JUNE 1980

- Woodpecker noise blanker 18
- Yagi antenna design 33
- Antenna restrictions 46
- Tone encoder 51
IT'S A FACT... HENRY RADIO STILL PRODUCES THE BROADEST LINE OF SUPERIOR QUALITY AMPLIFIERS IN THE WORLD. WHETHER FOR AMATEUR RADIO, COMMERCIAL OR MILITARY USE, WE OFFER A CHOICE OF FIELD PROVEN STATE-OF-THE-ART UNITS TO FIT THE REQUIREMENTS AND BUDGETS OF THE MOST DISCRIMINATING USER.

THE 1KD-5... the newest member of the famous Henry Radio family of fine amplifiers. And we're still convinced that it's the world's finest linear in its class. The 1KD-5 was designed for the amateur who wants the quality and dependability of the 2KD-5 and 2K-4, who may prefer the smaller size, lighter weight and lower price and who will settle for a little less power. But make no mistake, the 1KD-5 is no slouch. Its 1200 watt PEP input (700 watt PEP nominal output) along with its superb operating characteristics will still punch out clean powerful signals...signals you'll be proud of. Compare its specifications, its features and its fine components and we're sure you will agree that the 1KD-5 is a superb value at only $695.

THE 2KD-5 We have been suggesting that you look inside any amplifier before you buy it. We hope that you will. If you "lift the lid" on a 2KD-5 you will see only the highest quality, heavy duty components and careful workmanship...attributes that promise a long life of continuous operation in any mode at full legal power. The 2KD-5 is a 2000 watt PEP input (1200 watt PEP nominal output) RF linear amplifier, covering the 80, 40, 20, and 15 meter amateur bands. It operates with two Elmac 3-500Z glass envelope triodes and a PI-L plate circuit with a rotary silver plated tank coil. Price $945.

And don't forget the rest of the Henry family of amateur amplifiers...the Tempo 2002 high power VHF amplifier and the broad line of top quality solid state amplifiers. Henry Radio also offers the 3K-A and 4K-Ultra superb high power H.F. amplifiers and a broad line of commercial FCC type accepted amplifiers for two way FM communications covering the range to 500 MHz.

NEW TOLL FREE ORDER NUMBER: (800) 421-8631
For all states except California.
Calif. residents please call collect on our regular numbers.
11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127

Prices subject to change without notice.
WILSON SYSTEMS, INC. PRESENTS

THE NEW SYSTEM 40 TRIBANDER

3 MONOBAND ANTENNAS IN ONE – EACH WITH FULL MONOBAND PERFORMANCE

FACTORY DIRECT ONLY

$299.95

A NEW CONCEPT IN ANTENNA DESIGN
USING A 26 FT. BOOM

- FOR THE SERIOUS DXer WHO WANTS MONOBANDERS ON 10-15-20
- FOUR FULL SIZE 20 MTR ELEMENTS WITH 10 dbd GAIN
- THREE WIDE SPACED 15 MTR ELEMENTS WITH 8.2 dbd GAIN
- FOUR WIDE SPACED 10 MTR ELEMENTS WITH 10.2 dbd GAIN
- ONLY ONE FEED LINE REQUIRED
- DESIGNED WITH NO INTERACTIONS BETWEEN ELEMENTS
- ALL DRIVEN ELEMENTS AND DIRECTOR ELEMENTS ARE INSULATED FROM BOOM
- ALL PARASITIC ELEMENTS ARE FULL SIZE
- BROADBANDED—NO SEPARATE SETTINGS REQUIRED FOR PHONE OR CW
- SAME QUALITY HARDWARE AS USED IN ALL WILSON ANTENNAS

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Max. Power Input</th>
<th>Legal Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSWR @ Res.</td>
<td>1.2:1</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 ohm</td>
</tr>
<tr>
<td>Feed Method</td>
<td>Coax Balun Supplied</td>
</tr>
<tr>
<td>Matching Method</td>
<td>Modified Beta</td>
</tr>
<tr>
<td>F/B Ratio</td>
<td>25 db</td>
</tr>
</tbody>
</table>

- Longest Element: 36'
- Turning Radius: 22.6'
- Surface Area: 121 sq. ft.
- Wind Loading @ 80 mph: 309 lbs.
- Assem. Weight: 75 lbs.
- Shipping Weight: 84 lbs.

AVAILABLE ONLY
FACTORY DIRECT
CALL
1-800-634-6898 TOLL FREE

WSI WILSON SYSTEMS, INC.
4286 S. Polaris Las Vegas, Nevada 89103

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE.
Ham Radio and ham radio meant much to Jim Fisk. His concerns involved pride of accomplishment and uncompromising effort, sensing the perfection that is possible, but seldom achieved, in either electronics or publishing.

The magazine was a part of Jim from the beginning, and its brain, body, and heart were Jim's. His layouts breathed life into the magazine's pages; his lean, clean prose became a model for other publications. The appearance of the magazine meant much to Jim as he strove for perfection.

Jim's concern with ham radio was a deep involvement. He wasn't a bystander or an onlooker, but a participant par excellence. And his participation often changed that in which he took part, to the benefit of all. Jim's last days with us typified this attitude of involvement, participation, and enjoyment. Above all, his first, second, and last looks were forward — to the future.

On Thursday morning, April 17, he came into the office with a lively step, a twinkle in his eyes, and mustache bristling; he was barely able to contain his excitement. "Did you get on 20 last night?" he asked. "The band was wide open; I've never heard better conditions, and — by God — I cracked some pileups! I worked Mount Athos, Tahiti, Mali, and Mayotte . . . even His Majesty, King Hussein, JY1. You know, I had never worked him before, and it was a thrill I'll never forget!"

He spoke with quiet pride of his Collins station, of his four-element Cushcraft monobander at 100 feet, and of his joy at beating some of the 'big guns' at their own game. He expressed this in a letter to the DX Bulletin:

The DX stations available during the past 24-36 hours have really been hard to believe. At one point late last night SV1JG/A, TZ4AQS and F8HFLP were QR Ming one another just below 14200! And it's been a long time since I worked three new ones in the space of a few hours . . . would have worked VK0KH, too, but he's supposed to come up again tonight.

I have now worked the necessary contacts for 5B-DXCC, but am still short a few cards on 40 and 80 meters. As a matter of fact, my countries count on 80 is actually higher than on 15, but only because I haven't had time to get my beam up on the tower.

So far as DX is concerned, April, 1980, has been a month to remember! But damn, I missed KP2A from 807 . . .

Lunch that last day was a time to remember. Rush Drake, W7RM, had dropped by to visit, and the talk turned quickly to several large, high-performance high-frequency antenna systems that he had seen recently. Soon, the placemats at the local restaurant were covered with exotic sketches representing nifty ideas for multiple arrays with microprocessor controls; and Jim began to outline progress on his own exciting plans for a multi-operator super station that would be the envy of every contestor. Several parts of his plan had already taken shape and some hardware was already in place. Jim hoped to have the rest finished soon. The sunspots were riding high and Jim was certainly intending to make the best of them in the months ahead.

We remember Jim's enthusiasm, his fire, his drive for perfection, his enjoyment of being who and where he was, and his long-lived love affair with Ham Radio, symbolized by his call: W1HR.

Yes, we remember . . .
JUNE 1980
volume 13, number 6

ham radio magazine

12 220-MHz kilowatt linear
Robert I. Sutherland, W6PO

18 Woodpecker noise blanker
Ulrich L. Rohde, DJ2LR

20 automation for synthesized two-meter fm mobile
David J. Brown, W9CGI

33 Yagi antenna design: multi-element simplistic beams
James L. Lawson, W2PV

42 21-MHz phased verticals
Edmund H. Marriner, W6XM

46 antenna restrictions
J.W. Bryant, N4AQD

51 tone encoder for auto patches
Christopher P. Winter, WB8VSZ

58 solid-state T-R switch
Malcolm Crawford, K1MC

62 understacking high-frequency Yagi antennas
Robert M. Myers, W1XT

68 macromatcher improvements
Arnold C. Bachmann, K9DCJ

94 advertisers index
86 flea market
70 ham mart
72 ham notebook

contents
New MFJ 3 & 1.5 KW Versa Tuners
Run up to 3 KW or 1.5 KW PEP and match everything from 1.8 thru 30 MHz: coax, balanced line, random wire. Built-in balun.

3 KW VERSA TUNER IV's

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFJ-984</td>
<td>3 KW VERSA TUNER IV Exclusive RF Ammeter Insures maximum power to antenna at minimum SWR. Built-in dummy load.</td>
<td>$299.95</td>
</tr>
<tr>
<td>MFJ-981</td>
<td>3 KW VERSA TUNER IV Accurate meter gives SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. 4:1 ferrite balun.</td>
<td>$199.95</td>
</tr>
<tr>
<td>MFJ-982</td>
<td>3 KW VERSA TUNER IV Antenna switch lets you select 1 coax thru tuner or direct, or random wire and balanced line.</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

1.5 KW VERSA TUNER III's

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFJ-980</td>
<td>3 KW VERSA TUNER IV Heavy duty encapsulated 4:1 ferrite balun for balanced lines.</td>
<td>$169.95</td>
</tr>
<tr>
<td>MFJ-962</td>
<td>1.5 KW VERSA TUNER III SWR, dual range forward and reflected power meter, 6 position antenna switch, encapsulated 4:1 ferrite balun.</td>
<td>$179.95</td>
</tr>
<tr>
<td>MFJ-961</td>
<td>1.5 KW VERSA TUNER III 6 position antenna switch lets you select 2 coax lines thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 ferrite balun.</td>
<td>$159.95</td>
</tr>
</tbody>
</table>

NEW MFJ KW VERSA TUNERS HAVE THESE FEATURES IN COMMON

These 6 new MFJ KW Versa Tuners let you run up to 3 KW or 1.5 KW PEP (depending on the model) and match any feedline continuously from 1.8 to 30 MHz: coax, balanced line or random wire. Gives maximum power transfer. Harmonic attenuation reduces TVI, out of band emissions. All metal, low profile cabinet gives RF1 protection, rigid construction, sleek styling. Black. Rich anodized aluminum front panel. 5x14x14 inches.

3 KW VERSA TUNER IV's

- MFJ-984 3 KW VERSA TUNER IV
 - EXCLUSIVE RF AMMETER
 - Insures maximum power to antenna at minimum SWR. Built-in dummy load.
 - This is MFJ's best 3 KW Versa Tuner IV. The MFJ-984 Deluxe 3 KW Versa Tuner IV gives you a combination of quality, performance, and features that others can't touch at this price.
 - An exclusive 10 amp RF ammeter insures maximum power to antenna at minimum SWR. A separate meter gives SWR, forward, reflected power in 2 ranges (2000 and 200 watts).
 - Versatile antenna switch lets you select 2 coax lines thru tuner and 1 thru or direct, or random wire, balanced line or dummy load.
 - A 200 watt 50 ohm dummy load lets you tune your exciter off air for peak performance. Efficient, encapsulated 4:1 ferrite balun.

4) MFJ-980 3 KW VERSA TUNER IV

- $169.95
- Heavy duty encapsulated 4:1 ferrite balun for balanced lines.
- The MFJ-980 is MFJ's lowest priced 3 KW Versa Tuner IV but has the same matching capabilities as the other 3 KW Versa Tuner IV's.
- Features an efficient, encapsulated 4:1 ferrite balun for balanced lines.

For Your Nearest Dealer or For Orders

CALL TOLL-FREE 800-647-1800

Why not visit your dealer today? Compare these 3 KW and 1.5 KW Versa Tuners to other tuners. You'll be convinced that its value, quality and features make it a truly outstanding value. If no dealer is available, order direct from MFJ and try it. If not delighted, return it within 30 days for a prompt refund (less shipping). Charge VISA, MC. Or mail check, money order plus $10 shipping/handling.

Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On

MFJ ENTERPRISES, INC.

For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

More Details? CHECK — OFF Page 94
The IC-251A is the newest addition to ICOM's all mode transceiver line. Like the matching IC-551, the IC-251A has dual digital VFO's, three memories, scanning (even SSB), and many other features you only get from ICOM. Both units include the no backlash, no delay light chopper, similar to the IC-701, as a standard feature at no cost. Coupled to the microprocessor, this provides split frequency operation as well as completely variable offsets.

Check the specs, and you'll agree, either way you go, ICOM is simply the best.

SPECIFICATIONS

Listed below are some of the IC-551 specifications. IC-251A's specs are identical except where noted (in bold).

Frequency Coverage: 50~54MHz (143.8~148.19MHz)

RF Output Power:
- SSB 10W PEP
 - (1~10W adjustable) (10W)
- CW 10W
 - (1~10W adjustable) (10W)
- AM 4W
 - (0~4W adjustable) (—)
- FM* 10
 - (1~10W adjustable) (1~10W)

Sensitivity:
- SSB/CW/AM
 - Less than 0.5 μV for 10dB S+N/N
 - FM* More than 30dB S+N+S+N/D+N+D at 1μV

Squelch Sensitivity:
- SSB/CW/AM 1μV
- FM* 0.4 μV (0.4 μV)

Selectivity:
- SSB/CW/AM
 - More than ±1.1KHz at -6dB (1.2)
 - Less than ±2.2KHz at -6dB (2.4)
 - When Pass Band Tuning Unit is installed; less than 1KHz at -6dB

Spurious Response Rejection Ratio:
- FM* More than ±7.5KHz at -6dB
 - Less than ±15KHz at -60dB

Dimensions:
- 111mm (H) x 241mm (W) x 311mm (D)

Weight:
- 6.1kg (5kg)

All stated specifications are subject to change without notice. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
I first met Jim in May of 1967 when he was the editor of another Amateur Radio magazine. I had submitted an article for possible publication. It came in "over the transom," as they say in the publishing business. The article was accepted, and thus began a 13-year relationship with one of the most respected and competent individuals in one of the most highly specialized fields of publishing — a technical journal for Amateur Radio enthusiasts.

I talked to Jim on the air shortly after he and Skip Tenney established *ham radio* in a shoe-box office in New Hampshire. I offered my editorial services on a part-time basis, working from my home in California. Since then, my professional and personal relationship with Jim has grown and we've all enjoyed the benefits of hard work, a striving for excellence in the magazine, and respect from our peers.

Jim Fisk was *ham radio* magazine. Every page reflected Jim's influence and expertise. I have some stinging letters from Jim in which he criticized my editing — all in the interest of perfection. And that's good. Jim's footprints were all over the magazine. He was a dedicated professional and he will be difficult to replace.

So long, OM. We'll miss you.

W6NIF

W1HR

New Hampshire

Jim Fisk
WHEN OUR CUSTOMERS TALK... WE LISTEN.

From around the world their RTTY messages read loud and clear.

At HAL we want to hear what our customers have to say about RTTY practices, problems, and possibilities. So when they talk... we listen... and respond.

The result is that HAL Communications equipment stays at the leading edge of RTTY design with... features that open up new capabilities for greater enjoyment of RTTY operation. And with performance reliability so certain, we offer a full one-year warranty.

Write or give us a call. We'll be glad to send you our new RTTY catalog.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

For our European Customers Contact:
Richter & Co., D3000 Hannover 1
Transradio, S.A., 6816 Bissone/Lugano
There are certainly few business situations that can bring two people much closer than working as publisher and editor of a small magazine during its start-up years. It was my privilege to share with Jim Fisk, then W1DTY, just such an exciting, yet often highly frustrating, experience.

We had embarked on a project which many told us was pure folly: a fourth entry in the already well-filled Amateur Radio magazine field. Success was impossible, they said. But with Jim’s expertise and ambition, plus my stubbornness and determination, we felt that we had something to offer that was really different—a completely new publication, dedicated to excellence and professionalism, which would make a very real contribution to the hobby we both loved so well.

Our success is history now, but it didn’t come easily. Editorial problems, printing difficulties, mailing mixups, promotional disappointments; I guess we saw them all. But working 26 hours a day, seven days a week, we overcame them one by one and gradually *ham radio* magazine established itself as the technical leader we’d envisioned, and new standards were set for both technical and graphic excellence in our field. These standards were the work of Jim Fisk, certainly the most capable and professional editor in many years to touch the pages of a ham magazine. He has set a standard that Amateur Radio editors will strive to reach for a long time to come.

But Jim was much more to our hobby than merely an excellent editor. He was at the center of new ideas and technical advances. His office was virtually a central switchboard or meeting place for the top thinkers and leaders in our hobby to exchange their ideas and discoveries, and he introduced, through the magazine, many of the contributions to Amateur state-of-the-art which have been developed in recent years.

This was probably never better demonstrated than during the 1980 Dayton Hamvention, which took place just a week after Jim’s death. As our staff met literally hundreds of people who had known and worked with Jim, we were constantly reminded just how important he had become not just to our own publishing efforts but also to the continuing progress of Amateur Radio itself.

Jim will be sorely missed both in the pages of *ham radio* magazine and in the Amateur Radio hobby at large. Fortunately, however, he has left behind much which will continue to make significant contributions for a long time to come. Thanks to his efforts, we now have a well-trained editorial staff who have learned how to do things to Jim’s standards. The magazine itself will act as a living memorial to Jim, as it continues to be the rallying point for excellence in both Amateur theory and practice. Although we will now be operating without him, we will continue to work to his standards. The question, “How would Jim have done this?” will be asked many times, and the answer will provide our guidelines and keep us on our toes.

The question of just who is going to take his place on the masthead has already been asked many times. It is a difficult decision and one which we want to approach with a great deal of care and deliberation. For the time being, I personally will serve as acting editor, a position which I can fulfill only with the help and backing of Jim’s top notch staff. They will be doing the work and I’ll try primarily to provide the focal point between them and all of you.

In closing, I know I speak for all of us, both the *ham radio* family and Jim’s personal family, when I express our thanks for all the many letters and calls we have received in recent days. They have been a great inspiration to all of us during this difficult period.

W1NLB
Move over imports, here's the new TEN-TEC

DELTA

the notable change in hf transceivers

All new, all nine hf bands and only $849!

DELTA — the symbol of change—the name of a great new TEN-TEC transceiver. A transceiver for changing times, with new features, performance, styling, size and value.

TOTAL SOLID-STATE. By the world's most experienced manufacturer of hf solid-state amateur radio equipment.

ALL 9 HF BANDS. First new transceiver since WARC. 160, 10 Meters including the three new hf bands (10, 18 & 24.5 MHz). Ready to go except for plug-in crystals for 18 and 24.5 MHz segments (available when bands open for use).

SUPER RECEIVER. New, low noise double-conversion design, with 0.3 μV sensitivity for 10 dB S+N/N.

HIGH DYNAMIC RANGE. 85 dB minimum to reduce overload possibility. Built-in, switchable, 20 dB attenuator for extreme situations.

SUPER SELECTIVITY. 8 pole monolithic SSB filter with 2.4 kHz bandwidth, 2.5 shape factor at 6/60 dB points. And optional 200 Hz and 500 Hz 6-pole crystal lattice filters. Eight pole and 6-pole filters cascade for 14 poles of near ultimate skirt selectivity. Plus 4 stages of active audio filtering. To sharpen that hf response curve to just 150 Hz bandwidth, 4-position selectivity switch.

BUILT-IN NOTCH FILTER. Standard equipment. Variable, 200 Hz to 3.5 kHz, with notch depth down to 50 dB. Wipes out interfering carriers or CW.

OFFSET TUNING. Moves receiver frequency up to ±1 kHz to tone receiver separately from transmitter.

"HANG" AGC. For smoother, cleaner, receiver operation.

OPTIONAL NOISE BLANKER. For that noisy location, mobile or fixed.

WWW RECEPTION. Ready at 10 MHz.

"S"/SWR METER. To read received signal strength and transmitted standing wave ratio. Electronically switched:

SEPARATE RECEIVER ANTENNA JACK. For use with separate receiving antenna, linear amplifier with full break-in (QSK) or transverters.

FRONT PANEL HEADPHONE AND MICROPHONE JACKS. Convenient.

DIGITAL READOUT. Six 0.3" red LEDs.

BROADBAND DESIGN. For easy operation. Instant band change—no tuneup of receiver or final amplifier. From the pioneer, TEN-TEC.

SUPER TRANSMITTER. Solid-state all the way. Stable, reliable, easy to use.

200 WATTs INPUT. On all bands including 10 meters (with 50 ohm load). High SWR does not automatically limit you to a few watts output. Proven, conservatively rated final amplifier with solid-state devices warranted fully for the first year, and pro-rata for five more years.

100% DUTY CYCLE. All modes, with confidence. 20 minutes max. key-down time. Brought to you by the leader in solid-state finals, TEN-TEC.

QSK — INSTANT BREAK-IN. Full and fast, to make CW a real conversation.

BUILT-IN VOX AND PTT. Smooth, set-and-forget VOX action plus PTT control. VOX is separate from keying circuits.

ADJUSTABLE THRESHOLD ALC & DRIVE. From low level to full output with ALC control. Maximum power without distortion, LED indicator.

ADJUSTABLE SIDETONE. Both volume and pitch; for pleasant monitoring of CW.

SUPER STABILITY. Permeability tuned VFO with less than 15 Hz change per ° change over 40° range after 30 min. warm-up—and less than 10 Hz change for 20 Volt AC line change with TEN-TEC power supply.

VERNIER TUNING. 18 kHz per revolution, typical.

SUPER AUDIO. A TEN-TEC trademark. Low IM and HD distortion (less than 2%). Built-in speaker.

MODULAR/MASS-TERMINATION CONSTRUCTION. Individual circuit boards with plug-in harnesses for easy repair if necessary. Boards are malleable.

FULL ACCESSORY LINE. All the options:

Experience The Notable Change In HF Transceivers, Experience DELTA. See your TEN-TEC dealer or write for full details.
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is an astonishing ± .1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our SS-32 encode only model is programmed for all 32 CTCSS tones or all test tones, touch-tones and burst-tones.

And, of course, there’s no need to mention our 1 day delivery and 1 year warranty.

TS-32 Encoder-Decoder
- Size: 1.25" x 2.0" x 0.40"
- High-pass tone filter included that may be muted
- Meets all new RS-220-A specifications
- Available in all 32 EIA standard CTCSS tones

SS-32 Encoder
- Size: .9" x 1.3" x .40"
- Available with either Group A or Group B tones

Frequencies Available:

<table>
<thead>
<tr>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>TEST-TONES:</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>600</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>1000</td>
</tr>
<tr>
<td>77.0 XB</td>
<td>1500</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>2175</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>2805</td>
</tr>
<tr>
<td>85.4 YA</td>
<td>TOUCH-TONES:</td>
</tr>
<tr>
<td>88.5 YB</td>
<td></td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± .1 Hz maximum - 40°C to +85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

TEST-TONES:	TOUCH-TONES:	BURST-TONES:
600	697	1209
1000	770	1336
1500	852	1477
2175	941	1633
2805	1514	2537

- Frequency accuracy, ± 1 Hz maximum - 40°C to +85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

Wired and tested: TS-32 $59.95, SS-32 $29.95

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, California 92667
(800) 854-0547 / California: (714) 998-3021
The Eimac 8877 is a high-mu ceramic-metal triode rated for use up to 250-MHz and several successful amplifier designs using this tube have been constructed for hf through vhf. The 220-MHz amplifier described here has proven to operate very well during the last year, including several successful Earth-Moon-Earth (EME) contacts.

This 220-MHz 8877 linear amplifier is designed for the serious vhf DXer who demands reliable service combined with good linearity and efficiency. The amplifier requires no neutralization, is completely stable and free of parasitics, and is very easy to operate.

The amplifier is designed for continuous duty operation at the 1000-watt dc input level, and can develop 2000-watts PEP input for SSB operation with ample reserve. For operation at 2000-watts PEP the plate supply should be between 2500 and 3000 volts; under these conditions the amplifier will deliver 1230 watts output. With the higher plate-voltage supply, up to 14-dB gain can be obtained with an amplifier efficiency of 61 per cent; see table 1.

The 8877 triode has very good current division; that is, the grid current is quite low in comparison to the plate current. The grid current is typically about 15 per cent of the value of the plate current. the 8877 also has good gain and intermodulation distortion characteristics. The plate dissipation rating is 1500-watts. The cathode is indirectly heated; filament requirements are 5.0-volts at 10.5 amperes. The tube base mates with a standard septar socket.

the circuit

In the amplifier circuit shown in fig. 1 the 8877 grid is operated at dc ground. The grid ring at the base of the tube provides a low-inductance path between the grid element and the chassis. The plate and grid currents are measured in the cathode return lead. A 12-volt, 50-watt zener diode in series with the negative return sets the desired value of idling current. Two additional diodes are shunted across the meter circuit to protect the instruments in case plate voltage arcs over to ground, or if there is an internal tube arc.

Standby plate current of the 8877 is reduced to a very low value by a 10,000-ohm cathode resistor. This resistor is shorted out in the transmit mode by the station control circuit. The resistor must be in the cathode circuit when receiving to eliminate the noise generated in the station receiver if electron flow is permitted within the 8877 tube.

A 200-ohm safety resistor insures that the negative side of the power supply does not go below ground potential by an amount equal to the plate voltage if the positive side is accidentally grounded. A second safety resistor across the 1N3311 zener diode prevents the cathode potential from rising if the zener should accidentally burn open.

input circuit

The cathode matching circuit is a T-network which transforms the input impedance of the tube (about 54 ohms in parallel with 40 pF) to 50 ohms at the coaxial input connector; the network consists of two series inductors and a shunt variable capacitor. The inductors are fixed and have a very low value of inductance; in fact, the rf return path through the chassis has about the same inductance value. To design the input circuit, many values of circuit Q were tried in the calculations. When the design equations yielded physically realizable inductance values, then several combinations were tried in the actual amplifier. Since the stray inductances in the chassis and connecting leads in the socket were not included in the calculations, the final inductors were smaller in value than the calculated size. The actual inductors which resonated and provided a reasonable input match are specified in fig. 1 and are shown in some of the photographs. For those who build this amplifier I would expect that some minor variations in these coils might be required to attain an adequate input match.

By Robert I. Sutherland, W6PO, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070
Left, underside view of the 220-MHz power amplifier showing the blower location as well as the input circuit. The blower is a Dayton 4C446.

Above, close-up view of the input circuit shows the bifilar filament choke L3 and L4 and the matching network. C2 is the 35-pF air variable mounted on the 8877 socket. L2 is the U-shaped strap connecting the capacitor to the cathode leads. L1 is the coil going between the variable capacitor and input line blocking capacitor C1.

Left, top view of the amplifier plate compartment. The 8877 tube is in the center with L5 and L6 to the left and right. The plate tuning capacitor C5 is at the bottom and the loading capacitor C6 is at the top.

Right, back view of the amplifier. The type-N connector is the rf power output; the BNC fitting is the connection for drive power. The knob is the loading adjustment. The terminal strip to the right is for the input voltage and control circuit connections. A Millen high-voltage connector is used for the plate voltage.
fig. 1. Schematic of the grounded-grid 220-MHz triode amplifier. Operating bias for the 8877 is supplied by a 12-volt zener diode in the cathode lead.

table 1. Performance of the 220-MHz grounded-grid 8877 rf power amplifier.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Voltage 3000 V</th>
<th>Voltage 2500 V</th>
<th>Voltage 2500 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate voltage</td>
<td>3000 V</td>
<td>2500 V</td>
<td>2500 V</td>
</tr>
<tr>
<td>Plate current (single tone)</td>
<td>667 mA</td>
<td>800 mA</td>
<td>400 mA</td>
</tr>
<tr>
<td>Plate current (idling)</td>
<td>54 mA</td>
<td>44 mA</td>
<td>44 mA</td>
</tr>
<tr>
<td>Grid voltage</td>
<td>-12 V</td>
<td>-12 V</td>
<td>-12 V</td>
</tr>
<tr>
<td>Grid current (single tone)</td>
<td>48 mA</td>
<td>50 mA</td>
<td>29 mA</td>
</tr>
<tr>
<td>Power input</td>
<td>2000 W</td>
<td>2000 W</td>
<td>1000 W</td>
</tr>
<tr>
<td>Power output</td>
<td>1230 W</td>
<td>1225 W</td>
<td>621 W</td>
</tr>
<tr>
<td>Efficiency (apparent)</td>
<td>61%</td>
<td>61%</td>
<td>62%</td>
</tr>
<tr>
<td>Drive power</td>
<td>48 W</td>
<td>69 W</td>
<td>20 W</td>
</tr>
<tr>
<td>Power gain</td>
<td>14 dB</td>
<td>12.4 dB</td>
<td>15 dB</td>
</tr>
</tbody>
</table>

C1 1000 pF ceramic transmitting type (Centralab 858S-1000)
C2 35 pF air variable (Hammarlund HF35 or Millen 22035)
C3, C4 Each consists of two parallel connected 100 pF, 5000 volt ceramic transmitting capacitors (Centralab 850S-100)
C5 Plate tuning capacitor (see fig. 2)
C6 Output loading capacitor (see fig. 7)
C7 1000 pF, 4000 volt feedthrough (Erie 2498)
C8, C9 0.1 uF, 600 volt feedthrough capacitor (Sprague 80P3)
L1 3 turns no. 14 (1.6 mm) wire, 1/4 inch (6.5 mm) inside diameter, 5/8 inch (16 mm) long
L2 Copper strap 1/4 inch (6.5 mm) wide, 2-1/2 inches (64 mm) long, bent into a U 5/8 inch (16 mm) wide
L3, L4 7 bifilar turns no. 12 (2 mm) enamelled wire, bifilar wound on 1/2 inch (12 mm) inside diameter
L5, L6 Plate resonators (see fig. 5)
L7 6 turns no. 14 (1.6 mm) wire, 1/2 inch (12 mm) diameter, 1 inch (25 mm) long
T1 Filament transformer rated at 5 volts, 10 amps (Stacor P-6433)

fig. 2. Structural details of the amplifier showing relative size and position of the various components. Assembly is made of aluminum panels.
fig. 3. Variable plate portion of plate-tuning capacitor C5. Since there are no moving or sliding contacts which carry heavy rf current, this arrangement permits the capacitor to be adjusted under full power without erratic tuning.

