0.1500</td>
</tr>
<tr>
<td>D1</td>
<td>0.2992</td>
<td>0.44811</td>
<td>0.3039</td>
</tr>
<tr>
<td>D2</td>
<td>0.4500</td>
<td>0.44811</td>
<td>0.4500</td>
</tr>
<tr>
<td>D3</td>
<td>0.6000</td>
<td>0.44811</td>
<td>0.6395</td>
</tr>
<tr>
<td>D4</td>
<td>0.7500</td>
<td>0.44811</td>
<td>0.7500</td>
</tr>
</tbody>
</table>

Note:
A. Optimized in free space.
B. Optimized at 1.0\(\lambda\) over ground.
C. Optimized in a stack/ground at 0.6\(\lambda\) and 1.5\(\lambda\).
Experience has shown that desired element radii expressed in wavelengths is not constant; at low frequencies (long wavelengths) relatively thin elements are used, while at high frequencies relatively fat elements are normal. How, then, can a given design be altered to an equivalent design where element radii are changed? The clue is to make the impedance of the changed, or scaled, element exactly the same as the impedance of the original unscaled element at the central design frequency; in this way exactly the same element currents will flow, resulting in the same detailed antenna performance. Because the (radiation) resistance of the element is essentially unchanged, we need only to make the reactance invariant to scaling-element radius.

Recall\(^2\) that element reactance, \(X\), near resonance can be expressed as:

\[
X = RQ(F/FR - FR/F)
\]  

(1)

where \(R\) = the (radiation) resistance  
\(Q\) = the effective \(Q\)  
\(F\) = the frequency referred to central design frequency  
\(FR\) = the element resonant frequency, also referred to central design frequency.

Recall also that \(RQ\) can be (rather accurately) empirically expressed as:

\[
RQ = (215.15 \log K - 160)
\]  

(2)

where \(K \equiv 1/RO\)

\(RO\) = the radius of the element expressed in wavelengths at \(F = 1\), the central design frequency.

From eqs. 1 and 2:

\[
X = (215.15 \log K - 160)(F/FR - FR/F)
\]  

(3)

and at the central design frequency (\(F = 1\)):

\[
X(F = 1) = (215.15 \log K - 160)(1/FR - FR)
\]  

(4)

Thus, if we wish to scale the element radius from an original value to a new value, we must ensure that \(X(F = 1)\) is unchanged. Note that \(X(F = 1)\) contains two variables, \((K\) and \(FR\)), which are a function of element radius \(RO\). Recall\(^2\) \(FR\) is calculated from the physical length of element \(LE\) and physical resonant length \(LER\); both of these lengths are measured in wavelengths, \(\lambda_0\), at \(F = 1\):

\[
FR = LER/LE
\]  

(5)

Empirically,\(^2\)

\[
LER = [1 - (10.7575 \log K - 8) - 1]/2
\]  

(6)

Thus, from eqs. 5 and 6:

\[
FR = [1 - (10.7575 \log K - 8)]/(2LE)
\]  

(7)

We now have the tools to convert a given antenna, such as one in table 1, to a new (scaled) antenna where the element radii are changed; the new scaled antenna will perform exactly in the same way as the original antenna at the central design frequency (\(F = 1\)). However, the frequency-swept behavior of the (scaled) antenna, while qualitatively similar to the original, will show a broader or narrower bandwidth, depending on the change in element \(Q\) (see eq. 2).

The procedure is simple. For any given original element (subscript 1) we are given \(LE_1\) and \(RO_1\). The new (scaled) (subscript 2) radius is designated as \(RO_2\). Compute the new (scaled) element length, \(LE_2\):

\[
K_1 = 1/RO_1; \quad K_2 = 1/RO_2
\]  

(8)

\[
FR_1 = [1 - (10.7575 \log K_1 - 8)]/(2LE_1)
\]  

(9)

\[
X_1 = (215.15 \log K_1 - 160)(1/FR_1 - FR_1)
\]  

(10)

Having calculated reactance (at \(F = 1\)), compute the value of \(FR_2\) that will give the same value of \(X\) with the new element radius, \(RO_2\):

\[
X_2 = X_1
\]  

(11)

\[
(1/FR_2 - FR_2) = X_1/(215.15 \log K_2 - 160) \equiv A
\]  

(12)

\[
FR_2 = [1 - A + (A^2 + 4)^{1/2}]/2
\]  

(13)

\[
LE_2 = [1 - (10.7575 \log K_2 - 8)]/(2FR_2)
\]  

(14)

It is simple and convenient to set up the entire procedure (eqs. 8-13) on a small programmable calculator. An example illustrates the results. Consider the antenna design for the six-element antenna in table 1:

<table>
<thead>
<tr>
<th>table 3. Six-element Yagi: element length, (LE(\lambda_0)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflector</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>LE ((\lambda_0))</td>
</tr>
<tr>
<td>FR</td>
</tr>
<tr>
<td>X (ohms)</td>
</tr>
</tbody>
</table>

Note:
Column 1 \(R_0 = 0.0005260 (\lambda_0)\), from table 1
Column 2 \(R_0 = 0.0006 (\lambda_0)\)
Column 3 \(R_0 = 0.0016 (\lambda_0)\)
this would be a reasonable design for a 14.2-MHz antenna where \( \lambda_0 = 69.3 \text{ feet} \) (21.13 meters) and where an \( RO \) of 0.0005260 (\( \lambda_0 \)) would correspond to an element physical diameter of 0.875 inch (2.22 cm). This would be a reasonable dimension for a mechanically adequate element. Now, suppose that we would like an equivalent antenna for 28 MHz, where \( RO \) probably should be increased. The results of \( \text{eqs. 8-13} \) are shown in \( \text{table 3} \). Note that the (scaled) changed values for \( LE \) are not wholly intuitive, because two things happen simultaneously. As \( RO \) increases the \( Q \) decreases, requiring a greater spread in resonant frequencies of reflector and director; however, at the same time, the resonant physical length, \( LER \), also changes. Note that, if one scales the actual physical dimensions of boom length up by a factor, \( S \) (from, say, a smaller high-frequency antenna model), and the element radius dimension is not also scaled up equivalently, it is wrong, conceptually, to scale element length by the same factor \( S \). Moreover, it is also wrong, in this case, to scale down element resonant frequency by the same factor, \( S \). The only correct way to scale an antenna element is to design it (length and radius) to give the same electrical reactance.

**element taper corrections**

To this point, antenna designs and all antenna calculations have been made for strictly cylindrical elements, and the results will apply directly to most high-frequency (small) Yagi antennas where the general practice is to use cylindrical elements. However, for frequencies less than about 30 MHz, mechanical considerations usually require that the elements consist of one or more telescoping sections of tubing. At the lower frequencies (say \( \leq 7 \text{ MHz} \)), the Yagi antenna becomes gigantic, and it is no small mechanical engineering task to construct even a good element. Small diameters favor smaller wind forces, but these diameters are insufficiently rugged for long elements.

It is, therefore, a practice to make these large elements of several telescoping sections. The largest-diameter section is clamped to the boom, and succeeding monotonically smaller-diameter sections make up the outer portions of the element. The resulting element taper can introduce a significant change in the required element length.

It’s important to understand how to relate the actual detailed taper schedule of an element (diameters and lengths of all sections) to the equivalent length of a cylindrical (untapered) element having the same average or mean diameter. Equivalence is intended to mean that the resonant frequency and the \( Q \) are the same for the actual tapered element as for the equivalent cylinder.

To start, I shall introduce the concepts of element pipe inductance and pipe capacitance. Consider a cylindrical element of length \( s \) and radius \( RO \) as shown in fig. 1. A length coordinate, \( x \), is defined with the origin at the center of the element and a related (angle) coordinate, \( \theta \), where \( \theta = \pi/8 \). Note that electrical excitation of this element in the neighborhood of the resonant frequency, \( f \), will produce a current and voltage distribution:

\[
I_\theta = I_0 \sin (2\pi ft) \cos (\theta) \tag{14}
\]

and

\[
V_\theta = V_0 \cos (2\pi ft) \cos (\theta) \tag{15}
\]

The electrical driving-point impedance of the element consists of a resistance (which is directly related to far-field energy radiation) and, of course, a reactance.

All reactance effects, including resonant frequency and electrical \( Q \), are caused by near-field (non-radiating) energy storage. Energy storage occurs in two ways: the magnetic flux surrounding the current distribution in eq. 14 and the electrical field produced by the voltage distribution in eq. 15. Note that at certain instantaneous times \( t = n/2f \), the current everywhere is zero, and all stored energy resides in the electrical field. Similarly, at certain other times \( t = n/2f + 1/4f \) the electric field vanishes, and all stored energy resides in magnetic flux.

As time progresses the (constant) total stored energy transfers back and forth between magnetic and electrostatic fields. This transfer or exchange frequency is, of course, the element resonant frequency. As a result of this complete nonradiative energy transfer, the peak or maximum magnetic stored energy must exactly equal the peak electrostatic stored energy. Note also that the resonant or natural exchange frequency must decrease as the total stored energy is increased.

Now, consider the effect of inserting an infinitesimal length of pipe (of the same radius, \( RO \)) into the element of fig. 1 at the center \( (x = 0) \). The original

![fig. 1. Coordinates of a single Yagi element. \( S \) = overall length, \( X \) is coordinate of length with zero at center (boom), and \( \theta \) is corresponding angle (\( \theta = \pi/8 \)).](image)
(subscript 1) element driving-point reactance, \( X \), was shown to be:

\[
X = (430.30 \log K - 320) (\frac{3}{FR_1 - 1}) \tag{16}
\]

where \( K = \frac{\lambda}{RO} \).

At the (original) resonant frequency, \( FR_1 \), the reactance vanishes; inserting an additional infinitesimal length of pipe, \( \Delta s \), at \( x = 0 \) will change the resonant frequency to \( FR_2 \). At this new frequency the total reactance again vanishes. The added reactance due to the inserted pipe must be balanced by the original pipe reactance at the new frequency:

\[
0 = (430.30 \log K - 320)(FR_2/FR_1 - 1) + 2\pi f\Delta L \tag{17}
\]

where \( f \) = actual (resonant) frequency

\( \Delta L = \text{increased inductance due to } \Delta s \).

The inserted pipe at \( x = 0 \) can produce only inductive effects (stored magnetic flux) since the electrical potential is strictly zero. Now, \( FR_2 \) is clearly related to \( FR_1 \) by the overall length(s) of the element:

\[
FR_2/FR_1 = \frac{s}{s+\Delta s} \tag{18}
\]

from which

\[
\frac{\Delta L}{\Delta s} = (430.30 \log K - 320)/(s^2\pi f)
\]

and

\[
\frac{\Delta L}{\Delta s} = (430.30 \log K - 320)/(\pi c) \tag{19}
\]

where \( c \) is the velocity of light.

Thus, the addition of the small infinitesimal pipe section causes the element to behave just as though a pure series inductance were added. The effective inductance per unit length, which I designate by IND, is given by eq. 19 and is easily expressed in conventional units as:

\[
IND = (43.03 \log K - 32)(1.061 \times 10^{-8}) \text{ henries/meter} \tag{20}
\]

From the simple model of a resonant circuit it is easy to relate the magnitude of voltage on the reactive components to magnitude of input current by:

\[
|V_0| = |I_0(RQ)| \tag{21}
\]

with:

\[
RQ = (215.15 \log K - 160) \tag{22}
\]

Now, consider extending the element in fig. 1 by length \( \Delta L \) (of the same radius, \( RO \)) at its outer end \( x = s/2 \). Here the current is zero so the small pipe increases only the electrostatic energy (capacitive effect). Since in this case eq. 13 is still valid, the total increase in stored energy should be just the same as it was for insertion at \( x = 0 \). Therefore:

\[
\Delta L(V^2)/2 = \Delta C(V^2)/2 \tag{23}
\]

where \( \Delta C \) = the capacitance increase due to \( \Delta s \) at the element end.

\( \Delta L \) = the increase in inductance due to \( \Delta s \) at the element center.

From eqs. 21 and 23:

\[
\Delta C = \Delta L/(RQ)^2 \tag{24}
\]

Using eqs. 22, 24, and 19:

\[
\frac{\Delta s}{\Delta C} = (43.03 \log K - 32)(25\pi c/10) \tag{25}
\]

or in conventional units

\[
\frac{\Delta s}{\Delta C} = 1/CAP \tag{26}
\]

where \( CAP = \text{the capacitance per unit length} \).

Note that \( 1/CAP \) is directly related to \( IND \), differing only in a constant multiplier.

Thus, we now can think of a cylindrical section of element pipe as contributing to element inductance (eq. 20) and element capacitance (eq. 26). Each contribution is a function of \( K(\lambda/RO) \), and therefore \( RO \), and each will depend on the current or voltage on the pipe section.

Let us now see what happens if a small section of pipe of length \( AB/2 \) is first removed at a position \( x \) (or corresponding \( \theta \)) and for symmetry also at \( -x \) or \( -\theta \) from the element shown in fig. 1. Now replace these removed sections with equal length sections \( (\Delta B/2) \) of larger radius \( RO \). The overall length of the element remains \( s \), but cylindrical "bumps" occur at \( X \) and \( -X \). As a result of these bumps the stored energy of the system is changed and therefore the resonant frequency is changed. Designate the value of \( K \) for the original pipe as \( K_1 \) and for the short bumps as \( K_2 \). The contribution of the bump(s) to stored energy, \( W_2 \), will be

\[
2W_2 = \Delta B \sqrt{IND_2(1^2 \cos^2 \theta + CAP_2(V^2 \sin^2 \theta))} \tag{27}
\]

The relationship of \( V \) at the end of the element to \( I \) at \( x = 0 \) is essentially unchanged from the original element, that is, \( CAP_1V_2^2 = IND_1I^2 \) (see eq. 23). Note also that (eqs. 19 and 26):

\[
CAP_2/CAP_1 = IND_1/IND_2 \tag{28}
\]

so that eq. 27 can be rewritten as

\[
2W_2 = \Delta B \sqrt{IND_2(1^2 \cos^2 \theta)}
+ (IND_2^2/IND_2)(1^2 \sin^2 \theta)) \tag{29}
\]

Let us now find an equivalent length, \( \Delta A/2 \), of the original pipe which, when placed at the same positions as each of the bumps, contributes an equal stored energy.

\[
2W_1 = \Delta A[IND_1I^2(\cos^2 \theta + \sin^2 \theta)]
= \Delta AIND_1I^2 = 2W_2 \tag{30}
\]
so that
\[
\Delta A/\Delta B = \frac{IND_2}{IND_1} \cos^2 \theta + \frac{IND_1}{IND_2} \sin^2 \theta
\] (31)

Now, for a longer section (longer bump) going from \(\theta_1\) to \(\theta_2\), the equivalent length of the original pipe can be easily calculated. Designate \(IND_2/IND_1 \equiv m\), the length of the long bump as \(S_B\), and the length of the original pipe, which gives equivalent stored energy, as \(S_A\).

\[
S_A/S_B = m \cos^2 \theta + (1/m) \sin^2 \theta \] (32)

The angular functions are to be averaged over the complete bump section. Eq. 32 is easily integrated and averaged; the result is

\[
S_A/S_B = (m + 1/m)/2 + (m - 1/m)F(\theta)/2
\] (33)

where

\[
F(\theta) = (\sin 2\theta - \sin 2\theta_1)/(2\theta_2 - 2\theta_1)
\] (34)

with \(\theta\) measured in radians.

We can now compute from a given element taper schedule (involving several sections with different pipe diameters) the equivalent lengths of sections of "standard" cylindrical pipe. The procedure is to first choose the "standard" cylinder that is expected to provide equivalent \(Q\). This is, of course, the pipe size at the center of each half element; that is, the average or mean pipe size. Next, for each section of the tapered element, compute the starting \(\theta_1\) and ending \(\theta_2\). For each section compute \(m\); it is easily derived from eq. 20, or

\[
m = (43.03 \log K_2 - 32)/(43.03 \log K_1 - 32)
\] (35)

From eqs. 35 and 33 compute \(S_A/S_B\), which, multiplied by the (tapered) section physical length, gives the equivalent section length of the standard pipe. Adding the lengths of all equivalent sections gives the overall length of the standard cylindrical element that should perform essentially the same as the chosen taper schedule.

Perhaps an example will illustrate the procedure. Fig. 2 shows schematically a half element with five different sections whose physical diameters range from 1.250 inches (3.25 cm) at the boom \((x = 0)\) to 0.500 inch (1.3 cm) at the outer end. Readers will recognize this taper schedule as one in common use (by Wilson) for a 14-MHz Yagi reflector antenna element. The middle pipe section, 7/8 inch (2.2 cm) in diameter, will represent the "standard" pipe. At a frequency of 14.2 MHz, \(\lambda_0 = 831.76\) inches (21.13 meters), \(RO = 0.0005260\), and \(K_1 = 1901.17\). Table 4 illustrates how to calculate the equivalent cylinder section lengths. For each section column 2 shows the actual physical length, \(S_B\), column 3 shows pipe diameter, column 4 the \(K\) value, column 5 the value of \(m\) computed from eq. 35, column 6 values of \(\theta_1\), column 7 values of \(\theta_2\), column 8 values of \(F(\theta)\) computed from eq. 33, and column 9 equivalent section lengths, \(S_A\), also computed by eq. 33. Note that the overall actual length of the tapered half element is 215 inches (5.46 meters), whereas the overall length of the equivalent cylindrical standard 7/8 inch (2.2 cm) pipe is only 206.54 inches (5.25 meters). In other words, just due to the taper schedule alone the total (full length) tapered element must be made 16.9 inches (42.9 cm) longer than an equivalent cylinder! This taper correction is surprisingly large; it shows clearly that element length alone is a totally inadequate specification.

The physical reason why the tapered element must be longer than an equivalent cylinder is that the inner (larger) sections have smaller inductance than a standard cylinder and therefore must be made longer; similarly, the outer (smaller) sections have smaller capacitance than the standard cylinder and must also be made longer. The taper correction will be quite

<table>
<thead>
<tr>
<th>section</th>
<th>(S_B) (inches)</th>
<th>(d) (inches)</th>
<th>(K)</th>
<th>(m)</th>
<th>(\theta_1)</th>
<th>(\theta_2)</th>
<th>(F(\theta))</th>
<th>(S_A) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>1.250</td>
<td>1330.82</td>
<td>0.93890</td>
<td>0.000</td>
<td>15.070</td>
<td>0.95452</td>
<td>33.904</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>1.125</td>
<td>1478.68</td>
<td>0.99695</td>
<td>15.070</td>
<td>36.000</td>
<td>0.61449</td>
<td>48.696</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>0.875</td>
<td>1901.17</td>
<td>1.00000</td>
<td>36.000</td>
<td>54.419</td>
<td>0.61851</td>
<td>48.102</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>0.625</td>
<td>2661.63</td>
<td>1.05764</td>
<td>54.419</td>
<td>67.814</td>
<td>0.00718</td>
<td>44.000</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>0.500</td>
<td>3327.04</td>
<td>1.09568</td>
<td>67.814</td>
<td>90.000</td>
<td>-0.90300</td>
<td>48.835</td>
</tr>
</tbody>
</table>

Table 4. Equivalent length computations for element in fig. 2.
small if the taper is small, but quite significant if the taper is large.

In the derivation of taper correction calculations, I have assumed that radial “bumps” are treated as small perturbations on the strictly cylindrical case and that the current and voltage distributions are sinusoidal. Note that $K$ values for the heavily tapered element of fig. 2 differ from unity by only a few percent; thus the calculation, even though made by a perturbation method, should be reasonably good. Moreover, the current distribution should still be reasonably sinusoidal over the tapered element. Nevertheless there may be some small inaccuracies in the overall calculation. It is important to note, however, that we are after a length correction of only a few percent due to taper, and therefore some inaccuracy in the computation of the (small) correction is tolerable.

One further point merits elaboration. The procedure just outlined allows only a computation of cylinder equivalents from a given taper schedule; how may we compute a suitable taper schedule starting from a given cylinder? I have found that the simplest procedure is to initially specify all of the taper schedules from mechanical considerations, leaving as a variable only the length of the outermost section. Choose a guessed or estimated length for this section and compute the overall equivalent cylinder. It will generally miss the desired length by a differential length, $\Delta$. One can now readjust the length of the outermost section by $-\Delta m$ and recalculate. One or two such iterations will bring the tapered element equivalent cylinder length into adequate agreement with the desired figure.

boom clamping correction

I now come to the subject of the boom-to-element mechanical clamping system and its effect on the element reactance and, hence, resonance. It is clear that a wide range of clamping systems are in common use; it is virtually impossible to make valid calculations for all varieties. Nevertheless there are two major kinds and it is helpful to understand them.

The first clamping system is simply to put the element directly through the (round) boom. In this construction a length of element equal to the complete boom diameter is replaced with the boom itself. Since this replacement occurs at a voltage node, we must determine the effective inductance of the replacement; once this is done it can be considered the first section of a tapered element from which an equivalent cylinder length can be calculated. I have not attempted a rigorous calculation of (boom) inductance; instead, I refer to the measurements of Viesbickes in which his fig. 10 shows that element length due to the presence of a (round) boom should be increased by about 0.7 the diameter of the boom. This is tantamount to saying that the inductance of the boom section of the element is very low compared with normal element inductance; physically this is an expected result. The low inductance, of course, is due to the blockage of magnetic flux by the boom.

The second clamping system is much more widely used since it permits easier element maintenance and replacement. In this system either a flat, metal, rectangular plate or an angle bracket is interposed between element and boom; two U-bolts fasten the boom to plate or bracket and two more U-bolts fasten the element to plate or bracket. The U-bolts may also use saddles or cradles, which are mechanically better and which further tend to separate boom and element. For this clamping system we wish to know the inductive effect of the boom itself and more importantly the inductive effect of the plate or bracket. I have found experimentally that for this clamping system the boom itself has remarkably little effect. Even though the (round) boom and (round) element are in physical contact, the element length should be increased by only 6 per cent of the boom diameter; this small correction rapidly disappears as the element is spaced away from the boom (even by a small amount). The reason this result is so different from the through-the-boom result is the relative ease with which the magnetic flux (which results from element current flow) can squeeze between boom and element, especially if there is any gap between them.

The correction in length due to the mounting plate or bracket is readily calculable. The method is to first calculate the equivalent radius of the element plus bracket (which produces the same inductance) and second to use this equivalent radius as the first (short) section of a taper design. The theory for equivalent radii of single and multiple parallel conductors is given by Mushiake and Uda. In their notation the equivalent radius, $\xi$, of a flat thin plate of total width, $a$, is simply:

$$\xi = a/4$$

and that for a right-angled bracket of width $a$ and $b$ is given by a rather complicated expression, which depends only slowly on the ratio $b/a$. For ratios between 0.3 and 1.0 a good approximation (error <5 per cent) is:

$$\xi \approx 0.2(a + b)$$

Mushiake and Uda show that for two parallel conductors, it is possible to calculate the equivalent radius of the combination. If $a_1$ and $a_2$ are the lengths of the peripheries of the cross sections, $\xi_1$ and $\xi_2$ the equivalent radii of the two conductors, $d_m$ the mean
distance between them, and \( \xi \) the equivalent radius of the combination of both conductors, then

\[
\log \xi = \left( a_1^2 \log \xi_1 + a_2^2 \log \xi_2 \right) + 2a_1 a_2 \log d_m / (a_1 + a_2)^2
\]  

(38)

Eqs. 36 and 38 permit a calculation of the equivalent radius of an element which is proximate to a plate; similarly, eqs. 37 and 38 provide a way of calculating the equivalent radius of an element proximate to an angle bracket. To check this method of calculation, I have determined the experimental detuning effect of a plate just touching a 1 inch (2.54 cm) diameter element resonant at 46 MHz. Table 5 shows both theoretical and experimental results for two different plates. These experiments were not particularly accurate because the resonant frequency is difficult to measure accurately; nevertheless the agreement of theory and experiment within estimated experimental accuracy is gratifying.

Note that element length corrections due to a proximate mounting plate or bracket can easily be as much as 10 percent of plate length. These corrections are not especially large in practice, but should be made wherever there is a relatively large boom-to-element clamping system.

scaling and taper example

It may be helpful to show how to specify a good three-element beam starting with the cylindrical design in table 1. I shall go through necessary scaling, then taper schedule calculations for element length(s), and finally apply reasonable boom clamping and boom corrections; this procedure is used to specify a 14.2-MHz beam, a 21.3-MHz beam and a 28.5-MHz beam.

First I choose an average cylinder size that is sufficiently strong. I shall assume that the final element is made of aluminum tubing such as 6061-T6 with seamless 0.059 inch (1.5 mm) wall thickness. For all three bands I choose a cylinder size of 0.875 inch (2.2 cm) OD, although for 28.5 MHz a slightly smaller size is probably permissible. Second, I choose a convenient taper schedule which is easily made from standard 12-foot (3.7-meter) lengths, leaving the length of the outermost section to be adjusted for correct overall length. The sections of seamless tubing (except the last section) are slit back about 3 inches (7.6 cm) at the outer ends (I use one slit only), and a common stainless steel hose clamp fastens sections together. Tubing overlap of about 8 inches (20 cm) gives good joint strength. For 14.2 MHz, the second section is a full 12-foot (3.7-meter) section, over which is slid the shorter first section; this procedure gives added (central) strength and improves the ease of clamping with U-bolts and saddles. For 21.3 and 28.5 MHz this extra inner section is unnecessary.

Table 6 shows the specifications for these tapered half elements where \( x_1 \) and \( x_2 \) represent the start (inner) and end (outer) positions (in inches) of each section. Note that the tubing requirements for all three elements are shown in 12-foot (3.7-meter) lengths.

<table>
<thead>
<tr>
<th>section</th>
<th>( d ) (inches)</th>
<th>( x_1 ) (inches)</th>
<th>( x_2 ) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.125</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>0.875</td>
<td>72</td>
<td>136</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>136</td>
<td>178</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>176</td>
<td>&lt; 215</td>
</tr>
<tr>
<td>1</td>
<td>0.875</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>0.750</td>
<td>72</td>
<td>112</td>
</tr>
<tr>
<td>3</td>
<td>0.625</td>
<td>112</td>
<td>&lt; 145</td>
</tr>
<tr>
<td>1</td>
<td>0.875</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>0.750</td>
<td>72</td>
<td>&lt; 105</td>
</tr>
</tbody>
</table>

Third, for these three cases it is necessary to scale the original design of table 1 to use the desired average cylinder size. Table 7 shows the scaled cylinder lengths (in \( \lambda_0 \) for all three beams using scaling techniques discussed previously. We are now ready to compute the effect of taper schedule. For the 14.2-MHz element(s), table 8 shows the flow of calculations; \( x_1 \) and \( x_2 \) (inches) show the start and finish of each section. First, a trial guess at the overall reflector length is made; I guessed 212 inches (5.38 meters) in this case. For each section \( K \), \( m \), \( F(\theta) \) and \( S_A \) (in inches) are calculated by the previously described technique. Note that the sum of all cylinder equivalents \( S_A \) is 207.63 inches (5.27 meters); what was desired was 207.11 inches.
This was a lucky guess; however, a small correction should be made to section 5. This correction is $m$ times the needed cylinder correction.

Next in Table 8 is shown a second reflector calculation after the correction is made; note that the new cylinder equivalent is exactly what was desired. Thus the overall length of the half element (last $x_2$) is 211.45 inches (5.37 meters).

By using the correction procedure, the next calculation derives the overall length of the driven element and a small iteration sets it (last $x_2$) at 208.0 inches (5.28 meters). The same procedure is used for the director, whose overall length (last $x_2$) is 198.83 inches (5.05 meters). Table 9 shows exactly the same calculation procedure for the 21.3-MHz beam elements, and Table 10 shows the results for the 28.5-MHz beam elements.

We are now ready for the final small boom and boom clamp corrections. For this purpose I assumed the elements are U-bolted with saddles to flat plates, which in turn are U-bolted with saddles to the boom. Boom diameters are assumed to be 3 inches (7.6 cm) OD (14 MHz) and 2 inches (5.1 cm) OD (21 and 28 MHz). Full plate dimensions are assumed to be 6 inches (15.2 cm) wide and 8 inches (20.3 cm) long (14 MHz); 5 inches (12.7 cm) wide and 6 inches (15.2 cm) long (21 MHz); and 4 inches (10.2 cm) wide 4 inches (10.2 cm) long (28 MHz). These plates reduce central pipe inductance and thus cause an electrical shortening of the half element. This shortening is easy to calculate by techniques previously described. It amounts to about 0.66 inch (1.7 cm) (14 MHz); 0.44 inch (1.1 cm) (21 MHz); and 0.24 inch (0.6 meters) (28 MHz).

---

**Table 7. Scaling computations (3-element beam of table 1).**

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>$\lambda_0$ (inches)</th>
<th>$d$ (inches)</th>
<th>$K$</th>
<th>$RO (\lambda_0)$</th>
<th>$R$</th>
<th>$DR$</th>
<th>$D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>831.76</td>
<td>0.875</td>
<td>190.17</td>
<td>0.005260</td>
<td>0.49801</td>
<td>0.49890</td>
<td>0.49900</td>
</tr>
<tr>
<td>21.3</td>
<td>565.81</td>
<td>0.875</td>
<td>1270.42</td>
<td>0.0007971</td>
<td>0.49790</td>
<td>0.49816</td>
<td>0.47665</td>
</tr>
<tr>
<td>28.56</td>
<td>441.42</td>
<td>0.875</td>
<td>947.25</td>
<td>0.001056</td>
<td>0.49769</td>
<td>0.48819</td>
<td>0.46490</td>
</tr>
</tbody>
</table>

---

**Table 8. Taper calculations at 14.2 MHz.**

<table>
<thead>
<tr>
<th>SEC.</th>
<th>$d$ (inches)</th>
<th>$x_1$ (inches)</th>
<th>$x_2$ (inches)</th>
<th>$K$</th>
<th>$M$</th>
<th>$F(\theta)$</th>
<th>$S_\lambda$ (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{TRIAL}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.125</td>
<td>0.0</td>
<td>24.0</td>
<td>1478.68</td>
<td>0.95695</td>
<td>0.97905</td>
<td>22.990</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>24.0</td>
<td>72.0</td>
<td>1663.51</td>
<td>0.97713</td>
<td>0.74164</td>
<td>47.189</td>
</tr>
<tr>
<td>3</td>
<td>0.875</td>
<td>72.0</td>
<td>136.0</td>
<td>1901.17</td>
<td>1.00000</td>
<td>0.02854</td>
<td>64.000</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>136.0</td>
<td>176.0</td>
<td>2218.03</td>
<td>1.02614</td>
<td>0.66514</td>
<td>39.320</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>176.0</td>
<td>212.0</td>
<td>2661.63</td>
<td>1.05764</td>
<td>0.95324</td>
<td>34.133</td>
</tr>
<tr>
<td>HALF LENGTH 207.11 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.125</td>
<td>0.0</td>
<td>24.0</td>
<td>1478.68</td>
<td>0.95695</td>
<td>0.97904</td>
<td>22.989</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>24.0</td>
<td>72.0</td>
<td>1663.52</td>
<td>0.97713</td>
<td>0.74038</td>
<td>47.190</td>
</tr>
<tr>
<td>3</td>
<td>0.875</td>
<td>72.0</td>
<td>136.0</td>
<td>1901.17</td>
<td>1.00000</td>
<td>0.02467</td>
<td>64.000</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>136.0</td>
<td>176.0</td>
<td>2218.03</td>
<td>1.02614</td>
<td>0.66945</td>
<td>39.316</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>176.0</td>
<td>212.0</td>
<td>2661.63</td>
<td>1.05764</td>
<td>0.95540</td>
<td>34.609</td>
</tr>
<tr>
<td>HALF LENGTH 207.11 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_2 LAST = 211.45 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_2 LAST = 208.0 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Table 9. Beam Elements corrections.**

We are now ready for the final small boom and boom clamp corrections. For this purpose I assumed the elements are U-bolted with saddles to flat plates, which in turn are U-bolted with saddles to the boom. Boom diameters are assumed to be 3 inches (7.6 cm) OD (14 MHz) and 2 inches (5.1 cm) OD (21 and 28 MHz). Full plate dimensions are assumed to be 6 inches (15.2 cm) wide and 8 inches (20.3 cm) long (14 MHz); 5 inches (12.7 cm) wide and 6 inches (15.2 cm) long (21 MHz); and 4 inches (10.2 cm) wide 4 inches (10.2 cm) long (28 MHz). These plates reduce central pipe inductance and thus cause an electrical shortening of the half element. This shortening is easy to calculate by techniques previously described. It amounts to about 0.66 inch (1.7 cm) (14 MHz); 0.44 inch (1.1 cm) (21 MHz); and 0.24 inch (0.6 meters) (28 MHz).
Thus, to compensate for the boom clamp, each half element should be lengthened by an equivalent amount; it should be further lengthened by the empirical 1/16 boom radius described previously.

With all these corrections, the overall physical length of each half element is shown in table 11. None of these taper schedules is severe; therefore, the actual element lengths are not a great deal longer than the cylinder lengths shown in tables 8, 9, and 10; nevertheless the differences are there. Also shown in table 11 is the boom position $x_B$ for each element expressed both in $\lambda_0$ and in inches. Although I have not tested any of these particular three-element beams experimentally, I am confident that their performance will be excellent and, moreover, they all should be easy to construct.

**summary**

Let me now summarize briefly the results of the entire Yagi design series.

1. A computational methodology was developed and validated$^{2,3}$ that allows the important Yagi antenna
properties to be computed. Such computations produce results which are judged accurate to a few percent; such an accuracy probably exceeds the accuracy of state-of-the-art experimental techniques.

2. Computations have been made throughout the series which have led to many new insights to Yagi antenna behavior. Among them are:

a. Simplistic designs (all elements spaced equally along the boom, and all directors of equal length) are as good as any other design for the same boom length as long as the boom is shorter than one wavelength.4

b. Yagi forward gain basically depends only on boom length (in $\lambda$); it is essentially independent of number of elements as long as element spacing along the boom is not too large.4 Conceptually, the boom can be considered an aperture illuminated in a quasi-uniform way by the discrete elements. The illumination produces a diffraction pattern (the radiated antenna pattern) whose details are controlled by the precise illumination schedule.

c. Yagi $F/B$ ratio is (naturally) best when the diffraction pattern has a null in the back direction. This occurs approximately when the boom length is an odd multiple of $\lambda/4$.

d. A procedure exists whereby a Yagi antenna having four or more elements and roughly favorable boom length can be fine tuned by slight changes in element positions on the boom to give an indefinitely high $F/B$ ratio; this astronomical $F/B$ (that is, $> 120$ dB) exists only at a single frequency. It occurs due to vectorial cancellation of individual element contributions and is equivalent in concept to a notch frequency filter which is carefully adjusted to give an exceptionally deep notch.5

e. Yagis, quads and quagis all behave alike qualitatively. Conceptually a quad can (if properly adjusted) have a somewhat higher gain (a fraction of one dB) than a single Yagi; for horizontal polarization the increased gain comes about from slightly increased vertical directivity. This conceptual advantage may be eroded in practice by the difficulty of experimental quad adjustment compared with the accurate construction of a Yagi to a valid computed design.6

f. The gain and impedance of any equilateral quad loop is strictly independent of the position of the feed point.

g. Ground effects are extremely important and lead directly to preferred antenna heights (1 to 2$\lambda$) with corresponding preferred radiation elevation angles.7

h. Stacking (horizontally polarized) Yagis vertically over ground is very effective if the top Yagi is sufficiently high (I to 2$\lambda$). Stacking does result in significant mutual coupling effects, which can degrade normally expected performance, especially $F/B$ ratio.8

i. A new method is suggested for raising the radiation acceptance angle for stacked beams. This method uses phase reversal for one of two antennas in a stack; the apparent advantage is the retention of stack gain at the higher angles.9

j. Fine tuning, or beam optimization, for high $F/B$ ratio depends on the ultimate end use. Designs are different for free-space conditions, a single Yagi antenna over ground, and Yagi antennas to be used in a stack.8

3. Practical computation procedures are provided in this article for scaling a given design to use elements of different radii, for length corrections due to element taper schedule, and for length corrections due to mechanical boom-to-element clamps.

4. The entire series provides a way for anyone to make a Yagi antenna system having high computed
performance, starting from his own computed designs, or starting from designs which have been suggested in this series. Moreover, it is also shown in this article how to make a Yagi antenna which will accurately emulate the performance of any existing Yagi design; the performance will be just as good (or just as bad) as the emulated design.

**final comments**

In the development and exposition of this series of related articles, which I found both technically challenging and requiring considerably more effort than originally anticipated, I have attempted to proceed from basic electromagnetic theory to a model of a Yagi antenna system which could ultimately be used in a practical way. All of the required steps and tools have been described. However, along the way I have noticed a number of areas in which further work by interested people could be very helpful. Among these are the following:

1. Valid theoretical treatment of mutual impedance where element length is not $\lambda/2$, and where the current distribution is not sinusoidal but consistent with the element function and environment. A particularly difficult question exists with regard to the imaginary part of this impedance at small distances.

2. Valid theoretical treatment of the screening effect of closely adjacent dipoles on the electric field normally present at a given dipole.

3. Valid theoretical treatment of the mutual coupling between quad loops, especially including the imaginary component of coupling at all loop distances.

4. Valid theoretical treatment of the reactance of a full quad loop as a function of its length (perimeter) in the neighborhood of $\lambda$.

None of these tasks is easy. All require good physics followed by tractable mathematics. Moreover, even if “solutions” are claimed, they must be viewed with some suspicion until accurate experimental results confirm their validity.

In addition to these theoretical tasks, it would be extremely helpful if good experiments could be made in one or more of the following areas:

1. Experiments on model Yagi antennas, similar to those reported by NBS, but carried out with improved instrumentation and especially improved control of the physical environment. Such experiments could be exceedingly useful in attempting to validate not only the models I have used, but improved models which I am sure will occur in the future.

