SEPTEMBER 1979

- repeater antenna design 20
- microwave frequency counters 34
- two-band vertical for 40 and 75 meters 44
- electronic keyer speed readout 60
- duplex audio generator 66
This S-1 was in a motorhome that was totally destroyed by fire. When the owner probed around in the ashes he found his S-1 burned almost beyond recognition. BUT STILL OPERATING. Since then we cleaned it up, replaced the case and controls, tuned it, and now it's back on the air...as good as new.

The Tempo line also features a fine line of extremely compact UHF and VHF pocket receivers. They're low priced, dependable, and available with CTCSS and 2-tone decoders. The Tempo FMT-2 & FMT-42 (UHF) provide excellent mobile communication and features a remote control head for hide-away mounting. The Tempo FMH-42 (UHF) and the NEW FMH-12 and FMH-15 (VHF) micro hand held transceivers provide 6 channel capability, dependability plus many worthwhile features at a low price. FCC type accepted models also available.

Please call or write for complete information. Also available from Tempo dealers throughout the U.S. and abroad.

SPECIFICATIONS
- Frequency Coverage: 144 to 148 MHz
- Channel Spacing: Receive every 5 kHz, transmit Simplex or *600 kHz
- Power Requirements: 9.6 VDC
- Current Drain: 17 mA standby, 500 mA-transmit
- Batteries: 8 cell ni-cad pack included
- Antenna Impedance: 50 ohms
- Dimensions: 40 mm x 62 mm x 165 mm (1.6" x 2.5" x 6.5")
- RF Output: Better than 15 watts
- Sensitivity: Better than 5 microvolts
- Price: $349.00
- With touch tone pad: $399.00

SUPPLIED ACCESSORIES
- Telescoping whip antenna, ni-cad battery pack, charger

OPTIONAL ACCESSORIES
- Touch tone pad (not installed): $39
- Tone burst generator: $29.95
- CTCSS sub-audible tone control: $29.95
- Rubber flex antenna: $8
- Leather holster: $16
- Cigarette lighter plug mobile charging unit: $6
- Matching 30 watt output 13.8 VDC power amplifier ($30): $98
- Matching 80 watt output power amplifier ($80): $149

By now most of you have heard the same words of praise on the air that we gratefully receive over and over. The quality that is built into the S-1 has been attested to by the outstanding performance and dependability of the thousands of units in daily use. The high level of innovative engineering that brought forth the Amateur world's first hand held synthesized radio also designed into this compact beauty exciting performance and features at a very affordable price. A price that also includes a ni-cad battery pack, charger, and a telescoping whip antenna. The optional touchtone pad shown in the illustration adds greatly to its convenience. In addition we offer superior quality 30 and 80 watt solid state matching power amplifiers that give the S-1 the flexibility of operating as a portable, mobile, or base station rig.

Remember...the Tempo S-1 is the original and proven 800 channel synthesized hand held transceiver. Don't be fooled by substitutes.

NEW TOLL FREE ORDER NUMBER: (800) 421-0631
For all states except California. Calif. residents please call collect on our regular numbers.

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/769-3127

Henry Radio

Prices subject to change without notice.
One step beyond...

Just what you’d expect from KLM

We proudly introduce the KLM KT-34 Tribander. The first significant step forward for tribander design in 20 years — READY for the challenges of today’s high power technology and overcrowded bands.

At last, a tribander that easily handles all the power your rig can muster — at a new standard of efficiency, so your signal goes out; not up in smoke.

At last, true broadband performance that brings you phone and CW on 20, 15, and 10 meters with no retuning.

KLM’s inspired peek into the future gets you all out performance and engineering excellence...

TODAY!

KLM’s KT-34

“YOUR PEEK INTO THE FUTURE”

SEE YOUR DEALER OR CONTACT:

KLM electronics, inc. 17025 LAUREL ROAD MORGAN HILL, CALIFORNIA 95037
This NEW MFJ Versa Tuner has SWR and dual range wattmeter, antenna switch, efficient airwound inductor, built in balun. Up to 300 watts RF output. Matches everything from 1.8 thru 30 MHz: dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

MFJ LOWER PRICES!

NEW, IMPROVED MFJ-941B HAS . . .
- More inductance for wider matching range
- More flexible antenna switch
- More sensitive meter for SWR measurements down to 5 watts output

NEW LOWER PRICE
$79.95

Transmitter matching capacitor. 208 pf. 1000 volt spacing.
Sets power range, 300 and 30 watts. Pull for SWR.
Meter reads SWR and RF watts in 2 ranges.
Efficient airwound inductor gives more watts out and less losses.
Antenna matching capacitor. 208 pf. 1000 volt spacing.

Only MFJ gives you this MFJ-941B Versa Tuner II with all these features at this price:
- A SWR and dual range wattmeter (300 and 30 watts full scale) lets you measure RF power output for simplified tuning.
- An antenna switch lets you select 2 coax lines direct or thru tuner, random wire/balanced line, and tuner bypass for dummy load.
- A new efficient airwound inductor (12 positions) gives you less losses than a tapped toroid for more watts out.
- A 1:4 balun for balanced lines. 1000 volt capacitor spacing. Mounting brackets for mobile installations (not shown).

With the NEW MFJ Versa Tuner II you can run your full transceiver output — up to 300 watts RF power output — and match your existing antenna. No need to put up saw uner.

NEW 300 WATT MFJ VERSA TUNER II'S: SELECT FEATURES YOU NEED.

NEW MFJ-945 HAS SWR AND DUAL RANGE WATTMETER.
NEW LOWER PRICE
$69.95

NEW MFJ-944 HAS 6 POSITION ANTENNA SWITCH ON FRONT PANEL.
NEW LOWER PRICE
$69.95

NEW MFJ-943 MATCHES ALMOST ANYTHING FROM 1.8 THRU 30 MHZ.
NEW LOWER PRICE
$59.95

ULTRA COMPACT 200 WATT VERSA TUNERS FOR ALL YOUR NEEDS.

MFJ-901 VERSA TUNER MATCHES ANYTHING, 1.8 THRU 30 MHZ.
NEW LOWER PRICE
$49.95

MFJ-900 ECONO TUNER MATCHES COAX LINES/RANDOM WIRES.
NEW LOWER PRICE
$39.95

MFJ-16010 RANDOM WIRE TUNER FOR LONG WIRES.
NEW LOWER PRICE
$29.95

For Orders Call toll-free 800-647-1800
Order any product from MFJ and try it. If not delighted, return within 30 days for a prompt refund (less shipping).

Order today. Money back if not delighted. One year unconditional guarantee. Add $2.00 shipping/handling. For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On P. O. BOX 494
MFJ ENTERPRISES, INC.
MISSISSIPPI STATE, MISSISSIPPI 39762

2 september 1979 More Details? CHECK — OFF Page 126
contents

12 split-band speech processor
Wesley D. Stewart, Jr., N7WS

20 omnidirectional repeater antenna
James R. Ruxlow, N9SN

26 exposure to rf radiation: is it safe?
Steve S. Kraman, WA2UMY

34 uhf and microwave frequency counters
Robert S. Stein, W6NBI

44 two-band vertical for 40 and 75 meters
Paul A. Scholz, W6PYK

48 how to update the Collins KWM-2
William I. Orr, W6SAI

54 commutating filters
Henry D. Olson, W6GXN

60 accu-keyer speed readout
William E. Wageman, KSMAT

66 audio-frequency generator
Kenneth E. Powell, WB6AFT

72 digital techniques: down counters
Leonard H. Anderson

4 a second look
6 letters
126 advertisers index 8 presstop
72 digital techniques 126 reader service
99 flea market 92 short circuits
120 ham mart 66 weekender
If you’re active on the high-frequency amateur bands, you have probably formed your own idea of what it would be like to operate from a foreign country. You don’t need many DX entries in your logbook before you begin to see some trends: power input, types of equipment that are preferred in various places, and the antennas that are the most popular. Have you ever wondered how those same DX operators visualize American radio amateurs?

Writing in a recent issue of Break-In, the official journal of the New Zealand Association of Radio Transmitters, Harry Bourne, ZL101, provided some of the answers. While making contacts with more than 2500 amateurs in all callsign districts of the United States and Canada on 15 and 20 meters, Harry collected a good deal of interesting data on transmitter input power and antennas. He found, for example, that 13 per cent of the stations used less than 100 watts, 59 per cent used between 100 and 500 watts, and 28 per cent of the operators used more than 500 watts; he also found that the average power input on the 14-MHz band is higher than on 21 MHz.

In the antenna department, ZL101’s survey showed that 48 per cent of the American amateurs use Yagi beams at heights of 30 to 80 feet (10-25 meters), 21 per cent use verticals (either ground mounted or as elevated ground planes), 13 per cent run quads, often at rather low heights above ground, and 13 per cent depend on half-wave dipoles. The remaining 5 per cent use a variety of antenna types including Zepps, delta loops, vee beams, rhombics and indoor antennas.

ZL101’s logbook reveals further interesting results; signal reports, for example, confirm that antennas have a far greater effect on signal strength than transmitter input power — and it is much more effective to improve the antenna than it is to increase power. This will come as no surprise to serious DXers, but it’s reassuring to have it confirmed by a DX station. And the excellent propagation conditions we’ve been experiencing for the past few months have made it possible for amateurs to achieve good DX results with low input powers, especially if they have a good antenna system. One afternoon not too long ago I hooked up with a G3 who was running 150 milliwatts input on CW; he reduced power to 35 mW and we easily exchanged signal reports on ssb. That’s roughly 100,000 miles per watt! And just recently I worked 7X2BK on 28 MHz using 200 mW and a 3-element beam.

When propagation conditions are good and the high-frequency bands are as hot as they have been so far this year, directional antennas are not so important for increasing signal strength as they are for reducing interference from directions other than that of the desired station. With a power input of 200 watts, excellent DX results can be obtained with simple vertical or dipole antennas, or single quad or delta loops. If you’re unable or unwilling to install a larger or more sophisticated antenna system, you may not be able to crack that big DX pileup on your first call, but with good operating techniques and patience you’ll be able to work any station in the world on CW. On phone it’s more difficult, but only because the competition is tougher and the interference is horrendous!

If you want to improve your station performance, the message is clear: spend your budget on your antenna system, not a linear amplifier, and remember that includes not only the antenna, but the ground system and the transmission line. If you’re using inexpensive coaxial line, or cable that’s several years old, you may be surprised to find that you can greatly increase your effective radiated power by simply installing RG-213/U or other high-quality coax.

If your budget won’t allow a new antenna, try to increase the height of the one you already have; you may be able to double your signal strength by raising your antenna above nearby objects. And if your antenna is ground mounted, increase the number of radials; aluminum electric-fence wire is ideal and costs about a penny a foot. Unless you’re already using a Yagi on a 100-foot (30-meter) tower, dollars invested in your antenna system will give you more bang for the buck than dollars spent in any other part of your ham station. Keep that in mind as you get your station ready for the coming DX season. Nearly all the propagation forecasters agree that band conditions this fall and winter will be better than they have been in twenty years — and conditions may not be as good for another twenty!

Jim Fisk, W1HR
editor-in-chief
The Mobile Marvel Is Back

"Bring back the 225 ... Bring back the 225," the call was heard and answered. Back by popular demand, and still the economy champ, the IC-225 is again available from your local Authorized Dealer.

Returning as the same "good ol' radio" bought and loved by thousands, the Mobile Marvel is still the friend of the home-brew modifiers. It's so easy to work with, that more user-oriented mods have been made to the IC-225 than to any other ICOM. The synthesizer frequency is controlled by a diode matrix, which is programmed to suit the user's needs and desired channel arrangement. For the new repeater sub-band folks, there is a complete set of step-by-step instructions on how to operate down there (15kHz steps).

Still an excellent performer in the receiver category, the IC-225 is back with its outstanding balance between sensitivity and IMD, which provides clear, intelligible reception in the modern high-noise environment.

And now the price. Since the IC-225 was introduced, prices on everything have gone up, up, and away. But the amazing 225 returns bearing the same price that it was introduced with years ago!

Economy, versatility, performance and value are all back with the IC-225, the Mobile Marvel.

(Availability may be limited in the Coastal West)

For spare parts that are unavailable from your local dealer, phone: ICOM West, Inc., (800) 747-9020, or ICOM East, Inc., (800) 527-7425 (orders only), Texas Residents call (214) 620-2780

HF/VHF/UHF AMATEUR AND MARINE COMMUNICATION EQUIPMENT

ICOM WEST, INC. ICOM EAST, INC. ICOM CANADA
Suite 307 7097 Victoria Drive 3331 Towerwood Dr., Suite 304
13256 Northrup Way Dallas, Texas 75234
Bellevue, Wash. 98005 Dallas, Texas 75234
(206) 747-9020 (214) 620-2780

Please send me a full-color ICOM Product Line Catalog and a list of Authorized ICOM Dealers.

NAME ____________________________ CALL ____________________________

ADDRESS ____________________________ STATE ______ ZIP __________

CITY ____________ STATE ______ ZIP __________

You may send a machine copy of this form.

© 1979 ICOM EAST INC.
propagation predictions

Dear HR:

I have been advised that orders for the government publications on ionospheric Predictions cited on page 30 of my article in the April issue of *ham radio* are no longer available from the Superintendent of Documents. I scouted around and, courtesy WS9OWZ, discovered that photocopies can be obtained from National Technical Information Service, Post Office Box 1553, Springfield, Virginia 22151. Here are ordering information and prices:

- Volume I COM-73-50654 “General Instructions” $3.00
- Volume II COM-73-50655 “Sunspot Number = 12” $11.75
- Volume III COM-74-50041 “Sunspot Number = 110” $11.75
- Volume IV COM-74-50042 “Sunspot Number = 160” $11.75

Henry G. Elwell, Jr., N4UH
Cleveland, North Carolina

voltage-regulator noise

Dear HR:

I very much enjoyed W1HR’s article on Gunnplexers in the January issue. However, I would like to bring something to your readers’ attention in reference to the suggested 723 voltage regulator. This regulator employs internal zener regulation, and zeners being inherently noisy, can contribute to system signal-to-noise ratio (SNR) degradation. I have been able to increase the signal-to-noise of a studio-transmitter link (STL) receiver by just short of 3 dB and unmask a VCXO’s actual distortion of less than 0.2 per cent by simply by-passing pin 5 of the 723 with a 10 μF capacitor and placing a 47-kilohm resistor between pins 5 and 6. Motorola indicates this addition in one of their application notes; however, its importance is not stressed, nor followed on in other application notes.

I have experienced no such problems with W1HR’s suggested Fairchild device, the 78MG. I understand the 78MG regulators are not internally zener regulated. This should be considered by those who are looking toward the ultimate in noise figures, distortion, and SNR.

Dave Clingerman, W6OAL
RF Project Engineer
Moseley Associates, Inc.

anodize dyes

Dear HR:

The article on anodizing in the January, 1979, issue of *ham radio* mentions several sources of dyes which can be used, including “drugstore” fabric dyes. The trade name dyes, RIT are typical of this group, are low cost, and have the reputation of being repeatable. These dyes are used warm, 50-60°C; the dyed surface is then sealed by boiling.

Bob Haviland, W4MB
Daytona Beach, Florida

note of acknowledgment

We thought that Petard’s article on big game hunting would make an interesting basis for an adaptation geared to the very real problem of intentional interference in the Amateur bands. Thanks to Jim Kirkpatrick, WB7BUP, for the background information on the original piece. Editor
AT-120 and AT-180

Antenna Tuners recommended for TS-120S and TS-180S
All Solid-State HF Transceivers.

Why is the use of an antenna tuner so much more important with the
TS-120S and TS-180S all solid-state HF rigs than with transceivers
having tube-type final amplifiers?

Tube-type final amplifiers generally handle a broader range of load
impedance than a transistor final. However, RF power into the antenna
system will decrease with an increasing impedance mismatch, and
tube life may even be shortened if the mismatch is extreme. Transistor
final amplifiers, on the other hand, require a 50-ohm nonreactive load
efficient power transfer and are not very tolerant of high SWR.
Therefore, protection circuits are used on the TS-120S and TS-180S to
reduce RF power output significantly under high-SWR conditions, thus
preventing damage to the solid-state devices.

In the TS-120S, an SWR detection circuit detects reflected-wave
voltage, which is then amplified and applied to the ALC circuit as a
protective voltage to control power output. Thus, as SWR increases,
RF power output decreases continuously.

In the TS-180S, the final amplifier functions normally up to an SWR
of 3:1, at which point the protection circuit drops RF power output
significantly.

Using an antenna tuner such as the AT-120 to match the TS-120S
or the AT-180 to match the TS-180S will lower the reflected power at
the transceiver to avoid detection by the protection circuit, thus en-
abling the transceivers to produce full RF power output and even with
rigs which have tube final amplifiers, we recommend an antenna tuner
(such as the AT-200 to match the TS-520 or TS-820 Series) for optimum
coupling to antennas with high SWRs.

A major advantage of using an all solid-state rig such as the TS-120S
or TS-180S is the elimination of final-amplifier tuning and loading. It’s
great to be able to switch bands, dial up any frequency, and transmit
immediately, especially when operating mobile or in a contest or
chasing DX. Isn’t this advantage lost if an antenna tuner has to be used?

We recommend using an antenna that has a low SWR (below 1.5:1)
and that presents a proper impedance match (50-ohms) to the trans-
ceiver. Then the full advantages of using an all solid-state rig can be
realized. Furthermore, the antenna will be more efficient, and power
will not be reflected back to an antenna tuner.

However, many antennas are not broad enough to cover an entire
band, and may have an SWR below 1.5:1 in just a portion of the band.
The antenna may be out of resonance in the middle of the portion of
the band that is mostly used. When operating outside this portion, where
SWR exceeds 1.5:1, the antenna tuner should be switched in.

Therefore, with a well-designed antenna, the antenna tuner may be
switched out for most operating, and the full advantage of using a tran-
tune all solid-state rig may be realized. But for those occasions when
operating in the band portions where the antenna is not resonant and
reactance increases or when, for some reason, the antenna develops
a high SWR or a poorly matched antenna is used, the antenna tuner
should be switched in to obtain full RF power output.

During those occasions when the antenna tuner is needed with an
all solid-state rig, it would probably be advantageous with a tube-type
amplifier also for optimum power transfer to the antenna system. With a tube-
type final, plate tuning and loading adjustments would be required in
addition to adjusting the antenna tuner. With an all solid-state trans-
ceiver, only the antenna tuner would need adjusting during those occa-
sions when it is required.

What are the primary features of the AT-120 and AT-180 antenna tuners?

The AT-120 antenna tuner is very compact (only 6 inches wide,
2-3/8 inches high and 6-1/4 inches deep) - perfect for mobile mounting
the mounting bracket provided - and operates on 80 through 10
meters. It consists of an antenna coupler and an SWR meter (which
input impedance (to the transceiver) is 50-ohms and
and the full advantage of
output impedance (to the antenna system) covers 20 to 300 ohms,
unbalanced. It handles 150 watts (120 watts on 80 meters). The SWR
meter measures from 1.0 to 10.0.

The AT-180 antenna tuner matches the TS-180S (same height) and
and consists of a through-line watt and SWR meter, antenna selector
switch, and, of course, an antenna coupler.

It operates on 160 through 10 meters, with a 50-ohm input imped-
ance and an output impedance of 10 to 500 ohms (10 to 400 ohms on
160 meters), unbalanced. Switches allow up to 20 or 200 watts of for-
ward or reflected power to be measured. (It is not intended for use at
the output of a linear amplifier.) UHF-type connectors are provided for
the input, two antenna outputs, and a dummy load, and a standoff
connector is provided for a wire feedline.

With both tuners, the "R TUNE" (for reactance component) and
"X TUNE" (for reactance component) controls are adjusted alternately
with a CW carrier applied until minimum SWR or reflected power is
obtained.
UNUSUAL PROPAGATION EFFECTS should result in September when an Atlas-Centaur rocket is launched from the Kennedy Space Flight Center in Florida. The exhaust gases from the giant rocket are expected to burn a large hole in the ionosphere's F region, and a group of Amateur Radio experimenters are planning to observe the effects on propagation during, and for several hours following, the launch some time in September.

The resulting hole in the ionosphere could be as large as 500 km across, starting from the north Florida coast and extending eastward along the launch trajectory. The paths from Puerto Rico, the Virgin Islands, and the rest of the northern West Indies to the U.S. East Coast and Bermuda offer the best chances for HF observations.

For specific details concerning participation in the experiments, which are attracting much scientific interest, contact WIJR or W1BZT. A special certificate will be issued to all contributing participants.

FIRST 432-MHz HAWAII to mainland U.S. contact was made in July when KH6HME worked WB6NNT on ssb. Three more stations, W6YDF, WB6ESQ, and WB6WLR, also made the grade, with signals generally above the noise level.

FIRST WAS ON 432 MHz has just been achieved by W9YIZ, with a Wyoming contact with WA7DKZ. Mike, who's been working toward this moment for 10 years, caught most of his recent states via moonbounce. Congratulations on an outstanding achievement!

A 6-METER HAWAII TO EAST COAST opening in late June provided many 50-MHz enthusiasts, particularly those in New England, with their first KH6 contacts; during the opening, KH6IAA worked a large number of 1s, 2s, 3s, and 4s. Openings in July put K6AHC, KV4PZ, and KP4Q into a number of U.S. logbooks, and in early July JE2NQC worked VE7XP and heard several W6 and W7 calls.

A British Isles 6-Meter Beacon has been proposed by the Radio Society of Great Britain. It's to be located on the Island of Angesea, off the northwest coast of Wales, and there's hope to have it operational by year's end.

A CALIFORNIA COURT DECISION against a CB operator has established a precedent that could work against Amateurs as well, and serves as a warning to carefully examine all restrictions before renting or buying a new home if you plan antennas. San Diego CB operator Jerry Lee Dunn was sued by a neighbor for violating the covenants, conditions, and restrictions (CCRs) of their subdivision, which absolutely prohibited outside antennas for any purpose. Dunn fought the suit on the grounds that the CCRs violated his First Amendment rights to free speech and was thus unenforceable.

In its decision upholding the antenna prohibition, the Court of Appeals, Fourth District of California, found that Dunn's right to speak on the air was not itself restricted, and also required that he pay the other side's legal fees.

AMSAT HAS RECEIVED APPROVAL of the donation of the rocket motor that will boost the first Phase III spacecraft into a higher elliptical orbit. The launch date for Phase III A still stands at March 5, 1980, with spacecraft delivery required by December 3rd in France for tests at the European Space Agency facilities. The general beacon will be on 145.810 MHz, plus or minus 2 kHz; the engineering beacon will be on 145.990 MHz, plus or minus 2 kHz.

AMSAT Reports That OSCAR 7 is available for use regardless of mode. It's been hard to keep it in scheduled modes, so which one you use it in, A or B, will depend on which mode it's jumped to when you find it. Wednesdays, of course, are still reserved for experiment days.

HIGH LEVELS OF RF RADIATION have been detected by the FCC in its tests of some popular personal computers. Tests of computers manufactured by Atari, Apple, Commodore, Heath, Southwest Technical, and Radio Shack have reportedly shown that, in most cases, rf radiation levels far exceed allowable Class 1 TV limits.

With the popularity of home computers sharply on the rise, the FCC plans to use the data it's collected to set up new rules governing all computers that could be used in the home. It will probably be several months before the FCC decides what action to take and files a notice of proposed rule-making.

EXPERTISE ON BIOLOGICAL EFFECTS OF RF is being sought by ARRL for a new ad hoc committee which will help prepare League comments on the FCC Notice of Inquiry (Docket 79-144, August 15, 1979). This committee, which will later provide ongoing advice in an increasingly sensitive area, is being established to work with the FCC and the ARRL to protect the public health and safety.

W2PV's YAGI ANTENNA SERIES, originally slated to begin in this issue of ham radio, has been slightly delayed. Look for the first section in the December issue; it is well worth waiting for.
New OMNI/SERIES B Filters The Crowd

The new OMNI/SERIES B makes today's bands seem less crowded. By offering a new i-f selection that provides up to 16 poles of filtering for superior selectivity. And a new Notch Filter to remove QRM. No other amateur transceiver we know of out-performs it.

NEW I-F RESPONSE SELECTION. OMNI comes equipped with an excellent 8-pole 2.4 kHz crystal ladder i-f filter which is highly satisfactory in normal conditions. But when the going gets rough, the new OMNI/SERIES B, with optional filters installed, provides two additional special purpose i-f responses.

The 1.8 kHz crystal ladder filter transforms an unreadable SSB signal in heavy QRM. No other amateur transceiver we know of gets the attenuation to 1 kHz or beyond. By offering a new i-f selection without affecting received signals.

OMNI/SERIES B RETAINS ALL THE FEATURES THAT MADE IT FAMOUS.

All solid-state: 160-10 meters plus convertible 10 Meter and AUX band positions; Broadband design for band changing without tuneup, without danger; Choice of readouts — OMNI-A for analog dial or OMNI-B for digital dial. Built-in VOX and PTT facilities; Selectable Break-in, instant or delayed receiver muting; Dual-Range Receiver Offset Tuning, ±5 kHz or ±0.5 kHz; Wide Overload Capabilities, dynamic range typically exceeds 90 dB and a PIN diode switched 18 dB attenuator is also included; Phone Patch Interface Jacks; Adjustable ALC; Adjustable Sidetone; Exceptional Sensitivity; 200 Watts input to final with full warranty on final transistors for first year, pro-rata for 5 years; 100% Duty Cycle for RTTY, SSTV or sustained hard usage; 12 VDC Circuitry for mobile use, external supplies for 117/220 VAC operation; Front Panel Microphone and Key Jacks; Built-in 25 kHz Calibrator in analog dial model; Zero-Beat Switch; "S"/SWR Meter; Dual Speakers; Plug-In Circuit Boards; Functional Styling, black textured vinyl over aluminum "clamshell" case, complimentary reflective warm dark metal front panel; Complete Shielding; Easier-to-use size: 5 1/2" x 14 3/4" x 14 1/4"; Full Options: Model 445 Keyer $85; Model 243 Remote VFO $139; Model 282MO matching AC power supply $139; Model 248 Noise Blanker $49; Model 217 500 Hz 8-pole Crystal Ladder CW Filter $55; Model 218 1.8 kHz 8-pole Crystal Ladder SSB Filter $95.

OMNI owners note: Your OMNI can be converted to a SERIES B model at the factory for just $50 (plus $5 for packing and shipping). The notch filter replaces your present squelch control and provision is made for the two additional optional filters: a partial panel with new nomenclature is provided. Contact us for details.

OMNl owners note: Your OMNI can be converted to a SERIES B model at the factory for just $50 (plus $5 for packing and shipping). The notch filter replaces your present squelch control and provision is made for the two additional optional filters: a partial panel with new nomenclature is provided. Contact us for details.

Model 545 Series B OMNI-A $949
Model 546 Series B OMNI-D $1119

Experience the uncrowded world of OMNI/SERIES B. See your TEN-TEC dealer or write for full details.
A Knob with a new twist “VRS”

Swan Astro 150 Exclusive Microprocessor Control w/memory gives you over 100,000 fully synthesized frequencies, and more!

- VRS — Variable Rate Scanning, a dramatic new technique for unprecedented tuning ease and accuracy
- POWER — 235 watts PEP and CW on all bands for that DX punch
- Advanced microcomputer technology developed and manufactured in the U.S.A.
- Price? See your authorized SWAN dealer for a pleasant surprise!

Mike Tuning
For accurate 100 Hz steps or fixed rate scan.

Dual Meter
Reads PEP output in watts and receive “S” units.

Full Break-in CW
(or semi, switch selected)

Wide Frequency Coverage
10M — 28.0-30.0 MHz
15M — 20.8-23.0 MHz
20M — 13.8-16.0 MHz
40M — 6.0-8.3 MHz
80M — 3.0-4.5 MHz
160M — 1.8-2.4 MHz
*In lieu of 10M band on Model Astro 151

The most advanced HF SSB Transceiver available.
Fully solid-state SWAN ASTRO 150

PSU-5 Power Supply with Speaker
ASTRO 150 Transceiver
ST-3 Antenna Tuner

305 Airport Road / Oceanside, CA 92054 / 714-757-7525
Discover the unrivaled ASTRO 102BX with Dual PTO's

Plus IF Passband Tuning/Full Band Coverage, Speech Processing, 235 Watts PEP All Bands and Much More.

4-Function Meter reads "S" units in receive, and selects forward power, reflected power, or ALC in transmit.

Visual Display of Passband Tuning: A series of 8 LED's indicate the equivalent band width and position of the passband from 0.5 to 2.7 KHz as the passband tuning knob is rotated.

300Hz Crystal CW Filter: Cascaded with the passband filters and tunable through the passband. Combined with notch filter yields unrivaled CW performance.

Full or Semi CW Break-in: A must for the avid CW operator!

Dual PTO's: Two independent high stability PTO's provide true split band operation. The digital counter reads the PTO selected; or in split band reads the PTO used for receive, then switches to the transmit frequency selected when the mic is keyed.

All Band Coverage using PLL and Synthesizer for Band Selection: Full coverage of 160 meters through all of 10 meters in 9 ranges...diode matrix programmed for now — or for the future!

The ASTRO 102BX with its companion PSU-6 Power Supply, 1500Z Linear Amplifier and ST-2A Antenna Tuner provides a matched and highly efficient 1500 watt PEP or 1000 watt CW complete station to be complemented by a great Swan antenna.
split-band speech processor

Design and construction details of a split-band audio speech processor that features up to 15 dB of clipping and low distortion

Speech processing, especially for SSB, can be a relatively inexpensive means of improving the effective “talk power” of a voice modulated transmitter. Much has been written about various devices and methods that can be used to gain this increase in effective talk power. The devices used have ranged from simple audio compressors to rf envelope clipper-filters. All of these devices attempt to reduce the peak-to-average ratio of the speech or rf waveforms, thereby overcoming the peak power limitations of the transmitter. Generally, the degree of improvement is proportional to the complexity of the processing method; the simpler circuits offer minimal improvement while the more complex effect substantial improvement.

This article will not attempt to present all the theory involved in speech processing; however, the interested reader is referred to excellent articles by Fisk, Kirkwood, Moxon, and Schreuers for more detailed overviews of the subject.

Until recently, rf envelope clipping has generally been accepted as the most effective SSB processing method. Distortion products are small, generally consisting only of intermodulation products. The primary disadvantage of rf processing is the circuit complexity involved, and the necessity of modifying the associated transmitter. When modifying the transmitter is out of the question, a processor using the audio-SSB-audio (Comdel) approach can be used. In this method, an SSB signal is generated, peak limited (clipped), filtered, and then demodulated back to an audio signal which then modulates the transmitter.

My initial efforts were directed toward designing and building a unit of this type. A breadboard model was constructed and evaluated under laboratory conditions. Performance was very good, and distortion was held to under 10 per cent at 20 dB of clipping. The circuit was, however, excessively complex. It required an audio preamplifier, two balanced modulators, an oscillator, a clipper, an rf amplifier, and an expensive mechanical or crystal filter.

By Wes Stewart, N7WS, 1801 East Canada Street, Tucson, Arizona 85706
At this point, Jim Metzger, W7TKR, suggested that I try the split-band approach. He had done some work with the process with considerable success and Fisk2 had written in glowing terms about a similar unit available commercially from Maximilian Associates. This was inducement enough to build a breadboard model for evaluation.

basic circuit

Fig. 1 is a simplified block diagram of the split band clipper. The input signal is applied to an agc-controlled preamplifier which then drives the first set of bandpass filters (BPFs). The filters split the audio spectrum into four narrow bands which are then clipped and directed into the second set of BPFs, where the harmonics generated by the clipping process are filtered off. These filtered signals then go to the combiner stage where they are reassembled into the desired output.

Input amplifier. The design of the input amplifier is not particularly critical. The gain required will depend on the output amplitude of the source, the gain (if any) of the BPFs, and the limiting threshold of the clipper stages. If a very low output microphone is used, low noise may be of some importance. If, as in my case, active bandpass filters are used, the amplifier will also have to exhibit low output impedance. Automatic gain control is also desirable, as it helps maintain a high average clipping level, which in turn insures maximum talk power improvement.

Bandpass filters. As pointed out by Fisk, the optimum design for BPFs is a compromise between several conflicting requirements. Overshoot or ringing due to the near squarewave input from the clipper must be minimized, skirt selectivity should be good, and phase shift through the passband must be smooth and predictable. The latter point becomes important when the design of the combiner is considered, as will be seen later. Other very important factors to be considered are circuit complexity and reproducibility.

After pondering all of the above points, I decided on a two-pole Butterworth active filter. The Butterworth is not optimum when considering only impulse response and phase shift; however, when used in a low-Q configuration, it is a good compromise between filters with these attributes and those possessing superior skirt selectivity.

The final circuit is configured as a multiple-feedback type.6 These filters are relatively insensitive to component variations, allowing the use of 5 per cent tolerance components and inexpensive operational amplifiers. Detailed design data for the selection of center frequency, gain, and Q will be given later.

Peak clipper. The clipper may seem to be one of the least critical parts of the circuit, but, in fact, its requirements are quite stringent. One of the most important factors in the performance of the clipper is that of clipping symmetry. Perfect symmetry insures that only odd harmonics are generated; second-order products would be too much for the two-pole filters to handle. An important point is that the only place clipping should occur is in the clipper. Clipping or limiting elsewhere in the circuit cannot be easily controlled and must be avoided. This may seem easy to do, but if the clipping threshold is too high, limiting may occur in a preceding stage when large amounts of clipping are in use. For example, if a clipping threshold of one volt is used and 20 dB of peak clipping is desired, the preceding stage must be able to have an output voltage swing of 20 volts peak-to-peak. If this stage is running off a single 12-volt power supply, this will of course be impossible.

Another important aspect is that of how “hard” the limiting is. Many of the circuits initially examined, which included limiting differential amplifiers, shunt-diode clippers, and operational amplifiers with shunt diode feedback, had rather “soft” limiting characteristics. That is, the threshold was ill-defined and the slope of the transfer function continued to change over a wide range of input levels. Fig. 2 graphically shows the difference between hard and soft limiting.
fig. 3. Circuit diagram of the amplitude limiter (clipper) used in the final design. With the resistor values shown, the output will be limited to approximately 300 mV p-p.

Soft limiting is undesirable because it makes it difficult to maintain a constant peak output level.

The circuit finally selected for this application, as best satisfying the above requirements as well as using a minimum of parts, is shown in fig. 3. This will be recognized as a variation of the old series automatic noise limiter used in receivers. By suitable selection of resistor values and bias voltage, the clipping threshold may be adjusted over a wide range.

The performance of this circuit is demonstrated in fig. 4. This is a multiple-exposure oscilloscope photograph taken of the output of the clipper. The inner, near sinusoidal, trace was obtained by increasing the input signal until a 3-dB increase caused only a 2-dB change in output. This point was defined as the clipping threshold. The middle trace represents a further input increase of 4 dB, and the outermost trace was obtained with a total input overdrive of 15 dB. The photograph shows the nearly flat peak output and the exceptional symmetry. A further test of symmetry was made by examining the frequency spectrum of the clipper output with a Hewlett-Packard 302A wave analyzer. With 15 dB of clipping, the second harmonic remained more than 40 dB below the fundamental output.

Combiner. The combiner has the job of taking the four BPF outputs and putting them back together again while maintaining their original phase relationships. Improper phasing will result in excessive passband ripple being generated. As described by Fisk, the Maximilian unit incorporates phase shift networks before the combiner to compensate for the phase shifts through the BPFs. As will be shown later, these networks can be eliminated by the judicious selection of filter characteristics and the use of a simple summing and differencing amplifier.

circuit description

Fig. 5 is the complete schematic of the system. The input is applied to Q1, an FET source follower, used to match high impedance microphones. The follower output drives U1, a Plessey SL1626 gain-controlled amplifier. This IC maintains a nearly constant output of slightly less than 100 mV RMS over an input range of 1 to 100 mV.

The SL1626 is used as recommended by the data sheet, except for the addition of R6 and C10, which are necessary to suppress a high-frequency oscillation. R4 lowers the sensitivity about 20 dB and may be unnecessary in some applications. Front panel adjustment of the clipping level is possible via R7.

Amplifier U2A, one section of an LM324, develops a small amount of additional gain and serves as a low-impedance source to the following BPFs. The resistors used on the outputs of all the LM324s are necessary to eliminate cross-over distortion.

All of the bandpass filters are operated at the same gain and Q; only the center frequency (f0) differs from channel to channel. For simplicity, all capacitors are of the same value; the center frequency is adjusted by choice of resistor values. Using the given values, the overall frequency response will be approximately 350 to 3000 Hz at -6 dB, with no greater than 3 dB of passband ripple. If other cutoff frequencies are desired, appendix 1 gives the equations necessary to calculate new values of f0 and Q. Appendix 2 gives the equations for calculating the parts values for the individual filters.

The clipping stages, as described earlier, use a pair of forward-biased diodes. With the bias resistor values shown, the clipped output will limit at about 300 mV p-p. The shunt-bias resistor values are kept low enough to insure that the input impedances of the second BPFs remain fairly constant even when the clipping diodes turn off.

The second set of BPFs are identical to the first. Their outputs are combined in another section of an LM324, which delivers the system output through a resistive divider. By adjusting the resistor values, the output amplitude can be set approximately the same as that of the microphone, allowing the clipper to be
fig. 5. Complete schematic diagram of the split-band audio processor. Q1 is a 2N4392 or equivalent. U2, U3, and U4 are LM324s. C1 and C2 are dipped tantalum capacitors (RS 272-1409). C3 is also a dipped tantalum (RS 272-1408). All other polarized capacitors are tubular tantalums or electrolytics. The remaining capacitors are ceramics, with the exception of the 1000-pF capacitors, which are 5 per cent dipped micas. All resistors are 1/4-watt, 5 per cent, carbon composition.
switched in and out without a gain change in the transmitter. Note that the BPF outputs are alternately connected to the plus and minus inputs of the combiner. The next section will demonstrate why this is done.

Assuming the equations shown in the appendix were used to determine the f_0 and Q of the individual filters, adjacent filters will share a common -3 dB frequency. Eq. 1 demonstrates how an input signal at this frequency is shifted $+45$ degrees in one channel and -45 degrees in the other:

$$\theta = 90 - \arctan \left(\frac{2Qf}{f_0 + \sqrt{4Q^2 - 1}} \right) - \arctan \left(\frac{2Qf}{f_0 - \sqrt{4Q^2 - 1}} \right)$$

(1)
where θ is the phase shift in degrees
f_0 is the filter center frequency
f is the frequency of interest

After cascading the two filters in each channel, this shift will be doubled to ± 90 degrees. Clearly, if these two signals are vectorially added, their sum will be zero because they are of equal amplitude but 180 degrees out of phase. A simple solution to this problem is to invert the phase of one signal. This is effectively what is done by the combiner.

Solving eq. 1 for other frequencies will yield a phase error that increases with distance from the -3 dB point. This error is less important, however, because the amplitude difference also increases, so the larger signal dominates when the summation is made.

construction

For added versatility, the circuit is constructed on two etched circuit boards; the input compressor on one, the clipper-filter on another. This allows either one to be used alone in other applications. Figs. 6 and 8 are full-size layouts of the foil sides of the two boards, while figs. 7 and 9 show the component placement. These boards have been laid out with considerable attention to preventing ground loops. A hand-wired board should be built with the same attention.

The prototype shown in fig. 10 was constructed in a Radio Shack enclosure (270-253). Sufficient space remains for the inclusion of an ac-operated power supply. Fig. 11 is a schematic diagram of a suitable supply. Liberal use of ferrite beads and bypass capacitors on all leads entering the enclosure eliminates any chance of problems with rf interference.

performance

As fig. 12 shows, the frequency response is very close to what was calculated, despite the use of 5 per cent components. By adjusting R7, the clipping level can be varied from 0 to 15 dB. Greater amounts of clipping can be had by increasing the gain of either U2 or the BPFs, or reducing the clipping stage bias to lower the clipping threshold.

Caution should be exercised before deciding on greater amounts of clipping, however. This could turn out to be too much of a good thing. Increased clipping does continue to reduce the peak-to-average ratio, but at the same time distortion increases rapidly. This is shown graphically in fig. 13. As pointed out by Moxon, most of the improvement is obtained by the first 6 dB, with little to be gained by increased amounts. My on-the-air tests seem to indicate that 10 to 12 dB is about optimum with this system. All of this is rather subjective, but the whole topic of speech intelligibility and recognition is pretty subjective, so take it for whatever it's worth.

Total harmonic distortion was measured with an HP 331A distortion analyzer at various frequencies and clipping levels. The results of these measurements are shown graphically in fig. 13. As the figure indicates, distortion begins to rise rapidly as the clipping level approaches 15 dB.

These measurements were of necessity made with single frequency inputs which represent worst-case conditions. Because clipping is occurring on every...
half cycle, harmonic generation is maximum. With speech, clipping occurs much more randomly, with proportionally less total distortion.

On-the-air tests have been extremely gratifying. Reports have indicated substantial increases in apparent signal strength without noticeable distortion or loss of naturalness as long as the clipping level was held around the 10- to 12-dB point. Some loss of naturalness seems to occur above this point, but up to 15 dB, the sound is still not too objectionable. No tests have been run at levels in excess of 15 dB.