Fig. 3: Variable plate portion of plate-tuning capacitor C5. Since there are no moving or sliding contacts which carry heavy rf current, this arrangement permits the capacitor to be adjusted under full power without erratic tuning.

fig. 4. Anode collet and capacitor plate support pattern.

Fig. 4: Anode collet and capacitor plate support pattern.

The underchassis layout of components is shown in the photographs. In the close-up view the bifilar wound coil in the foreground is the filament choke. The variable capacitor is C2, and L2 is the U-shaped strap connecting C2 with the cathode terminal. All the cathode leads and one filament lead are connected together with low inductance copper straps. Note that L2 is connected to the center point of all the cathode leads in an effort to equally balance rf drive to all sides of the cathode. At the frequency of 220-MHz, lead length and residual inductance are very important.

The inductor L1 connects capacitor C2 with the input blocking capacitor C1 at the top of an insulating pillar. A section of RG-142B/U teflon-insulated coax connects the other side of C1 to the BNC coax input connector. It is difficult to see in the picture, but there is a 1000-pF chip ceramic capacitor connected from one heater pin to the other on the socket.

The socket for the 8877 is the Eimac SK-2210, the version with the grounded grid clips. The filament transformer is located between the aluminum enclosure and the panel. The filament voltage is fed...
through the enclosure wall using 0.1 \(\mu \)F Sprague Hy-
Pass feedthrough capacitors.

plate circuit

The plate circuit of the amplifier is a transmission-
line type resonator. The line (L5 plus L6) is one half-
wavelength long with the tube placed at the center.
This type of circuit is actually two quarter-wave-
length lines in parallel. One of the advantages is that
each of the quarter-wavelength lines is physically
longer than if only one is used. This is because only
half of the tube output capacitance loads each
quarter-wavelength section. Another advantage to
this layout is a better distribution of rf currents
around the tube seals.

The dc blocking capacitors are surplus Centralab
100-pF, 5000-volt ceramic capacitors. Two are used
on each line to handle the rf current. The homemade
variable capacitor C5 tunes the plate circuit. Note
that this type of capacitor structure has no wiping
contacts. All the rf currents flow through a fixed path
which provides very smooth tuning with no jumping
 meter readings. The load capacitor C6 is constructed
in a similar manner.

The plate choke L7 is visible in the photograph of
the plate compartment. It is connected to the plate
collet assembly with the Erie high voltage feed-
through capacitor C7.

construction

The 220-MHz power amplifier is built in an en-
closure measuring 8 \(\times \) 12 \(\times \) 7-1/4 inches (20 \(\times \) 30
\(\times \) 18 cm). The 8877 socket is centered on an
aluminum deck 5 inches (12.7 cm) from the top of
the enclosure. A centrifugal blower* forces cooling
air into the under chassis area; the air escapes
through the air-system socket, the teflon chimney
(SK-2216), and then the tube. The warm air is ex-
husted through a "waveguide beyond cut-off" air
outlet. This is an assembly which has expanded
metal about 1/2 inch (12 mm) thick, mounted in a
frame. A perforated aluminum cover may suffice in
most cases, although restricts air flow slightly more
and is not a very good rf shield at 220 MHz.

The plate tuning mechanism is shown in fig. 3.
This simple apparatus will operate with any variable
plate capacitor, providing a back-and-forth move-
ment of about one-half inch. It is driven by a counter
dial and provides a quick, inexpensive, and easy
means of driving a vhf capacitor. The ground return
path for the grounded capacitor plate is through a
wide, low inductance beryllium-copper or brass shim
stock which provides spring tension for the drive
 mechanism.

The variable output coupling capacitor is located
at the side of the 8877 anode. The type-N coaxial

*Recommended blower is the Dayton 4C446, a 115-Vac unit rated to deliver
cooling air at 135 cubic feet per minute (3.8 cubic meters) with a static pres-
 sure equivalent to 0.2 inch (5 mm) of water.

fig. 5. Plate line inductor pattern and bending layout for L5
and L6. Two assemblies are needed for the plate circuit.

fig. 6. Anode collet and capacitor plate support assembly.
The two fixed capacitor plates for C5 and C6 are mounted to
the assembly using copper pop-rivets and then soldered.
The two remaining bent-up edges are for mounting the
blocking capacitors C3 and C4. The finger-stock is soft-
soldered into the large hole in the center. A tight fitting
aluminum disc helps to hold the finger stock in place while
soft soldering with a hot plate.
output connector is connected to the moveable capacitor plate by a wide beryllium-copper strap. The capacitor plate is driven in a manner similar to the tuning capacitor as shown in fig. 7.

The plate line is made up of two inductors L5 and L6 (see fig. 5) and the anode collet and capacitor assembly shown in fig. 6. With the inductor sizes given, the amplifier can be tuned from 220 to 222.5-MHz; no tests were run above 222.5-MHz.

The plate rf choke is mounted between the junction of the anode collet and a pair of the dual blocking capacitors. The high-voltage feedthrough capacitor is mounted on the front wall of the plate compartment. The blocking capacitors are rated for rf service, and inexpensive television-type capacitors are not recommended for this amplifier.

operation

Amplifier operation is completely stable with no parasitics. The unit tunes up exactly as if it were on the hf bands. As with all grounded-grip amplifiers, excitation should never be applied unless the plate voltage is on the amplifier.

The first step is to grid-dip the input and output circuits to near-resonance with the 8877 in the socket. An SWR meter should also be placed in series with the input line so the input network may be adjusted for lowest SWR.

Tuning and loading follows the same sequence as any standard grounded-grip amplifier. Connect an SWR indicator at the output and apply a small amount of rf drive. Quickly tune the plate circuit to resonance; the cathode circuit should now be resonated. The SWR between the exciter and the amplifier will not necessarily be optimum. Final adjustment of the cathode circuit for minimum SWR should be done at full power because the input impedance of a cathode-driven amplifier is a function of the plate current of the tube.

Increase the rf drive in small increments along with the output coupling until the desired power level is reached. By adjusting the drive and loading together it will be possible to attain the operating conditions given in the performance chart in table 1. Always tune for maximum plate efficiency: maximum output power combined with minimum input power. It is easy to load heavily and underdrive to get the desired power input but power output will be reduced if this is done.

references

ham radio

june 1980
Woodpecker noise blanker

The Russian over-the-horizon radar has been causing interference on the high-frequency bands — here's a noise blanker that helps

Woodpecker noise pulses; this unit is also suitable for blanking out the Loran pulses that plague long-distance communications on the Amateur 160-meter band.

Although the circuit of fig. 1 was built for a 9-MHz i-f, it should be relatively easy to adapt the circuit to other i-f systems. The circuit requires only two integrated circuits and six transistors; it has a blanking range of about 80 dB and does not degrade the receiver's dynamic range.

Circuit description

The rf signal is picked up at the receiver's first mixer (9 MHz in this case), amplified by the CP643 fet amplifiers, and fed through the four diode gate, which is frequency compensated: the output is designed to drive a 9-MHz crystal filter. It should be possible to use this same basic circuit over the range from about 3 MHz to 70 MHz by changing the frequency tuned circuits.

A small fraction of the rf signal is coupled through the BF246C source follower and a tuned circuit to the Siemens TCA440 IC, which is actually a complete a-m receiver on a single chip;* this IC operates up to

Anyone who operates regularly on the high-frequency Amateur bands has probably run into interference from the Russian over-the-horizon radar which operates between 10 and 30 MHz; because of its peculiar sound, it is popularly known as the "Russian Woodpecker." The noise-blanker circuit shown in fig. 1 was designed especially by M. Martin of the Hahn-Meitner Institute in West Berlin to blank the

By Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458

* Circuit designers who are interested in developing the Woodpecker blanker for use in the Drake R4C, Collins 755-3C, and other Amateur communications receivers please contact the editor.
T1 Primary is 10 turns no. 28 (0.3 mm) on a FT37-61 ferrite core, tapped 3 turns from cold end; secondary is 2 turns no. 28 (0.3 mm)

T2 Primary is 7 turns no. 28 (0.3 mm) on a FT-37-61 ferrite core, trifilar winding, 12 turns no. 30 (0.25 mm) wire on a FT50-61 ferrite toroid

fig. 1. Schematic of the noise blanker that can be added to most modern communications receivers for reducing Woodpecker interference between 10 and 30 MHz. This device is also suitable for blanking out Loran pulses on the Amateur 160-meter band.

40 MHz and is available in the United States. The TCA440 contains its own oscillator and converts the 9-MHz signal to a lower i-f (about 2 MHz) where it is amplified and detected. (The audio test output is for monitoring the AGC action of the TCA440 receiver section.) The BF246 source follower drives the 2N3965 amplifier which has an adjustable trigger threshold; this in turn drives the 74LS123 Schmitt trigger. The Schmitt trigger, through voltage-translator transistor 2N2219, activates the diode gate.

Designer Martin has shown that this arrangement has an intercept point of about 26 dBm and the switching gate has a depth of approximately 80 dB.

In practice, with this noise blanker, the Woodpecker noise pulses are completely nulled out, allowing the weakest high-frequency signals to be received successfully.

This circuit is relatively simple, easy to build, and not critical. Some care is required when building the switching gate, however, to eliminate rf signal leakage; good balance is required.

reference

ham radio
autonomation
for synthesized
2-meter mobile stations

Meet the Auto-mate —
a design for
improving operation
of 2-meter radios
using synthesizers

You say you’ve joined the crowd and have stopped buying crystals for your 2-meter rig? Now that you’re into synthesizers and can dial up everything from the area’s most valuable and used machine to the three-man operation 50 miles (80 km) away, no doubt you wish you could keep track of all the action. It gets rather scary when you try to manipulate all those dials in the darkness of your automobile.

This article may not solve all your problems, but it goes a long way toward making your mobile operation safer and more fun. It allows you to eavesdrop on the metropolitan chaos while keeping both hands on the wheel. I’ll show you how to automate your synthesizer so that it “knows” exactly what you want when you dial in only the desired receiver frequency. I’ll show you how to add scanning push-to-talk/push-to-receive controls to relieve you from “mobile thumb” derived from holding down the PTT button, and more. In the end you’ll have 1) a radio setup that has a synthesizer up front with you and a trunk-mounted radio if you desire (sorry thieves!), 2) short microphone wires to avoid trash pickup in mobile operation, and 3) a unit you can run in complete darkness. I call it the Auto-mate.

background

My project began with an article by Bob Fanning, K4VB, and Gary Grantland, WA4GJT. This article showed how to build an 800-channel synthesizer from boards and parts supplied by the authors.

I had already fallen in love with the KLM 2700 synthesized radio I use for a base station on 2 meters, so synthesis had to be the way to go for mobile operation. I mounted a Heath HW-202 in the trunk of my Toyota. It became a case of running a huge wiring harness or settling for one channel (trunk chosen) and stopping every time I wanted to change channels. This doesn’t make for the greatest operation when you travel around the country! In addition, I had alternator whine because I tried to run unshielded microphone lines to the trunk to simplify the wiring. Bob and Gary gave me the solution to that one with their synthesizer, because you can modu-

By D. J. Brown, W9CGI, R.R. 5, Box 39, Noblesville, Indiana 46060
fig. 1. Counter portion of the synthesizer described by K4VB and WA4GJT shown in (reference 1). The thumbwheel switches are replaced by the circuits in this article.
late the synthesizer up front and run only two small rf coaxial cables to the trunk for full-channel control.

The synthesizer used two BCD-encoded output switch sets to control channel selection and a separate switch to control transmit and receive modes. This can be quite confusing in a mobile, even in the daylight; at night it becomes a disaster! I can’t give enough praise for the synthesizer, boards, parts, and most of all, the personal help by K4VB and WA4GJT. If you are about to go the synthesizer route on any rig, do read their article, and look into this one further.

How would you like to dial up only the receive frequency on one BCD switch, set (three) switches and have a readout automatically tell you your switches are set correctly for both transmit and receive?

switching logic

If you’re acquainted with BCD codes for the numbers 0-9 (you can learn them very quickly, I assure you), you can use inexpensive SPST switches for one BCD set and the second set can be eliminated altogether. If you arrange the BCD sets as two rows of four switches for the 100s and 10s of kHz, and a ninth switch to control the 146- or 147-MHz choice, you can do your setup in the dark.

The action is totally by feel. For example, you feel the front panel and locate the top row or switches. Flip up the right-hand three switches (A - B - C, from right to left — a decimal 7). Drop down to the second row. Flip the middle pair up (B - C, from right to left — a decimal 6). Make sure the MHz switch, placed by itself, is to the left (146 MHz, or lower segment), and you’ll be on our local machine: 16/76. It’s just that simple and you can do it blindfolded. If you’re in Indiana, please, don’t do this to prove a point while driving! It’s really easier than the decimal-faced/BCD output switches and cheaper.

control circuit operation

Now you must be wondering what takes the place of the BCD set switches (at $10 per set), besides one set of SPST switches. Simple TTL gates! (And very few of them, thanks to our band plan setup.) Consult the tables included here and you’ll see the very nice arrangement of our channels. Pay close attention to the numbers in bold type, as these are the only numbers on which my circuit operates. The 10s of kHz are fed in straight from the switches of that row (I suggest the bottom row). This is a 1 - 2 - 4 - 8 line combination in Bob and Gary’s article. The 146/147-MHz solution is by another single switch, rather than by a BCD deck. I simplified matters by wanting only the 2 MHz. The 100s of kHz (in bold face) are the only numbers processed on the gate board.

some examples

You feed the switch information into the gate board on A - B - C - D, and their respective outputs are marked 10 - 20 - 40 - 80, as in reference 1. The scheme will work on any synthesizer using the same encoding shown in fig. 1, which is from reference 1. The authors use TTL 7400 NAND gates at the switch inputs to allow for the dual switches. Some synthesizers require true BCD inputs directly to an up/down counter to set “jam” inputs. Just add inverters to the 10 - 20 - 40 - 80 lines for these models and wire the other switches for true data as well.

For my example frequency of 146.76 MHz, the 7 would be A - B - C low and D high, at the 10 - 20 - 40 - 80 lines that are my board outputs. If you must have true data, invert the 10 - 20 - 40 - 80 outputs — not the data from the switch feeding my gate board. My board has true data as inputs and it outputs inverted data as shown.

gating circuit

For the same example, the 7 is operated on my board (remember the A - B - C inputs are high and the D low). In receive, and in all simplex channels, the information is handled by gate U1 (fig. 2). The A - B - C high and D low condition results in a low on U1 pins 3, 6, 8, and a high on pin 11. These are the outputs of my board and the inputs to the synthesizer 7400 gates. The gate on the synthesizer board input inverts the data and sets it for the jam inputs of the counters. Be sure to wire the 100s of kHz for true inputs to the gate board, and the 10s of kHz and MHz switches for the inverted data, as shown for the synthesizer board since that’s where they’re connected. (See fig. 3 for details.)

144-147 MHz coverage

There’s a good design scheme in the synthesizer that only allows the 4-MHz frequency spread from 144-148 MHz to be dialed in. A 4 is hardwired on the C jam line input (400). Only two wires come from the BCD deck switch that are used in the synthesizer for MHz. These two lines allow you to add a 0 - 1 - 2 - 3 to achieve 144 + 0 - 144 + 3 as a usable MHz figure. Thus, you get 144+ - 147 + MHz coverage, so I only have to enter a 2 or 3 on the two lines. The 2 (for 146 MHz) requires the A line to be low and the B line to be high. The 3 (for 147 MHz) requires the A and B lines to be 800-line high.

I ran the 200 line as a hardwire to ground as in the circuit of reference 1, causing the B input after the gate to always be high. Then I tied the 100 line to +5 volts through a 2200-ohm resistor. When the MHz switch is to the right in the 147-MHz position, it grounds the 100 line through the 2200-ohm resistor.
and causes the required high on the A line. For 146 MHz, the switch is merely an open circuit on the 100 line for a low on the A line.

The 10s-of-kHz-lines switches (1 - 2 - 4 - 8) are wired upside down from your normal true data switches (fig. 4). From my example 146.76 MHz, you want the switches to provide a low on the B and C (or 2 and 4) lines. The inversion to true data is handled by the gates on the synthesizer board.

All this allows switching in the receive frequency at all times. In my area, a 16/76 machine is referred to as 76; to hear you dial up, switch in, or tune in 146.76 MHz.

bandplan considerations

My board takes care of the required 146.16 MHz when, and only when, you want to transmit. You really don’t care about the transmit frequency as long as it’s a) correct for the bandplan (same for simplex, and split for repeaters), and b) in the legal band. I solved the first requirement by my circuit, which automatically senses the receive frequency dialed in as being either simplex or repeater and processes it accordingly. Bob and Gary\(^1\) solved the second problem by limiting operation to 144-148 MHz on their synthesizer board. As long as these requirements are

\(^1\) Gary: Gary Barber, WB5YVX

fig. 2. Schematic of the Auto-mate gate board. U1, U2, U3 are 7403s. U4 and U5 are 7400s. U6 is a 7404.
met why bother with dialing in the transmit frequency? For those who want to go upside down (i.e., 76/16 if the repeater is down), it’s as simple as dialing in the transmit frequency. My board will still shift things correctly for the actual transmit cycle. If you dial in 146.16 MHz to receive, you’ll automatically transmit 146.76 MHz. This proper shift holds true for all repeater pairs anywhere in the 146-147 MHz region.

gating-circuit operation

The simple gates are easy to follow, line-by-line, in fig. 2. I’m sure you want to know how the circuit does its tricks. For this, see the tables. I’ll cover only the 146-148 MHz region I use.

All my board does in the repeater function is add or subtract the proper 600 kHz from the receiver frequency that you’ve input to the switches. The tables show you how the bandplan allows this function. In the 146-MHz region, the receive-frequency numbers dialed in, such as 6 - 7 - 8 - 9 for the 100s of kHz column, result in 0 - 1 - 2 - 3 respectively (i.e., 76 receive/16 transmit) (table 3). For all these repeater pairs, my board gives a 600-kHz offset number no matter which one you dial in.

To set up a frequency (remember, choose the receive frequency), choose the MHz frequency by a switch totally independent of my board. Then choose the proper 10s of kHz and you’re finished. When you press the PTT switch to transmit, my board will process the shift automatically whether you’re in the 146- or 147-MHz region.

Gate U1 (fig. 2) handles all receive codes dialed in and all simplex transmit codes (the same as in the receive mode) and passes them to the synthesizer board. The left half of U2 operates on all repeater frequencies to pass line A (unaffected by the 600-kHz number shift), and an inverted line B (for all repeater shifts in transmit) to the synthesizer (lines 10 and 20).

The right half of U2 and the adjoining half of U3 handle the C and D line inversions when required.

simplex operation

For all numbers 0-9, the B line is low and the C line high for only two numbers, 4 and 5, which detects the simplex frequencies you dial in. This is handled by U6 pins 5, 6 (inverting the B low to a high that can be gated in a TTL NAND gate), U5 pins 1, 2 to gate the B and C together for a low at U5 pin 3, causing a high at U5 pin 6 and enabling all of U1 for simplex transmit. In receive, a high U5 pin 6 keeps U1 in use. This high is caused by a low at U5 pin 5 regardless of what occurs at U5 pin 4 and comes from the HT line (high on transmit; therefore low on receive) of the synthesizer board connected to U5 pin 5.

Without going further into a line-by-line description, the other numbers of a repeater nature are detected by similar gating means and are used to control the function of the gates in the right half of U2 and left half of U3. All these outputs are paralleled so that only the correct one operates on the 10 - 20 - 40 - 80 output lines from the gate board. Control is maintained by lines such as the one line to all four gate inputs of U1 pins 1, 4, 9, 12. If this line goes low, regardless of the other inputs from A-B-C-D, all outputs will go high. In this case the gate is entirely out of the picture.

I’ll be glad to answer any questions on the gate board upon receipt of a self-addressed stamped envelope. Questions on whether the synthesizer can be used on your radio should go to Bob and Gary. For questions on whether my scheme for automation will work between your switches and another synthesizer, send me a large copy of your schematic and I’ll try to help you if I can. The Auto-mate should work on any synthesizer into which the count chain is fed as real frequency data, not as fancy codes!

Be sure to leave the leads a bit long between a) the **G&B Electronics, P.O. Box 4151, Huntsville, Alabama 35802.**
table 1. Amateur 2-meter bandplan for 146-MHz showing binary-coded decimal equivalents for input and output switching in the Auto-mate. Numbers in boldface type are those on which the circuit operates.

<table>
<thead>
<tr>
<th>dial in receive frequency</th>
<th>type</th>
<th>desired transmit frequency</th>
<th>in code 146. x 1</th>
<th>outcode DCB</th>
<th>relationship (I = Invert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 6 0 1</td>
<td>I R</td>
<td>14 6 6 1</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>I</td>
</tr>
<tr>
<td>14 6 0 4</td>
<td>I R</td>
<td>14 6 6 4</td>
<td>0 0 0 0</td>
<td>0 1 1 0</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 0 7</td>
<td>I R</td>
<td>14 6 6 7</td>
<td>0 0 0 0</td>
<td>0 1 1 0</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 1 0</td>
<td>I R</td>
<td>14 6 7 0</td>
<td>0 0 0 1</td>
<td>0 1 1 1</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 1 3</td>
<td>I R</td>
<td>14 6 7 3</td>
<td>0 0 0 1</td>
<td>0 1 1 1</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 1 6</td>
<td>I R</td>
<td>14 6 7 6</td>
<td>0 0 0 1</td>
<td>0 1 1 1</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 1 9</td>
<td>I R</td>
<td>14 6 7 9</td>
<td>0 0 0 1</td>
<td>0 1 1 1</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 2 2</td>
<td>I R</td>
<td>14 6 8 2</td>
<td>0 0 1 0</td>
<td>1 0 0 0</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 2 5</td>
<td>I R</td>
<td>14 6 8 5</td>
<td>0 0 1 0</td>
<td>1 0 0 0</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 2 8</td>
<td>I R</td>
<td>14 6 8 8</td>
<td>0 0 1 0</td>
<td>1 0 0 0</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 3 1</td>
<td>I R</td>
<td>14 6 9 1</td>
<td>0 0 1 1</td>
<td>1 0 0 1</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 3 4</td>
<td>I R</td>
<td>14 6 9 4</td>
<td>0 0 1 1</td>
<td>1 0 0 1</td>
<td>I I</td>
</tr>
<tr>
<td>14 6 3 7</td>
<td>I R</td>
<td>14 6 9 7</td>
<td>0 0 1 1</td>
<td>1 0 0 1</td>
<td>I I</td>
</tr>
</tbody>
</table>

switches and the gate board, b) the other switches and the synthesizer, and c) between the outputs of the gate board and the synthesizer. No high frequencies are on these leads so there'll be no radiation problem. Just don't dress the leads down around the VCO area. If you leave the leads a bit long you can add scanning, push-to-talk/push-to-receive circuits, and more.

Further automation:

Scanning and PTT/PTR

In this part of the article I describe another simple board requiring nine or fewer ICs, of which three are simple "less-than-25-cents" gates. The total IC cost, from a recent ad, is $3.56. This circuit may be added between the synthesizer input switches and the synthesizer gate to provide scanning of a full MHz (or part), push-to-talk/push-to-receive (PTT/PTR) control to ease the "mobile thumb" problem, and full scan control from the PTT switch on the microphone. It's a nice package in itself. Note that this board is connected between the receive encoder switches and the synthesizer board. You'll still transmit on whatever command is dialed into the transmitter switches. The small expense of building both boards makes full automation the way to go. Should your synthesizer need true BCD codes at the synthesizer board inputs I've provided information for the IC and wiring changes.

This part of the article is arranged into the following parts: Scanning counter/jam inputs (fig. 4). PTT/PTR and scan/halt control circuits (fig. 5). Input and output processing (fig. 6), and what, where and why of the timing circuits (fig. 7).

Scanning

Scanning is accomplished by feeding the binary outputs from a counter pair to the synthesizer gate inputs on the synthesizer board. These outputs change during scan and thus change the encoded input information choosing the channels. Which frequency band (MHz) that's to be scanned remains a
function of the 146/147 MHz switch described previously and has no bearing whatever here. It's a manual, front-panel switch choice — no scanning involved. **Installation notes.** To install the scanning circuitry, break the long leads described above and insert this in series. Trace the circuit from the switch line of 10s and kHz A line to the synthesizer gate inputs at R1 of fig. 4. You’ll see two Xs on the line that were one at the same point before you open the lead, as previously connected. Each other pair per lead is the same, i.e., B to R2 — Xs were the same point, C to R4 — Xs, etc. Where you open the leads will depend on where you place your new board. I’d mount the new board, make the break, and reconnect two points of each lead, one lead at a time.

Counters. The counters chosen for scanning are binary (not BCD or decade) for a very good reason, even though each one must count only ten positions to cover the 100 possible frequencies of each megahertz. (Because of the original synthesizer input scheme, you could dial in every 10-kHz increment, even though the channels are every 30 kHz). (See table 4.) Note that in my synthesizer, a BCD (inverted) code is required at the synthesizer gate inputs. The easiest way to accomplish this and still scan in an up (increasing frequency) direction without a lot of inverters is as follows.

From table 4, you’ll see that to obtain a decimal 0 at the synthesizer counter jam inputs you must feed the inverse BCD (i.e., \overline{BCD}) to the synthesizer board input gates. This happens to be a decimal 15. Or, for a BCD 0 (0000) you need a gate input of 15 ($\overline{1111}$). For the next step of 1, you need a 14, for 2, a 13, and so on. Thus, you require a binary counter that sets to 15, counts downward to 6 (10 counts), detects the next count of 5 without changing from the 6 outputs (reset or load takes precedence over count), and

Table 2: Amateur 2-meter bandplan for 147-MHz showing binary-coded decimal equivalents for input and output switching in the Auto-Mate. Numbers in boldface type are those on which the circuit operates.

| Table 2: Amateur 2-meter bandplan for 147-MHz showing binary-coded decimal equivalents for input and output switching in the Auto-Mate. Numbers in boldface type are those on which the circuit operates. |
|---|---|---|---|---|---|---|
| **Dial in receive frequency** | **Desired transmit frequency** | **In code** | **Corresponding output code** | **Relationship (I = Invert)** |
| **Frequency** | **Type** | **Frequency** | **D** | **C** | **B** | **A** | **D** | **C** | **B** | **A** | **I** |
| 14 7 0 0 | R | 14 7 6 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 0 3 | R | 14 7 6 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 0 6 | R | 14 7 6 6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 0 9 | R | 14 7 6 9 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 1 2 | R | 14 7 7 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 1 5 | R | 14 7 7 5 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 1 8 | R | 14 7 7 8 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 2 1 | R | 14 7 8 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 2 4 | R | 14 7 8 4 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 2 7 | R | 14 7 8 7 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 3 0 | R | 14 7 9 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 3 3 | R | 14 7 9 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 3 6 | R | 14 7 9 6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 3 9 | R | 14 7 9 9 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 7 4 2 | S | 14 7 4 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 14 7 4 5 | S | 14 7 4 5 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 14 7 4 8 | S | 14 7 4 8 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 14 7 5 1 | S | 14 7 5 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 14 7 5 4 | S | 14 7 5 4 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 14 7 5 7 | S | 14 7 5 7 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 14 7 6 0 | I R | 14 7 0 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 6 3 | I R | 14 7 0 3 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 6 6 | I R | 14 7 0 6 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 6 9 | I R | 14 7 0 9 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 7 2 | I R | 14 7 1 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 7 5 | I R | 14 7 1 5 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 7 8 | I R | 14 7 1 8 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 14 7 8 1 | I R | 14 7 2 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 14 7 8 4 | I R | 14 7 2 4 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 14 7 8 7 | I R | 14 7 2 7 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 14 7 9 0 | I R | 14 7 3 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 14 7 9 3 | I R | 14 7 3 3 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 14 7 9 6 | I R | 14 7 3 6 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 14 7 9 9 | I R | 14 7 3 9 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |

Note: Each of the 18 frequencies given above is individually presetable. In other words, you can dial in any frequency you wish from 147.00 to 147.99 MHz within the 1-kHz increment. Once you have preset a frequency, it remains set until the next time you dial in a new frequency. You can preset any number of frequencies you wish. There are, therefore, no restrictions as to the number of frequencies you can store in the Auto-Mate. The only restriction is that they must be in 1-kHz increments. (Because of the original synthesizer input scheme, you could dial in every 10-kHz increment, even though the channels are every 30 kHz). (See table 4.)
uses the detected 5 to set 15 again. This is the same as counting from 0 to 9 in inverted BCD — or from 15 to 6 in binary. It’s the same if you want the same count sense (up) and inverted outputs.