2. Find a way to better characterize real (rough, contoured, or both) ground sites. Such characterization should also include the electromagnetic properties of ground. The objective of such work is to provide valid models for a wide spectrum of real-world sites; the use of these models should lead to better understanding of ground effects and perhaps methods for minimizing ground problems.

3. From (flat) ground sites at several magnetic latitudes measure the (statistical) arrival angles of incoming signals. Such measurements should be made at a number of widely separated useful frequencies; at each frequency the results should be correlated with the measured state of the ionosphere. These measurements should be made, not only over a yearly cycle, but over at least one complete solar cycle. Only in this way will a real understanding of the relevant behavior be reached. The end result of this understanding is, of course, to allow specifications for needed incoming arrival angles and hence specifications for optimum antenna height(s) and stacking arrangements.

It is clear that all of these suggestions require an uncommon competence and dedication, as well as the development of sophisticated experimental instrumentation. They also require a great deal of effort.

In the meantime I am convinced that the tools now available will not only permit the design of improved antenna systems, but in many aspects also permit a practical design that is unlikely, even in principle, to be significantly improved.

It is my wish that many readers will construct these superior Yagi antenna systems, make meaningful measurements of their properties, and report results accurately in the literature.

**references**


*ham radio*
If You Want The Finest

**ALPHA 77DX Amplifier**

- Alpha 77DX: The ultimate amplifier for those who demand the finest.
- Eimac 8877 Tube — 1500 watts of plate dissipation.
- 4.4 KVA Hypersil®, removable, plug-in Transformer.
- Oil-filled, 25 mfd Filter Capacitor.
- QSK CW: Full break-in, (2) vacuum relays.
- Vacuum Tuning Capacitor.
- Ducted air cooling, large, quiet blower, computer grade.
- Warranty (limited) 24 months, tube by Eimac.
- Other ALPHA’s: 78, 76CA, 76PA, 76A, 374A, 75SX (Export Only).

**POWER OUTPUT**: 150 watts CW/SSB output all bands (2) MRF 422 Finals.
**OPTIONAL POWER OUTPUT**: 200 to 225 Watts CW/SSB output
**SYNTHESIZED FREQUENCY COVERAGE**: All amateur bands 1.8-30 MHz in full 1 MHz bands, plus 4 additional 1 MHz bands for future expansion.
**TWO PTO’S**: Dual receiving, transceive on either, or split operation.
**QSK CW**: Full break-in, vacuum relays. 300 Hz CW Filter built-in.
**SELECTIVITY**: Two 8 pole plus one 4 pole filter deliver 20 pole 1:4:1 shape factor (6dB/60dB), plus post detection 1.5, 1.0, 4 and .1 kHz bandwidth.
**BUILT-IN A/C supply**: 115/230V, 50/400 Hz, Hypersil® transformer. IF shift, noise blanker, RF clipping, CW keyer, notch/peak filter.
**SERVICING**: Self service easiest of any transceiver by using gold-plated sockets for transistor and IC replacement.
**RELIABILITY**: Less than 1% failure. 99% of problems resolved in field.
**QUALITY**: All military and computer grade. 100% American made.
mobile kilowatt
for DX

One way to put out a big signal from your car

After several years of DXing with a six-element quad, I thought it would be a real challenge to put out a big signal from a mobile rig and see what could be done. It turned out that working DX from a moving automobile is enjoyable and well worth the effort of building the equipment to provide a full kilowatt input.

In my mobile a TS-120S drives a modified HA-14 amplifier. The TS-120S is powered from the standard 55-ampere automotive system. To power the HA-14 linear, I use a three-phase alternator-powered supply.

high-voltage mobile supply

A three-phase Leece-Neville alternator is used as a primary source, which I bought for $10. It has a rating of 7 volts at 60 amperes. The alternator circuit is shown in fig. 1.

I mounted the alternator on the car and used a belt drive from the crankshaft pulley on the engine. (It takes a tight belt to prevent slippage under maximum load.)

The high-voltage supply (fig. 2) is a three-phase delta configuration with voltage from each phase applied to a full-wave voltage doubler.

The outputs of each voltage doubler are connected in series to obtain 2400-2600 Vdc. I used three surplus transformers with 12-volt primaries and 170-volt secondaries. Other transformers can be used, and if the turns ratio is correct, voltage doublers aren't necessary. Regular 12-volt, 60-Hz filament transformers with a 220-volt winding can be used.

Applying 25-30 volts to a transformer rated at 12 volts can be alarming but because of the alternator output frequency, the impedance is acceptable, and the transformers will work well without any heating.

Although the alternator is rated at 7 volts output, the output voltage is dependent on the regulator. The regulator (fig. 3) sets the alternator output at 25-30 volts. The alternator works quite efficiently at the elevated output voltage. I've had no problems while running it this way. The field current must be taken into account, however, and the 5.6-ohm resistor (fig. 1) limits it to a safe value. I've test-loaded this power system at approximately 2400-2600 watts with no problems.

regulator

The regulator is a modified version of a circuit published several years ago. No battery is needed in this power system. Several regulator designs were tried and worked well; this is the one I like best. The alternator will usually self-excite when turned on, but if not a momentary push button switch will do it (S2, fig. 1).

This power system has been trouble-free and very dependable. Since the high power drain doesn't affect the automotive power system or its battery, rundown battery problems don't exist. I can run full power with this mobile setup for hours on end with no overheating or other problems. The limitation, of course, is that the engine must run at idle rpm or more to operate the linear.

installation

I mounted the power supply and linear amplifier in the car trunk and the regulator under the hood away from engine heat. If the antenna is bumper mounted, it must be well grounded. While transmitting with this high power, allow no one to touch the antenna — severe burns will result. Even the outside of the car can give rf burns.

While pulling into my drive one night I was surprised to see what I thought was lightning on a clear night.

By Don Winfield, K5DUT, 6080 Anahuac Avenue, Fort Worth, Texas 76114
fig. 1. Primary power source for the mobile linear amplifier uses a three-phase Leece-Neville alternator. Voltage from each phase is applied to a fullwave voltage doubler.

fig. 2. High-voltage supply. Outputs of each voltage doubler are connected in series to provide 2400-2800 Vdc for the mobile final amplifier. The system has been test loaded at 2400-2600 watts.

fig. 3. Power-supply regulator, which sets alternator output at 25-30 volts. The 5.6-ohm resistor in series with the alternator field (fig. 1) limits field current to a safe value.
The top of the antenna was touching low tree limbs as I transmitted, and the damp limbs drew arcs from the antenna, with one of the limbs smoldering and on fire. I've since learned to shut down when under trees with low limbs.

results

After everything is in place and working, what kind of results can be expected from a kW in the car?

DX stations such as D4, ZS, EL2, 6W8, XT2, H44, VR8, and TR8 have been worked with 5-9 or better reports from the 20-meter mobile. I've enjoyed many contacts with DX friends such as ZSGDN, FBEG, and VR3AR while driving to and from work. In my case, that's a 35-minute trip on the interstate usually with light traffic. Just right for a little mobile DXing.

During peak band conditions, reports are routinely received from both coasts of 30-40 dB over S9 and occasionally "pegging the S meter." Numerous comments such as, "You're too strong to be a mobile," have occurred. I usually honk the horn to convince the doubters.*

Other bands are worked also, and, what with the excellent conditions during the fall of 1979, the 10- and 15-meter band propagation was so good that the mobile was just as good as a fixed station. Many DX stations were worked on first call on these bands in pile-ups during this time. During the winter months, 75 meter DX is worked routinely into most areas of the world. I use CW from the mobile also. A memory keyer is a great help.

The biggest limitation to DX work from a mobile is the ability to receive. On today's crowded bands, with the nondirectional vertical, interference is a problem, as is noise while operating mobile in populated areas. Noise blankers help a great deal. The most common problem with the mobile occurs when a CQ is called. The average ham expects a mobile not to be too strong, and when he hears one calling CQ and answers him, he finds it hard to believe that the mobile can't copy his signal on a simple antenna.

I've enjoyed this mobile for about 1 1/2 years and can recommend mobile DX'ing as another means of enjoying ham radio. For a mobile station to be able to jump into a huge pileup on a rare station on 20 meters and come up with a contact is something that apparently never ceases to amaze the Big Guns at their multikilowatt stations with huge antennas scraping the clouds.

I'll be glad to help in planning your super mobile DX station on the receipt of a large, self-addressed stamped envelope.

*Using Morse code, of course. Editor.
Cocktail Party hosted by Ham Radio Magazine. Friday evening, for all exhibitors and SAROC registered guests.
Ladies Bingo and Program Saturday, included with SAROC registration.
Dunes Hotel Breakfast/Brunch. Saturday and Sunday included with SAROC registration.
Technical sessions and exhibits Saturday & Sunday, for SAROC registered guests.
Saturday and Sunday Hourly awards, main drawing Sunday afternoon.

Advance registration is only $16.00 per person if received before Dec. 20, 1980.

Enclosed is $ __________ check or money order (no cash) for __________ SAROC advance Registration @ $16.00 each, and __________ extra main drawing tickets @ $1.00 each maximum of ten.

OM ____________________ CALL __________ CLASS __________
YL ____________________ CALL __________ CLASS __________

Address ____________________ City ____________________
State __________ Zip __________ Telephone no. and A/C __________

I have attended SAROC __________ times. I plan to attend Friday Cocktail Party __________

I am interested in: ARRL. Cocktail Party. CW. DX. FCC. FM. MARS. RTTY, __________

I receive: CQ. HAM RADIO MAGAZINE. HAM RADIO HORIZONS. HR REPORT. QCWA. QST. RTTY. SPARKS/GAP. 73. WORLD RADIO. __________ Publications. Please circle the ones received.

Send check or money order to SAROC, P. O. Box 945, Boulder City, NV 89005
Refunds will be made if requested in writing and postmarked before January 1, 1981.
Special SAROC Dunes Hotel & Country Club room rate is $35.50, plus room tax, includes telephone. Send deposit and request direct to RESERVATIONS MANAGER, Dunes Hotel & Country Club, 3650 Las Vegas Blvd. South, Las Vegas, NV 89109 or call toll free 1-800-634-6971
Clip and mail to REGISTRATION, P. O. Box 945, Boulder City, NV 89005 before December 20, 1980.

OM CALL CLASS
YL CALL CLASS

SAROC Box 945 Boulder City, Nevada 89005
## 7 DIGITS 525 MHz $99.95 WIRED

### SPECIFICATIONS:
- **Range:** 20 Hz to 525 MHz
- **Sensitivity:** Less than 500 mV to 150 MHz
- **Resolution:** 1 Hz (5 MHz range)
- **Display:** 7 digits 0.4" LED
- **Time base:** 1.0 ppm TCXO 20-40°C
- **Power:** 12 VAC or 12 VDC

### PRICES:
- **MINI-100 wired, 1 year warranty:** $79.95
- **MINI-100 Kit, 90 day parts warranty:** $59.95
- **AC-Z AC adapter for MINI-100:** $3.95
- **BP-Z Nicad pack + AC adapter/charger:** $12.95

The CT-70 is the most versatile, feature packed counter available for less than $300.00! Advanced design features include: three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed. Also, a 10MHz TCXO time base is used which enables easy zero beat calibration checks against WWV.

### ADDITIONAL FEATURES:
- Deluxe features such as: three frequency ranges - each with pre-amplification, dual selectable gate times, and gate activity indication make the CT-70 the answer to all your measurement needs, in the field, lab or ham shack.

### PRICES:
- **CT-70 wired, 1 year warranty:** $99.95
- **CT-70 Kit, 90 day parts warranty:** $84.95
- **AC-Z AC adapter:** $3.95
- **BP-Z Nicad pack + AC adapter/charger:** $12.95

---

## 7 DIGITS 500 MHz $79.95 WIRED

### SPECIFICATIONS:
- **Range:** 20 Hz to 500 MHz
- **Sensitivity:** Less than 25 mV to 150 MHz
- **Resolution:** 1 Hz (60 MHz range)
- **Display:** 7 digits 0.4" LED
- **Time base:** 2.0 ppm 20-40°C
- **Power:** 120 VAC or 12 VDC

### PRICES:
- **MINI-100 wired, 1 year warranty:** $79.95
- **MINI-100 Kit, 90 day parts warranty:** $59.95
- **AC-Z AC adapter for MINI-100:** $3.95
- **BP-Z Nicad pack + AC adapter/charger:** $12.95

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat. Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate time modes let you select the resolution desired. Add the nicad pack option and the MINI-100 makes an ideal addition to your tool box for "in-the-field" frequency checks and repairs.

### PRICES:
- **CT-50 wired, 1 year warranty:** $159.95
- **CT-50 Kit, 90 day parts warranty:** $119.95
- **RA-1, receiver adapter kit:** $14.95
- **RA-1 wired and pre-programmed:** $29.95

---

## 8 DIGITS 600 MHz $159.95 WIRED

### SPECIFICATIONS:
- **Range:** 20 Hz to 600 MHz
- **Sensitivity:** Less than 25 mV to 150 MHz
- **Resolution:** 1 Hz (60 MHz range)
- **Display:** 8 digits 0.4" LED
- **Time base:** 2.0 ppm 20-40°C
- **Power:** 110 VAC or 12 VDC

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for the receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double duty!

### PRICES:
- **DM-700 wired, 1 year warranty:** $99.95
- **DM-700 Kit, 90 day parts warranty:** $79.95
- **AC-1, AC adapter:** $3.95
- **BP-3, Nicad pack + AC adapter/charger:** $19.95
- **MP-1, Probe kit:** $2.95

The DM-700 offers professional quality performance at a hobbyist price. Features include: 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large 3½ digit, ½ inch LED readout with automatic decimal placement, automatic polarity, overrange indication and overload protection up to 1250 volts on all ranges, making it virtually goof-proof! The DM-700 looks great, is a handsome, black plastic, rugged ABS case with convenient retractable tilt base that makes it an ideal addition to any shop.

### SPECIFICATIONS:
- **DC/AC volts:** 100uV to 1 KV, 5 ranges
- **DC/AC current:** 0.1uA to 2.0 Amps, 5 ranges
- **Resistance:** 0.1 ohms to 20 Megohms, 6 ranges
- **Input impedance:** 10 Megohms, DC/AC volts
- **Accuracy:** 10.1% basic DC volts
- **Power:** 4°C cells

---

### AUDIO SCALER

For high resolution audio measurements, multiplies UP in frequency.
- Great for PL tones
- Multiplies by 10 or 100
- 0.01 Hz resolution
- **$29.95 Kit / $39.95 Wired**

### ACCESSORIES

- **Telescopic whip antenna - BNC plug:** $7.95
- **High impedance probe, light weighting:** $15.95
- **Low pass probe, for audio measurements:** $9.95
- **Direct probe, general purpose usage:** $12.95
- **Tilt bali, for CT 70, 90, MINI-100:** $3.95
- **Color burst calibration unit, calibrates counter against color TV signal:** $14.95

### COUNTER PREAMP

For measuring extremely weak signals from 10 to 1,000 Hz. Small size, powered by plug-transformer-included.
- **Flat 25 db gain**
- **BNC Connectors**
- **Great for sniffing RF with pick-up loop:** $34.95 Kit / $44.95 Wired

---

**TERMS**

Satisfaction guaranteed. 10 days. If not pleased, return in original form for cash. Add 3% for shipping to a maximum of $10. Overseas add 15%. COD add $9. Orders under $10 add 5% NY residents, add 4% tax.
amplitude compandored sideband

Narrowband techniques for vhf mobile communications

It is obvious to most observers in larger metropolitan areas (New York, Los Angeles, Chicago, San Francisco) that saturation is beginning to occur on the 2-meter band. Even with the extra megahertz provided by the added repeater sub-band, with a total possible repeater population of 60 or so machines above 146 MHz, and 20 or so in the 144-145 MHz region, there are times when a ham population of 10,000 or more in such regions taxes these systems to their limit. Timers of 60, 40, or even 30 seconds are not really the answer.

If hams have been experiencing a problem, consider the plight of commercial users of vhf/uhf. It has been impossible for some time to obtain vhf licenses in many areas, and uhf channels are in short supply as well. Common carrier multiplexing schemes and/or 900-MHz channels have been proposed, but individual vhf/uhf or semi-shared channels have many advantages to the ultimate user, not the least of which is long-term cost.

Sideband use on vhf has long been used by Radio Amateurs (and the military). With the recent introduction of multi-mode 2-meter rigs, a surge in interest and activity has been sparked using this mode. Below fm threshold, SSB provides distinct advantages in sensitivity and range capabilities. Unfortunately, many of the convenience features of fm operation do not work with our current sideband transceivers, and the signal-to-noise ratio on stronger signals, as well as the audio bandwidth and quality, do not match the better fm rigs.

Recent developments promise to change the situation. In his report to the FCC after an extensive two-year research program into narrowband techniques for vhf land mobile,1 Dr. Bruce Lusignan of Stanford University’s Satellite Planning Center has come to some very interesting conclusions. By modulating a standard single-sideband transceiver with specially processed audio and processing the recovered audio through a similar system on the receive end, equal or even better performance can be obtained than when using NBFM. Because less than one-fifth the spectrum is required for equivalent channel-to-channel protection, five times as many stations can occupy the same spectrum space.

ACSB, or amplitude compandored sideband, combines several common techniques especially tailored for SSB. The system, developed by Dr. Lusignan in conjunction with Dr. Fred Cleveland of the University of the Pacific and VBC, Incorporated, features 4:1 amplitude compandoring, a pilot subcarrier system, and 12-dB/octave pre-emphasis/de-emphasis. The resultant ACSB system provides:

1. 50-70 dB adjacent channel protection using 5-kHz channels (as opposed to 20-25 kHz spacing for fm).
2. 10-dB power advantage due to both processing and bandwidth.
3. Automatic frequency locking and carrier identification.
4. Very rapid AGC (20 Hz) to greatly reduce mobile flutter.
5. A degree of quieting performance that, combined with its greater sensitivity, equals or exceeds normal fm.
6. Extended, reliable range by a factor of two, up to

By James Eagleson, WB6JNN, 280 Manfre Road, Watsonville, California 95076
description of a typical system

The microphone audio is first passed through a preamplifier to bring it up to the proper level for the compressor circuitry. It is then passed through the first of two 2:1 compressors so that the normally desired 40-dB dynamic range of speech is compressed into 20 dB.

This compressed audio is then mixed with a 2850-Hz pilot tone set -7 dB below peak audio output. Both signals are then passed through a second 2:1 compressor, which compresses the 20-dB dynamic range of the first compressor into a 10-dB dynamic range. As one might expect, the pilot tone will be reduced during voice peaks by the amount of gain reduction produced by the audio peaks. This works out to about 10-dB reduction of the pilot on voice peaks, or 17 dB below peak reference level. Obviously, if we were to monitor this signal at this point, very compressed audio with a high pitched tone would be heard.

The final processing technique is to pre-emphasize the speech at a rate of 12 dB per octave. This is done to equalize the inherent differences in power levels in human speech, which tends to be concentrated in the low frequency areas.

The processed signal is transmitted on an otherwise standard single-sideband transmitter. It is also received on a standard single-sideband receiver using its normal AGC techniques (perhaps modified slightly to complement ASCB characteristics).

The received signal is passed through an AGC-controlled audio stage, which is controlled by a detector tuned to the pilot tone frequency. Its time constant is set very fast so that up to a 20 Hz-per-second change in input signal will be kept nearly constant in output level. Additionally, as a reduction in pilot level will cause an increase in output level, the suppression of the pilot in the second transmit amplitude compressor will be translated by the pilot AGC system into expansion at the same rate. Thus, a strong signal with no modulation will be quieted by the presence of the pilot signal. As the pilot is at its peak when there is no modulation, maximum quieting will occur.

After processing by the pilot-derived AGC, the leveled, expanded signal is again passed through a 2:1 expander. The pilot-derived expansion restores the 20-dB dynamic range from the transmitted 10-dB dynamic range signal. The second expander restores the original 40 dB dynamic range from the 20-dB pilot-derived expansion. The resulting audio is then processed through a 12-dB per octave de-emphasis filter to restore the original frequency response.

ACSB, then compresses 40 dB of speech information into a dynamic range of 10-dB, transmits it, then restores the 40-dB dynamic range at the receiving end of the system. This means that a signal-to-noise ratio of just over 10-dB is all that is required for an effective restored dynamic range (signal dynamics and signal-to-noise) of 40 dB. Additionally, a 2:1 quieting curve is established due to the constant presence of the pilot tone in the AGC and pilot expander receiver circuits.

A close look at the dynamics of ACSB will show that a carrier-to-noise ratio of only 5 dB will provide the equivalent of 20 dB quieting (to use fm terminology). Indeed, a 10-dB carrier-to-noise will give almost the full 40 dB dynamics and signal-to-noise we started with, except for the addition of a few dB of noise due to proximity to the noise floor. This certainly explains the weak signal superiority of this mode.

Dr. Lusignan estimates that ACSB has about a 15-dB advantage over normal SSB (he assumes 20-22 dB signal-to-noise is required for “high intelligibility”... all consonants audible). It also has a bandwidth advantage over fm, giving less interference from impulse noise (ignoring fm limiting) and higher signal-to-noise for a given power level at the receiver. This combination provides the measured 10-dB advantage of ACSB over 5-kHz deviation fm.

ACSB and NBFM comparison

Dr. Lusignan’s report to the FCC compares ACSB with NBFM as follows:

Signal to noise. ACSB shows a 10-dB advantage over fm at equal peak power levels.

Power required. ACSB requires 1/10th the power of fm for equal signal to noise. Additionally, ACSB requires 1/3 to 1/2 the average power of fm when the transmitters have equal peak output power, since the unmodulated output of ACSB is 7 dB less than its peak output.

Range. ACSB provides a reliable range equal to twice the fm range at distances up to 25 miles (40 km). Beyond 25 miles (40 km) this is reduced to 1.5 times due to the earth’s curvature, which then becomes the limiting factor.
During 8-watt PEP tests, simultaneously transmitting ACSB and fm combined on a common transmitting antenna and receiving on an ACSB and fm receiver fed from a common receiving antenna, the fm signal was lost in the south San Jose, California, area, while the ACSB signal was lost near Gilroy, California—some 16 miles (26 km) and 35 miles (56 km) from the Stanford transmitting site respectively.

Fading/multipath noise bursts (kerchinking). Field tests and bench tests show ACSB burst noise is 10 dB less than fm burst noise. Additionally, ACSB should be less prone to multipath distortions due to its narrower bandwidth and lack of sensitivity to phase relationships.

Message completion. ACSB is 3-5 times more reliable at a 9-mile (15-km) range than fm at equal power levels. ACSB at this range gives an 85 per cent completion rate compared with fm's 20 per cent rate.

Co-channel protection. On-channel rejection is 2-3 dB better with ACSB than with fm. Capture ratio for ACSB is about 5 dB compared to 7-8 dB for fm.

Adjacent-channel rejection. At 5-kHz spacings, ACSB provides 50-70 dB rejection of adjacent channel interference (depending on linearity and frequency stability). Fm at 25-kHz channel spacing yields 65-75 dB; at 20-kHz spacing it yields 55-65 dB. According to the report, the protection of 50 dB is sufficient, because other factors (intermodulation, co-channel interference) become equally problematic beyond this point.

"In typical applications the probability of loss from adjacent channel transmissions compared with 50 dB isolation is negligible compared with ... shadowing or co-channel transmissions. Increasing ... from 50-70 dB would not result in a noticeable change in the probability of successful transmissions."

Stability requirements. The ACSB system developed by VBC, Incorporated, for this study will automatically lock signals that are ±800 Hz from the center of the channel. At 160 MHz this is not outside normal stability for current fm equipment.

Digital transmissions. ACSB can handle up to 4 Kb/second in the main 2-kHz audio channel as well as about 20 b/second superimposed on the pilot carrier.*

Doppler shift in mobile service. The AFC circuit will control Doppler shifts normally encountered at all frequencies through 900 MHz (±800 Hz).

Fm/ACSB shared channels. It is possible to use ACSB and fm from a common repeater site providing the two channels are separated by 12.5 kHz. That is,

*Experiments with wider audio bandwidths (up to 3 kHz) are in progress. This should increase digital rates as well as improve audio fidelity.
an fm repeater could also provide two ACSB channels each 3 kHz wide centered 15 kHz away without interference from the ACSB channels to the main channel. (This might be a solution to the 15-kHz split situation on 2 meters between 146-148 MHz, for example.)

**hardware**

Commercially available LSI chips that perform all ACSB functions should be available in one to two years, depending on FCC action, market acceptance, and other normal factors relating to volume and production. In the meantime, experiments with ACSB Level 1 is within easy reach of the experimentally inclined ham. The Signetics NE 570/571 Compandor IC is available from Jameco Electronics, 1021 Howard Ave., San Carlos, California 94070. Their price is $4.95 (1980 catalog), but they also have a $10.00 minimum.

The NE570, an LM324 op amp, and an rf-tight box will allow everything necessary for 2:1 compandoring with pre-emphasis/de-emphasis. My own experimentation shows a marked improvement on all but the weakest signals (signals under 4-5 dB signal-to-noise ratio show no apparent improvement, even though background noise with no signal will be improved). The block diagram on the preceding page is recommended as a starting point.

**conclusion**

Out here in the west we like to talk about the wide open spaces. Well, you can still drive to those wide open spaces. Well, you can still drive to those wide open spaces without too much effort. In the crowded city, however (and we do have some crowded cities), one soon learns that it is best to give one’s neighbor plenty of elbow room whenever possible. On vhf, ACSB promises a good way to do just that.

**reference**


**bibliography**


**ham radio**
first building blocks
for microwave systems

Simple and stable
1152-MHz multiplier chain for Amateur microwave bands

There is an apparent abundance of commercially built high-frequency and vhf equipment available, little of which is adaptable for use above 1 GHz. Purchased equipment may be used to provide a 1296-MHz station (generally a varactor tripler driven by a 432-MHz transmitter, and a relatively high-noise-figure receiving converter with no rf preamplification). It’s virtually impossible to purchase any station equipment specifically designed for weak-signal communications above 1296 MHz. Thus far only the most intrepid experimenters have ventured above 1296 MHz, generally hand-in-hand with a master machinist and expensive power tools (lathes and the like).

All is not lost, however. Because of two interesting factors, building a microwave station is now possible for most experimenters willing to spend a few evenings etching PC boards and soldering components. That’s right — no more machinists, at least not for 1296-MHz and 2304-MHz equipment.

frequency relationships

The first factor to help resolve the microwave dilemma lies in the arithmetic of our microwave bands. Within all our bands above 1300 MHz is at least one frequency that is a multiple of that “magic number” — 1152 MHz. Even 1296 MHz is related to 1152 MHz. The former frequency was originally selected for weak-signal work because it is the third harmonic of 432 MHz and therefore can be obtained by tripling. A difference frequency of 144 MHz exists between 1296 and 1152 MHz, which becomes the receiving i-f. Note also that 1152 MHz is the eighth harmonic of 144 MHz. The relationships between the 1152-MHz magic number and weak-signal frequencies in our uhf and microwave bands are listed in table 1 and graphically illustrated in fig. 1.

low-order frequency multiplication

Another interesting mathematical feature is that the frequency of 1152 MHz can itself be generated by a chain of low-order (and therefore relatively good efficiency) multipliers. This chain, made up only of frequency doublers and/or frequency triplers, allows filtering to reduce undesired (spurious) signals at the multiplier-chain output. Many writers have insisted that starting frequencies be in the range of about 50-100 MHz to avoid producing undesired harmonics in the 144-MHz and/or 432-MHz bands. This requires an overtone crystal. As the frequency of such crystals is notoriously difficult to pull, a variable-crystal-frequency source was developed that allows use of

By Geoffrey H. Krauss, WA2GFP, c/o UHF Electrospecialties, Inc., 16 Riviera Drive, Latham, New York 12110
crystals operating in the fundamental mode, below about 20 MHz.

One optimum chain (shown by the heavy-bordered boxes in fig. 2) thus starts at 16 MHz, triples to 48 MHz, doubles to 96 MHz, doubles a second time to 192 MHz, doubles a third time to 384 MHz, then triples to 1152 MHz. The use of this chain requires that the unwanted third harmonic of 48 MHz be very greatly attenuated. If present, the third harmonic will fall into the low end of the 2-meter band (at the weak-signal EME portion around 144.000 MHz). Radiation of any significant amount of energy at that frequency will tend to irritate neighboring 2-meter CW operators. In a vhf-contest environment, the third or ninth harmonics may very well QRM your own 2-meter or 70-cm station. These two undesired harmonics, however, appear to be the only problem harmonics. The ability to suppress undesired harmonics is enhanced by proper partitioning of the multiplier chain. The basic-frequency (for example 16-MHz) oscillator and only a few of the total number of multipli-

<table>
<thead>
<tr>
<th>band (MHz)</th>
<th>desirable frequency (MHz)</th>
<th>multiplier by mixer</th>
<th>by multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1240-1300</td>
<td>1296</td>
<td>1152 + 144</td>
<td>432 × 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108 × 2 × 2 × 3</td>
</tr>
<tr>
<td>2300-2450</td>
<td>2304</td>
<td>(1152 × 2) + 144</td>
<td>1152 × 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102 × 2 × 2 × 3 × 2</td>
</tr>
<tr>
<td>3300-3500</td>
<td>3456</td>
<td>1152 × 3</td>
<td></td>
</tr>
<tr>
<td>5650-5925</td>
<td>5760</td>
<td>1152 × 5</td>
<td></td>
</tr>
<tr>
<td>10,000-10,500</td>
<td>10,368</td>
<td>1152 × 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1152 × 3 × 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 3</td>
<td></td>
</tr>
<tr>
<td>24,000-24,250</td>
<td>24,192</td>
<td>1152 × 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1152 × 3 × 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 7</td>
<td></td>
</tr>
<tr>
<td>48,000-50,000</td>
<td>48,384</td>
<td>1152 × 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1152 × 3 × 7 × 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24,192 × 2</td>
<td></td>
</tr>
<tr>
<td>71,000-76,000</td>
<td>72,576</td>
<td>1152 × 63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1152 × 3 × 7 × 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 7 × 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,368 × 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24,192 × 3</td>
<td></td>
</tr>
<tr>
<td>165,000-170,000</td>
<td>169,344</td>
<td>1152 × 147</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1152 × 3 × 7 × 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24,192 × 7</td>
<td></td>
</tr>
<tr>
<td>240,000-250,000</td>
<td>241,920</td>
<td>1152 × 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3456 × 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48,384 × 5</td>
<td></td>
</tr>
</tbody>
</table>
ers are packaged in a low-frequency building block. The remainder of the multipliers are packaged in a separate, second building block. The low-frequency block output may then be made to have very low levels of signals at undesired frequencies.

The second important factor is the present-day ability to generate the desired 1152 MHz signal in a practical manner from a lower frequency driving signal. In this regard, great thanks should be given to Paul Shuch, N6TX, for his design of a PC board 96-1152 MHz multiplier unit. This microstrip unit, for which a printed circuit board and set of tuning capacitors are available from N6TX, was apparently designed to replace a multiplier chain using a packaged oscillator, at 96 MHz, driving a pair of 2N5179 transistor frequency doublers to 384 MHz; a pair of 2N3866 power amplifiers, providing several hundred milliwatts at 384 MHz; and a step-recovery-diode tripler to provide about 5 milliwatts at 1152 MHz. Having built three such frequency-multiplier chains, I must concur with the general undesirability of vhf multipliers using step-recovery diodes.

The replacement of the entire 96-1152 MHz chain with three stages of transistor multipliers (using the Motorola MRF 901) results in a great saving of time, labor, and parts cost. I’ve built several of the 1152-MHz sources (described later in this article) as well as a 1296-MHz solid-state transmitter, based on the microstrip multiplier of reference 1, and have selected that basic design for the 96-1152 MHz portion of this common microwave system. While some may desire to be purists and design all their equipment themselves, I believe that judicious use of the contributions of others often makes for the best (and the most rapid) attainment of the end goal: to get as many stations on the microwave bands as quickly and inexpensively as possible.

96-MHz VXS

As mentioned, the N6TX unit was designed for use with a fifth-overtone oscillator, which is replaced with the variable-crystal-frequency source (VXS) shown in the block diagram of fig. 3. I’ve arbitrarily chosen a tuning range, at 2304 MHz, of 2303.928-2304.086 MHz.
MHz, corresponding to an oscillator frequency range of 15.9995-16.0006 MHz (therefore, an 1100-Hz range at 16 MHz gives a 158.4-kHz range, when multiplied 144 times, to frequencies around 2304 MHz). This requires that the crystal frequency be pulled about 0.0066 per cent, which certainly can be achieved with almost any fundamental crystal.

The crystal frequency was chosen as 16,001 kHz with 20 pF parallel capacitance, and thus is slightly higher than the nominal 16,000-kHz frequency. By paralleling the crystal with a bit more capacitance, provided by the main tuning capacitor C1 and its series and shunt band-setting capacitors C2 and C3, the desired frequency range can be realized. The schematic of the 96-MHz variable-crystal-frequency source is shown in fig. 4, the PC-board layout is shown in fig. 6, and the parts placement in fig. 7.

PNP transistor Q1 is the crystal-controlled oscillator, driving a frequency tripler, Q2. Transistor Q3 is a 48-MHz buffer, Doubler Q4 and a tuned buffer, Q5, at 96 MHz, follow. The 96-MHz output filter is a double-tuned bandpass configuration. An additional double-tuned bandpass filter (fig. 5) may be used at the high-frequency multiplier block or placed in a separate shielded box outboard of the source and multiplier blocks to provide an additional 20 dB suppression of the undesired signals provided by the VXS. The tuning range, with the components listed, is sufficient to allow the VXS to be used with crystals between 15-18 MHz. In the first case (15-MHz crystal) the final multiplier output is 1080 MHz, which is used for doubling to 2160 MHz. This frequency is used for local-oscillator output in 2304-MHz receiver converters with a 144-MHz i-f. The 18-MHz crystal produces a final multiplier output of 1296 MHz for use in exciters in the 23-cm band.
fig. 6. PC-board layout for the VXS-96 microwave signal source.

fig. 7. Component side of the VXS-96 board (copper side). Mount all variable caps on this side; all other components are mounted on the reverse side.
some other uses

The output of the VXS can be:
1. Set to 116 MHz (by using a 19.334-MHz crystal) for use as a 2-meter local oscillator.
2. Used with a frequency doubler to generate a 192-MHz signal for use as a 220-MHz local oscillator.
3. Set by a 16.834-MHz crystal to provide a 101-MHz signal for input to a cascaded pair of frequency doublers to generate a 404-MHz local-oscillator signal for use in 70-cm equipment. (See fig. 9.)

In the VXS schematic of fig. 4, both crystal leads are above ground in the circuit. This might be a problem if crystal switching is desired. For higher stability the crystal will be placed in a thermally isolated environment (such as a crystal oven positioned above the PC board or in a block of styrofoam).

shielding considerations

Note, in fig. 8, that pieces of double-clad PC board form three shield partitions, A, B, and C, directly soldered to the copper-clad side of the PC board. A similar partition, D, is soldered to a PC-board case built around the entire board above shield A (between the oscillator and the multiplier stages) for added attenuation of oscillator harmonics. The oscillator is enclosed in a shielded compartment separated from the tripler-buffer area, which is separated from the doubler-buffer area. The output filter is in its own compartment, shielded from all oscillator, frequency multiplier, and buffer stages.

The VXS circuit also includes a high degree of power-supply decoupling. An IC voltage regulator, U1, provides a constant voltage to the circuit; this is necessary not only to prevent oscillator frequency changes with varied input voltage (in my case, from the battery in my automobile during mobile operation from any convenient mountaintop), but also to keep all transistors operating at fixed biased points, which causes the transistor input and output impedances to be stabilized. This stabilization of device impedances prevents changes in tuning with changing input voltage and contributes to the overall spectral purity of the VXS output signal. Note the use of a BNC connector for the rf output of the source, and the use of a feedthrough capacitor to bring the voltage into the VXS enclosure. Both components are used to maintain the shielding integrity and provide minimum amplitude of undesired signals.

Also note that the voltage regulator IC, U1, and the associated resistors, R24-R28, and capacitors C36-C38 are mounted on a wire-wrap 18-pin IC socket, with the end pins on either side extending full length and soldered to the inside of the case. The remaining 14 pins are bent at right angles, close to the bottom of the socket; the regulator-circuit resistors and capacitors are soldered between the bent pins. See fig. 10.

spectrum analysis

The VXS is aligned by using any of the well-known

---

fig. 8. Shield, side, and end pieces for the VXS constructed from double-clad PC-board stock. Covers (top and bottom) are 3¾ x 6¼ inch (8.25 x 15.9 cm) PC-board pieces.
tuning procedures including: a) monitoring the emitter or collector current of the stage following the stage you're tuning for an increase in current, and b) using a test receiver, grid-dip meter and so forth. If a spectrum analyzer is available (and its use is highly desirable although not mandatory) an output signal spectrum similar to that shown in fig. 11 may be obtained. In fig. 11, spectrum (A) is for the basic circuit, built on the circuit board, but without the output filter (L5, L6, C10, C11, and C13). Note that the second harmonic is at a level of only \(-14\) dBc (dB below the desired carrier, at 96 MHz). Adding the output filter, but without shielding, typically provides the (B) spectrum, wherein the greatest-amplitude undesired signal is still the second harmonic, now suppressed to a level of \(-40\) dBc. Adding the shields and a shielded box (fig. 8) results in the (C) spectrum (shown in solid lines in fig. 11). With the shields and shield box, the greatest-amplitude undesired signals are those spaced above and below the desired signal by the fundamental frequency; for example, at 80 and 112 MHz.