Operation

Operation is very simple. The agc amplifier holds the clipping level constant, relaxing the operator requirements considerably. Some adjustment of the input sensitivity may be necessary if the microphone used has either a very high or very low output. While the dynamic range of the compressor will handle a higher input, the rise in background noise between speech pauses will be annoying to the listener. In this case, a series resistor may be added to the input which, in combination with R1, forms an attenuator. In the case of a very low-output microphone, increasing the value of R4 will increase the sensitivity. Highest gain occurs with R4 omitted entirely.

On the output side, changing the value of R54 will control the maximum output level. This interacts with the audio gain control on the transmitter, so corrections can be made either place. I tried to pick a value that allowed the clipper to be switched in and out without having to readjust the microphone gain each time.

Finding the best setting for the microphone gain is best done with the aid of an oscilloscope on the transmitter output. With the clipping level set to maximum, adjust the transmitter gain so the peak output just approaches the level achieved with full carrier or excitation. If no oscilloscope is available, I find that just whistling into the microphone and setting the gain to the point that just activates the transmitter ALC works out very well. If you are not going to use the maximum amount of clipping available, then do the adjusting at the clipping level you intend to use. Even the best of clippers will not maintain a completely flat output vs input characteristic. Therefore, if you adjust your gain at 15 dB of clipping, then reduce it to 10 dB, your peak output will drop a little.

fig. 12. Measured audio response of the speech processor.

This effect can be explained as follows: As shown in **fig. 4**, sine waves subjected to 15 dB or so of clipping take on the appearance of pretty good square waves. As mathematical analysis can show, a square wave is composed of a fundamental frequency and all of its odd harmonics. We try to filter out these harmonics and retain only the fundamental. Unfortunately, the peak amplitude of this fundamental component is larger than the peak amplitude of the square wave by a factor of $\frac{4}{\pi}$, or 2.1 dB. It is this factor that causes a continuing increase in output despite the use of a "perfect" limiter.

I want to express my thanks to Jim Metzger, W7TKR, for his technical advice, to Frank Baker for his circuit-board layout genius, and to Don Scheick and Norm Keopfer for their assistance in the preparation of the circuit boards. Additional thanks go to the many others who offered advice and encouragement, to Norma Putney for the typing of the manuscript, and to my wife, Terry, for the many hours spent away from family affairs during this project.
For new passband limits, the values for Q and f_0 can be found as in the following example:

1. Define the low frequency - 6 dB point, f_L (350 Hz)
2. Define the upper frequency - 6 dB point, f_H (3000 Hz)
3. Find the multiplying coefficient, L

$$L = \sqrt{\frac{f_H}{f_L}} = \frac{3000}{350} = 8.571$$

4. Find the individual filter cutoff frequencies

- $f_{L1} = 350 \text{ Hz}$
- $f_{L2} = 1025 \text{ Hz}$
- $f_{L3} = 1753 \text{ Hz}$
- $f_{L4} = 3000 \text{ Hz}$

5. Find the individual center frequencies

- $f_{c1} = \frac{f_{L1} + f_{L2}}{2} = 687 \text{ Hz}$
- $f_{c2} = \frac{f_{L2} + f_{L3}}{2} = 1383 \text{ Hz}$
- $f_{c3} = \frac{f_{L3} + f_{L4}}{2} = 2376.5 \text{ Hz}$
- $f_{c4} = \frac{f_{L4}}{2} = 1500 \text{ Hz}$

6. Determine required Q

$$Q = \frac{f_0}{2 \pi f_L} = \frac{458}{249} = 1.839$$

Use $Q = 1.84$

The multiple feedback bandpass filter shown below may be designed by the following method (example in brackets):

Choose: $C = C_1 = C_2$

$|C| = 1000 \text{ pF} = 10^{-8} \Omega$

Let: $H = \frac{A_o}{Q}$

$$H = \frac{3.39}{1.84} = 1.84$$

where A_o = desired gain

$Q = Q$ from appendix 1

Calculate: $K = 2\pi f_0 C$

$$K = 2\pi f_0 C = 2 \pi \times 458 \times 10^{-9} = 2.878 \times 10^{-6}$$

$$R_1 = \frac{1}{H K}$$

$$\left[\frac{1}{1.84 \times 2.878 \times 10^{-6}} = 188.8 k \right]$$

This completes the calculations; the final step is to select the nearest 5 per cent standard resistor values. If, as in the above example, A_o equals Q^2, R_1 will equal R_2, which minimizes errors due to tolerance variations.

The following program, written for an HP 25 calculator, will speed the design of the BPF:

references

HP-25 Program Form
antenna design
for omnidirectional
repeater coverage

The problem
of good coverage
with vhf antennas
on towers with large
cross-sectional areas
is resolved
in this article

This is the story of how one club obtained uniform coverage in all directions with a repeater antenna mounted on the side of a very wide tower. Perhaps the solution will help others with the typical problems of side-mounted antennas.

the problem
The difficulty that the Western Illinois Amateur Radio Club (WR9AEA) faced was not an unusual one on side-mounted repeater antennas. Coverage was not uniform in all directions; there were many peaks and many nulls. In some directions range was disappointingly short. Unless the repeater antenna is mounted on top of a structure this situation is typical, because a side-mounted antenna pattern usually has peaks and nulls resulting from the interference, reflections, and absorption of the structure. The local TV station, unfortunately, wouldn't let us put our array on the top of their tower above the TV antenna.

An interesting aspect of the WR9AEA problem was the large cross-sectional area of the TV broadcast tower we're using. The triangular shape is 4.8 meters (15 feet, 10 inches) on each side. Although this tower is very wide for a 244-meter (800-foot) structure, the problem and solution are relevant to both smaller and larger structures.

solution
The solution needed was some type of antenna array all the way around the supporting structure. Minimum coupling to the tower and uniform illumination of the horizon with good input vswr were required. A search of Amateur Radio reference materials yielded no answers. At this point the club

By James R. Ruxlow, N9SN, 8 Elmwood Drive, Quincy, Illinois 62301
president, Tom, W9NJV, approached a local professional antenna engineer, Ron, W9NOO. Ron is very well respected for his many years of designing vhf and uhf broadcast antennas.

As usual, Ron knew what to do. He suggested a "tangential fire arrangement" for mounting antennas on the very large triangular tower. Of course, we didn’t know what he was talking about; but as if often the case with someone who really knows his subject, Ron was able to make it simple for us.

description

By "tangential" Ron meant that the radiators would have their maximum radiation on a tangent, or at right angles, to the tower. This seems a little unusual at first, because we normally think in terms of an antenna radiating straight out from a tower. But here, if you’re standing at the center of the tower, the maximum energy is pointed off to one side rather than straight out. To obtain constant signal amplitude in all directions, one radiator is placed on each leg of the tower. Notice from fig. 1 that the main lobe of each radiator is perpendicular to the tower and there is free space in front of, and to the rear of, each radiation pattern. The tower structure is off to one side of the radiator, so there’s a minimum of coupling and distortion.

pattern sum

To obtain omnidirectional coverage it’s necessary for the pattern from one radiator to add to the next, so that the resulting sum is as close as possible to a circle. Fig. 2 illustrates this concept of the addition of the patterns. (In this figure the patterns are drawn to a very large scale, and the tower triangle to a very small scale, to represent the addition that takes place in the far field.)

The ideal individual radiation patterns would have a 6 dB beamwidth of 120 degrees. The half voltage (-6 dB) intensity of one radiator would then coincide with the half voltage radiation of the next. If the components from adjacent radiators are in phase, they will then sum to equal the full intensity. Figs. 3 and 4 illustrate the development of this concept. Since the cosine function has a value of one-half ±60 degrees, the desired pattern shape is referred to as a cosine pattern.* The repeater antenna is vertically polarized, so our concern is the pattern

*Another variation of this concept is the cos² pattern, which was developed for vhf antennas on ballistic missiles. The same problem existed: the requirement for omnidirectional coverage with minimum attenuation from antennas mounted on the side of a huge mass of metal (the missile). Much time and effort went into the development of the cos² antenna, which is now standard for range safety and telemetry electronics on large rocket launch vehicles. Some of the early work on these antennas was done by the engineering department of the Convair division of General Dynamics for the Atlas missile in the late 1950s.

fig. 2. Development of the cosine radiation pattern resulting from three antennas fed with the proper phasing system. The sum of the patterns approaches a circle.

in the plane perpendicular to the radiating elements (H plane). Other patterns lend themselves to four or more radiators around a tower.¹ ²

radiators

Ron told us that the desired cosine-shaped pattern is approximated by the typical short Yagi antenna. We decided to use on each leg of the tower a five-element Yagi manufactured locally. This beam

fig. 3. Ideal cosine pattern of three antennas fed in phase. The cosine of the angle, θ, lies between -90 and +90 degrees.
has standard dimensions with about 9 dB gain. It is very well constructed to take the rigors of being mounted 163 meters (535 feet) in the air. This was an important consideration, because nobody was interested in climbing up there — or paying a professional to go up there — in windy, cold weather to tighten a bunch of flapping aluminum.

spacing between radiators

For the amplitudes of the patterns of the radiators to add, it's necessary for the phasing and spacing to be correct. In our case, each Yagi was fed in phase through an equal length of feedline. The center of radiation (driven element) of each beam must be an integral number of free-space wavelengths apart. This requirement assures that the energy of each element will add correctly with energy from the next element. This is represented by the dimension \(n \times \lambda \) (\(n \) times lambda), fig. 5. To suspend the Yagis at least one-half wavelength from the tower legs, the spacing worked out in our case to three wavelengths (see fig. 1). Ron pointed out that there are techniques for spacing the radiators at any multiple of one-third wavelength.³

gain of the array

At this point some of us got enthusiastic about the gain of this concept. After all, with three 9 dB Yagis the gain should be high, right? Wrong. When the patterns add up to a circle, the average gain drops to that of a half-wavelength dipole. It was hard for some of us to get this through our thick heads, but the single stack or “bay” of three radiators around the tower yields to gain equal to that of a reference dipole.

Ron pointed out that the addition of a second level, or bay, of three more Yagis, stacked one wavelength above, would double the gain and give 3 dB over a reference dipole. So we decided to build a two-bay system with three Yagis per bay.

scale-model tests

To make sure the thing would work, Ron and his collaborator, Joe Donovan, tested a scale model of...
ment. Note the nulls down to 20 dB below maximum and broad areas of poor gain. This type of poor circularity is typical of many side-mounted vhf antennas. Fig. 7 shows the pattern of the tangential-fire configuration used for our new array. The circularity is ±3 dB or better. In other words, the gain in any direction is no more than 3 dB from the average.

power divider

A power divider to feed the six Yagis in phase from a single feedline was the next design task. A quarter-wavelength transmission-line transformer is perhaps the most simple technique. If all six Yagis are matched to 50 ohms and fed through convenient, equal lengths of feedline, the feedlines can be paralleled at a single point. Six 50-ohm loads in parallel result in an impedance of 8.3 ohms. In other words, we need an impedance transformation of six to one.

The design curves in Chapter 22 of reference 4 shows about a ±5 per cent bandwidth at a vswr of 1.2 for a six-to-one transformation with a single 1/4-wavelength transformer. The usual equation, \(Z = \sqrt{(Z_1) (Z_2)} \) or \(Z = \sqrt{50 (8.3)} \), tells us that 1/4 wavelength of transmission line, with a characteristic impedance of 20.4 ohms, would match 8.3 to 50 ohms. However, the design curves also show that, by making the transformation in two steps, the bandwidth at a vswr of 1.2 can be increased to ±20 per
section has an impedance of \(\sqrt{(50)(20.4)} = 32 \text{ ohms} \) and the other \(\sqrt{(20.4)(8.3)} = 13 \text{ ohms} \).

divider construction

Fig. 8 shows the construction of the power divider. The 1/4-wavelength sections are coaxial. Therefore the usual formula \(Z = 138 \log (db) \) was used to calculate the ratio of the diameter of the outer to inner conductors. It was convenient to construct the outer shell from a piece of 41-mm (1.625-inch) rigid coax line. The 50-ohm type N input was constructed from a 41-mm (1.625-inch) flange, a 41-mm (1.625-inch) reducer and a short section of 41-mm (1.625-inch) inner conductor. The six outputs are type N connectors spaced equally around the circumference at the opposite end. The center conductors of the six type N outputs are connected in parallel with short lengths of 2.1-mm (no. 12 AWG) solid copper wire to the end of the last 1/4-wavelength inner conductor. Some routine lathe work was necessary to construct the inner conductors, brushings, Teflon supports, and end cap.

Rex, K9ZJV, put his workshop facilities to the task of constructing the divider. Initial testing showed a very flat VSWR of about 1.22 over the whole 2-meter band. To bring the device up to professional stan-

fig. 8. Construction details of the power divider used with the WR9AEA antenna.

The WR9AEA array on an fm broadcast antenna tower. Array is at the 20-meter (65-foot) level for testing. The heroes doing their thing for the cause are N9SN, left, and W9NWN.
dards, a stub was added to the input transmission line to reduce the vswr to less than 1.1 from about 142 to 151 MHz. See fig. 9.

full-scale tests

The Yagis, mounting hardware, feedlines, and power divider were then mounted on the TV tower at the 20-meter (65-foot) level. Jim, N9SN, and Dave, W9NWN, performed these tasks of installing and adjusting the antennas. This work provided a very important check of all parts of the system before the critical full-height installation. A check of the pattern was made by comparing the signal received from the array with that from a reference Yagi, hand-held out from the tower in the direction of the field-strength meter. Although this method of checking a pattern isn’t accurate, seventeen measurements in all directions showed no major peaks or holes. Once all the minor mechanical bugs were corrected, a professional climber was hired to install the array several wavelengths below an FM broadcast transmitting antenna, approximately 163 meters (535 feet) high.

predicted coverage

Ed, W4HTP, calculated the predicted coverage using broadcast techniques. FCC 50/50 curves calculate coverage exceeding 50 per cent of the time in 50 per cent of the potential receiving locations. The calculations consist of two steps: prediction of field strength from the repeater transmitter and determination of field strength required by various configurations of fixed and mobile stations. The results are shown in table 1. (Reference 5 and 6.)

results

Results have been excellent. Coverage in all directions seems to bear out the predictions. Mobile coverage is 72-88 km (45-55 miles); fixed stations at 160 km (100 miles) check in regularly. There appear to be no holes in the pattern. All bad spots seem to be explained by local terrain. We hope our experience and the references will help other groups to obtain omnidirectional repeater service.

![fig. 9. Response of the power divider with and without a stub on the transmission line.](image)

acknowledgments

The Western Illinois Amateur Radio Club wishes to thank Ron Fisk, W9NOO, for his professional guidance. We also thank the club president, Tom, W9NJV, for his help during this project. Tom deserves public recognition for his constant, active leadership in getting everybody to work together. Photo credits to Roger Humke, WA9KRG.

references

Exposure to radio-frequency generating equipment: is it safe?

Review of the literature has produced some interesting observations on the hazards of EMR—here’s a report of the latest information on this controversial subject.

Those of us involved with electromagnetic radiation (EMR) for business or pleasure have, in the last few years, become disturbed by certain questions, which grow louder and more insistent as time passes. These questions address the safety, or lack of safety, associated with exposure to EMR. The principal target of these inquiries has been in the area of microwave radiation, but there has been increased interest in the matter of safety within the more usual communication frequencies: uhf, vhf, and high frequency. These questions have been amplified, perhaps more than they deserve, by the press; and it is becoming harder and harder to ignore them.¹ You find yourself wondering whether the push-to-talk button and antenna on a handheld vhf transceiver might better be replaced by a trigger and gun barrel respectively.

While under most conditions we can’t “feel” EMR, we’re becoming more aware of its presence. This is an unwelcome occurrence, since most of us have always thought of shortwave radiation as being nothing if not safe. We all live most of our lives within a constant “fog” of EMR of many frequencies. In fact, we’re constantly affected by the information transmitted by radio waves. The suspected damage that may be caused by rf energy varies from the “blahs” to cataracts, heart disease, cancer, impotence, and birth defects. What’s worse, while most of this is unproven, it hits the lay press with the impact of fact.

By Steve Kraman, MD, WA2UMY, 2901-B Candlelight Way, Lexington, Kentucky 40502
Even the more responsible reviews of the subject offer no assurance that we may continue our use of radio with impunity.2,3

Distrust of the establishment also has had a hand in promoting doubt among the rf-irradiated public. We mistrust our government when we hear that the Russians have a standard for safe rf fields that is one thousand times smaller than ours, and that they believe that many adverse mental health and physical effects can be produced in man by low-dose rf exposure. We read that the Russians have been beaming microwave radiation (for questionable reasons) at the U.S. embassy in Moscow for years; then we hear that more cases of cancer may occur among the embassy workers than can be explained by chance. When the United States government chalks this up to chance, we wonder.4

The purpose of this article is not to reassure you that there's nothing to worry about; not quite enough information is available for that yet. Nor is the article intended to alarm, since I don't believe that the known facts justify that either. The following text reviews what is known to date about EMR and its effects on biological systems. It separates fact from fiction and suggests a reasonable response by those who must swim in the sea of EMR that surrounds us.

history

Interest in the biological effects of EMR has waxed and waned considerably since the first true electromagnetic field was generated by Hertz in 1888. Some research was done in 1891 by D'Arsonval and Tesla, but this was essentially the only work done in this area until the 1930s. Before this, in 1891, when electric lights were installed in the White House for the first time, they were not placed in the rooms that the President used frequently, because they were considered potentially dangerous. During the 1930s interest in rf radiation began to grow, spurred by the development of high-power transmitting techniques.

But World War II caused this research to grind to a halt in the favor of work of a more certain and conventionally destructive nature. At the end of World War II we had a new toy to learn about and with which to experiment — nuclear energy. However, this knowledge didn't stop progress in the field of radar and communications. The existence of high-power rf-generating equipment began raising safety questions, principally within the military community.

The Tri-Service study. In 1956 the Tri-Service program was established, coordinated by the Air Force. Its purpose was to conduct research to determine the biological effects of nonionizing radiation. This research effort lasted four years and four annual conferences were held. The outcome of the Tri-Service program was to suggest that there was no evidence implicating levels of electromagnetic radiation below 100 mW/cm² in damage to living tissues.

The implication that EMR could cause damage only in its capacity to heat was clear. It's of importance, however, that very little, if any, of this research was done at levels below 100 mW/cm² and, indeed, most of it was between the power levels of 300-400 mW/cm². The Tri-Service study, then, addressed only the problem of thermal effects and assumed this to be the only danger. The government accepted this opinion, and, partly as a result, little further research was done in this country from 1960 to 1970.

Federal EMR legislation. During the present decade, interest in the biological effects of EMR has escalated steadily, primarily because of technological advancements that have resulted in increased exposure to EMR by the general population. The skyrocketing popularity of CB radio and microwave cooking account for much of this increased exposure. The use of high-power communications and radar equipment has also heightened concern for personnel in the military. Additionally, several pieces of federal legislation have stimulated research in the field by calling for protection of the public from all sources of radiation, including ionizing, nonionizing, sonic, and ultrasonic devices. These federal acts are the Radiation Control for Health and Safety Act of 1968, the National Environmental Policy Act of 1969, and the Occupational Safety and Health Act of 1970. They require that users of EMR-generating equipment demonstrate the safety and effects on the environment of their equipment. Yet another factor that helped spur American researchers was the presence of a large body of Soviet-bloc literature that points to conclusions much different from those of the Tri-Service program and imply that very low levels of EMR (by our standards) could be dangerous. These studies, while for the most part poorly controlled, carried out, and reported, could not be totally ignored, since many of our own studies suffer from the same shortcomings.5 The Russian studies are covered in more detail later.

Much has been published on the hazards of exposure to electromagnetic radiation, from low-power, low-frequency equipment to high-power microwave devices. The author of this article is a medical doctor and a Radio Amateur interested in this controversial subject. He has researched the available literature (domestic and foreign) on the subject. This article sums up the results of that research. The conclusions imply that Amateur Radio transmitting equipment probably does not impose health hazards on humans provided certain safety considerations are observed. Editor.
physical characteristics of EMR

EMR must be distinguished from ionizing radiation (x-ray, nuclear), since its effect on molecular structure is much different. Nuclear radiation causes no significant heating of the irradiated object. Instead, the EMR frequency, since the depth of penetration decreases as the frequency is increased.

An animal may handle a heat load more easily if the heat load is applied to its skin, where air cooling occurs, than if the heat load is developed internally within vital organs that are cooled only by blood circulation. In this way EMR research is years behind nuclear research, which has long recognized and used the rad, a unit of absorbed energy, when referring to exposure to radioactive materials. The roentgen, a unit of emitted energy, is fine for describing the generating equipment but says little about its effect on the person receiving the radiation. Recent studies in the field of EMR have used methods to calculate or measure the actual absorbed dose of radiation.

Importance of EMR absorption. Depending on the EMR frequency, the size and character of the target, and the presence of other objects, a certain amount of energy will be absorbed and the rest will be reflected or refracted. Only the energy absorbed by the object affects it, and this has been one of the problems in microwave research. Most studies conducted to assess the effects of microwave radiation on biological subjects measure the field strength of the electromagnetic field, even though the actual amount of energy absorbed is unknown. Not only is the absorbed dose important, but so is the size of the subject and its photon energy is sufficient to disrupt the atomic bonds, thereby causing ionization and damage to the molecular structure. If this molecule is part of a living cell, it may become damaged, die, or its genetic material may be changed. EMR doesn’t cause these effects, because the photon energy of even micro-waves is so small that it causes no ionization. The energy absorbed, however, can increase the speed of molecular vibration, thereby causing an increase in temperature. The more energy absorbed, the more heat produced. To date, all known damage by EMR seems to be the result of this heating. This effect is clearly seen through the window of a microwave oven.

![Table 1. Properties of electromagnetic waves in biological media*](image)

28 September 1979
to measure volts per meter (V/m). This is of little consequence with microwaves, because the far-field situation exists at distances of only a few meters or so from the antenna. However, at most communications frequencies, the object in question is often in the near field. At a wavelength of 80 meters for instance, the entire dwelling and many of the neighbors may be in the near field, and this makes research into near-field phenomena quite important.

The so-called nonthermal effects of EMR are the more controversial aspects of the subject. The present research push is to discover if these effects exist and, if so, whether they offer significant health hazards. This research is necessary because most, if not all, past studies reporting to show nonthermal effects ignored regional temperature changes caused by concentration within objects. The studies were poorly or not controlled, entirely anecdotal in nature (and therefore impossible to evaluate), or were so incompletely described that they can’t be duplicated.

The scientific method demands that, as much as possible, all factors other than that being evaluated be accounted for and set aside to attribute a possible effect to a certain cause. This is impossible to do with certainty, so the importance of statistical analysis (to determine the possibility that chance alone caused a certain effect), and repetition by other experimenters, is of extreme importance if you don’t want to be led astray. This is the essence of the scientific method, and while well understood by scientists who may be in a hurry and feel secure that they can be objective.

The Soviets recognized the effects of EMR on human nervous tissue as far back as 1937, when Turlygin found that excitability of the central nervous system was increased when a spark oscillator was switched on near the subject’s head (not a totally unexpected effect). Since then, with the exception of the war years, Soviet-bloc literature in this area has poured out in increasing quantities.

While many effects have been reported, those most frequently noted involve the central nervous system. These reports include frequencies from 30 to 30,000 MHz and power ranges of microvolts to tens of milliwatts/cm². Unfortunately, and as previously mentioned, most of these reports lack data without which intelligent evaluation is impossible; i.e., frequency, power, waveform, orientation of the body with respect to the beam, and type of experimental animal used. Many of the reports involving people exposed to EMR quote a wide range of subjective complaints such as headache, weakness, depression, trembling, chest pains, inhibition of sex drive, inability to make decisions, general tension, and sense of anxiety. Other more objective findings reported are asthma, fast or slow pulse rate, high or low blood pressure, and EKG changes.

The belief that these ailments are being caused by EMR exposure is so strong in the Soviet Union that exposed workers can get the day off with pay if they complain of them. There is, however, a question regarding the willingness of Soviet plant managers to admit they’ve been exposing workers to higher-than-permitted levels of electromagnetic radiation for fear of losing their jobs. In the realm of parapsychology,

Table 2. Properties of Electromagnetic Waves in Biological Media

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Wavelength in Air (cm)</th>
<th>Dielectric Constant</th>
<th>Conductivity (σL mho/m)</th>
<th>Wavelength in Water (λL cm)</th>
<th>Depth of Penetration Air-Muscle Interface (cm)</th>
<th>Reflection Coefficient Air-Muscle Interface</th>
<th>Reflection Coefficient Muscle-Fat Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.12</td>
<td>1106</td>
<td>20</td>
<td>10.9-43.2</td>
<td>241</td>
<td>159</td>
<td>0.660</td>
<td>+174</td>
</tr>
<tr>
<td>40.88</td>
<td>738</td>
<td>14.6</td>
<td>12.6-52.8</td>
<td>187</td>
<td>118</td>
<td>0.617</td>
<td>+173</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
<td>7.45</td>
<td>19.1-75.9</td>
<td>106</td>
<td>60.4</td>
<td>0.511</td>
<td>+168</td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td>5.95</td>
<td>25.8-94.2</td>
<td>59.7</td>
<td>39.2</td>
<td>0.458</td>
<td>+168</td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>5.7</td>
<td>31.6-107</td>
<td>41.0</td>
<td>32.1</td>
<td>0.438</td>
<td>+169</td>
</tr>
<tr>
<td>433</td>
<td>69.3</td>
<td>5.6</td>
<td>37.9-118</td>
<td>28.8</td>
<td>26.2</td>
<td>0.427</td>
<td>+170</td>
</tr>
<tr>
<td>750</td>
<td>40</td>
<td>5.6</td>
<td>49.8-138</td>
<td>16.8</td>
<td>23</td>
<td>0.415</td>
<td>+173</td>
</tr>
<tr>
<td>915</td>
<td>32.8</td>
<td>5.6</td>
<td>55.6-147</td>
<td>13.7</td>
<td>17.7</td>
<td>0.417</td>
<td>+173</td>
</tr>
<tr>
<td>1500</td>
<td>20</td>
<td>5.6</td>
<td>70.8-171</td>
<td>8.41</td>
<td>13.9</td>
<td>0.412</td>
<td>+174</td>
</tr>
<tr>
<td>2450</td>
<td>12.2</td>
<td>5.5</td>
<td>96.4-213</td>
<td>5.21</td>
<td>11.2</td>
<td>0.406</td>
<td>+176</td>
</tr>
<tr>
<td>3000</td>
<td>10</td>
<td>5.5</td>
<td>110.234</td>
<td>4.25</td>
<td>9.74</td>
<td>0.406</td>
<td>+176</td>
</tr>
<tr>
<td>5000</td>
<td>6</td>
<td>5.5</td>
<td>162.309</td>
<td>2.63</td>
<td>6.67</td>
<td>0.393</td>
<td>+176</td>
</tr>
<tr>
<td>5800</td>
<td>5.17</td>
<td>5.05</td>
<td>186.338</td>
<td>2.29</td>
<td>5.24</td>
<td>0.388</td>
<td>+176</td>
</tr>
<tr>
<td>8000</td>
<td>3.75</td>
<td>4.7</td>
<td>255.431</td>
<td>1.73</td>
<td>4.61</td>
<td>0.371</td>
<td>+176</td>
</tr>
<tr>
<td>10000</td>
<td>3</td>
<td>4.5</td>
<td>324.549</td>
<td>1.41</td>
<td>3.39</td>
<td>0.363</td>
<td>+175</td>
</tr>
</tbody>
</table>

* Source: [Table 2](#)
many Russian experimenters believe not only in esp, but also that it is effected through microwave transmission and reception from brain to brain!

The Eastern European literature describes microwave effects on many constituents of the blood, on gland functions, eyes (cataracts), and reproduction (sterility, altered development of the fetus, altered sex ratio of births [with girls predominating]). These results over many years have led the Soviet-bloc countries to adopt a maximum permissible dose (MPD) of EMR of 0.01 mW/cm² (one one-thousandth of the U.S. MPD). While this is looked upon with considerable disdain by Western scientists, the remarkable consistency of the many reports can't be discarded out of hand. This has led many U.S. investigators to run better controlled studies to try to prove or disprove these reports.

Recent studies, mostly from the West but also notably from Poland, have shown higher degrees of control and sophistication and are probably more reliable than older reports. More accurate generating and measuring devices are being developed and used, and we are becoming more aware of the physics of EMR and how the conditions of the experiments affect the rf fields produced and power absorbed. Grants from the National Institute of Health and Public Health Service, among other agencies, have spurred research in this field. Most of the work has been with microwaves, and I will outline some of it here.

cataracts

It's generally accepted that microwave radiation can cause cataract formation (opacities in the lens of the eye). Reports of this affliction occurring in relation to radar work or exposure to microwave ovens have been fairly well documented. Also, many animal studies have been made to determine the basis of this effect. While all is not known with respect to this matter, it seems quite certain that the formation of cataracts results from the heating of the lens in a strong microwave field (that is, a field not associated with correct use of properly operating equipment).

A fairly well documented case was that of a woman whose microwave oven leaked considerable radiation while the door was being opened. The level of radiation was 40-60 mW/cm² while opening and 1-2 mW/cm² while closed. She used it for years that way and developed cataracts in both eyes described as "typical microwave cataracts."

It must be mentioned that not all ophthalmologists agree that such cataracts are typical, and many people develop cataracts with age. Other reports of documented cataract formation are those of radar workers when abnormally over exposed (looking into the waveguide).

The optic lens is susceptible to selective heating because circulation is practically nonexistent. Therefore, it has limited capacity to dispose of heat loads. There is no evidence that nonheating levels of microwave radiation can cause damage, and the levels generated by a properly operating microwave oven are far below this point (1 mW/cm² when new; 5 mW/cm² when used — measured at 5 cm (2 inches) from the door) 8

effect on the nervous system

Studies of the effects of microwave radiation on the brain have been spurred by the large number of reports in the Soviet literature of emotional and performance changes and the frequent reports of people who can "hear" microwaves — specifically radar. These studies conclude that many persons indeed can hear pulsed microwave energy. But they hear it at the frequency of modulation and cannot detect CW radiation. The actual cause of this is still not clear, but it may be due to selective heating and cooling of certain nerve cells in the ear or brain causing vibration that is detected as sound. Actual brain damage has been demonstrated only with levels of radiation far in excess of the present U.S. safety limit.

Studies on the activity of mice subjected to low-power microwave radiation have been contradictory.
(some show no effect, some show decreased activity). These have been carried out at different frequencies and power densities so that further research is certainly needed to clear the air.

blood-forming system

Several studies have been done to assess the effects of microwaves on the blood and especially on the white blood cells, which are responsible for protection against infection. Most of these studies show little or no effect and the importance of this is questionable so far. More research is also needed in this area.

reproduction

Reproduction research is of obvious importance because of the known sensitivity of the fetus to subtle changes in its environment. Caution in this matter is extreme. Witness the fact that there is not even one drug that is known to be safe for use during pregnancy. A potential risk is always assumed. Radio-frequency energy in the microwave range, however, is probably not a danger to pregnant women, because the energy is absorbed by more superficial tissues (penetration of EMR decreases as frequency increases). The effect on male fertility is real, however, since the testes are heat sensitive and must exist in an environment cooler even than body temperature to produce sperm. This is the reason for their location. Heating of the testes by microwaves or anything else will cause sterility, but this is temporary unless extreme heating occurs or exposure lasts over many months to years. So, while all the information is not in, there seems to be little or no danger to reproduction from current microwave exposure levels.

uhf, vhf, hf studies

Much less work has been done at these frequencies than at the microwave level. However, it's important to explore this area, since we're exposed more to EMR in this part of the spectrum and such energy can penetrate deeper into the body than microwaves do. As previously mentioned, the near field is more significant at lower frequencies because it occupies more space.

behavioral effects

Little has been done in this area. One study of interest exposed rats to low intensity (0.5 mW/cm²) 300-920 MHz radiation for 40 days. While the rats were probably in the near field (and this was really not accounted for), certain effects were noted:

1. Lower levels of activity

fig. 2. Variation with frequency of the radiation absorption cross section of a sphere of lossy dielectric.*
electronic radiation. This is considered to be the highest safe exposure. When exposed to near-field radiation from a whip antenna, power density measurements become very complex and are difficult to relate to far-field density.

Rogers contends that "the electrical properties of human tissues show that they resemble lossy dielectrics and that any heating due to rf radiation would be a function of the electric component of the field." His theoretical and experimental approach to this subject is complex and elegant, and I refer those with more curiosity and a mathematical inclination to the original article.

Rogers concludes that, to cause a temperature increase of 1 degree centigrade per hour in a test liquid in a near field, a field strength of about 2840 V/m would be necessary. He further states that, to allow for a margin of error, a field strength of 1000 V/m would be a convenient and reasonable limit. To convert this to practical terms, the electric field was measured at various distances from a whip antenna radiating at an output power of 1000 watts at frequencies from 2.1225-21.480 MHz. At all frequencies above 4.455 MHz, the field strength at 1.5 meters (5 feet) from the antenna was less than 100 V/m, but this rose sharply as distance decreased. At 4.455 MHz the field strength at 1.5 meters (5 feet) was exactly 100 V/m, and at 2.1225 MHz it was about 500 V/m. 13

On the basis of Rogers' findings, there would be relative safety in most situations an Amateur Radio operator may find himself in — the most caution to be observed at the lowest frequencies. It cannot be concluded, however, that distortion of the field by other objects would not focus rf energy to higher intensities than expected.

conclusion

Obviously, much work remains to be done in the field of EMR, its effects on biological systems, and on the safety of those exposed to it. I believe that it will be many years before anyone can say with adequate experimental support that our use of EMR is safe to us and future generations.

I think it safe to say that the lack of clear, nonthermal effects of EMR, despite many studies searching for it, supports the conclusion of the Tri Service program, which in 1960 said that "no data" was obtained to invalidate the safety level of 10 mW/cm². 14

We should remember, however, that distorted rf fields may focus power within objects, and that certain organs, and the fetus, are more susceptible to thermal damage.

I feel fairly secure in the use of Amateur Radio equipment in the way it's commonly employed, i.e., high-power equipment radiating through antennas outside of the shack and some distance in the air, and low-power vhf and uhf transceivers used close to the body.

I urge avoidance of the following situations, due to knowledge of danger or insufficient studies:

1. Avoid high-frequency, high-power equipment with antennas in the shack within 3 meters (10 feet) of living areas.
2. Avoid direct radiation to the eye by a transmitter in the microwave region ("looking down the horn").
3. Avoid prolonged close contact with any antenna radiating more than minimal amounts of energy.
4. Women in the early months of pregnancy, or those who may become pregnant, should avoid contact with strong hf, vhf, and uhf fields.

I believe these are reasonable precautions that should cause no one much hardship, while allowing continued enjoyment of Amateur Radio equipment.

references

ham radio
A big part of the enjoyment of Amateur Radio is firing up a rig that you built with your own hands. With Heathkit® Amateur Radio gear, you get more from your hobby by building it yourself...and you get more for your money, too. You save money over comparable assembled units, and you save by servicing your own equipment. Of course, technical assistance is available, if you need it, at 55 Heathkit sales and service locations from coast to coast, just a phone call away. If you’ve never built a kit from Heath, you’re in for a pleasant surprise. The instruction manual that comes with every kit is the best you’ll find anywhere. As one first-time kit builder put it, "If you’re not color-blind (for differentiating resistor and wire colors), you can build anything in the Heathkit catalog."

The latest Heathkit Catalog features complete information on the entire line of Heath Amateur Radio equipment and accessories. Read about it and the nearly 400 other quality electronic kits— including audio, color TV, auto, marine, aviation, test instruments, weather, computers and more—you can build yourself for pride, satisfaction and savings. Send for your FREE copy now.

There's more for the Ham at Heath!

Heath Company, Dept. 122-570, Benton Harbor, MI 49022
uhf and microwave frequency counters

A discussion of frequency counters and counting techniques for use above 500 MHz

Today's frequency counters have upper frequency limits ranging from 1 MHz to 24 GHz. Much has been written in the various Amateur Radio journals describing counters that perform up to 500 or 600 MHz, but relatively little has appeared heretofore explaining the techniques by which higher frequencies are measured. This article is intended to supplement one previously published and to explain the methods used today, and in the past, that permit uhf and microwave frequency measurements to be accomplished.

Although most lower-priced counters that can measure frequencies in the 500-MHz region use pre-scaling, state-of-the-art digital components in use today permit direct counting to well over 500 MHz. Frequency counters with ranges greater than this arbitrary, if not completely accurate, 500-MHz limit employ one of the following frequency-extension techniques:

1. Prescaling, which can extend the frequency range to about 1.5 GHz (although indications are that frequencies over 2 GHz will be practical within a year)

2. Transfer-oscillator down-conversion, which can extend the frequency range to over 40 GHz

3. Heterodyne down-conversion, which can extend the frequency range to about 18 GHz.

Prescaling is the simplest and most familiar technique used to extend the range of a direct counter. It entails scaling, or dividing, the input frequency down to one which is within the frequency range of the direct-counting logic in the counter. The dividing factor may be any integral number. If the prescaler is external to the counter, it will usually divide by ten or one hundred, so that the frequency can be read directly from the counter after you have mentally multiplied the counter reading by ten or one hundred, as applicable. If the prescaler is built into the counter, it may scale by any integral factor.

The advantage of using an external prescaler is obvious — it permits extending the frequency range of an existing counter at relatively low cost. Its disadvantages become equally obvious after it has been used. First, there is the necessity of mentally moving the decimal point, since the counter is actually displaying the divided input frequency. Second, one digit of resolution is lost for every decade of scaling. For example, a 900,000.208-kHz signal measured with a scale-by-ten prescaler will read 90,000.021 on a counter having a 1-second gate time (1-Hz resolution). Multiplying by ten yields a frequency of 900,000.21 kHz; the 1-Hz resolution is lost by scaling. It can be re-established only by increasing the gate time by a factor of ten, provided the counter has that capability.

If the prescaler is an integral part of the counter, mentally scaling the frequency and moving the decimal point is eliminated, since this will be accomplished in the counter when the mode is changed from direct count to prescaled count. Nevertheless, the loss of resolution remains. It can be reduced however, by scaling by a factor of less than ten and simultaneously increasing the gate time by the same factor, as shown in fig. 1.

By Robert S. Stein, W6NBI, 1849 Middleton Avenue, Los Altos, California 94022
input frequency by four. If the time-base frequency is also divided by four, the gate time is increased by the same factor and there will be no change in the number of signal pulses gated through to the decade counters. Thus, prescaling is accomplished with only a fourfold increase in gate time and no loss in resolution.

Switching from direct to scaled operation may be carried out in one of three ways. If a single input connector is used, the counter mode is generally manually switched. If two separate input connectors are employed, one for low-frequency signals and the other for high-frequency inputs, the counter mode may be switched either manually or automatically when the input signal is present at the high-frequency port.

Fig. 2 shows the block diagram of a counter which employs automatic switching between separate direct and prescaled input connectors. The switches at the time-base output are actually logic circuits, but are shown as conventional switches to simplify the diagram. If there is no signal applied to the high-frequency input, or if the signal amplitude is below a pre-established level, the switching logic will connect the time-base oscillator directly to the frequency dividers. In that state, the counter will function in its direct-count mode.

When a signal of sufficient amplitude is applied to the high-frequency input, the threshold detector actuates the switching logic to connect the time-base output through the divide-by-N circuit before it reaches the frequency dividers. The prescaler output is fed to an appropriate point in the low-frequency signal conditioner. Thus, the counter is switched to its scaled mode automatically whenever a usable signal is connected to the high-frequency input.

A circuit of this type, which I have incorporated in my homebuilt nine-digit counter, is shown in fig. 3. Since the direct-count limitation of the counter is about 200 MHz, it was necessary to scale by eight in order to achieve the design objective of 1300 MHz.

Fig. 1. Block diagram of a frequency counter with an internal prescaler.

Fig. 2. Block diagram of a frequency counter which employs automatic switching from direct to scaled count. The switches shown schematically are actually logic circuits rather than mechanical switches.
This necessitated capacitive coupling between the MC1697 and the 11C06, since the former requires a supply of 6 to 7 volts. Bias at the clock input of the 11C06 is optimized by means of the 2.5-kilohm pot.

Automatic gate-time switching is accomplished by dividing the clock frequency by eight when an input signal of sufficient amplitude is applied to the prescaler input. An LM311 comparator is configured so that when there is no prescaler input, the positive dc at the comparator's noninverting input exceeds that at the inverting input and keeps the output high. This inhibits both the 11C06 (via pin 9) and the 7493 (via pin 3), and also enables a path from the clock input terminal to the clock output terminal through two gate sections of a 7402, which has no effect on the clock frequency.

When an input signal is present at the prescaler input, a portion of the amplified signal from the output of the ATF417 is sampled and applied to a Hewlett-Packard 5082-2835 hot-carrier diode for rectification. The resultant negative dc, applied to the noninverting input of the comparator, causes the comparator output to go low. This enables the 11C06 and the 7493, and inhibits the direct path between the clock input and clock output terminals. The clock frequency is scaled in the divide-by-eight section of the 7493 and applied to the counter logic from the clock output terminal.