The outputs of the 10s-of-kHz-switches and the gate board are inverted BCD outputs. They can be fed into the jam inputs of the new scanning counter set, U3, U4 (fig. 4). When the load line (U3, U4 pin 11) goes low, this information is passed directly to the outputs and to the synthesizer gate inputs — inverted and with the correct code (BCD). This fact, (load line low to load the switch inputs) brings out some interesting sidelights and benefits.

First, for manual switch control and no scan, all you do is to force the load lines low with switch S1 (fig. 4). You’re then in manual mode regardless of the states on H1 and H2 or whether the control (fig. 5) is in SCAN or HALT.

Second, the switches of 100s and 10s of kHz must be in their decimal zero position (all switches down) to feed the required 15 BCD to the counters (U3, U4, fig. 4) during reset, or load as it’s called here. This is because, instead of clearing the counters (reset to 0 by a high on pin 14), you want to reset to 15. You do this by briefly pulsing the proper load line low with the outputs from U1 pin 6 or U1 pin 3 (fig. 4). If all switches are set to 00 (i.e., 146.000 MHz), the whole MHz segment will be scanned. Setting 00 puts the required 15-15 on BCD pulses on the synthesizer gate inputs.

fig. 4. Scanning counter and jam inputs to the synthesizer counters. The 10s-of-kHz switch outputs and gate-board outputs are inverted BCD data, which can be fed directly into U3, U4, the counter ICs.
If you don’t want the full MHz coverage, just set the 10s of kHz switch to 0 (all down — a must during all but manual mode), and the 100s of kHz switch to the lowest 100s of the kHz switch you wish to scan. Example: for the 146-MHz region, set the 100s of kHz switch to 6 (146.60) (B-C switches up), and you’ll hear all repeater outputs. Set a 4 (146.40) (C switch up) and you’ll get all simplex and repeater transmissions. This saves time by not scanning the repeater inputs.

If you like these ideas and have a synthesizer that requires BCD true data, you’ll need a different counter scheme (fig. 8). Suggestion: build the gate board and the scan counter set (fig. 4) and add inverters at each of the upper Xs of fig. 4. If you then bring the outputs for true and inverted BCD to a plug, you can run the whole gadget on any synthesizer that requires direct frequency codes in BCD or m, but not the models that require a special code.

PTT/PTR and scan/halt

Around my house there’s just too much noise and unplanned interruptions to warrant VOX operations on any of the base station equipment. On the other hand, holding down a PTT microphone button for long periods during a 24-hour contest is no thrill either. Long ago I went to a push-to-talk/push-to-receive operation on all the base station radios; for mobile work it’s even nicer. You can even go to a visor-mounted microphone and a steering-column or floor-mounted pushbutton for full hands-off control. No more hassles with a shift lever and the microphone cord!

how it works

As the PTT switch is closed, a pulse generated from OS-1, a 74121 one shot, (fig. 7) is directed to two gate inputs. You can vary the width of this pulse to suit yourself as in fig. 7, but I’ve found that 1 second is a nice average number with which to start. When the PTT switch is released, another much shorter pulse is generated by OS-2. If the switch is released within the 1-second timeframe of P1 (fig. 5), the high of P1 and P2 triggers U1 pin 11 low for a P2 wide pulse (i.e., a short blip on the PTT switch). This short pulse is stored as a change of state in one-half of a 7473 that controls the H2 line. A low on H2 turns off gate U1 (fig. 4) and cuts off the clock pulses to the scan counter set — scanning stops. Another blip on the PTT and you’re scanning again as the 7473 again changes state. This blip can be extremely brief. Unless you have a very quick transmitter, it won’t be heard on the air. My circuit, used on a Heath HW202, is silent if I stab the PTT switch.
fig. 6. Input-output processing circuits. At (A) is a voltage doubler to handle the TTL gate input at U1 pin 5 (fig. 5). Component values have been chosen for maximum audio fidelity consistent with reliable halts during scanning. A keying system is shown in (B). U1, part of a 7403, will safely handle currents of 16 mA, but the relay circuit is recommended. CR4 is one of the 1N4000 family (approximately 50 volts at 1 ampere).

because the HW202 is relay-switched from receive to transmit.

Operation. To use the system, we'll start off in receive and unit scanning. Ah! There's Joe on the local machine. (How the scan stops to hear this in the first place is covered under input/output processing, but it does halt when it hears a station.) Then, to stay there and talk to Joe, blip the PTT microphone switch. Scan is now Halt through a H2 low. Joe finishes with Harry; now you want to talk to Joe. Firmly press the PTT for some period longer than you set up the P1 pulse width. Release any time after that. Immediately when you release the PTT switch, you're on the air in transmit. As you clear the end of your first go-around, again press the PTT switch firmly a few seconds before the end. When you release the PTT switch, you immediately return to receive — scanning is still unaffected and in Halt. Simple? Not much different, really, except the first release-to-transmit part.

For long-winded souls on quick-natured repeaters, you can even hook in an automatic timer to control the end of transmission. Several have appeared lately, so I won't go into any specifics here. Just wire the timer so that the act of going to transmit (U2A pin 13 low) triggers the timer on; the timer running out places a pulse low on U2B pin 6 (for a clear to receive command). See fig. 5. Wire so that a shorter conversation both resets to receive and resets the timer. Set the timer duration for about 10 seconds less than that of your local machines.

You don't even need a reset timer if the timer is of the 555 type. Just be sure to use the pulsed output to clear U2B and not toggle, as it does the PTT switch. If you've already returned to receive through the PTT
fig. 8. Schematic for synthesizers requiring true BCD input.

switch before the timer times out, this will pulse U2B to receive. If you return to receive and switch back to transmit before the first time period has run out (as often happens), the second return to transmit will again give you a full time period, as the 555 can be re-triggered.

input/output processing

This is the easiest part of all. Output processing means whether or not to add the relay and/or additional transistor output stages to U1 pin 6 (fig. 5) to handle key-line currents of greater than 15 mA or voltages higher than about +12 volts. If in doubt, use the relay and send a nice, firm relay ground connection back to the radio to key the transmitter.

As for input processing, the control lines into the control section of fig. 5 come from two points on the synthesizer I used. The control signals are TTL levels and a low is applied to OS-1 when the PTT switch is closed (keying the transmitter). A high is applied to OS-2 at that same time. If you don’t have these controls, they should be easy to come up with. Just limit the high to about +5 volts. The low should be near ground to protect the inputs of OS-1 and OS-2.

I trunk-mounted my radio and wanted as few wires as possible back and forth, so I installed full volume audio to my synthesizer/control head and put a pad up front. This pad can be a low-impedance T pad if you have the room. With the radio volume control full clockwise or on, I put a resistor in series with the high-side speaker lead that reduced the volume to a comfortable level. The switch shorts out the resistor for the weak ones. I was cramped for space. With full volume coming forward the speaker is silent when full squelched and has plenty of audio available at the control head when a station comes on. Rectify this audio and you have a stop-scan signal, H1.

Looking at fig. 6A, a voltage doubler ensures that there’s always enough voltage to handle the TTL gate input at U1 pin 1 (fig. 5). Diode CR3 (fig. 6) connected to +5 volts limits the input to U1 pin 1, fig. 5, to a TTL high level. The capacitor at the diode cathode ensures that no audio peaks over +5 volts will appear on the +5 volt line.

The 100-ohm resistor (fig. 6A) limits the gate input to +5 volts maximum without peak-limiting the audio peaks on the input side, which would distort the audio. You may have to decrease this value on
some radios with low-volume output, but use a value as large as possible to still have reliable halts on all the stations that are on air (seen as lows on H1).

The RC network on H1 in figs. 5 and 7B puts a hang effect on the action of H1. Keep RD within the limits shown and change CD to keep the H1 line low between voice peaks or words. This is the alternative to running a wire from the radio to show a no-squelch condition. It also rejects any dead carriers with no modulation. If you use the wire, limit the voltage excursion to TTL levels and have a high for a station on frequency.

timing

Fig. 7 is self-explanatory as to the what and where, but here are a few of the whys. For OS-1 timing components, you're trying to create a pulse short enough that you don't have to hold the PTT down forever before releasing it to transmit. On the other hand, you don't want the pulse so short you could never use it for scan control. You can only blip your blipper so fast! I found the 1-second pulse a good compromise. Blip controls scan reliably, and Joe won't mind waiting one more second to hear from you.

The return to receive is no problem, as you know

<table>
<thead>
<tr>
<th>DIAL IN</th>
<th>OUTPUT FOR TRANSFER FREQUENCY</th>
<th>SWITCH INPUT</th>
<th>PROCESS D LINE</th>
<th>PROCESS C LINE</th>
<th>PROCESS B LINE</th>
<th>PROCESS A LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>L L L L L L L L L L L L L L</td>
<td>PASS</td>
<td>INVERT</td>
<td>INVERT</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>1</td>
<td>L L L L L L L L L L L L L L</td>
<td>PASS</td>
<td>INVERT</td>
<td>PASS</td>
<td>THROUGH C</td>
<td>UG</td>
</tr>
<tr>
<td>2</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L L L L L L L L L L L L L L</td>
<td>pass all</td>
<td>through H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An example: 146.76 MHz receive needs all A and all B. Invert and pass all C. Pass D.

The scan counters (and even the switches) allow for increments of every 10 kHz, but there are stations only every 30 kHz. Therefore, the scan clock (fig. 7A) can run at a frequency three times per second as fast as you wish to scan the possible channels. With the components shown, you can make about 1.2-12 Hz, or less than one channel per second to four per second.

Start with a slow scan and another radio tuned to a channel with lots of activity if possible. Then start adjusting the scan clock capacitor, C, for faster rates (smaller C), after establishing RD and CD (fig. 7B) for best when you're going to stop talking and turn it back over. Just press the PTT button a few seconds (over 1 second will do) before turning it over to receive. Return to receive is immediate upon PTT release. As for the P2 or P3 pulse (depending when you release the PTT), I wanted a pulse that was much shorter than P1. You must take some time getting on and off the PTT for a scan blip, so that uses P1 time. I figured a half second worst case, leaving half second if it's to be a P2 scan-control pulse. Ten per cent of a half second (500 ms) is 50 ms, leaving a 90 per cent error margin, or P1 safety zone. My capacitor happened to give me a 10-ms pulse that works just fine.

Just about any capacitor will give a pulse long enough. If your scan control PTT blips start putting you in transmit as well, the capacitor is too big, and P2 is biting into the P3 zone. Back off!

The CD, RD on H-1 depend on your radio. I've provided an RD range and CD starting point. Just use the advice under input processing to set things up.

scan clock

The scan counters (and even the switches) allow for increments of every 10 kHz, but there are stations only every 30 kHz. Therefore, the scan clock (fig. 7A) can run at a frequency three times per second as fast as you wish to scan the possible channels. With the components shown, you can make about 1.2-12 Hz, or less than one channel per second to four per second.

Start with a slow scan and another radio tuned to a channel with lots of activity if possible. Then start adjusting the scan clock capacitor, C, for faster rates (smaller C), after establishing RD and CD (fig. 7B) for
invites you to call and ask about BARRY’S Field Day Specials for June:
With the purchase of a major piece of equipment, you’ll get a valuable FREE gift to go along with it... just to show you BARRY cares!
Maybe you’d like...
From YAESSU: FT-107, FT-707, or the FT101ZD
From TEN-TEC: Omni-C or the new DELTA
From MURCH: UT-2000B antenna tuner
From AEA: Two-meter ISOPOLE antenna;
or a Kantronics Field Day code reader;
or a “Slinky” dipole:
or maybe a “Vacationer” portable antenna;
or a Hy-Gain portable 18TD tape dipole antenna?

Our lines include: ICOM
AEA KDK
ALLIANCE KLM
ANTENNA SPECIALISTS KANTRONICS
ASTRON MFJ
B & W MIRAGE
BIRD MOSLEY
COLLINS MURCH
COMMUNICATIONS SPECIALISTS ROBOT
CUSHCRAFT SHURE
DSI STANDARD
DENTRON SWAN
DRAKE TEN-TEC
ETO TEMPO
EIMAC TRI-EX
E-Z WAY YAESSU
HUSTLER VHF ENGINEERING
HY-GAIN AND MORE....

BUSINESSMEN: Ask about BARRY’S line of business-band equipment. We’ve got it!

Amateur Radio License Classes:
Wednesday & Thursday: 7-9 pm
Saturday 10 am-Noon

The Export Experts Invite Overseas orders
I AQUI HABLE ESPANOL! We Ship Worldwide

BARRY ELECTRONICS
512 BROADWAY, NEW YORK, N.Y. 10012
TELEPHONE (212) 925-7000

the desired hang delay on channel. You could go up to the TTL counter limit of 32 MHz were it not for other limiting factors and the fact it’s ridiculous anyway.
Some of the limits are found in a) the ability of the radio or, in my input circuit, to recognize a station and respond with a control stop only on H-1, b) the limit of the synthesizers to want data only so often (and settled data at that), and the fact that, as scan rates get high, trash is generated by switching that could cause havoc in the synthesizer itself.

Use the second radio to determine when your radio and scanner fail to stop on a station and remember, you’re scanning only to remove the drudgery of always flipping switches.

stunt box fun
My scanner and synthesizer are such that I can still do a few cute tricks late at night when activity is low. Every time my synthesizer board wants new switch data input, the load line of the switch data input counters (pin 11 that controls the counters on the synthesizer board) goes low. The counter set (U3, U4, fig. 4) used for scanning happens to clock or advance on a low-to-high transition. With these two facts, I can cause some amusing things to happen! By making R6 and C3 provide a short pulse, like 10 ms, and using the synthesizer board load line as the clock input to the scan counter set, scan action really moves along! It only stops for 10 ms on each active channel and then moves on. By moving so fast, I can get 10-ms bursts of audio from each active channel — for a multiplex action. You wind up listening to more than one conversation at once. Scan control and PTT/PTR remain unaffected, but it would be a miracle if you could blip fast enough to stop on the channel you really wanted.

It’s a novelty and demonstrates one of the upper limits of how fast is fast enough for scanning. All the commercial scanners are capable of scanning at many times the rates used, but you wouldn’t be able to watch all the pretty LEDs go scanning along! The voices get pretty choppy in my speedy example above if you don’t get the hang time just right. If several stations are on at once, it sounds like your local lodge meeting — everyone talking at once. It’s just one of the cute things you can do with this miracle age of electronics. After all, now that you have a fully automatic station doing all the work, you must have something to do — it’s called having fun!

reference
Yagi antenna design: more data on the performance of multi-element simplistic beams

Manipulating the boom length and element spacing of Yagi beams to maximize forward gain and front-to-back ratio

This is a continuation of last month's discussion5 of simplistic Yagi antennas. To provide continuity to the complete subject I shall continue the sequential numbering of tables and illustrations. Last month I presented the performance characteristics of 2, 3, and 4-element simplistic Yagi antennas over a range of useful boom lengths. Systematic detailed computations have also been made for simplistic Yagi antennas for 3, 6, and 7 elements. To illustrate the behavior of these larger and more complex antennas the characteristics of 6-element Yagi simplistic beams are shown in fig. 13 where free-space antenna gain in dBi is plotted against frequency, F, for a range of boom lengths up to $1.5\lambda_w$. Numbered curves correspond to element lengths given in table 3 of reference 5.

The total range of results shows a number of characteristics of interest. First, the bandwidth over which gain is high is determined primarily by the frequency spread between the reflector and the director(s). Second, the shape of the gain curve is generally not flat in the region of interest; indeed it may be sloped and/or humped or dished. Usually the slope favors the higher frequencies. Third, the shape of the gain curve is more complex where the number of elements is large, and the shape of the F/B ratio varies enormously — much more than the shape of the associated gain curve. It may show more than one peak; moreover, the peak structure shifts very rapidly with boom length. The height of the peak does not necessarily seem to vary monotonically with the frequency separation of reflector and director(s). Very high F/B values (greater than 30 dB) are quite rare and when present are invariably very narrow banded. In addition, the frequency bandwidth of the

By James L. Lawson, W2PV, 2532 Troy Road, Schenectady, New York 12309
fig. 13. Gain and front-to-back (F/B) ratio in dB for six-element Yagi beams with boom lengths from 0.1λ₀ to 0.5λ₀, and changing reflector and director lengths (see table 3 reference 5 for complete data).
Gain and front-to-back (F/B) ratio in dB for six-element Yagi beams; boom lengths from 0.6λ₀ to 1.5λ₀.
table 4. Band-centered gain, dBi, and front-to-back (F/B) ratio, dB, vs boom length for various multi-element Yagi beams. Data for 3, 4 and 6 elements are plotted in figs. 11, 12, and 13.

<table>
<thead>
<tr>
<th>boom length (λ)</th>
<th>3-elements</th>
<th>4-elements</th>
<th>5-elements</th>
<th>6-elements</th>
<th>7-elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gain</td>
<td>F/B</td>
<td>gain</td>
<td>F/B</td>
<td>gain</td>
</tr>
<tr>
<td>0.10</td>
<td>6.980</td>
<td>12.21</td>
<td>7.216</td>
<td>12.14</td>
<td>7.481</td>
</tr>
<tr>
<td>0.20</td>
<td>7.960</td>
<td>14.10</td>
<td>7.901</td>
<td>5.49</td>
<td>7.877</td>
</tr>
<tr>
<td>0.25</td>
<td>8.233</td>
<td>19.88</td>
<td>8.466</td>
<td>8.06</td>
<td>8.262</td>
</tr>
<tr>
<td>0.30</td>
<td>9.072</td>
<td>12.32</td>
<td>8.797</td>
<td>7.66</td>
<td>8.640</td>
</tr>
<tr>
<td>0.35</td>
<td>9.254</td>
<td>11.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>9.421</td>
<td>5.56</td>
<td>9.668</td>
<td>8.89</td>
<td>9.584</td>
</tr>
<tr>
<td>0.60</td>
<td>8.875</td>
<td>5.33</td>
<td>9.801</td>
<td>11.78</td>
<td>9.810</td>
</tr>
<tr>
<td>0.70</td>
<td>7.924</td>
<td>2.27</td>
<td>10.076</td>
<td>15.48</td>
<td>10.407</td>
</tr>
<tr>
<td>0.75</td>
<td>10.505</td>
<td>29.38</td>
<td>10.690</td>
<td>16.88</td>
<td>10.820</td>
</tr>
<tr>
<td>0.80</td>
<td>10.383</td>
<td>22.31</td>
<td>10.750</td>
<td>19.50</td>
<td>11.022</td>
</tr>
<tr>
<td>1.00</td>
<td>10.333</td>
<td>8.43</td>
<td>10.865</td>
<td>11.41</td>
<td>11.159</td>
</tr>
<tr>
<td>1.10</td>
<td>9.703</td>
<td>4.74</td>
<td>10.306</td>
<td>11.65</td>
<td>11.093</td>
</tr>
<tr>
<td>1.20</td>
<td>10.395</td>
<td>15.10</td>
<td>11.514</td>
<td>24.88</td>
<td>11.734</td>
</tr>
<tr>
<td>1.25</td>
<td>10.743</td>
<td>24.02</td>
<td>11.793</td>
<td>23.81</td>
<td>11.973</td>
</tr>
<tr>
<td>1.30</td>
<td>10.491</td>
<td>20.26</td>
<td>11.672</td>
<td>31.48</td>
<td>12.165</td>
</tr>
<tr>
<td>1.40</td>
<td>10.510</td>
<td>18.94</td>
<td>11.872</td>
<td>13.80</td>
<td>12.221</td>
</tr>
<tr>
<td>1.50</td>
<td>10.333</td>
<td>12.32</td>
<td>11.608</td>
<td>11.14</td>
<td>12.104</td>
</tr>
</tbody>
</table>

With this definition of band-center gain and band-center F/B, table 4 has been constructed to show performance not only for 3-, 4-, and 6-element beams but also for 5- and 7-element beams; fig. 14 shows a plot of the gain information; this graph is remarkable in four respects. First of all, it demonstrates a practical upper limit to the gain achievable from a given boom length! Second, it demonstrates that this gain is almost independent of the number of elements distributed along its length as long as there are enough! Third, the achievable practical gain shows a slight preference for more rather than less elements on a boom. Finally, the "boom gain" — achievable gain from a given boom length — is not

F/B parameter is undefinable because of the extreme variation in shape!

performance characteristics

If we look carefully at one of these plots, e.g., fig. 11 (ref. 5) 3 elements, \(\text{boom} = 0.25 \lambda \), it becomes clear that it is quite difficult to simply characterize "the" gain and "the" F/B ratio. The maximum calculated gain at a single frequency is 8.9 dBi (curve 1) but a realistic gain at the center of a practical 4 per cent band (curve 3) is more like a 8.0 dBi! Even more difficult is the characterization of the F/B ratio. The maximum calculated F/B (curve 5) is a whopping 38 dB, but this occurs only at a very specific frequency \(F = 1.00 \) and for the situation where maximum gain is comprised (reduced to 7.3 dBi). How then can we characterize the results by a single gain figure and a meaningful F/B ratio?

Since gain is perhaps the most important parameter of antenna performance, and since a practical antenna must work effectively over a reasonable band, I have elected to specify the gain at the center of a 4 per cent band. For each case, e.g., 3-elements, \(\text{boom} = 0.25 \lambda \), the band center is adjusted for each curve to give maximum gain performance over the entire 4 per cent band, and, finally, the specific curve is selected which yields best overall gain performance. I define "the" gain of this case as the gain at band center and "the" F/B ratio as the value at the same band center and the same selected curve! Note that the actual F/B may be significantly higher at some other frequency inside or outside the chosen band; we shall discuss this point shortly.

fig. 14. Yagi beam gain in dBi for 3, 4, 5, 6, and 7-element beams as a function of boom length in \(\lambda \).
really a smooth function of boom length. Instead, it appears to exhibit “bumps” or oscillations with a fraction of a decibel amplitude and spacing at about a half wavelength!

This concept of boom gain, independent of the number of elements is not new; in fact, it was suggested by Ehrenspeck and Poehler in a series of experiments using the automatic plotter built at the Air Force Cambridge Research Center. No claims by Ehrenspeck and Poehler were made as to the absolute accuracy of their results but they were able to demonstrate essential independence of gain on number of elements over rather wide limits for two long Yagi models (1.2X and 6.0X). If one accepts the idea of universal boom gain, it is instructive to compare the (upper envelope) curve of fig. 14 with Ehrenspeck and Poehler's experimental points, as well as the experimental results of Lindsay. Lindsay made a number of models of varying boom length (but unstated element dimension schedules) and measured directivity at a design frequency of 440 MHz. All of these results are shown in fig. 15 where the solid curve is the theoretical maximum gain (from fig. 14) and the keyed points are from Ehrenspeck-Poehler and from Lindsay. The Lindsay experiments provide remarkable confirmation of the universal boom gain curve! The Ehrenspeck-Poehler points all appear to lie slightly below the theoretical curve (by a fraction of a decibel). It is not clear that the slight discrepancy in absolute value is a real disagreement; it may be within the expected accuracy of the gain calibration technique used on the automatic plotter. It may also be due to lack of optimization; Ehrenspeck and Poehler used a fixed reflector reactance and it is hard to guess how much more gain they would have found with an optimized configuration.

Fig. 16 taken from table 4 shows a plot of the center-band F/B ratio as a function of overall length. It is notable that there are three empirical values of overall length which seem to produce high values of F/B independent of the number of elements! These apparently favorable overall lengths are 0.25, 0.75, and 1.25\(\lambda_o\) — all odd multiple of a quarter wave. For the 0.25\(\lambda_o\) position only the 3-element beam shows a high value, but this is primarily caused by the definition of center-band F/B ratio.

element illumination

This remarkable phenomenon suggests that there might be a basic physical explanation covering all cases; indeed, such a physical basis is not hard to find! Analogous to the physical optical illumination of an aperture by light, one can think of the Yagi boom length as illuminated by (electrical) excitation. Unlike the case of uniform illumination of an optical aperture, the Yagi illumination is not uniform but can be viewed as a series of discrete excitation points (elements) whose average envelope is quasi-uniform. Moreover, in the optical case the wave front is ordinarily plane (phase shift across the aperture is zero), whereas in the Yagi case the phase shift is purposely designed to cause the main diffracted “beam” to lie along the boom rather than broadband to the aperture as in the optical case.

The aperture produces a diffraction pattern (beam pattern) consisting of a “main beam” and several lobes; the number of lobes is determined basically by the size of the aperture in wavelengths; the amplitude of the lobes is determined by the way the aperture is illuminated (phase and amplitude).

An informative treatment of an end-fire array (aperture illuminated by a series of radiators having equal amplitudes) is given in Kraus on pages 76-89. There are two interesting cases: the ordinary end-fire array in which the angular phase change between radiators is just equal to their spatial separation angle, and the increased directivity end-fire array first de-
where the back radiation "null" occurs). It is instruc-
tive to also plot the pattern not only at this "best"
frequency but also at frequencies just below (say - 1
per cent and just above (say + 1 per cent) of the best
frequency. For all of these cases the reflector length
was fixed at 0.972 (FR = 0.95), and all direc-
tor(s) length(s) were fixed at 0.467 (FR = 1.05).

Fig. 17 shows the H and E plane patterns of all of
these cases. The H-plane pattern shown "nulls" be-
tween lobes which can move with frequency (equiva-
lent to boom length in actual wavelengths). We can
compare the angle at which these nulls occur to
those of the end-fire arrays (eqs. 3 and 4); table 5
lists these comparisons.

Note that these comparisons show qualitative
agreement; also note that the computed Yagi results
are in better agreement with the IDEF model (Hansen
and Woodyard) than the OEF model. The more rapid
shift of null angle(s) with frequency for the Yagi(s)
compared to either end-fire model is not to be taken
too seriously because, as we shift frequency, not
only does the effective boom length in terms of
actual wavelength change, but the element react-
cance(s) change significantly, i.e., the Yagi really
becomes a different Yagi!

The details of the Yagi pattern depend on the par-
ticular way in which the boom is illuminated, i.e., on
the details of element positions(s), element current
magnitude(s), and element phase(s). The depth of
the nulls depends on the degree of vectorial cancella-
tion of back radiation; since the vectors themselves
vary significantly with all Yagi parameters it is no
wonder that complete cancellation is accidental and
ordinarily impossible. The size of the lobes is deter-
mined primarily by the shape and phase delay of the
Yagi illumination function. For the uniformly il-
uminated case the reader is referred to the uniform
end-fire arrays (see Kraus4, pages 79-88).

It will be noted that for non-uniformly illuminated

<table>
<thead>
<tr>
<th>boom length (λ)</th>
<th>freq</th>
<th>Yagi (degrees)</th>
<th>OEF (degrees)</th>
<th>IDEF (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.972</td>
<td>199</td>
<td>160</td>
<td>120</td>
</tr>
<tr>
<td>0.75</td>
<td>0.982</td>
<td>69 98.4 64.7</td>
<td>171 134.5</td>
<td>147 133.1</td>
</tr>
<tr>
<td>0.75</td>
<td>0.992</td>
<td>66 97.7 64.3</td>
<td>102 111.5 91.4</td>
<td>51 71.5 48.8</td>
</tr>
<tr>
<td>1.25</td>
<td>0.976</td>
<td>51 71.1 48.6</td>
<td>99 110.6 90.8</td>
<td>93 109.8 90.2</td>
</tr>
<tr>
<td>1.25</td>
<td>0.986</td>
<td>48 70.7 48.3</td>
<td>150 132.3</td>
<td>150 132.3</td>
</tr>
<tr>
<td>1.25</td>
<td>0.996</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Element currents for a six-element Yagi beam with a
boom length of 0.75λ; frequency F = 0.980 (assumes rf cur-
rent of 1 ampere at 0° in the driven element).