With the use of the outboard additional filter (labeled BPF-96) the only signals found, up to 1500 MHz, are as shown in spectrum (D):

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>16-MHz harmonic</th>
<th>96-MHz harmonic</th>
<th>attenuation (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>5</td>
<td></td>
<td>(-77)</td>
</tr>
<tr>
<td>112</td>
<td>7</td>
<td></td>
<td>(-79)</td>
</tr>
<tr>
<td>192</td>
<td>12</td>
<td>2</td>
<td>(-70)</td>
</tr>
<tr>
<td>288</td>
<td>18</td>
<td>3</td>
<td>(-70)</td>
</tr>
<tr>
<td>480</td>
<td>30</td>
<td>5</td>
<td>(-74)</td>
</tr>
</tbody>
</table>

Minor signals occur at the 65th, 66th, and 67th harmonics of the crystal frequency (16.001 MHz), with respective amplitudes of \(-73\), \(-75\), and \(-76\) dBc.

Even with the additional two-section BPF-96 filter, the desired 96-MHz output has a level of 16 dBm (40 milliwatts). Because a significantly lower level, on the order of 0 dBm (1 milliwatt), is required for driving the first doubler in the high-frequency multiplier circuit, additional bandpass filters, or a lowpass filter having a cutoff frequency on the order of 150 MHz, could be easily used. Note that the presence of the second and third harmonic of the desired output signal is not particularly troublesome, since these frequencies will be generated in subsequent multiplier circuitry anyway.

To achieve the required \(Q\), the on-board double-tuned bandpass filters use air-wound rather than
lower-Q toroidal inductors. It is probable, because of the relatively high insertion loss of the bandpass filter sections, that the filters are not completely optimized. However, the ability to provide easily tuned filters using low-cost components was deemed more important than squeezing out an additional few dB of harmonic rejection. Whether or not additional filtering is used, at least 10 dB of attenuation (a T-pad with 22-ohm series arms and a 33-ohm shunt arm) is used at the N6TX high-frequency multiplier board input to ensure that a relatively constant output terminating impedance appears, as well as to reduce the drive level. (I’ve burned out several MRF 901s but haven’t harmed any 2N5179s, in the first doubler stage, with only 6 dB attenuation.)

I prefer the 2N5179 in this stage with an increase in the tuning capacitance of the 192-MHz circuit; this is especially advantageous because the 2N5179 is not only less expensive but is also more readily available than the MRF 901. Of course, any change in terminating impedance can detune the filter or filters and reduce the ultimate suppression of undesired harmonics. Similarly, the ultimate suppression of harmonics of the 1152-MHz signal is a function of the suppression provided by the N6TX circuit and any additional filtering applied thereafter. See fig. 13.

construction

After building the basic PC board of fig. 6 and drilling all component mounting holes, mount the crystal socket on the non-copper side of the board with 4-40 (M3) by 0.37 (9.5 mm) screw, lockwasher and nut. If a crystal oven is to be used, don’t mount the crystal socket but wire the oven crystal leads to the appropriate PC-board pads after assembling the board and mounting the crystal oven on it. Before mounting the components, solder the two box sides, cut as shown in fig. 8, to the long edges of the PC board. About 1-1/2 inches (38 mm) of the sides extend above and below the plane of the circuit board. A hole for the feedthrough capacitor and for the BNC connector can be drilled in the appropriate side, either before or after soldering.

Solder shield A between the two sides and also to the copper-clad PC-board side. The counterpart of shield A (shield D in fig. 8) is positioned against the non-copper side of the PC board and soldered to the pair of opposed box sides. At this side, all components should be mounted to the PC board. Variable capacitors C2-C12 are soldered to the copper pattern on the bottom of the board, while all remaining components are mounted from the top (non-copper bearing) surface of the board.

After installing all components, carefully mount shield B then shield C before soldering the end pieces between the two sides and to the ends of the PC board. A hole may be drilled in the end piece, at the oscillator end of the board, for tuning capacitor C1. However, if the VXS is to be used as a fixed-frequency source, in which capacitor C1 is merely adjusted to set the output to a particular frequency and not to be continuously tuned (as in setting a local-oscillator frequency in a receiver), then capacitors C1 and C2 are dispensed with; frequency is adjusted with C3. Note that output filter inductors L5 and L6 and the 48-MHz trap inductance L7 are also mounted beneath the PC board. The voltage regulator IC socket, with its components, can now be mounted by soldering to one copper side piece, as shown in fig. 10.

tune up

Tack solder the top cover to all four sides, but don’t completely solder. Install the crystal in its socket and apply at least +12 but less than +20 volts to the B+ feedthrough. Note the voltage at regulator pin 3 (which will be pin 4 of the socket, since pin 1 is attached to ground). The regulator output voltage should be between +8.5 and +9.1 volts dc.

![fig. 13. Output spectra of the N6TX multiplier block using the VXS/BPF circuits.](image-url)
current into the box will be no more than about 75 milliamperes and will probably be considerably less at this time. The base lead of Q2 can be monitored for a 16-MHz signal, indicating that the oscillator is working. Monitor the base lead of Q3 with a 48-MHz rf indicator and tune C4 for maximum rf voltage. Shift the rf indicator to the base lead of Q4 and tune C5 and C6 for maximum voltage at 48 MHz. Retune the indicator to 96 MHz and monitor the base of Q5; tune C7, then C6 and C5, for maximum voltage.

Move the monitor to the tap of filter coil L5 and tune C8 and C9 for maximum voltage. Now connect the monitor to the output connector and tune C10, C11 for maximum output. Then retune C9, C8 for maximum 96 MHz signal. Note that a commercial fm receiver, with carrier-strength meter, may be used for the 96 MHz monitor indicator.

After tuning the bandpass filter for maximum 96-MHz signal, reset the tuning monitor to 48 MHz and adjust C12 for minimum 48-MHz signal. The outboard filter can now be tuned, if used, for maximum 96-MHz signal. As indicated previously, if you can beg or borrow a spectrum analyzer, set the analyzer to display the spectrum from at least 15 MHz to at least 150 MHz (and preferably to at least 500 MHz). Finely adjust C4-C11 several times in sequence for best suppression of undesired harmonics while maintaining the desired 96-MHz signal at a reasonable maximum.

Capacitors C6 and C9, especially, are used to adjust the symmetry of the amplitudes of the undesired fifth and seventh harmonics of the crystal oscillator next to the desired sixth-harmonic signal at 96 MHz. Capacitor C12 has some effect on the tuning of C7. Furthermore, if you use a spectrum analyzer, the 68-k resistor in the voltage regulator circuit may be replaced with a 25-k pot in series with a 56-k fixed resistor, and the pot will vary the circuit voltage. Varying the regulated voltage will often allow you to find a specific voltage at which maximum harmonic suppression is achieved, although power output will change [but, as previously mentioned, it isn't particularly important so long as at least 20 milliwatts (+13 dBm) are available at the attenuator input to be added to the N6TX multiplier].

multiplier modifications

The N6TX multiplier board (fig. 12) is modified by removing the 9.1-volt zener, the 0.01-μF capacitor in parallel with the zener, and the 180-ohm resistor to the zener (not shown). A 27-ohm, 1/8-watt resistor is soldered from the base lead of the first multiplier transistor to the circuit trace that was the unit oscillator B+ line. A 39-ohm resistor is soldered from the B+ trace to ground, and one end of another 27-ohm resistor is also soldered to the B+ trace. The other end of the second 27-ohm resistor is soldered to the outer conductor of a piece of RG-174 coaxial cable, whose shield is soldered to multiplier ground.

A coaxial cable is connected from the input of the outboard bandpass filter, if used, to the BNC connector on the VXS. If transistor Q1 of the multiplier is a 2N5179 transistor, tuning capacitor CT, on the collector side, should be increased from 1 to 5 pF. The original C1 capacitor (at the first doubler input and unit oscillator output) is no longer needed.

The multiplier should be tuned in the same manner as specified by N6TX in his article. I’ve found that the tripler input and three output filter capacitors should be the suggested Triko 202-08M, although the pair of 384 MHz tuning capacitors may have to be increased to 2-10 pF, to adequately tune the modified multiplier board. Fig. 13 illustrates the output spectra of the modified multiplier block when driven with the VXS and 96-MHz outboard bandpass filter.

Some uses of the VXS and multiplier blocks are shown in figs. 14 through 17. In fig. 14, one possible way that high transmitting power may be economically realized within the next several years in the 2300-2450 MHz band will probably be by use of microwave oven magnetrons (a magnetron being es-
eventually design, or design around, a circulator for this frequency and power level, allowing an injection-locked, high-power source to be realized. Fig. 15 is a phase-locked 1152-MHz subsystem that will provide a highly stable signal for multiplication into any of the 13-cm, 9-cm, or 5-cm bands.

Fig. 16A is a keyed 1152-MHz source having about

![Image of a phase-locked 1152-MHz subsystem block diagram that provides a highly stable signal for multiplication into the 13-cm, 9-cm, or 5-cm bands.](image-url)
COUPLER CIRCULATOR
IF GA: 2Od.3. ERP = 5W 30dB. ERP = SOW
TYPICAL 9, 6, OR 3m FRONT END
COUPLER IF SRO 4.
24. f9ZMHr AT lodem x7.
-1OdB I LI - INSERTION LOSS
1/10th watt output, while fig. 16B shows its output spectrum (only a single spurious output at slightly more than 70 dB below the carrier). Fig. 16C shows a direct-conversion transceiver using the source of fig. 16A. Fig. 17 shows other microwave source configurations, all based upon multiplication of the 1152-MHz signal.

summary

All of our microwave bands have one frequency that's related to 1152 MHz. By building a power source at 1152 MHz, multiplication to the microwave bands becomes possible. A relatively simple, yet stable, 1152-MHz chain is necessary; one such chain is described. The power amplifier, producing 100 milliwatts at 1152 MHz, is an adaptation of a circuit designed by Dick Frey, WA2AAU. Simple frequency doublers and receiving mixers for 2304 MHz have been described in many articles (check your ham radio and QST indexes). Thus it's possible to find easily built components for 2304 MHz right now.

Higher-frequency blocks and subsystems are being worked on, and further results, from this writer or others, should be forthcoming.

acknowledgments

I would like to thank Dick Frey, the other half of the present Mt. Greylock microwave gang, for his help and encouragement; all the local microwave people for their interest; and my four-year-old son, Jeremy, and nine-year-old daughter, Alyssa, for helping to mount parts onto PC boards and for tuning and measuring.

references

90 WATT AMPLIFIER: $79.95!

That's right — 90 watts of linear power for 2 meters for only $79.95. Check out the VJ90SSB Power Chart, and you'll see the real value — 8 watts out for one watt drive, 16 out with two watts drive! Now you can put that new HT to mobile use, for only $79.95. As a special deal, we've designed a 19dB gain in-line preamp with integrated T/R relay. A $29.95 value, for only $20.00 when purchased with the VJ90SSB Amplifier.

But that's not all! We've built a 15 amp (20 amp surge) 13.8VDC power supply just for this combo, the VJ15. When you buy the VJ90SSB and Preamp, we'll sell you this super power supply for only $79.95. It all adds up to over $225.00 worth of gear for only $179.90. Don't wait. Order Today!

Each VJ Product component is hand wired and individually tuned for maximum reliability and performance. VJ Products are guaranteed to be free of defects in parts or workmanship for 1 year from the date of purchase. POWER TRANSISTORS ARE EXCLUDED. BUT WARRANTED FOR 90 DAYS. Visa accepted. Immediate shipment guaranteed by VJ Products, Inc.

VJ90SSB

THE WORLDS FIRST
1800 CHANNEL FULLY SYNTHESIZED
COMPACT VHF FM MONITOR

AR-22
FACTORY DIRECT
PRICE $125.00

FULL BAND COVERAGE
141.000-149.995 MHZ
5 KHZ Steps by digital switches.

SLIM SIZE AND LIGHT-
WEIGHT.
5¾”(H) x 2¾” (W) x 1”(D)
7.1 oz with NiCd Battery Pack

COMMERCIAL BAND TYPE (151-159 MHZ) IS ALSO AVAILABLE.

ACE COMMUNICATIONS, INC.
2832-D Walnut Avenue, Tustin, California 92680
Phone (714)454-8281

NOW, ADJUST YOUR D104 WITH ONE FINGER!

The Fingertip Volume Control makes it simple — without screwdrivers, nail files or special tools.

NO DRILLING! NO SOLDERING! NO CUTTING!

Remove the stock bottom plate, screw on the Fingertip Volume Control, adjust with one finger, and talk. It's that simple.

THE QUALITY UNIT!
Rugged black Cyclocal with aluminum look dial is both durable and attractive. No-scratch rubber feet protect fine furniture.

FITS THEM ALL!
The Fingertip Volume Control fits all TUGB, TUG9, and TUP9 D104 microphones, including the Golden Eagle, Silver Eagle, and Blackfoot models. Complete instructions and hardware included.

SATISFACTION GUARANTEED!

URBAN ENGINEERING, INC.
P.O. Box 571052
Miami, Florida 33157

Yes, please send me ______ Fingertip Volume Control(s) at $7.95 plus 80 cents postage and handling each (Florida residents add 4% tax). I understand that if I am not completely satisfied, I can return the unit(s) within ten days for a full refund.

Name (please print)
Address
City/State/Zip

My check is enclosed, please ship within 14 days
I have enclosed a money order for immediate shipping
Charge my credit card: □ Visa □ Master Charge

Card No. ____________________________
Exp. Date ____________________________
Sig. ____________________________
TS-180S with DFC

High quality...top performance, with optimum features

The top-of-the-line TS-180S all solid-state HF SSB/CW/FSK transceiver with DFC (Digital Frequency Control) provides maximum performance and efficiency for every amateur.

**TS-180S FEATURES:**
- All solid-state. 200 W PEP/160 W DC input on 160-15 meters, and 160 W PEP/140 W DC on 10 meters. Adaptable to three new bands.
- Dual SSB filter (optional) to improve selectivity, reduce noise, and improve RF speech-processor operation.
- Digital Frequency Control (DFC), including four memories with digital up/down paddle-switch tuning in 20-Hz steps. Memories operate in transceiver or split modes. (Also available without DFC.)
- IF shift (passband tuning).
- Built-in digital display with differential frequency. Shows actual VFO frequency and difference between VFO and “M” memory (or “hold”) without DFC frequencies.
- Selectable wide and narrow CW bandwidth.
- Tunable noise blanker.
- RF AGC.
- Automatic selection of upper and lower sideband (with SSB NORMAL/REVERSE switch).
- Dual RIT (VFO, memory/fix).

**OPTIONAL ACCESSORIES:**
- PS-30 base-station power supply.
- SP-180 external speaker with selectable audio filters.
- VFO-180 remote VFO.
- AT-180 antenna tuner/SWR and power meter/antenna switch.
- DF-180 digital frequency control for TS-180S without DFC.

- YK-88C (500 Hz) and YK-88CN (270 Hz) CW filters.
- YK-88S SSB filter for dual IF filter system.

---

TS-520SE

"Cents-ability" in a quality 160-10 meter SSB/CW rig

The TS-520SE is an economical, full-featured 160-10 meter transceiver, found in more ham shacks than any other rig.

**TS-520SE FEATURES:**
- 160-10 meters...and receives WWV on 15 MHz.
- 200 W PEP (SSB)/160 W DC (CW) input on all bands.
- CW WIDE/NARROW bandwidth switch for use with optional 500-Hz CW filter.
- Speech processor for extra audio punch.
- Effective noise blanker.
- 20-dB RF attenuator.
- RIT (receiver incremental tuning) control.
- Digital display with optional DG-5, showing actual operating frequency while transmitting and receiving.
- Eight-pole crystal filter for excellent selectivity.
- Built-in 25-kHz calibrator, adjustable to WWV.
- VOX and semi-break-in CW with sidetone.
- Built-in speaker.
- Solid-state, with tube driver and final.
- Amplified-type AGC circuit.
- Amplified-type ALC.
- Front-panel carrier level control.

**OPTIONAL ACCESSORIES:**
- SP-520 external speaker.
- DG-5 digital frequency display and 40-MHz counter.
- VFO-520S remote VFO.
- CW-520 500-Hz CW filter.
- AT-200 antenna tuner/SWR and RF power meter/antenna switch.
TR-7800

“Easy selection”... 15 memories/offset recall, scan, priority, DTMF (Touch-Tone®)

Frequency selection with the TR-7800 2-meter FM mobile transceiver is easier than ever. The rig incorporates new memory developments for repeater shift, priority, and scan, and includes a built-in autopatch Touch-Tone® encoder.

TR-7800 FEATURES:
* 15 multifunction memory channels, selected with a rotary switch. M1-M13... memorize frequency and offset (±800 kHz or simplex). M14... memorize transmit and receive frequencies independently for nonstandard offset. M0... priority channel, with simplex, ±600 kHz, or nonstandard offset.
* Internal backup for all memories, by installing four AA NiCd batteries (not Kenwood-supplied) in battery holder.
* Priority channel (memory “0”) and priority alert.
* Covers 143.900-148.995 MHz. in 5-kHz or 10-kHz steps.
* Built-in autopatch DTMF (Touch-Tone®) encoder.
* Front-panel keyboard for selecting frequency, transmit offset, and autopatch encoder tones, programming memories, and controlling scan.
* Automatic scan of entire band (5-kHz or 10-kHz steps) and memories.
* Manual scan of band and memories, with UP/DOWN microphone (standard).

TR-8400

“Go synthesized on 440 MHz FM”...
5 memories, memory/band scan

The TR-8400 synthesized 70-cm UHF FM mobile transceiver covers 440-450 MHz in 25-kHz steps and includes five memories, automatic memory and band scan, UP/DOWN manual scan, and two VFOs.

TR-8400 FEATURES:
* Synthesized coverage of 440-450 MHz in 25-kHz steps.
* Five memories and memory backup terminal on rear panel.
* Two VFOs.
* Offset switch for ±5 MHz transmit offset and simplex operation. Fifth memory allows any other offset by memorizing receive and transmit frequencies independently.
* Automatic scan of memories and of 440-450 MHz band (in 25-kHz steps). Locks on busy channel and resumes when signal disappears. HOLD or mic PTT button cancels scan.
* Up/down manual band scan in 25-kHz steps with UP/DOWN microphone supplied with TR-8400.
* Only 5-3/4 inches wide, 2 inches high, and 7-5/8 inches deep. Weighs only 3.75 pounds.
* TONE switch to activate subtone device (not Kenwood-supplied). DTMF (Touch-Tone®) terminal on rear panel.
* Four-digit frequency display and S/RF bar meter. Other LEDs indicate BUSY, ON AIR, and REPEATER operation.
* HI/LOW (10 W/1 W) RF-output power switch.

OPTIONAL ACCESSORIES:
* KPS-7 fixed-station power supply.
* SP-41 compact mobile speaker.
Inrush current protection for the SB-220 linear

Do you have adequate surge protection for your SB-220? If you own this fine piece of gear or similar equipment without the benefit of built-in surge protection, this article should be placed at the top of your project list. For about $10 in parts and six hours of bench work, you can breathe easy when you push the power switch. I call it the $10 insurance policy.

The subject of surge protection has been addressed by many in the past few years. In my opinion, one of the better articles was written by K. M. Gleszer, W1KAY, entitled "Upgrading Your SB-220 Linear Amplifier," which appeared in QST, February, 1979. Specific solutions were offered for operation with 117-Vac for filament inrush current, diode-transient and voltage-equalization protection, plus other items. But conspicuous by its absence was a scheme for diode inrush current protection. This protection is easily obtained with the simple circuit described here.

One other area where I'd suggest a change is the time-delay relay. The time-delay function is automatic with a standard relay coil and a current-limiting resistor. Therefore the high cost, plus purchase time and final alteration, of a time-delay relay can be avoided.

The mods I've installed are not unfamiliar, as they've appeared in several 1970-series of the Radio Amateur's Handbook. However, I've described the procedures in a detailed order using short, sometimes elementary, phrases for clarification. I'm a stickler for the smallest detail, so you needn't bother with assumptions.

With the mods installed, the following benefits will be added to your SB-220:

1. Rectifier transient surge protection.
2. Rectifier reverse voltage equalization.
3. Rectifier inrush current protection.
4. Inrush current protection for the 3-500Z filaments.

This procedure is divided into two parts: rectifier protection and surge protection. You can elect to cancel one, but because the amplifier must be uncaged for installation of either, it seems wise to include both.

The fourteen original diodes in the SB-220 were not replaced with higher PIV units. This action is not necessary unless you break some during disassembly. These diodes are rated for 1 ampere average forward current at a PIV of 600 volts. The ratings are adequate for this application, and, combined with the modification, they will have a long life.

The nominal delay was selected as 5 seconds. This time can be altered by varying the total limiting resistance. A resistance of 200 ohms caused a long delay, and the resistors dissipated much power. At the op-
posite extreme, 100 ohms provided insufficient delay. Therefore, a satisfactory value of 150 ohms was selected. Note that the time delay and resistance values were selected using a line voltage of 220 Vac. I intended to operate this linear only on the higher line voltage for increased efficiency.

**rectifier protection**

1. Remove amplifier case, top shield cover, and right-side shield.
2. Remove the four rectifier board hold-down screws.
3. Make a wiring map of all twelve wires connected to the rectifier board and identify by color designator (fig. 1).
4. Unsolder all twelve wires at the board end, then remove diodes.
5. Wick twelve wire pads and all diode holes. Remove flux.
6. Drill out all diode holes using a No. 47 (2 mm) drill bit from the pad side of the board (assuming all boards are the same).
7. Using a No. 15 (4.5 mm) drill bit, deburr the new holes from the component side. Do not deburr the pad side.
8. Install resistors (470 kΩ) from the pad side, then install diodes and capacitors (0.01 at 1 kV) from the component side. Next:
   a. Solder each pad with its three wires.
   b. Clip component pigtails as you go.
   c. Clean board to remove flux.
   d. Ohmmeter check—note highs will be 470 k.
9. Connect board to SB-220 using the following sequence:
   a. Solder red wire to hole D.
   b. Solder blue wires at holes H and J.
   c. Mount board using three screws—omit lower LH.
   d. Solder bare wire at hole K.
   e. Solder black wire at hole E.
   f. Solder black wires to holes and pads for the zener. Observe proper polarity.
   g. Solder orange wire to hole G.
   h. Solder yellow wire to hole F.
   i. Solder red small wire to hole A.
   j. Solder black wire (minus filter bank) to hole 6.
   k. Solder black wire (Ip meter) to hole C.

This completes the rectifier-board wiring. Dress all wires at right angles away from the board.
10. Reinstall right-side shield.
11. Oil felt pads on fan motor while top cover is off.
12. Install top shield cover.
13. Test the amplifier using a dummy load.
14. If OK, proceed to the next section.

**surge protection**

1. Solder No. 14 (1.6 mm) bus wire 2 inches (5 cm) long to pins 3 and 4 of relay K1 (fig. 2).
2. Solder No. 14 (1.6 mm) bus wire 2 inches (5 cm) long to pins 5 and 6 of relay K1.
3. Bend the two wires and solder to a two-lug tie strip.
4. Connect pin 5 to 7 using No. 20 (0.8 mm) bare wire.
5. Connect a black insulated wire (rated for 220 Vac, 10 amperes) about 10 inches (25 cm) long to K1 pin 8.
6. Stack the two current-limiting resistors (100 and 50 ohms) and connect in series. Solder this pair to the lower holes in the tie strip.
7. Mount the completed surge-protection into the SB-220 using the center ground lug on the tie strip and the existing chassis screw located about 2 inches (51 mm) forward of terminal strip AE. The relay case should rest against the chassis, being supported by the bus wires.
8. Connect the 10-inch (25-cm) black insulated wire (trim as required) from relay K1 pin 8 to terminal 2/3 on terminal strip AE of the linear.
9. Remove existing black jumper wire between power switch Z and front standoff AW.
10. Connect Z to pins 3 and 4 of K1 using the tie strip. Use insulated wire with (220 Vac, 10-ampere rating).
11. Connect Y from standoff AW to pins 5 and 6 using the tie strip. Use insulated wire with 220-Vac, 10-amp rating.
12. This completes the surge relay installation.

From the Heathkit manual, these codes are used:
- AE 110/220 Vac input terminal strip.
- AW front-mounted standoff tie point.
- AL front corner hole.
- Z power switch.

**operation**

Checkout of the surge protection circuit can be monitored each time the linear is fired up, assuming the filter capacitors have discharged to a low level. Place the selector switch in the HV position, while the mode switch can be in either the CW/TUNE or SSB position. After the power switch is pushed, there will be a time period of a few seconds of dead silence. This delay time is controlled by the value of the limiting resistors. During this period the plate voltage meter can be observed to slowly increase from zero to about 1500 Vdc. Additionally, the meter illumination lamps will slowly energize to about half brilliance. Since the 3-500Z filaments are in parallel with these lamps, they will be responding in the same way. If in doubt, turn off your room lights while energizing the linear and peer down through the case top.

The cooling fan will be turning very slowly while gradually building up speed. Therefore there will be no noise from this source during the initial few seconds.

After the five-second surge-delay period, adequate voltage will be available for surge relay K1 to pull in. During a brief interval K1 contacts will close and hold, thus shorting the limiting resistors and applying full line voltage to the transformers. Instantly the plate voltage will increase from 1500 Vdc to its normal maximum value. The 3-500Z filaments will glow with their normal brilliance, and the cooling fan will attain maximum speed. Don’t be alarmed when you hear a brief buzzing sound as the relay closes. This sound is caused by K1 contacts bouncing (as all mechanical relays do) combined with slight inductive arcing.

Although this article is written specifically for the SB-220, other similar equipment could be surge protected using these mods.

For additional information on rectifier diode protection I suggest the April, 1980, edition of *Worldradio*, which has a fine article written by Joe Carr, K4IPV.

Once you've installed the mods as shown in fig. 3, you can place the problem of surge protection on the shelf for a well-deserved rest. I've used these circuits on two other homebrew linear amplifiers with total success. In addition I've used them on power supplies for several transmitters using the lower line voltage. The only difference is the selection of the limiting resistance for a satisfactory delay period.

Note: K1 is a dpdt relay, 5000-ohm coil, 120 Vac. Contacts are rated at 10A, 125 Vac. Dimensions: 1-5/8 x 1 x 3/4 inches (41 x 25.4 x 19 mm).
REDUCE QRM with improved IF selectivity

The XF-9B crystal filter is the heart of good, modern receiver (and transceiver) designs. It is used between the mixer stage and the IF amplifier stage to suppress adjacent channel interference by over 100 dB.

**Specs**

**XF-9B**
- Center Frequency: 9.0 MHz
- Shape Factor: 6:80
- Bandwidth: 2.4 KHz
- Passband Ripple: 3.5 dB
- Insertion Loss: 100 dB

**XF-910**
- Center Frequency: 9.1 MHz
- Shape Factor: 6:80
- Bandwidth: 3.5 KHz
- Passband Ripple: 3.5 dB
- Insertion Loss: 100 dB

**DET.**
- Center Frequency: 9.0 MHz
- Shape Factor: 20:1
- Bandwidth: 3.5 KHz
- Passband Ripple: 3.5 dB
- Insertion Loss: 100 dB

**Examples**

**ByID K.V.G.**

**1296 MHz EQUIPMENT**

Announcing the new 1296 MHz units by Microwave Modules.

Transverters by Microwave Modules and other manufacturers can convert your existing Low Band rig to operate on the VHF & UHF bands. Models also available for 2M to 70cm and for ATV operators from Ch2/Ch3 to 70cms. Each transverter contains both a Tx up-converter and a Rx down-converter. Write for details of the largest selection available.

Prices start at $199.95 plus $3.50 shipping.

**SPECIFICATIONS:**
- Output Power: 10 W
- Receiver N.F.: 3 dB typ.
- Receiver Gain: 30 dB typ.
- Prime Power: 12V DC

Attention owners of the original MM1432-26 models: Update your transverter to operate OSCAR 8 & PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $26.50 plus $1.50 shipping, etc.

**ANTENNAS**

(FOB Concord, Via UPS)

**144-148 MHz J-SLOTS**
- 8 OVER 8 HORIZONTAL POL. + 12.3 dB: 8WY2M $65.95
- 8 BY 8 VERTICAL POL.: 8WY2M-VERT. $65.95
- 8 + 8 TWIST: 8WY2M $57.75

**UNLOO K YAGIS**
- 28 LOOPS GAIN + 20 dB $96.95
- 32 LOOPS GAIN + 20 dB $95.95

For local, DX, OSCAR, and ATV use.

**INSTALLATION**

Send 300 (7 stamps) for full details of KVF crystal products and all your VHF & UHF equipment requirements.

**PRE-SELECTOR FILTERS**
- Amplifiers
- SSB Transverters
- Crystal Filters
- FM Transverters
- Variator Triggers
- VHF Converters
- Decade Pre-Scalers
- UHF Converters
- Antennas
- Oscillator Crystals

**Spectrum International, Inc.**

Post Office Box 1084
Concord, Mass. 01742, USA

December 1980
HUSTLER ANTENNAS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5BTN</td>
<td>5-Band trap vertical 10-80 m</td>
<td>$139.95</td>
</tr>
<tr>
<td>4BTN</td>
<td>4-Band trap vertical 10-40 m</td>
<td>$109.95</td>
</tr>
<tr>
<td>BM-1</td>
<td>Bumper mount, reg. $18.95</td>
<td></td>
</tr>
<tr>
<td>MO-1</td>
<td>Mast, fold-over, deck mounting, reg. $22.95</td>
<td></td>
</tr>
<tr>
<td>MO-2</td>
<td>Mast, fold-over, bumper mount, reg. $22.95</td>
<td></td>
</tr>
<tr>
<td>RM-75</td>
<td>Resonator, 75 meters, 400 watt, reg. $18.95</td>
<td></td>
</tr>
<tr>
<td>RM-40</td>
<td>Resonator, 40 meters, 400 watt, reg. $16.95</td>
<td></td>
</tr>
<tr>
<td>RM-40S</td>
<td>Super resonator, 40 meters, KW, reg. $24.95</td>
<td></td>
</tr>
<tr>
<td>RM-20</td>
<td>Resonator, 20 meters, 400 watt, reg. $14.95</td>
<td></td>
</tr>
<tr>
<td>RM-20S</td>
<td>Super resonator, 20 meters, KW, reg. $21.95</td>
<td></td>
</tr>
<tr>
<td>CG-144</td>
<td>Mobile 2 meter collinear, w/o mount, reg. $28.95</td>
<td></td>
</tr>
<tr>
<td>CGT-144</td>
<td>2 meter collinear/w/trunk mount, reg. $45.95</td>
<td></td>
</tr>
</tbody>
</table>

PALOMAR ENGINEERS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-X Noise bridge</td>
<td>$5.00</td>
</tr>
<tr>
<td>VLF Converter</td>
<td>$65.95</td>
</tr>
<tr>
<td>IK Toriod balun, 3 KW SSB, 11 or 41</td>
<td>$59.95</td>
</tr>
<tr>
<td>2K Toriod balun, 6 KW SSB, 11 or 41</td>
<td>$65.00</td>
</tr>
<tr>
<td>Ic Keyer, battery operated</td>
<td>$65.00</td>
</tr>
<tr>
<td>Loop Antenna, plug-in units, 160/80, BCB, VLF.</td>
<td>$65.00</td>
</tr>
<tr>
<td>Loop Amplifier</td>
<td>$65.00</td>
</tr>
<tr>
<td>Tuner - 10-60 meters, built-in noise bridge</td>
<td>$299.95</td>
</tr>
<tr>
<td>CW Filter, 8 pole IC</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

ALSO IN STOCK

- Larsen Antennas
- Centurion International Rubber Duck Antennas

WRITE FOR A FREE COPY OF OUR CATALOG

WANTED FOR CASH

490-T Ant. Tuning Unit
(Also Known as CU1658 and CU1669)

618-T Transceiver
(Also Known as ARC95, ARC102. or VC102)

2-METER MOBILE

**B&W AT-200 Antenna Matcher**

Use your car's AM/FM antenna for your 2-meter mobile rig—Eliminate the two-antenna tip-off to thieves, without the nuisance of hideaways.

Save the cost of a 2-meter mobile antenna.

AT-200 tunes from the front panel for maximum output, minimum VSWR (1.2:1 or less for most car antennas).

at your B&W dealer.

Made in the U.S.A. by B&W

Barker & Williamson, Inc.

10 Canal Street, Bristol, PA 19007
Transceiver diplexer: an alternative to relays

Frequency-selective filters allow VHF and HF antennas to share a common feedline.

In many cases it's desirable to reduce the number of feedlines between the ham station and the antennas. One of the more important reasons is the price of high-quality coax cable. It's easy to spend as much money on transmission lines as on a small commercially manufactured 2-meter Yagi antenna. A second reason may be the need to tidy up your installation to please neighbors. If antenna restrictions exist in your area, and you're trying to avoid detection, the presence of several coax cables can be too much to hide.

One of the more popular ways of making the best use of feedlines is to use switching relays at the station end. A transceiver diplexer is an alternative.

By Terry A. Conboy, N6RY, 2631 S.W. Orchard Hill Place, Lake Oswego, Oregon 97034
antennas to select the desired antenna. Several systems to accomplish this are available commercially, and homebrewing such an arrangement is not technically difficult.

There are disadvantages to such schemes. What happens when you're chasing a rare station and still want to listen to the local DX repeater on 2 meters? If you have only one feedline, this can be inconvenient. Care must be taken to avoid transmitting on the wrong-frequency antenna to prevent possible damage to both transmitter and antenna.

**enter the diplexer**

An alternative to relays is frequency selective networks to select the proper antenna automatically. The networks can also allow simultaneous combination of more than one transceiver on the same coax cable.

These networks are called diplexers, since they allow two transmitters (or receivers) to use the same feedline at the same time. They differ from duplexers, as used in repeaters. Duplexers permit simultaneous operation of one transmitter and one receiver on a common antenna.

Although possible, it would be difficult to construct networks that would permit several different high-frequency antennas to share the same feedline. Relays are probably best used for this purpose. Because 144 MHz and 220 MHz are commonly used for local communications, I designed a simple network to permit either of these vhf bands to coexist with high-frequency signals on one coax cable. I did not include the 50-MHz band because this design would have required more complex networks. (The 420-MHz band will pass through the filters, but the impedance match is marginal.)

I used two networks. The one at the station end (fig. 1) allows both the high-frequency and vhf rig to access the coax simultaneously. The network at the antenna end (fig. 2) does the same for the high-frequency and vhf antennas. Each network consists of a mated pair of highpass and lowpass filters to accomplish the separation and combination of the two different frequencies.

Some disadvantages occur in the use of filters to perform these functions. A small amount of loss is added to the system. This is minimal, however. Also the impedance presented to the transceivers is modified. By proper filter design this mismatch can be kept to a minimum.

One added benefit of the filters should be noted: Lowpass filters are in the circuit to the high-frequency antenna, so some reduction in harmonic radiation is evident, which may reduce TVI to the point that an additional filter isn't needed.

designing the filters

The highpass and lowpass filters are simple Chebychev units that can be designed from tables of normalized filter prototypes or by calculating normalized inductor and capacitor values. I found it easier, however, to use the network design programs available on the engineering computer at my place of employment.

**Reflection coefficient.** To minimize the amount of mismatch introduced by the filters, I designed them to have a maximum reflection coefficient of 0.065. Since two filters are in tandem, the worst-case reflection coefficient with a 50-ohm load could be twice this amount, or 0.13, which corresponds to a maximum SWR of 1.3. The worst-case situation at the transmitter for a load with a 2-to-1 SWR would be SWR of 2.7. Because of the designs I used, the frequencies of worst match don't coincide, and such a degradation is unlikely. The match may also be better at some frequencies because of the small variations in the impedance transformation through the filters.

**Cutoff frequencies.** I set the filter cutoff frequencies about 7 per cent above and below the required maximum and minimum frequencies to avoid the loss appearing near the filter corners caused by the finite Q's of the inductors. The resulting cutoff frequencies were 32 MHz for the lowpass filters and 135 MHz for the highpass filters.

**Isolation.** The number of filter sections is governed by the isolation required between high-frequency and vhf equipment. Isolation at the transceivers must be much greater than at the antennas. For protection against receiver overload, at least 50 dB isolation was desired between the high-frequency transmitter and the vhf receiver. Such isolation reduces 1000 watts to 10 milliwatts at the receiver front end. Because of the wide frequency separation, no undesirable intermodulation occurs in the vhf receiver.

The isolation required between vhf transmitter and high-frequency receiver is usually not as great, because most stations use much lower power on vhf than on hf. Even so, I designed the filters to be symmetrical, which should give the same isolation in both directions.

At the antennas, I set the isolation at 30 dB. This isolation should prevent high-frequency-antenna radiation from causing any significant reduction in the front-to-back ratio of a directional vhf antenna.

To obtain the desired isolation, I made the networks at the station end with five sections each and those at the antennas with only three sections each.

After I designed the filters I increased the reac-
tances of the components at the common port by the same ratio to compensate for the shunting effect of the other filter. I did this with an interactive network analysis program. To make the impedance match as good as for the highpass or lowpass filter alone, I increased the end inductor of the five-section lowpass filter by 15 per cent and decreased capacitor of the five-section highpass filter by the same amount. For the three-section filter, the change of the end components was 30 per cent.

I made allowances for the parasitic capacitances of the inductors to ground in the lowpass sections, which add in parallel with the shunt capacitors. I made allowance of 3 or 4 pF in the capacitors I used. I added small metal tabs about 0.4 inch (1 cm) square to the highpass filters. This restored symmetry to the highpass sections and improved the match at 220 MHz. The final design of the filters appears in Figs. 1 and 2.

correlation

The filters were built in cast aluminum boxes and a piece of unetched copper-clad PC board was attached to the inside of the box with machine screws. The shunt components were then soldered directly to the copper board with the shortest possible leads. The series components were supported by the shunt components (this arrangement can be seen in the photos). This construction provides a rigid mounting for the parts with minimal stray inductance and capacitance.