The MC1697 is prone to false counting below 100 MHz and when the input signal amplitude is too low. To prevent false readings, the comparator voltage reference is set by a 1-kilohm pot at the inverting input to establish a threshold level below which the prescaler is inhibited and above which erroneous readings will not occur.

transfer-oscillator

down-conversion

One of the earliest methods of measuring frequencies in the uhf and microwave regions was by means of the manual transfer oscillator. The transfer oscillator was completely separate from the counter. It consisted of a stable VFO (typically 100 to 200 MHz), a harmonic mixer, and a zero-beat indicator, usually a cathode-ray tube.

A simplified block diagram of a transfer oscillator is shown in fig. 4. The input signal is connected to one input of a harmonic mixer, and one output of the VFO is routed to the other input of the mixer. A second VFO output is connected to the counter, which obviously must be capable of measuring the VFO frequency. The harmonic mixer serves both as a mixer and a harmonic generator, mixing the input signal with the fundamental VFO frequency and with harmonics of the VFO generated within the mixer. The VFO is tuned to the lowest frequency to produce an output from the mixer that is within the passband of the video amplifier. This produces a display on the cathode-ray tube, whose horizontal sweep is usually derived from the ac line frequency. The VFO is then carefully tuned for a zero-beat indication on the CRT, and the fundamental VFO frequency is read on the counter.

If the approximate frequency of the input signal is

![fig. 4. Simplified block diagram of a manual transfer oscillator. The frequency range of the VFO must be within the frequency-measuring range of the counter used in conjunction with the transfer oscillator.](image)
known, and it is a relatively low multiple of the VFO frequency so that there is no ambiguity in determining the harmonic number, the input frequency is calculated by multiplying the counter frequency reading by the harmonic number. However, if the unknown frequency is much higher than the VFO frequency, it becomes necessary to determine the VFO harmonic with which the input signal has been mixed. This entails an even more time-consuming procedure of measuring two adjacent fundamental VFO frequencies whose harmonics produce a zero beat, and then determining the input frequency or harmonic number, as follows.

If \(f_x \) is the input frequency, \(f_L \) is the lower of the two adjacent VFO frequencies, and \(f_H \) is the higher VFO frequency, then

\[
f_x = \frac{f_H \times f_L}{f_H - f_L}
\]

The harmonic number may be determined from the following equations, where \(N_L \) is the harmonic number of \(f_L \), and \(N_H \) is the harmonic number of \(f_H \)

\[
N_L = \frac{f_H}{f_H - f_L}
\]

\[
N_H = \frac{f_L}{f_H - f_L}
\]

The harmonic number may also be determined from the nomographs of figs. 5 and 6 (extracted from reference 2) for the two preceding equations.

The modern transfer-oscillator frequency counter performs essentially the same procedures, but does so automatically. Fig. 7 is a much simplified block diagram of such a counter. The automatic transfer oscillator consists of two channels, a lock channel and an N-computing channel. The input signal is split in a power divider and applied to one input of the lock harmonic mixer and to one input of the N harmonic mixer. A low-frequency, voltage-controlled oscillator (VCO 1) is swept from its minimum to maximum frequency, typically 100 to 200 MHz, until an output is obtained from the lock harmonic mixer which will pass through the lock video amplifier. The
signal from the video amplifier is applied to one input of a phase detector, and a reference signal derived from the time base is fed to the other input of the phase detector. Since the output of the phase detector controls the VCO sweep generator, VCO 1 will be phase-locked to the input signal. The output of VCO 1, when so locked, will be 1/N times the input frequency.

A second voltage-controlled oscillator (VCO 2) also provides a signal, via the N harmonic mixer and the N video amplifier, which feeds one input of the N mixer. This signal, when mixed with the reference signal derived from the time-base oscillator, results in an output from the N mixer which is proportional to the harmonic number, N. The N counter then increases the gate time by a factor equal to N. (Note the similarity to the prescaling counter in this respect.) Thus, the counter will provide a direct readout of the input frequency in terms of N times the frequency of VCO 1, whose output is fed to the direct-counting circuits after being converted to the appropriate logic level by the Schmitt trigger.

heterodyne down-conversion

The concept of heterodyning a high input frequency down to one within the range of a low-frequency counter is one that should be completely familiar to anyone with a basic knowledge of electronics. Implementing this concept, however, requires that the heterodyne oscillator frequency be known to the same degree of accuracy as the counter time base if accurate frequency measurements are to result. This is accomplished both in manual heterodyne downconverters and in automatic heterodyne counters by generating the heterodyne frequency from the counter time base.

A simplified block diagram of a typical manual heterodyne converter, which may be either a separate instrument or a plug-in unit, is shown in fig. 8. It will accept any frequency between 1.1 and 10.1 GHz and down-convert it to one within the 100-MHz range of the counter connected to its output. Down-conversion is realized by applying the unknown frequency to one input of a microwave mixer, with a known frequency fed to the other input of the mixer.

The known frequency is derived from the time-base oscillator in the counter through frequency multiplier and harmonic generator circuits. The output of the harmonic generator is a comb of frequencies which are multiples of 200 MHz and are fed to the harmonic selector. This circuit is a tunable cavity whose Q is high enough to select only a single frequency from the comb input and whose dial is calibrated in terms of the 200-MHz harmonics between 1 and 10 GHz. Obviously, it is possible for the input frequency to heterodyne with either of two adjacent 200-MHz harmonics to produce a beat frequency of less than 100 MHz. However, the lower of the two adjacent harmonics will produce a heterodyne frequency equal to the input frequency minus the harmonic frequency, while the higher harmonic will result in a heterodyne frequency equal to the harmonic frequency minus the input frequency. Since the former will result in a counter reading, which, when added to the selected harmonic frequency is the input frequency, it is the desirable one to use. This is accomplished by always tuning the cavity from the low-frequency end until the indicator shows the first output. The indicator responds to any output from the amplifier which is in the counter's frequency range, so that the lowest harmonic can be selected and harmonic ambiguities eliminated.

Because the tunable frequency is a harmonic of the counter time base, determining the unknown fre-
quency is dependent on only the tuning dial calibration for the selected harmonic; this calibration need only be sufficiently accurate to discriminate between adjacent harmonics. Therefore, as long as you are certain that the lowest harmonic has been selected, operation and frequency determination using a manual heterodyne down-converter is somewhat simpler than the same process involving a manual transfer oscillator.

To iterate a point made previously, the measurement accuracy of the heterodyne conversion process is essentially the same as that of the basic counter because the harmonic frequencies are derived from or phase-locked to the time-base oscillator. Because of the problem of sweeping and selecting the appropriate harmonic, an automatic heterodyne converter became realizable only with the advent of the electrically tuned YIG (Yttrium-Iron-Garnet) filter.

The YIG filter consists of a single-crystal sphere of yttrium-iron-garnet in a controllable magnetic environment. The ferromagnetic resonance of such a sphere in an rf field can be varied by changing the magnetic field, and therefore can be controlled electrically. An rf signal can pass through the filter when the signal frequency is the same as the ferromagnetic resonant frequency; all other frequencies will be greatly attenuated. Thus the YIG filter is actually the heart of an automatic heterodyne counter, a block diagram of which appears in fig. 9.

The counter time base is multiplied and drives a harmonic generator, much the same as in the manual heterodyne converter. The comb output of the harmonic generator feeds the input of the YIG filter, with the filter output applied to one input of a microwave mixer. The unknown input frequency is fed to the second input of the mixer. The filter control circuit drives the control magnet coils in the YIG filter so that the resonant frequency of the filter is swept from its lowest to its highest frequency. The mixer output, generated from the lowest harmonic frequency to pass through the filter, is amplified, converted to an appropriate logic level by the Schmitt trigger, and passed through the gate to the decade counters.

The output of the video amplifier is also applied to an in-band signal detector, whose output inhibits the filter control sweep and keeps the YIG filter at the acquisition frequency. The signal detector also controls the signal acquisition logic, which further controls the filter tuning as required for successive measurements. The signal acquisition logic also controls the gate and other logic circuits (not shown on the block diagram) in the counter so that a direct reading of the input frequency is displayed on the counter readout.

a look at today's technology

Although there are a considerable number of uhf

![fig. 8. Simplified block diagram of a manual heterodyne down-converter used with a 100-MHz counter to measure frequencies between 1.1 and 10.1 GHz.]

![fig. 9. Simplified block diagram of an automatic heterodyne-converter frequency counter. The heart of the system is the electrically-tunable YIG filter.]

```plaintext
fig. 8. Simplified block diagram of a manual heterodyne down-converter used with a 100-MHz counter to measure frequencies between 1.1 and 10.1 GHz.

fig. 9. Simplified block diagram of an automatic heterodyne-converter frequency counter. The heart of the system is the electrically-tunable YIG filter.
```
The N-computing channel is used to determine the value of N in the following manner. As can be seen from the block diagram, the VCO output is fed to the frequency shifter, as is a 1-kHz signal derived from the counter time base. The frequency shifter is a single-sideband generator that produces one sideband which is 1 kHz higher than the phase-locked VCO frequency. This frequency-shifted signal is routed to the N harmonic mixer and heterodyned with the unknown input frequency. The resultant mixer output, which will pass through the N video amplifier, has a frequency of N times 1 kHz; this signal is applied to the N computer. The N computer digitally compares the video amplifier output frequency with the 1-kHz reference and generates a signal which corresponds to the harmonic number, N. The signal is further processed and applied to the gate-control circuit to increase the gate time by a factor equal to N. Thus, the counter will provide a direct readout of the input frequency, in terms of N times the phase-locked VCO frequency, which is fed to the direct-counting circuits after being converted to digital levels by the Schmitt trigger.

The counter also employs a Frequency Locked Automatic Transfer Oscillator (FLACTO™), which is a modification of the ACTO technique. The frequency-lock feature permits the counter to tolerate very high levels of frequency modulation and makes the measurement virtually immune to the rate of modulation. Additional details may be found in reference 3.

The Systron-Donner model 6054B employs a FLACTO™ (Frequency Locked Automatic Computing Transfer Oscillator) to permit measurements, with 1-Hz resolution, of frequencies as high as 24 GHz (courtesy Systron-Donner Corporation).

counters available in today's market, the over-10-GHz microwave counter field is dominated by three manufacturers: EIP, Hewlett-Packard, and Systron-Donner. Since microwave counters employ the latest technology, a brief look at some typical instruments should be of interest to readers who are not employed in the microwave electronics industry.

The Systron-Donner model 6054B covers a frequency range of 20 Hz to 24 GHz. It is an automatic transfer oscillator type of counter which employs a circuit designated by Systron-Donner as an ACTO™. A simplified block diagram of the Systron-Donner ACTO™ (Automatic Computing Transfer Oscillator) down-converter is shown in fig. 10. The similarity to fig. 7 is apparent, with the input signal split and applied to the lock and N channels. However, only a single VCO is used for both frequency and harmonic (N) determination.

(Automatic Computing Transfer Oscillator). A simplified block diagram of the ACTO circuit is shown in fig. 10. The similarity to fig. 7 is apparent, with the input signal split and applied to the lock and N channels. However, only a single VCO is used for both frequency and harmonic (N) determination.

fig. 10. Simplified block diagram of the Systron-Donner ACTO™ (Automatic Computing Transfer Oscillator) down-converter. This is an automatic transfer oscillator which requires only one VCO.
20 MHz; the other is a 50-ohm input for signals between 20 MHz and 24 GHz. When the latter is used, one of two operational modes may be selected. In the normal mode, the local oscillator is locked to an internal reference, which results in a high resolution reading in the shortest period of time (1-Hz resolution for 1-second sampling). In the wide mode, the local oscillator will harmonically track the input frequency, which enables it to track swept or frequency-modulated signals.

A new technique, known as harmonic heterodyne conversion, is used in the Hewlett-Packard model 5342A microwave frequency counter. This conversion scheme is a hybrid of the heterodyne and transfer-oscillator down-conversion circuits in that the counter acquires the input frequency in the manner of a transfer oscillator, but measures the frequency as does a heterodyne converter.

A block diagram of the harmonic heterodyne down-converter appears in fig. 11. In this arrangement, the conversion oscillator is a programmable frequency synthesizer locked to the counter time base. The synthesizer output is applied to a sampler, as is the input signal. The microprocessor increments the synthesizer until one of the inputs from the sampler is in the counting range of the direct counter. At that time, the signal detector generates a signal that causes the microprocessor to cease incrementing the synthesizer, and the amplified sampler output frequency is counted; this frequency is the input frequency divided by a harmonic number, N.

To determine N, the microprocessor increments the synthesizer to cause a small frequency change.

Since there are now two outputs of known frequencies from the sampler, which result from beating the input signal with N times two known frequencies, the microprocessor is able to perform the simple algebraic computation required to determine N.

The 5342A counter covers a frequency range of 10 MHz to 18 MHz, with a recently announced option which extends its upper limit to 24 GHz. Also available as an option is amplitude measurement. This feature allows simultaneous measurement of both the frequency and amplitude of an incoming sine wave. Amplitudes are displayed with a resolution of 0.1 dBm over a dynamic range of -22 to +20 dBm. The amplitude-measuring scheme employs a diode detector circuit in conjunction with an internal reference oscillator for level comparison. The amplitude measurement circuit is calibrated during production and, for signals over 500 MHz, error correction values, as a function of frequency, and input level are stored in an amplitude PROM (programmable read-only memory) for use by the microprocessor. This technique ensures an accuracy of ±1.5 dBm for...
sine-wave input signals within the operational dynamic range.

As can be seen from the photograph of the Hewlett-Packard model 5342A, operation of the counter is controlled by means of a front-panel keyboard. The keyboard provides control of resolution, self-check, automatic or manual modes, amplitude and/or frequency measurements (with the amplitude option installed), frequency and amplitude offset, etc. Such is the power of the microprocessor-controlled instrument. A detailed discussion of the model 5342A appears in reference 4.

A unique instrument manufactured by EIP is their model 371 source-locking microwave counter. This counter is an automatic heterodyning type that covers a range of 20 Hz to 18 GHz, and, in addition, has the ability of locking any signal source between 10 MHz and 18 GHz to the same long-term accuracy and stability as the time-base oscillator in the counter. The only requirements for the signal source are that it have an fm input and that it can be set manually to within 20 MHz of the desired output frequency. A block diagram of the source-locking circuits is shown in fig. 12.

Source locking is accomplished by converting the input signal to one that is in the 10-300-MHz range, using heterodyne down-conversion. The microprocessor control then calculates the proper division ratio to produce a 50-kHz output from the programmable divider when the input signal is equal to the desired frequency, which has been entered via the keyboard. (An auxiliary keyboard display on the counter records the frequency which has been keyboarded in). The dc component of the phase detector output, applied to the fm input of the signal source via the bandwidth and polarity control circuit, alters the frequency of the signal source until it is equal to the desired frequency.

The microprocessor controls the overall loop response by systematically varying the bandwidth and polarity parameters until a phase lock is achieved at a nominal bandwidth of 2 kHz. If the loop cannot be locked at this bandwidth, because of inherently low bandwidth in the signal source, the microprocessor repeats the process at a nominal bandwidth of 500 kHz. The automatic bandwidth and polarity control permits the use of the source-locking counter with signal generators and sweepers of different modulation sensitivities and polarities.

summary

This has been a necessarily brief overview of uhf and microwave counters. I have intentionally omitted a comparison of the several down-conversion systems being used today, since such comparisons are often a matter of specsman ship. Readers who are interested in such comparisons, or who want more detailed information on the conversion techniques used by the manufacturers dominant in the field, should consult references 3 through 7.

references

For more than a quarter century, International Crystal Mfg. Co., Inc. has earned a reputation for design and capability in manufacturing and marketing precision electronic products.

The market for International crystals is worldwide. With a full range of types and frequencies available, International is a major supplier to the commercial and industrial crystal market.

International's leadership in crystal design and production is synonymous with quality quartz crystals from 70 KHz to 160 MHz. Accurately controlled calibration and a long list of tests are made on the finished crystal prior to shipment.

That is why we guarantee International crystals against defects, material and workmanship for an unlimited time when used in equipment for which they were specifically made.

Orders may be placed by Phone: 405/236-3741 • TELEX: 747-147 • CABLE: Incrystal • TWX: 910-831-3177 • Mail: International Crystal Mfg. Co., Inc., 10 North Lee, Oklahoma City, Oklahoma 73102.

Write for information.
vertical antenna

for 40 and 75 meters

Design and construction of a two-band vertical antenna that fits into a modest city lot

Many Amateurs live on small lots in crowded neighborhoods and don't have the space for full-size horizontal antennas for the low-frequency bands. For example, my lot is small and cut into the side of a hill. The house and a swimming pool occupy the only flat area. A few years ago, during the sunspot doldrums, I became interested in working some low-band DX with emphasis on 75 meter SSB. The two-band vertical antenna described here is the result of my experiments.

First I tried a two-band inverted V hung from my beam antenna tower. I had little success competing on 75 SSB, although the antenna worked fairly well on 40 meters. It was also a bother whenever I had to lower the tower because of weather. The next antenna considered was a ground-mounted vertical cut to one-quarter wavelength on 75 meters. This design became very unattractive for a number of reasons. Very little free ground area was available for a good radial system, and the ground is exceedingly hard with low-conductivity soil. The only available site locations were either difficult for running coax or were in locations where a considerable amount of the radiation would be into my house and those of neighbors. About the only place left to consider was the top of the house, which is about 9 x 12 meters (30 x 40 feet).

This led to the design of an inexpensive two-band groundplane vertical antenna for 40 and 75 meters mounted on the top of the gable roof. The antenna was made from a three-section push-up TV mast, about 8 meters (25 feet) of RG-8/U coax, some galvanized TV guy wire, a TV-type ceramic pot capacitor, a short piece of stair railing dowel, a few insulators, and 61 meters (200 feet) of almost any kind of copper wire for two sets of radials. The antenna is shown in fig. 1. A simple fixed-tuned L network was mounted at the base to obtain a good impedance match on both bands. Two sets of two radials were used, one straight set for 40 meters and a Z configuration for 75 meters.

Operating principles

The TV mast (fig. 1) is one-quarter wavelength long on 40 meters. From the top a length of RG-8/U was.

\[\text{fig. 1. Two-band vertical antenna for 40 and 75 meters.} \]

By Paul A. Scholz, W6PYK, 12731 Jimeno Avenue, Granada Hills, California 91344
fig. 2. Capacitance of wire in space as a function of wire length. To find total capacitance, multiply length by capacitance per meter (foot). Curve assumes length-to-diameter ratio greater than 50. Curve was used to determine capacitance of the antenna top-hat radials.

coax is dropped, which is shorted at the bottom end. The top outer conductor (shield) is connected to the top of the TV mast. The top center conductor is connected to two slanted radials, which act as guy wires and the capacitive-loading element, or "top hat."

The coax on 40 meters appears as a parallel-resonant circuit and isolates the mast from the top-hat radials. On 75 meters the coax is one-eighth wavelength long and acts as a series inductance of Z_0, or

\[Z_0 \approx 75 \text{ ohms} \]

\[L_0 \approx 350 \text{ ohms} \]

\[C_0 \approx 100 \text{ pF} \]

\[\text{and} \]

50 ohms. The base section has a characteristic impedance* of about 350 ohms. Accordingly it appears as an inductive reactance on the order of 350 ohms. The top radials act as capacitance loading and have an effective capacitance of about 100 pF with a reactance of about 400 ohms (fig. 2). The mast, coax, and capacitive top hat form a series-resonant circuit on 75 meters, allowing the mast to be an effective one-eighth-wavelength radiator with a fairly flat current distribution. Note from fig. 3 that the current distribution along the mast on 75 meters is fairly uniform.

Fig. 4 is used to derive the base resistance for the design of the L matching network. On 40 meters the antenna is one-quarter wavelength long and has an input impedance in the order of 40 ohms. On 75 meters, because of top loading, the base impedance is about 18 ohms. If base loading were used, one-eighth wavelength on 75 meters would have a base impedance of only 7 ohms and would be inefficient.

\[* \text{Characteristic impedance is} \]

\[\sqrt{\frac{\text{inductance per unit length}}{\text{capacitance per unit length}}} \]

\[\text{and} \]

\[\text{is approximately } 50(\ln \frac{2h}{d} - 1), \text{ where } h \text{ is height and } d \text{ is diameter.} \]

fig. 3. Equivalent circuit of the two-band antenna. The 40-meter version is shown in (A), 75-meter version in (B).

fig. 4. Radiation resistance of short monopole antennas, which was used to derive base resistance of the antenna L matching network.
The L network matching circuit development is shown in fig. 5. The resultant circuit is derived in fig. 3. The measured input matching characteristics are shown in fig. 6.

Adjustment

Adjustment is straightforward. Little interaction occurs between 40- and 75-meter adjustments. First adjust the 40-meter radials, the two straight 10-meter (33-foot) lengths equally until a minimum VSWR is obtained at the desired operating frequency. Next, for 75-meter operation, adjust the Z-configuration radials equally. If this doesn't quite hit the desired frequency a slight adjustment of the top-hat radials may be necessary. These radials don't affect 40-meter operation to any extent. Recheck 40-meter operation. The VSWR on 40 meters will not be unity, because the base impedance is on the order of 40 ohms. The matching network may need a slight inductance change for the best match on 75 meters. This adjustment will have negligible effect on 40 meters.

Construction

Details are shown in figs. 1 and 7. The top of the mast on 40 meters is at a very high voltage, so a good-quality top insulator is needed. I used low-sap wood (maple) boiled in wax. The insulator has been reliable over the past four years. Plastic materials such as acrylic are suitable. See fig. 7 for top insulator assembly. Each end of the coax cable mounted inside the mast should be dipped in wax or otherwise sealed.

The two top radials are made from galvanized or copperweld guy wire. Soft copper wire was used originally but broke at the top end as a result of wind stress. The top radials are at high voltage on 75 meters but have low current. They are not used on 40 meters. Accordingly, it's not necessary to use high-conductivity wire. The lower end of the radials terminate in small, corrugated antenna insulators. The wire is cut longer than shown, passed through the insulator, and twisted back on itself so that easy adjustment may be made. The vertical angle of the radials isn't critical. An anticorona noise loop is formed at the top of the mast either by extending the coax or one of the top radials.

The base-mounting insulator can also be made from wood boiled in wax. This point is at low voltage and insulation isn't critical. I used a tilt-over, U-channel TV base for convenience in mounting. The mast should be supported by one set of four insulated guys at the top of the base section of the three-section TV push-up mast. Guy rings are usually supplied with the mast.
The L matching network is mounted on the base of the mast above the mounting insulator. A heavy, flexible, stranded wire is run from the bottom side of the L network to the center of the groundplane radials. This makes it convenient to tilt the mast without disassembly of the network or feed coax. The 1.7-μH inductor is ten turns of 1.6-mm (no. 14) bare wire, 38 mm (1 1/2 inches) diameter and 35 mm (1 3/8 inches) long. Spacing is six turns per 150 mm (six turns per inch).

The groundplane radials form resonant elements and should be separated from surrounding surfaces except at their center. The vertical angle of the radials is not critical. The ends are supported and terminated by insulators similar to the top radials for convenience of adjustment. Bend the radials to suit the shape of roof. The bend at the 10-meter (33-foot) point can vary slightly. The wire type isn’t critical. Anything larger than 1 mm (no. 18) either enamelled or covered will suffice.

Performance

The antenna has been in use since 1974. Operation has been satisfactory. The only mode used on 75 meters was SSB, with some CW on 40 meters. All continents except Europe have been worked several times on 75 meters, with good reports. If you live in a high noise location, this may not be the antenna for you. If you live in a place where lightning is active, make sure an adequate ground is provided. This antenna makes a dandy lightning rod.

Ham Radio

State of the Art

by

K.V.G.

Crystal Filters and Discriminators

9.0 MHz Filters

<table>
<thead>
<tr>
<th>X00-A</th>
<th>2.5 kHz</th>
<th>SSB TX</th>
<th>$42.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>X00-B</td>
<td>2.4 kHz</td>
<td>SSB RX/TX</td>
<td>$57.10</td>
</tr>
<tr>
<td>X00-C</td>
<td>3.75 kHz</td>
<td>AM</td>
<td>$62.25</td>
</tr>
<tr>
<td>X00-D</td>
<td>5.0 kHz</td>
<td>AM</td>
<td>$62.25</td>
</tr>
<tr>
<td>X00-E</td>
<td>7.5 kHz</td>
<td>SSB RX</td>
<td>$62.25</td>
</tr>
<tr>
<td>X00-M</td>
<td>0.5 kHz</td>
<td>CW (4 pole)</td>
<td>$33.55</td>
</tr>
<tr>
<td>X00-N</td>
<td>0.5 kHz</td>
<td>CW (8 pole)</td>
<td>$77.15</td>
</tr>
</tbody>
</table>

9.0 MHz CRYSTALS (Hc25/u)

X000	9000.0 kHz	Carrier	$5.00
X001	8998.5 kHz	USB	$5.00
X002	9001.5 kHz	LSB	$5.00
X003	8999.0 kHz	BFO	$5.00

Transverters for ATV OSCARS 7, 8 & Phase 3

Transverters by Microwave Modules and other manufacturers can convert your existing Low Band rig to operate on the VHF & UHF bands. Models are also available for 2M to 70cm and for ATV operators from 02/CH3 to 70cm. Each transverter contains both a Rx up-converter and a Rx down-converter. Write for details of the largest selection available. Prices start at $179.95 plus $3.50 shipping.

SPECIFICATIONS:

- **Output Power:** 10 W
- **Receiver N.F.:** 3dB typ.
- **Receiver Gain:** 30dB typ.
- **Prime Power:** 12 V DC

Attention owners of the original MM432-28 models: Update your transverter to operate OSCAR 8 & PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $22.50 plus $1.50 shipping etc.

Receive Converters

MODELS FOR ALL BANDS 50 MHz THRU 1296 Mhz, LOW NOISE OPTIONS AT 432 Mhz.

- **STANDARD I.F. 10M. I.F. OPTIONS 6M & 2M AVAILABLE**
- **POWER 12V D.C.**
- **SHIPPING $2.50**

MM144	N. F. 2.8 db typ.	$59.95
MM132	N. F. 3.0 db typ.	$69.95
MM432-5/7C	Twin Xtal	$84.95
MM438/ATV Ch2 or Ch3 IF	$89.95	
MM1296	N. F. 8.5 db typ.	$89.95

Antennas (For Concord, Via UPS)

144-148 MHz J-Slots

- **8 OVER B HORIZONTAL POL. +12.3 dBd**
- **DB/2M | $53.25**
- **8 BY B VERTICAL POL.**
- **DB/2M-VERT. | $62.50**
- **8+8 TWIST**
- **8X2/2M | $55.00**

- **420-450 MHz MULTIBEAMS**

For local, DX, OSCAR, and ATV use.

- **48 EL. GAIN | +15.7 dBd 70/MBM48**
- **88 EL. GAIN | +18.5 dBd 70/MBM88**
- **$57.70**
- **$84.00**

UHF LOOP YAGIS

- **502 LOOPLS**
- **Gain | +20 dbi**
- **872-1340 MHz | 1296-LY**
- **1650-1750 MHz | 1651-LY**
- **$58.15**
- **$61.45**

Send 30c (2 stamps) for full details of KVG crystal products and all your VHF & UHF equipment requirements.

- **Varactor Triplers**
- **Crystal Filters**
- **SSB Transverters**
- **FM Transverters**
- **Varactor Triplers**
- **Oscillator Crystals**
- **SSB Transverters**
- **VHF Converters**
- **UHF Converters**

Ham Radio

More Details? CHECK—OFF Page 126
Important modifications are described for modernizing the KWM-2 high-frequency transceiver

Introduced to the Amateur world in the fall of 1959, the Collins high-frequency KWM-2 transceiver quickly became the classic, with over 40,000 units in use worldwide by Amateurs, commercial services, and the military of numerous nations. The latest version of this popular rig is the KWM-2A. Time-proven by its robust construction and its long life in these days when circuit-boarded, solid-state gear quickly eliminates obsolete designs, this fine transceiver has more than held its own. Over the years revisions have been made to the original design. This article covers some important modifications to the KWM-2 family and describes how you can incorporate them into your unit to help bring it up to date.

The Collins KWM-2 high-frequency transceiver is widely recognized as a superior piece of Amateur gear and is continuing a long and useful life. A decade ago a military overview of communications equipment in governmental service praised the KWM-2 for reliability, ruggedness, and ease of use.

While the newest KWM-2s retain the original classic appearance, numerous revisions and modifications have been incorporated over the years which make the modern version easier and better to operate than the older sets. Some of the important modifications that can be made by the advanced Amateur with adequate test equipment are described here. For those who don’t want to dig into their transceiver, information is furnished on getting the more sophisticated and difficult modifications made by a professional. In any event, before undertaking any revision or modification to your KWM-2, make sure the change has not already been incorporated into your equipment. Many hams own second-hand units, so it’s wise to make sure your manual agrees with the particular transceiver you own, at least as far as the schematic and voltage charts are concerned. Be suspicious of an older model KWM-2 that has a new manual. The two may not be in exact agreement.

All modifications should be made with a 40-watt (or smaller) soldering iron, so as to protect the insulation on wires next to the soldering iron. A magnifying glass is helpful, as are needle-nose pliers. You’ll be working in an area with a high parts density and you don’t want to damage some circuits while you modify others!

the “wing” versus the “meatball”

Around mid 1968, Collins changed their old winged emblem and adopted a new, round escutcheon known as the “meatball.” This cosmetic change allows you to determine the approximate age of your KWM-2.

Gus Browning, W4BPD, tells the story of a KWM-2 he took along on a DXpedition in the Indian Ocean. It was dropped overboard by a crew member during an attempt to land on an obscure island. Native divers finally fished it out and brought it ashore. After flushing with fresh water and drying out for a few hours, the rig was hooked up — and it worked! The only casualty was the meter movement, which had opened up. A local artisan repaired the meter winding and Gus was back on the air.

The only casualty was the meter movement, which had opened up. A local artisan repaired the meter winding and Gus was back on the air.

repair. Countless thousands of Amateurs agree with this conclusion.*

*Gus Browning, W4BPD, tells the story of a KWM-2 he took along on a DXpedition in the Indian Ocean. It was dropped overboard by a crew member during an attempt to land on an obscure island. Native divers finally fished it out and brought it ashore. After flushing with fresh water and drying out for a few hours, the rig was hooked up — and it worked! The only casualty was the meter movement, which had opened up. A local artisan repaired the meter winding and Gus was back on the air.

By William I. Orr, W6SAI, 48 Campbell Lane, Menlo Park, California 94025
KWM-2, as the random serial numbers on the KWM-2 after 1968 no longer date the equipment for the layman. On the used-equipment market, the "meatball" KWM-2 commands a somewhat higher price than the older "wing" model. It's best to buy the KWM-2 on performance and appearance, however, and forget about the emblem. Sometimes you can realize a tidy savings by buying a "wing" model in good condition rather than the newer "meatball" model.

If you do buy a used KWM-2, check it carefully in both transmit and receive modes on all bands before you part with your money. Look under the chassis to make sure the previous owner hasn't made his own unique (and often unworkable) modifications. Many good KWM-2s for sale are showing up in the classified ads, as bedazzled hams trade in their units for the latest solid-state transceiver complete with bells, whistles, and a six-month wait for replacement parts. Good! Their loss is your gain if you want to own a good KWM-2 for sale are showing up in the classified ads, as bedazzled hams trade in their units for the latest solid-state transceiver complete with bells, whistles, and a six-month wait for replacement parts. Good! Their loss is your gain if you want to own a good KWM-2 for sale are showing up in the classified ads, as bedazzled hams trade in their units for the latest solid-state transceiver complete with bells, whistles, and a six-month wait for replacement parts.

minor bugs you may not have observed the first time around

Transmitter instability? Signs of oscillation?
Before you tear things apart or attempt reneutralization of the amplifier stage, remove the amplifier-compartment lid and make sure the tube shield of the 6CL6 driver stage (V8), is firmly in place. A loose tube shield can play havoc with transmitter operation!

![fig. 1](image-url)

Folklore has it that either 6146B tubes won't perform properly in the KWM-2, or that 6146Bs are the only tubes to use in the KWM-2. Forget both of these fairy tales. The differences between the 6146, 6146A, and 6146B are minimal (mostly being one-upmanship in advertising policy). All do the job equally well. It's not necessary to match 6146-type tubes, either, although it's suggested that a 6146A not be used with a 6146B.

Receiver blocking on switch-over? Sometimes you'll notice a delay of up to 30 seconds during which the receiver is blocked and no signals are heard after switch-over from the transmit mode. This problem is caused by screen emission from the 6146 amplifier tubes (V9), (V10), which paralyzes the receiver agc (automatic gain control) circuit. New 6146* tubes will sometimes cure this annoying problem, but a permanent fix is easily achieved by placing a diode in the amplifier screen power lead, which blocks negative current (fig. 1). This mod is easily and quickly made in the bottom of the amplifier compartment. The diode is substituted for the wire lead between the screen feedthrough terminal in the compartment wall and nearby socket tie-point strip (TS1). The diode anode is connected to the feed-through terminal. Put insulated sleeving on the diode leads. This mod has no effect on transmitter performance.

ALC meter instability? Does the zero reading of the ALC meter float around during transmit, or does it gradually drift up-scale as the KWM-2 warms up? This annoying fault can usually be cured by replacing capacitor C157 (0.01 μF, 200 volts) with a new low-leakage mylar or polypropylene unit. You'll find the old unit attached to pins 1 and 3 of socket XV17A (6BN8).

Equipment runs hot? Short tube life? The 6U8/6U8A and 6AZ8 tubes in the KWM-2 are said to have short lives. The grapevine suggests replacing the 6U8/6U8A with a 6EA8 for longer life. This can be done in most sockets, with no change in performance, except for the 6U8/6U8A used as the audio tone oscillator (V1). Some 6EA8s will not work in this circuit, and others will distort the audio tone signal, which then bleeds into the receiver audio system during CW operation. Stick with the 6U8/6U8A in this socket and look for short-life tube problems elsewhere.

In some KWM-2s the low-voltage dc supply (supposed to be a nominal 275 volts) runs from 300 to over 340 volts when the standard Collins 516-F2 power supply is used.† No wonder some of the small tubes are cooked! Measure your low-voltage supply. It should not run much over 290 volts on receive and

†Overvoltage is presumed due to various manufacturers having supplied the power transformer and filter choke coils. Design and windings of these components seem to vary, especially in the dc resistance of the transformer or choke coils. This could account for the voltage variance.
been made (40 mA for general use or 50 mA when driving a linear amplifier).

Old filter caps in the power supply? It's a good idea to replace the high-voltage filter capacitors and the bias filter capacitor in the power supply if the KWM-2 is an older model. The capacitors become leaky with age and the capacitance value drops off at the same time. You can put more microfarads in the same space occupied by the old units and this improves the supply's dynamic stability. When you put the new capacitors into the circuit be sure to observe polarity, for the bias capacitor, which is hooked up "backwards," with the positive terminal grounded. Capacitors C2, C3, and C4 can be replaced with equivalent 80-µF, 450-volt units, and C5A-B can be replaced with a dual 30-µF, 250-volt unit. Capacitors C6, C7 can be replaced with 40-µF, 250 volt units. Unless the shunt capacitor, C1, is defective (a rare occurrence), don't bother to replace it.

Dial chatter or backlash? Underneath the VOX plate atop the main tuning dial assembly is a small idler pulley mounted to the front panel to the left of the dial mechanism (as viewed from the front). This pulley holds the two dial plates in alignment as the dial is rotated. Unbolt and lift up the VOX plate; this requires removal of one screw at the top left of the plate and two screws above the panel escutcheon. Now you can see the dial pulley. If it's loose it will rattle, and the dial will show backlash to a greater or lesser degree. The amount of mesh with the dial mechanism is determined by the center screw holding the gear. For a quick fix, loosen the screw and slide the gear into the dial mechanism a very small amount and retighten. Caution! The gear-retaining screw is very short. Don't loosen it too much or it will
fall out and you'll lose dial alignment. However, if you hold the two dial disks together to keep them from losing alignment, you can completely remove the idler gear and coat the gear shaft with silicone grease, which will eliminate dial rattle. Maintain the position of the dial plates so that you don't lose calibration.

TVI on 10 meters? Why do some KWM-2s show bad TVI on 10 meters while others don't? And why does the TVI often worsen when you bring your hand near the final amplifier tuning/loading panel controls? The answer is that these concentric shafts come out of the amplifier compartment and are insulated from the front panel of the KWM-2 by an almost invisible panel bushing. In effect, the shafts act like a radiating antenna for amplifier harmonics that would otherwise remain bottled up in the amplifier compartment. A shaft grounding clip* bolted to the outside of the amplifier enclosure (as shown in fig. 3) grounds the outer shaft and reduces the harmonic signal at this escape point to near zero. The grounding clip is held in position with (4-40) hardware.

If your KWM-2 doesn't incorporate a vhf choke (L128) in the power amplifier B-plus lead immediately following plate choke L17, a 120-µH choke should be added to prevent harmonic currents from passing into the power supply (fig. 4).

Receiver i-f tube V1B run hot? Place your hand on V1, the 6A28 i-f amplifier tube after the KWM-2 has been running for a few hours. Wow! Hot! No wonder this tube is said to have a very short operating life. And no wonder the S-meter zero-signal reading shifts about on the scale. The latest versions of the KWM-2 have incorporated a protective resistor (R75) in series with pin 3 (cathode) of tube V1 to ground to limit plate current. If you don't have this resistor in the circuit, a 10-ohm, 1/2-watt resistor placed in series with the ungrounded terminal of the receiver GAIN ADJUST potentiometer, R132, mounted on the VOX plate, will help reduce the tube temperature. In addition a heatsink-style tube shield† is placed over V1.

fig. 4. Vhf choke (L128) in B-plus lead to final amplifier helps suppress TVI-causing harmonics. A J.W. Miller 9360-13 choke rated at 400 mA is suggested.

fig. 5. Modified VOX relay control circuit. Resistor R202 is added to reduce current through the relay coil. It may be necessary to reduce the value of the resistor in some cases to provide proper pull-in current. In some KWM-2s resistor R202 is 330 ohms and is located in the cathode circuit between pin 7 of socket XV4 and the circuit to J15 and J16. In this case, no plate resistor is required. In some units resistor R46 is 3.3k. It should be replaced with 2.2k for this modification.

Heat-sink shields are hard to come by, but perhaps your friendly electronics store (or the local flea market) has some. A retainer mounting shell is also required. The shell is mounted to socket XV1 using the existing mounting bolts. You'll probably find (as I did) that the mounting shell has a negative clearance with respect to the socket. The solution is to cut tiny slots around the bottom edge of the shell with metal snips. Cut to a depth of about 1.5 mm (1/16 inch) then bend out the tabs you've made with a pair of long-nose pliers. The shell will then fit snugly over the socket rim. Snap the heat-sink shield over the tube, and longer tube life will be your reward.

Relay problems? Some KWM-2 owners have found to their sorrow that the coil of VOX relay K2 burns out after prolonged use. The popular and expensive solution is to get a "meatball" KWM-2 with plug-in relays. However, a circuit modification somewhere along the long production history of the KWM-2 has solved this vexing problem, even in some of the older models. A 12k, 2-watt safety resistor (R202) is placed in series with the plate of the VOX relay amplifier tube, V4B, fig. 5. If your KWM-2 doesn't have this modification it's a good idea to incorporate it, as it might save you a destroyed relay coil. The resistor can be mounted between pin 8 of socket XV4 and a tie-point epoxied to the chassis near the socket.

Lack of receiver sensitivity on some bands? Even after repeated alignment some KWM-2s show

*The Collins part number of the grounding clip is 563-2556-002. You may be able to obtain a clip from Dennis Brothers, WA6CBK, Route 1, Box 1, Potter, Nebraska 69156.

†Suitable heat-dissipating tube shields are manufactured by, and available from, International Electronic Research Corporation, 135 West Magnolia Boulevard, Burbank, California 91502. The shield cools tube bulb temperature to below that of the bare bulb. A type TR6-60206 shield is used for the 6A28 or 6J6/6U6A. A TR6-90258 is recommended for use with the 6CL6 driver tube.
The following components are now added:
1. Connect new R83 (1.5 meg) from E30C to E30J.
2. Connect new C93 (0.47 μF) from E30C to E30J.
3. Connect new R82 (4.7k) from T-5 terminal 4 to TS8-1. Use sleeving on leads and route around E30.
4. Connect new R180 (680k) from TS8-1 to E30C.
5. Connect new C265 (0.01 μF) from TS8-1 to E30C.
6. Connect new C92 (0.01 μF) from TS8-1 to ground ring on power connector J13. Check wiring against fig. 6B. Mark the modification in your manual for reference.