<table>
<thead>
<tr>
<th>element</th>
<th>current (amps)</th>
<th>phase (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector</td>
<td>0.476</td>
<td>154.5</td>
</tr>
<tr>
<td>Driven element</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>Director 1</td>
<td>0.379</td>
<td>-121.3</td>
</tr>
<tr>
<td>Director 2</td>
<td>0.467</td>
<td>-169.7</td>
</tr>
<tr>
<td>Director 3</td>
<td>0.258</td>
<td>115.3</td>
</tr>
<tr>
<td>Director 4</td>
<td>0.458</td>
<td>32.6</td>
</tr>
</tbody>
</table>
broadside structures (Kraus pages 93-121) the sidelobe level is highest for “edge” illumination, next for uniform illumination, and zero for illumination based on element amplitudes following the coefficients of a binomial series. One can expect the same kind of result for an end-fire array where edge illumination (2-element beam) produces high sidelobes, uniform illumination smaller sidelobes, and an illumination function falling at the extreme edges (reflector and end director currents smaller than in central elements) to produce still smaller sidelobes.

Unfortunately, for a given overall boom length the directivity or gain suffers somewhat as illumination is adjusted for smaller sidelobes. Moreover, in the case of a simplistic Yagi the illumination function is hard to adjust; the current amplitudes and phases are all

fig. 17. Yagi 6-element beam E and H-plane half patterns (0° to 180°) in dBi as a function of angle in degrees.
frequency. The remaining resistance, however, just from case to case. It is very low for very short beams where there is very strong coupling between elements; moreover, in such cases it varies wildly with frequency as does the change in reactance with frequency. Thus to insure a reasonably reliable electrical feed system it is wise to keep element separation well above 0.05λ₀; all such cases investigated have reasonably well behaved driving point impedances.

summary

Let me summarize the results for simplistic Yagi antennas:

1. 2 to 7-element beams with boom lengths to 1.5λ₀ have been systematically explored.

2. Simplistic Yagis display a gain function where bandwidth is primarily a function of the resonant frequency separation between reflector and director(s). The bandwidth can easily be made several per cent of the central frequency.

3. The shape of the gain function is generally not flat in the region of interest. It is also more complex for beams which use a large number of elements.

4. Simplistic Yagis display a F/B ratio function with a shape that varies enormously from case to case. The shape may contain more than one peak and changes rapidly with boom length and/or frequency. It is so complicated that it is not possible to characterize its bandwidth.

5. High values of the F/B ratio (more than 30 dB) are quite rare; when they occur F/B is high only over a very narrow band of frequencies.

6. The spacing between elements should be generally greater than 0.05λ₀ to realize a well-behaved feed.

7. The maximum practical gain of the simplistic Yagi is almost entirely determined by boom length. Maximum gain increases, but not steadily with boom length.

8. Best design for a high F/B ratio requires the approximate boom length to be an odd multiple of a quarter wavelength at the design frequency.

references

phased vertical antenna
for 21 MHz

An economical approach
to beam antennas
for the
15-meter band

Most of the Amateur antenna handbooks don’t describe the phased vertical beam. For economy and performance they should be used more! I built a phased vertical beam using the references indicated.\(^1\)\(^-\)\(^4\) I hope the explanation given here will motivate others to try this antenna. There’s probably an easier way to construct the beam. W7EL describes another method of matching in reference 4. However, I chose to use the more classical Wilkinson match. Perhaps there should be more experimenting and discussion on feeding this beam. W7EL’s method would do away with the problem of locating 100-ohm noninductive resistors for termination and balance.

phased vertical array

The phased vertical beam has some good features. Fig. 1 shows horizontal radiation patterns for a two-element phased vertical array using three different phase angles for feeding the two elements. If both elements are fed in phase (zero-degree phase angle), the radiation pattern will be bidirectional at right angles to the plane of the two elements. This is known as broadside radiation. If the antenna elements are fed 180 degrees out of phase, an end-fire pattern results, producing bidirectional coverage in the plane of the elements (end fire). If one element is fed 90 degrees out of phase with respect to the other, a unidirectional pattern is obtained. Thus, with two vertical elements, properly phased with relay switching, you can cover all four quadrants of the compass.

I was interested in only one direction, and it just happened that my brick fence was in a line where I wanted the antenna pattern to go. The rest was easy, because only holes had to be drilled with a concrete drill and lead slugs driven in place to mount the element insulators.

construction

Fig. 2 shows construction details for my two-element phased vertical beam. I obtained two pieces of 1/2-inch (12.5-mm) diameter aluminum tubing 12 feet (3.7 meters) long. I cut each tube at 11 feet (3.4 meters) for the 1/4-wavelength antenna elements. The formula is:

\[
L = \frac{468/f}{2}
\]

By Ed Marriner, W6XM, 528 Colima Street, La Jolla, California 92037
fig. 1. Radiation patterns for a two-element phased vertical array using three different phase angles for feeding the system. A shows the pattern when the elements are fed in phase. If the elements are fed 180 degrees out of phase, pattern B results. C shows the pattern when the elements are fed 90 degrees out of phase.

where \(L \) = length, feet
\(f \) = frequency, MHz

In metric terms eq. 1 is:

\[
L = \frac{145}{f}
\]

Thus for my operating frequency (21.27 MHz) the element lengths were 11 feet or 3.4 meters. I mounted the two 1/4-wavelength elements on the fence, spaced 11 feet (3.4 meters) apart.

feed system

Any length of 52-ohm coax cable can be run to the antenna from the transmitter. The transmission line is connected to a coax T connector, as shown in fig. 2. I made two 1/4-wavelength sections of 72-ohm line (RG-11/U) and connected each line to the T connector. The other ends of the 1/4-wavelength lines were terminated with a 100-ohm noninductive resistor as shown.

The 1/4-wavelength coax line lengths are somewhat critical, as the slightest amount of variation at 21 MHz changed the frequency a great amount. These lengths were determined from:

\[
L = \frac{246V}{f}
\]

where \(V \) = cable velocity factor
\(f \) = frequency, MHz

Thus:

\[
L = \frac{246 (0.66)}{21.27} = 7.6 \text{ feet}
\]
\[
L = \frac{74 (0.66)}{21.27} = 2.3 \text{ meters}
\]

I checked the coax length with a grid-dip oscillator. Any loop in the cable will give a false reading of the length. K6DS came up with the idea of using an inch-wide (25.5 mm) piece of PC board with two holes and soldered up short. The wide surface provided enough pickup for the grid dipper. Putting the plugs on the ends lowered the frequency.

Each piece of coax I checked had a different vel-

fig. 2. Construction details for the phased vertical beam for 21 MHz. Derivation of phasing-line lengths are discussed in the text.
ocity factor, \(V \), varying from 0.6 to 0.68. You can check your coax by

\[
V = \frac{fL}{246}
\]
(3)

where \(V \) = velocity factor
\(L \) = length, feet

In metric terms eq. 3 is

\[
V = \frac{fL}{75}
\]

where length, \(L \), is in meters.

final assembly

Fig. 2 shows the details of my array. The junction box, containing the 100-ohm noninductive resistor and the SO-239 coax chassis receptacles, was mounted on the brick wall. I coiled the phasing lines and attached them to the wall. The radial wires are 11 feet (3.4 meters) long. Fig. 2 shows the method of attachment. For best results run as many radials as possible.*

A quarter-wavelength of RG-8/U cable, 7-1/2 feet (2.3 meters) long was connected between the junction box and reflector element. Another coax line (RG-8/U) 7-1/2 feet (2.3 meters) plus 120 degrees was connected to the director. (See fig. 3). This length was 17 feet (5 meters). This line isn’t too critical because it mostly affects the antenna back lobe.

results

When the antenna was finished I walked around it with a field-strength meter. The readings concurred with the pattern in reference 3. It was surprising to see the signal fall off at 90 degrees to nothing on the back. I made the first on-the-air checks locally using four stations about 10 miles (16 km) away. Two of the stations were in front of the antenna and two were off about 45 degrees to the side. Stations off to the side noticed the same signal strength as my two-element Yagi. However, those in front couldn’t hear the signal from my Yagi but reported S9 signals from the phased vertical. This would indicate that the phased vertical antenna has a lower radiation angle than that of the two-element Yagi. The vertical antenna did not do what I had hoped: to get through a maze of power lines 100 feet (30 meters) away.

The most difficult part of the construction is locating 100 ohm noninductive resistors of 40-50 watts. The transmitter looks at low SWR and loads up very nicely.

The ideal of W7EL might be a solution to feeding the antenna without a termination resistor and just using RG-8/U coax from the T connection. It will be interesting to hear the experiences of others and get this simple beam into more use. It is strange that it hasn’t found much use before, because the Wilkerson match is well known in uhf work. Many of the 160-meter stations have been using it for a long time, anyone who has heard them will realize the advantage for low-frequency work where a beam other than vertical is almost impossible to erect.

references

*In a similar design for twenty meters the author used ground rods for each element as well as radial wires. As with any vertical antenna, the idea is to reduce ohmic losses in the system. Editor.

summary

To summarize my findings, I’d say that if I didn’t have a two element Yagi beam, rotor and tower I wouldn’t hesitate to use two of these phased vertical beams in place of it! The construction is far cheaper and I can find very little difference between the two. There’s more of a null on the phased array off the back and sides, and the beam appears to be narrower than that of the two-element Yagi. The vertical antenna did not do what I had hoped: to get through a maze of power lines 100 feet (30 meters) away.

The most difficult part of the construction is locating 100 ohm noninductive resistors of 40-50 watts. The transmitter looks at low SWR and loads up very nicely.

The ideal of W7EL might be a solution to feeding the antenna without a termination resistor and just using RG-8/U coax from the T connection. It will be interesting to hear the experiences of others and get this simple beam into more use. It is strange that it hasn’t found much use before, because the Wilkenson match is well known in uhf work. Many of the 160-meter stations have been using it for a long time, anyone who has heard them will realize the advantage for low-frequency work where a beam other than vertical is almost impossible to erect.
Low Cost...High Performance

DIGITAL MULTIMETER

$99.95 WIRED

$99.95 WIRED

The CT-70 breaks the price barrier on lab quality frequency counters. No longer do you have to settle for a kit, half-kit or poor performance. The CT-70 is completely wired and tested, features professional quality construction and specifications, plus is covered by a one year warranty. Power for the CT-70 is provided by four AA size batteries or 12 volts, AC or DC. Available as options are a nicad battery pack, and AC adapter. Three selectable frequency ranges, each with its own pre-amp, enable you to make accurate measurements from less than 10 Hz to greater than 600 mHz. All switches are conveniently located on the front panel for ease of operation, and a single input jack eliminates the need to change cables as different ranges are selected. Accurate readings are insured by the use of a large 0.4 inch seven digit LED display, a 1.0 ppm TCXO time base and a handy LED gate light indicator.

The CT-70 is the answer to all your measurement needs, in the field, in the lab, or in the ham shack. Order yours today, examine it for 10 days, if you're not completely satisfied, return the unit for a prompt and courteous refund.

Specifications

Frequency range: 10 Hz to over 600 mHz
Sensitivity: less than 25 mv to 100 mHz
less than 150 mV to 600 mHz
Stability: 1.0 ppm, 20-40°C, 0.00 ppm/°C TCXO crystal
Display: 7 digits, LED, 0.4 inch height
Input protection: 50 VAC to 60 mHz, 10 VAC to 600 mHz
Input impedance: 1 megohm, 6 and 600 mHz ranges
Power: 4 AA cells, 12 V AC/DC
Gate: 0.1 sec and 1.0 sec LED gate light
Decimal point: Automatic, all ranges
Size: 5" W x 3'/2" H x 5'/2" D
Weight: 1 lb with batteries

Prices

CT-70 wired + tested ... $99.95
CT-70 kit form .. 75.95
AC adapter ... 4.95
Nicap pack with AC adapter 19.95
Probe kit .. 3.95

Terms: Satisfaction guaranteed or money refunded. COD $10.00 min. order $6.00. Orders under $5.00 add 15% postage, insurance, handling. Overseas, add 15%, NY residents, 8%% sales tax.

Ramsey Electronics
BOX 4072, ROCHESTER, N. Y. 14610
PHONE ORDERS CALL
(716) 586-3950 (716) 381-7265

June 1980
antenna restrictions —
another solution

How to install a full-size 40-meter dipole inside a mobile home

Antenna restrictions often make life difficult for hams who live in one of the new mobile-home parks. In fact, restrictions can make it almost impossible to get on the air without using a high degree of ingenuity. Articles have been written describing the use of fake (and not so fake) flagpoles as vertical antennas, but the problems of ground radials and low radiation angles limit the effectiveness of this kind of solution.

Lately many of the new double-wide modular homes are being built using conventional framing and roof construction with wood joists and rafters, wood sheathing and composition shingles. This leaves only the matter of space in the attic — how do you hide an 80-meter or even a 40-meter antenna inside if the long dimension is only 12-15 meters (40-50 feet)?

15-meter antenna

In my situation, our home is a 7.3-meter (24-foot) wide double unit in a park where restrictions prohibit outside antennas. As a retiree ham, off the air for about 40 years until 1978, I was able to solve my own antenna problem this way: For 15 meters I made up a simple dipole using four pieces of 1.8-meter (6-foot) long telescoping aluminum tubing, fed directly with 50-ohm coax and secured inside the attic close to the apex of the roof rafters. It works quite well, with low SWR and easy loading to one of the new "touchy"

By J. W. Bryant, N4AQD, 4736 Dauphine Boulevard, Tallahassee, Florida 32303
transceivers. As an afterthought, because I wanted to work primarily in one direction, I added a passive reflector mounted outside on the roof, down the slope far enough to provide the proper spacing. The reflector tubing was fastened to four small L brackets slipped under the shingle edges.

40-meter antenna

The 40-meter solution was a little more trouble. My mobile home is about 12 meters (40 feet) long, inside measure, so there was no way to insert a horizontal full-length halfwave dipole. I stretched the wire inside the limited attic space, then shoved the remaining lengths at each end (to make a total of 19.5 meters, or 64 feet) at 90 degree angles to the attic corners. This was done with 3.7-meter (12-foot) cane fishing poles, which I left in place to keep the wire extended.

To have some leeway to tune out any reactance, I improvised a tuner using series inductance and capacitance in each leg of the antenna at the feed point. I ended up with the arrangement shown in fig. 1. The center of the antenna and tuner were accessible through a hatch cut into the ceiling of the mobile home. Fortunately the location was right over the laundry alcove.

tune up

For final tuning I used a dip meter coupled to a one-turn loop at the line-to-tuner feed point to determine the approximate resonance adjustment of the series reactances. Then I inserted an SWR meter at the antenna end of the coax and adjusted each side of the tuner for lowest SWR, which came out to be very near unity at the phone end of the band. I've not tried to tune the antenna to 75 meters, but I'm sure it can be done with added inductance in each tuner leg.

Contacts on both 15 and 40 meters have given good reports, even before I told them of the indoor nature of the antenna arrangement.

further reading

The bibliography provides other interesting approaches to the problem of erecting Amateur antennas in locations that restrict outside structures.

Allen Ward, KA5N, describes a modified ZL Special that can be mounted in an apartment room. Spence Collins, N6SC, installed a 7-MHz Hertz antenna in his first-floor apartment — stretched approximately 8 meters (26 feet), with the highest point 2 meters (7 feet) from the floor. And for vhf buffs, Warren Hodges, W6DHX, and Bill Wise, WB6OEZ, tell how to camouflage a 2-meter antenna using a weather-vane atop the house, which is in a restricted area.

bibliography

ham radio
Synthesized, big LCD, 10 memories, scanning, DTMF

TR-2400

Put a ham shack in your hand. The TR-2400 is the ideal hand-held for 2 meters FM. It features a large LCD readout that can be read in direct sunlight or in the dark, 5-kHz-step PLL synthesized operation, 10-channel memory, scanning, and 16-button autopatch DTMF encoder.

TR-2400 FEATURES:

- Large LCD digital readout
 Readable in direct sunlight (better than LEDs). Readable in the dark (with lamp switch). Virtually no current drain (much less than LEDs) and display stays on. Rugged and dependable in hot or cold temperature ranges. Shows receive and transmit frequencies and memory channel.

- 5-kHz-step frequency selection
 PLL synthesized keyboard channel selection system. No "5 up" switch needed. Selects from 144.000 to 147.995 MHz.

- UP/DOWN manual scan
 Single or fast continuous 5-kHz steps from 143.900 to 148.495 MHz for Amateur and MARS or CAP simplex or repeater operation.

- 10 memories
 Retained with battery backup (only 0.8 mA). "MO" memory may be used to shift the transmit frequency any desired amount to operate on repeaters with nonstandard split frequencies.

- Built-in autopatch DTMF (Touch-Tone®) encoder
 Uses all 16 buttons of keyboard while transmitting.

- Automatic memory scan
 Checks all 10 memory channels. Programmable to lock automatically on either BUSY (signal present) or OPEN (no signal) channels.

- Subtone switch
 Activates subaudible tone encoder (not Kenwood-supplied).

- Repeater or simplex operation
 Convenient mode switch shifts transmit frequency +600 kHz or -600 kHz or to the frequency stored in "MO" memory.

- Reverse operation
 Nonlocking switch shifts receiver to transmit frequency and transmitter to receive frequency.

- Extended operating time
 With LCD and overall low-current circuit design. Only draws about 28 mA squelched receive and 500 mA transmit (at 1.5 W RF output), for longer operating time between charges.

- Two lock switches
 Prevent accidental frequency change and accidental transmission.

- BNC antenna connector
 Easy to connect external antenna.

- LCD "arrow" indicators
 Shows "ON AIR," "MR" (memory recall), "BATT" (battery status), and "LAMP" switch on.

- High-impact case and zinc die-cast frame
 Extremely rugged with antenna counterpoise.

- External PTT microphone and earphone connectors
 Easily accessible on right side of transceiver.

- Compact and lightweight
 Only 2-13/16 Inches wide, 7-9/16 inches high, and 1-7/8 inches deep. Weighs only 1.62 pounds (including antenna, battery, and hand strap).

STANDARD ACCESSORIES INCLUDED:

- Flexible rubberized antenna with BNC connector
- Heavy-duty (450-mAh) NiCd battery pack
- External-standby (PTT) plug
- AC charger
- Hand strap
- Earphone

NOTE: Price specifications subject to change without notice and obligation.

OPTIONAL ACCESSORIES:

- ST-1 base stand (shown) which provides 1.5-hour quick charge and automatic switch to trickle charge, floating charge (operate while charging), 4-pin connector for dynamic microphone, and SO-239 antenna connector
- BC-5 DC quick charger (1.5 to 2.0 hours)
- LH-1 deluxe leather case (top-grain cowhide)
- PB-24 extra battery pack with charger adapter
- BH-1 belt hook
High quality...top performance!

Maximum convenience with optimum features

TS-180S

The TS-180S is Kenwood's top-of-the-line all solid-state HF SSB/CW/FSK transceiver. New circuit-design technology has been incorporated throughout the transceiver, resulting in optimum receiver and transmitter performance, as well as advanced operating features that every DXer, contest operator, and all Amateurs would desire for maximum efficiency and flexibility.

TS-180S FEATURES:

- Digital Frequency Control (DFC), including four memories and manual scanning. Memories are usable in transmit and/or receive modes. Memory-shift paddle switches allow any of the memory frequencies to be tuned in 20-Hz steps up or down, slow or fast, with recall of the original stored frequency. It's almost like having four remote VFOs!
- All solid-state...including the final. No dipping or loading. Just dial up the frequency, peak the drive, and operate!
- High power...200 W PEP/160 W DC input on 160-15 meters, and 160 W PEP/140 W DC on 10 meters (entire band provided). Also covers more than 50 kHz (100 kHz with DFC) above and below each band (MARS, etc.), and receives WWV on 10 MHz.
- Adaptable to all three new bands.
- Improved dynamic range.
- Dual SSB filter (optional), with very steep shape factor to reduce out-of-passband noise on receive and to improve operation of RF speech processor on transmit.
- Single-conversion system with highly advanced PLL circuit, using only one crystal with improved stability and spurious characteristics. Built-in microprocessor-controlled large digital display. Shows actual VFO frequency and difference between VFO and "hold" memory frequency. Blinking decimal points indicate "out of band".
- Monoscale dial, too.
- IF shift. Kenwood's famous passband tuning that reduces QRM.
- Selectable wide and narrow CW bandwidth on receive (500-Hz CW filter is optional).
- Automatic selection of upper and lower sideband (SSB NORM/SSB REV switch).
- Tunable noise blanker (adjustable noise-sampling frequency).
- RF AGC ("RGC"), which activates automatically to prevent overload from strong, local signals.
- AGC (selectable fast/slow/off).
- Dual RIT (VFO and memory/fix).
- Three operating modes...SSB, CW, and FSK.
- Improved RF speech processor.
- 13.8 VDC operation.
- Also available is the TS-180S without DFC, which still shows VFO frequency and difference between VFO and "hold" frequencies on the digital display.
- Full line of matching accessories, including PS-30 base station power supply, SP-180 external speaker with selectable audio filters, VFO-180 remote VFO, AT-180 antenna tuner/SWR and power meter, DF-180 digital frequency control, YK-88 CW filter, and YK-88 SSB filter.

All of these advanced features can be yours at an attractive price! Visit your local Authorized Kenwood Dealer and inquire about the exciting TS-180S with DFC!

NOTE: Price, specifications subject to change without notice and obligation.

SPRING SPECIAL
STARTS APRIL 1
Ask your Authorized Kenwood Dealer
tone-encoder

for 2-meter autopatches

A design that produces clean sine waves tamed by AGC amplifiers for constant level — also featured is automatic PTT with delayed release

As the use of the Touch-Tone* system — both in telephones and in Amateur Radio — became widespread, a number of ICs were developed to generate the tones. Among the most popular are the Motorola MC14410 and the Mostek MK5087; there are several others on the market. These chips are generally superior to those in the original Western Electric Touch Tone (or DTMF) encoder, with its cup-core inductors. But they do have one disadvantage in common: they produce the tones by digital methods, so the outputs are not pure sine waves but are similar to the waveform shown in fig. 1. In telephone applications this doesn't matter, since the line itself acts as a lowpass filter, effectively restoring sine-wave purity. Also, being designed to work into such lines, the chips have greater output at higher frequencies to counteract the natural attenuation of the line.

When such a Touch Tone chip is used to activate a repeater autopatch through a 2-meter fm transmitter, these natural filter effects don't exist. Thus, in addition to harmonic distortion, the repeater autopatch must cope with deviation levels that vary according to the tones selected. This can cause problems in completing a call.

I designed a DTMF board that produces good, clean sine waves. In addition, it has agc amplifiers to keep the tones at constant levels. There's also provision for keying the transmitter automatically whenever any button of the Touch Tone pad is pressed and keeping it keyed until the dialing of the number is complete. The circuit will fit on a 3 x 5 inch (7.6 x 12.8 cm) board. After describing the circuit, I'll go in-

By Chris Winter, WBØVSZ, 610 South Clinton, Iowa City, Iowa 52240

*Touch Tone is the registered trademark of the American Telephone and Telegraph Company.
to the fine points of assembling and using the board – or of rolling your own, if that's your style.

circuit description

The tones are generated by a Motorola MC14410P. The advantage of this chip is that it has separate outputs for the low and high tone groups; this makes it easier to filter the tones. Since the MC14410 is widely used, there's no need to go too deeply into the circuit. The tone outputs are produced by walking-ring counters driving weighted-resistor networks. In addition to a dc level, each output waveform contains harmonics whose order is determined by the number of stages in the counter. A good source on this subject is reference 1.

The main schematic of the DTMF board is shown in fig. 2. The wiring of U1 is standard except for two things: capacitors C1-C8 are for RFI protection, and the output of pin 7 — a square-wave test signal, not normally used — drives the automatic keyer circuit.

filter considerations

The filters don't have to be extremely sharp or well-centered on the nominal center frequency, since they don't have to separate the tones. Bandpass filters are required to block both the dc levels and the high-order harmonics in the outputs from U1. I used a multiple-feedback configuration because it permits a bandpass filter with a single op amp. One stage per filter gives sufficient selectivity; this allows both filters and the two agc amplifiers to be built using a single quad op amp IC.

In reference 2, Moberg described design equations for the multiple-feedback filter where the two capacitors are of unequal values (see appendix). These equations give great flexibility in choosing the filter parameters and are easily turned into a program for a handheld calculator.

The design procedure starts with the values of the two capacitors and the three filter parameters: Q, gain \(A_0 \), and center frequency, \(f_0 \). The values of the three resistors are calculated (for filter-component designations see fig. 3). U1 will produce roughly 2 or 3 volts p-p. To avoid overdriving the agc amplifiers, a
filter gain of unity or less should be used. Table 1 summarizes the results for the parameters I used in my design.

The components used for the filters are standard non-precision types. The response curve of fig. 4 shows that the results with such components are quite close to the ideal. There are two reasons that I “broke up” R1; it made the layout come out better and allowed easy matching of the calculated value of R1. The 100-pF capacitor is another rf bypass.

keeping the outputs constant

The agc amplifier I use is based on one published in reference 3. It calls for a high-quality fet to give wide dynamic range and excellent linearity; here, there's no need for those characteristics, and substitutions can be made. My version of the circuit is identical to that of reference 3 except for the substitutions; it's shown in fig. 5. When the input level is below the threshold of compression (about 50 mV) Q1 gate is unbiased, and the full op amp gain of 70 is in effect. Larger amplitudes are rectified by Q2 and bias Q1 gate upward from its normal voltage of -5V. Q1's channel resistance drops, effectively pulling signal away from the op amp until equilibrium is reached. The attack time is a few milliseconds. R4 and C1 provide about one second of decay time. The compressed output is 1 volt p-p.

The agc outputs amplifier go to a pair of pots so that the tone levels can be individually adjusted. Finally, U6, a voltage follower, combines the tones and provides a low-impedance output suitable for connection to the high-level audio input of any transmitter.

the split-supply problem

It would have been possible to power all the op amps from +12V and ground. Instead, to eliminate the need for coupling capacitors, I decided to run U4 and U6 from a split supply of ±5 volts. Then of course I was faced with the familiar problem of how to get a negative supply voltage in a vehicle.

I could have used a transistor radio battery, but it probably would have gone dead at a crucial moment. Luckily, I found an inverter circuit which suited my needs perfectly.4 It consists of a high-frequency pulse source, a bootstrap inverter, and a shunt regulator. I changed the oscillator to a 555 timer IC, U3, running in astable mode at about 100 kHz. U3 drives Q3, which supplies solid 12-volt pulses to R24 and C17. As the voltage at the junction of R24 and C17 falls from 12 volts to zero, the other side of C17 is forced to go negative; this series of spikes is then smoothed by C18. With a 12-volt input, you can get up to -7 volts out. The shunt regulator (Q4, CR5, and CR6) holds the output constant within ±0.5 volts as the load varies from zero to 20 mA. In normal operation, the current drawn will be no more than 2 or 3 mA. With the zener rating shown, the inverter output should be close to -5 volts. More about this later.

automatic PTT

One drawback of the MC14410 is that, unlike many DTMF chips, it lacks an output that can serve as an “any-key-pressed” indicator. But, as I mentioned, it

Table 1. Summary of the design parameters used for the filters and the calculated resistor values.

<table>
<thead>
<tr>
<th>low group</th>
<th>high group</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>0.5</td>
</tr>
<tr>
<td>f0</td>
<td>819.0</td>
</tr>
<tr>
<td>Q</td>
<td>3.357</td>
</tr>
<tr>
<td>C1(F)</td>
<td>0.022</td>
</tr>
<tr>
<td>C2(F)</td>
<td>0.068</td>
</tr>
<tr>
<td>R1(ohms)</td>
<td>19,196.0</td>
</tr>
<tr>
<td>R2(ohms)</td>
<td>665.6</td>
</tr>
<tr>
<td>R3(ohms)</td>
<td>39,241.0</td>
</tr>
</tbody>
</table>

fig. 3. The two filter circuits differ only in resistor values. Those in parentheses are for the high-group filter.

fig. 4. Filter response curves come close to the ideal; precision components are not required.
Simplicity and inexpensive components are the virtues of the amplifiers. does produce a square wave on pin 7 when any key is pressed. This can be rectified and filtered, then used to key a transmitter.