Shields were placed between the highpass and lowpass filters in each box to reduce mutual coupling. If you don’t include the shields, isolation between the vhf transmitter and high-frequency receiver will be seriously impaired.

For the five-section networks, additional shields were required. The shields were made of double-sided copper board. They were soldered all along the seams together with the groundplane copper boards and the other shields, then fastened to solder lugs on the connectors where possible.

All coils were placed at right angles to each other in the same shielded area to avoid mutual coupling, which can cause filter performance to depart drastically from the theoretical predictions.

components

The fixed caps were micas with a 1000-volt rating. This rating is adequate for power levels up to the legal limit. Because of the high currents flowing in the shunt capacitors in the lowpass filters, the required capacitance was obtained by using two capacitors in parallel, which reduces any possible heating in the capacitors. Currents are highest when operating near the filter cutoff frequency and can easily reach 5 amperes with 1000 watts of input power.

Air variable capacitors could be used throughout, in place of the micas, provided the voltage rating is adequate. In the highpass sections, the micas were paralleled with air variables and glass piston capacitors to allow tuning. After the filters were tuned, it appeared that fixed units of the calculated values would have worked just as well, as judged from the positions of the variables.

All the inductors were wound of No. 12 (2.1-mm) tinned copper wire. Winding data were obtained from charts in the ARRL Handbook. Information on the dimensions of the coils appears in table 1.

tuning the filters

By far the best way to tune Chebychev filters is with a swept reflectometer. These filters were tuned this way, adjusting the coils by stretching and squeezing and by tuning the capacitors until the impedance match across the passband of each filter was within the desired limits. Not everyone has the facilities to adjust the networks in this manner. As an alternative, the filters should be adjusted one at a time into a dummy load with an SWR meter or a noise bridge set to 50 ohms. The frequencies to use are given in table 2. It’s important not to vary the components too far from the calculated values; do-
table 2. Adjust the inductors (and variable capacitors, if used) for best match into a 50-ohm load at these frequencies.

<table>
<thead>
<tr>
<th>filter</th>
<th>adjustment frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-section lowpass</td>
<td>28.3</td>
</tr>
<tr>
<td>5-section highpass</td>
<td>148.0</td>
</tr>
<tr>
<td>3-section lowpass</td>
<td>28.0</td>
</tr>
<tr>
<td>3-section highpass</td>
<td>147.0</td>
</tr>
</tbody>
</table>

the filter passbands. It may be necessary to retune somewhat if the impedance match is poor. Remember that the match should not necessarily be perfect at all frequencies, but the SWR should not be worse than 1.2 anywhere in the passband of either filter.

diplexer performance

The two networks were measured with 50-ohm terminations on the unused ports. The results of the measurements are given in figs. 3 through 8. The impedance match is plotted as return loss. This quantity is 20 times the logarithm of the magnitude of the reflection coefficient. It was measured directly by the test equipment used. The reflection coefficient for which the filters were designed, 0.065, represents a

table 3. These are actual measured losses in a 50-ohm circuit with the unused ports terminated. Resistive and mismatch losses are included.

<table>
<thead>
<tr>
<th>filter</th>
<th>maximum loss (dB)</th>
<th>frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-section lowpass</td>
<td>0.1</td>
<td>21.0</td>
</tr>
<tr>
<td>5-section highpass</td>
<td>0.22</td>
<td>220.0</td>
</tr>
<tr>
<td>3-section lowpass</td>
<td>0.07</td>
<td>28.0</td>
</tr>
<tr>
<td>3-section highpass</td>
<td>0.05</td>
<td>225.0</td>
</tr>
</tbody>
</table>

Tableau 1. The inductors should be wound according to this data. The wire used is solid No. 12 (2.1 mm) with spacing between the turns equal to the wire diameter.

<table>
<thead>
<tr>
<th>nominal inductance</th>
<th>inside diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>inductor</td>
<td>inches (mm)</td>
</tr>
<tr>
<td>L1</td>
<td>0.208 0.5 (12.7)</td>
</tr>
<tr>
<td>L2</td>
<td>0.413 0.75 (19.0)</td>
</tr>
<tr>
<td>L3</td>
<td>0.24 0.5 (12.7)</td>
</tr>
<tr>
<td>L4</td>
<td>0.044 0.25 (12.7)</td>
</tr>
<tr>
<td>L5</td>
<td>0.044 0.25 (12.7)</td>
</tr>
<tr>
<td>L6</td>
<td>0.176 0.5 (12.7)</td>
</tr>
<tr>
<td>L7</td>
<td>0.23 0.5 (12.7)</td>
</tr>
<tr>
<td>L8</td>
<td>0.057 0.375 (9.5)</td>
</tr>
</tbody>
</table>

Tableau 3. These are actual measured losses in a 50-ohm circuit with the unused ports terminated. Resistive and mismatch losses are included.
return loss of 23.7 dB and an SWR of 1.14. The diplexer insertion loss was surprisingly low. Table 3 summarizes the measured losses through the filters.

Use of the filters shows that the isolation between the high-frequency and vhf equipment is more than adequate. The equipment was a Yaesu FT-301 with an FL-2100B and an Icom IC-22S. The only problem areas were at harmonics of the high-frequency transmitter that fell on frequencies in the 2-meter band. However, this was also a problem when operating with separate feedlines. Significant fifth-harmonic energy was picked up by the 2-meter transceiver even when it and the high-frequency transmitter were connected to dummy loads.

possible improvements

The layout of the filters would be much better if the boxes were long and narrow, with the common connection near the center of the assembly. Then the high-frequency and vhf ports would be separated by the greatest distance. Another layout improvement would be to shield separately each inductor in its own small compartment. This would greatly reduce mutual coupling between the coils.

The other possible improvement is to reduce the effective stray inductance of the shunt capacitors in the lowpass filters by paralleling more than two capacitors to obtain the required value. The self-resonant frequency of smaller capacitors would be moved higher in frequency, and the stopband attenuation and isolation would be greater.

using the diplexers

If antenna tuners or TVI filters are in use at your station, they must be placed between the transceiver and the diplexer, which can be a problem if the antenna tuner is used to compensate for fairly high standing-wave ratios. Possible voltage and current stresses on the components in the filters could easily damage them. It would be wise to restrict operation at maximum legal power to standing-wave ratios no higher than 2.5 on the main feedline.

For normal exciter power levels (under 300 watts input), there should be no problem with standing-wave ratios up to 5 under normal use, especially below the 20-meter band.

If your SWR meter is capable of operation on both hf and vhf, it may be placed in the common feedline and measurements can be made in either frequency range.
Because of the lightweight construction of the TA-33 antenna, I didn’t bother with an end thrust bearing at the bottom of the 1-1/2-inch pipe. The spring was heavy enough to take up the beam weight. However, with heavier and more complex beam antennas, it might be wise to do something along these lines. One simple method would be to slide a 2- or 3-inch (5 or 8 cm) cut of the 1-1/2-inch pipe inside the 2-inch pipe at the place you want the bottom end of the 1-1/2-inch pipe to rest, then drill through both pipe walls and secure the pipes with a bolt to hold the piece inside the 2-inch pipe. To avoid as much friction as possible, of course, the bottom of the 1-1/2-inch pipe and the top of the small inserted piece should be ground as flat as possible and packed with heavy machine grease.

**springs**

The heavier the spring the better. I came across a spring about 10 inches (25 cm) long made from 3/8 inch (9.5 mm) spring steel and 2-inches (51 cm) inside diameter. Many such springs are available in auto-part shops, usually from discarded shock absorbers. But I was lucky. I was driving past a shop one day and noticed a sign that said, HEAVY DUTY SPRINGS OF ALL KINDS. It turned out to be a spring manufacturer who

---

**spring mounted beam saves rotor gears**

What ham has not, at some time or another, had the gears torn out of his rotor drive motor when the beam has been whipped suddenly by a strong gust of wind or by a bad storm?

After experiencing this disaster several times in my sixty years in ham radio, I finally decided to do something about it. This time, when I put up my Mosley TA-33, I made sure the gears would stay in no matter what the wind velocity.

**the cure**

It’s a simple measure and easy to accomplish (fig. 1). The mast from my rotor is a 2-inch piece of pipe. I slid a 6-foot (1.8 meter) piece of 1-1/2 inch pipe (this could be any other length of course) down inside the 2-inch pipe about 2 feet (0.6 meter) (this could vary). I slipped a heavy automobile shock absorber coil spring over both pipes so that the center of the spring came to the top of the 2-inch pipe. Then I welded the coil to the pipe: the top end of the coil to the 1-1/2-inch pipe; the bottom end to the 2-inch pipe. I made three weld spots around each pipe. The spring I used fit snugly around the 2-inch pipe, so welding directly to the pipe was easy.

At the top, I shimmed the spring with three pieces of 3/4-inch (2 cm) strap iron cut to about 1-inch (2.5 cm) long. This made the weld spots fit snugly to the 1-1/2-inch pipe. This precaution probably wouldn’t be necessary, but it didn’t take much more time and it made a neater looking weld.

---

**december 1980**
made springs for the shock absorber people. I explained what I was looking for, and the shop foreman produced just what I wanted. When I asked, "How much?" he said, "Take it. It isn't worth the paperwork." Still some nice people around yet.

My beam has been up for six years. We have had all kinds of high winds, near-tornadoes, and gusts that shook the house. But the beam and the rotor gears are still intact. The beam bounces around a bit in high winds, but there is very little shock to the rotor gears. If I had it to do over, I'd try to find a heavier spring; but of course the nearer you get to a rigid connection, the less effective the arrangement becomes.

Russ Rennaker, W9CRC

calculator care

Many of the less-expensive small calculators aren't too well sealed against moisture and dirt. After living with the results of dirty contacts on the calculator keyboard of my unit, I decided to do something about it.

I opened the machine and squirted some aerosol switch-contact cleaner onto the bottom of the keyboard. I then cut and shaped a sandwich bag to fit around the calculator and taped the ends of the bag with Scotch™ tape. I poked a hole in the bag with a toothpick to accept the charger plug.

Now the calculator is protected from cigarette smoke, dirt, and grime. No more problems with contact bounce resulting in wrong entries when working long problems. The cost: about 0.5 cent.

Alf Wilson, W6NIF

varactor tuning tips

In tuning power varactor doublers, triplers, etc., there is often a sharp or sudden discontinuity in the tuning of one or more of the tuned circuits; a condition known as hysteresis.

While hysteresis is caused by some nonlinearity in the diode function, it seems that it may also be a result of the circuit Q aggravating diode nonlinearities. I figured that it might be possible to lessen the effect by a reduction in circuit Q. Accordingly, I reduced the bias resistor in my 144-to-432 MHz tripler from 92 to about 12. I was pleased to note that circuit performance was actually improved — tune up was easier, and there was no appreciable loss of power output.

Richard N. Coan, N3GN

power dissipation

Described here is a power-absorbing device commonly known as a dummy load. The circuit contains an active element so I have changed the name from dummy to active load.

an active load

The need for this circuit developed when I was trying to repair a 5-volt, 3-ampere power supply. No hot-dog-sized, 1.66-ohm resistors were available for load testing, so the circuit of fig. 2A was constructed and tested on the supply. Load current is controlled in both circuits (figs. 2A and 2B) by R1. R2 limits the maximum base current to a safe value for the transistor used. One-hundred ohms is a nominal value. If the active load is to be used for more than a few seconds, adequate heatsinking must be provided for the transistor.

A provision for metering the current being consumed is included. I used the Simpson 260 volt ohmmeter on the 10-ampere scale.

other applications

This active load, when coupled to a properly designed heatsink, could be used in place of the Hot Mugger X1.1 While these phenomena have not been fully investigated, an aluminum plate would probably exhibit an SWR of less than 3:1 over the operating range of the "coffee cup." Unfortunately, exact specifications for such a Hot Plate Matcher are beyond the scope of this article.

acknowledgments

I must acknowledge the contributions of David M. Newell, ex-K1KRG, who first introduced me to this circuit idea, and Donald S. Patterson, PS7ZAC, who developed the PNP version shown in fig. 2A.

reference


Wm. Denison Y. Rich, PS7ZAD

![Fig. 2](https://via.placeholder.com/150)
I Varifilter

Professionally Engineered Antenna Systems

Single transmission line "TRI-BAND® ARRAY"

MONARCH T85EM/4KWP

ILLUSTRATION BALUN

ILLUSTRATION TRAP

By the only test that means anything ... on the air comparison, this array continues to outperform all competition and has for two decades. Here's why

For technical data and prices on complete Telrex line, write for Catalog PL 7.

Telrex uses a unique trap design complete Telrex line, write for Catalog PL 7... employing 20 Hi0 7500V ceramic condensers per antenna. Telrex uses 3 optimum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B tri-band performance.

Iron Powder and Ferrite

TOROIDAL CORES

Shielding Beads, Shielded Coil Forms

Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome

Free 'Tech-Data' Flyer

AMIDON Associates Since 1963

12033 Olsego Street, North Hollywood, Calif. 91607

in Germany: Elektronikladen, Wilhelm — Mellies Str. 88, 4930 Detmold 18, West Germany

in Japan: Toyomura Electronics Company, Ltd., 7-9-2 Chome Sota Naka, Chiyoda ku, Tokyo, Japan

Microcraft's New RTTY READER

Decodes RTTY signals directly from your receiver's loudspeaker. * Ideal for SWLS, novices & seasoned amateurs. * Completely solid state and self-contained. Compact size fits almost anywhere. No CRT or demodulator required ... Nothing extra to buy! * Built-in active mark & space filters with tuning LEDs for 170, 425 & 850 Hz FSK. * Copies 60, 67, 75, & 100 WPM Baudot & 100 WPM ASCII. * NOW you can tune in RTTY signals from amateurs, news sources & weather bulletins. The RTTY READER converts RTTY on an eight-character moving LED readout. Write for technical data and prices on complete Telrex line, write for Catalog PL 7.

Microcraft Corporation Telephone: (414) 241-8144

Post Office Box 513HR, Thiensville, Wisconsin 53092

Varifilter

single audio filter

Versatile

Compact

Easy operation

$139.95

Both models feature:

Variable frequency

from less than 150 Hz to over 3000 Hz

Variable bandwidth

from less than 30 Hz to over 1000 Hz

Tuning eyes

for fast, accurate tuning

Peak/Notch Modes

to maximize a signal, or minimize interference, or both with a Signal Enforcer

Warranty

one full-year

Signal Enforcer
dual audio filter

Two independent filters

Demodulator output

$189.95

Add $3.00 shipping/handling

Kantronics

1202 E. 23rd Street (913) 842-7745

Lawrence, Kansas 66044

STREET UP TO TELREX

Professionally Engineered Antenna Systems

Single transmission line "TRI-BAND® ARRAY"

12033 Otsego Street, North Hollywood, Calif. 91607

in Germany: Elektronikladen, Wilhelm — Mellies Str. 88, 4930 Detmold 18, West Germany

in Japan: Toyomura Electronics Company, Ltd., 7-9-2 Chome Sota Naka, Chiyoda ku, Tokyo, Japan

Microcraft's New RTTY READER

Decodes RTTY signals directly from your receiver's loudspeaker. * Ideal for SWLS, novices & seasoned amateurs. * Completely solid state and self-contained. Compact size fits almost anywhere. No CRT or demodulator required ... Nothing extra to buy! * Built-in active mark & space filters with tuning LEDs for 170, 425 & 850 Hz FSK. * Copies 60, 67, 75, & 100 WPM Baudot & 100 WPM ASCII. * NOW you can tune in RTTY signals from amateurs, news sources & weather bulletins. The RTTY READER converts RTTY on an eight-character moving LED readout. Write for technical data and prices on complete Telrex line, write for Catalog PL 7.

Microcraft Corporation Telephone: (414) 241-8144

Post Office Box 513HR, Thiensville, Wisconsin 53092
MEMO

MRF't 72

$1.69 each

CARBIDE Circuit Board Drill Bits
for PCB Boards
5 mix for $5.00

MURATA CERAMIC FILTERS
SFD 4550 455 KHz $2.00
SPB 4550 455 KHz 1.60
CFM 455E 455 KHz 5.50
SFE 10.7 MA 10.7 MHz 2.99

ATLAS CRYSTAL FILTERS FOR ATLAS
HAM GEAR
5.52 - 2.7/8
5.595 - 2.7/8/9
5.645 - 2.7/8
5.595 - .500/4/CW YOUR CHOICE
5.595 - 2.7 USB $12.99 each
5.595 - 2.7/8/L
5.595 - 2.7 LS
9.0 - US/CW

J310 N-CHANNEL J - FET 450 MHz
Good for VHF/UHF Amplifier,
Oscillator and Mixers. 3/$1.00

AMPHENOL COAX RELAY
26 VDC Coil SPDT #360-11892-13
100 watts Good up to 18 Ghz
$19.99 each

78M05 Same as 7805 but only 1/2 Amps
5 VDC 49c each or 10/$3.00

NEW TRANSFORMERS
F-18X 6.3 VCT @ 6Amps $6.99 each
F-46X 24V @ 1Amp 5.99
F41X 25.2VCT @ 2Amps 6.99
P-8330 10VCT @ 3Amps 7.99
P-8604 20VCT @ 1Amp 4.99
P-3130 12.6VCT @ 2Amps 4.99
K-32B 28VCT @ 100 MA 4.99
E30554 Dual 17V @ 1Amp ea. 6.99

$17.95 each

$3.99 each
1900 MHz to 2500 MHz DOWNCONVERTERS
Intended for amateur radio use.
Tunable from channel 2 thru 6.
34 dB gain 2.5 to 3 dB noise.
Warranty for 6 months
Model HMR 11
Complete Receiver and Power Supply
$225.00 (does not include coax)
4 foot Yagi antenna only
$39.99
Downconverter Kit - PCB and parts
$69.95
Power Supply Kit - Box, PCB and parts
$49.99
Downconverter assembled
$79.99
Power Supply assembled
$59.99
Complete Kit form with Yagi antenna
$109.99
REPLACEMENT PARTS
MRF901 $3.99
MBD101 1.29
.001 Chip Caps 1.00
Power Supply PCB 4.99
Downconverter PCB19.99

NEW ASCII ENCODED KEYBOARDS
110 Keys Numeric and Cursor Pad
No data available $19.99

86 PIN MOTOROLA BUS EDGE CONNECTORS
Gold plated contacts
Dual 43/86 pin .156 spacing
Soldertail for PCB $3.00 each

CONTINUOUS TONE BUZZERS
12VDC 2.00 each

110VAC MUFFIN FANS
New $11.95 Used $5.95

BFR90 1.00
BFR91 1.25
TO-3 TRANSISTOR SOCKETS
Phenolic type 6/$1.00

NO ORDERS UNDER $10
**ORDERING INSTRUCTIONS**

Check, money order, or credit cards welcome. (Master Charge and VISA only)

No personal checks or certified personal checks for foreign countries accepted. Money order or cashiers check in U.S. funds only. Letters of credit are not acceptable.

Minimum shipping by UPS is $2.35 with insurance. Please allow extra shipping charges for heavy or long items.

All parts returned due to customer error will be subject to a 15% restock charge.

If we are out of an item ordered, we will try to replace it with an equal or better part unless you specify not to, or we will back order the item, or refund your money.

Prices are subject to change without notice. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale.

We now have a toll free number but we ask that it be used for charge orders only. If you have any questions please use our other number. We are open from 8:00 a.m. - 5:00 p.m. Monday thru Saturday.

Our toll free number for orders only is 800-528-3611.

- **JUMBO LED's**
  - Red 8/$1.00
  - Clear 6/$1.00
  - Yellow 6/$1.00
  - Green 6/$1.00
  - Amber 6/$1.00

- **MEDIUM LED's**
  - 69¢ each or 10/$3.00

- **NEW GE OPTO COUPLERS 4N26**
  - 69¢ each or 10/$5.00

- **MICRO-MINI WATCH CRYSTALS**
  - 32,768 Hz $3.00 each

- **NEW 2" ROUND SPEAKERS**
  - 100 Ohm coil 99¢ each

- **PLASTIC TO-3 SOCKETS**
  - 4/$1.00

**More Details? CHECK-OFF Page 126**

---

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2857JAN</td>
<td>$2.50</td>
<td></td>
</tr>
<tr>
<td>N2949</td>
<td>$3.60</td>
<td></td>
</tr>
<tr>
<td>N2947</td>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>N2950</td>
<td>$4.60</td>
<td></td>
</tr>
<tr>
<td>N3375</td>
<td>$8.00</td>
<td></td>
</tr>
<tr>
<td>N3553</td>
<td>$1.57</td>
<td></td>
</tr>
<tr>
<td>N3818</td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>N3866</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>N3866JAN</td>
<td>$2.50</td>
<td></td>
</tr>
<tr>
<td>N3866JANTX</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>N3925</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>N3948</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>N3950</td>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>N3959</td>
<td>$3.00</td>
<td></td>
</tr>
<tr>
<td>N3960JANTX</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>N4072</td>
<td>$1.60</td>
<td></td>
</tr>
<tr>
<td>N4427</td>
<td>$1.10</td>
<td></td>
</tr>
<tr>
<td>N4429</td>
<td>$7.00</td>
<td></td>
</tr>
<tr>
<td>N4877</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>N4959</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>N4976</td>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>N5070</td>
<td>$8.00</td>
<td></td>
</tr>
<tr>
<td>N5071</td>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>N5108</td>
<td>$4.00</td>
<td></td>
</tr>
<tr>
<td>N5109</td>
<td>$1.50</td>
<td></td>
</tr>
<tr>
<td>N5179</td>
<td>$1.00</td>
<td></td>
</tr>
<tr>
<td>N5583</td>
<td>$4.00</td>
<td></td>
</tr>
<tr>
<td>N5589</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>N5590</td>
<td>$8.00</td>
<td></td>
</tr>
<tr>
<td>N5591</td>
<td>$11.00</td>
<td></td>
</tr>
<tr>
<td>N5635</td>
<td>$5.44</td>
<td></td>
</tr>
<tr>
<td>N5636</td>
<td>$11.60</td>
<td></td>
</tr>
<tr>
<td>N5637</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td>N5641</td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>N5643</td>
<td>$14.00</td>
<td></td>
</tr>
<tr>
<td>N5645</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>N5842</td>
<td>$8.00</td>
<td></td>
</tr>
<tr>
<td>N5849</td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td>N5942</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>N5946</td>
<td>$14.00</td>
<td></td>
</tr>
<tr>
<td>N5962</td>
<td>$50.00</td>
<td></td>
</tr>
<tr>
<td>N6080</td>
<td>$7.00</td>
<td></td>
</tr>
<tr>
<td>N6081</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>N6082</td>
<td>$11.00</td>
<td></td>
</tr>
<tr>
<td>N6083</td>
<td>$13.00</td>
<td></td>
</tr>
<tr>
<td>N6084</td>
<td>$14.00</td>
<td></td>
</tr>
<tr>
<td>N6095</td>
<td>$11.00</td>
<td></td>
</tr>
<tr>
<td>N6096</td>
<td>$20.00</td>
<td></td>
</tr>
</tbody>
</table>

- **2N6097** $28.00
- **2N6166** 38.00
- **2N6368** 22.99
- **2N6439** 40.00
- **A210/MRF517** 2.00
- **BLY33** 5.00
- **40250/2N4427** 1.10
- **40258/2N3920** 7.00
- **40282/2N3927** 10.48

- **NE555V TIMERS** 39¢ each or 10/$3.00
- **NEW DUAL COLON LED** 69¢ each or 10/$5.00
- **HEP170 1000 PIV** 2.5 Amps 25¢ each or 10/$15.00
- **HIGH VOLTAGE CAPS**
  - 420 MFD @ 400 VDC OR 600 MFD @ 400 VDC $6.99 each
- **NEW ROTRON BISCUIT FANS**
  - Model BT2A1 115 VAC $12.99 each
- **TORIN TA700 FANS NEW**
  - Model A30340 230 VAC @ .78 Amps $29.99 each
- **DOOR KNOB CAPS**
  - 470 pf @ 15 KV $3.99 each
  - Dual 500 pf @ 15 KV 5.99 each
  - 680 pf @ 6 KV 3.99 each
  - 800 pf @ 15 KV 3.99 each
  - 1000 pf @ 20 KV 5.00 each
  - 2700 pf @ 40 KV 5.99 each
  - NEW & USED BCD SWITCHES
    - 3 switch with end plates $8.99 New $6.95 Used

**NO ORDERS UNDER $10**
new MFJ indoor active antenna

The new MFJ-1020 indoor active antenna can rival, or even exceed, the reception of outside long-wire type antennas.

The tuned circuit of this unique active antenna helps to reduce intermod, provides rf selectivity, and reduces noise outside the tuned band.

The MFJ-1020 can also be used as a preselector for an external antenna. It covers 300 kHz to 30 MHz in four bands: 0.3-1 MHz, 1-3 MHz, 3-10 MHz, and 10-30 MHz.

The 1020 comes with an adjustable telescoping antenna, ready to sit on your desk and listen to the world. The controls include: tune, band selector, gain, and on-off/bypass. A 9-volt battery will provide power for portable use, or it may be used on 110 Vac with the optional ac adapter.

If ordered from MFJ, there is a 30-day, money-back trial period. If you are not satisfied, you may return it within 30 days for a full refund (less shipping). MFJ also provides a one-year unconditional warranty.

The MFJ-1020 Indoor Active Antenna is available from MFJ Enterprises, Inc., for $79.95 plus $3.00 shipping and handling.

pocket-size digital receiver

New, from Ace Communications, Inc., is the world’s first 1,800 channel “Slimsizer” pocket-size vhf fm receiver. With this receiver, designated the AR-22, the entire 141.000-149.995 MHz Amateur band, or 151.000-159.995 MHz commercial band, can be tuned automatically in precise 5-kHz steps.

The AR-22 tuning system gives a direct frequency reading by employing digital-pushbutton switches and a slide switch.

The clean signal reception of this compact unit is the equal of many full-sized base stations. An electric tuning system in the rf-amplifier stage provides a typical sensitivity of 12 dB SINAD for less than 0.2 μV on all frequencies.

The unit is rugged and reliable. Circuitry is contained on a double-sided, glass-epoxy printed-circuit board. The AR-22 is completely portable. With its nicad battery pack, the receiver weighs only 7.1 ounces (200 grams) and measures only 5% x 2% x 1 inch (130 x 63 x 25 mm). It comes equipped with a high-performance, “Mini-Helical” flexible rubber antenna.

For a dependable, clear sounding, pocket-sized, digital 2-meter Amateur receiver, the AR-22 is one of the best buys on the market at $125. For more information on the “Slimsizer” AR-22, contact Ace Communications, Inc., 2832-D Walnut Ave., Tustin, California 92680.

Xitex introduces “Smart TU” for ASCII/Baudot/Morse

Xitex Corporation has just announced the addition of the UDT-170, Universal Data Transceiver, to its data-products line for RTTY and Morse operation. The UDT-170 connects directly between the user’s ASCII or Baudot teletypewriter or video terminal, and the station transceiver. For the user who does not currently have an RTTY or video terminal, the Xitex SKT-100 video terminal is recommended.

The UDT-170 is the combination of a microprocessor-based data converter plus a high-performance RTTY Terminal Unit (TU). In the receive mode, the TU takes the RTTY or Morse signal from the receiver audio output and converts it to a dc signal, which is fed to the data converter portion of the UDT-170. Here, two single-chip microcomputers convert the ASCII, Baudot, or Morse input signal into an RS232 or 60-milliampere output signal, which has been regenerated to match the mode (ASCII or Baudot), Baud rate, and line length of the user’s terminal.

In the transmit mode, the serial output from the keyboard on the user’s terminal is fed into the data converter in the UDT-170 where it is continuously buffered and regenerated in the desired output mode.
new energy-efficient voltage controls

A new and convenient style of portable, variable ac-control system has just been announced by Staco Energy Products. Operating from standard 120-volt ac line current, the system allows the user to select and adjust ac voltage at any level from zero to 140 volts to provide power for applications requiring up to ten amperes continuous duty, or to 100 amperes surge, depending upon the unit selected.

An all-new, rugged, aluminum housing provides a complete enclosure, and on the largest unit provides an integral carrying handle for ease of portability. All units feature fused, three-wire grounded circuitry for safety; and provide an on-off switch and pilot lamp in addition to a voltmeter. Price is $109.95. For more information contact Staco Electronics, P.O. Box 816, Morgan Hill, California 95037.

KLM multi-band vertical

KLM announces a new multiband vertical antenna. Designated 40-10V, the design uses a series of lossless linear loading and efficient High-Q air capacitor sections on 20, 15, and 10 meters, similar to those on the KT-34A and KT-34XA tribanders. Old style, power-robbing coils and capacitors have been eliminated.

In the KLM tradition, the 40-10V provides broadband coverage. All of 40 meters is accessible with no tuning adjustment at 1.5:1 VSWR or better. Optimized tuning is also possible using an adjustable element tip. Just two settings on each band provide complete coverage of 20, 15, and 10 meters at 1.5:1 VSWR or better.

The 40-10V is self-supporting; no guying is necessary. It is designed for mast, stake, or sidewalk mounting. All aluminum tubing is strong, weather-resistant 6063-T832 alloy. All electrical hardware is stainless steel. Nominal feed impedance is 50 ohms. Windload is 2 square feet (0.6 square meters). Price is $109.95. For more information contact KLM Electronics, P.O. Box 816, Morgan Hill, California 95037.

(ASCII, Baudot, or Morse) and data rate.

The UDT-170 will operate at any FSK shift from less than 100 Hz to over 1000 Hz; Baudot rates of 60, 67, 75, and 100 wpm; ASCII rates of 110 or 300 Baud; Morse rates from 1 to 150 wpm with “Auto Track”; and line lengths from 40 to 80 characters. Other features include a two-digit LED display for the copy rate (Morse only) and buffer states, and an optional CW “Ident” feature for RTTY operation.

The UDT-170 is packaged in an RFI-protected metal enclosure and operates on either 115 or 230 Vac, 50/60 Hz. For additional information contact Xitex Corporation, 9861 Chartwell Drive, Dallas, Texas 75243.

KB-4900
$379.95

PASS FCC EXAMS
The Original FCC Testing and Review Manual: 120 questions answered exam manual that prepares you to pass the FCC Test and license. Master the FCC Exam. For sale at a low price. Send $15 per set, plus $3 for mailing.

Hildreth Engineering
P.O. Box 60003 Sunnyvale, CA 94088

Hildreth Engineering
P.O. Box 60003 Sunnyvale, CA 94088

FACSIMILE
COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS!
The Faxes Are Clear — on our full size (18-1/2" wide) recorders. Free Fax Guide.

FACSIMILE
COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS!
The Faxes Are Clear — on our full size (18-1/2" wide) recorders. Free Fax Guide.

TELETETYPE
RTTY MACHINES, PARTS, SUPPLIES
ATLANTIC SURPLUS SALES
(712) 327-0390
3730 NAUTILUS AVE BROOKLYN NY 11224
The SSV 80-40-15 antenna

The SSV 80-40-15 is the latest addition to KLM's unique new series of vertical, multi-band antennas, and, in the KLM tradition, features broad-band response on 80, 40, and 15 meters. The SSV is free standing, with the lower half made up of three electrically active tripod legs. Excellent DX is possible, because the configuration of the legs contributes to a low angle of radiation on each band. Two of the legs are hinged at the base, allowing the SSV to be raised easily by two men. Only modest base preparations are needed. The upper half of the SSV is a single telescoping whip section. It is quite flexible, and survives high winds by laying over to reduce its own wind load. Although the SSV stretches over 60 feet above ground, no guying is necessary. Overall weight is only 88 lb (39 kg). Feed impedance is 50 ohms.

A full 1/4-wave resonance is possible on 80 meters by the use of one tripod leg and the upper whip section. The adjustable tip allows the SSV to be tuned from below 3.5 MHz to 6.5 MHz, in 300-kHz steps, at 1.5:1 VSWR or better. Resonance at 40 meters is quite broad thanks to the diameter of the base section (two of the tripod legs). Wide-range tuning is possible from 6.5 MHz and up. Performance on 40 meters appears better than a standard, ground-mounted, 1/4-wave vertical because shock excitation of the 80 meter section improves the radiation pattern.
Performance of the 3/4-wave, 15-meter section is also improved by shock excitation of the 80 meter section. The VSWR curve is very broad, with little change from band edge to band edge.

Performance approaching that of a full 1/4-wave vertical is also possible on 160 meters by simply adding inductance at the antenna base.

Experimental uses for the SSV abound. A wide-spectrum VSWR plot shows three more naturally occurring resonances that fall very close to the three new high frequency bands authorized at WARC-79 (10, 18, and 24 MHz) and are usable with slight retuning.

High-quality materials are used throughout the SSV. All aluminum tubing is drawn, seamless, 6063-T832 alloy. Tough fiberglass insulators insulate the SSV from ground and insulate the resonant sections. Base-mounting anchor-plates are supplied.

Price of the SSV 80-40-15 is $399.95. For more information, contact KLM Electronics, Inc., P.O. Box 816, Morgan Hill, California 95037.

B & W balun


Specifications:

- Impedance: 50 ohms unbalanced to 50 ohms balanced
- Frequency: 1.8-30 MHz
- Power: 2.5-5 kW PEP
- Connector: SO-239; mates with standard PL-259
- Size: 2¼ inch diameter; 7½ inches long (57 x 191 mm)
- Weight: 15 ounces (0.4 kg)

For additional information contact Mr. Elmer Bush or Martin T. Zegel, Jr., at Barker & Williamson, Inc., 10 Canal Street, Bristol, Pennsylvania 19007.
Arizona

POWER COMMUNICATIONS CORPORATION
1640 W. CAMELBACK ROAD
PHOENIX, AZ 85015
602-242-8030 or 242-8990
Arizona's #1 "Ham" Store. Kenwood, Yaesu, Icom and more.

California

C & A ELECTRONIC ENTERPRISES
2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best — Since 1962.

JUN'S ELECTRONICS
11565 W. PICO BLVD.
LOS ANGELES, CA 90064
714-463-1886 San Diego
The Home of the One Year Warranty — Parts at Cost — Full Service.

QUEMENT ELECTRONICS
1000 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Connecticut’s Oldest Ham Radio Dealer

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more.
One mile off 1-95, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33755
813-461-HAMS
West Coast’s only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33716
813-535-1416

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago — 312-631-5181
Outside Illinois — 800-621-5802
Hours: 9:30-6:30 Mon, Tu, Wed & Fri.;
9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America’s No. 1 Real Amateur Radio Store. Trade — Sell — Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, PT. 198
LAUREL, MD 20709
301-393-3040
The Ham Store of New England You Can Rely On.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England You Can Rely On.

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-391-3200
New England’s friendliest ham store.

Minnesota

PAL ELECTRONICS INC.
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4692
Midwest’s Fastest Growing Ham Store, Where Service Counts.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION
CONCORD, NH 03301
603-224-9961
Icom, DenTron & Yaesu dealer. We service what we sell.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

New Jersey

RADIOS UNLIMITED
P. O. BOX 347
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4569
New Jersey's Fastest Growing Amateur Radio Center.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TONTOWA, NJ 07512
201-256-8555
Drake, Swan, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS
384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
201-546-3000
Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY
AMATEUR RADIO SUPPLY
112 W. FIRST STREET
ROSWELL, NM 88201
505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2030

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7360
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer - ALL major Amateur Brands.
We service everything we sell!!
Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG), OH 43068
614-866-4287
Complete Amateur Radio Sales and Service. All major brands — spacious store near I-270.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSO ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSA, PA 19047
215-357-1400
Same Location for 30 Years.

LeRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, CDE, Ham-Keys, VHF Engineering, Antenna Specialists.

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455-7674
Service, Parts, & Experience For Your Atlas Radio.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

You can't tell the players without a scorecard!
1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e., making the i-f range approximately 54 to 88 mc (Channels 2 to 7).  
PC BOARD WITH DATA .................................................. $19.99  
PC BOARD WITH CHIP CAPACITORS 13 ................................ $44.99  
PC BOARD WITH ALL PARTS FOR ASSEMBLY ................. $59.99  
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS 2N6603  
PC BOARD ASSEMBLED AND TESTED ............................... $159.99  
PC BOARD WITH ALL PARTS FOR ASSEMBLY, POWER SUPPLY AND ANTENA.  
POWER SUPPLY ASSEMBLED AND TESTED ........................ $49.99  
YAGI ANTENNA 4' LONG APPROX. 20 TO 23 dB GAIN .......... $59.99  
YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector) .... $64.99  
2300 MHz DOWN CONVERTER  
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY ........................................................ $259.99  
OPTION #1 MRF902 in front end. (7 db noise figure) ............. $299.99  
OPTION #2 2N6603 in front end. (5 db noise figure) ............... $359.99  
2300 MHz DOWN CONVERTER ONLY  
10 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $149.99  
7 db Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $169.99  
5 dB Noise Figure 23 dB gain in box with SMA conn. Input F conn. Output. $189.99  
DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY ........................................... $15.00  

Shipping and Handling Cost:  
Receiver Kits add $1.50. Power Supply add $2.00. Antenna add $5.00. Option 1/2 add $3.00. For complete system add $7.50.