Agc overload and audio distortion on strong SSB signals? It's recommended that this useful modification be performed along with the previous one in cases where both arrangements are missing from the transceiver. This modification adds hang agc to the receiver rf amplifier (fig. 7) and greatly improves strong-signal reception. Refer to the under-chassis layout of fig. 2 for placement of parts:

1. Remove screw and lockwasher nearest front panel used to secure audio transformer T6.
2. Install a two-terminal, lug-type strip on T6 using screw and lockwasher.
3. Disconnect the white-green-blue wire at TS8-1, pull it back through the cabling and reconnect it to terminal 1 of the newly installed lug-type strip. Call this new strip TS11.
4. Connect R213 (2.2 meg) from TS11-2 to TS11-1. Use sleeve resistor leads as necessary.
5. Connect diode CR11 (IN4583 from TS11-2 (cathode) to TS11-1 (anode). Use sleeve diode leads as necessary.
6. Connect C276 (0.05 pF) from TS11-1 to E30B.
7. Of the two white-green-blue wires connected to E40-I, disconnect and tape the end of the one showing continuity to TS11-1. You'll have to disconnect both wires to make this check, then resolder the wanted wire.
8. Connect an insulated wire from E40-I to TS11-2, routing it along the cabling. Check wiring against fig. 7. Mark the modification in your manual for reference.

Audio distortion on strong signals? Aside from the above modification, another cause exists in some KWM-2s for fuzzy audio. Place a 0.01 μF, 600-volt capacitor from the screen of audio output tube (V16B, pin 8) to ground. Also place a 56-ohm, 1-watt
resistor from the yellow (4-ohm) lead of output transformer T6 to ground. These mods will eliminate a weak audio parasitic oscillation sometimes encountered in some receivers.

general modification notes

Modification of the KWM-2 is not recommended for those who have no experience working with small components in cramped spaces. Many KWM-2s are wired with PVC wiring insulation, which melts quickly at the inadvertent touch of a soldering iron. Always check transceiver operation before and after each modification. After your modification, check for wiring errors or shorts and make sure that small specks of solder and wire are blown out of the chassis before power is applied. Also be aware that I've not seen all existing KWM-2s and that these mods may not work as shown with some transceiver variations. If you don't understand your present circuit wiring or if it doesn't match the schematics, don't attempt the modification!

where to get help

This material has been prepared with the help of Dennis Brothers, WA0CBK, formerly an engineering technician of KWM-2 production at Collins-Rockwell Company. For those not wishing to make these (and other more sophisticated modifications) themselves, I suggest they contact Dennis at Western Nebraska Electronics, Route 1, Box 1, Potter, Nebraska 69156. A self-addressed, stamped envelope for rapid reply is requested.

ham radio
commutating filters

Discussion of the commutating filter — the application of analog and digital techniques to implement a bandpass filter

The world is becoming increasingly digital. In fact, many engineers and electronic technicians are worried about their positions in a technical scenario wherein the linear art is shrinking as digital techniques take over. The real truth, as I see it, is that digital is not going to take over at all, but will provide additional techniques creating circuit solutions where the linear techniques they replace are shaky. In fact, in applying these new digital techniques, the linear circuit area will be even further expanded.

The commutating filter is a good example of how digital techniques provide a simple solution to an analog problem, but which would not work without the addition of some circuitry that is strictly analog. The commutating filter, as presented in fig. 1, is designed for 1 kHz; it is a bandpass filter, and its center frequency is dependent only on the frequency with which it is driven. The bandwidth is dependent only on R and C; in fact, this bandwidth is exactly twice the cutoff frequency of the single RC lowpass filter of fig. 2. If you look at the voltage on any one capacitor of the filter of fig. 1, you'll see a near-dc signal which is the difference-frequency between the drive frequency and the signal frequency. Like the simple RC lowpass of fig. 2, it will drop to -3 dB when the signal frequency drops to $\frac{\pi}{2} RC$ above the drive frequency. It is easily seen why the bandwidth is double the cutoff frequency of a simple RC lowpass filter. Since the output is being commutated sequentially through the four capacitors, it is modulated back up in frequency to that of the input, and phase is preserved.

It might sound as if the perfect filter has been

fig. 1. Diagram of a simplified commutating filter. The switch makes one revolution each period of the desired signal frequency to be filtered.

fig. 2. Simple RC lowpass filter from which the commutating filter is derived.

By Hank Olson, W6GXN, P.O. Box 339, Menlo Park, California 94025
achieved with no drawbacks. As usual, there's no free lunch, and you'll find that the commutating filter has some inherent problems. One of these problems is the phenomenon known as "aliasing." Aliasing is the disagreeable habit of filters of this sort to pass not only the same frequency as the drive frequency, but also harmonics of the drive frequency. This can be alleviated by preceding the commutating filter with a simple conventional bandpass filter that attenuates signal frequencies that correspond to harmonics of the drive frequency. This "pre-filter" can, of course, be much broader than the ultimate system bandwidth that our commutating filter provides.

Another drawback of the commutating filter is that
fig. 5. Examples of the idealized waveforms from the 8 and 16 samples per cycle filters. These waveforms are before the post-filter.

As disheartening as all the above restrictions may seem, modern ICs (both linear and digital) come to the rescue to make the commutating filter a fairly simple one. In fig. 3 is shown a complete four-sample-per-cycle commutating filter using an operational amplifier as a pre-filter bandpass, a CD4052 (CMOS multiplexer/demultiplexer) as the switching (and steering) element, an operational amplifier as a noninverting follower, and an operational amplifier as a lowpass post-filter. Since the CD4052 (half of it) has built-in decoding (steering), it requires 2 kHz and 1 kHz (two-bit) input. These inputs are derived from a CD4027 dual flip-flop wired as a ripple counter and having a 4-kHz input.

The filter of fig. 3 samples the input signal four times per cycle, and thus the “steps,” or discontinuities, in the output (before post-filtering) are relatively large. By going to a filter that takes eight samples per cycle, you decrease the “step” size and ease the post-filter requirements. In fig. 4, a CD4051 and eight capacitors replace one half of the CD4052 and the four capacitors. This multiplexer is another member of the same CMOS family as the CD4052, but it requires three-bit drive: 4 kHz, 2 kHz, and 1 kHz. To accomplish this drive requirement, another CD4027 flip-flop could be used with an 8-kHz input. Or you could use a single CD4024, which is a seven-stage ripple counter (divide-by-128), and use any convenient three adjacent outputs for the drive. In fig. 4, the last three outputs (pins 5, 4, and 3) of the CD4024 are used to drive the CD4051, thus requiring a 128-kHz input to pin 1. This 128 kHz is provided by a 128-kHz crystal oscillator made from two-thirds of a CD4007.
Fig. 7. In this case, two stages of four-sample-per-cycle filters have been cascaded. Only one set of pre- and post-filters are necessary, with an impedance follower between the sections to lower the driving impedance to the second section.

Fig. 5 shows the unfiltered outputs of the eight-sample and the sixteen-sample filters. Note how the eight-sample filter has more (and smaller) "steps" in its output, and is thus easier to post-filter. It is even fairly simple to expand the filters of figs. 3 and 4 to sixteen samples per cycle, which really cuts down the quantization ripple in the output. Such a circuit is shown in fig. 6, using a CD4067 and sixteen capacitors.

It is even possible to cascade commutating filters, and the pre-filter and post-filter need not be replicated. A follower between sections is all that is required for lowering the driving impedance to the second section. An example of a two-section, four-sample-

fig. 8. Example of a practical commutating filter. This filter has been set up for an operating frequency of 640 Hz.
per-cycle filter is shown in fig. 7. The advantage of cascading is the sharpness of rolloff outside the pass-band. The rate of rolloff of the equivalent RC lowpass is then 12 dB/octave instead of 6 dB/octave.

Finally, a construction project using a commutating filter in a useful piece of ham equipment is presented in fig. 8. The design process was as follows:

1. The operator tuned in a CW signal off-the-air and adjusted the BFO until the tone was of an agreeable pitch. This pitch was measured using an oscilloscope to find out what frequency the operator likes to copy. This subjective determination of the operator pitch preference may seem like wasted motion, but many people have "holes" in their hearing response (especially older CW operators).

2. Once the desired pitch frequency is determined, multiply it by 128 and get the oscillator frequency to the CD4060. As an example, say that the operator preference turned out to be 640 Hz; then, the input frequency would be 81.92 kHz. If one has a crystal of about that frequency, it can be used directly in fig. 8. Otherwise, higher frequency crystals could be used, with taps at positions further down the divide-by-two chain. For instance, a 328-kHz crystal could be used, the outputs taken from pins 6, 14, and 13 (still yielding 2560, 1280, and 640 Hz respectively).

3. The pre-filter center frequency is then adjusted to the chosen operating frequency, in this case 640 Hz. The C values scale with frequency so that C is 0.01 μF for 1 kHz and 0.015 μF for 640 Hz.

4. The post-filter cutoff frequency is adjusted to be 1.5 times the bandpass filter center frequency. Again, the capacitor values scale with frequency. Capacitor values of 0.01 and 0.033 μF give a 1.5-kHz cutoff frequency, and 0.015 μF and 0.05 μF give a 960-Hz cutoff frequency.

In fig. 8, an input noninverting follower has been added so that the unit may be driven from almost any impedance. An LM1458 dual op amp is used for both the input follower and the pre-filter. Addition of a variable resistance in place of R allows the passband to be varied from 3.0 Hz to 30.0 Hz, continuously. Another LM1458 dual op amp is used in the output section as the noninverting follower and lowpass filter. By using two dual op amps, and using the CD4060 (which combines the crystal oscillator and divider in one IC package) I’ve reduced the circuit down to four ICs, plus the one IC used as the power supply regulator. The 81.92-kHz crystal was actually an 81.95-kHz unit that is quite common on the surplus market, 81.95 kHz being a standard time base frequency for a variety of distance-measuring devices.

New All Band Preamp Amplifier

- Continuously tuneable
- Covers all amateur bands from 160-6 m.
- Provides 20 dB of gain
- Dual Gate FET for low noise figure
- An RF sensing circuit allows use with transceivers
- Built-in 117 volt AC Power Supply
- Connecting coaxial cable for transceiver included

$89.50

Madison Electronics Supply, Inc.

1508 McKinney • Houston, Texas 77002
713/658-0268

Mastercharge • Visa

W5GJ, W5MBB, K5AAD, N5JJ, AGSK, W5VVM, W5EGP, W5STU, WB5AYF, K5GB.
Stalking the Ultimate DX.

Now you can really enjoy the challenge of working that tough to work 2-meter DX. The all new Boomer 3.2x yagi gives 16.2 dB forward gain. A high efficiency balanced feed system, with integral balun, gives a clear, precise pattern. The trigon reflector reinforces Boomer's 24 dB front to back ratio. Boomer has that right combination of features which will give you long path DX capability or allow you to participate in tropo, sporadic E, meteor scatter and EME activities.

The Boomer is designed to last with a large diameter round boom for more strength with less wind load. It has a reversible truss support, high strength aluminum mounting plates and all stainless steel hardware.

When you install Boomer, you'll appreciate our typical attention to detail. You can throw away the hack saw and hand drill. Boomer has a detailed instruction manual, precisely cut elements, plus machined and finished components which need only pliers and screwdriver to assemble.

When you are ready to move up to even higher gain, we have complete stacking kits with everything necessary to assemble two, four and larger yagi arrays. Stalk down to your local dealer (anywhere in the world) for full details on Boomer.

A-3219 BOOMER
UPS SHIPPABLE

Cushcraft
The Antenna Company
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108
accu-keyer speed readout

Another addition to the feature-packed WB4VVF Accu-Keyer — a readout system for code speed

There are thousands of Accu-Keyers already in use, and the appearance of articles to add message memories to the basic keyer has undoubtedly resulted in another flurry of Accu-Keyer construction. It is an excellent and highly versatile keyer, and deserves the fine reputation that it has. It might seem that there is little else that one could want from this, or any other, keyer.

There is one useful addition, however. Most of us vaguely know our sending speed. It is true that a speed scale could be put on the front panel behind the control, but the speed vs rotation dependence of most controls is highly nonlinear, especially at the high-speed end of the range where the scale becomes compressed. Any semblance of accuracy is lost in the compressed scale.

A desirable feature, which I have incorporated into the Accu-Keyer system, is a direct words-per-minute speed readout. This is useful for many purposes, and at the least is an interesting conversation piece in the ham shack.

The readout and keyer clock, which I will describe, may be easily used in any Accu-Keyer design, and possibly in other types of keyers as well. The main precaution to be observed with the Accu-Keyer family is to be sure the 5-volt power supply in your keyer is capable of handling the extra current drain, about 370 mA.

I do not consider it feasible to use my readout with a battery-operated keyer, but it should be possible to make relatively simple modifications to the circuit and use CMOS integrated circuits. It would be necessary to choose some other type of display, and I would recommend a liquid-crystal type.

principles of operation

A continuous speed readout in wpm requires a free-running clock. The Accu-Keyer clock, however, is not free running. It starts when either side of the paddle is closed, and is stopped by an inhibit signal from the logic when all characters have been completed. This method has a considerable advantage over a free-running clock, since the operator initiates a character at the time he chooses rather than at the time the clock is finally ready.

This dilemma is easily overcome, and the unit I have developed gives an accurate, continuous readout of the speed without sacrificing the advantages of the operator-started clock. A fringe benefit of the unit is that it does not have the problem, common to some keyer clocks, of a first clock pulse different in duration from the rest of the pulses in the sequence. Because of these features, it may be worthwhile to use the clock portion of this unit, even without the readout.

The speed is variable from five to around fifty wpm, an adequate range for almost anyone from Novice to Extra. The speed display is updated approximately six times each second, whether or not any sending is being done. I incorporated it into the WA9LUD memory version of the Accu-Keyer, but of course it can be used with any similar keyer.

By Bill Wageman, K5MAT, 35 San Juan, Los Alamos, New Mexico 87544

60 September 1979
design. Different speeds may be selected as you build.

Recent editions of the ARRL Radio Amateur's Handbook give the relationship between code speed and keyer clock frequency as:

\[\text{speed (wpm)} = 1.2 \times f \] (clock frequency)

Twenty pulses per second of the clock result in a keying speed of 24 wpm. A scheme for reading out this relationship has been described previously, but that system has several disadvantages which are overcome by my circuit.

Suppose you have a high-frequency pulse generator running at 2420 pulses per second. Three decade counters hooked in series would count to 242 if they are allowed to count for exactly 0.1 second. If the least-significant digit (2 in this example) is ignored, it is then possible to display 24 in the readout connected to the digital counters. The reason for this approach will be discussed more fully later.

The high-frequency pulse generator can also be divided down by a decade and a duodecimal (divide by twelve) divider, a total division of 120, to give twenty pulses per second for the keyer clock. If you gate the divide-by-120 divider on and off with the original inhibit line in the Accu-Keyer, the resulting keyer clock line acts much like the operator-started clock, which is the key to the success of the Accu-Keyer design. This scheme allows us to have a free-running clock that can be accessed at the operator's

fig. 1. Schematic diagram for the Accu-Keyer speed readout. This circuit incorporates a free-running clock which can be accessed at will by the operator. The frequency of the clock is high enough that the delay between accessing and the first clock pulse is negligible. U9 and U10 are HP 5082-7300 displays that have the latches and display drivers incorporated within the display. C1 and C2 should be of the type indicated to ensure adequate stability.
fig. 2. Blowup of the portion of the keyer board which is changed to incorporate the speed readout. CR1 and the original speed control wires must be removed. The foil is cut and new wires attached at the indicated spots.

convenience. I have never been able to detect any delay because of the free-running pulse generator, even at the slowest keying speed.

circuit description

The logic diagram for the clock/readout is given in fig. 1. U1 and U2 are 556 dual timers. One half of U1 generates the high-frequency pulses, available from pin 5, that form the basis of the clock/readout. The other half of U1 is the time base for the display counter, with the output on pin 9.

R1 is the speed control and is mounted on the front panel of the keyer. C1 must be a reasonably stable capacitor, not one of the ceramic bypass types. C1 and R2 determine the maximum keying speed, and the value of R1 determines the range. The value of R2 will probably be between 6,000 and 22,000 ohms for a 50 wpm maximum, and may be selected for this purpose. If C1 is changed for any reason at some later time, it may be necessary to change R2 to bring the maximum speed back to the one desired.

R3 is mounted on the printed circuit board and is used to adjust the 100-ms time base for the display counter. If it is not possible to adjust the “on” time at pin 9 of U1 to 100 ms, it may be necessary to change the value of R4 to bring the pot within the proper range. C2 is the most critical component in this entire circuit.

U2 is simply a sequential timer. The trailing edge of the 100-ms counter gate triggers a pulse of short duration at pin 5 of U2. This pulse, after inversion by U5C, strobes the count in the decade counters into the display. It also triggers another short pulse, at pin 9 of U2, which is used to reset the counters to zero, preparing them for the next update.

U3, a 7490 decade counter, and U4, a 7492 duodecimal counter, form the divide-by-120 divider that generates the clock pulses for the keyer logic. This divider is gated on and off by the inhibit line from the keyer, with the inhibit signal resetting the divider to zero and holding it there when all keyer action is complete. Inverter U5B ensures that the clock pulses have the right polarity for the Accu-Keyer, and might not be necessary in other keyer designs. This combination forms a keyer clock which is always within 1/120th of a dit of starting, a negligible delay at any speed.

U5A controls the display counting. The pulse generator pulses are fed to the counter only when pin 9 of U1 is high. When it is high for precisely 100 ms, exactly one tenth of the pulse generator frequency is counted. U6, another 7490 counter, is for the least significant digit and, by including it without display, the jitter inherent in this digit is eliminated. This results in a stable display considerably superior to using only two decade counters with a 10-ms time base. U7 and U8, both 7490 counters, are the actual display counters, with U8 serving as the most-significant-digit counter.

The displays themselves, U9 and U10, are easy to use, with an attractive, bright display, although they are a bit expensive. Other displays may be substituted, but it might be necessary to incorporate data-storing latches, which are built into the 5082-7300 displays. A nonblinking display is a necessity, so be sure to add latches if they are not in the displays you choose.

Connection to the Accu-Keyer is really quite simple. CR1 in the original Accu-Keyer clock must be

fig. 3. Full-size printed-circuit layout for the Accu-Keyer speed readout. Parts layout is shown in fig. 4.
removed from the circuit. A wire is connected to the vacated hole at the anode end for connection to the inhibit line in the new clock. The foil should be cut as indicated in fig. 2 and the old speed control wires should be removed. The clock line may then be connected to the vacant hole near the cut in the foil. Connect \(V_{cc} \) and ground both the readout and the clock board, and you’re in business. You may wish to remove the old clock components from the Accu-Keyer board, but that is not really necessary.

I have not included a power supply, since most will be able to use the supply in the Accu-Keyer. It might be necessary to increase the size of the input capacitor ahead of the regulator to keep the voltage high enough to maintain regulation. If your supply is incapable of providing the necessary current, any standard 5-volt power supply design will be satisfactory.

Full-size board layouts and the component placement diagram are shown in figs. 3 and 4. They are single-sided boards, and should be easy to duplicate by those who wish to roll their own. There is no reason why point-to-point wiring cannot be used, since the layout is not critical.

accuracy and calibration

The key to the accuracy of this unit is how carefully the 100-ms time base for the display counter is calibrated, and how stable it is. It would have been possible, of course, to use a crystal-controlled clock to control this counter, but that seemed quite unnecessary. One half of a 556 timer, with a high-quality, stable capacitor, results in quite adequate performance for this purpose. It saves considerably on circuit complication and expense.

There are three methods of calibration, and they will be described in order of increasing accuracy.

1. Set the keyer to match as closely as possible W1AW’s 18-wpm bulletin broadcasts (or better yet their 35-wpm code practice), and adjust R3 until the readout indicates 18 (35).

2. Use a calibrated scope to set the “on” time (output high), as seen at pin 9 of U1, while adjusting R3.

3. Connect a counter with a 1-second time base to U1, pin 5, to measure the pulse generator frequency, and adjust the keyer speed control until the counter reads about 4000. Adjust R3 until the display reads 40. This is the method I prefer, and should be used if a counter is available.

My own keyer has been in use for almost three years and seems to be accurate within one wpm at all speeds throughout its range at all temperatures encountered so far in my shack. Accuracy is not a problem if a sufficiently stable capacitor is used for C2.

I’ll be happy to answer any correspondence regarding this readout or any modifications people may wish to make. I’ll try to furnish circuit board availability information, provided that a self-addressed, stamped envelope is supplied.

It has been a pleasure to use this keyer with its readout. Now, when someone says QRQ by 5 wpm, I can do it quite accurately, depending on my skill of sending, of course!

references

Digital Frequency Control*
...a Kenwood innovation for maximum HF operating enjoyment!

Kenwood's TS-180S with DFC is an all solid-state HF transceiver designed for the DXer, the contest operator, and all other Amateurs who enjoy the 160 through 10-meter bands. The following features prove, beyond doubt, that the TS-180S is the classiest rig available!

- Digital Frequency Control (DFC), including four memories and manual scanning. Memories are usable in transmit and/or receive modes. Memory-shift paddle switches allow any of the memory frequencies to be tuned in 20-Hz steps up or down, slow or fast, with recall of the original stored frequency. It's almost like having four remote VFOs!
- All solid-state... including the final. No dipping or loading. Just dial up the frequency, peak the drive, and operate!
- High power...200 W PEP/160 W DC input on 160-15 meters, and 160 W PEP/140 W DC on 10 meters (entire band provided). Also covers more than 50 kHz above and below each band (MARS, WARC, etc.), and receives WWV on 10 MHz.
- Improved dynamic range.
- Adaptable to all three proposed (WARC) bands.
- Single-conversion system with highly advanced PLL circuit, using only one crystal with improved stability and spurious characteristics.

- Built-in microprocessor-controlled large digital display. Shows actual VFO frequency and difference between VFO and "M1" memory frequency. Blinking decimal points indicate "out of band." Monoscale dial, too.
- IF shift... Kenwood's famous passband tuning that reduces QRM.
- Selectable wide and narrow CW bandwidth on receive (500-Hz CW filter is optional).
- Automatic selection of upper and lower sideband (SSB NORM/SSB REV switch).
- Tunable noise blanker (adjustable noise-sampling frequency).
- RF AGC ("RGC"), which activates automatically to prevent overload from strong, local signals.
- AGC (selectable fast/slow/off).
- Dual RIT (VFO and memory/fix).
- Three operating modes...SSB, CW, and FSK.
- Improved RF speech processor.
- Dual SSB filter (optional), with very steep shape factor to reduce out of passband noise on receive and to improve operation of RF speech processor on transmit.
- 13.8 VDC operation.
- Also available in the TS-180S without DFC, which still shows VFO frequency and difference between VFO and "hold" frequencies on the digital display.

- Full line of matching accessories, including PS-30 base-station power supply, SP-180 external speaker with selectable audio filters, VFO 180 remote VFO, AT-180 antenna tuner/ SWR and power meter, DF-180 digital frequency control, YK 88 CW filter, and YK 88 SSB filter

All of these advanced features can be yours... and at an attractive price! Visit your local Authorized Kenwood Dealer and inquire about the exciting TS-180S with DFC!
Kenwood offers you a choice.
The TR-7600 (10-watt) or TR-7625 (25-watt) with optional RM-76 Microprocessor Control Unit.

TR-7600 and TR-7625...one of them is sure to fit the needs of today's Amateur Operator who's looking for optimum versatility in a 2-meter FM transceiver. And, when either rig is combined with the RM-76, a whole new dimension unfolds in channel memory and scanning capability. Here's what you get:

TR-7600 AND TR-7625 (ONLY)
- Memory channel...with simplex or repeater (+600 kHz transmitter offset) operation.
- Mode switch for operating simplex or for switching the transmit frequency up or down...or for switching the transmitter to the frequency you have stored in the TR-7600 or TR-7625's memory (while the receiver remains on the frequency you've selected).
- Dual concentric knobs for fast, easy selection of any 2-meter frequency, in 100-kHz and 10-kHz steps.
- Digital frequency display (large, bright, orange LEDs).
- Full 4 MHz coverage (144.000 147.995) on 2-meters, 800 channels, 5-kHz offset switch, and MHz selector switch...for desired band (144, 145, 146, or 147 MHz).
- UNLOCK indicator...an LED that indicates transceiver protection when the frequency selector switches are improperly positioned or the PLL is not locked.
- Adaptable to one of any MARS simplex or repeater channel between 143.5 and 148.5 MHz.

TR-7600 AND TR-7625 WITH RM-76
- Store frequencies in six memories (simplex/repeater).
- Scan all memory channels.
- Automatically scan up the band in 5-kHz steps.
- Manually scan up or down in 5-kHz steps (or fast tune).
- Set lower and upper scan frequency limits.
- Clear scan (for transmitting).
- Stop scan (with HOLD button).
- Scan for busy or open channel.
- Select repeater mode (simplex, transmit frequency offset (+600 kHz or +1 MHz), or one memory transmit frequency).
- Operates on 143.95 MHz simplex (MARS).
- Display indicates frequency (even while scanning) and functions (such as auto-scan, lower scan frequency limit, upper scan limit, and error, i.e. transmitting out of band).

See the exciting TR-7600, TR-7625 and RM-76 now at any Authorized KENWOOD Dealer!
Duplex Audio-Frequency Generator
With AFSK Features

Need a stable audio-frequency generator for testing, trouble shooting, and experimenting? Here's an instrument that fulfills these requirements and also provides some extra features for AFSK work. It's a weekend fun project that will reward your efforts with a truly versatile piece of test equipment.

The duplex audio-frequency generator covers the audio-frequency spectrum from 20 Hz-20 kHz, furnishes sine- and square-wave output simultaneously, and is battery operated for portability and interface safety. The generator has two frequency controls that are switch selectable from the front panel, or they can be selected through TTL level applied to the generator. In this manner an AFSK signal, relative to the TTL input, is generated. This electronic switching feature should be useful for the experimenter. The generator is constructed on a single PC board and can be easily completed in a weekend. An etched and drilled board is available for the project (fig. 1).

The duplex audio generator is built into a Mod-U-Box available from Quement Electronics (see text). Controls are f1 (upper left), f2 (upper right), and output level (center).

By Ken Powell, WB6AFT, 6949 Lenwood Way, San Jose, California 95120

fig. 1. Schematic of the duplex audio-frequency generator. Design is built around the James Electronics XR-2206 function-generator IC and includes an AFSK signal.
and, because component count is small, cost of the project is minimal.

description

The generator is built around the XR-2206 monolithic function generator IC. This little IC can perform many functions, and in this particular application we're using only a couple of its many features. As seen from the schematic, fig. 1, the XR-2206 and a handful of passive components form the entire generator.

The audio-frequency spectrum is covered in three ranges; 20-200 Hz, 200-2000 Hz, and 2 kHz-20 kHz, as selected by the range switch, S1. The range switch is labeled X1, X10, and X100, allowing the use of a single scale on the frequency dials. The specific frequencies desired within these three ranges are selected by the frequency controls, F1 (R6), and F2 (R8). Switch S2 selects the generator output frequency as F1, F2, or EXT. In the F1 position R6 determines the output frequency, while the F2 position allows R8 to control the output frequency. With switch S2 in the EXT position, the output frequency is selected by the signal applied to the external input jacks. Frequency F1 is selected by a high level or open contact, and F2 is selected by a low level, or closed contact. In this manner an AFSK signal of adjustable frequency, shift, and amplitude is generated.

The sine-wave output of the generator is variable to a maximum of 3 volts peak-to-peak through the output level control, R9. The square-wave output is fixed at a TTL level; and because both outputs are available simultaneously, the square-wave output provides a very handy sync point for scope triggering.

The generator is powered by a 12.6-volt battery. Current consumption is low, so extended battery life can be expected. The basic circuit is not overly critical to voltage changes, and the first indication of battery failure will be flat topping of the sine-wave output at high-amplitude levels. Trimmer resistors, R5 and R7, are used to calibrate the frequency controls, and capacitors C1, C2, and C3 determine the range-multiplier accuracy. Generator output impedance is a nominal 600 ohms and provides a good match to most standard audio equipment.

construction

Virtually any type of construction practice could be used for the audio generator, because the circuit isn't critical the way rf circuits are. PC board construction was chosen for ease of assembly and predictable results. A full-size layout of the foil side of the PC board is shown in fig. 2. The component layout as viewed from the top, or component, side of the board is illustrated in fig. 3.

A practical approach to construction is to mount and solder all board-mounted components and then add the interconnecting wires to the front edge of
the board. Leave these wires about 30 cm (12 inches) long for connection to the front panel after doing the sheet metal work. Drill and deburr all holes for the front panel controls and jacks, as well as the PC-board mounting holes in the case. Next, mount all front-panel components and the PC board, using small standoff spacers to elevate the PC board above the case.

Place the front panel next to the case and wire the interconnecting leads from the PC board to the panel controls, jacks, and switches. As the case goes together, the interconnecting wires should fold over neatly. After you’re sure that the wiring doesn’t interfere with the case assembly, the wires can be spot-tied to form neat groups and retain their positions. Assemble the case again to insure that everything fits well.

test and calibration

A very simple test of the generator can be made with the aid of a pair of headphones. Set trimmers R5 and R7 to midpoint, connect the phones to the sine-wave output, set S2 to the F1 position, range switch to X1, the frequency controls fully counterclockwise. Advance OUTPUT LEVEL control, R9, until an audio tone is heard in the phones. The tone should be about 250 Hz. Flip the function switch to the F2 position and adjust trimmer R7 until you can flip from F1 to F2 without detecting a change in the tone. Change the range switch to the X10 position and rotate the frequency controls fully clockwise. Again this should yield a tone about 200 Hz.

Flip the range switch to the X100 position. The tone should be approximately 2 kHz. Switch back down to the X10 range, listen to the 200-Hz signal for a few seconds, then move the phones to the square-wave output jack, J3. The signal should be a bit raspy because of the square waveform. Now set the function switch to the EXT position and the F2 control to its midpoint. Short the external input jacks with a jumper, and the 200-Hz signal should shift to approximately 750 Hz, indicating that the AFSK circuitry is functioning. This evaluates all the functions of the audio generator and should make you feel pretty good.

Calibration of the little generator is subject to the equipment you might have available, such as a scope or frequency counter, and also to the degree of accuracy you’re trying to attain. The generator is a small package, so there really wasn’t much room for large dials that would provide high resolution. With the small dials, accuracy is adequate for general audio work, and if you are going to do anything critical you’d probably use a counter with the generator.

The dual outputs make this a very easy thing to do. I used a scope to measure the output pulsewidth and put small pencil marks around the dial area of the frequency controls. Then I removed the controls, switches, and jacks from the front panel and applied the lettering using Datak rub-ons, followed by a light coat of clear Krylon to protect the lettering. This gives the instrument a professional look and provides adequate calibration. Use care in putting the front panel components back in place so that the lettering isn’t damaged.

The duplex audio-frequency generator is a very flexible piece of test equipment that can be built at a low cost and is worthy of a place in every experimenter’s shop. It can be built by a beginner and will remain useful to him as his interests change to the more complex phases of Amateur Radio. Also, the basic circuitry can be lifted for many other applications, limited only by the creative ability and interests of amateurs and experimenters.

ham radio
Wilson...
has your needs well in hand.

Today's Amateur demands rugged, rapid and accurate communications between Hams in the know. That's why they choose the Wilson Mark Series of hand-held radios. With exceptional qualities like these... why not choose the most popular radio available for yourself?

FEATURES
Advantages such as solid state circuitry, rugged Lexan® case, removable rear panel (enabling easy access to battery compartment) and compact mini-size enhance the Mark Series portable radio's versatility. In addition, Wilson carries a full line of accessories to satisfy almost any of your requirements.

SPECIFICATIONS
The Mark radios offer:
- 144-148 MHz range
- 6 Channel operation
- Individual trimmers on TX and RX xtals
- Rugged Lexan® outer case
- Current drain: RX; 15 mA, TX; Mark II: 500 mA, Mark IV: 900 mA
- A power saving Hi/Lo Switch
- 12 KHz ceramic filter and 10.7 monolithic filter included
- 10.7 MHz and 455 KHz IF
- Spurious and harmonics, more than 50 dB below quieting
- Uses special rechargeable Ni-Cad battery pack
- LED battery condition indicator
- Rubber duck and one pair Xtals 52/52 included
- Weight: 19 oz. including batteries
- Size: 6” x 1.770” x 2.440”.

OPTIONS
Options available, include Touch Tone Pad, CTCSS, Leather Case, Chargers for Desk Top, Travel or Automobile, Speaker Mike and large capacity, small size batteries.

For more details and/or the name of your nearest dealer, contact: Consumer Products Division, Wilson Electronics Incorporated, 4288 So. Polaris Ave., P. O. Box 19000, Las Vegas, Nevada 89119. Phone 702/739-1931.
YOU ASKED FOR IT
YOU GOT IT

DSI QUIK-KIT®

50 HZ — 550 MHZ COUNTER KIT

95% ASSEMBLED 100% TESTED

Performance You Can Count On

FREQUENCY COUNTER APPLICATION:
- Ham Radio — Two Way Radio — CB
- Audio Amplifier & Receiver Repair
- Computer Maintenance & Construction
- A Must for TV — PLL & VTR Repair

$99.95

MODEL 3550K

includes built-in
Pre-Amp & Prescaler

DSI OFFERS THE BEST OF TWO WORLDS . . .

An unprecedented DSI VALUE . . . in a high quality, LSI Design, 50 HZ to 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes all competitive makes, both in price & performance.

With 95% of the assembly completed by DSI, you are only one hour away from solving all of those difficult bench problems, from adjusting 60 HZ clock-time bases to setting the frequency of a 468 MHZ Mobile Radio. CALL TODAY TOLL FREE: (800-854-2049) Col. Res. CALL (800-542-6253) TO ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10HZ TO 1.3GHZ.

FACT: Every 3550 QUIK-KIT® PC board is factory assembled and tested before shipment.

FACT: The problems of bad LED's, IC's, and Capacitors are a thing of the past. FACT: No manufacturer except DSI offers a 550 MHZ frequency counter with . . . 8 digits, .5 in. LED's, TCXO, 1 HZ resolution and a one year warranty on parts for under $100.00. FACT: We do not know how long we can hold this low, low price.

GO WITH THE LEADER . . . BUY A DSI FREQUENCY COUNTER KIT TODAY. SAVE TIME & MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

DSI — GUARANTEED SPECIFICATIONS — MADE IN USA

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>@ 146MHz</th>
<th>@ 220MHz</th>
<th>@ 450MHz</th>
<th>Number of Readouts</th>
<th>Size of Readouts</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700</td>
<td>$269.95</td>
<td>50Hz - 700MHz</td>
<td>Proportional Oven 5 PPM 0° - 40°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>3"H x 8"W x 6"D</td>
</tr>
<tr>
<td>3600A</td>
<td>$199.95</td>
<td>50Hz - 600MHz</td>
<td>Oven 5 PPM 17° - 37°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2¾"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550W</td>
<td>$149.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2¾"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550K</td>
<td>$99.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2¾"H x 8"W x 5"D</td>
</tr>
</tbody>
</table>

1 HZ Resolution to 55 MHZ • 10 HZ Resolution to 550 MHZ • .1 and 1 Sec. Gate Time • Auto Zero Blanking

3550K Kit $99.95
T-101 Ant. 3.95
AC-9 AC Adp. 7.95
Shipping, Handling, Inc. 10.00

3550W Wired $149.95
T-101 (incl.) NC
AC-9 (incl.) NC
Shipping (incl.) NC

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds. Orders outside of USA and Canada, please add $20.00 additional to cover air shipment. California residents add 6% Sales Tax.
NEW FROM DSI!!

50 Hz — 500 MHz
1 Meg INPUT — 1 Hz RESOLUTION — 1 PPM TCXO

AC—DC Operation
BNC Inputs 1 Meg Direct 50 Ohms Prescaled
8 Large .4" LED Readouts
Auto Decimal Point & Zero Blanking
1 Year Limited Warranty Parts & Labor
100% Factory Assembled in U.S.A.

$149.95

MODEL 500 HH
50 Hz — 500 MHz
Without Battery Capability

SAVE $5.00

With Battery Capability

MODEL 500 HH .. $169.95
MODEL 100 HH .. $119.95

The 100 HH and 500 HH hand held frequency counters represent a significant new advancement, utilizing the latest LSI design . . . and because it's a DSI innovation, you know it obsoletes any competitive make, both in price and performance. No longer do you have to sacrifice accuracy, ultra small readouts and poor resolution to get a calculator size instrument. Both the 100 HH and 500 HH have eight .4 inch LED digits — 1 Hz resolution — direct in only 1 sec. or 10 Hz in .1 sec. — 1 PPM TCXO time base. These counters are perfect for all applications be it mobile, hilltop, marine or bench work. CALL TODAY TOLL FREE: (800—854-2049) Call Res. CALL (800—542-0250) TO ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10 Hz TO 1.3 GHz.

FREQUENCY COUNTER CONSUMER DATA COMPARISON CHART

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SUG/STD. LIST PRICE</th>
<th>FREQUENCY RANGE</th>
<th>TYPE OF TIME BASE</th>
<th>ACCURACY OVER TEMPERATURE</th>
<th>SENSITIVITY</th>
<th>DIGITS</th>
<th>PRE-SCALE INPUT RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI INSTRUMENTS</td>
<td>100 HH</td>
<td>$99.95</td>
<td>50Hz-100MHz</td>
<td>TCXO</td>
<td>1 PPM</td>
<td>100 Hz</td>
<td>NS</td>
<td>1 kHz</td>
</tr>
<tr>
<td>DSI INSTRUMENTS</td>
<td>500 HH</td>
<td>$149.95</td>
<td>50Hz-500MHz</td>
<td>TCXO</td>
<td>1 PPM</td>
<td>100 Hz</td>
<td>NS</td>
<td>1 kHz</td>
</tr>
<tr>
<td>CSC</td>
<td>MAX-550</td>
<td>$149.95</td>
<td>1kHz-550MHz</td>
<td>Non-Compensated</td>
<td>3 PPM</td>
<td>500 MHz</td>
<td>NS</td>
<td>1 kHz</td>
</tr>
<tr>
<td>OPTOELECTRONICS</td>
<td>OPT-7000</td>
<td>$139.95</td>
<td>10Hz-60MHz</td>
<td>TCXO</td>
<td>1.8 PPM</td>
<td>100 Hz</td>
<td>NS</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

The specifications and prices included in the above chart are as published in manufacturer's literature and advertisements appearing in early 1979. DSI INSTRUMENTS only assumes responsibility for their own specifications.

100 HH ... $99.95 W/Battery Pack ... $119.95
500 HH ... $149.95 W/Battery Pack ... $169.95

Prices and/or specifications subject to change without notice or obligation.
down counters

Most counters can be considered up counters. Their binary states usually increase in bit weight. This is sometimes a problem when applying them to a phase-locked loop as the programmable divider. In such an application, the divider is first preset to a particular binary state by the front panel control. Counting then proceeds to an all-ones or all-zeros state. This state outputs a pulse to the phase detector and resets the counters again. Division ratio is the difference between preset state and end-of-count state. It can be a problem with up counters.

Suppose you want to divide by 888. An up counter must be preset to the nine’s complement of each decimal digit (nine minus the desired digit), or decimal 111 in this case. The up counter will then increase through 888 states until an all-ones condition is reached for end-of-count. Confusion arises because the decimal preset is in reverse of the desired decimal division.

A solution is to use a down counter, one whose states decrease with the number of input clocks. Preset and division are now the same number. Motorola makes such a device with the designation MC4016 and it is designed for PLL applications.*

a BCD down counter

The counter portion of the MC4016 is shown in fig. 1 with waveforms. D flip-flops are used in place of the usual JKS, and all gates are ANDs. G3 is an open-collector AND to sense all-zeros from the Q outputs.

*The designation was formerly changed to MC74416 but is back to the original number. MC4316 is the military temperature version.
Two internal buses and three gates provide versatility in preset control. Fig. 2 shows the preset control section with a truth table for external control inputs. P indicates the state of the external preset input for each stage. An X is a don’t-care state; it may be 1 or 0 without changing a particular state combination.

BUS gate 3 was stated as being open-collector. AND gates with open collectors may be wired-AND just as NAND gates may be wired-OR.\(^1\) The internal connection to the inverter doesn’t change the open-collector condition. An internal, separate, pull-up resistor is provided on each package.

Fig. 3 indicates a single package connected for division by eight. Waveforms are expanded to show automatic presetting. Preset inputs are wired for binary 1000 (decimal 8). Control lines MR and PE are tied high. A preset can occur only when GATE is low and BUS high — the all-zeros condition.

The waveforms assume that six clock inputs have occurred. Counter state is then binary 0010. The next clock (seventh) will make it binary 0001. The eighth clock will cause several actions. The counter goes first to binary 0000 and the BUS goes high. External control GATE is connected to the clock. It is still high after binary 0000 has been reached, so a preset doesn’t begin until the clock goes low. At that time, the internal D stage active low set changes QD from 0 to 1. The other three stages reset; it doesn’t change anything since they are already 0.

The counter is now set to binary 1000 and BUS is low, but the next positive clock edge will change the counter state to binary 0111. It counts down again until all zeroes are present. The carry out is only the width of the clock low state.

Maximum clock input frequency is limited by three propagation delays: clock positive edge to BUS going

fig. 2. Preset control section of the Motorola MC4316/MC4016.

Decreasing BCD states can be seen from the waveforms and the effect of gate output states. As in its up-count version, it’s a divide-by-two in cascade with a divide-by-five. Carry out is from QD to the next input. A chain of three will go from an initial decimal 000 to a decimal 999 on the first input. Subsequent inputs will change decimal states to 998, 997, 996.

preset control

Each stage has direct set and reset inputs active low. Counting will be overridden when either is low.

fig. 3. Single MC4016 connected as divide-by-eight.
or right-hand, counter will reach all-zeroes first, then the middle. The BUS is almost ready to go high, but the wired-AND connection makes it dependent on the first counter. When the first counter goes zero, preset is enabled to all; the BUS goes high, then the common GATE goes low.