In my circuit, U2 is wired as a comparator and drives Q1 and Q2. When any tone is activated, C11 will quickly charge to 8 volts. R13 and R14 set the threshold at 3.8 volts so that U2 output goes high (about 11 volts), and the full 12 volts appears on the keying line. This line can supply 300 mA with negligible drop in voltage. Because of the RC time constant at U2 noninverting input, the keying line will remain high for three seconds after the key is released; thus, keys can be pressed at a reasonably slow pace without losing the carrier.

assembly and use of the module

For those who desire to build this DTMF module, I have a PC board available for $8.50 postpaid. The board is double sided, with plate-through holes, and plugs into a 15-pin edge connector (pin spacing 0.156 inch, or 0.4 cm). Including the connector pattern, the board dimensions are 3 x 5 inches (7.6 x 12.7 cm). Even if you don't go this route, I recommend using a PC board of some kind. It's important to minimize the switching noise radiated by the inverter, and a PC board does this better than point-to-point wiring. Conducted noise can also cause trouble; note the extensive use of decoupling networks and bypassing in my circuit. The bypassing helps with RFI but is not a cure. For that you need a tight metal enclosure.

component tolerances

While we're on the subject of the inverter, be warned that it's very finicky. That is, it's easily rendered inoperative by component tolerances. R24 is the key to the puzzle; if its value is too high, the inverter will not supply any current. The first unit I built worked well with 390 ohms; the second required less than 100 ohms. The zener can be another source of trouble. You may have to try several before you find the rating that gives you the output voltage you want. This, too, depends on R24.

The following procedure works well: load the inverter output with a 1k resistor and select R24 by working down from 470 ohms. Go two steps lower still to give yourself a safety margin. Then make sure you have the right zener rating. Note, too, that for values between 50 and 100 ohms, R24 can get rather warm. You could probably get by with a quarter-watt resistor, but use a half-watt type and avoid the worry. It's a real hassle to test-select these components, but once it's done, the inverter will work reliably.

The components will tolerate normal supply voltage variations present in most vehicles, but it wouldn't hurt to limit the voltage to the 12-15 volt range. With a 12 volt supply and no external load on the keying line, the board will draw 25 mA in standby. When in use, the current will jump to 80 mA; the difference is due to the fact that only U1 and U2 are always powered up. The rest of the circuit is energized from the keying line.

interfacing

The DTMF module requires the following connections to the outside world: eight tone-select lines, the keying line, the tone output, and power and ground. All you should need in the way of off-board parts is a 12- or 16-button keyboard and something to interface the keying line to your rig's PTT line. This could be a relay or a power transistor.

If you want to modulate the rig through the mike input, you may need a fairly large series resistor to get

The completed prototype. The ICs, clockwise from the upper left are U1, 14410, and U4, LM324, both 14-pin DIP; U6, 741 op amp in an 8-pin DIP; U5, LM309H in a TO-5 package; and U3, 555 timer, and U2, 741 op amp, both in 8-pin DIPs.
the right signal and impedance levels. In other words, this board hooks up to the transceiver just like most Touch Tone pads. I intended it to be usable with a minimum of external parts but also to be part of a sophisticated access system. The system I have in mind includes an automatic dialer board and a third board that can automatically access one or several closed autopatches. These other two boards are currently under development and should soon be ready.

Appendix

1. Filter design equations. Eqs. 1 through 3 are Moberg’s (from reference 2). Eqs. 4 through 6 show how to design filter parameters A_0, Q, and f_0 from component values.

$$R_1 = \frac{Q(C1 + C2)}{2\pi f_0 C1 C2}$$

(1)

$$R_2 = R_1 \left[\frac{A_0}{A_0 (C1 + C2)}\right]$$

(2)

$$R_2 = R_1 \left[\frac{A_0 C2}{Q^2 (C1 + C2) - A_0 C2}\right]$$

(3)

$$A_0 = \frac{R_1 C1}{R_1 (C1 + C2)}$$

(4)

$$Q = \sqrt{\frac{A_0 C2 (R_1 + R_2)}{R_2 (C1 + C2)}}$$

(5)

$$f_0 = \frac{Q (C1 + C2)}{2\pi R_3 C1 C2}$$

(5)

2. Calculator programs. The two programs following may be used with the HP-25C to calculate resistor values and the three filter parameters, A_0, Q, and f_0 for the multiple-feedback filter.

Program uses equations derived by Moberg.2 To calculate resistor values for multiple-feedback filter:

User Instructions

Program calculates the three filter parameters A_0, f_0, and Q from resistor and capacitor values. Equations involved are:

$$A_0 = \frac{R_3 C1}{R_1 (C1 + C2)}$$

(1)

$$Q = \sqrt{\frac{A_0 C2 (R_1 + R_2)}{R_2 (C1 + C2)}}$$

(2)

$$f_0 = \frac{Q (C1 + C2)}{2\pi R_3 C1 C2}$$

(3)

No warning needed. Simply store desired values in R1-R4, run program, and recall answers from R5-R7.
Introducing the new 2-pole 9 MHz Crystal Filter.
The XF-910 crystal filter has been designed for use in modern receiver IF systems using I.C. amplifiers. It is used between the IF amplifier and detector stages to suppress wideband I.C. noise and prevent noise overload of the detector.

The XF910 can also be used in place of ceramic filters and tuned circuits in simple receivers when superior selectivity of the XF9-B is not required. Price $15.95 plus shipping.

SPECIFICATION XF910:
Center Frequency 9.0 MHz
Ultimate attenuation >40.0 dB
Bandwidth 15.0 kHz
Passband Ripple <1.0 dB
Insertion Loss <0.5 dB
Mechanical 3-lead Hc 10 u can

1296 MHz EQUIPMENT
Announcing the new 1296 MHz units by Microwave Modules.

Low Noise RECEIVER Converter
MM1296-144
Low Noise RECEIVER Pre-Amplifier
MM1296-14

All new regular 1296 MHz items: antennas, filters, triplers.

TRANSVERTERS FOR ATV
OSCAR'S 7, 8 & PHASE 3

Transverters by Microwave Modules and other manufacturers can convert your existing Low Band rig to operate on the VHF & UHF bands. Models are available for 2M to 70cm and for ATV operators from Ch2/Ch3 to 70cm. Each transverter contains both a Tx up-converter and a Rx down-converter. Write for details of the largest selection available.

Prices start at $199.95 plus $3.50 shipping.

SPECIFICATIONS:
Output Power 10 W
Receiver N.F. 3 dB typ.
Receiver Gain 30 dB typ.
Prime Power 12V DC

Attention owners of the original MM1432-28 models: Update your transverter to operate OSCAR 8 & PHASE 3 by adding the 434 to 436 MHz range Mod kit including full instructions $26.50 plus $3.50 shipping, etc.

ANTENNAS (F.O.B. CONCORD, VIA UPS)
144-148 MHz J-SLOTS
8 OVER 8 HORIZONTAL POL. + 12.3 dBi D8/2M $55.95
8 BY 8 VERTICAL POL. D8/2M-VERT. $65.60
6 + 6 TWIST 8XY/2M $57.75

420-450 MHz MULTIBEAMS
For local, DX, OSCAR, and ATV use.

48 EL. GAIN + 15.7 dB 70/MBM48 $55.95
88 EL. GAIN + 18.5 dB 70/MBM88 $59.95

UHF LOOP YAGIS:
28 LOOPS GAIN + 20 dBi 50-ohm, Type N Connector $65.50
1250-1340 MHz 6 ft. boom $59.70
1650-1750 MHz 6 ft. boom $64.70

Send 30¢ (2 stamps) for full details of KVG crystal products and all your VHF & UHF equipment requirements.

references
Bind 'em and Find 'em

Keep those valuable issues of both Ham Radio and HORIZONS like new. Prevent smears, tears and dog ears. Bind 'em together and enjoy for years to come. You'll be happy you did!

HAM RADIO BINDERS
Beautiful buckram binders complete with date labels. Available in our new large size to accommodate HAM RADIO'S hefty issues.

☐ HR-BDL Each Just $6.95
3 for $17.95

HAM RADIO MAGAZINE FILES
Your collection of HAM RADIO Magazines is a valuable resource. Here's a brand new, inexpensive way to store them. These sturdy cardboard magazine files keep them clean, neat and up front where you can use them for quick and easy reference.

☐ HR-HAMF $1.95 each
3 for $4.95

HAM RADIO HORIZONS BINDERS
Handsome washable binders complete with date labels.

☐ HR-HRD1 Each Just $6.95
3 for $17.95

HORIZONS MAGAZINE FILES
Your collection of Ham Radio HORIZONS is a valuable resource. Here's a brand new, inexpensive way to store them. These sturdy cardboard magazine files keep them clean, neat and up front where you can use them for quick and easy reference.

☐ HR-HRHF $1.95 each
3 for $4.95

ORDER TODAY
Ham Radio's Bookstore
GREENVILLE, NEW HAMPShIRE 03048
OR CALL TOLL FREE
1 (800) 258-5353

Ham Radio®
USA 1980

For dipoles, inverted Vees, beams, quads. Dependable. Takes temporary overloads in stride. Specify 1:1 or 4:1 ratio.

Model 1K $32.50

2 Kw CW, 6 Kw PEP input. Far more rugged than any other balun made for amateur use. Specify 1:1 or 4:1 ratio.

Model 2K $42.50

Ham Radio®
USA 1980

Only Palomar Baluns Have All These Features

- RF toroidal core for highest efficiency.
- Teflon insulated wire.
- Stainless steel hardware. Won't rust.
- Epoxy filled case. Waterproof.
- Wideband 1.7 to 30 MHz.
- White case to reflect the sun.
- Lightning protection built in.

Free brochure sent on request

How many lightweight baluns have you burned out already? Install the balun that will stay up there working year after year.

To order, add $3 shipping/handling. California residents add sales tax.

More Details? CHECK - OFF Page 94
solid-state T-R switch
for tube transmitters

Combine the advantages of full break-in CW operation with the cost savings of older equipment.

A recent article in *QST* by Dave Shafer, W4AX, explained the advantages of full break-in QSK CW operation, advantages that can’t be provided in today’s high-priced transceivers. The article brought to mind another by Stu Goodman, K2RPZ, which appeared a year earlier. He was concerned with the economics of getting on the air and pointed out the possibilities of using older equipment. To quote Stu, “All that is needed is a T-R switch and an antenna . . .” The T-R switch described here uses solid-state components and provides the capability of full break-in operation with low-cost used transmitters with vacuum tubes.

T-R switches

The origin of the T-R switch stems from early radar days. An automatic device was required in the radar to prevent transmitted energy from reaching the receiver, but allowing the received energy to do so without appreciable loss. For fast, reliable break-in CW operation, using a single antenna for transmitting and receiving, the T-R switch is used today. However, with transceivers now dominating the Amateur-equipment market, T-R switches have all but faded from sight.

I checked several references in this regard with no results. Either they were too new and didn’t mention T-R switches, or were so old that only vacuum-tube circuits were shown.

By Malcolm Crawford, K1MC, 19 Ellison Road, Lexington, Massachusetts 02173
Reference 3 provided some good design concepts. However, these designs were more applicable to solid-state transmitters. Between the extremes of too old and too new, I found a design by W4ETO that was described by W1ICP in the April, 1971, edition of QST (it later appeared in several editions of The Radio Amateurs Handbook). I modified the design slightly to improve some operating parameters. It should work well with any moderate-power, class-C vacuum-tube amplifier (such as a pair of 6146s with a plate supply of 750 Vdc).

Theory of Operation

A short explanation of how the T-R switch operates should be helpful. The principal purpose of the T-R switch is to allow both the receiver and transmitter to be directly connected to the antenna. When the transmitter is keyed, the switch should reduce the amount of signal reaching the receiver to a safe level, but otherwise provide a near unity gain path between antenna and receiver. The noise figure of the device should also be low enough to prevent loss of receiver sensitivity on the upper high-frequency Amateur bands. Some of the older T-R switches were designed to be placed at the transmitter output, but in some cases they caused RFI problems. While these circuits did protect the receiver, harmonics were generated in the T-R switch when the transmitter was keyed. To eliminate the harmonics associated with the circuit, the T-R switch is connected to the tube side of the transmitter pi-network; not to the antenna side. Any harmonics generated in the switch will be attenuated by the lowpass characteristic of the pi-network. The pi-network will also act as a pre-selector, attenuating out-of-band signals.

Most transmitters use shunt-fed, class-C, final amplifier stages and pi-network impedance-matching networks, as shown in fig. 1. The input to the T-R switch is taken from the TUNE capacitor in the pi-network, rather than from the plate rf choke, so that high plate voltage (B+) won’t have to be blocked in the switch. When the transmitter is keyed, the vacuum tube sends current pulses into the pi-network that are filtered before reaching the antenna. When the key is up, the final amplifier tube is cut off and has no effect on the received signal. Note that a T-R switch can be used only with class-C final amplifier stages. With linear class A or AB amplifiers, current flows in the final device even when no signal is being

Diagram Descriptions

Fig. 1. Typical vacuum-tube transmitter output circuit showing the pi network and connection point for the T-R switch.

Fig. 2. Schematic of a solid-state T-R switch that is suitable for use with moderate-power, vacuum-tube transmitters.
amplified. This action allows amplifier noise to pass directly into the receiver.

circuit details

The T-R switch circuit is shown in fig. 2 and differs from W4ETO's original design in several ways. One is that a common-drain amplifier is used so that the overall gain can be set at unity. The pi-network transformation steps up the input voltage by the square root of the transformation ratio.

The switch input capacitor C1, and the parasitic capacitances of the two diodes and the mosfet form a voltage divider that reduces the signal level very close to the value it originally had at the antenna input to the pi-network. From the mosfet input at gate 1 to the output, the amplifier is designed for a nominal gain of unity. The mosfet g_m is typically 10 millisiemens, so that the 800-ohm load resistor sets the no-load gain at eight. The voltage stepdown in transformer T1 reduces the gain by a factor of four; adding a 50-ohm load reduces it by another factor of two. If the receiver input impedance is substantially higher than 50 ohms, the overall gain will be closer to two. A second set of limiting diodes, CR3 and CR4, is placed at the output to protect the receiver in the event of a T-R switch failure.

fig. 3. Construction details of the coaxial cable input capacitor (C1 in fig. 2).

Mosfet biasing. The mosfet is biased to operate with a drain current of 5 mA with a gate 1-to-source quiescent voltage of -0.7 Vdc. This allows the input signal voltage to switch to 1.4 volt p-p without appreciable gain compression. The diodes at the amplifier input will limit the signal to this same range so that they won't reduce the T-R switch dynamic range.

The voltage on gate 2 is set by a resistor divider at approximately 4 Vdc, setting the gate 2-to-source voltage to at least 3 volts. With these quiescent voltages and currents, the mosfet will have a transconductance of 10 millisiemens and a drain current swing of at least 10 mA p-p.

Bypass considerations. The mosfet is shunt fed to allow the drain-to-source voltage to remain above the minimum recommended by the manufacturer with the gate-2 voltage used. The value of the rf choke isn't critical. Values between 150 μH - 360 μH could be substituted. The decoupling of the mosfet drain supply is very conservative, using two capaci-

fig. 4. Printed-circuit board layout for the T-R switch. Component layout is shown in fig. 5.

Supply voltage. The supply voltage, V_{cc}^+, for the T-R switch can range from +12 Vdc to +18 Vdc without much effect on performance. Additional decoupling of the input supply voltage is obtained with RFC1 and C9.

Input coupling. The only unusual component is C1, the input-coupling capacitor. Because the rf voltage levels are quite high and the required capacitance so low, a suitable commercial component would be difficult to find. An inexpensive substitute is a piece of coaxial cable. A typical piece of 50-ohm coax will have a capacitance of 1 pF/cm (30 pF/ft), so that a 6.3-cm (2.5-inch) center conductor-shield overlap will provide 6 picofarads of capacitance. A sketch of the coaxial capacitor is shown in fig. 3. The length of

fig. 5. Component layout for the T-R switch.
the un-overlapped portion can be as long as necessary to go from the pi-network to the T-R switch input. A piece of bare wire can be wrapped around the shield and soldered to complete the capacitor. For plate voltages less than +500 Vdc, RG-58/U can be used, with RG-59/U suitable for voltages up to +900 Vdc. With 70-ohm coaxial cable, the capacitance will be approximately 0.7 pF/cm (21 pF/ft), so an overlap length of 8.7 cm (3.4 inches) should be used.

construction

Circuit layout is shown in fig. 4. A 5.7 x 5 cm (2½ x 3¼ inch) single-sided copper-clad printed wiring board was used, and mounted in a 10 x 7.6 x 5 cm (4 x 3 x 2 inch) aluminum minibox. The board is mounted to the minibox using 2-cm (¾-inch) aluminum angle stock. The whole assembly was mounted on the rear of the transmitter shielded pi-network cage. The only critical aspects of the mechanical assembly are to provide good rf returns between the pi-network ground and the T-R switch board ground, and between the output connector return and the board ground.

Only one board was constructed, so photo etching wasn’t used to make the board. Copper tape was used on the back of the board to provide the component interconnections. For those who wish to use an etched board, a suggested layout is shown in fig. 4; the component placement is shown in fig. 5.

If the transmitter doesn’t have the necessary supply voltage available, fig. 6 shows two possible solutions. Both use the power-transformer filament windings in the transmitter. If the 5-volt rms winding is used, be sure it isn’t connected to the high-voltage supply through the rectifier tube. This winding also must be properly phased with the other filament winding to prevent the two voltages from bucking. The power supply can be mounted in any convenient location in the transmitter and connected to the T-R switch with a shielded wire. At the switch end, the shield should be connected to the minibox, with C9 between the supply voltage and the shield-box connection.

conclusion

The T-R switch has been in use for over a year and has worked well under various operating conditions. Remember that the T-R switch protects the receiver only; it will not prevent the receiver from overloading if its dynamic range or agc characteristics are not up to standard. In most cases, muting the receiver when the key is depressed is the best solution to this problem. Take the advice of W4AX and K2RPZ: Turn that bargain transmitter into an effective CW rig with the addition of a good T-R switch.

editor’s note

The bibliography at the end of this article has been culled from ham radio for the benefit of CW enthusiasts interested in break-in control circuits.

The article by Al Brogdon, K3KMO, combines the advantages of electronic switching using a Johnson model 250-39 T-R switch and an antenna change-over relay.

Cal Sondergoth, W9ZTK, describes a solid-state system for use with separate receive and transmit antennas using low-power transmitters (under 100 watts). The article emphasizes receiver overload during transmit.

W.M. Mitchell, W8SYK, presents a single-transistor CW break-in circuit for stations with separate transmit and receive antennas. The design is for grid-block keying.

J.K. Boomer, W9KHC, shows a low-power, solid-state T-R switch using a PIN diode. The circuit handles power to 100 watts at any desired keying speed.

references

bibiography

ham radio
understacking high-frequency Yagi antennas

A novel system for stacking beams on a tower to minimize mast damage in heavy weather

Installation of a single Yagi antenna on a tower, whether the tower is guyed or not, provides a clean looking system that will no doubt perform as predicted. If a commercially manufactured antenna is used, and there is no desire to make adjustments for optimum performance, mounting it in the clear away from all surrounding objects is the only way to do it. That, however, is not very cost effective. A second beam means a second tower, a third beam requires a third tower, and so on. I quit with three towers — but I want beams for 40 through 10 meters.

Stacking distances of 10 feet (3 meters) or more aren’t generally suited to high-frequency beam installations because it’s difficult to prevent the mast from bending in severe weather. Ultra-strong steel masts are expensive, heavy, and do not provide easy access to the top antenna. By understacking antennas, rather than overstacking them, a number of features develop which overcome these problems.

Understacking takes advantage of a unique relationship between the system weight and the effect of gravity. With conventional stacking arrangements, the weight of the top antenna adds to the bending moment at the base of the mast. Understacking subtracts the antenna weight from the bending moment because gravity aids in keeping the mast in a vertical position.

A number of other feature benefits come into play. First, installing, tuning, or repairing the stacked antenna is relatively easy because it is mounted within reach of the person climbing the tower. Properly designed tilting hardware makes it easy to reach any point on the boom of either antenna. Element repair or matching-network adjustments are relatively simple. Building the system shown in the photographs was a one-man project — no help was needed.

A primary objective for any antenna system is to have it remain intact during foul weather. One disastrous event which can destroy an antenna, especially one that is stacked above another, is a hurricane — or hurricane-force winds. Even with two days of notice (hurricanes are somewhat predictable), an antenna stacked high on a mast offers little opportunity to take damage avoidance steps to weather the storm. With understacking, however, you can climb the tower and tie in the stacked antenna with heavy rope. When the boom of the stacked antenna is fastened securely to the tower face, the chance of mast damage is eliminated. Furthermore, the mast and boom of the stacked antenna are fastened at a point where the top set of guy wires have the greatest strength — right at the guy point. The tie-in procedure reduces the load above the top set of guy wires to one antenna surface instead of two.

Further security is built into the system by installing a torsion bar assembly at the very top of the tower; see the photographs. The benefit is obvious: during hurricane season (June through November), a ready-made set of guy wires is kept on hand. If they are needed, it is a simple task to install them (it can be done in less than an hour). With the extra guy wires in place, there is little chance of tower damage from high winds. Whether or not the antenna survives extremely high winds is a different matter. Keep in mind, though, it is far easier to repair a bent mast.

By Robert M. Myers, W1XT, 221 Long Swamp Road, Wolcott, Connecticut 06716
antenna than it is to fix a bent tower!
There are a few minor benefits to understacking as well. The auxiliary mast is a torsion tube which reduces stress on both the tower legs and the rotor. The empty span between Yagis is ideally suited to the installation of a small vhf antenna.

mechanical components

Fabrication of the hardware is simple and can be done easily in the home workshop. There are three different pieces to the system: an 11-foot (3.3-meter) long galvanized steel mast, two boom-tilt assemblies, and two angle brackets to support the auxiliary mast at the top of the main mast. Standard discount store automotive muffler clamps are used to hold everything in place. Plated clamps are usually found in the hardware department rather than in the automotive section.

The mast sections are made from 1¼-inch galvanized waterpipe. Because waterpipe is specified by inside diameter (ID), not outside dimension (OD), the outer dimension for the 1¼-inch pipe is slightly under 2 inches (50 mm). This size is ideally suited to 1-7/8 inch (48 mm) clamps although 2-inch (50 mm) clamps are satisfactory. Galvanized waterpipe is available from most plumbing supply dealers but be prepared for a stiff price. The material used here cost nearly $20!

The two top mounted angle brackets are 12 inches (30 cm) long and provide adequate tower clearance for the auxiliary mast. The aluminum stock is 3 inches (8 cm) on a side and ¼-inch (6 mm) thick. The upper angle piece is equipped with six muffler clamps, three on each end; the lower one has two at each mast connection point.

Both boom-tilting assemblies are shown in the photographs. The ½-inch (25 mm) thick plate (aluminum) has a horizontal pipe section held in place by a group of muffler clamps. Each Yagi has its boom-to-mast plate turned horizontal so that it may sit on the tilt assembly plate. Loose clamp hardware allows relatively free tilting of the boom to any position for the installation of the elements. The top boom-tilt assembly is fastened to the main mast and not the auxiliary one. This helps offset the leaning action caused by the lower antenna.

system description

A five-element, 24-foot (7.2 meter) boom 10-meter Yagi is stacked under a two-element electrically shortened 40-meter beam (Mosley S-402) which has 46-foot (13.8-meter) long elements. The Mosley antenna was selected because of its low wind surface profile as compared to a full sized array. The high Q of a loaded antenna makes it necessary to assure no detuning occurs as a result of other hardware being in close proximity to it.

A number of other factors were involved in selecting these antenna designs. The 10-meter beam has a boom length slightly longer than double the spacing between antennas which means that the top antenna interferes with rotating the lower boom vertical. Since the longest 10-meter element is shorter than the boom length for the 40-meter antenna (20 feet or 6 meters), it is a simple matter to turn one boom 90 degrees (horizontally) and tilt the 10-meter boom end and element up between the two 40-meter elements. The 24-foot (7.2 meter) boom length on the 10-meter beam was selected to provide element positions which would not be directly under the elements...
two antennas 10 feet (3 meters) apart is sufficient to avoid detuning either one.

Mechanically, the system is stable and strong. The slightly off-center mounting of the auxiliary mast causes the main mast to lean to one side. This is counteracted to some extent by the top tilt assembly being mounted to the main mast with the horizontal pipe extending in the other direction. There is no binding in the tower top sleeve. The relatively long main mast to the rotor makes the misalignment insignificant. You should not attempt this type of understacking, however, if the rotor is mounted directly beneath the tower sleeve — or worse yet, if the rotor is mounted above the sleeve. Under these conditions, the lateral forces would destroy the rotor in short order.

There have been two tests of the mechanical strength and reliability of the stacking procedure. In August, 1979, a severe storm whipped through central Connecticut, tearing roofs off buildings and uprooting trees. The local weather service measured wind velocities of 70 mph (110 km/h) for more than an hour. After the storm, the system inspection showed only a 40-meter element to be rotated around the boom; everything else was intact. During early September, Tropical Storm David generated wind gusts up to 70 mph (110 km/h); this time there was no damage. In neither case was the top set of aux wires installed (the extra set) or the lower boom attached to the auxiliary mast with the horizontal pipe extending in the other direction. There is no binding in the tower top sleeve. The relatively long main mast to the rotor makes the misalignment insignificant. You should not attempt this type of understacking, however, if the rotor is mounted directly beneath the tower sleeve — or worse yet, if the rotor is mounted above the sleeve. Under these conditions, the lateral forces would destroy the rotor in short order.

There have been two tests of the mechanical strength and reliability of the stacking procedure. In August, 1979, a severe storm whipped through central Connecticut, tearing roofs off buildings and uprooting trees. The local weather service measured wind velocities of 70 mph (110 km/h) for more than an hour. After the storm, the system inspection showed only a 40-meter element to be rotated around the boom; everything else was intact. During early September, Tropical Storm David generated wind gusts up to 70 mph (110 km/h); this time there was no damage. In neither case was the top set of aux wires installed (the extra set) or the lower boom tied into the tower face. A good deal of confidence was developed by these two events. After the first storm, it was a simple matter to tilt down the 40-meter boom and straighten the twisted reflector.

hardware installation

There are numerous ways an Amateur can approach this kind of a project. The testing requirements, however, dictated the order in which compo-
Two angle brackets are used to hold the auxiliary mast in place. One is attached above the 40-meter tilt assembly; the other is connected below.

Components were installed. It would be wise for anyone duplicating this system to perform tests similar to those mentioned earlier. If two antennas are put up and one doesn't operate correctly, it could be very difficult to determine the source of the problem.

First, install the tilt hardware to the main mast. Next, position the 40-meter boom on the horizontal tilt assembly pipe. With the appropriate boom end tilted down along side the tower, attach one element. It is necessary to tie a rope to the opposite boom end from where the first element is connected. It should be done before the boom leaves the ground. The rope is needed to pull the non-element end down after the first one is attached. With both elements connected, the antenna weight is balanced and vertical rotation around the tilt assembly is easy. Exercise extreme care when turning the boom up or down. Be sure the clamps can't slide off the horizontal pipe. The pulling rope must be strong and tied securely in place. If the rope breaks or slips half way through the tilting process, the heavy end will swing down with a vengeance.

Once the 40-meter beam is installed and tested, the two auxiliary mast supports are clamped in place; one goes above the 40-meter tilt assembly and the other mounts beneath it. Muffler clamps should be attached to the far end of the angle stock, ready to accept the auxiliary mast. Slip the mast pipe up through the clamps and secure all of the hardware. The 10-meter boom-tilt assembly can be attached to the auxiliary mast before it leaves the ground or after the mast is in place.

As with any antenna installation, safety is an absolute requirement. I have found the best procedure is to plan every step of the process in advance. Abbreviated notes are used to avoid mistakes.

boom-to-tower spacing adjustment

The auxiliary mast aligns on center with the tower when the support angle brackets are parallel to the 40-meter boom. The lower tilt assembly offsets the 10-meter beam sufficiently to clear the tower during rotation. Sway in the auxiliary mast caused by wind may allow the 10-meter boom to occasionally bump into the tower leg at some headings. Twenty turns of polypropylene rope are wrapped around the 10-meter boom where it comes close to the tower. The rope acts as a bumper pad during very high winds.