INTRODUCING THE HOWARD/COLEMAN TVRO CIRCUIT BOARDS  
(Satellite Receiver Boards)
DUAL CONVERSION BOARD ................................................. $25.00  
This board provides conversion from the 3.7-4.2 band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz. The board contains the dual conversion oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the use of Hybrid IC amplifiers for the gain stages. Bare boards cost $25 and it is estimated that parts for construction will cost $270. (Note: The two Avantek VTO's account for $225 of this cost.)  
47 pF CHIP CAPACITORS ...................................................... $6.00  
For use with dual conversion board. Consists of 6 — 47 pF.  
70 MHz IF BOARD ................................................................. $25.00  
This circuit provides about 43 db gain with 50 ohm input and output impedance. It is designed to drive the HOWARD/COLEMAN TVRO Demodulator. The on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than 1/2 db. Hybrid IC's are used for the gain stages. Bare boards cost $25. It is estimated that parts for construction will cost less than $40.  
.01 pF CHIP CAPACITORS .................................................... $7.00  
For use with 70 MHz IF Board. Consists of 7 — .01 pF.  
DEMODULATOR BOARD ....................................................... 40.00  
This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 millivolt range, detects them using a phase locked loop, deemphasizes and filters the result and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DC voltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC. The bare boards cost $40 and total parts cost less than $30.  
SINGLE AUDIO ................................................................. $15.00  
This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and the Miller 9052 coil tuning for recovery of the audio.  
DUAL AUDIO ................................................................. $25.00  
Duplicate of the single audio but also covers the 6.2 range.  
DC CONTROL ................................................................. $15.00  
This circuit controls the VTO's, AFC and the S Meter.  

TERMS:  
WE REGRET WE NO LONGER ACCEPT BANK CARDS.  
PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER.  
PRICES SUBJECT TO CHANGE WITHOUT NOTICE. WE CHARGE 15% FOR RESTOCKING ON ANY ORDER.  
ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY.  
ALL ORDERS SENT FIRST CLASS OR UPS.  
ALL PARTS PRIME AND GUARANTEED.  
WE WILL ACCEPT COD ORDERS FOR $25.00 OR OVER, ADD $2.50 FOR COD CHARGE.  
PLEASE INCLUDE $2.50 MINIMUM FOR SHIPPING OR CALL FOR CHARGES.  
WE ALSO ARE LOOKING FOR NEW AND USED TUBES, TEST EQUIPMENT, COMPONENTS, ETC.  
WE ALSO SWAP OR TRADE.  

(602) 242-8916  
2111 W. Camelback  
Phoenix, Arizona 85015  

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
RF TRANSISTORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF545</td>
<td>2.89</td>
<td>MF546</td>
<td>2.50</td>
<td>MF547</td>
<td>2.00</td>
</tr>
<tr>
<td>MF548</td>
<td>4.95</td>
<td>MF549</td>
<td>4.55</td>
<td>MF54A</td>
<td>4.15</td>
</tr>
<tr>
<td>MF54B</td>
<td>4.00</td>
<td>MF54C</td>
<td>3.95</td>
<td>MF54D</td>
<td>3.90</td>
</tr>
<tr>
<td>MF54E</td>
<td>3.85</td>
<td>MF54F</td>
<td>3.80</td>
<td>MF54G</td>
<td>3.75</td>
</tr>
<tr>
<td>MF54H</td>
<td>3.70</td>
<td>MF54I</td>
<td>3.65</td>
<td>MF54J</td>
<td>3.60</td>
</tr>
<tr>
<td>MF54K</td>
<td>3.55</td>
<td>MF54L</td>
<td>3.50</td>
<td>MF54M</td>
<td>3.45</td>
</tr>
<tr>
<td>MF54N</td>
<td>3.40</td>
<td>MF54O</td>
<td>3.35</td>
<td>MF54P</td>
<td>3.30</td>
</tr>
<tr>
<td>MF54Q</td>
<td>3.25</td>
<td>MF54R</td>
<td>3.20</td>
<td>MF54S</td>
<td>3.15</td>
</tr>
<tr>
<td>MF54T</td>
<td>3.10</td>
<td>MF54U</td>
<td>3.05</td>
<td>MF54V</td>
<td>3.00</td>
</tr>
<tr>
<td>MF54W</td>
<td>2.95</td>
<td>MF54X</td>
<td>2.90</td>
<td>MF54Y</td>
<td>2.85</td>
</tr>
<tr>
<td>MF54Z</td>
<td>2.80</td>
<td>MF54AA</td>
<td>2.75</td>
<td>MF54AB</td>
<td>2.70</td>
</tr>
<tr>
<td>MF54AC</td>
<td>2.65</td>
<td>MF54AD</td>
<td>2.60</td>
<td>MF54AE</td>
<td>2.55</td>
</tr>
<tr>
<td>MF54AF</td>
<td>2.50</td>
<td>MF54AG</td>
<td>2.45</td>
<td>MF54AH</td>
<td>2.40</td>
</tr>
<tr>
<td>MF54AI</td>
<td>2.35</td>
<td>MF54AJ</td>
<td>2.30</td>
<td>MF54AK</td>
<td>2.25</td>
</tr>
<tr>
<td>MF54AL</td>
<td>2.20</td>
<td>MF54AM</td>
<td>2.15</td>
<td>MF54AN</td>
<td>2.10</td>
</tr>
<tr>
<td>MF54AO</td>
<td>2.05</td>
<td>MF54AP</td>
<td>2.00</td>
<td>MF54AQ</td>
<td>1.95</td>
</tr>
<tr>
<td>MF54AR</td>
<td>1.90</td>
<td>MF54AS</td>
<td>1.85</td>
<td>MF54AT</td>
<td>1.80</td>
</tr>
<tr>
<td>MF54AU</td>
<td>1.75</td>
<td>MF54AV</td>
<td>1.70</td>
<td>MF54AW</td>
<td>1.65</td>
</tr>
<tr>
<td>MF54AX</td>
<td>1.60</td>
<td>MF54AY</td>
<td>1.55</td>
<td>MF54AZ</td>
<td>1.50</td>
</tr>
<tr>
<td>MF54BA</td>
<td>1.45</td>
<td>MF54BB</td>
<td>1.40</td>
<td>MF54BC</td>
<td>1.35</td>
</tr>
<tr>
<td>MF54BD</td>
<td>1.30</td>
<td>MF54BE</td>
<td>1.25</td>
<td>MF54BF</td>
<td>1.20</td>
</tr>
<tr>
<td>MF54BG</td>
<td>1.15</td>
<td>MF54BH</td>
<td>1.10</td>
<td>MF54BI</td>
<td>1.05</td>
</tr>
<tr>
<td>MF54BJ</td>
<td>1.00</td>
<td>MF54BK</td>
<td>0.95</td>
<td>MF54BL</td>
<td>0.90</td>
</tr>
<tr>
<td>MF54BM</td>
<td>0.85</td>
<td>MF54BN</td>
<td>0.80</td>
<td>MF54BO</td>
<td>0.75</td>
</tr>
<tr>
<td>MF54BP</td>
<td>0.70</td>
<td>MF54BQ</td>
<td>0.65</td>
<td>MF54BR</td>
<td>0.60</td>
</tr>
<tr>
<td>MF54BS</td>
<td>0.55</td>
<td>MF54BT</td>
<td>0.50</td>
<td>MF54BU</td>
<td>0.45</td>
</tr>
<tr>
<td>MF54BV</td>
<td>0.40</td>
<td>MF54BW</td>
<td>0.35</td>
<td>MF54BX</td>
<td>0.30</td>
</tr>
<tr>
<td>MF54BY</td>
<td>0.25</td>
<td>MF54BZ</td>
<td>0.20</td>
<td>MF54CA</td>
<td>0.15</td>
</tr>
<tr>
<td>MF54CB</td>
<td>0.10</td>
<td>MF54CC</td>
<td>0.05</td>
<td>MF54CD</td>
<td>0.00</td>
</tr>
</tbody>
</table>

FAIRCHILD VHF AND UHF PRESCALER CHIPS

FAIRCHILD VHF AND UHF PRESCALER CHIPS

TRW BROADBAND AMPLIFIER MODEL CA615B

TRW BROADBAND AMPLIFIER MODEL CA615B

CRYSTAL FILTERS:

CRYSTAL FILTERS:

MURATA CERAMIC FILTERS

MURATA CERAMIC FILTERS

CAPACITORS

CAPACITORS

TEST EQUIPMENT — HEWLETT PACKARD — TEKTRONIX — ETC.

TEST EQUIPMENT — HEWLETT PACKARD — TEKTRONIX — ETC.

CHIP CAPACITORS

CHIP CAPACITORS

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

HAMLIN SOLID STATE RELAYS

HAMLIN SOLID STATE RELAYS

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
**MRF454**

$21.83

**NPN SILICON RF POWER TRANSISTORS**

- Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 30 MHz.
- Specified 12.5 Volt, 30 MHz Characteristics –
  - Output Power = 80 Watts
  - Minimum Gain = 12 dB
  - Efficiency = 50%

**MRF472**

$2.50

- Specified 12.5 V, 27 MHz Characteristics –
  - Power Output = 4.0 Watts
  - Power Gain = 10 dB
  - Minimum Efficiency = 65% Typical

**MRF475**

$5.00

- Characterized for Single Sideband and Large-Signal Amplifier Applications Utilizing Low-Level Modulation.
- Specified 13.6 V, 30 MHz Characteristics –
  - Output Power = 12 W (PEP)
  - Minimum Efficiency = 40% (SSB)
  - Output Power = 4.0 W (CW)
  - Minimum Efficiency = 50% (CW)
  - Minimum Power Gain = 10 dB (PEP & CW)
- Common Collector Characterization

**Tektronix Test Equipment**

B  Wideband High Gain Plug In
SA  Dual Trace Plug In
TM  Plug In
9  Sampling Plug In
P  Transmission Reference Plug In
w  High Gain Differential Impedance Plug In
10:7  Test Lead Plug In for 500/5000 Multi-Frame
16:7  Wideband Dual Trace Plug In
155  Sampling Test Unit 500/8000 Multi-Frame
2A1  AC Differential Plug In
177A  Dual Trace Sampling DC to 100K Plug In
177A  Sampling Sweep Plug In
177T  Spectrum Analyser 1 to 30MHz Plug In
50  Amplifier Plug In
55  Sweep Plug In
131  Wideband High Gain Plug In
131A8  Wideband High Gain Plug In
131C/4C  Trace Plug In
153/4C  High Gain DC Differential Plug In
31  Wideband DC Differential Plug In
314C  Test HU High Gain Plug In
314C4  Test HU High Gain Plug In
314C5  Test HU High Gain Plug In
107  Trace Plug In for 500/8000 Multi-Frame
107  Trace Plug In for 500/8000 Multi-Frame
191A  Power Trace Generation
191B  Signal Generator
2B1  AC Coupled Front Panel
311  Current Probe Amplifier
191C  Time Mark Generator
2920  Tonometer Unit
705  Trigger Countdown Unit
451  Portable Dual Trace 100/1K Scope
455  Portable Dual Trace 100/1K Scope
465  Portable Dual Trace 100/1K Scope
2920  2 Channel 100/1K Scope
2921  2 Channel 100/1K Scope
2922  2 Channel 100/1K Scope
293  2 Channel 100/1K Scope
81  2 Channel 100/1K Scope
561  2 Channel 100/1K Scope Mount
56A  DK to 100/1K Scope Mount

**MHW710**

$66.45

**UHF POWER AMPLIFIER MODULE**

- Designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 400 to 512 MHz.
- Specified 12.5 Volt, UHF Characteristics –
  - Output Power = 33 Watts
  - Minimum Gain = 19.4 dB
  - Harmonics = 40 dB
  - 50Ω Input/Output Impedance
  - Guaranteed Stability and Ruggedness
  - Gain Control Pin for Manual or Automatic Output Level Control
  - Thin Film Hybrid Construction Gives Consistent Performance and Reliability

**Scopes with Plug-ins**

- **50A** DC to 10MHz Scope with a 100° Dual Trace DC to 10MHz Sampling Plug In and a 10/50 Sweep Plug In, Rock Mount

- **565** DC to 10MHz Dual Beam Scope with a 2000° Type Plug In, Rock Mount

- **581** DC to 10MHz Scope with a 80 Trace High Gain Plug In

**Tubes**

- **JE3** $5.00 4C3356 25.00
- **JE3S** $5.00 4C3356B 25.00
- **JE3M** $5.00 4C3356M 25.00
- **JE3C** 5.00 4C3356C 25.00
- **JE3N** 5.00 4C3356N 25.00
- **JE3P** 5.00 4C3356P 25.00
- **JE3L** 5.00 4C3356L 25.00
- **JE3F** 5.00 4C3356F 25.00
- **JE3B** 5.00 4C3356B 25.00
- **JE3D** 5.00 4C3356D 25.00
- **JE3A** 5.00 4C3356A 25.00

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
**MICROWAVE COMPONENTS**

**ARRA**

- Variable Attenuator 0 to 60dB
  - $50.00

**Hewlett Packard**

- 100 ohm Neg Thermistor Mount (NEW)
  - $150.00

- 200 ohm Neg Thermistor Mount (USED)
  - $100.00

**Merrimac**

- 90115 Variable Attenuator 100dB
  - $100.00

**Microlab/FXR**

- Horn 0.2 - 12.4 GHz
  - $60.00

**Narda**

- 25426A Directional Coupler 3 to 4 GHz 10dB Type SMA
  - $90.00

**General Microwave**

- Directional Coupler 2 to 4 GHz 50dB Type N
  - $75.00

**COMPUTER I.C. SPECIALS**

**CPU'S ECT.**

- Microprocessor
  - $13.80

- Microcontroller
  - $12.99

**Microcontroller**

- 8080A
  - $7.99

**NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!**
Look what KLM’s SKY EYE 1 offers: nearly 100 channels of the latest movies, sports, news, comedy, classic films, specials, religious programs and much more... all in clear, sharp studio quality picture and sound. Forget about “fringe” or no-reception areas, ghosts, fading, imaging and all the other problems of TV reception. KLM’s SKY EYE 1 is your direct link to the 11 TV satellites now orbiting above the U.S. You’ll experience great shows and the greatest picture quality you’ve ever seen.

KLM’s SKY EYE 1 is a complete system, featuring performance-proven “state of the art” electronics design and materials. All you need is a modest amount of space for the special parabolic antenna (its screened surface blends with the landscaping to become a discrete addition to your yard). Inside your home, all those channels are accessible through the compact SKY EYE 1 Control Center.

With KLM’s SKY EYE 1 your TV becomes a true entertainment center, bringing you an amazing variety of great shows — something to please every member of your family.

**KLM’s SKY EYE 1 SYSTEM**

**Control Center**
- CONTINUOUS CHANNEL TUNING
- CONTINUOUS AUDIO TUNING 5.8 to 7.4 MHz
- POLARITY CONTROL CAPACITY, MOMENTARY AND LIMIT MODELS
- SEPARATE REGULATED POWER SUPPLIES FOR LNA AND RECEIVER
- STANDARD RG-59 COAX TO RECEIVER UNIT

**Receiver Unit**
- SINGLE CONVERSION IMAGE REJECTION MIXER (greater linearity and video response than any PLL)
- BUILT-IN DC BLOCK
- MODULAR CONSTRUCTION
- WEATHER-PROOF ENCLOSURE

**CONTROL CENTER and RECEIVER UNIT** $1500.00

**Antenna: KLM Parabolic Dish**
- SCREENED FOR LIGHT WEIGHT AND LOW WINDLOAD
- EASY AZIMUTH AND ELEVATION CHANGES
- MODEST BASEMOUNT REQUIREMENTS
- HIGH GAIN LNA (AVANTEK)
- MOTOR DRIVEN POLARITY CHANGES
- 12 FOOT OR 16 FOOT PARABOLIC DISHES

**12 Foot** $3000.00
**16 Foot** $3500.00

$800.00

**NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!**
TEST EQUIPMENT SPECIALS

HEWLETT-PACKARD

180A Oscilloscope with a 1801A Dual Channel Vertical Amplifier Plug-in 50 MHz and with a 1821A Time Base and Delay Generator Plug-in. $1250.00

180A Oscilloscope with a 1802A Dual Channel Vertical Amplifier Plug-in 100 MHz and with a 1822A Time Base and Delay Generator Plug-in. $1350.00

181A Oscilloscope with a 1803A Differential DC Offset Amplifier Plug-in and with a 1825A Time Base and Delay Generator Plug-in. $1950.00

181A Oscilloscope with a 1807A Dual Channel Vertical Amplifier Plug-in 35 MHz and with a 1822A Time Base and Delay Generator Plug-in. $1550.00

183A Oscilloscope with a 1831A Direct Access Vertical Amplifier Plug-in 600 MHz and with a 1840A Time Base and a 1841A Time Base and Delay Generator Plug-in. $2500.00

(We will be glad to mix the above systems any way you would like them.)

1840A Oscilloscope with a 1401A Dual Channel Vertical Amplifier Plug-in and with a 1420A Time Base Plug-in. $799.00

140A Oscilloscope with a 1402A Dual Channel Vertical Amplifier Plug-in 20 MHz and a 1421A Time Base and Delay Generator Plug-in. $1690.00

140A Oscilloscope with a 1410A Dual Trace Sampling Plug-in DC to 1 GHz and with a 1425A Sampling Time Base. (Built-in probes.) $2200.00

141A Oscilloscope with a 1411A Dual Trace Sampling Plug-in DC to 12.4 GHz and with a 1424A Sampling Time Base. $2000.00

140A Oscilloscope with a 1411A Dual Trace Sampling Plug-in DC to 12.4 GHz and with a 1424A Sampling Time Base. $1500.00

1430A Feed Thru Sampling Head DC to 12.4 GHz, 28 picosecond rise time. $1250.00

302A Wave Analyzer High selectivity and sensitivity with frequency resolution of 10 Hz. 20 Hz to 50 kHz range ± 1%. 30mv to 300v full scale range. Built-in AFC. 75 dB dynamic range. $975.00

310A Wave Analyzer This unit is a high frequency wave analyzer. A narrow band selective voltmeter. Its selectivity allows analysis of closely spaced fundamental signals, harmonics, and intermodulation products. Frequency range: 1 kHz to 1.5 MHz (3000 Hz bandwidth). Frequency Accuracy: ± (1% + 300 Hz). Selectivity: 3 IF bandwidths 200 Hz, 1000 Hz and 3000 Hz. Voltage range: 10uv to 100v full scale. Dynamic range: 75 dB. $1050.00

431B Power Meter Measures RF Power 10uw to 10mw. 10 MHz to 40 GHz with 478A Mount and cable. $330.00

431C Power Meter Measures RF Power 10uw to 10mw. 10 MHz to 40 GHz with 478A Mount and cable. $580.00

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
TEST EQUIPMENT SPECIALS

HEWLETT-PACKARD

805A Slotted Line 500MC to 4 GHz, 1.04 residual SWR. $250.00
809B Carriage with 806B Coaxial Slotted Section (.3 to 12 GHz), a X810B Slotted Section (8.2 to 12.4 GHz), a H810B Slotted Section (7.05 to 10 GHz), a X281A X to N adapter, a H281A H to N adapter, a HX292B H to X adapter, a 444A Probe (2.6 to 18 GHz), a PRD250 Probe (2.4 to 12.4 GHz) $650.00
340A Noise Figure Meter Automatically Measures and Displays IF and RF Amplifier Noise at 30 or 60 MHz. Bandwidth of 1 MHz. $200.00
340B Noise Figure Meter Automatically Measures and Displays IF and RF Amplifier Noise at 30 or 60 MHz. Bandwidth of 1 MHz. Input requirements — 60 to – 10 dBm. $350.00

AIL

74A Automatic Noise Figure Meter with a type 70 Diode Noise Generator 10 to 250 MHz, a type 71 Power Supply, a 07049 Noise Generator 3.95 to 5.85 GHz, a 07010 Noise Generator .20 to 2.6 GHz, a 0752 Noise Generator. $650.00

TEKTRONIX

661 90 Picosecond Rise Time Sampling Oscilloscope with a 4S1 350 Picosecond Dual Trace Sampling Plug-In DC to 1 GHz, 4S2 90 Picosecond Dual Trace Plug-In DC to 3.5 GHz, 4S3 350 Picosecond Dual Trace Plug-In DC to 1 GHz (all above Plug-Ins are 2mv/cm to 200mv/cm and with a 5T1 Plug-In Sampling System Timing. 1ns/cm to 100us/cm, (useful beyond 5 GHz). $1000.00
SPECTRUM ANALYZER PLUG-INS
1L5 50 Hz to 1 MHz, Center Frequency 50 Hz to 990 kHz, Dispersion — 10 Hz/cm to 100 kHz/cm, Deflection Factor 10uv/cm to 2v/cm. $1000.00
1L10 1 MHz to 36 MHz, Bandwidth resolution of 10 Hz to 1 kHz, Calibrated Dispersion from 10 Hz to 2 kHz, Sensitivity of — 100 dBm. $900.00
1L30 925 MHz to 10.5 GHz, Bandwidth resolution of 1 kHz to 100 kHz, Dispersion of 1 kHz to 10 MHz/cm, Sensitivity of — 75 dBm to — 105 dBm. $1100.00
1L40 1.5 GHz to 40 GHz about same specifications as above. $1500.00
3L10 1 MHz to 36 MHz same as 1L10 But For 560,561 Mainframe Oscilloscopes. $1000.00

HEWLETT-PACKARD

852A with a 8551B Spectrum Analyzer a Highly Versatile Instrument that Covers 10.1 MHz to 40 GHz. Sensitivity of up to — 100 dBm. Ten Calibrated Spectrum widths from 100 kHz to 2 GHz. Large 7 and 10cm Display. The 852A is a Storage Display. $2000.00
With The 851A Display (NOT STORAGE) $1500.00
With the 851 B Display (NOT STORAGE BUT NEWER) $1800.00

WE ARE LOOKING FOR HEWLETT-PACKARD MODELS 8553B ECT. FOR THE 141S or T

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!
**RF CONNECTORS COAX**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>PRICE EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG-273</td>
<td>Female BNC to PL-259</td>
<td>$3.00</td>
</tr>
<tr>
<td>UG-146/u</td>
<td>SO-239 to N Male</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-83a/u</td>
<td>N Female to PL-259</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-318/u</td>
<td>PL-259 to N Male</td>
<td>$10.00</td>
</tr>
<tr>
<td>B74</td>
<td>N Female to General Radio</td>
<td>$15.00</td>
</tr>
<tr>
<td>UG-394/b/u</td>
<td>BNC Male to N Female</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-255/u</td>
<td>NBC Male to SO-239</td>
<td>$5.00</td>
</tr>
<tr>
<td>UG-21a/u</td>
<td>N Cable Connector Male</td>
<td>$4.00</td>
</tr>
<tr>
<td>UG-58a/u or UG-58b/u</td>
<td>N Female to PL-259</td>
<td>$4.50</td>
</tr>
<tr>
<td>SO-239</td>
<td>UHF Female Panel</td>
<td>$1.00</td>
</tr>
<tr>
<td>UG-1094a/u or UG-625b/u</td>
<td>BNC Female Bulkhead</td>
<td>$1.35</td>
</tr>
<tr>
<td>UG-290a/u or UG-185/u</td>
<td>BNC Female</td>
<td>$2.50</td>
</tr>
<tr>
<td>PL-259</td>
<td>UHF Cable Connector</td>
<td>$1.00</td>
</tr>
<tr>
<td>UG-175 or UG-176</td>
<td>Adapter for RG58 or RG59 Cable for PL-259</td>
<td>$0.50</td>
</tr>
<tr>
<td>UG-88/u or UG-260/u</td>
<td>BNC Male 50 or 75 ohm</td>
<td>$1.50</td>
</tr>
<tr>
<td>SO-239BM</td>
<td>SO-239 to PL-259 Quick Disconnect</td>
<td>$3.00</td>
</tr>
<tr>
<td>UG-57b/u</td>
<td>N Male to Male</td>
<td>$4.50</td>
</tr>
<tr>
<td>UG-27d/u</td>
<td>N 90° Male to Female</td>
<td>$6.50</td>
</tr>
<tr>
<td>UG-274a/u</td>
<td>BNC T Male Female Male</td>
<td>$5.00</td>
</tr>
<tr>
<td>UG-636a/u</td>
<td>BNC Female to &quot;C&quot; Male</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-554a/u</td>
<td>&quot;C&quot; Female to N Male</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-635u</td>
<td>BNC Male to &quot;C&quot; Female</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-565a/u</td>
<td>U Female to &quot;C&quot; Male</td>
<td>$10.00</td>
</tr>
<tr>
<td>UG-201a/u</td>
<td>BNC Female to N Male</td>
<td>$5.00</td>
</tr>
<tr>
<td>UG-206b/u</td>
<td>BNC 90° Male to Female</td>
<td>$3.00</td>
</tr>
<tr>
<td>M-388</td>
<td>UHF T Female Male Female</td>
<td>$3.25</td>
</tr>
<tr>
<td>UG-491b/u</td>
<td>BNC Male to Male</td>
<td>$5.00</td>
</tr>
<tr>
<td>UG-914/u</td>
<td>BNC Female to Female</td>
<td>$3.00</td>
</tr>
<tr>
<td>PE9090</td>
<td>TNC Female to N Male</td>
<td>$10.00</td>
</tr>
<tr>
<td>PE9089</td>
<td>TNC Male to N Female</td>
<td>$10.00</td>
</tr>
<tr>
<td>PE9088</td>
<td>TNC Female to TNC Female</td>
<td>$12.00</td>
</tr>
<tr>
<td>PE9087</td>
<td>TNC 90° Male to Female</td>
<td>$20.00</td>
</tr>
<tr>
<td>PE9086</td>
<td>TNC Male to Male</td>
<td>$12.00</td>
</tr>
<tr>
<td>PE9085</td>
<td>TNC Female to TNC Female</td>
<td>$20.00</td>
</tr>
<tr>
<td>PE9084, 9083, 9082</td>
<td>TNC Panel and Bulkhead</td>
<td>$3.00</td>
</tr>
<tr>
<td>PE9081</td>
<td>BNC Male to F Female</td>
<td>$5.00</td>
</tr>
<tr>
<td>PE9080</td>
<td>BNC Male to TNC Female</td>
<td>$10.00</td>
</tr>
<tr>
<td>PE9079</td>
<td>N Female to SMA Female Panel</td>
<td>$30.00</td>
</tr>
<tr>
<td>PE9078</td>
<td>BNC Female to SMA Female Panel</td>
<td>$30.00</td>
</tr>
<tr>
<td>PE9077</td>
<td>&quot;C&quot; Female to SMC Female Bulkhead</td>
<td>$30.00</td>
</tr>
<tr>
<td>PE9076</td>
<td>SMA Male for .141 semi-ridg</td>
<td>$3.00</td>
</tr>
<tr>
<td>PE9075</td>
<td>SMA Male for .085 semi-ridg</td>
<td>$3.00</td>
</tr>
<tr>
<td>PE9074</td>
<td>SMA Flange Female</td>
<td>$5.00</td>
</tr>
<tr>
<td>PE9073</td>
<td>SMA Flange Male</td>
<td>$5.00</td>
</tr>
<tr>
<td>PE9072</td>
<td>SMA Female Short</td>
<td>$7.50</td>
</tr>
<tr>
<td>PE9071</td>
<td>SMA Male 50 ohm load</td>
<td>$10.00</td>
</tr>
<tr>
<td>PE9070</td>
<td>SMA Female to Female</td>
<td>$10.00</td>
</tr>
<tr>
<td>Tektronix 011-0049-01</td>
<td>50 ohm 2 watt term. BNC Female to Male</td>
<td>$15.00</td>
</tr>
<tr>
<td>FXR AH-A92</td>
<td>0.5 dB SMA Male Female Att.</td>
<td>$15.00</td>
</tr>
<tr>
<td>FXR AH-A93</td>
<td>1.0 dB SMA Male Female Att.</td>
<td>$15.00</td>
</tr>
<tr>
<td>FXR AH-A94</td>
<td>1.5 dB SMA Male Female Att.</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

**COAX CABLE SPECIAL SALE**

**Microdot** **RG-174**

Miniature 50 ohm coax cable for small jobs. This cable was made to meet military spec. (PRICE PER FOOT)
1 to 25 foot $15; 26 to 50 foot $12; 51 to 100 foot $11; 101 and up $10

**Microdot** **RG-402U**

.141 miniature 50 ohm hard line/semi-ridg coax for use with SMA/SMC etc. miniature coax connectors. This cable is very low loss and is used for High Frequency projects. (PRICE PER FOOT)
1 to 10 foot $5.00; 11 to 25 foot $4.00; 26 to 50 foot $3.00

**Microdot** **RG-402U with two Male SMA Connectors Assembled.**
Approx. 10 to 15$.

$5.00

**Microdot** **RG-402U with two Male N Connectors Assembled.**
Approx. 10 to 20$.

$15.00

**NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!**
# CRYSTALS — $4.99

<table>
<thead>
<tr>
<th>KC/KHZ</th>
<th>MC/KHZ</th>
<th>MC/KHZ</th>
<th>MC/KHZ</th>
<th>MC/KHZ</th>
<th>MC/KHZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.75</td>
<td>24</td>
<td>26.25</td>
<td>32</td>
<td>49.71</td>
<td>70</td>
</tr>
<tr>
<td>81.9</td>
<td>96</td>
<td>100 (note)</td>
<td>114.1666</td>
<td>153.6</td>
<td>250</td>
</tr>
<tr>
<td>285.714</td>
<td>327.82</td>
<td>376</td>
<td>600</td>
<td>980</td>
<td>988.4</td>
</tr>
<tr>
<td>1.024</td>
<td>1.0545</td>
<td>1.06158</td>
<td>1.077368</td>
<td>1.092105</td>
<td>1.12583</td>
</tr>
<tr>
<td>1.163316</td>
<td>1.165789</td>
<td>1.197368</td>
<td>1.3</td>
<td>1.3065</td>
<td>1.6896</td>
</tr>
<tr>
<td>1.6525</td>
<td>1.7</td>
<td>1.78375</td>
<td>1.77125</td>
<td>1.773125</td>
<td>1.78675</td>
</tr>
<tr>
<td>1.81875</td>
<td>1.8415125</td>
<td>1.845625</td>
<td>1.84575</td>
<td>1.848</td>
<td>1.8482</td>
</tr>
<tr>
<td>1.8485</td>
<td>1.848525</td>
<td>1.84975</td>
<td>1.8575</td>
<td>1.908125</td>
<td>1.925</td>
</tr>
<tr>
<td>1.925125</td>
<td>1.927</td>
<td>1.932</td>
<td>1.932</td>
<td>1.932</td>
<td>1.982</td>
</tr>
<tr>
<td>1.985</td>
<td>1.9942</td>
<td>1.996975</td>
<td>1.99647</td>
<td>1.999659</td>
<td>2</td>
</tr>
<tr>
<td>2.0265</td>
<td>2.0265</td>
<td>2.05975</td>
<td>2.078</td>
<td>2.082</td>
<td>2.125</td>
</tr>
<tr>
<td>2.125125</td>
<td>2.12795</td>
<td>2.1315</td>
<td>2.133275</td>
<td>2.13555</td>
<td>2.1425</td>
</tr>
<tr>
<td>2.144625</td>
<td>2.14675</td>
<td>2.14675</td>
<td>2.14675</td>
<td>2.14675</td>
<td>2.14675</td>
</tr>
</tbody>
</table>

| NOTE | 100KC is $9.99 each |

## NEW — TOLL-FREE NO. 800-528-0180 — please, orders only! | 98 HOW 1980 | More Details? CHECK — OFF Page 126 |
<table>
<thead>
<tr>
<th>MC/MHz</th>
<th>MC/MHz</th>
<th>MC/MHz</th>
<th>MC/MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.67407</td>
<td>10.6864</td>
<td>23.575</td>
<td>35.14</td>
</tr>
<tr>
<td>7.68889</td>
<td>10.962</td>
<td>26.375</td>
<td>35.18</td>
</tr>
<tr>
<td>7.71852</td>
<td>11.005</td>
<td>26.82</td>
<td>35.19</td>
</tr>
<tr>
<td>7.7985</td>
<td>11.035</td>
<td>26.64</td>
<td>35.2</td>
</tr>
<tr>
<td>7.80715</td>
<td>11.13</td>
<td>26.86667</td>
<td>35.3</td>
</tr>
<tr>
<td>7.81</td>
<td>11.1905</td>
<td>26.67</td>
<td>35.36</td>
</tr>
<tr>
<td>7.9</td>
<td>11.228</td>
<td>26.74</td>
<td>35.55555</td>
</tr>
<tr>
<td>7.925</td>
<td>11.2995</td>
<td>26.8965</td>
<td>35.92125</td>
</tr>
<tr>
<td>7.926667</td>
<td>11.34</td>
<td>26.958</td>
<td>35.97825</td>
</tr>
<tr>
<td>7.95</td>
<td>11.3565</td>
<td>27.005</td>
<td>36.04</td>
</tr>
<tr>
<td>7.975</td>
<td>11.35875</td>
<td>27.045</td>
<td>36.08</td>
</tr>
<tr>
<td>8</td>
<td>11.353375</td>
<td>27.095</td>
<td>36.16</td>
</tr>
<tr>
<td>8.002</td>
<td>11.53347</td>
<td>27.126</td>
<td>36.2</td>
</tr>
<tr>
<td>8.003333</td>
<td>11.705</td>
<td>27.16</td>
<td>36.2675</td>
</tr>
<tr>
<td>8.0355</td>
<td>11.755</td>
<td>27.205</td>
<td>36.3525</td>
</tr>
<tr>
<td>8.0635</td>
<td>11.805</td>
<td>27.265</td>
<td>36.3875</td>
</tr>
<tr>
<td>8.094864</td>
<td>11.855</td>
<td>27.5</td>
<td>36.4275</td>
</tr>
<tr>
<td>8.1</td>
<td>11.905</td>
<td>27.77778</td>
<td>36.66667</td>
</tr>
<tr>
<td>8.125</td>
<td>11.95</td>
<td>27.845</td>
<td>37</td>
</tr>
<tr>
<td>8.12625</td>
<td>11.98125</td>
<td>27.89</td>
<td>37.2175</td>
</tr>
<tr>
<td>8.14</td>
<td>12.925</td>
<td>28</td>
<td>37.46</td>
</tr>
<tr>
<td>8.16</td>
<td>12.93</td>
<td>28.1615</td>
<td>37.7777</td>
</tr>
<tr>
<td>8.15571</td>
<td>13.102</td>
<td>28.7</td>
<td>37.845</td>
</tr>
<tr>
<td>8.15714</td>
<td>13.2155</td>
<td>28.728</td>
<td>38</td>
</tr>
<tr>
<td>8.175</td>
<td>13.2455</td>
<td>28.775</td>
<td>38.33333</td>
</tr>
<tr>
<td>8.2</td>
<td>13.2745</td>
<td>28.8</td>
<td>38.77777</td>
</tr>
<tr>
<td>8.224615</td>
<td>13.3045</td>
<td>28.85</td>
<td>38.88888</td>
</tr>
<tr>
<td>8.34</td>
<td>13.3145</td>
<td>28.85</td>
<td>38.88889</td>
</tr>
<tr>
<td>8.2685</td>
<td>13.3245</td>
<td>28.90</td>
<td>39.05555</td>
</tr>
<tr>
<td>8.32</td>
<td>13.3345</td>
<td>28.95</td>
<td>39.092993</td>
</tr>
<tr>
<td>8.345</td>
<td>13.345</td>
<td>28.98</td>
<td>39.09293</td>
</tr>
<tr>
<td>8.37</td>
<td>13.384</td>
<td>29.845</td>
<td></td>
</tr>
<tr>
<td>8.455</td>
<td>14.315</td>
<td>29.845</td>
<td></td>
</tr>
<tr>
<td>8.854</td>
<td>15.02</td>
<td>29.845</td>
<td></td>
</tr>
<tr>
<td>8.8825</td>
<td>15.016</td>
<td>29.845</td>
<td></td>
</tr>
<tr>
<td>8.8871</td>
<td>15.036</td>
<td>29.845</td>
<td></td>
</tr>
<tr>
<td>8.89</td>
<td>15.965</td>
<td>30.25</td>
<td>39.21389</td>
</tr>
<tr>
<td>8.89</td>
<td>17.02925</td>
<td>30.25</td>
<td>39.692</td>
</tr>
<tr>
<td>8.905</td>
<td>17.01018</td>
<td>30.25</td>
<td>39.95</td>
</tr>
<tr>
<td>8.9135</td>
<td>17.015</td>
<td>30.25</td>
<td>43.45</td>
</tr>
<tr>
<td>8.9305</td>
<td>17.05</td>
<td>30.25</td>
<td>52.59259</td>
</tr>
<tr>
<td>8.939</td>
<td>17.115</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.025</td>
<td>17.165</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.0625</td>
<td>17.215</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.327778</td>
<td>17.29</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.36</td>
<td>17.9265</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.37491</td>
<td>17.9365</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.425938</td>
<td>17.9665</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.5075</td>
<td>17.975</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.54</td>
<td>17.9935</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.565</td>
<td>18.29</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.585</td>
<td>18.76563</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.643125</td>
<td>19.006</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.65</td>
<td>19.1</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.657292</td>
<td>19.1003</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.7</td>
<td>19.383</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.75</td>
<td>19.384</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.8</td>
<td>19.43125</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.85</td>
<td>19.45208</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.9</td>
<td>19.5385</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.934375</td>
<td>19.6608</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>9.95</td>
<td>20.1</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.01</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.02</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.021</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.206333</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.4</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.75</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.8535</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
<tr>
<td>10.80375</td>
<td>22.22</td>
<td>30.25</td>
<td>53.45</td>
</tr>
</tbody>
</table>

NEW — TOLL-FREE NO. 800-528-0180 — please, orders only!