Carry out may be from the third Q0, but fast inputs should use the BUS line since it’s slightly wider. Speed is limited, but a few extra devices will increase this.

increasing speed

Input frequency can be increased to at least 25 MHz by adding a D flip-flop, 5-input gate, and three inverters as in fig. 5. Schottky TTL devices are recommended. Note that this version has the first counter’s BUS pin grounded and all MR and GATE pins tied high.

Previous connections initiated a preset on the input clock low state. Fig. 5 allows nearly a full clock period for preset. This is possible by arming the preset when countdown has reached decimal 002 (binary 0010 in the first counter). Presets have been hard wired for 888 division for illustration.

G7 goes low on the 886th input (representing decimal 002). The external flip-flop will toggle on the 887th input. This action initiates a preset by making the common PE control line low. Preset completion will make G7 high but won’t change the external flip-flop, because its clock, the 888th, has not yet arrived.

Once the 888th clock arrives, the external flip-flop will toggle, but the counters will not change; PE is

fig. 4. Three MC4016 counters in cascade for variable division.

Fig. 4 shows the circuit for three packages. It can divide by any number from 1 to 999 depending on the BCD input to each counter. An MC4018 can be substituted. It’s a hexadecimal (divide-by-sixteen) version, and three packages would yield a maximum count of 212, or 4096; four-bit binary preset inputs would be required.

All MR and PE control lines are tied high. All GATE inputs are connected to the input clock. All BUS pins are tied together, but only one R or pullup resistor connection is required.

Preset action is the same as in fig. 3 and depends on the first, or left-hand, counter for speed. The last, high (65 ns maximum), clock negative edge to any flip-flop set (35 ns), and next-positive clock to a flip-flop toggle (78 ns). Inverse total is 5.6 MHz, but the nominal maximum frequency is 8 MHz.

fig. 5. High-speed divide-by-888 for use with phase-locked loop.
still held low at clock edge, and all counters remain at preset at that time. (See the third state of the truth table in fig. 2.) The first counter essentially ignores the 888th clock.

The external circuitry permits a substantial increase in speed even though the counters are not synchronous. The only disadvantage is slight: division by less than three is not possible.

other packages

Presettable up/down counters are available. These can be connected for down counting only with external circuitry added for similar preset-enable control. The use of synchronous counters and Schottky TTL programmable dividers is possible up to 60 MHz. Great attention must be paid to propagation delay at high speed.

The Motorola device was selected for this example because it contains the essential ingredients of a counter with preset control ability.

reference

The Popular CUA 64-12 by Heights

Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT. RELIABLE DX - SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM
Complete Telescoping and Fold-Over Series Available Self-Supporting Easy to Assemble and Erect All towers mounted on hinged bases

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

Please include 30¢ (stamps or coins) for postage and handling when requesting our free literature.

ALSO TOWERS FOR WINDMILLS

H E I G H T S
MANUFACTURING CO.
In Almont Heights Industrial Park
Almont, Michigan 48003

NEW TONE PAD DECODER - TPD 204!
NOW AVAILABLE IN KIT & WIRED & TESTED UNITS -- FROM:
"repeaters unlimited"
A Division Of
"creative electronics"
PO BOX 7054
Marietta, Ga. 30065
PHONE 404-971-2422 or outside ga. 800-241-5547

FEATURES:
- 8 ACTIVE FILTER TYPE TONE DECODERS
- FULL 4 X 4 MATRIX
- INDIVIDUAL TTL LOGIC OUTPUT FOR EACH TONE
- INDIVIDUAL TTL LOGIC OUTPUT FOR EACH DIGIT
- TTL BCD OUTPUT FOR DIGITS 0-9 INCLUDING STROBE
- SEVEN SEGMENT DISPLAY OF BCD OUTPUT
- 44 PIN GOLD PLATED EDGE CONNECTED P.C. BOARD

COMPLETE KIT $109.95
ASSEMBLED UNIT $139.95
PRICES SUBJECT TO CHANGE ON RESIDENTS ADD 3% SALES TAX
SHIPPING EXTRA

Repeater Jammers Running You Ragged?

Here's a portable direction finder that REALLY works--on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate (up to 2°) and fast bearings, even on short bursts. Its 3dB antenna gain and .06μV typical DF sensitivity allow this crystal-controlled unit to hear and positively track a weak signal at very long ranges--while the built-in RF gain control with 120 dB range permits positive DF to within a few feet of the transmitter. It has no 180° ambiguity and the antenna can be rotated for horizontal polarization.

The DF is battery-powered, can be used with accessory antennas, and is 12/24V for use in vehicles or aircraft. It is available in the 140-150 MHz VHF band and/or 220-230 MHz UHF band. This DF has been successful in locating malicious interference sources, as well as hidden transmitters in "T-hunts", ELTs, and noise sources in RFI situations.

Price for the single band unit is $195, for the VHF/UHF dual band unit is $235, plus crystals. Write or call for information and free brochure.

L-TRONICS
5546 Cathedral Oaks Road
(WW6GUX
Santa Barbara, CA 93111

More Details? CHECK — OFF Page 126
The HAL ST6000 Demodulator offers outstanding performance, versatility, and ease of operation. The Receive Demodulator features multiple-pole active filters available for "high" or "low" tones. These filters are frequency-matched to the transmit tone crystals for true transceive operation. Input bandpass filters, discriminator filters, and post-detection filters are carefully designed and tested for optimum weak-signal recovery. The ST-6000 has an internal loop power supply, 2 loop keyers, RS-232, MIL-188C, and CMOS data I/O, and rear panel connections to data and control circuits for connection to UART and computer devices. Use it with the HAL DS-3000 KSR for the best in RTTY performance.

$595.00

Write today for HAL's latest RTTY catalog.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

For our Overseas customers: see HAL equipment at:
Richter & Co.; Hannover
I.E.C. Interreloco; Bissone
Vicom Imports; Auburn, Vic., Austra
Drake WH-7 Directional RF Wattmeter
1.8-30 MHz

Drake directional, through line wattmeters, using printed circuits, toroids, and state of the art techniques, permit versatile performance and laboratory accuracy, yet at a lower cost.

Removable coupler provides remote metering, and allows convenient positioning of coaxial cable.

WH-7 wattmeter makes possible quick, accurate adjustments of antenna resonance and impedance match, when placed between transmitter and matching network.

Drake WH-7: Designed for user convenience and high accuracy. This instrument includes three calibrated scales for rf power to satisfy applications from QRP to high power (0-20, 0-200 and 0-2000 watts full scale). A fourth calibrated scale provides direct reading VSWR information, and is switch selected from front panel. The WH-7 is styled to match the 7-line.

<table>
<thead>
<tr>
<th>Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Coverage</td>
<td>1.8-30 MHz</td>
</tr>
<tr>
<td>Line Impedance</td>
<td>50 ohm resistive</td>
</tr>
<tr>
<td>Power Capability</td>
<td>2000 W continuous</td>
</tr>
<tr>
<td>Jacks, Removable Coupler</td>
<td>Two SO239 input and output connectors</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>Two power meter rectifiers</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± (5% of reading + 1% of full scale)</td>
</tr>
<tr>
<td>VSWR Insertion</td>
<td>Insertion of wattmeter in line changes VSWR no more than 1.05:1</td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>3 lbs (1.4 kg)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>5.3"H x 6.9"W x 7.5"D (13.5 x 17.5 x 19 cm)</td>
</tr>
</tbody>
</table>

Drake "Dry" Dummy Loads—no oil required

Model 1551 Drake DL-1000
- **1000 watts** for 30 seconds, with derating curve to 5 minutes. Designed to accept Drake FA-7 cooling fan for extended high power operation.
- **VSWR of 1.5:1 max.** 0-30 MHz.
- Provided with SO-239 coax connector, and rubber feet for desk or bench use.
- **Size** 14" x 3.6" (35.6 x 9.1 cm). Wt. 2 lbs (910 g)

Model 1550 Drake DL-300
- **300 watts** for 30 seconds, with derating curve to 5 minutes.
- **Built-in PL-259** coax connector for direct connection to rear of transceiver or transmitter-no jumper coax necessary.
- **VSWR of 1.1:1 max.** 0-30 MHz 1.5 max. 30-160 MHz.
- Ideal as bench test device for amateur or commercial hf and vhf gear.
- **Small size** fits conveniently in any field service tool box. 6.7" x 2.08" (17.0 x 5.3 cm). Wt. 11 oz (310 g)
Drake TVI Filters

High Pass Filters for TV Sets
provide more than 40 dB attenuation at 52 MHz and lower. Protect the TV set from amateur transmitters 6-160 meters.

Model No. 1603
Drake TV-300-HP
For 300 ohm twin lead. New terminals for easy installation.

Model No. 1610
Drake TV-75-HP
For 75 ohm TV coaxial cable; TV type "F" connectors installed.

Low Pass Filters for Transmitters
have four pi sections for sharp cut off above the hf amateur bands and to attenuate transmitter harmonics falling in any TV channel and fm band. 52 ohm. SO-239 connectors built in.

Model No. 1608
Drake TV-3300-LP
1000 watts max. below 30 MHz. Attenuation better than 80 dB above 41 MHz. Helps TV i-f interference, as well as harmonic interference.

Model No. 1605
Drake TV-42-LP
is a four section filter designed with 43.2 MHz cut-off and extremely high attenuation in all TV channels for transmitters operating at 30 MHz and lower. Rated 100 watts input.

Drake TVI Filters help you keep peace with your neighbors
A remarkable engineering breakthrough...

DRAKE TR-7

0-30 MHz
continuous coverage reception—
no gaps—no range crystals required

160-10 Meters

Amateur Band transmission, including capability for MARS, Embassy, Government, and future band expansions*

The Drake TR-7 System significantly advances the technology of worldwide radio communications and unfolds an entirely new state of the art.

In 1963 Drake led the way by producing the first commercially available amateur transceiver that employed the now widely copied 9 MHz i-f frequency. Even today, many major competitive transceivers are still being introduced using i-f's in this range.

Now, Drake leads the way again by developing the first commercially available amateur transceiver that uses a 48 MHz i-f, through the technique of "Up-Conversion." This system greatly improves image and general coverage performance, and will be copied in the years to come. With Drake, you can join the new state of the art today!

Models shown are Drake TR-7/DR-7 with RV-7 and MS-7

Designed and manufactured in U.S.A.
The design philosophy behind the new Drake "7 system" has created a most sophisticated system concept, extending from engineering to the visual appearance of the system and each of its parts.

The TR-7 System is the result of one of the most extensive engineering and development programs in the history of the R. L. Drake Company, and provides the user with many innovative design features.

Broadband, Solid State Design—100% solid state throughout. All circuits are broadbanded so there is no need for preselection tuning or transmitter adjustments of any kind.

Synthesized/PTO Frequency Control—A Drake exclusive: Special high performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout. 500 kHz up/down range switching is pushbutton controlled.

Continuous, Wide Range Frequency Coverage—The TR-7/DR-7 provides reception from 1.5 thru 30 MHz continuously, and zero thru 30 MHz continuously with the optional Aux-7 Range Program Board. No gaps or range crystals required. The highly advanced Drake Synthesizer makes this possible, and is an industry first. The TR-7/DR-7 provides transmit coverage for all Amateur Bands 160 thru 10 meters. With the optional Aux-7 Range Program Board, diode-programmable out-of-band transmit coverage is available for MARS, Embassy, Government, and future band expansions in the range 1.6 thru 30 MHz.* The Aux-7 Board also provides 0 thru 1.5 MHz receive coverage and crystal-controlled fixed channel operation for Government, Amateur, or semi-commercial applications anywhere in the hf range. The TR-7 w/o DR-7 provides coverage of the Amateur Bands 160 thru 15 meters and the 26.5-29.0 MHz range of 10 meters. The Aux-7 Range Program Board is also useable in the standard TR-7 for extra range coverage as noted.

State of the Art Receiver Design—The Drake TR-7 introduces another industry first for amateur transceivers: "Up-Conversion," in combination with a special high level double balanced mixer for superior strong signal handling, spurious and image response performance. The first i-f of 48.05 MHz places images well outside the receiver passband, and provides for true general coverage operation without i-f gaps.

True Passband Tuning—The TR-7 employs the famous Drake Full Passband Tuning instead of the limited range "i-f shift" found in some other units. The Drake System tunes from the top edge of one sideband, through center, to the bottom edge of the other sideband. In fact, the range is even wider to accommodate RTTY. Full passband tuning greatly improves receiving performance in heavy QRM.

Unique Independent Receive Selectivity—Optional receiving selectivity filters can be installed internally and pushbutton-selected from the front panel. These may be selected independently of transmit mode and provide optimum response for various conditions of ssb, cw, RTTY, and a-m. You may also transmit cw while receiving ssb, or vice versa, or even transmit one sideband while receiving the other. The standard filter is 2.3 kHz for ssb. You may choose from optional 300 Hz, 500 Hz, a special 1.8 kHz for crowded ssb, or 6 kHz filter for a-m. Any three may be installed in addition to the ssb filter.

Effective Noise Blanker—This accessory is custom engineered to provide true impulse-type noise blanking performance.

Effective Noise Blanker—This accessory is custom engineered to provide true impulse-type noise blanking performance.

Special High Power Solid State PA—A Drake custom-designed diagonal heat sink provides for an internally mounted power amplifier with nothing mounted outboard subject to physical damage. The unique air ducting effect of this amplifier allows an optional rear-mounted fan to provide continuous duty on SSTV/RTTY. Continuous ssb/cw (TR-7 features continued on next page)
(Continued from preceding page) **DRAKE TR-7** solid state continuous coverage synthesized hf system

operation is available without the fan, due to the excellent heat sink design. The optional Drake PS-7 Ac Supply is rugged, rated for continuous duty, and will easily handle power requirements. The System is rated 250 watts input—in any of its modes. Fully VSWR protected.

TR-7 Internal Test Facilities—As well as the standard "S" meter function, the TR-7 metering includes a built-in rf Wattmeter/VSWR Bridge. Also, the DR-7 digital counter reads frequencies to 150 MHz for test purposes. Access to the counter is from the rear panel.

Model
- 1337 Drake TR-7 Transceiver
- 1530 Drake DR-7 General Coverage/Digital Readout Board
- 1336 Drake TR-7/DR-7 General Coverage Digital R/O Transceiver
- 1338 Drake RV-7 Remote VFO
- 1502 Drake PS-7 120/240V Ac Supply includes special wide range voltage and frequency capability. Operates from any nominal line voltage (90-132 V/180-264 V; 50-60 Hz) ideal for overseas
- 1536 Drake Aux-7 Range Program Board
- 1531 Drake MS-7 Matching Speaker
- 1537 Drake NB-7 Noise Blanker
- 1529 Drake FA-7 Fan
- 7021 Drake SL-300 Cw Filter, 300 Hz
- 7022 Drake SL-500 Cw Filter, 500 Hz
- 7023 Drake SL-1800 Ssb/RTTY Filter, 1.8 kHz
- 7024 Drake SL-6000 A-m Filter, 6.0 kHz
- 1335 Drake MMK-7 Mobile Mounting Kit
- 7037 Drake TR-7 Service Kit/Extender Board Set
- 385-0004 Drake TR-7 Service/Schematic Book

Receiver Incremental Tuning (RIT)—Complete RIT Flexibility is provided for both the TR-7 and RV-7 remote VFO for maximum convenience. The RV-7 also includes a special "spot" function for easy zero beating.
DRAKE TR-7 SPECIFICATIONS

GENERAL

Frequency Coverage
(with DR-7 Digital R/O Gen. Cov. Board)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive</td>
<td>1.5 to 30 MHz, continuous, no gaps</td>
</tr>
<tr>
<td>Transmit</td>
<td>1.8-2.0, 3.5-4.0, 7.0-7.5, 14.0-14.5, 21.0-21.5, 28.0-30.0 MHz</td>
</tr>
</tbody>
</table>

Receive/Transmit (Transmit above 1.8 MHz only)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Aux-7</td>
<td>1.5-2.0, 3.5-4.0, 7.0-7.5, 14.0-14.5, 21.0-21.5, 28.0-29.0 MHz, plus 5.0-5.5 MHz</td>
</tr>
<tr>
<td>With Aux-7†</td>
<td>Above ranges, plus any eight 500 kHz segments from 1.8 to 30 MHz</td>
</tr>
</tbody>
</table>

Receive

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Aux-7</td>
<td>1.5 to 30 MHz, continuous, no gaps</td>
</tr>
<tr>
<td>With Aux-7†</td>
<td>Above ranges, plus any eight 500 kHz segments from 1.8 to 30 MHz, (0 to 1.8 MHz</td>
</tr>
</tbody>
</table>

Power Input (Nominal)

- **Ssb**................. 250 watts PEP
- **Cw**................... 250 watts
- **A-m equiv.**........... 80 watts (carrier), plus upper sideband

Load Impedance........... 50 ohms, nominal

Spurious Output........ Greater than 50 dB down

Harmonic Output........ Greater than 45 dB down

Intermodulation Distortion........ 30 dB below PEP (24 dB below one of two tones)

Undesired Sideband Suppression........ Greater than 60 dB @ 1 kHz

- **Aux-7† must be used with either Model 1546 RRM-7 Range Receive Module, or Model 1547 RTM-7 Range Transceive Module. Use one module per 500 kHz range. Modules plug directly into Aux-7.**

Power Supply Requirements........ 11-16 V-dc (13.6 V-dc nominal), 3A receive, 25A transmit

Dimensions

- **Depth**.................. 12.5 in. (31.75 cm), excluding knobs and connectors.
- **Width**................. 13.6 in. (34.6 cm)
- **Height**................. 4.6 in. (11.6 cm), excluding feet
- **Weight**................. 17.1 lb. (7.75 kg)

RECEIVER

(1.8-30 MHz, reduced specs 0-1.8 MHz)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-f Frequency</td>
<td>48.05 MHz</td>
</tr>
<tr>
<td>Second I-f</td>
<td>5.645 MHz</td>
</tr>
<tr>
<td>Image and I-f Rejection</td>
<td>Greater than 80 dB</td>
</tr>
<tr>
<td>Spurious Response</td>
<td>Greater than 60 dB down</td>
</tr>
<tr>
<td>Internally Generated</td>
<td>Less than 1 µV equivalent, except 3 µV equivalent from 5 to 6 MHz. (Reduced specs on internal qsc frequencies)</td>
</tr>
<tr>
<td>Audio Output</td>
<td>2.0 watts @ less than 10% THD (4 ohm load)</td>
</tr>
</tbody>
</table>

TRANSMITTER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty Cycle</td>
<td>100%</td>
</tr>
<tr>
<td>Tune, SSTV, RTTY, A-m</td>
<td>w/o 1529 FA-7 Fan: 33%, 5 min.</td>
</tr>
<tr>
<td></td>
<td>with 1529 FA-7 Fan: 100%</td>
</tr>
<tr>
<td>Wattmeter Accuracy</td>
<td>±5% @ 100 watts (50 ohm load)</td>
</tr>
<tr>
<td>Carrier Suppression</td>
<td>Greater than 50 dB</td>
</tr>
<tr>
<td>Microphone Input</td>
<td>High impedance</td>
</tr>
<tr>
<td>VSWR Turndown (Nominal)</td>
<td>(Percent rf power turndown)</td>
</tr>
<tr>
<td>@ 1:1</td>
<td>0%</td>
</tr>
<tr>
<td>@ 2:1</td>
<td>10%</td>
</tr>
<tr>
<td>@ 3:1</td>
<td>25%</td>
</tr>
<tr>
<td>@ 4:1</td>
<td>50%</td>
</tr>
<tr>
<td>@ 5:1 and above</td>
<td>90%</td>
</tr>
</tbody>
</table>

DRAKE TR-7 SPECIFICATIONS

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017
- Fully synthesized on each band, 5 kHz steps, digital read-out.
- Fm coverage on complete 144, 220 and 440 Amateur Bands, depending on model purchased. Completely band-switched from front panel.
- Four extra diode programmable fixed channels, with offsets, available for each band, in addition to the synthesizer.
- Diode programmable non-standard offsets available for each band.
- Separate SO-239 Antenna Connector for each band.
- Outstanding receiver front-end performance. Ideal for use in metropolitan areas where many repeaters are in use.
- Squelch.
- Hi-lo power, with lo-power adjustable.
- Priority scan feature:
 - scan a programmed fixed channel from any synthesizer frequency.
 - scan any synthesizer frequency from a programmed fixed channel.
 - scan a specific programmed fixed channel from another programmed fixed channel.
- Plug-in modular construction.
- Remote operation. Removable control head will operate radio in trunk compartment from driver seat. (remote kit optional)
- No frequency mixing in transmitter. Transmitter frequency derived directly from VCO frequency. Provides extremely low spurious output.
- Companion ac power supply (PS-3).
- Operate mobile or fixed station. (13.8 V supply required)
- Small, compact, rugged construction utilizing aluminum extrusion sides and panel.
- Transmit audio custom tailored for maximum communications "punch."
- Choice of one, two, or three band coverage in a single transceiver. Basic models may be purchased, with factor installed add-on modules added later.
3-band system
Fully synthesized on each band

DRAKE UV-3 SPECIFICATIONS

Sensitivity: 146-14B MHz
Typically less than .35 μV for 12 dB SINAD
222-225 MHz
442-447 MHz
144-14B MHz
Typically less than 5 μV (max.) for 12 dB SINAD
220-225 MHz
440-450 MHz

Adjacent Channel
Rejection:
144 greater than 80 dB min. @ ± 30 kHz
220, 440 greater than 70 dB min. @ ± 30 kHz
144, 220, 440 greater than 60 dB min. @ ± 15 kHz

Intermodulation
Attenuation:
144 80 dB (referenced to 12 dB SINAD)
(EIA RS-294-A) 440 65 dB (referenced to 12 dB SINAD)
220 75 dB (referenced to 12 dB SINAD)
440 45 dB (referenced to 12 dB SINAD)

Image Rejection:
144 80 dB
220 60 dB
440 50 dB

I-f Rejection: Greater than 95 dB
Audio Output: 2.5 watts @ less than 10% THD, 2 watts @ less than 5% THD

Squelch Sensitivity: Less than 0.2 μV
Meter: Indicates relative signal level

TRANSMITTER
Power Output (13.8 V dc):
High Power: 144 25 watts nom. (144-14B MHz)
220 10 watts min. (220-225 MHz)
440 10 watts min. (440-450 MHz)
Low Power: Approx. 10% of high power (adjustable)

Harmonic and Out
of Band Spurious:
144, 220 -60 dB (min.) referenced to carrier
440 -40 dB (min.) referenced to carrier

Spurious in Band: ~75 dB (min.) referenced to carrier

Modulation: Direct fm, pre-set to ± 5 kHz deviation

Hum and Noise: Greater than 40 dB below maximum deviation

GENERAL
Frequency Coverage: 144-14B MHz
220 220-225 MHz
440 440-45B MHz
Model: FM (5 kHz deviation)
Supply Voltage: 11.5-15.0 V dc negative ground
Supply Current: Receive 0.9 A Standby
Transmit 6 A High Power
1.3 A Low Power

Dimensions:
Length (single unit) 9" (22.86 cm)
(11/2 unit) 11.5" (29.2 cm)
(11/3 unit) 14" (35.56 cm)
Width 8.1" (20.6 cm)
Height 3.5" (8.9 cm)

Weight:
(11/2 unit) 7 lbs. (3.17 kg)
(11/3 unit) 7.3 lbs. (3.31 kg)
(11/3 unit) 7.6 lbs. (3.45 kg)

Operating Temperature: 0°C to 60°C

FREQUENCY SYNTHESIZER
Type: Directly programmable, digital phase locked loop, 5 kHz steps
Reference: 5 MHz crystal oscillator
Frequency Accuracy: ±0.005% over a temperature range of 0°C to 60°C with a supply voltage variation of 11.5 to 15 V dc

RECEIVER
Type: Double conversion, 1st i-f @ 10.7 MHz, 2nd i-f @ 455 kHz, 6 pole crystal filter @ 10.7 MHz and 8 pole ceramic filter at 455 kHz
Selectivity: 12 kHz @ -3 dB

Model 1346 Drake UV-3 (144-220-440)
Model 1344 Drake UV-3 (144-440)
Model 1340 Drake UV-3 (144)

(Model above include factory installed modules for bands as listed, standard dynamic mike, and mobile mounting bracket.)

Add-on modules expand band coverage of models which may have been purchased in a single band or two band configuration. Prices include factory installation which is necessary to meet FCC receiver certification requirements.

220 Add-on Module
440 Add-on Module
144 Add-on Module

Model 1504 Drake PS-3 AC Power Supply
Model 1625 Drake 1525EM Encoding Mike (see next page)
Model 1330 Drake UMK-3 Remote Trunk-Mount Kit
Model 385-0002 Drake UV-3 Service/Schematic Book
Drake 1525EM Push Button Encoding Mike

- Microphone and auto-patch encoder in single convenient package with coil cord and connector. Fully wired and ready for use.
- High accuracy IC tone generator, no frequency adjustments.
- High reliability Digitran® keyboard.
- Power for tone encoder obtained from transceiver through microphone cable. No battery required.
- Low output impedance allows use with almost all transceivers.
- Four pin microphone plug: directly connects to Drake UV-3 without any modification in transceiver. Compatible with all previous Drake and other 2 meter units with minor modifications.
- Tone level adjustable

Drake 7077 Dynamic Desk Microphone

- Audio and level characteristics custom designed to match the transmit audio requirements of the Drake TR-7.
- Features both VOX and PTT operation without modification.
- High Impedance
- Includes coil cord and plug wired for direct installation to the Drake TR-7.
- Style and color provide a beautiful match to the Drake 7-Line.
- Size 4.3"W x 5.8"D x 9.3"H (10.9 x 14.7 x 23.6 cm). Wt. 1 lb. 7 oz (650 g).
Drake L-7 Continuous Duty 160-10' Meters 2kW Linear Amplifier

Temperature controlled design for “key-down” operation over a wide frequency range. Newly engineered for coverage of any new or expanded hf amateur bands within FCC amplifier rules. Also features wide frequency coverage for MARS, and other services authorized for this type of amplifier.

2 kW PEP, 1 kW cw, RTTY, SSTV operation—all modes, full rated input, continuous duty cycle.

160-10' meter amateur band coverage, plus expanded ranges for any future hf band expansions or additions within FCC rules. These ranges also include increased coverage for MARS, embassy, government, or other such services.

The Drake L-7 utilizes a pair of Eimac 3-500 Z triodes for rugged use, and lower replacement cost compared to equivalent ceramic types. Tubes are included.

Accurate built-in rf wattmeter, with forward/reverse readings, is switch selected. Calibrated 300/3000 watt scales.

Temperature controlled two speed fan is a high volume low noise type and offers optimum cooling.

Adjustable exciter agc feedback circuitry permits drive power to be automatically controlled at proper levels to prevent peak clipping and cw overdrive. Front panel control.

By-pass switching is included for straight through, low power operation without having to turn off amplifier.

Bandpass tuned input circuitry for low distortion and 50 ohm input impedance.

Amplifier is comprised of two units—rf deck for desk top and separate power supply.

Operates from 120/240 V ac, 50/60 Hz primary line voltage.

DRAKE L-7 SPECIFICATIONS

Frequency Coverage*: Ham bands 160 through 15 meters. Non-amateur frequencies between 6.5 and 21.5 MHz may be covered with some modification of the input circuit.

Plate Power Input: 2000 Watts PEP on SSB and 1000 Watts DC on CW, AM, RTTY, and SSTV.

Drive Power Requirements: 100 Watts PEP on SSB and 75 Watts on CW, AM, RTTY, and SSTV.

Input Impedance: 50 Ohms. (Bandpass tuned input)

Output Impedance: Adjustable pi-network matches 50 Ohm line with SWR not to exceed 2:1.

Intermodulation Distortion Products: In excess of −33 dB.

Wattmeter Accuracy: 300 Watts forward and reflected, ± (5% of reading + 3 Watts), 3000 Watts forward, ± (5% of reading + 30 Watts).

Power Requirements: 240 Volts 50-60 Hertz 15 Amperes, or 120 Volts 60 Hertz 30 Amperes.

Tube Complement: Two of 3-500Z or 8802/3-500Z or 8163 or 3-400Z.

Dimensions: Amplifier 13.69"W x 6.75"H x 14.25"D (34.8 x 17.1 x 36.2 cm). Power Supply 6.75"W x 7.88"H x 11"D (17 x 20 x 28 cm).

Weight: Amplifier 27 lbs (12.25 kg), Power Supply 42.5 lbs (19.3 kg).

*Export model includes coverage of the 10-meter Ham Band.
100% solid state broadband design, fully synthesized with a permeability tuned oscillator (PTO) for smooth, continuous tuning.

Covers the complete range 0 to 30 MHz with no gaps in frequency coverage. Both digital and analog frequency readout.

Special front-end circuitry employing a high level double balanced mixer and 48 MHz "up-converted" 1st i-f for superior general coverage, image rejection and strong signal handling performance.

Complete front-end bandpass filters are included that operate from hf thru vlf. External vlf preselectors are not required.

10 dB pushbutton-controlled broadband preamp can be activated on all ranges above 1.5 MHz. Low noise design.

Various optional selectivity filters for cw, RTTY and a-m are switch-selected from the front panel. Ssb filter standard.

Special new low distortion "synchro-phase" a-m detector provides superior international shortwave broadcast reception. This new technique permits 3 kHz a-m sideband response with the use of a 4 kHz filter for better interference rejection.

Tunable i-f notch filter effectively reduces heterodyne interference from nearby stations.

The famous Drake full electronic passband tuning system is employed, permitting the passband position to be adjusted for any selectivity filter. This is a great aid in interference rejection.

Three agc time constants plus "Off" are switch-selected from the front panel.

Complete transceive/separate functions when used with the Drake TR-7 transceiver are included, along with separate R-7 R.I.T. control.

Special multi-function antenna selector/50 ohm splitter is switch-selected from the front panel, and provides simultaneous dual receive with the TR-7. This makes possible the reception of two different frequencies at the same time. Main and alternate antennas and vhf/uhf converters may also be selected with this switching network.

The digital readout of the R-7 may be used as a 150 MHz counter, and is switched from the front panel. Access thru rear panel connector.

The built-in power supply operates from 100, 120, 200, 240 V-ac, 50/60 Hz, or nominal 13.8 V-dc.

The R-7 includes a built-in speaker, or an external Drake MS-7 speaker may be used.

Built-in 25 kHz calibrator for calibration of analog dial.

Low level audio output for tape recorder.

Up to eight crystal controlled fixed channels can be selected. (With Drake Aux-7 installed.)

Optional Drake NB-7A Noise Blanker available. Provides true impulse type noise blanking performance.
DRAKE R-7 SPECIFICATIONS

Frequency Coverage, continuous tuning (With Drake DR-7 Digital R/O, General Coverage Board)
0 to 30 MHz continuous (With or without Aux-7 board) (No gaps in frequency coverage)

Frequency Coverage, continuous tuning (Without DR-7 Board installed)
- 0.01 to 0.5 MHz
- 0.5 to 1.0 MHz
- 1.0 to 1.5 MHz
- 1.5 to 2.0 MHz
- 2.5 to 3.0 MHz
- 3.5 to 4.0 MHz

Without Aux-7 Board
- 5.0 to 5.5 MHz
- 7.0 to 7.5 MHz
- 14.0 to 14.5 MHz
- 21.0 to 21.5 MHz
- 28.5 to 29.0 MHz

With Aux-7 Board
- 5.5 to 6.0 MHz
- 7.6 to 8.0 MHz
- 14.6 to 15.1 MHz
- 21.6 to 22.1 MHz
- 28.6 to 29.1 MHz

Plus any eight additional 500 kHz segments between 0 and 30 MHz when programmed into Aux-7 Board.

Crystal Controlled Fixed Frequencies: Up to eight crystal-controlled fixed frequencies within the 0-30 MHz range with Aux-7 Accessory Board. Proper 500 kHz range for desired fixed frequency is also programmed into Aux-7.

Frequency Stability: Less than 100 Hz drift after temperature stabilization including ±10% line voltage variation.

Digital Readout Accuracy: (DR-7 installed) 15 PPM ±100 Hz

Analog Dial Accuracy: Better than ±1 kHz when calibrated to nearest calibrator marker.

Modes of Operation: Ssb, cw, RTTY, SSTV, a-m.

Sensitivity (ssb): 1.8-30 MHz Less than .20μV for 10dB S+N/N with preamp on (typically .15μV) (Noise floor typically −134 dBm) Less than .50μV for 10 dB S+N/N without preamp (typically .30μV) (Noise floor typically −128 dBm). .01-1.5 MHz Less than 1.0μV for 10 dB S+N/N

Sensitivity (a-m): 1.8-30 MHz Less than 1.2μV for 10 dB S+N/N @ 30% modulation, preamp on. Less than 2.0μV for 10 dB S+N/N @ 30% modulation, preamp off. .01-1.5 MHz Less than 4.0μV for 10 dB S+N/N @ 30% modulation.

Selectivity (2.3 kHz filter supplied): 2.3 kHz at −6 dB, 4.2 kHz at −60 dB (1.8:1) shape factor. Optional 300 Hz, 500 Hz, 1800 Hz and 4 kHz filters are available as follows:

Ultimate Selectivity: Greater than 100 dB

Accessory Crystal Filters
- SL-300 cw filter: 300 Hz @ 6 dB, 700 Hz @ 60 dB
- SL-500 cw, RTTY Filter: 500 Hz @ 6 dB, 1100 Hz @ 60 dB
- SL-1800 ssb/RTTY Filter: 1800 Hz @ 6 dB, 3600 Hz @ 60 dB
- SL-4000 a-m Filter: 4 kHz @ 6 dB, 8 kHz @ 60 dB
- SL-6000 a-m Filter: 6 kHz @ 6 dB, 12 kHz @ 60 dB

Strong Signal Handling
- Two-tone dynamic range: 99 dB * 1.8-30 MHz
- Third order intercept point: +20 dBm preamp on
- Two-tone dynamic range: 95 dB * 1.8-30 MHz
- Third order intercept point: +10 dBm preamp on
- Blocking: >145 dB above noise floor

I-f and Image Rejection: Greater than 80 dB (48.05 MHz 1st i-f) (5.645 MHz 2nd i-f) (50 kHz 3rd i-f)

Agc Performance: Less than 4 dB audio output variation for 100 dB input signal change above agc threshold. Agc threshold is typical .9μV with preamp off and .25μV with preamp on.

Attack time: 1 millisecond. Three selectable release times: Slow—2 seconds; Med—400 m sec; Fast—75 m sec. Also, "Off" position is provided.

Antenna Input Impedance: Nominal 50 ohms

Audio Output: 2.5 watts with less than 10% T.H.D. into nominal 4 ohm load.

Power Requirements: 100/120/200/240 V-ac ±10%, 50/60 Hz, 60 watts or 11.0 to 16.0 V-dc (13.8 V-dc nominal), 3 amps

External Counter Mode (DR-7 Installed): Readout: to 100 Hz. Accuracy: 15 PPM ±100 Hz. Maximum input frequency: 150 MHz. Input level range: 50 mV to 2 V rms.

Dimensions/Weight:
- Depth— 13.0 in (33.0 cm) excluding knobs and connectors.
- Width— 13.6 in (34.6 cm)
- Height— 4.6 in (11.6 cm) excluding feet
- Weight— 18.4 lbs (8.34 kg)

Optional accessories available

Model 1531 Drake MS-7 Speaker
Model 7021 Drake SL-300 Cw Filter, 300 Hz
Model 7022 Drake SL-500 Cw Filter, 500 Hz
Model 7023 Drake SL-1800 Ssb/RTTY Filter, 1800 Hz
Model 7024 Drake SL-6000 A-m Filter, 6.0 kHz
Model 7026 Drake SL-4000 A-m Filter, 4.0 kHz
Model 1532 Drake NB-7A Noise Blanker
Model 1536 Drake Aux-7 Range Program/Fixed-Frequency Board

Model 7021 Drake SL-300 Cw Filter, 300 Hz
Model 7022 Drake SL-500 Cw Filter, 500 Hz
Model 7023 Drake SL-1800 Ssb/RTTY Filter, 1800 Hz
Model 7024 Drake SL-6000 A-m Filter, 6.0 kHz
Model 7026 Drake SL-4000 A-m Filter, 4.0 kHz
Model 1532 Drake NB-7A Noise Blanker
Model 1536 Drake Aux-7 Range Program/Fixed-Frequency Board

Model 1531 Drake MS-7 Speaker
Model 7021 Drake SL-300 Cw Filter, 300 Hz
Model 7022 Drake SL-500 Cw Filter, 500 Hz
Model 7023 Drake SL-1800 Ssb/RTTY Filter, 1800 Hz
Model 7024 Drake SL-6000 A-m Filter, 6.0 kHz
Model 7026 Drake SL-4000 A-m Filter, 4.0 kHz
Model 1532 Drake NB-7A Noise Blanker
Model 1536 Drake Aux-7 Range Program/Fixed-Frequency Board
Precision instruments providing rf radiation control and measurement for your communication system

Drake MN-2700
2kW
Matching Network
Model 1539

The Drake MN-2700 manages rf radiation in the areas of impedance match to the antenna, rf power measurement, VSWR measurement, reduction of harmonic radiation, and antenna selection.

DRAKE MN-2700 FEATURES

160 thru 10 Meters Frequency Coverage—With out-of-band coverage for MARS, future band expansions and other applications.

Antenna Choice—Matches antennas fed with coax, balanced line, or random wire. (For balanced line use optional Drake B-1000 Balun, which mounts on rear panel of MN-2700.)

Antenna By-pass Switching—Unique design allows unit to be switch-by-passed regardless of which antenna is in use, whether coax or wire type. No need to manually disconnect feedlines. Switch also selects various antennas.

Extra Harmonic Reduction to help fight TVI—Drake Matching Networks employ special “pi-network” low-pass filter type circuitry for maximum harmonic rejection. This feature alone makes the MN-2700 a worthwhile investment; it is a Drake exclusive.

Built-in Metering—Accurate rf wattmeter/VSWR bridge is pushbutton controlled from front panel.

Dimensions—13.09"W x 4.53"H x 13"D including connectors (33.26 x 11.5 x 33 cm); Weight 11 lbs. (5 kg).

DRAKE MN-2700 SPECIFICATIONS

- Frequency Coverage: 1.8 to 30 MHz. Band Switch marked for 160, 80, 40, 20, 15, and 10 meter amateur bands; however, frequency coverage between amateur bands is possible by using the nearest band positions with a small reduction in matching capability. • Input Impedance: 50 ohms (resistive). • Load Impedance: 50 ohm coaxial with VSWR of 5:1 or less at any phase angle (3.1 on 10 meters). 75 ohm coaxial at a lower VSWR can be used. • Balanced Feedlines: With the Drake B-1000 accessory balun, which mounts on rear panel, tunes feed point impedances of 40 to 1000 ohms, or 5:1 VSWR referenced to 200 ohms (3.1 on 10 meters). • Long-Wire Antennas Feed point impedances up to 5:1 VSWR referenced to 50 ohms. Also, 5:1 referenced to 200 ohms with the Drake B-1000 accessory balun (3:1 on 10 meters). • Meter: Reads VSWR or forward power, 0-200 watts or 0-2000 watts. • Wattmeter Accuracy: ± 5% of reading ± 1% of full scale. • Insertion Loss: 0.5 dB or less on each band after tuning. • Front Panel Controls: Provide for the adjustment of resistive and reactive tuning, antenna switching, band switching, VSWR calibration, and selection of watts or VSWR functions of the meter. • Rear Panel Connectors: The rear panel has four type SO-239 connectors (one for input and 3 for outputs), three screw terminal connections (for long-wire and open-wire feeder systems), and a ground post.
really a “secret weapon” for 160 meter enthusiasts!

The Drake MN-2700 and MN-7 Matching Networks have a truly unique antenna feed switching design

Both matching networks will completely change the mode of a balanced-line fed 135 foot doublet to a special configuration that provides very effective 160 meter performance. And best of all, it's done with the simple flip of a switch on the front panel.

Consider a typical all-band antenna set-up—a 135 foot doublet, center-fed with 60 to 70 feet of balanced line at a height of 45 to 60 feet. The Drake MN-2700/B-1000 or MN-7/B-1000 will match this as a true balanced system on 80 thru 10 meters. (Fig. 1)

But what about 160 meters? Many amateurs recommend tying the feeders together and using the antenna as a vertical with a "top-hat." In fact, we suggest this ourselves in our manual.

However, the use of this, or any vertical, assumes you have a good ground or radial system for efficient operation. If you do not have enough room or do not wish to install such a radial system, performance may suffer. And if you do have radials, you still have to change the feeder connections each time you operate 160 meters.

On the other hand, when you use the MN-2700/B1000 or MN-7/B-1000 simply leave the feeders in the balanced connection as you would for 80 thru 10, and move the special antenna selector switch to Position No. 4. This automatically converts half of the antenna and feedline to an inverted "L", fed through a 4:1 impedance transformer, with the other half operating as a counterpoise. (Fig. 2)

This system offers the convenience of “stay in your chair” operation, while providing an effective means of operating 160 meters with a relatively small antenna.