To increase the spacing between the boom and the tower legs, change the position of the angle supports toward perpendicular with the 40-meter boom. The lower beam will need to be repositioned slightly for a corrected heading; an 8-inch (20 cm) clearance...
is adequate. Note the offset of the angle brackets in some photographs.

pitfalls

It is possible to forget some of the basics of good engineering practice. For instance, the auxiliary mast is indeed a 10-foot (3-meter) long lever arm and will flex the main mast pipe. An antenna of much larger dimensions than described here would likely cause one of the masts to bend if extremely severe weather were encountered. For use with bigger systems, hard steel tubing is recommended in place of waterpipe.

Another important consideration is tower loading. The tower shown here is 100 feet (30 meters) of Rohn 25 guyed at 33, 66, and 91 feet (10, 20, and 27 meters). The unsupported top section has a torsion guy assembly mounted just below the bottom rung which keeps lateral forces off the tower leg bolts. The load rating for Rohn 25 tower is 6 square feet (0.56 meter²) of antenna; many Amateurs exceed that with large six-element Tribander. The surface area rating for the Mosley S-402 is about 3.8 square feet (0.35 meter²). The lower five-element Yagi adds another 2.5 square feet (0.23 meter²) of surface area. This tower is sufficiently loaded for maximum safe operation (note that tower load ratings assume a rotor, mast, and cables and should not be included in the calculations).

other combinations

Interaction between antennas is always a possibility when more than one antenna is placed on a tower. Many Amateurs have experienced difficulty in operation when 15- and 40-meter antennas are mounted together on the same tower. The end result is usually poor front-to-back ratio with the 15-meter system. The high Q of a Tribander accentuates the problem. For this reason, you should be cautious about installing a Tribander and a loaded 40-meter beam on the same support. If interaction does result, the simple solution is to turn one of the antennas 90 degrees with respect to the other. Double dial calibration would then be required.

A combination of antennas ideally suited to under-stacking is a small “Christmas Tree” of monobanders for 20, 15, and 10 meters. The largest antenna should go at the top and the smallest in the middle of the auxiliary mast. In this manner, the heaviest Yagi is mounted just above the top tower sleeve, and the next largest antenna will have its weight at the bottom of the auxiliary mast to counteract the bending moment.

No matter what combination of antennas is selected, be sure not to overload the tower. Hardware falling from the sky is hazardous to your neighbors!
WANTED FOR CASH

4CX150
4CX250
4CX300A
4CX350A
4CX1000
4CX1500
4CX3000
4CX5000
4CX10,000
4CX250
4CX300A
4CX350A
4CX1000
4CX1500
4CX3000
4CX5000

Highest price paid for these units. Parts purchased.
Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112, ARC114, ARC115, ARC116, and some aircraft units also required.

DCO, INC.
10 Schuyler Avenue
No. Arlington, N. J. 07032
Call Toll Free (201) 998-4246
800-526-1270

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?
- You can send broadcast quality video of home movies, video tapes, computer games, etc., at a cost that is less than cable.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex -- 15 to 100 miles.

ALL IN ONE BOX
TC-1 Transmitter/Converter...
Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, TR sw, 4 Modules below ... $ 399 p.p.d

PUT YOUR OWN SYSTEM TOGETHER
TXA5 ATV Exciter contains video modulator and xtal on 434 or 450-25 mHz. All modules wired and tested ... $ 84 p.p.d
PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc... $ 79 p.p.d
TVC-1B Downconverter tunes 420 to 450 mHz. Outputs TV ch 2 or 3. Contains low noise MRF901 preamp. ... $ 49.50 p.p.d

PACKAGE SPECIAL all four modules $ 225 p.p.d

SEND FOR OUR CATALOG, WE HAVE IT ALL
Modules for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, lines, video ider and clock, video monitors, computer interface, and more. 19 years in ATV.
Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

P.C. ELECTRONICS
Maryann
2522 PAXSON
ARCADIA, CA 91006
Tom
WB6YSS

FMA5 Audio Subcarrier adds standard TV sound to the picture ... $ 25 p.p.d

More Details? CHECK—OFF Page 94
the Macromatcher:

increasing versatility

Several years ago I built the Macromatcher and the pickup coils and used it with a grid-dip meter for antenna matching. This combination is rather cumbersome if used at the antenna terminals when the antenna is at the top of the tower. An alternative method is to use the above setup on the ground with one-half wavelength of coax to give the same characteristics as at the antenna.

I built a crystal-controlled transistorized signal source (powered by a 9-volt battery and mounted on the Macromatcher) for 20 meters (fig. 1) and 40 and 75 meters (fig. 2). The photo shows the complete unit. The 20-meter oscillator is on the left, and the 40- or 75-meter oscillator is mounted on the Macromatcher. A Bud minibox CU-2103-B, 102 x 58 x 58 mm (4 x 2-1/4 x 2-1/4 inches), was used. The part of the minibox with the lips is fastened to the Macromatcher as shown.

Some thought and planning must be done to ensure proper positioning so that the oscillator output (coax receptacle) mates with the Macromatcher input receptacle.

Connections between the Amphenol fittings are as follows: an 83-877 (double male) from the 83-1R (SO-239) on the oscillator to a 83-1AP (angle) to the 83-1R (SO-239) on the Macromatcher (see photo). The oscillator was built in the other portion of the minibox, the part without the lips.

When the unit is to be used on a different band, all that's necessary is to remove the four screws holding the minibox together, unscrew the coax connector on the Macromatcher, change the battery, secure the other oscillator to the Macromatcher, and the unit is ready to use.

With a slightly larger minibox a VFO with a band-switching arrangement could be built, which would have more versatility. You'll note that the dial skirts of my unit haven't been reversed and remarked for resistance and reactance values.

Acknowledgment

A special thanks to Bob Henry of Satterfield Electronics for the photographs.

Reference

Ham Radio

By Arnie Bachmann, K9DCJ, Route 1, Blue Mounds, Wisconsin 53517
ENJOY THE 26th NATIONAL ARRL CONVENTION
IN THE BEAUTIFUL PACIFIC NORTHWEST

SEMINARS, DISPLAYS, LADIES PROGRAMS, FORUMS AND MAJOR EQUIPMENT EXHIBITORS WILL HIGHLIGHT THIS GATHERING AT THE SEA-TAC AIRPORT RED LION MOTOR INN.

Roy Neal, K6DUE, of NBC News will be the featured Saturday night banquet speaker.

Vic Clark, W4KFC will explain the results of WARC-79 and what it means to the future of amateur radio.

Meet ARRL President Harry Dannals, W2HD, and other ARRL officials.

For Program and Registration Materials
Write:

1980 ARRL NATIONAL CONVENTION COMMITTEE
P. O. Box 68534, Seattle, Washington 98168
Arizona

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85013
602-249-3739
Your Complete Amateur Radio Store.

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Connecticut's Oldest Ham Radio Dealer.

THOMAS COMMUNICATIONS
95 KITTS LANE
NEWINGTON, CT 06111
203-667-0811
Authorized dealer for Kenwood, Yaesu, Drake, Icom, etc. - CALL US!

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
WILMINGTON, DE 19720
302-227-3885
Your Complete Amateur Radio Store.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33755
813-461-HAMS
West Coast's only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33755
813-535-1416

SUNRISE AMATEUR RADIO
1361 STATE RD. 84
FT. LAUDERDALE, FL 33315
(305) 761-7676
"Best Prices in Country. Try us, we'll prove it."

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
203-527-1881
Connecticut's Oldest Ham Radio Dealer.

Indiana

C & A ELECTRONIC BUSINESSES
2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-634-5868
Not The Biggest, But The Best — Since 1962.

JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824 Trades
714-463-7786 San Diego
The Home of the One Year Warranty — Parts at Cost — Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAWER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec, VHF Engineering.

TELE-COM
15460 UNION AVE.
SAN JOSE, CA 95124
408-377-4479

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Amateur Radio Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4476

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RT. 119
LITTLETON, MA 01460
617-468-3040
The Ham Store of New England You Can Rely On.
Amateur Radio Dealer

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

MINNESOTA

PAL ELECTRONICS INC.
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

NEW HAMPSHIRE

EVANS RADIO, INC.
BOX 893, RT. 3 A BOW JUNCTION
CONCORD, NH 03301
603-224-9961
Icom, DenTron & Yaesu dealer. We service what we sell.

NEW JERSEY

RADIOS UNLIMITED
P. O. BOX 347
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4999
New Jersey's Fastest Growing Amateur Radio Center.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOWA, NJ 07512
201-256-8555
Drake, Swan, DenTron, Hy-Gain, Cuschkraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS
384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
(201) 772-2222
Same location for 62 years. Full line authorized Drake dealer.

NEW MEXICO

PECOS VALLEY AMATEUR RADIO SUPPLY
115 W. WALNUT ST.
ROSWELL, NM 88201
505-622-7358
Your DX, Contest, and Antenna Headquarters featuring A.E.A., Hy-Gain, Azden, Butternut, and Most Major Brands.

NEW YORK

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630

HAM-BONE RADIO
3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446-2266
We deal, we trade, all major brands! 2-way service shop on premises!

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925.
Call toll free 800-645-9187.

RADIOS UNLIMITED
P. O. BOX 347
1760 MYSTIC AVENUE
SOMERSET, NJ 08873
201-469-4599
Complete Amateur Radio Sales and Service. All major brands - spacious store near I-270.

OHIO

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG)
OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near I-270.

KRYDER ELECTRONICS
5826 N.W. 50TH
OKLAHOMA CITY, OK 73122
405-789-1951
Your Complete Amateur Radio Store

Pennsylvania

HAMTRONICS, DIV. OF
TREVES ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
Same Location for 30 Years.

LARUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
ICOM, Bird, Cushcraft, CDE, Ham-Keys, VHF Engineering, Antenna Specialists.

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455-7674
Service, Parts, & Experience For Your Atlas Radio.
two for one

If the title sounds like poor odds on a tout sheet at Pimlico and not applicable to ham radio, have patience and read on. There have been a number of times in more than thirty-three years as an Amateur when I wished to use more than one receiver on a single antenna system at the same time. Whether corrected directly or through decoupling amplifiers, sensitivity was lost or undesired interaction in the form of rf oscillations resulted.

For use on 2-meter fm I built a quarter-wave ground plane antenna for base-station use. Some months later I obtained a tube-type aeronautical monitor receiver (I'm involved with flying and wanted to listen to the aeronautical service). In the aeronautical communications with which I work, a maximum of three vhf receivers are connected so that the primary side of all the antenna transformers are series connected; the bottom end of the antenna coil in the last receiver is grounded. These are double-conversion, fixed-frequency receivers with a minimum of 1-MHz frequency separation between the three series-connected receivers.

Without a relative signal-strength meter in either the ham or the aeronautical receivers, I not only maintain my Amateur operation but also copy aeronautical ground station transmitters that I know are putting 10 watts into over 46 meters (150 feet) of RG-8/17, combined. Thus, with about 3 dB power loss in the coaxial cables, I operate both receivers simultaneously. I have more than 20 MHz frequency separation between the receivers. I'm about 32 km (20 miles) airline from the airport.

The only modification to any receiver with a grounded end on the antenna transformer is the addition of a chassis-mounted rf connector such as an SO-239 or a BNC, or N type connector. Thus, half of this switch is available for other uses. The speech processor is inoperative during CW and TUN modes, so the COMP position of the METER

TS-820 filter switching modification

The addition of the YG-88C 500-Hz crystal filter to the TS-820 is a worthwhile operating aid. When this filter is installed according to the instructions furnished, the filter will be automatically selected when the TS-820 MODE switch is in either the CW or TUN position. It's convenient to be able to select the wider 2400-Hz standard filter during tune up or while scanning the CW portion of the band in use. Here's a scheme for selectable filter switching using no new hardware or new holes.

Fig. 2 shows the back of the TS-820 METER switch. It's a double-pole, five-throw (DP5T) switch with only one-half being used; i.e., single-pole five-throw, or SP5T. Thus half of this switch is available for other uses.

The speech processor is inoperative during CW and TUN modes, so the COMP position of the METER

fig. 1. Circuit for combining one or more receivers to a single antenna.

fig. 2. Modifications for selectable filter switching for the TS-820. The meter switch (S-1) is shown at (A) viewed from rear of panel. New connections to connector IF2 are shown in (B).
switch is ideal for activating and selecting the 500-Hz filter. During tune up, as the METER switch is switched through ALC, IP, and RF, the 2400-Hz filter is activated, allowing higher meter readings and finer adjustments.

For CW you can choose filters by switching to COMP to activate the 500-Hz filter or use any of the other METER switch positions for 2400-Hz filter operation.

Modification of the TS-820 is straightforward and should take less than an hour:

1. Remove cabinet top and bottom covers.
2. Locate and remove connector IF2 from the bottom of IF Board X48-1150-00.
3. Refer to the color-coded wiring of connector IF2 as shown in Figure 25, page 34, of the TS-820 Operating Manual.
4. Remove gray wire from IF2. Place the blade of a small screwdriver into the slot above the wire and gently pull on the gray lead.
5. Unsolder the gray wire from the connector tip. Solder a new wire approximately 46 cm (18 inches) long to the connector tip and reinsert the tip into the connector IF2.
6. Route the new wire along the large wire bundle and up through the chassis to the back of the METER switch. Cut to length, strip, tin, and solder to the switch at terminal 1 as shown in fig. 2.
7. Splice a second new wire approximately 46 cm (18 inches) long to the free end of the gray wire, route it to the switch, and solder at 3.
8. Remove the purple wire from IF2 using the blade of a small screwdriver as in step 4 above.
9. Solder one end of a third new wire approximately 46 cm (18 inches) long to the connector tip along with the purple wire. (There will now be two wires soldered to the single connector tip.) Reinsert the connector tip back into connector IF2.
10. Route this last new wire to the switch and solder at 2.
11. Connect and solder a short piece of uninsulated, tinned wire between terminals 2, A, B, and C. Be sure that the uninsulated wire does not touch terminal 1.
12. Neatly dress all leads (tie to existing wire bundles if desired) and replace the top and bottom cabinet covers.

This completes the modification. During tune up, as the meter is cycled through ALC, IP, and RF the 2400-Hz filter will be operative, as it will be during SSB. Additionally, the COMP position of the METER switch will activate the 500-Hz filter only while in the CW or TUN mode. Thus, the ability to read compression level during SSB operation with the speech processor is retained.

Don Jacobson, K7OAK

2048-bit memory keyer

I do quite a lot of moonbounce operating on 144 MHz and this can sometimes result in an hour or so of continuously sending callsigns. I designed the keyer in fig. 3 to make operating easier. All I have to do is program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that input going into the keyer just fills the memory. Decoupling capacitors are left out for the sake of clarity, but at least 200 \(\mu F \) should be used from \(-12\) volts to ground and at least 500 \(\mu F \) from \(+5\) volts to ground.

The output will drive a solid-state

![fig. 3. Schematic of the memory keyer by GW4CQT, which takes the drudgery out of contest work for sending ID, CQ, and callsigns. Memory capacity is 2048 bits.](image-url)

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-

program the callsigns, and the keyer does the rest.

The circuit is simple. The key is an ordinary Morse hand key. SW1 is the information in-out switch. The 1-k variable resistor is adjusted so that in-
1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e.) making the i-f range approximately 54 to 88 mc (Channels 2 to 7).

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC BOARD WITH CHIP CAPACITORS 13</td>
<td>$44.99</td>
</tr>
<tr>
<td>PC BOARD WITH ALL PARTS FOR ASSEMBLY</td>
<td>$79.99</td>
</tr>
<tr>
<td>PC BOARD ASSEMBLED AND TESTED</td>
<td>$120.00</td>
</tr>
<tr>
<td>POWER SUPPLY KIT</td>
<td>$44.99</td>
</tr>
<tr>
<td>POWER SUPPLY ASSEMBLED AND TESTED</td>
<td>$69.99</td>
</tr>
<tr>
<td>YAGI ANTENNA 4' LONG APPROX. 20 TO 23 dB GAIN</td>
<td>$59.99</td>
</tr>
<tr>
<td>YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector)</td>
<td>$64.99</td>
</tr>
</tbody>
</table>

2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, antenna, 75' and 3' RG59 cable with connectors, 75 to 300 ohm adapter, Plus 90 DAY WARRANTY

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY ASSEMBLED AND TESTED</td>
<td>$69.99</td>
</tr>
<tr>
<td>YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector)</td>
<td>$64.99</td>
</tr>
</tbody>
</table>

Shipping and Handling Cost:
Receiver Kits add $1.50, Power Supply add $2.00, Antenna add $5.00, Option 1/2 add $3.00, For complete system add $7.50.

3.7 to 4.2 Gc SATELLITE DOWN CONVERTER
70 MHz i-f (30 MHz @ 3 dB) 10 dB min. IMAGE REJECTION
15 dB max. Noise Figure 15 dB Gain

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY ASSEMBLED AND TESTED</td>
<td>$69.99</td>
</tr>
<tr>
<td>YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector)</td>
<td>$64.99</td>
</tr>
</tbody>
</table>

I-F AMPLIFIER FOR ABOVE 70 MHz
45 dB Gain — 30 MHz @ 3 dB — ASSEMBLED AND TESTED F CONNECTOR FOR OUTPUT

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY ASSEMBLED AND TESTED</td>
<td>$69.99</td>
</tr>
<tr>
<td>YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector)</td>
<td>$64.99</td>
</tr>
</tbody>
</table>

DEMOD FOR ABOVE 70 MHz
COMPOSITE VIDEO OUTPUT (NO RF) — ASSEMBLED AND TESTED

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY ASSEMBLED AND TESTED</td>
<td>$69.99</td>
</tr>
<tr>
<td>YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector)</td>
<td>$64.99</td>
</tr>
</tbody>
</table>

TERMS:
MASTER CHARGE, MASTERCARD, VISA, BANK AMERICARD. WE CHARGE 5% FOR HANDLING

CARD NUMBER __EXP. DATE __________

YOUR SIGNATURE ______________________ PHONE NUMBER __________________________

PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER. PRICES SUBJECT TO CHANGE WITHOUT NOTICE. WE CHARGE 15% FOR RESTOCKING ON ANY ORDER. ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY. ALL ORDERS SENT FIRST CLASS OR UPS. ALL PARTS PRIME AND GUARANTEED. WE WILL ACCEPT COD ORDERS FOR $25.00 OR OVER, ADD $1.50 FOR COD CHARGE. PLEASE INCLUDE $1.50 MINIMUM FOR SHIPPING OR CALL FOR CHARGES. WE ALSO ARE LOOKING FOR NEW AND USED TUBES, TEST EQUIPMENT, COMPONENTS ETC. WE ALSO SWAP OR TRADE. FOR CATALOG SEE JANUARY, 1980, 73 Magazine, 10 Pages.
TABLE OF CONTENTS

ALLTECH: 473
Keltek: T830-100
Brochure on Polaris: 20388011

RF TRANSISTORS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1561</td>
<td>$15.00</td>
<td>2N5550</td>
<td>$8.00</td>
<td>MM1550</td>
<td>$10.00</td>
</tr>
<tr>
<td>2N1562</td>
<td>15.00</td>
<td>2N5591</td>
<td>10.35</td>
<td>MM1552</td>
<td>50.00</td>
</tr>
<tr>
<td>2N1692</td>
<td>15.00</td>
<td>2N5637</td>
<td>20.00</td>
<td>MM1553</td>
<td>56.50</td>
</tr>
<tr>
<td>2N1693</td>
<td>15.00</td>
<td>2N5641</td>
<td>4.90</td>
<td>MM1501</td>
<td>5.50</td>
</tr>
<tr>
<td>2N2632</td>
<td>45.00</td>
<td>2N5642</td>
<td>8.63</td>
<td>MM1622</td>
<td>54.82</td>
</tr>
<tr>
<td>2N2637</td>
<td>2.45</td>
<td>2N5643</td>
<td>14.38</td>
<td>MM1607</td>
<td>8.65</td>
</tr>
<tr>
<td>2N2680</td>
<td>25.00</td>
<td>2N5764</td>
<td>27.00</td>
<td>MM1609</td>
<td>17.50</td>
</tr>
<tr>
<td>2N2827</td>
<td>7.00</td>
<td>2N5842</td>
<td>8.65</td>
<td>MM1943</td>
<td>3.00</td>
</tr>
<tr>
<td>2N2947</td>
<td>17.25</td>
<td>2N5849</td>
<td>19.50</td>
<td>MM2605</td>
<td>3.00</td>
</tr>
<tr>
<td>2N2948</td>
<td>15.50</td>
<td>2N5862</td>
<td>50.00</td>
<td>MM2686</td>
<td>5.00</td>
</tr>
<tr>
<td>2N2949</td>
<td>3.90</td>
<td>2N5913</td>
<td>3.25</td>
<td>MM8006</td>
<td>2.15</td>
</tr>
<tr>
<td>2N3287</td>
<td>5.00</td>
<td>2N5922</td>
<td>10.00</td>
<td>MM8019</td>
<td>1.00</td>
</tr>
<tr>
<td>2N3294</td>
<td>4.30</td>
<td>2N5942</td>
<td>46.00</td>
<td>MM7732</td>
<td>8.1</td>
</tr>
<tr>
<td>2N3302</td>
<td>1.15</td>
<td>2N5944</td>
<td>7.50</td>
<td>MM774</td>
<td>9.4</td>
</tr>
<tr>
<td>2N3303</td>
<td>0.75</td>
<td>2N5945</td>
<td>10.90</td>
<td>MM7857</td>
<td>2.88</td>
</tr>
<tr>
<td>2N3302</td>
<td>1.05</td>
<td>2N5946</td>
<td>13.20</td>
<td>MM7834</td>
<td>43.45</td>
</tr>
<tr>
<td>2N3304</td>
<td>1.48</td>
<td>2N6080</td>
<td>5.45</td>
<td>MM420</td>
<td>20.00</td>
</tr>
<tr>
<td>2N3307</td>
<td>10.50</td>
<td>2N6081</td>
<td>8.60</td>
<td>MM450</td>
<td>11.85</td>
</tr>
<tr>
<td>2N3309</td>
<td>3.90</td>
<td>2N6082</td>
<td>9.90</td>
<td>MM450A</td>
<td>11.85</td>
</tr>
<tr>
<td>2N3375</td>
<td>8.75</td>
<td>2N6083</td>
<td>11.80</td>
<td>MM454</td>
<td>20.10</td>
</tr>
<tr>
<td>2N355</td>
<td>1.45</td>
<td>2N6084</td>
<td>13.20</td>
<td>MM458</td>
<td>18.95</td>
</tr>
<tr>
<td>2N3755</td>
<td>7.20</td>
<td>2N6094</td>
<td>5.75</td>
<td>MM475</td>
<td>5.00</td>
</tr>
<tr>
<td>2N3818</td>
<td>6.00</td>
<td>2N6095</td>
<td>10.35</td>
<td>MM476</td>
<td>5.00</td>
</tr>
<tr>
<td>2N3888</td>
<td>1.09</td>
<td>2N6096</td>
<td>19.35</td>
<td>MM4752</td>
<td>49.0</td>
</tr>
<tr>
<td>2N3880</td>
<td>2.70</td>
<td>2N6097</td>
<td>28.00</td>
<td>MM504</td>
<td>6.95</td>
</tr>
<tr>
<td>2N3880JAN</td>
<td>4.43</td>
<td>2N6136</td>
<td>18.70</td>
<td>MM509</td>
<td>4.90</td>
</tr>
<tr>
<td>2N3924</td>
<td>3.20</td>
<td>2N6186</td>
<td>36.80</td>
<td>MM511</td>
<td>8.80</td>
</tr>
<tr>
<td>2N3925</td>
<td>6.00</td>
<td>2N6265</td>
<td>75.00</td>
<td>MM501</td>
<td>5.00</td>
</tr>
<tr>
<td>2N3927</td>
<td>11.50</td>
<td>2N6266</td>
<td>100.00</td>
<td>MM517</td>
<td>20.70</td>
</tr>
<tr>
<td>2N3950</td>
<td>26.25</td>
<td>2N6267</td>
<td>43.45</td>
<td>MM800</td>
<td>1.44</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.70</td>
<td>2N6459/P179795</td>
<td>18.00</td>
<td>PT4198</td>
<td>3.00</td>
</tr>
<tr>
<td>2N4135</td>
<td>2.00</td>
<td>2N6603</td>
<td>12.00</td>
<td>PT4751</td>
<td>1.50</td>
</tr>
<tr>
<td>2N4251</td>
<td>14.80</td>
<td>2N6604</td>
<td>12.00</td>
<td>PT474</td>
<td>5.00</td>
</tr>
<tr>
<td>2N4427</td>
<td>1.09</td>
<td>AS0-12</td>
<td>25.00</td>
<td>PT4268</td>
<td>5.00</td>
</tr>
<tr>
<td>2N4429</td>
<td>7.50</td>
<td>BFR90</td>
<td>5.00</td>
<td>PT4640</td>
<td>5.00</td>
</tr>
<tr>
<td>2N4430</td>
<td>20.00</td>
<td>BLY986C</td>
<td>25.00</td>
<td>PT8699</td>
<td>10.75</td>
</tr>
<tr>
<td>2N4957</td>
<td>3.50</td>
<td>BLY986CF</td>
<td>25.00</td>
<td>PT9784</td>
<td>24.30</td>
</tr>
<tr>
<td>2N4958</td>
<td>2.80</td>
<td>CD3495</td>
<td>15.00</td>
<td>PT9790</td>
<td>41.70</td>
</tr>
<tr>
<td>2N4959</td>
<td>2.12</td>
<td>HEP5303/04</td>
<td>4.95</td>
<td>SD1043</td>
<td>8.80</td>
</tr>
<tr>
<td>2N4976</td>
<td>19.00</td>
<td>HEP5302</td>
<td>11.30</td>
<td>SD1116</td>
<td>3.00</td>
</tr>
<tr>
<td>2N5090</td>
<td>6.90</td>
<td>HEP5303</td>
<td>29.88</td>
<td>SD1118</td>
<td>5.00</td>
</tr>
<tr>
<td>2N5108</td>
<td>3.90</td>
<td>HEP5305</td>
<td>9.95</td>
<td>SD1119</td>
<td>3.00</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.55</td>
<td>HEP5306</td>
<td>19.90</td>
<td>TA7993</td>
<td>75.00</td>
</tr>
<tr>
<td>2N5160</td>
<td>3.34</td>
<td>HEP5307</td>
<td>24.95</td>
<td>TA7994</td>
<td>100.00</td>
</tr>
<tr>
<td>2N5179</td>
<td>6.80</td>
<td>HEP53010</td>
<td>11.34</td>
<td>TRW0700A023-1.5</td>
<td>42.50</td>
</tr>
<tr>
<td>2N5184</td>
<td>2.00</td>
<td>HEP55026</td>
<td>2.56</td>
<td>40281</td>
<td>10.90</td>
</tr>
<tr>
<td>2N5216</td>
<td>47.50</td>
<td>HP3831E</td>
<td>40282</td>
<td>11.90</td>
<td></td>
</tr>
<tr>
<td>2N5583</td>
<td>4.43</td>
<td>HX7150</td>
<td>50.00</td>
<td>40290</td>
<td>2.20</td>
</tr>
<tr>
<td>2N5589</td>
<td>4.60</td>
<td>MM1504</td>
<td>32.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHIP CAPACITORS

We can supply any value chip capacitors you may need.

PRICES

<table>
<thead>
<tr>
<th>value</th>
<th>1 to 10</th>
<th>1 to 100</th>
<th>1 to 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1pf</td>
<td>27pf</td>
<td>220pf</td>
<td>1200pf</td>
</tr>
<tr>
<td>1.5pf</td>
<td>33pf</td>
<td>240pf</td>
<td>1500pf</td>
</tr>
<tr>
<td>2.2pf</td>
<td>39pf</td>
<td>270pf</td>
<td>1800pf</td>
</tr>
<tr>
<td>2.7pf</td>
<td>47pf</td>
<td>300pf</td>
<td>2200pf</td>
</tr>
<tr>
<td>3.3pf</td>
<td>53pf</td>
<td>330pf</td>
<td>2700pf</td>
</tr>
<tr>
<td>3.9pf</td>
<td>68pf</td>
<td>360pf</td>
<td>3300pf</td>
</tr>
<tr>
<td>4.7pf</td>
<td>82pf</td>
<td>400pf</td>
<td>3900pf</td>
</tr>
<tr>
<td>5.1pf</td>
<td>1.49pf</td>
<td>430pf</td>
<td>4700pf</td>
</tr>
<tr>
<td>6.8pf</td>
<td>110pf</td>
<td>510pf</td>
<td>6800pf</td>
</tr>
<tr>
<td>8.3pf</td>
<td>210pf</td>
<td>500pf</td>
<td>6200pf</td>
</tr>
<tr>
<td>12pf</td>
<td>320pf</td>
<td>620pf</td>
<td>6200pf</td>
</tr>
<tr>
<td>15pf</td>
<td>600pf</td>
<td>830pf</td>
<td>8100pf</td>
</tr>
<tr>
<td>18pf</td>
<td>820pf</td>
<td>1000pf</td>
<td>10100pf</td>
</tr>
</tbody>
</table>

POR = CALL FOR PRICE

THE BLADES

Calibrated Display with an SSB Analysis Module and a 10 to 40 mc Single Tone Synthesizer

1500.00

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

ALTAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

Your Choice $24.95

June 1980
new Heath remote coax switch

Heath Company, the world’s largest manufacturer of electronic kits, announces a new remote coax switch, the SA-1480 which allows the Amateur Radio operator to select any of five antennas by simply turning a knob at his bench. One feedline from the inside control box to the outside switching box replaces five separate antenna cables, saving coaxial cable. A special grounding position grounds all antennas for lightning protection.