More Details? CHECK — OFF Page 126

december 1980
New Portable Digital Capacitance Meter

**MODEL 820**
- Measures capacitance from 0.1 pF to 1 Farad
- Resolves to 0.1 pF
- 10 ranges for accuracy and resolution
- 4 digit easy-to-read LED display
- 0.5% accuracy
- Special lead insertion jacks or banana jacks
-Fuse protected
-Uses either rechargeable or disposable batteries
-Overrange indication

Call For Our Price

**DATA PRECISION**

**Model 938**

0.1%, 3½-Digit, LCD DIGITAL CAPACITANCE METER

- WIDE RANGING — from 199.9 pF full scale (0.1 pF resolution) up to 1999 μF full scale, in eight ranges, virtually every capacitance you'll ever need to measure.
- FAST AND EASY TO USE — Direct reading, pulldown ranges, just dial in and read.
- EXCEPTIONALLY ACCURATE — provides ±0.1% basic accuracy.
- TOUGH AND COMPACT — Built to take rough usage without loss of calibration accuracy. Fits and goes anywhere. Takes very little bench space, always handy for quick capacitance checkout, matching, calibration, and tracking.
- PORTABLE — Pneumatically light, operates up to approximately 200 hours on a single 9V alkaline battery.
- EASY READING — big, clear, high-contrast 3½-digit LCD display, a full 0.5" high, readable anywhere.
- VALUE PRICED — Outstanding measurement capability and dependability. Outperforms DC time-constant meters, and even bridges costing 2 to 5 times as much.
- RELIABLE — warranted for 2 ½ years.

$179

**HICKOK**

**LX304 DIGITAL MULTIMETER**

FAST, EASY, ONE HAND OPERATION

AVAILABLE NOW $89.95

**New Low Distortion Function Generator**

**MODEL 3010**
- Generates sine, square and triangle waveforms
- Variable amplitude and fixed TTL square-wave outputs
- 0.1 Hz to 1 MHz in six ranges
- Push button range and function selection
- Typical sine wave distortion under 0.5% from 0.1 Hz to 100 kHz
- Variable DC offset for testing applications
- VCO external input for sweep-frequency tests

Call For Our Price

**New Sweep/Function Generator**

**MODEL 3020**
- Four instruments in one package—sweep generator, function generator, pulse generator, tone burst generator
- Covers 0.02 Hz to 2 MHz
- 1000:1 tuning range
- Low distortion high accuracy outputs
- Three-step attenuator plus vernier control
- Internal linear and log sweeps
- Tone burst output is front-panel or externally programmable

Call For Our Price

**FLUKE**

**DIGITAL MULTIMETERS**

- Six functions
  - dc voltage
  - ac voltage
  - dc current
  - ac current
  - resistance
  - diode test
- 3½-digit resolution
- 0.25% basic dc accuracy
- LCD display
- Overload protection

**Model 8022A: The Troubleshooter**
$139

**Model 8020A: The Analyst**
$179

**Model 8024A: The Investigator**
$219

Call For Our Price

**More Details? CHECK OFF Page 126**
PORTABLE OSCILLOSCOPES
BATTERY OPERATED

MS-215
Dual Trace 15 MHz
Reg. price $465. $399.95

MS-230
Dual Trace 30 MHz
Regular price $598. $499.95

THESE 1980 B&K OSCILLOSCOPES ARE IN STOCK AND AVAILABLE FOR IMMEDIATE DELIVERY

MS-15
Single Trace 15 MHz
Reg. price $349. $299.95

Bench/Portable DMM

Model 169
• 3½ Digit liquid crystal display
• 0.25% basic accuracy
• 26 Ranges
$159.00

Keithley

Model 169
Bench/Portable DMM
• 3½ Digit liquid crystal display
• 0.25% basic accuracy
• 26 Ranges
$159.00

WESTON
The Roadrunner
Model 6100
• 5 Range audible signaling function
• 0.5” LCD display
• 6 Functions
• 29 Ranges
$139.00

80 MHz Counter with Period Function

MODEL 1820
• 5 Hz to 80 MHz reading guaranteed—100 MHz typical
• Period measurements from 5 Hz to 1 MHz
• Period average, auto and manual positions
• One PPM resolution
• Totals to 9999999 plus overflow
• Elapsed time measurements, from 01 to 999999 99 seconds plus overflow
• One-megohm input resistance
• Bright 43’ high LED readouts

CALL FOR OUR EARLY BIRD SPECIAL LOW PRICE

1479A Dual-Trace 30 MHz
1477 Dual-Trace 15 MHz
1432 Dual-Trace 15 MHz Portable
1476 Dual-Trace 10 MHz
1466 Single-Trace 10 MHz
1405 Single-Trace 5 MHz

THE TEST EQUIPMENT SPECIALISTS
TOLL FREE HOT LINE
800-223-0474
54 WEST 45th STREET, NEW YORK, N.Y. 10036 212-687-2224

More Details? CHECK OFF Page 126
december 1980
ATTENTION HAMS!
Earn a “FREE” Antenna, Tower or BOTH!

If you are employed by a company that could use a high lift work platform, as shown below, you may earn a new antenna system FREE.

Bill Orr’s famous
Radio Handbook
21st Edition

Often referred to as the “California Handbook,” Bill Orr’s 21st edition of the RADIO HANDBOOK is a must for every ham’s bookshelf. 1080 pages cover extensively everything from antennas to zero bias tubes. In addition you’ll find new and enlarged sections on frequency synthesizers, IC design, HF and VHF linear amplifier construction and NBVM. Radio theory, construction projects, tests and measurements, and reference data are all here, under one cover. W6SAI and more than 20 other notable Amateurs have combined their talents to produce one of the finest and most complete Amateur Radio reference sources ever put in print. 1080 pages.

© 1978.

□ 24034

Hardbound $21.50

Call 1-800-258-5353

Ham Radio’s Bookstore
Greenville, N. H. 03048

Please add $1 for shipping
A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95. Now available in KIT FORM — GLB Model 200 MINI-SIZER. Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95 Send for FREE 16 page catalog. We welcome Mastercharge or VISA

GLB ELECTRONICS
1952 Clinton St., Buffalo, N.Y. 14206

S-LINE OWNERS ENHANCE YOUR INVESTMENT

with TUBESENTERS™
Plug-in, solid state tube replacements
- S-Line performance—solid state!
- Heat dissipation reduced 60%
- Goodbye hard-to-find tubes
- Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC
Box 535
Talmage, CA 95481
(707) 462-6892

SYNTHESIZED SIGNAL GENERATOR

- Covers 100 to 179,999 MHz in 1 kHz steps with thumb-wheel dial
- Accuracy .0001% at all frequencies
- Internal frequency modulation from 0 to 100 kHz. At 1 kHz rate. Spurs and noise at least 60dB below carrier. RF output adjustable from 50 to 500mV across 50 ohms. Operates on 12vdc @ ½ amp. Price $299.95 plus shipping.

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720

VANGUARD LABS
196-23 Jamaica Ave. Hollis, NY 11423

WHEN ESTATE: List of Ham equipment and test equipment available. Collins, General Radio, Knight, many more, also list of Antique Radios now available. Send SASE with $1.00 to Mrs. D. Fisk, P. O. Box 429, Hollis, New Hampshire 03049. Note: Will not ship, pick-up only.

ETCH IT YOURSELF PRINTED CIRCUIT KIT. Photo-Positive Method — No darkroom required. All the supplies for making your own boards, direct from magazine article in less than 2 hours. Only $24.95 S.A.S.E. for details: Micro Circuits Co., 4412 Fernie, Royal Oak, MI 48073.


BUY-SELL-TRADE: Send $1.00 for catalog. Give name and address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

CAREFUL DELIVERY: Send $1.00. Give name and address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

WANTED: 4126A/4021, 6155 tubes. H.P. 423, W4BUZ, 1203 Verdi Dr., Greensboro, NC 27410 (919) 292-1538.

AUTOMATICALLY decode Morse. Improve speed, measure difficult signals. Microcomputer electronics, features unavailability. SASE. Seastrom, Box 1165, East Dennis, MA 02641.

CW/SSB FILTERS: IC audio input in any radio, sharp CW, stagger tuned SSB — $15.32. SASE info: WBCBR, 80 W. Mennonite, Aurora, OH 44202.

MOTOROLA RADIOS WANTED: I need micors, moxras, moxcom 70's, H.T.'s, and bases — anything Motorola newer than 12 years. I pay all shipping. Len Rusnak, WAT3J0 301-441-1221.


More Details? CHECK-OFF Page 126

Coming Soon

1981 HANDBOOK
U.S. & FOREIGN CallBooks
CALL TODAY TO RESERVE YOUR COPY
1-800-258-5353
Ham Radio's Bookstore GREENVILLE, N. H. 03048

Yaesu FT-207R OWNERS AUTOMATIC SCAN MODULE
15 minutes to install; scan restarts when carrier drops off; busy switch controls automatic scan on-off; includes module and instructions.
Model AS-1
$25.00

Engineering Consulting
P. O. Box 94355
RICHMOND, B. C. V6Y2AB, CANADA

S-Line Owners enhance your investment

with TUBESTERS™
Plug-in, solid state tube replacements
- S-Line performance — solid state!
- Heat dissipation reduced 60%
- Goodbye hard-to-find tubes
- Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-Line.

SKYTEC
Box 535
Talmage, CA 95481
(707) 462-6892

Synthesized Signal Generator

- Covers 100 to 179,999 MHz in 1 kHz steps with thumb-wheel dial
- Accuracy .0001% at all frequencies
- Internal frequency modulation from 0 to 100 kHz. At 1 kHz rate. Spurs and noise at least 60dB below carrier. RF output adjustable from 50 to 500mV across 50 ohms. Operates on 12vdc @ ½ amp. Price $299.95 plus shipping.

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720

Vanguard Labs
196-23 Jamaica Ave. Hollis, NY 11423
Send More De

Easy to Install. Low Prices.

*TELESCOPING (CRANK UP)
*GUED (STACK-UP)
*TILT-OVER MODELS

EXCELLENT FOR
HAM COMMUNICATIONS

SPECIAL
Four Section 50 Ft.
Van Mounted Crank-Up
Aluma Tower

Over 36 types aluminum and steel towers made—specials designed and made—write for details

ALUMA TOWER CO.
Box 26000RJ
Vero Beach, Fl. 32960
Phone (305) 567-3427
Telex 80-3405

Send 10¢ for our latest catalog. Write or phone for more details

Jan crystals
Send list for our latest catalog. Write or phone for more details

JAN CRYSTALS
2400 Crystal Drive
Fort Myers, Florida 33907

all phones 813-936-2597

ASTRON POWER SUPPLIES

- HEAVY DUTY - HIGH QUALITY - RUGGED - RELIABLE -

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.
- VOLT & AMP METER ON MODELS RS-20M & RS-35M

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ±0.05 volts internally Adjustable (11.8 - 15.6 VDC)
- RIPPLE: Less than 5mV peak to peak (full load & low line)
- REGULATION: ±0.05 volts no load to full load & line to line high line

Other popular POWER SUPPLIES also available: (Same features and specifications as above)

Model | Continuous Duty (amps) | ICS* (amps) | Size (in.) | H X W X D | Shipping Wt. (lbs) | Price
--- | --- | --- | --- | --- | --- | ---
RS-35M | 25 | 35 | 5 x 11 x 11 | 29 | $167.95
RS-35A | 25 | 35 | 5 x 11 x 11 | 29 | $149.95
RS-20A | 16 | 20 | 5 x 9 x 10 1/4 | 20 | $99.95
RS-12A | 9 | 12 | 4 x 8 3/4 x 9 | 13 | $74.95
RS-7A | 2 | 7 | 3 1/2 x 6 1/2 x 9 | 13 | $54.95
RS-4A | 2 | 7 | 3 1/2 x 6 1/2 x 9 | 13 | $39.95

*ICS - Intermittent Communication Service (50% Duty Cycle)
If not available at your local dealer, please contact us directly.

ASTRON 20 AMP REGULATED
POWER SUPPLY Model RS-20M
16 Amps continuous
20 Amps ICS* | 5" (H) x 9" (W) x 10 3/4" (D)
Shipping Weight 20 lbs.
Price: $117.95

2812 Walnut — Unit E
Tustin, CA 92680
(714) 835-0682

RF Speech Processors for Drake TR-7, TR-4s, T4Xs
Mike Equalizer Pre-Processor

High intelligibility, unequaled talkpower. No-compromise design. Special 8-pole IF crystal filtering, followed by highly effective hard clipping (followed by rig filter): the keys to highest processing efficiency. TR-7 and TR-4 units feature selectable 16-pole receive, as well as automatic transmit/receive switching. Newest TR-7 processor has two 16-pole positions (1.9 and 1.6 kHz), allowing selection of up to eight different bandwidths. All solid-state pin-diode switching. Model 7-SP Mk II for TR-7: $400.00. Model 4-SP for T-4x's: $425.00

Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

Money back if not satisfied
Add $3 per order shipping.
$15 overseas add

Dealer Inquiries Welcome

RED HOT SPECIALS
AZDEN PCS-2000, 2 meters .......... 249.00
ICOM 720 w/ PIS & MIKE ...... 1140.00
BEARCAT 251A or 250 SCANNER, ... 269.00
ICOM IC-255A, 2 meters ....... 750.00
SWAN ASTRO 150, New Style .... 588.00
ICOM IC-251A, 2m All Mode ... 299.00
JANET GSA 5, 2m Pre Amp .. 38.50
ICOM IC-22A HANDHELD w/ Mic .. 199.00
with Touch Tone Pad .... 319.00
ICOM 551, 6 meters ... 380.00
ALL MFJ PRODUCTS. ... 12% off List

Write for our Large Specials
and Used Equipment Lists

BEN FRANKLIN
ELECTRONICS
1151/2 N. Main
Hillsboro, KS 67063
316-947-2269

NEMAL ELECTRONICS
5840 S. W. 82nd St.
MIAMI, FL 33143
TOLL FREE 1-800-555-2243

ASTRON CORP.
11851 Walnut — Unit E
Tustin, CA 92680
(714) 835-0682

JAN CRYSTALS

COAXIAL CABLE

SEND FOR FREE CATALOG
MIL SPECS • POLYETHYLENE
34/gfl. RG213 nonconluminating ... 34/gfl.
25/gfl. RG11U 75 ohms ..... 25/gfl.
10/gfl. RG8/U 850 ohms .... 10/gfl.

LOW LOSS FOAM
30/gfl. RG174 97% shield, white .... 30/gfl.
18/gfl. RG8 80% shield .... 18/gfl.
17/gfl. RG11U .... 17/gfl.
16/gfl. RG50 35% shield .... 16/gfl.
16/gfl. Rotor-cable 2-1/8g, 6-22a .... 16/gfl.
— shipping $3 first 100 fl., $1 ea add.100 fl.

Belden Special
27/gfl. RG8/U 85% shield .... 27/gfl.

CONNECTORS
PL-259 10/5.59 $0.25 10/5.59 ea.
Double Male $1.79 ea. Eillow $1.79 ea.
US-175 or 176 $2.59
Reducer 10/1.79 — shipping 30c/pkg.

December 1980
a note on this index

To make the index easier to use only the years 1971-1980 are included, because most of the earlier material is now of limited interest. Refer to any December issue between 1970 and 1978 for a cumulative index covering 1968-1970. Copies of ham radio for December, 1977, may be purchased from Ham Radio's Bookstore for $2.50 postpaid.

antennas and transmission lines

<table>
<thead>
<tr>
<th>General</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna control, automatic azimuth/elevation for satellite communications W3AHLT</td>
<td>p. 26, Jan 75</td>
</tr>
<tr>
<td>Correction</td>
<td>p. 26, Jan 75</td>
</tr>
<tr>
<td>Antenna and control/link calculations for repeater licensing W7FUG</td>
<td>p. 58, Dec 75</td>
</tr>
<tr>
<td>Short circuit W5J</td>
<td>p. 59, Dec 75</td>
</tr>
<tr>
<td>Antenna and feedline facts and fallacies W5JJ</td>
<td>p. 24, May 73</td>
</tr>
<tr>
<td>Antenna design, programmable calculator simplifies (HN) W3DVO</td>
<td>p. 70, May 74</td>
</tr>
<tr>
<td>Antenna gain (letter) W3AFM</td>
<td>p. 62, May 76</td>
</tr>
<tr>
<td>Antenna gain and directivity W2PV</td>
<td>p. 12, Aug 79</td>
</tr>
<tr>
<td>Antenna restrictions: another solution N4AOG</td>
<td>p. 46, Jun 80</td>
</tr>
<tr>
<td>Antenna wire, low-cost copper (HN) W2EUF</td>
<td>p. 73, Feb 77</td>
</tr>
<tr>
<td>Anti-QRM methods W3FQJ</td>
<td>p. 50, May 71</td>
</tr>
<tr>
<td>Ground current measuring on 150-meter W4XKUS</td>
<td>p. 46, Jun 79</td>
</tr>
<tr>
<td>Ground loop (letter) W7F7S</td>
<td>p. 66, May 71</td>
</tr>
<tr>
<td>Ground screen, alternative to radials W6HFA</td>
<td>p. 22, May 77</td>
</tr>
<tr>
<td>Ground systems (letter) DL2BR</td>
<td>p. 6, Nov 80</td>
</tr>
<tr>
<td>Ground systems, vertical antenna W7LR</td>
<td>p. 30, May 74</td>
</tr>
<tr>
<td>Grounding, safer (letter) W4AXTC</td>
<td>p. 59, May 72</td>
</tr>
<tr>
<td>Headings, beam antenna W6DBC</td>
<td>p. 64, Apr 71</td>
</tr>
<tr>
<td>Horizontal or vertical (HN) W7IV</td>
<td>p. 62, Jun 72</td>
</tr>
<tr>
<td>Impedance measurements, nonresonant antenna W7CSD</td>
<td>p. 46, Apr 74</td>
</tr>
<tr>
<td>Insulators, homemade antenna (HN) W7ZB</td>
<td>p. 70, May 73</td>
</tr>
<tr>
<td>Lightning protection (CT) W1QTDY</td>
<td>p. 50, Jun 76</td>
</tr>
<tr>
<td>Lightning protection K3MM</td>
<td>p. 16, Dec 78</td>
</tr>
<tr>
<td>Comments, WRRTK</td>
<td>p. 6, Jul 79</td>
</tr>
<tr>
<td>Comments, W2FBL</td>
<td>p. 6, Jul 79</td>
</tr>
<tr>
<td>Letter, K3MM</td>
<td>p. 12, Dec 79</td>
</tr>
<tr>
<td>Line-of-sight distance, calculating W5BCQ</td>
<td>p. 56, Nov 76</td>
</tr>
<tr>
<td>Measurement techniques for antennas and transmission lines W4GQ</td>
<td>p. 36, May 74</td>
</tr>
<tr>
<td>Mobile mount, rigid (HN) VETABK</td>
<td>p. 69, Jan 73</td>
</tr>
<tr>
<td>Comments, WRRTK</td>
<td>p. 6, Dec 79</td>
</tr>
<tr>
<td>RF power meter, low-level W5KGF</td>
<td>p. 56, Oct 80</td>
</tr>
<tr>
<td>Sampling network, rf — the milli-trap W6GQW</td>
<td>p. 34, Jul 73</td>
</tr>
<tr>
<td>Scanning antenna elements W4ITB</td>
<td>p. 58, Jul 79</td>
</tr>
<tr>
<td>Smith chart, numerical W6BQWJ</td>
<td>p. 104, Mar 78</td>
</tr>
<tr>
<td>Solid-state T-R switch for tube transmitters K1MC</td>
<td>p. 58, Jun 80</td>
</tr>
<tr>
<td>Standing-wave ratios, importance of W6GQV</td>
<td>p. 26, Jul 73</td>
</tr>
<tr>
<td>Correction (letter) W9HJ</td>
<td>p. 67, May 74</td>
</tr>
<tr>
<td>Time-domain reflectometry, practical experimenter's approach W5PIA</td>
<td>p. 22, May 71</td>
</tr>
<tr>
<td>VSWR and power meter, automatic W6NQ</td>
<td>p. 34, May 80</td>
</tr>
<tr>
<td>Wattmeter, low power (letter) WBDLO</td>
<td>p. 6, Jan 60</td>
</tr>
</tbody>
</table>

high-frequency antennas

<table>
<thead>
<tr>
<th>General</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-band phased-vertical W6ATXQ</td>
<td>p. 32, May 72</td>
</tr>
<tr>
<td>Antenna, 3.5 MHz, for a small lot W5AGX</td>
<td>p. 28, May 73</td>
</tr>
<tr>
<td>Antenna potpourri W3FQJ</td>
<td>p. 54, May 72</td>
</tr>
<tr>
<td>Army loop antenna — revisited W5FAQ</td>
<td>p. 59, Sep 71</td>
</tr>
<tr>
<td>Added notes W6XJ</td>
<td>p. 64, Jan 72</td>
</tr>
<tr>
<td>Base-loaded vertical antenna for 160 meters W8XQ</td>
<td>p. 64, Aug 80</td>
</tr>
<tr>
<td>Beverage antenna W3FQJ</td>
<td>p. 67, Dec 71</td>
</tr>
<tr>
<td>Beverage antenna for 40 meters KH6X</td>
<td>p. 40, Jul 79</td>
</tr>
<tr>
<td>Big quad — small yard W6SUN</td>
<td>p. 56, May 80</td>
</tr>
<tr>
<td>Bolts, chain</td>
<td>p. 66, Jul 77</td>
</tr>
<tr>
<td>Coaxial dipole antenna, analysis of W6PB</td>
<td>p. 46, Aug 78</td>
</tr>
<tr>
<td>Coaxial dipole, multiband (HN) W4BDK</td>
<td>p. 71, May 73</td>
</tr>
<tr>
<td>Collinear, six-element for W6YBF</td>
<td>p. 22, May 77</td>
</tr>
<tr>
<td>Compact antennas for 20 meters W4DBA</td>
<td>p. 38, May 71</td>
</tr>
<tr>
<td>Compact loop antenna for 80 and 40 meters W6IT</td>
<td>p. 24, Oct 79</td>
</tr>
<tr>
<td>Cornered loop, low frequency ZL1BN</td>
<td>p. 30, Apr 76</td>
</tr>
<tr>
<td>Installation modified W5SRS</td>
<td>p. 41, Feb 77</td>
</tr>
<tr>
<td>Cubical-quad antennas, mechanical design of VE3II</td>
<td>p. 44, Oct 74</td>
</tr>
<tr>
<td>Cubical quad, improved low-profile, three band W9HJ</td>
<td>p. 22, Jul 75</td>
</tr>
<tr>
<td>Curtain antenna (HN) W4ATE</td>
<td>p. 66, May 72</td>
</tr>
<tr>
<td>De-icing the quad (HN) W5SRS</td>
<td>p. 75, Aug 80</td>
</tr>
<tr>
<td>Delta loop, top-loaded W4ITB</td>
<td>p. 57, Dec 78</td>
</tr>
<tr>
<td>Dipole, all-band tuned ZS5BT</td>
<td>p. 22, Oct 72</td>
</tr>
<tr>
<td>Dipole beam W3FOQ</td>
<td>p. 56, Jun 74</td>
</tr>
<tr>
<td>Dipole pairs, low SWR W6FFF</td>
<td>p. 42, Oct 72</td>
</tr>
<tr>
<td>Double bi-square array W6BFF</td>
<td>p. 32, May 71</td>
</tr>
<tr>
<td>DX antenna, single-element W6FHM</td>
<td>p. 52, Dec 72</td>
</tr>
<tr>
<td>Performance (letter) W7SD</td>
<td>p. 65, Oct 73</td>
</tr>
<tr>
<td>Folded-end-fire radiator NJWD</td>
<td>p. 44, Oct 80</td>
</tr>
<tr>
<td>Folded umbrella antenna W5B5R</td>
<td>p. 38, May 79</td>
</tr>
<tr>
<td>Ground-mounted vertical for the lower bands, improved (HN) W5SMD</td>
<td>p. 68, Nov 80</td>
</tr>
<tr>
<td>Ground-plane antenna: history and development K2FF</td>
<td>p. 26, Jan 77</td>
</tr>
<tr>
<td>Ground-plane, multiband (HN) JA1DY</td>
<td>p. 62, May 71</td>
</tr>
<tr>
<td>Ground plane, three-band LA1BE</td>
<td>p. 6, May 72</td>
</tr>
<tr>
<td>Correction W7SD</td>
<td>p. 91, Dec 72</td>
</tr>
<tr>
<td>Footnote (letter) W7SD</td>
<td>p. 85, Oct 72</td>
</tr>
<tr>
<td>Ground systems for vertical antennas W6BDSB</td>
<td>p. 31, Aug 79</td>
</tr>
<tr>
<td>High-frequency Yagi antennas, understanding WB7XT</td>
<td>p. 62, Jun 80</td>
</tr>
<tr>
<td>High-gain phased array, experimental KL7IEH</td>
<td>p. 44, May 80</td>
</tr>
<tr>
<td>Short circuit W7LD</td>
<td>p. 57, Sep 80</td>
</tr>
<tr>
<td>Horizontal antenna gain at selected vertical radiation angles W7L</td>
<td>R</td>
</tr>
<tr>
<td>Horizontal antennas, optimum height for W7L</td>
<td></td>
</tr>
<tr>
<td>Horizontal antennas, vertical radiation patterns W9ARQ</td>
<td>p. 58, May 74</td>
</tr>
<tr>
<td>Inverted-vue antenna (letter) WB9AP</td>
<td>p. 66, May 71</td>
</tr>
<tr>
<td>Inverted-vue antenna, modified W2KTW</td>
<td>p. 40, Oct 71</td>
</tr>
</tbody>
</table>

106 December 1980
Shunt-feed systems for grounded vertical radiators, how to design

W4OQ p. 34, May 75

Simple antennas for 40 and 80

W4GUC p. 16, Dec 72

Sloping dipoles

W5RUB p. 19, Dec 72

Performance (letter)

W7FTY p. 76, May 73

Small beams, high performance

G6XN p. 12, Mar 79

Small-loop antennas

W4YOT p. 36, May 72

Stressed quad (HN)

W6JQU p. 40, Sep 78

Suitcase antenna, high-frequency

VK5BI p. 61, May 73

Tailoring your antenna, how to

K7HDMD p. 34, May 73

Telephone-antenna array (HN)

K5TD p. 70, May 76

Traps and trap antennas

WBFX p. 34, Aug 79

Triangular antennas

W3FOJ p. 56, Aug 71

Triangle antennas

W5p, May 72

Triangle antennas (letter)

K4ZZV p. 72, Nov 71

Triangle beams

W3FOJ p. 70, Dec 71

Tuning aid for the sightless (HN)

W6WY p. 83, Sep 76

Vertical antenna for 40 and 75 meters

W5RUP p. 44, Sep 79

Vertical antenna radiation patterns

W7LR p. 50, Apr 74

Vertical antenna, low-band

W4YBF p. 70, Jul 72

Vertical antenna, portable

W6VBO p. 48, Jun 78

Vertical antenna, three-band

W6BDE p. 44, Jun 79

Vertical antennas, improving performance of

K7FD p. 54, Dec 74

Vertical antennas, performance characteristics

W7LR p. 34, Mar 74

Vertical dipole, gamma-loop-fed

WSAJ p. 19, Jul 72

Vertical for 80 meters, top-loaded

W7MB p. 20, Sep 71

Vertical radiators

W8VQ p. 16, Apr 73

Vertical-tower antenna system

WSAE p. 56, May 73

Wilson Mark II and IV, modifications to (HN)

WEQRT p. 89, Jan 80

Windom antenna, four-band

W4VU p. 62, Jan 74

Correction (letter)

W7EQ p. 74, Sep 74

Windom antennas

W4VU p. 10, May 78

Windom antenna (letter)

WSAE p. 56, May 73

Pi. V Yagi antenna design: performance calculation

W2PV p. 23, Jan 80

Short circuit

W2PV p. 66, Sep 80

Pi. II Yagi antenna design: experiments confirm

computer analysis

W2PV p. 19, Feb 80

Pi. III Yagi antenna design: performance of multi-

element beam antennas

W2PV p. 18, May 80

Pi. IV Yagi antenna design: multi-element beam antennas

W2PV p. 33, Jun 80

Pi. V Yagi antenna design: optimizing performance

W2PV p. 18, Jul 80

Pi. VI Yagi antenna design: quads and quads

W2PV p. 37, Sep 80

Pi. VII Yagi antenna design: ground or earth effects

W2PV p. 29, Oct 80

Pi. VIII Yagi antenna design: stacking

W2PV p. 38, Nov 80

Pi. IX Yagi antennas: practical design

W2PV p. 30, Dec 80

Zepp antenna, extended

W5U p. 48, Dec 73

ZL special antenna, 10-meter, for indoor use

K5AN p. 50, May 80

ZL special antenna, understanding the

W5EKT p. 38, May 76

3.5-MHz broadband antennas

W6BY p. 44, May 79

3.5-MHz phased horizontal array

K4JC p. 56, May 77

3.5-MHz sloping antenna array

W5U p. 70, May 79

3.5-MHz tree-mounted ground-plane

K2DNA p. 48, May 78

7-MHz antenna array

K7CW p. 30, Aug 78

7-MHz rotary beam

W7D1 p. 34, Nov 78

7-MHz short vertical antenna

W7FTY p. 60, Jun 77

14-MHz delta-loop array

N2GW p. 16, Sep 78

160-meter loop, receiving

K6HTM p. 46, May 74

160-meter vertical, shortened (HN)

W6YX p. 72, May 76

160 meters with 40-meter vertical

W2IBM p. 34, Oct 72

vhf antennas

Antennas for satellite communications, simple

K4JSX p. 24, May 74

Antenna-performance measurements

using celestial sources

K4JSX p. 75, May 79

Circularly-polarized ground-plane antenna for

satellite communications

K4JSX p. 28, Dec 74

Collinear antenna for two meters, nine-element

W7RJO p. 12, May 72

Collinear antenna (letter)

W8SAI p. 70, Oct 71

Collinear antenna, four-element 440-MHz

W4APJ p. 38, May 73

Converting low-band mobile antenna to

144-MHz (HN)

K7ARH p. 90, May 77

Corner reflector antenna, 432 MHz

W2JSQ p. 24, Nov 71

Dual quad array for two meters

W76LO p. 30, Mar 80

Feed horn, cylindrical, for parabolic reflectors

W4ML p. 16, May 76

Folded whip antenna for vhf mobile — Weekender

W2IFV p. 50, Apr 79

Ground plane, portable vhf (HN)

K8RDH p. 71, May 73

Magnet-mount antenna, portable (HN)

K6FZY p. 67, May 76

Magnet-mount for mobile antennas

WIKH p. 52, Nov 78

Matching techniques for infrathin antennas

W1JAA p. 50, Jul 76

Microwave-antenna designers, challenge for

W6ANW p. 44, Aug 80

Mobile antenna, magnet-mount

W1HIC p. 54, Sep 75

Mobile antennas, vhf, comparison of

W4ANW p. 52, May 77

Multiband J antenna

W3RA p. 74, Jul 78

OSCAR antenna, mobile (HN)

W6JAL p. 87, May 78

OSCAR antenna with satellite system

W1JNX p. 70, May 78

Parabolic reflector antennas

VK3ATN p. 12, May 74

Parabolic reflector element spacing

W3AHV p. 28, May 75

Parabolic reflector gain

W27QK p. 50, Jul 75

Parabolic reflectors, finding the focal

length (HN)

W4AWDL p. 57, May 74

Quad-Yagi arrays, 432- and 1296-MHz

W3RA p. 20, May 73

Short circuit

W5U p. 58, Dec 73

Simple antennas, 144-MHz

W3ANF p. 30, May 73

Two-meter fm antenna (HN)

W6YRT p. 64, May 71

Vertical antennas, truth about 5/8-wavelength

K4BOX p. 48, May 74

Added note (letter)

W5AN p. 54, Jan 75

Whip, 5/8-wave, 144-MHz (HN)

W3EOD p. 70, Apr 73

Yagi antennas, how to design

W1JRF p. 22, Aug 77

Yagi ufh antenna simplified (HN)

W6RY p. 74, Nov 79

Yagi, 1296-MHz

W2CQH p. 24, May 72

7-MHz attic antenna (HN)

W2ISL p. 68, May 76
Audio

Active filters
K6JM p. 70, Feb 78
Audio acp principles and practice
WASON p. 28, Jun 71
Audio CW filter
WDI
Audio filter, tunable, for weak-signal communications
K8GCP p. 54, Nov 71
Audio filters, aligning (HN)
WA4TE p. 72, Aug 72
Audio filters, inexpensive
WYBF
Audio filter mod (HN)
K6HIL p. 60, Jan 72
Audio mixer (HN)
WW6NE p. 66, Nov 76
Audio module, a complete unit
K4DHC p. 18, Jun 73
Audio-oscillator module, Cordova
WBZGOY p. 44, Mar 71
Correction
p. 80, Dec 71
Audio-power integrated circuits
W3FJQ
Audio processor, communications for reception
WBNRW p. 71, Jan 80
Audio transducer (HN)
W4KOP p. 59, Jul 75
Binary CW reception, synthesizer for
WBNRW p. 46, Nov 79
Comment
p. 77, Feb 77
Duplex audio-frequency generator with AFSK features
WWB6FT p. 66, Sep 79
Dynamic microphones (G&T)
W1DTY p. 46, Jun 76
Filter, lowpass audio, simple
O0SCG
Gain control IC for audio signal processing
Junp
Hang acp circuit for sb and CW
W1ERJ p. 50, Sep 72
Headphones cord (HN)
W2OLU p. 62, Nov 75
Headphones, dual-impedance (HN)
ABRZ p. 80, Jan 79
Impedance match, microphone (HN)
WSJU p. 67, Sep 73
Increased flexibility for the MFJ Enterprises
GW filters
K3NEZ p. 58, Dec 76
Intercom, simple (HN)
W4AYV
Microphone preamplifier with agc
Bryan p. 28, Nov 71
Microphone, using Shure 401A with Drake TR-4 (HN)
G9XOM p. 68, Sep 73
Microphones, muting (HN)
W8BIL p. 63, Nov 75
Microphones and simple speech processing
W1OIP p. 30, Mar 80
Letter
W5WVR p. 6, Sep 80
Notch filter, tunable RC
WASON p. 18, Sep 75
Comment
p. 78, Apr 77
Oscillator, audio, IC
WB6SNX p. 50, Feb 73
Phone patch
WB6GRO p. 20, Jul 71
Phone patch using junk-box parts
K7NNM p. 40, Oct 80
Preemphasis for sb transmitters
OH2CD p. 38, Feb 72
RC active filters using op amps
W4YIB
RC active filters (letter)
WBNRM p. 102, Jun 78
Receivers, better audio for
K7GCO p. 74, Apr 77
RF clipper for the Collins S-line
K6JOY p. 18, Aug 71
RF speech processor, sb
W2MB p. 18, Sep 73
Speaker-driver module, IC
WA2GCF p. 24, Sep 72
Speech clipper, IC
K8TM p. 18, Feb 73
Added notes (letter)
WASON p. 64, Oct 73
Speech clippers, rf
Q8XN p. 26, Nov, p. 12, Dec 72
Added notes (letter)
WASON p. 56, Aug 73, p. 72, Sep 74
Speech clipping in single-ended band equipment
K1Y2W p. 22, Feb 71

Commercial equipment

Allianceiator improvement (HN)
K6UVE p. 68, May 72
Alliance T-45 rotator Improvement (HN)
WABAAM p. 64, Sep 71
Amateur Equipment receiver survey number two
WS1L p. 52, Jan 80
Atlas 100, improved vfo stability (HN)
KBQLO p. 73, Dec 77
Auto filter (HN)
K6EVR, W6NQZ
Automatic 1022 rotator, fixing a sticky
WA1ABP p. 34, Jun 71
Cleanup tips for amateur equipment (HN)
FB2G p. 49, Jul 78
Clling, CB, s-meter for (HN)
WASYUD p. 61, Nov 74
Collins Battery, copying
WSAE p. 48, Sep 79
Collins KWM-2/KWM-2A modifications (HN)
WABAS p. 80, Aug 76
Collins KWM2 transceivers, improved reliability (HN)
WABAS p. 81, Jun 77
Collins R302 rf transformers, repairing (HN)
WAS2UT p. 81, Aug 76
Collins receiver, 300-Hz crystal filter for
W1DTY p. 58, Sep 75
300-Hz crystal filter for Collins receivers
W1DTY p. 58, Sep 75
300-Hz crystal filter for Collins receivers (letter)
G9UFZ p. 90, Jan 78
Collins S-line, improved frequency readout for the
WAGFC p. 53, Jun 76
Collins S-line backup power supply (HN)
WABAS p. 78, Oct 79
Collins S-line monitoring (HN)
WABAS p. 78, Aug 79
Collins S-line power supply mod (HN)
WBLU p. 61, Jul 74
Collins S-line receivers, improved selection
WBFN
Collins S-line, reducing warm-up drift
WBFN
Collins S-line, invoking vox for
WBFN p. 18, Aug 71
Correction
WBFN p. 80, Dec 77
Collins S-line spinner knob (HN)
WBFN p. 69, Apr 79
Collins S-line, syllabic vox system for
WBFN p. 29, Oct 77
Collins S-line transceiver mod (HN)
WBFN p. 71, Nov 72
Collins S2s-series ALC meter improvement (HN)
WBFN p. 100, Nov 77