Fig. 1: 80-10 meter configuration (pos 3/bal on MN7 and MN2700)

Fig. 2: 160 meter inverted "L" (pos 4/unbal on MN7 and MN2700)
Touch-Tone Decoders

TWELVE DIGIT DECODER
$145.00

- Decodes digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, * and #.
- Twelve 5-volt output lines.
- Isolated 5000 ohm input.
- Operates from any DC voltage +12 to +30 volts.
- Output drives TTL logic or relays.

MODEL T2 $49.95
- Decodes one Touch-Tone digit.
- Available for digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, and #.
- Relay output SPST 1/2 amp.
- Operates on any DC voltage +12 to +30 volts.

MODEL AR-3 $49.95
- Sequence decoder.
- Connects to 12-digit decoder.
- Three digits must appear in correct order and timing to close output relay.
- For foolproof secure signalling.

Send for free brochure. ORDER TODAY. Add $3 shipping/handling. Add sales tax in Calif.

short circuits

matchbox plus two

In the pictorial diagram of the switches in the July issue of ham radio (fig. 2, page 46), the wire from the balanced line terminal to the front deck ground terminal should be removed. The switch contact should remain grounded.

memory keyer

The schematic and PC layout of the deluxe memory keyer (figs. 2 and 6) in the April issue should show the three display-driver counter ICs (US5D, U6D, and U7D) as 7490s, not 7493s.

biquad bandpass filter

Author N0DE has written to point out that the two values of C in the biquad bandpass filter (June issue, fig. 1, page 70) should be equal for eq. 1 to be correct. In fig. 1 both values of C should be 0.1 µF. Also, placement of the left-hand IC on the PC board (fig. 2) is reversed; the notch should be oriented toward the lower edge of the circuit board.

rotator starting capacitors

Dear HR:

In “Ham Notebook” in ham radio magazine for June, 1979, W1JR reports on a common Ham-M rotator problem involving the electrolytic starting or phasing capacitor. The capacitor is in an ac circuit and is made up of two electrolytics connected in series, back to back in polarity. Each ac cycle places the full reverse potential across each section, in turn, which leads to eventual failure. At the suggestion of my friend Tony Abate, I connected two diodes across a pair of 120 µF electrolytic capacitors as shown below. In this circuit the individual capacitors are not subjected to a reverse polarity. I have used this arrangement for over seven years without any problems.

I. L. McNally, K6WX
Sun City, California
DSI HAS DONE IT AGAIN
QUIK-KIT II®
INCLUDES PROPORTIONAL OVEN TIME BASE

- DC-BATT-AC (W-AC9)
- 95% Factory Assembled
- 100% Factory Tested
- 2 PPM 10Hz to 400MHz
- 9 Digits .5 Inch LED’s
- 0.1 Hz Resolution
- Auto Zero Blankings

$149.95
MODEL 5600A KIT

WHY BUY A 5600A: Because 95% of the assembly is completed by DSI and you are only one hour away from solving all those difficult bench problems, from setting the frequency of a audio signal to within 1/10 of a Hz, to checking the frequency of a 4GHz mobile radio. Whether you are servicing a VTR, trouble shooting a PLL circuit, the 5600A is the right counter with accuracy that will meet any FCC land mobile, broadcast, or telecommunications requirements. On the bench or in the field the 5600A will do the job you need. The 5600A includes a self contained battery holder providing instant portability or we offer a 10 hour rechargeable battery pack option. Other options include a audio multiplier which allows you to resolve a 1/1000 of a Hz signal and finally a 25db preamp with an adjustable attenuator making the 5600A perfect for communications, TV servicing, industrial testing or meeting your QSO on the correct frequency every time.

FACTS ARE FACTS: With the introduction of the 5600A. The sun has set on the competition. This may sound like a bold statement on the part of DSI BUT FACTS ARE FACTS. No counter manufacturer except DSI offers a Full Range 50 Hz to 600 MHz counter with... - 2 PPM 10Hz to 400MHz
- 100% Factory Tested - RF pre-amp - 600 MHz prescaler - three selective gate times - oven ready, standby, and gate time indicator lights as standard features - For only $149.95 kit and $179.95 factory wired. In fact the competition doesn’t even come close unless you consider $200.00 to $300.00 close. With DSI having the best price to quality features ratio in the industry, no wonder we’ve become one of the world’s largest manufacturers of high quality frequency counter instrumentation.

FOR INFORMATION — DEALER LOCATION — ORDERS — OEM
CALL 800-854-2049 CALIFORNIA RESIDENTS CALL 800-542-6253

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>Sensitivity</th>
<th>Number of Readouts</th>
<th>Size of Readouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>5600A-K</td>
<td>$149.95</td>
<td>50Hz-600MHz</td>
<td>Proportional Oven 2 PPM 10Hz - 400MHz</td>
<td>10MV, 1MV, 5MV</td>
<td>9</td>
<td>.5 Inch</td>
</tr>
<tr>
<td>5600A-W</td>
<td>$179.95</td>
<td>50Hz-600MHz</td>
<td>TCXO 1 PPM 17Hz - 400MHz</td>
<td>25MV, 25MV, 75MV</td>
<td>8</td>
<td>.5 Inch</td>
</tr>
<tr>
<td>3550</td>
<td>$99.95</td>
<td>50Hz-550MHz</td>
<td>TCXO 1 PPM 17Hz - 400MHz</td>
<td>25MV, 20MV, 75MV</td>
<td>8</td>
<td>.4 Inch</td>
</tr>
<tr>
<td>500HH</td>
<td>$149.95</td>
<td>50Hz-550MHz</td>
<td>TCXO 1 PPM 17Hz - 400MHz</td>
<td>25MV, 20MV, 75MV</td>
<td>8</td>
<td>.4 Inch</td>
</tr>
</tbody>
</table>

5600A wired factory burned in 1 year limited warranty. 5600A kit 90 day limited warranty.
Prices and or specifications subject to change without notice or obligation.

$99.95
MODEL 3550K

3550 OWNERS You can add the 35P.2, 22 PPM 10Hz to 400MHz proportional oven to your existing 3550

TERMS: MC - VISA - AE - Check - M.O. - COD in U.S. Funds Please add 10% to a maximum of $10.00 for shipping, handling and insurance. Orders outside of USA & Canada, please add $20.00 additional to cover air shipment. California residents add 8% Sales Tax.

BUILT-IN OPTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Hr. Bat. Pack</td>
<td>24.95</td>
</tr>
<tr>
<td>AM56 Audio Multiplier</td>
<td>34.95</td>
</tr>
<tr>
<td>PA56 25dB Preamp with Attenuator</td>
<td>59.95</td>
</tr>
</tbody>
</table>

DSI INSTRUMENTS, INC.
7924 Ronson Road
San Diego, California 92111
NOT A KIT

the microcomputer controlled appointment clock

A NEW SOLUTION FOR SOME OLD PROBLEMS
Your spouse will never be upset with you for missing a birthday.
Your business associates will be pleased when you're never late for appointments.
Your doctor will be confident that you are taking your medication at the time prescribed.

FOR THE BUSY EXECUTIVE
Controls length of business meetings. Reminds you 10 minutes ahead of time to prepare for meeting and gives you time to clear desk. Reminder of wife's birthday. Reminder to catch plane for important business trip.

FOR THE HOMEMAKER
Reminder to take meat out of freezer for dinner. Kitchen timer. Reminder of term dates and hair dresser appointments.

FOR THE MOTHER

FOR THE SENIOR CITIZEN

FOR THE STUDENT
Timer for chemistry lab, bio lab. Timer for solving problems or preparation for exams.

FOR THE GOURMET COOK
Alarms to let you know when to start next step in meal preparation. By programming the timer alarm, you'll know just when each course of an elaborate menu must be prepared so everything will be ready at the same time.

FOR THE SALESMAN
Stores up to 30 future appointments — easy to see at the touch of a key when next appointment is scheduled.

FOR THE PHOTOGRAPHER
Records client's time charges, meetings, phone calls, research. Timer with built-in pause capability provides accurate way of timing speech presentations.

FOR THE SECRETARY
The secretary's best friend. Remembers to remind the boss of key appointments. Times length of phone calls.

RELAX AND LET TIMETRAC DO YOUR REMEMBERING.
TIMETRAC helps manage your busy schedule, increases your efficiency. Every home and office needs TIMETRAC.

TIMETRAC — THE CLOCK THAT REMEMBERS
This is the exciting, all new time minder that combines space-age technology with every day practicality. If you remember and reminds you of everything that you might forget.

TIMETRAC combines smart, modern design with precision and performance. Its vacuum fluorescent display provides readability from a distance (the largest display on the market today). You control the display brightness with a dimmer switch.

THE ONLY CLOCK OF ITS KIND —
NONE CAN COMPARE!

SEND 15¢ STAMP OR S.A.S.E. FOR INFORMATION AND FLYER ON OTHER HAL-TRONIX PRODUCTS.
TO PHONE ORDER IN 1-313-285-1782.
VISA AND MASTER CHARGE ACCEPTED.

AED ELECTRONICS
750 Lucerne Rd., Suite 120
Montreal, Quebec, Canada H3R 2H6
Tel. 514-737-7293

SUCCESSFUL BUSINESS, INC.
400-T Ant. Tuning Unit
(Also known as CU1658 and CU1669)
CALL TOLL FREE
1-800-228-4097

Hy-Gain 3806
2-Meter Hand-Held Amateur Transceiver
SPECIALLY PRICED ONLY $119.95

- Low cost, 6-channel hand-held provides superb voice transmission over short to medium distances
- Sharply tuned on-frequency selectivity in the RF amplifier stages plus FET's in the 1st and 2nd mixers for virtual immunity to out-of-band signals, intermodulation distortion and cross-modulation
- Separate microphone and speaker elements for enhanced audio
- Internally adjustable mic preamp—a Hy-Gain exclusive
- Specialty gasketed case seals out water, dirt and corrosive salt air
- Watertight, high-impact ABS plastic case—ribbed for non-slip grip
- Top-mounted controls for instant access

Accessories:

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3607</td>
<td>Nicad Battery Pack</td>
<td>$31.95</td>
</tr>
<tr>
<td>1104</td>
<td>Touch Tone Pad</td>
<td>$44.95</td>
</tr>
<tr>
<td>1106</td>
<td>AC Battery Charger</td>
<td>$9.95</td>
</tr>
<tr>
<td>1107</td>
<td>Cigarette Lighter Adaptor Cord</td>
<td>$9.95</td>
</tr>
<tr>
<td>1108</td>
<td>Antenna Adapter Cord</td>
<td>$9.95</td>
</tr>
<tr>
<td>1110</td>
<td>Carrying Case (Leather)</td>
<td>$17.95</td>
</tr>
<tr>
<td>1111</td>
<td>Carrying Case (Velvit)</td>
<td>$9.95</td>
</tr>
<tr>
<td>2986</td>
<td>Rubber Duck Antenna</td>
<td>$5.95</td>
</tr>
<tr>
<td></td>
<td>Crystal Certificate</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

PLEASE ENCLOSURE $2.50 FOR SHIPPING AND HANDLING PER UNIT

CALL TOLL FREE
1-800-228-4097
for Quality Ham Radio Products at Discount Prices

HY-AGU
KENWOOD
DRAKE
ICOM
STANDARD
EDGECOM
KDK
PANASONIC

DENTRON
HY-GAIN
MOSLEY
CUSHCRAFT
WILSON
HUSTLER
LARSEN
BENCHER
ROBOT

TAYLOR
SWAN
TEMPO
TEN-TEC
MIDLAND
CDE
AUTOK
MIRAGE
AEA

E.T.O. ALPHA
VHF ENGINEERING
BERK-TEK CABLE
CONSOLIDATED TOWER
SHURE
TELEX
ROBOT-SSTV
BENCHER

Our Mail Order Hours (CST)
M-F 8 am to 12 Midnight
Saturday 8 am to 6 pm
Sunday 12 Noon to 8 am

Call and Talk to
Don WBØYEZ Ken WDØEMR
Denny WØQR Eli KAØCEJ
Bill WBØYHJ John WBØMTS
Joe WAØWR1 Blaine WBØQLH
Jim KAØCRK Bob WBØQZ

Communications Center
443 N. 48th, Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

More Details? CHECK — OFF Page 126

september 1979 95
ASCII MORSE RTTY

Features
- ASCII & BAUDOT
- Auto Sync. 1-150 WPM
- Microcomputer Interface

COMPLETE KEYBOARD TERMINAL
$375. + S&H $20. (Less Monitor)

SCT-100 STAND ALONE VIDEO BOARD
- Partial Kit $99.
- Full Kit $167.
- Assembled & Tested $197.

COMPUTER
- **RS232** (in/out)

TRANSCEIVER
- **MRS-100**
- Partial Kit $95.
- Full Kit $225.
- Assembled & Tested $295.

TERMINAL UNIT
- **RTTY** (TX/RX)
- **MORSE** (TX/RX)
- **KEYER** OPTIONAL
- Assembled & Tested $197.

COmETE lLEYBOARD TERMINAL

LARSEN MOBILE ANTENNAS

<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larsen Mount LM-150 2 mtr. whip and coil</td>
<td>$21.65</td>
</tr>
<tr>
<td>LM-MM magnetic mount</td>
<td>$13.29</td>
</tr>
<tr>
<td>LM-TLM trunk lid mount</td>
<td>$12.77</td>
</tr>
<tr>
<td>New Motorola type mount, NMO-150 2 mtr. whip and coil</td>
<td>$23.22</td>
</tr>
<tr>
<td>NMO-MM magnetic mount</td>
<td>$14.91</td>
</tr>
<tr>
<td>NMO-TLM trunk lid mount</td>
<td>$15.98</td>
</tr>
<tr>
<td>Ultrallexible</td>
<td>$15.00</td>
</tr>
<tr>
<td>Amphenol B3-1SO PL-250 silver plated connectors</td>
<td>$75.00</td>
</tr>
<tr>
<td>Amphenol UG-175/U adapters (RG-58)</td>
<td>$25.00</td>
</tr>
<tr>
<td>Amphenol UG-176/U adapters (RG-8X, RG-59)</td>
<td>$25.00</td>
</tr>
<tr>
<td>Amphenol PL-258, straight adapter</td>
<td>$1.07</td>
</tr>
</tbody>
</table>

CENTURION INTERNATIONAL RUBBER DUCK ANTENNAS

G.E. Porta-Mobs
2 Meters - 8 Watts

<table>
<thead>
<tr>
<th>LG36FAS55, 132-150 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Housing, 12 Volt Neg.</td>
</tr>
<tr>
<td>Gnd Supply. Shipping Wgt. 20 lbs.</td>
</tr>
</tbody>
</table>

$168. With Ni-Cad Supply '268.
Microphone for above '15.

GREGORY ELECTRONICS CORP.
245 Rt. 46, Saddle Brook, N.J. 07662
Phone: (201) 489-9000

G & C Communications
730 Cottonwood Lincoln, Nebraska 68510

Write for a Free Copy of Our Catalog

Check-off Page 126
Tri-Ex

Puts the World at Your Fingertips

Get your antenna high enough with a TRI-EX tower and bring the world to you.

Receive signals which you have never heard before.

Send your call to other HAMS who have never heard you.

A TRI-EX tower will give you listening power . . . calling power . . . and stay-up power that means durability.

Durability comes from TRI-EX's 25 years of building quality towers. These years of experience combined with the latest engineering knowledge and materials are used to design and build towers which stay up under the antenna loads and wind speeds specified.

Take your choice of two super qualities:

• All Steel Towers which after manufacture are hot-dipped in molten zinc (galvanizing) with all exposed steel covered inside and out, including the inside of the tubing.

• Or, our new TRIEXIUM™ Towers, extra lightweight, so easy to handle yet so super strong and maintenance free.

TRI-EX TOWERS makes them all. Guyed Towers, Crank-Up Towers, Free Standing Towers, Stacked Towers, Accessories — and we will install a tower on your site upon request.

Call or write TRI-EX now for complete information, price lists and the name of your nearest dealer.

Call TOLL FREE
1-800-344-7200

Tri-Ex Tower Corporation
7182 Rasmussen Avenue, Visalia, California 93277

*Trademark for TRI-EX TOWER's space-age technology metal alloy.
FREE!
RADIO AMATEURS
WORLD ATLAS
with purchase of famous
CALLBOOK
MAP LIBRARY!

Here's an offer you can't refuse! You receive three, information-packed, Amateur Callbook maps, folded, plus the World Atlas for only $3.75 plus $1.50 shipping and handling. If purchased separately, total value of map/atlas offer would be $6.25, plus shipping. You save $2.50 and get these invaluable radio amateur aids!

1. Prefix Map of the World, folded. World-wide prefixes. Shows 40-zone map on one side, 90-zone map on the other. Size 40" x 28".
2. Map of North America, folded. Includes Central America and Caribbean to the Equator. Shows call areas, zone boundaries, prefixes, etc. Size 30" x 25".
3. Great Circle Chart of World, folded. Centered on 40°N, 100°W. Shows cities, latitude, longitude, great circle bearings and more! Size 30" x 25"

Plus special FREE bonus! The Callbook's own Radio Amateur World Atlas, FREE with the purchase of the 3 maps. Contains eleven full color maps of the world, looking at things from the radio amateurs point of view.

Callbook Map Library: $3.75
Shipping: $1.50
Total: $5.25

Subjects
- Maps of the World
- Great Circle Chart
- North America

Useful for radio amateurs

Call or Write for Delivery or Quote
KENWOOD TS180S

LEAVE A MESSAGE & WE'LL CALL YOU BACK!

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney • HOUSTON, TEXAS 77002
713/658-0268

MASTERCHARGE • VISA

Special Limited Offer!
Amateur Radio Emblem Patch
only $2.50 prepaid

Pegasus on blue field, red lettering. 3" wide x 3" high. Great on jackets and caps. Sorry, no call letters.

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.50 for shipping. Illinois residents add 5% Sales Tax.

More Details? CHECK — OFF Page 126
TO: All Amateurs
FROM: Wilson Systems, Inc.

Inflation . . . gas shortages . . . etc., all leading to higher prices each week, and cutting into the amount that we have to spend on our hobby. And face it, our hobby is what keeps us sane in this runaway inflation period, our escape from the hustle and hectic grind of working to make a living. We know — we see the same price increases at the grocery store, the same increases in the gas prices. Wilson Systems, Inc., is going to do something to help ease the purchase of your new tower and antenna.

As you may know, in January of 1979, Regency Electronics, Inc., purchased Wilson Electronics Corp. What you may not know is that in August, 1979, Jim Wilson purchased back the antennas and towers. There is now a new name to look for — WILSON SYSTEMS, INC. — With the new name and new company comes new ideas, methods, products and prices. Yes, prices. But not what you might expect. Wilson Systems is LOWERING the prices to where you will find it hard to believe. Check them out in the following pages of this issue. You will be surprised and pleased at what you will find.

What are we doing that will enable us to lower the prices? Well, we are Hams, too. We like to pay the lowest price possible and will spend much time assuring ourselves this is accomplished. We feel the same higher demands on our money for the house, food, and bills. And as this demand increases, the amount of money left for our hobby decreases. So when money is spent, we want the best quality for the best price.

There are a number of ways to bring the cost of a product down. By using a cheaper grade of material, buying raw materials in larger quantities to obtain a better discount, by cutting the profit ratio, and by eliminating the middle man. Wilson Systems will not lower the quality of the product. In fact, we have improved the strength and quality of almost every antenna in the line. The newly designed monobands will stay up under heavy icing conditions when others are falling apart. Wilson Systems is currently purchasing at the lowest price possible from the aluminum companies, so these methods of cost reduction are eliminated. The third method mentioned is one that we have decided to consider as a part of the overall cost reduction plan, yet leaving room for research and development expense, so we may bring you the products you want and at a price you will like.

The last method mentioned is always a risky one. The dealers do not want their profits cut back just as you do not want your pay check cut. If you cut the dealers' profits back, some of them will just push the product that will tend to give them the most profit, rather than the one that will be the best performing for you. A rather drastic form of this method is the one that Wilson Systems will be choosing. You will not be able to find the Amateur products of Wilson Systems in stock at the dealers, nor will they probably recommend them. (After all, as long as they're not handling them and making a profit, why should they promote or even recommend them?) No, you will only be able to enjoy the most product for the least money by dealing with Wilson Systems factory direct. We will be offering you the amateur antennas and towers at prices that are below, in most cases, what the dealers pay for the products of other companies. And to make it even easier, we have a toll-free number for you to place your order. Now isn't this what you've been looking for? The best product for the least money!

Just remember these four points:

1. Highest Quality
2. Lowest Price
3. Toll-Free Order Number

The fourth point? Remember the name . . . WILSON SYSTEMS, INC.

Yours Truly,

Jim Wilson
Wilson Systems, Inc.
A trap loaded antenna that performs like a monobander! That's the characteristic of this six element three band beam. Through the use of wide spacing and interlacing of elements, the following is possible: three active elements on 20, three active elements on 15, and four active elements on 10 meters. No need to run separate coax feed lines for each band, as the bandswitching is automatically made via the High-Q Wilson traps. Designed to handle the maximum legal power, the traps are capped at each end to provide a weather-proof seal against rain and dust. The special High-Q traps are the strongest available in the industry today.

Specifications

<table>
<thead>
<tr>
<th>Band MHz</th>
<th>14-21-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power input, Legal limit</td>
<td></td>
</tr>
<tr>
<td>Gain (dBi)</td>
<td>Up to 9 dB</td>
</tr>
<tr>
<td>VSWR @ resonance</td>
<td>1.3:1</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>F/B ratio</td>
<td>20 dB or better</td>
</tr>
<tr>
<td>Boom (O.D. x Length)</td>
<td>2" x 24'2½"</td>
</tr>
<tr>
<td>No. of elements</td>
<td>6</td>
</tr>
<tr>
<td>Longest element</td>
<td>28'6"</td>
</tr>
<tr>
<td>Turning radius</td>
<td>15'9"</td>
</tr>
<tr>
<td>Maximum mast diameter</td>
<td>2" O.D.</td>
</tr>
<tr>
<td>Surface area</td>
<td>8.6 sq. ft.</td>
</tr>
<tr>
<td>Wind loading @ 80 mph</td>
<td>215 lbs.</td>
</tr>
<tr>
<td>Maximum wind survival</td>
<td>100 mph</td>
</tr>
<tr>
<td>Feed method</td>
<td>Coaxial Balun (supplied)</td>
</tr>
<tr>
<td>Assembled weight (approx.)</td>
<td>53 lbs.</td>
</tr>
<tr>
<td>Shipping weight (approx.)</td>
<td>62 lbs.</td>
</tr>
</tbody>
</table>

Capable of handling the Legal Limit, the "SYSTEM 33" is the finest compact tri-band antenna available to the amateur.

Designed and produced by one of the world's largest antenna manufacturers, the traditional quality of workmanship and materials excels with the "SYSTEM 33".

New boom-to-element mount consists of two 1/8" thick formed aluminum plates that will provide more clamping and holding strength to prevent element misalignment.

Specifications

<table>
<thead>
<tr>
<th>Band MHz</th>
<th>14-21-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum power input, Legal limit</td>
<td></td>
</tr>
<tr>
<td>Gain (dBi)</td>
<td>Up to 9 dB</td>
</tr>
<tr>
<td>VSWR at resonance</td>
<td>1.3:1</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>F/B ratio</td>
<td>20 dB or better</td>
</tr>
<tr>
<td>Boom (O.D. x length)</td>
<td>2" x 14'4"</td>
</tr>
<tr>
<td>No. of elements</td>
<td>3</td>
</tr>
<tr>
<td>Longest element</td>
<td>27'4"</td>
</tr>
<tr>
<td>Turning radius</td>
<td>15'9"</td>
</tr>
<tr>
<td>Maximum mast diameter</td>
<td>2" O.D.</td>
</tr>
<tr>
<td>Surface area</td>
<td>5.7 sq. ft.</td>
</tr>
<tr>
<td>Wind loading at 80 mph</td>
<td>114 lbs.</td>
</tr>
<tr>
<td>Assembled weight (approx.)</td>
<td>37 lbs.</td>
</tr>
<tr>
<td>Shipping weight (approx.)</td>
<td>42 lbs.</td>
</tr>
<tr>
<td>Direct 52 ohm feed — no balun required</td>
<td></td>
</tr>
<tr>
<td>Maximum wind survival</td>
<td>100 mph</td>
</tr>
<tr>
<td>4286 S. Polaris Avenue</td>
<td>Las Vegas, Nevada 89103</td>
</tr>
<tr>
<td>(702) 739-7401</td>
<td></td>
</tr>
</tbody>
</table>

The GR-1 is the complete ground radial kit for the WV-1A. It consists of 150' of 7/14 stranded copper wire and heavy duty egg insulators, instructions. The GR-1 will increase the efficiency of the GR-1 by providing the correct counterpoise.
New, Improved Wilson Towers

Hinged Base Plate - Concrete Pad, Heavy Duty Winch

NEW IMPROVED FEATURE
Heavier wall tubing greatly increases the stress capabilities over the older TT-45 and MT-61.

FEATURES:
- Maximum Height 45' (will handle 10 sq. ft. at 38')
- Maximum Height is 61' (will handle 10 sq. ft. at 53') @ 50 mph
- 1200 lb. brake winch
- 4200 lb. raising cable
- Total Weight, 335 lbs.
- Recommended base accessory: RB-61A, FB-61A.

The MT-61A is our largest and tallest freestanding tower. By using the RB-61A rotating base fixture the MT-61A is ideally suited for the SY33 or SY36. If you plan to mount the tower to your house, caution should be taken to make certain the tower is properly reinforced to handle the tower. If not, one of the base accessory fixtures should be used.

GENERAL FEATURES
All towers use high strength heavy galvanized steel tubing that conforms to ASTM specifications for years of maintenance-free service. The large diameters provide unexcelled strength. All welding is performed with state-of-the-art equipment. Top sections are 2" O.D. for proper antenna/rotor mounting. A 10' push-up mast is included in the top section of each tower. Hinge-over base plates are standard with each tower. The high loads of today's antennas make Wilson crank-ups a logical choice.

TILT-OVER BASES FOR TOWERS

FIXED BASE
The FB Series was designed to provide an economical method of moving the tower away from the house. It will support the tower in a completely free-standing vertical position, while also having the capabilities of tilting the tower over to provide an easy access to the antenna. The rotor mounts at the top of the tower in the conventional manner, and will not rotate the complete tower.

FB-45A... $79.95
FB-61A... 109.95

ROTATING BASE
The RB Series was designed for the Amateur who wants the added convenience of being able to work on the rotor from the ground position. This series of bases will give that ease plus rotate the complete tower and antenna system by the use of a heavy duty thrust bearing at the base of the tower mounting position, while still being able to tilt the tower over when desiring to make changes on the antenna system.

RB-45A... $119.95
RB-61A... 179.95

Tilting the tower over is a one-man task with the Wilson bases. (Shown above is the RB-61A.)
At last, the antennas that you have been waiting for are here! The top quality, optimum spaced, and newest designed monobanders. The Wilson Systems' new Monoband beams are the latest in modern design and incorporate the latest in design principles utilizing some of the strongest materials available. Through the select use of the current production of aluminum and the new boom to element plates, the Wilson Systems' antennas will stay up when others are falling down due to heavy ice loading or strong winds. Note the following features:

1. **Taper Swaged Elements** — The taper swaged elements provide strength where it counts and lowers the wind loading more efficiently than the conventional method of telescoping elements of different sizes.

2. **Mounting Plates — Element to Boom** — The new formed aluminum plates provide the strongest method of mounting the elements to the boom that is available in the entire market today. No longer will the elements tilt out of line if a bird should land on one end of the element.

3. **Mounting Plates — Boom to Mast** — Rugged 1/4” thick aluminum plates are used in combination with sturdy U-bolts and saddles for superior clamping power.

4. **Holes** — There are no holes drilled in the elements of the Wilson HF Monobanders. The careful attention given to the design has made it possible to eliminate this requirement, as the use of holes adds an unnecessary weak point to the antenna boom.

With the Wilson Beta-match method, it is a “set it and forget it” process. You can now assemble the antenna on the ground, and using the guidelines from the detailed instruction manual, adjust the tuning of the Beta-match so that it will remain set when raised to the top of the tower. The Wilson Beta-match offers the ability to adjust the terminating impedance that is far superior to the other matching methods including the Gamma match and other Beta-matches. As this method of matching requires a balanced line, it will be necessary to use a 1:1 balun, or RF choke, for the most efficient use of the HF Monobanders.

The Wilson Monobanders are the perfect answer to the Ham who wants to stack antennas for maximum utilization of space and gain. They offer the most economical method to have more antenna for less money with better gain and maximum strength. Order yours today and see why the serious DXers are running up that impressive score in contests and number of countries worked.

WILSON SYSTEMS, INC. — 4286 S. Polaris Las Vegas, NV 89103 — (702) 739-7401

FACTORY DIRECT ORDER BLANK

WILSON SYSTEMS ANTENNAS

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Model</th>
<th>Description</th>
<th>Shipping</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SY33</td>
<td>3 Ele. Tribander for 10, 15, 20 Mtrs.</td>
<td>UPS</td>
<td>$139.95</td>
</tr>
<tr>
<td></td>
<td>SY36</td>
<td>6 Ele. Tribander for 10, 15, 20 Mtrs.</td>
<td>UPS</td>
<td>$129.95</td>
</tr>
<tr>
<td></td>
<td>WV-1A</td>
<td>Trap Vertical for 10, 15, 20, 40 Mtrs.</td>
<td>UPS</td>
<td>$109.95</td>
</tr>
<tr>
<td></td>
<td>GR-1</td>
<td>Ground Radials for WV-1A</td>
<td>UPS</td>
<td>$109.95</td>
</tr>
<tr>
<td></td>
<td>M-520A</td>
<td>5 Elements on 20 Mtrs.</td>
<td>TRUCK</td>
<td>$199.95</td>
</tr>
<tr>
<td></td>
<td>M-420A</td>
<td>4 Elements on 20 Mtrs.</td>
<td>UPS</td>
<td>$129.95</td>
</tr>
<tr>
<td></td>
<td>M-515A</td>
<td>5 Elements on 15 Mtrs.</td>
<td>UPS</td>
<td>$119.95</td>
</tr>
<tr>
<td></td>
<td>M-415A</td>
<td>4 Elements on 15 Mtrs.</td>
<td>UPS</td>
<td>$109.95</td>
</tr>
<tr>
<td></td>
<td>M-510A</td>
<td>5 Elements on 10 Mtrs.</td>
<td>UPS</td>
<td>$99.95</td>
</tr>
<tr>
<td></td>
<td>M-410A</td>
<td>4 Elements on 10 Mtrs.</td>
<td>UPS</td>
<td>$89.95</td>
</tr>
<tr>
<td></td>
<td>WM-62A</td>
<td>Mobile Antenna: 6/8 λ on 2, ¾ λ on 6</td>
<td>UPS</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Model</th>
<th>Description</th>
<th>Shipping</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HD-73</td>
<td>Alliance Heavy Duty Rotor</td>
<td>UPS</td>
<td>$109.95</td>
</tr>
<tr>
<td></td>
<td>RC-8C</td>
<td>B/C Rotor Cable</td>
<td>UPS</td>
<td>$12/ft</td>
</tr>
<tr>
<td></td>
<td>RG-8U</td>
<td>RG-8U Foam-Ultra Flexible Coaxial Cable: 38 strand center conductor, 11 gauge</td>
<td>UPS</td>
<td>$21/ft</td>
</tr>
</tbody>
</table>

Note: On Coaxial and Rotor Cable, minimum order is 100 ft. and in 50’s multiples.

Prices and specifications subject to change without notice.

Ninety Day Limited Warranty. All Products FOB Las Vegas, Nevada.

WILSON SYSTEMS TOWERS

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Model</th>
<th>Description</th>
<th>Shipping</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT-45A</td>
<td>Freestanding 45' Tubular Tower</td>
<td>TRUCK</td>
<td>$199.95</td>
</tr>
<tr>
<td></td>
<td>R8-45A</td>
<td>Rotating Base for TT-45A w/tilt over feature</td>
<td>TRUCK</td>
<td>$119.95</td>
</tr>
<tr>
<td></td>
<td>F8-45A</td>
<td>Fixed Base for TT-45A</td>
<td>TRUCK</td>
<td>$79.95</td>
</tr>
<tr>
<td></td>
<td>MT-61A</td>
<td>Freestanding 61' Tubular Tower</td>
<td>TRUCK</td>
<td>$399.95</td>
</tr>
<tr>
<td></td>
<td>RB-61A</td>
<td>Rotating Base for MT-61A w/tilt over feature</td>
<td>TRUCK</td>
<td>$179.95</td>
</tr>
<tr>
<td></td>
<td>FB-61A</td>
<td>Fixed Base for MT-61A</td>
<td>TRUCK</td>
<td>$109.95</td>
</tr>
<tr>
<td></td>
<td>STB-50</td>
<td>Thrust Bearing</td>
<td>TRUCK</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Model</th>
<th>Description</th>
<th>Shipping</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FACTORY DIRECT ORDER BLANK

Toll-Free Order Number 1-800-639-6898

SPECIFICATIONS

Wilson's Beta match offers maximum power transfer.

WILSON MONO-BAND BEAMS

WILSON MONO-BAND BEAMS
fact:
our quality assurance is your performance insurance.

Originally designed for battlefield ruggedness, the microphone elements in Shure mobile and communications microphones offer unequalled reliability. Our quality control engineers anticipate the worst possible field conditions. These microphones have been subjected to the most rigorous tests in the industry, including six-foot drops onto hard floors; violent vibration tests; temperature variation tests ranging from a bitter -54°F. to a searing 185°F.; and 100% humidity tests. We've even dragged them behind automobiles on open roads and subjected them to a battery of corrosion tests. And yes, they really work after all that!

Exclusive Three-Way Flex Tester
Shure knows that the single most common cause of microphone malfunction is failure of the cord. An exclusive Shure-designed story-and-a-half tall microphone cord tester dishes out more abuse than the average microphone gets in a lifetime.

Stretch, rock, and twist: first, the cord tester stretches the microphone to the full length of the cord. Then it simultaneously rocks the microphone 270° at the end of the cord while it gives the microphone a violent 90° twist in two directions. And this goes on day after day!

3-D Shake Tester
A microphone that fails spells disaster for a mobile communications system. Every Shure microphone is designed to withstand hours in our brutal 3D Shake Tester — simulating years of driving over rough, bumpy roads.

Million-Cycle Switch Tester
Another abused microphone component is the switch. Shure-designed long-life leaf switches operate with a wiping action that resists the buildup of corrosion and dirt. And Shure's ongoing tests show that they continue to make contact reliably and positively after one million switching operations.

mobile communications microphones

Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204 In Canada: A. C. Simmonds & Sons Limited Manufacturers of high fidelity components, microphones, sound systems and related circuitry.
IRON POWDER and FERRITE PRODUCTS

AMIDON Associates

Fast, Reliable Service Since 1963

Small Orders Welcome Free 'Tech-Data' Flyer

Toroidal Cores, Shielding Beads, Shielded Coil Forms

Ferrite Rods, Pot Cores, Baluns, Etc.

12033 OTSEGO STREET, NORTH HOLLYWOOD, CALIFORNIA 91607

KLAUS QUALITY AMATEUR RADIO EQUIPMENT & ACCESSORIES

KENWOOD

TS 520 S HF TRANSCEIVER

TS 600 MULTIMODE 6-M TRANSCEIVER

TS 820 S HF TRANSCEIVER

CALL OR WRITE FOR THE KLAUS PRICE ...

YAESU

FT-901 D HF TRANSCEIVER

FT-227 R 2-METER FM TRANSCEIVER

CALL OR WRITE FOR THE KLAUS PRICE ...

CUSHCRAFT

We have a complete stock of Cushcraft antennas — too many to mention in detail, so ask about our 2-meter line of verticals and beams for special low, low prices.

KLAUS RADIO Inc.

8400 N. Pioneer Parkway, Peoria, IL 61614

Phone 309-691-4840

Tim Daily, Amateur Equipment Sales Manager

SST T-4 ULTRA TUNER DELUXE

ULTRA TUNER DELUXE. Matches any antenna— coax fed or random wire on all bands (160-10 meters). Tune out the SWR on your antenna for more efficient operation of any rig. Home, mobile, portable—only 9" x 3.5" x 3" • 2000 watt RF output capability • SWR meter with 2-color scale • Antenna Switch selects between two coax fed antennas, random wire, or tuner bypass. • Efficient Air-wound Inductor • 200 pf 1000V Capacitors • Attractive bronze finished enclosure.

only $64.95

SST T-2 ULTRA TUNER

Tunes out SWR on any antenna— coax fed or random wire (160-10 meters). Any rig up to 2000 watts output. Rugged, yet compact. 33/4" x 2-1/2" x 2-1/4".

only $37.95

SST T-3 MOBILE IMPEDANCE TRANSFORMER

Matches 50 ohm coax to the lower impedance of a mobile whip. Taps between 3 and 50 ohms; 3-30 MHz; 2000 watts output. 33/4" x 2-1/2" x 2-1/4".

only $19.95

SST T-1 RANDOM WIRE ANTENNA TUNER

All bands (160-10 meter) with any wire • 2000W output • Any transceiver • Home or portable • Neon tune-up indicator.

only $29.95

SST DL-1 CAR RADIO DUMMY LOAD, 1000W PEP

301-305 MHz. Sized 5-1/8" x 4-3/4".

only $17.95

SST CL-4 21 HR. CLOCK, Giant red LED numerals. Mount and plug in at push of button. Beautiful for your desk. 110VAC.

only $22.95

SST P-1 BALEN for balanced lines, 3600V.

only $5.00

Call (213) 376-8867 to order C.O.D., VISA, or Master Charge.

To Order:

Send a check or money order—or use your M.C. or VISA. Add $3 shipping and handling. Calif. residents, add sales tax.

Guarantee: All SST products are unconditionally guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you are not satisfied for any reason.

104 September 1979

More Details? CHECK — OFF Page 126
This advanced model in the M-200 Series extends the horizons of capability and performance:

- **Morse Reception:**
 6-60 wpm with automatic speed & wordspace

- **RTTY Reception:**
 4 speeds, 3 shifts, unshift on space select, automatic threshold select, auxiliary baudot loop output, tuning meter, auto. speed readout

- **ASCII Reception:**
 110 Baud with built-in T.U.

- **Video Outputs:**
 32 character line x 16 line video with scrolling

- **Special Feature:**
 ASCII, Loop or RS232 output on all modes

Order direct or from these dealers:

Global Communications
606 Poco Isles Blvd.
Cocoa Beach, Florida 32931
305-783-3624

Cohoon Amateur Supply
Highway 475
Trenton, Kentucky 42286

Dialta Amateur Radio Supply
212 48th Street
Rapid City, S. Dakota 57701
605-343-6127

Emona Electronics
661 George Street
Sidney N.S.W. Australia

Germantown Amateur Supply
3202 Summer Avenue
Memphis, Tennessee 38112
800-236-6168

Ham Radio Center
8342 Olive Blvd.
St. Louis, Missouri 63132
800-325-3636

N & G Distributors
7285 N W. 12th St.
Miami, Florida 33126
305-592-9685

Rickles Electronics
2800 W. Meighan Blvd.
Gadsden, Alabama 35904
205-547-2534

Universal Amateur Radio
1280 Aida Drive
Reynoldsburg, Ohio 43068
614-866-4267

PANACOM
P.O. Box 76093
Caracas 107 Venezuela

Marcucci-SPA
via F. LLI-Bronzetti
Milan, Italy

INFO-TECH INCORPORATED
Specializing in Digital Electronic Systems

2349 Weldon Parkway • St. Louis, Missouri 63141 • (314) 576-5489

More Details? CHECK — OFF Page 126
FAST SCAN ATV

WHY GET ON FAST SCAN ATV?
- You can send broadcast quality video of home movies, video tapes, computer games, etc., at a cost that is less than sloscan.
- Really improves public service communications for parades, races, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles.

ALL IN ONE BOX
TC-1 Transmitter/Conv
Plug in camera, ant, mic and you are on the air $399 ppd

HITACHI HV-62 TV CAMERA
High performance closed circuit camera just right for atv, with lens ... $2399 ppd

PUT YOUR OWN SYSTEM TOGETHER

TVC-18 CONVERTER tunes 420 MHz to ch. 2 or 3 $49.50 ppd
TXAS EXCITER $69 ppd
PAS 10 WATT LINEAR $79 ppd
FMAS Audio Subcarrier. $24.50 pprd

SEND FOR OUR CATALOG, WE HAVE IT ALL
Modules for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, lines, video ider and clock, and more. 15 years in TVA.