A specially shielded switching box protects the switching circuitry from the elements. Silver-plated switch contacts help lower SWR. The SA-1480 operates on frequencies up to 150 MHz, and will handle full legal power.

Heath engineers say the new remote coax switch can be easily assembled in six to eight hours. A U-bolt assembly is included to facilitate mounting the outside switching box on an antenna mast or tower leg.

The Heathkit SA-1480 remote coax switch is mail order priced at $84.95

pocket shortwave receiver

Measuring only $45 \times 73 \times 25 \text{ mm}$, the Model EP-8 is believed to be the smallest a-m/SW, two-band receiver available in the U.S. In addition to the standard “broadcast” band (a-m), the EP-8 receives shortwave frequencies from 3.9 to 12 MHz (ideal for receiving WWV time signals on 5 and 10 MHz). Controls include a band-select switch, tunable dial for a-m and SW, and volume control coupled with an ON-OFF switch. Audio output is via the supplied earphone only, and the receiver is powered by two hearing-aid type batteries (included).

The Model EP-8 has built-in ferrite rod antennas for both bands. While shortwave reception is satisfactory for powerful stations such as the BBC, Radio Canada International, Radio Nederland, Deutsche Welle, and others, better SW sensitivity can be obtained by placing the receiver near a telephone or ac-line outlet. No direct antenna connections are necessary.

Priced at $24.95 postpaid in U.S.A., the Model EP-8 is available from: Radios International, P.O. Box 6053, Richardson, Texas 75080; phone (214) 784-0862.

CMOS-safe IC extractor

O.K. Machine and Tool Corporation’s model EX-2 extracts all 28-40 pin DIP IC’s having standard 0.600 inch body widths, including MOS and CMOS devices. The mechanism is self-adjusting and gently lifts IC from socket or board using uniform pressure applied simultaneously at both ends of the IC. Designed for easy one-hand operation, the EX-2 features heavy chrome plating for reliable static dissipation, as well as a terminal lug for attaching a ground strip (strap not included). The EX-2 is priced at $7.95 and is available through local electronics retailers or directly from O.K. Machine and Tool Corporation, 3455 Conner Street, Bronx, New York 10475.

low-cost computerized Morse keyer from AEA

A new, microprocessor-based Morse keyer — the MK-1 — has been introduced by Advanced Electronic Applications of Lynnwood, Washington.

The MK-1, which incorporates more than twenty special features, will be offered to the CW operator and Amateur market at a special introductory price of $79.95.

“We’re delighted with this new keyer,” AEA President Lamb explained. “It represents a major breakthrough in Morse keys because it offers the advantages of microproc-
The MK-1 can easily be programmed to send code at any rate between 2 and 99 wpm with precise full weighting control. The operator can adjust the dot to element space ratio from 0.5:1 to 1.5:1 and the dash to element space ratio from 2.0:1 to 4.0:1.

"The most exciting feature that users comment on is how easy it is to adjust the MK-1 for precise 3:1:1 (dash:dot:space) ratio" Lamb added. "This full weighting feature is not available on other keyers."

Other features incorporated in the MK-1 include: Selectable semi-automatic "bug" mode (also useful for transmitter tuning), automatic stepped sidetone frequency selection, iambic keying with squeeze paddle (paddle not supplied), operates on 9 to 16 volts dc at 200 mA (power supply available for $9.95 retail), and output for grid-block or transistor circuits.

All control of the computer is performed with a modern keypad mounted on a sloping top surface for no-skid response. All mating connectors are supplied. The MK-1 can be used as code-practice oscillator with a straight key in the semi-automatic mode. The keyer has outstanding rf immunity.

For more information on the MK-1 and other AEA products including the MorseMatic* Memory Keyer, Iso-Pole* vertical gain antennas, or Magicom speech processors, contact AEA, P.O. Box 2160, Lynnwood, Washington 98036; phone (206) 775-7373.

Larsen Electronics expands Kulduckie line

Larsen Electronics, Inc., has added another Kulduckie antenna series to its rapidly growing line. The new Larsen KD-4 antenna series fits all radios using a BNC connector for antenna attachment, and is available in ranges of 136-174 and 406-512 MHz.

Larsen now has a Kulduckie antenna to fit all of the most commonly used hand-held radios. These antennas are ruggedly built to withstand the rough use common to this type of antenna. VHF and UHF models are spring wound for flexibility, and plated with high-conductivity material for maximum radiation efficiency.

They are protected from the elements by a tough, heavy duty coating which prevents detuning from shorting and adds flexibility. They handle a full 25 watts, and are flexible enough to bend 180 degrees in all directions.

For more information write Larsen Electronics, Inc., P.O. Box 1686, Vancouver, Washington 98668.

hand-held DVOM

Hickok Electrical Instrument Co. has introduced the LX304, the latest model in their LX series of hand-held DVOM's. Like the LX303, the LX304 features an easy-to-read, ½-inch high, 3½ digit LCD display; automatic polarity, zero and over-range indica-
A Note from the Ad Department

Dear Readers:

Did you know that ADVERTISING pays a big share of the cost of producing each issue of HR? It’s important that YOU tell our advertisers where you saw their ads. Therefore, when you have seen an ad in HAM RADIO — TELL THEM WE SENT YOU!

The result of all this is more of the kind of magazine you’ve overwhelmingly told us you want!

Jim, W1XU
Craig, N1ACH

Communications Specialists has introduced a programmable 12-tone encoder, model TE-12P, available in either sub-audible or burst-tone configuration.

In the sub-audible range, this encoder allows the programming of 12 standard frequencies from 67.0 Hz to 203.5 Hz. In the audible range, burst tones may be selected in the range of 1600 Hz to 2550 Hz in 50-Hz increments. Additionally, there are thirteen other frequencies available which may be used for either burst or test purposes.

This encoder is housed in a durable plastic case measuring 5.25 x 3.3 x 1.7 inches and is complete with mounting bracket and hardware. It may be powered by 6 to 30 Vdc, unregulated at 8 mA and provides a low-impedance, low-distortion, adjustable sine-wave output of 5 V p-p. Reverse polarity protection is built-in.

Programming each channel can be done in seconds. A five position DIP switch is furnished for each of the twelve channels and it is merely a matter of setting each switch to the proper ON and OFF positions to achieve a binary-coded frequency.

The output level is flat to within 1.5 dB over the entire range of frequencies selected. In the low-frequency range, the frequency accuracy is ±0.1 Hz and in the high-frequency range, the accuracy is within ±1.0 Hz. Sub-audible tones are designated as Group A tones and audible frequencies are Group B tones. No counter or other frequency measuring device is needed to set frequencies.

The TE-12P is priced at $89.95, wired and tested, complete with instructions. For more information write Communications Specialists, 426 West Taft Avenue, Orange, California 92667.

A 1980 edition of the RCA Solid-State Replacement Guide offering 1080 solid-state replacement devices which replace more than 161,000 domestic and foreign types is now available from RCA SK Device Distributors.

Published in January, the 1980 RCA SK Replacement Guide contains easy to read information on RCA’s full line of replacement transistors, rectifiers, thyristors, integrated circuits, and high-voltage triplers including many MRO (maintenance and repair operations) replacements. The guide also includes an index and a comprehensive data section with listings grouped according to type of de-
vice. Dealers can ask for the 368-page 1980 SK Guide at their local RCA distributor or they may send check or money order for $1.50 to RCA Distributor and Special Products, Post Office Box 597, Woodbury, New Jersey 08096.

overvoltage transient suppressors

Motorola has announced that it now supplies the recently introduced JEDEC-registered 1N6267 through 1N6303 series of zener overvoltage transient suppressors. The axial-lead, plastic packaged zener series is supplied over the standard zener diode voltage range of 6.8 to 200 volts, in both 5 and 10 per cent tolerances. These devices are rated for 1500 watts peak power dissipation for a 1 ms pulse, and 5 watts dissipation under steady-state conditions. Forward surge is rated at 200 amps for an 8 ms pulse. Maximum clamping voltage is also specified at rated reverse surge current.

The 1N6267 series is specifically designed to protect voltage-sensitive components such as TTL, CMOS, PMOS, NMOS, memories, power transistors, and other devices from destructive high-voltage transients caused by lightning, static discharge, and inductive switching. They are used in various applications such as power supplies, telecommunications equipment, industrial controls, instruments, medical electronics, communications equipment, and automotive electronics. Available now from your local Motorola Semiconductor distributor.

four-output, 5-MHz pulse generator

A new digital pulse generator has been introduced by the B&K-Precision Product Group of Dynascan Corporation. The generator, Model 3300, offers a frequency range of 5 MHz to 1 Hz and a pulse width of 100 ns to 1 s.
Four separate outputs are available. The first output is matched for 600 ohms and is intended for general purpose applications. This output offers adjustable dc offset and a maximum 30-volt p-p open-circuit output. A second output is matched for 50-ohm termination and permits pulse generation with a 15 ns rise or fall time. A TTL output is also provided for signal substitution in TTL circuitry. A full-width delay pulse output is also TTL compatible.

For analysis of digital circuitry, the 3300 outputs can be single pulsed. For interfacing two breadboarded circuits of different logic families, the 3300 can be used to shift pulse levels for compatibility. In this same way, distorted pulses can be reconstructed for operational tests. A pulse-burst capability allows the 3300 to be used as a signal source for testing counters and shift registers. The generator also can be used to frequency shift-key a function generator, such as the B&K-Precision Model 3010 or 3020.

Nine operating modes are offered on the 3300, including a pulse-delay mode, which allows the generator to be used with a conventional triggered scope to provide delayed-sweep operation. This allows the user to increase the usefulness of an existing scope without purchasing a delayed-sweep model. A fixed-delay mode is also provided for a quick set-up of scope delay.

For pulse generator operation, control over pulse period, delay, and width is fully independent. The controls for each have seven discrete steps, plus a continuous vernier adjustment. An LED warning indicator alerts the operator of any incorrect settings that might cause the generated pulses to overlap, thereby creating a dc level.

The 3300 comes in a compact case with a combination tilt stand/carrying handle. A 48-page operation and applications manual is included. Price is $325. For additional information, contact B&K-Precision, 6460 West Cortland Street, Chicago, Illinois 60635.
variable test load for rf power amplifier

A new, variable test load for rf power amplifiers and radio transmitters is available from Design Automation, Inc.

The Design Automation Model L10-5 is a 10.5 MHz variable test load that lets you determine if an rf power amplifier or radio transmitter can withstand arbitrary mismatched output loads without damage or spurious oscillation. Other standard test loads from 10 to 100 MHz are also available.

With a 50-ohm nominal transmission-line impedance, the L10-5 provides ten switch-selected values of SWR from unity to infinity (greater than 40), and continuously variable coverage of all 360° of reflection coefficient. Depending on SWR value, the test load can dissipate 5 to 20 watts.

The L10-5 is priced at $285. For more information contact Nathan Sokal at Design Automation, Inc., 809 Massachusetts Avenue, Lexington, Massachusetts 02173, or call (617) 862-8998.

Zulu II clock kit

The new six-digit Mobile/Fixed Station Zulu clock kit is now available from Bullet Electronics. The kit features quality G-10 plated and drilled PC boards, detailed step-by-step instructions with illustrations and schematics and all the required parts.

The kit is called the Zulu II, and has as standard features large 1/2-inch character LED readouts, quartz crystal and brightness control, noise-rejection circuitry, and a calendar on demand.

The Zulu II will be sold without a case for $16.95, or with an attractive injection-molded case in either blue or beige for $22.95. The addition of a small 12 Vac transformer allows standard ac operation. The kit is the result of numerous customer requests for a clock of this design.

ASTRON POWER SUPPLIES

- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE •

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continued shorted output.
- MAINTENANCE REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.
- VOLT & AMP METER on Models RS-20M & RS-35M

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ±0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mv peak to peak (full load & low line)
- REGULATION: ±0.05 volts no load to full load & low line to high line

Other popular POWER SUPPLIES also available: (Same features and specifications as above)

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (amps)</th>
<th>ICS* (amps)</th>
<th>Size (in.)</th>
<th>Shipping Wt. (lbs.)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
<td>$167.95</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
<td>$149.95</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 1/8</td>
<td>20</td>
<td>$99.95</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
<td>$74.95</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 3/4 x 6 1/2 x 9</td>
<td>8</td>
<td>$54.95</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 3/4 x 6 1/2 x 9</td>
<td>5</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

*ICS — Intermittent Communication Service (50% Duty Cycle)

If not available at your local dealer, please contact us directly.

ANTENNA MART

REMOTE CONTROLLED

ANTENNA SWITCHING ALLOWS YOUR FEEDLINE TO WORK FIVE TIMES HARDER

Antenna Mart's Model 50 allows instant switch selection of up to five antennas with a single feedline and a control cable between the operating position and the remote switch location. Eliminate the tangle of feedlines and manual switches usually associated with multiple antennas. Antenna Mart's Model 50 has a 3kw power rating, high-speed low-loss operation, rugged weather-proof construction and LED indication of antenna in use. Order factory-direct or write for complete information on our line of available models.

MODEL 50
Remote Antenna Switch
$150.00 + $3.00 shipping

ASTRON CORPORATION

1971 South Ritchey Street
Santa Ana, CA 92705
(714) 835-0682

june 1980
ERC Promises Up To The Minute State-Of-The-Art Design and Performance

Four Simultaneous Filters in One for Unparalleled QRM Free Reception (SSB & CW)
* Plus a Special Patented CW Processor *

The brand new SL-56 Audio Active Filter supercedes our SL-55 in both concept and performance. Consolidation of many components has allowed us to make 13 operational amplifiers (compared to 6 in the SL-55) into a filter guaranteed to out perform any other at a cost only slightly higher than the SL-55. The features of the SL-56 are so advanced from its predecessor that calling it the SL-55 is not justified. Unlike other filters that simply offer a choice of one or two filter types at a time (notch, bandpass, etc.) SL-56 provides what is really needed - the simultaneous action of a 6 pole 200 Hz fixed highpass filter and a 6 pole 1600 Hz fixed lowpass filter with a 60 dB notch which is tunable over the 200-1600 Hz range. This 3 filter combination is unbeatable for the ultimate in QRM free SSB reception. Adjacent channel QRM is eliminated on the high and low sides at the same time and does not introduce any hollowness to the desired signal. On CW the SL-56 is a dream. The lowpass, highpass and notch filters are engaged along with the tunable bandpass filter (400-1600 Hz) providing the needed action of 4 simultaneous filter types. The bandpass may be made as narrow as 14 Hz (3dB). Additionally, a special patented circuit follows the filter sections which allows only the peaked signal to "gate itself" through to the speaker or headphones (8-2000 OHMS). Receiver noise, ring and other signals are rejected. This is not a regenerator, but a modern new concept in CW reception. The SL-56 connects in series with the receiver speaker output and drives any speaker or headphones with one watt of audio power. Requires 115 VAC. Easily converted to 12 VDC operation. Coal black cabinet and wrinkle gray panel.

Warranted One Full Year Fully RFI Proof Fully Wired and Tested Available Now $79.00 Postpaid in the USA and Canada Virginia Residents Add 4% Sales Tax.
Attention SL-55 Owners: The Circuit Board of the SL-56 is Completely Compatiable with the SL-55 Chassis. Our Retrofit Kit is Available at $40.00 Postpaid.

Electronic Research Corp. of Virginia P. O. Box 2394 • Virginia Beach, Virginia 23452 • Telephone: (804) 463-2669

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with your CHANCELLIZER or your crystals. Priced from $69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95.

Now available in KIT FORM — GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95

Send for FREE 16 page catalog.

We welcome Mastercharge or VISA

GLB ELECTRONICS 1952 Clinton St., Buffalo, N. Y. 14206

Comments . . . on HORIZONS

"refreshing change"

"dedicated people who are really making an effort"

"better and better every month"

Want to see what they're talking about?

Subscribe to HORIZONS today

12 issues $12

new edition Of Kester Solder brochure

A new edition of Kester Solder's 12-page brochure covering its broad line of solders and fluxes has been published by the Litton Industries division.

The publication covers acid- and resin-cored solders, flux-cored silver-bearing solders, and radiator solder. Also included are Kester's half-pound spools of acid-core, solid wire, and "44" resin-core solders. Kester's handy package-goods solders, and other carded merchandise are featured too — metal mender, TV-radio solder, aluminum-repair solder, solder-paste flux, and related chemical products.

"Soldering Simplified" and "Questions and Answers about Soldering" are included in the brochure.

Copies are available on request to Mack Haraburtd, Vice President, Marketing, Kester Solder, 4201 Wrightwood Ave., Chicago, Illinois 60639.

A Chicago company for 81 years, Kester Solder is a leading manufacturer of quality solders and soldering chemicals and cleaners.

Fault Finder locates shorts and opens

The Fault Finder is a solid-state electronic device which, when used in conjunction with a standard clamp-on ammeter, aids in locating shorts or opens in automotive, marine, and aircraft electrical systems, or any other type of electrical system which operates in the range of 5 to 30 volts dc.

Operation is extremely simple. In an automotive electrical system for example, the Fault Finder is clipped into the circuit at the fuse block or at the battery and the clamp-on ammeter gives a direct indication of a short. Any ammeter deflection means a short exists in the circuit. No deflection, no short. Exact location of the short is accomplished by taking readings with the ammeter at various points in the circuit away from the...
battery or fuseholder. When no current is indicated, the short is known to be between that point and the last point at which current was indicated.

Location of open circuits is accomplished without the use of the ammeter. A puncture clip is provided for this purpose, and a red LED indicator lamp on the Fault Finder gives direct indication of voltage.

The Fault Finder requires no internal battery and comes with a one-year limited warranty at a suggested retail price of $79.95. A variety of clamp-on ac ammeter models are available at the manufacturer's suggested retail price less 15 per cent. Dealer inquiries welcome.

Contact Paul Brinegar, Trinity Electronics, Inc., 6001 North Michigan Drive, Kansas City, Missouri 64118; phone (816) 452-1045.

CW station identifier

Spectrum Communications' model ID1000 automatic morse CW station identifier is a 1-2 channel, stored-program unit designed to connect with any solid-state or tube-type base station or repeater transmitter. This new IDer features automatic identification of the station, either at completion of activity or at 15-30 minute intervals, built-in AC power supply, optional provision for 12-Vdc battery input with automatic switchover to special “Emergency Power ID.” CW tone pitch, speed, level, and time are adjustable.

The transmitted code signal is a pleasant sinusoidal note, and the unit has an output capacity of up to 6 volts p-p into a 600-ohm or greater load. A plug-in PMOM chip is used to store the memory. The unit is housed in a standard 19-inch rack mount.

The unit ensures full and automatic compliance with the FCC requirements of parts 89, 91, 93, and 95, as well as other applications. For further information, contact Spectrum Communications Corp., 1055 W. German-town Pike, Norristown, Pennsylvania 19401, (215) 631-1710.
TRW Semiconductors hears you. Really hears you. Because, while we have a very advanced technology environment, it's an environment emphasizing individuality and recognition. In fact, you could say we offer the best of both worlds — the visibility and freedom of a small division with the strength and resources of a major and highly respected corporation.

Using the very latest in engineering innovations and manufacturing techniques, TRW Semiconductors has established a firm position as worldwide leader in RF and Power semiconductor devices. That's where you come in. We can use your skills as Engineers or Technicians to keep us at the forefront of technology, and discover more and better ways to service our customers in fields such as Avionics, Computers, Mobile Radio, Cable TV, Microwave, Space and Communications.

So make yourself be heard, and make your capabilities pay off like never before. Just fill out our "fast-action resume," and let's talk.
flea market

RATES
Non-commercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS
Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY
No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE
15th of second preceding month

SEND MATERIAL TO:
Flea Market, Ham Radio, Greenville, N.H. 03048.

"NEED A NEW ONE? Write me. I can make or remake most meter or instrument faces. Rapid service, professionally executed work. Free info. Fraaga Technical Arts, 402 Willow Ave., Waukegan, Ill. 60085."

OSCILLOSCOPE: Tektronix model 541 30 MHz scope, without plug-in, $110. Ham, 118 Grand Canyon Dr., Los Alamitos, N.M. 87544. (505) 672-9396 after 6 pm.

STOP LOOKING for a good deal on amateur radio equipment — you've found it here — at your amateur radio headquarters in the heart of the Midwest. Now more than ever before! For less than you buy as important as what you buy. We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Icom, Denon, MFJ, Philex, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosier Service. HOOBIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

More Details? CHECK — OFF Page 94

-YEAESU — FT 101E, $450. Kenwood 2025 with AC and DC power supplies, $750. E. Kravit, WA4BHB, 103 C. Wellington CV, West Palm Beach, FL 33409.

WANTED: GE 4EG27410, 4EG29A10, 4EG29A11, GE General elements. Jim Arnold, N7A, 1122 E. Austin St., Giddings, TX 78942.

MOBILE HF ANTENNA 3.2-30 MHz inclusive, 750 watts PEP, center loaded, tuned from the base, eliminating coil changing or reducing from mount. Less than 1.5 to 1 VSWR thru entire coverage. $129.95 ea., plus shipping. Contact your local dealer, if you are not in area direct. Antec, Inc., Route One, Hanson, Idaho 83334. (208) 423-4100. Master Charge, and Visa accepted. Dealer and factory rep. inquiries invited.

TRANSMITTER TECHNICIANS — Voice of America has opportunities for qualified technician at VOA station near Delano, California, and Greenville, North Carolina. Duties include operations/maintenance of high power shortwave transmitters and facilities on shortwave basis. Minimum qualifications: 3 years chief broadcast engineer 5 to 10 kW, or 3-5 years supervisor of operations/maintenance of high power shortwave plant, or equivalent U.S. citizenship required. Starting salary $18,750. Submit standard Federal application form, SF-171, to: Voice of America, Agency, MG7 PDE (1-7B), Washington, D.C. 20547. An Equal Opportunity Employer.

SATELLITE T.V. . . . Build your own satellite receiving station. Quick and easy to construct. For more information write … Robert Colemen, RT, 3, Box 58-A, Travelers Rest, S.C. 29690.

CWSBB FILTERS: IC audio install in any radio, sharp CW, stagger tuned $55 — $15. SASE info: W8CBB, 80W, Menomonee Falls, WI 53052.

SOLAR PANELS: 500 MA. 17v open circuit. 32 - 2.2" cells on 1/8" fiberglass plate, potted in silicon. Slight mechanical imperfections, electrically perfect. 4 panels, $125 each. Send check or money order to James Zubrecky, 118 Grand Canyon Dr., Los Alamitos, N.M. 87544. (505) 672-9396 after 6 pm.

SOLD: FM Antenna, 100', 92.5' mounted on Ladder, $250. DoD, 306 Vernon Avenue, Vernon, Connecticut 06066.

RECONDITIONED TEST EQUIPMENT for sale. Catalog $.50. Walter, 2697 Nickel, San Pablo, CA 94806.

WANTED — Instructor Ham Radio, N.Y.S. Co-ed Children's Sleep-away Camp. Write Camp Kiddie Ring, 45 East 33rd St., New York, NY 10016.

THE MOR-GAIN HD DIPLOES are most advanced, highest performance multiple-band HF dipole antennas available. Patented design provides length one-half of conventional dipoles. 50 ohm feed on all bands, no tuner required. Sponsors non-profit organizations receive one free Flea Market ad. $18,760. Submit standard Federal application form. (913) 682-3142.

FLEA MARKET SPECIALS: Small family owned business. All items in excellent condition. All hams welcome. We have a comprehensive background in the recording, maintenance, and field work necessary to achieve $124.18 per hour depending on qualifications. U.S. citizenship required. Submit standard Federal application form, SF-171, to: Voice of America, Agency, MG7 PDE (1-7B), Washington, D.C. 20547. An Equal Opportunity Employer.

I
Day tapro Electronics. Inc.
on all products we carry
24
Brand name.
UHF
COMMUNICATION
3029
2MwFMaSSBknpMh
N.
More
ar&*
ALa
7.648
SHlPMg
Details?
line
Modd
Scpt.
DqRon.ONo45120
brings catalog
components Stocked
(5W)
79 QST
BRINGS CATALOG
components Stocked
(5W)
296-1411
w
CALIFORNIA: will hold its annual hamfest and flea market on June 8th at Santa Fe Park, Iowa
ILLINOIS: The Jacksonville Area Amateur Radio Club will hold its annual hamfest and flea market on June 15th, at the Morgan County Fairgrounds, Jacksonville.
 Indoor facilities, food available. Talk in on 3052. Ticket $1.50 each or 4 for $5.00. Contact: Ken Gotsch, 213 Brookside, Jacksonville, IL 62650.
 MICHIGAN: The annual Monroe County Radio Communications Hamfest is June 26th, from 8 a.m. to 4 p.m. at Monroe Community College, Monroe. Tickets $1.50 — Xyl's and children free. Free parking. Plenty of table space — contest, auction, displays. Talk-in on 146.1379 and 52. Contact: Fred Lux, WDIOTZ, P.O. Box 982, Monroe, MI 48161 or (313) 243-1086.
 OHIO: The annual Wood County Ham-A-Rama will be held on June 26th at the Wood County Fairgrounds, Bowling Green. Gates open at 10 a.m. with free admission and parking. Talk-in on 146.73 W6RAB and 146.52 simplex. More info by calling Wood County A.R.C., c/o C. Falls, 201 Martendale, Walbridge, OH 43465.
 NEW JERSEY: The Raritan Valley Radio Club's annual hamfest and electronic flea market, June 21st from 8 a.m. to 4 p.m. at Columbia Park, Dunellen, Club calls W3GQW and W6RC4. For details write: VRIV, RD 3, Box 317, Somerville, NJ 08873, or call (201) 356-6435. Talk-in: 146.0255/525. 146.52 simplex. Tickets $2; sellers $3.
 OHIO: The Champaign-Logan Amateur Radio Club's annual hamfest, Saturday, June 26, at the Memorial Hall, Belle Center. Tickets $1.50 advance, $2 at door; trunk and table space is $3.00. Talk-in on 146.52 simplex. More information by calling (513) 596-3141.
 VIRGINIA: The Gie Virginia Hams A.R.C. of Manassas announces its "Quality Hamfest" for June 1st, Prince William County Fairgrounds — ¼ mile south of Manassas. Admission $3 — children under 12 free; tailgate $2 additional per vehicle. Indoor and outdoor exhibits, clinics, programs, breakfast and lunch available. Talk-in on 3707 and 52 simplex. For more information write: Dick Fredrickson — W7MPF/2, 1511 Sudley Manor Drive, Manassas, VA 22110.
 ILLINOIS: The annual ABC Hamfest sponsored by the Six Meter Club of Chicago, will be held on Sunday, June 8th, at the Funks Grove State Park, Funks Grove, Illinois. Picnic grounds, displays, swapper's row, refreshments available — tickets in advance $1.50, at gate $2. Talk-in on 146.54 FM or W6RAB 37-97 (PL2A). For tickets write: Val Hellwig, KSZW, 3420 South 60th Court, Cicero, IL 60650.
 WEST VIRGINIA: The Tri-State Amateur Radio Association's Hamfest at the Huntington Civic Center, Huntington, Commercial and flea market space still available. Many activities planned for both amateurs and non-amateurs including banquet and a car show, Saturday night. Admission $3 for both days. Talk-in on 148.04146.04. For further details write: The Tri-State Amateur Radio Association, Box 30927, Huntington, WV 25704.
 NEW YORK: W2JHD will be taking calls on June 14th from 10 a.m. to midnight EDT for special QSL cards commemorating the sesquicentennial of the town of Amity. Call CO centennial on 3915 QRM.
NEW HAMPSHIRE: The Mount Moriah Repeater Society will hold a DXpedition at Mystery Hill, North Salem on June 7 & 8 from 1992 Saturday until 1992 Sunday. Mystery Hill is a 4000 year old astronomical observatory and pre-historic temple. Frequencies: Phone - 3960, 7210, 14280, 21380, 28580, 146.52; CW - 3950, 3710, 7110, 14050, 21050, 21110, 28150 — call sign: KIMDX. For certificates send legal size SASE to K1RCT, P.O. Box 123, North Salem, NH 03073.