Collins 325-3 audio (HN)
K6BQA p. 64, Oct 71
Collins 325 cooling (HN)
N1FB p. 74, Nov 79
Collins 325, improved stability for (HN)
N1FB p. 83, May 79
Collins 325 PA disable jacks
N1FB
Collins 75S CW sidetone (HN)
N1FB p. 93, Apr 79
Collins 325-1, updating
J3CE p. 76, Dec 78
Collins 51J, modifying for ssb reception
J3CE p. 66, Feb 78
Collins 51J product detector (letter)
J5CE
Collins 51S-2 high-voltage regulation (HN)
N1FB p. 85, Jun 79
Collins 51S-2 solid-state rectifiers (HN)
J5CE p. 91, Feb 79
Collins 70E12 PTO repair (HN)
W6BHI p. 72, Feb 77
Collins 70K-2 PTO, correcting mechanical backlash (HN)
W6WEN p. 58, Feb 75
Collins 75A4 ac mod (letter)
W6KNI p. 63, Sep 75
Collins 75A4 hints (HN)
W6WFR p. 68, Apr 72
Collins 75A4, increased selectivity for (HN)
W1DYT p. 62, Nov 75
Collins 75A4-4 modifications (HN)
WG5D p. 67, Jan 71
Collins 75A4 noise limiter
W1DYT p. 43, Apr 76
Collins 75A4 PTO, making it perform like new
W3AFM p. 24, Dec 74
Collins 75S frequency synthesizer
WENB p. 8, Dec 75
Short circuit
p. 85, Oct 76
Collins 75S receiver, (HN)
N1FB p. 94, Oct 78
Collins 75S-series crystal adapter (HN)
K1KXX p. 72, Feb 77
Collins R-3665A, inter-band
W6SAI p. 75, Aug 79
Collins R-3850A, improving the product detector
WBDI p. 12, Jul 74
Collins R-300A modifications
W2ASU p. 58, Nov 75
Collins R392, improved sb reception (HN)
VE3LF p. 88, Jul 77
Comsil speech processor, increasing the versatility of (HN)
W6SAI p. 67, Mar 71
Cornell-Dubilier rotators (HN)
PB2A p. 82, May 75
Dare gear, simple tune-up (HN)
W7DUM p. 79, Jan 77
Dare R-4 receiver frequency synthesizer for
W7DUM p. 6, Aug 72
Modification (letter)
W7DUM
Dare R4A3M, backfire, cure for (HN)
W3CWS p. 82, May 79
Dare R-4S, cleaner audio for (HN)
K1PO p. 88, Nov 77
Dare R-4S and TR-4, selectivity operation
WBBQIC p. 66, Apr 79
Dare R-4C, electronic bandpass tuning in
K3JCR p. 56, Oct 73
Dare R-4C, new audio amplifier for
W6JEG p. 48, Apr 79
Dare R4R, new product detector for (HN)
W6BB p. 94, Oct 78
Dare R-4 product detector, improving (HN)
W6CWS p. 64, Mar 80
Dare transceiver, Woodpecker noise blander for (HN)
K1KYS p. 69, Dec 80
Dare TR-4, using the Shure 401A
W6JEG microphones with (HN)
G2XOM
Dare TR-22C sensitivity improvement (HN)
W3CWS p. 78, Oct 79
Dare T4X transmitters, improved tuning on 160 meters (HN)
W1BBI, W1H2Z
Factory service (letter)
W9HK
Feeding line, calculating with a single measurement at the transmitter (HN)
K8MM p. 96, Jun 78
Genaro transceivers, s-meter for (HN)
K8OXX p. 80, Mar 77
null
digital techniques

Basic rules and gates
Anderson, Leonard H.
Coopers and weights
Anderson, Leonard H.
Digiscope
WB9LCH
Digital techniques: gate arrays for control
Anderson, Leonard H.
Down counters
Anderson, Leonard H.
Flip-flop internal structure
Anderson, Leonard H.
Gate arrays for pattern generation
Anderson, Leonard H.
Gate structure and logic families
Anderson, Leonard H.
Multivibrators and analog input interfacing
Anderson, Leonard H.
Packet radio, introduction to
VE2ZBN
Propagation delay and flip-flops
Anderson, Leonard H.
Self-gating the 8259/74S196 decade counter (HN)
WILL
Talking digital clock
K9KV
p. 30, Oct 79

features and fiction

Alarm, burglar-proof (HN)
Eisenbrandt
p. 56, Dec 75
Binding 1970 issues of ham radio (HN)
W1DHC
p. 72, Feb 71
Brass pounding on wheels
K9IO
p. 58, Mar 75
First wirewires in Alaska
WEBLZ
p. 48, Apr 73
James R. Fisk memorial
WIXJ
p. 2, Jun 80
Jim Fisk tribute to, publisher’s log
WINLB
p. 8, Jun 80
Hallcrafters history
WINA
p. 20, Nov 79
Hallcrafters story (letter)
K8AD
p. 6, May 80
Hallcrafters story (letter)
W1TVN
p. 6, May 80
Ham radio sweeps winners, 1972
WINLB
p. 58, Jul 72
Ham Radio sweeps winners, 1973
WINLB
p. 68, Jul 73
Ham Radio sweeps winners, 1975
WINLB
p. 54, Jul 75
Hallie cherreb, a rediscivery
PACX
p. 26, Dec 79
Hammer problem, solutions for
UX3PU
p. 56, Apr 79
Ham radio, the vanguard of a great era
WINLB
p. 8, Sep 79
K9IO
p. 48, Apr 79
Talkinng digital clock
K9KV
p. 30, Oct 79
Repeater decoder, multi-function
WA6TBC
p. 24, Jan 73
Repeater installation
WA2PPF
p. 24, Jun 73
Repeater jammers, tracking down
WA6WAM
p. 56, Sep 78
Repeater kerchunk eliminator
WKBPH
p. 50, Jul 76
Repeater linking, carrier-operated relay for
K8PHF
p. 57, Jul 76
Repeater problems
VE7AEBK
p. 36, Mar 71
Repeater shack temperature, remote checking
WZ3HUH
p. 54, Oct 74
Satellite receivers for repeaters
W4YAK
p. 64, Oct 75
Scanner, multi-channel, for repeater monitoring
WB4RG
p. 48, Oct 76
Scanner, rf receiver
KZ1ZG
p. 22, Feb 73
Scanning receiver, improved for vhf fm
WA4CGF
p. 26, Nov 74
Scanning receiver modifications, vhf fm
W5AWUO
p. 80, Feb 74
Scanning receivers for two-meter fm K4JPF
p. 26, Aug 74
Sequential encoder, mobile fm
WJ3UU
p. 34, Sep 71
Sequential switching for Touch-Tone repeater control
WB4GRG
p. 22, Jun 71
Repeater interference: some corrective actions
W4AMB
p. 54, Apr 78
Simple scope monitor for vhf fm
W1RHN
p. 66, Aug 78
Single-frequency conversion, vhf fm
W3FQJ
p. 62, Apr 75
Single-sideband fm, introduction to
W3EJD
p. 10, Jan 77
Single-tone decoder
W2UWMY
p. 70, Aug 78
S-meter, audible, for repeaters
ZL2AMJ
p. 49, Mar 77
S-meter for Clegg 27B (HN)
W2YUD
p. 51, Nov 74
Solar powered repeater design
W8BREA, W8BSRN
p. 28, Dec 78
Squelch-audio amplifier for fm receivers
W4BWU
p. 68, Sep 74
Squelch circuit, another (HN)
W4BWV
p. 78, Oct 76
Squelch circuits for translator radios
W6WSU
p. 36, Dec 75
Subaudible tone encoders and decoders
WB4GRG
p. 28, Jul 78
Synthesized channel scanning
W2UZO
p. 68, Mar 77
Synthesized two-meter fm transceiver
W1CMR, K1UZ
p. 10, Jan 76
Letter, W2VOS
p. 76, Sep 79
Synthesizer, 144 MHz, 800-channel
K4VAE, WAKCGT
p. 10, Jan 79
Synthesizer, 144-MHz CMOS
K9LHA
p. 14, Dec 79
Telephone controller, automatic for your repeater
K8PHF, W4WIJUZ
p. 44, Nov 74
Telephone controller for remote repeater operation
K8PHF, W4WIJUZ
p. 50, Jan 76
Precautions (letter)
W2UZO
p. 79, Apr 77
Test set for Motorola radios
K8BKU
p. 12, Nov 73
Short circuit
W1NY
p. 58, Dec 73
Added note (letter)
W2YUD
p. 64, Jun 74
Time-out warning indicator for fm repeater users
K3MEZ
p. 62, Jun 76
Timer, simple (HN)
W6CIX
p. 56, May 73
Tone-alert decoder
W2XZM
p. 64, Nov 78
Tone-burst generator (HN)
K4COP
p. 56, Mar 73
Tone-collider decoder
W6WAM
p. 56, Mar 73
Tone-generator decoder
W2PKG
p. 68, Sep 77
Tone generator for fm repeaters
WB4RG
p. 36, Jan 72
Tone encoder, universal for vhf fm
WB6FUB
p. 17, Jul 75
Correction
p. 58, Dec 75
Tone generator, IC
W7PB
p. 70, Feb 77
Tone generator, IC (HN)
W8PB
p. 85, Mar 79
Tone-touch circuit, mobile
W7PB
p. 50, Mar 73
Tone-touch decoder, IC
W3GQ
p. 26, Jul 78
Tone-touch decoder, multi-function
K8PHF, W4WIJUZ
p. 14, Oct 73
Tone-touch decoder, third generation
WZ4DVF
p. 36, Feb 80
Short circuit
W7PB
p. 67, Sep 80
Touch-tone decoder, three-digit
WZ4DVF
p. 37, Dec 74
Circuit board for
W7PB
p. 62, Sep 75
Touch-tone encoder, IC
W7PB
p. 41, Aug 77
Touch-tone hand-held
K4YAF
p. 44, Sep 75
Touch-tone handset, converting slim-line
K2YAH
p. 23, Jun 75
Transverter for two-meter fm, compact
W6AOI
p. 36, Jan 74
Transmitter, two-meter fm
WA6EYK
p. 4, Apr 72
Transmitter, mobile fm
W7BYK
p. 40, Oct 74
Transmitter, vhf fm
WZ1DD
p. 10, Aug 77
Vacuum-tube, vhf fm
W3GQ
p. 68, Dec 77
Vacuum-tube decoder, direct output
W7PB
p. 10, Aug 77
Vacuum-tube modulator, direct output
WZ4DVF
p. 10, Aug 77
Vacuum-tube synthesizer, direct output (letter)
WZ4DVF
p. 90, Jan 78
Up-down repeater-mode circuit for two-meter synthesizers, 600 kHz
W8BNW
p. 40, Apr 77
Short circuit
W7PB
p. 94, May 77
Vertical antennas, truth about 518-wavelength
K8BKU
p. 48, May 74
Added note (letter)
W1NY
p. 54, Jan 75
Weather monitor receiver, return to two-meter fm
W2HTO
p. 56, Jan 75
Wavelength, test data on
W3GQ
p. 48, May 76
Wow, 5/8 wave, 144 MHz (HN)
W3GQ
p. 70, Apr 73
Wow, 5/8 wavelength, vhf fm
W3GQ
p. 47, Jul 76
Wow, 5/8 wavelength, high performance
W2GCF
p. 10, Aug 76
Wow, 144 MHz mobile antenna (HN)
W2EJU
p. 80, Mar 77
Wow, 144-MHz mobile antennas, 1/4 and
5/8 wavelength, test data on
W2LJ, W2QGH
p. 48, May 76
Wow, 144-MHz, 5/8-wavelength vertical antenna
W1RHN
p. 50, Mar 76
Wow, 144-MHz, 5/8-wavelength, vertical antenna for
mobile
W2QGH
p. 42, May 76
Wow, 144-MHz synthesizer, direct output
W2QGH
p. 10, Aug 77
Wow, 144-MHz, direct output (letter)
W2QGH
p. 90, Jan 78
Wow, 220 MHz frequency synthesizer
W2QGH
p. 8, Dec 74
Wow, 450-MHz preamplifier and converter
W2GCF
p. 40, Jul 75

Integrated circuits

Active filters
K8BU
p. 70, Feb 78
Amplifiers, broadband IC
W6OXN
p. 36, Jun 73
Audio-power ICs
W3FQJ
p. 64, Jan 76
CMOS logic circuits
W3FQJ
p. 50, Jun 75
CMOS programmable divide-by-N counter (HN)
W3KBM
p. 94, Jan 78
Counter reset generator (HN)
W3KBM
p. 68, Jan 73
Circuit logic circuit
W7PB
p. 4, Mar 75
Digital counters (letter)
W6AOI
p. 76, Jul 73
Digital ICs, part I
W3FQJ
p. 41, Mar 72
V3FQJ
V3FQJ
V3FQJ
V3FQJ
V3FQJ
V3FQJ

TTL
TTL
TTL
TTL
TTL
TTL
TTL

Sync generator, IC, for AN
Integrated circuits, part
Logic test probe
UIART, Logic
National
Seven-segment readouts, multiplexed
Op amp (741) circuit
Digital station accessory, part
Digital station accessory, part
Divide-by-2 counters, high-speed
Electronic keyer, cosmic IC
Short circuit
Emitter-coupled logic
Exar XR-205 waveform generator as capacitance
radio families

W8WR
W6OAF
W3KB
IC tester, TTL
W4ACCO
Integrated circuits, part
Integrated circuits, part
Integrated circuits, part
II logic circuits
W1DTY
Logic families, IC
W6GXS
Logic monitor (HN)
W3AABF
Logic test probe
V5ERF
Logic test probe (HN)
Rosman
Short circuit
Misanet ID
KKBA
Multi-function integrated circuits
W3FQJ
National LM373, using in sb transceiver
W3BAA
Op amp challenges the 741
W5ASNZ
Op amp (747) circuit design
W5ASNZ
Phase-locked loops, IC
W3FQJ
Phase-locked loops, IC, experiments with
Plessy SL600-series ICs, how to use
Seven-segment readouts, multiplexed
WSNPD
Socket label for ICs (HN)
W4AML, WB4ALJ
SSB detector, IC (HN)
KD4DS
Correction (letter)
SSB equipment, using TTL ICs in
GGADJ
Sync generator, IC, for ATV
WBSK
Transceiver, 9-MHz sb, IC
G3ZVC
Circuit change (letter)
TTL oscillator (HN)
WB5UQ
TTL sub-series ICs, how to select
W1A5NG
UART, how it works
Thitus

Voltage regulators
Voltage-regulator ICs, adjustable
Voltage-regulator ICs, three-terminal
Added note (letter)
Vhm. convert to an IC voltmeter
555 timer operational characteristics

keying and control

Accu-keyer speed readout
Accu-Mill, keyboard interface for the Accu-Keyer
ASGIC to-Morse code translator
Morley, Soharon
Automatic beeper for station control
BiQuad bandpass filter for CW
Short circuit
Comments
Break-in circuit, CW
Bug, solid-state
K2FY
Carrier-operated relay
K8PHF, W4ABUO
CMOS keyer, simple
HBBAB
CMOS keying circuits (HN)
WB2DFA
Code speed counter
K8TT
Constant pitch monitor for cathode or grid-block
keyed transmitters (HN)
K4GMR
Contact keyer, programmable
WB2BX
CW break-in, quieting amplifiers for
W1D
CW identifier, versatile
WB2BWJ
CW keyboard using the APPLE II computer
WB6VR
CW operator's PAL
W2YD
CW reception, enhancing through a simulated-stereo technique
W41MKP
CW generator for interference-free communications
Leward, WB2EAK
CW signal processor
W7KZG
Comments, VE3CJB
CW sidetone (C&T)
W1DTY
Dasher
K6HUF
Deluxe memory keyer with 3072-bit capacity
W3VT
Short circuit
Differential keying circuit
W4YB
Electronic hand keyer
KSTCK
Electronic keyer
OK8IA
Electronic keyer, cosmic IC
WB2DFA
Short circuit
Electronic keyer notes (HN)
ZL1BN
Electronic keyer package, compact
W4ATE
Electronic keyer, random-access memory
WB5FHC
Corrections (letter)
Improvements (letter)
Increased flexibility (HN)
Electronic keyer, BOA43 IC
WB6XN
Electronic keyers, simple IC
G9KGV
End-of-transmission K generator
G9KGV
External keying circuit for multimode rigs (HN)
WBQ2XF
Improving transmitter keying
K5A

W7BBX
W2MP
W3FQJ

Key and vox clicks (HN)
Keyboard electronic keyer, the code mill
Keying, paddle, Siamese
Key modification (HN)
Key operation (HN)
Key mods, micro-T0
Key paddle, portable
Keying with memory (letter)
Hansen, William
Key toggle
Latch circuit, do
Connection
Memo-key
Memory accessory, programmable for electronic keyers
W9LUD
Memory keyer, W7BBX (letter)
SP2DX
Memory keyer, (letter)
W3VT
Memory keyer, 2048-bit (HN)
GW4COT
Morse generator, keyboard
W3CUU
Morse sounder, radio controlled (HN)
K3QEG
Paddle, electronic keyer (HN)
K8TFLV
Paddle for electronic keyers
ZS6AL
Programmable accessory for electronic keyers
(KHN)
KB9GNW
Programmable keyer, Automk-1, expanded memory for
N8AKT
Push-to-talk for Styleline telephones
W1DPR
Radio Shack ASCII keyboard encoder for micro-
processor-controlled CW keyboard, using (HN)
VE2VZ
RIM key update
K3NEZ
Relay activator (HN)
KB3A
Relays, undervoltage (HN)
KB3A
Reset timer, automatic
WS2HV
Sequential switching (HN)
W5OSF
Step-start circuit, high-voltage (HN)
W4FR
Suppression networks, arc (HN)
WASEKA
Time base, calibrated electronic keyer
W1RPL
Timer, ten-minute (HN)
K8IDP
Transceiver diplexer: an alternative to relays
NERV
Transmitter switching for electronic keyers (HN)
W3GBB
Transmit/receive switch PIN diode
W8KHC
Vox, versatile
W8KIT
Short circuit

measurements and test equipment

Absorption measurements, using your signal generator for
W5OUS
AC current monitor (letter)
W5USAP
AC power-line monitor
W5OLU
AFSK generator, crystal-controlled
W8RS
AFSK generator, phase-locked loop
K72OF
A-m modulation monitor, vhf (HN)
K7JNL

W7BBX
W2MP
W3FQJ

W41MKP

OK8IA

ZL1BN

W4ATE

W6GXS

G9KGV

WBQ2XF

K5A

W7BBX
W2MP
W3FQJ

Key and vox clicks (HN)
Keyboard electronic keyer, the code mill
Keying, paddle, Siamese
Key modification (HN)
Key operation (HN)
Key mods, micro-T0
Key paddle, portable
Keying with memory (letter)
Hansen, William
Key toggle
Latch circuit, do
Connection
Memo-key
Memory accessory, programmable for electronic keyers
W9LUD
Memory keyer, W7BBX (letter)
SP2DX
Memory keyer, (letter)
W3VT
Memory keyer, 2048-bit (HN)
GW4COT
Morse generator, keyboard
W3CUU
Morse sounder, radio controlled (HN)
K3QEG
Paddle, electronic keyer (HN)
K8TFLV
Paddle for electronic keyers
ZS6AL
Programmable accessory for electronic keyers
(KHN)
KB9GNW
Programmable keyer, Automk-1, expanded memory for
N8AKT
Push-to-talk for Styleline telephones
W1DPR
Radio Shack ASCII keyboard encoder for micro-
processor-controlled CW keyboard, using (HN)
VE2VZ
RIM key update
K3NEZ
Relay activator (HN)
KB3A
Relays, undervoltage (HN)
KB3A
Reset timer, automatic
WS2HV
Sequential switching (HN)
W5OSF
Step-start circuit, high-voltage (HN)
W4FR
Suppression networks, arc (HN)
WASEKA
Time base, calibrated electronic keyer
W1RPL
Timer, ten-minute (HN)
K8IDP
Transceiver diplexer: an alternative to relays
NERV
Transmitter switching for electronic keyers (HN)
W3GBB
Transmit/receive switch PIN diode
W8KHC
Vox, versatile
W8KIT
Short circuit

measurements and test equipment

Absorption measurements, using your signal generator for
W5OUS
AC current monitor (letter)
W5USAP
AC power-line monitor
W5OLU
AFSK generator, crystal-controlled
W8RS
AFSK generator, phase-locked loop
K72OF
A-m modulation monitor, vhf (HN)
K7JNL

december 1980
Resistance values below 1 ohm, measuring W4QHT p. 66, Sep 77
Resistance values below 1 ohm, measuring (letter) W1PT p. 91, Jan 78
Resistance values, measuring below 1 ohm W4QHT p. 66, Sep 77
Resistor decades, versatile WA4KEY p. 66, Jul 71
RF current readout, remote (HN) W4ATE p. 87, May 78
RF detector, sensitive WB4DNI p. 38, Apr 73
RF power meter, low-level W5WGC p. 58, Oct 72
RF meter, accurate low power W4AZR p. 38, Dec 77
RTTY monitor scope, solid-state (HN) WA3EAG p. 33, Oct 71
RTTY receiver (HN) W73AE p. 67, Jan 73
RTTY test generator (HN) W73AE p. 59, Mar 73
RTTY test generator W8ATW p. 64, Jan 78
RX impedance bridge, low-cost W9YFB p. 6, May 73
RX noise bridge, improvements to W6BXJ, W6NKU p. 10, Feb 77
Comments W6BXJ p. 100, Sep 77
Noise bridge construction (letter) OH2ZA p. 8, Sep 78
Safer suicide cord (HN) K6JOY p. 64, Mar 71
Sampling network, rf — the milli-icap W6JJO p. 34, Jan 73
Signal generator, wide range W6GKX p. 18, Dec 73
Slded line, how to use (repair bench) WB4KI p. 58, May 77
Slow-scan TV test generator K4EUE p. 6, Jul 73
Spectrum analyzer, dc-100 MHz W6HRH p. 16, Jun 77
Short circuit W6SRH p. 89, Dec 77
Short circuit W4NFJ p. 94, Feb 77
Spectrum analyzer for SSB W3QJ p. 24, Jul 77
Spectrum analyzer, four channel W9A p. 6, Oct 72
Spectrum analyzer, microwave NTSX p. 34, Jul 78
Spectrum analyzer tracking generator W6JJO p. 30, Apr 78
Spectrum analyzers, understanding W4SSNZ p. 50, Jun 74
SSB, signals, monitoring WB4FR p. 35, Mar 72
Switch-off flasher (HN) W4KI p. 64, Jul 71
Swr bridge WB4ZJE p. 55, Oct 71
Swr bridge (HN) W73FPK p. 66, May 72
Swr bridge readings (HN) W6FO p. 63, Aug 73
Swr indicator, aural, for the visually handicapped K6HMT p. 52, May 75
Swr indicator, how to use (repair bench) WB4HI p. 66, Jan 77
Swr measuring at high frequencies DJ3LJR p. 34, May 79
Swr meter WB4BFA p. 68, Nov 78
Swr meter, improving (HN) W5WGC p. 68, May 78
Swr meters, direct reading and expanded scale W4AWOK p. 28, May 72
Tester for 6146 tubes (HN) W6KNE p. 81, Aug 78
Test equipment mainframe W4MB p. 52, Jul 79
Test probe accessory (HN) W4WRS p. 89, Jul 77
Testing power tubes KA4PV p. 60, Apr 78
Time-base oscillators, improved calibration W7LUL, WAX7MD p. 70, Mar 77
Time-domain reflectometry, experimenter’s approach to W3WJA p. 22, May 71

**microprocessors, computers, and calculators**

Accumulator I/O versus memory I/O WB4HYJ, Rony, Titus p. 64, Jun 76
Computer, satellites, for under $150 W6BPOU p. 12, Mar 80
CW keyboard, Microprocessor controlled WB2DFA p. 81, Jan 78
CW keyboard using the APPLE II computer W6WR p. 60, Oct 80
CW trainer/keyboard using a single-chip microcomputer NSTY p. 16, Aug 79
Data converters WA1MOP p. 79, Oct 77
Digital keyboard entry system NY2KDWNK p. 92, Sep 79
How microprocessors fit into schemes of computers and controllers WB4HYJ, Rony, Titus p. 36, Jan 76
IC tester using the KIM-1 W4GUL p. 74, Nov 78
Input/output device, what is? WB2DFA p. 50, Feb 76
Interface a digital multimeter with an 8060-based microcomputer WB4HYJ, Rony, Titus p. 66, Sep 76
Interface a 10-bit DAC (Microprocessors) Rony, Titus, WB4HYJ p. 86, Apr 78
Internal registers, 8080 Rony, Titus, WB4HYJ p. 63, Feb 77
Interrupts, microcomputer WB4HYJ, Rony, Titus p. 66, Dec 76
Introduction to microprocessors WB4HYJ, Rony, Titus p. 32, Dec 75
Comments, WB4FAR p. 63, May 76
Logical instructions W6JJO p. 83, Jul 77
MOV and MVI 8000 instructions Titus, WB4HYJ, Rony p. 74, Mar 77
Radio Shack ASCII keyboard encoder for microprocessor-controlled CW keyboard using the (HN) VE2ZV p. 72, Oct 80
Register pair instruction Rony, Titus, WB4HYJ p. 76, Jun 77
Software, UART, interfacing a WB4HYJ, Rony, Titus p. 60, Nov 76
Substitution of software for hardware Rony, Titus, WB4HYJ, Rony, Titus p. 62, Jul 76
UART, how it works Titus p. 58, Feb 76
Video display, simple WB4HYJ, Rony, Titus p. 74, Jan 77
8080 logical instructions WB4HYJ, Rony, Titus p. 69, Sep 77
8080 microcomputer output instructions WB4HYJ, Rony, Titus p. 54, Mar 76

**miscellaneous technical**

Active bandpass filters WB6GRZ p. 49, Dec 77
Short circuit WB6GRZ p. 94, Feb 79
Admittance, impedance and circuit analysis Anderson p. 76, Aug 77
Short circuit Anderson p. 94, Feb 77
Air pressure, measuring across transmitting tubes (HN) W4PPS p. 89, Jan 80
Alarm, wet basement (HN) W2ZMP p. 68, Apr 72
Amplitude compandered sideband WB4JNJ p. 48, Dec 80
Antenna masts, design for pipe W3MR p. 52, Sep 74
Added design notes (letter) W3MR p. 75, May 75
Bandpass filter design K4KJ p. 38, Dec 73
Bandpass filters for 50 and 144 MHz, etched WB5HT p. 6, Feb 71
Bandpass filters, top-coupled WB5HT p. 34, Jun 77
Bandspreading techniques for resonant circuits Anderson p. 46, Feb 77
Short circuits Anderson p. 89, Dec 77
Batteries, selecting for portable equipment WB4BAK p. 40, Aug 73
Battery charging (letter) WB4BAK p. 6, Nov 80
Bipolar fet amplifiers WB4GM p. 16, Feb 78
Comments, Worcester p. 76, Sep 76
Broadband amplifier, bipolar WB4KBS p. 58, Apr 75
Broadband amplifier uses mospower fet Oxford p. 32, Dec 76
Broadband amplifier, wide-range W6GQX p. 40, Apr 74
Bypassing, rf, at uhf WB6GQX p. 50, Jan 72
Calculator-aided circuit analysis Anderson p. 38, Oct 77
Calculator, hand-held electronic, its function and use W4MB p. 18, Aug 76
Calculator, hand-held electronic, solving problems with it W4MB p. 34, Sep 76
Capacitors, oil-filled (HN) W2OLW p. 68, Dec 72
Circuit figure of merit (letter) W2JPT p. 6, Dec 80
Coil-winding data, vhf and uhf KIM-1 p. 81. Aug 78
Communications receivers, designing for strong-signal performance Moore p. 6, Feb 73
Communicating filters W6QX p. 54, Sep 79
novice reading

AC power line monitor p. 46, Aug 71
Amplifiers, tube and transistor, tabulated characteristics of W6KJ p. 30, Jan 71
Antenna, bow tie for 80 meters W6QQQ p. 56, May 75
Antenna, multiband phased vertical WAGXG p. 33, May 72
Antenna tuning units W6PO p. 58, Dec 72, p. 58, Jan 73
Antenna, 80 meters, for small lot W6AAX p. 28, May 73
Antenna, dipole KH6HM p. 60, Nov 77
Antennas, low elevation W8NV p. 98, May 73
Antennas, QRM reducing receiving types W6PO p. 54, May 71

Operating

Amateur band intruders (letter) W5SSD p. 6, Oct 80
Beam antenna headings WA4LXJ p. 64, Apr 71
Code practice stations (letter) WA4LXJ p. 75, Dec 72
Code practice (HN) W6XQX p. 74, May 73
CW memory, simple — Weekender K4DHC p. 46, Nov 80
CW monitor, simple W3CDHR p. 65, Jan 71
DKCC check list, simple W9VOC p. 55, Jun 73
EI2W six-meter report (letter) EI2W p. 12, Jul 80
FCC actions (letter) W1IZ p. 6, Apr 80
FCC actions (letter) W9FAD p. 6, Apr 80
Fluorescent light, portable (HN) KB9BYO p. 62, Oct 73
Great-circle charts (HN) XK9A p. 62, Oct 73
Great-circle maps NSR p. 24, Feb 79
Identification timer (HN) W9MM p. 50, Nov 74
Monitor, tone alert W4KRT p. 24, Aug 80
Morse code, speed standards for VE2ZK Added note (letter) W6TH p. 68, Apr 73
RST feedback (letter) V4WDO p. 6, Dec 80
RST feedback (letter) W9WKN p. 6, Dec 80
Selfish attitudes (letter) K9OZ p. 6, Nov 80
Sideband location (HN) K9KA p. 62, Aug 73
Spurious signals (HN) K9GA p. 61, Nov 74
True north for antenna orientation, how to determine K4DE p. 38, Oct 80
Zulu time (HN) K9KA p. 58, Mar 73

Oscillators

AFC circuit for VFOs K5EHE p. 19, Jun 79
Audio oscillator, NE666 IC W1EZT p. 36, Jan 75
Clock oscillator, TTL (HN) W3GM p. 58, Dec 73
Colloits oscillator design technique W8BBP p. 78, Jul 78
Short circuit K4DE p. 94, Feb 78
Crystal oscillator, frequency adjustment of W6QTCX p. 42, Aug 72
Crystal oscillator, high stability WB6NIS p. 36, Oct 74
Crystal oscillator, simple (HN) W2WAN p. 98, Nov 77
Crystal oscillators, stable DJ2LR p. 34, Jun 75
Correction K4DE p. 67, Sep 75
Crystal oscillators, survey of VK2ZTB p. 10, Mar 78
Crystal oven, simple (HN) Mathieson p. 68, Apr 78
Crystal ovens, precision temperature control K4AV p. 34, Feb 78
Crystal test oscillator and signal generator K4EUF p. 46, Mar 73
Crystals, overtone (HN) G8ABR p. 72, Aug 72
Drift-correction circuit for free running oscillators PA9SBK p. 45, Dec 77
Goral oscillator notes (HN) K5GON p. 98, Apr 76
Hex inverter vxo circuit WB6LJ p. 50, Apr 75
IC crystal controlled oscillators VK2ZTB p. 10, Mar 78
power supplies

IC crystal-controlled oscillators (letter) p. 91, Jan 78

All-mode-protected power supply W7EKC

Local oscillator, phase-locked VE5PR

Monitoring oscillator W5JJO

Multiple-band master-frequency oscillator K8DSX

Multivibrator, crystal-controlled W0NMO

Noise sideband performance in oscillators, evaluating DJLUL

 Oscillator, audio, IC W6GKXN p. 50, Feb 73

Oscillator, Franklin (HN) W6JJ p. 61, Jan 72

Oscillator, frequency measuring W8IE p. 16, Apr 72

Added notes p. 90, Dec 72

Oscillator, gated (HN) W8BKEY p. 59, Jul 75

Oscillator, phase-locked VE5FP

Oscillator, two-tone, for SSB testing W8GKN p. 11, Apr 72

Oscillators, resistance-capacitance W6GKXN p. 18, Jul 72

Oscillators, free running without inductors W8ASSN p. 50, Apr 78

Oscillators, quadrature-phase oscillator (letter) G1KZ p. 62, Sep 75

Quartz crystals (letter) W8RJEGZ

Regulated power supplies, designing K5K0 p. 58, Sep 77

Stable vfo (HN) W1D7Y p. 51, Jun 76

TTL crystal oscillators (HN) W8BVA p. 60, Aug 75

TTL oscillator (HN) W8BV2V p. 77, Feb 78

UHF local-oscillator chain NTX p. 27, Jul 79

Versatile audio oscillator (HN) WBBAX

Vfo buffer amplifier (HN) W8GBO p. 96, Jul 71

Vfo design, stable W1CER p. 10, Jun 76

Vfo design using characteristic curves W8BVZ p. 36, Jun 78

Regulated power supplies, designing K5K0 p. 58, Sep 77

Vfo, digital readout W8BIFM p. 14, Jan 73

Vfo, high-stability vhf OHQCD p. 27, Jan 72

Vfo, multiband vfo KBEEG p. 39, Jul 72

Vfo, stable K4BGF p. 8, Dec 71

Voltage-tuned mosfet oscillator W8AJVU p. 28, Mar 79

 fm oscillator, new approach W2SPI p. 46, Mar 79

S-ampere power supply, adjustable N1JR p. 50, Dec 78

Variable-peak power supply for transistor work W8AMTH p. 68, Mar 76

Variable-voltage power supply, 1.2 amps W8B9UQ p. 56, Sep 79

Variable-voltage regulator ICs, adjustable W8DRX p. 53, Jul 77

Voltage regulator ICs, three-terminal W8B5M Q p. 26, Dec 73

Voltage regulators, adjusting bias (HN) W8AVC p. 73, Sep 74

Voltage regulators, IC W6GKN p. 31, Mar 77

Voltage stability wave W8GK p. 78, Oct 76

Wind generators W3FJU p. 50, Jan 76

propagation

Artificial radio aurora, scintillation characteristics of W6K6AP p. 16, Nov 74

Calculated-aided propagation predictions N4AH p. 29, Aug 79

Comments on solar-mode propagation, frequency synchronization for K2QVS p. 26, Sep 71

Solar cycle 20, vhf's view of W8ASYX p. 46, Dec 76

6-meter sporadic-E openings, predicting W8B9AO p. 38, Oct 72

Additional note (letter) p. 69, Jan 74

receivers and converters

general

Anti-GRM methods W3FQJ p. 50, May 71

Attenuation pads, receiving (letter) K8HQN p. 69, Jan 74

Audio amp amplifier WA5NQ p. 32, Dec 73

Audio amp principles and practice W6AHQ p. 28, Jun 71

Audio filter mod (HN) K6H4U p. 60, Jan 72

Audio filters, CW (letter) W8DRX p. 56, Jul 75

Audio filters for ssb and CW reception K6B8X p. 18, Nov 76

Audio filters, inexpensive W8YFB p. 24, Aug 72

Audio, improved for receivers K7GEO p. 74, Apr 77

Audio module, complete W2NQ p. 18, Jun 73

Audio processor, communications, for reception W8NRW p. 71, Jan 80

Audio product detection of double-sideband K4UD p. 58, Mar 79

Letter G3GJR p. 6, Oct 80

Bandswitching techniques for resonant circuits Anderson p. 45, Feb 77

Short circuits p. 69, Dec 77

Bandswitching techniques for resonant circuits Anderson, Leonard H. p. 45, Feb 77

Bandswitching techniques for resonant circuits (letter) W6EJO p. 6, Aug 78

Bandswitching techniques (letter) Anderson, Leonard H. p. 6, Jan 79

storage battery charger for portable operation W3FQJ p. 64, Oct 74

Super regulator, the MPC1000 W3FQJ p. 52, Sep 76

Transformers, miniature (HN) W4ATE p. 67, Jul 72

Transformer-eliminator circuit (C&T) W1D7Y p. 52, Jun 76

Transistors, reducing W8CPU p. 50, Jan 73

Variable high-voltage supply W1OLP p. 62, Dec 79

Variable power supply for transistor work W8AMTH p. 68, Mar 76

Variable-voltage supply power, 1.2 amps W8B9UQ p. 56, Sep 79

Vibrator replacement, solid-state (HN) K8BAY p. 70, Aug 72

VHF transceivers, regulated power supply for W8B9XU p. 58, Sep 80

Voltage regulator ICs, adjustable W8DRX p. 53, Jul 77

Voltage regulator ICs, three-terminal W8B5M Q p. 26, Dec 73

Voltage regulators, boosting bias (HN) W8AVC p. 73, Sep 74

Wattmeter mod (letter) W9YTX p. 62, Dec 72

Wind generators W3FJU p. 50, Jan 76
receivers and converters, test and troubleshooting

Week-signal source, variable-output KBJO
p. 36, Sep 71

**RTTY**

Active bandpass filter for RTTY WA4DYV
p. 46, Apr 79
Active bandpass filter for RTTY WA4AYN
p. 48, Apr 79
AFSK, digital WA4AVOS
p. 22, Mar 77