Call 213-447-4565 5-6 pm or time

P.C. ELECTRONICS
Maryann
2522 PAXSON
ARCADIA, CA 91006
Tom
W6OR
t

ELECTRONICS & INSTRUMENTATION, CORP.
10 GHz MICROWAVE TRANSCEIVER

FEATURES
- LOW COST
- HIGH SENSITIVITY
- AFC
- FUNCTION METER
- TONE OSCILLATOR
- ELECTRONICALLY TUNEABLE
- SQUELCH & VOLUME CONTROLS
- TRANSMIT-RECEIVE
- TELEMETRY/VIEDO DATA
- AC/DC OPERATION
- MULTIPLE IF FREQS
- MODULAR CONSTRUCTION
- WEATHERPROOF CASE
- COMPLETELY WIRED/TESTED

THREE MODELS AVAILABLE

TELEMETRY MODEL TMX10
- 10 GHz, 10 MW Gunn Transceiver
- 16 dB Horn Antenna
- 30 MHz Low Noise Pre-Amp
- 10.7 MHz Post IF Amp/Demod
- Crystal IF Filters
- Integrated Circuit Modulator
- Internal Voltage Regulators
- AFC
- Tone Oscillator

VIDEO MODEL TVX10
- 10 GHz, 10 MW Gunn Transceiver
- 16 dB Horn Antenna
- 45 MHz Low Noise Pre-Amp
- 45 MHz Post IF Amp/Demod
- Audio Subcarrier Mod/Demod
- Room for III Video Channels
- Internal Voltage Regulators
- Volume Control

OPTIONS
- 45, 60, 100, 111 MHz IF Freq Available
- Narrow Band Crystal Filters
- 50 Hz. 220 VAC Power Supply
- Higher Gunn OBC Power Output
- Higher Gain Antennas

PRICE LIST
MODEL TMX10 $499.95
MODEL TVX10 $499.95
(Combines TM/Video Models)

TCI CORP.
411 N BUCHANAN CIRCLE #3
PACHECO, CA 94553

TO ORDER CALL (415) 676-6102

or Write for FREE DETAILED DATA SHEET on this and our VHF/UHF TRANSMITTER & RECEIVER PRODUCT LINE

KANTRONICS
1209 East 2nd Street
Lawrence Kansas 66044
Phone 913-842-7745
We accept Visa, Master Charge, check and money orders.

New! Amateur Upgrade™

Kantronics Amateur Upgrade is an educational board game that familiarizes players with FCC rules governing amateur radio and elementary radio concepts. The game comes complete with playing surface, playing pieces - coil, grommet, etc., a die, exam cards and answer sheets, over 100 Novice, General, Advanced and Extra questions in all.

Players roll the die to determine the number of spaces to move. Some spaces players land on have a consequence such as "exceeded 1000 watts - answer question, if wrong go to start." When a player lands on an exam space, he must determine the number of spaces to move. Some spaces players land on have a consequence such as "exceeded 1000 watts - answer question, if wrong go to start." When a player lands on an exam space, he must take an exam card. After three cards have been collected by one player, he must take the exam. The first person to progress through all levels to obtain the Extra-class WINS! Novice exam cards may be used exclusively for beginner play.
CURTIS LSI's help you

speak MORSE

 Apr '75 HR, Feb '76 QST, Radio Hobb '75, Apr Hobb '77 '78
 8044-1; IC; PCB; Socket; Manual 24.95
 8044-4; Semi-Kit 54.95
 8045; Morse Keyboard-On-A-Chip IC 59.95
 8045-1; IC; PCB; FFO; Sockets; Manual 89.95
 8045-2; Semi-Kit 159.50
 8046; Instructionkeyer-On-A-Chip IC 49.95
 8046-1; Semi-Kit 79.95
 8047; Message Memory-On-A-Chip IC 39.95
 8047-1; IC; PCB; RAM; Sockets; Manual 89.95
 (add $1.75 for postage and handling)

EK-430; CMOS Keyer* (rev. 76-088) 124.25
IK-448A; Instructionkeyer* (ver. 76-087) 224.95
 * new with dash memory as standard

System 4000 Ham Computer (see Jan '76 QST) (Write)

Curtis Electrom Devices, Inc.
Dept. H (415) 964-3136
Box 4090, Mountain View, CA 94040

RT-524M TRANSCEIVER

Covers 160.00 to 170.95 MHz 50 KHz crystal-controlled steps, 15 watts output. Has volume and squelch controls; requires 27 VDC power. With tubes 8156, 6/8102, 6/6CW4, and 2/7587. D/A size: 6-3/8x1-1/2x4; 14 lbs. $54.95.

Use your Visa or Mastercharge cards.
All Prices F.O.B. Lima. Ohio. Please Allow for Shipping. Send for FREE Copy of NEW Catalog 79/80
Address Dept HR, Phone 419/217-6757

FAIR RADIO SALES

1016 E EURICA 3 Box 105 LIMA OHIO 45802

DEALERS WANTED TOWERS

by ALUMA

HIGHEST QUALITY
ALUMINUM & STEEL

40 Steel
Crank-Up
Model S94-40

* TELESCOPING (CRANK UP)
* GUED (STACK-UP)
* TILT-OVER MODELS

Easy to install. Low Prices. Crank-ups to 100 ft.

EXCELLENT FOR
HAM COMMUNICATIONS

ALUMA TOWER CO.
Box 21000RJR
VERO BEACH, FLA. 32960
PHONE (305) 567-3433
TELEX 80-3402

Over 36 types aluminum and steel towers made—specials designed and made—write for details

YOU'VE SEEN THE MAGAZINE ARTICLES

Here's what you can expect from the DX ENGINEERING
RF Speech Processor

* 6 db INCREASE IN AVERAGE POWER
* MAINTAINS VOICE QUALITY
* IMPROVES INTELLIGIBILITY
* NO CABLES OR BENCH SPACE REQUIRED
* EXCELLENT FOR PHONE PATCH
* NO ADDITIONAL ADJUSTMENTS—MINE GAIN ADJUSTS CLIPPING LEVEL
* UNIQUE PLUG-IN UNIT—NO MODIFICATIONS REQUIRED

This is RF Envelope Clipping—the feature being used in new transmitter designs for amateur and military use.

Models Now Available
Collins 32S, KWM-2 $ 98.50 ea.
Postpaid—Calif. Residents add 6% Tax

Watch for other models later!

DX Engineering
1050 East Walnut, Pasadena, Calif. 91106

More Details? CHECK—OFF Page 126
FIBERGLASS VAULTING POLES. Perfect Quad spreaders or VHF/UHF booms. SASE for info. KWSVE, Box 13239, Cedar Park, TX 78613. (512) 259-2164.

MUSEUM for radio historians and collectors now open. Free admission. Old time amateur (O2AN) and commercial station exhibits. 1925 store and telegraph displays, 15,000 items. Write for details. Antique Wireless Assn., Holcomb, N. Y. 14469.

USED TR-EX THD-122 (122-foot) crank-up tower; base insulated, plus guy ropes, 850 lbs. list $2700; sell $1100 each. F.O.B. Chicago, Madison Electronics Inc., 1508 McKinney, Houston, Texas 77002. Tel: (713) 622-0955. Antenna insulators, 4000 pound test. 22 inches long by 1½ inches wide, metal ends, clear or brown. $15 each.

MOBILE HF ANTENNAS. 3.5-20 MHz inclusive, 750 watts PEP, center loaded coil, tuned from base, eliminating coil changing or removing from mount. Less than 1.5 to 1 VSWR on all ham bands. $119.95 each - contact your local dealer or order from Amed, Inc., Route 1, Hanover, NJ 07930. (201) 423-4100. Master Charge and Visa cards accepted. Dealer inquiries invited.

"MOON BOUNCE ON 2M" Hughes HC 303, 5 kW Amp. 1966 edition, 5 Simpson meters. Five foot cabin unit with casters. All components for the power supply (6V @ 2A), Varies for filament and HV. Two spare finals, three tubes (all in EKX 3000 A). $555.50 retail on shipping cost. $1,000.00 or best offer "Principals only". Will consider trade for IC-211 and 1 kW Amp. or equivalent, W6DNL, Dave Cliffr. P.O. Box 105, Sol, Oviedo, CA 92032. Phone (909) 649-2161.

ATTENTION: UHF and Microwave Amateurs, at last a single source for your state-of-the-art Preamplifier and coaxial components. Send for free catalog. Cascade Microwave Inc., 11154 1st Ave, Bellevue, WA 98005.

AUDIO FREQUENCY GENERATOR. Heath EG-1272. Pushbutton plus variable frequency selection. Calibrated output at 1000 Hz, new price $129.00. MFJ random wire antenna tuner, $15.00. AMeco TX-62 & 6.2 meter AM and CW transmitter. 80 watts. $50. W8BKH, Box 246, Portage, MI 49001 or call (616) 375-7469 after 6 EDT.

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUSES! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Send 30¢ for ETOC-012, Box 782, Plattsburgh, N.Y. 12901. SURPLUS WANTED.

30 AMP POWER SUPPLY, continuous duty. 13.8 VDC (115 VAC input). Five year limited warranty. Hammer metal case, $119.95. Other models, $44.95. shipping COD accepted. SASE for info. JRS Electronics, (WABOGG), P.O. Box 1893-A, Cincinnati, Ohio 45201.

RTTY - Bandpass active filter 2532/2255 Hz. Kit - $11.95. WT-16.5. NS-1A PLL Demodulator WT-26.5 kit. $20.00 each. Board/kit, SASE for info. Natl Stenotype Electronics, Tavares, FL 32778.

WANTED: High quality preamplifiers. Call W881 RJ. Ameco Electronics, Tavares, FL 32778.

FERRITE BEADS: wispensation and application sheet $1.00. Assorted, $2.00. Mobile mini-trimmers, 3x0 pF, $1.00 each. Includes latest catalog. Stamp for catalog alone. CPO Surplus, Box 189, Branford, CT 06405.

RTTY AFSK Modulator PC board. See Feb. 7th. 59 Ham Radio. Drill 60.00. F. E. Hinkle, 12412 Mossy Barn, Austin, Texas 78750.

EZ deals are the best! Try me and see for yourself, Yaeju, Drake, KLM, Swan, Cushcraft, Deltron, VHF Eng., ICOM, CDE, Hustler, Wilson and more. Call, see or write W6E2, Bob Smith Electronics, 5603, Fort Dodge, IA 50501. (712) 576-3868.

WANTED: Motorola KXN 1024 and KMN 1052 channel elements. WABCOA, 4 Ajax Place, Berkeley, CA 94704.

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices. 22 West 2nd St., Baltimore, MD 21216.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature. Easines Engineering, 930 Lone Dr., Port Angeles, WA 98362.

1/2 HARDLINE - 35 feet. September special for in stock 1050 thru 1250 rolls. 500, with jacket. Solid copper conductor center. 500' to 1000' rolls, 45 filing. Freight collect. Connectors available. SASE. JRS Electronics, (WABOGG), P.O. Box 1893-A, Cincinnati, Ohio 45201.

BUY-SELL-TRADE. Send 1.00 for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned at competitive radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 391-5900.

WANTED: More Details? CHECK - OFF Page 126
PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $80.00, 6.5 amp hr $103.00. Charger included, shipping extra. P.O. Box 87, Somers, Wisc. 53172.

TEST EQUIPMENT CATALOG listing used Teletronix, HP and G&G equipment, 110 pages in all. 25% off our regularly high prices. 4835 W. Fullerton Pkwy, Chicago, Ill. 60641.

SATILLITE TELEVISION — movies, sports, etc. Build or buy your own Earth Station. Send $3.00 for Information. Satellite Television, Box 140, Oxford, N.Y. 13830.

FAMOUS BRAND NAMES — IN STOCK —

PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $80.00, 6.5 amp hr $103.00. Charger included, shipping extra. P.O. Box 87, Somers, Wisc. 53172.

TEST EQUIPMENT CATALOG listing used Teletronix, HP and G&G equipment, 110 pages in all. 25% off our regularly high prices. 4835 W. Fullerton Pkwy, Chicago, Ill. 60641.

SATILLITE TELEVISION — movies, sports, etc. Build or buy your own Earth Station. Send $3.00 for Information. Satellite Television, Box 140, Oxford, N.Y. 13830.

COMING EVENTS

PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $80.00, 6.5 amp hr $103.00. Charger included, shipping extra. P.O. Box 87, Somers, Wisc. 53172.

TEST EQUIPMENT CATALOG listing used Teletronix, HP and G&G equipment, 110 pages in all. 25% off our regularly high prices. 4835 W. Fullerton Pkwy, Chicago, Ill. 60641.

SATILLITE TELEVISION — movies, sports, etc. Build or buy your own Earth Station. Send $3.00 for Information. Satellite Television, Box 140, Oxford, N.Y. 13830.

PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $80.00, 6.5 amp hr $103.00. Charger included, shipping extra. P.O. Box 87, Somers, Wisc. 53172.

TEST EQUIPMENT CATALOG listing used Teletronix, HP and G&G equipment, 110 pages in all. 25% off our regularly high prices. 4835 W. Fullerton Pkwy, Chicago, Ill. 60641.

SATILLITE TELEVISION — movies, sports, etc. Build or buy your own Earth Station. Send $3.00 for Information. Satellite Television, Box 140, Oxford, N.Y. 13830.

PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $80.00, 6.5 amp hr $103.00. Charger included, shipping extra. P.O. Box 87, Somers, Wisc. 53172.

TEST EQUIPMENT CATALOG listing used Teletronix, HP and G&G equipment, 110 pages in all. 25% off our regularly high prices. 4835 W. Fullerton Pkwy, Chicago, Ill. 60641.

SATILLITE TELEVISION — movies, sports, etc. Build or buy your own Earth Station. Send $3.00 for Information. Satellite Television, Box 140, Oxford, N.Y. 13830.

BLOSSOMLAND: Fall Swap Shop, October 7, Berrien County Youth Fairgrounds, Berrien Springs, Michigan. Large convenient facilities and refreshments. Tables restricted to radio and electronic items. Advance ticket donation $1.50. Tables $2.00. Write Charles White, 1510 Heidelberg Union Ave., Benton Harbor, MI 49022. Makes check payable to Blossomland ARRC.

VIRGINIA: Fourth annual Tidewater Hamfest -- Computershow -- Flea Market will be held at the Norfolk, VA Cultural and Convention Center SCOPE October 20 and 21, 1979. 60,000 square feet of airconditioned exhibit and Flea Market tailgating space are available. Doors open at 9:00 AM. ARRL meetings, DX Traffic forums, plus a traffic contest are scheduled. FCC Exams are planned for amateur upgrading Saturday 9-12 AM. A special feature will be a dinner Cruise and banquet on the Spirit of Norfolk Crucible Saturday night. Advance registrations $2.50 (SASE), $3.50 at the door. Flea Market tailgating space $3/day. Cruise and banquet $15 per person, $30 per couple. Tickets and information -- TRC P.O. Box 7101, Portsmouth, VA 23707.

JAMBOREE ON THE AIR: Scouts, former Scouts and interested hams, October 20-21, 1979 at the Hamburg Fairgrounds. Technical meetings, displays, FCC examinations, flea markets, contests, CD activities and more. Fun for the whole family. Contact Jim Gluczak, 1040 Cayuga Drive, Niagara Falls, N.Y.; Carl Leinster, 138 Louis Street, Cheesewaiga, N.Y., or Ron Chmilen, 278 Dan-Troy, Amherst, N.Y., for more information.

NORTH CAROLINA QSO PARTY: 19002 December, 1979, through 0100 December 3, 1979. Suggested frequencies -- VHF - 10 kHz are: CW: 3520, 7090, 14000, 21000, 28000, Novice: 3720, 7210, 11210, 21220; SSB: 3700, 7210, 19220, 21290, 28500. Frequency selection is for those interested in contacting an RS(T) and state, province or country. North Carolina stations send RS(T) and country. More information from Amarc Arc, Inc., 2622 Westchester Drive, Burlington, N.C. 27212.

DELTA QSO PARTY: sponsored by the ARRL DELTA DIVISION, 18002, September 29th to 2400Z September 30th. Delta QSO Party is open to all Amateurs. Frequency selection is for those interested in contacting an RS(T) and state, province or country. North Carolina stations send RS(T) and country. More information from Amarc Arc, Inc., 2622 Westchester Drive, Burlington, N.C. 27212.

COLLEGE RADIO SCRAMMAGE: open to all Radio Amateurs, 19002, September 30th, through 0100 October 1st. Entry classes will be open to college students, others in your last attended, and the last two digits of the year you graduated, will graduate, or last attended. Students will divide into classes. More information at the ARRL. Work stations once per band. Suggested frequencies: 1815, 3590, 7230, 21390, 28500 kHz. For more information write Penn State A.R.C., KCSF, 203 Engineering Unit E, University Park, PA 16802.

ARROWHEAD RADIO AMATEURS QSO PARTY: open to all amateurs. Amateurs within 50 miles of Duluth, Minnesota are considered. Head amateurs and anyone not working can work anyone. Amateurs outside this area may work others. Amateurs with foreign contacts. Write Call ARC ARCS, 425 N. Post Rd., LeRoy 250 Tower. Thousands of dollars in door prizes. For more information, write to ARRL. A new frequency for each day. Saturday evening banquet. Tickets: $4.00 advance, $5.00 at door. Parking. Talk-In on 146.70, 146.40, 223.94/99. Write: Conde Nursing Radio Club, Box 994, Cedar Rapids, IA 52406.

OHIO: Fourth Annual Cleveland Hamfest, Sunday, September 23, Cleveland Public Library, Gates Circle. For more information, contact: W8CDK, 1501 McKee Road, Cleveland, OH 44107.

MISSOURI: Fall Hamfest, October 6, 1979 at the Columbia Convention Center, Columbia. Large variety of radio-related items. For more information, contact: W4EJ, 612 N. 10th Street, Columbia, MO 65201.

COLORADO: Fall Convention, October 6-8, 1979 at the Colorado Convention Center, Denver. For more information, contact: W9AV, 2444 W. Main St., Denver, CO 80205.

NEW MEXICO: Albuquerque Hamfest, October 7, 1979 at the Albuquerque Convention Center, Albuquerque. Advance registration $2.50 (SASE), $3.50 at the door. Flea Market Tailgating space $3/day. Cruise and banquet $15 per person, $30 per couple. Tickets and information -- TRC P.O. Box 7101, Portsmouth, VA 23707.

TORRES DEL MAR: Fall Hamfest, October 7, 1979 at the Torre del Mar Convention Center, Torre del Mar, Spain. 60,000 square feet of airconditioned exhibit and Flea Market tailgating space are available. Doors open at 9:00 AM. ARRL meetings, DX Traffic forums, plus a traffic contest are scheduled. FCC Exams are planned for amateur upgrading Saturday 9-12 AM. A special feature will be a dinner Cruise and banquet on the Spirit of Norfolk Crucible Saturday night. Advance registrations $2.50 (SASE), $3.50 at the door. Flea Market tailgating space $3/day. Cruise and banquet $15 per person, $30 per couple. Tickets and information -- TRC P.O. Box 7101, Portsmouth, VA 23707.

JAMBOREE ON THE AIR: Scouts, former Scouts and interested hams, October 20-21, 1979 at the Hamburg Fairgrounds. Technical meetings, displays, FCC examinations, flea markets, contests, CD activities and more. Fun for the whole family. Contact Jim Gluczak, 1040 Cayuga Drive, Niagara Falls, N.Y.; Carl Leinster, 138 Louis Street, Cheesewaiga, N.Y., or Ron Chmilen, 278 Dan-Troy, Amherst, N.Y., for more information.

NORTH CAROLINA QSO PARTY: 19002 December, 1979, through 0100 December 3, 1979. Suggested frequencies -- VHF - 10 kHz are: CW: 3520, 7090, 14000, 21000, 28000, Novice: 3720, 7210, 11210, 21220; SSB: 3700, 7210, 19220, 21290, 28500. Frequency selection is for those interested in contacting an RS(T) and state, province or country. North Carolina stations send RS(T) and country. More information from Amarc Arc, Inc., 2622 Westchester Drive, Burlington, N.C. 27212.

DELTA QSO PARTY: sponsored by the ARRL DELTA DIVISION, 18002, September 29th to 2400Z September 30th. Delta QSO Party is open to all Amateurs. Frequency selection is for those interested in contacting an RS(T) and state, province or country. North Carolina stations send RS(T) and country. More information from Amarc Arc, Inc., 2622 Westchester Drive, Burlington, N.C. 27212.

COLLEGE RADIO SCRAMMAGE: open to all Radio Amateurs, 19002, September 30th, through 0100 October 1st. Entry classes will be open to college students, others in your last attended, and the last two digits of the year you graduated, will graduate, or last attended. Students will divide into classes. More information at the ARRL. Work stations once per band. Suggested frequencies: 1815, 3590, 7230, 21390, 28500 kHz. For more information write Penn State A.R.C., KCSF, 203 Engineering Unit E, University Park, PA 16802.

ARROWHEAD RADIO AMATEURS QSO PARTY: open to all amateurs. Amateurs within 50 miles of Duluth, Minnesota are considered. Head amateurs and anyone not working can work anyone. Amateurs outside this area may work others. Amateurs with foreign contacts. Write Call ARC ARCS, 425 N. Post Rd., LeRoy 250 Tower. Thousands of dollars in door prizes. For more information, write: ARRL. A new frequency for each day. Saturday evening banquet. Tickets: $4.00 advance, $5.00 at door. Parking. Talk-In on 146.70, 146.40, 223.94/99. Write: Conde Nursing Radio Club, Box 994, Cedar Rapids, IA 52406.

OHIO: Fourth Annual Cleveland Hamfest, Sunday, September 23, Cleveland Public Library, Gates Circle. For more information, contact: W8CDK, 1501 McKee Road, Cleveland, OH 44107.
NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $89.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95. Now available in KIT FORM — GLB Model 200 MINI-SIZER. Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95 Send for FREE 16 page catalog.

We welcome Mastercharge or VISA

GLB ELECTRONICS

1952 Clinton St., Buffalo, N.Y. 14206

NEW ELECTRONIC PARTS

Brand name, first line components. Stocked in depth. 24 hour delivery. Low prices and money back guarantee on all products we carry.

STAMP BRINGS CATALOG

<table>
<thead>
<tr>
<th>W</th>
<th>D</th>
<th>H</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14"</td>
<td>8.3"</td>
<td>3"</td>
<td>$16.50</td>
</tr>
<tr>
<td>17"</td>
<td>8.3"</td>
<td>3"</td>
<td>$19.95</td>
</tr>
<tr>
<td>20"</td>
<td>8.3"</td>
<td>3"</td>
<td>$23.95</td>
</tr>
<tr>
<td>14"</td>
<td>11.3"</td>
<td>3"</td>
<td>$18.75</td>
</tr>
<tr>
<td>17"</td>
<td>11.3"</td>
<td>3"</td>
<td>$20.50</td>
</tr>
<tr>
<td>20"</td>
<td>11.3"</td>
<td>3"</td>
<td>$22.65</td>
</tr>
</tbody>
</table>

Blue Base, specify white or black top.

RTTY

<table>
<thead>
<tr>
<th>UTR4 SPEED CVTR BOARD KIT</th>
<th>$109.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOARD ALONE</td>
<td>$16.95</td>
</tr>
<tr>
<td>AUTO CW ID KIT</td>
<td>$27.90</td>
</tr>
</tbody>
</table>

Daytapro Electronics, Inc.

3029 N. WILSHIRE LN., ARLINGTON HTS., ILL. 60004

PHONE 312-870-0555

AMATEUR TELEVISION

‘C’ MOUNT LENS — 25 mm f1.8 focusing mount, no iris.

New $12.95 each or 10/$100.00 — Used $10.00 each.

USED, TESTED 7735A VIDICONS only $9.95 each or 10/$85.00.

WOW! BACK COATED (used) ½ inch 1 hour video tape — $7.95 each or 10/$75.00 — Standard 7” Sony reels.

Free flyers — New & Used Video Equipment

THE DENSON ELECTRONICS CORP.

POST OFFICE BOX 85

VERNON, CONN. 06066

(203) 875-5198

ASTRON POWER SUPPLIES

- HEAVY DUTY
- HIGH QUALITY
- RUGGED
- RELIABLE

SPECIAL FEATURES

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD BACK CURRENT LIMITING protects Power Supply from excessive current & continuous shorted output.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINKS + CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY MADE IN U.S.A
- VOLT & AMP METER on MODELS RS-20M & RS-35M

PERFORMANCE SPECIFICATIONS

POWER SUPPLY

- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ±0.5 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 0.05 volts peak to peak (full load & low line)
- REGULATION: ±0.5 volts no load to full load & low line to high line

SPECIAL FEATURES

- Intermittent Communication Service available
- 34 MHz Continuous
- 100 MHz 1 hour video tape
- USES, TESTED
- ‘C’ MOUNT LENS
- FOCUSING MOUNT, NO IRIS.
- VOLTAGE REGULATION
- LOW RIPPLE
- HEAVY DUTY HEAT SINK + CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY MADE IN U.S.A
- VOLT & AMP METER on MODELS RS-20M & RS-35M

PERFORMANCE SPECIFICATIONS

POWER SUPPLY

- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ±0.5 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 0.05 volts peak to peak (full load & low line)
- REGULATION: ±0.5 volts no load to full load & low line to high line

Other popular POWER SUPPLIES also available: (Same features and specifications as above)

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Current (amps)</th>
<th>ICS* (amps)</th>
<th>Size (in.)</th>
<th>Shipping Wt. (lbs.)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
<td>$156.95</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
<td>$185.95</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>29</td>
<td>$94.95</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3½ x 6½ x 9</td>
<td>8</td>
<td>$49.95</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3½ x 6½ x 9</td>
<td>5</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

ICS — Intermittent Communication Service (50% Duty Cycle)

If not available at your local dealer, please contact us directly.
The FM-50 is a versatile and precision frequency counter which will measure frequencies to 600 kHz and up to 600 MHz with the CT-60 option. Large Scale Integration (LSI) technology and solid state display technology have enabled the CT-50 to match performance found in units selling for over three times as much. Low power consumption (typically 300-400 mW) makes the FM-50 ideal for portable battery operation.

Features of the CT-50 include:
- Large, high performance, pushbutton operation.
- Automatic decimal point, fully socketed IC chips and input protection to 50 V to protect against accidental burnout or overload.
- The front panel assembly is clear; step by step instructions guide you to a finished unit you can rely on.

Order your today!

CT-50
- 60 MHz counter kit...
- 50 MHz counter kit and tested...
- 600 MHz counter option...

FM MINI MIKE
A super high performance FM wireless mike kit Transmits a stable signal up to 300 yards with exceptional audio quality by means of its built-in microphone. The FM-50 kit includes case mike, on-off switch, antenna, battery and super instructions. This is the finest available.

FREQUENCY COUNTER KIT
Outstanding Performance
Incredible Price
$89.95

SPECIFICATIONS
- Frequency range: 0.6 to 600 MHz, 600 MHz with CT-60 option
- Resolution: 0.5 Hz
- Set one second.
- Full display:
 - 8 digits: 0.4 high LED display readout in mHz
 - 4 digits: 12 MHz
- Stability: 0.02% over 10 to 40 °C temperature range
- Input: MKP, 20 Pd, 50 ohm
- Overload: 50VAC maximum for mHz
- DC power: 9VDC, 150 mA to 600 VDC
- Power supply: 115 VAC or 12 VDC, 100 mA

VIDEO TERMINAL
A completely self-contained, stand alone video terminal card. Requires only an ASCII keyboard and TV set to become a complete terminal unit. Two units available, common features are single 5V supply, TTL control sinc and baud rates (to 9600), complete computer keyboard and control of cursor. Parity error control and display. Serial and parallel ASCII plus parallel keyboard interface. Arrives complete and includes instructions and documentation.

CALIBER ALARM CLOCK
The clock's got it all: 6, 5" LEDS, 12-hour snooze, 24-hour alarm, year calendar, battery and super instructions. This is the finest available.

PRESCALER
Extends the range of your counter to 600 MHz. Works with any counter. Includes 2 prescaler tri-amp to stabilize the signal. 60 MHz input, 10 MHz output.

FM WIRELESS MIKE KIT
Transmits up to 300 yards with exceptional audio quality by means of its built-in microphone. The FM-60 kit includes case mike, on-off switch, antenna, battery and super instructions. This is the finest available.

LED Blinky Kit
A great way to add much needed colors to your electronics projects. A nice way to add some color to your electronic projects. A nice way to add some color to your electronic projects.

Whisper Light Kit
An interesting kit that gives a clear indication of the light intensity. The kit includes various diode types, diode characteristics, and instructions for building the kit.

OP-AMP SPECIAL
741 min. dip $12.00
BFS-703 mini dip $10.00

VIDEO MODULATOR KIT
- Converts any TV video monitor to television mode
- Includes high frequency output capability
- Includes all necessary parts

SUPER MODULATED KIT
A super sensitive amplitude modulator with built-in 750 kHz SSB/AM synthesizer and 3000 kHz output. This kit includes all necessary parts.

POWER SUPPLY KIT
- Converts any TV video monitor to television mode
- Includes high frequency output capability
- Includes all necessary parts

SIREN KIT
Produces upward and downward sweeps on 5V peak audio output and runs on 12VDC, 300 mA speaker.

SPECIAL ICS
- Transistors
- ICs
- Clock ICs
- Display ICs
- Power Supply ICs
- Special circuits

PHONES
- 500-5000 Hz
- 0.1% distortion
- 8 Ohm
- 100 mW max

LEDS
- Red
- Green
- Blue
- Yellow
- White

PIERCE RESISTORS
- 100ohm
- 1kohm
- 10kohm
- 100kohm
- 1M ohm

TERMS
Satisfaction guaranteed or money refunded. CCG and all 50 Minimum order $50.00. Orders under $50.00. 5 and 5% for perage insurance handling. Overseas add 15% for residents add 7.5%

PHONE ORDERS
(716) 271-6847

September 1979

Box 4072, Rochester, N.Y. 14610

More Details? CHECK – Off Page 126
SHORT-WAVE SALE!

PANASONIC "COMMAND" SERIES

RF-2200
RF-2200 8 BAND AM/FM
SW leaps from 38 to 28 MHz
- Double super heterodyne
- Features calibrated tuning to 10 KHz
- Double digital clock marker at 500 KHz and 125 KHz
- RF gain control for AM/SW
- BFO switch for SSB & SW
- Plus many other features
- ex: ales for AC...
- Big radio features at low price.
- Plus $2.50 Shipping

RF 2900
RF 2900 DIGITAL AM/FM
SW from 3.2 to 30 MHz
- 5 digit LED display reads all bands
- Double superhet
- FM AFC & wide
- Narrow bandwidth control
- 600 MHz tuning
- Built in AM ant. Tele-
- Scopically with a dip for FM/SW
- BFO pitch control for SSB and
- More. And much
- $2.50 Shipping

RF-4900
FULL SW COVERAGE
FROM 1.6 to 31 MHz
- All DIGITAL

RF-900 DIGITAL AM/FM
SW from 1.6 to 31 MHz
- Full digital readout on all bands
- 5 digit fluorescent readout
- FM AFC & wide
- Narrow bandwidth control
- 600 MHz tuning
- Built in AM ant.
- Tele-
- Scopically
- All digital
- BFO pitch control for SSB and
- More. And much
- More.
- $25 Shipping

IMPROVE YOUR RECEPTION WITH AN AMECO ALL-BAND PREAMP!
- 600 MHz
- 20 + dB Gain
- LOW CQ!

MODEL PLT-2
Improves weak signals as well as image and
- spurious rejection of most receivers.
- Direct switching to rec or preamp.
- Includes 117 VAC wired
- and tested.

SWL ANTENNAS
MOSLEY SWL-7 DIPOLE
- For 11.13.16.19.25.
- & 49 meters.
- 6 specially designed
- traps all housed in
- single weatherproof
- box. Designed for
- ground mount &
- swaged for max-
- um resistance to
- wind vibration.
- Few verticals can match
- it for SWL fun only.

SWL SWV-7 VERTICAL
- For 11.13.16.19.25.
- & 49 meters.
- An inexpensive horizon-
- tal dipole with 8 pre-
- tuned weatherproof
- trap assemblies that
- are the key to the
- SWL's amazing
- broad band coverage.
- Complete kit
- wins.

$39.95

$69.95

SPECTRONICS,
INC. 1009 GARFIELD ST.
OAK PARK, ILL.-60304
PHONE: [312] 848-6677

STEP UP TO TELREX
WITH A
TELREX "BALUN" FED-"INVERTED-VEE" KIT
THE IDEAL HI-PERFORMANCE
INEXPENSIVE AND PRACTICAL TO INSTALL LOW-FREQUENCY
MONO OR MULTIPLE BAND, 52 OHM ANTENNA SYSTEM

Telrex "Monarch" (Trapped) I.V. Kit
Duo-Band/4 KWP I.V. Kit $66.50
Post Paid Continental U.S.

Optimum, full-size doublet performance, independent of ground conditions! "Balanced-
Pattern", low radiation angle, high signal to noise, and signal to performance ratio! Minimal support costs, (existing tower, house, tree). A technician can resonate a Telrex "Inverted-Vee" to frequency within the hour! Minimal S/W/R is possible if
installed and resonated to frequency as directed! Pattern primarily low-angle, Omnidirectional, approx. 6 DB null at ends! Coslly, lossy, antenna tuners not required!
Complete simplified installation and resonating to frequency instructions supplied with each kit.

For technical data and prices on complete
Telrex line, write for Catalog PL 7 (HRM)

RF Speech Processors for Drake
TR-7, TR-4s, T4Xs

New! RF Clipper

Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

Money back if not satisfied! Add 5% per order shipping.
Shipped express air.
Dealer Inquiries Welcome

Apollo Products-Little Giant Trans Systems Tuner Kit – $122.50
Wired & Tested – $144.50

Designed and engineered after "Apollo" — "Little Giant" 2500X2, for an "engineered
performance" Trans Systems Tuner and Adaptations of the Lew McCoy Transmatch, with
power handling at the KW plus level!

Kit includes:
1. 200 pfd shunt variable with isolantite insulation rated 3,000 volts
2. 200 pfd dual section parallel condenser insulated with
3. 2 finger grip knurled knobs 2" long
4. White indented
5. 1 pancake shafting preventers
6. 1/4 to 3/4
7. 12.0-20 coax chasis connectors
Tunes 52 ohms or 52.500-600* or
random wires

1. Heavy insulation for 10.15-20 100 watts
2. 100 watts
3. 200 watts
4. 100 watt
5. Open wired 10 gauge stranded wire for 1/4 to 3/4
6. Open coated
7. Open coated
8. Open coated
9. Open coated
10. Open coated
11. Open coated
12. Open coated
13. Open coated
14. Open coated
15. Open coated
16. Open coated
17. Open coated
18. Open coated
19. Open coated
20. Open coated

Apollo Products, Box 245, Vaughnsville, Ohio 45893 419-646-3495
Subsidiary "Little Giant Antenna Labs"
PARTIAL USED EQUIPMENT LIST (Guaranteed 30 Days – 7 Days Refund Policy)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLINS RADIO</td>
<td>7S3 Receiver With CW FILTER</td>
<td>$479.00</td>
</tr>
<tr>
<td></td>
<td>7S51 Receiver</td>
<td>$299.00</td>
</tr>
<tr>
<td></td>
<td>7S33B Receiver</td>
<td>$685.00</td>
</tr>
<tr>
<td></td>
<td>7S52 With S16F2 (Round Emblem)</td>
<td>$1299.00</td>
</tr>
<tr>
<td></td>
<td>30L-1 Amplifier</td>
<td>$495.00</td>
</tr>
<tr>
<td></td>
<td>32S1 Transmitter</td>
<td>$349.00</td>
</tr>
<tr>
<td>DRAKE</td>
<td>R-4 Receiver & T4 Receiver</td>
<td>$499.00</td>
</tr>
<tr>
<td></td>
<td>R-4C VFO</td>
<td>$89.00</td>
</tr>
<tr>
<td></td>
<td>R-4-B Receiver</td>
<td>$349.00</td>
</tr>
<tr>
<td></td>
<td>T4X With Drake Desk Mic</td>
<td>$359.00</td>
</tr>
<tr>
<td></td>
<td>2NT Transmitter</td>
<td>$99.00</td>
</tr>
<tr>
<td></td>
<td>2-C Receiver W/2CQ Multiplier</td>
<td>$219.00</td>
</tr>
<tr>
<td></td>
<td>ML-1 2M FM Transceiver</td>
<td>$128.95</td>
</tr>
<tr>
<td>HEATHKIT</td>
<td>Digital Multimeter SM-1210</td>
<td>$80.00</td>
</tr>
<tr>
<td></td>
<td>SB-650 Digital Display</td>
<td>$139.00</td>
</tr>
<tr>
<td></td>
<td>HW-16 XCVR W/VFO</td>
<td>$159.00</td>
</tr>
<tr>
<td></td>
<td>SB104 W. H/P 1146 P.S.</td>
<td>$599.00</td>
</tr>
<tr>
<td></td>
<td>SB102 W. H/P 23B & SP 600</td>
<td>$443.00</td>
</tr>
<tr>
<td></td>
<td>Freq Counter IB-1103</td>
<td>$100.00</td>
</tr>
<tr>
<td></td>
<td>HR-10B Receiver</td>
<td>$69.00</td>
</tr>
<tr>
<td></td>
<td>SB-630 Console</td>
<td>$99.00</td>
</tr>
<tr>
<td></td>
<td>SB-303 Receiver W/CW Filter</td>
<td>$259.00</td>
</tr>
<tr>
<td></td>
<td>SB-300 Receiver W/SP600 Speaker</td>
<td>$219.00</td>
</tr>
<tr>
<td></td>
<td>DX-60B Transmitter</td>
<td>$69.00</td>
</tr>
<tr>
<td>KENWOOD</td>
<td>R-599 Receiver</td>
<td>$299.00</td>
</tr>
<tr>
<td></td>
<td>TR-7200 FM XCVR</td>
<td>$189.00</td>
</tr>
<tr>
<td>SBE</td>
<td>SB-36 Transceiver</td>
<td>$449.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>22-S FM XCVR</td>
<td>$209.00</td>
</tr>
<tr>
<td>TEMPO</td>
<td>VHF One Plus</td>
<td>$299.00</td>
</tr>
<tr>
<td></td>
<td>Tempo 1 W/AC-1</td>
<td>$399.00</td>
</tr>
<tr>
<td></td>
<td>Henry 2K-4 Amplifier</td>
<td>$899.00</td>
</tr>
<tr>
<td>ATLAS</td>
<td>210X W/NB & DMK & Mobile Mount</td>
<td>$679.00</td>
</tr>
<tr>
<td>HAMMARLUND</td>
<td>HQ-170A RX</td>
<td>$189.00</td>
</tr>
<tr>
<td>NATIONAL</td>
<td>NC-300 RX</td>
<td>$129.00</td>
</tr>
<tr>
<td>HALLICRAFTERS</td>
<td>SX-111 Receiver</td>
<td>$142.95</td>
</tr>
<tr>
<td></td>
<td>SX-115 Receiver</td>
<td>$299.00</td>
</tr>
<tr>
<td>CLEGG</td>
<td>FM-27B FM XCVR 2M</td>
<td>$179.00</td>
</tr>
</tbody>
</table>

AUTHORIZED DEALER...

FOR OVER 50 MAJOR LINES.

NEW AND USED EQUIPMENT “Get on our used equipment mailing list.”

TRADES WELCOME “The best allowances anywhere” “We buy good used SSB gear”

OUR EVERYDAY LOW PRICES “remain the same for cash or trade-ins!”

SAME DAY U.P.S. SHIPPING “Just a phone call away”

COMPLETE RADIO SERVICE SHOP “Mail Order Repair Service”

• Fast Efficient Service
• Most Repairs Done and Shipped Within 7 Days
• We Repair All Brands
• Amateur Extra/First Class Licenses
• All Work Guaranteed
• Include Manuals and Power Supply
• Send Us Your Defective Equipment Prepaid Shipping

OUREN REPUTATION SPEAKS FOR ITSELF... “YOU SHIP IT – WE FIX IT”

We Sell and Service the following New Equipment:

- Abba
- Alliance Callbook
- Amerco CDE
- ARRL CES
- Atlas Covercraft
- Becker Cushcraft
- Bird Dentron
- Drake DSI
- ETO Alpha
- KLM
- Lantz
- Telecraft
- Ten Tec
- Wico

- J W. Miller
- KDK
- Match
- Matchcraft
- Samuel
- Miracle
- Hampton
- Share
- Trace
- VHF Engineering
- SST Electronics
- Wilson
- Wilson-Commercial
- Vibraplex
- YAESU

- Wilson

“We want your used gear! We Buy or Trade!”

THOMAS COMMUNICATIONS

95 Kitts Lane, Newington, Conn. 06111

“Near ARRL Headquarters”

Connecticut Residents Call: 203-667-0811

OPEN MON. - FRI. 10 A.M. - 5 P.M. • SAT. 10 - 4 P.M.

EASY DIRECTIONS: Rt. 15 South – 2 blocks past McDonald’s (Berlin Turnpike)

Sub-Dealer Inquiries Invited (Send Letterhead for Complete Package).

More Details? CHECK — OFF Page 126

September 1979

Page 115
CUSTOM-MADE 8-POLE CRYSTAL FILTERS
GET THE BEST FOR LESS. IMPROVE YOUR RIG — OLD OR NEW
NO SET IS BETTER THAN ITS FILTER!

CW FILTERS — $55 EA.

- 250 and 500 Hz for KENWOOD: "55505/58505/58585/58585/58580/58580/58580/58580/58580/58580"
- 250 Hz for COLLINS: "275-275 - $150 EACH"

*Stable Switching boards available.