TEXAS: Ham-Com is hosting the West Gulf Division ARRL Convention at the North Park Inn, Dallas, on June 6, 7 & 8. For reservations write Ham-Com, Inc., Box 29340, Dallas, TX 75229 or call Tom Gentry at (214) 620-2784 and he will sign you up.

PENNSYLVANIA: The Milton Amateur Radio Club's Hamfest will be held June 6-7 of the Allenwood Firemen's Fairgrounds on U.S. Rte. 15, Allenwood, from 8 a.m. to 5 p.m. Sellers' tickets in advance $2.50 - $3 at gate. YL's and children free. Prizes, contests, food and beverages. Talk on 379/7 and 52 simplex; club calls: K3FLT, WR3ADL. For further details call or write: Kenneth E. Hering, W3JU (P. O. Box 51), Box 361, Allenwood, PA 17810, (717) 536-9260.

MARYLAND: Frederick A.R.C. Hamfest, June 15th, at the Frederick Fairgrounds, East Patrick Street. Grounds open 6 a.m. for commercial and tailgating; breakfast available. Hamfest open 8 a.m. for general admission; donation $3 and $2 extra for tailgating; YLs and children free. Plenty food, drink, parking. Talk in K3ERM 146.52 simplex. For more information, write Mike Staley, WB3JJK, New Market, MD 21774; or Hamfest Committee, P.O. Box 1260, Frederick, MD 21701.

WEST VIRGINIA: QSO party, from 1600 to 21 June 2 to 16002 22 June, with no operating time limits. One contact for each station per band. Exchange QSO number, report, county (W.Va only), state or country. Only one unassisted operator per station for award. Multiplier for QRP. Send logs to West Virginia QSO Party, Route 1-A, Box 6-A, Moorefield, West Virginia 26836.

PENNSYLVANIA: The Broadcasters' Amateur Radio Club will conduct its Hamfest on July 13th from 9 a.m. to 4 p.m. at the Peccono Race Track, Rt. 315, Wilkes-Barre. Unlimited outdoor and indoor space, refreshments, prizes, admission $2.50 ---- XYL's and children free. Limited additional charge for sellers. Gates open at 8 a.m. for set-up. Talk in 146.66 and 146.52. Contact: Charles Baltimore, WA3NUT (717) 823-3101; B.A.R.C. 62 S. Franklin St., Wilkes-Barre, PA. 18773.

"I find Amateur Radio is less complicated, much cheaper, and far less taxing than my former hobby."

C. L. PETERS, KADNJ, Director
Oak Hill Academy Amateur Radio Session
Mouth of Wilson, Virginia 24363

Name __________ Call __________

Address __________

City/State/Zip __________

July 26 thru August 8, 1980
Our 21st year of successful teaching
Boost your Ham Skills on the Blue Ridge
"A Vacation with a Purpose"
Two weeks saturation learning program
in Amateur Radio:
- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra
Expert Instruction starting at your level.
Cade and Theory in depth along with Friendly Amateurs, Who Care About You.

C. L. PETERS, KADNJ, Director
Oak Hill Academy Amateur Radio Session
Mouth of Wilson, Virginia 24363

Name: ___________________________ Call: ____________

Address: ____________________________

City/State/Zip: ____________________________

MODEL 4381 RF POWER ANALYST
This new generation RF Wattmeter with nine-mode system versatility reads...
IN STOCK QUICK DELIVERY
AUTHORIZED DISTRIBUTOR

WEBSTER ASSOCIATES
115 BELLARME
ROCHESTER, MI 48063

CALL TOLL FREE
800-521-2333
IN MICHIGAN 313-375-0420

S-LINE OWNERS
ENHANCE YOUR INVESTMENT
with TUBESTERS
Plug-in, solid state tube replacements
- S-line performance—solid state!
- Heat dissipation reduced 60%
- Goodbye hard-to-find tubes
- Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for as long as you own your S-line.

SKYTEC
Box 535
Talmage, CA 95481
Write or phone for specs and prices.
(707) 462-6882

SYNTHESIZED SIGNAL GENERATOR

- Covers 100 to 179 MHz in 1 kHz steps with thumb-wheel dial
- Accuracy ±0.001% at all frequencies
- Internal frequency modulation from 0 to over 100 Hz at a 1 kHz rate
- Spurs and noise at least 60dB below carrier
- RF output adjustable from 50 to 500mv across 50 ohms
- Operates on 12vdc @ 1/2 amp
- Price $299.95 plus shipping
- In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2520

VANGUARD LABS
196-23 Jamaica Ave. Hollis, NY 11423

DIPOLE ANTENNA CONNECTOR
HY-QUE 100G Dipole connector has coax SC-290 socket molded into glass filled plastic body to accept coaxial plug and accept any of the common size spring contacts. Can be used as a straight-through dipole connector or as a low loss dipole antenna cable connector. When used as an antenna connector, it is also a coaxial adapter. Price: $5.00 each.

BUDWIG MFG. CO., Box 829, Ramona, CA 92065
Ca. Res. add 6.5% Sales Tax

NOT A SUBSCRIBER?
DO IT TODAY!
Use the handy card between pages 92 & 93.
In fact, each V-J Products 2 meter amplifier is HAND WIRED. The model 110 with 140 watts out, or the V-80 with 80 watts both feature parasitic coils delicately hand balanced to resonance. And each unit is individually tested and burned in. The heat sink, which totally surrounds each unit, insures cool operation with the cleanest FM or SSB signal on the air. Warranty? You Bet! 90 days on the power transistors and 1 full year on all other components. You can buy a 2 meter amplifier anywhere, but the V-J Products model 110 and V-80 are only available at:

Call for quote!

MADISON Electronics Supply, Inc.
1506 McKinney, Houston, Texas 77002, (713) 658-0268

Ask about the V-J 30 amp Power Supply coming soon

NEXT MONTH IN JULY

HAM RADIO HORIZONS

* Field Day
* Surplus Gold Mine
* DX Lessons
* Ham Radio Techniques
* And More . . .

You’re missing an exciting magazine if you don’t subscribe to Ham Radio Horizons. Try a subscription today. It’s backed by our money back guarantee.

12 issues just $12.00

HAM RADIO HORIZONS
GREENVILLE, NH 03048

More Details? CHECK — OFF Page 94

June 1980
there's nothing like it at any price

MORSE PAK-B $350.00

with all the receive features of MORSE PAK-A, it also is a complete MORSE KBD

Features include:
1. Speed set from KBD 5 to 80 wpm
2. Defeatable side tone
3. 40 key full travel KBD
4. 16 character transmit buffer
5. Displays received and transmitted text
6. Same excellent MORSE PAK-A receiver and demodulator
7. Relay keyed output for complete compatibility
8. Unbelievable price $350
 plus $5 shipping

MORSE PAK
604 MARCELLA PL. NE
ALBUQUERQUE, NM 87123
505/293-3553

NEW! 5-Band Trap Dipole (80 thru 10 Meters)

Power rated 2kW PEP, approx. 110-ft span

Complete with wire, traps, end insulators, 50 ft RG-8/U, PL-259 connector, heavy duty cast aluminum and steatite center connector.

At your B&W dealer.

4-Band (40 thru 10M), 55 ft model 370-13 also available, pre-assembled only.

B&W Made in Bristol, Pennsylvania, by Barker & Williamson Inc.

10 Canal Street □ Bristol, PA 19007

2 watts QRP go a long way!

☐ Rockhound®
Two full watts CW output. Choose 40 or 80 meter models. Weighs less than 6 ounces. Crystal control, 12-15 VDC. $25.95

☐ 8040 B
Covers the Novice portions and more on 40 and 80 meters for CW receiving. Only 3" by 5" by 7" and 24 ounces! $69.95

☐ Freedom®
Free yourself from crystals with this VFO for 40, 80 and 15 meters. Great for many old transmitters! $64.95

Please add $2 per order, or $3 for combinations, for shipping/handling.

Kantronics
(913) 842-7745
1202 E. 23rd Street
Lawrence, Kansas 66044

MOVING?
KEEP HAM RADIO COMING...

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

ham
radio
Magazine
Greenville, NH 03048

Thanks for helping us to serve you better.

Here's my new address:

Name
Address
City
State
Zip

AFFIX LABEL HERE

More Details? CHECK—OFF Page 94
ELECTRONIC COMMUNICATION (4th Edition)
by Robert L. Shrader
This popular volume presents, as simply as possible, the practical basic theory of radio and electronics. In wide use as a college and technical school text, Electronic Communication is based on the latest sample questions from FCC Commercial Operator License Exams and Amateur Exams, rearranged into a more effective teaching and learning order. The author also provides checkup quizzes every few pages to greatly reinforce learning. Its bold face type and multiple diagrams make it a pleasure to read. With careful, independent home study, this book will enable you to pass any FCC Amateur, Commercial Radiotelephone or Telegraph license exam including the radar and broadcast endorsements. 783 pages. ©1980
□MH-57138 Hardbound $19.50

80 METER DXING
by John Devoldere, ON4UN
Going for 5 Band DXCC or just looking for a new DX challenge? This is positively the last word on working 80 meter DX. The author combines his many years of 80 meter operating experience with that of others to produce chapters on propagation, antenna systems, station equipment and international operating practices peculiar to 80 — all in a handy scrapbook format. What are the best times to be on? What’s the best antenna? You’ll find answers to these and many more 80 meter questions. 80 pages. ©1978

□HR-80M Softbound $4.50

AMATEUR SINGLE SIDEBAND
Originally by The Collins Radio Company
Ham Radio in cooperation with The Collins Radio Group has reprinted what many consider "the bible on Amateur single sideband." This softbound edition features an introduction to SSB, nature of SSB signals, excitors, RF linear amplifiers, SSB receivers, tests and measurements, and what comprises an Amateur SSB station. Absolutely THE finest publication available on SSB. 143 pages. ©1977.
□HR-SSB Softbound $4.95

PRACTICAL ANTENNAS
From the folks at SCELBI, PRACTICAL ANTENNAS is not quite like any of the other ham antenna books. Written by a knowledgeable DX er, this new book is chock-full of helpful hints and suggestions on the how-to’s of putting up a super antenna system. Chapters include information on design and construction of practical Yagis, quads and wire type antennas. Inside you’ll also find a complete bibliography of antenna articles from the popular amateur publications. Charts and tables are designed to eliminate all those tricky calculations. And, SCELBI has included a list of computer generated beam headings from major population centers to all the countries of the world. A new format, large easy-to-read text and durable vinyl cover make PRACTICAL ANTENNAS a "must" for every amateur library. ©1979
□SC-PA $9.95

GREGORY ELECTRONICS
The FM Used Equipment People.
SAVE TIME & MONEY!
Shop By Mail

1980 U.S. RADIO AMATEUR CALLBOOK
Crammed full of the latest addresses and QSL information.
You'll find • Boldface calls, names and addresses for every
licensed Amateur in the U.S. • A list that's more accurate
than the FCC's • Slow Scan TV directory • The latest ARRL
countries list • International Postal info • QSL Managers from
around the world • Standard time charts • A complete census
of international Amateur population • PLUS MUCH, MUCH
MORE! A super value at an amazingly low price. The 1980
Callbook is a perfect gift for friends or for yourself. ©1979
□CB-US
Softbound $16.95

THE 1980 FOREIGN CALLBOOK
DXing is a real joy, but it's even better when you get back QSL cards from
the countries you've worked. The most important tool in getting those cards
is to have a copy of the 1980 Foreign Callbook on your operating table. Sta-
tions are listed by country, call, name and address in bold, easy-to-read
type. You also get: Great Circle Beam headings from major U.S. cities,
International Postal information, DXCC Countries List, Worldwide QSL
bureaus, Standard time charts and more. Get the DX information you want,
when you want it. Order today. ©1979.
□CB-F
Softbound $15.95

1980 ARRL HANDBOOK
Internationally recognized and universally consulted, every amateur should
have the latest edition of the ARRL Radio Amateur's Handbook. The new
Handbook covers virtually all of the state-of-the-art developments in
electronics theory and design. Novices will find it to be an indispensable
study guide, while the more advanced Amateur will enjoy the many new
projects.
□Order AR-H880
□Order AR-B880
Softbound $10.00
Hardbound $15.75

RADIO ANGELS
by Paul Jerome Stack, W61IPF
This exciting book depicts the heroic, glorious efforts of Amateurs around
the world serving their fellow man during the times of need. Daring res-
cues, emergency assistance and human compassion all in one super
volume. This book was over two years in the making. Get your thrilling
copy now! 160 pages. ©1978.
□HR-RA
Softbound $4.50

GOING SAILING WITH AMATEUR RADIO
Are you into sailing? Then you need Going Sailing — an extremely helpful
book, especially for the boating and yachting enthusiast who wants to
incorporate Amateur Radio in his ship's gear. Whether it is just for fun or
safety measures, bringing Amateur Radio aboard makes a lot of sense. Next
time you're headed for sea, take Amateur Radio and a copy of this great
new book for long-range radio communications. 64 pages. ©1978.
□HR-GS
Softbound $3.95

THE GOLDEN YEARS OF RADIO
This exciting book from The Ham Radio Publishing Group captures the new
excitement (and the frustrations) of the glorious bygone days of Radio's
early years... the discoveries, people and events. You can dig into radio's
past with this fine book and gain insight into Amateur Radio's heritage. 64
pages. ©1978.
□HR-GYR
Softbound $3.95

ANTENNA BOOKS by Bill Orr, W6SAI
ALL ABOUT CUBICAL QUAD ANTENNAS
The cubical quad antenna is considered by many to be the best DX antenna
because of its simple, lightweight design and high performance. In Bill
Orr's latest edition of this well known book, you'll find quad designs for
everything from the simple element to the multi-element monster quad, plus
a new, higher gain expanded quad (X-Q) design. There's a wealth of suppl-
imental data on construction, feeds, tuning, and mounting quad
antennas. It's the most comprehensive single edition on the cubical quad
available. 112 pages. ©1977
□RP-CQ
Softbound $4.75

SIMPLE LOW-COST WIRE ANTENNAS
Learn how to build simple, economical wire antennas. Even if you don't
know a feedline from a feed-through, W6SAI will get you on the air with an
effective low-cost wire antenna. A great book for the ham who wants
something new and simple. ©1976
□RP-WA
Softbound $5.95

BEAM ANTENNA HANDBOOK
Here's recommended reading for anyone thinking about putting up a yagi
beam this year. It answers a lot of commonly asked questions like: What is
the best element spacing? Can different yagi antennas be stacked without
losing performance? Do monoband beams outperform tribanders? Lots of
construction projects, diagrams, and photos make reading a pleasurable
and informative experience. 196 pages. ©1977.
□RP-BA
Softbound $4.95

THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, W6SAI and Stuart Cowan, W2LX
If you are pondering what new antennas to put up, we recommend you read
this very popular book. It contains lots of well illustrated construction proj-
ects for vertical, long wire, and HF/VHF beam antennas. But, you'll also
get information not usually found in antenna books. There is an honest
judgment of antenna gain figures, information on the best and worst anten-
a locations and heights, a long look at the quad vs. the yagi antenna,
information on baluns and how to use them, and some new information on
the increasingly popular Sloper and Delta Loop antennas. The text is based
on proven data plus practical, on-the-air experience. We don't expect you'll
agree with everything Orr and Cowan have to say, but we are convinced
that The Radio Amateur Antenna Handbook will make a valuable and often
consulted addition to any Ham's library. 190 pages. ©1978
□RP-OL
Softbound $6.95

THE WORKS: ALL FOUR BOOKS
$22.60 VALUE — JUST $18.95
□RP-OL
FOUR BOOKS $18.95
KANTRONICS THEORY CASSETTE

Here's a new, easy way to study theory for your Novice, General, Advanced or Extra class exam. Designed for folks on the run. All you have to do is drop in the cassette at home, work, or in the car and listen to an interview-style tape covering Novice, General, Advanced or Extra class theory. A great way to reinforce other study methods. Order Tapes:

- KT-NT Novice Class Theory Cassette
- KT-GT General Class Theory Cassette
- KT-AT Advanced Class Theory Cassette
- KT-ET Extra Class Theory Cassette

Send me the books I've checked below.

<table>
<thead>
<tr>
<th>ORDER FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB-US $16.95</td>
</tr>
<tr>
<td>AR-H880 $10.00</td>
</tr>
<tr>
<td>AR-B880 $15.75</td>
</tr>
<tr>
<td>RP-BA $4.95</td>
</tr>
<tr>
<td>RO-OR $7.95</td>
</tr>
<tr>
<td>CO-PH $7.50</td>
</tr>
<tr>
<td>DB-FE $9.95</td>
</tr>
<tr>
<td>KT-AT $4.95</td>
</tr>
</tbody>
</table>

Check or money order enclosed. VISA or Master Charge. Acct. # Exp. Date

Mail payment and order form to: am Radio's Bookstore
Greenville, NH 03048
Advertisers

...for literature, in a hurry—we'll rush your name to the companies whose names you "check-off"

INDEX

AED ______ 710
AIA ______ 677
Alaska Microwave ___ 826
Alumax ______ 898
Amitron ______ 906
Antenna Mart ______ 809
Antenna Pros ______ 114
Antarctic Surf ___ 799
B & B Precision ______ 799
Barber & Williamson ______ 115
Barry ___ 217
Bauman ___ 629
Bell ___ 817
Budwig ___ 233
Comm. Concepts ______ 797
Comm. Spec. ______ 136
Curtis Electronics ___ 713
DCO ______ 234
DX Eng. ______ 222
Dave ___ 403
Daytropa ______ 455
Design Marketing ___ 455
Digitrex ______ 382
E. T. O. ________
Elec. Research Virginia *
Eng. Consulting ___
Fox-Tango ______ 667
G & C Comm. ______ 754
GLB ______ 552
Gregory ___
Hal ___ 254
H. R. Bookstore ______ 150
Horizons ___
H. R. Magazine ___
Heath ___
Henry ___ 062
Hickok ___ 408

*Please contact this advertiser directly.
Limit 15 inquiries per request.

June, 1980

Please use before July 31, 1980

Tear off and mail to:
HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03018

NAME ______________

CALL ______________

STREET ______________

CITY ______________

STATE ______________

ZIP ______________

JUNE JOULES

ALPHA 76, 374, 76 in Stock Call
Cushcraft "boomer" $69.95
OMNI-J 2 Meter Antenna $39.95
Bird 43 and slugs, UPS paid in USA, stock
Microwave Modules, Less 10% off list
stock
Telrex TBSE, in stock $415.00
Telrex TB6EM $520.00
Complete Line Monobanders stock
New Telex TB5ES, 2KW PEP version $315.00
New Palomar Transceiver preamp $89.50
Benchy Paddles, Standard $39.95
Benchy Paddles, Chrome $49.95
Vibraplex Paddles and bugs stock
SUN 6M-220 In-line Freqmats stock
Janel OSA-5 $41.95
HAM-X Tailwinder Rotor $239.00
HAM-4 Rotor $169.00
Cetron or GE 572B $32.00/ea
GE, AMPEREX, Raytheon 6146B $8.95
Motorola HEP-170 $0.29
Mallory 2.5A/1000 PIV Epoxy diode
0.19
Silver 70MF/450VDC Cap $2.50
Aerovox 1000PF/500V Feedthru Cap 1.95
Adel Nibbling Tool $8.45
Technical books: Amero, ARRL, Sams,
TAB, Rider, Radio Pub., Callbook,
Cowan, WRTVH, etc. $5.00
Call
New Belden 9405 (6/10 ft) $8 wire Rotor cable, heavy duty for
long runs $0.38/ft
8440 8 wire Rotor Cable $0.24/ft
9688 Double Shield PG8 Foil $0.56/ft
8214 RG8 Foil $0.32/ft
2373 RG8 Regular $0.28/ft
8527 RG213 $0.36/ft
9251 RG3 A/U $0.42/ft
Belden #8000 14GA $0.65/ft
Stranded Antenna wire $0.10/ft
Amphenol Silverplate PL259 (8191P) $1.00
Berksex RG8X 50OHM, KW $0.19/ft
Robot "Slow Scan" 400 $549.00
Need a schematic?
We've got em — $2.00

ICOM IC 2A HANDHELD
W/TTP, battery pack, Rubber Duck
and charger $229.00
Looking for antique parts?
Write specific need to WSGJ.

THIS MONTH S SPECIALS:
New IC701, AC, Mic $1195.00
New ICOM, IC25A $2M $599.00
IC551D $6M-100W $599.00
IC551 $399.00

Denton GLA1000B $295.00
Denton Clipperont L $599.00
Bearcat 250 $299.00
Bearcat 300 $399.00

M3ATHERCHARGE • VISA

All prices fob Houston except where indicated. Prices subject to change
without notice, all items guaranteed. Some items subject prior sale. Texas
residents add 6% tax. Please add postage estimate $1.00 minimum.

ADVERTISERS INDEX

AED Electronics ______ 95
Advanced Electronics Applications ______ 91
Alaska Microwave Labs ______ 86
Aminco Tower Co. ______ 87
Amitron Associates ______ 80
Antenna Mart ______ 81
Astron Corporation ______ 81
Atlantic surplus Sales ______ 50
Barber Electronics ______ 32
Barry Electronics ______ 86
Bench, Inc. ______ 50, 80
Biel Company ______ 96
Budwig Mfg. Co. ______ 88
Communications Concepts, Inc ______ 87
Communications Specialists ______ 10, 11
Curis Electronics ______ 67
DCC, Inc. ______ 67
DX Engineering ______ 86
Dave ___ 88
Daytropa Electronics ______ 87
Design Marketing ______ 84
Digi-Tex Electronics ______ 86
Elbron Technological Operations ______ 67
Electronic Research Corp. Of Virginia ______
Engineering Consulting Services ______ 86
Fox-Tango Corp. ______ 89
G & C Communications ______ 84
GLB Electronics ______ 82
Gregory Electronics ______ 91
Ham Communications Corp. ______
Hale-Trotox ______ 64
Ham Radio’s Bookstore ______ 50, 57, 80, 91, 92, 93
Ham Radio Horizons ______ 82, 89
Ham Radio Magazine ______ 78, 89, 90
Henry Radio Stores ______
Cover II
Icom ______ 5
International Crystal Mfg. Co. ______ 79
Jameco Electronics ______ 41
Jones, Marvin P. & Associates ______ 65
Kentronics ______ 90
Tri-Kenwood Communications, Inc. ______
48, 49
Larsen Antennas ______ 67
Long’s Electronics ______ 96
MFJ Enterprises ______ 4
MHz Electronics ______ 74, 75
Madison Electronics Supply ______ 88
Microcraft Corporation ______ 83
Morse Pak, Inc. ______ 90
N-PRO ______ 77
Oak Hill Academy Amateur Radio Session ______
88
P-C Electronics ______ 67
Palomar Engineers ______ 57
Pipo Communications ______ 50
Radio Amateur Callbook ______ 79
Radio World ______ 90
Ramsey Electronics ______ 45
SEANARC ______ 69
Skyscan ______ 88
Space Electronics ______ 50
Spectronics ______ 95
Spectrum International ______ 56
TRW Semiconductors ______ 84
Tens Labs ______ 63
Ten-Tec ______ 69
Vanguard Labs ______ 88
Varian, Elmac Division ______
Webster Associates ______ 88
Western Electronics ______ 83
Wilson Systems, Inc. ______ 1
Yaesu Electronics Corp. ______
Cover III

MADISON ELECTRONICS SUPPLY, INC.

1508 McKinney • Houston, Texas 77002
713/658-0268

SAM+9622280

50.57.86.91.92.93

50.57.86.91.92.93

50.57.86.91.92.93

50.57.86.91.92.93

50.57.86.91.92.93

50.57.86.91.92.93

50.57.86.91.92.93
LISTEN
WITH THE SONY ICF-6700W GENERAL COVERAGE RECEIVER

- All-Band Digital Display
- .5-30 MHz AM/SSB/CW & FM
- SW Pre-Tuning for High Sensitivity & Selectivity
- RF Gain Control for Low Distortion SSB/CW
- AC/DC Power

PHONE: (312) 848-6777

SPECTRONICS, INC. — 1009 GARFIELD ST., OAK PARK, ILL.-60304

More Details? CHECK — OFF Page 94
New from KENWOOD!
TR-7800 2m FM transceiver
Kenwood's TR-7800 2m FM mobile transceiver provides all the features you could desire for maximum operating enjoyment. Features include 16 multifunction memory channels - easily selectable with a rotary control, internal battery backup for all memories, priority alert, auto scan, up/down manual scan mic, 2 separate digital readouts, and built-in autopatch DTMF (touch-tone) encoder. Freq. coverage: 143.9 - 148.995 MHz, in switchable 5kHz or 10kHz steps. Power output: 25 watts (Hi) / 5 watts (Low). Mobile mounting bracket included.

399.95 List. Call for quote.

ORDER TODAY!

KENWOOD HS-5
deluxe headphones
Get private listening enjoyment with the HS-5 headset. An extremely comfortable and durable headset with 8 ohm impedance. Compatible with most amateur transceivers. 39.95 Call today.

KENWOOD PC-1
phone patch
A matching phone patch for Kenwood equipment. Features NULL control, TX gain control, and a VU meter. Interconnects the transmitter, receiver, and telephone line voice coupler. 59.95 Call today.

NEW! KENWOOD HC-10
World Clock
With 2 separate digital displays, shows time in both GMT and local, gives date, day of week, and can memorize starting time of QSO. Able to program 2 different time zones of any 2 countries. Displays time of 10 designated cities around the world. 99.95 Call today.
The introduction of the "WAYFARER" by Yaesu is the beginning of a new era in compact solid state transceivers. The FT-707 "WAYFARER" offers you a full 100 watts output on 80-10 meters and operates SSB, CW, and AM modes. Don't let the small size fool you! Though it is not much larger than a book, this is a full-featured transceiver which is ideally suited for your home station or as a traveling companion for mobile or portable operation.

The receiver offers sensitivity of 0.25 uV/10 dB SN as well as a degree of selectivity previously unavailable in a package this small. The "WAYFARER" comes equipped with 16 poles of IF filtering, variable bandwidth and optional crystal filters for 600 Hz or 350 Hz. Just look at these additional features:

FT-707 with Standard Features
- Fast/slow AGC selection
- Advanced noise blanker
- Built-in calibrator
- WWV/JJY Band
- Bright Digital Readout
- Fixed crystal position
- 2 auxiliary bands for future expansion
- Unique multi-color bar metering—monitors signal strength, power output, and ALC voltage.

FT-707 with Optional FV-707DM & Scanning Microphone
- Choice of 2 rates of scan
- Remote scanning from microphone
- Scans in 10 cycle steps
- Synthesized VFO
- Selection of receiver/transmitter functions from either front panel or external VFO
- "DMS" (Digital Memory Shift)

Impressive as the "WAYFARER" is, its versatility can be greatly increased by the addition of the FV-707DM (optional). The FV-707DM, though only one inch high, allows the storage of 13 discrete frequencies and with the use of "DMS" (Digital Memory Shift) each memory can be band-spread 500 KHz. These 500 KHz bands may be remotely scanned from the microphone at the very smooth rate of 10 Hz steps.

The FT-707 "WAYFARER" is a truly unique rig. See it today at your authorized Yaesu Dealer.
Eighteen Continental superpower transmitters use EIMAC megawatt tetrodes for long life and reliability.

On the air now.
Continental Electronic's new superpower broadcast transmitters are on the air at four overseas sites providing extended coverage and 24 hour operation.

These rugged transmitters provide a fully modulated carrier output of one or two megawatts. Each transmitter bay employs one EIMAC X-2159/8974 tetrode as a carrier tube and a second X-2159/8974 as a peak tube. An EIMAC 4CW25,000A serves as a driver and three 4CW25,000As are used in a cathode follower class-A modulator stage.

Fourteen transmitters are now in service and four more will follow shortly. This speaks well for Continental's transmitters design and for their choice of long life EIMAC power tubes.

Contact EIMAC today for tomorrow's transmitter.
Follow Continental Electronics selection of EIMAC power tubes for your next transmitter design. From VLF to VHF, make EIMAC your choice. For full information write Varian, EIMAC Division, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.