**Short circuit**

p. 94, May 77

**AFSK generator (HN)**

p. 69, Jul 76

**FSK**

AFSK generator, an accurate and practical KB6FU
p. 56, Aug 80

**AFSK generator and demodulator WABATW**

p. 26, Sep 77

**AFSK generator, crystal-controlled K7BT**

p. 13, Jul 72

**AFSK generator, crystal-controlled W6WLO**

p. 14, Dec 73

**Sluggish oscillator (letter)**

p. 59, Dec 74

**Audio-frequency keyer, simple W2LJ**

p. 56, Aug 75

**Audio-frequency shift keyer K6BM**

p. 45, Sep 76

**Audio-frequency shift keyer, simple (C&I)**

W1DTY
p. 43, Apr 76

**Audio-shift keyer, continuous-phase VE3CPR**

p. 10, Oct 73

**Short circuit**

p. 64, Mar 74

**Automatic frequency control for receiving RTTY W6NPO**

p. 50, Sep 71

**Added note (letter)**

p. 68, Jan 72

**Autostart, digital RTTY K4EUE**

p. 37, Dec 72

**CRT intensifier for RTTY K4VFA**

p. 18, Jul 71

**Carriage return, adding to the automatic line-feed generator (HN) K4EUE**

p. 71, Sep 74

**Circling teleprinters (HN) WSCD**

p. 86, May 78

**Coherent frequency-shift keying, need for K3WUG**

p. 30, Jun 74

**Added notes (letter)**

p. 58, Nov 74

**Crystal test oscillator and signal generator K4EUE**

p. 46, Mar 73

**CW memory for RTTY identification W6LLO**

p. 6, Jan 74

**Digital repeater/RTD W6BATW**

p. 58, Nov 78

**DT-500 demodulator KB6WV, K4AOU, WB4KUK**

p. 24, Mar 76

**Short circuit**

p. 85, Oct 76

**DT-600 demodulator KB6WV, K4AOU, WB4KUK Letter, K5GZ**

p. 85, Oct 77

**Short circuit**

p. 85, Oct 77

**Demodulator terminal unit K6BAT**

p. 74, Oct 78

**Comments**

p. 6, Oct 79

**Duplex audio-frequency generator with AFSK features**

p. 66, Sep 79

**Electronic speed converter for RTTY teleprinters**

W4AT, W5AT, W6AT for circuit for W4AT, W5AT, W6AT

p. 54, Oct 72

**Electronic teleprinter keyboard WH5HY**

p. 56, Aug 78

**Hallicorder (letter) K4UA**

p. 6, Mar 80

**Comment, G4SB**

p. 6, Sep 70

**Hallicorder (letter) W6OKZ**

p. 6, Oct 79

**LED tuning indicator for RTTY W6RA**

p. 50, Mar 80

**Line-end indicator, IC W6ZIO**

p. 22, Nov 75

**Line feed, automatic for RTTY K4EUE**

p. 20, Jan 73

**Miniature ST-5 autorotate and antispace K2YAH**

p. 48, Dec 72

**Miniature ST-6 RTTY demodulator W4PE**

p. 8, Jan 71

**Short circuit**

p. 72, Apr 71

**Miniature ST-6 RTTY demodulator, more uses for (letter)**

W6FBC

p. 69, Jul 71

**Miniature ST-6 RTTY demodulator, troubleshooting W6FBC**

p. 50, Feb 71

**Message generator, random access memory RTTY K4EUE**

p. 8, Jan 75

**Message generator, RTTY W6ZQX, WB4KQA**

p. 30, Feb 74

**Modulator-demodulator for vhf operation W6LLO**

p. 34, Sep 78

**Monitor scope, phase-shift W6OX**

p. 38, Aug 72

**Monitor scope, RTTY, Heath HO-10 and SB-610 as (HN) KB6WY**

p. 70, Sep 74

**Monitor scopes, RTTY, solid-state W6RMZ**

p. 33, Oct 71
Performance and signal-to-noise ratio of low-frequency shift RTTY

Phase-coherent RTTY modulator

KSPA

Phase-locked loop AFSK generator

K7ZDF

Phase-locked loop RTTY terminal unit

W4QPM

Correction

W60, May 72

Power supply for

W60, Jul 74

Optimisation of the phase-

W60, Sep 75

Printed circuit for RTTY speed converter

W7POQ

RAM RTTY message generator, increasing capacity of (HN)

F2EZ

Receiver-demodulator for RTTY net operation

VETBRK

Ribon re-linker

W36, Jun 72

RTTY distortion: causes and cures

W36, Sep 72

RTTY for the blind (letter)

VETBRK

RTTY line-length indicator (HN)

W7XW

RTTY reception with Heath SB receivers

K6HHW

Search

K6HHW, WB4KUR, KA3ED

Serial converter for 6-letter teleprinters

VETCPT

Short circuit

W66, Dec 77

Signal Generator, RTTY

W7ZTC

Short circuit

W66, Dec 71

Simple circuit replaces jack patch panel

KA3TE

Speed control, electronic, for RTTY

W36Y3

ST-5 keys polar relay (HN)

W6LPD

Tape editor

W36AG

Terminal unit, phase-locked loop

W4QPM

Correction

W60, May 72

Terminal unit, phase-locked loop

W4QPM

W4AYV

W60, Aug 74

Simple circuit replaces jack patch panel K19

W5AY

5-20 keys polar relay (HN)

W6LPD

Test generator, RTTY

WBAAYW

Test generator, RTTY (HN)

W36AG

Test generator, RTTY (HN)

W36AG

Test-message generator, RTTY

K5OCTK, K9QK

Time/date printout

W6LT

Short circuit

W60, Dec 77

Voltage supply, precision for phase-locked terminal unit (HN)

W5ATL

semiconductors

Antenna bearings for geostationary satellites, calculating

WB6BTH

Charge flow in semiconductors

WB6BTH

Diodes, evaluating

W5JJ

Dynamic translator tester (HN)

W5D1

European semiconductor numbering system (CAT)

W5D1

Satellite tracking - pointing and

W5D1

Signal polarisation, satellite

W5D1

Tracking the OSCAR satellite systems

Harmon, W6JUP

28-30 MHz preamplifier for RTTY receiver

W7JAA

452 MHz OSCAR antenna (HN)

W7JAA

Added notes (letter)

p. 73, Apr 73

Future of the amateur satellite service

K2UBC

Medical data relay via OSCAR

K7RGE

OSCAR antenna (C&T)

W1DHY

OSCAR antenna, mobile (HN)

WB6OAL

OSCAR az-el antenna system

W1AXP

OSCAR tracking program, HP-65
calculator (letters)

W3ATHD

OSCAR 7, communications techniques for

G3DZC

Phase 1 spacecrafl orbit, geometry of

W4FWQ

Programming for automated satellite communication

K4PM

Receiving preamplifier for OSCAR 8 Mode J

KIRX and Puglia

Satellite communications on 10 meters (letter)

G3JOR

Signal tracking - pointing and
range with a pocket calculator

Ball, John A.

p. 40, Feb 78

Single sideband

Balanced modulators, dual fet

W5QJ

Communications receiver, phase-locked-type

WAB1YK

Detector, SSB, IC (HN)

K4OOG

Correction

W60, Jul 73

Electronic bias switching for linear amplifiers

W6YVR

Filters, SSB (HN)

K9KA

Frequency dividers for SSB

W2VZ

Hang gap circuit for SSB and CW

WIEU

Intermittent voice operation of power tubes

WBSAI

Intermodulation-distortion measurements on SSB transmitters

W6YVR

Linear amplifier design

W5BAY

Part 1

p. 12, Jun 79

Part 2

p. 34, Jul 79

Part 3

p. 59, Aug 79

Linear amplifier, five-band conduction-cooled

W5IX

p. 8, Jul 72

Linear amplifier, five-band kilowatt

W4OQ

Improved operation (letter)

W60, Sep 73

Linear amplifier performance, improving

W4PSJ

Linear amplifier, 100-watt

W6YVR

Linear, five-band hf

W6YVR

Linear for 80-10 meters, high-power

W6YVR

Short circuit

p. 96, Dec 71

Linearity meter for SSB amplifiers

W6QMB

Modifying the Heath SB-200 amplifier for the new 8873 zero-bias triode

W6QMB

Chamberlin

p. 32, Jan 71

Peak envelope power, how to measure

W5JJ

p. 32, Nov 74

Phasing networks (letter)

W2ESH

p. 6, Nov 78

Pre-emphasis for SSB transmitters

OH1SCD

Rating tubes for linear amplifier service

W6UVJ, W5SAI

RF clipper for the Collins S-line

K5JOY

p. 18, Aug 71

Letter

W60, Dec 71

RF speech processor, SSB

W6MB

p. 18, Sep 73

Sideband location (HN)

K9KA

p. 62, Aug 73

Solid-state transmitting converter for 144-MHz SSB

W6UVJ

Short circuit

p. 62, Dec 74

Speech clipper, IC

K9HTM

p. 18, Feb 73


transmitters and power amplifiers

general

Air pressure measurements across transmitting tubes (HN) W4PJI
Batteries, how to select for portable equipment WABA
Buffer stabilization (HN) W9FIM
Buffer-load-chassis adapter (HN) K1BYO
Q-er, automatic, for RTTY W4AYV
Digital readout, universal WB7FIM
Digital video basics Earnshaw
Efficiency of linear power amplifiers, how to compare W6FJ
Einak SCX1500A power, notes on W6FJ
Electronic bias switching for linear amplifiers solid-state W6F3R
Fail-safe timer, transmitter (HN) K9HVW
Filter converter, an updown W6DA
Filters, SSB (HN) K9A
Frequency multipliers W6XCN
High-voltage fuses in linear amplifiers (HN) K9MM
 Intermediate voice operation of power tubes W6SAI
Key and voice clicks (HN) K9SA
Linear power amplifiers (letter) K5OUT
Lowpass filters for solid-state linear amplifiers W6AJK
Short circuit W6H7Z
Short circuit 1100 MHz, broadband, for transmitter rfs W6I4
Double bands in parallel grounding grid (HN) W7GSA
National NCX-500 modification for 15 meters (HN) W6KVI
Neutralizing tip (HN) W7FQG
Network design Anderson, Leonard H. Comments P16
Pi network design aid W6N
Correction (letter) W6N
Network design, high-frequency power amplifier W7FQG
P network design (letter) W7FQG
Network design high-frequency power amplifier W6F3R
Mach-1000 transmitters and receivers V9CF
Slow-to-slow conversion, an introduction W4FVH
Interchange transmitters for ATV camera W8TV
Sync gamma generator, IC, for ATV WA9JH
Sync generator for black-and-white 525-line TV K4E6U
Sync generator for portable television WA9JH
troubleshooting

Basic troubleshooting

James

IF transformers, problems and cure - Weekender

K4IPV

Logic circuits, troubleshooting

W6SGP

Oscillator troubleshooting (repair bench)

K4IPV

Power supply, troubleshooting

K4IPV

Receiver alignment techniques, vhf fm

K4IPV

Receivers, troubleshooting the dead

K4IPV

Resistance measurement, troubleshooting by James

K4IPV

Transistor circuits, troubleshooting

K4IPV

Voltage troubleshooting

James

A 1

vhf and microwave general

Artificial radio aurora, vhf

K4IPV

scattering characteristics

W6KAP

Am-monitor control (HN)

K7UNL

Bypassing, rf at vhf

W6BBH

Cavity filters, surplus, how to modify for 144 MHz

W4FXE

Cavity filter, 144-MHz

W6SNL

Short circuit

W6RSI

Coaxial filter, vhf

W6S1A

Coaxial winding data, practical vhf and uhf

K3CVI

Effective radiated power (HN)

VE7CB

EDW six-meter report (letter)

E12J

Frequency multipliers

W6DKX

Frequency scaler, 500-MHz

W6BPH

Frequency scalders, 1200-MHz

W6KBKEY

Frequency synchronization for scatter-mode propagation

K2OVS

Frequency synthesizer (HN)

W6AKI

Frequency synthesizer, 220 MHz

W6AKI

P-27/GPC surplus cavity filter, conversion variation using the

W6FXE

QQA field-effect transistors, introduction

W6AZX

Gunn oscillator design for the 10-GHz band

W6BZKX

Improving uhf receivers

W7JA

Indicator, sensitive rf

W6B2DI

Klystron cooler, waveguide (HN)

W4AWDL

L-band local oscillators

NBX

Microstrip impedance, simple formula for

W1HR

Microstrip transmission line

W1HR

Microstrip, transmission line

W1HR

Microwave bibliography

W6HD0

Microwave frequency converter for vhf

K4AYI

Microwave frequency doubler

W4AWDL

Microwave marker generator, 3cm band (HN)

W4AWDL

Microwave path evaluation

N7DH

Microwave rf generators, solid-state

W1HR

Microwaves, getting started in

K2QBI

Microwaves, introduction to

W1CBY

Microwave solid-state amplifier design

W6UAM

Comment, VK3TK, W6UAM

p. 40, Oct 76

Microwave systems, first building blocks for

W2GFP

Monitor, tone alert

W6B6M

Noise figure measurements, vhf

W6B6M

Phase-locked loop, tunable 50 MHz

W6KN1

Phasor-diode experiments

W6KN1

Polaripezor design

W19L

Power dividers and hybrids

W1DAK

Radio observatory, vhf

W9L

Reflex klystrons, pogo stick for (HN)

W68PK

Satellite communications

W1GMA

p. 52, Nov 72

Added notes (letter)

W7RB

p. 73, Apr 73

Satellite signal polarization

W6NB

p. 6, Dec 72

Solar cycle 20, vhf's view of

V6AG

p. 46, Dec 74

Spectrum analyzer, microwave

W6UAM

p. 54, Aug 77

Spectrum analyzer, microwave

W6TST

p. 34, Jul 78

Two-meter autopatches, tone-encoder for

W68BS

Uhf dummy load, 150-watt

W6BSX

Vio, high-stability vhf

HOQCD

Varactor tuning tips (HN)

N2G3

Voltage-tuned UHF oscillator, multipurpose

W6HIB

Vhf antennas

W2G3K

p. 12, Dec 80

Vhf techniques

W6NI

p. 62, Jul 80

Vhf transceivers, regulated power supply for

W6RBKU

Weak-signal communications

W4TJ

10-GHz cross-guide coupler

W6BZKX

10-GHz Gunnplexer transceivers, construction and practice

W6OAL

Comments, W6OAL

p. 8, Sep 79

50-MHz bandpass filter

W64KO

50-MHz frequency synthesizer

W6AKI

p. 26, Mar 74

144-MHz fm frequency meter

W4A2

p. 40, Jan 71

Short circuit

W4A2

p. 72, Apr 71

144-MHz frequency synthesizer

W64FPK

144-MHz frequency synthesizer, CMOS

K3LHA

p. 14, Dec 79

Short circuit

K3LHA

p. 81, Apr 80

350-MHz frequency synthesizer, one-crystal

W6KCV

220-MHz frequency synthesizer

W64QK

232-MHz SSB, practical approach to

W6F3Q

432-MHz SSB, practical approach to

W6F3Q

440-MHz band-pass filter

W6BYT

p. 6, Jun 71

1296-MHz double-stub tuner

K3LHA

p. 70, Dec 78

1296-MHz microstrip bandpass filters

W6UAM

p. 46, Dec 75

1296-MHz microstrip filter, improved grounding for

N2TST

p. 60, Aug 78

2304-MHz stripband filter

W6WDL, W6B4L

p. 50, Apr 77

vhf and microwave antennas

Antenna-performance measurements

W5CO/W4XKY

using celestial sources

W5CO/W4XKY

p. 75, May 79
vhf and microwave receivers and converters

Audio filter, tunable, for weak-signal communications
K6HCP p. 28, Nov 75
Calculating preamplifier gain from noise-figure measurements
N8TX p. 30, Nov 77
Cavity filters, surplus, how to modify for 144 MHz
WA4FXE p. 42, Feb 80

Coiled preamplifier for vhf/uhf reception
WA1HCH p. 38, Jul 72
Crystal-controlled vhf receivers, tuning aid for (HN)
WA1FHQ p. 69, Jul 80

Fi transceiver, remote synthesized for 2 meters
WB4UPC p. 28, Jan 80

Double-balanced mixers, circuit packaging for
WA6UAM p. 41, Sep 77

Microwave amplifier design, solid state
WA8UAM p. 40, Oct 77

Microwave mixer, new
WA9ROX p. 84, Oct 78

Noise figure, sensitivity and dynamic range
WA9HUV p. 8, Oct 75

Noise figure, vhf, estimating
WA4GGF p. 42, Jun 75

Overload problems with vhf converters, solving
W10OP p. 53, Jan 73

Preamplifiers, vhf low-noise
WA2GGF p. 50, Dec 79

Receiver, superregenerative, for vhf
WA4ZQG p. 22, Feb 73

Single-frequency conversion, vhf
W3FQJ p. 62, Apr 75

Uhf local-oscillator chain
NTX p. 27, Jul 79

Vhf receiver, general-purpose
K1ZH p. 16, Jul 78

Vhf preamplifier burnout (HN)
WLJR p. 43, Nov 78

Weak signal source, stable, variable output
K6GJO p. 36, Sep 77

10 GHz hybrid-tie mixer
G3NRT p. 34, Oct 77

28-30 MHz low-noise preamp
WA1UAA p. 48, Oct 75

30 MHz preamplifier, low-noise
W1KR p. 38, Oct 78

40 MHz preamplifier, Ka-band
WLJR p. 96, Dec 77

40 MHz rat-race balanced mixer
W3FQJ p. 33, Jul 77

50-MHz antenna coupler
K1RAK p. 44, Jul 71

432-MHz antenna, 5/8 wave vertical
K6KLO p. 40, Jul 74

432-MHz antenna, 5/8 wave vertical, build from CB mobile whips
WB4WSU p. 67, Jun 74

432-MHz antennas, simple
WA3NFW p. 30, May 73

432-MHz collinear array
WA8UAM p. 12, Jul 72

432-MHz collinear uses PVC pipe mast (HN)
K6KKZ p. 66, May 76

432-MHz whip, 5/8 wave (HN)
VE3GDD p. 70, Apr 73

432-MHz corner reflector antenna
WA2FGQ p. 24, Nov 71

432-MHz high gain Yagi
K6CHP p. 46, Jan 76

Comments, WB8W p. 63, May 77

432-MHz OSCAR antenna (HN)
WA1J p. 58, Jul 75

432- and 1296-MHz quad-Yagi arrays
WA3EAD p. 20, May 73

Short circuit
WA3EAD p. 56, Dec 73

440-MHz collinear antenna, four-element
WA8HPT p. 38, Mar 73

1296-MHz antenna, high-gain
WA8EAD p. 74, May 78

1296-MHz Yagi
W2CGH p. 24, May 72

1296-MHz Yagi array
WA3EAD p. 40, May 75

vhf and microwave transmitters

FM transceiver, remote synthesized for 2 meters
WB4UPC p. 28, Jan 80

Linear amplifiers, solid-state vhf
AF6Z p. 48, Jan 80

Pi networks, series-tuned
WA2GL p. 42, Oct 71

Water-cooled 2C39 (HN)
WABRPB p. 94, Sep 77

50-MHz customized transmitter
K1RAK p. 12, Jul 71

50-MHz Kilowatt, inductively-tuned
K1OPP p. 8, Sep 75

50-MHz 2 kW linear amplifier
W6UJO p. 16, Feb 71

50-MHz linear amplifier
K1RAK p. 38, Nov 71

50-MHz SSB exciter
K1RAK p. 12, Oct 79

144-MHz 1000-watt amplifier
WB8ACI p. 12, Feb 79

144-MHz fm transceiver, compact
K6AOI p. 36, Jan 74

144-MHz fm transmitter
W6AJF p. 14, Jul 71

144-MHz fm transmitter
W68EK p. 6, Apr 72

144-MHz fm transmitter, Sonoboy
WA1ZUO p. 8, Oct 71

Crystal deck for Sonoboy
W2KJ p. 28, Oct 72

144-MHz power amplifier, high performance
WB6UVC p. 22, Aug 71

144-MHz power amplifiers, fm
WA4CGC p. 6, Apr 73

144-MHz power amplifier, 10 watt solid-state (HN)
W4GWH p. 67, Jan 74

144-MHz power amplifier, 50-watt, solid-state
Hatchett p. 6, Dec 73

144-MHz wide band kilowatt
W2GLN p. 10, Oct 77

144 MHz transceiver, a.m
K1AOO p. 55, Dec 71

144-MHz transmitting converter, solid-state ssb
W6WB p. 6, Feb 74

Short circuit
W6WB p. 62, Dec 74

144-MHz transverter
K1RAK p. 24, Feb 72

220-MHz exciter
WB6D JV p. 50, Nov 71

220-MHz power amplifier
WB6UVC p. 44, Dec 71

220-MHz rf power amplifier
WB6D JV p. 44, Jan 71

220-MHz rf power amplifier, fm
K7JHE p. 6, Sep 73

32-MHz power amplifier using stripline techniques
W6DUN p. 10, Jun 77

32-MHz solid-state linear amplifier
WB6D XF p. 30, Aug 75

32 MHz SSB, practical approach
W2FSQ p. 6, Jun 71

32 MHz 100-watt solid-state power amplifier
WACNP p. 35, Sep 75

1152- to 2304-MHz power doubler
WASHHV p. 40, Dec 75

1275-MHz video-modulated power amplifier
W2WJII p. 87, Jun 77

1296-MHz SSB transceiver
W6K VM p. 8, Sep 74

1296-MHz transverter
K6WBF p. 10, Jul 77

2048-MHz power amplifier
WASHHV p. 8, Feb 75
Announcing the Heathkit VF-7401
2-meter FM Digital Scanning Transceiver

Optional Miceroder II Microphone/Auto Patch Encoder lets you phone through repeaters with auto patch input. Draws power from the 7401, so no extra battery is necessary.

More features that make the VF-7401 the 2-meter rig that belongs in your shack and vehicle

- All-new, state-of-the-art circuits provide the exciting, exclusive features of 1 MHz bandwidth scanning, and Scan Lock/Latch capability on 2-meters.
- A receiver hotter than Heath's HW-2036A features dual-gate MOSFET front-end to minimize overload and adjacent-channel interference.
- "Power-up" on a pre-programmed frequency of your own choice, such as your favorite repeater.
- Convenient detachable mike using 4-pin connector.
- Power to the Miceroder II Microphone (if used) eliminates need for a battery.
- Sturdy SO-239 rear-panel antenna jack.
- Chassis-mounted power and external speaker plugs.
- Improved synthesizer, eliminating need for panel mounted sync lock light.
- Tuning for Power Amplifier and output power level adjustment is accessible without removing case.
- Capability of mobile or base operation (with Model VFA-7401-1 AC Power Supply - 13.8 V at 4A nominal, transmit).

SEND FOR FREE CATALOG OR VISIT YOUR HEATHKIT ELECTRONIC CENTER

Heathkit

The new VF-7401 is featured in the latest Heathkit Catalog. For a free copy write: Heath Company, Dept. 122-724, Benton Harbor, MI 49022. Or visit the nearest Heathkit Electronic Center in the U.S. or Canada where Heathkit products are displayed, sold and serviced. See the white pages of your phone book for location. In the U.S., Heathkit Electronic Centers are units of Veritechnology Electronics Corporation.
Advertisers check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ext: Ham Radio 7234

Ace Comm. ... 860
Advance Elec. 883
Alaska Microwave ... 829
Aluma ... 588
Amedon ... 006
Applied Inv. ... 862
Astron ... 734
Atlantic Surplus ... 015
Barker ... 223
Caddell Co. ... 244
Comm. Prod. ... 029
Comm. Concepts ... 797
Comm. Spec. ... 330
Curtis Electro ... 034
DCO ... 324
DX Eng. ... 222
Dave ... 201
Duke ... 866
E. L. O. ... 70
Elect. Research Virginia *
Eng. Consulting *
Erickson Comm. *
G & C Comm. ... 754
GLB ... 152
Hal ... 057
Hal-Tronix ... 254
H. R. Bookstore ... 150
Ham Radio
Health ... 960
Henry ... 962
Hildreth ... 283
Iconic *
Int. Crystal ... 666
Jamesco ... 333
Jan ... 067

DON & MIKE'S EQUIPMENT EXTRAVAGANZA

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic - Swan 102BXA</td>
<td>$999.00</td>
</tr>
<tr>
<td>Astro 150A</td>
<td>$779.00</td>
</tr>
<tr>
<td>Astro 100MXA</td>
<td>$499.00</td>
</tr>
<tr>
<td>Mirage B23 1 watt-30 watt amp</td>
<td>$89.95</td>
</tr>
<tr>
<td>DSI 5600A w/Anti/Ac</td>
<td>$185.00</td>
</tr>
<tr>
<td>Robot 800</td>
<td>$699.00</td>
</tr>
<tr>
<td>Cushcraft A3 Tribander</td>
<td>$169.00</td>
</tr>
<tr>
<td>AEA Morsematic</td>
<td>$169.00</td>
</tr>
<tr>
<td>Bird 43, Slugs</td>
<td>Stock</td>
</tr>
<tr>
<td>CDE Ham-4 Rotor</td>
<td>$169.00</td>
</tr>
<tr>
<td>Ham-X</td>
<td>$239.00</td>
</tr>
<tr>
<td>BT-1 HF/VHF Rotator</td>
<td>$79.95</td>
</tr>
<tr>
<td>PKM Pal 2 Handle with BP/AC</td>
<td>$149.00</td>
</tr>
<tr>
<td>Ceiton, GE 572B</td>
<td>$34.00</td>
</tr>
<tr>
<td>Kenwood Service Manuals</td>
<td>Stock</td>
</tr>
<tr>
<td>Telrex TB5EM</td>
<td>$425.00</td>
</tr>
<tr>
<td>Telrex TB6EM</td>
<td>$540.00</td>
</tr>
<tr>
<td>Telrex Mono-bander Stock</td>
<td>$350.00</td>
</tr>
<tr>
<td>Santec HT-1200 Synthesized</td>
<td>$339.00</td>
</tr>
</tbody>
</table>

Order Your KWM380 Now!

Old Pricing & Free Goods!

Adel Nibbling Tool ... 8.95
Janel QSA5 ... 41.95
Sprague 100MFD/450V Cap ... 2.00
Rohn Tower ... 20% off dealer 25G, 45 Sections
Balden 9405 Heavy Duty
Rotor Cable #16, #18 ... 38c/ft
Balden 8214 RG-8 Foam ... 32c/ft
Balden 9258 RG-8 Mini-coax ... 19c/ft
Alliance HD73 Rotor ... 109.95
Amphenol Silverplate
PL259 ... 1.00
ICOM 255A 2M Synthesized 319.00
ICOM 260A 2M SSB/FM/CW 429.00

Late Specials:
Kenwood TS-520SE, TS-130S ... Call
ICOM IC2AT/TPP/NICAD ... 229.00
NEW - ICOM IC720 w/Anti/Mike Call Bearcat 220-$299.00 300-$399.00
Lunar 2M240P ... 109.00
Yasu FT-207RA/BC ... 299.00
DenTron Clipperton L ... 649.00

MASTER CHARGE + VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $1.00 minimum.

ADVERTISERS INDEX

Ace Communications, Inc. ... 63
Advance Electronics ... 100, 101
Alaska Microwave Labs ... 127
Aluma Tower Company ... 105
Amidon Associates ... 102
Applied Invention ... 102
Astron Corporation ... 105
Atlantic Surplus Sales ... 85
Baner & Williamson ... 70
Barry Electronics ... 45
R. H. Bauman Sales Company ... 127
Bench, Inc. ... 86
Ben Franklin Electronics ... 106
Budwey Mfg. Company ... 104
Caddell Co. ... 104
Command Productions ... 85
Communication Concepts, Inc. ... 104
Communications Specialists ... 10, 11
Curta Electronics ... 85
DCC, Inc. ... 70
DX Engineering ... 127
Dave ... 85
Darrick, R. L. Co. ... 28, 29
ETCO ... 104
Ethorn Technological Operations ... 127
Electronic Research Corp. of Virginia ... 127
Engineering Consulting Services ... 127
Erickson Communications ... 27
G & C Communications ... 30
GLB Electronics ... 104
H. L. Communications Company ... 1
Hal-Tronix ... 51
Ham Radio’s Bookstore ... 102, 104
Ham Radio Magazine ... 60
Heath Company ... 126
Henry Radio Stores ... 85
Hilree Engineers ... 85
Icom America, Inc. ... 5
International Crystal Mfg. Co. ... 27
Jamesco Electronics ... 21
Jan Cystals ... 106
Jim-Pack ... 76, 77
Jones, Martin P. Jr. Associates ... 103
Kantronics ... 80
Kro-Kenwood Communications, Inc. ... 64, 65
A. J. Enterprises ... 2
MHR Electronics ... 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Madison Electronics Supply ... 126
Microcraft Corporation ... 80, 86
Neral Electronics ... 106
OK Machine & Tool ... 126
P. C. Electronics ... 66
Polaron Engineers ... 87
Payne Radio ... 42
Radio Amateur Catalog ... 86
Radio World ... 86
Ramsey Electronics ... 47
SAROC ... 46
Securiton ... 70
Semiconductors Surplus ... 81, 82, 83
Sherwood Engineering ... 105
Skyltec ... 7
Spectronics ... 7
Spectrum International ... 88
Telrex Laboratories ... 80
Ten-Tec ... 9
Universal Communications ... 127
Urban Engineering, Inc. ... 63
V-J Products ... 63
Vanguard Labs ... 104
Vanguard, Inc. Division ... Cover IV
Vibroplex Co., Inc. ... 69
Webster Associates ... 70
Western Electronics ... 102
Wilson Systems ... 102
Yasu Electronics Corp ... Cover III
ALPHA Power

IS YOUR KEY TO A
BIG SIGNAL

ALPHA/VOMAX can boost the "talk power" of any rig up to ten times or more. The new SSB-4 split band speech processor uses the only system more effective than FM clipping — and distortion is extremely low so your voice sounds natural. Under tough conditions VOMAX can help as much as most lines. Combine VOMAX with a good linear and WOW! It's simple to install and operate with any rig.

ALPHA 374A is a heavy-duty "rock crusher" — a full kilowatt (2KW PEP), No Time Limit, all band, NO TUNE UP deck top linear amplifier. It's a no-compromise ALPHA with a TWO YEAR FACTORY WARRANTY.

Other superb ALPHA's include the "Ultimate LINEAR" ALPHA 77Dx and the new ALPHA 78, which combines NO-TUNE-UP maximum legal power, No Time Limit, and high speed (vacuum relay) CW break-in. Call or write your dealer or CTC DIRECT for illustrated literature on all ALPHA products.

EHRHORN TECHNOLOGICAL OPERATIONS, INC.
P.O. BOX 708, CANON CITY, CO 81212
(303) 275-9613

SL-56 AUDIO ACTIVE FILTER

$79.00

ppd USA &
Canada

FOUR FILTERS IN ONE
AT THE SAME TIME

Call, Write or SEE
Another ISSUE for Details

ELECTRONICS RESEARCH CORP. OF VIRGINIA
P. O. BOX 3294
VIRGINIA BEACH, VIRGINIA 23452
TELEPHONE (804) 463-2869

GROTH-Type

COUNTS & DISPLAYS YOUR TURNS

• 99.99 Turns
• One Hole
• Panel Mount
• Handy Logging Area
• Spinner Handle Available

Case: 2x4"; shaft 3/8"x3"

TC2 $10.00
TC3 $11.00
Spinner Handle Add $1.50

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143

NEW! GaAs FETS

MGF 1400 NF 2.0DB
AT 4GHZ MAG 15DB
$28.50

MGF 1412 NF 8.0DB
AT 4GHZ MAG 18DB
$75.00

TRANSMITTERS

MRF901 1F45GHC
$3.00

BPR90 PTF8.00GHC
$3.00

NEC CD 121 F8.00GHC
$5.00

HOT CARRIER DIODES

MBD101 UNI-MICROWAVE
$1.50

ND4101 4GHZ NF - 5.75 DB
$19.00

4GHZ NF - 6.5 DB
$2.00

CHIP CAPACITORS

2.2, 2.2, 3.3, 4.7, 5, 6.8, 10, 16, 22, 27, 47, 100, 120, 180, 220, 270, 330, 390, 470, 560, 680, 820, 1000, 1200, 1800, 3900, 8200
$6.00

RF - IF.I.C.

MWA - 118
RF - IF AMPLIFIER LC
1 TO 400 MC 14 DB GAIN TYPE
3 TERMINAL IN OUT GROUND
$7.95

DUAL GATE MOSFET

RCA 40G77
$15.50

COAX CONNECTORS

SMA CHASSIS MOUNT SQUARE FLANGE
$5.90

SMA PLUG FOR RG-58
$6.57

SMA PLUG FOR RG-174
$6.57

TYPE N CHASSIS MOUNT SQUARE FLANGE
$3.20

TYPE N PLUG FOR RG-58G - 8
$3.46

FEED-THRU CAPACITORS

500 PF
$5.00

TEFLOM CIRCUIT BOARD

APPROX 3.5 x 5.0 x .012
$5.50

APPROX 3.5 x 5.0 x .013
$6.50

CHIP RESISTORS

50 OHM 5 WATT
$1.50

PISTON TRIMMERS

Twiko 201 - 01M 5 - 3PR 11 - 8PR
$2.50

OPEN AT 8PM EST
CLOSED AT 9PM PST

IF YOU DO NOT SEE
WHAT YOU WANT ASK
ORDERS ARE POSTAGE PAID
COD - VISA - MASTERCHARGE

YOU'VE SEEN THE MAGAZINE ARTICLES

Here's what you can expect from the DX ENGINEERING
RF Speech Processor

• 6 db INCREASE IN AVERAGE
POWER
• MAINTAINS VOICE QUALITY
• IMPROVES INTELLIGIBILITY
• NO CABLES OR BENCH
SPACE REQUIRED
• EXCELLENT FOR
PHONE PATCH
• NO ADDITIONAL ADJUST-
MENTS — MIKE GAIN ADJUSTS
CLIPPING LEVEL
• UNIQUE PLUG-IN UNIT — NO
MODIFICATIONS REQUIRED

This is RF Envelope Clipping— the feature being used in new transmitter designs for amateur and military use.

Models Now Available
Collins 32C, KWM-2 .... $ 98.50 ea.
Drake TR-3, TR-4, TR-6, TR-4C,
T-4, T-4X, T-4XB, T-4XC $126.50 ea.
Postpaid — Calif. Residents
add 6% Tax

Watch for other models later!

DX Engineering
1050 East Walnut, Pasadena, Calif. 91106

2300 MHZ
DOWN CONVERTER

MERRY CHRISTMAS

FROM

UNIVERSAL COMMUNICATIONS

DISORDER and STEVE WISNIEL
KNOWN AS THE STOP SIGN BOARD,
THIS 2300MHZ DOWNCONVERTER KIT
WORKS THE IMPROVED BOARD EVEN
BETTER THAN BEFORE.

Kit supplied with a 8 page
brochure, PC board. Diodes, Chip Caps, Transistors and
all parts to complete a
working board 33.95.

POWER SUPPLIES avail.

Money Order or Check
mailed orders.

ORDER AUORIZED COMMUNICATIONS
RG BOX 6302, ARLINGTON, TEX. 76011
817 - 265 - 0391

More Details? CHECK — OFF Page 126
december 1980
Digital IC Probe & Logic Pulser

PRB-1 DIGITAL LOGIC PROBE
Compatible with DTL, TTL, CMOS, MOS and Microprocessors using a 4 to 15V power supply. Thresholds automatically programmed. Automatic resetting memory. No adjustment required. Visual indication of logic levels, using LED's to show high, low, bad level or open circuit logic and pulses. Highly sophisticated, shirt pocket portable (protective tip cap and removable coil cord).

- Automatic threshold resetting
- DE to > 50 MHZ
- Compatible with all logic families 4-15 VDC
- 10 Nsec pulse response
- Supply O.V.P. to ± 70 VDC
- 120 K Ω impedance
- No switches/no calibration
- Automatic pulse stretching to 50 Msec.
- Open circuit detection
- Automatic resetting memory
- Range extended to 15-40 VDC with optional PA-1 adapter

PLS-1 LOGIC PULSER
The PLS-1 logic pulser will superimpose a dynamic pulse train (20 pps) or a single pulse onto the circuit node under test. There is no need to unsolder pins or cut printed-circuit traces even when these nodes are being clamped by digital outputs.

PLS-1 is a multi-mode, high current pulse generator packaged in a hand-held shirt pocket portable instrument. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic state.

Signal injection is by means of a pushbutton switch near the probe tip. When the button is depressed, a single high-going or low-going pulse of 2μs wide is delivered to the circuit node under test. Pulse polarity is automatic: high nodes are pulsed low and low nodes are pulsed high. Holding the button down delivers a series of pulses of 20 pps to the circuit under test.

- High input impedance (off state) 1 meg ohm
- Multi-mode-single pulses or pulse trains
- Low output impedance (active state) 20 ohms
- Automatic polarity sensing
- Output pulse width 2 μsec nominal
- Automatic current limiting 7 ampere nominal
- Input over voltage protection + 50 volts
- Automatically programmed output level
- Finger tip push button actuated
- Circuit powered
- Power lead reversal protection
- No adjustments required

Multi-family RTL, DTL, TTL, CMOS, MOS and Microprocessors.

OK Machine & Tool Corporation
3455 Conner St., Bronx, N.Y. 10475 U.S.A.
Tel. (212) 994-6600 Telex 125091
THE FT-207R HANDIE CHECKLIST

☐ TA-2 telescopic whip antenna
☐ YM-24 speaker microphone
☐ LCC-7 leather case
☐ FSP-1 external speaker
☐ MMB-10 mobile mounting bracket
☐ FTS-32E CTCSS/burst encoder
☐ FTS-32ED CTCSS encoder/decoder

☐ NC-1A 15-hr. desk charger
☐ NC-3 4-hr. quick charger
☐ NC-9B wall charger
☐ PA-2 mobile battery eliminator/charger
☐ FBA-1 battery sleeve
☐ NBP-9 battery pack
☐ FEP-1 earphone

What more could you ask for?

YAESU ELECTRONICS CORP. 6851 Walthall Way, Paramount, CA 90723 • (213) 633-4007
Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246 • (513) 874-3100
EIMAC's new high-mu triode/cavity combination.
It takes the hassle out of 10 kW VHF transmitter design.

Relax. Now EIMAC offers you the best triode available and a cavity that has been custom designed for it. All you have to do is design them in.

The advantages are impressive. EIMAC's ceramic-metal high-mu triode (3CX10000U7) gives you peak sync power output of 10 kW and a stage gain of 14 dB. That's 2 dB more than with comparable tetrodes.

And there's more. Driving requirements are reduced; screen power supply and screen circuitry are eliminated; and cooling requirements are lessened. The result is ease of maintenance and substantial cost reduction.

There are two EIMAC cavities for your 10 kW combination, the CV-2240 for channels 2-6, and the CV-2250 for channels 7-13. For further information contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070, (415) 590-1221. Or call any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.