SSB FILTERS — $55 EA.

- 1.6 and 2.4 kHz for YAESU: "FT-101/1/FT-101/1/FT-101/1/FT-101"
- 1.6 kHz only for YAESU: "FT-101/1/FT-101/1/FT-101/1/FT-101"
- 1.8 kHz only for KENWOOD: "FT-101/1/FT-101/1/FT-101/1/FT-101"
- 1.6 and 2.1 kHz for HEATH: "Models except 8B-104"

AM FILTERS — $55 EA.

- 5.6 kHz for YAESU "FT-101 (all but 101) and FT-201"

SPECIAL for DRAKE R-4C

GIF-1 Broad First IF Filter - for superior to existing unit for CW/SSB - choice of 6 or 8 kHz - $55
GIF-2 Narrow First IF Filter - for superior CW Assembled on PCB with switching relays etc. to select broad or narrow filter choice of 6000 or 8000 Hz - $90
YFBRIC125 Extremely sharp (17.5 kHz) CW Second IF Filter for DX and Contesters plug on back at $90
GIF Product Detector Kit converts existing detector to superior double-balanced type

Wired PCB, easy installation - $30

Reduce QRM with FOX-TANGO’s superb quality crystal filters. Custom-made for each rig, installation is a breeze — just drop the filter into existing holes. When ordering, state make of rig, model, filter type, and bandwidth desired. Prices include air mail postage paid to U.S., Canada, and Mexico. For overseas insured airmail add $5 for crystal filters, $2 for diode switching boards. Satisfaction guaranteed or money back. Dealer inquiries invited.

FOX-TANGO CORP.
Box 15944B, West Palm Beach, FL 33406

1979 MIDWEST DIVISION CONVENTION and CVARC HAMFEST

October 19, 20, 21
Cedar Rapids, Iowa

Guest Banquet Speaker
Senator Barry Goldwater
K7UGA

FORUMS — EXHIBITS — FLEA MARKET — TOURS — FCC EXAMS

TALK-IN 146.16/76, 146.52, 223.34/94 MHZ

For Information and Registration Material, Call 319-364-0855 or Write:

Cedar Valley Amateur Radio Club • Box 994 • Cedar Rapids, Iowa 52406

THE BIG SIGNAL

UNADILLA W2BU Baluns

"Still Only" $14.95

- The Original Lightning Arrest
- 650F Strength
- Stainless Hardware
- Sealed
- Guaranteed

DEALERS WANTED — OVER 300 WORLD-WIDE

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney • HOUSTON, TEXAS 77002
713/658-0268
MASTERCHARGE • VISA

16-POLE R-4C SSB!

Improve the early stage selectivity of your Drake R-4C while adding 8 additional peals (total 16) with an internally-mounted, switchable set of first IF crystal filters. Reduce QRM, leakage, overload, ideal for DX and contest work. Overall shape factor better than 1.4. Maximum skirt selectivity with maximum intelligibility. Total bandwidth from CFI-1K-2B: 2100 Hz at 6dB, 2600 Hz at 60 dB. Modest variable bandwidth. Other bandwidths available. Filter set can be mounted in receiver and relay switched with our kits which start at $33.00. 3 and 4 filter switching options can include our CF-600/6 and/or existing high speed IF filter, all integrated mounted, controlled from rear or front panel. USB and LSB CF-2/1K/B pair at $120.00 per set. Money back if not satisfied. Add $3 shipping per order: $6 overseas. Dealer inquiries welcome.

Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

More Details? CHECK — Off Page 126
DSI Super Meter
Transistor Tester — VOM
Diode Protected • Fused • Gold Plated Selector Switch

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement/ Ranges</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV</td>
<td>0 - .1V - .5V - 2.5V - 10V - 50V - 250V - 1000V</td>
<td>±3% fs</td>
</tr>
<tr>
<td>ACV</td>
<td>0 - 10V - 50V - 250V - 1000V - 30Hz to 30kHz</td>
<td>±4% fs</td>
</tr>
<tr>
<td>DCA</td>
<td>0 - 50μA - 2.5ma - 25ma - .25A</td>
<td>±3% fs</td>
</tr>
<tr>
<td>Ω</td>
<td>.2 to 20mΩ Range x1 x10 x 1k x 10k</td>
<td>±3% arc</td>
</tr>
<tr>
<td>dB</td>
<td>+10db - +22db for 10VAC</td>
<td>±4% fs</td>
</tr>
<tr>
<td>ICE0</td>
<td>0 - 150μA x 1k 0 - 15ma x10 0 - 150m x 1</td>
<td>±3% arc</td>
</tr>
<tr>
<td>HFE</td>
<td>0 - 1000 @ x 10</td>
<td>±3% arc</td>
</tr>
</tbody>
</table>

- DC VOLTAGE
- DC CURRENT
- AC VOLTAGE
- Ω RESISTANCE
- AF OUTPUT — DB
- 20kΩ PER VOLT
- HFE DC AMP FACTOR
- ICEO LEAKAGE

MODEL

MODEL YF-370

COMPARATIVE VALUE 49.95

YF-370 $29.95
Shipping, Handling and Ins. .. $3.00

Every YF-370 is factory assembled, tested, and includes diode protected meter movement with a fused input and an extra fuse. The switch assembly has double wiping gold plated contacts to assure years of trouble-free service. At this low price buy two...one for the car and one for the shop.

CALL TODAY TOLL FREE (800—854-2048) Calif. Res. Call (800—542-6253) To Order Or Receive More Information On DSI’s Full Product Line Of Frequency Counters Ranging From 10Hz To 1.3GHz.

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds. Orders outside of USA & Canada, please add $5.00 additional to cover air shipment. California residents add 6% Sales Tax.

DSI INSTRUMENTS, INC.
7924 Ronson Road, Dept. G, San Diego, CA 92111
The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?
OF A NEW AGE.

TS-1 Sub-Audible Encoder-Decoder • Microminiature in size, 1.25" x 2.0" x .65" • Encodes and decodes simultaneously • $59.95 complete with K-1 element.

TS-1JR Sub-Audible Encoder-Decoder • Microminiature version of the TS-1 measuring just 1.0" x 1.25" x .65", for hand-held units • $79.95 complete with K-1 element.

ME-3 Sub-Audible Encoder • Microminiature in size, measures 1.5" x 1.1" x .8" • Instant start-up • $29.95 complete with K-1 element.

TE-8 Eight-Tone Sub-Audible Encoder • Measures 2.6" x 2.0" x .7" • Frequency selection made by either a pull to ground or to supply • $69.95 with 8 K-1 elements.

PE-2 Two-Tone Sequential Encoder for paging • Two call unit • Measures 1.25" x 2.0" x .65" • $49.95 with 2 K-1 elements.

SD-1 Two-Tone Sequential Decoder • Frequency range is 268.5 - 2109.4 Hz • Measures 1.2" x 1.67" x .65" • Momentary output for horn relay, latched output for call light and receiver muting built-in • $59.95 with 2 K-2 elements.

TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is 67.0 - 263.0 Hz sub-audible or 1650 - 4200 Hz burst-tone • Measures 4.25" x 2.5" x 1.5" • $79.95 with 12 K-1 elements.

ST-1 Burst-Tone Encoder • Measures .95" x .5" x .5" plus K-1 measurements • Frequency range is 1650 - 4200 Hz • $29.95 with K-1 element.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 998-3021
Ham Radio's guide to help you find your loc

Arizona

HAM SHACK
4506-A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS.
Serving all amateurs from beginner to expert. Classes, sales & service.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85013
602-249-3739
Your Complete Amateur Radio Store.

POWER COMMUNICATIONS
6012 N. 27 AVE.
PHOENIX, ARIZONA 85017
602-242-6030
Arizona's #1 "Ham" Store.
Kenwood, Yaesu, Drake, Icom and more.

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232
CARSON, CA 90745
800-421-2258
213-834-5900
Not The Biggest, But The Best - The place for great dependable names in Ham Radio.

JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-461-HAMS
West Coast's only full service Amateur Radio Store.

QUEM ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-996-5900
Serving the world's Radio Amateurs since 1933.

SHAWER RADIO
3550 LOCCHINAR AV.
SANTA CLARA, CA 95051
408-247-4220
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec.

Connecticut

THOMAS COMMUNICATIONS
95 KITS LANE
NEWINGTON, CT 06111
800-243-7765
203-667-0811
Call us toll free - See our full page ad in this issue.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-326-7728
Delaware's largest stock of amateur radio equipment & accessories.

Florida

AGL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33751
813-461-HAMS
West Coast's only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1950 US HIGHWAY 19 SO.
CLEARWATER, FL 33751
813-535-1416

SUNRISE AMATEUR RADIO
1351 STATE RD.
FT. LAUDERDALE, FL 33315
(305) 761-7676
"Best Prices in Country. Try us, we'll prove it."

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERIKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Illinois - 800-972-5841
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

KRYDER ELECTRONICS
GEORGETOWN NORTH SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
Your Complete Amateur Radio Store.

Iowa

BOB SMITH ELECTRONICS
RFD #3, HIGHWAY 169 & 7
FORT DODGE, IA 50501
515-576-3886
800-247-2476/1793
Iowa: 800-362-2371
For an EZ deal.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5901
America's No. 1 Real Amateur Radio Store. Trade - Sell - Buy.

REVCOM ELECTRONICS
6247 N. HYDRAULIC
WICHITA, KS 67219
316-744-1083
New - Used HF, VHF, & Microwave Gear. Manufacturing & Sales.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England you can rely on.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.

120 september 1979
Amateur Radio Dealer

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

BARGAIN BROTHERS ELECTRONICS
216 SCOTCH ROAD
GLEN ROC SHOPPING CTR.
WEST TRENTON, NJ 08628
609-883-2050
A million parts - lowest prices anywhere. Call us!

METUCHEN RADIO
216 MAIN STREET
METUCHEN, NJ 08840
201-949-8350
New and Used Ham Equipment
WA2AET "T" Bruno

RADIOS UNLIMITED
P. O. BOX 347
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's Fastest Growing Amateur Radio Center.

WITTIE ELECTRONICS
384 LAKEVIEW AVE.
CLIFTON, NJ 07011
(201) 772-2222

New York

AM-COM ELECTRONICS INC.
RT. 5
NORTH UTICA SHOPPING CTR.
UTICA, NY 13502
315-732-3656
The Mohawk Valley's Newest &
Largest Electronics Supermarket.

HAM-BONE RADIO
3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446-2266
We deal, we trade, all major brands!
2-way service shop on premises!

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925.
Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
Toll Free 800-448-7914
NY 315-337-2622
Res. 315-337-0203
New & Used Ham Equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

AMATEUR RADIO SALES & SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas and Towers for
All Services.

Oklahoma

KRYDER ELECTRONICS
5826 N.W. 50TH
MacARTHUR SQ. SHOPPING CTR.
OKLAHOMA CITY, OK 73122
405-789-1951
Your Complete Amateur Radio Store

Pennsylvania

ELECTRONIC EXCHANGE
136 N. MAIN STREET
SOUDERTON, PA 18964
215-723-1200
Demonstrations, Sales, Service
New/Used Amateur Radio Equip.

HAMTRONICS, DIV. OF
TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.
Call Toll Free 800-523-8998.

South Dakota

BURGHARDT
AMATEUR RADIO CENTER, INC.
P. O. BOX 73
WATERTOWN, SD 57201
605-886-7314
"America's Most Reliable
Amateur Radio Dealer".

Texas

HARDIN ELECTRONICS
5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized
Yaesu Dealer.

September 1979
GEM-QUAD FIBRE-GLASS ANTENNA FOR 10, 15, and 20 Meters

Two Elements $159.00
Extra Elements $113.00
Price is F.O.B. Transcona
Includes U.S. Customs Duty

kit complete with

SPIDER
ARMS
WIRE
BALUN KIT
BOOM WHERE NEEDED

Winner of Manitoba Design Institute Award of Excellence

Buy two elements now – a third and fourth may be added later with little effort.

Enjoy up to 8 db forward gain on DX, with a 25 db back to front ratio and excellent side discrimination.

Get maximum structural strength with low weight, using our "Tri-Acid" arms. Please inquire directly to:

GEM QUAD PRODUCTS LTD.
Box 53
Transcona Manitoba
Canada R2C 2Z5
Tel. (204) 866-3338

ALL BAND TRAP ANTENNAS!

For all makes & models of amateur transceivers – transmitters – guaranteed for 2000 watts SSB
1000 watts CW input for novice and all class amateurs!

Complete A3 Trap with 90 ft. RG58U-52 ohm feedline, and PL259 connector, insulators, 30 ft.
300 ft. test dacron end supports. Center connector with built in lightning arrestor and static discharge
molded, sealed, weatherproof, resonant trap. 1 1/2" ft you just switch to band desired for excellent worldwide
operation – transmitting and receiving. WT. LESS THAN 5 LBS.

160-80-40-20-15-10 bands 2 trap = 209 ft. with 90 ft. RG58U – connector – Model 777BU... $64.95
80-40-20-15-10 bands 2 trap = 102 ft. with 90 ft. RG58U – connector – Model 9998BU... $59.95
40-20-15-10 bands 2 trap = 54 ft. with 90 ft. RG58U coax – connector – Model 1001BU... $55.95
20-15-10 bands 2 trap = 26 ft. with 90 ft. RG58U coax – connector – Model 1007BU... $57.95

Send full price for post paid insured del. in USA. (Canada is $5.00 extra for postage, clerical
charges, etc.)

For more information, contact:

WESTERN ELECTRONICS
Dept. AR-9
Kearney, Nebraska, 68847

COMPLETE YOUR FT-101
ADD FM TO ALL ORIGINAL MODELS OF THE FT-101
MARK 1 THROUGH "F"

Transmitter Unit... $30 (paid in USA)

Gains and characteristics vary with individual models. 11-12 MHz major
pips appear on dial with corresponding tuning. Any
desired band by request.

Receiver Unit... $110 (paid in USA)

For full price of unit add $5.00 (paid in USA)

Both Units... $125 (paid in USA)

Use the 18 in. mini FM Channels Directory, or on 4 meters,
477 MHz, or 440 MHz, or 100 MHz.

Also Available:

FACSIMILE
COPY SATELLITE, PHOTOS, WEATHER MAPS, PRESS!
The Fax Are Clear — on our full size (18-1/2" wide) recorders. These commercial-military units now
available at surplus prices. Learn how to copy with our FREE
Fax Guide.

Call (212) 372-6349

Atlantic Super Sails
3730 Nautilus
Brooklyn, N.Y. 11224

Military Super Surplus
Space buys home and pays more. High
test prices ever on U.S. Military sur-
plus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer 201 440-8787

Space Electronics Co.
Div. of Military Electronics Corp.
35 Ruta Court, S. Hackensack, N.J. 07606

Moving?
Keep Ham Radio Coming...

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives
on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any
other corrections) in the space provided and we'll take care of the rest.

Ham Radio Magazine
Greenville, N.H. 03048

Thanks for helping us to serve you better.

Here's my new address:

Name:__________________________
Address:_______________________
City:_____________________________
State:___________________________
Zip:_____________________________

Affix label here

More Details? CHECK — Off Page 126
ERC PROMISES UP TO THE MINUTE STATE-OF-THE-ART DESIGN AND PERFORMANCE WE'VE DONE IT FOR 1979

FOUR SIMULTANEOUS FILTERS IN ONE FOR UNPARALLELED QRM FREE RECEPTION (SSB & CW)
PLUS A SPECIAL PATENTED CW PROCESSOR

THE BRAND NEW SL-56 AUDIO ACTIVE FILTER SUPERCEDES OUR SL-55 IN BOTH CONCEPT AND PERFORMANCE. CONSOLIDATION OF MANY COMPLEX COMPONENTS HAS LED US TO MAKE 16 OPERATIONAL AMPLIFIERS (COMPARED TO 6 IN THE SL-55) INTO A FILTER GUARANTEED TO PERFORM ANY OTHER AT A COST ONLY SLIGHTLY HIGHER THAN THE SL-55. THE FEATURES OF THE SL-56 ARE SO ADVANCED FROM ITS PREDECESSOR THAT CALLING IT THE SL-55A IS NOT JUSTIFIED. UNLIKE OTHER FILTERS, THAT SIMPLY OFFER A CHOICE OF ONE OR TWO FILTER TYPES AT A TIME (NOTCH, BANDPASS, etc.), SL-56 PROVIDES WHAT IS REALLY NEEDED --- THE SIMULTANEOUS ACTION OF A 6-POLE 200-1600 Hz FIXED HIGHPASS FILTER AND A 6 POLE 1600 Hz FIXED LOWPASS FILTER WITH A 60 db NOTCH WHICH IS TUNABLE OVER THE FREQUENCY RANGE. RECEIVING ANY TRANSMISSION. REVERSING THE CIRCUITS.

THAT VSWR AND POWER ACCEPTED BY THE LOAD.

200-1600 Hz RANGE. THIS 3 FILTER COMBINATION IS UNBEATABLE FOR THE ULTIMATE IN FREE BUFFERED RECEPTION. RECELVER NOISE, RING AND OTHER SIGNALS ARE REJECTED. THIS IS NOT A REGRESSION, BUT A MODERN CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD.

MORE DETAILS?

WARRANTY ONE YEAR FULLY RFI PROOF FULLY WIRED AND TESTED AVAILABLE NOW $75.00 POSTPAID IN THE USA AND CANADA.

ATTN SL-55 OWNERS: THE CIRCUIT BOARD OF THE SL-56 IS COMPLETELY COMPATIBLE WITH THE SL-55 CHASSIS. OUR RETROFIT KIT IS AVAILABLE AT $35.00 POSTPAID.

ERC INTRODUCES A BRAND NEW CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD.

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.

COLLINS GRAY CABINET.

WRINKLE PANEL --- BRIGHT DIMENSIONS 3.5 x 5.5 x 7.5 INCHES.

DINAMICS 3.5 x 5.5 x 7.5 INCHES.

WEIGHT IS 2 POUNDS.

A SPECIAL PATENTED CIRCUIT FOLLOWS THE DETECTED PEAK SIGNAL TO "GATE ITSELF" THROUGH TO THE SPEAKER OR HEADPHONES (4000 OHMS). RECEIVER NOISE, RING AND OTHER SIGNALS ARE REJECTED. THIS IS NOT A REGRESSION, BUT A MODERN CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD.

THE MODEL SL-56A (20-2000 WATTS) AND THE QRP MODEL SL-56A (0.2-20 WATTS) DIGITALLY INDICATE ANTENNA VSWR UNDER ANY TRANSMISSION MODE --- SSB, CW, RTTY, AN ETC. THERE IS NO CALIBRATION REQUIRED AND NO CROSS-METER NEEDLES TO ADJUST. SIMPLY LOOK AT THE READOUT AND THAT IS THE VSWR. SPEAKING NORMALLY INTO A SSB TRANSMITTER MIC.

A SHORT PEAKED SIGNAL TO "GATE ITSELF" THROUGH TO THE SPEAKER OR HEADPHONES (4000 OHMS). RECEIVER NOISE, RING AND OTHER SIGNALS ARE REJECTED. THIS IS NOT A REGRESSION, BUT A MODERN CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD.

INSTANTLY THE VSWR BECAUSE THE FILTER BS DISPLAYED THROUGHOUT YOUR ENTIRE TRANSMISSION. REVERSING THE POSITION OF A FRONT PANEL TOGGLE SWITCH AND THE DISPLAY INDICATES THE NET POWER (FORWARD LESS REFLECTED) THAT IS ACCEPTED BY THE ANTENNA. THE PEAK OF THE NET PEAK IS DISPLAYED AND DISPLAYED WITHOUT FILTER FOR ANY MODULATION. DISPLAY UPDATE IS CONSTANT YET FLICKER FREE AS YOU MAY CHANGE THE POWER ACCORDING TO YOUR VOICE. THERE IS NOTHING LIKE THIS ANYWHERE ELSE. IT IS THE ONLY VSWR/NET POWER INDICATOR THAT LETS YOU KNOW THE STATE OF YOUR ANTENNA AND TRANSMITTED POWER AT ALL TIMES WHILE TRANSMITTING.

EACH MODEL IS A SOPHISTICATED DEVICE CONTAINING FOUR CIRCUIT BOARDS AND THIRTEEN INTEGRATED CIRCUITS.

SL-56

VSWR INDICATOR

- TWO DIGIT DISPLAY SHOWS VSWR TO AN ACCURACY OF .1 FOR VALUES FROM 1.0 AND 2.2. ACCURACY IS TO .2 FROM 2.3 TO 3.4 AND TO 3 FROM 3.4 TO 4.0. FROM 4.1 TO 6.2. THE INDICATION MEANS THAT VSWR IS VERY HIGH.

- FOR VSWR VALUES NEAR 1.0, THE POWER RANGE FOR A VALID READING IS 20 - 2000 WATTS OUTPUT. FOR HIGHER VALUES THE UPPER POWER LIMIT FOR A FLICKER FREE VALID READING IS SOMETHING LESS (35 - 10000 WATTS) FOR VSWR AT 20.0.)

- DIVIDE THE ABOVE POWER LEVELS BY 100 TO OBTAIN THE PERFORMANCE OF THE SL-65A QRM MODEL.

SL-56 NET POWER INDICATOR

- THE POWER DISPLAYED IS THE PEAK OF THE PEAK FOR ANY MODULATION. THIS IS THE POWER THAT THE TRANSMITTER IS "TALKED" UP TO. DISPLAY DECAY TIME IS ABOUT ONE SECOND.

- THE POWER DISPLAYED IS THAT WHICH IS ACCEPTED BY THE ANTENNA (FORWARD LESS REFLECTED).

- POWER IS DISPLAYED ON THE SAME TWO DIGITS AS VSWR IN TWO AURANGED SCALES, 20 TO 500 WATTS AND 500 TO 20000 WATTS. FOR VALUES AT THE 500 WATT LEVEL IS AUTOMATIC EXCEPTING ThE TIME THAT YOU MUST KNOW WHICH RANGE YOU ARE IN.

- ACCURACY IS TO 10 WATTS IN THE LOWER RANGE AND 100 WATTS IN THE UPPER RANGE. DIVIDE POWER SPECS BY 100 FOR SL-65A.

PRICE: $189.50 POSTPAID IN USA & CANADA. VA. RESIDENTS ADD 4% SALES TAX.

BOOKLET AVAILABLE AT $2.00 ADD $1.00 TO PARSHIP.

PATENT PENDING.

ELECTRONIC RESEARCH CORP. OF VIRGINIA VIRGINIA BEACH, VIRGINIA 23452

TELEPHONE (804) 463-2669

WRAP Sheet 126

More Details? CHECK --- OFF Page 126

95¢ EACH

TO ORDER: Specify both core size and mix for toroids. Packing and shipping 50 cents per order USA and Canada. Californians add 6% sales tax.

Fast service. Free brochure and winding chart on request.

PALOMAR ENGINEERS

BOX 455, ESCONDIDO, CA 92025

Phone: (714) 747-3343

september 1979
RF DIRECTIONAL WATTMETER
with VARIABLE RF SIGNAL SAMPLER — BUILT IN
IN STOCK FOR PROMPT DELIVERY
AUTHORIZED DISTRIBUTOR

Webster
associates
115 BELLARME
ROCHESTER, MI 48063
CALL TOLL FREE
800 — 521-2333
IN MICHIGAN 313 — 375-0420

NEW — NEW — NEW
TOUCH-TONE® MICROPHONE
DATA CODER 5

$39.00

JUST LOOK AT THESE FEATURES:
• Touch "Mobile Environment" Microphone
• Positive-Action Tactile Keys
• High-Impedance Ceramic or 500-ohm Dynamic Cartridge
• Adjustable Tone Balance and Output Level
• "Positive Hold - Easy Lift" Hanger
• For Vehicle or Hand-held Portable Use
• Complete — Not a Kit — $39.00

*Touch-Tone is a registered trade name of AT&T

DATA SIGNAL, INC.
2403 COMMERCIAL STREET
ALBANY, GEORGIA 31707
Tel. 912-883-4703

DAMES COMMUNICATION SYSTEMS

Ham Gear
Frederick's RTTY 150BA HF revr. $850
Collins 752D revr., vy, gd. $375
Drake 496D revr., vy, gd. $395
Drake T448 transmitter w/supply $475
Collins 312B4 round, exc. $250
Hath SB-200 linear amp $295
Johnson 350, m. Matchbox w/SWR $85
R390A new, latest (ref. by EAC) call
Collins 5151, rnd, late, exc. call
Collins PM-2, power supply $175
Collins 514J, general coverage receiver $485
Collins KWM41 transceiver, exc. rnd. $495
Collins 734A ham receiver, vy, gd. $425
Collins 31285, Vic Remote, exc. $325
Collins 301L, vy, gd. $395
Collins 5182, power supply $185
Collins R-390A curs, overhauled exc. cond. call
Collins 5151, 2-30 MHz revr. Special
Hammarlund SP-600JX revr. $325
Collins 3253 ham transmitter, vy, gd. $325
Johnson 25w Matchbox w/snr meter $165

Boonton 97A PC Volmeter/amp. $275
HP 440B signal generator call
Harrison 9-20 volt/1.5 amp lab pow, supplies ea. $35.50
GR-1605A Impedance comparator $375
Tek 405 storage monitor $150
Boonton Radio 225A rig gen. 16-500 MHz $495
Blue M temp. controlled water bath $230
HP-200CD wide-range gelidoscope $175
Measurements Model 80 2-400 MHz $295
Measurements Model 658 signal generator $295
Tek 851 digital tester new w/AC/DC $250

We stock Amateur and Professional equipment from manufacturers such as Collins, Hewlett-Packard, etc.

All equipment sold checked and realigned
Write for free catalog.

201-988-4256
10 SCHUYLER AVENUE
NORTH ARLINGTON, N. J. 07032

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE
HOLLIS, N. Y. 11423

DUNES HOTEL
LAS VEGAS, NEVADA
JANUARY 10-13, 1980

More Details? CHECK — OFF Page 126
Spec Comm is proud to announce the long awaited SCR4000 UHF Repeater. This unit incorporates many deluxe features often requested by our customers over the last 2½ years. See Features below for just a few. The rest of the unit is basically the same as our world famous SCR1000 VHF Repeater which is well known for superior performance, quality and reliability!

FEATURES:
- 30 Wt. Output
- Low Noise Front End: With 6 Filter Sections!
- Double-Balanced Rcvr. Mixer for Super Dynamic Range!
- Rcvr. Discriminator & Deviation Meters!
- Ultra-High Stability Transmitter Crystal Oscillator/Oven
- All New State-of-the-Art Xmr. & Rcvr. Boards
- Plus — Many More Features Found in the Well Known SCR1000 VHF Repeater!

You'll be happy to hear that the SCR4000 is very reasonably priced . . . about ½ that of other “top name” units (which don’t offer nearly as many convenient features as the SCR4000)! Also, a complete line of options & accessories are available, such as full Autopatch, Tone Control units, Duplexers, Antennas, Cabinets, etc. SCR1000 VHF Repeater Also Available.

The SCR4000 is sold factory direct only, or through authorized foreign sales reps. Since there has been tremendous demand for the SCR4000, we suggest you get your order in ASAP!

NEW

PCL 250 MOBILE TRANSCIEVER
136-174 MHz
220-240 MHz
Commercial or Amateur

SCT 110 TRANSMITTER BOARD

Please Call or Write for further info.

A Full Line of Repeater Boards, Sub-Assemblies & New VHF FM Transceivers Are Also Available: Inquire.

CALL TOLL FREE
For the best deal on
- AEA • Ameco • ASP • Atlas
- Belden • Bencher • Bird
- CDE • CIR • CES • Cushcraft
- DenTron • Drake • Hy-Gain
- Icom • KLM • Kenwood
- Larsen • MFJ • Midland
- Mosley • NPC • Newtronics
- Nye • Pelomar • Regency
- Shure • Swan • Standard
- Tempo • Ten-Tec • Tonna
- Transcom • Wilson • Yaesu

This Month's SPECIALS!
Yaesu FT-202 Hand Held only $25 with each FT-901DM bought at $1299!
PS-30 Power Supply FREE with each TS-180S bought at $1149.50!
FREE! $50 in crystals (or crystal certificates) with each Wilson MK II or MK IV!
(Yaesu special good through Sept. 15)

CALL TOLL FREE
(outside Illinois only)
(800) 621-5802
for the Erickson price!

Hours:
9:30-5:30 Mon., Tues., Wed. & Fri.
9:30-9:00 Thursday
9:00-3:00 Saturday

ERICKSON COMMUNICATIONS, INC.
5456 W. MILWAUKEE AVE
CHICAGO IL 60630 (312) 631-5181

SPECTRUM COMMUNICATIONS
Dept. HJ — 1055 W. Germantown Pk.
Norristown, PA 19401 (215) 631-1710
AUTUMN ACTION

Cushcraft "boomer" $69.95
OMNI-J & heavy duty magnet mount complete 49.95
TRIEX W-51 FT self-support tower (Reel $89.91) Your cost (FOB California) .. 791.00
Tonna F9FT Antennas 144/16 el 69.95
Klitzing VHF-UHF Amplifiers
2M 10W in - 100W Out 179.00
40M 100W-150W 40W Out 189.00
Bird 43 and slugs, UPS paid in USA, stock 220.00
Microwave Modules 432.28S 299.00
Deluxe Amp. 432-100W output 449.00
Telex TBSEM, in stock 415.00
New Palomar Engr. Trans. Preamp 95.00
Bencher Accessories - 38.95 95.00
ETO 16 Amplifiers 195.00
stock
6M 2M-220 In Line Preamps 49.95
2M Amp 10mp-10w with Preamp, UPS Paid USA 198.00
Janel QSA-5 41.95
Ham X 189.00
NEW Ham-4 139.00
VHF Engrs. blue line amps stock
VHF Kits stock
Cetron 5329B 324.50
Midland 13-509 220 MHz - 12ch - 10w 159.00
13-513 220 MHz synthesized 389.00
Motorola HEP 170 0.29
Mallory 2.5A/1000 PV Epoxie Diode 0.19
Non Linear Systems Minosse - 15.318.00
Minosse - 215 435.00
- 10% accessories available
Aerovox 1000PF/500V Fed thru 9.50
GE6146B or 8950 7.95
Technical Books: Ameco, ARRL, Sams, Tab, Rider Radio Pub., Callbook, Cowan, etc 105.00
Newtobx 9405 (2x16)(6x18) 8 wire 8 wire track, heavy duty for long runs 0.28
8448 8x8 wire track per 100 0.17
9888 double sided RFGB, 40ft, per 100 0.38
8214 RFGB Foam 0.26
8237 RFGB 0.72
8267 RG113 0.59
Amphenol Silver Plate PL259 0.59
Times 1/2 " Foam Hardline $0.65 ft. - Connectors 104 7/8 " Hardline $1.50 ft. 50.00
Connectors 250.00
Berktek RG8X, 52 ohm, KW per ft. 0.16
Condensed HD-18 Ga. Galv. Tower 29.95
10 Selection - 9.95
Robot "Slow Scan" Now in Stock Call
Alliance HD73 Rotor 109.95
Telexor 9self-support 55.95
20 ft. breaker 549.00
40 ft. w/breaker 399.00
Swan TB49a, TB39a, TB28 20% off list
Collins replacement parts available
Telex Antennas? In Stock!
Looking for antique parts?
Write specific need to WSGJ.

THIS MONTH'S SPECIALS:
Icom IC280 $349.90
DenTron GLA 1000 Amp $319.00
Bencato 250, 220 $299.00
DenTron Clipper L $499.00

MASTER CHARGE • VISA
All prices fob Houston except where indicated.
Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $0.00 minimum.

ADVERTISERS INDEX
AED Electronics .. 94
Aluma Tower Co .. 108
Amon Associates .. 104
Anstech, Inc .. 108
Apollo Products .. 114
Aston Corporation 112
Aston Surplus .. 112
Barry Electronics 110
Buswug Mfg. Co .. 96
Cal Crestal Labs ... 96
Cedar Valley Radio Club 116
Communications Center 95
Communications Specialists 119
Creative Electronics 76
Curta! Devices .. 108
Cuthcart .. 50
DCO, Inc .. 94
DSSI Instruments 70
DK Engineering ... 109
Dames Communications Systems 124
Data Signal, Inc 124
Dravaro .. 112
Dave .. 98
Denson Electronics Corp 112
Drake Co, R .. 78
Edgley Electronics 98
Ehrom Technological Operations 127
Electronic Research Corp. of Virginia 47
Eckomonic Communications 125
Fair Sales .. 106
Fike Corp .. 106
G & C Communications 96
Gib .. 112
Gem Quartz Parts 112
Gray Electronics .. 108
Gregory Electronics 96
Hal Communications 17
Hall Tronic .. 76.94
Ham Radio Magazine 72
Health Company .. 13
Heights Mfg. Co 76
Henry Radio Stores 112
IIR .. 75
Icom .. 5
Info-Tech .. 105
International Crystal 43
Jameco Electronics 107
Jan Crystals .. 122
Jones, Martin, P & Assoc 109
KLM Electronics, Inc 41
Kantronics .. 106
Trio-Kenwood Communications, Inc. 7, 64, 65
Klaus Radio, Inc .. 104
L Tronic .. 76
Long's Electronics 128
Lunar Electronics 53
MJE Enterprises .. 2
Maditon Electronics Supply 53, 58, 75, 98, 116, 124
Microwave Filter, Inc 116
P.C. Electronics .. 106
Palomar Engineers 92
RIO Products ... 82
Radio Amateur Callbook 98
Radio World .. 112
Ramsey Electronics 113
SST Electronics .. 104
Saroc ... 124
Sherwood Engineering 114
Shure Brothers, Inc 115
Simon Electronics 123
Spectronics .. 114
Space Electronics 123
Spectronics .. 114
Spectrum Communications 125
Spectrum International 47
Swan Electronics 10, 11
TCL .. 106
TFL Communications 58
Tetex Laboratories 114
Ten-Tec .. 9
The Communication Center 11
Thomas Communications 112
Tri-Ex Tower Corporation 97
Van Gorden Engineering 124
Vanguard Lito, Inc
Varearn, Emmac Division Cover IV
Webster Associates 124
Western Electronics 122
Whitehorse, G. B. & Co 61
Wilson Electronics 69
Wilson Systems .. 99
XRX Corporation 96
Yaesu Electronics Corp Cover III

September, 1979

Please use before October 31, 1979

Tear off and mail to
HAM RADIO MAGAZINE "check-off"
Greenville, N. H. 08308

NAME .. CALL .. STREET .. CITY ..
STATE .. ZIP ..

*Please contact this advertiser directly.
Limit 15 inquiries per request.

126 september 1979
First family of power...

ALPHA

THE VERY FINEST ANSWER TO YOUR NEED for one to two kilowatts of solid HF power: a superlative ALPHA linear amplifier - FIRST in performance, in convenience, in quality and durability.

Brute RF power without time limit, whisper-quiet operation, instant no-tune-up bandchanging, high speed break-in (QSK), the ability to cover any newly-assigned HF band - there's an ALPHA perfectly suited to YOUR requirements.

ALPHA: power in a class by itself. For complete details, contact your ALPHA dealer or ETO direct.

EHRHORN TECHNOLOGICAL OPERATIONS, INC.
BOX 708, CAÑON CITY, CO 81212 (303) 275-1613
KENWOOD TS-520SE HF transceiver
An economical new version of the TS-520SE! The heater switch is replaced with a CW WIDE/NARROW bandwidth switch, the DC converter terminals are removed, and the transverter terminals removed. Covers 160 - 10 meters, 200W PEP SSB and 160W DC CW, noise blanker, RIT, 8-pole crystal filter, 2.5 KHz calibrator, semi-break-in CW with sidetone, VOX/PTT/MANUAL, built-in speaker, fan, provisions for four fixed channels, and speech processor. This is an affordable, high quality rig for fixed station use that functions with many of the popular Kenwood accessories.

629.95 List. Call for quote.

KENWOOD TS-180S solid state HF transceiver

KENWOOD TS-120S HF transceiver
No tune up! With digital display, cooling fan, IF shift, protection for the final transistor, VOX, noise blanker, 2.5 KHz marker, 80-10 meters, WWV, modes: SSB and CW, 200W PEP SSB, power requirements: R.O. 7.5A 13.8 VDC, T. 16A 13.8 VDC. Size: 3¾"H x 9¾"W x 13¾"L. 699.95 List. Call for quote.

YAESU FT-901 DM HF transceiver
Freq. coverage: 160 thru 10 meters, 200W PEP, RF speech processor, built-in VFO, reject tuning, LED freq. display with memory, built-in Curtis Keyer, 6146B final tubes. AC/DC power supply built-in audio peak freq. tuning. 1459.00 List. Call for quote.

DRAKE TR/DR7 digital R/O transceiver
160-10 meters, modes: USB, LSB, CW, RTTY, AM equiv., true passband tuning. RIT, built-in RF wattmeter/WSWR bridge, SSB 250W, AM equiv. 80W. Power supply required for AC operation. 1395.00 List. Call for quote.

YAESU FT-101ZD HF transceiver
Covers: 160 thru 10 meters plus WWV, modes: USB, LSB, CAM, and CW, in-built power supply, digital and analog frequency readout. 6146B final tubes. RF speech processor, variable IF bandwidth, noise blanker, heater switch, VOX, attenuator 10 dB or 20 dB selectable. 895.00 List. Call for quote.

TEN-TEC Omni D Series B transceiver
Totally solid state. 200W all bands with 50 ohm load. Covers 160 thru 10 meters, digital readout, VOX and PTT, notch filter, built-in 4-pos. CW/SSB filter, 1 speed break-in, 100% duty cycle, basic 12 VDC operation, power supply required for 177 VAC operation. 1119.00 List. Call for quote.
ALL NEW
FT-1012D
HIGH-PERFORMANCE HF TRANSCEIVER

Today’s technology, backed by a proud tradition, is yours to enjoy in the all-new FT-1012D transceiver from YAESU. A host of new features are teamed with the FT-101 heritage to bring you a top-dollar value. See your dealer today for a “hands on” demonstration of the performance-packed FT-1012D.

TRANSMITTER
PA Input Power: 160 watts DC
Carrier Suppression: Better than 40 dB
Unwanted Sideband Suppression: Better than 40 dB @ 1000 Hz, 14 MHz
Spurious Radiation: Better than 40 dB below rated output
Third Order Distortion Products: Better than -31 dB
Transmitter Frequency Response: 300-2700 Hz (-6 dB)
Stability: Less than 300 Hz in first 30 minutes after 10 min. warmup; less than 100 Hz after 30 minutes over any 30 min. period
Negative Feedback: 6 dB @ 14 MHz
Antenna Output Impedance: 50-75 ohms, unbalanced

GENERAL
Frequency Coverage: Amateur bands from 1.8-29.9 MHz, plus WWV/JJY (receive only)
Operating Modes: LSB, USB, CW
Power Requirements: 100/110/117/200/220/234 volts AC, 50/60 Hz; 13.5 volts DC (with optional DC-DC converter)
Power Consumption: AC 117V: 75 VA receive (65 VA HEATER OFF)
265 VA transmit; DC 13.5V: 5.5 amps receive (1.1 amps HEATER OFF), 21 amps transmit
Size: 345 (W) x 157 (H) x 326 (D) mm
Weight: Approximately 15 kg.

COMPATIBLE WITH FT-901D ACCESSORIES

SPECIFICATIONS

RECEIVER
Sensitivity: 0.25 uV for S/N 10 dB
Selectivity: 2.4 KHz at 6 dB down, 4.0 KHz at 60 dB down (1.66 shape factor); Continuously variable between 300 and 2400 Hz (-6 dB). CW (with optional CW filter installed): 600 Hz at 6 dB down, 1.2 KHz at 60 dB down (2.1 shape factor)
Image Rejection: Better than 60 dB (160-15 meters); Better than 50 dB (10 meters)
IF Rejection: Better than 70 dB (160, 80, 20-10 m); Better than 60 dB (40 m)
Audio Output Impedance: 4-16 ohms
Audio Output Power: 3 watts @10% THD (into 4 ohms)

YAESU ELECTRONICS CORP., 15954 Downey Ave., Paramount, CA 90723 • (213) 633-4007
YAESU ELECTRONICS Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246
Heathkit SB-221 linear amplifier uses EIMAC 3-500Zs for efficiency, economy and performance.

Designed for rugged service.
The new desktop Heathkit SB-221 linear amplifier provides up to 2000 watts PEP input for SSB and 1000 watts input for CW service. Only 100 watts drive power is required to achieve these power levels.

Designed for rugged contest and traffic service, the SB-221 uses the highest grade components including two EIMAC 3-500Z high gain power triodes, well-known for their reliable, efficient performance. One thousand watts of plate dissipation is available from the two tubes, providing ample safety factor for long life service.

The designer's choice.
Top-notch equipment designers, such as Heathkit, choose EIMAC power tubes for commercial as well as amateur products. The 3-500Z power tube used in the SB-221 also serves in many commercial broadcast, FM and point-to-point radio systems where reliability and long life are paramount.

Make sure this fine EIMAC 3-500Z is in your equipment. For full details and a data sheet on the 3-500Z, write Varian, EIMAC Division, 301 Industrial Way, San Carlos, CA 94070. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.